WorldWideScience

Sample records for alternate fuels combustibles

  1. Alternate fuels; Combustibles alternos

    Energy Technology Data Exchange (ETDEWEB)

    Romero Paredes R, Hernando; Ambriz G, Juan Jose [Universidad Autonoma Metropolitana. Iztapalapa (Mexico)

    2003-07-01

    In the definition and description of alternate fuels we must center ourselves in those technological alternatives that allow to obtain compounds that differ from the traditional ones, in their forms to be obtained. In this article it is tried to give an overview of alternate fuels to the conventional derivatives of petroleum and that allow to have a clear idea on the tendencies of modern investigation and the technological developments that can be implemented in the short term. It is not pretended to include all the tendencies and developments of the present world, but those that can hit in a relatively short term, in accordance with agreed with the average life of conventional fuels. Nevertheless, most of the conversion principles are applicable to the spectrum of carbonaceous or cellulosic materials which are in nature, are cultivated or wastes of organic origin. Thus one will approach them in a successive way, the physical, chemical and biological conversions that can take place in a production process of an alternate fuel or the same direct use of the fuel such as burning the sweepings derived from the forests. [Spanish] En la definicion y descripcion de combustibles alternos nos debemos centrar en aquellas alternativas tecnologicas que permitan obtener compuestos que difieren de los tradicionales, al menos en sus formas de ser obtenidos. En este articulo se pretende dar un panorama de los combustibles alternos a los convencionales derivados del petroleo y que permita tener una idea clara sobre las tendencias de la investigacion moderna y los desarrollos tecnologicos que puedan ser implementados en el corto plazo. No se pretende abarcar todas las tendencias y desarrollos del mundo actual, sino aquellas que pueden impactar en un plazo relativamente corto, acordes con la vida media de los combustibles convencionales. Sin embargo, la mayor parte de los principios de conversion son aplicables al espectro de materiales carbonaceos o celulosicos los cuales se

  2. Combustion of solid alternative fuels in the cement kiln burner

    DEFF Research Database (Denmark)

    Nørskov, Linda Kaare

    In the cement industry there is an increasing environmental and financial motivation for substituting conventional fossil fuels with alternative fuels, being biomass or waste derived fuels. However, the introduction of alternative fuels may influence emissions, cement product quality, process...... conditions relevant to suspension fired combustion. An experimental combustion reactor for simulating suspension fired combustion of large, single particles is established and experiments are performed to investigate conversion pathways, ignition, devolatilisation, and char oxidation times of pine wood, and.......e. grinding and drying, is insufficient to ensure the dried sewage sludge to be converted within the available time in suspension, however a partial particle downsizing without drying can be allowed for refuse derived fuel firing. By increasing the entrainment rate of secondary air, the primary air percentage...

  3. Using Alcohols as an Alternative Fuel in Internal Combustion Engines

    OpenAIRE

    Salih ÖZER

    2014-01-01

    This study summarizes the studies on alcohol use in internal combustion engines nature. Nowadays, alcohol is used in internal combustion engines sometimes in order to reduce emissions and sometimes as an alternative fuel. Even vehicle manufacturers are producing and launching vehicles that are running directly with alcohol. Many types of pure alcohol that can be used on vehicles are available on the world. Using all of these types of alcohol led to the formation of engine emissions and power ...

  4. Using Alcohols as an Alternative Fuel in Internal Combustion Engines

    Directory of Open Access Journals (Sweden)

    Salih ÖZER

    2014-04-01

    Full Text Available This study summarizes the studies on alcohol use in internal combustion engines nature. Nowadays, alcohol is used in internal combustion engines sometimes in order to reduce emissions and sometimes as an alternative fuel. Even vehicle manufacturers are producing and launching vehicles that are running directly with alcohol. Many types of pure alcohol that can be used on vehicles are available on the world. Using all of these types of alcohol led to the formation of engine emissions and power curves. The studies reveal that these changes are because of the physical and chemical characteristics of alcohols. Thıs study tries to explain what kind of conclusions the physical and chemical properties cause

  5. Advisable alternative fuels for Mexico; Combustibles alternativos convenientes para Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar Gonzalez, Jorge Luis [ICA Fluor (Mexico)

    2007-07-15

    The alternative fuels are born with the goal of not damaging the environment; biodiesel, electricity, ethanol, hydrogen, methanol, natural gas, LP gas, are the main alternative fuels. However, the biodiesel and bioetanol are the only completely renewable ones, this makes them ideal to be developed in Mexico, since the agricultural sector could be fortified, the technological independence be favored, improve the conservation of the oil resources and by all means not to affect the environment. On the other hand, also efficient cultivation techniques should be developed to guarantee the economy of the process. [Spanish] Los combustibles alternativos nacen con la meta de no danar el medio ambiente; el biodiesel, electricidad, etanol, hidrogeno, metanol, gas natural, gas LP, son los principales combustibles alternativos. No obstante, el biodiesel y el bioetanol son los unicos completamente renovables, esto los hace ideales para desarrollarse en Mexico, ya que se podria fortalecer el sector agricola, favorecer la independencia tecnologica, mejorar la administracion de los recursos petroleros y por supuesto no afectar al medio ambiente. Por otro lado tambien se tendrian que desarrollar tecnicas de cultivo eficientes para garantizar la economia del proceso.

  6. Combustion and oxidation kinetics of alternative gas turbines fuels

    OpenAIRE

    Glaude, Pierre-Alexandre; Sirjean, Baptiste; Fournet, René; Bounaceur, Roda; Vierling, Matthieu; Montagne, Pierre; Molière, Michel

    2014-01-01

    Heavy duty gas turbines are very flexible combustion tools that accommodate a wide variety of gaseous and liquid fuels ranging from natural gas to heavy oils, including syngas, LPG, petrochemical streams (propene, butane...), hydrogen-rich refinery by-products; naphtha; ethanol, biodiesel, aromatic gasoline and gasoil, etc. The contemporaneous quest for an increasing panel of primary energies leads manufacturers and operators to explore an ever larger segment of unconventional power generatio...

  7. Determination of alternative fuels combustion products: Phase 3 report

    Energy Technology Data Exchange (ETDEWEB)

    Whitney, K.A. [Southwest Research Inst., San Antonio, TX (United States)

    1997-12-01

    This report describes the laboratory efforts to characterize particulate and gaseous exhaust emissions from a passenger vehicle operating on alternative fuels. Tests were conducted at room temperature (nominally 72 F) and 20 F utilizing the chassis dynamometer portion of the FTP for light-duty vehicles. Fuels evaluated include Federal RFG, LPG meeting HD-5 specifications, a national average blend of CNG, E85, and M85. Exhaust particulate generated at room temperature was further characterized to determine polynuclear aromatic content, trace element content, and trace organic constituents. For all fuels except M85, the room temperature particulate emission rate from this vehicle was about 2 to 3 mg/mile. On M85, the particulate emission rate was more than 6 mg/mile. In addition, elemental analysis of particulate revealed an order of magnitude more sulfur and calcium from M85 than any other fuel. The sulfur and calcium indicate that these higher emissions might be due to engine lubricating oil in the exhaust. For RFG, particulate emissions at 20 F were more than six times higher than at room temperature. For alcohol fuels, particulate emissions at 20 F were two to three times higher than at room temperature. For CNG and LPG, particulate emissions were virtually the same at 72 F and 20 F. However, PAH emissions from CNG and LPG were higher than expected. Both gaseous fuels had larger amounts of pyrene, 1-nitropyrene, and benzo(g,h,i)perylene in their emissions than the other fuels.

  8. The origin of organic pollutants from the combustion of alternative fuels: Phase 5/6 report

    Energy Technology Data Exchange (ETDEWEB)

    Sidhu, S.; Graham, J.; Taylor, P.; Dellinger, B. [Univ. of Dayton, OH (United States). Research Inst.

    1998-05-01

    As part of the US Department of Energy National Renewable Energy Laboratory program on alternative automotive fuels, the subcontractor has been conducting studies on the origin and fate of organic pollutants from the combustion of alternative fuels. Laboratory experiments were conducted simulating cold start of four alterative fuels (compressed natural gas, liquefied petroleum gas, methanol-gasoline mix, and ethanol-gasoline mix) using a commercial three-way catalyst under fuel-lean conditions. This report summarizes the results of these experiments. It appears that temperature of the catalyst is a more important parameter for fuel conversion and pollutant formation than oxygen concentration or fuel composition.

  9. Determination of alternative fuels combustion products: Phase 2 final report

    Energy Technology Data Exchange (ETDEWEB)

    Whitney, K.A.

    1997-06-01

    This report describes the laboratory efforts to accomplish four independent tasks: (1) speciation of hydrocarbon exhaust emissions from a light-duty vehicle operated over the chassis dynamometer portion of the light-duty FTP after modifications for operation on butane and butane blends; (2) evaluation of NREL`s Variable Conductance Vacuum Insulated Catalytic Converter Test Article 4 for the reduction of cold-start FTP exhaust emissions after extended soak periods for a Ford FFV Taurus operating on E85; (3) support of UDRI in an attempt to define correlations between engine-out combustion products identified by SwRI during chassis dynamometer testing, and those found during flow tube reactor experiments conducted by UDRI; and (4) characterization of small-diameter particulate matter from a Ford Taurus FFV operating in a simulated fuel-rich failure mode on CNG, LPG, M85, E85, and reformulated gasoline. 22 refs., 18 figs., 17 tabs.

  10. Review: Circulation of Inorganic Elements in Combustion of Alternative Fuels in Cement Plants

    DEFF Research Database (Denmark)

    Cortada Mut, Maria del Mar; Nørskov, Linda Kaare; Jappe Frandsen, Flemming;

    2015-01-01

    Cement production is an energy-intensive process, which traditionally has been dependent on fossil fuels. However, the use of alternative fuels, i.e., selected waste, biomass, and byproducts with recoverable calorific value, is constantly increasing. Combustion of these fuels is more challenging......, compared to fossil fuels, because of a lack of experience and different chemical and physical properties. When complete oxidation Of fuels in the calciner and main burner is not achieved, they burn in direct contact with the bed material of the rotary kiln, causing local reducing conditions and increasing...

  11. Alternative gaseous fuels for internal combustion engines; Alternative Gasbrennstoffe als Treibstoffe fuer Verbrennungsmotoren

    Energy Technology Data Exchange (ETDEWEB)

    Postrzednik, St.; Zmudka, Z.

    2001-07-01

    The contribution investigates inhowfar alternative gaseous fuels can be used in diesel engines, and what technical modifications are required. For example, the engine may be fuelled with gas but conventional diesel fuel may be injected for ignition. The requirements of this dual combustion method are investigated. [German] Die Verbrennungsmotoren (sowohl Ottomotoren als auch Dieselmotoren) werden meistens mit fluessigen Brennstoffen (Benzin, Dieseloel) angetrieben. Immer haeufiger versucht man, auch Brenngase (z.B. Erdgas, CNG, LPG) als Treibstoffe in Verbrennungsmotoren einzusetzen. Energetisch gesehen, auch die speziellen Gase (das Biogas: CH{sub 4} = 60%, CO{sub 2} = 40%, (MH{sub u}) {approx} 21500 kJ/m{sub n}{sup 3} {approx} 480 MJ/kmol, das Grubengas: CH{sub 4} {approx} 50%, (O{sub 2} + N{sub 2}) = 50%) sollen als wertvolle Gase betrachtet und daher sinnvoll genutzt werden. In den Ottomotoren, in welchen die Zuendung des vorher aufbereiteten Luft-Brennstoffgemisches durch eine fremde Funkenzuendung erfolgt, kann der fluessige Brennstoff (das Benzin) durch den Gasbrennstoff ohne zusaetzliche Schwierigkeiten vollstaendig ersetzt werden. Diese Moeglichkeit ist im Fall eines Dieselmotors wesentlich eingeschraenkt, weil die Brenngase meistens nicht so zuendwillig sind wie das Dieseloel. Die Selbstzuendung der Gasbrennstoffe erfolgt erst bei wesentlich hoeheren Temperaturen im Vergleich zur Zuendtemperatur von klassischem Dieseloel. Das Problem ist so zu loesen, dass ein doppeltes Brennstoffsystem eingefuehrt wird. Der Dieselmotor wird grundsaetzlich mit dem Gasbrennstoff beschickt, aber zur Zuendung des aufbereiteten Luft-Gasgemisches wird noch zusaetzlich eine bestimmte Menge des fluessigen Brennstoffes (Dieseloels) eingespritzt. Um zu gewaehrleisten, dass die gesamte Verbrennung im Motorzylinder vollstaendig verlaeuft, muessen entsprechende Grundbedingungen erfuellt sein. Im Beitrag wird eine Analyse der grundlegenden Bedingungen, die das doppelte

  12. Combustion of solid alternative fuels in the cement kiln burner

    OpenAIRE

    Nørskov, Linda Kaare; Dam-Johansen, Kim; Glarborg, Peter; Jensen, Peter Arendt; Larsen, Morten Boberg

    2012-01-01

    I cementindustrien er der en øget miljømœssig og økonomisk motivation for at erstatte konventionelle fossile brœndsler med alternative brœndsler; biomasse og affald. Indførelsen af alternative brœndsler kan dog påvirke emissioner, cementproduktkvalitet, processtabilitet og -effektivitet. I kalcinatoren er substitutionen med alternative brœndsler nået tœt på 100% på mange cementanlœg, og for at øge anvendelsen af alternative brœndsler yderligere må substitutionen i roterovnen øges. Der er begr...

  13. The origin and fate of organic pollutants from the combustion of alternative fuels

    International Nuclear Information System (INIS)

    The overall objective of this project is to determine the impact of alternative fuels on air quality, particularly ozone formation. The objective will be met through three steps: (1) qualitative identification of alternative fuel combustion products, (2) quantitative measurement of specific emission levels of these products, and (3) determination of the fate of the combustion products in the atmosphere. The alternative fuels of interest are methanol, ethanol, natural gas, and LP gas. The role of the University of Dayton Research Institute (UDRI) in this project is two-fold. First, fused silica flow reactor instrumentation is being used to obtain both qualitative identification and quantitative data on the thermal degradation products from the fuel-lean (oxidative), stoichiometric, and fuel-rich (pyrolytic) decomposition of methanol, ethanol, liquefied petroleum gas, and natural gas. Secondly, a laser photolysis/laser-induced fluorescence (LP/LIF) apparatus is being used to determine the rates and mechanisms of reaction of selected degradation products under atmospheric conditions. This draft final report contains the results of the second year of the study. The authors initially discuss the results of their flow reactor studies. This is followed by a discussion of the initial results from their LP/LIF studies of the reaction of hydroxyl (OH) radicals with methanol and ethanol. In the coming year, they plan to obtain quantitative data on the oxidation of methyl-t-butyl-ether and reformulated gasoline under fuel-lean, stoichiometric, and fuel-rich conditions. They also plan to conduct a mechanistic analysis of the reaction of OH with acetaldehyde and formaldehyde over an extended temperature range

  14. Determining the range of variation of convective heat transfer coefficient during the combustion of alternative kinds of gaseous fuels

    OpenAIRE

    Oleksandr I. Brunetkin; Anna V. Gusak

    2015-01-01

    The article highlights the reason of complication of usage of alternative fuel gases on the installed equipment — the organization of effective process of their combustion. As one of the parameters affecting the dynamic characteristics of the control object, the coefficient of convective heat transfer is considered. The effect of changes of physical characteristics of heat and rate of combustion products arising from the use of various combustible gases on it is determined. It is found that t...

  15. Research of Working Characteristics of Alternative Motor Fuels in Their Combustion

    Directory of Open Access Journals (Sweden)

    M. S. Assad

    2007-01-01

    Full Text Available Air-fuel mixtures of various composition, using hydrogen, have been investigated in the paper. The paper shows dependences of the investigated mixtures’ combustion duration on an initial pressure and a coefficient of oxidizer (air excess. While adding hydrogen an analysis of mixture burning speed influence on the combustion process in the modeling chamber of internal combustion engine has been carried in the paper. The paper reveals combustion peculiarities while applying hydrogen in the area of poor mixtures.

  16. A Technical Review of Compressed Natural Gas as an Alternative Fuel for Internal Combustion Engines

    Directory of Open Access Journals (Sweden)

    Semin

    2008-01-01

    Full Text Available Natural gas is promising alternative fuel to meet strict engine emission regulations in many countries. Compressed natural gas (CNG has long been used in stationary engines, but the application of CNG as a transport engines fuel has been considerably advanced over the last decade by the development of lightweight high-pressure storage cylinders. Engine conversion technology is well established and suitable conversion equipment is readily available. For spark ignition engines there are two options, a bi-fuel conversion and use a dedicated to CNG engine. For compression ignition engines converted to run on natural gas, there are two main options discussed, there are dual-fuel engines and normal ignition can be initiated. Natural gas engines can operate at lean burn and stoichiometric conditions with different combustion and emission characteristics. In this paper, the CNG engines research and development fueled using CNG are highlighted to keep the output power, torque and emissions of natural gas engines comparable to their gasoline or diesel counterparts. The high activities for future CNG engines research and development to meet future CNG engines is recorded in the paper.

  17. Theoretical and experimental studies on combustion of alternative fuels in cement kilns

    International Nuclear Information System (INIS)

    In this thesis, the utilization of alternative fuels for NOx reduction by means of reburning and advanced reburning is considered. Laboratory experiments, full-scale experiments and computational fluid dynamic (CFD) simulations are the basis of the thesis. The goal of the work was to characterize alternative fuels used in cement kilns, with focus on the processes taking place in the precalciner of the cement kiln. To facilitate testing under controlled process conditions, a lab-scale circulating fluidized bed combustion (CFBC) reactor was designed and constructed. A co prehensive study on the fluidization regime in CFBC reactors and precalciners was required to ensure and verify that the operational regime in the CFBC reactor was similar to the regime in a precalciner. Different alternative fuels, such as refuse derived fuel, animal meal and solid hazardous waste, were tested in the CFBC reactor, which proved well suited for characterization of alternative fuels and investigations of NOx reduction, even though the operation of a CFBC reactor is quite complex and gives a certain variation in stability. Experiments with and without circulating mass in the CFBC reactor demonstrated the importance of executing the laboratory combustion experiments in an environment similar to that in the full-scale process, i.e. in the precalciner. Animal meal is believed to follow the reduction route of selective non-catalytic r duction or advanced reburning and to have a special capability of reducing NOx during increased NOx concentrations at the reactor inlet. The increased CO emissions during advanced reburning and reburning with animal meal are most likely to be due to the competition for the OH radical during oxidation of CO and of NH3. Furthermore, it was shown, for all fuels, that an increased concentration of NOx at the reactor inlet increases the ratio of NOx at the exit and NOx supplied. Full-scale experiments were executed at Norcem's kiln 6 in Brevik, using solid

  18. Theoretical and experimental studies on combustion of alternative fuels in cement kilns

    Energy Technology Data Exchange (ETDEWEB)

    Axelsen, Ernst Petter

    2002-07-01

    In this thesis, the utilization of alternative fuels for NOx reduction by means of reburning and advanced reburning is considered. Laboratory experiments, full-scale experiments and computational fluid dynamic (CFD) simulations are the basis of the thesis. The goal of the work was to characterize alternative fuels used in cement kilns, with focus on the processes taking place in the precalciner of the cement kiln. To facilitate testing under controlled process conditions, a lab-scale circulating fluidized bed combustion (CFBC) reactor was designed and constructed. A co prehensive study on the fluidization regime in CFBC reactors and precalciners was required to ensure and verify that the operational regime in the CFBC reactor was similar to the regime in a precalciner. Different alternative fuels, such as refuse derived fuel, animal meal and solid hazardous waste, were tested in the CFBC reactor, which proved well suited for characterization of alternative fuels and investigations of NOx reduction, even though the operation of a CFBC reactor is quite complex and gives a certain variation in stability. Experiments with and without circulating mass in the CFBC reactor demonstrated the importance of executing the laboratory combustion experiments in an environment similar to that in the full-scale process, i.e. in the precalciner. Animal meal is believed to follow the reduction route of selective non-catalytic r duction or advanced reburning and to have a special capability of reducing NOx during increased NOx concentrations at the reactor inlet. The increased CO emissions during advanced reburning and reburning with animal meal are most likely to be due to the competition for the OH radical during oxidation of CO and of NH{sub 3}. Furthermore, it was shown, for all fuels, that an increased concentration of NOx at the reactor inlet increases the ratio of NOx at the exit and NOx supplied. Full-scale experiments were executed at Norcem's kiln 6 in Brevik, using

  19. Determining the range of variation of convective heat transfer coefficient during the combustion of alternative kinds of gaseous fuels

    Directory of Open Access Journals (Sweden)

    Oleksandr I. Brunetkin

    2015-06-01

    Full Text Available The article highlights the reason of complication of usage of alternative fuel gases on the installed equipment — the organization of effective process of their combustion. As one of the parameters affecting the dynamic characteristics of the control object, the coefficient of convective heat transfer is considered. The effect of changes of physical characteristics of heat and rate of combustion products arising from the use of various combustible gases on it is determined. It is found that the main cause of the change of heat transfer coefficient is the presence of flammable gases of carbon monoxide and hydrogen in the mixture.

  20. Kiln process impact of alternative solid fuel combustion in the cement kiln main burner - Mathematical modelling and full-scale experiment

    OpenAIRE

    Ariyaratne, Hiromi Wijesinghe; Melaaen, Morten Christian; Tokheim, Lars André; Manjula, Edirisinghe V. P. J.

    2014-01-01

    Increased use of alternative fuels in cement kilns is a trend in the world. However, replacing fossil fuels like coal with different alternative fuels will give various impacts on the overall kiln process due to the fuel characteristics. Hence, it is important to know to what extent the fossil fuels can be replaced by different alternative fuels without severely changing process conditions, product quality or emissions. In the present study, a mass and energy balance for the combustion of dif...

  1. The effect of alternative fuel combustion in the cement kiln main burner on production capacity and improvement with oxygen enrichment.

    OpenAIRE

    Ariyaratne, W. K. Hiromi; Melaaen, Morten Christian; Tokheim, Lars-André

    2013-01-01

    A mathematical model based on a mass and energy balance for the combustion in a cement rotary kiln was developed. The model was used to investigate the impact of replacing about 45 % of the primary coal energy by different alternative fuels. Refuse derived fuel, waste wood, solid hazardous waste and liquid hazardous waste were used in the modeling. The results showed that in order to keep the kiln temperature unchanged, and thereby maintain the required clinker quality, the production capa...

  2. Effects of Fuel Composition on Combustion Stability and NO X Emissions for Traditional and Alternative Jet Fuels

    Science.gov (United States)

    Vijlee, Shazib Z.

    Synthetic jet fuels are studied to help understand their viability as alternatives to traditionally derived jet fuel. Two combustion parameters -- flame stability and NOX emissions -- are used to compare these fuels through experiments and models. At its core, this is a fuels study comparing how chemical makeup and behavior relate. Six 'real', complex fuels are studied in this work -- four are synthetic from alternative sources and two are traditional from petroleum sources. Two of the synthetic fuels are derived from natural gas and coal via the Fischer Tropsch catalytic process. The other two are derived from Camelina oil and tallow via hydroprocessing. The traditional military jet fuel, JP8, is used as a baseline as it is derived from petroleum. The sixth fuel is derived from petroleum and is used to study the effects of aromatic content on the synthetic fuels. The synthetic fuels lack aromatic compounds, which are an important class of hydrocarbons necessary for fuel handling systems to function properly. Several single-component fuels are studied (through models and/or experiments) to facilitate interpretation and understanding. The flame stability study first compares all the 'real', complex fuels for blowout. A toroidal stirred reactor is used to try and isolate temperature and chemical effects. The modeling study of blowout in the toroidal reactor is the key to understanding any fuel-based differences in blowout behavior. A detailed, reacting CFD model of methane is used to understand how the reactor stabilizes the flame and how that changes as the reactor approaches blowout. A 22 species reduced form of GRI 3.0 is used to model methane chemistry. The knowledge of the radical species role is utilized to investigate the differences between a highly aliphatic fuel (surrogated by iso-octane) and a highly aromatic fuel (surrogated by toluene). A perfectly stirred reactor model is used to study the chemical kinetic pathways for these fuels near blowout. The

  3. Theoretical and experimental studies on combustion of alternative fuels in cement kilns

    OpenAIRE

    Axelsen, Ernst Petter

    2002-01-01

    In this thesis, the utilization of alternative fuels for NOx reduction by means of reburning and advanced reburning is sonsidered. Laboratory experiments, full-scale experiments and computational fluid dynamic (CFD) simulations are the basis of the thesis.The goal of the work was to characterize alternative fuels used in cement kilns, with focus on the processes taking place in the precalciner of the cement kiln. To facilitate testing under controlled process conditons, a lab-scale circulatin...

  4. Potential of methanol in dual fuel combustion

    OpenAIRE

    Tuominen, Tino

    2016-01-01

    Depleting oil resources together with the climate change due to the use of fossil fuels are motivating to investigate alternative fuels and new combustion strategies used with them. At the moment, dual fuel combustion is one of the most promising new combustion strategies. Combining it to the use of renewable methanol as a primary fuel, it offers an interesting option for the conventional combustion engine. This thesis focuses on investigating the theoretical potential of methanol in dua...

  5. Combustion characteristics of hydrogen-rich alternative fuels in counter-flow diffusion flame configuration

    International Nuclear Information System (INIS)

    Highlights: • Hydrogen-rich syngas flames produce more NOx at lower strain rates. • NOx levels increase towards hydrogen-lean syngas flames at higher strain rates. • Zeldovich route is the main NOx formation route. • Thermal NOx contribution continually increases with H2 content and pressure. - Abstract: Fuels containing large amounts of hydrogen have combustion properties highly depending on composition, in particular hydrogen concentration, and operating conditions such as pressure. A thorough understanding of strained laminar flames is a prerequisite to achieve improved knowledge of more complex system involving hydrogen-rich alternative fuels. This paper reports a numerical investigation of syngas counter-flow diffusion flame structure and emissions over a wide range of operating conditions (H2/CO ratio between 0.4 and 2.4 and ambient pressure from 1 to 10 atm). Special attention is focused on optimal operating conditions in regard to NOx emissions and NOx reactions pathways. Flame structure is characterized by solving flamelet equations with the consideration of radiation. The chemical reaction mechanism adopted is GRI-Mech 3.0. Computational results showed that flame structure and emissions are impacted by syngas composition and ambient pressure. The maximum flame temperature exhibits a peak at an intermediate scalar dissipation rate for a given value of H2/CO ratio. For values of strain rate lower than the intermediate value, flame structure is influenced by combined effects of adiabatic temperature and radiation heat loss, whereas only adiabatic temperature effect prevails at higher values of strain rate. The flame temperature increases more the syngas is H2-rich for strain rates values below the intermediate value. The opposite behavior is noticed at strain rate values higher than the intermediate value. NOx formation is closely related to flame temperature. Hydrogen-rich syngas flames produce more NOx at lower strain rates while NOx levels

  6. Alternative Fuels: Research Progress

    Directory of Open Access Journals (Sweden)

    Maher A.R. Sadiq Al-Baghdadi

    2013-01-01

    Full Text Available Chapter 1: Pollutant Emissions and Combustion Characteristics of Biofuels and Biofuel/Diesel Blends in Laminar and Turbulent Gas Jet Flames. R. N. Parthasarathy, S. R. Gollahalli Chapter 2: Sustainable Routes for The Production of Oxygenated High-Energy Density Biofuels from Lignocellulosic Biomass. Juan A. Melero, Jose Iglesias, Gabriel Morales, Marta Paniagua Chapter 3: Optical Investigations of Alternative-Fuel Combustion in an HSDI Diesel Engine. T. Huelser, M. Jakob, G. Gruenefeld, P. Adomeit, S. Pischinger Chapter 4: An Insight into Biodiesel Physico-Chemical Properties and Exhaust Emissions Based on Statistical Elaboration of Experimental Data. Evangelos G. Giakoumis Chapter 5: Biodiesel: A Promising Alternative Energy Resource. A.E. Atabani Chapter 6: Alternative Fuels for Internal Combustion Engines: An Overview of the Current Research. Ahmed A. Taha, Tarek M. Abdel-Salam, Madhu Vellakal Chapter 7: Investigating the Hydrogen-Natural Gas Blends as a Fuel in Internal Combustion Engine. ?lker YILMAZ Chapter 8: Conversion of Bus Diesel Engine into LPG Gaseous Engine; Method and Experiments Validation. M. A. Jemni , G. Kantchev , Z. Driss , R. Saaidia , M. S. Abid Chapter 9: Predicting the Combustion Performance of Different Vegetable Oils-Derived Biodiesel Fuels. Qing Shu, ChangLin Yu Chapter 10: Production of Gasoline, Naphtha, Kerosene, Diesel, and Fuel Oil Range Fuels from Polypropylene and Polystyrene Waste Plastics Mixture by Two-Stage Catalytic Degradation using ZnO. Moinuddin Sarker, Mohammad Mamunor Rashid

  7. ALTERNATIVE FUELS FOR DIESEL ENGINES

    Directory of Open Access Journals (Sweden)

    Jacek Caban

    2013-12-01

    Full Text Available This paper presents the development and genesis of the use of alternative fuels in internal combustion ignition engines. Based on the analysis of the literature, this article shows various alternative fuels used in Poland and all over the world. Furthermore, this article describes the research directions for alternative fuels use in road transport powered by diesel engines.

  8. ALTERNATIVE FUELS FOR DIESEL ENGINES

    OpenAIRE

    Jacek Caban; Agata Gniecka; Lukáš Holeša

    2013-01-01

    This paper presents the development and genesis of the use of alternative fuels in internal combustion ignition engines. Based on the analysis of the literature, this article shows various alternative fuels used in Poland and all over the world. Furthermore, this article describes the research directions for alternative fuels use in road transport powered by diesel engines.

  9. A Technical Review of Compressed Natural Gas as an Alternative Fuel for Internal Combustion Engines

    OpenAIRE

    Semin; Rosli A. Bakar

    2008-01-01

    Natural gas is promising alternative fuel to meet strict engine emission regulations in many countries. Compressed natural gas (CNG) has long been used in stationary engines, but the application of CNG as a transport engines fuel has been considerably advanced over the last decade by the development of lightweight high-pressure storage cylinders. Engine conversion technology is well established and suitable conversion equipment is readily available. For spark ignition engines there are two op...

  10. SO2 Release as a Consequence of Alternative Fuel Combustion in Cement Rotary Kiln Inlets

    DEFF Research Database (Denmark)

    Cortada Mut, Maria del Mar; Nørskov, Linda Kaare; Glarborg, Peter; Dam-Johansen, Kim

    2015-01-01

    The combustion of alternative fuels in direct contact with the bed material of the rotary kiln may cause local reducing conditions and, subsequently, decomposition of sulfates from cement raw materials, increasing the SO2 concentration in the gas phase. The decomposition of sulfates increases the...... sulfur circulation and may be problematic because high sulfur circulation can cause sticky material buildup, affecting the process operation of the cement kiln system. The SO2 release from cement raw materials during combustion of pine wood and tire rubber has been studied experimentally in a high...... introduced in different concentrations under the bed material. A threshold concentration for each reducing gas, below which no SO2 release occurs, was found. Introduction of the same molar amount of gas in different concentrations during different time periods showed that a higher reducing gas concentration...

  11. The Thermochemical Degradation of Hot Section Materials for Gas Turbine Engines in Alternative-Fuel Combustion Environments

    Science.gov (United States)

    Montalbano, Timothy

    Gas turbine engines remain an integral part of providing the world's propulsion and power generation needs. The continued use of gas turbines requires increased temperature operation to reach higher efficiencies and the implementation of alternative fuels for a lower net-carbon footprint. This necessitates evaluation of the material coatings used to shield the hot section components of gas turbines in these new extreme environments in order to understand how material degradation mechanisms change. Recently, the US Navy has sought to reduce its use of fossil fuels by implementing a blended hydroprocessed renewable diesel (HRD) derived from algae in its fleet. To evaluate the material degradation in this alternative environment, metal alloys are exposed in a simulated combustion environment using this blended fuel or the traditional diesel-like fuel. Evaluation of the metal alloys showed the development of thick, porous scales with a large depletion of aluminum for the blend fuel test. A mechanism linking an increased solubility of the scale to the blend fuel test environment will be discussed. For power generation applications, Integrated Gasification Combined Cycle (IGCC) power plants can provide electricity with 45% efficiency and full carbon capture by using a synthetic gas (syngas) derived from coal, biomass, or another carbon feedstock. However, the combustion of syngas is known to cause high water vapor content levels in the exhaust stream with unknown material consequences. To evaluate the effect of increased humidity, air-plasma sprayed (APS), yttria-stabilized zirconia (YSZ) is thermally aged in an environment with and without humidity. An enhanced destabilization of the parent phase by humid aging is revealed by x-ray diffraction (XRD) and Raman spectroscopy. Microstructural analysis by transmission electron microscopy (TEM) and scanning-TEM (STEM) indicate an enhanced coarsening of the domain structure of the YSZ in the humid environment. The enhanced

  12. Effects of alternate fuels. Report No. 6. Analysis of low-alumina castable refractory degraded by residual oil combustion products

    Energy Technology Data Exchange (ETDEWEB)

    Wei, G. C.; Tennery, V. J.

    1978-07-01

    This is the sixth of a series of reports on analyses of several types of refractories used in industrial furnaces with fuels considered alternate to natural gas. Analyses were performed on a low-alumina castable used for only two months in the roof of a residual-oil-fired boiler. The maximum hot-face temperature during operation was about 1530/sup 0/K. The original microstructure of the castable, which consisted of mullite aggregate bonded with iron-containing gehlenite (2 CaO . Al/sub 2/O/sub 3/ . SiO/sub 2/), quartz and cristobalite, was totally altered during service in regions close to the hot face. At room temperature the altered microstructure consisted of corundum and gehlenite in a new oxide glass phase containing the elements Na, K, Ca, Fe, Ti, Al, Ni, and Si. The reactions of the fuel oil impurities Na, Fe, and Ni with mullite, quartz, and cristobalite in the original castable refractory caused the rapid degradation at the hot face during service in the boiler. Increasing the Al/sub 2/O/sub 3/ content of the castable by replacing mullite aggregate with alumina aggregate and using gehlenite with less iron impurity as the bonding material should improve the performance of this castable refractory or retard reactions of the castable with fuel oil combustion products including Na, Fe, and Ni.

  13. A Study of Pollutant Formation from the Lean Premixed Combustion of Gaseous Fuel Alternatives to Natural Gas

    Science.gov (United States)

    Fackler, Keith Boyd, Jr.

    The goal of this research is to identify how nitrogen oxide (NO x) emissions and flame stability (blowout) are impacted by the use of fuels that are alternatives to typical pipeline natural gas. The research focuses on lean, premixed combustors that are typically used in state-of-the-art natural gas fueled systems. An idealized laboratory lean premixed combustor, specifically the jet-stirred reactor, is used for experimental data. A series of models, including those featuring detailed fluid dynamics and those focusing on detailed chemistry, are used to interpret the data and understand the underlying chemical kinetic reasons for differences in emissions between the various fuel blends. An ultimate goal is to use these data and interpretive tools to develop a way to predict the emission and stability impacts of changing fuels within practical combustors. All experimental results are obtained from a high intensity, single-jet stirred reactor (JSR). Five fuel categories are studied: (1) pure H 2, (2) process and refinery gas, including combinations of H2, CH4, C2H6, and C3H8, (3) oxygen blown gasified coal/petcoke composed of H2, CO, and CO2, (4) landfill and digester gas composed of CH4, CO2, and N2, and (5) liquified natural gas (LNG)/shale/associated gases composed of CH4, C2H6, and C3 H8. NOx measurements are taken at a nominal combustion temperature of 1800 K, atmospheric pressure, and a reactor residence time of 3 ms. This is done to focus the results on differences caused by fuel chemistry by comparing all fuels at a common temperature, pressure, and residence time. This is one of the few studies in the literature that attempts to remove these effects when studying fuels varying in composition. Additionally, the effects of changing temperature and residence time are investigated for selected fuels. At the nominal temperature and residence time, the experimental and modeling results show the following trends for NOx emissions as a function of fuel type: 1.) NOx

  14. NASA Alternative Aviation Fuel Research

    Science.gov (United States)

    Anderson, B. E.; Beyersdorf, A. J.; Thornhill, K. L., II; Moore, R.; Shook, M.; Winstead, E.; Ziemba, L. D.; Crumeyrolle, S.

    2015-12-01

    We present an overview of research conducted by NASA Aeronautics Research Mission Directorate to evaluate the performance and emissions of "drop-in" alternative jet fuels, highlighting experiment design and results from the Alternative Aviation Fuel Experiments (AAFEX-I & -II) and Alternative Fuel-Effects on Contrails and Cruise Emissions flight series (ACCESS-I & II). These projects included almost 100 hours of sampling exhaust emissions from the NASA DC-8 aircraft in both ground and airborne operation and at idle to takeoff thrust settings. Tested fuels included Fischer-Tropsch (FT) synthetic kerosenes manufactured from coal and natural-gas feedstocks; Hydro-treated Esters and Fatty-Acids (HEFA) fuels made from beef-tallow and camelina-plant oil; and 50:50 blends of these alternative fuels with Jet A. Experiments were also conducted with FT and Jet A fuels doped with tetrahydrothiophene to examine the effects of fuel sulfur on volatile aerosol and contrail formation and microphysical properties. Results indicate that although the absence of aromatic compounds in the alternative fuels caused DC-8 fuel-system leaks, the fuels did not compromise engine performance or combustion efficiency. And whereas the alternative fuels produced only slightly different gas-phase emissions, dramatic reductions in non-volatile particulate matter (nvPM) emissions were observed when burning the pure alternative fuels, particularly at low thrust settings where particle number and mass emissions were an order of magnitude lower than measured from standard jet fuel combustion; 50:50 blends of Jet A and alternative fuels typically reduced nvPM emissions by ~50% across all thrust settings. Alternative fuels with the highest hydrogen content produced the greatest nvPM reductions. For Jet A and fuel blends, nvPM emissions were positively correlated with fuel aromatic and naphthalene content. Fuel sulfur content regulated nucleation mode aerosol number and mass concentrations within aging

  15. Oxy-fuel combustion of solid fuels

    DEFF Research Database (Denmark)

    Toftegaard, Maja Bøg; Brix, Jacob; Jensen, Peter Arendt;

    2010-01-01

    temperature. The flue gas produced thus consists primarily of carbon dioxide and water. Much research on the different aspects of an oxy-fuel power plant has been performed during the last decade. Focus has mainly been on retrofits of existing pulverized-coal-fired power plant units. Green-field plants which......Oxy-fuel combustion is suggested as one of the possible, promising technologies for capturing CO2 from power plants. The concept of oxy-fuel combustion is removal of nitrogen from the oxidizer to carry out the combustion process in oxygen and, in most concepts, recycled flue gas to lower the flame......-fuel process and focuses particularly on the combustion fundamentals, i.e. flame temperatures and heat transfer, ignition and burnout, emissions, and fly ash characteristics. Knowledge is currently available regarding both an entire oxy-fuel power plant and the combustion fundamentals. However, several...

  16. Co-combustion of Fossil Fuels and Waste

    DEFF Research Database (Denmark)

    Wu, Hao

    The Ph.D. thesis deals with the alternative and high efficiency methods of using waste-derived fuels in heat and power production. The focus is on the following subjects: 1) co-combustion of coal and solid recovered fuel (SRF) under pulverized fuel combustion conditions; 2) dust-firing of straw and...

  17. Development of a Raman spectroscopy technique to detect alternate transportation fuel hydrocarbon intermediates in complex combustion environments.

    Energy Technology Data Exchange (ETDEWEB)

    Ekoto, Isaac W.; Barlow, Robert S.

    2012-12-01

    Spontaneous Raman spectra for important hydrocarbon fuels and combustion intermediates were recorded over a range of low-to-moderate flame temperatures using the multiscalar measurement facility located at Sandia/CA. Recorded spectra were extrapolated to higher flame temperatures and then converted into empirical spectral libraries that can readily be incorporated into existing post-processing analysis models that account for crosstalk from overlapping hydrocarbon channel signal. Performance testing of the developed libraries and reduction methods was conducted through an examination of results from well-characterized laminar reference flames, and was found to provide good agreement. The diagnostic development allows for temporally and spatially resolved flame measurements of speciated hydrocarbon concentrations whose parent is more chemically complex than methane. Such data are needed to validate increasingly complex flame simulations.

  18. Combustion of Syngas Fuel in Gas Turbine Can Combustor

    OpenAIRE

    Chaouki Ghenai

    2010-01-01

    Numerical investigation of the combustion of syngas fuel mixture in gas turbine can combustor is presented in this paper. The objective is to understand the impact of the variability in the alternative fuel composition and heating value on combustion performance and emissions. The gas turbine can combustor is designed to burn the fuel efficiently, reduce the emissions, and lower the wall temperature. Syngas mixtures with different fuel compositions are produced through different coal and biom...

  19. Review of alternative fuels data bases

    Science.gov (United States)

    Harsha, P. T.; Edelman, R. B.

    1983-01-01

    Based on an analysis of the interaction of fuel physical and chemical properties with combustion characteristics and indicators, a ranking of the importance of various fuel properties with respect to the combustion process was established. This ranking was used to define a suite of specific experiments whose objective is the development of an alternative fuels design data base. Combustion characteristics and indicators examined include droplet and spray formation, droplet vaporization and burning, ignition and flame stabilization, flame temperature, laminar flame speed, combustion completion, soot emissions, NOx and SOx emissions, and the fuels' thermal and oxidative stability and fouling and corrosion characteristics. Key fuel property data is found to include composition, thermochemical data, chemical kinetic rate information, and certain physical properties.

  20. Co-combustion of Fossil Fuels and Waste

    OpenAIRE

    Hao WU; Glarborg, Peter; Dam-Johansen, Kim; Frandsen, Flemming

    2011-01-01

    The Ph.D. thesis deals with the alternative and high efficiency methods of using waste-derived fuels in heat and power production. The focus is on the following subjects: 1) co-combustion of coal and solid recovered fuel (SRF) under pulverized fuel combustion conditions; 2) dust-firing of straw and the utilization of a waste-derived material as an additive; 3) the combustion of a biomass residue rich in phosphorus. Co-combustion of coal and SRF was conducted in an entrained flow reactor (EFR)...

  1. Using biofuel tracers to study alternative combustion regimes

    Science.gov (United States)

    Mack, J. H.; Flowers, D. L.; Buchholz, B. A.; Dibble, R. W.

    2007-06-01

    Interest in the use of alternative fuels and engines is increasing as the price of petroleum climbs. The inherently higher efficiency of Diesel engines has led to increased adoption of Diesels in Europe, capturing approximately 40% of the new passenger car market. Unfortunately, lower CO2 emissions are countered with higher nitrogen oxides (NOx) and particulate matter (PM) emissions and higher noise. Adding oxygenated compounds to the fuel helps reduce PM emissions. However, relying on fuel alone to reduce PM is unrealistic due to economic constraints and difficult due to the emerging PM standards. Keeping peak combustion temperature below 1700 K inhibits NOx formation. Altering the combustion regime to burn at temperatures below the NOx threshold and accept a wide variety of fuels seems like a promising alternative for future engines. Homogeneous charge compression ignition (HCCI) is a possible solution. Fuel and air are well mixed prior to intake into a cylinder (homogeneous charge) and ignition occurs by compression of the fuel-air mixture by the piston. HCCI is rapid and relatively cool, producing little NOx and PM. Unfortunately, it is hard to control since HCCI is initiated by temperature and pressure instead of a spark or direct fuel injection. We investigate biofuel HCCI combustion, and use intrinsically labeled biofuels as tracers of HCCI combustion. Data from tracer experiments are used to improve our combustion modeling.

  2. Alternative fuel information sources

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    This short document contains a list of more than 200 US sources of information (Name, address, phone number, and sometimes contact) related to the use of alternative fuels in automobiles and trucks. Electric-powered cars are also included.

  3. Advanced Combustion and Fuels; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Zigler, Brad

    2015-06-08

    Presented at the U.S. Department of Energy Vehicle Technologies Office 2015 Annual Merit Review and Peer Evaluation Meeting, held June 8-12, 2015, in Arlington, Virginia. It addresses technical barriers of inadequate data and predictive tools for fuel and lubricant effects on advanced combustion engines, with the strategy being through collaboration, develop techniques, tools, and data to quantify critical fuel physico-chemical effects to enable development of advanced combustion engines that use alternative fuels.

  4. Diagnostics of combustion engines` fuel system

    OpenAIRE

    Kuchař, Jan

    2011-01-01

    Thesis " Diagnostics of combustion engines` fuel system " deals with diagnostics of fuel systems for internal combustion engines. In the chapter "Fuel system for internal combustion engines” are described injection devices of modern gasoline and diesel engines. The chapter "Diagnostic equipment for fuel systems" describes the equipment used in the service to diagnose the fuel system. It further describes diagnostic methods and procedures. Chapter "Analysis of the current condition of...

  5. Using Biofuel Tracers to Study Alternative Combustion Regimes

    Energy Technology Data Exchange (ETDEWEB)

    Mack, J H; Flowers, D L; Buchholz, B A; Dibble, R W

    2006-02-14

    Interest in the use of alternative fuels and combustion regimes is increasing as the price of petroleum climbs. The inherently higher efficiency of Diesel engines has led to increased adoption of Diesels in Europe, capturing approximately 40% of the new passenger car market. Unfortunately, lower CO{sub 2} emissions are countered with higher nitrogen oxides (NOx) and particulate matter (PM) emissions, and higher noise. Noise and PM have traditionally been the obstacles toward consumer acceptance of Diesel passenger cars in North America, while NOx (a key component in photochemical smog) has been more of an engineering challenge. Diesels are lean burning (combustion with excess oxygen) and reducing NOx to N2 in an oxygen rich environment is difficult. Adding oxygenated compounds to the fuel helps reduce PM emissions, but relying on fuel alone to reduce PM is unrealistic. Keeping peak combustion temperature below 1700 K prevents NOx formation. Altering the combustion regime to burn at temperatures below the NOx threshold and accept a wide variety of fuels seems like a promising alternative for future engines. Homogeneous Charge Compression Ignition (HCCI) is a possible solution. Fuel and air are well mixed prior to intake into a cylinder (homogeneous charge) and ignition occurs by compression of the fuel-air mixture by the piston. HCCI is rapid and relatively cool, producing little NOx and PM. Unfortunately, it is hard to control since HCCI is initiated by temperature and pressure instead of a spark or direct fuel injection. We investigate biofuel HCCI combustion, and use intrinsically labeled biofuels as tracers of HCCI combustion. Data from tracer experiments are used to validate combustion modeling.

  6. Outlook for alternative transportation fuels

    Energy Technology Data Exchange (ETDEWEB)

    Gushee, D.E. [Univ. of Illinois, Chicago, IL (United States)

    1996-12-31

    This presentation provides a brief review of regulatory issues and Federal programs regarding alternative fuel use in automobiles. A number of U.S. DOE initiatives and studies aimed at increasing alternative fuels are outlined, and tax incentives in effect at the state and Federal levels are discussed. Data on alternative fuel consumption and alternative fuel vehicle use are also presented. Despite mandates, tax incentives, and programs, it is concluded alternative fuels will have minimal market penetration. 7 refs., 5 tabs.

  7. Alternative fuel cycles

    International Nuclear Information System (INIS)

    Uranium resource utilization and economic considerations provide incentives to study alternative fuel cycles as future options to the PHWR natural uranium cycle. Preliminary studies to define the most favourable alternatives and their possible introduction dates are discussed. The important and uncertain components which influence option selection are reviewed, including nuclear capacity growth, uranium availability and demand, economic potential, and required technological developments. Finally, a summary of Ontario Hydro's program to further assess cycle selection and define development needs is given. (auth)

  8. Control issues in oxy-fuel combustion

    Energy Technology Data Exchange (ETDEWEB)

    Snarheim, Dagfinn

    2009-08-15

    Combustion of fossil fuels is the major energy source in todays society. While the use of fossil fuels is a necessity for our society to function, there has been an increasing concern on the emissions of CO{sub 2} resulting from human activities. Emissions of CO{sub 2} are considered to be the main cause for the global warming and climate changes we have experienced in recent years. To fight the climate changes, the emissions of CO{sub 2} must be reduced in a timely fashion. Strategies to achieve this include switching to less carbon intensive fuels, renewable energy sources, nuclear energy and combustion with CO{sub 2} capture. The use of oxy-fuel combustion is among the alternative post- and pre combustion capture concepts, a strategy to achieve power production from fossil fuels with CO{sub 2} capture. In an oxy-fuel process, the fuel is burned in a mixture of oxygen and CO{sub 2} (or steam), leaving the exhaust consisting mainly of CO{sub 2} and steam. The steam can be removed by use of a condenser, leaving (almost) pure CO{sub 2} ready to be captured. The downside to CO{sub 2} capture is that it is expensive, both in capital cost of extra equipment, and in operation as it costs energy to capture the CO{sub 2}. Thus it is important to maximize the efficiency in such plants. One attractive concept to achieve CO{sub 2} capture by use of oxy-fuel, is a semi-closed oxy-fuel gas turbine cycle. The dynamics of such a plant are highly integrated, involving energy and mass recycle, and optimizing efficiency might lead to operational (control) challenges. In these thesis we investigate how such a power cycle should be controlled. By looking at control at such an early stage in the design phase, it is possible to find control solutions otherwise not feasible, that leads to better overall performance. Optimization is used on a nonlinear model based on first principles, to compare different control structures. Then, closed loop simulations using MPC, are used to validate

  9. Flexible fuel engine based on multi-combustion control technologies

    Institute of Scientific and Technical Information of China (English)

    LI Xiaolu; HUANG Zhen; QIAO Xinqi; SONG Jun; FANG Junhua; XIA Huimin

    2005-01-01

    A combustion control strategy is proposed for diesel engine to reduce PM and NOx emissions significantly, which adopts some technologies including internal exhaust gas recirculation (EGR), split spray, adjustable fuel delivery advance angle and the application of alternative fuels. Based on this strategy, a flexible fuel engine has been developed. The experimental results show that this engine can be fueled with diesel fuel, alcohol, dimethyl carbonate (DMC), etc. It works with extremely low levels of particulate matter (PM) and NOx, 2~3% higher effective thermal efficiency on moderate and high loads when alternative fuels are used. This engine not only has lower exhaust emissions, but also can be fueled with those alternative fuels, which are difficult to be ignited by compression.

  10. BIODIESEL – ALTERNATIVE FUEL

    Directory of Open Access Journals (Sweden)

    Darko Kiš

    2006-06-01

    Full Text Available A limited quantity of oil, the purchase of which also involves major expenses has become an important factor for intensive search and use of alternative fuels. Biodiesel is used in diesel engines, and is manufactured from vegetable oils, animal fats and recycled edible oils. The production and use of biodiesel are very important not only because of its economic and strategic connotations but also because of its environmental advantages. Favourable conditions in Croatia give good opportunities for a self-sufficient oil rape production, possibility for its intensification and employment of a number of people in both the agricultural production and biodiesel production plants. This paper presents a survey of the biodiesel fuel production, the characteristics and impacts it has on the biodiesel engine features as well as its impact on the environment.

  11. Variable valve actuation and dual-fuel combustion

    OpenAIRE

    Törmänen, Juhani

    2015-01-01

    The constantly increasing interest in alternative fuels in transportation has given birth to new strategies in the internal combustion engine technology. The tightening emissions regulations further boost this development. The dual-fuel technology is one of the most promising new concepts for natural gas-fuelled engines and it has already been widely adopted by the marine and power generation industry. However, the transition from Diesel to dual-fuel engines in road and off-road traffic has n...

  12. Spent-fuel-storage alternatives

    International Nuclear Information System (INIS)

    The Spent Fuel Storage Alternatives meeting was a technical forum in which 37 experts from 12 states discussed storage alternatives that are available or are under development. The subject matter was divided into the following five areas: techniques for increasing fuel storage density; dry storage of spent fuel; fuel characterization and conditioning; fuel storage operating experience; and storage and transport economics. Nineteen of the 21 papers which were presented at this meeting are included in this Proceedings. These have been abstracted and indexed

  13. Alternative Fuels in Cement Production

    DEFF Research Database (Denmark)

    Larsen, Morten Boberg

    The substitution of alternative for fossil fuels in cement production has increased significantly in the last decade. Of these new alternative fuels, solid state fuels presently account for the largest part, and in particular, meat and bone meal, plastics and tyre derived fuels (TDF) accounted for...... the most significant alternative fuel energy contributors in the German cement industry. Solid alternative fuels are typically high in volatile content and they may differ significantly in physical and chemical properties compared to traditional solid fossil fuels. From the process point of view......, considering a modern kiln system for cement production, the use of alternative fuels mainly influences 1) kiln process stability (may accelerate build up of blockages preventing gas and/or solids flow), 2) cement clinker quality, 3) emissions, and 4) decreased production capacity. Kiln process stability in...

  14. GASEOUS EMISSIONS AND COMBUSTION EFFICIENCY ANALYSIS OF HYDROGEN-DIESEL DUAL FUEL ENGINE UNDER FUEL-LEAN CONDITION

    OpenAIRE

    Prateep Chaisermtawan; Sompop Jarungthammachote; Sathaporn Chuepeng; Thanya Kiatiwat

    2012-01-01

    Exhaust gas emissions from diesel engine combustion using alternative fuel may change in their quantities that can affect exhaust gas after-treatment devices and environmental ambient. This study presents theoretical analysis of combustion generated emissions and efficiency of hydrogen-diesel duel fuel in fuel-lean condition. A chemical equilibrium method by minimizing Gibbs free energy is employed to estimate exhaust gas products from diesel and hydrogen-diesel mode combustion. The combustio...

  15. SCR at bio fuel combustion

    International Nuclear Information System (INIS)

    In this project the cause for and the extent of catalyst deactivation has been investigated when using 100 % wood as fuel. The trend of deactivation has been studied as a function of the flue gas temperature, the type of catalyst and the type of combustion technique used. The field tests have been performed in the CFB boiler in Norrkoeping, firing forest residues, and in the boiler in Jordbro, firing pulverized wood (PC). Samples of four different commercial catalyst types have been exposed to flue gas in a test rig connected to the convection section of the boiler. The samples have been analysed at even time intervals. The results after 2 100 hours show a large difference in deactivation trend between the two plants; when using a conventional honeycomb catalyst 80 % of the original activity remains in the CFB boiler but only 20 % remains in the PC boiler. The deactivation in the CFB boiler is about 3 - 4 times faster than what is expected for a conservative design for a coal fired boiler. The results show that the general deactivation trend is similar for the plate and the honeycomb catalyst types. With a catalyst optimised for bio fuels the deactivation rate was about 2/3 compared with a conventional catalyst. At an operating temperature of 315 deg C the deactivation was not as rapid as at 370 deg C. The amount of easily dissolved potassium increases on the surface of the catalyst, especially in the PC boiler, and this is probably the reason for the deactivation. The total amount of potassium in the flue gas is about 5 times higher in the CFB boiler compared with the PC boiler. This indicates that only a certain form of potassium attacks the catalyst and that the total alkali content of the fuel is not a good indicator of the deactivation tendency. The potassium on the catalyst dissolves easily in both water and sulphuric acid. A wash of deactivated catalyst samples with water resulted in higher activity than for the fresh samples if the washing was supplemented

  16. Numerical Studies on Controlling Gaseous Fuel Combustion by Managing the Combustion Process of Diesel Pilot Dose in a Dual-Fuel Engine

    Directory of Open Access Journals (Sweden)

    Mikulski Maciej

    2015-06-01

    Full Text Available Protection of the environment and counteracting global warming require finding alternative sources of energy. One of the methods of generating energy from environmentally friendly sources is increasing the share of gaseous fuels in the total energy balance. The use of these fuels in compression-ignition (CI engines is difficult due to their relatively high autoignition temperature. One solution for using these fuels in CI engines is operating in a dualfuel mode, where the air and gas mixture is ignited with a liquid fuel dose. In this method, a series of relatively complex chemical processes occur in the engine's combustion chamber, related to the combustion of individual fuel fractions that interact with one another. Analysis of combustion of specific fuels in this type of fuel injection to the engine is difficult due to the fact that combustion of both fuel fractions takes place simultaneously. Simulation experiments can be used to analyse the impact of diesel fuel combustion on gaseous fuel combustion. In this paper, we discuss the results of simulation tests of combustion, based on the proprietary multiphase model of a dual-fuel engine. The results obtained from the simulation allow for analysis of the combustion process of individual fuels separately, which expands the knowledge obtained from experimental tests on the engine.

  17. Fuel gas combustion research at METC

    Energy Technology Data Exchange (ETDEWEB)

    Norton, T.S.

    1995-06-01

    The in-house combustion research program at METC is an integral part of many METC activities, providing support to METC product teams, project managers, and external industrial and university partners. While the majority of in-house combustion research in recent years has been focussed on the lean premixed combustion of natural gas fuel for Advanced Turbine Systems (ATS) applications, increasing emphasis is being placed on issues of syngas combustion, as the time approaches when the ATS and coal-fired power systems programs will reach convergence. When the METC syngas generator is built in 1996, METC will have the unique combination of mid-scale pressurized experimental facilities, a continuous syngas supply with variable ammonia loading, and a team of people with expertise in low-emissions combustion, chemical kinetics, combustion modeling, combustion diagnostics, and the control of combustion instabilities. These will enable us to investigate such issues as the effects of pressure, temperature, and fuel gas composition on the rate of conversion of fuel nitrogen to NOx, and on combustion instabilities in a variety of combustor designs.

  18. Engine combustion control via fuel reactivity stratification

    Energy Technology Data Exchange (ETDEWEB)

    Reitz, Rolf Deneys; Hanson, Reed M.; Splitter, Derek A.; Kokjohn, Sage L.

    2016-06-28

    A compression ignition engine uses two or more fuel charges having two or more reactivities to control the timing and duration of combustion. In a preferred implementation, a lower-reactivity fuel charge is injected or otherwise introduced into the combustion chamber, preferably sufficiently early that it becomes at least substantially homogeneously dispersed within the chamber before a subsequent injection is made. One or more subsequent injections of higher-reactivity fuel charges are then made, and these preferably distribute the higher-reactivity matter within the lower-reactivity chamber space such that combustion begins in the higher-reactivity regions, and with the lower-reactivity regions following thereafter. By appropriately choosing the reactivities of the charges, their relative amounts, and their timing, combustion can be tailored to achieve optimal power output (and thus fuel efficiency), at controlled temperatures (and thus controlled NOx), and with controlled equivalence ratios (and thus controlled soot).

  19. Engine combustion control via fuel reactivity stratification

    Energy Technology Data Exchange (ETDEWEB)

    Reitz, Rolf Deneys; Hanson, Reed M.; Splitter, Derek A.; Kokjohn, Sage L.

    2015-07-14

    A compression ignition engine uses two or more fuel charges having two or more reactivities to control the timing and duration of combustion. In a preferred implementation, a lower-reactivity fuel charge is injected or otherwise introduced into the combustion chamber, preferably sufficiently early that it becomes at least substantially homogeneously dispersed within the chamber before a subsequent injection is made. One or more subsequent injections of higher-reactivity fuel charges are then made, and these preferably distribute the higher-reactivity matter within the lower-reactivity chamber space such that combustion begins in the higher-reactivity regions, and with the lower-reactivity regions following thereafter. By appropriately choosing the reactivities of the charges, their relative amounts, and their timing, combustion can be tailored to achieve optimal power output (and thus fuel efficiency), at controlled temperatures (and thus controlled NOx), and with controlled equivalence ratios (and thus controlled soot).

  20. Alternative solvents for post combustion carbon capture

    Energy Technology Data Exchange (ETDEWEB)

    Arachchige, Udara S.P.R. [Telemark University College, Porsgrunn (Norway); Melaaen, Morten C. [Telemark University College, Porsgrunn (Norway); Tel-Tek, Porsgrunn (Norway)

    2013-07-01

    The process model of post combustion chemical absorption is developed in Aspen Plus for both coal and gas fired power plant flue gas treating. The re-boiler energy requirement is considered as the most important factor to be optimized. Two types of solvents, mono-ethylamine (MEA) and di-ethylamine (DEA), are used to implement the model for three different efficiencies. The re-boiler energy requirement for regeneration process is calculated. Temperature and concentration profiles in absorption column are analyzed to understand the model behavior. Re-boiler energy requirement is considerably lower for DEA than MEA as well as impact of corrosion also less in DEA. Therefore, DEA can be recommended as a better solvent for post combustion process for carbon capture plants in fossil fuel fired power industries.

  1. Alternative solvents for post combustion carbon capture

    Directory of Open Access Journals (Sweden)

    Udara S. P. R. Arachchige, Morten C. Melaaen

    2013-01-01

    Full Text Available The process model of post combustion chemical absorption is developed in Aspen Plus for both coal and gas fired power plant flue gas treating. The re-boiler energy requirement is considered as the most important factor to be optimized. Two types of solvents, mono-ethylamine (MEA and di-ethylamine (DEA, are used to implement the model for three different efficiencies. The re-boiler energy requirement for regeneration process is calculated. Temperature and concentration profiles in absorption column are analyzed to understand the model behavior. Re-boiler energy requirement is considerably lower for DEA than MEA as well as impact of corrosion also less in DEA. Therefore, DEA can be recommended as a better solvent for post combustion process for carbon capture plants in fossil fuel fired power industries.

  2. Spent-fuel-storage alternatives

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    The Spent Fuel Storage Alternatives meeting was a technical forum in which 37 experts from 12 states discussed storage alternatives that are available or are under development. The subject matter was divided into the following five areas: techniques for increasing fuel storage density; dry storage of spent fuel; fuel characterization and conditioning; fuel storage operating experience; and storage and transport economics. Nineteen of the 21 papers which were presented at this meeting are included in this Proceedings. These have been abstracted and indexed. (ATT)

  3. Fuel and Additive Characterization for HCCI Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Aceves, S M; Flowers, D; Martinez-Frias, J; Espinosa-Loza, F; Pitz, W J; Dibble, R

    2003-02-12

    This paper shows a numerical evaluation of fuels and additives for HCCl combustion. First, a long list of candidate HCCl fuels is selected. For all the fuels in the list, operating conditions (compression ratio, equivalence ratio and intake temperature) are determined that result in optimum performance under typical operation for a heavy-duty engine. Fuels are also characterized by presenting Log(p)-Log(T) maps for multiple fuels under HCCl conditions. Log(p)-Log(T) maps illustrate important processes during HCCl engine operation, including compression, low temperature heat release and ignition. Log(p)-Log(T) diagrams can be used for visualizing these processes and can be used as a tool for detailed analysis of HCCl combustion. The paper also includes a ranking of many potential additives. Experiments and analyses have indicated that small amounts (a few parts per million) of secondary fuels (additives) may considerably affect HCCl combustion and may play a significant role in controlling HCCl combustion. Additives are ranked according to their capability to advance HCCl ignition. The best additives are listed and an explanation of their effect on HCCl combustion is included.

  4. Study of Temperature Gradient in Burning of Alternative Engine Fuels

    Directory of Open Access Journals (Sweden)

    M. S. Assad

    2008-01-01

    Full Text Available The paper gives an approximate method for calculation of the temperature at a final stage of fuel-air mixture burning in a closed vessel that is a combustion chamber of the internal combustion engine (ICE. The paper contains calculation of temperature values for various fuel-air mixtures, shows nature of temperature changes and presents analysis of combustion product temperature behaviour modification and analyzed the behaviour in accordance with an initial pressure in the chamber. The paper reveals the fact that a combustion temperature is increasing for all mixtures when an initial pressure in combustion chamber is increased. The hydrogen-air mixture has the highest combustion temperature among investigated mixtures and products of propane conversion have the lowest one.The Maxe-effect has been investigated in combustion of hydrogen-air mixture and design formulaes have been obtained. Calculation of temperature difference of the first and last portions of combustion products has been made with due account of the Maxe-effect.The proposed approximate method for calculation of temperatures indices in the various zones of combustion chamber in view of the Mach effect makes it possible to forecast thermodynamic nature of combustion process while using alternative engine fuels for internal combustion engine.

  5. Alternative transportation fuels: Financing issues

    International Nuclear Information System (INIS)

    A multitude of alternative fuels could reduce air pollution and the impact of oil price shocks. Only a few of these fuels are readily available and inexpensive enough to merit serious consideration over the coming five years. In New York City, safety regulations narrow the field still further by eliminating propane. As a result, this study focuses on the three alternative fuels readily available in New York City: compressed natural gas, methanol, and electricity. Each has significant environmental benefits and each has different cost characteristics. With the Clean Air Act and the National Energy Strategy highlighting the country's need to improve urban air quality and move away from dependence on imported fuels, fleets may soon have little choice but to convert to altemative fuels. Given the potential for large infrastructure and vehicle costs, these fleets may have difficulty finding the capital to make that conversion. Ultimately, then, it will be the involvement of the private sector that will determine the success of alternative fuels. Whether it be utilities, fuel distributors or suppliers, private financing partners or others, it is critical that altemative fuels programs be structured and planned to attract their involvement. This report examines financing methods that do not involve government subsidies. It also explores financing methods that are specific to alternative fuels. Bond issues and other mechanisms that are used for conventional vehicles are not touched upon in this report. This report explores ways to spread the high cost of alternative fuels among a number of parties within the private sector. The emphasis is on structuring partnerships that suit methanol, electric, or natural gas vehicle fleets. Through these partnerships, alternative fuels may ultimately compete effectively against conventional vehicle fuels

  6. Peculiar Features of Burning Alternative Motor Fuels

    Directory of Open Access Journals (Sweden)

    M. Assad

    2006-01-01

    Full Text Available Some peculiar features of air-hydrogen mixture combustion process in a modeling combustion chamber are given in the paper. Dependences of burning duration of various fuel types on initial pressure have been obtained. The paper considers dynamics of changes in pressure and ignition rate of some fuel types in the combustion chamber.

  7. Alternative Fuels in Transportation

    Science.gov (United States)

    Kouroussis, Denis; Karimi, Shahram

    2006-01-01

    The realization of dwindling fossil fuel supplies and their adverse environmental impacts has accelerated research and development activities in the domain of renewable energy sources and technologies. Global energy demand is expected to rise during the next few decades, and the majority of today's energy is based on fossil fuels. Alternative…

  8. Public perception related to a hydrogen hybrid internal combustion engine transit bus demonstration and hydrogen fuel

    International Nuclear Information System (INIS)

    Hydrogen has been widely considered as a potentially viable alternative to fossil fuels for use in transportation. In addition to price competitiveness with fossil fuels, a key to its adoption will be public perceptions of hydrogen technologies and hydrogen fuel. This paper examines public perceptions of riders of a hydrogen hybrid internal combustion engine bus and hydrogen as a fuel source

  9. Combustion of large solid fuels in cement rotary kilns

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Anders Rooma

    2012-03-15

    The cement industry has a significant interest in replacing fossil fuels with alternative fuels in order to minimize production costs and reduce CO{sub 2} emissions. These new alternative fuels are in particular solid fuels such as refuse derived fuel (RDF), tire-derived fuel (TDF), meat and bone meal (MBM), waste wood, sewage sludge, paper and plastics. This thesis provides an insight into the utilization of solid alternative fuels in the material inlet end of rotary kilns. This position is interesting because it allows utilization of large fuel particles, thereby eliminating the need for an expensive shredding of the fuels. The challenge, however, is that the solid fuels will be mixed into the cement raw materials, which is likely to affect process stability and clinker quality, as described above. The mixing of fuels and raw materials was studied experimentally in a pilot-scale rotary drum and was found to be a fast process, reaching steady state within few drum revolutions. Thus, heat transfer by conduction from the cement raw materials to the fuel particles is a major heat transfer mechanism rather than convection or radiation from the freeboard gas above the material bed. Consequently, the temperature of the cement raw materials becomes a factor of great importance for heating the fuel particles. Combustion of different alternative fuels has been investigated experimentally in a pilot-scale rotary furnace under conditions similar to those in the material inlet end of cement rotary kilns. The main focus was on tire rubber and pine wood which are relevant fuels in this context. Heating, drying and devolatilization of alternative fuels are fast processes that primarily depend on heat transfer and fuel particle size. Devolatilization of a large wood or tire particle with a thickness of 20 mm at 900 deg. C is for example around 2 minutes. By contrast, char oxidation is a slow process which may greatly reduce the amounts of solid fuels to be utilized in the

  10. Alternative Fuel for Portland Cement Processing

    Energy Technology Data Exchange (ETDEWEB)

    Schindler, Anton K; Duke, Steve R; Burch, Thomas E; Davis, Edward W; Zee, Ralph H; Bransby, David I; Hopkins, Carla; Thompson, Rutherford L; Duan, Jingran; ; Venkatasubramanian, Vignesh; Stephen, Giles

    2012-06-30

    The production of cement involves a combination of numerous raw materials, strictly monitored system processes, and temperatures on the order of 1500 °C. Immense quantities of fuel are required for the production of cement. Traditionally, energy from fossil fuels was solely relied upon for the production of cement. The overarching project objective is to evaluate the use of alternative fuels to lessen the dependence on non-renewable resources to produce portland cement. The key objective of using alternative fuels is to continue to produce high-quality cement while decreasing the use of non-renewable fuels and minimizing the impact on the environment. Burn characteristics and thermodynamic parameters were evaluated with a laboratory burn simulator under conditions that mimic those in the preheater where the fuels are brought into a cement plant. A drop-tube furnace and visualization method were developed that show potential for evaluating time- and space-resolved temperature distributions for fuel solid particles and liquid droplets undergoing combustion in various combustion atmospheres. Downdraft gasification has been explored as a means to extract chemical energy from poultry litter while limiting the throughput of potentially deleterious components with regards to use in firing a cement kiln. Results have shown that the clinkering is temperature independent, at least within the controllable temperature range. Limestone also had only a slight effect on the fusion when used to coat the pellets. However, limestone addition did display some promise in regards to chlorine capture, as ash analyses showed chlorine concentrations of more than four times greater in the limestone infused ash as compared to raw poultry litter. A reliable and convenient sampling procedure was developed to estimate the combustion quality of broiler litter that is the best compromise between convenience and reliability by means of statistical analysis. Multi-day trial burns were conducted

  11. FY2015 Annual Report for Alternative Fuels DISI Engine Research.

    Energy Technology Data Exchange (ETDEWEB)

    Sjöberg, Carl-Magnus G. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2016-01-01

    Climate change and the need to secure energy supplies are two reasons for a growing interest in engine efficiency and alternative fuels. This project contributes to the science-base needed by industry to develop highly efficient DISI engines that also beneficially exploit the different properties of alternative fuels. Our emphasis is on lean operation, which can provide higher efficiencies than traditional non-dilute stoichiometric operation. Since lean operation can lead to issues with ignition stability, slow flame propagation and low combustion efficiency, we focus on techniques that can overcome these challenges. Specifically, fuel stratification is used to ensure ignition and completeness of combustion but has soot- and NOx- emissions challenges. For ultralean well-mixed operation, turbulent deflagration can be combined with controlled end-gas auto-ignition to render mixed-mode combustion that facilitates high combustion efficiency. However, the response of both combustion and exhaust emissions to these techniques depends on the fuel properties. Therefore, to achieve optimal fuel-economy gains, the engine combustion-control strategies must be adapted to the fuel being utilized.

  12. A comprehensive combustion model for biodiesel-fueled engine simulations

    Science.gov (United States)

    Brakora, Jessica L.

    Engine models for alternative fuels are available, but few are comprehensive, well-validated models that include accurate physical property data as well as a detailed description of the fuel chemistry. In this work, a comprehensive biodiesel combustion model was created for use in multi-dimensional engine simulations, specifically the KIVA3v R2 code. The model incorporates realistic physical properties in a vaporization model developed for multi-component fuel sprays and applies an improved mechanism for biodiesel combustion chemistry. A reduced mechanism was generated from the methyl decanoate (MD) and methyl-9-decenoate (MD9D) mechanism developed at Lawrence Livermore National Laboratory. It was combined with a multi-component mechanism to include n-heptane in the fuel chemistry. The biodiesel chemistry was represented using a combination of MD, MD9D and n-heptane, which varied for a given fuel source. The reduced mechanism, which contained 63 species, accurately predicted ignition delay times of the detailed mechanism over a range of engine-specific operating conditions. Physical property data for the five methyl ester components of biodiesel were added to the KIVA library. Spray simulations were performed to ensure that the models adequately reproduce liquid penetration observed in biodiesel spray experiments. Fuel composition impacted liquid length as expected, with saturated species vaporizing more and penetrating less. Distillation curves were created to ensure the fuel vaporization process was comparable to available data. Engine validation was performed against a low-speed, high-load, conventional combustion experiments and the model was able to predict the performance and NOx formation seen in the experiment. High-speed, low-load, low-temperature combustion conditions were also modeled, and the emissions (HC, CO, NOx) and fuel consumption were well-predicted for a sweep of injection timings. Finally, comparisons were made between the results of biodiesel

  13. Alternative fuels: how real? how soon?

    International Nuclear Information System (INIS)

    Nations of the Organization for Economic Cooperation and Development (OECD) are looking for politically stable sources of oil in response to the ever growing demand for fuel. World oil consumption has reached 76.5 MMB/d and demand is expected to be 80 MMB/d by 2005. More restrictive environmental policies are resulting in improved conversion efficiency of oil dependent supply chains and the switching to alternative fuels. The adoption of new fuels however, depends on many factors such as the economic advantage, technological superiority, and convenience. The dominant electrical supply chains at the moment are nuclear, coal, hydropower, hydrocarbons, and renewable energy alternatives such as wind, solar and hydrogen fuels. The paper presented graphs illustrating adoption patterns for various fuels over the past century and presented a potential adoption pattern for fuel cell vehicles. Also included in this presentation were graphs depicting how price can drive supply chain demand and allow other fuels to gain market share. The impact of fuel substitution, efficiency and price effects was mentioned along with the impact of recent policy changes on vehicle fuel efficiency and carbon dioxide emissions. The role of government incentives to promote alternative fuel sales was also discussed along with a broad assessment of renewable supply chains. It was noted that most new fuels are linked to hydrocarbons. For example, hydrogen generation through water electrolysis requires petroleum generated electricity or the steam reforming of natural gas. Ethanol processes also require hydrocarbon consumption indirectly. It was noted that the average efficiencies of coal and natural gas plants has increased in the past decade and the incumbent price trends in electricity in the United States have decreased for fuels such as oil, gas, coal and nuclear energy. With ongoing innovation in the internal combustion engine in the past 30 years, the incumbents have also improved with

  14. Alternative fuels for vehicles; Alternative drivmidler

    Energy Technology Data Exchange (ETDEWEB)

    2012-02-15

    Up until 2020 and onwards the analysis indicates that especially electricity, biogas and natural gas as propellants is economically attractive compared to conventional gasoline and diesel while other fuels have the same or higher costs for petrol and diesel. Especially biogas and electricity will also offer significant reductions in CO{sub 2} emissions, but also hydrogen, methanol, DME and to a lesser extent the second generation bioethanol and most of the other alternative fuels reduce CO{sub 2} emissions. Use of the traditional food-based first generation biofuels involves, at best, only modest climate benefits if land use changes are counted, and at worst, significant negative climate effects. Natural gas as a propellant involves a moderate climate gain, but may play a role for building infrastructure and market for gaseous fuels in large fleets, thereby contributing to the phasing in of biogas for transport. The electric-based automotive fuels are the most effective due to a high efficiency of the engine and an increasing proportion of wind energy in the electricity supply. The methanol track also has a relatively high efficiency. Among the others, the track based on diesel engines (biodiesel) is more effective than the track based on gasoline/Otto engines (gas and ethanol) as a result of the diesel engine's better efficiency. For the heavy vehicles all the selected alternative fuels to varying degrees reduce emissions of CO{sub 2}, particularly DME based on wood. The only exception to this is - as for passenger cars - the propellant synthetic diesel based on coal. (LN).

  15. Experimental Studies of Hydrogen as a Fuel Additive in Internal Combustion Engines

    OpenAIRE

    Saanum, Inge

    2008-01-01

    Combustion of hydrocarbons in internal combustion engines results in emissions that can be harmful both to human health and to the environment. Although the engine technology is improving, the emissions of NOx, PM and UHC are still challenging. Besides, the overall consumption of fossil fuel and hence the emissions of CO2 are increasing because of the increasing number of vehicles. This has lead to a focus on finding alternative fuels and alternative technologies that may result in lower emis...

  16. Proceedings of the 1999 international joint power generation conference (FACT-vol. 23). Volume 1: Fuels and combustion technologies; Gas turbines; and Nuclear engineering

    International Nuclear Information System (INIS)

    Papers are arranged under the following topical sections: Gas turbine combustion; Advanced energy conversion; Low NOx solutions; Burner developments; Alternative fuels combustion; Advanced energy conversion technologies; Numerical modeling of combustion; Fluidized bed combustion; Coal combustion; Combustion research; Gasification systems; Mercury emissions; Highly preheated air combustion; Selective catalytic reduction; Special topics in combustion research; Gas turbines and advanced energy; and How can the nuclear industry become more efficient? Papers within scope have been processed separately for inclusion on the database

  17. Fuels Performance: Navigating the Intersection of Fuels and Combustion (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2014-12-01

    Researchers at the National Renewable Energy Laboratory (NREL), the only national laboratory dedicated 100% to renewable energy and energy efficiency, recognize that engine and infrastructure compatibility can make or break the impact of even the most promising fuel. NREL and its industry partners navigate the intersection of fuel chemistry, ignition kinetics, combustion, and emissions, with innovative approaches to engines and fuels that meet drivers' expectations, while minimizing petroleum use and GHGs.

  18. 30 CFR 56.4103 - Fueling internal combustion engines.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Fueling internal combustion engines. 56.4103... Prevention and Control Prohibitions/precautions/housekeeping § 56.4103 Fueling internal combustion engines. Internal combustion engines shall be switched off before refueling if the fuel tanks are integral parts...

  19. 30 CFR 57.4103 - Fueling internal combustion engines.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Fueling internal combustion engines. 57.4103... Prevention and Control Prohibitions/precautions/housekeeping § 57.4103 Fueling internal combustion engines. Internal combustion engines shall be switched off before refueling if the fuel tanks are integral parts...

  20. Biomass fuel combustion and health*

    OpenAIRE

    de Koning, H. W.; Smith, K. R.; Last, J. M.

    1985-01-01

    Biomass fuels (wood, agricultural waste, and dung) are used by about half the world's population as a major, often the only, source of domestic energy for cooking and heating. The smoke emissions from these fuels are an important source of indoor air pollution, especially in rural communities in developing countries. These emissions contain important pollutants that adversely affect health—such as suspended particulate matter and polycyclic organic matter which includes a number of known carc...

  1. Alternatives for nuclear fuel disposal

    International Nuclear Information System (INIS)

    The spent fuel is one of the most important issues in the nuclear industry, currently spent fuel management is been cause of great amount of research, investments in the construction of repositories or constructing the necessary facilities to reprocess the fuel, and later to recycle the plutonium recovered in thermal reactors. What is the best solution? or, What is the best technology for a specific solution? Many countries have deferred the decision on selecting an option, while other works actively constructing repositories and others implementing the reprocessing facilities to recycle the plutonium obtained from nuclear spent fuel. In Mexico the nuclear power is limited to two reactors BWR type and medium size. So the nuclear spent fuel discharged has been accommodated at reactor's spent fuel pools. Originally these pools have enough capacity to accommodate spent fuel for the 40 years of designed plant operation. However, currently is under process an extended power up rate to 20% of their original power and also there are plans to extend operational life for 20 more years. Under these conditions there will not be enough room for spent fuel in the pools. So this work describes some different alternatives that have been studied in Mexico to define which will be the best alternative to follow. (Author)

  2. Annual Report FY2014 Alternative Fuels DISI Engine Research.

    Energy Technology Data Exchange (ETDEWEB)

    Sjoberg, Carl-Magnus G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-01-01

    Due to concerns about future petroleum supply and accelerating climate change, increased engine efficiency and alternative fuels are of interest. This project contributes to the science-base needed by industry to develop highly efficient DISI engines that also beneficially exploit the different properties of alternative fuels. Lean operation is studied since it can provide higher efficiencies than traditional non-dilute stoichiometric operation. Since lean operation can lead to issues with ignition stability, slow flame propagation and low combustion efficiency, focus is on techniques that can overcome these challenges. Specifically, fuel stratification can be used to ensure ignition and completeness of combustion, but may lead to soot and NOx emissions challenges. Advanced ignition system and intake air preheating both promote ignition stability. Controlled end-gas autoignition can be used maintain high combustion efficiency for ultra-lean well-mixed conditions. However, the response of both combustion and exhaust emission to these techniques depends on the fuel properties. Therefore, to achieve optimal fuel-economy gains, the combustion-control strategies of the engine must adopt to the fuel being utilized.

  3. Comprehensive study of biodiesel fuel for HSDI engines in conventional and low temperature combustion conditions

    Energy Technology Data Exchange (ETDEWEB)

    Tormos, Bernardo; Novella, Ricardo; Garcia, Antonio; Gargar, Kevin [CMT-Motores Termicos, Universidad Politecnica de Valencia, Valencia, ES, Campus de Vera, s/n, Edificio 6D. Camino de Vera s/n, 46022 Valencia (Spain)

    2010-02-15

    In this research, an experimental investigation has been performed to give insight into the potential of biodiesel as an alternative fuel for High Speed Direct Injection (HSDI) diesel engines. The scope of this work has been broadened by comparing the combustion characteristics of diesel and biodiesel fuels in a wide range of engine loads and EGR conditions, including the high EGR rates expected for future diesel engines operating in the low temperature combustion (LTC) regime. The experimental work has been carried out in a single-cylinder engine running alternatively with diesel and biodiesel fuels. Conventional diesel fuel and neat biodiesel have been compared in terms of their combustion performance through a new methodology designed for isolating the actual effects of each fuel on diesel combustion, aside from their intrinsic differences in chemical composition. The analysis of the results has been sequentially divided into two progressive and complementary steps. Initially, the overall combustion performance of each fuel has been critically evaluated based on a set of parameters used as tracers of the combustion quality, such as the combustion duration or the indicated efficiency. With the knowledge obtained from this previous overview, the analysis focuses on the detailed influence of biodiesel on the different diesel combustion stages known ignition delay, premixed combustion and mixing controlled combustion, considering also the impact on CO and UHC (unburn-hydrocarbons) pollutant emissions. The results of this research explain why the biodiesel fuel accelerates the diesel combustion process in all engine loads and EGR rates, even in those corresponding with LTC conditions, increasing its possibilities as alternative fuel for future DI diesel engines. (author)

  4. Transition challenges for alternative fuel vehicle and transportation systems

    OpenAIRE

    Jeroen Struben; John D. Sterman

    2008-01-01

    Automakers are now developing alternatives to internal combustion engines (ICE), including hydrogen fuel cells and ICE – electric hybrids. Adoption dynamics for alternative vehicles are complex, owing to the size and importance of the auto industry and vehicle installed base. Diffusion of alternative vehicles is both enabled and constrained by powerful positive feedbacks arising from scale and scope economies, research and development, learning by doing, driver experience, word of mouth, and ...

  5. Low emission turbulent technology for fuel combustion

    International Nuclear Information System (INIS)

    The company 'POLITEKHENERGO' in co-operation and the Russian-Poland firm 'EnergoVIR' have performed investigations for modernization of the current existing boilers. A low emission turbulent technology has been used for the modernization of 10 industrial boilers. The reduction of NOx emissions is based on the following processes: 1) multistage combustion assured by two counter-deviated fluxes; 2) Some of the combustion facilities have an abrupt slope and a reduced air supply which leads to an intense separation of the fuel in the bottom part and a creation of a low-temperature combustion zone where the active restoration of the NOx takes part; 3) The influence of the top high-temperature zone on the NOx formation is small. Thus the 'sandwich' consisting of 'cold' and'hot' combustion layers provides a full rate combustion. This technique permits to: decrease of the NOx and COx down to the European standard values;increase of the efficiency in 1-2%; obtain a stable coal combustion up to 97-98%; assure the large loading range (30 -100%); modernize and use the old boilers

  6. Modeling of large-scale oxy-fuel combustion processes

    OpenAIRE

    Yin, Chungen

    2012-01-01

    Quite some studies have been conducted in order to implement oxy-fuel combustion with flue gas recycle in conventional utility boilers as an effective effort of carbon capture and storage. However, combustion under oxy-fuel conditions is significantly different from conventional air-fuel firing, among which radiative heat transfer under oxy-fuel conditions is one of the fundamental issues. This paper demonstrates the nongray-gas effects in modeling of large-scale oxy-fuel combustion processes...

  7. Coal desulfurization during the combustion of coal/oil/water emulsions: an economic alternative clean liquid fuel. Interim report, October 1978-November 15, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Dooher, J. P.

    1979-11-15

    The rheological and combustion properties of coal/water/oil mixtures have been investigated. In addition the use of alkaline additives to remove the sulfur oxide gases has been studied. Results on stability and pumpability indicate that mixtures of 50% by weight of coal and stoichiometric concentrations of alkaline absorbents are pumpable. Correlation between viscometer data and pumping data follows a power law behavior for these mixtures. Thermal efficiencies are about the same as for pure oil. Combustion efficiencies are approximately 97%. It is possible to remove in a small scale combustion from 50 to 80% of the sulfur dioxide gases.

  8. Experimental study on fuel economies and emissions of direct-injection premixed combustion engine fueled with gasoline/diesel blends

    International Nuclear Information System (INIS)

    Highlights: • A compound combustion concept was proposed and investigated. • Premixed combustion near the top dead center was investigated using blended fuels. • Increasing gasoline blend ratio was found to enhance the mixture preparation. • Too much addition of gasoline decreases indicated thermal efficiency. • Gasoline/diesel blends may be a promising alternative for premixed combustion. - Abstract: The effects of gasoline/diesel blended fuel composed of diesel fuel with gasoline as additives in volume basis, on combustion, fuel economies and exhaust emissions were experimentally investigated. Tests were carried out based on a turbocharged Common-rail Direct Injection engine at a constant engine speed of 1800 r/min and different loads of 3.2 bar, 5.1 bar Indicated Mean Effective Pressure. Additionally, the effect of combustion phasing and Exhaust Gas Recirculation were evaluated experimentally for various fuels. The results indicated that with the fraction of gasoline increasing in blends, the ignition delay was prolonged and the combustion phasing was retarded with the common injection timing. This led to a significant increase of premixed burning phase, which was in favor of smoke reduction; although, too much gasoline might be adverse to fuel consumption. An optimum combustion phasing was identified, leading to a higher thermal efficiency and better premixed combustion with blended fuels. A combined application of Exhaust Gas Recirculation and blended fuel with a high gasoline fraction was confirmed effective in reducing the oxides of nitrogen and smoke emissions simultaneously at the optimum combustion phasing without giving significant penalty of fuel consumption. A compound combustion mode with its emission lower than the conventional Compression Ignition engines, and efficiency higher than the typical Spark Ignition engines, could be achieved with a cooperative control of Exhaust Gas Recirculation and combustion phasing of the gasoline

  9. Oxy-fuel combustion of pulverized fuels: Combustion fundamentals and modeling

    DEFF Research Database (Denmark)

    Yin, Chungen; Yan, Jinyue

    2016-01-01

    Oxy-fuel combustion of pulverized fuels (PF), as a promising technology for CO2 capture from power plants, has gained a lot of concerns and also advanced considerable research, development and demonstration in the last past years worldwide. The use of CO2 or the mixture of CO2 and H2O vapor as th...

  10. Development of Kinetic Mechanisms for Next-Generation Fuels and CFD Simulation of Advanced Combustion Engines

    Energy Technology Data Exchange (ETDEWEB)

    Pitz, William J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); McNenly, Matt J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Whitesides, Russell [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mehl, Marco [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Killingsworth, Nick J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Westbrook, Charles K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-12-17

    Predictive chemical kinetic models are needed to represent next-generation fuel components and their mixtures with conventional gasoline and diesel fuels. These kinetic models will allow the prediction of the effect of alternative fuel blends in CFD simulations of advanced spark-ignition and compression-ignition engines. Enabled by kinetic models, CFD simulations can be used to optimize fuel formulations for advanced combustion engines so that maximum engine efficiency, fossil fuel displacement goals, and low pollutant emission goals can be achieved.

  11. Steam-moderated oxy-fuel combustion

    International Nuclear Information System (INIS)

    The objective of the present paper is to propose a new variant of the oxy-fuel combustion for carbondioxide (CO2) sequestration in which steam is used to moderate the flame temperature. In this process, pure oxygen is mixed with steam and the resulting oxidant mixture is sent to the boiler for combustion with a fossil fuel. The advantage of this method is that flue gas recirculation is avoided and the volumetric flow rates through the boiler and auxiliary components is reduced by about 39% when compared to the conventional air-fired coal combustion power plant leading to a reduction in the size of the boiler. The flue gas, after condensation of steam, consists primarily of CO2 and can be sent directly for compression and sequestration. Flame structure analysis has been carried out using a 325-step reaction mechanism of methane-oxidant combustion to determine the concentration of oxygen required to ensure a stable flame. Thermodynamic exergy analysis has also been carried out on SMOC-operated CO2 sequestration power plant and air-fired power plant, which shows that though the gross efficiency increases the absolute power penalty of ∼8% for CO2 sequestration when compared to air-fired power plant.

  12. Advancing the Limits of Dual Fuel Combustion

    OpenAIRE

    Königsson, Fredrik

    2012-01-01

    There is a growing interest in alternative transport fuels. There are two underlying reasons for this interest; the desire to decrease the environmental impact of transports and the need to compensate for the declining availability of petroleum. In the light of both these factors the Diesel Dual Fuel, DDF, engine is an attractive concept. The primary fuel of the DDF engine is methane, which can be derived both from renewables and from fossil sources. Methane from organic waste; commonly refer...

  13. Economic structure, fuel combustion, and pollution emissions

    International Nuclear Information System (INIS)

    Pollution intensities measure total emissions per dollar of output for the producing sectors of the economy. This paper presents a methodology for calculating such intensities, which maintains the link between combustion of specific fuels and sectoral pollution emissions. The theoretical attributes of this approach are compared to the widely used direct impact coefficient technique. Estimates based on 1985 data are provided for particulates, sulfur oxides, nitrogen oxides, volatile organic compounds, carbon monoxide, lead, and carbon dioxide

  14. Control issues in oxy-fuel combustion

    OpenAIRE

    Snarheim, Dagfinn

    2009-01-01

    Combustion of fossil fuels is the major energy source in todays society. While the use of fossil fuels is a necessity for our society to function, there has been an increasing concern on the emissions of CO2 resulting from human activities. Emissions of CO2 are considered to be the main cause for the global warming and climate changes we have experienced in recent years. To fight the climate changes, the emissions of CO2 must be reduced in a timely fashion. Strategies to achieve this include ...

  15. 30 CFR 77.1105 - Internal combustion engines; fueling.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Internal combustion engines; fueling. 77.1105 Section 77.1105 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE... COAL MINES Fire Protection § 77.1105 Internal combustion engines; fueling. Internal combustion...

  16. Alternatives to traditional transportation fuels: An overview

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    This report presents the first compilation by the Energy Information Administration (EIA) of information on alternatives to gasoline and diesel fuel. The purpose of the report is: (1) to provide background information on alternative transportation fuels and replacement fuels compared with gasoline and diesel fuel, and (2) to furnish preliminary estimates of alternative transportation fuels and alternative fueled vehicles as required by the Energy Policy Act of 1992 (EPACT), Title V, Section 503, ``Replacement Fuel Demand Estimates and Supply Information.`` Specifically, Section 503 requires the EIA to report annually on: (1) the number and type of alternative fueled vehicles in existence the previous year and expected to be in use the following year, (2) the geographic distribution of these vehicles, (3) the amounts and types of replacement fuels consumed, and (4) the greenhouse gas emissions likely to result from replacement fuel use. Alternative fueled vehicles are defined in this report as motorized vehicles licensed for on-road use, which may consume alternative transportation fuels. (Alternative fueled vehicles may use either an alternative transportation fuel or a replacement fuel.) The intended audience for the first section of this report includes the Secretary of Energy, the Congress, Federal and State agencies, the automobile manufacturing industry, the transportation fuel manufacturing and distribution industries, and the general public. The second section is designed primarily for persons desiring a more technical explanation of and background for the issues surrounding alternative transportation fuels.

  17. Emissions from Petrol Engine Fueled Gasoline–Ethanol–Methanol (GEM) Ternary mixture as Alternative Fuel

    OpenAIRE

    Thangavelu Saravana Kannan; Chelladorai Piraiarasi; Ani Farid Nasir

    2015-01-01

    The increasing demands of petroleum fuels due to the rapid development automotive society coupled with the environmental pollution issues have inspired the efforts on exploring alternative fuels for internal combustion engines. Bioethanol obtained from biomass and bioenergy crops has been proclaimed as one of the feasible alternative to gasoline. In this study, the effect of gasoline–ethanol–methanol (GEM) ternary blend on the emission characteristics of petrol engine was studied. Three diffe...

  18. Dimethyl ether as alternative fuel for CI engine and vehicle

    Institute of Scientific and Technical Information of China (English)

    Zhen HUANG; Xinqi QIAO; Wugao ZHANG; Junhua WU; Junjun ZHANG

    2009-01-01

    As a developing and the most populous country in the world, China faces major challenges in energy supply and environmental protection. It is of great importance to develop clean and alternative fuels for internal combustion engines. On the basis of researches on DME engine and vehicle at Shanghai Jiaotong University in the last twelve years, fuel injection, combustion, performance and exhaust emissions of DME engine and DME vehicle are introduced in this paper. The results indicate that DME engines can achieve high thermal efficiency and ultra low emissions, and will play a significant role in meeting the energy demand while minimizing environmental impact in China.

  19. Societal lifecycle costs of cars with alternative fuels/engines

    International Nuclear Information System (INIS)

    Effectively addressing concerns about air pollution (especially health impacts of small-particle air pollution), climate change, and oil supply insecurity will probably require radical changes in automotive engine/fuel technologies in directions that offer both the potential for achieving near-zero emissions of air pollutants and greenhouse gases and a diversification of the transport fuel system away from its present exclusive dependence on petroleum. The basis for comparing alternative automotive engine/fuel options in evolving toward these goals in the present analysis is the 'societal lifecycle cost' of transportation, including the vehicle first cost (assuming large-scale mass production), fuel costs (assuming a fully developed fuel infrastructure), externality costs for oil supply security, and damage costs for emissions of air pollutants and greenhouse gases calculated over the full fuel cycle. Several engine/fuel options are considered--including current gasoline internal combustion engines and a variety of advanced lightweight vehicles: internal combustion engine vehicles fueled with gasoline or hydrogen; internal combustion engine/hybrid electric vehicles fueled with gasoline, compressed natural gas, Diesel, Fischer-Tropsch liquids or hydrogen; and fuel cell vehicles fueled with gasoline, methanol or hydrogen (from natural gas, coal or wind power). To account for large uncertainties inherent in the analysis (for example in environmental damage costs, in oil supply security costs and in projected mass-produced costs of future vehicles), lifecycle costs are estimated for a range of possible future conditions. Under base-case conditions, several advanced options have roughly comparable lifecycle costs that are lower than for today's conventional gasoline internal combustion engine cars, when environmental and oil supply insecurity externalities are counted--including advanced gasoline internal combustion engine cars, internal combustion engine

  20. HFIR spent fuel management alternatives

    International Nuclear Information System (INIS)

    The High Flux Isotope Reactor (HFIR) at Martin Marietta Energy Systems' Oak Ridge National Laboratory (ORNL) has been unable to ship its spent fuel to Savannah River Site (SRS) for reprocessing since 1985. The HFIR storage pools are expected to fill up in the February 1994 to February 1995 time frame. If a management altemative to existing HFIR pool storage is not identified and implemented before the HFIR pools are full, the HFIR will be forced to shut down. This study investigated several alternatives for managing the HFIR spent fuel, attempting to identify options that could be implemented before the HFIR pools are full. The options investigated were: installing a dedicated dry cask storage facility at ORNL, increasing HFIR pool storage capacity by clearing the HFIR pools of debris and either close-packing or stacking the spent fuel elements, storing the spent fuel at another ORNL pool, storing the spent fuel in one or more hot cells at ORNL, and shipping the spent fuel offsite for reprocessing or storage elsewhere

  1. An update in the 'development of alternate liquid fuels'

    Science.gov (United States)

    Rose, M. J.

    The Brookhaven National Laboratory has formulated a series of Alternate Liquid Fuels (AIF), compounded from combustible fluids such as alcohols, mineral oils and solvents, found in the waste streams of the cosmetic, petrochemical, electronics and other industries. These fuels are now being processed by a pilot plant with a productive capacity of 40,000 gallons in 8 hours, at direct costs ranging from $0.26 to $0.29 a gallon depending on selected feedstocks and blend ratios

  2. Alternate-fuel reactor studies

    International Nuclear Information System (INIS)

    A number of studies related to improvements and/or greater understanding of alternate-fueled reactors is presented. These studies cover the areas of non-Maxwellian distributions, materials and lifetime analysis, a 3He-breeding blanket, tritium-rich startup effects, high field magnet support, and reactor operation spanning the range from full D-T operation to operation with no tritium breeding

  3. Dry low NOx combustion system with pre-mixed direct-injection secondary fuel nozzle

    Science.gov (United States)

    Zuo, Baifang; Johnson, Thomas; Ziminsky, Willy; Khan, Abdul

    2013-12-17

    A combustion system includes a first combustion chamber and a second combustion chamber. The second combustion chamber is positioned downstream of the first combustion chamber. The combustion system also includes a pre-mixed, direct-injection secondary fuel nozzle. The pre-mixed, direct-injection secondary fuel nozzle extends through the first combustion chamber into the second combustion chamber.

  4. Impact of alternate fuels on industrial refractories and refractory insulation applications. An Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Wei, G.C.; Tennery, V.J.

    1976-09-01

    The effects of use of alternate fuels such as distillate oils, residual oils, coal, producer gas, and electricity on refractory insulation are evaluated. Sections are included on alternate fuels for 1976 to 1980, assessment by industry of fuel conversion impact on industrial refractories in the period 1976 to 1980, interactions of alternate fuel combustion products with refractories and refractory insulation, and analysis of degradation mechanisms in refractories and refractory materials. (JRD)

  5. Fuel flexible distributed combustion for efficient and clean gas turbine engines

    International Nuclear Information System (INIS)

    Highlights: • Examined distributed combustion for gas turbines applications using HiTAC. • Gaseous, liquid, conventional and bio-fuels are examined with ultra-low emissions. • Novel design of fuel flexibility without any atomizer for liquid fuel sprays. • Demonstrated fuel flexibility with emissions x and CO, low noise, enhanced stability, higher efficiency and alleviation of combustion instability. Distributed reaction conditions were achieved using swirl for desirable controlled mixing between the injected air, fuel and hot reactive gases from within the combustor prior to mixture ignition. In this paper, distributed combustion is further investigated using a variety of fuels. Gaseous (methane, diluted methane, hydrogen enriched methane and propane) and liquid fuels, including both traditional (kerosene) and alternate fuels (ethanol) that cover a wide range of calorific values are investigated with emphasis on pollutants emission and combustor performance with each fuel. For liquid fuels, no atomization or spray device was used. Performance evaluation with the different fuels was established to outline the flexibility of the combustor using a wide range of fuels of different composition, phase and calorific value with specific focus on ultra-low pollutants emission. Results obtained on pollutants emission and OH* chemiluminescence for the specific fuels at various equivalence ratios are presented. Near distributed combustion conditions with less than 8 PPM of NO emission were demonstrated under novel premixed conditions for the various fuels tested at heat (energy) release intensity (HRI) of 27 MW/m3-atm. and a rather high equivalence ratio of 0.6. Higher equivalence ratios lacked favorable distributed combustion conditions. For the same conditions, CO emission varied for each fuel; less than 10 ppm were demonstrated for methane based fuels, while heavier liquid fuels provided less than 40 ppm CO emissions. Lower emissions of NO (x can be possible by

  6. Experimental investigation on internal combustion engine for micro-cogeneration application fuelled with alternative fuels: energy recovery, performance and pollutants formation

    OpenAIRE

    Magno, Agnese

    2015-01-01

    This work is aimed to characterize in terms of energy recovery, combustion characteristics and pollutant emissions a small compression ignition engine for micro-cogeneration application fuelled with blended and pure biodiesel. The engine under investigation was a three-cylinder, 1028 cc of displacement, equipped with a common-rail injection system. The engine was fuelled with diesel, a blend of 20% v/v rapeseed methyl ester (RME), a blend of 50% v/v RME and pure RME. Tests were performed at d...

  7. Synthetic fuel aromaticity and staged combustion

    Energy Technology Data Exchange (ETDEWEB)

    Longanbach, J. R.; Chan, L. K.; Levy, A.

    1982-11-15

    Samples of middle and heavy SRC-II distillates were distilled into 50 C boiling point range fractions. These were characterized by measurements of their molecular weight, elemental analysis and basic nitrogen content and calculation of average molecular structures. The structures typically consisted of 1 to 3 aromatic rings fused to alicyclic rings with short, 1 to 3 carbon aliphatic side chains. The lower boiling fractions contained significant amounts (1 atom/molecule) of oxygen while the heavier fractions contained so few heteroatoms that they were essentially hydrocarbons. Laboratory scale oxidative-pyrolysis experiments were carried out at pyrolysis temperatures of 500 to 1100 C and oxygen concentrations from 0 to 100 percent of stoichiometry. Analysis of liquid products, collected in condensers cooled with liquid nitrogen showed that aromatization is a major reaction in the absence of oxygen. The oxygen-containing materials (phenolics) seem to be more resistant to thermal pyrolysis than unsubstituted aromatics. Nitrogen converts from basic to nonbasic forms at about 500 C. The nonbasic nitrogen is more stable and survives up to 700 C after which it is slowly removed. A recently constructed 50,000 Btu/hr staged combustor was used to study the chemistry of the nitrogen and aromatics. SRC II combustion was studied under fuel-rich, first-stage conditions at air/fuel ratios from 0.6 to 1.0 times stoichiometric. The chemistry of the fuel during combustion calls for further investigation in order to examine the mechanism by which HCN is evolved as a common intermediate for the formation of the nitrogen-containing gaseous combustion products. 25 references, 45 figures, 25 tables.

  8. Harmful emissions from the combustion of fuels

    International Nuclear Information System (INIS)

    Problems of emissions arising from the combustion of solid, liquid and gaseous fuels are discussed. The maximum permissible concentrations of particulate matter, sulfur dioxide, nitrogen oxides, carbon dioxide, and carbon monoxide are given for energy and power generating facilities of 0.2 to 5 MW thermal output. The advantage of electricity generation and centralized heat supply experienced at the site of consumption is partly offset by the disadvantage of a large environmental burden at the site where electricity is generated and/or water heated. (J.B.). 1 tab

  9. Formation of fuel NOx during black-liquor combustion

    International Nuclear Information System (INIS)

    Fuel NOx and thermal NOx were measured in combustion gases from black liquors in two laboratory furnaces. Combustion at 950 C in air (8% O2) produced NOx concentrations of 40-80ppm. Combustion at 950 C in synthetic air containing no nitrogen (21% 02 in Ar) produced the same result, demonstrating that all of the NOx produced during combustion at 950 C was fuel NOx. Formation of fuel NOx increased moderately with increasing temperature in the range of 800-1,000 C, but temperature sensitivity of fuel NOx was much less than that of thermal NOx. The results imply that the major source of NOx in recovery furnace emissions is the fuel NOx in recovery furnace formed by conversion of liquor-bound nitrogen during combustion. This is consistent with thermal NOx theory, which postulates that black-liquor combustion temperatures are too low to generate significant amounts of thermal NOx

  10. Use of alternative fuels in the Polish cement industry

    Energy Technology Data Exchange (ETDEWEB)

    Mokrzycki, Eugeniusz; Uliasz-Bochenczyk, Alicja [Polish Academy of Sciences, Mineral and Energy Economy Research Inst., Krakow (Poland); Sarna, Mieczyslaw [Lafarge Cement Polska S.A., Malogoszcz (Poland)

    2003-02-01

    Alternative fuels are made up of mixtures of different wastes, such as industrial, municipal and hazardous wastes. These fuels need to have an appropriate chemical energy content which depends on the type of components and their organic content. An industry that is particularly well suited to the employment of alternative fuels is the cement industry. There are a number of factors that promote the use of alternative fuels in cement kilns. Of these factors, the most notable are: the high temperatures developed, the appropriate kiln length, the long period of time the fuel stays inside the kiln and the alkaline environment inside the kiln. There are a number of countries that use their own alternative fuels in cement plants. These fuels have different trade names and they differ in the amounts and the quality of the selected municipal and industrial waste fractions used. The fuels used should fall within the extreme values of parameters such as: minimum heating value, maximum humidity content, and maximum content of heavy and toxic metals. Cement plants in Poland also use alternative fuels. Within the Lafarge Group, the cement plants owned by Lafarge Poland Ltd. have initiated activities directed at promoting the wider use of alternative fuels. There are a number of wastes that can be incinerated as fuel in cement plants. Some that can be mentioned are: selected combustible fractions of municipal wastes, liquid crude-oil derived wastes, car tyres, waste products derived from paint and varnish production, expired medicines from the pharmaceutical industry and others. The experience gained by the cement plants of Lafarge Cement Poland Ltd confirms that such activities are economically and ecologically beneficial. The incineration of alternative fuels in cement plants is a safe method for the utilisation of waste that is ecologically friendly and profitable for the industrial plants and society alike. (Author)

  11. GASEOUS EMISSIONS AND COMBUSTION EFFICIENCY ANALYSIS OF HYDROGEN-DIESEL DUAL FUEL ENGINE UNDER FUEL-LEAN CONDITION

    Directory of Open Access Journals (Sweden)

    Prateep Chaisermtawan

    2012-01-01

    Full Text Available Exhaust gas emissions from diesel engine combustion using alternative fuel may change in their quantities that can affect exhaust gas after-treatment devices and environmental ambient. This study presents theoretical analysis of combustion generated emissions and efficiency of hydrogen-diesel duel fuel in fuel-lean condition. A chemical equilibrium method by minimizing Gibbs free energy is employed to estimate exhaust gas products from diesel and hydrogen-diesel mode combustion. The combustion products, e.g., unburned hydrocarbons (CH4, hydrogen (H2, carbon dioxide (CO2, carbon monoxide (CO are comparatively investigated, based upon similar specific energy input. Subsequently, the obtained combustible products (CH4, H2 and CO are used to calculate combustion efficiency, based upon chemical energy left in waste exhaust gases. The main findings are associated with the reduction in CO2 corresponding to the increase in combustion efficiency in hydrogen-diesel combustion mode, depending on relative air-to-fuel ratios. Meanwhile, the CH4, H2 and CO contents in the flue gas increase in the operating conditions used

  12. Alternate-Fueled Flight: Halophytes, Algae, Bio-, and Synthetic Fuels

    Science.gov (United States)

    Hendricks, R. C.

    2012-01-01

    Synthetic and biomass fueling are now considered to be near-term aviation alternate fueling. The major impediment is a secure sustainable supply of these fuels at reasonable cost. However, biomass fueling raises major concerns related to uses of common food crops and grasses (some also called "weeds") for processing into aviation fuels. These issues are addressed, and then halophytes and algae are shown to be better suited as sources of aerospace fuels and transportation fueling in general. Some of the history related to alternate fuels use is provided as a guideline for current and planned alternate fuels testing (ground and flight) with emphasis on biofuel blends. It is also noted that lessons learned from terrestrial fueling are applicable to space missions. These materials represent an update (to 2009) and additions to the Workshop on Alternate Fueling Sustainable Supply and Halophyte Summit at Twinsburg, Ohio, October 17 to 18, 2007.

  13. Alternative fuels: a Brazilian outlook

    International Nuclear Information System (INIS)

    This paper focuses on studies and information related to the use of alternative fuels in Brazil. The first part of this paper deals with the economics of different biomass technologies. The analysis consists of a careful costing of all operations involved. The study deals with wood, sugar cane and cassava, since these crops are exploited for commercial purposes in Brazil. Corn, although a useful raw material for producing ethanol in the United States, is not used for this purpose in Brazil. The second part deals with the industrial technologies used to convert biomass into energy. We consider several forms of energy derived from biomass and evaluate the economics of the processes. When opportune, we compare costs with those of the North American market. Market analysis and displacement of conventional energy are the subject of the third part of the paper. While the cost of each product is evaluated in most cases; in others the current market price is used. Finally, we raise the issues of institutional problems and planning and offer some conclusions on the future of biomass as an alternative energy source. The technological discussion in this paper is based on the Brazilian experience in producing ethanol and other fuels from biomass. It is possible to extrapolate the Brazilian experience to other developing countries. The observations made in this chapter are based on the conditions prevalent in the Brazilian south-central agricultural region, specifically the state of Sao Paulo. (author). 91 refs., 16 figs., 11 tabs

  14. Serpent: an alternative for the nuclear fuel cells analysis of a BWR; SERPENT: una alternativa para el analisis de celdas de combustible nuclear de un BWR

    Energy Technology Data Exchange (ETDEWEB)

    Silva A, L.; Del Valle G, E. [IPN, Escuela Superior de Fisica y Matematicas, Av. Instituto Politecnico Nacional s/n, U.P. Adolfo Lopez Mateos, Edificio 9, Col. San Pedro Zacatenco, 07738 Mexico D. F. (Mexico); Gomez T, A. M., E-mail: lidi.s.albarran@gmail.com [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2013-10-15

    In the last ten years the diverse research groups in nuclear engineering of the Universidad Nacional Autonoma de Mexico and Instituto Politecnico Nacional (UNAM, IPN), as of research (Instituto Nacional de Investigaciones Nucleares, ININ) as well as the personnel of the Nuclear Plant Management of the Comision Federal de Electricidad have been using the codes Helios and /or CASMO-4 in the generation of cross sections (X S) of nuclear fuel cells of the cores corresponding to the Units 1 and 2 of the nuclear power plant of Laguna Verde. Both codes belong to the Studsvik-Scandpower Company who receives the payment for the use and their respective maintenance. In recent years, the code Serpent appears among the nuclear community distributed by the OECD/Nea which does not has cost neither in its use neither in its maintenance. The code is based on the Monte Carlo method and makes use of the processing in parallel. In the Escuela Superior de Fisica y Matematicas of the IPN, the personnel has accumulated certain experience in the use of Serpent under the direction of personal of the ININ; of this experience have been obtained for diverse fuel burned, the infinite multiplication factor for three cells of nuclear fuel, without control bar and with control bar for a known thermodynamic state fixed by: a) the fuel temperature (T{sub f}), b) the moderator temperature (T{sub m}) and c) the vacuums fraction (α). Although was not realized any comparison with the X S that the codes Helios and CASMO-4 generate, the results obtained for the infinite multiplication factor show the prospective tendencies with regard to the fuel burned so much in the case in that is not present the control bar like when it is. The results are encouraging and motivate to the study group to continue with the X S generation of a core in order to build the respective library of nuclear data as a following step and this can be used for the codes PARCS, of USA NRC, DYN3D of HZDR, or others developed locally

  15. Alternative solvents for post combustion carbon capture

    OpenAIRE

    Udara S. P. R. Arachchige, Morten C. Melaaen

    2013-01-01

    The process model of post combustion chemical absorption is developed in Aspen Plus for both coal and gas fired power plant flue gas treating. The re-boiler energy requirement is considered as the most important factor to be optimized. Two types of solvents, mono-ethylamine (MEA) and di-ethylamine (DEA), are used to implement the model for three different efficiencies. The re-boiler energy requirement for regeneration process is calculated. Temperature and concentration profiles in absorption...

  16. Study on Influence of Fuel Properties on Premixed Diesel Combustion

    OpenAIRE

    熊, 仟

    2014-01-01

    Premixed diesel combustion, as a promising combustion concept to achieve low NOx and smoke emissions as well as high thermal efficiency, is paid much attention. Sufficiently long ignition delay is required for pre-mixture preparation to avoid over-rich mixture taking part in the combustion while the maximum pressure rise rate is suppressed to a tolerance level. Therefore, the operational load range of premixed diesel combustion with diesel fuel is limited at low and medium loads by the high p...

  17. CO2 capture from oxy-fuel combustion power plants

    OpenAIRE

    Hu, Yukun

    2011-01-01

    To mitigate the global greenhouse gases (GHGs) emissions, carbon dioxide (CO2) capture and storage (CCS) has the potential to play a significant role for reaching mitigation target. Oxy-fuel combustion is a promising technology for CO2 capture in power plants. Advantages compared to CCS with the conventional combustion technology are: high combustion efficiency, flue gas volume reduction, low fuel consumption, near zero CO2 emission, and less nitrogen oxides (NOx) formation can be reached sim...

  18. Combustion

    CERN Document Server

    Glassman, Irvin

    1987-01-01

    Combustion, Second Edition focuses on the underlying principles of combustion and covers topics ranging from chemical thermodynamics and flame temperatures to chemical kinetics, detonation, ignition, and oxidation characteristics of fuels. Diffusion flames, flame phenomena in premixed combustible gases, and combustion of nonvolatile fuels are also discussed. This book consists of nine chapters and begins by introducing the reader to heats of reaction and formation, free energy and the equilibrium constants, and flame temperature calculations. The next chapter explores the rates of reactio

  19. Chemical looping combustion. Fuel conversion with inherent CO2 capture

    Energy Technology Data Exchange (ETDEWEB)

    Brandvoll, Oeyvind

    2005-07-01

    Chemical looping combustion (CLC) is a new concept for fuel energy conversion with CO2 capture. In CLC, fuel combustion is split into separate reduction and oxidation processes, in which a solid carrier is reduced and oxidized, respectively. The carrier is continuously recirculated between the two vessels, and hence direct contact between air and fuel is avoided. As a result, a stoichiometric amount of oxygen is transferred to the fuel by a regenerable solid intermediate, and CLC is thus a variant of oxy-fuel combustion. In principle, pure CO2 can be obtained from the reduction exhaust by condensation of the produced water vapour. The thermodynamic potential and feasibility of CLC has been studied by means of process simulations and experimental studies of oxygen carriers. Process simulations have focused on parameter sensitivity studies of CLC implemented in 3 power cycles; CLC-Combined Cycle, CLC-Humid Air Turbine and CLC-Integrated Steam Generation. Simulations indicate that overall fuel conversion ratio, oxidation temperature and operating pressure are among the most important process parameters in CLC. A promising thermodynamic potential of CLC has been found, with efficiencies comparable to, - or better than existing technologies for CO2 capture. The proposed oxygen carrier nickel oxide on nickel spinel (NiONiAl) has been studied in reduction with hydrogen, methane and methane/steam as well as oxidation with dry air. It has been found that at atmospheric pressure and temperatures above 600 deg C, solid reduction with dry methane occurs with overall fuel conversion of 92%. Steam methane reforming is observed along with methane cracking as side reactions, yielding an overall selectivity of 90% with regard to solid reduction. If steam is added to the reactant fuel, coking can be avoided. A methodology for long-term investigation of solid chemical activity in a batch reactor is proposed. The method is based on time variables for oxidation. The results for Ni

  20. Used oil as a fuel oil alternative

    Energy Technology Data Exchange (ETDEWEB)

    Karaosmanoglu, F.; Beker, U.G. [Istanbul Technical Univ. (Turkey). Chemical Engineering Dept.

    1996-09-01

    In this study, the possibility of using used frying oil as a fuel oil alternative has been investigated. The fuel oil analysis tests applied to the reference fuel oil, used frying oil and its blends with fuel oil, were done according to standard test methods. The experimental results indicated that used frying oil and its blends with fuel oil can be proposed as a possible substitute for fuel oil.

  1. Process of spontaneous combustion of solid fuels

    Energy Technology Data Exchange (ETDEWEB)

    Postrzednik, S.; Bialecki, R.; Nowak, A. (Politechnika Slaska, Gliwice (Poland))

    1988-01-01

    Reviews literature on coal spontaneous combustion and oxidation. The following aspects are discussed: low-temperature oxidation, medium and high-temperature oxidation, theories of spontaneous coal combustion (bacteria theory, phenol theory, water-coal system theory, water adsorption theory), factors that influence spontaneous combustion (coal rank, petrology, porosity, moisture content, storage method, storage temperature, air circulation, macrostructure and geometry of the system for storage of coal), effects of mineral content on coal hazards of spontaneous combustion, physicochemical phenomena that influence spontaneous combustion, laboratory investigations into spontaneous combustion, experimental methods used in laboratory investigations, forecasting energy effects of spontaneous combustion, mathematical models of coal spontaneous combustion. 94 refs.

  2. Characterisation of fuels for advanced pressurised combustion

    Energy Technology Data Exchange (ETDEWEB)

    Zevenhoven, R.; Hupa, M.; Backman, P.; Forssen, M.; Karlsson, M.; Kullberg, M.; Sorvari, V.; Uusikartano, T. [Aabo Akademi, Turku (Finland). Combustion Chemistry Research Group; Nurk, M. [Tallinskij Politekhnicheskij Inst., Tallinn (Estonia)

    1997-10-01

    The objective of the research was to determine a set of fuel characteristics which quantify the behaviour of a fuel in a typical pressurised combustor or gasifier environment, especially in hybrid processes such as second generation PFBC. One specific aspect was to cover a wide range of fuels, including several coal types and several grades of peat and biomasses: 7 types of coal, 2 types of peat, 2 types of wood, 2 types of black liquor, Estonian oil shale and Venezuelan Orimulsion were studied. The laboratory facilities used are a pressurised thermogravimetric reactor (PTGR), a pressurised grid heater (PGH) and an atmospheric entrained flow quartz tube reactor, with gas analysis, which can be operated as a fixed bed reactor. A major part of the work was related to fuel devolatilisation in the PGH and sequential devolatilisation and char gasification (with carbon dioxide or steam) in the PTGR. The final part of that work is reported here, with the combustion of Estonian oil shale at AFBC or PFBC conditions as additional subject. Devolatilisation of the fuels at atmospheric pressure in nitrogen while monitoring gaseous exhausts, followed by ultimate analysis of the chars has been reported earlier. Here, results on the analysis of the reduction of NO (with and without CO) on chars at atmospheric pressure in a fixed bed reactor are reported. Finally, a comparison is given between experimental results and direct numerical simulation with several computer codes, i.e. PyroSim, developed at TU Graz, Austria, and the codes Partikkeli, Pisara and Cogas, which were provided by VTT Energy, Jyvaeskylae

  3. One hundred and fifty years of combustion of fossil hydrocarbons: The emergent alternatives

    International Nuclear Information System (INIS)

    After one hundred fifty years of drilling first commercial petroleum wells that led to the intensive use of liquid fuels to move transport vehicles, we are arriving at the peak of the world-wide petroleum reserves. Yet, we still have a good portion for spending, with the hope that the consequences will be better than in the first part, which has implied several wars and deteriorations of the environment. This assay brings a review about the history of fossil fuels and with the prospective of the emergent energetic alternatives, placing emphasis on bioenergy as an alternative for the transition between the actual combustion age and the new age of clean energy.

  4. LIEKKI and JALO: Combustion and fuel conversion

    Science.gov (United States)

    Grace, Thomas M.; Renz, Ulrich; Sarofim, Adel F.

    LIEKKI and JALO are well conceived and structured programs designed to strengthen Finland's special needs in combustion and gasification to utilize a diversity of fuels, increase the ratio of electrical to heat output, and to support the export market. Started in 1988, these two programs provide models of how universities, Technical research center's laboratories (VTT's), and industry can collaborate successfully in order to achieve national goals. The research is focused on long term goals in certain targeted niche areas. This is an effective way to use limited resources. The niche areas were chosen in a rational manner and appear to be appropriate for Finland. The LIEKKl and JALO programs have helped pull together research efforts that were previously more fragmented. For example, the combustion modeling area still appears fragmented. Individual project objectives should be tied to program goals at a very early stage to provide sharper focusing to the research. Both the LIEKKl and JALO programs appear to be strongly endorsed by industry. Industrial members of the Executive Committees were very supportive of these programs. There are good mechanisms for technology transfer in place, and the programs provide opportunities to establish good interfaces between industrial people and the individual researchers. The interest of industry is shown by the large number of applied projects that are supported by industry. This demonstrates the relevancy of the programs. There is a strong interaction between the JALO program and industry in black liquor gasification.

  5. Oxy-combustion of high water content fuels

    Science.gov (United States)

    Yi, Fei

    As the issues of global warming and the energy crisis arouse extensive concern, more and more research is focused on maximizing energy efficiency and capturing CO2 in power generation. To achieve this, in this research, we propose an unconventional concept of combustion - direct combustion of high water content fuels. Due to the high water content in the fuels, they may not burn under air-fired conditions. Therefore, oxy-combustion is applied. Three applications of this concept in power generation are proposed - direct steam generation for the turbine cycle, staged oxy-combustion with zero flue gas recycle, and oxy-combustion in a low speed diesel-type engine. The proposed processes could provide alternative approaches to directly utilize fuels which intrinsically have high water content. A large amount of energy to remove the water, when the fuels are utilized in a conventional approach, is saved. The properties and difficulty in dewatering high water content fuels (e.g. bioethanol, microalgae and fine coal) are summarized. These fuels include both renewable and fossil fuels. In addition, the technique can also allow for low-cost carbon capture due to oxy-combustion. When renewable fuel is utilized, the whole process can be carbon negative. To validate and evaluate this concept, the research focused on the investigation of the flame stability and characteristics for high water content fuels. My study has demonstrated the feasibility of burning fuels that have been heavily diluted with water in a swirl-stabilized burner. Ethanol and 1-propanol were first tested as the fuels and the flame stability maps were obtained. Flame stability, as characterized by the blow-off limit -- the lowest O2 concentration when a flame could exist under a given oxidizer flow rate, was determined as a function of total oxidizer flow rate, fuel concentration and nozzle type. Furthermore, both the gas temperature contour and the overall ethanol concentration in the droplets along the

  6. Fuel-cycle costs for alternative fuels

    International Nuclear Information System (INIS)

    This paper compares the fuel cycle cost and fresh fuel requirements for a range of nuclear reactor systems including the present day LWR without fuel recycle, an LWR modified to obtain a higher fuel burnup, an LWR using recycle uranium and plutonium fuel, an LWR using a proliferation resistant 233U-Th cycle, a heavy water reactor, a couple of HTGRs, a GCFR, and several LMFBRs. These reactor systems were selected from a set of 26 developed for the NASAP study and represent a wide range of fuel cycle requirements

  7. Fuel properties to enable lifted-flame combustion

    Energy Technology Data Exchange (ETDEWEB)

    Kurtz, Eric [Ford Motor Company, Dearborn, MI (United States)

    2015-03-15

    The Fuel Properties to Enable Lifted-Flame Combustion project responded directly to solicitation DE-FOA-0000239 AOI 1A, Fuels and Lubricants for Advanced Combustion Regimes. This subtopic was intended to encompass clean and highly-efficient, liquid-fueled combustion engines to achieve extremely low engine-out nitrogen oxides (NOx) and particulate matter (PM) as a target and similar efficiency as state-of-the-art direct injection diesel engines. The intent of this project was to identify how fuel properties can be used to achieve controllable Leaner Lifted Flame Combustion (LLFC) with low NOx and PM emissions. Specifically, this project was expected to identify and test key fuel properties to enable LLFC and their compatibility with current fuel systems and to enhance combustion models to capture the effect of fuel properties on advanced combustion. Successful demonstration of LLFC may reduce the need for after treatment devices, thereby reducing costs and improving thermal efficiency. The project team consisted of key technical personnel from Ford Motor Company (FMC), the University of Wisconsin-Madison (UW), Sandia National Laboratories (SNL) and Lawrence Livermore National Laboratories (LLNL). Each partner had key roles in achieving project objectives. FMC investigated fuel properties relating to LLFC and sooting tendency. Together, FMC and UW developed and integrated 3D combustion models to capture fuel property combustion effects. FMC used these modeling results to develop a combustion system and define fuel properties to support a single-cylinder demonstration of fuel-enabled LLFC. UW investigated modeling the flame characteristics and emissions behavior of different fuels, including those with different cetane number and oxygen content. SNL led spray combustion experiments to quantify the effect of key fuel properties on combustion characteristics critical for LLFC, as well as single cylinder optical engine experiments to improve fundamental

  8. Combustion and Emission Investigation of Diesel Fuel and Kerosene Blends

    Directory of Open Access Journals (Sweden)

    Bilal A. Akash

    2015-06-01

    Full Text Available This study presents experimental investigation of combustion of diesel fuel, kerosene and their blends. The objective of this study is to determine the combustion performance and gas emission of diesel fuel, kerosene and various mixtures of diesel fuel and kerosene in a horizontally positioned cylindrical furnace. Heat was removed from the system by the use of water around a jacket of the combustion unit. The combustion unit is capable of burning most types of liquid and gaseous hydrocarbon fuels. Results on combustion performance and gas emissions are presented for a wide range of air-fuel equivalence ratios. The results of exhaust gas analyses of carbon monoxide, carbon dioxide and oxygen are presented. Combustion efficiency and the effect of blending of fuels on its performance are also presented. In general, some improvements in exhaust gas emission and combustion efficiency were obtained upon using mixtures of fuels. The best results were obtained when a fuel blend of 75% kerosene and 25% diesel was prepared and burned in the unit.

  9. Alternatives to traditional transportation fuels 1993

    Energy Technology Data Exchange (ETDEWEB)

    1995-01-01

    In recent years, gasoline and diesel fuel have accounted for about 80 percent of total transportation fuel and nearly all of the fuel used in on-road vehicles. Growing concerns about the environmental effects of fossil fuel use and the Nation`s high level of dependence on foreign oil are providing impetus for the development of replacements or alternatives for these traditional transportation fuels. (The Energy Policy Act of 1992 definitions of {open_quotes}replacement{close_quotes} and {open_quotes}alternative{close_quotes} fuels are presented in the following box.) The Alternative Motor Fuels Act of 1988, the Clean Air Act Amendments of 1990 (CAAA90) and the Energy Policy Act of 1992 (EPACT) are significant legislative forces behind the growth of replacement fuel use. Alternatives to Traditional Transportation Fuels 1993 provides the number of on-road alternative fueled vehicles in use in the United States, alternative and replacement fuel consumption, and information on greenhouse gas emissions resulting from the production, delivery, and use of replacement fuels for 1992, 1993, and 1995.

  10. Internal combustion engines for alcohol motor fuels: a compilation of background technical information

    Energy Technology Data Exchange (ETDEWEB)

    Blaser, Richard

    1980-11-01

    This compilation, a draft training manual containing technical background information on internal combustion engines and alcohol motor fuel technologies, is presented in 3 parts. The first is a compilation of facts from the state of the art on internal combustion engine fuels and their characteristics and requisites and provides an overview of fuel sources, fuels technology and future projections for availability and alternatives. Part two compiles facts about alcohol chemistry, alcohol identification, production, and use, examines ethanol as spirit and as fuel, and provides an overview of modern evaluation of alcohols as motor fuels and of the characteristics of alcohol fuels. The final section compiles cross references on the handling and combustion of fuels for I.C. engines, presents basic evaluations of events leading to the use of alcohols as motor fuels, reviews current applications of alcohols as motor fuels, describes the formulation of alcohol fuels for engines and engine and fuel handling hardware modifications for using alcohol fuels, and introduces the multifuel engines concept. (LCL)

  11. Modern approach to the problem of fossil gas fuels replacement by alternative fuels

    International Nuclear Information System (INIS)

    New scientific and engineering fundamentals of fuels substitution have been developed instead of obsolete methodology “Interchangeability of Fuel Gases” developed in USA and existing from the middle of XXth century. To perform the complex prediction of total or partial substitution of given flow rate of natural gas NG for alternative gases AG the following parameters are to be predicted: plant utilization efficiencies – regarding fuel and energy utilization, the last in form of heat ȘH and exergy Șeff efficiencies, saving or overexpenditure of the NG flow rate in the gas mixture with AG, specific fuel consumption b f and specific issue of harmful substances Ct – pollutants in the combustion products (CNOx ) and greenhouse gases (C CO2 ). Certification of alternative gas fuels and fuel mixtures as a commodity products is carried out in frame of our approach with necessary set of characteristics, similar to those accepted in the world practice. Key words: alternative fuel, fuel replacement (substitution), natural gas, process gases, theoretical combustion temperature, thermodynamic equilibrium computations, total enthalpy

  12. Chemistry and radiation in oxy-fuel combustion

    DEFF Research Database (Denmark)

    Yin, Chungen; Rosendahl, Lasse; Kær, Søren Knudsen

    2011-01-01

    In order to investigate the role of combustion chemistry and radiation heat transfer in oxy-fuel combustion modeling, a computational fluid dynamics (CFD) modeling study has been performed for two different oxy-fuel furnaces. One is a lab-scale 0.8MW oxy-natural gas flame furnace whose detailed in......-flame measurement data are available; the other is a conventional 609MW utility boiler which is assumed to be operating under oxy-fuel combustion condition with dry flue gas recycle. A new model for gaseous radiative properties is developed, validated, and then implemented in the CFD simulations. The CFD results...... simulations, from which significant difference in the predicted flame temperature and species is observed. This difference is consistent with those expected from the equilibrium calculation results. As a conclusion, the appropriate combustion mechanisms applicable to oxy-fuel combustion modeling are...

  13. Combustion and fuel characterization of coal-water fuels

    Energy Technology Data Exchange (ETDEWEB)

    1989-07-01

    Pittsburgh Energy Technology Center (PETC) of the Department of Energy initiated a comprehensive effort in 1982 to develop the necessary performance and cost data and to assess the commercial viability of coal water fuels (CWFs) as applied to representative utility and industrial units. The effort comprised six tasks beginning with coal resource evaluation and culminating in the assessment of the technical and economic consequences of switching representative commercial units from oil to state-of-the-art CWF firing. Extensive bench, pilot and commercial-scale tests were performed to develop necessary CWF combustion and fireside performance data for the subsequent boiler performance analyses and retrofit cost estimates. This report (Volume 2) provides a review of the fuel selection and procurement activities. Included is a discussion on coal washability, transport of the slurry, and characterization. 20 figs., 26 tabs.

  14. Alternate-Fueled Combustor-Sector Emissions

    Science.gov (United States)

    Saxena, Nikita T.; Thomas, Anna E.; Shouse, Dale T.; Neuroth, Craig; Hendricks, Robert C.; Lynch, Amy; Frayne, Charles W.; Stutrud, Jeffrey S.; Corporan, Edwin; Hankins, Terry

    2013-01-01

    In order to meet rapidly growing demand for fuel, as well as address environmental concerns, the aviation industry has been testing alternate fuels for performance and technical usability in commercial and military aircraft. In order to make alternate fuels (and blends) a viable option for aviation, the fuel must be able to perform at a similar or higher level than traditional petroleum fuel. They also attempt to curb harmful emissions, and therefore a truly effective alternate fuel would emit at or under the level of currently used fuel. This report analyzes data from gaseous and particulate emissions of an aircraft combustor sector. The data were evaluated at various inlet conditions, including variation in pressure and temperature, fuel-to-air ratios, and percent composition of alternate fuel. Traditional JP-8+100 data were taken as a baseline, and blends of JP-8+100 with synthetic-paraffinic-kerosene (SPK) fuel (Fischer-Tropsch (FT)) were used for comparison. Gaseous and particulate emissions, as well as flame luminosity, were assessed for differences between FT composition of 0, 50, and 100 percent. The data show that SPK fuel (an FT-derived fuel) had slightly lower harmful gaseous emissions, and smoke number information corroborated the hypothesis that SPK-FT fuels are cleaner burning fuels.

  15. Characteristics of oxy-fuel combustion in gas turbines

    International Nuclear Information System (INIS)

    Highlights: → Basic characteristics of oxy-fuel combustion in gas turbine conditions were studied. → The study was based on detailed chemical kinetics and thermodynamic calculations. → Critical O2/CO2 ratio for combustion stability and quenching was obtained. → Effect of inlet pressure on the combustion stability and quenching was examined. → Feasible oxy-fuel operation domain under gas turbine conditions was investigated. -- Abstract: This paper reports on a numerical study of the thermodynamic and basic combustion characteristics of oxy-fuel combustion in gas turbine related conditions using detailed chemical kinetic and thermodynamic calculations. The oxy-fuels considered are mixtures of CH4, O2, CO2 and H2O, representing natural gas combustion under nitrogen free gas turbine conditions. The GRI Mech 3.0 chemical kinetic mechanism, consisting of 53 species and 325 reactions, is used in the chemical kinetic calculations. Two mixing conditions in the combustion chambers are considered; a high intensity turbulence mixing condition where the combustion chamber is assumed to be a well-stirred reactor, and a typical non-premixed flame condition where chemical reactions occur in thin flamelets. The required residence time in the well-stirred reactor for the oxidation of fuels is simulated and compared with typical gas turbine operation. The flame temperature and extinction conditions are determined for non-premixed flames under various oxidizer inlet temperature and oxidizer compositions. It is shown that most oxy-fuel combustion conditions may not be feasible if the fuel, oxygen and diluent are not supplied properly to the combustors. The numerical calculations suggest that for oxy-fuel combustion there is a range of oxygen/diluent ratio within which the flames can be not only stable, but also with low remaining oxygen and low emission of unburned intermediates in the flue gas.

  16. Oxy-Fuel Combustion of Coal

    DEFF Research Database (Denmark)

    Brix, Jacob

    model and experiments is caused by an experimental delay in ignition that is not captured by the model. Though this causes a deviation in total conversion COCOMO still predicts conversion rates accurately after ignition. A laboratory scale Fixed Bed Reactor (FBR), operated isothermally at 1073 K, has......This Ph.D. thesis describes an experimental and modeling investigation of the thermal conversion of coal and an experimental investigation of the emission of NO from char combustion in O2/N2 and O2/CO2 atmospheres. The motivation for the work has been the prospective use of the technology “Oxy......-Fuel Combustion” as a mean of CO2 abatement in large scale energy conversion. Entrained Flow Reactor (EFR) experiments have been conducted in O2/N2 and O2/CO2 mixtures in the temperature interval 1173 K – 1673 K using inlet O2 concentrations between 5 – 28 vol. %. Bituminous coal has been used as fuel in all...

  17. Comparison of fuel value and combustion characteristics of two different RDF samples.

    Science.gov (United States)

    Sever Akdağ, A; Atımtay, A; Sanin, F D

    2016-01-01

    Generation of Municipal Solid Waste (MSW) tends to increase with the growing population and economic development of the society; therefore, establishing environmentally sustainable waste management strategies is crucial. In this sense, waste to energy strategies have come into prominence since they increase the resource efficiency and replace the fossil fuels with renewable energy sources by enabling material and energy recovery instead of landfill disposal of the wastes. Refuse Derived Fuel (RDF), which is an alternative fuel produced from energy-rich Municipal Solid Waste (MSW) materials diverted from landfills, is one of the waste to energy strategies gaining more and more attention. This study aims to investigate the thermal characteristics and co-combustion efficiency of two RDF samples in Turkey. Proximate, ultimate and thermogravimetric analyses (TGA) were conducted on these samples. Furthermore, elemental compositions of ash from RDF samples were determined by X-Ray Fluorescence (XRF) analysis. The RDF samples were combusted alone and co-combusted in mixtures with coal and petroleum coke in a lab scale reactor at certain percentages on energy basis (3%, 5%, 10%, 20% and 30%) where co-combustion processes and efficiencies were investigated. It was found that the calorific values of RDF samples on dry basis were close to that of coal and a little lower compared to petroleum coke used in this study. Furthermore, the analysis indicated that when RDF in the mixture was higher than 10%, the CO concentration in the flue gas increased and so the combustion efficiency decreased; furthermore, the combustion characteristics changed from char combustion to volatile combustion. However, RDF addition to the fuel mixtures decreased the SO2 emission and did not change the NOx profiles. Also, XRF analysis showed that the slagging and fouling potential of RDF combustion was a function of RDF portion in fuel blend. When the RDF was combusted alone, the slagging and fouling

  18. The mathematical model of non-certified fuel combustion

    OpenAIRE

    Добровольская, Татьяна Сергеевна; Максимов, Максим Витальевич; Ложечников, Вадим Феликсович; Бондаренко, Андрей Владимирович

    2014-01-01

    The process of uncertified fuel combustion with a variable calorific value of gas at a petroleum refinery for generating steam is considered in the paper. The main purpose of the paper is to develop a mathematical model of three steam boilers, working for one steam pipe, for combustion of gas fuels of varying composition. Effective combustion of the uncertified fuel will allow reducing not only СО2 emissions to the environment, but also reducing the consumption of natural gas. In the proposed...

  19. Numerical simulation of oxy-fuel combustion for gas turbine applications

    International Nuclear Information System (INIS)

    Relevant reduction on worldwide greenhouse gases emissions shall be based on more efficient power generation systems linked to a carbon capture and storage technology (CCS). Integrated gasification combined cycle and natural gas combined cycle (IGCC) would play an effective role to these objectives. To that, oxy-fuel combustion is an important alternative for the implementation of CCS technology, claiming, however, modifications to the conventional operation of gas turbines combustors. This work presents CFD simulations of oxy-fuel combustion in a can-type model gas turbine combustor. Equilibrium combustion model for non-premixed flames was used to model chemical reactions and turbulence was accounted for by Reynolds Stress Model (RSM). Numerical predictions were carried out after validating the numerical schemes and turbulence model. In addition to the baseline (propane/air combustion) four oxy-fuel cases were studied: propane and syngas oxy-fuel combustion with two different O2/CO2 ratios. The predictions showed that the propane/oxy-fuel flame (O2/CO2 = 1) resembles the baseline case (propane/air) though, with much higher temperature levels in the central core of the combustor, resulting in a poor gas turbine combustor pattern factor. The oxy-syngas flames showed intense reactions in the primary zone, before the first dilution holes, leading to a very good patter factor. The numerical model proposed for this study can be considered a relevant tool in the preliminary design phase of gas turbine combustors applied to CCS technology. - Highlights: • A gas turbine combustion chamber model was numerically simulated. • The numerical model was validated against experimental data for isothermal flow. • CCS technology based on oxy-fuel combustion for propane and syngas were studied. • The syngas cases showed improved pattern factors compared to the Propane/Air case. • The oxy-fuel combustion based on syngas seemed adequate for CCS technology

  20. COMBUSTION SIMULATION IN A SPARK IGNITION ENGINE CYLINDER: EFFECTS OF AIR-FUEL RATIO ON THE COMBUSTION DURATION

    OpenAIRE

    Nureddin Dinler; Nuri Yucel

    2010-01-01

    Combustion is an important subject of internal combustion engine studies. To reduce the air pollution from internal combustion engines and to increase the engine performance, it is required to increase combustion efficiency. In this study, effects of air/fuel ratio were investigated numerically. An axisymmetrical internal combustion engine was modeled in order to simulate in-cylinder engine flow and combustion. Two dimensional transient continuity, momentum, turbulence, energy, and combustion...

  1. Emergency fuels utilization guidebook. Alternative Fuels Utilization Program

    Energy Technology Data Exchange (ETDEWEB)

    1980-08-01

    The basic concept of an emergency fuel is to safely and effectively use blends of specification fuels and hydrocarbon liquids which are free in the sense that they have been commandeered or volunteered from lower priority uses to provide critical transportation services for short-duration emergencies on the order of weeks, or perhaps months. A wide variety of liquid hydrocarbons not normally used as fuels for internal combustion engines have been categorized generically, including limited information on physical characteristics and chemical composition which might prove useful and instructive to fleet operators. Fuels covered are: gasoline and diesel fuel; alcohols; solvents; jet fuels; kerosene; heating oils; residual fuels; crude oils; vegetable oils; gaseous fuels.

  2. Sulphur release from alternative fuel firing

    DEFF Research Database (Denmark)

    Cortada Mut, Maria del Mar; Nørskov, Linda Kaare; Glarborg, Peter;

    2014-01-01

    The cement industry has long been dependent on the use of fossil fuels, although a recent trend in replacing fossil fuels with alternative fuels has arisen. 1, 2 However, when unconverted or partly converted alternative fuels are admitted directly in the rotary kiln inlet, the volatiles released...... from the fuels may react with sulphates present in the hot meal to form SO 2 . Here Maria del Mar Cortada Mut and associates describe pilot and industrial scale experiments focusing on the factors that affect SO 2 release in the cement kiln inlet....

  3. Engine combustion control at low loads via fuel reactivity stratification

    Energy Technology Data Exchange (ETDEWEB)

    Reitz, Rolf Deneys; Hanson, Reed M; Splitter, Derek A; Kokjohn, Sage L

    2014-10-07

    A compression ignition (diesel) engine uses two or more fuel charges during a combustion cycle, with the fuel charges having two or more reactivities (e.g., different cetane numbers), in order to control the timing and duration of combustion. By appropriately choosing the reactivities of the charges, their relative amounts, and their timing, combustion can be tailored to achieve optimal power output (and thus fuel efficiency), at controlled temperatures (and thus controlled NOx), and with controlled equivalence ratios (and thus controlled soot). At low load and no load (idling) conditions, the aforementioned results are attained by restricting airflow to the combustion chamber during the intake stroke (as by throttling the incoming air at or prior to the combustion chamber's intake port) so that the cylinder air pressure is below ambient pressure at the start of the compression stroke.

  4. Standardization of Alternative Fuels. Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-08-15

    There are different interpretations of the term 'alternative fuels', depending on the part of the world in which the definition is used. In this report, alternative fuels mainly stand for fuels that can replace gasoline and diesel oil and at the same time contribute to lowered emissions with impact on health, environment and climate. The use of alternative vehicle fuels has increased during the last 30 years. However, the increase has developed slowly and today the use is very limited, compared to the use of conventional fuels. Although, the use in some special applications, often in rather small geographical areas, can be somewhat larger. The main interest for alternative fuels has for a long time been driven by supply security issues and the possibility to reduce emissions with a negative impact on health and environment. However, the development of reformulated gasoline and low sulphur diesel oil has contributed to substantially decreased emissions from these fuels without using any alternative fuel. This has reduced the environmental impact driving force for the introduction of alternative fuels. In line with the increased interest for climate effects and the connections between these effects and the emission of greenhouse gases, and then primarily carbon dioxide, the interest for biomass based alternative fuels has increased during the 1990s. Even though one of the driving forces for alternative fuels is small today, alternative fuels are more commonly accepted than ever before. The European Commission has for example in May 2003 agreed on a directive for the promotion of the use of bio fuels. In the directive there are goals for the coming 7 years that will increase the use of alternative fuels in Europe rather dramatically, from below 1 percent now up to almost 6 percent of the total vehicle fuel consumption in 2010. The increased use of alternative fuels in Europe and the rest of the world will create a need for a common interpretation of what we

  5. Properties of air and combustion products of fuel with air

    Science.gov (United States)

    Poferl, D. J.; Svehla, R. A.

    1975-01-01

    Thermodynamic and transport properties have been calculated for air, the combustion products of natural gas and air, and combustion products of ASTM-A-1 jet fuel and air. Properties calculated include: ratio of specific heats, molecular weight, viscosity, specific heat, thermal conductivity, Prandtl number, and enthalpy.

  6. Environmental effects of fossil fuel combustion

    International Nuclear Information System (INIS)

    Fossil fuel which include natural gas, petroleum, shale oil and bitumen are the main source of heat and electrical energy. All these fuels contain beside major constituents (carbon, hydrogen, oxygen) other materials as metal, sulfur and nitrogen compounds. During the combustion process different pollutants as fly ash, sulfur oxides (SO2 and SO3), nitrogen oxides (NOx NO + NO2) and volatile organic compounds are emitted. Fly ash contain different trace elements (heavy metals). Gross emission of pollutants is tremendous all over the world. These pollutants are present in the atmosphere in such conditions that they can affect man and his environment. Air pollution caused by the particulate matter and other pollutants not only acts directly on environment but by contamination of water and soil leads to their degradation. Wet and dry deposition of inorganic pollutants leads to acidification of environment. These phenomena affect health of the people, increase corrosion, destroy cultivated soil and forests. Most of the plants, especially coniferous trees are not resistant to sulfur and nitrogen oxides. Following longer exposure leaves wither and fall. Widespread forest damage has been reported in Europe and North America regions. Many cultivated plants are not resistant to these pollutants either especially in the early period vegetation. The mechanisms of pollutants transformation in atmosphere are described by environmental chemistry. An important role in these transformations plays photochemistry. SO2 and NOx are oxidized and sulfuric and nitric acids are formed in presence of water vapours, fog and droplets. Other problem discussed connected with human activities is emission of volatile organic compounds to the atmosphere. These emissions cause stratospheric ozone depletion, ground level photochemical ozone formation, toxic or carcinogenic human health effects, enhancing the global greenhouse effect, accumulation and persistence in environment. Wet flue gas

  7. On gas and particle radiation in pulverized fuel combustion furnaces

    DEFF Research Database (Denmark)

    Yin, Chungen

    2015-01-01

    Radiation is the principal mode of heat transfer in a combustor. This paper presents a refined weighted sum of gray gases model for computational fluid dynamics modelling of conventional air-fuel combustion, which has greater accuracy and completeness than the existing gaseous radiative property....... Although the refined gaseous radiative property model shows great advantages in gaseous fuel combustion modelling, its impacts are largely compromised in pulverized solid fuel combustion, in which particle-radiation interaction plays the dominant role in radiation heat transfer due to high particle loading....... Use of conversion-dependent particle emissivity and scattering factor will not only change the particle heating and reaction history, but also alter the radiation intensity and thus temperature profiles in the furnace. For radiation modelling in pulverized fuel combustion, the priority needs to be...

  8. CFD Investigation into Diesel PCCI Combustion with Optimized Fuel Injection

    Directory of Open Access Journals (Sweden)

    Lipeng Lu

    2011-03-01

    Full Text Available A multi-pulse injection strategy for premixed charge compression ignition (PCCI combustion was investigated in a four-valve, direct-injection diesel engine by a computational fluid dynamics (CFD simulation using KIVA-3V code coupled with detailed chemistry. The effects of fuel splitting proportion, injection timing, spray angles, and injection velocity were examined. The mixing process and formation of soot and nitrogen oxide (NOx emissions were investigated as the focus of the research. The results show that the fuel splitting proportion and the injection timing impacted the combustion and emissions significantly due to the considerable changes of the mixing process and fuel distribution in the cylinder. While the spray, inclusion angle and injection velocity at the injector exit, can be adjusted to improve mixing, combustion and emissions, appropriate injection timing and fuel splitting proportion must be jointly considered for optimum combustion performance.

  9. Fuel design real-time to control HCCI combustion

    Institute of Scientific and Technical Information of China (English)

    HOU Yuchun; HUANG Zhen; LU Xingcai; FANG Junhuan; ZU Linlin

    2006-01-01

    In order to achieve lower emissions and extensive load in the homogeneous charge compression ignition (HCCI) engine system, a novel fuel design concept that high-octane number fuel and high-cetane number fuel are mixed real-time to control HCCI combustion is proposed in this study. HCCI combustion fueled with iso-octane/n-heptane mixtures controlled real-time on a single-cylinder HCCI combustion engine is studied. The test results show that the equivalence ratio of n-heptane in mixtures decides ignition and controls the combustion phase of HCCI combustion. The addition of iso-octane extends knocking limit in equivalence ratio somewhat,but knocking occurrence mainly depends on the total concentration of mixture. Although operating range in equivalence ratio becomes narrow with the increasing proportion of iso-octane, the maximum load of HCCI combustion fueled with iso-octane/n-heptane mixtures controlled real-time is increased about 80% more than that of pure n-heptane. When iso-octane/n-heptane mixtures are controlled in optimized method, it is proved that the load of HCCI combustion can be fully extended and emissions can be decreased remarkably, while at the same time the higher indicated thermal efficiencies are obtained over the extensive operation range.

  10. A fundamental study of biomass oxy-fuel combustion and co-combustion

    OpenAIRE

    Farrow, Timipere Salome

    2013-01-01

    While oxy-fuel combustion research is developing and large scale projects are proceeding, little information is available on oxy-biomass combustion and cocombustion with coal. To address this knowledge gap, this research conducted has involved comprehensive laboratory based fundamental investigation of biomass firing and co-firing under oxy-fuel conditions and compared it to conventional air firing conditions. First, TGA was employed to understand the fundamental behaviour of biomass devolati...

  11. Advanced modeling of oxy-fuel combustion of natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Chungen Yin

    2011-01-15

    The main goal of this small-scale project is to investigate oxy-combustion of natural gas (NG) through advanced modeling, in which radiation, chemistry and mixing will be reasonably resolved. 1) A state-of-the-art review was given regarding the latest R and D achievements and status of oxy-fuel technology. The modeling and simulation status and achievements in the field of oxy-fuel combustion were also summarized; 2) A computer code in standard c++, using the exponential wide band model (EWBM) to evaluate the emissivity and absorptivity of any gas mixture at any condition, was developed and validated in detail against data in literature. A new, complete, and accurate WSGGM, applicable to both air-fuel and oxy-fuel combustion modeling and applicable to both gray and non-gray calculation, was successfully derived, by using the validated EWBM code as the reference mode. The new WSGGM was implemented in CFD modeling of two different oxy-fuel furnaces, through which its great, unique advantages over the currently most widely used WSGGM were demonstrated. 3) Chemical equilibrium calculations were performed for oxy-NG flame and air-NG flame, in which dissociation effects were considered to different degrees. Remarkable differences in oxy-fuel and air-fuel combustion were revealed, and main intermediate species that play key roles in oxy-fuel flames were identified. Different combustion mechanisms are compared, e.g., the most widely used 2-step global mechanism, refined 4-step global mechanism, a global mechanism developed for oxy-fuel using detailed chemical kinetic modeling (CHEMKIN) as reference. 4) Over 15 CFD simulations were done for oxy-NG combustion, in which radiation, chemistry, mixing, turbulence-chemistry interactions, and so on were thoroughly investigated. Among all the simulations, RANS combined with 2-step and refined 4-step mechanism, RANS combined with CHEMKIN-based new global mechanism for oxy-fuel modeling, and LES combined with different combustion

  12. Combustion technology overview. [the use of broadened property aircraft fuels

    Science.gov (United States)

    Niedzwiecki, R. W.

    1980-01-01

    An overview of combustor technology developments required for use of broadened property fuels in jet aircraft is presented. The intent of current investigations is to determine the extent to which fuel properties can be varied, to obtain a data base of combustion - fuel quality effects, and to determine the trade-offs associated with broadened property fuels. Subcomponents of in-service combustors such as fuel injectors and liners, as well as air distributions and stoichiometry, are being altered to determine the extent to which fuel flexibility can be extended. Finally, very advanced technology consisting of new combustor concepts is being evolved to optimize the fuel flexibility of gas turbine combustors.

  13. DESIGNING AND PROTOTYPING OF AN ALTERNATIVE ELLIPTIC INTERNAL COMBUSTION ENGINE

    OpenAIRE

    AKSOY, Nadir; İÇİNGÜR, Yakup

    2010-01-01

    ABSTRACTIn the conventional internal combustion engines, the elements of linear movement cause the friction power to increase the manufacturing economy to deteriorate and also cause vibration. The diameter of intake valves, which is smaller than the diameter of the cylinder, causes the volumetric efficiency to decrease. In the two stroke engines, in which the number of work per cycle is increased, power output per unit volume (kW/liter) is higher; however, specific fuel consumption decreases ...

  14. Implementation barriers of alternative transport fuels

    Energy Technology Data Exchange (ETDEWEB)

    Troelstra, W.P. [Innas, Breda (Netherlands); Smith, A. [AEA Technology, London (United Kingdom); Bol, M. [Sypher Mueller International, Morristown, New Jersey (United Kingdom)

    1999-02-01

    The study on the title subject aims to present an overview of the practical barriers associated with the introduction of alternative fuels for transport applications in IEA countries. The aim is to provide an information source to which potential users can refer when deciding whether to introduce an alternative fuel. The report will highlight potential problems so that users can either select the alternative fuel best suited to their needs, or implement possible solutions to the problems. The study covers natural gas (both compressed (CNG) and liquefied (LNG)), LPG (liquefied petroleum gas), ethanol (mainly bio-ethanol), methanol, bio-diesel, hydrogen, DME(dimethyl ether), and electricity. 48 refs.

  15. Implementation barriers of alternative transport fuels

    International Nuclear Information System (INIS)

    The study on the title subject aims to present an overview of the practical barriers associated with the introduction of alternative fuels for transport applications in IEA countries. The aim is to provide an information source to which potential users can refer when deciding whether to introduce an alternative fuel. The report will highlight potential problems so that users can either select the alternative fuel best suited to their needs, or implement possible solutions to the problems. The study covers natural gas (both compressed (CNG) and liquefied (LNG)), LPG (liquefied petroleum gas), ethanol (mainly bio-ethanol), methanol, bio-diesel, hydrogen, DME(dimethyl ether), and electricity. 48 refs

  16. The combustion of solid fuels and wastes

    CERN Document Server

    Tillman, David

    1991-01-01

    Careful organization and empirical correlations help clarify the prodigious technical information presented in this useful reference.Key Features* Written for practicing engineers, this comprehensive book supplies an overall framework of the combustion process; It connects information on specific reactions and reaction sequences with current applications and hardware; Each major group of combustion solids is evaluated; Among the many topics covered are:* Various biomass forms* The coalification process* Grate, kiln, and suspension firing* Fluidized bed combustion

  17. Low volatile coal combustion under oxy-fuel atmosphere

    OpenAIRE

    Gómez Borrego, Ángeles; Álvarez Rodríguez, Diego; Fernández Domínguez, Isabel; Ballesteros, Juan Carlos; Menéndez López, Rosa M.ª

    2007-01-01

    One of the ways to face the abatement of CO2 emissions in power plants is the combustion of coal using oxy-fuel technology. In this case coal would be burned in a O2/CO2 atmosphere and the flue gas would consist mainly of CO2 which could be more easily confined. Most of the work related to oxyfuel combustion has been applied to high volatile coals. In this study run of mine and single seam coals ranging in the anthracite rank interval have been burned under oxy-fuel combustion conditions. ...

  18. Modeling of large-scale oxy-fuel combustion processes

    DEFF Research Database (Denmark)

    Yin, Chungen

    2012-01-01

    Quite some studies have been conducted in order to implement oxy-fuel combustion with flue gas recycle in conventional utility boilers as an effective effort of carbon capture and storage. However, combustion under oxy-fuel conditions is significantly different from conventional air-fuel firing....... The simulation results show that the gray and non-gray calculations of the same oxy-fuel WSGGM make distinctly different predictions in the wall radiative heat transfer, incident radiative flux, radiative source, gas temperature and species profiles. In relative to the non-gray implementation, the gray...... calculation of the oxy-fuel WSGGM remarkably over-predicts the radiative heat transfer to the furnace walls and under-predicts the gas temperature at the furnace exit plane, which also result in a higher incomplete combustion in the gray calculation. Moreover, the gray and non-gray calculations of the same...

  19. Application of Fly Ash from Solid Fuel Combustion in Concrete

    DEFF Research Database (Denmark)

    Pedersen, Kim Hougaard

    2008-01-01

    in the feeding phase or during the combustion process, which gave rise to increased formation of soot. A low-NOx tangential fired 875 MWth power plant burning bituminous coal have been operated under extreme conditions in order to test the impact of the operating conditions on fly ash adsorption behavior and NOx......Application of Fly Ash from Solid Fuel Combustion in Concrete Kim H. Pedersen Abstract Industrial utilization of fly ash from pulverized coal combustion plays an important role in environmentally clean and cost effective power generation. Today, the primary market for fly ash utilization...... with implementation of low-NOx combustion technologies. The present thesis concerns three areas of importance within this field: 1) testing of fly ash adsorption behavior; 2) the influence of fuel type and combustion conditions on the ash adsorption behaviour including full-scale experiments at the power plant...

  20. Emerging trends in alternative aviation fuels

    Science.gov (United States)

    Corbett, Cody

    The days of petroleum-based aviation fuels are numbered. New regulations to be set in place in the coming years will force current fuels to be phased out in favor of cleaner fuels with less toxic emissions. The alternative fuel industry has already taken its foothold in other modes of transportation, and aviation will soon follow suit. Many companies have cropped up over the last decade, and a few have been around longer, that work hard to develop the alternative aviation fuels of the future. It is important, however, for the aviation community to know what to expect and when to expect it concerning alternative fuels. This study investigates where various companies in the alternative aviation fuel industry currently stand in their development and production processes, and how their products will affect aircraft owners and operators. By interviewing representatives from these companies and analyzing their responses to identify trends, an educated prediction can be made about where the industry is headed and when the aviation community can expect these fuel to be available. The findings of this study indicate that many companies are still in their developmental stages, with a few notable outliers, and that most of these companies expect to see production of their product by 2017. Also, the fuel manufacturers are dealing with all the legal hurdles regarding alternative fuels, so little to no effort will be required on the part of the consumer. These findings, along with their analysis, will enable the aviation community to make educated decisions concerning fuel and their aircraft, as well and do their part to help these beneficial fuels get to market.

  1. Comparing the greenhouse gas emissions from three alternative waste combustion concepts

    International Nuclear Information System (INIS)

    Highlights: ► Significant GHG reductions are possible by efficient WtE technologies. ► CHP and high power-to-heat ratio provide significant GHG savings. ► N2O and coal mine type are important in LCA GHG emissions of FBC co-combustion. ► Substituting coal and fuel oil by waste is beneficial in electricity and heat production. ► Substituting natural gas by waste may not be reasonable in CHP generation. - Abstract: Three alternative condensing mode power and combined heat and power (CHP) waste-to-energy concepts were compared in terms of their impacts on the greenhouse gas (GHG) emissions from a heat and power generation system. The concepts included (i) grate, (ii) bubbling fluidised bed (BFB) and (iii) circulating fluidised bed (CFB) combustion of waste. The BFB and CFB take advantage of advanced combustion technology which enabled them to reach electric efficiency up to 35% and 41% in condensing mode, respectively, whereas 28% (based on the lower heating value) was applied for the grate fired unit. A simple energy system model was applied in calculating the GHG emissions in different scenarios where coal or natural gas was substituted in power generation and mix of fuel oil and natural gas in heat generation by waste combustion. Landfilling and waste transportation were not considered in the model. GHG emissions were reduced significantly in all of the considered scenarios where the waste combustion concepts substituted coal based power generation. With the exception of condensing mode grate incinerator the different waste combustion scenarios resulted approximately in 1 Mton of fossil CO2-eq. emission reduction per 1 Mton of municipal solid waste (MSW) incinerated. When natural gas based power generation was substituted by electricity from the waste combustion significant GHG emission reductions were not achieved.

  2. Combustion and exhaust emission characteristics of a dual fuel compression ignition engine operated with pilot Diesel fuel and natural gas

    International Nuclear Information System (INIS)

    Towards the effort of reducing pollutant emissions, especially soot and nitrogen oxides, from direct injection Diesel engines, engineers have proposed various solutions, one of which is the use of a gaseous fuel as a partial supplement for liquid Diesel fuel. These engines are known as dual fuel combustion engines, i.e. they use conventional Diesel fuel and a gaseous fuel as well. This technology is currently reintroduced, associated with efforts to overcome various difficulties of HCCI engines, using various fuels. The use of natural gas as an alternative fuel is a promising solution. The potential benefits of using natural gas in Diesel engines are both economical and environmental. The high autoignition temperature of natural gas is a serious advantage since the compression ratio of conventional Diesel engines can be maintained. The present contribution describes an experimental investigation conducted on a single cylinder DI Diesel engine, which has been properly modified to operate under dual fuel conditions. The primary amount of fuel is the gaseous one, which is ignited by a pilot Diesel liquid injection. Comparative results are given for various engine speeds and loads for conventional Diesel and dual fuel operation, revealing the effect of dual fuel combustion on engine performance and exhaust emissions

  3. Modelling of fuel spray and combustion in diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Huttunen, M.T.; Kaario, O.T. [VTT Energy, Espoo (Finland)

    1997-12-31

    Fuel spray and air motion characteristics and combustion in direct injection (DI) diesel engines was studied using computational models of the commercial CFD-code FIRE. Physical subprocesses modelled included Lagrangian spray droplet movement and behaviour (atomisation, evaporation and interaction of spray droplets) and combustion of evaporated liquid spray in the gas phase. Fuel vapour combustion rate was described by the model of Magnussen and Hjertager. The standard k,{epsilon}-model was used for turbulence. In order to be able to predict combustion accurately, the fuel spray penetration should be predicted with reasonable accuracy. In this study, the standard drag coefficient had to be reduced in order to match the computed penetration to the measured one. In addition, the constants in the submodel describing droplet breakup also needed to be adjusted for closer agreement with the measurements. The characteristic time scale of fuel consumption rate k/C{sub R} {epsilon} strongly influenced the heat release and in-cylinder pressure. With a value around 2.0 to 5.0 for C{sub R}, the computed in-cylinder pressure during the compression stroke agreed quite well with the measurements. On the other hand, the in-cylinder pressure was underpredicted during the expansion stroke. This is partly due to the fact that hydrocarbon fuel combustion was modelled as a one-step reaction reading to CO{sub 2} and H{sub 2}O and inadequate description of the mixing of reactants and combustion products. (author) 16 refs.

  4. Second law comparison of oxy-fuel combustion and post-combustion carbon dioxide separation

    International Nuclear Information System (INIS)

    To define 2nd law efficiency targets for novel separation technologies, a simplified model of a power plant with two forms of CO2 capture was developed. In this investigation, oxy-fuel combustion and post-combustion CO2 separation were compared on an exergetic basis. Using exergy balances and black-box models of power plant components, multiple scenarios were run to determine the impact of plant configuration and separation unit efficiency on overall plant performance. Second law efficiency values from the literature were used to set the baseline performance of various CO2 separation configurations. Assumed advances in 2nd law efficiency were used to determine the potential for overall system performance improvement. It was found that the 2nd law efficiency of air separation must reach a critical value before the thermodynamics of oxy-fuel combustion become favorable. Changes in operating equivalence ratio significantly move the tipping-point between post-combustion and oxy-fuel strategies

  5. Proceedings of the 1993 Windsor Workshop on Alternative Fuels

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-01

    This report contains viewgraph papers on the following topics on alternative fuels: availability of alternative fueled engines and vehicles; emerging technologies; overcoming barriers to alternative fuels commercialization; infrastructure issues; and new initiatives in research and development.

  6. Global Energy Issues and Alternate Fueling

    Science.gov (United States)

    Hendricks, Robert C.

    2007-01-01

    This viewgraph presentation describes world energy issues and alternate fueling effects on aircraft design. The contents include: 1) US Uses about 100 Quad/year (1 Q = 10(exp 15) Btu) World Energy Use: about 433 Q/yr; 2) US Renewable Energy about 6%; 3) Nuclear Could Grow: Has Legacy Problems; 4) Energy Sources Primarily NonRenewable Hydrocarbon; 5) Notes; 6) Alternate Fuels Effect Aircraft Design; 7) Conventional-Biomass Issue - Food or Fuel; 8) Alternate fuels must be environmentally benign; 9) World Carbon (CO2) Emissions Problem; 10) Jim Hansen s Global Warming Warnings; 11) Gas Hydrates (Clathrates), Solar & Biomass Locations; 12) Global Energy Sector Response; 13) Alternative Renewables; 14) Stratospheric Sulfur Injection Global Cooling Switch; 15) Potential Global Energy Sector Response; and 16) New Sealing and Fluid Flow Challenges.

  7. Alternative motor fuels today and tomorrow

    Energy Technology Data Exchange (ETDEWEB)

    Bensaid, B

    2004-07-01

    Today, petroleum products account for 97% of the energy consumed in road transport. The purpose of replacing these products with alternative energies is to reduce oil dependence as well as greenhouse gas emissions. The high price of oil has promoted the use of 'conventional' alternative motor fuels (biofuels, LPG, NGV) and also renewed interest in syn-fuels (GTL, CTL, BTL) that have already given rise to industrial and pilot projects. (author)

  8. Alternative motor fuels today and tomorrow

    International Nuclear Information System (INIS)

    Today, petroleum products account for 97% of the energy consumed in road transport. The purpose of replacing these products with alternative energies is to reduce oil dependence as well as greenhouse gas emissions. The high price of oil has promoted the use of 'conventional' alternative motor fuels (biofuels, LPG, NGV) and also renewed interest in syn-fuels (GTL, CTL, BTL) that have already given rise to industrial and pilot projects. (author)

  9. Environmental evaluation of the use of alternate (bio)fuels in the Gelderland 13 power plant

    International Nuclear Information System (INIS)

    Power generating companies in the Netherlands substitute part of the coal by biomass to produce electricity. The environmental (dis)advantages of four alternate biofuels (wood wastes, frying fat, fatty acids of palm oil, and tall oil (pitch)) were studied. Co-combustion of those alternate fuels in the power plant unit Gelderland 13 improves the local air quality

  10. Chemical Kinetic Simulation of the Combustion of Bio-based Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Ashen, Ms. Refuyat [Oak Ridge High School; Cushman, Ms. Katherine C. [Oak Ridge High School

    2007-10-01

    Due to environmental and economic issues, there has been an increased interest in the use of alternative fuels. However, before widespread use of biofuels is feasible, the compatibility of these fuels with specific engines needs to be examined. More accurate models of the chemical combustion of alternative fuels in Homogeneous Charge Compression Ignition (HCCI) engines are necessary, and this project evaluates the performance of emissions models and uses the information gathered to study the chemical kinetics involved. The computer simulations for each alternative fuel were executed using the Chemkin chemical kinetics program, and results from the runs were compared with data gathered from an actual engine that was run under similar conditions. A new heat transfer mechanism was added to the existing model's subroutine, and simulations were then conducted using the heat transfer mechanism. Results from the simulation proved to be accurate when compared with the data taken from the actual engine. The addition of heat transfer produced more realistic temperature and pressure data for biodiesel when biodiesel's combustion was simulated in an HCCI engine. The addition of the heat transfer mechanism essentially lowered the peak pressures and peak temperatures during combustion of all fuels simulated in this project.

  11. Effect of Alternative Fuels on SCR Chemistry

    OpenAIRE

    Faramarzi, Simin

    2012-01-01

    In the time line of world industrial age, the most important era begins in the late 18th century when the use of fossil fuels was growing intensively. This approach has continued and developed up to the 20th century. Besides, this trend has had side effects like polluting environment. Air pollution is one of the critical issues nowadays that stems from using hydrocarbon fuels. One type of the problematic compounds in polluting air is nitrogen oxides that can be produced in combustion process ...

  12. A methodology for assessing the market benefits of alternative motor fuels: The Alternative Fuels Trade Model

    Energy Technology Data Exchange (ETDEWEB)

    Leiby, P.N.

    1993-09-01

    This report describes a modeling methodology for examining the prospective economic benefits of displacing motor gasoline use by alternative fuels. The approach is based on the Alternative Fuels Trade Model (AFTM). AFTM development was undertaken by the US Department of Energy (DOE) as part of a longer term study of alternative fuels issues. The AFTM is intended to assist with evaluating how alternative fuels may be promoted effectively, and what the consequences of substantial alternative fuels use might be. Such an evaluation of policies and consequences of an alternative fuels program is being undertaken by DOE as required by Section 502(b) of the Energy Policy Act of 1992. Interest in alternative fuels is based on the prospective economic, environmental and energy security benefits from the substitution of these fuels for conventional transportation fuels. The transportation sector is heavily dependent on oil. Increased oil use implies increased petroleum imports, with much of the increase coming from OPEC countries. Conversely, displacement of gasoline has the potential to reduce US petroleum imports, thereby reducing reliance on OPEC oil and possibly weakening OPEC`s ability to extract monopoly profits. The magnitude of US petroleum import reduction, the attendant fuel price changes, and the resulting US benefits, depend upon the nature of oil-gas substitution and the supply and demand behavior of other world regions. The methodology applies an integrated model of fuel market interactions to characterize these effects.

  13. Alternative Fuels and Chemicals from Synthesis Gas

    Energy Technology Data Exchange (ETDEWEB)

    Peter Tijrn

    2003-01-02

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  14. ALTERNATIVE FUELS AND CHEMICALS FROM SYNTHESIS GAS

    Energy Technology Data Exchange (ETDEWEB)

    Peter Tijrn

    2003-02-03

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  15. Alternative fuels and chemicals from synthesis gas

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    1998-08-01

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  16. ALTERNATIVE FUELS AND CHEMICALS FROM SYNTHESIS GAS

    Energy Technology Data Exchange (ETDEWEB)

    Peter J. Tijrn

    2000-09-30

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  17. ALTERNATIVE FUELS AND CHEMICALS FROM SYNTHESIS GAS

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2001-03-31

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  18. ALTERNATIVE FUELS AND CHEMICALS FROM SYNTHESIS GAS

    Energy Technology Data Exchange (ETDEWEB)

    Peter J. Tijrn

    2000-06-30

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  19. ALTERNATIVE FUELS AND CHEMICALS FROM SYNTHESIS GAS

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-10-01

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  20. ALTERNATIVE FUELS AND CHEMICALS FROM SYNTHESIS GAS

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    1999-07-01

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  1. ALTERNATIVE FUELS AND CHEMICALS FROM SYNTHESIS GAS

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2002-07-01

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  2. ALTERNATIVE FUELS AND CHEMICALS FROM SYNTHESIS GAS

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    1999-04-01

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  3. ALTERNATIVE FUELS AND CHEMICALS FROM SYNTHESIS GAS

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2000-10-01

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  4. ALTERNATIVE FUELS AND CHEMICALS FROM SYNTHESIS GAS

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    1998-01-01

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  5. ALTERNATIVE FUELS AND CHEMICALS FROM SYNTHESIS GAS

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    1999-01-01

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  6. Alternative Fuels and Chemicals From Synthesis Gas

    Energy Technology Data Exchange (ETDEWEB)

    none

    1998-07-01

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  7. FUNDAMENTAL INVESTIGATION OF FUEL TRANSFORMATIONS IN PULVERIZED COAL COMBUSTION AND GASIFICATION TECHNOLOGIES

    Energy Technology Data Exchange (ETDEWEB)

    Robert Hurt; Joseph Calo; Thomas H. Fletcher; Alan Sayre

    2005-04-29

    The goal of this project was to carry out the necessary experiments and analyses to extend current capabilities for modeling fuel transformations to the new conditions anticipated in next-generation coal-based, fuel-flexible combustion and gasification processes. This multi-organization, multi-investigator project has produced data, correlations, and submodels that extend present capabilities in pressure, temperature, and fuel type. The combined experimental and theoretical/computational results are documented in detail in Chapters 1-8 of this report, with Chapter 9 serving as a brief summary of the main conclusions. Chapters 1-3 deal with the effect of elevated pressure on devolatilization, char formation, and char properties. Chapters 4 and 5 deal with advanced combustion kinetic models needed to cover the extended ranges of pressure and temperature expected in next-generation furnaces. Chapter 6 deals with the extension of kinetic data to a variety of alternative solid fuels. Chapter 7 focuses on the kinetics of gasification (rather than combustion) at elevated pressure. Finally, Chapter 8 describes the integration, testing, and use of new fuel transformation submodels into a comprehensive CFD framework. Overall, the effects of elevated pressure, temperature, heating rate, and alternative fuel use are all complex and much more work could be further undertaken in this area. Nevertheless, the current project with its new data, correlations, and computer models provides a much improved basis for model-based design of next generation systems operating under these new conditions.

  8. Alternative Fuels and Sustainable Development

    DEFF Research Database (Denmark)

    Jørgensen, Kaj; Nielsen, Lars Henrik

    1996-01-01

    The main report of the project on Transportation Fuels based on Renewable Energy. The report contains a review of potential technologies for electric, hybrid and hydrogen propulsion in the Danish transport sector, including an assessment of their development status. In addition, the energy and...

  9. Combustion characterization of beneficiated coal-based fuels

    Energy Technology Data Exchange (ETDEWEB)

    Chow, O.K.; Nsakala, N.Y.

    1990-11-01

    The Pittsburgh Energy Technology Center of the US Department of Energy has contracted with Combustion Engineering, Inc. (CE) to perform a three-year project on Combustion Characterization of Beneficiated Coal-Based Fuels.'' The beneficiated coals are produced by other contractors under the DOE Coal Preparation Program. Several contractor-developed advanced coal cleaning processes are being run at the cleaning facility in Homer City, Pennsylvania, to produce 20-ton batches of fuels for shipment to CE's laboratory in Windsor, Connecticut. CE then processes the products into either a coal-water fuel (CVVT) or a dry microfine pulverized coal (DMPC) form for combustion testing. The objectives of this project include: (1) the development of an engineering data base which will provide detailed information on the properties of BCFs influencing combustion, ash deposition, ash erosion, particulate collection, and emissions; and (2) the application of this technical data base to predict the performance and economic impacts of firing the BCFs in various commercial boiler designs. The technical approach used to develop the technical data includes: bench-scale fuel property, combustion, and ash deposition tests; pilot-scale combustion and ash effects tests; and full-scale combustion tests. Subcontractors to CE to perform parts of the test work are the Massachusetts Institute of Technology (MIT), Physical Science, Inc. Technology Company (PSIT) and the University of North Dakota Energy and Environmental Research Center (UNDEERC). Twenty fuels will be characterized during the three-year base program: three feed coals, fifteen BCFS, and two conventionally cleaned coals for full-scale tests. Approximately, nine BCFs will be in dry microfine coal (DMPC) form, and six BCFs will be in coal-water fuel (CWF) form. Additional BCFs would be characterized during optional project supplements.

  10. Oxy-fuel combustion with integrated pollution control

    Science.gov (United States)

    Patrick, Brian R.; Ochs, Thomas Lilburn; Summers, Cathy Ann; Oryshchyn, Danylo B.; Turner, Paul Chandler

    2012-01-03

    An oxygen fueled integrated pollutant removal and combustion system includes a combustion system and an integrated pollutant removal system. The combustion system includes a furnace having at least one burner that is configured to substantially prevent the introduction of air. An oxygen supply supplies oxygen at a predetermine purity greater than 21 percent and a carbon based fuel supply supplies a carbon based fuel. Oxygen and fuel are fed into the furnace in controlled proportion to each other and combustion is controlled to produce a flame temperature in excess of 3000 degrees F. and a flue gas stream containing CO2 and other gases. The flue gas stream is substantially void of non-fuel borne nitrogen containing combustion produced gaseous compounds. The integrated pollutant removal system includes at least one direct contact heat exchanger for bringing the flue gas into intimated contact with a cooling liquid to produce a pollutant-laden liquid stream and a stripped flue gas stream and at least one compressor for receiving and compressing the stripped flue gas stream.

  11. Surrogate Model Development for Fuels for Advanced Combustion Engines

    Energy Technology Data Exchange (ETDEWEB)

    Anand, Krishnasamy [University of Wisconsin, Madison; Ra, youngchul [University of Wisconsin, Madison; Reitz, Rolf [University of Wisconsin; Bunting, Bruce G [ORNL

    2011-01-01

    The fuels used in internal-combustion engines are complex mixtures of a multitude of different types of hydrocarbon species. Attempting numerical simulations of combustion of real fuels with all of the hydrocarbon species included is highly unrealistic. Thus, a surrogate model approach is generally adopted, which involves choosing a few representative hydrocarbon species whose overall behavior mimics the characteristics of the target fuel. The present study proposes surrogate models for the nine fuels for advanced combustion engines (FACE) that have been developed for studying low-emission, high-efficiency advanced diesel engine concepts. The surrogate compositions for the fuels are arrived at by simulating their distillation profiles to within a maximum absolute error of 4% using a discrete multi-component (DMC) fuel model that has been incorporated in the multi-dimensional computational fluid dynamics (CFD) code, KIVA-ERC-CHEMKIN. The simulated surrogate compositions cover the range and measured concentrations of the various hydrocarbon classes present in the fuels. The fidelity of the surrogate fuel models is judged on the basis of matching their specific gravity, lower heating value, hydrogen/carbon (H/C) ratio, cetane number, and cetane index with the measured data for all nine FACE fuels.

  12. Natural Gas for Advanced Dual-Fuel Combustion Strategies

    Science.gov (United States)

    Walker, Nicholas Ryan

    Natural gas fuels represent the next evolution of low-carbon energy feedstocks powering human activity worldwide. The internal combustion engine, the energy conversion device widely used by society for more than one century, is capable of utilizing advanced combustion strategies in pursuit of ultra-high efficiency and ultra-low emissions. Yet many emerging advanced combustion strategies depend upon traditional petroleum-based fuels for their operation. In this research the use of natural gas, namely methane, is applied to both conventional and advanced dual-fuel combustion strategies. In the first part of this work both computational and experimental studies are undertaken to examine the viability of utilizing methane as the premixed low reactivity fuel in reactivity controlled compression ignition, a leading advanced dual-fuel combustion strategy. As a result, methane is shown to be capable of significantly extending the load limits for dual-fuel reactivity controlled compression ignition in both light- and heavy-duty engines. In the second part of this work heavy-duty single-cylinder engine experiments are performed to research the performance of both conventional dual-fuel (diesel pilot ignition) and advanced dual-fuel (reactivity controlled compression ignition) combustion strategies using methane as the premixed low reactivity fuel. Both strategies are strongly influenced by equivalence ratio; diesel pilot ignition offers best performance at higher equivalence ratios and higher premixed methane ratios, whereas reactivity controlled compression ignition offers superior performance at lower equivalence ratios and lower premixed methane ratios. In the third part of this work experiments are performed in order to determine the dominant mode of heat release for both dual-fuel combustion strategies. By studying the dual-fuel homogeneous charge compression ignition and single-fuel spark ignition, strategies representative of autoignition and flame propagation

  13. Outlook for alternative energy sources. [aviation fuels

    Science.gov (United States)

    Card, M. E.

    1980-01-01

    Predictions are made concerning the development of alternative energy sources in the light of the present national energy situation. Particular emphasis is given to the impact of alternative fuels development on aviation fuels. The future outlook for aircraft fuels is that for the near term, there possibly will be no major fuel changes, but minor specification changes may be possible if supplies decrease. In the midterm, a broad cut fuel may be used if current development efforts are successful. As synfuel production levels increase beyond the 1990's there may be some mixtures of petroleum-based and synfuel products with the possibility of some shale distillate and indirect coal liquefaction products near the year 2000.

  14. Detection Combustion Data Pattern on Gasoline Fuel Motorcycle with Carburetor System

    Directory of Open Access Journals (Sweden)

    Andrizal Andrizal

    2016-01-01

    Full Text Available Tune up combustion motorcycle engine made in order to obtain a perfect engine combustion category with maximum engine performance and fuel efficiency. Motorcycles with 4-stroke petrol injection system has facilities to process tune up in the form of engine control unit and engine scanner tool. While petrol 4 stroke motorcycle carburetor system is not equipped with facilities such as a motorcycle injection system, consequently, tune up the engine combustion process is done manually. Category of the combustion engine can be determined based on the levels of emissions of HC, CO, CO2 and O2 contained in the exhaust gases of vehicles. This study aims to create a system to detect and display patterns of data categories motorcycle combustion gasoline engine carburetor system through the detection of exhaust emissions. This system is made using four gas sensors are integrated with the system FPGA (Field Progrmable Gate Array as the main system and a display system using a PC or Laptop. Tests performed on a number of motorcycles with the brand, manufacturer and year of manufacture are different. Detection results shown in graphical form a pattern data categories perfect combustion engine and the data pattern of incomplete combustion category with a response time to 10 seconds. This system is expected to be used as an alternative tool for mechanics in performing tune up combustion motorcycle engine.

  15. Application of Fly Ash from Solid Fuel Combustion in Concrete

    OpenAIRE

    Pedersen, Kim Hougaard; Dam-Johansen, Kim; Jensen, Anker Degn

    2008-01-01

    Application of Fly Ash from Solid Fuel Combustion in Concrete Kim H. Pedersen Abstract Industrial utilization of fly ash from pulverized coal combustion plays an important role in environmentally clean and cost effective power generation. Today, the primary market for fly ash utilization is as pozzolanic additive in the production of concrete. However, the residual carbon in fly ash can adsorb the air entraining admixtures (AEAs) added to enhance air entrainment in concrete in order to increa...

  16. ANALYSIS ON COMBUSTION OF A PRIMARY REFERENCE FUEL

    Directory of Open Access Journals (Sweden)

    V.RAJASEKAR

    2012-05-01

    Full Text Available This paper presents a numerical combustion study of primary reference fuel methane (CH4 in a variable volume reactor. The GRI 3.0 mechanism constructed using 53 species and 325 reactions have been used for the analysis purpose. The software used for the analysis is COMSOL. The combustion characteristics such as pressure rise, formation of species, and ignition delay characteristics were studied in Homogeneous Charge compression ignition engine

  17. Outlook on Standardization of Alternative Vehicle Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Rehnlund, B. [Atrax Energi AB (Sweden)

    2008-10-15

    The use of fossil but in first hand biobased alternative fuels in transportation has increased over the last decades. This change is primarily driven by concerns about climate change that is caused by emissions of fossil carbon dioxide and other greenhouse gases, but also by the impact on health and environment, caused by emissions of regulated as well as non-regulated emissions from the transport sector. Most alternative fuels will help to reduce the emissions of regulated and non-regulated emissions, while alternative fuels based on biomass also will contribute to reduced net emissions of carbon dioxide. Since the mid 1990s, the use of biomass based fuels such as ethanol and biodiesel has reached levels high enough in for example Europe, Brazil and the U.S. to motivate national or regional specifications/standards. Especially from the vehicle/engine manufacturer's point of view standards are of high importance. From early 2000 onwards, the international trade of biofuels (for example from Brazil to the U.S. and Europe) has grown, and this has created a need for common international specifications/standards. This report presents information about national and regional standards for alternative fuels, but also, when existing and reported, standards on a global level are described and discussed. Ongoing work concerning new or revised standards on alternative fuels on national, regional or global level is also discussed. In this report we have covered standards on all kind of alternative fuels, exemplified below. However, the focus is on liquid biofuels for diesel engines and Otto engines. 1) Liquid fuels for diesel engines (compression ignition engines), such as Fatty Acid Methyl Esters (FAME), Fatty Acid Ethyl Esters (FAEE), alcohols, alcohol derivates and synthetic diesel fuels. 2) Liquid fuels for Otto engines (spark ignition engines), such as alcohols, ethers and synthetic gasoline. 3) Liquefied fossil petroleum gas (LPG). 4) Di-Methyl Ether (DME). 5

  18. Development and integration of a scalable low NOx combustion chamber for a hydrogen-fueled aerogas turbine

    Science.gov (United States)

    Boerner, S.; Funke, H. H.-W.; Hendrick, P.; Recker, E.; Elsing, R.

    2013-03-01

    The usage of alternative fuels in aircraft industry plays an important role of current aero engine research and development processes. The micromix burning principle allows a secure and low NOx combustion of gaseous hydrogen. The combustion principle is based on the fluid phenomenon of jet in cross flow and achieves a significant lowering in NOx formation by using multiple miniaturized flames. The paper highlights the development and the integration of a combustion chamber, based on the micromix combustion principle, into an Auxiliary Power Unit (APU) GTCP 36-300 with regard to the necessary modifications on the gas turbine and on the engine controller.

  19. Straw pellets as fuel in biomass combustion units

    Energy Technology Data Exchange (ETDEWEB)

    Andreasen, P.; Larsen, M.G. [Danish Technological Inst., Aarhus (Denmark)

    1996-12-31

    In order to estimate the suitability of straw pellets as fuel in small combustion units, the Danish Technological Institute accomplished a project including a number of combustion tests in the energy laboratory. The project was part of the effort to reduce the use of fuel oil. The aim of the project was primarily to test straw pellets in small combustion units, including the following: ash/slag conditions when burning straw pellets; emission conditions; other operational consequences; and necessary work performance when using straw pellets. Five types of straw and wood pellets made with different binders and antislag agents were tested as fuel in five different types of boilers in test firings at 50% and 100% nominal boiler output.

  20. Combustion characterization of beneficiated coal-based fuels

    Energy Technology Data Exchange (ETDEWEB)

    Chow, O.K.; Levasseur, A.A.

    1995-11-01

    The Pittsburgh Energy Technology Center (PETC) of the U.S. Department of Energy is sponsoring the development of advanced coal-cleaning technologies aimed at expanding the use of the nation`s vast coal reserves in an environmentally and economically acceptable manner. Because of the lack of practical experience with deeply beneficiated coal-based fuels, PETC has contracted Combustion Engineering, Inc. to perform a multi-year project on `Combustion Characterization of Beneficiated Coal-Based Fuels.` The objectives of this project include: (1) the development of an engineering data base which will provide detailed information on the properties of Beneficiated Coal-Based Fuels (BCs) influencing combustion, ash deposition, ash erosion, particulate collection, and emissions; and (2) the application of this technical data base to predict the performance and economic impacts of firing the BCFs in various commercial boiler designs.

  1. Combustion Characterization of Bio-derived Fuels and Additives

    DEFF Research Database (Denmark)

    Hashemi, Hamid

    on fossil fuels, especially for transportation. The practical strategy to address such problems in medium term is to increase the efficiency of combustion-propelled energy-production systems, as well as to reduce the net release of CO2 and other harmful pollutants, likely by using nonconventional...... fuels. Modern internal combustion engines such as Homogeneous Charge Compression Ignition (HCCI) engines are more efficient and fuel-flexible compared to the conventional engines, making opportunities to reduce the release of greenhouse and other polluting gases to the environment. Combustion...... temperature in modern engines, gas turbines, and industrial burners has been reduced to prevent nitrogen oxides (NOx) formation. Besides that, the pressure has commonly been elevated to promote the efficiency of the systems. Under such conditions, ignition and pollutant formation are determined by reaction...

  2. Hydrogen enriched compressed natural gas (HCNG: A futuristic fuel for internal combustion engines

    Directory of Open Access Journals (Sweden)

    Nanthagopal Kasianantham

    2011-01-01

    Full Text Available Air pollution is fast becoming a serious global problem with increasing population and its subsequent demands. This has resulted in increased usage of hydrogen as fuel for internal combustion engines. Hydrogen resources are vast and it is considered as one of the most promising fuel for automotive sector. As the required hydrogen infrastructure and refueling stations are not meeting the demand, widespread introduction of hydrogen vehicles is not possible in the near future. One of the solutions for this hurdle is to blend hydrogen with methane. Such types of blends take benefit of the unique combustion properties of hydrogen and at the same time reduce the demand for pure hydrogen. Enriching natural gas with hydrogen could be a potential alternative to common hydrocarbon fuels for internal combustion engine applications. Many researchers are working on this for the last few years and work is now focused on how to use this kind of fuel to its maximum extent. This technical note is an assessment of HCNG usage in case of internal combustion engines. Several examples and their salient features have been discussed. Finally, overall effects of hydrogen addition on an engine fueled with HCNG under various conditions are illustrated. In addition, the scope and challenges being faced in this area of research are clearly described.

  3. Evaluation of alternative fuels for the Greek road transport sector using the analytic hierarchy process

    International Nuclear Information System (INIS)

    This paper evaluates alternative fuels for the Greek road transport sector, using the Analytic Hierarchy Process. Seven different alternatives of fuel mode are considered in this paper: internal combustion engine (ICE) and its combination with petroleum and 1st and 2nd generation biofuels blends, fuel cells, hybrid vehicles, plug-in hybrids and electric vehicles. The evaluation of alternative fuel modes is performed according to cost and policy aspects. In order to evaluate each alternative fuel, one base scenario and ten alternative scenarios with different weight factors selection per criterion are presented. After deciding the alternative fuels’ scoring against each criterion and the criteria weights, their synthesis gives the overall score and ranking for all ten alternative scenarios. It is concluded that ICE blended with 1st and 2nd generation biofuels are the most suitable alternative fuels for the Greek road transport sector. - Highlights: ► Alternative fuels for the Greek road transport sector have been evaluated. ► The method of the AHP was used. ► Seven different alternatives of fuel mode are considered. ► The evaluation is performed according to cost and policy aspects. ► The ICE with 1st and 2nd generation biofuels are the most suitable fuels.

  4. Alternatives to traditional transportation fuels 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    This report provides information on transportation fuels other than gasoline and diesel, and the vehicles that use these fuels. The Energy Information Administration (EIA) provides this information to support the U.S. Department of Energy`s reporting obligations under Section 503 of the Energy Policy Act of 1992 (EPACT). The principal information contained in this report includes historical and year-ahead estimates of the following: (1) the number and type of alterative-fueled vehicles (AFV`s) in use; (2) the consumption of alternative transportation fuels and {open_quotes}replacement fuels{close_quotes}; and (3) the number and type of alterative-fueled vehicles made available in the current and following years. In addition, the report contains some material on special topics. The appendices include a discussion of the methodology used to develop the estimates (Appendix A), a map defining geographic regions used, and a list of AFV suppliers.

  5. Syngas as a Reburning Fuel for Natural Gas Combustion

    Directory of Open Access Journals (Sweden)

    Wilk Małgorzata

    2014-06-01

    Full Text Available The paper aims to confirm the syngas application as a reburning fuel to reduce e.g. NO emission during natural gas combustion. The main aim of this modelling work was to predict pollutants generated in the exhaust gases and to indicate the influence of the syngas on the natural gas combustion process. The effect of residence time of fuel-air mixture was also been performed. Calculations were made with CHEMIKN-PRO for reburning process using syngas. The boundary conditions of the reburning process were based on experimental investigations. The addition of 5, 10, 15 and 19% of reburning fuel into natural gas combustion was studied. The effects of 0.001 to 10 s of residence time and the addition of 5, 10, and 15% of syngas on combustion products were determined. The performed numerical tests confirmed that co-combustion of the natural gas with syngas (obtained from sewage sludge gasification in the reburning process is an efficient method of NOx reduction by c.a. 50%. Syngas produced from sewage sludge can be utilised as a reburning fuel.

  6. Aviation-fuel property effects on combustion

    Science.gov (United States)

    Rosfjord, T. J.

    1984-01-01

    The fuel chemical property influence on a gas turbine combustor was studied using 25 test fuels. Fuel physical properties were de-emphasized by using fuel injectors which produce highly-atomized, and hence rapidly vaporizing sprays. A substantial fuel spray characterization effort was conducted to allow selection of nozzles which assured that such sprays were achieved for all fuels. The fuels were specified to cover the following wide ranges of chemical properties: hydrogen, 9.1 to 15 (wt) pct; total aromatics, 0 to 100 (vol) pct; and naphthalene, 0 to 30 (vol) pct. standard fuels (e.g., Jet A, JP4), speciality products (e.g., decalin, xylene tower bottoms) and special fuel blends were included. The latter group included six, 4-component blends prepared to achieve parametric variations in fuel hydrogen, total aromatics and naphthalene contents. The principle influences of fuel chemical properties on the combustor behavior were reflected by the radiation, liner temperature, and exhaust smoke number (or equivalently, soot number density) data. Test results indicated that naphthalene content strongly influenced the radiative heat load while parametric variations in total aromatics did not.

  7. Syngas as a Reburning Fuel for Natural Gas Combustion

    OpenAIRE

    Wilk Małgorzata; Magdziarz Aneta; Zajemska Monika; Kuźnia Monika

    2014-01-01

    The paper aims to confirm the syngas application as a reburning fuel to reduce e.g. NO emission during natural gas combustion. The main aim of this modelling work was to predict pollutants generated in the exhaust gases and to indicate the influence of the syngas on the natural gas combustion process. The effect of residence time of fuel-air mixture was also been performed. Calculations were made with CHEMIKN-PRO for reburning process using syngas. The boundary conditions of the reburning pro...

  8. Oxy-fuel combustion of coal and biomass blends

    OpenAIRE

    Riaza Benito, Juan; Gil Matellanes, María Victoria; Álvarez González, Lucía; Pevida García, Covadonga; Pis Martínez, José Juan; Rubiera González, Fernando

    2012-01-01

    The ignition temperature, burnout and NO emissions of blends of a semi-anthracite and a high-volatile bituminous coal with 10 and 20 wt.% of olive waste were studied under oxy-fuel combustion conditions in an entrained flow reactor (EFR). The results obtained under several oxy-fuel atmospheres (21%O2–79%CO2, 30%O2–70%CO2 and 35%O2–65%CO2) were compared with those attained in air. The results indicated that replacing N2 by CO2 in the combustion atmosphere with 21% of O2 caused an increase in t...

  9. NOx formation in combustion of gaseous fuel in ejection burner

    Science.gov (United States)

    Rimár, Miroslav; Kulikov, Andrii

    2016-06-01

    The aim of this work is to prepare model for researching of the formation in combustion of gaseous fuels. NOx formation is one of the main ecological problems nowadays as nitrogen oxides is one of main reasons of acid rains. The ANSYS model was designed according to the calculation to provide full combustion and good mixing of the fuel and air. The current model is appropriate to research NOx formation and the influence of the different principles of NOx reduction method. Applying of designed model should spare both time of calculations and research and also money as you do not need to measure the burner characteristics.

  10. Effect of Fuel Additives on Spray Performance of Alternative Jet Fuels

    Science.gov (United States)

    Kannaiyan, Kumaran; Sadr, Reza

    2015-11-01

    Role of alternative fuels on reducing the combustion pollutants is gaining momentum in both land and air transport. Recent studies have shown that addition of nanoscale metal particles as fuel additives to liquid fuels have a positive effect not only on their combustion performance but also in reducing the pollutant formation. However, most of those studies are still in the early stages of investigation with the addition of nanoparticles at low weight percentages. Such an addition can affect the hydrodynamic and thermo-physical properties of the fuel. In this study, the near nozzle spray performance of gas-to-liquid jet fuel with and without the addition of alumina nanoparticles are investigated at macro- and microscopic levels using optical diagnostic techniques. At macroscopic level, the addition of nanoparticles is seen to enhance the sheet breakup process when compared to that of the base fuel. Furthermore, the microscopic spray characteristics such as droplet size and velocity are also found to be affected. Although the addition of nanoscale metal particles at low weight percentages does not affect the bulk fluid properties, the atomization process is found to be affected in the near nozzle region. Funded by Qatar National Research Fund.

  11. Fossil Fuels, Alternative Energy and Economic Growth

    OpenAIRE

    Raul Barreto

    2013-01-01

    We present a theoretical framework that incorporates energy within an endogenous growth model. The model explicitly allows for the interaction and substitution between fossil fuels, defined as a non-renewable resource derived from some fixed initial stock, and alternative energy, defined as renewable resource whose production requires capital input. The dynamics of the model depict a unique balance growth to a saddle point. The consumption path temporarily peaks, when fossil fuels are plentif...

  12. Numerical Analysis of Emissions from Marine Engines Using Alternative Fuels

    Directory of Open Access Journals (Sweden)

    M.I. Lamas

    2015-12-01

    Full Text Available The current restrictions on emissions from marine engines, particularly sulphur oxides (SOx , nitrogen oxides (NOx and carbon dioxide (CO2 , are compelling the shipping industry to a change of tendency. In the recent years, many primary and secondary reduction techniques have been proposed and employed in marine engines. Nevertheless, the increasingly restrictive legislation makes it very difficult to continue developing efficient reduction procedures at competitive prices. According to this, the paper presents the possibility to employ alternative fuels. A numerical model was developed to analyze the combustion process and emissions using oil fuel, natural gas and hydrogen. A commercial marine engine was studied, the Wärtsilä 6L 46. It was found, that hydrogen is the cleanest fuel regarding CO2 , hydrocarbons (HC and carbon monoxide (CO. Nevertheless, it is very expensive for marine applications. Natural gas is cheaper and cleaner than fuel oil regarding CO2 and CO emissions. Still, natural gas emits more NOx and HC than oil fuel. SOx depends basically on the sulphur content of each particular fuel.

  13. Combustion Analysis of a CI Engine Performance Using Waste Cooking Biodiesel Fuel with an Artificial Neural Network Aid

    OpenAIRE

    Gholamhassan NAJAFI; Ghobadian, Barat; Talal F. YUSAF; Hadi RAHIMI

    2007-01-01

    A comprehensive combustion analysis has been conducted to evaluate the performance of a commercial DI engine, water cooled two cylinders, in-line, naturally aspirated, RD270 Ruggerini diesel engine using waste vegetable cooking oil as an alternative fuel. In order to compare the brake power and the torques values of the engine, it has been tested under same operating conditions with diesel fuel and waste cooking biodiesel fuel blends. The results were found to be very comparable. The properti...

  14. The fuel cell; La pile a combustible

    Energy Technology Data Exchange (ETDEWEB)

    Boursin, P.

    2005-07-01

    This document is an exhaustive review of the history of fuel cells from 1802 to 2004. It focusses mainly on the automotive applications and supplies many technical details about each prototype of fuel cell and/or vehicle. (J.S.)

  15. Kinetic Modeling of Combustion Characteristics of Real Biodiesel Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Naik, C V; Westbrook, C K

    2009-04-08

    Biodiesel fuels are of much interest today either for replacing or blending with conventional fuels for automotive applications. Predicting engine effects of using biodiesel fuel requires accurate understanding of the combustion characteristics of the fuel, which can be acquired through analysis using reliable detailed reaction mechanisms. Unlike gasoline or diesel that consists of hundreds of chemical compounds, biodiesel fuels contain only a limited number of compounds. Over 90% of the biodiesel fraction is composed of 5 unique long-chain C{sub 18} and C{sub 16} saturated and unsaturated methyl esters. This makes modeling of real biodiesel fuel possible without the need for a fuel surrogate. To this end, a detailed chemical kinetic mechanism has been developed for determining the combustion characteristics of a pure biodiesel (B100) fuel, applicable from low- to high-temperature oxidation regimes. This model has been built based on reaction rate rules established in previous studies at Lawrence Livermore National Laboratory. Computed results are compared with the few fundamental experimental data that exist for biodiesel fuel and its components. In addition, computed results have been compared with experimental data for other long-chain hydrocarbons that are similar in structure to the biodiesel components.

  16. Advanced materials for alternative fuel capable directly fired heat engines

    Energy Technology Data Exchange (ETDEWEB)

    Fairbanks, J.W.; Stringer, J. (eds.)

    1979-12-01

    The first conference on advanced materials for alternative fuel capable directly fired heat engines was held at the Maine Maritime Academy, Castine, Maine. It was sponsored by the US Department of Energy, (Assistant Secretary for Fossil Energy) and the Electric Power Research Institute, (Division of Fossil Fuel and Advanced Systems). Forty-four papers from the proceedings have been entered into EDB and ERA and one also into EAPA; three had been entered previously from other sources. The papers are concerned with US DOE research programs in this area, coal gasification, coal liquefaction, gas turbines, fluidized-bed combustion and the materials used in these processes or equipments. The materials papers involve alloys, ceramics, coatings, cladding, etc., and the fabrication and materials listing of such materials and studies involving corrosion, erosion, deposition, etc. (LTN)

  17. OxyFuel combustion of Coal and Biomass

    DEFF Research Database (Denmark)

    Toftegaard, Maja Bøg

    and oxyfuel atmospheres. Apart from slightly improved burnout and reduced emissions of NO during oxyfuel combustion these operating conditions yield similar combustion characteristics in both environments. Co-firing coal and biomass or combustion of pure biomass in an oxyfuel power plant could yield...... power plants burning coal or other fuels during the period of transition to renewable energy sources. The oxyfuel combustion process introduces several changes to the power plant configuration. Most important, the main part of the flue gas is recirculated to the boiler and mixed with pure oxygen...... with a straw share of 50 wt% has added valuable understanding to the trends in ash and deposits chemistry for coal/straw co-firing. Recirculation of untreated flue gas in oxyfuel plants will increase the in-boiler levels of NO and SO2 significantly. Experiments with simulated recirculation of NO and SO2 have...

  18. Optimization of hydrocarbon fuels combustion variable composition in thermal power plants

    Science.gov (United States)

    Saifullin, E. R.; Larionov, V. M.; Busarov, A. V.; Busarov, V. V.

    2016-01-01

    It is known that associated petroleum gas and refinery waste can be used as fuel in thermal power plants. However, random changes in the composition of such fuels cause instability of the combustion process. This article explores the burning of hydrocarbon fuel in the case of long continuous change of its specific heat of combustion. The results of analysis were used to develop a technique of optimizing the combustion process, ensuring complete combustion of the fuel and its minimum flow.

  19. Fossil fuel power plant combustion control: Research in Italy

    International Nuclear Information System (INIS)

    Electric power demand forecasts for Italy to the year 2000 indicate an increase of about 50% which, due to the current moratorium on nuclear energy, should be met entirely by fossil fuel power plants. Now, there is growing public concern about possible negative health impacts due to the air pollution produced through the combustion of fossil fuels. In response to these concerns, ENEL (Italian National Electricity Board) is investing heavily in air pollution abatement technology R ampersand D. The first phase involves the investigation of pollution mechanisms in order to develop suitable mathematical models and diagnostic techniques. The validity of the models is being tested through through measurements made by sophisticated instrumentation placed directly inside the combustion chambers of steam generator systems. These are allowing engineers to develop improved combustion control methods designed to reduce air pollution at source

  20. Sulfur Release from Cement Raw Materials during Solid Fuel Combustion

    DEFF Research Database (Denmark)

    Nielsen, Anders Rooma; Larsen, Morten B.; Glarborg, Peter;

    2011-01-01

    During combustion of solid fuels in the material inlet end of cement rotary kilns, local reducing conditions can occur and cause decomposition of sulfates from cement raw materials. Decomposition of sulfates is problematic because it increases the gas-phase SO2 concentration, which may cause depo...

  1. Automotive fuels and internal combustion engines: a chemical perspective.

    Science.gov (United States)

    Wallington, T J; Kaiser, E W; Farrell, J T

    2006-04-01

    Commercial transportation fuels are complex mixtures containing hundreds or thousands of chemical components, whose composition has evolved considerably during the past 100 years. In conjunction with concurrent engine advancements, automotive fuel composition has been fine-tuned to balance efficiency and power demands while minimizing emissions. Pollutant emissions from internal combustion engines (ICE), which arise from non-ideal combustion, have been dramatically reduced in the past four decades. Emissions depend both on the engine operating parameters (e.g. engine temperature, speed, load, A/F ratio, and spark timing) and the fuel. These emissions result from complex processes involving interactions between the fuel and engine parameters. Vehicle emissions are comprised of volatile organic compounds (VOCs), CO, nitrogen oxides (NO(x)), and particulate matter (PM). VOCs and NO(x) form photochemical smog in urban atmospheres, and CO and PM may have adverse health impacts. Engine hardware and operating conditions, after-treatment catalysts, and fuel composition all affect the amount and composition of emissions leaving the vehicle tailpipe. While engine and after-treatment effects are generally larger than fuel effects, engine and after-treatment hardware can require specific fuel properties. Consequently, the best prospects for achieving the highest efficiency and lowest emissions lie with optimizing the entire fuel-engine-after-treatment system. This review provides a chemical perspective on the production, combustion, and environmental aspects of automotive fuels. We hope this review will be of interest to workers in the fields of chemical kinetics, fluid dynamics of reacting flows, atmospheric chemistry, automotive catalysts, fuel science, and governmental regulations. PMID:16565750

  2. Determination of Emission Factors for Combusting Solid Fuels in Residential Combustion Appliances

    Czech Academy of Sciences Publication Activity Database

    Horák, J.; Hopan, F.; Krpec, K.; Dej, M.; Kubačka, M.; Pekárek, Vladimír; Šyc, Michal; Ocelka, T.; Tomšej, T.; Machálek, P.

    -: -, 2008, s. 2470-2473. [28th International Symposium on Halogenated Persistant Organic Pollutants-Dioxin 2008. Birmingham (GB), 17.08.2008-22.08.2008] R&D Projects: GA MŽP(CZ) SP/1A2/116/07 Institutional research plan: CEZ:AV0Z40720504 Keywords : solid fuels * combustion * ait pollution Subject RIV: CI - Industrial Chemistry, Chemical Engineering

  3. Alternative transportation fuels and air quality

    International Nuclear Information System (INIS)

    The paper discusses the air quality impact of the following alternative fuels: reformulated gasoline, methanol, ethanol, diesel, compressed natural gas, liquid petroleum gases, hydrogen, and electric power. Emissions of NOx, CO, and toxic compounds, as well as global climatic change impacts are described

  4. Life cycle models of conventional and alternative-fueled automobiles

    Science.gov (United States)

    Maclean, Heather Louise

    This thesis reports life cycle inventories of internal combustion engine automobiles with feasible near term fuel/engine combinations. These combinations include unleaded gasoline, California Phase 2 Reformulated Gasoline, alcohol and gasoline blends (85 percent methanol or ethanol combined with 15 percent gasoline), and compressed natural gas in spark ignition direct and indirect injection engines. Additionally, I consider neat methanol and neat ethanol in spark ignition direct injection engines and diesel fuel in compression ignition direct and indirect injection engines. I investigate the potential of the above options to have a lower environmental impact than conventional gasoline-fueled automobiles, while still retaining comparable pricing and consumer benefits. More broadly, the objective is to assess whether the use of any of the alternative systems will help to lead to the goal of a more sustainable personal transportation system. The principal tool is the Economic Input-Output Life Cycle Analysis model which includes inventories of economic data, environmental discharges, and resource use. I develop a life cycle assessment framework to assemble the array of data generated by the model into three aggregate assessment parameters; economics, externalities, and vehicle attributes. The first step is to develop a set of 'comparable cars' with the alternative fuel/engine combinations, based on characteristics of a conventional 1998 gasoline-fueled Ford Taurus sedan, the baseline vehicle for the analyses. I calculate the assessment parameters assuming that these comparable cars can attain the potential thermal efficiencies estimated by experts for each fuel/engine combination. To a first approximation, there are no significant differences in the assessment parameters for the vehicle manufacture, service, fixed costs, and the end-of-life for any of the options. However, there are differences in the vehicle operation life cycle components and the state of technology

  5. Spent Nuclear Fuel Alternative Technology Decision Analysis

    International Nuclear Information System (INIS)

    The Westinghouse Savannah River Company (WSRC) made a FY98 commitment to the Department of Energy (DOE) to recommend a technology for the disposal of aluminum-based spent nuclear fuel (SNF) at the Savannah River Site (SRS). The two technologies being considered, direct co-disposal and melt and dilute, had been previously selected from a group of eleven potential SNF management technologies by the Research Reactor Spent Nuclear Fuel Task Team chartered by the DOE''s Office of Spent Fuel Management. To meet this commitment, WSRC organized the SNF Alternative Technology Program to further develop the direct co-disposal and melt and dilute technologies and ultimately provide a WSRC recommendation to DOE on a preferred SNF alternative management technology

  6. Spent Nuclear Fuel Alternative Technology Decision Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Shedrow, C.B.

    1999-11-29

    The Westinghouse Savannah River Company (WSRC) made a FY98 commitment to the Department of Energy (DOE) to recommend a technology for the disposal of aluminum-based spent nuclear fuel (SNF) at the Savannah River Site (SRS). The two technologies being considered, direct co-disposal and melt and dilute, had been previously selected from a group of eleven potential SNF management technologies by the Research Reactor Spent Nuclear Fuel Task Team chartered by the DOE''s Office of Spent Fuel Management. To meet this commitment, WSRC organized the SNF Alternative Technology Program to further develop the direct co-disposal and melt and dilute technologies and ultimately provide a WSRC recommendation to DOE on a preferred SNF alternative management technology.

  7. Production of jet fuel from alternative source

    Energy Technology Data Exchange (ETDEWEB)

    Eller, Zoltan; Papp, Anita; Hancsok, Jenoe [Pannonia Univ., Veszprem (Hungary). MOL Dept. of Hydrocarbon and Coal Processing

    2013-06-01

    Recent demands for low aromatic content jet fuels have shown significant increase in the last 20 years. This was generated by the growing of aviation. Furthermore, the quality requirements have become more aggravated for jet fuels. Nowadays reduced aromatic hydrocarbon fractions are necessary for the production of jet fuels with good burning properties, which contribute to less harmful material emission. In the recent past the properties of gasolines and diesel gas oils were continuously severed, and the properties of jet fuels will be more severe, too. Furthermore, it can become obligatory to blend alternative components into jet fuels. With the aromatic content reduction there is a possibility to produce high energy content jet fuels with the desirable properties. One of the possibilities is the blending of biocomponents from catalytic hydrogenation of triglycerides. Our aim was to study the possibilities of producing low sulphur and aromatic content jet fuels in a catalytic way. On a CoMo/Al{sub 2}O{sub 3} catalyst we studied the possibilities of quality improving of a kerosene fraction and coconut oil mixture depending on the change of the process parameters (temperature, pressure, liquid hourly space velocity, volume ratio). Based on the quality parameters of the liquid products we found that we made from the feedstock in the adequate technological conditions products which have a high smoke point (> 35 mm) and which have reduced aromatic content and high paraffin content (90%), so these are excellent jet fuels, and their stack gases damage the environment less. (orig.)

  8. Exhaust gas recirculation study on dual-fuel methane combustion

    OpenAIRE

    Murillo Hernández, Alberto

    2015-01-01

    Currently, interest in different alternative transport fuels is growing. There are two main reasons for this motivation: the universal environmental concern, caused by the noticeable impact of petroleum fuels on the human health and environment, and the necessity of replacement due to the declining availability of petroleum. Dual-fuel engines could mean a partial solution of these worries, since the primary fuel of this type of engines is natural gas, mostly formed by methane, which can d...

  9. Combustion characteristics of hydrogen-carbon monoxide based gaseous fuels

    Science.gov (United States)

    White, D. J.; Kubasco, A. J.; Lecren, R. T.; Notardonato, J. J.

    1982-01-01

    The results of trials with a staged combustor designed to use coal-derived gaseous fuels and reduce the NO(x) emissions from nitrogen-bound fuels to 75 ppm and 37 ppm without bound nitrogen in 15% O2 are reported. The combustor was outfitted with primary zone regenerative cooling, wherein the air cooling the primary zone was passed into the combustor at 900 F and mixed with the fuel. The increase in the primary air inlet temperature eliminated flashback and autoignition, lowered the levels of CO, unburned hydrocarbons, and smoke, and kept combustion efficiencies to the 99% level. The combustor was also equipped with dual fuel injection to test various combinations of liquid/gas fuel mixtures. Low NO(x) emissions were produced burning both Lurgi and Winkler gases, regardless of the inlet pressure and temperature conditions. Evaluation of methanation of medium energy gases is recommended for providing a fuel with low NO(x) characteristics.

  10. Combustion aerosols from potassium-containing fuels

    Energy Technology Data Exchange (ETDEWEB)

    Balzer Nielsen, Lars

    1998-12-31

    The scope of the work presented in this thesis is the formation and evolution of aerosol particles in the submicron range during combustion processes, in particular where biomass is used alone or co-fired with coal. An introduction to the formation processes of fly ash in general and submicron aerosol in particular during combustion is presented, along with some known problems related to combustion of biomass for power generation. The work falls in two parts. The first is the design of a laboratory setup for investigation of homogeneous nucleation and particle dynamics at high temperature. The central unit of the setup is a laminar flow aerosol condenser (LFAC), which essentially is a 173 cm long tubular furnace with an externally cooled wall. A mathematical model is presented which describes the formation and evolution of the aerosol in the LFAC, where the rate of formation of new nuclei is calculated using the so-called classical theory. The model includes mass and energy conservation equations and an expression for the description of particle growth by diffusion. The resulting set of nonlinear second-order partial differential equations are solved numerically using the method of orthogonal collocation. The model is implemented in the FORTRAN code MONAERO. The second part of this thesis describes a comprehensive investigation of submicron aerosol formation during co-firing of coal and straw carried out at a 380 MW{sub Th} pulverized coal unit at Studstrup Power Plant, Aarhus. Three types of coal are used, and total boiler load and straw input is varied systematically. Straw contains large amounts of potassium, which is released during combustion. Submicron aerosol is sampled between the two banks of the economizer at a flue gas temperature of 350 deg. C using a novel ejector probe. The aerosol is characterized using the SMPS system and a Berner-type low pressure impactor. The chemical composition of the particles collected in the impactor is determined using

  11. Combustion aerosols from potassium-containing fuels

    International Nuclear Information System (INIS)

    The scope of the work presented in this thesis is the formation and evolution of aerosol particles in the submicron range during combustion processes, in particular where biomass is used alone or co-fired with coal. An introduction to the formation processes of fly ash in general and submicron aerosol in particular during combustion is presented, along with some known problems related to combustion of biomass for power generation. The work falls in two parts. The first is the design of a laboratory setup for investigation of homogeneous nucleation and particle dynamics at high temperature. The central unit of the setup is a laminar flow aerosol condenser (LFAC), which essentially is a 173 cm long tubular furnace with an externally cooled wall. A mathematical model is presented which describes the formation and evolution of the aerosol in the LFAC, where the rate of formation of new nuclei is calculated using the so-called classical theory. The model includes mass and energy conservation equations and an expression for the description of particle growth by diffusion. The resulting set of nonlinear second-order partial differential equations are solved numerically using the method of orthogonal collocation. The model is implemented in the FORTRAN code MONAERO. The second part of this thesis describes a comprehensive investigation of submicron aerosol formation during co-firing of coal and straw carried out at a 380 MWTh pulverized coal unit at Studstrup Power Plant, Aarhus. Three types of coal are used, and total boiler load and straw input is varied systematically. Straw contains large amounts of potassium, which is released during combustion. Submicron aerosol is sampled between the two banks of the economizer at a flue gas temperature of 350 deg. C using a novel ejector probe. The aerosol is characterized using the SMPS system and a Berner-type low pressure impactor. The chemical composition of the particles collected in the impactor is determined using chemical

  12. Fuel Flexible Combustion Systems for High-Efficiency Utilization of Opportunity Fuels in Gas Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Venkatesan, Krishna

    2011-11-30

    The purpose of this program was to develop low-emissions, efficient fuel-flexible combustion technology which enables operation of a given gas turbine on a wider range of opportunity fuels that lie outside of current natural gas-centered fuel specifications. The program encompasses a selection of important, representative fuels of opportunity for gas turbines with widely varying fundamental properties of combustion. The research program covers conceptual and detailed combustor design, fabrication, and testing of retrofitable and/or novel fuel-flexible gas turbine combustor hardware, specifically advanced fuel nozzle technology, at full-scale gas turbine combustor conditions. This project was performed over the period of October 2008 through September 2011 under Cooperative Agreement DE-FC26-08NT05868 for the U.S. Department of Energy/National Energy Technology Laboratory (USDOE/NETL) entitled "Fuel Flexible Combustion Systems for High-Efficiency Utilization of Opportunity Fuels in Gas Turbines". The overall objective of this program was met with great success. GE was able to successfully demonstrate the operability of two fuel-flexible combustion nozzles over a wide range of opportunity fuels at heavy-duty gas turbine conditions while meeting emissions goals. The GE MS6000B ("6B") gas turbine engine was chosen as the target platform for new fuel-flexible premixer development. Comprehensive conceptual design and analysis of new fuel-flexible premixing nozzles were undertaken. Gas turbine cycle models and detailed flow network models of the combustor provide the premixer conditions (temperature, pressure, pressure drops, velocities, and air flow splits) and illustrate the impact of widely varying fuel flow rates on the combustor. Detailed chemical kinetic mechanisms were employed to compare some fundamental combustion characteristics of the target fuels, including flame speeds and lean blow-out behavior. Perfectly premixed combustion experiments were conducted to

  13. Use of alternative fuels in solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-05-15

    A future sustainable energy system will certainly be based on a variety of environmentally benign energy production technologies. Fuel cells can be a key element in this scenario. One of the fuel cells types the solid oxide fuel cell (SOFC) has a number of advantages that places them in a favorable position: high efficiency, parallel production of electricity and high value heat, prevention of NOx emission, flexibility regarding usable fuels, and certain tolerance towards impurities. It is thus a natural option, to combine such a highly efficient energy conversion tool with a sustainable fuel supply. In the present contribution, the use of alternative compared to conventional fuels in SOFCs was evaluated. Regarding carbon containing, biomass derived fuels, SOFCs showed excellent power output and stability behavior during long-term testing under technologically relevant conditions. Moreover, ammonia can be used directly as fuel. The chemical and structural properties of the SOFC anode makes it even possible, to combine a chemical conversion of the fuel, for example methane into synthesis gas via steam reforming and decomposition of ammonia into hydrogen and nitrogen, with the electrochemical production of electricity in one step. (au)

  14. Hydrogen as alternative clean fuel: Economic analysis

    International Nuclear Information System (INIS)

    In analogy to biofuel production from biomasses, the electrolytic conversion of other renewable energies into hydrogen as an alternative clean fuel is considered. This solution allows the intermittent renewable energy sources, as photovoltaics and wind energy, to enhance their development and enlarge the role into conventional fuel market. A rough economic analysis of hydrogen production line shows the costs, added by electrolysis and storage stages, can be recovered by properly accounting for social and environmental costs due to whole cycle of conventional fuels, from production to use. So, in a perspective of attaining the economic competitiveness of renewable energy, the hydrogen, arising from intermittent renewable energy sources, will be able to compete in the energy market with conventional fuels, making sure that their substitution will occur in a significant amount and the corresponding environment

  15. Gasoline Ultra Efficient Fuel Vehicle with Advanced Low Temperature Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Confer, Keith

    2014-09-30

    The objective of this program was to develop, implement and demonstrate fuel consumption reduction technologies which are focused on reduction of friction and parasitic losses and on the improvement of thermal efficiency from in-cylinder combustion. The program was executed in two phases. The conclusion of each phase was marked by an on-vehicle technology demonstration. Phase I concentrated on short term goals to achieve technologies to reduce friction and parasitic losses. The duration of Phase I was approximately two years and the target fuel economy improvement over the baseline was 20% for the Phase I demonstration. Phase II was focused on the development and demonstration of a breakthrough low temperature combustion process called Gasoline Direct- Injection Compression Ignition (GDCI). The duration of Phase II was approximately four years and the targeted fuel economy improvement was 35% over the baseline for the Phase II demonstration vehicle. The targeted tailpipe emissions for this demonstration were Tier 2 Bin 2 emissions standards.

  16. Municipal solid waste combustion: Fuel testing and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Bushnell, D.J.; Canova, J.H.; Dadkhah-Nikoo, A.

    1990-10-01

    The objective of this study is to screen and characterize potential biomass fuels from waste streams. This will be accomplished by determining the types of pollutants produced while burning selected municipal waste, i.e., commercial mixed waste paper residential (curbside) mixed waste paper, and refuse derived fuel. These materials will be fired alone and in combination with wood, equal parts by weight. The data from these experiments could be utilized to size pollution control equipment required to meet emission standards. This document provides detailed descriptions of the testing methods and evaluation procedures used in the combustion testing and characterization project. The fuel samples will be examined thoroughly from the raw form to the exhaust emissions produced during the combustion test of a densified sample.

  17. Oxy-fuel combustion characteristics and kinetics of microalgae Chlorella vulgaris by thermogravimetric analysis.

    Science.gov (United States)

    Chen, Chunxiang; Lu, Ziguang; Ma, Xiaoqian; Long, Jun; Peng, Yuning; Hu, Likun; Lu, Quan

    2013-09-01

    Oxy-fuel or O2/CO2 combustion technology was used to investigate the combustion of Chlorella vulgaris by thermogravimetric analysis (TGA). Oxy-fuel combustion occurs in an O2/CO2 atmosphere instead of an O2/N2 atmosphere and offers an alternative method of C. vulgaris preparation for biofuels processing. Our results show that three stages were observed during C. vulgaris combustion and the main combustion process occurred at the second stage. Compared with a 20%O2/80%N2 atmosphere, the mass loss rate at the DTG peaks (Rp) and the average reaction rate (Rv) in a 20%O2/80%CO2 atmosphere was lower, while the ignition temperature (TI) was higher. As oxygen concentration increases in an O2/CO2 atmosphere, Rp, Rv and the apparent activation energy (E) increases, while TI, the final temperature detected as mass stabilization (Tf) and the residue mass (Mr) decreases; As the heating rate (β) increases, TI, Tf and Rp increase, while Mr decreases. PMID:23890976

  18. Biomass Characterization and its Use as Solid Fuel for Combustion

    Directory of Open Access Journals (Sweden)

    Bharat Gami

    2012-01-01

    Full Text Available The power industry is confronting challenges with seemingly conflicting goals. They provide the economy of scale needed to minimize the cost of production. Consumers, including industry, rely on affordable, dependable electrical energy. It’s an important part of our economy and our daily lifestyle. However, reducing emission levels and conserving our finite resources are key components for achieving a sustainable environment. Biomass is a resource that can be substituted for coal, in varying degrees for existing pulverized coal plants. New, large power plants are being designed to utilize biomass as the primary fuel. Biomass is available now and biomass based new products and sources are being developed, as the market unfolds. However, fuel properties and characteristics are important to boiler design and operation. Different boilers have unique design and fuel requirements. Heating value, percent volatiles, total ash and moisture content, ash constituents, and particle size are all key parameters considered by the boiler designer. Some biomass products have unique utilization issues. The chemical fraction behavior of biomass materials is quite different from that of typical coals. For co-firing applications, the properties of biomass and coal can be blended as a designer fuel. The objective is to best meet boiler, combustion, emission, and economic requirements. Fuel degradation and spontaneous combustion are more important concerns for biomass fuel products. This is a moisture-dependent issue. Dry biomass can be stored for longer periods. High moisture levels become a concern for degradation and spontaneous combustion. Therefore the paper deals with the biomass characterization in terms of its physico-chemical properties which can be useful to understand biomass combustion related issues.

  19. Numerical modeling of hydrogen-fueled internal combustion engines

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, N.L.; Amsden, A.A.

    1996-12-31

    The planned use of hydrogen as the energy carrier of the future introduces new challenges and opportunities, especially to the engine design community. Hydrogen is a bio-friendly fuel that can be produced from renewable resources and has no carbon dioxide combustion products; and in a properly designed ICE, almost zero NO{sub x} and hydrocarbon emissions can be achieved. Because of the unique properties of hydrogen combustion - in particular the highly wrinkled nature of the laminar flame front due to the preferential diffusion instability - modeling approaches for hydrocarbon gaseous fuels are not generally applicable to hydrogen combustion. This paper reports on the current progress to develop a engine design capability based on KIVA family of codes for hydrogen-fueled, spark-ignited engines in support of the National Hydrogen Program. A turbulent combustion model, based on a modified eddy-turnover model in conjunction with an intake flow valve model, is found to describe well the efficiency and NO{sub x} emissions of this engine satisfy the Equivalent Zero Emission Vehicle (EZEV) standard established by the California Resource Board. 26 refs., 10 figs., 1 tab.

  20. Systems impacts of spent fuel disassembly alternatives

    International Nuclear Information System (INIS)

    Three studies were completed to evaluate four alternatives to the disposal of intact spent fuel assemblies in a geologic repository. A preferred spent fuel waste form for disposal was recommended on consideration of (1) package design and fuel/package interaction, (2) long-term, in-repository performance of the waste form, and (3) overall process performance and costs for packaging, handling, and emplacement. The four basic alternative waste forms considered were (1) end fitting removal, (2) fission gas venting, (3) disassembly and close packing, and (4) shearing/immobilization. None of the findings ruled out any alternative on the basis of waste package considerations or long-term performance of the waste form. The third alternative offers flexibility in loading that may prove attractive in the various geologic media under consideration, greatly reduces the number of packages, and has the lowest unit cost. These studies were completed in October, 1981. Since then Westinghouse Electric Corporation and the Office of Nuclear Waste Isolation have completed studies in related fields. This report is now being published to provide publicly the background material that is contained within. 47 references, 28 figures, 31 tables

  1. Systems impacts of spent fuel disassembly alternatives

    Energy Technology Data Exchange (ETDEWEB)

    1984-07-01

    Three studies were completed to evaluate four alternatives to the disposal of intact spent fuel assemblies in a geologic repository. A preferred spent fuel waste form for disposal was recommended on consideration of (1) package design and fuel/package interaction, (2) long-term, in-repository performance of the waste form, and (3) overall process performance and costs for packaging, handling, and emplacement. The four basic alternative waste forms considered were (1) end fitting removal, (2) fission gas venting, (3) disassembly and close packing, and (4) shearing/immobilization. None of the findings ruled out any alternative on the basis of waste package considerations or long-term performance of the waste form. The third alternative offers flexibility in loading that may prove attractive in the various geologic media under consideration, greatly reduces the number of packages, and has the lowest unit cost. These studies were completed in October, 1981. Since then Westinghouse Electric Corporation and the Office of Nuclear Waste Isolation have completed studies in related fields. This report is now being published to provide publicly the background material that is contained within. 47 references, 28 figures, 31 tables.

  2. Pollutants generated by the combustion of solid biomass fuels

    CERN Document Server

    Jones, Jenny M; Ma, Lin; Williams, Alan; Pourkashanian, Mohamed

    2014-01-01

    This book considers the pollutants formed by the combustion of solid biomass fuels. The availability and potential use of solid biofuels is first discussed because this is the key to the development of biomass as a source of energy.This is followed by details of the methods used for characterisation of biomass and their classification.The various steps in the combustion mechanisms are given together with a compilation of the kinetic data. The chemical mechanisms for the formation of the pollutants: NOx, smoke and unburned hydrocarbons, SOx, Cl compounds, and particulate metal aerosols

  3. Fuel Injector Nozzle For An Internal Combustion Engine

    Science.gov (United States)

    Cavanagh, Mark S.; Urven, Jr.; Roger L.; Lawrence, Keith E.

    2006-04-25

    A direct injection fuel injector includes a nozzle tip having a plurality of passages allowing fluid communication between an inner nozzle tip surface portion and an outer nozzle tip surface portion and directly into a combustion chamber of an internal combustion engine. A first group of the passages have inner surface apertures located substantially in a first common plane. A second group of the passages have inner surface apertures located substantially in at least a second common plane substantially parallel to the first common plane. The second group has more passages than the first group.

  4. Disturbing effect of free hydrogen on fuel combustion in internal combustion engines

    Science.gov (United States)

    Riedler, A

    1923-01-01

    Experiments with fuel mixtures of varying composition, have recently been conducted by the Motor Vehicle and Airplane Engine Testing Laboratories of the Royal Technical High School in Berlin and at Fort Hahneberg, as well as at numerous private engine works. The behavior of hydrogen during combustion in engines and its harmful effect under certain conditions, on the combustion in the engine cylinder are of general interest. Some of the results of these experiments are given here, in order to elucidate the main facts and explain much that is already a matter of experience with chauffeurs and pilots.

  5. Electrostatic fuel conditioning of internal combustion engines

    Science.gov (United States)

    Gold, P. I.

    1982-01-01

    Diesel engines were tested to determine if they are influenced by the presence of electrostatic and magnetic fields. Field forces were applied in a variety of configurations including pretreatment of the fuel and air, however, no affect on engine performance was observed.

  6. Solid Oxide Fuel Cells Operating on Alternative and Renewable Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaoxing; Quan, Wenying; Xiao, Jing; Peduzzi, Emanuela; Fujii, Mamoru; Sun, Funxia; Shalaby, Cigdem; Li, Yan; Xie, Chao; Ma, Xiaoliang; Johnson, David; Lee, Jeong; Fedkin, Mark; LaBarbera, Mark; Das, Debanjan; Thompson, David; Lvov, Serguei; Song, Chunshan

    2014-09-30

    This DOE project at the Pennsylvania State University (Penn State) initially involved Siemens Energy, Inc. to (1) develop new fuel processing approaches for using selected alternative and renewable fuels – anaerobic digester gas (ADG) and commercial diesel fuel (with 15 ppm sulfur) – in solid oxide fuel cell (SOFC) power generation systems; and (2) conduct integrated fuel processor – SOFC system tests to evaluate the performance of the fuel processors and overall systems. Siemens Energy Inc. was to provide SOFC system to Penn State for testing. The Siemens work was carried out at Siemens Energy Inc. in Pittsburgh, PA. The unexpected restructuring in Siemens organization, however, led to the elimination of the Siemens Stationary Fuel Cell Division within the company. Unfortunately, this led to the Siemens subcontract with Penn State ending on September 23rd, 2010. SOFC system was never delivered to Penn State. With the assistance of NETL project manager, the Penn State team has since developed a collaborative research with Delphi as the new subcontractor and this work involved the testing of a stack of planar solid oxide fuel cells from Delphi.

  7. Combustion characteristics and air pollutant formation during oxy-fuel co-combustion of microalgae and lignite.

    Science.gov (United States)

    Gao, Yuan; Tahmasebi, Arash; Dou, Jinxiao; Yu, Jianglong

    2016-05-01

    Oxy-fuel combustion of solid fuels is seen as one of the key technologies for carbon capture to reduce greenhouse gas emissions. The combustion characteristics of lignite coal, Chlorella vulgaris microalgae, and their blends under O2/N2 and O2/CO2 conditions were studied using a Thermogravimetric Analyzer-Mass Spectroscopy (TG-MS). During co-combustion of blends, three distinct peaks were observed and were attributed to C. vulgaris volatiles combustion, combustion of lignite, and combustion of microalgae char. Activation energy during combustion was calculated using iso-conventional method. Increasing the microalgae content in the blend resulted in an increase in activation energy for the blends combustion. The emissions of S- and N-species during blend fuel combustion were also investigated. The addition of microalgae to lignite during air combustion resulted in lower CO2, CO, and NO2 yields but enhanced NO, COS, and SO2 formation. During oxy-fuel co-combustion, the addition of microalgae to lignite enhanced the formation of gaseous species. PMID:26894568

  8. Knock characteristics of dual-fuel combustion in diesel engines using natural gas as primary fuel

    Indian Academy of Sciences (India)

    O M I Nwafor

    2002-06-01

    This paper investigates the combustion knock characteristics of diesel engines running on natural gas using pilot injection as means of initiating combustion. The diesel engines knock under normal operating conditions but the knock referred to in this paper is an objectionable one. In the dual-fuel combustion process we have the ignition stage followed by the combustion stage. There are three types of knock: diesel knock, spark knock and knock due to secondary ignition delay of the primary fuel (erratic knock). Several factors have been noted to feature in defining knock characteristics of dual-fuel engines that include ignition delay, pilot quantity, engine load and speed, turbulence and gas flow rate.

  9. Experimental setup for combustion characteristics in a diesel engine using derivative fuel from biomass

    International Nuclear Information System (INIS)

    Reciprocating engines are normally run on petroleum fuels or diesel fuels. Unfortunately, energy reserves such as gas and oil are decreasing. Today, with renewable energy technologies petroleum or diesel can be reduced and substituted fully or partly by alternative fuels in engine. The objective of this paper is to setup the experimental rig using producer gas from gasification system mix with diesel fuel and fed to a diesel engine. The Yanmar L60AE-DTM single cylinder diesel engine is used in the experiment. A 20 kW downdraft gasifier has been developed to produce gas using cut of furniture wood used as biomass source. Air inlet of the engine has been modified to include the producer gas. An AVL quartz Pressure Transducer P4420 was installed into the engine head to measure pressure inside the cylinder of the engine. Several test were carried out on the downdraft gasifier system and diesel engine. The heating value of the producer gas is about 4 MJ/m3 and the specific biomass fuel consumption is about 1.5 kg/kWh. Waste cooking oil (WCO) and crude palm oil (CPO) were used as biomass fuel. The pressure versus crank angle diagram for using blend of diesel are presented and compared with using diesel alone. The result shows that the peak pressure is higher. The premixed combustion is lower but have higher mixing controlled combustion. The CO and NOx emission are higher for biomass fuel

  10. Combustion of Refuse Derived Fuels; Foerbraenning av utsorterade avfallsfraktioner

    Energy Technology Data Exchange (ETDEWEB)

    Berg, Magnus; Wikman, Karin [AaF-Energi och Miljoe, Stockholm (Sweden); Andersson, Christer; Myringer, Aase; Helgesson, Anna [Vattenfall Utveckling AB, Aelvkarleby (Sweden); Eskilsson, David; Ekvall, Annika [SP Swedish National Testing and Research Inst., Boraas (Sweden); Oehman, Marcus; Geyter, Sigrid de [Umeaa Univ. (Sweden). Energy Technology and Thermal Process Chemistry

    2005-03-01

    The aim of this project was to increase the understanding of opportunities and problems connected with combustion of sorted waste fractions containing paper, wood and plastics (PWP-fuel) in fluidized bed boilers. An evaluation of the effect of sulphur containing additives in a PWP-fuel fired boiler was also performed within the project since this is not previously reported in open literature. The experience from two boilers at different plants, Johannes (BFB) and Hoegdalen P6 (CFB) during the firing season 2003/2004 was documented. In the Johannes boiler the main fuel is bark while Hoegdalen P6 combusts 100 % PWP-fuel. Analysis of the fuels shows that there are large differences between the two boilers. At Johannes the PWP-fuel contained low amounts of elements (chlorine, alkali and other metals) that are expected to result in increased operational problems or emissions. A large proportion of these unwanted elements came from the wood and paper fractions. The plastic fraction in Johannes had very low levels of unwanted elements. The fuel at Hoegdalen contained large amounts of elements such as chlorine, alkali and other metals that can cause operational problems. First of all the plastic fraction contained large amounts of chlorine, most likely from PVC, which results in a more corrosive atmosphere in the boiler. The fraction of fines in the Hoegdalen fuel contained larger concentrations of potassium and sodium compared with the other fuel fractions, substances that also are related to the formation of deposits. The fraction of fines in the fuel probably also results in combustion taking place high up in the boiler and to some extent continuing in the cyclones. The characterisation of the combustion behaviour performed in Johannes identified a maldistribution in O{sub 2}, CO and gas temperature over a cross-section of the furnace. This was not depending on the fuel mixture but is more likely depending on uneven fuel feeding or air distribution. A comparison between

  11. Combustion Of Poultry-Derived Fuel in a CFBC

    Science.gov (United States)

    Jia, Lufei; Anthony, Edward J.

    Poultry farming generates large quantities of waste. Current disposal practice is to spread the poultry wastes onto farmland as fertilizer. However, as the factory farms for poultry grow both in numbers and size, the amount of poultry wastes generated has increased significandy in recent years. In consequence, excessive application of poultry wastes on farmland is resulting in more and more contaminants entering the surface water. One of the options being considered is the use of poultry waste as power plant fuel. Since poultry-derived fuel (PDF) is biomass, its co-firing will have the added advantage of reducing greenhouse gas emissions from power generation. To evaluate the combustion characteristics of co-firing PDF with coal, combustion tests of mixtures of coal and PDF were conducted in CanmetENERGY's pilot-scale CFBC. The goal of the tests was to verify that PDF can be co-fired with coal and, more importantly, that emissions from the combustion process are not adversely affected by the presence of PDF in the fuel feed. The test results were very promising and support the view that co-firing in an existing coal-fired CFBC is an effective method of utilizing this potential fuel, both resolving a potential waste disposal problem and reducing the amount of CO2 released by the boiler.

  12. Flame blowout and pollutant emissions in vitiated combustion of conventional and bio-derived fuels

    Science.gov (United States)

    Singh, Bhupinder

    The widening gap between the demand and supply of fossil fuels has catalyzed the exploration of alternative sources of energy. Interest in the power, water extraction and refrigeration (PoWER) cycle, proposed by the University of Florida, as well as the desirability of using biofuels in distributed generation systems, has motivated the exploration of biofuel vitiated combustion. The PoWER cycle is a novel engine cycle concept that utilizes vitiation of the air stream with externally-cooled recirculated exhaust gases at an intermediate pressure in a semi-closed cycle (SCC) loop, lowering the overall temperature of combustion. It has several advantages including fuel flexibility, reduced air flow, lower flame temperature, compactness, high efficiency at full and part load, and low emissions. Since the core engine air stream is vitiated with the externally cooled exhaust gas recirculation (EGR) stream, there is an inherent reduction in the combustion stability for a PoWER engine. The effect of EGR flow and temperature on combustion blowout stability and emissions during vitiated biofuel combustion has been characterized. The vitiated combustion performance of biofuels methyl butanoate, dimethyl ether, and ethanol have been compared with n-heptane, and varying compositions of syngas with methane fuel. In addition, at high levels of EGR a sharp reduction in the flame luminosity has been observed in our experimental tests, indicating the onset of flameless combustion. This drop in luminosity may be a result of inhibition of processes leading to the formation of radiative soot particles. One of the objectives of this study is finding the effect of EGR on soot formation, with the ultimate objective of being able to predict the boundaries of flameless combustion. Detailed chemical kinetic simulations were performed using a constant-pressure continuously stirred tank reactor (CSTR) network model developed using the Cantera combustion code, implemented in C++. Results have

  13. Combustion Mode Design with High Efficiency and Low Emissions Controlled by Mixtures Stratification and Fuel Reactivity

    OpenAIRE

    Wang, Hu; Zheng, Zunqing; Liu, Haifeng; Yao, Mingfa

    2015-01-01

    This paper presents a review on the combustion mode design with high efficiency and low emissions controlled by fuel reactivity and mixture stratification that have been conducted in the authors’ group, including the charge reactivity controlled homogeneous charge compression ignition (HCCI) combustion, stratification controlled premixed charge compression ignition combustion, and dual-fuel combustion concepts controlled by both fuel reactivity and mixture stratification. The review starts wi...

  14. Air fuel ratio detector corrector for combustion engines using adaptive neurofuzzy networks

    OpenAIRE

    Nidhi Arora; Swati Mehta

    2013-01-01

    A perfect mix of the air and fuel in internal combustion engines is desirable for proper combustion of fuel with air. The vehicles running on road emit harmful gases due to improper combustion. This problem is severe in heavy vehicles like locomotive engines. To overcome this problem, generally an operator opens or closes the valve of fuel injection pump of locomotive engines to control amount of air going inside the combustion chamber, which requires constant monitoring. A model is proposed ...

  15. Oxy-fuel combustion of coal and biomass blends

    International Nuclear Information System (INIS)

    The ignition temperature, burnout and NO emissions of blends of a semi-anthracite and a high-volatile bituminous coal with 10 and 20 wt.% of olive waste were studied under oxy-fuel combustion conditions in an entrained flow reactor (EFR). The results obtained under several oxy-fuel atmospheres (21%O2–79%CO2, 30%O2–70%CO2 and 35%O2–65%CO2) were compared with those attained in air. The results indicated that replacing N2 by CO2 in the combustion atmosphere with 21% of O2 caused an increase in the temperature of ignition and a decrease in the burnout value. When the O2 concentration was increased to 30 and 35%, the temperature of ignition was lower and the burnout value was higher than in air conditions. A significant reduction in ignition temperature and a slight increase in the burnout value was observed after the addition of biomass, this trend becoming more noticeable as the biomass concentration was increased. The emissions of NO during oxy-fuel combustion were lower than under air-firing. However, they remained similar under all the oxy-fuel atmospheres with increasing O2 concentrations. Emissions of NO were significantly reduced by the addition of biomass to the bituminous coal, although this effect was less noticeable in the case of the semi-anthracite. -- Highlights: ► Coal and biomass blends combustion behaviour evaluated under oxy-fuel conditions. ► Biomass addition had a greater effect on the ignition temperature than on burnout. ► Lower NO emissions by blending olive waste with a bituminous coal.

  16. Fuels made from agricultural biomass - (biogas) alternative types(Alternativne vrste goriva iz poljoprivredne biomase - biogas)

    OpenAIRE

    Jovanovska, Vangelica; Jovanovski, Nikola; Sovreski, Zlatko; Pop-Andonov, Goran; Sinani, Feta

    2013-01-01

    Biogas is a typical "product" of urban discharges, which has a great negative environmental impact. To avoid this negative effect, it can be burnt at very high temperatures, producing smoke emissions composed of CO2. A useful alternative is to use biogas as fuel to feed co-generation plants, producing electricity. At the moment biogas is used as fuel, introducing it directly in the combustion chamber. Nevertheless the heterogeneity of the gas stresses the engine, reducing its life. The new te...

  17. Characterisation of fuels for advanced pressurized combustion

    Energy Technology Data Exchange (ETDEWEB)

    Zevenhoven, R.; Hupa, M.; Backman, P.; Karlsson, M.; Kullberg, M.; Sorvari, V. [Aabo Akademi, Turku (Finland); Nurk, M. [Tallinn Univ. (Estonia)

    1996-12-01

    After 2 of the 3 years for this EU Joule 2 extension project, a rough comparison on the devolatilisation behaviour and char reactivity of 11 fossil fuels and 4 biofuels has been obtained. The experimental plan for 1995 has been completed, the laboratory facilities appeared to be well suited for the broad range of analyses presented here. A vast amount of devolatilisation tests in nitrogen at atmospheric pressure with gas analysis and char analysis gave a lot of information on the release of carbon, sulphur, nitrogen and also sodium, chloride and some other elements. Also first-order rate parameters could be determined. Solid pyrolysis yield measurements with the pressurised grid heater show a very good reproducibility except for the fuels with high carbonate content and those with very small char yield. Problems have to be solved considering lower heating rates and the use of folded grids. Fuel pyrolysis followed by gasification (with carbon dioxide or water as oxidising agent) at various temperatures and pressures shows that in general char solid yields and gasification reactivities are higher at elevated pressure. The design and construction of a pressurized single particle reactor, to be operational early 1996 is currently being negotiated. Numerical modelling of coal devolatilisation shows that even for atmospheric pressures the results differ significantly from experimental findings. (author)

  18. 76 FR 67287 - Alternative Fuel Transportation Program; Alternative Fueled Vehicle Credit Program (Subpart F...

    Science.gov (United States)

    2011-10-31

    ... and Plug-In Hybrid Electric Vehicles C. Investments 1. Alternative Fuel Infrastructure 2. Alternative... plug-in hybrid electric vehicles (PHEV) are commercialized (see Part IV.B.2 below). Except in those... EPAct 1992, as amended, as ``an electric, hybrid electric, or plug-in hybrid electric vehicle with...

  19. Plasma-Enhanced Combustion of Hydrocarbon Fuels and Fuel Blends Using Nanosecond Pulsed Discharges

    Energy Technology Data Exchange (ETDEWEB)

    Cappelli, Mark; Mungal, M Godfrey

    2014-10-28

    This project had as its goals the study of fundamental physical and chemical processes relevant to the sustained premixed and non-premixed jet ignition/combustion of low grade fuels or fuels under adverse flow conditions using non-equilibrium pulsed nanosecond discharges.

  20. Synthesis of Diopside by Solution Combustion Process Using Glycine Fuel

    Science.gov (United States)

    Sherikar, Baburao N.; Umarji, A. M.

    Nano ceramic Diopside (CaMgSi2O6) powders are synthesized by Solution Combustion Process(SCS) using Calcium nitrate, Magnesium nitrate as oxidizer and glycine as fuel, fumed silica as silica source. Ammonium nitrate (AN) is used as extra oxidizer. Effect of AN on Diopside phase formation is investigated. The adiabatic flame temperatures are calculated theoretically for varying amount of AN according to thermodynamic concept and correlated with the observed flame temperatures. A “Multi channel thermocouple setup connected to computer interfaced Keithley multi voltmeter 2700” is used to monitor the thermal events during the process. An interpretation based on maximum combustion temperature and the amount of gases produced during reaction for various AN compositions has been proposed for the nature of combustion and its correlation with the characteristics of as synthesized powder. These powders are characterized by XRD, SEM showing that the powders are composed of polycrystalline oxides with crystallite size of 58nm to 74nm.

  1. Gas Turbine Combustion and Ammonia Removal Technology of Gasified Fuels

    Directory of Open Access Journals (Sweden)

    Takeharu Hasegawa

    2010-03-01

    Full Text Available From the viewpoints of securing a stable supply of energy and protecting our global environment in the future, the integrated gasification combined cycle (IGCC power generation of various gasifying methods has been introduced in the world. Gasified fuels are chiefly characterized by the gasifying agents and the synthetic gas cleanup methods and can be divided into four types. The calorific value of the gasified fuel varies according to the gasifying agents and feedstocks of various resources, and ammonia originating from nitrogenous compounds in the feedstocks depends on the synthetic gas clean-up methods. In particular, air-blown gasified fuels provide low calorific fuel of 4 MJ/m3 and it is necessary to stabilize combustion. In contrast, the flame temperature of oxygen-blown gasified fuel of medium calorie between approximately 9–13 MJ/m3 is much higher, so control of thermal-NOx emissions is necessary. Moreover, to improve the thermal efficiency of IGCC, hot/dry type synthetic gas clean-up is needed. However, ammonia in the fuel is not removed and is supplied into the gas turbine where fuel-NOx is formed in the combustor. For these reasons, suitable combustion technology for each gasified fuel is important. This paper outlines combustion technologies and combustor designs of the high temperature gas turbine for various IGCCs. Additionally, this paper confirms that further decreases in fuel-NOx emissions can be achieved by removing ammonia from gasified fuels through the application of selective, non-catalytic denitration. From these basic considerations, the performance of specifically designed combustors for each IGCC proved the proposed methods to be sufficiently effective. The combustors were able to achieve strong results, decreasing thermal-NOx emissions to 10 ppm (corrected at 16% oxygen or less, and fuel-NOx emissions by 60% or more, under conditions where ammonia concentration per fuel heating value in unit volume was 2.4 × 102 ppm

  2. Alternate fuel cycles for fast breeder reactors

    International Nuclear Information System (INIS)

    In this contribution to the syllabus for Subgroup 5D, a full range of alternate breeder fuel cycle options is developed and explored as to energy supply capability, resource utilizations, performance characteristics and technical features that pertain to proliferation resistance. Breeding performance information is presented for designs based on Pu/U, Pu/Th, 233 U/U, etc. with oxide, carbide or metal fuel; with lesser emphasis, heterogeneous and homogeneous concepts are presented. A potential proliferation resistance advantage of a symbiotic system of a Pu/U core, Th blanket breeder producing 233 U for utilization in dispersed LWR's is identified. LWR support ratios for various reactor and fuel types and the increase in uranium consumption with higher support ratios are identified

  3. Experimental Investigation of Turbine Vane Heat Transfer for Alternative Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Nix, Andrew Carl [West Virginia Univ., Morgantown, WV (United States)

    2015-03-23

    modern turbine engines; and What advancements in film cooling hole geometry and design can increase effectiveness of film cooling in turbines burning high-hydrogen coal syngas due to the higher heat loads and mass flow rates of the core flow? Experimental and numerical investigations of advanced cooling geometries that can improve resistance to surface deposition were performed. The answers to these questions were investigated through experimental measurements of turbine blade surface temperature and coolant coverage (via infrared camera images and thermocouples) and time-varying surface roughness in the NETL high-pressure combustion rig with accelerated, simulated surface deposition and advanced cooling hole concepts, coupled with detailed materials analysis and characterization using conventional methods of Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), X-Ray Diffraction (XRD), 3-D Surface Topography (using a 3-D stylus profilometer). Detailed surface temperatures and cooling effectiveness could not be measured due to issues with the NETL infrared camera system. In collaboration with faculty startup funding from the principal investigator, experimental and numerical investigations were performed of an advanced film cooling hole geometry, the anti-vortex hole (AVH), focusing on improving cooling effectiveness and decreasing the counter-rotating vortex of conventional cooling holes which can entrain mainstream particulate matter to the surface. The potential benefit of this program is in gaining a fundamental understanding of how the use of alternative fuels will effect the operation of modern gas turbine engines, providing valuable data for more effective cooling designs for future turbine systems utilizing alternative fuels.

  4. Santilli's new fuels as sources of clean combustion

    Science.gov (United States)

    Sarma, Indrani B. Das

    2013-10-01

    Molecular combustion or nuclear fission is the conventional source of energy, which are not clean as they generate large amount of green house gas or nuclear waste. Clean energy can be obtained by harnessing renewable energy sources like solar, wind, etc. However, each of these sources has their own limitations and is dependent on geographical locations. The modern day demand of clean, cheap and abundant energy gets fulfilled by the novel fuels that have been developed through hadronic mechanics/chemistry. In the present paper, a short review on such novel fuels like Hadronic energy of non-nuclear type (combustion of MagneGas) and nuclear type (intermediate controlled nuclear fusion and particle type like stimulated neutron decay) has been presented.

  5. Experimental study of hydrogen as a fuel additive in internal combustion engines

    Energy Technology Data Exchange (ETDEWEB)

    Saanum, Inge

    2008-07-01

    Combustion of hydrocarbons in internal combustion engines results in emissions that can be harmful both to human health and to the environment. Although the engine technology is improving, the emissions of NO{sub x}, PM and UHC are still challenging. Besides, the overall consumption of fossil fuel and hence the emissions of CO{sub 2} are increasing because of the increasing number of vehicles. This has lead to a focus on finding alternative fuels and alternative technologies that may result in lower emissions of harmful gases and lower CO{sub 2} emissions. This thesis treats various topics that are relevant when using blends of fuels in different internal combustion engine technologies, with a particular focus on using hydrogen as a fuel additive. The topics addressed are especially the ones that impact the environment, such as emissions of harmful gases and thermal efficiency (fuel consumption). The thesis is based on experimental work performed at four different test rigs: 1. A dynamic combustion rig with optical access to the combustion chamber where spark ignited premixed combustion could be studied by means of a Schlieren optical setup and a high speed video camera. 2. A spark ignition natural gas engine rig with an optional exhaust gas recycling system. 3. A 1-cylinder diesel engine prepared for homogeneous charge compression ignition combustion. 4. A 6-cylinder standard diesel engine The engine rigs were equipped with cylinder pressure sensors, engine dynamometers, exhaust gas analyzers etc. to enable analyses of the effects of different fuels. The effect of hydrogen blended with methane and natural gas in spark ignited premixed combustion was investigated in the dynamic combustion rig and in a natural gas engine. In the dynamic combustion rig, the effect of hydrogen added to methane on the flame speed and the flame structure was investigated at elevated pressure and temperature. A considerable increase in the flame speed was observed when adding 30 vol

  6. Effect of alternative fuel properties on NOx reduction

    OpenAIRE

    Axelsen, Ernst Petter; Tokheim, Lars-André; Bjerketvedt, Dag

    2002-01-01

    Today we see a substantial increase in the use of alternative fuels in the cement industry. The prospect of reduction in fuel costs and the environmental benefits of waste to energy conversion are the driving forces. For several years Norcem have steadily increased their use of alternative fuels such as refuse derived fuel (RDF), liquid hazardous waste (LHW), solid hazardous waste (SHW), animal meal (AM) and waste oil (WO). Alternative fuels behave differently compared to e.g. coa...

  7. Combustion gas properties. 2: Natural gas fuel and dry air

    Science.gov (United States)

    Wear, J. D.; Jones, R. E.; Trout, A. M.; Mcbride, B. J.

    1985-01-01

    A series of computations has been made to produce the equilibrium temperature and gas composition for natural gas fuel and dry air. The computed tables and figures provide combustion gas property data for pressures from 0.5 to 50 atmospheres and equivalence ratios from 0 to 2.0. Only samples tables and figures are provided in this report. The complete set of tables and figures is provided on four microfiche films supplied with this report.

  8. Development of gas turbine fuels and combustion. An overview

    Energy Technology Data Exchange (ETDEWEB)

    Fejer, A. A.

    1979-01-01

    This overview is triggered by the rapidly changing role of the gas turbine in the spectrum of medium and large prime movers for industrial service. It describes the characteristic features of these engines, contrasting them with their chief competitor, the steam cycle. The focus is on the aerodynamic processes in the combustion chambers of traditional engines and includes an outline of the changes that are to be expected with the introduction of the synthetic and coal derived fuels.

  9. CFD Investigation into Diesel PCCI Combustion with Optimized Fuel Injection

    OpenAIRE

    Lipeng Lu; Bin Liu; Weiji Wang; Zhijun Peng

    2011-01-01

    A multi-pulse injection strategy for premixed charge compression ignition (PCCI) combustion was investigated in a four-valve, direct-injection diesel engine by a computational fluid dynamics (CFD) simulation using KIVA-3V code coupled with detailed chemistry. The effects of fuel splitting proportion, injection timing, spray angles, and injection velocity were examined. The mixing process and formation of soot and nitrogen oxide (NO x ) emissions were investigated as the focus of the research....

  10. COMBUSTION SIMULATION IN A SPARK IGNITION ENGINE CYLINDER: EFFECTS OF AIR-FUEL RATIO ON THE COMBUSTION DURATION

    Directory of Open Access Journals (Sweden)

    Nureddin Dinler

    2010-01-01

    Full Text Available Combustion is an important subject of internal combustion engine studies. To reduce the air pollution from internal combustion engines and to increase the engine performance, it is required to increase combustion efficiency. In this study, effects of air/fuel ratio were investigated numerically. An axisymmetrical internal combustion engine was modeled in order to simulate in-cylinder engine flow and combustion. Two dimensional transient continuity, momentum, turbulence, energy, and combustion equations were solved. The k-e turbulence model was employed. The fuel mass fraction transport equation was used for modeling of the combustion. For this purpose a computational fluid dynamics code was developed by using the finite volume method with FORTRAN programming code. The moving mesh was utilized to simulate the piston motion. The developed code simulates four strokes of engine continuously. In the case of laminar flow combustion, Arrhenius type combustion equations were employed. In the case of turbulent flow combustion, eddy break-up model was employed. Results were given for rich, stoichiometric, and lean mixtures in contour graphs. Contour graphs showed that lean mixture (l = 1.1 has longer combustion duration.

  11. Proceedings of the 1996 Windsor workshop on alternative fuels

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    This document contains information which was presented at the 1996 Windsor Workshop on Alternative Fuels. Topics include: international links; industry topics and infrastructure issues; propane; engine developments; the cleanliness of alternative fuels; heavy duty alternative fuel engines; California zev commercialization efforts; and in-use experience.

  12. 18 CFR 281.304 - Computation of alternative fuel volume.

    Science.gov (United States)

    2010-04-01

    ... alternative fuel volume. 281.304 Section 281.304 Conservation of Power and Water Resources FEDERAL ENERGY... Determination § 281.304 Computation of alternative fuel volume. (a) General rule. For purposes of § 281.208(b)(1)(i)(B), and § 281.305: (1) Alternative fuel volume of an essential agricultural user is equal to...

  13. Dependence of premixed low-temperature diesel combustion on fuel ignitability and volatility

    OpenAIRE

    Li, Tie; Moriwaki, Riichi; Ogawa, Hideyuki; Kakizaki, Ryuta; Murase, Masato

    2012-01-01

    A comprehensive study of fuel property effects in internal combustion engines is required to enable fuel diversification as well as applications to advanced engines being developed for operation with a variety of combustion modes. The objective of this paper is to investigate the effects of fuel ignitability and volatility over a wide range on premixed low-temperature combustion (LTC) modes in diesel engines. Twenty three fuels were prepared from commercial gasoline, kerosene, and diesel as b...

  14. Surrogate fuel formulation for light naphtha combustion in advanced combustion engines

    KAUST Repository

    Ahmed, Ahfaz

    2015-03-30

    Crude oil once recovered is further separated in to several distinct fractions to produce a range of energy and chemical products. One of the less processed fractions is light naphtha (LN), hence they are more economical to produce than their gasoline and diesel counterparts. Recent efforts have demonstrated usage of LN as transportation fuel for internal combustion engines with slight modifications. In this study, a multicomponent surrogate fuel has been developed for light naphtha fuel using a multi-variable nonlinear constrained optimization scheme. The surrogate, consisting of palette species n-pentane, 2-methylhexane, 2-methylbutane, n-heptane and toluene, was validated against the LN using ignition quality tester following ASTM D6890 methodology. Comparison of LN and the surrogate fuel demonstrated satisfactory agreement.

  15. Spray combustion of Jet-A and diesel fuels in a constant volume combustion chamber

    International Nuclear Information System (INIS)

    This work investigates the spray combustion of Jet-A fuel in an optical constant-volume combustion chamber under different ambient initial conditions. Ambient temperature was varied at 800 K, 1000 K, and 1200 K and five different ambient O2 concentrations were used, spanning 10–21%. These ambient conditions can be used to mimic practical diesel engine working conditions under different fuel injection timings and exhaust gas recirculation (EGR) levels. Both transient and quasi-steady state analyses were conducted. The transient analysis focused on the flame development from the beginning to the end of the combustion process, illustrating how the flame structure evolves with time. The quasi-steady state analysis concentrated on the stable flame structure and compared the flame emissions in terms of spatially integrated intensity, flame effective area, and intensity per pixel. The transient analysis was based on measurements using high-speed imaging of both OH∗ chemiluminescence and broadband natural luminosity (NL). For the quasi-steady state analysis, three flame narrow-band emissions (OH∗ at 310 nm, Band A at 430 nm and Band B at 470 nm) were captured using an ICCD camera. Based on the current Jet-A data and diesel data obtained from previous experiments, a comparison between Jet-A and diesel was made in terms of flame development during the transient state and spatially integrated intensity, flame effective area, and intensity per pixel during the quasi-steady state. For the transient results, Jet-A shares a similar flame development trend to diesel, but featuring a narrower region of NL and a wider region of OH∗ with the increase of ambient temperature and O2 concentration. The soot cloud is oxidized more quickly for Jet-A than diesel at the end of combustion, evident by comparing the area of NL, especially under high O2 concentration. The quasi-steady state results suggest that soot is oxidized effectively under high O2 concentration conditions by the

  16. Spray combustion of Jet-A and diesel fuels in a constant volume combustion chamber

    KAUST Repository

    Jing, Wei

    2015-01-01

    This work investigates the spray combustion of Jet-A fuel in an optical constant-volume combustion chamber under different ambient initial conditions. Ambient temperature was varied at 800 K, 1000 K, and 1200 K and five different ambient O2 concentrations were used, spanning 10-21%. These ambient conditions can be used to mimic practical diesel engine working conditions under different fuel injection timings and exhaust gas recirculation (EGR) levels. Both transient and quasi-steady state analyses were conducted. The transient analysis focused on the flame development from the beginning to the end of the combustion process, illustrating how the flame structure evolves with time. The quasi-steady state analysis concentrated on the stable flame structure and compared the flame emissions in terms of spatially integrated intensity, flame effective area, and intensity per pixel. The transient analysis was based on measurements using high-speed imaging of both OH∗ chemiluminescence and broadband natural luminosity (NL). For the quasi-steady state analysis, three flame narrow-band emissions (OH∗ at 310 nm, Band A at 430 nm and Band B at 470 nm) were captured using an ICCD camera. Based on the current Jet-A data and diesel data obtained from previous experiments, a comparison between Jet-A and diesel was made in terms of flame development during the transient state and spatially integrated intensity, flame effective area, and intensity per pixel during the quasi-steady state. For the transient results, Jet-A shares a similar flame development trend to diesel, but featuring a narrower region of NL and a wider region of OH∗ with the increase of ambient temperature and O2 concentration. The soot cloud is oxidized more quickly for Jet-A than diesel at the end of combustion, evident by comparing the area of NL, especially under high O2 concentration. The quasi-steady state results suggest that soot is oxidized effectively under high O2 concentration conditions by the

  17. Comparison of a dual-fuel internal combustion engine performance for CNG and gasoline fuels

    Directory of Open Access Journals (Sweden)

    Mohammad Ameri

    2012-01-01

    Full Text Available In this paper, comparison of a dual-fuel internal combustion engine performance for CNG and gasoline fuels is evaluated at the steady-state condition by application of energy and exergy analysis using the experimental test results. The energy and exergy balances are calculated at different engine speeds. The results show that the energy and exergy of the heat rejection for gasoline and CNG fuels increases with increasing engine speed and the exergy efficiencies are slightly higher than the corresponding energy efficiencies. Moreover, the results show that the exergy efficiency for gas-fuel is higher than the gasoline-fuel exergy efficiency at all engine speeds. The results show that due to volumetric efficiency drop, power and torque of the gas-fuel engine is lower than gasoline-fuel one. Furthermore, the specific fuel consumption of the gas-fuel engine is lower than gasoline-fuel one. The results of this study have revealed that the most important source of the system inefficiency is the destruction of exergy by irreversible processes, mostly by the combustion. Moreover, it should be noted that liquid fuels like gasoline have many important advantages like much greater volumetric energy density, ease of transport and storage, which have made them as the preferred fuels for IC engines.

  18. Alternative fuels and their operational effects; Alternative Brennstoffe und deren betriebstechnische Auswirkungen

    Energy Technology Data Exchange (ETDEWEB)

    Benesch, Wolfgang; Keldenich, Kai [Evonik Energy Services GmbH (Germany); Schirmer, Matthias [Evonik New Energies GmbH (Germany)

    2008-07-01

    The Federal Republic of Germany aims at a portion of 30 % of the power supply from renewable energies for the year 2020. In these premises, the biomass also is used as a possible energy source. The contribution under consideration reports on the use of solid sources of energy / biomasses in heating installations. The considered biomasses directly can be used as fresh material from the forest and as residual substances derived from wastes. Thus, fossil fuels are saved by means of processed wastes, substitute fuels or solid recovered fuels. The combustion properties, combustion technologies and boiler concepts of the biogenic fuels and fuels derived from wastes have to be considered.

  19. Emissions from small scale combustion of pelletized wood fuels

    International Nuclear Information System (INIS)

    Combustion of wood pellets in small scale heating systems with an effect below 20 kW has increased. During the winter season 1995/96 1500 small plants for heating houses are estimated to be in operation. Stack emissions from three pellet burners and two pellet stoves have been studied at laboratory. Different pellet qualities were tested. When the fraction of fines increased also the NOx emissions increased with about 10 %. As reference fuel 8 mm pellets was used. Tests with 6 mm pellets gave, in most cases, significant lower emissions of CO and THC. Eleven stoves, burners and boilers were studied in a field test. The results show that all the plants generally have higher emissions in the field than during conditions when the plants are adjusted with a stack gas monitoring instrument. A conclusion is that it is difficult for the operator to adjust the plant without a monitoring instrument. The emissions from the tested plants give an estimation of stack gas emissions from small scale pellet plants. The difference between the 'best' and 'worst' technologies is big. The span of emissions with the best technology to the worst is given below. The interval is concerning normal combustion . During abnormal conditions the emissions are on a significant higher level: * CO 80-1 000 mg/MJ; * Tar 0,3-19 mg/MJ; * THC (as methane equivalents) 2-100 mg/MJ; * NOx 50-70 mg/W;, and * Dust emissions 20-40 mg/MJ. Emissions from pellets heating are lower than from wood combustion and the best technology is close to the emission from oil burners. Wood and pellets have the same origin but the conditions to burn them in an environmental friendly way differ. Combustion of pellets could be improved through improved control of the air and fuel ratio that will create more stable conditions for the combustion

  20. Emissions from Petrol Engine Fueled Gasoline–Ethanol–Methanol (GEM Ternary mixture as Alternative Fuel

    Directory of Open Access Journals (Sweden)

    Thangavelu Saravana Kannan

    2015-01-01

    Full Text Available The increasing demands of petroleum fuels due to the rapid development automotive society coupled with the environmental pollution issues have inspired the efforts on exploring alternative fuels for internal combustion engines. Bioethanol obtained from biomass and bioenergy crops has been proclaimed as one of the feasible alternative to gasoline. In this study, the effect of gasoline–ethanol–methanol (GEM ternary blend on the emission characteristics of petrol engine was studied. Three different fuel blends, namely, E0 (gasoline, G75E21M4 (75% gasoline, 21% hydrous ethanol and 4% methanol and E25 (25% anhydrous ethanol and 75% gasoline were tested in a 1.3-l K3-VE spark-ignition engine. The results indicate that, when G75E21M4 fuel blend was used, a significant drop in CO, CO2, NOx and HC emissions by about 42%, 15%, 7% and 5.2% compared to E0, respectively. Moreover, the emission results for G75E21M4 are marginally lower than E25 whereas; HC emission was slightly higher than E25.

  1. Determination of heating value of industrial waste for the formulation of alternative fuels

    Directory of Open Access Journals (Sweden)

    Bouabid G.

    2013-09-01

    Full Text Available The use of alternative fuels has become increasingly widespread. They are basically designed based on industrial waste so that they can substitute fossil fuels which start to become scarce. Alternative fuels must meet some criteria, namely an important calorific content, minimum humidity and ash content. When it comes to combustion, the most interesting parameter is the calorific value which represents the thermal energy released during combustion. The experiments that were conducted showed that the calorific value is influenced by other parameters namely moisture and ash content. It was therefore necessary to study the behavior of the heating value in terms of these two parameters in order to establish a relationship that is used to describe the behavior. This is expected to allow a simulation of the calorific value of a mixture of various industrial waste.

  2. Applicability of dimethyl ether (DME) in a compression ignition engine as an alternative fuel

    International Nuclear Information System (INIS)

    Highlights: • Overall characteristics of DME fueled engine are reviewed. • Fuel properties characteristics of DME are introduced. • New technologies for DME vehicle are systemically reviewed. • Research trends for the development of DME vehicle in the world are introduced. - Abstract: From the perspectives of environmental conservation and energy security, dimethyl-ether (DME) is an attractive alternative to conventional diesel fuel for compression ignition (CI) engines. This review article deals with the application characteristics of DME in CI engines, including its fuel properties, spray and atomization characteristics, combustion performance, and exhaust emission characteristics. We also discuss the various technological problems associated with its application in actual engine systems and describe the field test results of developed DME-fueled vehicles. Combustion of DME fuel is associated with low NOx, HC, and CO emissions. In addition, PM emission of DME combustion is very low due to its molecular structure. Moreover, DME has superior atomization and vaporization characteristics than conventional diesel. A high exhaust gas recirculation (EGR) rate can be used in a DME engine to reduce NOx emission without any increase in soot emission, because DME combustion is essentially soot-free. To decrease NOx emission, engine after-treatment devices, such as lean NOx traps (LNTs), urea-selective catalytic reduction, and the combination of EGR and catalyst have been applied. To use DME fuel in automotive vehicles, injector design, fuel feed pump, and the high-pressure injection pump have to be modified, combustion system components, including sealing materials, have to be rigorously designed. To use DME fuel in the diesel vehicles, more research is required to enhance its calorific value and engine durability due to the low lubricity of DME, and methods to reduce NOx emission are also required

  3. Overview of alternate-fuel fusion

    International Nuclear Information System (INIS)

    Alternate fuels (AFs) such as Cat-D, D-3He and p-11B offer the potential advantages of elimination of tritium breeding and reduced energy release in neutrons. An adequate energy balance appears exceedingly difficult to achieve with proton-based fuels such as p-11B. Thus Cat-D, which can ignite at temperatures in the range of 30 to 40 keV, represents the logical near-term candidate. An attractive variation which adds flexibility would be to develop semi-catalyzed-D plants for synfuel production with simultaneous generation of 3He for use in D-3He satellite electrical power plants. These approaches and problems are discussed

  4. Novel approaches in advanced combustion characterization of fuels for advanced pressurized combustion

    Energy Technology Data Exchange (ETDEWEB)

    Aho, M.; Haemaelaeinen, J. [VTT Energy (Finland); Joutsenoja, T. [Tampere Univ. of Technology (Finland)

    1996-12-01

    This project is a part of the EU Joule 2 (extension) programme. The objective of the research of Technical Research Centre of Finland (VTT) is to produce experimental results of the effects of pressure and other important parameters on the combustion of pulverized coals and their char derivates. The results can be utilized in modelling of pressurized combustion and in planning pilot-scale reactors. The coals to be studied are Polish hvb coal, French lignite (Gardanne), German anthracite (Niederberg) and German (Goettelbom) hvb coal. The samples are combusted in an electrically heated, pressurized entrained flow reactor (PEFR), where the experimental conditions are controlled with a high precision. The particle size of the fuel can vary between 100 and 300 {mu}m. The studied things are combustion rates, temperatures and sizes of burning single coal and char particles. The latter measurements are performed with a method developed by Tampere University of Technology, Finland. In some of the experiments, mass loss and elemental composition of the char residue are studied in more details as the function of time to find out the combustion mechanism. Combustion rate of pulverized (140-180 {mu}m) Gardanne lignite and Niederberg anthracite were measured and compared with the data obtained earlier with Polish hvb coal at various pressures, gas temperatures, oxygen partial pressures and partial pressures of carbon dioxide in the second working period. In addition, particle temperatures were measured with anthracite. The experimental results were treated with multivariable partial least squares (PLS) method to find regression equation between the measured things and the experimental variables. (author)

  5. Pre-heating Fuel for Charge Homogeneity to Improve Combustion

    Directory of Open Access Journals (Sweden)

    Arjun Shanmukam

    2013-06-01

    Full Text Available The idea of the automobile engine that people have is of one that is bygone. The automobile engine today is the pinnacle of engineering expertise, implementing the best of technologies and undergoing the best of manufacturing processes to make the closest possible achievement to perfection, from design to combustion. The art of perfection though starts much before the process itself. In case of the automobile engine, the process is the 4-Stroke cycle that most engines go through and the art we are referring to is attaining homogeneity in charge. Homogeneous charge in an Internal Combustion Engine refers to the complete mixture of fuel (Petrol and air, entering the cylinder. Ideally this would mean the complete dispersion of the atomised fuel in air. This as a result reduces the overall efficiency of the engine. To help achieve the required atomisation, reducing the Surface Tension of the fuel is a potential solution. On reduction of Surface Tension the atomisation is enhanced, possibly reaching the ideal value. This can be achieved by heating the fuel to an operating temperature for which heat can be extracted from a potential source, namely the Exhaust Manifold.

  6. Ammonia chemistry in oxy-fuel combustion of methane

    DEFF Research Database (Denmark)

    Mendiara, Teresa; Glarborg, Peter

    2009-01-01

    The oxidation of NH3 during oxy-fuel combustion of methane, i.e., at high [CO2], has been studied in a flow reactor. The experiments covered stoichiometries ranging from fuel rich to very fuel lean and temperatures from 973 to 1773 K. The results have been interpreted in terms of an updated...... detailed chemical kinetic model. A high CO2 level enhanced formation of NO under reducing conditions while it inhibited NO under stoichiometric and lean conditions. The detailed chemical kinetic model captured fairly well all the experimental trends. According to the present study, the enhanced CO...... concentrations and alteration in the amount and partitioning of O/H radicals, rather than direct reactions between N-radicals and CO2, are responsible for the effect of a high CO2 concentration on ammonia conversion. When CO2 is present as a bulk gas, formation of NO is facilitated by the increased OH/H ratio...

  7. Effect of Pilot Injection Timings on the Combustion Temperature Distribution in a Single-Cylinder CI Engine Fueled with DME and ULSD

    Directory of Open Access Journals (Sweden)

    Jeon Joonho

    2016-01-01

    Full Text Available Many studies of DiMethyl Ether (DME as an alternative fuel in Compression-Ignition (CI engines have been performed. Although diverse DME engine research has been conducted, the investigation of combustion behavior and temperature distribution in the combustion engine has not progressed due to the fact that there is no sooting flame in DME combustion. In order to investigate the combustion characteristics in this study, the KIVA-3 V code was implemented to research various pilot injection strategies on a single-cylinder CI engines with DME and Ultra-Low-Sulfur Diesel (ULSD fuels. The combustion distribution results obtained from the numerical investigation were validated when compared with the measurement of flame temperature behaviors in the experimental approach. This study showed that long intervals between two injection timings enhanced pilot combustion by increasing the ambient pressure and temperature before the start of the main combustion. Different atomization properties between DME and ULSD fuels contributed to the formation of a fuel-air mixture at the nozzle tip and piston lip regions, separately, which strongly affected the temperature distribution of the two fuels. In addition, the pilot injection timing played a vital role in regard to ignition delay and peak combustion temperatures. Exhaust emissions, such as NOx and soot, are related to the local equivalence ratio and temperature in the combustion chamber, also illustrated by the contrary result on a Φ (equivalence ratio – T (temperature map.

  8. Preliminary ecotoxicity assessment of new generation alternative fuels in seawater.

    Science.gov (United States)

    Rosen, Gunther; Dolecal, Renee E; Colvin, Marienne A; George, Robert D

    2014-06-01

    The United States Navy (USN) is currently demonstrating the viability of environmentally sustainable alternative fuels to power its fleet comprised of aircraft and ships. As with any fuel used in a maritime setting, there is potential for introduction into the environment through transport, storage, and spills. However, while alternative fuels are often presumed to be eco-friendly relative to conventional petroleum-based fuels, their environmental fate and effects on marine environments are essentially unknown. Here, standard laboratory-based toxicity experiments were conducted for two alternative fuels, jet fuel derived from Camelina sativa (wild flax) seeds (HRJ5) and diesel fuel derived from algae (HRD76), and two conventional counterparts, jet fuel (JP5) and ship diesel (F76). Initial toxicity tests performed on water-accommodated fractions (WAF) from neat fuels partitioned into seawater, using four standard marine species in acute and chronic/sublethal tests, indicate that the alternative fuels are significantly less toxic to marine organisms. PMID:24315182

  9. A COMPUTATIONAL SOFTWARE PROGRAM FOR DETERMINING THE COMBUSTION TEMPERATURES OF SOLID FUELS

    Directory of Open Access Journals (Sweden)

    Marta Kowalik

    2013-06-01

    Full Text Available The combustion temperature is one of parameters influencing the efficiency of combustion process. The analytical, model and design calculations of processes related to fuel combustion and heat exchange intensity require the combustion temperature to be correctly determined. These are, however, complex, and, as a consequence, burdensome and time-consuming requirements. Developing an appropriate software program will considerably streamline the calculation procedure. Based on analytical relationships for the combustion process, a computational software program has been developed within this study, which enables the determination of the calorimetric, theoretical and actual combustion temperatures of solid fuels.

  10. Multi-criteria analysis of alternative-fuel buses for public transportation

    International Nuclear Information System (INIS)

    The technological development of buses with new alternative fuels is considered in this paper. Several types of fuels are considered as alternative-fuel modes, i.e., electricity, fuel cell (hydrogen), and methanol. Electric vehicles may be considered the alternative-fuel vehicles with the lowest air pollution. Hybrid electric vehicles provide an alternate mode, at least for the period of improving the technology of electric vehicles. A hybrid electric vehicle is defined as a vehicle with the conventional internal combustion engine and an electric motor as its major sources of power. Experts from different decision-making groups performed the multiple attribute evaluation of alternative vehicles. AHP is applied to determine the relative weights of evaluation criteria. TOPSIS and VIKOR are compared and applied to determine the best compromise alternative fuel mode. The result shows that the hybrid electric bus is the most suitable substitute bus for Taiwan urban areas in the short and median term. But, if the cruising distance of the electric bus extends to an acceptable range, the pure electric bus could be the best alternative

  11. Combustion Characteristics of a Diesel Engine Using Propanol Diesel Fuel Blends

    Science.gov (United States)

    Muthaiyan, Pugazhvadivu; Gomathinayagam, Sankaranarayanan

    2016-03-01

    The objective of the work is to study the use of propanol diesel blends as alternative fuel in a single cylinder diesel engine. In this work, four different propanol diesel blends containing 10, 15, 20 and 25 % propanol in diesel by volume were used as fuels. Load tests were conducted on the diesel engine and the combustion parameters such as cylinder gas pressure, ignition delay, rate of heat release and rate of pressure rise were investigated. The engine performance and emission characteristics were also studied. The propanol diesel blends showed longer ignition delay, higher rates of heat release and pressure rise. The thermal efficiency of the engine decreased marginally with the use of fuel blends. The propanol diesel blends decreased the CO, NOX and smoke emissions of the engine considerably.

  12. California's experience with alternative fuel vehicles

    International Nuclear Information System (INIS)

    California is often referred to as a nation-state, and in many aspects fits that description. The state represents the seventh largest economy in the world. Most of California does not have to worry about fuel to heat homes in the winter. What we do worry about is fuel for our motor vehicles, approximately 24 million of them. In fact, California accounts for ten percent of new vehicle sales in the United States each year, much of it used in the transportation sector. The state is the third largest consumer of gasoline in the world, only exceeded by the United States as a whole and the former Soviet Union. California is also a leader in air pollution. Of the nine worst ozone areas in the country cited in the 1990 Clean Air Act Amendments, two areas the Los Angeles Basin and San Diego are located in California. Five of California's cities made the top 20 smoggiest cities in the United States. In reality, all of California's major metropolitan areas have air quality problems. This paper will discuss the beginnings of California's investigations of alternative fuels use in vehicles; the results of the state's demonstration programs; and future plans to improve California's air quality and energy security in the mobile sector

  13. Characterisation of ashes produced by co-combustion of recovered fuels and peat

    Energy Technology Data Exchange (ETDEWEB)

    Frankenhaeuser, M.; Zevenhoven, R. [Borealis Polymers Oy, Porvoo (Finland); Skrifvars, B.J. [Aabo Akademi, Turku (Finland); Orjala, M. [VTT Energy, Espoo (Finland); Peltola, K. [Foster Wheeler Energy (Finland)

    1996-12-01

    Source separation of combustible materials from household or municipal solid waste yields a raw material for the production of Packaging Derived Fuel (PDF). This fuel can substitute the traditional fuels in heat and power generation and is also called recycled fuel. Co-combustion of these types of fuels with coal has been studied in several LIEKKI-projects and the results have been both technically and environmentally favourable. (author)

  14. Future Combustion Technology for Synthetic and Renewable Fuels in Compression Ignition Engines (REFUEL) - Final report

    OpenAIRE

    Aakko-Saksa, Päivi; Brink, Anders; Happonen, Matti; Heikkilä, Juha; Hulkkonen, Tuomo; Imperato, Matteo; Kaario, Ossi; Koponen, Päivi; Larmi, Martti; Lehto, Kalle; Murtonen, Timo; Sarjovaara, Teemu; Tilli, Aki; Väisänen, Esa

    2012-01-01

    This domestic project, Future Combustion Technology for Synthetic and Renewable Fuels in Compression Ignition Engines (ReFuel), was part of a Collaborative Task "Future Combustion Technology for Synthetic and Renewable Fuels in Transport" of International Energy Agency (IEA) Combustion Agreement. This international Collaborative Task is coordinated by Finland. The three-year (2009-2011) project was a joint research project with Aalto University (Aalto), Tampere University of Technology (TUT)...

  15. A numerical investigation on the influence of EGR in a supercharged SI engine fueled with gasoline and alternative fuels

    International Nuclear Information System (INIS)

    Highlights: • CFD modeling the combustion of different alternative fuels in SI engine. • 10% of EGR is the most desirable amount from the viewpoint of emissions and power. • EGR affects on methane fuel more than others. • Supercharging has the most noticeable effect on gasoline fuel and the least on hydrogen fuel. - Abstract: Alternative fuels are mostly extracted from renewable resources, and their emission levels can be lower than those of traditional fossil-based fuels. A computational fluid dynamics (CFD) method is utilized to investigate the effects of exhaust gas recirculation (EGR) and initial charge pressure on the emissions and performance of a SI engine. The engine is fueled separately by gasoline and some of potential alternative fuels including hydrogen, propane, methane, ethanol and methanol. The results of simulation are compared to the experimental data. In all validation cases, experimental and numerical results were observed to have good agreement with each other. The calculations are carried out for EGR ratios between 0% and 20% and four cases of initial pressure have been mentioned: Pin = 1, 1.2, 1.4, 1.6 bar. The effect of EGR on NOx emission of methane is more than other fuels and its effect on IMEP of hydrogen is less than other fuels. From the viewpoints of emission and power, 10% of EGR seems to be the most desirable amount. The most noticeable effect of supercharging is on gasoline unlike hydrogen, which seems to be affected the least. The comparison of results shows that hydrogen due to its high heating value and burning without producing any carbon-based compounds such as HC, CO and CO2 is an ideal alternative fuel compared to the other fuels

  16. Experimental results with hydrogen fueled internal combustion engines

    Science.gov (United States)

    De Boer, P. C. T.; Mclean, W. J.; Homan, H. S.

    1975-01-01

    The paper focuses on the most important experimental findings for hydrogen-fueled internal combustion engines, with particular reference to the application of these findings to the assessment of the potential of hydrogen engines. Emphasis is on the various tradeoffs that can be made, such as between maximum efficiency, maximum power, and minimum NO emissions. The various possibilities for induction and ignition are described. Some projections are made about areas in which hydrogen engines may find their initial application and about optimum ways to design such engines. It is shown that hydrogen-fueled reciprocal internal combustion engines offer important advantages with respect to thermal efficiency and exhaust emissions. Problems arising from preignition can suitably be avoided by restricting the fuel-air equivalence ratio to values below about 0.5. The direct cylinder injection appears to be a very attractive way to operate the engine, because it combines a wide range of possible power outputs with a high thermal efficiency and very low NO emissions at part loads.

  17. Combustion Mode Design with High Efficiency and Low Emissions Controlled by Mixtures Stratification and Fuel Reactivity

    Directory of Open Access Journals (Sweden)

    Hu eWang

    2015-08-01

    Full Text Available This paper presents a review on the combustion mode design with high efficiency and low emissions controlled by fuel reactivity and mixture stratification that have been conducted in the authors’ group, including the charge reactivity controlled homogeneous charge compression ignition (HCCI combustion, stratification controlled premixed charge compression ignition (PCCI combustion, and dual-fuel combustion concepts controlled by both fuel reactivity and mixture stratification. The review starts with the charge reactivity controlled HCCI combustion, and the works on HCCI fuelled with both high cetane number fuels, such as DME and n-heptane, and high octane number fuels, such as methanol, natural gas, gasoline and mixtures of gasoline/alcohols, are reviewed and discussed. Since single fuel cannot meet the reactivity requirements under different loads to control the combustion process, the studies related to concentration stratification and dual-fuel charge reactivity controlled HCCI combustion are then presented, which have been shown to have the potential to achieve effective combustion control. The efforts of using both mixture and thermal stratifications to achieve the auto-ignition and combustion control are also discussed. Thereafter, both charge reactivity and mixture stratification are then applied to control the combustion process. The potential and capability of thermal-atmosphere controlled compound combustion mode and dual-fuel reactivity controlled compression ignition (RCCI/highly premixed charge combustion (HPCC mode to achieve clean and high efficiency combustion are then presented and discussed. Based on these results and discussions, combustion mode design with high efficiency and low emissions controlled by fuel reactivity and mixtures stratification in the whole operating range is proposed.

  18. Energy and exergy analysis of chemical looping combustion technology and comparison with pre-combustion and oxy-fuel combustion technologies for CO2 capture

    OpenAIRE

    Mukherjee, S.; Kumar, P.; Yang, A.; P. Fennell

    2015-01-01

    Abstract Carbon dioxide (CO2) emitted from conventional coal-based power plants is a growing concern for the environment. Chemical looping combustion (CLC), pre-combustion and oxy-fuel combustion are promising CO2 capture technologies which allow clean electricity generation from coal in an integrated gasification combined cycle (IGCC) power plant. This work compares the characteristics of the above three capture technologies to those of a conventional IGCC plant without CO2 capture. CLC tech...

  19. Advanced Diagnostics in Oxy-Fuel Combustion Processes

    DEFF Research Database (Denmark)

    Brix, Jacob; Toftegaard, Maja Bøg; Clausen, Sønnik;

    in the sampling equipment. The use of the IR technique for determination of particle temperatures, particle sizes, and number density proved reliable in both the swirl burner and the laboratory scale fixed bed reactor. When the technique was used in the swirl burner the subsequent data treatment was......This report sums up the findings in PSO-project 010069, “Advanced Diagnostics in Oxy- Fuel Combustion Processes”. Three areas of optic diagnostics are covered in this work: - FTIR measurements in a 30 kW swirl burner. - IR measurements in a 30 kW swirl burner. - IR measurements in a laboratory...

  20. Fireside Corrosion in Oxy-fuel Combustion of Coal

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, Gordon R [National Energy Technology Laboratory; Tylczak, Joseph [National Energy Technology Laboratory; Meier, Gerald H [University of Pittsburgh; Lutz, Bradley [University of Pittsburgh; Jung, Keeyoung [Institute of Industrial Science and Technology, Korea; Mu, Nan; Yanar, Nazik M [University of Pittsburgh; Pettit, Frederick S [University of Pittsburgh; Zhu, Jingxi [Carnegie Mellon University; Wise, Adam [Carnegie Mellon University; Laughlin, David E. [Carnegie Mellon University; Sridhar, Seetharaman [Carnegie Mellon University

    2013-11-25

    Oxy-fuel combustion is burning a fuel in oxygen rather than air for ease of capture of CO2 from for reuse or sequestration. Corrosion issues associated with the environment change (replacement of much of the N2 with CO2 and higher sulfur levels) from air- to oxy-firing were examined. Alloys studied included model Fe–Cr alloys and commercial ferritic steels, austenitic steels, and nickel base superalloys. The corrosion behavior is described in terms of corrosion rates, scale morphologies, and scale/ash interactions for the different environmental conditions. Evidence was found for a hreshold for severe attack between 10-4 and 10-3 atm of SO3 at 700ºC.

  1. Detailed Chemical Kinetic Mechanisms for Combustion of Oxygenated Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, E.M.; Pitz, W.J.; Curran, H.J.; Westbrook, C.K.

    2000-01-11

    Thermodynamic properties and detailed chemical kinetic models have been developed for the combustion of two oxygenates: methyl butanoate, a model compound for biodiesel fuels, and methyl formate, a related simpler molecule. Bond additivity methods and rules for estimating kinetic parameters were adopted from hydrocarbon combustion and extended. The resulting mechanisms have been tested against the limited combustion data available in the literature, which was obtained at low temperature, subatmospheric conditions in closed vessels, using pressure measurements as the main diagnostic. Some qualitative agreement was obtained, but the experimental data consistently indicated lower overall reactivities than the model, differing by factors of 10 to 50. This discrepancy, which occurs for species with well-established kinetic mechanisms as well as for methyl esters, is tentatively ascribed to the presence of wall reactions in the experiments. The model predicts a region of weak or negative dependence of overall reaction rate on temperature for each methyl ester. Examination of the reaction fluxes provides an explanation of this behavior, involving a temperature-dependent competition between chain-propagating unimolecular decomposition processes and chain-branching processes, similar to that accepted for hydrocarbons. There is an urgent need to obtain more complete experimental data under well-characterized conditions for thorough testing of the model.

  2. Combustion of liquid fuel in the counter-swirled jets of a gas turbine plant annular combustion chamber

    Science.gov (United States)

    Tumanovskii, A. G.; Semichastnyi, N. N.; Sokolov, K. Iu.

    1986-03-01

    Tests were carried out on an annular combustion chamber rig with a stabilizer of the type used in the GTN-25 gas turbine plant to determine the feasibility of burning a liquid fuel (diesel fuel, GOST 4749-73) in a combustion chamber of this type. Very high performance was obtained for a number of important characteristics of the microflame combustion process in counterswirled jets where all the air was supplied through the front unit of the chamber. However, the tests did not make it possible to solve some of the problems which arise when operating under full-scale conditions, such as the required high combustion efficiency under variable operating conditions of a gas turbine plant; elimination of soot formation at the walls of the stabilizer and the internal surfaces of the pipes supplying fuel to the atomizers; and a decrease in smoking under conditions of excess air factor.

  3. Maintenance and operation of the US Alternative Fuel Center

    Energy Technology Data Exchange (ETDEWEB)

    Erwin, J.; Ferrill, J.L.; Hetrick, D.L. [Southwest Research Inst., San Antonio, TX (United States)

    1994-08-01

    The Alternative Fuels Utilization Program (AFUP) of the Office of Energy Efficiency and Renewable Energy has investigated the possibilities and limitations of expanded scope of fuel alternatives and replacement means for transportation fuels from alternative sources. Under the AFUP, the Alternative Fuel Center (AFC) was created to solve problems in the DOE programs that were grappling with the utilization of shale oil and coal liquids for transportation fuels. This report covers the first year at the 3-year contract. The principal objective was to assist the AFUP in accomplishing its general goals with two new fuel initiatives selected for tasks in the project year: (1) Production of low-sulfur, low-olefin catalytically cracked gasoline blendstock; and (2) production of low-reactivity/low-emission gasoline. Supporting goals included maintaining equipment in good working order, performing reformulated gasoline tests, and meeting the needs of other government agencies and industries for fuel research involving custom processing, blending, or analysis of experimental fuels.

  4. Standardization of Alternative Fuels. Phase 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-08-15

    March 2003 the Executive Committee of the International Energy Agency's Implementing Agreement on Advanced Motor fuels (IEA/AMF) decided to continue annex XXVII 'Standardization of alternative fuels' with a second phase. The purpose of the second phase was to go further in the contacts with the International Organization for Standardization (ISO) as well as the European Committee for Standardization (CEN) and their technical committees, to better understand their needs and to investigate how IEA/AMF could contribute to their work. It was also scheduled to put forward proposals on how IEA/AMF could cooperate with CEN and ISO and their technical committees (TC: s), primarily ISO/TC 28 'Petroleum Products and Lubricants' and CEN/TC 19 'Petroleum Products, Lubricants and Related Products'. The main part of the work in IEA/AMF annex XXVII phase two has focused on personal contacts within CEN/TC 19 and ISO/TC 28, but also on data and information collection from websites and written information. Together with the analysis of this information, the internal organization of a cooperation between IEA/AMF and ISO/TC 28 and of a cooperation between IEA/AMF and CEN/TC 19 have also been discussed and analysed.

  5. Energy supply technologies. Thermal fuel conversion pyrolysis, gasification and combustion

    Energy Technology Data Exchange (ETDEWEB)

    Frandsen, Flemming J.; Jensen, Anker; Jensen, Peter A.; Glarborg, P.; Dam-Johansen, K. [DTU (Denmark)

    2007-11-15

    The basic idea in thermal conversion of fuels is to transform and utilize chemical energy bound in the fuel to e.g. supersaturated steam in steam cycle, from which electricity may be produced upon passage of a steam turbine. Anyhow, thermal conversion of solid fuels occur, in principle, either in one strongly exothermic step from fuel to fully oxidized species, or in multiple steps, initiated by an endothermic step, in which a calorific gas is produced, followed by multiple exothermic conversion steps. The difference between these extremes provides possibilities of heat and power production, combined with application of gaseous products for production of liquid fuels. Recently, several opportune concepts of combined thermal conversion and fuel production have been introduced. Recommendations for future research areas: 1) Further development of pressurized gasifiers to handle biomass and waste as well as co-gasification of biomass and coal. 2) Work on integration of the gas-to-liquid (GLT) technology with power production so that waste heat can be used efficiently for power and central heat production. Integration with other advanced technologies so outlet CO{sub 2}-sequestration can be obtained and that the gasification can be integrated with combined cycle power production. 3) Increase of plant efficiency by improving the efficiency of both the gasification and synthesis process. 4) Development of new catalysts, with higher tolerance towards poisoning, and improved control over product composition. 5) Development and test of motors, and distribution systems, for new fuel types. There are several incitements to provide alternative transport fuels based on biomass as a raw material. It will be a CO{sub 2}-neutral transport fuel, it will reduce the dependence on imported fossil fuels in the Western world, and it is possible to further develop a domestic industry based on liquid fuels. (BA)

  6. Applying Thermodynamics to Fossil Fuels: Heats of Combustion from Elemental Compositions.

    Science.gov (United States)

    Lloyd, William G.; Davenport, Derek A.

    1980-01-01

    Discussed are the calculations of heats of combustions of some selected fossil fuel compounds such as some foreign shale oils and United States coals. Heating values for coal- and petroleum-derived fuel oils are also presented. (HM)

  7. Health effects of fossil-fuel combustion products: needed research

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    An examination is made of the research needed to expand and clarify the understanding of the products of fossil-fuel combustion, chiefly that taking place in stationary sources of power. One of the specific objectives that guided the study on which this report is based was to identify the pollutants potentially hazardous to man that are released into the environment in the course of the combustion of fossil fuels. The hazards of principal concern are those which could cause deleterious, long-term somatic and genetic effects. Another objective was to specify the nature of the research needed to determine the health effects of these pollutants on the general population. Special attention was paid to the interaction of pollutants; the meteorologic and climatic factors that affect the transport, diffusion, and transformation of pollutants; the effects of concentrations of aerosol, particulate, and thermal loads on biologic systems; and the susceptibility of some portions of the population to the effects of pollutants on the skin and cardiovascular, pulmonary, and urinary systems. Other objectives were to evaluate the methods of the proposed research, including analytic and interpretation techniques, to identify fields in which the available scientific information is inadequate for regulatory decision-making and to recommend a research program to meet those deficiencies, and to provide a logical framework within which the necessary information can be developed (the proposed program is presented in terms of subject, methods, and priorities).

  8. Combustion Chemistry Diagnostics for Cleaner Processes.

    Science.gov (United States)

    Kohse-Höinghaus, Katharina

    2016-09-12

    Climate change, environmental problems, urban pollution, and the dependence on fossil fuels demand cleaner, renewable energy strategies. However, they also ask for urgent advances in combustion science to reduce emissions. For alternative fuels and new combustion regimes, crucial information about the chemical reactions from fuel to exhaust remains lacking. Understanding such relations between combustion process, fuel, and emissions needs reliable experimental data from a wide range of conditions to provide a firm basis for predictive modeling of practical combustion processes. PMID:27440049

  9. Fate of Cu, Cr, As and some other trace elements during combustion of recovered waste fuels

    OpenAIRE

    Lundholm, Karin

    2007-01-01

    The increased use of biomass and recovered waste fuels in favor of fossil fuels for heat and power production is an important step towards a sustainable future. Combustion of waste fuels also offers several advantages over traditional landfilling, such as substantial volume reduction, detoxification of pathological wastes, and reduction of toxic leaches and greenhouse gas (methane) formation from landfills. However, combustion of recovered waste fuels emits more harmful trace elements than co...

  10. Effect of Selected Alternative Fuels and Raw Materials on the Cement Clinker Quality

    Directory of Open Access Journals (Sweden)

    Strigáč Július

    2015-11-01

    Full Text Available The article deals with the study of the effects of alternative fuels and raw materials on the cement clinker quality. The clinker quality was expressed by the content of two principal minerals alite C3S and belite C2S. The additions of alternative fuels ashes and raw materials, in principle, always increased the belite content and conversely reduced the amount of alite. The alternative fuels with high ash content were used such as the meat-bone meal, sewage sludge from sewage treatment plants and paper sludge and the used alternative raw materials were metallurgical slags - granulated blastfurnace slag, air cooled blastfurnace slag and demetallized steel slag, fluidized bed combustion fly ash and waste glass. Meat-bone meal, sewage sludge from sewage treatment plants and paper sludge were evaluated as moderately suitable alternative fuels which can be added in the amounts of 2.8 wt. % addition of meat-bone meals ash, 3.64 wt. % addition of sewage sludge ash and 3.8 wt. % addition of paper sludge ash to the cement raw mixture. Demetallised steel slag is suitable for production of special sulphate resistant cement clinker for CEM I –SR cement with addition up to 5 wt. %. Granulated blastfurnace slag is a suitable alternative raw material with addition 4 wt. %. Air cooled blastfurnace slag is a suitable alternative raw material with addition 4.2 wt. %. Waste glass is not very appropriate alternative raw material with addition only 1.16 wt. %. Fluidized bed combustion fly ash appears not to be equally appropriate alternative raw material for cement clinker burning with less potential utilization in the cement industry and with addition 3.41 wt. %, which forms undesired anhydrite CaSO4 in the cement clinker.

  11. Alternative Thorium fuel cycle for LWRS

    International Nuclear Information System (INIS)

    In the paper, different thorium nuclear fuel cycles are examined and compared under light water reactor conditions, especially VVER-440. Two investigated thorium based fuels include one solely plutonium-thorium based fuel and the second one plutonium-thorium based fuel with initial uranium U-233 content. Both of them are used to carry and burn or transmute plutonium created in the classical UOX cycle. Different thorium fuel distribution in fuel assemblies is modeled - homogeneous and heterogenous. The article shows main features of VVER-440 reactor, analysed fuel assemblies and fuel cycles. Fuel cycles and fissile content in the fuel are tuned to fulfil operating conditions of VVER-440 reactor. The conclusion is concentrated on the rate of Pu transmutation and Pu with minor actinides cumulation in the spent thorium fuel and its comparison to UOX open fuel cycle. (authors)

  12. THE INFLUENCE OF CARBON BURNOUT ON SUBMICRON PARTICLE FORMATION FROM EMULSIFIED FUEL OIL COMBUSTION

    Science.gov (United States)

    The paper gives results of an examination of particle behavior and particle size distributions from the combustion of different fuel oils and emulsified fuels in three experimental combusators. Results indicate that improved carbon (C) burnout from fule oil combustion, either by...

  13. Maintenance and operation of the USDOE Alternative Fuel Center

    Energy Technology Data Exchange (ETDEWEB)

    Erwin, J.; Moulton, D.S.; Hetrick, D.L. [Southwest Research Inst., San Antonio, TX (United States)

    1994-08-01

    The Alternative Fuels Utilization Program (AFUP) of the Office of Energy Efficiency and Renewable Energy has investigated the possibilities and limitations of expanded scope of fuel alternatives and replacement means for transportation fuels from alternative sources. Under the AFUP, the Alternative Fuel Center (AFC) was created to solve problems in the DOE programs that were grappling with the utilization of shale oil and coal liquids for transportation fuels. In year one of this contract, a timeline was set to coordinate uses and operations of the AFC hydrogenation pilot plant among test fuels production project work, facility maintenance, other government work, and work for industry for second-generation operations. In year two, consistent with assisting the AFUP in accomplishing its general goals, the work was done with fuel producers, regulators, and users in mind. AFC capabilities and results were disseminated through tours and outside presentations.

  14. Energetic analysis of a syngas-fueled chemical-looping combustion combined cycle with integration of carbon dioxide sequestration

    International Nuclear Information System (INIS)

    Chemical-looping combustion for power generation has significant advantages over conventional combustion. Mainly, it allows an integration of CO2 capture in the power plant without energy penalty; secondly, a less exergy destruction in the combustion chemical transformation is achieved, leading to a greater overall thermal efficiency. Most efforts have been devoted to systems based on methane as a fuel, although other systems for alternative fuels have can be proposed. This paper focus on the study of the energetic performance of this concept of combustion in a gas turbine combined cycle when synthesis gas is used as fuel. After optimization of some thermodynamic parameters of the cycle, the power plant performance is evaluated under diverse working conditions and compared to a conventional gas turbine system. Energy savings related with CO2 capture and storage have been quantified. The overall efficiency increase is found to be significant, reaching values of around 5% (even more in some cases). In order to analyze the influence of syngas composition on the results, different H2-content fuels are considered. In a context of real urgency to reduce green house gas emissions, this work is intended to contribute to the conceptual development of highly efficient alternative power generation systems. - Highlights: • Analysis of the energetic performance of a CLC (chemical-looping combustion) gas turbine system is done. • Syngas as fuel and iron oxides as oxygen carrier are considered. • Different H2-content syngas are under study. • Energy savings accounting CO2 sequestration and storage are quantified. • A significant increase on thermal efficiency of about 5–6% is found

  15. Ash related behaviour in staged and non-staged combustion of biomass fuels and fuel mixtures

    International Nuclear Information System (INIS)

    The fate of selected elements (with focus on the important players in corrosion i.e. Na, K, Pb, Zn, Cl and S) are investigated for three biomasses (wood, demolition wood and coffee waste) and six mixtures of these as pellets both with and without air staging in a laboratory reactor. In order to get a complete overview of the combustion products, both online and offline analytical methods are used. Information is collected about: flue gas composition, particle (fly ash) size distribution and composition, bottom ash composition and melting properties. The main findings are: (1) complex interactions are taking place between the mixed fuels during combustion; (2) the mode of occurrence of an element as well as the overall structure of the fuel are important for speciation; (3) the pelletisation process, by bringing chemical elements into intimate contact, may affect partitioning and speciation; (4) staging and mixing might simultaneously have positive and negative effects on operation; (5) staging affects the governing mechanisms of fly ash (aerosols) formation. -- Highlights: ► Complex interactions are taking place between the mixed fuels during combustion. ► The mode of occurrence of an element as well as the overall structure of the fuel are important for speciation. ► The pelletisation process, by bringing chemical elements into intimate contact, may affect partitioning and speciation. ► Staging and mixing might simultaneously have positive and negative effects on operation. ► Staging affects the governing mechanisms of fly ash (aerosols) formation.

  16. Co-firing fossil fuels and biomass: combustion, deposition and modelling

    OpenAIRE

    Khodier, Ala H. M.

    2011-01-01

    The application of advanced technologies employing combustion/co-firing of coal and biomass is seen as a promising approach to minimising the environmental impact and reducing CO2 emissions of heat/power production. The existing uncertainties in the combustion behaviour of such fuel mixes and the release of alkali metals with other elements during the combustion (or co-firing) of many bio-fuels are some of the main issues that are hindering its application. The potential presen...

  17. Velocities of Reacting Boron Particles within a Solid Fuel Ramjet Combustion Chamber

    OpenAIRE

    Sender, J.; H.K. Ciezki

    1998-01-01

    A 2D-laser doppler velocimeter was used to measure velocities of reacting boron (B) particles during the combustion of a metallised solid fuel slab inside a 20-combustion chamber. The solid fuel hydroxyl-terminated polybutadiene (HTPB) was enriched with B particles to increase its specific heat. To obtain information on the combustion process and on the movement of B particles, their velocities were measured. The experiments were performed at ambient pressure. The behaviour of the B pa...

  18. Fuel reactor modelling in chemical-looping combustion of coal: 2. simulation and optimization

    OpenAIRE

    García Labiano, Francisco; Diego Poza, Luis F. de; Gayán Sanz, Pilar; Abad Secades, Alberto; Adánez Elorza, Juan

    2013-01-01

    Chemical-Looping Combustion of coal (CLCC) is a promising process to carry out coal combustion with carbon capture. The process should be optimized in order to maximize the carbon capture and the combustion efficiency in the fuel reactor, which will depend on the reactor design and the operational conditions. In this work, a mathematical model of the fuel reactor is used to make predictions about the performance of the CLCC process and simulate the behaviour of the system ...

  19. Computational fluid dynamics (CFD) analysis of the combustion process of a leather residuals gasification fuel gas: influence of fuel moisture content

    Energy Technology Data Exchange (ETDEWEB)

    Antonietti, Anderson Jose; Beskow, Arthur Bortolin; Silva, Cristiano Vitorino da [Universidade Regional Integrada do Alto Uruguai e das Missoes (URI), Erechim, RS (Brazil)], E-mails: arthur@uricer.edu.br, mlsperb@unisinos.br; Indrusiak, Maria Luiza Sperb [Universidade do Vale do Rio dos Sinos (UNISINOS), Sao Leopoldo, RS (Brazil)], E-mail: cristiano@uricer.edu.br

    2010-07-01

    This work presents a numerical study of the combustion process of leather residuals gasification gas, aiming the improvement of the process efficiency, considering different concentrations of water on the gas. The heating produced in this combustion process can be used to generation of thermal and/or electrical energy, for use at the leather industrial plant. However, the direct burning of this leather-residual-gas into the chambers is not straightforward. The alternative in development consists in processing this leather residuals by gasification or pyrolysis, separating the volatiles and products of incomplete combustion, for after use as fuel in a boiler. At these processes, different quantities of water can be used, resulting at different levels of moisture content in this fuel gas. This humidity can affect significantly the burning of this fuel, producing unburnt gases, as the carbon monoxide, or toxic gases as NOx, which must have their production minimized on the process, with the purpose of reducing the emission of pollutants to the atmosphere. Other environment-harmful-gases, remaining of the chemical treatment employed at leather manufacture, as cyanide, and hydrocarbons as toluene, must burn too, and the moisture content has influence on it. At this way, to increase understanding of the influence of moisture in the combustion process, it was made a numerical investigation study of reacting flow in the furnace, evaluating the temperature field, the chemical species concentration fields, flow mechanics and heat transfer at the process. The commercial CFD code CFX Ansys Inc. was used. Considering different moisture contents in the fuel used on the combustion process, with this study was possible to achieve the most efficient burning operation parameters, with improvement of combustion efficiency, and reduction of environmental harmful gases emissions. It was verified that the different moisture contents in the fuel gas demand different operation conditions

  20. The use of thorium as an alternative nuclear fuel

    International Nuclear Information System (INIS)

    The use of thorium as an alternative or supplementary nuclear fuel is examined and compared with uranium. A description of various reactor types and their suitability to thorium fuel, and a description of various aspects of the fuel cycle from mining to waste disposal, are included. Comments are made on the safety and economics of each aspect of the fuel cycle and the extension of the lifetime of nuclear fuel

  1. A Model for Nitrogen Chemistry in Oxy-Fuel Combustion of Pulverized Coal

    DEFF Research Database (Denmark)

    Hashemi, Hamid; Hansen, Stine; Toftegaard, Maja Bøg;

    2011-01-01

    In this work, a model for the nitrogen chemistry in the oxy-fuel combustion of pulverized coal has been developed. The model is a chemical reaction engineering type of model with a detailed reaction mechanism for the gas-phase chemistry, together with a simplified description of the mixing of flows......, heating and devolatilization of particles, and gas–solid reactions. The model is validated by comparison with entrained flow reactor results from the present work and from the literature on pulverized coal combustion in O2/CO2 and air, covering the effects of fuel, mixing conditions, temperature......-fuel combustion and the conventional combustion of pulverized coal can mostly be attributed to the recycling of NO (reburning effect) and to changes in the mixing patterns between fuel and oxygen. For pulverized-fuel combustion at high temperatures, we think that NO is mainly reduced by heterogeneous reactions...

  2. Chemical Looping Combustion with Different Types of Liquid Fuels Combustion en boucle chimique avec différentes charges liquides

    Directory of Open Access Journals (Sweden)

    Hoteit A.

    2011-02-01

    Full Text Available CLC is a new promising combustion process for CO2 capture with less or even no energy penalty compared to other processes. Up to now, most of the work performed on CLC was conducted with gaseous or solid fuels, using methane and coal and/or pet coke. Liquid fuels such as heavy fuels resulting from oil distillation or conversion may also be interesting feedstocks to consider. However, liquid fuels are challenging feedstock to deal with in fluidized beds. The objective of the present work is therefore to investigate the feasibility of liquid feed injection and contact with oxygen carrier in CLC conditions in order to conduct partial or complete combustion of hydrocarbons. A batch experimental fluidized bed set-up was developed to contact alternatively oxygen carrier with liquid fuels or air. The 20 mm i.d. fluidized bed reactor was filled up with 45 g of NiAl0.44O1.67 and pulses of 1-2 g of liquid were injected in the bed at high temperatures up to 950˚C. Different feedstocks have been injected, from dodecane to heavy fuel oils No.2. Results show that, during the reduction period, it is possible to convert all the fuel injected and there is no coke remaining on particles at the end of the reduction step. Depending upon oxygen available in the bed, either full combustion or partial combustion can be achieved. Similar results were found with different liquid feeds, despite their different composition and properties. Le CLC est un nouveau concept prometteur appliqué à la combustion qui permet le captage de CO en minimisant la pénalité énergétique liée au captage. Jusqu’à présent, l’essentiel des travaux de recherche dans le domaine du CLC concerne les charges gazeuses (méthane et solides (charbon et coke. Les charges liquides, et particulièrement les résidus pétroliers, sont des charges également intéressantes à considérer a priori. La mise en oeuvre de ces charges en lit fluidisé est cependant délicate. L’objet de ce

  3. Decrease of noxious emissions in the residual fuel oil combustion; Disminucion de emisiones nocivas en la combustion de aceite combustible residual

    Energy Technology Data Exchange (ETDEWEB)

    Mandoki W, Jorge [Econergia S. de R. L. de C. V. Mexico, D. F. (Mexico)

    1994-12-31

    The residual fuel oil combustion emits noxious substances such as carbonaceous particulate, nitrogen oxides, and sulfur trioxide at unacceptable levels. Water emulsified in the fuel substantially reduces such emissions, achieving besides, in most of the cases, a net saving in the fuel consumption. The beneficial effects are shown in burning the residual fuel oil as a water emulsion, as well as the method to produce an adequate emulsion. The emulsified fuel technology offers a low cost option to reduce air pollution. The fuel oil quality has been declining during the last decades due to: 1. Increase in the production of crude heavy oils, generally with higher content of asphaltens and sulfur. 2. Less availability of vacuum distillation residues due to its conversion into greater value products. 3. More intensive conversion processes such as catalytic cracking, visbreaking, etc. that increase the asphaltenes concentration in the bottoms, causing instability problems. 4. The increase in the vanadium and other metals content as the concentration of asphaltenes increases. The use of emulsified fuel oil provides an efficient and economical method to substantially reduce the noxious emissions to the atmosphere. The emulsion contains water particles in a diameter between 2 and 20 microns, uniformly distributed in the fuel oil, generally in a proportion generally of 5 to 10%; besides, it contains a tensioactive agent to assure a stable emulsion capable of withstanding the shearing forces of the pumping and distribution systems. When the atomized oil drops get into the combustion chamber, the emulsified water flashes into high pressure steam, originating a violent secondary atomization. The effect of this secondary atomization is the rupture of the oil drops of various hundred microns, producing drops of 5 to 15 microns in diameter. Since the necessary time for combustion is an exponential function of the drop diameter, a very substantial improvement in the combustion is

  4. Influence of drop size distribution and fuel vapor fraction on premixed spray combustion

    Science.gov (United States)

    Machiroutu, Sridhar Venkatabojji

    Premixed spray combustion is affected by fuel and oxidizer properties, mixture equivalence ratio and spray quality. The spray quality is characterized by a mean droplet diameter (SMD) and a droplet size distribution (DSD). Prior experimental studies have considered only the influence of SMD, in part due to the difficulty in controlling the DSD independently. The present work provides experimental evidence demonstrating the effect of the fuel droplet size distribution and fuel vapor fraction on premixed spray combustion. Combustion experiments were performed in a pilot-ignited, continuous flow, tubular, vertical test rig wherein fuel sprays were injected into an air stream. A novel twin-atomizer technique that allowed control over overall equivalence ratio, SMD, DSD, and fuel vapor fraction of the premixed spray was used to generate test sprays. A line-of-sight, infrared (IR) extinction technique was developed to quantify the fuel vapor fraction in premixed sprays. Radial distributions of fuel vapor were evaluated using an 'onion peeling' deconvolution technique. Combustion of test sprays indicated flame propagation among regions of high fuel vapor fraction to generate a high rate of combustion. In lean premixed sprays, the presence of a low fuel vapor concentration does not impact the combustion process. Experimental evidence demonstrating the enhancement of flame propagation velocity for optimal SMDs of ethanol sprays has been found. It was observed that test sprays with narrower DSDs have faster burning rates and more complete combustion. The DSD of the sprays were characterized with a droplet surface-area-based standard deviation of the DSD.

  5. Investigation on the spontaneous combustion of refuse-derived fuels during storage using a chemiluminescence technique.

    Science.gov (United States)

    Matunaga, Atsushi; Yasuhara, Akio; Shimizu, Yoshitada; Wakakura, Masahide; Shibamoto, Takayuki

    2008-12-01

    Refuse-derived fuel (RDF), a high-caloric material, is used by various combustion processes, such as power plants, as alternative fuel. Several explosion accidents, however, possibly initiated by the spontaneous combustion of stored RDF, have been reported in Japan. Therefore the spontaneous combustion of RDF prepared from domestic garbage was investigated using chemiluminescence. RDF samples were heated either under air or under nitrogen for 1, 2, or 4 h at 120 or 140 degrees C and then cooled by an air or nitrogen stream. All RDF samples exhibited chemiluminescence. In air-treated RDF samples (heated and cooled by air), chemiluminescence after ageing was shown to be slightly lower than before ageing, whereas in nitrogen-treated samples (both heated and cooled by nitrogen) chemiluminescence decreased significantly after ageing. When nitrogen was replaced with air during aging, however, a sudden increase of chemiluminescence was observed. On the other hand, when cooling was done with air, chemiluminescence increased. Higher chemiluminescence was also observed during high-temperature treatment. Further experiments on cellulose, one of the major components of domestic garbage, exhibited similar chemiluminescence patterns to those of RDF when treated by the same methods as those used for RDF ageing. Chemiluminescence from cellulose increased significantly when the atmospheric gas was changed from nitrogen to air, suggesting that oxygen in the air promoted the formation of hydroperoxide from cellulose. Therefore, it is hypothesized that cellulose plays an important role in the formation of chemiluminescence from RDF. The formation of chemiluminescence indicated that radicals are formed from RDF by oxidation or thermal degradation at room or atmospheric temperatures and may subsequently lead to spontaneous combustion. PMID:19039070

  6. A new comprehensive reaction mechanism for combustion of hydrocarbon fuels

    Energy Technology Data Exchange (ETDEWEB)

    Ranzi, E.; Sogaro, A.; Gaffuri, P.; Pennati, G. [Politecnico di Milano (Italy). Dipt. di Chimica Industriale e Ingegneria Chimica; Westbrook, C.K.; Pitz, W.J. [Lawrence Livermore National Lab., CA (United States)

    1993-12-03

    A chemical kinetic model has been developed which describes pyrolysis, ignition and oxidation of many small hydrocarbon fuels over a wide range of experimental conditions. Fuels include carbon monoxide and hydrogen, methane and other alkane species up to n-butane, ethylene, propene, acetylene, and oxygenated species such as methanol, acetaldehyde and ethanol. Formation of some larger intermediate and product species including benzene, butadiene, large olefins, and cyclopentadiene has been treated in a semi-empirical manner. The reaction mechanism has been tested for conditions that do not involve transport and diffusional processes, including plug flow and stirred reactors, batch reactors and shock tubes. The present kinetic model and its validation differ from previous reaction mechanisms in two ways. First, in addition to conventional combustion data, experiments more commonly associated with chemical engineering problems such as oxidative coupling, oxidative pyrolysis and steam cracking are used to test the reaction mechanism, making it even more general than previous models. In addition, H atom abstraction and some other reaction rates, even for the smaller C{sub 2}, C{sub 3} and C{sub 4} species, are treated using approximations that facilitate future extensions to larger fuels in a convenient manner. Construction of the reaction mechanism and comparisons with experimental data illustrate the generality of the model.

  7. CYLINDER PRESSURE VARIATIONS OF THE FUMIGATED HYDROGEN-DIESEL DUAL FUEL COMBUSTION

    Directory of Open Access Journals (Sweden)

    Boonthum Wongchai

    2012-01-01

    Full Text Available Cylinder pressure is one of the main parameters of diesel engine combustion affecting several changes in exhaust gas emission composition and amount as well as engine useful power, specifically when alternative fuels are used. One among other alternative fuels for diesel engine is hydrogen that can be used as fumigated reagent with air prior to intake to engine in order to substitute the main fossil diesel. In this study, experimental investigation was accomplished using a single cylinder diesel engine for agriculture running on different ratios of hydrogen-to-diesel. Cylinder pressure traces corresponding to the crank angle positions were indicated and analyzed for maximum cylinder pressure and their coefficient of variation. The regression analysis is used to find the correlations between hydrogen percentage and the maximum cylinder pressure as well as its coefficient of variation. When higher hydrogen percentages were added, the combustion shifted toward later crank angles with the maximum cylinder pressure decreased and eminent effects at higher load and speed. The plots of hydrogen percentage against the coefficient of variation of the maximum cylinder pressure (COVPmax show the increase in variation of maximum cylinder pressure when the hydrogen percentage increased for all conditions tested. Gaseous hydrogen fumigated prior to intake to the engine reduced maximum cylinder pressure from the combustion while increasing the values of COVPmax. The maximum pressure-hydrogen percentage correlations and the COVPmax-hydrogen percentage correlations show better curve fittings by second order (n = 2 correlation compared to the first order (n = 1 correlation for all the test conditions.

  8. CO2 Emissions from Fuel Combustion 2011: Highlights

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    How much CO2 are countries emitting? Where is it coming from? In the lead-up to the UN climate negotiations in Durban, the latest information on the level and growth of CO2 emissions, their source and geographic distribution will be essential to lay the foundation for a global agreement. To provide input to and support for the UN process the IEA is making available for free download the 'Highlights' version of CO2 Emissions from Fuel Combustion. This annual publication contains: - estimates of CO2 emissions by country from 1971 to 2009; - selected indicators such as CO2/GDP, CO2/capita, CO2/TPES and CO2/kWh; - CO2 emissions from international marine and aviation bunkers, and other relevant information. These estimates have been calculated using the IEA energy databases and the default methods and emission factors from the Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories.

  9. Quantification of fusion in ashes from solid fuel combustion

    DEFF Research Database (Denmark)

    Hansen, Lone Aslaug; Frandsen, Flemming; Dam-Johansen, Kim;

    1999-01-01

    which the agreement with fusion as determined by phase diagrams is very good, and for straw (salt-rich) and coal (silicate-rich) ashes. Comparing ash fusion curves to index points of current standard ash fusion tests showed initial melting at temperatures typically between 50 degrees and 100 degrees C......The fusion of ashes produced during solid fuel combustion greatly affects the tendency of these ashes to cause operational problems in utility boilers. In this paper, a new and quantitative laboratory method for assessing the fusion of ashes based on simultaneous thermal analysis, STA, is described....... Using STA, melting is detected as an endothermic reaction involving no change in mass. The measurement signals are transferred into a fusion curve showing the melt fraction in the ash as a function of temperature. This is done either by a simple comparison of the energies used for melting in different...

  10. CO2 Emissions from Fuel Combustion - 2012 Highlights

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    How much CO2 are countries emitting? Where is it coming from? In the lead-up to the UN climate negotiations in Doha, the latest information on the level and growth of CO2 emissions, their source and geographic distribution will be essential to lay the foundation for a global agreement. To provide input to and support for the UN process the IEA is making available for free download the 'Highlights' version of CO2 Emissions from Fuel Combustion. This annual publication contains: estimates of CO2 emissions by country from 1971 to 2010; selected indicators such as CO2/GDP, CO2/capita, CO2/TPES and CO2/kWh; and CO2 emissions from international marine and aviation bunkers, and other relevant information.

  11. Advanced Diagnostics in Oxy-Fuel Combustion Processes

    OpenAIRE

    Brix, Jacob; Toftegaard, Maja Bøg; Clausen, Sønnik; Jensen, Anker Degn

    2012-01-01

    Denne rapport beskriver resultaterne, der er blevet opnået i PSO-projektet 010069, “Advanced Diagnostics in Oxy-Fuel Combustion Processes”. Tre områder af optisk diagnostik er inkluderet i rapporten: - FTIR målinger i en 30 kW swirlbrænder. - IR målinger i en 30 kW swirlbrænder. - IR målinger i en laboratorieskala fixed bed reaktor. Resultaterne, der blev opnået i swirlbrænderen, viser at FTIR teknikken er et værdifuldt værktøj til bestemmelse af gasfasetemperaturer. Når dens anvendelighed ev...

  12. Effects of ashes in solid fuels on fuel particle charging during combustion in an air stream

    Energy Technology Data Exchange (ETDEWEB)

    Zakharov, A.G.; Fialkov, B.S.; Mel' nichuk, A.Yu.; Khvan, L.A.

    1982-09-01

    Black coal from the Karaganda basin is mixed with sodium chloride and graphite. Coal characteristics are given in a table (density, ashes, content of silica, aluminium oxides, iron oxides, calcium oxides, potassium oxides and magnesium oxides). Effects of ash fluctuations on electric potential of fuel particles during combustion are analyzed. Analyses show that with increasing ash content electric potential of fuel particles decreases and reaches the minimum when ash content ranges from 70 to 80 %. Particles with electric potential are generated during chemical processes between carbon and oxygen when coal is burned in an air stream. (5 refs.) (In Russian)

  13. Construction and evaluation of a fuel cell prototype (proton exchange fuel cell); Construccion y evaluacion de un prototipo de celda a combustible (proton exchange fuel cell)

    Energy Technology Data Exchange (ETDEWEB)

    Da Silva, L. [Laboratorio de Pesquisa em Energia - LAPEN, Universidade do Vale do Itajai, São Jose, SC (Brasil)] e-mail: luciano.silva@univali.br; Paula, M.M.S.; Fiori, M [Lasicom, Universidade do Extremos Sul Catarinense (UNESC), Criciuma, S.C. (Brasil); Benavides, R. [Centro de Investigacion en Quimica Aplicada (CIQA), Saltillo, Coahuila (Mexico); Santos, V. [Laboratorio de Pesquisa em Energia - LAPEN, Universidade do Vale do Itajai, São Jose, SC (Brasil)

    2009-09-15

    Because electric energy is a vitally important material for the development of the country, this work is aimed at offering an alternative methodology for the construction and operational demonstration of a PEMFC fuel cell. Recently discovered natural gas reserves can be exploited using modern methods and its use fulfills generation, distribution and low environmental impact priorities. All these factors can be observed with the use of fuel cells, especially when working with reformed natural gas. In addition to its low environmental impact during the generation of this energy, the use of fuel cells reflects a generator source that can be located with the consumer, further reducing problems created by transmission lines, fuel transport, etc. Fuel cells are receiving a great deal of attention from the international community and some models are already commercially available. They are showing excellent possibilities for becoming one of the future technologies to generate electric energy with low environmental impact. [Spanish] En funcion de la necesidad de energia electrica como insumo de vital importancia para el desarrollo del pais, este trabajo pretende ofrecer una metodologia alternativa para la construccion y demostracion operacional de una celda a combustible del tipo PEMFC. La explotacion de las reservas de gas natural descubiertas recientemente puede realizarse a traves de metodos modernos y su uso tiene las prioridades de generacion, distribucion y bajo impacto ambiental. Todos estos aspectos se pueden observar dentro del uso de celdas a combustible, especialmente cuando se trabaja con gas natural reformado. Ademas del factor de bajo impacto ambiental durante la misma generacion de energia, el uso de las celdas a combustible involucra una fuente generadora, que puede colocarse junto al consumidor, reduciendo aun mas los problemas generados por las lineas de transmision, el transporte del combustible, etc. Las celdas a combustible estan recibiendo una gran

  14. Alternative Fuels for Marine and Inland Waterways: An exploratory study

    OpenAIRE

    MOIRANGTHEM KAMALJIT

    2016-01-01

    Alternative fuels for marine transport can play a crucial role in decarbonising the shipping sector and ultimately contribute towards climate change goals. Market penetration by alternative fuels have already begun with ship builders, engine manufacturers and classification bodies by introducing greener ships running on cleaner fuels. This can be attributed in large part to the MARPOL (International Convention for the Prevention of Pollution from Ships) regulations in place since the 1970s an...

  15. Part 4. Safety implications of alternative fuel types

    International Nuclear Information System (INIS)

    This report provides an assessment of safety implications associated with alternatives relative to the reference (U,Pu) oxide fuel in fast breeder reactors. The alternatives considered include thorium- and uranium-based oxide, carbide and metal fuel types for the LMFBR and oxide fuel types for the GCFR. Major emphasis is put on low probability, but potentially large-consequence accidents, e.g., core-disruptive accidents

  16. Emission Control Cost-Effectiveness of Alternative-Fuel Vehicles

    OpenAIRE

    Wang, Quanlu; Sperling, Daniel; Olmstead, Janis

    1993-01-01

    Although various legislation and regulations have been adopted to promote the use of alternative-fuel vehicles for curbing urban air pollution problems, there is a lack of systematic comparisons of emission control cost-effectiveness among various alternative-fuel vehicle types. In this paper, life-cycle emission reductions and life-cycle costs were estimated for passenger cars fueled with methanol, ethanol, liquified petroleum gas, compressed natural gas, and electricity. Vehicle emission es...

  17. Experimental investigation of spray characteristics of alternative aviation fuels

    International Nuclear Information System (INIS)

    Highlights: • Physical properties of GTL fuel are different from those of conventional jet fuels. • Spray characteristics of GTL and Jet A-1 fuels are experimentally investigated using phase Doppler anemometry. • Regions near the nozzle are influenced by differences in fuel physical properties. • Spray characteristics of GTL can be predicted by empirical relations developed for conventional jet fuels. - Abstract: Synthetic fuels derived from non-oil feedstock are gaining importance due to their cleaner combustion characteristics. This work investigates spray characteristics of two Gas-to-Liquid (GTL) synthetic jet fuels from a pilot-scale pressure swirl nozzle and compares them with those of the conventional Jet A-1 fuel. The microscopic spray parameters are measured at 0.3 and 0.9 MPa injection pressures at several points in the spray using phase Doppler anemometry. The results show that the effect of fuel physical properties on the spray characteristics is predominantly evident in the regions close to the nozzle exit at the higher injection pressure. The lower viscosity and surface tension of GTL fuel seems to lead to faster disintegration and dispersion of the droplets when compared to those of Jet A-1 fuel under atmospheric conditions. Although the global characteristics of the fuels are similar, the effects of fuel properties are evident on the local spray characteristics at the higher injection pressure

  18. Decrease of noxious emissions in the residual fuel oil combustion; Disminucion de emisiones nocivas en la combustion de aceite combustible residual

    Energy Technology Data Exchange (ETDEWEB)

    Mandoki W, Jorge [Econergia S. de R. L. de C. V. Mexico, D. F. (Mexico)

    1994-12-31

    The residual fuel oil combustion emits noxious substances such as carbonaceous particulate, nitrogen oxides, and sulfur trioxide at unacceptable levels. Water emulsified in the fuel substantially reduces such emissions, achieving besides, in most of the cases, a net saving in the fuel consumption. The beneficial effects are shown in burning the residual fuel oil as a water emulsion, as well as the method to produce an adequate emulsion. The emulsified fuel technology offers a low cost option to reduce air pollution. The fuel oil quality has been declining during the last decades due to: 1. Increase in the production of crude heavy oils, generally with higher content of asphaltens and sulfur. 2. Less availability of vacuum distillation residues due to its conversion into greater value products. 3. More intensive conversion processes such as catalytic cracking, visbreaking, etc. that increase the asphaltenes concentration in the bottoms, causing instability problems. 4. The increase in the vanadium and other metals content as the concentration of asphaltenes increases. The use of emulsified fuel oil provides an efficient and economical method to substantially reduce the noxious emissions to the atmosphere. The emulsion contains water particles in a diameter between 2 and 20 microns, uniformly distributed in the fuel oil, generally in a proportion generally of 5 to 10%; besides, it contains a tensioactive agent to assure a stable emulsion capable of withstanding the shearing forces of the pumping and distribution systems. When the atomized oil drops get into the combustion chamber, the emulsified water flashes into high pressure steam, originating a violent secondary atomization. The effect of this secondary atomization is the rupture of the oil drops of various hundred microns, producing drops of 5 to 15 microns in diameter. Since the necessary time for combustion is an exponential function of the drop diameter, a very substantial improvement in the combustion is

  19. On the interest of studying degradation gases for forest fuel combustion modeling

    OpenAIRE

    Tihay, Virginie; Simeoni, Albert; Santoni, Paul-Antoine; Bertin, Veronique; Bonneau, Laurence; Garo, Jean-Pierre; Vantelon, Jean-Pierre

    2008-01-01

    The aim of this work is to determine the influence of the degradation gases on the combustion of forest fuels and whether they have to be taken into account in numerical modeling. A laboratory experimental apparatus was designed to generate laminar, axisymmetric, time-varying and non-premixed flames from crushed forest fuels. The experiments highlight that the mass burning rate of the fuel controls the flame dynamics whereas the combustion kinetics depends on the degradation gases. From the a...

  20. Thermal effect of hydrocarbon fuels combustion after a sudden change in the specific calorific value

    Science.gov (United States)

    Saifullin, E. R.; Larionov, V. M.; Busarov, A. V.; Busarov, V. V.

    2016-01-01

    Using associated gas and waste oil refineries in thermal power plants, a complex problem due to the variability in fuel composition. This article explores the burning of hydrocarbon fuel in the case of an abrupt change in its specific combustion heat. Results of the analysis allowed developing a technique of stabilizing the rate of heat release, ensuring complete combustion of the fuel and its minimum flow.

  1. Combustion Characteristics of Oxy-fuel Burners for CO2 Capturing Boilers

    Science.gov (United States)

    Ahn, Joon; Kim, Hyouck Ju; Choi, Kyu Sung

    Oxy-fuel boilers have been developed to capture CO2 from the exhaust gas. A 50 kW class model burner has been developed and tested in a furnace type boiler. The burner has been scaled up to 0.5 and 3 MW class for fire-tube type boilers. The burners are commonly laid out in a coaxial type to effectively heat the combustion chamber of boilers. Burners are devised to support air and oxy-fuel combustion modes for the retrofitting scenario. FGR (flue gas recirculation) has been tried during the scale-up procedure. Oxy-fuel combustion yields stretched flame to uniformly heat the combustion chamber. It also provides the high CO2 concentration, which is over 90% in dry base. However, pure oxy-fuel combustion increases NO concentration, because of the reduced flow rate. The FGR can suppress the thermal NOx induced by the infiltration of the air.

  2. Working group report: methane emissions from fuel combustion and industrial processes

    International Nuclear Information System (INIS)

    This paper lists the source categories which are currently recognised as minor sources of methane. These fall into five broad groups: stationary fuel combustion (residential combustion of fuels, solid waste incineration at home sites, on-site agricultural waste burning, industrial and utility combustion of coal, wood, oil and gas, commercial and industrial waste incineration); mobile fuel combustion; non-combustion industrial processes (primary metals production, chemical manufacturing processes, petroleum refining, commercial charcoal manufacturing waste treatments); minor energy production sources (storage and distribution of automotive fuels, geothermal energy production; peat mining operations, oil shale mining operations); and miscellaneous sources. The paper also presents a preliminary estimate of global methane emissions from these minor sources and the results of the working group's discussion on recommendations for the IPCC/OECD methodology and specific research needs. A list of control options for emissions from minor sources is provided. 2 tabs

  3. Construction of combustion models for rapeseed methyl ester bio-diesel fuel for internal combustion engine applications.

    Science.gov (United States)

    Golovitchev, Valeri I; Yang, Junfeng

    2009-01-01

    Bio-diesel fuels are non-petroleum-based diesel fuels consisting of long chain alkyl esters produced by the transesterification of vegetable oils, that are intended for use (neat or blended with conventional fuels) in unmodified diesel engines. There have been few reports of studies proposing theoretical models for bio-diesel combustion simulations. In this study, we developed combustion models based on ones developed previously. We compiled the liquid fuel properties, and the existing detailed mechanism of methyl butanoate ester (MB, C(5)H(10)O(2)) oxidation was supplemented by sub-mechanisms for two proposed fuel constituent components, C(7)H(16) and C(7)H(8)O (and then, by mp2d, C(4)H(6)O(2) and propyne, C(3)H(4)) to represent the combustion model for rapeseed methyl ester described by the chemical formula, C(19)H(34)O(2) (or C(19)H(36)O(2)). The main fuel vapor thermal properties were taken as those of methyl palmitate C(19)H(36)O(2) in the NASA polynomial form of the Burcat database. The special global reaction was introduced to "crack" the main fuel into its constituent components. This general reaction included 309 species and 1472 reactions, including soot and NO(x) formation processes. The detailed combustion mechanism was validated using shock-tube ignition-delay data under diesel engine conditions. For constant volume and diesel engine (Volvo D12C) combustion modeling, this mechanism could be reduced to 88 species participating in 363 reactions. PMID:19409477

  4. Investigation of Bio-Diesel Fueled Engines under Low-Temperature Combustion Strategies

    Energy Technology Data Exchange (ETDEWEB)

    Chia-fon F. Lee; Alan C. Hansen

    2010-09-30

    In accordance with meeting DOE technical targets this research was aimed at developing and optimizing new fuel injection technologies and strategies for the combustion of clean burning renewable fuels in diesel engines. In addition a simultaneous minimum 20% improvement in fuel economy was targeted with the aid of this novel advanced combustion system. Biodiesel and other renewable fuels have unique properties that can be leveraged to reduce emissions and increase engine efficiency. This research is an investigation into the combustion characteristics of biodiesel and its impacts on the performance of a Low Temperature Combustion (LTC) engine, which is a novel engine configuration that incorporates technologies and strategies for simultaneously reducing NOx and particulate emissions while increasing engine efficiency. Generating fundamental knowledge about the properties of biodiesel and blends with petroleum-derived diesel and their impact on in-cylinder fuel atomization and combustion processes was an important initial step to being able to optimize fuel injection strategies as well as introduce new technologies. With the benefit of this knowledge experiments were performed on both optical and metal LTC engines in which combustion and emissions could be observed and measured under realistic conditions. With the aid these experiments and detailed combustion models strategies were identified and applied in order to improve fuel economy and simultaneously reduce emissions.

  5. Methanol, Natural Gas, and the Development of Alternative Transportation Fuels

    OpenAIRE

    Kliman, M.L.

    1983-01-01

    The potential for methanol as a motor fuel, particularly when it is produced from natural gas is examined. Diverse information related to methanol fuel development is gathered together and the process by which such a new fuel market would evolve is considered. It is concluded that methanol has the capacity to be a significant alternative fuel, but that the realization of that capacity is not yet imminent.

  6. Status and outlook for biofuels, other alternative fuels and new vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Nylund, N.-O.; Aakko-Saksa, P.; Sipilae, K.

    2008-03-15

    The report presents an outlook for alternative motor fuels and new vehicles. The time period covered extends up to 2030. The International Energy Agency and the U.S. Energy Information Administration predict that the world energy demand will increase by over 50% from now to 2030, if policies remain unchanged. Most of the growth in demand for energy in general, as well as for transport fuels, will take place in non-OECD countries. Gasoline and diesel are projected to remain the dominant automotive fuels until 2030. Vehicle technology and high quality fuels will eventually solve the problem of harmful exhaust emissions. However, the problem with CO{sub 2} still remains, and much attention will be given to increase efficiency. Hybrid technology is one option to reduce fuel consumption. Diesel engines are fuel efficient, but have high emissions compared with advanced gasoline engines. New combustion systems combining the best qualities of gasoline and diesel engines promise low emissions as well as high efficiency. The scenarios for alternative fuels vary a lot. By 2030, alternative fuels could represent a 10- 30% share of transport fuels, depending on policies. Ambitious goals for biofuels in transport have been set. As advanced biofuels are still in their infancy, it seems probable that traditional biofuels will also be used in 2030. Ethanol is the fastest growing biofuel. Currently the sustainability of biofuels is discussed extensively. Synthetic fuels promise excellent end-use properties, reduced emissions, and if produced from biomass, also reduced CO{sub 2} emissions. The report presents an analysis of technology options to meet the requirements for energy security, reduced CO{sub 2} emissions, reduced local emissions as well as sustainability in general in the long run. In the short term, energy savings will be the main measure for CO{sub 2} reductions in transport, fuel switches will have a secondary role. (orig.)

  7. An evaluation of the alternative transport fuel policies for Turkey

    International Nuclear Information System (INIS)

    The search for alternative fuels and new fuel resources is a top priority for Turkey, as is the case in the majority of countries throughout the world. The fuel policies pursued by governmental or civil authorities are of key importance in the success of alternative fuel use, especially for widespread and efficient use. Following the 1973 petroleum crisis, many users in Turkey, especially in transportation sector, searched for alternative fuels and forms of transportation. Gasoline engines were replaced with diesel engines between the mid-1970s and mid-1980s. In addition, natural gas was introduced to the Turkish market for heating in the early 1990s. Liquid petroleum gas was put into use in the mid-1990s, and bio-diesel was introduced into the market for transportation in 2003. However, after long periods of indifference governmental action, guidance and fuel policies were so weak that they did not make sense. Entrepreneurs and users experienced great economical losses and lost confidence in future attempts to search for other possible alternatives. In the present study, we will look at the history of alternative fuel use in the recent past and investigate the alternative engine fuel potential of Turkey, as well as introduce possible future policies based on experience. (author)

  8. Using SPL (Spent Pot-Lining) as an Alternative Fuel in Metallurgical Furnaces

    Science.gov (United States)

    Gao, Lei; Mostaghel, Sina; Ray, Shamik; Chattopadyay, Kinnor

    2016-05-01

    Replacing coke (coal) in a metallurgical furnace with other alternative fuels is beneficial for process economics and environmental friendliness. Coal injection is a common practice in blast furnace ironmaking, and spent pot-lining (SPL) was conceptualized as an alternative to coal. SPL is a resourceful waste from primary Aluminum production, with high carbon value. Equilibrium thermodynamics was used to calculate the energy content of SPL, and the compositional changes during SPL combustion. In order to capture the kinetics and mass transfer aspects, a blast furnace tuyere region CFD model was developed. The results of SPL combustion were compared with standard PCI coals, which are commonly used in blast furnaces. The CFD model was validated with experimental results for standard high volatile coals.

  9. The environment and the use of alternative fuels

    International Nuclear Information System (INIS)

    The contribution of the Netherlands Energy Research Foundation (ECN) to the ANWB symposium on alternative fuels and techniques concerns the necessity to use alternatives to reduce CO2 emissions, the importance of system integration, and a discussion of the strong and weak points with regard to the introduction of the fuel alternatives in the Netherlands. First attention is paid to the greenhouse effect (CO2 emissions) of the use of fuels. Options to reduce CO2 emission from automobiles are mentioned. Than several alternative fuels and accompanying techniques, and their impact on the CO2 emission, are discussed: diesel, liquid petroleum gas (LPG), compressed natural gas (CNG), methanol, ethanol, rapeseed, electricity, and hydrogen. The possibilities to reduce CO2 emission in the Netherlands can be calculated by means of the Energy and Materials Scenarios (EMS). For several aspects assessments are given for the above-mentioned alternatives: availability of technology, ease of fuel storage, risk of use, impact on the city climate, full fuel cycle CO2 emission, costs, and reserves. These aspects can be considered as valid for most of the industrialized countries. For the Netherlands two other aspects have been assessed: the interest of the oil industry in the introduction of alternative fuels, the availability of the alternatives in the Netherlands. 5 figs., 6 tabs., 10 refs

  10. Analysis of Alternative Fuels in Automotive Powertrains

    OpenAIRE

    Gunnarsson, Andreas

    2009-01-01

    The awareness of the effect emissions have on the environment and climate has risen in the last decades. This has caused strict regulations of greenhouse gas emissions. Greenhouse gases cause global warming which may have devastating environmental effects. Most of the fuels commercially available today are fossil fuels. There are two major effects of using fuels with fossil origin; the source will eventually drain and the usage results in an increase of greenhouse gases in the atmosphere. Fue...

  11. Alternatives for managing wastes from reactors and post-fission operations in the LWR fuel cycle. Volume 2. Alternatives for waste treatment

    Energy Technology Data Exchange (ETDEWEB)

    1976-05-01

    Volume II of the five-volume report is devoted to the description of alternatives for waste treatment. The discussion is presented under the following section titles: fuel reprocessing modifications; high-level liquid waste solidification; treatment and immobilization of chop-leach fuel bundle residues; treatment of noncombustible solid wastes; treatment of combustible wastes; treatment of non-high-level liquid wastes; recovery of transuranics from non-high-level wastes; immobilization of miscellaneous non-high-level wastes; volatile radioisotope recovery and off-gas treatment; immobilization of volatile radioisotopes; retired facilities (decontamination and decommissioning); and, modification and use of selected fuel reprocessing wastes. (JGB)

  12. Alternatives for managing wastes from reactors and post-fission operations in the LWR fuel cycle. Volume 2. Alternatives for waste treatment

    International Nuclear Information System (INIS)

    Volume II of the five-volume report is devoted to the description of alternatives for waste treatment. The discussion is presented under the following section titles: fuel reprocessing modifications; high-level liquid waste solidification; treatment and immobilization of chop-leach fuel bundle residues; treatment of noncombustible solid wastes; treatment of combustible wastes; treatment of non-high-level liquid wastes; recovery of transuranics from non-high-level wastes; immobilization of miscellaneous non-high-level wastes; volatile radioisotope recovery and off-gas treatment; immobilization of volatile radioisotopes; retired facilities (decontamination and decommissioning); and, modification and use of selected fuel reprocessing wastes

  13. Combustion-derived substances in deep basins of Puget Sound: Historical inputs from fossil fuel and biomass combustion

    International Nuclear Information System (INIS)

    Reconstructions of 250 years historical inputs of two distinct types of black carbon (soot/graphitic black carbon (GBC) and char-BC) were conducted on sediment cores from two basins of the Puget Sound, WA. Signatures of polycyclic aromatic hydrocarbons (PAHs) were also used to support the historical reconstructions of BC to this system. Down-core maxima in GBC and combustion-derived PAHs occurred in the 1940s in the cores from the Puget Sound Main Basin, whereas in Hood Canal such peak was observed in the 1970s, showing basin-specific differences in inputs of combustion byproducts. This system showed relatively higher inputs from softwood combustion than the northeastern U.S. The historical variations in char-BC concentrations were consistent with shifts in climate indices, suggesting an influence of climate oscillations on wildfire events. Environmental loading of combustion byproducts thus appears as a complex function of urbanization, fuel usage, combustion technology, environmental policies, and climate conditions. - Research highlights: → We reconstructed the historical inputs of GBC and char-BC in Puget Sound, WA, USA. → Temporal trend of GBC was linked to human activities (urbanization, fuel usage). → Temporal trend of char-BC was more likely driven by regional climate oscillations. → Historical trends of combustion byproducts show the geographical heterogeneities. - Temporal trend of GBC was directly linked to human activities, while the input of char-BC in Puget Sound was more likely driven by regional climate oscillations.

  14. Velocities of Reacting Boron Particles within a Solid Fuel Ramjet Combustion Chamber

    Directory of Open Access Journals (Sweden)

    J. Sender

    1998-10-01

    Full Text Available A 2D-laser doppler velocimeter was used to measure velocities of reacting boron (B particles during the combustion of a metallised solid fuel slab inside a 20-combustion chamber. The solid fuel hydroxyl-terminated polybutadiene (HTPB was enriched with B particles to increase its specific heat. To obtain information on the combustion process and on the movement of B particles, their velocities were measured. The experiments were performed at ambient pressure. The behaviour of the B particles concerning the exit velocities from the fuel slab has been discussed on the basis of the experimental results.

  15. Efficiency versus cost of alternative fuels from renewable resources: outlining decision parameters

    International Nuclear Information System (INIS)

    In the discussion of traditional versus renewable energies and alternatives to conventional crude oil-based fuels in the transportation sector, efficiency calculations are but one decision making parameter. Comparing the assets and liabilities of fossil-based and renewable fuels in the transportation sector, further aspects such as centralized versus decentralized technologies, cost evaluations, taxation, and ecological/social benefits have to be taken into account. This paper outlines the driving parameters for shifting toward alternative fuels based on fossil or renewable resources and their use in innovative vehicle technologies such as advanced internal combustion and fuel cell electric drive systems. For the decision in favor or against an alternative fuel to be introduced to the mass market, automotive technologies and the energy supply system have to be examined in an integrated way. From an economic and technological perspective, some fuels may be even incompatible with the trend toward using renewable resources that have advantages in decentralized systems. Beyond efficiency calculations, political and industrial interests arise and may be influential to reshaping our currently crude oil-based mobility sector

  16. Use of fluidic oscillator to measure fuel-air ratios of combustion gases

    Science.gov (United States)

    Riddlebaugh, S. M.

    1974-01-01

    A fluidic oscillator was investigated for use in measuring fuel-air ratios in hydrocarbon combustion processes. The oscillator was operated with dry exhaust gas from an experimental combustor burning ASTM A-1 fuel. Tests were conducted with fuel-air ratios between 0.015 and 0.031. Fuel-air ratios determined by oscillator frequency were within 0.001 of the values computed from separate flow measurements of the air and fuel.

  17. Improving of diesel combustion-pollution-fuel economy and performance by gasoline fumigation

    International Nuclear Information System (INIS)

    Highlights: • The effects of gasoline fumigation on the engine performance and NOx emission were investigated in Ford XLD 418 T automotive diesel engine. • Gasoline at approximately (2, 4, 6, 8 10, and 12)% (by vol.) ratios was injected into intake air by a carburetor. • GF enhances effective power and reduces brake specific fuel consumption, cost, and NOx emission. - Abstract: One of the most important objectives of the studies worldwide is to improve combustion of diesel engine to meet growing energy needs and to reduce increasing environmental pollution. To accomplish this goal, especially to reduce pollutant emissions, researchers have focused their interest on the field of alternative fuels and alternative solutions. Gasoline fumigation (GF) is one of these alternative solutions, by which diesel combustion, fuel economy, and engine performance are improved, and environmental pollution is decreased. In the fumigation method, gasoline is injected into intake air, either by a carburetor, which main nozzle section is adjustable or by a simple injection system. In the present experimental study, a simple carburetor was used, and the effects of gasoline fumigation at (2, 4, 6, 8, 10, 12)% (by vol.) gasoline ratios on the combustion, NOx emission, fuel economy, and engine performance sophisticatedly investigated for a fully instrumented, four-cylinder, water-cooled indirect injection (IDI), Ford XLD 418 T automotive diesel engine. Tests were conducted for each of the above gasoline fumigation ratios at three different speeds and for (1/1, 3/4, and 1/2) fuel delivery ratios (FDRs). GF test results showed that NOx emission is lower than that of neat diesel fuel (NDF). NOx emission decreases approximately 4.20%, 2.50%, and 9.65% for (1/1, 3/4, and 1/2) FDRs, respectively. Effective power increases approximately 2.38% for 1/1 FDR. At (2500 and 3000) rpms, effective power decreases at low gasoline ratios, but it increases at high gasoline ratios for 3/4 and 1/2 FDRs

  18. Design And Case Study Of Combustion Of Muncipal Solid Waste And Refuse-Derived (Msw And Rdf) With Conventional Fuels

    OpenAIRE

    Sudhakar, M.; Ramakrishna, A

    2014-01-01

    Energy Production for used materials can be performed as mixed municipal solid waste (MSW) incineration or as fuel for combustion. Recovered fuels are refuse-derived fuel (RDF), which is mechanically separated and processed from MSW.which is the source-separated, processed, dry combustable part of MSW. A one-year combustion of RDF with peat and coal was carried out in a 25 MW garbage boiler gratepower plant. The efficiency of the combustion temperature, boiler efficiency and the corrosion beh...

  19. DUPIC technology as an alternative for closing nuclear fuel cycle

    International Nuclear Information System (INIS)

    The study of DUPIC technology as an alternative for closing nuclear fuel cycle has been carried out. The goal of this study is to understand the DUPIC technology and its possibility as an alternative technology for closing nuclear fuel cycle. DUPIC (Direct Use of PWR spent fuel In CANDU) is a utilization of PWR spent fuel to reprocess and fabricate become DUPIC fuel as nuclear fuel of Candu reactor. The synergy utilization is based on the fact that fissile materials contained in the PWR spent fuel is about twice as much as that in Candu fuel. Result of the study indicates that DUPIC is an alternative promising technology for closing nuclear fuel cycle. The DUPIC fuel fabrication technology of which the major process is the OREOX dry processing, is better than the conventional reprocessing technology of PUREX. The OREOX dry processing has no capability to separate fissile plutonium, thus give the impact of high nuclear proliferation resistance. When compared to once through cycle, it gives advantages of uranium saving of about 20% and spent fuel accumulation reduction of about 65%. Economic analysis indicates that the levelized cost of DUPIC cycle is cheaper by 0.073 mill$/kwh than that of once through cycle. (author)

  20. Determining size of drops in fuel mixture of internal combustion engines

    Science.gov (United States)

    Sauter, J

    1926-01-01

    In compressorless Diesel engines and in explosion engines using fuels with high boiling points it is difficult to effect a good combustion of the fuel mixture. This report presents different methods for calculating the size and uniformity of fuel droplets and mixtures.

  1. Alternative drives for motor cars. Hybrid systems, fuel cells, alternative energy sources. 2. enl. ed.; Alternative Antriebe fuer Automobile. Hybridsysteme, Brennstoffzellen, alternative Energietraeger

    Energy Technology Data Exchange (ETDEWEB)

    Stan, Cornel [Berkeley Univ., CA (United States)]|[Paris Univ. (France)]|[Pisa Univ. (Italy)]|[Perugia Univ. (Italy)]|[Westsaechsischen Hochschule Zwickau (Germany)

    2008-07-01

    The implementation possibilities of future drive concepts - from hybrid systems comprising an electric motor and an internal combustion engine to fuel cells to alternative fuels like hydrogen or alcohol - will depend largely on quality criteria, e.g. power density, rotary momentum, acceleration characteristics, specific energy consumption, emissions of chemical substances, and noise. The boundary criteria for the introduction of realizeable concepts of alternative drives for motor cars will be defined by the availability and storability of the envisaged fuels, technical complexity, cost, safety, infrastructure and service. The book presents and analyzes the processes, drives and energy sources that can be combined in complex energy management systems for motor cars in accordance with the aforementioned criteria. Knowledge about these facts is indispensable for the development of new concepts. The 2nd edition describes many new developments in car propulsion systems as well as their combinations, new energy sources, energy converters and energy stores. All contents and literature reflect the latest state of science and technology. (orig.) [German] Ueber die Realisierungsmoeglichkeiten zukuenftiger Antriebskonzepte - von Hybridsystemen Elektro-/Verbrennungsmotor ueber Brennstoffzellen bis zu alternativen Energietraegern wie Wasserstoff oder Alkohol - werden fundierte Kriterien der Qualitaet eines Antriebs entscheiden. Leistungsdichte, Drehmomentverlauf, Beschleunigungscharakteristik, spezifischer Energieverbrauch sowie Emission chemischer Stoffe und Geraeusche sind dafuer wichtige Merkmale zur Qualitaetsbeurteilung. Die Verfuegbarkeit und die Speicherfaehigkeit vorgesehener Energietraeger, die technische Komplexitaet, Kosten, Sicherheit, Infrastruktur und Service werden die Randbedingungen fuer die Einfuehrung realisierbarer Konzepte alternativer Antriebe fuer Automobile stellen. Die Uebersicht und die Analyse der Prozesse, Antriebsmaschinen und Energietraeger, die

  2. Ontario Select Committee on Alternative Fuel Sources : Final Report

    International Nuclear Information System (INIS)

    On June 28, 2001, the Ontario Legislative Assembly appointed the Select Committee an Alternative Fuel Sources, comprised of representatives of all parties, with a broad mandate to investigate, report and offer recommendations with regard to the various options to support the development and application of environmentally sustainable alternatives to the fossil fuel sources already existing. The members of the Committee elected to conduct extensive public hearings, conduct site visits, attend relevant conferences, do some background research to examine a vast number of alternative fuel and energy sources that could be of relevance to the province of Ontario. A discussion paper (interim report) was issued by the Committee in November 2001, and the present document represents the final report, containing 141 recommendations touching 20 topics. The information contained in the report is expected to assist in the development and outline of policy and programs designed to specifically support alternative fuels and energy sources and applicable technologies. Policy issues were discussed in Part A of the report, along with the appropriate recommendations. The recommendations on specific alternative fuels and energy sources were included in Part B of the report. It is believed that the dependence of Ontario on traditional petroleum-based fuels and energy sources can be reduced through aggressive action on alternative fuels and energy. The benefits of such action would be felt in the area of air quality, with social, and economic benefits as well. 3 tabs

  3. EMISSION AND COMBUSTION CHARACTERISTICS OF DIFFERENT FUELS IN A HCCI ENGINE

    Directory of Open Access Journals (Sweden)

    S. Sendilvelan

    2011-06-01

    Full Text Available Different intake valve timings and fuel injection amounts were tested in order to identify their effects on exhaust emissions and combustion characteristics using variable valve actuation (VVA in a Homogeneous Charge Compression Ignition (HCCI engine. The HCCI engine is a promising concept for future automobile engines and stationary power plants. The two-stage ignition process in a HCCI engine creates advanced ignition and stratified combustion, which makes the ignition timing and combustion rate controllable. Meanwhile, the periphery of the fuel-rich zone leads to fierce burning, which results in slightly high NOx emissions. The experiments were conducted in a modified single cylinder water-cooled diesel engine. In this experiment we use diesel, bio-diesel (Jatropha and gasoline as the fuel at different mixing ratios. HCCI has advantages in high thermal efficiency and low emissions and could possibly become a promising combustion method in internal combustion engines.

  4. A Combustion-Powered a.c. Magnetohydrodynamic Alternator

    International Nuclear Information System (INIS)

    An a.c. MHD generator without electrodes capable of operating in the mode of a synchronous alternator is described. The generator consists of a circular or annular flow channel surrounded by concentric pick-up coils and impressed with a d.c. but spatially varying magnetic excitation field, provided by a set of coaxial solenoids external to the pick-up coils. The motion of conducting slugs of flow in the channel produces a modulation of the impressed magnetic field. An e.m. f. which may be delivered to an electrical load is thereby induced in the pick-up coils. This generator is in many respects the magnetohydrodynamic analogue of the conventional alternator. The slugs and the excitation field play the role of the rotor or field in producing a time-varying induction, while the pick-up coils play the role of the stator or armature in providing power to an external load. Since the induced voltage is produced directly by the motion of the slugs through the impressed d. c. (as contrasted to a.c.) field, the generator is able to supply power at arbitrary power factor to the load, as with an alternator. This property is particularly important in MHD generators, since low values of fluid conductivity produce correspondingly low power factors in an MHD induction generator. A model experiment has been built and operated to test the electrical characteristics of the generator. A solid rod of alternatively large and small conductivity is made to pass along the axis of two adjacent iron rings which are magnetically polarized by permanent magnets. The a. c. output signal to a coaxial pick-up coil located between the two rings is measured. Alternate schemes for actually producing the bunched or modulated-conductivity flow are described, including the alternate seeding of the flow with easily ionized material or the use of pneumatic switching elements to divide hot conducting flow alternately into one or the other of two channels. An experiment employing the pneumatic switching of

  5. The effect of steam addition on sulphur trioxide formation during the combustion of liquid fuels

    OpenAIRE

    Suthenthiran, Apputhuray

    1989-01-01

    A study of the kinetics of SO₃ formation has been undertaken in a liquid fuel fired, non-catalytic quartz tube combuster. The effects of excess air, residence time, gas temperature, and steam injection on the level of SO₃produced have been investigated. A non-catalytic quartz tube combuster was built with the required safety precautions. Provisions for maintaining near isothermal conditions along the tube and also injecting steam into the combustion chamberweremade. An electrical...

  6. A rapid-compression-machine study of gaseous fuel injection and combustion

    OpenAIRE

    Klimkiewicz, Dariusz; Leżański, Tomasz; Jarnicki, Rafael; Rychter, Tadeusz J.

    2015-01-01

    Rapid-compression-machine studies of an enginećs combustion system with the direct injection of gaseous fuel were made. The very short time available for the injection, combined with the poor penetration and mixing of the gas jet with the surrounding air, caused the serious problems with combustion initiation. One of the solutions to facilitate the ignition seems to be the use of a small ignition prechamber. The ignition takes place within the prechamber and the hot, chemically active combust...

  7. Combustion characterization of beneficiated coal-based fuels. Quarterly report No. 7, October 1990--December 1990

    Energy Technology Data Exchange (ETDEWEB)

    Hargrove, M.J.; Chow, O.K.; Nsakala, N.Y.

    1991-02-01

    During the fourth quarter of 1990, the following technical progress was made: (1) Calculated the kinetic characteristics of chars from the combustion of microbubble flotation beneficiated products; (2) continued drop tube combustion tests of the spherical oil agglomeration beneficiated products; (3) analyzed the data from three (MIT) pilot-scale combustion tests of the Upper Freeport feed coal; and (4) continued analyses of the data from the CE pilot-scale tests of nine fuels.

  8. Detection Combustion Data Pattern on Gasoline Fuel Motorcycle with Carburetor System

    OpenAIRE

    Andrizal Andrizal; Budhi Bakhtiar; Rivanol Chadry

    2016-01-01

    Tune up combustion motorcycle engine made in order to obtain a perfect engine combustion category with maximum engine performance and fuel efficiency. Motorcycles with 4-stroke petrol injection system has facilities to process tune up in the form of engine control unit and engine scanner tool. While petrol 4 stroke motorcycle carburetor system is not equipped with facilities such as a motorcycle injection system, consequently, tune up the engine combustion process is done manually. Category o...

  9. Residues characterisation from the fluidised bed combustion of East London's solid recovered fuel

    OpenAIRE

    Balampanis, Dimitris E.; Pollard, Simon J. T.; Simms, N; Longhurst, Philip J.; Coulon, Frederic; Villa, Raffaella

    2010-01-01

    Waste thermal treatment in Europe is moving towards the utilisation of the combustible output of mechanical, biological treatment (MBT) plants. The standardisation of solid recovered fuels (SRF) is expected to support this trend and increase the amount of the generated combustion residues. In this work, the residues and especially the fly ashes from the fluidised bed combustion (FBC) of East London’s NCV 3, Cl 2, and Hg 1 class SRF, are characterised. The following toxicity ...

  10. Non-Gasoline Alternative Fueling Stations

    Data.gov (United States)

    Department of Homeland Security — Through a nationwide network of local coalitions, Clean Citiesprovides project assistance to help stakeholders in the public and private sectors deploy alternative...

  11. Use of MRF residue as alternative fuel in cement production.

    Science.gov (United States)

    Fyffe, John R; Breckel, Alex C; Townsend, Aaron K; Webber, Michael E

    2016-01-01

    Single-stream recycling has helped divert millions of metric tons of waste from landfills in the U.S., where recycling rates for municipal solid waste are currently over 30%. However, material recovery facilities (MRFs) that sort the municipal recycled streams do not recover 100% of the incoming material. Consequently, they landfill between 5% and 15% of total processed material as residue. This residue is primarily composed of high-energy-content non-recycled plastics and fiber. One possible end-of-life solution for these energy-dense materials is to process the residue into Solid Recovered Fuel (SRF) that can be used as an alternative energy resource capable of replacing or supplementing fuel resources such as coal, natural gas, petroleum coke, or biomass in many industrial and power production processes. This report addresses the energetic and environmental benefits and trade-offs of converting non-recycled post-consumer plastics and fiber derived from MRF residue streams into SRF for use in a cement kiln. An experimental test burn of 118 Mg of SRF in the precalciner portion of the cement kiln was conducted. The SRF was a blend of 60% MRF residue and 40% post-industrial waste products producing an estimated 60% plastic and 40% fibrous material mixture. The SRF was fed into the kiln at 0.9 Mg/h for 24h and then 1.8 Mg/h for the following 48 h. The emissions data recorded in the experimental test burn were used to perform the life-cycle analysis portion of this study. The analysis included the following steps: transportation, landfill, processing and fuel combustion at the cement kiln. The energy use and emissions at each step is tracked for the two cases: (1) The Reference Case, where MRF residue is disposed of in a landfill and the cement kiln uses coal as its fuel source, and (2) The SRF Case, in which MRF residue is processed into SRF and used to offset some portion of coal use at the cement kiln. The experimental test burn and accompanying analysis indicate

  12. Fuels and alternative propulsion in Germany

    International Nuclear Information System (INIS)

    The transportation sector is one of the first responsible of the air pollution in Germany. The kyoto protocol and the european directive led the german Government to set about some measures. To encourage the petroleum industry to develop classical fuels/biofuels mixing, the government exempted from taxes until 2020 the biofuels part. The Government decided also financial incentives for diesel vehicles equipped with particles filters. Among the different fuels, the document presents the advantages and disadvantages of the hydrogen fuels and the hybrid motors. (A.L.B.)

  13. Comparison of Fuel-Nox Formation Characteristics in Conventional Air and Oxy fuel Combustion Conditions

    International Nuclear Information System (INIS)

    Nitric oxide (NOx) formation characteristics in non-premixed diffusion flames of methane fuels have been investigated experimentally and numerically by adding 10% ammonia to the fuel stream, according to the variation of the oxygen ratio in the oxidizer with oxygen/carbon dioxide and oxygen/nitrogen mixtures. In an experiment of co flow jet flames, in the case of an oxidizer with oxygen/carbon dioxide, the NOx emission increased slightly as the oxygen ratio increased. On the other hand, in case of an oxygen/nitrogen oxidizer, the NOx emission was the maximum at an oxygen ratio of 0.7, and it exhibited non-monotonic behavior according to the oxygen ratio. Consequently, the NOx emission in the condition of oxy fuel combustion was overestimated as compared to that in the condition of conventional air combustion. To elucidate the characteristics of NOx formation for various oxidizer compositions, 1a and 2a numerical simulations have been conducted by adopting one kinetic mechanism. The result of 2 simulation for an oxidizer with oxygen/nitrogen well predicted the trend of experimentally measured NOx emissions

  14. Comparison of Fuel-Nox Formation Characteristics in Conventional Air and Oxy fuel Combustion Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Mino [Kyungwon Engineering and Communication, Seongnam (Korea, Republic of); Park, Kweon Ha [Korea Maritime Univ., Busan (Korea, Republic of); Choi, Byung Chul [Korean Register of Shipping, Busan (Korea, Republic of)

    2013-05-15

    Nitric oxide (NO{sub x}) formation characteristics in non-premixed diffusion flames of methane fuels have been investigated experimentally and numerically by adding 10% ammonia to the fuel stream, according to the variation of the oxygen ratio in the oxidizer with oxygen/carbon dioxide and oxygen/nitrogen mixtures. In an experiment of co flow jet flames, in the case of an oxidizer with oxygen/carbon dioxide, the NO{sub x} emission increased slightly as the oxygen ratio increased. On the other hand, in case of an oxygen/nitrogen oxidizer, the NO{sub x} emission was the maximum at an oxygen ratio of 0.7, and it exhibited non-monotonic behavior according to the oxygen ratio. Consequently, the NO{sub x} emission in the condition of oxy fuel combustion was overestimated as compared to that in the condition of conventional air combustion. To elucidate the characteristics of NO{sub x} formation for various oxidizer compositions, 1a and 2a numerical simulations have been conducted by adopting one kinetic mechanism. The result of 2 simulation for an oxidizer with oxygen/nitrogen well predicted the trend of experimentally measured NO{sub x} emissions.

  15. INDOT Fleet Management Strategies: Implementing Alternative Fuel Technologies

    OpenAIRE

    Rudolph, Joseph

    2012-01-01

    This session will discuss INDOT’s initiative to introduce vechicles fueled by propane and compressed natural gas (CNG) to their fleet. Successes to date will be shared as well as recommendations for fleet managers considering these alternative technologies.

  16. Residue Derived Fuels as an Alternative Fuel for the Hellenic Power Generation Sector and their Potential for Emissions ReductionConstantinos S. Psomopoulos

    Directory of Open Access Journals (Sweden)

    Constantinos S. Psomopoulos

    2014-09-01

    Full Text Available The European Union Landfill Directive (1999/31 EC promotes more environmental friendly waste management options, by reducing the amount of wastes and more specific of biodegradable wastes, disposed of in landfills. The EU member states are adopting the mechanical-biological treatment process for municipal solid waste and non-hazardous industrial wastes to comply with the abovementioned Directive's targets on landfill diversion, and produce waste derived fuels such as refuse derived fuel and solid recovered fuel. Waste derived fuels present high calorific values depending on their synthesis and are being used both in dedicated waste-to-energy plants and as fuel substitutes in industrial processes. In this paper the refuse derived fuel and solid recovered fuel production and utilisation options in European Union are presented, and the possibilities in Greece based on the waste production and National Plan for Waste Management of the Ministry of Environment is attempted. The existing and ongoing studies on co-combustion and co-gasification with brown coal support the use of refuse derived fuel and solid recovered fuel as fuel on Hellenic Power Sector, adopting in the existing lignite power plants adequate Air Pollution Control systems. If the co-combustion or co-gasification of these alternative fuels is adopted from the Hellenic Power Sector a reduction on emissions is expected that cannot be neglected.

  17. Effects of Fischer-Tropsch diesel fuel on combustion and emissions of direct injection diesel engine

    Institute of Scientific and Technical Information of China (English)

    Yongcheng HUANG; Shangxue WANG; Longbao ZHOU

    2008-01-01

    Effects of Fischer-Tropsch (F-T) diesel fuel on the combustion and emission characteristics of a single-cylinder direct injection diesel engine under different fuel delivery advance angles were investigated. The experi-mental results show that F-T diesel fuel exhibits shorter ignition delay, lower peak values of premixed burning rate, lower combustion pressure and pressure rise rate, and higher peak value of diffusion burning rate than con-ventional diesel fuel when the engine remains unmodified. In addition, the unmodified engine with F-T diesel fuel has lower brake specific fuel consumption and higher effective thermal efficiency, and presents lower HC, CO, NOx and smoke emissions than conventional diesel fuel. When fuel delivery advance angle is retarded by 3 crank angle degrees, the combustion duration is obviously shor-tened; the peak values of premixed burning rate, the com-bustion pressure and pressure rise rate are further reduced; and the peak value of diffusion burning rate is further increased for F-T diesel fuel operation, Moreover, the retardation of fuel delivery advance angle results in a further significant reduction in NOx emissions with no penalty on specific fuel consumption and with much less penalty on HC, CO and smoke emissions.

  18. 40 CFR 60.107a - Monitoring of emissions and operations for fuel gas combustion devices.

    Science.gov (United States)

    2010-07-01

    ... heating capacity of less than 100 MMBtu and is equipped with low-NOX burners (LNB) or ultra low-NOX... streams combusted in a process heater or other fuel gas combustion device that are inherently low in... this section will be considered inherently low in sulfur content. (i) Pilot gas for heaters and...

  19. Change in the electric potential of solid fuels on their combustion and gasification

    Energy Technology Data Exchange (ETDEWEB)

    Fialkov, B.S.; Zakharov, A.G.; Plitsyn, V.T.

    1979-01-01

    Solid fuels of various degrees of graphitization (graphite, coke, hard coal, lignite) were used to study the changes in electric potential of samples during gasification and combustion in air. The potential shows three peaks during combustion, the third corresponding to ignition. Two peaks occur during the gasification process.

  20. Characterization of high velocity oxy-fuel combustion sprayed hydroxyapatite.

    Science.gov (United States)

    Haman, J D; Lucas, L C; Crawmer, D

    1995-02-01

    Bioceramic coatings, created by the high velocity oxy-fuel combustion spraying of hydroxyapatite (HA) powders onto commercially pure titanium, were characterized in order to determine whether this relatively new coating process can be successfully applied to bioceramic coatings of orthopaedic and dental implants. Fourier transform infrared spectroscopy, X-ray diffraction and scanning electron microscopy were used to characterize both the HA starting powders and coatings. A 12 wk immersion test was conducted and the resulting changes in the coatings were also characterized. Calcium ion release during dissolution was measured with flame atomic absorption during the first 6 weeks of the immersion study. A comparison of powder and coating X-ray diffraction patterns and lattice parameters revealed an HA-type coating with some loss in crystallinity. Fourier transform infrared results showed a partial loss of the OH- group during spraying, however the phosphate groups were still present. Scanning electron microscopy analysis showed a lamellar structure with very close coating-to-substrate apposition. The coatings experienced a loss of calcium during the immersion study, with the greatest release in calcium occurring during the first 6 days of the study. No significant structural or chemical changes were observed during the 12 wk immersion study. These results indicate that the high velocity oxy-fuel process can produce an HA-type coating; however, the process needs further optimization, specifically in the areas of coating-to-substrate bond strength and minimization of phases present other than HA, before it would be recommended for commercial use. PMID:7749000

  1. Non-traditional Process of Hydrogen Containing Fuel Mixtures Production for Internal-combustion Engines

    OpenAIRE

    Gennady G. Kuvshinov; Maksim V. Popov; Evgeny A. Soloviev; Armen I. Arzumanyan; Georgy A. Peshkov

    2012-01-01

    The article justifies the perspectives of development of the environmentally sound technology of hydrogen containing fuel mixtures for internal-combustion engines based on the catalytic process of low-temperature decomposition of hydrocarbons into hydrogen and nanofibrous carbon.

  2. OPTIMUM PLANNING OF EXPERIMENTS AT MODELING FUEL CONSUMPTION IN INTERNAL COMBUSTION ENGINES

    OpenAIRE

    N. Koshevoy; O. Kostenko; V. Siroklyn

    2009-01-01

    The efficiency of optimum experiments planning by cost expenses at studying the processes of fuel consumption internal combustion engines is shown. The mathematical models of these processes in different state of engine working are synthesized.

  3. Fluidized combustion of beds of large, dense particles in reprocessing HTGR fuel

    International Nuclear Information System (INIS)

    Fluidized bed combustion of graphite fuel elements and carbon external to fuel particles is required in reprocessing high-temperature gas-cooled reactor (HTGR) cores for recovery of uranium. This burning process requires combustion of beds containing both large particles and very dense particles as well as combustion of fine graphite particles which elutriate from the bed. Equipment must be designed for optimum simplicity and reliability as ultimate operation will occur in a limited access ''hot cell'' environment. Results reported in this paper indicate that successful long-term operation of fuel element burning with complete combustion of all graphite fines leading to a fuel particle product containing <1% external carbon can be performed on equipment developed in this program

  4. Alternative Fuel and Advanced Technology Commercial Lawn Equipment (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2014-10-01

    The U.S. Department of Energy's Clean Cities program produced this guide to help inform the commercial mowing industry about product options and potential benefits. This guide provides information about equipment powered by propane, ethanol, compressed natural gas, biodiesel, and electricity, as well as advanced engine technology. In addition to providing an overview for organizations considering alternative fuel lawn equipment, this guide may also be helpful for organizations that want to consider using additional alternative fueled equipment.

  5. Alternative Fuel and Advanced Technology Commercial Lawn Equipment

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-10-10

    The U.S. Department of Energy's Clean Cities program produced this guide to help inform the commercial mowing industry about product options and potential benefits. This guide provides information about equipment powered by propane, ethanol, compressed natural gas, biodiesel, and electricity, as well as advanced engine technology. In addition to providing an overview for organizations considering alternative fuel lawn equipment, this guide may also be helpful for organizations that want to consider using additional alternative fueled equipment.

  6. PERFORMANCE, EMISSION, AND COMBUSTION CHARACTERISTICS OF A CI ENGINE USING LIQUID PETROLEUM GAS AND NEEM OIL IN DUAL FUEL MODE

    Directory of Open Access Journals (Sweden)

    Palanimuthu Vijayabalan

    2010-01-01

    Full Text Available Increased environmental awareness and depletion of resources are driving the industries to develop viable alternative fuels like vegetable oils, compresed natural gas, liquid petroleum gas, producer gas, and biogas in order to provide suitable substitute to diesel for compression ignition engine. In this investigation, a single cylinder, vertical, air-cooled diesel engine was modified to use liquid petroleum gas in dual fuel mode. The liquefied petroleum gas, was mixed with air and supplied through intake manifold. The liquid fuel neem oil or diesel was injected into the combustion chamber. The performance, emission, and combustion characteristics were studied and compared for neat fuel and dual fuel mode. The experimental results on dual fuel engine show a reduction in oxides of nitrogen up to 70% of the rated power and smoke in the entire power range. However the brake thermal efficiency was found decreased in low power range due to lower calorific value of liquid petroleum gas, and increase in higher power range due to the complete burning of liquid petroleum gas. Hydrocarbon and carbon monoxide emissions were increased significantly at lower power range and marginal variation in higher power range.

  7. CO2 Emissions From Fuel Combustion. Highlights. 2013 Edition

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-07-01

    In the lead-up to the UN climate negotiations in Warsaw, the latest information on the level and growth of CO2 emissions, their source and geographic distribution will be essential to lay the foundation for a global agreement. To provide input to and support for the UN process, the IEA is making available for free download the ''Highlights'' version of CO2 Emissions from Fuel Combustion now for sale on IEA Bookshop. This annual publication contains, for more than 140 countries and regions: estimates of CO2 emissions from 1971 to 2011; selected indicators such as CO2/GDP, CO2/capita, CO2/TPES and CO2/kWh; a decomposition of CO2 emissions into driving factors; and CO2emissions from international marine and aviation bunkers, key sources, and other relevant information. The nineteenth session of the Conference of the Parties to the Climate Change Convention (COP-19), in conjunction with the ninth meeting of the Parties to the Kyoto Protocol (CMP 9), met in Warsaw, Poland from 11 to 22 November 2013. This volume of ''Highlights'', drawn from the full-scale study, was specially designed for delegations and observers of the meeting in Warsaw.

  8. Alternatives to traditional transportation fuels 1994. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    In this report, alternative and replacement fuels are defined in accordance with the EPACT. Section 301 of the EPACT defines alternative fuels as: methanol, denatured ethanol, and other alcohols; mixtures containing 85% or more (or such other percentage, but not less than 70%, as determined by the Secretary of Energy, by rule, to provide for requirements relating to cold start, safety, or vehicle functions) by volume of methanol, denatured ethanol, and other alcohols with gasoline or other fuels; natural gas; liquefied petroleum gas; hydrogen; coal-derived liquid fuels; fuels (other than alcohol) derived from biological materials; electricity (including electricity from solar energy); and any other fuel the Secretary determines, by rule, is substantially not petroleum and would yield substantial energy security benefits and substantial environmental benefits. The EPACT defines replacement fuels as the portion of any motor fuel that is methanol, ethanol, or other alcohols, natural gas, liquefied petroleum gas, hydrogen, coal-derived liquid fuels, fuels (other than alcohol) derived from biological materials, electricity (including electricity from solar energy), ethers, or any other fuel the Secretary of Energy determines, by rule, is substantially not petroleum and would yield substantial energy security benefits and substantial environmental benefits. This report covers only those alternative and replacement fuels cited in the EPACT that are currently commercially available or produced in significant quantities for vehicle demonstration purposes. Information about other fuels, such as hydrogen and biodiesel, will be included in later reports as those fuels become more widely used. Annual data are presented for 1992 to 1996. Data for 1996 are based on plans or projections for 1996.

  9. 40 CFR 60.4360 - How do I determine the total sulfur content of the turbine's combustion fuel?

    Science.gov (United States)

    2010-07-01

    ... content of the turbine's combustion fuel? 60.4360 Section 60.4360 Protection of Environment ENVIRONMENTAL... Standards of Performance for Stationary Combustion Turbines Monitoring § 60.4360 How do I determine the total sulfur content of the turbine's combustion fuel? You must monitor the total sulfur content of...

  10. Laboratory Scale of Liquid Coal Fuel Combustion Process and Exhaust Gas Formation

    OpenAIRE

    Kartika K. Hendratna; Osami Nishida; Hirotsugu Fujita; Wataru Harano

    2010-01-01

    Problem statement: Much research of coal has been already undertaken to ascertain the possibilities of coal being used as substitute for heavy fuel oil in the transportation sector. The effects of using coal as transportation fuel to the environment must also be considered. This study will review several aspects of the coal oil combustion process including combustion behavior, flame stability, some emissions from exhaust gas; CO, NOx and the particulate matter in a well insulated laboratory s...

  11. Expectation dynamics: Ups and downs of alternative fuels

    Science.gov (United States)

    Konrad, Kornelia

    2016-03-01

    The transport sector must undergo radical changes if it is to reduce its carbon emissions, calling for alternative vehicles and fuel types. Researchers now analyse the expectation cycles for different fuel technologies and draw lessons for the role of US policy in supporting them.

  12. Effect of fuel cycle alternatives on nuclear waste management

    International Nuclear Information System (INIS)

    The nuclear fuel cycle alternatives considered here and their corresponding material flowsheets are: Pressurized water reactor (PWR) with no fuel reprocessing; PWR with reprocessing for uranium recycle and plutonium storage; PWR with reprocessing for uranium recycle and self-generated plutonium recycle; and high-temperature gas-cooled reactor with uranium recycle

  13. Abundant thorium as an alternative nuclear fuel

    International Nuclear Information System (INIS)

    It has long been known that thorium-232 is a fertile radioactive material that can produce energy in nuclear reactors for conversion to electricity. Thorium-232 is well suited to a variety of reactor types including molten fluoride salt designs, heavy water CANDU configurations, and helium-cooled TRISO-fueled systems. Among contentious commercial nuclear power issues are the questions of what to do with long-lived radioactive waste and how to minimize weapon proliferation dangers. The substitution of thorium for uranium as fuel in nuclear reactors has significant potential for minimizing both problems. Thorium is three times more abundant in nature than uranium. Whereas uranium has to be imported, there is enough thorium in the United States alone to provide adequate grid power for many centuries. A well-designed thorium reactor could produce electricity less expensively than a next-generation coal-fired plant or a current-generation uranium-fueled nuclear reactor. Importantly, thorium reactors produce substantially less long-lived radioactive waste than uranium reactors. Thorium-fueled reactors with molten salt configurations and very high temperature thorium-based TRISO-fueled reactors are both recommended for priority Generation IV funding in the 2030 time frame. - Highlights: • Thorium is an abundant nuclear fuel that is well suited to three advanced reactor configurations. • Important thorium reactor configurations include molten salt, CANDU, and TRISO systems. • Thorium has important nuclear waste disposal advantages relative to pressurized water reactors. • Thorium as a nuclear fuel has important advantages relative to weapon non-proliferation

  14. Advanced coal-fueled gas turbine systems: Subscale combustion testing. Topical report, Task 3.1

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-01

    This is the final report on the Subscale Combustor Testing performed at Textron Defense Systems` (TDS) Haverhill Combustion Laboratories for the Advanced Coal-Fueled Gas Turbine System Program of the Westinghouse Electric Corp. This program was initiated by the Department of Energy in 1986 as an R&D effort to establish the technology base for the commercial application of direct coal-fired gas turbines. The combustion system under consideration incorporates a modular staged, rich-lean-quench, Toroidal Vortex Slogging Combustor (TVC) concept. Fuel-rich conditions in the first stage inhibit NO{sub x} formation from fuel-bound nitrogen; molten coal ash and sulfated sorbent are removed, tapped and quenched from the combustion gases by inertial separation in the second stage. Final oxidation of the fuel-rich gases, and dilution to achieve the desired turbine inlet conditions are accomplished in the third stage, which is maintained sufficiently lean so that here, too, NO{sub x} formation is inhibited. The primary objective of this work was to verify the feasibility of a direct coal-fueled combustion system for combustion turbine applications. This has been accomplished by the design, fabrication, testing and operation of a subscale development-type coal-fired combustor. Because this was a complete departure from present-day turbine combustors and fuels, it was considered necessary to make a thorough evaluation of this design, and its operation in subscale, before applying it in commercial combustion turbine power systems.

  15. Environmental aspects of alternative wet technologies for producing energy/fuel from peat. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R.T.

    1981-05-01

    Peat in situ contains up to 90% moisture, with about 50% of this moisture trapped as a colloidal gel. This colloidal moisture cannot be removed by conventional dewatering methods (filter presses, etc.) and must be removed by thermal drying, solvent extraction, or solar drying before the peat can be utilized as a fuel feedstock for direct combustion or gasification. To circumvent the drying problem, alternative technologies such as wet oxidation, wet carbonization, and biogasification are possible for producing energy or enhanced fuel from peat. This report describes these three alternative technologies, calculates material balances for given raw peat feed rates of 1000 tph, and evaluates the environmental consequences of all process effluent discharges. Wastewater discharges represent the most significant effluent due to the relatively large quantities of water removed during processing. Treated process water returned to the harvested bog may force in situ, acidic bog water into recieving streams, disrupting local aquatic ecosystems.

  16. Engine Materials Compatibility with Alternate Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Thomson, Jeffery K [ORNL; Pawel, Steven J [ORNL; Wilson, Dane F [ORNL

    2013-05-01

    The compatibility of aluminum and aluminum alloys with synthetic fuel blends comprised of ethanol and reference fuel C (a 50/50 mix of toluene and iso-octane) was examined as a function of water content and temperature. Commercially pure wrought aluminum and several cast aluminum alloys were observed to be similarly susceptible to substantial corrosion in dry (< 50 ppm water) ethanol. Corrosion rates of all the aluminum materials examined were accelerated by increased temperature and ethanol content in the fuel mixture, but inhibited by increased water content. Pretreatments designed to stabilize passive films on aluminum increased the incubation time for onset of corrosion, suggesting film stability is a significant factor in the mechanism of corrosion.

  17. Engine Materials Compatability with Alternative Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Pawel, Steve [Oak Ridge National Laboratory; Moore, D. [USCAR

    2013-04-05

    The compatibility of aluminum and aluminum alloys with synthetic fuel blends comprised of ethanol and reference fuel C (a 50/50 mix of toluene and iso-octane) was examined as a function of water content and temperature. Commercially pure wrought aluminum and several cast aluminum alloys were observed to be similarly susceptible to substantial corrosion in dry (< 50 ppm water) ethanol. Corrosion rates of all the aluminum materials examined were accelerated by increased temperature and ethanol content in the fuel mixture, but inhibited by increased water content. Pretreatments designed to stabilize passive films on aluminum increased the incubation time for onset of corrosion, suggesting film stability is a significant factor in the mechanism of corrosion.

  18. Environmental implications of alternative-fueled automobiles: Air quality and greenhouse gas tradeoffs

    International Nuclear Information System (INIS)

    The authors analyze alternative fuel-powerstrain options for internal combustion engine automobiles. Fuel/engine efficiency, energy use, pollutant discharges, and greenhouse gas emissions are estimated for spark and compression ignited, direct injected (DI), and indirect injected (II) engines fueled by conventional and reformulated gasoline, reformulated diesel, compressed natural gas (CNG), and alcohols. Since comparisons of fuels and technologies in dissimilar vehicles are misleading, the authors hold emissions level, range, vehicle size class, and style constant. At present, CNG vehicles have the best exhaust emissions performance while DI diesels have the worst. Compared to a conventional gasoline fueled II automobile, greenhouse gases could be reduced by 40% by a DI CNG automobile and by 25% by a DI diesel. Gasoline- and diesel-fueled automobiles are able to attain long ranges with little weight or fuel economy penalty. CNG vehicles have the highest penalty for increasing range, due to their heavy fuel storage systems, but are the most attractive for a 160-km range. DI engines, particularly diesels, may not be able to meet strict emissions standards, at least not without lowering efficiency

  19. Certification of alternative aviation fuels and blend components

    Energy Technology Data Exchange (ETDEWEB)

    Wilson III, George R. (Southwest Research Institute, 6220 Culebra Road, San Antonio, Texas 78238 (United States)); Edwards, Tim; Corporan, Edwin (United States Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433 (United States)); Freerks, Robert L. (Rentech, Incorporated, 1331 17th Street, Denver, Colorado 80202 (United States))

    2013-01-15

    Aviation turbine engine fuel specifications are governed by ASTM International, formerly known as the American Society for Testing and Materials (ASTM) International, and the British Ministry of Defence (MOD). ASTM D1655 Standard Specification for Aviation Turbine Fuels and MOD Defence Standard 91-91 are the guiding specifications for this fuel throughout most of the world. Both of these documents rely heavily on the vast amount of experience in production and use of turbine engine fuels from conventional sources, such as crude oil, natural gas condensates, heavy oil, shale oil, and oil sands. Turbine engine fuel derived from these resources and meeting the above specifications has properties that are generally considered acceptable for fuels to be used in turbine engines. Alternative and synthetic fuel components are approved for use to blend with conventional turbine engine fuels after considerable testing. ASTM has established a specification for fuels containing synthesized hydrocarbons under D7566, and the MOD has included additional requirements for fuels containing synthetic components under Annex D of DS91-91. New turbine engine fuel additives and blend components need to be evaluated using ASTM D4054, Standard Practice for Qualification and Approval of New Aviation Turbine Fuels and Fuel Additives. This paper discusses these specifications and testing requirements in light of recent literature claiming that some biomass-derived blend components, which have been used to blend in conventional aviation fuel, meet the requirements for aviation turbine fuels as specified by ASTM and the MOD. The 'Table 1' requirements listed in both D1655 and DS91-91 are predicated on the assumption that the feedstocks used to make fuels meeting these requirements are from approved sources. Recent papers have implied that commercial jet fuel can be blended with renewable components that are not hydrocarbons (such as fatty acid methyl esters). These are not allowed blend

  20. Compression ignition engine having fuel system for non-sooting combustion and method

    Energy Technology Data Exchange (ETDEWEB)

    Bazyn, Timothy; Gehrke, Christopher

    2014-10-28

    A direct injection compression ignition internal combustion engine includes a fuel system having a nozzle extending into a cylinder of the engine and a plurality of spray orifices formed in the nozzle. Each of the spray orifices has an inner diameter dimension of about 0.09 mm or less, and define inter-orifice angles between adjacent spray orifice center axes of about 36.degree. or greater such that spray plumes of injected fuel from each of the spray orifices combust within the cylinder according to a non-sooting lifted flame and gas entrainment combustion pattern. Related methodology is also disclosed.

  1. Emission characteristics and combustion instabilities in an oxy-fuel swirl-stabilized combustor

    Institute of Scientific and Technical Information of China (English)

    Guo-neng LI; Hao ZHOU; Ke-fa CEN

    2008-01-01

    This paper presents an experimental study on the emission characteristics and combustion instabilities of oxy-fuel combustions in a swirl-stabilized combustor.Different oxygen concentrations(Xoxy=25%-45%,where Xoxy is oxygen concentra-tion by volume),equivalence ratios(=0.75~1.15)and combustion powers(CP=1.08~2.02kW)were investigated in the oxy-fuel (CH4/CO2/O2)combustions,and reference cases(Xoxy=25%~35%,Cha/N2/O2 flames)were covered.The results show that the oxygen concentration in the oxidant stream significantly affects the combustion delay in the oxy-fuel flames,and the equivalence ratio has a slight effect,whereas the combustion power shows no impact.The temperature levels of the oxy-fuel flames inside the combustion chamber are much higher(up to 38.7%)than those of the reference cases.Carbon monoxide was vastly producedwhen Xoxy>35% or >0.95 in the oxy-fuel flames,while no nitric oxide was found in the exhaust gases because no N2 participates in the combustion process.The combustion instability of the oxy-fuel combustion is very different from those of the reference cases with similar oxygen content.Oxy-fuel combustions excite strong oscillations in all cases studied Xoxy=25%~45%.However,no pressure fluctuations were detected in the reference cases when Xoxy>28.6% accomplished by heavily sooting flames which were not found in the oxy-fuel combustions.Spectrum analysis shows that the frequency of dynamic pressure oscillations exhibits randomness in the range of 50~250 Hz,therefore resulting in a very small resultant amplitude.Temporal oscillations are very strong with amplitudes larger than 200 Pa,even short time fast Fourier transform(FFT)analysis(0.08 s)shows that the pressure amplitude can be larger than 40 Pa.

  2. Efficiency and exhaust gas analysis of variable compression ratio spark ignition engine fuelled with alternative fuels

    Directory of Open Access Journals (Sweden)

    N. Seshaiah

    2010-09-01

    Full Text Available Considering energy crises and pollution problems today, investigations have been concentrated on decreasing fuel consumption by using alternative fuels and on lowering the concentration of toxic components in combustion products. In the present work, the variable compression ratio spark ignition engine designed to run on gasoline has been tested with pure gasoline, LPG (Isobutene, and gasoline blended with ethanol 10%, 15%, 25% and 35% by volume. Also, the gasoline mixed with kerosene at 15%, 25% and 35% by volume without any engine modifications has been tested and presented the result. Brake thermal and volumetric efficiency variation with brake load is compared and presented. CO and CO2 emissions have been also compared for all tested fuels.

  3. Effects of Burning Alternative Fuel in a 5-Cup Combustor Sector

    Science.gov (United States)

    Tacina, K. M.; Chang, C. T.; Lee, C.-M.; He, Z.; Herbon, J.

    2015-01-01

    A goal of NASA's Environmentally Responsible Aviation (ERA) program is to develop a combustor that will reduce the NOx emissions and that can burn both standard and alternative fuels. To meet this goal, NASA partnered with General Electric Aviation to develop a 5-cup combustor sector; this sector was tested in NASA Glenn's Advanced Subsonic Combustion Rig (ASCR). To verify that the combustor sector was fuel-flexible, it was tested with a 50-50 blend of JP-8 and a biofuel made from the camelina sativa plant. Results from this test were compared to results from tests where the fuel was neat JP-8. Testing was done at three combustor inlet conditions: cruise, 30% power, and 7% power. When compared to burning JP-8, burning the 50-50 blend did not significantly affect emissions of NOx, CO, or total hydrocarbons. Furthermore, it did not significantly affect the magnitude and frequency of the dynamic pressure fluctuations.

  4. Combustion and emissions of the diesel engine using bio-diesel fuel

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The combustion and heat release of engines using diesel fuel and bio-diesel fuel have been investigated.The results illustrate that the combustion happens in advance and the ignition delay period is shortened.The initial heat release peak declines a little,the corresponding crankshaft angle changes in advance,and the combustion duration is prolonged.The economic performance and emission features of diesel engines using diesel fuel and bio-diesel fuel are compared.The results also show that the specific fuel consumption of bio-diesel increases by about 12% .The emissions,such as CO,HC,and particulate matter decrease remarkably whereas NOx increases a little.

  5. Synthetic and Biomass Alternate Fueling in Aviation

    Science.gov (United States)

    Hendricks, Robert C.; Bushnell, Dennis M.

    2009-01-01

    Must use earth's most abundant natural resources - Biomass, Solar, Arid land (43%), Seawater (97%) with nutrients (80%) plus brackish waters and nutrients resolve environmental triangle of conflicts energy-food-freshwater and ultrafine particulate hazards. Requires Paradigm Shift - Develop and Use Solar* for energy; Biomass for aviation and hybrid-electric-compressed air mobility fueling with transition to hydrogen long term.

  6. Biomass Fuel Characterization : Testing and Evaluating the Combustion Characteristics of Selected Biomass Fuels : Final Report May 1, 1988-July, 1989.

    Energy Technology Data Exchange (ETDEWEB)

    Bushnell, Dwight J.; Haluzok, Charles; Dadkhah-Nikoo, Abbas

    1990-04-01

    Results show that two very important measures of combustion efficiency (gas temperature and carbon dioxide based efficiency) varied by only 5.2 and 5.4 percent respectively. This indicates that all nine different wood fuel pellet types behave very similarly under the prescribed range of operating parameters. The overall mean efficiency for all tests was 82.1 percent and the overall mean temperature was 1420 1{degree}F. Particulate (fly ash) ad combustible (in fly ash) data should the greatest variability. There was evidence of a relationship between maximum values for both particulate and combustible and the percentages of ash and chlorine in the pellet fuel. The greater the percentage of ash and chlorine (salt), the greater was the fly ash problem, also, combustion efficiency was decreased by combustible losses (unburned hydrocarbons) in the fly ash. Carbon monoxide and Oxides of Nitrogen showed the next greatest variability, but neither had data values greater than 215.0 parts per million (215.0 ppm is a very small quantity, i.e. 1 ppm = .001 grams/liter = 6.2E-5 1bm/ft{sup 3}). Visual evidence indicates that pellets fuels produced from salt laden material are corrosive, produce the largest quantities of ash, and form the only slag or clinker formations of all nine fuels. The corrosion is directly attributable to salt content (or more specifically, chloride ions and compounds formed during combustion). 45 refs., 23 figs., 19 tabs.

  7. The effect of azeotropism on combustion characteristics of blended fuel pool fire.

    Science.gov (United States)

    Ding, Yanming; Wang, Changjian; Lu, Shouxiang

    2014-04-30

    The effect of azeotropism on combustion characteristics of blended fuel pool fire was experimentally studied in an open fire test space of State Key Laboratory of Fire Science. A 30 cm × 30 cm square pool filled with n-heptane and ethanol blended fuel was employed. Flame images, burning rate and temperature distribution were collected and recorded in the whole combustion process. Results show that azeotropism obviously dominates the combustion behavior of n-heptane/ethanol blended fuel pool fire. The combustion process after ignition exhibits four typical stages: initial development, azeotropic burning, single-component burning and decay stage. Azeotropism appears when temperature of fuel surface reaches azeotropic point and blended fuel burns at azeotropic ratio. Compared with individual pure fuel, the effect of azeotropism on main fire parameters, such as flame height, burning rate, flame puffing frequency and centerline temperature were analyzed. Burning rate and centerline temperature of blended fuel are higher than that of individual pure fuel respectively at azeotropic burning stage, and flame puffing frequency follows the empirical formula between Strouhal and Froude number for pure fuel. PMID:24632362

  8. Sulfur Release during Alternative fuels Combustion in Cement Rotary Kilns

    DEFF Research Database (Denmark)

    Cortada Mut, Maria del Mar

    are of high importance for SO 2 release because it is shown that introducing the same total amount of gas, the highest reducing agent concentration fo r a short period released a higher total SO 2 amount compared to the lowest concentration during a long period. A mathematical reaction based model...... but the effect of sulfur content in the bed cannot be predicted. Further development regarding particle motion according to the rotational speed may be needed. Furthermore, a model for predicting the tendency of build-ups for a kiln system is developed based on the prediction of SO 3 and Cl concentrations...... total SO 2 amount compared to the lowest concentration during a long period. A mathematical reaction based model for predicting sulfur release caused by volatiles from wood particles fired in the material kiln inlet is developed and evaluated against pilot scale data, which shows that the model follows...

  9. Preliminary evaluation of alternate-fueled gas cooled fast reactors

    International Nuclear Information System (INIS)

    A preliminary evaluation of various alternative fuel cycles for the Gas-Cooled Fast Reactor (GCFR) is presented. Both homogeneous and heterogeneous oxide-fueled GCFRs are considered. The scenario considered is the energy center/dispersed reactor concept in which proliferation-resistant denatured reactors are coupled to 233U production reactors operating in secure energy centers. Individual reactor performance characteristics and symbiotic system parameters are summarized for several possible alternative fuel concepts. Comparisons are made between the classical homogeneous GCFR and the advanced heterogeneous concept on the basis of breeding ratio, doubling time, and net fissile gain. In addition, comparisons are made between a three-dimensional reactor model and the R-Z heterogeneous configuration utilized for the depletion and fuel management calculations. Lastly, thirty-year mass balance data are given for the various GCFR fuel cycles studied

  10. Combustion Simulation and Quick-freeze Observation of a Cupola-furnace Process Using a Bio-coke Fuel Based on Tea Scum

    Science.gov (United States)

    Ishii, Kazuyoshi; Murata, Hirotoshi; Kuwana, Kazunori; Mizuno, Satoru; Morita, Akihiro; Ida, Tamio

    Global environment problems have become more and more serious in recent years, and reduction of greenhouse gas emission based on Kyoto Protocol adopted at the 3rd conference of the parties of the United nations Framework Convention on Climate Change (COP3); securement of primary energy source and development of clean and renewable energy sources have been pressingly needed in consideration of the predicted depletion of fossil fuel in the future. In this study, we explore the use of a solidified biomass-derived fuel, having the maximum compressive strength of 100MPa and calorific value of 21MJ/kg, in iron-casting or iron-making processes as an alternative fuel to be mixed with coal coke. This study, carried out for internal observation using a quick-freeze technique, observed an actual working cupola furnace under the 20% alternative coal coke operation condition. After quick freeze of the cupola furnace, the solidified biomass fuel was found to inhabit near the iron-melting zone. Especially, this solidified biomass fuel smoothly changes carbonized fuel through high-density state during the operating process. On the other hand, this study tried to simulate gasification combustion under a high temperature environment instead of actual internal combustion of solidified biomass fuel. These combustion mechanisms were confirmed to be similar to diffusion-flame phenomena in general.

  11. Comparative study of combustion product emissions of Pakistani coal briquettes and traditional Pakistani domestic fuels

    International Nuclear Information System (INIS)

    A comparative emissions study was conducted on combustion products of various solid domestic cooking fuels; the objective was to compare relative levels of organic and inorganic toxic emissions from traditional Pakistani fuels (wood, wood charcoal, and dried animal dung) with manufactured low-rank coal briquettes (Lakhra and Sor- Range coals) under conditions simulating domestic cooking. A small combustion shed 12 m3 internal volume, air exchange rate 14 h-1 was used to simulate south Asian cooking rooms. 200-g charges of the various fuels were ignited in an Angethi stove located inside the shed, then combusted to completion; effluents from this combustion were monitored as a function of time. Measurements were made of respirable particulates, volatile and semi-volatile organics, CO, SO2, and NOx. Overall it appears that emissions from coal briquettes containing combustion amendments (slaked lime, clay, and potassium nitrate oxidizer) are no greater than emissions from traditional fuels, and in some cases are significantly lower; generally, emissions are highest for all fuels in the early stages of combustion

  12. Exploring Alternative Fuels in Middle Schools

    Science.gov (United States)

    Donley, John F.; Stewardson, Gary A.

    2010-01-01

    Alternative energy sources have become increasingly important as the production of domestic oil has declined and dependence on foreign oil has increased. Historically, there have been four time periods during which the United States was in fact crippled by oil shortages. These time periods include: (1) the early 1900s; (2) World War II; (3) the…

  13. Study of PAH emission from the solid fuels combustion in residential furnaces.

    Science.gov (United States)

    Kakareka, Sergey V; Kukharchyk, Tamara I; Khomich, Valery S

    2005-01-01

    The procedure for and results of a test study of polycyclic aromatic hydrocarbon (PAH) emission from a few types of solid fuels combustion in residential furnaces of various designs typical for Belarus are discussed. Greatest levels of PAH emission were detected from domestic wastes and wood waste combustion. Lowest levels of PAH emission are from peat briquette combustion. It was found that PAH concentration in off-gases from firewood combustion also varies significantly depending on the type of wood: the highest values of PAH are typical for waste gases from birch firewood combustion in comparison with pine firewood combustion. Draft PAH emission factors are proposed with intended application for emission inventory of such installations. PMID:15519469

  14. The causes and effects of the Alternative Motor Fuels Act

    Science.gov (United States)

    Liu, Yimin

    The corporate average fuel economy (CAFE) standard is the major policy tool to improve the fleet average miles per gallon of automobile manufacturers in the U.S. The Alternative Motor Fuels Act (AMFA) provides special treatment in calculating the fuel economy of alternative fuel vehicles to give manufacturers CAFE incentives to produce more alternative fuel vehicles. AMFA has as its goals an increase in the production of alternative fuel vehicles and a decrease in gasoline consumption and greenhouse gas emissions. This dissertation examines theoretically the effects of the program set up under AMFA. It finds that, under some conditions, this program may actually increase gasoline consumption and greenhouse gas emissions. The dissertation also uses hedonic techniques to examine whether the Alternative Motor Fuels Act (AMFA) has a significant effect on the implicit price of fuel economy and whether the marginal value of vehicle fuel efficiency changes over time. It estimates the change of implicit price in miles per gallon after the production of alternative fuel vehicles (AFVs). Results indicate that every year consumers may evaluate vehicle fuel economy differently, and that since AFVs came to the market, the marginal value of fuel economy from specific companies producing AFVs has decreased. This finding suggests that since the AMFA provides extra Corporate Average Fuel Economy (CAFE) credit for those automakers producing AFVs, the automakers can take advantage of the incentive to produce more profitable conventional vehicles and meet CAFE standards without improving the fleet fuel economy. In this way, manufacturers who produce AFVs are willing to offer a lower price for the fuel economy under the AMFA. Additionally, this paper suggests that the flexible fuel vehicles (FFVs) on the market are not significantly more expensive than comparable conventional vehicles, even if FFVs are also able to run on an alternative fuel and may cost more than conventional vehicles

  15. Pulsating combustion of gas fuel in the combustion chamber with closed resonant circuit

    International Nuclear Information System (INIS)

    In the combustion chambers of the pulsation of gas flow oscillation greatly accelerate heat dissipation to the walls of the combustion chamber and improve combustion efficiency as compared with a uniform combustion mode. This allows you to effectively solve a number of problems of industrial power, including an environmentally friendly combustion products. Significant drawback of such systems – the emitted noise exceeding the permissible requirements. One solution to this problem – the separation of the resonance tube into 2 parts connected at the output to the interference of sound waves. The results of theoretical studies pulsating combustion technical mixture of propane in the system, consisting of a combustion chamber and two resonance tubes forming a closed resonant circuit. Resonators have a variable length. Calculations have shown that under certain oscillation of the resonator length to the first resonant frequency of the system is achieved by reducing SPL more than 15 dB. For oscillations at a second resonant frequency is the complete elimination of noise while maintaining intense oscillations in the combustion chamber

  16. Laboratory Scale of Liquid Coal Fuel Combustion Process and Exhaust Gas Formation

    Directory of Open Access Journals (Sweden)

    Kartika K. Hendratna

    2010-01-01

    Full Text Available Problem statement: Much research of coal has been already undertaken to ascertain the possibilities of coal being used as substitute for heavy fuel oil in the transportation sector. The effects of using coal as transportation fuel to the environment must also be considered. This study will review several aspects of the coal oil combustion process including combustion behavior, flame stability, some emissions from exhaust gas; CO, NOx and the particulate matter in a well insulated laboratory scale furnace for more stable of combustion. Approach: New way for preparation for liquid coal oil steady combustion on a 2.75 m horizontal boiler with four annular segment tubes, a water jacket system and a system for measurement of water temperature inside was archived. Data was gained by applying liquid coal in the experiment. Detailed preparation and setting for steady combustion of coal oil and formation of the exhaust gas were discussed based on data sampling from four sample points in each centre of the angular tube segments. Results: Preparation for coal oil combustion is an important point in the successful of combustion. Heating coal fuel to than 100°C, heating the fuel line to the same temperature and providing enough air pressure for atomization of coal oil until 0.1 MPa allows coal fuel smoothly atomized in the semi gas phase. There was enough of air combustion via a blower with 4500 L min-1 of flow rate and a 24 L min-1 of water flow rate in the water jacket transforms the energy of the fuel to the heat. Uncolored of the exhaust gas and the physical inspection describes the completion of combustion. This result close-relates with the pollutants formation in the exhaust gas. Conclusion: By conducting a deep research process, there is a chance for the substitute of heavy fuel oil with liquid coal fuel with no special treatment needed in combustion process without ignoring the contribution of the combustion results as an environmental problem.

  17. Life-cycle analysis of alternative aviation fuels in GREET

    Energy Technology Data Exchange (ETDEWEB)

    Elgowainy, A.; Han, J.; Wang, M.; Carter, N.; Stratton, R.; Hileman, J.; Malwitz, A.; Balasubramanian, S. (Energy Systems)

    2012-07-23

    The Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, developed at Argonne National Laboratory, has been expanded to include well-to-wake (WTWa) analysis of aviation fuels and aircraft. This report documents the key WTWa stages and assumptions for fuels that represent alternatives to petroleum jet fuel. The aviation module in GREET consists of three spreadsheets that present detailed characterizations of well-to-pump and pump-to-wake parameters and WTWa results. By using the expanded GREET version (GREET1{_}2011), we estimate WTWa results for energy use (total, fossil, and petroleum energy) and greenhouse gas (GHG) emissions (carbon dioxide, methane, and nitrous oxide) for (1) each unit of energy (lower heating value) consumed by the aircraft or (2) each unit of distance traveled/ payload carried by the aircraft. The fuel pathways considered in this analysis include petroleum-based jet fuel from conventional and unconventional sources (i.e., oil sands); Fisher-Tropsch (FT) jet fuel from natural gas, coal, and biomass; bio-jet fuel from fast pyrolysis of cellulosic biomass; and bio-jet fuel from vegetable and algal oils, which falls under the American Society for Testing and Materials category of hydroprocessed esters and fatty acids. For aircraft operation, we considered six passenger aircraft classes and four freight aircraft classes in this analysis. Our analysis revealed that, depending on the feedstock source, the fuel conversion technology, and the allocation or displacement credit methodology applied to co-products, alternative bio-jet fuel pathways have the potential to reduce life-cycle GHG emissions by 55-85 percent compared with conventional (petroleum-based) jet fuel. Although producing FT jet fuel from fossil feedstock sources - such as natural gas and coal - could greatly reduce dependence on crude oil, production from such sources (especially coal) produces greater WTWa GHG emissions compared with petroleum jet

  18. Life-Cycle Analysis of Alternative Aviation Fuels in GREET

    Energy Technology Data Exchange (ETDEWEB)

    Elgowainy, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Han, J. [Argonne National Lab. (ANL), Argonne, IL (United States); Wang, M. [Argonne National Lab. (ANL), Argonne, IL (United States); Carter, N. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Stratton, R. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Hileman, J. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Malwitz, A. [Volpe National Transportation Systems Center, Cambridge, MA (United States); Balasubramanian, S. [Volpe National Transportation Systems Center, Cambridge, MA (United States)

    2012-06-01

    The Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, developed at Argonne National Laboratory, has been expanded to include well-to-wake (WTWa) analysis of aviation fuels and aircraft. This report documents the key WTWa stages and assumptions for fuels that represent alternatives to petroleum jet fuel. The aviation module in GREET consists of three spreadsheets that present detailed characterizations of well-to-pump and pump-to-wake parameters and WTWa results. By using the expanded GREET version (GREET1_2011), we estimate WTWa results for energy use (total, fossil, and petroleum energy) and greenhouse gas (GHG) emissions (carbon dioxide, methane, and nitrous oxide) for (1) each unit of energy (lower heating value) consumed by the aircraft or(2) each unit of distance traveled/ payload carried by the aircraft. The fuel pathways considered in this analysis include petroleum-based jet fuel from conventional and unconventional sources (i.e., oil sands); Fisher-Tropsch (FT) jet fuel from natural gas, coal, and biomass; bio-jet fuel from fast pyrolysis of cellulosic biomass; and bio-jet fuel from vegetable and algal oils, which falls under the American Society for Testing and Materials category of hydroprocessed esters and fatty acids. For aircraft operation, we considered six passenger aircraft classes and four freight aircraft classes in this analysis. Our analysis revealed that, depending on the feedstock source, the fuel conversion technology, and the allocation or displacement credit methodology applied to co-products, alternative bio-jet fuel pathways have the potential to reduce life-cycle GHG emissions by 55–85 percent compared with conventional (petroleum-based) jet fuel. Although producing FT jet fuel from fossil feedstock sources — such as natural gas and coal — could greatly reduce dependence on crude oil, production from such sources (especially coal) produces greater WTWa GHG emissions compared with petroleum jet

  19. Combustion of drops of Mexican fuel oils with high asphaltenes content; Combustion de gotas de combustoleos mexicanos con alto contenido de asfaltenos

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Rodriguez, Jose Francisco [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1998-09-01

    In this work the combustion of fuel drops with a content of 18% of asphaltenes has been studied . The results obtained for this fuel were compared with the ones obtained for another with a content of 12% asphaltenes. The drops were suspended in a platinum filament and burned in an spherical radiant furnace. The drop size varied between 600 and 800 microns. The fuel drops with 12% asphaltenes showed shorter combustion times, a smaller diameter increment of the smaller diameter during the combustion stages and also a shorter burning time of the carbonaceous residue than the fuel drops with a content of 18% asphaltenes. [Espanol] En el presente trabajo se ha estudiado la combustion de gotas de combustible con 18% de contenido de asfaltenos. Los resultados obtenidos para este combustible se compararon con los obtenidos para otro con 12% de contenido de asfaltenos. Las gotas fueron suspendidas en un filamento de platino y quemadas en un horno radiante esferico. El tamano de las gotas vario entre 600 y 800 micras. Las gotas de combustible con 12% de asfaltenos mostraron tiempos de combustion mas cortos, un incremento del diametro menor durante las etapas de combustion y un tiempo de quemado del residuo carbonoso tambien mas corto que las gotas del combustible con 18% de contenido de asfaltenos.

  20. Biomass utilization for green environment: Co-combustion of diesel fuel and producer gas in thermal application

    International Nuclear Information System (INIS)

    Study of co-combustion of diesel oil and producer gas from a gasifier, individually as well as combined, in an experimental combustion chamber revealed that the producer gas can be co-combusted with liquid fuel. The process produced more CO, NO/sub x/, SO/sub 2/ and CO/sub 2/ as compared to the combustion of diesel oil alone; the exhaust temperature for the process was higher than the diesel combustion alone. (author)

  1. Applied use of combustion turbine generators as a station blackout alternate AC power source

    International Nuclear Information System (INIS)

    In response to the 10 CFR 50.63 Station Blackout Rule and NRC Regulatory Guide (RG) 1.155, Arizona Public Service Company (APS) opted to install dual 13.8kV, 3400kW black start combustion turbine generators (CTG's) as an alternate AC (AAC) power source at the Palo Verde Nuclear Generating Station (PVNGS). These CTG's provide AC power to critical plant loads in the event of a Station Blackout (SBO) in any one of the three PVNGS units. The AAC power source entered service in the fall of 1993 for the first PVNGS unit. Connection of the AAC source for the other two nuclear units will be complete by mid-1995. Two redundant CTGs were used to provide assurance that the AAC system availability requirements of RG 1.155 of 95% were met. A CTG site was chosen near an existing source of diesel fuel oil that was reasonably distant from the plant switchyard. The CTG's were installed along with a prefabricated turbine control room (TCR) which houses the CTG control equipment and associated power distribution equipment and battery systems. Cables were routed from the CTG site to each of the PVNGS units utilizing both new and existing underground duct banks. The cables were sized for the combined output of both CTG's at maximum power output for site worst case conditions. At each of the PVNGS units, additional switchgear cubicles were added to provide an interface with the existing plant power distribution system at a point upstream of the safety related power system. A test program was developed by engineering that tested all aspects of the installation and proved its capability to fulfill its purpose. Testing ranged from verifying emergency lighting adequacy to emissions testing and a complete simulation of a SBO. CTG performance was evaluated and verified to meet all expectations

  2. Performance Evaluation of a High Bandwidth Liquid Fuel Modulation Valve for Active Combustion Control

    Science.gov (United States)

    Saus, Joseph R.; DeLaat, John C.; Chang, Clarence T.; Vrnak, Daniel R.

    2012-01-01

    At the NASA Glenn Research Center, a characterization rig was designed and constructed for the purpose of evaluating high bandwidth liquid fuel modulation devices to determine their suitability for active combustion control research. Incorporated into the rig s design are features that approximate conditions similar to those that would be encountered by a candidate device if it were installed on an actual combustion research rig. The characterized dynamic performance measures obtained through testing in the rig are planned to be accurate indicators of expected performance in an actual combustion testing environment. To evaluate how well the characterization rig predicts fuel modulator dynamic performance, characterization rig data was compared with performance data for a fuel modulator candidate when the candidate was in operation during combustion testing. Specifically, the nominal and off-nominal performance data for a magnetostrictive-actuated proportional fuel modulation valve is described. Valve performance data were collected with the characterization rig configured to emulate two different combustion rig fuel feed systems. Fuel mass flows and pressures, fuel feed line lengths, and fuel injector orifice size was approximated in the characterization rig. Valve performance data were also collected with the valve modulating the fuel into the two combustor rigs. Comparison of the predicted and actual valve performance data show that when the valve is operated near its design condition the characterization rig can appropriately predict the installed performance of the valve. Improvements to the characterization rig and accompanying modeling activities are underway to more accurately predict performance, especially for the devices under development to modulate fuel into the much smaller fuel injectors anticipated in future lean-burning low-emissions aircraft engine combustors.

  3. Overview of the EBFGT installation solutions applicable for flue gases from various fuels combustion

    International Nuclear Information System (INIS)

    The overview of the solutions used in EBFGT process and adaptation of process parameters for flue gas from combustion of various fuels was presented. The inlets parameters of flue gas from four fuels with high emission of pollutants, process parameters and process constrain were analysed. Also the main problems of this technology and their solutions were presented. (author)

  4. Combustion characteristics of a direct-injection diesel engine fueled with Fischer-Tropsch diesel

    Institute of Scientific and Technical Information of China (English)

    HUANG Yongcheng; ZHOU Longbao; PAN Keyu

    2007-01-01

    Fischer-Tropsch (F-T) diesel fuel is characterized by a high cetane number, a near-zero sulphur content and a very low aromatic level. On the basis of the recorded incylinder pressures and injector needle lifts, the combustion characteristics of an unmodified single-cylinder directinjection diesel engine operating on F-T diesel fuel are analyzed and compared with those of conventional diesel fuel operation. The results show that F-T diesel fuel exhibits a slightly longer injection delay and injection duration, an average of 18.7% shorter ignition delay, and a comparable total combustion duration when compared to those of conventional diesel fuel. Meanwhile, F-T diesel fuel displays an average of 26.8% lower peak value of premixed burning rate and a higher peak value of diffusive burning rate. In addition, the F-T diesel engine has a slightly lower peak combustion pressure, a far lower rate of pressure rise, and a lower mechanical load and combustion noise than the conventional diesel engine. The brake specific fuel consumption is lower and the effective thermal efficiency is higher for F-T diesel fuel operation.

  5. Alcohol-fueled vehicles: An alternative fuels vehicle, emissions, and refueling infrastructure technology assessment

    Energy Technology Data Exchange (ETDEWEB)

    McCoy, G.A.; Kerstetter, J.; Lyons, J.K. [and others

    1993-06-01

    Interest in alternative motor vehicle fuels has grown tremendously over the last few years. The 1990 Clean Air Act Amendments, the National Energy Policy Act of 1992 and the California Clean Air Act are primarily responsible for this resurgence and have spurred both the motor fuels and vehicle manufacturing industries into action. For the first time, all three U.S. auto manufacturers are offering alternative fuel vehicles to the motoring public. At the same time, a small but growing alternative fuels refueling infrastructure is beginning to develop across the country. Although the recent growth in alternative motor fuels use is impressive, their market niche is still being defined. Environmental regulations, a key driver behind alternative fuel use, is forcing both car makers and the petroleum industry to clean up their products. As a result, alternative fuels no longer have a lock on the clean air market and will have to compete with conventional vehicles in meeting stringent future vehicle emission standards. The development of cleaner burning gasoline powered vehicles has signaled a shift in the marketing of alternative fuels. While they will continue to play a major part in the clean vehicle market, alternative fuels are increasingly recognized as a means to reduce oil imports. This new role is clearly defined in the National Energy Policy Act of 1992. The Act identifies alternative fuels as a key strategy for reducing imports of foreign oil and mandates their use for federal and state fleets, while reserving the right to require private and municipal fleet use as well.

  6. Economic and ecological evaluation of alternative fuels

    International Nuclear Information System (INIS)

    Under contract with OEMV-AG, a comparative evaluation of biogenic fuels (ethanol, butanol, vegetable oil and methylester of fatty acids ) was carried out from technicoeconomic, agricultural and ecological points of view with special regard to the Austrian conditions of production. Investigations were made for the raw materials starch (corn, wheat, barley, peas and beans), sugar (sugar beet and sweet sorghum) and vegetable oil (rape seed and sunflower). In accordance with the customer, cellulose was excluded from the present investigation. Data for the economic analyses were deduced from the statistics of the financial year 1989/90. (Authors)

  7. Alternate Fuel Cell Membranes for Energy Independence

    Energy Technology Data Exchange (ETDEWEB)

    Storey, Robson, F.; Mauritz, Kenneth, A.; Patton, Derek, L.; Savin, Daniel, A.

    2012-12-18

    The overall objective of this project was the development and evaluation of novel hydrocarbon fuel cell (FC) membranes that possess high temperature performance and long term chemical/mechanical durability in proton exchange membrane (PEM) fuel cells (FC). The major research theme was synthesis of aromatic hydrocarbon polymers of the poly(arylene ether sulfone) (PAES) type containing sulfonic acid groups tethered to the backbone via perfluorinated alkylene linkages and in some cases also directly attached to the phenylene groups along the backbone. Other research themes were the use of nitrogen-based heterocyclics instead of acid groups for proton conduction, which provides high temperature, low relative humidity membranes with high mechanical/thermal/chemical stability and pendant moieties that exhibit high proton conductivities in the absence of water, and synthesis of block copolymers consisting of a proton conducting block coupled to poly(perfluorinated propylene oxide) (PFPO) blocks. Accomplishments of the project were as follows: 1) establishment of a vertically integrated program of synthesis, characterization, and evaluation of FC membranes, 2) establishment of benchmark membrane performance data based on Nafion for comparison to experimental membrane performance, 3) development of a new perfluoroalkyl sulfonate monomer, N,N-diisopropylethylammonium 2,2-bis(p-hydroxyphenyl) pentafluoropropanesulfonate (HPPS), 4) synthesis of random and block copolymer membranes from HPPS, 5) synthesis of block copolymer membranes containing high-acid-concentration hydrophilic blocks consisting of HPPS and 3,3'-disulfonate-4,4'-dichlorodiphenylsulfone (sDCDPS), 6) development of synthetic routes to aromatic polymer backbones containing pendent 1H-1,2,3-triazole moieties, 7) development of coupling strategies to create phase-separated block copolymers between hydrophilic sulfonated prepolymers and commodity polymers such as PFPO, 8) establishment of basic

  8. Engine performance, combustion, and emissions study of biomass to liquid fuel in a compression-ignition engine

    International Nuclear Information System (INIS)

    Highlights: • Renewable biomass to liquid (BTL) fuel was tested in a direct injection diesel engine. • Engine performance, in-cylinder pressure, and exhaust emissions were measured. • BTL fuel reduces pollutant emission for most conditions compared with diesel and biodiesel. • BTL fuel leads to high thermal efficiency and lower fuel consumption compared with diesel and biodiesel. - Abstract: In this work, the effects of diesel, biodiesel and biomass to liquid (BTL) fuels are investigated in a single-cylinder diesel engine at a fixed speed (2000 rpm) and three engine loads corresponding to 0 bar, 1.26 bar and 3.77 bar brake mean effective pressure (BMEP). The engine performance, in-cylinder combustion, and exhaust emissions were measured. Results show an increase in indicated work for BTL and biodiesel at 1.26 bar and 3.77 bar BMEP when compared to diesel but a decrease at 0 bar. Lower mechanical efficiency was observed for BTL and biodiesel at 1.26 bar BMEP but all three fuels had roughly the same mechanical efficiency at 3.77 bar BMEP. BTL was found to have the lowest brake specific fuel consumption (BSFC) and the highest brake thermal efficiency (BTE) among the three fuels tested. Combustion profiles for the three fuels were observed to vary depending on the engine load. Biodiesel was seen to have the shortest ignition delay among the three fuels regardless of engine loads. Diesel had the longest ignition delay at 0 bar and 3.77 bar BMEP but had the same ignition delay as BTL at 1.26 bar BMEP. At 1.26 bar and 3.77 bar BMEP, BTL had the lowest HC emissions but highest HC emissions at no load conditions when compared to biodiesel and diesel. When compared to diesel and biodiesel BTL had lower CO and CO2 emissions. At 0 bar and 1.26 bar BMEP, BTL had higher NOx emissions than diesel fuel but lower NOx than biodiesel at no load conditions. At the highest engine load tested, NOx emissions were observed to be highest for diesel fuel but lowest for BTL. At 1

  9. Investigation of the effects of renewable diesel fuels on engine performance, combustion, and emissions

    KAUST Repository

    Ogunkoya, Dolanimi

    2015-01-01

    A study was undertaken to investigate renewable fuels in a compression-ignition internal combustion engine. The focus of this study was the effect of newly developed renewable fuels on engine performance, combustion, and emissions. Eight fuels were investigated, and they include diesel, jet fuel, a traditional biodiesel (fatty acid methyl ester: FAME), and five next generation biofuels. These five fuels were derived using a two-step process: hydrolysis of the oil into fatty acids (if necessary) and then a thermo-catalytic process to remove the oxygen via a decarboxylation reaction. The fuels included a fed batch deoxygenation of canola derived fatty acids (DCFA), a fed batch deoxygenation of canola derived fatty acids with varying amounts of H2 used during the deoxygenation process (DCFAH), a continuous deoxygenation of canola derived fatty acids (CDCFA), fed batch deoxygenation of lauric acid (DLA), and a third reaction to isomerize the products of the deoxygenated canola derived fatty acid alkanes (IPCF). Diesel, jet fuel, and biodiesel (FAME) have been used as benchmarks for comparing with the newer renewable fuels. The results of the experiments show slightly lower mechanical efficiency but better brake specific fuel consumption for the new renewable fuels. Results from combustion show shorter ignition delays for most of the renewable (deoxygenated) fuels with the exception of fed batch deoxygenation of lauric acid. Combustion results also show lower peak in-cylinder pressures, reduced rate of increase in cylinder pressure, and lower heat release rates for the renewable fuels. Emission results show an increase in hydrocarbon emissions for renewable deoxygenated fuels, but a general decrease in all other emissions including NOx, greenhouse gases, and soot. Results also demonstrate that isomers of the alkanes resulting from the deoxygenation of the canola derived fatty acids could be a potential replacement to conventional fossil diesel and biodiesel based on the

  10. Co-combustion of pulverized coal and solid recovered fuel in an entrained flow reactor- General combustion and ash behavior

    DEFF Research Database (Denmark)

    Wu, Hao; Glarborg, Peter; Frandsen, Flemming;

    2011-01-01

    .9 wt.%, 14.8 wt.% and 25 wt.%, respectively. The effect of additives was evaluated by maintaining the share of secondary fuel (mixture of SRF and additive) at 14.8 wt.%. The experimental results showed that the fuel burnout, NO and SO2 emission in co-combustion of coal and SRF were decreased with...... increasing share of SRF. The majority of the additives inhibited the burnout, except for NaCl which seemed to have a promoting effect. The impact of additives on NO emission was mostly insignificant, except for ammonium sulphate which greatly reduced the NO emission. For SO2 emission, it was found that all...

  11. Progress on the investigation of coal-water slurry fuel combustion in a medium-speed diesel engine; Part 6: In-cylinder combustion photography studies

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, B.D.; Branyon, D.P. (General Electric Co., Erie, PA (United States). Transportation Systems)

    1993-10-01

    In the GE 7FDL single cylinder research diesel engine, in-cylinder high-speed photographic studies were conducted on coal-water slurry (CWS) fuel combustion. Distinct flames of pilot and CWS combustion were noticed. It was proven that the coal fuel burns after piston impingement and secondary atomization. Agglomerated particles will develop when combustion conditions are not favorable. Cylinder pressure data were simultaneously recorded for each film frame. Heat release data can thus be produced for each photo study. Most of the findings of earlier combustion studies on engine performance were confirmed.

  12. Characterisation of ashes produced by co-combustion of recovered fuels and peat

    Energy Technology Data Exchange (ETDEWEB)

    Frankenhaeuser, M. [Borealis Polymers Oy, Porvoo (Finland)

    1997-10-01

    The current project focuses on eventual changes in ash characteristics during co-combustion of refuse derived fuel with coal, peat, wood or bark, which could lead to slagging, fouling and corrosion in the boiler. Ashes were produced at fluidised bed (FB) combustion conditions in the 15 kW reactor at VTT Energy, Jyvaeskylae, the fly ash captured by the cyclone was further analysed by XRF at Outokumpu Geotechnical Laboratory, Outokumpu. The sintering behaviour of these ashes was investigated using a test procedure developed at the Combustion Chemistry Research Group at Aabo Akademi University. The current extended programme includes a Danish refuse-derived fuel (RDF), co-combusted with bark/coal (5 tests) and wood/coal (2 tests), a RF from Jyvaskyla (2 tests with peat/coal) and de-inking sludges co- combusted at full-scale with wood waste or paper mill sludge (4 ashes provided by IVO Power). Ash pellets were thermally treated in nitrogen in order to avoid residual carbon combustion. The results obtained show no sintering tendencies below 600 deg C, significant changes in sintering are seen with pellets treated at 1000 deg C. Ash from 100 % RDF combustion does not sinter, 25 % RDF co-combustion with wood and peat, respectively, gives an insignificant effect. The most severe sintering occurs during co-combustion of RDF with bark. Contrary to the earlier hypothesis a 25 % coal addition seems to have a negative effect on all fuel blends. Analysis of the sintering results versus ash chemical composition shows, that (again), in general, an increased level of alkali chlorides and sulphates gives increased sintering. Finally, some results on sintering tendency measurements on ashes from full-scale CFB co-combustion of deinking sludge with wood waste and paper mill sludge are given. This shows that these ashes show very little, if any, sintering tendency, which can be explained from ash chemistry

  13. GASEOUS EMISSIONS FROM FOSSIL FUELS AND BIOMASS COMBUSTION IN SMALL HEATING APPLIANCES

    Directory of Open Access Journals (Sweden)

    Daniele Dell'Antonia

    2012-06-01

    Full Text Available The importance of emission control has increased sharply due to the increased need of energy from combustion. However, biomass utilization in energy production is not free from problems because of physical and chemical characteristics which are substantially different from conventional energy sources. In this situation, the quantity and quality of emissions as well as used renewable sources as wood or corn grain are often unknown. To assess this problem the paper addresses the objectives to quantify the amount of greenhouse gases during the combustion of corn as compared to the emissions in fossil combustion (natural gas, LPG and diesel boiler. The test was carried out in Friuli Venezia Giulia in 2006-2008 to determine the air pollution (CO, NO, NO2, NOx, SO2 and CO2 from fuel combustion in family boilers with a power between 20-30 kWt. The flue gas emission was measured with a professional semi-continuous multi-gas analyzer, (Vario plus industrial, MRU air Neckarsulm-Obereisesheim. Data showed a lower emission of fossil fuel compared to corn in family boilers in reference to pollutants in the flue gas (NOx, SO2 and CO. In a particular way the biomass combustion makes a higher concentration of carbon monoxide (for an incomplete combustion because there is not a good mixing between fuel and air and nitrogen oxides (in relation at a higher content of nitrogen in herbaceous biomass in comparison to another fuel.

  14. Advanced diagnostics in oxy-fuel combustion processes

    Energy Technology Data Exchange (ETDEWEB)

    Brix, J.; Clausen, Soennik; Degn Jensen, A. (Technical Univ. of Denmark. CHEC Research Centre, Kgs. Lyngby (Denmark)); Boeg Toftegaard, M. (DONG Energy Power, Hvidovre (Denmark))

    2012-07-01

    This report sums up the findings in PSO-project 010069, ''Advanced Diagnostics in Oxy-Fuel Combustion Processes''. Three areas of optic diagnostics are covered in this work: - FTIR measurements in a 30 kW swirl burner. - IR measurements in a 30 kW swirl burner. - IR measurements in a laboratory scale fixed bed reactor. The results obtained in the swirl burner have proved the FTIR method as a valuable technique for gas phase temperature measurements. When its efficacy is evaluated against traditional thermocouple measurements, two cases, with and without probe beam stop, must however be treated separately. When the FTIR probe is operated with the purpose of gas phase concentration measurements the probe needs to operate with a beam stop mounted in front of it. With this beam stop in place it was shown that the measured gas phase temperature was affected by cooling, induced by the cooled beam stop. Hence, for a more accurate determination of gas phase temperatures the probe needed to operate without the beam stop. When this was the case, the FTIR probe showed superior to traditional temperature measurements using a thermocouple as it could measure the fast temperature fluctuations. With the beam stop in place the efficacy of the FTIR probe for gas temperature determination was comparable to the use of a traditional thermocouple. The evaluation of the FTIR technique regarding estimation of gas phase concentrations of H{sub 2}O, CO{sub 2} and CO showed that the method is reliable though it cannot be stated as particularly accurate. The accuracy of the method is dependent on the similarity of the reference emission spectra of the gases with those obtained in the experiments, as the transmittance intensity is not a linear function of concentration. The length of the optical path also affects the steadiness of the measurements. The length of the optical path is difficult to adjust on the small scales that are the focus of this work. However

  15. Nongray-gas Effects in Modeling of Large-scale Oxy-fuel Combustion Processes

    DEFF Research Database (Denmark)

    Yin, Chungen

    2012-01-01

    Quite some studies have been conducted in order to implement oxy-fuel combustion with flue gas recycle in conventional utility boilers as an effective effort of carbon capture and storage. However, combustion under oxy-fuel conditions is significantly different from conventional air-fuel firing......, in which a recently refined weighted-sum-of-gray-gases model (WSGGM) applicable to oxy-fuel conditions is used to perform non-gray and gray calculations, respectively, and a widely used air-fuel WSGGM is also employed for gray calculation. This makes the only difference among the different computational...... cases. The simulation results show that the gray and non-gray calculations of the same oxy-fuel WSGGM make distinctly different predictions in the wall radiative heat transfer, incident radiative flux, radiative source, gas temperature and species profiles. In relative to the non-gray implementation...

  16. Carbon stripping - a critical process step in chemical looping combustion of solid fuels

    Energy Technology Data Exchange (ETDEWEB)

    Kramp, M.; Thon, A.; Hartge, E.U.; Heinrich, S.; Werther, J. [Hamburg University of Technology, Institute of Solids Process Engineering and Particle Technology, Hamburg (Germany)

    2012-03-15

    In chemical looping combustion of solid fuels the well-mixed solids flow from the fuel reactor consisting of char, ash, and oxygen carrier particles cannot be completely separated into its constituents before it enters the air reactor. The slip of carbon will thus lead to char oxidation in the wrong reactor. Process simulation was applied to investigate the carbon stripping process in chemical looping combustion of solid fuels. Depending on the fuel choice, without carbon stripping CO{sub 2} capture rates below 50 % are calculated for 4 min of solids residence time in the fuel reactor. In a process with carbon stripper, however, CO{sub 2} capture rates exceeding 90 % can be achieved for both fuels investigated in this work. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Dimethoxymethane and trimethoxymethane as alternative fuels for fuel cells

    Science.gov (United States)

    Chetty, Raghuram; Scott, Keith

    The electrooxidation of dimethoxymethane (DMM) and trimethoxymethane (TMM) was studied at different platinum-based electrocatalysts deposited onto a titanium mesh substrate by thermal decomposition of chloride precursors. Half-cell tests showed an increase in oxidation current for the methoxy fuels at the platinum electrode with the alloying of ruthenium and tin. Increase in reaction temperature and reactant concentration showed an increase in current density for the mesh-based anodes similar to carbon-supported catalysts. Single fuel cell tests, employing the titanium mesh anode with PtRu and PtSn catalysts showed maximum power densities up to 31 mW cm -2 and 48 mW cm -2 for 1.0 mol dm -3 aqueous solutions of DMM and TMM, respectively at 60 °C using oxygen.

  18. EPAct Alternative Fuel Transportation Program: State and Alternative Fuel Provider Fleet Compliance Annual Report; Fleet Compliance Results for MY 2013/FY 2014

    Energy Technology Data Exchange (ETDEWEB)

    2015-09-01

    Compliance rates for covered state government and alternative fuel provider fleets under the Alternative Fuel Transportation Program (pursuant to the Energy Policy Act or EPAct) are reported for MY 2013/FY 2014 in this publication.

  19. Numerical study of test gas vitiation effects on hydrogen-fueled scramjet combustion%Numerical study of test gas vitiation effects on hydrogen-fueled scramjet combustion

    Institute of Scientific and Technical Information of China (English)

    CHEN Chao-qun; TIAN Liang; XU Xu

    2012-01-01

    The effects of major vitiated species (H2O and CO2) and minor vitiated species (H,OH and O radicals) produced by combustion air preheater on ignition and combustion of hydrogen-fueled seramjet were numerically investigated. Firstly, kinetic analyses with CHEMKIN SENKIN code were conducted to evaluate the effects of contamination on the ignition delay times of hydrogen fuel over a range of temperature and pressure variations. Then numerical simulation of a three-dimensional reacting flow in hydrogen-fueled seramjet combustor was performed. The two-equation shear stress transport k-ω turbulence model was used for modeling turbulence and 33 reactions finite-rate chemistry was used for modeling the H2/air kinetics. The results show that: free radical species such as H,O,and OH may significantly promote the ignition process of hydrogen-air at relatively low initial temperature and pressure. However, H2O and CO2 have inhibition effects on the ignition process. Under the same conditions, H2O has more effective inhibition effects than CO2. The temperature and pressure rise due to combustion are lower in the air vitiated with H2O and CO2 because of their higher heat capacities and more dissociation. Combustion efficiency and thrust calculated for vitiated air case are lower than clean air case. These results indicate the importance of accounting for vitiation effects when extrapolating performance data from ground test to flight demonstration.

  20. Demonstrating and evaluating heavy-duty alternative fuel operations

    Energy Technology Data Exchange (ETDEWEB)

    Peerenboom, W. [Trucking Research Inst., Alexandria, VA (United States)

    1998-02-01

    The principal objectives of this project was to understand the effects of using an alternative fuel on a truck operating fleet through actual operation of trucks. Information to be gathered was expected to be anecdotal, as opposed to statistically viable, because the Trucking Research institute (TRI) recognized that projects could not attract enough trucks to produce statistically credible volumes of data. TRI was to collect operational data, and provide them to NREL, who would enter the data into the alternative fuels database being constructed for heavy-duty trucks at the time. NREL would also perform data analysis, with the understanding that the demonstrations were generally pre-production model engines and vehicles. Other objectives included providing information to the trucking industry on the availability of alternative fuels, developing the alternative fuels marketplace, and providing information on experience with alternative fuels. In addition to providing information to the trucking industry, an objective was for TRI to inform NREL and DOE about the industry, and give feedback on the response of the industry to developments in alternative fuels in trucking. At the outset, only small numbers of vehicles participated in most of the projects. Therefore, they had to be considered demonstrations of feasibility, rather than data gathering tests from which statistically significant conclusions might be drawn. Consequently, data gathered were expected to be useful for making estimates and obtaining valuable practical lessons. Project data and lessons learned are the subjects of separate project reports. This report concerns itself with the work of TRI in meeting the overall objectives of the TRI-NREL partnership.

  1. Reduction of fuel side costs due to biomass co-combustion.

    Science.gov (United States)

    Wils, Andrea; Calmano, Wolfgang; Dettmann, Peter; Kaltschmitt, Martin; Ecke, Holger

    2012-03-15

    The feasibility and influence of co-combustion of woody biomass on the fuel side costs is discussed for three hard coal power plants located in Berlin, Germany. Fuel side costs are defined as the costs resulting from flue gas cleaning and by-products. To have reliable data, co-firing tests were conducted in two power plants (i.e., slag tap furnace and circulating fluidising bed combustion). The amount of wood which was co-fired varied at levels below 11% of the fuel heat input. Wood chips originating from landscape management were used. The analyses show that co-combustion of woody biomass can lower the fuel side costs and that the co-combustion at a level below 10% of the thermal capacity is technically feasible without major problems. Furthermore, a flexible spreadsheet tool was developed for the calculation of fuel side costs and suggestions for operational improvements were made. For example, the adaptation of the Ca/S ratio (mass ratio of calcium in limestone to sulphur in the fuel) in one plant could reduce the fuel side costs up to 135 k€ yr(-1) (0.09 €M Wh(-1)). PMID:21514049

  2. Proof of concept for integrating oxy-fuel combustion and the removal of all pollutants from a coal fired flame

    Energy Technology Data Exchange (ETDEWEB)

    Ochs, Thomas L.; Patrick, Brian (Jupiter Oxygen Corp.); Oryshchyn, Danylo B.; Gross, Alex (Jupiter Oxygen Corp.); Summers, Cathy A.; Simmons, William (CoalTeck LLC); Schoenfield, Mark (Jupiter Oxygen Corp.); Turner, Paul C.

    2005-01-01

    The USDOE/Albany Research Center and Jupiter Oxygen Corporation, working together under a Cooperative Research and Development Agreement, have demonstrated proof-of-concept for the integration of Jupiter’s oxy-fuel combustion and an integrated system for the removal of all stack pollutants, including CO2, from a coal-fired flame. The components were developed using existing process technology with the addition of a new oxy-coal combustion nozzle. The results of the test showed that the system can capture SOx, NOx, particulates, and even mercury as a part of the process of producing liquefied CO2 for sequestration. This is part of an ongoing research project to explore alternative methods for CO2 capture that will be applicable to both retrofit and new plant construction.

  3. Commercial and economic comparison of traditional and alternative fuels

    OpenAIRE

    Dvořáková, Monika

    2010-01-01

    Negative predictions about oil stocks combined with the instability in the Middle East encourage development of alternative fuels, which would reduce dependence of the world's economies on oil. The oil and petroleum derivatives are the main dependencies for vehicular traffic, which contributes to the greenhouse gas emissions by a large part. It is therefore necessary to focus on trying to reduce the fuel consumption of cars used for personal transportation. One way to achieve this goal is, fo...

  4. PERFORMANCE OF BIODIESEL COMPARED TO CONVENTIONAL DIESEL FUEL IN STATIONARY INTERNAL COMBUSTION ENGINES

    OpenAIRE

    B.K. HIGHINA; I. M. Bugaje; B.UMAR

    2011-01-01

    In this study, the technical specification of an internal combustion engine designed for diesel fuel was used for biodiesel. The changes in engine performance, and cycle by cycle (CBC) variations were observed, and their causes were studied. When biodiesel was used as the fuel, acceptable changes occurred in the performance values. The maximum brake mean effective pressure (BMEP) obtained with the biodiesel was slightly higher than that obtained with the diesel fuel, with the difference being...

  5. Influence of bio-additives on combustion of liquid fuels

    Science.gov (United States)

    Patsch, Marek; Durčanský, Peter

    2016-06-01

    In this contribution there are analyses of the course of the pressure curves, which were measured in the diesel engine MD UR IV, which is often used in cogeneration units. The results of the analyses confront the properties and quality of fuels. The measuring was realized with a constant rotation speed of the engine and by using different fuels. The fuels were pure diesel fuels and diesel fuel with bio-additives of hydrogenate RO (rape oil), FAME, and bioethanol.

  6. Development of alternative materials for BWR fuel springs

    International Nuclear Information System (INIS)

    Major sources of radioactivity introduced into reactor water of BWR were estimated fuel crud and in-core materials (especially, fuel springs). Fuel springs are used for fixation of fuel cladding tubes with spacer grid. Those are small parts (total length is only within 25 mm) and so many numbers are loaded simultaneously and then total surfaces area are calculated up to about 200 m2. Fuel springs are located under high radiation field and high oxidative environment. Conventional fuel spring is made of alloy-X750 which is one of nickel-based alloy and is reported to show relatively higher corrosion release rate. 58Co and 60Co will be released directly into reactor water from intensely radio-activated fuel springs surface and increase radioactivity concentrations in primary coolant. Corrosion release control from fuel springs is an important technical item and a development of alternative material instead of alloy-X750 for fuel spring is a key subject to achieve ultra low man-rem exposure BWR plant. In present work, alloy-X718 which started usage for PWR fuel springs and stainless steel type 316L which has many mechanical property data are picked up for alternative materials and compared their corrosion behaviors with conventional material. Corrosion experiment was conducted under vapor-water two phases flow which is simulated fuel cladding surface boiling condition. After exposure, corrosion film formed under corrosion test was analyzed in detail and corrosion film amount and corrosion release amount are estimated among three materials. (authors)

  7. Combustion characterization of beneficiated coal-based fuels. Quarterly report No. 8, January--March 1991

    Energy Technology Data Exchange (ETDEWEB)

    Chow, O.K.; Nsakala, N.Y.

    1991-07-01

    The Pittsburgh Energy Technology Center of the US Department of Energy has contracted with Combustion Engineering, Inc. (CE) to perform a five-year project on ``Combustion Characterization of Beneficiated Coal-Based Fuels.`` The beneficiated coals are produced by other contractors under the DOE Coal Preparation Program. Several contractor-developed advanced coal cleaning processes are run at pilot-scale cleaning facilities to produce 20-ton batches of fuels for shipment to CE`s laboratory in Windsor, Connecticut. CE then processes the products into either a coal-water fuel (CWF) or a dry microfine pulverized coa1 (DMPC) form for combustion testing. The objectives of this project include: (1) the development of an engineering data base which will provide detailed information on the properties of BCFs influencing combustion, ash deposition, ash erosion, particulate collection, and emissions; and (2) the application of this technical data base to predict the performance and economic impacts of firing the BCFs in various commercial boiler designs. During the third quarter of 1991, the following technical progress was made: Calculated the kinetic characteristics of chars from the combustion of spherical oil agglomeration beneficiated products; continued drop tube devolatilization tests of the spherical oil agglomeration beneficiated products; continued analyses of the data and samples from the CE pilot-scale tests of nine fuels; and started writing a summary topical report to include all results on the nine fuels tested.

  8. Effects of Catalysts on Emissions of Pollutants from Combustion Processes of Liquid Fuels

    Directory of Open Access Journals (Sweden)

    Bok Agnieszka

    2014-12-01

    Full Text Available The dynamic growth of the use of non-renewable fuels for energy purposes results in demand for catalysts to improve their combustion process. The paper describes catalysts used mainly in the processes of combustion of motor fuels and fuel oils. These catalysts make it possible to raise the efficiency of oxidation processes simultanously reducing the emission of pollutants. The key to success is the selection of catalyst compounds that will reduce harmful emissions of combustion products into the atmosphere. Catalysts are introduced into the combustion zone in form of solutions miscible with fuel or with air supplied to the combustion process. The following compounds soluble in fuel are inclused in the composition of the described catalysts: organometallic complexes, manganese compounds, salts originated from organic acids, ferrocen and its derivatives and sodium chloride and magnesium chloride responsible for burning the soot (chlorides. The priority is to minimize emissions of volatile organic compounds, nitrogen oxides, sulphur oxides, and carbon monoxide, as well as particulate matter.

  9. Recovered fuels - The connection between fuel preparation, combustion equipments and ash quality; Returbraenslen - kopplingen mellan braensleberedning, foerbraenningsutrustning och askkvalitet

    Energy Technology Data Exchange (ETDEWEB)

    Gyllenhammar, Marianne; Johansson, Inge [S.E.P. Scandinavian Energy Project AB, Goeteborg (Sweden)

    2004-01-01

    The lack of bio fuel and new regulations of waste treatment have increased the interest of recovered fuels. Co-combustion is of great interest, but the consequences and permit handling involved in introducing a new fuel into a plant have to be investigated. The aim of this study is to see if it is possible to affect the ash quality by pre-treatment of the fuel, or by firing in different combustion equipments. Ashes can be used in several different types of applications. Few of these have uniform requirements of ash quality. The ongoing research will hopefully help generating unified regulations and recommendations for the uses of ashes. However, right now the knowledge is limited and very specific. Every type of ash has to be analysed for the appropriate use. It is especially the requirements of leaching that are difficult to make general. The work started with a survey of recovered fuels. It contains roughly which fuels exist and which of those are accessible for the energy market in Sweden. The survey showed that there are approximately 13 Mton/y wastes partly accessible to the energy market; 50 % are used for material recycling, 32 % for energy recovery, 1.5 % for composting and the rest are used as landfill. Three recovered fuels were chosen and studied more thoroughly. These were PTP (paper, wood and plastic), tires and impregnated wood. The project showed that the recovered fuels have different qualifications as fuels and have different possibilities at co-combustion which results in variable ash quality. A pre-treated fuel is more homogeneous which give better combustion and cleaner ashes. A fluidised bed demands a more pre-treated fuel than a grate and the fluidised bed generate more ashes because the ashes contain bed material. As a result of this the ashes from a fluidised bed is generally easier to utilize. In this project the composition of ashes from co-combustion of the three recovered fuels together with wood fuel has been estimated. The aim was to

  10. Alternative Liquid Fuels Simulation Model (AltSim).

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Arnold Barry; Williams, Ryan (Hobart and William Smith Colleges, Geneva, NY); Drennen, Thomas E.; Klotz, Richard (Hobart and William Smith Colleges, Geneva, NY)

    2007-10-01

    The Alternative Liquid Fuels Simulation Model (AltSim) is a high-level dynamic simulation model which calculates and compares the production costs, carbon dioxide emissions, and energy balances of several alternative liquid transportation fuels. These fuels include: corn ethanol, cellulosic ethanol, biodiesel, and diesels derived from natural gas (gas to liquid, or GTL) and coal (coal to liquid, or CTL). AltSim allows for comprehensive sensitivity analyses on capital costs, operation and maintenance costs, renewable and fossil fuel feedstock costs, feedstock conversion efficiency, financial assumptions, tax credits, CO{sub 2} taxes, and plant capacity factor. This paper summarizes the preliminary results from the model. For the base cases, CTL and cellulosic ethanol are the least cost fuel options, at $1.60 and $1.71 per gallon, respectively. Base case assumptions do not include tax or other credits. This compares to a $2.35/gallon production cost of gasoline at September, 2007 crude oil prices ($80.57/barrel). On an energy content basis, the CTL is the low cost alternative, at $12.90/MMBtu, compared to $22.47/MMBtu for cellulosic ethanol. In terms of carbon dioxide emissions, a typical vehicle fueled with cellulosic ethanol will release 0.48 tons CO{sub 2} per year, compared to 13.23 tons per year for coal to liquid.

  11. 3D Computation of Hydrogen-Fueled Combustion around Turbine Blade-Effect of Arrangement of Injector Holes -

    Institute of Scientific and Technical Information of China (English)

    Makoto YAMAMOTO; Junichi IKEDA; Kazuaki INABA

    2006-01-01

    Recently, a number of environmental problems caused from fossil fuel combustion have been focused on. In addition, with the eventual depletion of fossil energy resources, hydrogen gas is expected to be an alternative energy resource in the near future. It is characterized by high energy per unit weight, high reaction rate, wide range of flammability and the low emission property. On the other hand, many researches have been underway in several countries to improve a propulsion system for an advanced aircraft. The system is required to have higher power, lighter weight and lower emissions than existing ones. In such a future propulsion system, hydrogen gas would be one of the promising fuels for realizing the requirements. Considering these backgrounds, our group has proposed a new cycle concept for hydrogen-fueled aircraft propulsion system. In the present study, we perform 3dimensional computations of turbulent flow fields with hydrogen-fueled combustion around a turbine blade. The main objective is to clarify the influence of arrangement of hydrogen injector holes. Changing the chordwise and spanwise spacings of the holes, the 3 dimensional nature of the flow and thermal fields is numerically studied.

  12. Fuel cells applied to transport; Celdas de combustible aplicadas al transporte

    Energy Technology Data Exchange (ETDEWEB)

    Vargas Gonzalez, Miguel [Comision Nacional para el Ahorro de Energia, Mexico, D.F. (Mexico)

    2001-07-01

    The future demand of energy as well as the preservation of the environment have generated, in several countries, the necessity of developing alternative means for the most efficient transformation of energy that causes minimum damages to the environment. The fuel cells technology is outlined as one of the alternating means to the traditional forms of transforming the energy for residential use as well as for the automotive vehicles. At present it is in a final stage of demonstration, reason why as of year 2003 the possibility will exist on automobiles and trucks circulating normally. [Spanish] La futura demanda de energeticos asi como la preservacion del medio ambiente ha generado, en varios paises, la necesidad de desarrollar medios alternos para la transformacion mas eficiente de la energia que cause minimos danos al ambiente. La tecnologia de celdas de combustible se perfila como uno de los medios alternos a la forma tradicional de transformar la energia tanto para uso residencial como para los vehiculos automotores. En la actualidad se encuentra en una etapa final de demostracion por lo que posiblemente a partir del ano 2003 se cuente con automoviles y camiones circulando normalmente.

  13. Combustion and exhaust emission characteristics of a compression ignition engine using liquefied petroleum gas-Diesel blended fuel

    International Nuclear Information System (INIS)

    Towards the effort of reducing pollutant emissions, especially smoke and nitrogen oxides, from direct injection (DI) Diesel engines, engineers have proposed various solutions, one of which is the use of a gaseous fuel as a partial supplement for liquid Diesel fuel. The use of liquefied petroleum gas (LPG) as an alternative fuel is a promising solution. The potential benefits of using LPG in Diesel engines are both economical and environmental. The high auto-ignition temperature of LPG is a serious advantage since the compression ratio of conventional Diesel engines can be maintained. The present contribution describes an experimental investigation conducted on a single cylinder DI Diesel engine, which has been properly modified to operate under LPG-Diesel blended fuel conditions, using LPG-Diesel blended fuels with various blended rates (0%, 10%, 20%, 30%, 40%). Comparative results are given for various engine speeds and loads for conventional Diesel and blended fuels, revealing the effect of blended fuel combustion on engine performance and exhaust emissions

  14. Effects of moisture release and radiation properties in pulverized fuel combustion: A CFD modelling study

    DEFF Research Database (Denmark)

    Yin, Chungen

    2016-01-01

    improve the plant efficiency and is also expected to affect the combustion process. Thermal radiation is the principal mode of heat transfer in combustion. In PF furnaces, radiation consists of contribution from both participating gases and solid particles, in which gas and particle radiation properties...... play an important role. There are different methods or models in the literature to address fuel moisture release and radiation properties, some of which may be inappropriate and can produce misleading results. This paper compares the different methods and models and demonstrates their implementation...... methods for fuel moisture release may not induce distinct difference in combustion of PF with relatively low moisture content. For radiation, it has to be emphasized that particle radiation largely overwhelms gas radiation in PF combustion. The current tide of radiation research that over-focuses on gas...

  15. TAFV Alternative Fuels and Vehicles Choice Model Documentation; TOPICAL

    International Nuclear Information System (INIS)

    A model for predicting choice of alternative fuel and among alternative vehicle technologies for light-duty motor vehicles is derived. The nested multinomial logit (NML) mathematical framework is used. Calibration of the model is based on information in the existing literature and deduction based on assuming a small number of key parameters, such as the value of time and discount rates. A spreadsheet model has been developed for calibration and preliminary testing of the model

  16. TAFV Alternative Fuels and Vehicles Choice Model Documentation

    Energy Technology Data Exchange (ETDEWEB)

    Greene, D.L.

    2001-07-27

    A model for predicting choice of alternative fuel and among alternative vehicle technologies for light-duty motor vehicles is derived. The nested multinomial logit (NML) mathematical framework is used. Calibration of the model is based on information in the existing literature and deduction based on assuming a small number of key parameters, such as the value of time and discount rates. A spreadsheet model has been developed for calibration and preliminary testing of the model.

  17. Formation of Liquid Products at the Filtration Combustion of Solid Fuels

    OpenAIRE

    Salgansky, E. A.; Kislov, V. M.; Glazov, S. V.; Salganskaya, M. V.

    2016-01-01

    Yields of liquid and gaseous products of the filtration combustion of cellulose, wood, peat, coal, and rubber have been investigated. Experiments have shown that the gasification of solid fuels in the regime with superadiabatic heating yields liquid hydrocarbons with quantity and quality, which are close to those produced using other methods, for example, by pyrolysis. But in this case no additional energy supply is needed to carry out the gasification process. The low calorific combustible g...

  18. Demanding fuel combustion. Metso CFB multifuel boiler experience in Stora Enso Ostroleka

    Energy Technology Data Exchange (ETDEWEB)

    Kulesza, Rafal [Stora Enso Poland S.A., Ostroleka (Poland)

    2013-04-01

    Stora Enso Poland erected a combined cycle power plant for supplying its Ostroleka mill with power and heat. The central component is a circulating fluidised bed combustion (CFB) boiler designed for multi-fuel combustion like biomass and residues of the paper mill. The thermal rating of the CFB boiler amounts to 164 MW and two turbines supply up to 43 MW of power. (orig.)

  19. Combustion Characteristics of Methane in A Direct Injection Engine Using Spark Plug Fuel Injector

    Directory of Open Access Journals (Sweden)

    Taib Iskandar Mohamad

    2010-10-01

    Full Text Available The combustion characteristics of methane in a direct injection spark ignition engine using Spark Plug Fuel Injector (SPFI was investigated. SPFI is a system developed to convert any externally-mixing (port injection, carburetor spark ignition engine to direct injection by combining fuel injectors into spark plugs. The burning rates of methane were measured using normalized combustion pressure method, where the normalized pressure rise due to combustion is equivalent to the mass fraction burnt at the specific crank angle. A single cylinder research engine was installed with the SPFI system. Cylinder pressures were taken with engine running at 1100 rpm and stoichiometric air/fuel ratio. The spark timing was set at 25oBTDC. For comparison, the engine was run with methane port injection. The optimal fuel injection timing with SPFI was found to be 170o BTDC. Results showed that SPFI direct injection, increased the volumetric efficiency by 11% compared to port injection, resulting in higher heating value of cylinder charge per cycle. Combustion analysis show that the overall burning rate of methane direct injection is faster than the ones of port injection although is slower at the initial stage. Injection pressures affect ignition delay but not the combustion duration. Changing mixture stoichiometry affects the magnitude of ignition delay. Combustion duration increases with leaner mixture. Different load conditions have significant effect on combustion process. Lower loads tend to increase combustion duration but shorten ignition delay. SPFI Di methane system has the potential of increasing engine performance due to increased volumetric efficiency and faster burning rate.

  20. Alternative Methods for Treatment of TRISO Fuels

    International Nuclear Information System (INIS)

    The current treatment technologies of spent TRISO fuel have been review. The proposed innovative technologies such as thermal shock breaching and EMS-CC processes were found to be promising. A schematic flow sheet has been constructed by using thermal shock, EMS-CC process and separation of breached fines. The heating and fracture behavior of SiC powder by RF heating was investigated. Hoop stress was calculated for breaching of coating layers by inter fission gas pressure at elevated temperature. Electrolytic molten salt cell was installed in glove box and preliminary test was performed. EMS-CC reaction was realized by using glassy carbon and CVD SiC. The morphology of the sample was observed after EMS-CC test. Cyclic voltammogram was constructed by using SiC in order to check the effect of magnesium as a reductant. Investigation of fracture behavior of TRISO coating layers by using thermal shock : 1500 .deg. C of temperature gradient was applied. Macro, microstructure and crystal structure were investigated by using XRD and SEM. Vicker hardness was measured before and after experiment. Innovative gas-solid reaction method beside RF heating and EMS-CC was proposed. This process was also evaluated as a promising to decrease secondary waste. Construction of cyclone separator and optimization : ZrO2(kernel), SiC and graphite powders as surrogate of TRISO were used for the process optimization of fluidization separator equipped with cyclone. The optimum condition was found to be 1.5cm/s of fluidization velocity and 99.9% of separation efficiency was achieved. Literature survey of FP recovery : Recovery technologies of fission products such as I, Kr/Xe, 14C and tritium which are released during the breaching process were surveyed, and its flow sheet was constructed

  1. Conversion of sewage sludge to clean solid fuel using hydrothermal carbonization: Hydrochar fuel characteristics and combustion behavior

    International Nuclear Information System (INIS)

    Highlights: • The hydrothermal carbonization of sewage sludge process is developed. • Hydrochars are solid fuels with less nitrogen and sulfur contents. • The first order combustion reaction of hydrochars is derived. • Main combustion decomposition of hydrochars is easier and more stable. • Formation pathways of hydrochars during hydrothermal carbonization are proposed. - Abstract: Conventional thermochemical treatment of sewage sludge (SS) is energy-intensive due to its high moisture content. To overcome this drawback, the hydrothermal carbonization (HTC) process was used to convert SS into clean solid fuel without prior drying. Different carbonization times were applied in order to produce hydrochars possessing better fuel properties. After the carbonization process, fuel characteristics and combustion behaviors of hydrochars were evaluated. Elemental analysis showed that 88% of carbon was recovered while 60% of nitrogen and sulfur was removed. Due to dehydration and decarboxylation reactions, hydrogen/carbon and oxygen/carbon atomic ratios reduced to 1.53 and 0.39, respectively. It was found that the fuel ratio increased to 0.18 by prolonging the carbonization process. Besides, longer carbonization time seemed to decrease oxygen containing functional groups while carbon aromaticity structure increased, thereby rendering hydrochars highly hydrophobic. The thermogravimetric analysis showed that the combustion decomposition was altered from a single stage for raw sludge to two stages for hydrochars. The combustion reaction was best fitted to the first order for both raw sludge and hydrochars. The combustion of hydrochars is expected to be easier and more stable than raw sludge because of lower activation energy and pre-exponential factor

  2. Aircraft emissions, plume chemistry, and alternative fuels: results from the APEX, AAFEX, and MDW-2009 campaigns

    Science.gov (United States)

    Wood, E. C.; Herndon, S. C.; Timko, M.; Yu, Z.; Miake-Lye, R. C.; Lee, B. H.; Santoni, G.; Munger, J. W.; Wofsy, S.; Anderson, B.; Knighton, W. B.

    2009-12-01

    We describe observations of aircraft emissions from the APEX, JETS-APEX2, APEX3, MDW-2009 and AAFEX campaigns. Direct emissions of HOx precursors are important for understanding exhaust plume chemistry due to their role in determining HOx concentrations. Nitrous acid (HONO) and formaldehyde are crucial HOx precursors and thus drivers of plume chemistry. At idle power, aircraft engine exhaust is unique among fossil fuel combustion sources due to the speciation of both NOx and VOCs. The impacts of emissions of HOx precursors on plume chemistry at low power are demonstrated with empirical observations of rapid NO to NO2 conversion, indicative of rapid HOx chemistry. The impacts of alternative fuels (derived from biomass, coal, and natural gas) on emissions of NOx, CO, and speciated VOCs are discussed.

  3. State of the Art on Alternative Fuels in Aviation. SWAFEA. Sustainable Way for Alternative Fuels and Energy in Aviation.

    OpenAIRE

    Blakey, S.; Novelli, P.; Costes, P.; Bringtown, S.; Christensen, D.; Sakintuna, B.; Peineke, C.; Jongschaap, R. E. E.; Conijn, J.G.; Rutgers, B.; Valot, L.; E Joubert; Perelgritz, J.F.; Filogonio, A.; Roetger, T.

    2010-01-01

    Currently, the aviation sector uses petroleum derived liquid fuels as the energy carrier of choice for flight. In light the present environmental, economical and political concerns as to the sustainability of this energy source, the question of which alternatives the aviation sector should pursue in the future has emerged. Among these concerns, the environmental impact of fossil fuel use on global warming and air quality is of major importance, while the impact of volatile oil prices and the ...

  4. Manipulation of combustion waves in carbon-nanotube/fuel composites by highly reactive Mg nanoparticles.

    Science.gov (United States)

    Lee, Kang Yeol; Hwang, Hayoung; Shin, Dongjoon; Choi, Wonjoon

    2015-10-28

    Manipulating the interface of micro/nanostructured materials and chemical fuels can change the fundamental characteristics of combustion waves that are generated during a reaction. In this study, we report that Mg/MgO nanoparticles actively amplify the propagation of combustion waves at the interface of multi-walled carbon nanotubes (MWCNTs) and chemical fuels. Fuel/MWCNT and fuel/MWCNT-Mg/MgO composite films were prepared by a facile synthetic method. We present complete physiochemical characterization of these composite films and evaluate the propagating velocities and real-time surface temperatures of combustion waves. Mg/MgO nanoparticles at the interface enhanced the reaction front velocity by 41%. The resulting explosive reactions supplied additional thermal energy to the chemical fuel, accelerating flame propagation. Furthermore, the surface temperatures of the composites with Mg/MgO nanoparticles were much lower, indicating how the transient heat from the reaction would ignite the unreacted fuels at lower surface temperatures despite not reaching the necessary activation energy for a chain reaction. This mechanism contributed to thermopower waves that amplified the output voltage. Furthermore, large temperature gradients due to the presence of nanoparticles increased charge transport inside the nanostructured material, due to the increased thermoelectric effects. This manipulation could contribute to the active control of interfacially driven combustion waves along nanostructured materials, yielding many potential applications. PMID:26419765

  5. The optimisation of combustion systems for the burning of cereal straw as a fuel

    OpenAIRE

    Washbourne, John Fryer

    1986-01-01

    International interest in fluidised bed combustion (F.B.C.) derives from the fact that it involves new technology and it is the only combustion system that can use low grade fuels (including those of high or variable ash content) efficiently. This thesis presents a study of the combustion of straw in a fully fluidised and systematically interrupted flow test rig. In the interrupted flow mode, it was found that during the period in the cycle when the bed was slumped, due to the reduction...

  6. System approach to the analysis of an integrated oxy-fuel combustion power plant

    OpenAIRE

    Ziębik Andrzej; Gładysz Paweł

    2014-01-01

    Oxy-fuel combustion (OFC) belongs to one of the three commonly known clean coal technologies for power generation sector and other industry sectors responsible for CO2 emissions (e.g., steel or cement production). The OFC capture technology is based on using high-purity oxygen in the combustion process instead of atmospheric air. Therefore flue gases have a high concentration of CO2. Due to the limited adiabatic temperature of combustion some part of CO2 must be recycled to the boiler in orde...

  7. Long-term alternatives for nuclear fuel cycles

    International Nuclear Information System (INIS)

    Several technical alternatives have been proposed to the nuclear spent fuel management but the practical experience on any of these is small or totally lacking. Since the management method is also connected with the composition of fresh fuel, the comparison of the alternatives must include the whole fuel cycle of a nuclear power plant. In the planning of the nuclear fuel cycle over a time range of several decades a consideration must be given, in addition, to the potential of the new reactor types with increased efficiency of uranium utilization. For analyses and mutual comparisons of the fuel cycle alternatives a number of computer models have been designed and implemented at the Technical Research Centre of Finland. Given the estimated boundary conditions the models can be used to study the impact of different goals and requirements on the fuel cycle decisions. Further, they facilitate cost predictions and display information on the role of the intrinsic uncertainties in the decision-making. The conclusions of the study are tied to the questions of price and availability of uranium. Hence, for instance, the benefits from the reprocessing of spent fuel might prove to be small when compared to the costs required, especially as the current reprocessing contracts do not allow the custemer to dismiss the duty of building the final disposal facilities for high level radioactive waste. For a few decades the final decisions can be postponed by extending the interim storage period. Farther in the future the decisions in the nuclear fuel cycle arrangements will more link to the introduction of the fast breeder reactors. (author)

  8. Market brief : the alternative fuels bus market in India

    International Nuclear Information System (INIS)

    In 2003, alternative fuel bus technologies in India were valued at approximately $1.5 billion. There are an estimated 600,000 buses in India, of which 21 per cent are owned by public transit. Bus production is currently 33,000 per year and increasing at 4 per cent annually. The main alternative fuel bus technologies include fuel cells, compressed natural gas (CNG) and liquefied petroleum gas (LPG). Since urban centres in India are among the most polluted in the world, demand for these technologies is strong. India is ranked fifth in the world in terms of vehicles converted to natural gas. In 2003, New Delhi switched from diesel to CNG fuel for buses but has faced challenges because there is no well-developed underground distribution system and refilling times are long due to weak pressure at fueling stations. India's new $28 million fuel cell bus development project aims to place 8 fuel cell powered buses with the Delhi Transport Corporation. This market brief describes the potential for Canadian suppliers to enter into joint ventures to establish local production facilities and transfer technology expertise. It describes the key factors shaping market growth with particular reference to sector reform, and opportunities with actual and planned projects. The competitive environment was also discussed with reference to local capabilities, international competition, Canadian position, and a competitive advantage through Canadian government policies and initiatives. A section of the report on public-sector customers listed the companies that buy alternative fuel buses in India. Considerations for market-entry in India were also outlined

  9. Life cycle assessment of fuels for district heating: A comparison of waste incineration, biomass- and natural gas combustion

    International Nuclear Information System (INIS)

    The aim of this consequential life cycle assessment (LCA) is to compare district heating based on waste incineration with combustion of biomass or natural gas. The study comprises two options for energy recovery (combined heat and power (CHP) or heat only), two alternatives for external, marginal electricity generation (fossil lean or intense), and two alternatives for the alternative waste management (landfill disposal or material recovery). A secondary objective was to test a combination of dynamic energy system modelling and LCA by combining the concept of complex marginal electricity production in a static, environmental systems analysis. Furthermore, we wanted to increase the methodological knowledge about how waste can be environmentally compared to other fuels in district-heat production. The results indicate that combustion of biofuel in a CHP is environmentally favourable and robust with respect to the avoided type of electricity and waste management. Waste incineration is often (but not always) the preferable choice when incineration substitutes landfill disposal of waste. It is however, never the best choice (and often the worst) when incineration substitutes recycling. A natural gas fired CHP is an alternative of interest if marginal electricity has a high fossil content. However, if the marginal electricity is mainly based on non-fossil sources, natural gas is in general worse than biofuels

  10. Examination of physical properties of fuels and mixtures with alternative fuels

    Science.gov (United States)

    Lown, Anne Lauren

    ABSTRACT. EXAMINATION OF PHYSICAL PROPERTIES OF FUELS AND MIXTURES WITH ALTERNATIVE FUELS. By. Anne Lauren Lown. The diversity of alternative fuels is increasing due to new second generation biofuels. By modeling alternative fuels and fuel mixtures, types of fuels can be selected based on their properties, without producing and testing large batches. A number of potential alternative fuels have been tested and modeled to determine their impact when blended with traditional diesel and jet fuels. The properties evaluated include cloud point and pour point temperature, cetane number, distillation curve, and speed of sound. This work represents a novel approach to evaluating the properties of alternative fuels and their mixtures with petroleum fuels. Low temperature properties were evaluated for twelve potential biofuel compounds in mixtures with three diesel fuels and one jet fuel. Functional groups tested included diesters, esters, ketones, and ethers, and alkanes were used for comparison. Alkanes, ethers, esters, and ketones with a low melting point temperature were found to decrease the fuel cloud point temperature. Diesters added to fuels display an upper critical solution temperature, and multiple methods were used to confirm the presence of liquid-liquid immiscibility. These behaviors are independent of chain length and branching, as long as the melting point temperature of the additive is not significantly higher than the cloud point temperature of the fuel. Physical properties were estimated for several potential fuel additive molecules using group contribution methods. Quantum chemical calculations were used for ideal gas heat capacities. Fuel surrogates for three petroleum based fuels and six alternative fuels were developed. The cloud point temperature, distillation curve, cetane number, and average molecular weight for different fuel surrogates were simultaneously represented. The proposed surrogates use the experimental mass fractions of paraffins, and

  11. Primer on Motor Fuel Excise Taxes and the Role of Alternative Fuels and Energy Efficient Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, Alex [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2015-08-26

    Motor fuel taxes were established to finance our nation’s transportation infrastructure, yet evolving economic, political, and technological influences are constraining this ability. At the federal level, the Highway Trust Fund (HTF), which is primarily funded by motor fuel taxes, has become increasingly dependent on general fund contributions and short-term reauthorizations to prevent insolvency. As a result, there are discussions at both the federal and state levels in which stakeholders are examining the future of motor fuel excise taxes as well as the role of electric and alternative fuel vehicles in that future. On July 1, 2015, six states increased their motor fuel tax rates.

  12. Alternative systems for fuel gas boosters for small gas turbine engines

    Science.gov (United States)

    Faulkner, Henry B.

    1992-04-01

    The study was done to investigate alternative technologies for fuel gas boosters for gas turbine engines under 5 MW output. The goal was to identify concepts which would significantly reduce the overall life cycle cost of these boosters. In a broad review of alternative systems, centrifugal compressors were found to be most promising. Electrically driven centrifugals, either direct drive or gear driven, were found to be quite limited in speed. Therefore they require many stages for these applications, and no cost advantage was indicated. Considerable promise was indicated for centrifugals driven by bleed air from the engine compressor, using turbocompressor units which are conversions of existing turbochargers for internal combustion engines. A first cost advantage of 30 to 80 percent was indicated for applications with an annual market size of at least ten units. Considerable savings in installation and maintenance costs are expected in addition.

  13. Importance of hydrogen fuels as sustainable alternative energy for domestic and industrial applications

    International Nuclear Information System (INIS)

    Energy demand is increasing continuously due to rapid growth in population and industrialization development. As a result greenhouse gases especially CO2 produced by the combustion of fossil fuels cause depletion of fossil fuels and deterioration of environmental conditions worldwide. The goal of global energy sustainability implies the replacement of all fossil fuels by renewable energy sources . Hydrogen fuel is one of the sustainable energy sources can be available by conversion of biomass into biological hydrogen gas and ethanol. Rate of biomass generation in domestic wastes in Iranian culture is high. Therefore there is suitable potential for hydrogen generation in rural and urban areas of Iran. On the other hand energy extraction from these fossil fuels causes pollution and diseases. Globally, hydrogen is already produced in significant quantities (around 5 billion cubic metres per annum). It is mainly used to produce ammonia for fertiliser (about 50%), for oil refining (37%), methanol production (8%) and in the chemical and metallurgical industries (4%). On the other hand, increase in emissions rates of greenhouse gases, i.e., CO2 present a threat to the world climate. Also new legislation of Iran has been approved the higher costs of conventional fuels for consuming in vehicles for reduction of greenhouse gases reduction as environmental policies. Demand is rising in all cities of Iran for cleaner fuels such as mixed fuels and natural gas, but unfortunately they are exporting to foreign countries or the required technologies are not available and economically option. Nuclear industries in Iran are also small and expanding only slowly. So importance of alternative energies as hydrogen powers are increasing daily. Presently both major consumers of domestic and industrial such as plants and manufacturers are using fossil fuels for their process that consequently contribute to the global warming and climate change. This paper reviews these options, with

  14. Determination of the main parameters influencing forest fuel combustion dynamics

    OpenAIRE

    Bartoli, P.; Simeoni, Albert; Biteau, H.; Torero, J L; Santoni, P.A.

    2011-01-01

    This work aims to characterize pine needles as a fuel for a better understanding of the behaviour of forest fuels in wildland fires. It does this in two ways: classify vegetation as a fuel for forest fires and understand the role of transport mechanisms in fuel beds. For this purpose, the physical and chemical characteristics of each fuel are taken into account. Three species of pine needles were studied: Pinus halepensis, Pinus pinaster and Pinus laricio. These were chosen because they are r...

  15. Numerical Studies on Controlling Gaseous Fuel Combustion by Managing the Combustion Process of Diesel Pilot Dose in a Dual-Fuel Engine

    OpenAIRE

    Mikulski Maciej; Wierzbicki Sławomir; Piętak Andrzej

    2015-01-01

    Protection of the environment and counteracting global warming require finding alternative sources of energy. One of the methods of generating energy from environmentally friendly sources is increasing the share of gaseous fuels in the total energy balance. The use of these fuels in compression-ignition (CI) engines is difficult due to their relatively high autoignition temperature. One solution for using these fuels in CI engines is operating in a dualfuel mode, where the air and gas mixture...

  16. An alternative fuel for urban buses-biodiesel blends

    Energy Technology Data Exchange (ETDEWEB)

    Schumacher, L.G.; Weber, J.A.; Russell, M.D. [Univ. of Missouri, Columbia, MO (United States)] [and others

    1995-11-01

    Qualitative and quantitative biodiesel fueling performance and operational data have been collected from urban mass transit buses at Bi-State Development Agency in St. Louis Missouri. A total of 10 vehicles were selected for fueling; 5-6V92 TA Detroit Diesel engines have been fueled with a 20/80 biodiesel/diesel fuel blend and 5-6V92 TA Detroit Diesel control vehicles have been fueled on petroleum based low sulfur diesel fuel (LSD). The real-world impact of a biodiesel blend on maintenance, reliability, cost, fuel economy and safety compared to LSD will be presented. In addition, engine exhaust emissions data collected by the University of West Virginia Department of Energy (DOE) sponsored mobile emissions laboratory will be presented. Operational data from Bi-State Development Agency is collected by the University of Missouri and quality control procedures are performed prior to placing the data in the Alternative Fuels Data Center (AFDC). The AFDC is maintained by the National Renewable Energy Laboratory in Golden, Colorado. This effort, which enables transit operators to review a real-world comparison of biodiesel and LSD, has been funded by the National Biodiesel Board with funds provided by the United Soybean Board with national checkoff dollars and the National Renewable Energy Laboratory.

  17. CO-COMBUSTION OF REFUSE DERIVED FUEL WITH COAL IN A FLUIDISED BED COMBUSTOR

    OpenAIRE

    W. A. Wan Ab Karim Ghani; Alias, A. B.; K.R.CLIFFE

    2009-01-01

    Power generation from biomass is an attractive technology which utilizes municipal solid waste-based refused derived fuel. In order to explain the behavior of biomass-fired fluidized bed incinerator, biomass sources from refuse derived fuel was co-fired with coal in a 0.15 m diameter and 2.3 m high fluidized bed combustor. The combustion efficiency and carbon monoxide emissions were studied and compared with those from pure coal combustion. This study proved that the blending effect had incre...

  18. Effect of Atmosphere on Volatile Emission Characteristic in Oxy-Fuel Combustion

    OpenAIRE

    Jia Luo; Shihe Chen; Le Wu

    2013-01-01

    A new type of power supply which was called oxy-fuel combustion power plant was introduced to reduce greenhouse gasses emission. In this paper the volatile emission characteristic of pulverized coal is studied under air atmosphere and oxy-fuel atmosphere. Combustion experiments of Datong bituminous coal were carried out in a wire mesh reactor at heating rates of 1 K/s, 10 K/s and 1000 K/s respectively under air and O2/CO2 atmosphere conditions in order to investigate the volatile emission ch...

  19. Comparisons between oxy-fuel combustion and IGCC technologies in China coal- energy industry

    OpenAIRE

    Zhao, Xue; Clemente Jul, María del Carmen

    2010-01-01

    A comparison between oxy-fuel combustion plants and IGCC plants has been carried out. Oxy-fuel combustion performs better for the retrofit of exist pulverized coal plants after the evaluation of efficiency, retrofit cost and O&M cost. China is currently and will depending on coal for its energy for a long time. Plenty of PC plants are used in existing power plants due to its lower coal consumption. One way to reduce CO2 emission with CCS is to equip existing power plants with appliance...

  20. Fuel additives for internal combustion engines. Recent developments. [Book: review of patents

    Energy Technology Data Exchange (ETDEWEB)

    Ranney, M.W.

    1978-01-01

    The descriptive information presented is based on U.S. patents that deal with fuel additives for internal combustion engines. The processes detailed herein represent recent developments and date from January 1975. The book serves a double purpose in that it supplies detailed technical information and can be used as a guide to the U.S. patent literature in this field. By indicating all the information that is significant, and eliminating legal jargon and juristic phraseology, this book presents an advanced, technically oriented review of fuel additives for internal combustion engines as depicted in U.S. patents.

  1. Air quality effects of alternative fuels. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Guthrie, P.; Ligocki, M.; Looker, R.; Cohen, J.

    1997-11-01

    To support the Alternative Fuels Utilization Program, a comparison of potential air quality effects of alternative transportation fuels is being performed. This report presents the results of Phase 1 of this program, focusing on reformulated gasoline (RFG), methanol blended with 15 percent gasoline (M85), and compressed natural gas (CNG). The fuels are compared in terms of effects on simulated future concentrations of ozone and mobile source air toxics in a photochemical grid model. The fuel comparisons were carried out for the future year 2020 and assumed complete replacement of gasoline in the projected light-duty gasoline fleet by each of the candidate fuels. The model simulations were carried out for the areas surrounding Los Angeles and Baltimore/DC, and other (non-mobile) sources of atmospheric emissions were projected according to published estimates of economic and population growth, and planned emission control measures specific to each modeling domain. The future-year results are compared to a future-year run with all gasoline vehicle emissions removed. The results of the comparison indicate that the use of M85 is likely to produce similar ozone and air toxics levels as those projected from the use of RFG. Substitution of CNG is projected to produce significantly lower levels of ozone and the mobile source air toxics than those projected for RFG or M85. The relative benefits of CNG substitution are consistent in both modeling domains. The projection methodologies used for the comparison are subject to a large uncertainty, and modeled concentration distributions depend on meteorological conditions. The quantitative comparison of fuel effects is thus likely to be sensitive to alternative assumptions. The consistency of the results for two very different modeling domains, using very different base assumptions, lends credibility to the qualitative differentiation among these fuels. 32 refs., 42 figs., 47 tabs.

  2. Numerical simulations of the industrial circulating fluidized bed boiler under air- and oxy-fuel combustion

    International Nuclear Information System (INIS)

    Measured and numerical results of air-fuel combustion process within large scale industrial circulating fluidized bed (CFB) boiler is presented in this paper. For numerical simulations the industrial compact CFB boiler was selected. Numerical simulations were carried out using three-dimensional model where the dense particulate transport phenomenon was simultaneously modelled with combustion process. The fluidization process was modelled using the hybrid Euler-Lagrange approach. The impact of the geometrical model simplification on predicted mass distribution and temperature profiles over CFB boiler combustion chamber two kinds of geometrical models were used, namely the complete model which consist of combustion chamber, solid separators, external solid super-heaters and simplified boiler geometry which was reduced to the combustion chamber. The evaluated temperature and pressure profiles during numerical simulations were compared against measured data collected during boiler air-fuel operation. Collected data was also used for validating numerical model of the oxy-fuel combustion model. Stability of the model and its sensitivity on changes of several input parameters were studied. The comparison of the pressure and temperature profiles for all considered cases gave comparable trends in contrary to measured data. Moreover, some additional test was carried out the check the influence of radiative heat transfer on predicted temperature profile within the CFB boiler. - Highlights: • Hybrid Euler-Lagrange approach was used for modelling particle transport, air- and oxy-fuel combustion process. • Numerical results were validated against measured data. • The influence of different boiler operating conditions on calculated temperature profile was investigated. • New strategy for resolving particle transport in circulating fluidized bed was shown

  3. Global combustion: the connection between fossil fuel and biomass burning emissions (1997-2010).

    Science.gov (United States)

    Balch, Jennifer K; Nagy, R Chelsea; Archibald, Sally; Bowman, David M J S; Moritz, Max A; Roos, Christopher I; Scott, Andrew C; Williamson, Grant J

    2016-06-01

    Humans use combustion for heating and cooking, managing lands, and, more recently, for fuelling the industrial economy. As a shift to fossil-fuel-based energy occurs, we expect that anthropogenic biomass burning in open landscapes will decline as it becomes less fundamental to energy acquisition and livelihoods. Using global data on both fossil fuel and biomass burning emissions, we tested this relationship over a 14 year period (1997-2010). The global average annual carbon emissions from biomass burning during this time were 2.2 Pg C per year (±0.3 s.d.), approximately one-third of fossil fuel emissions over the same period (7.3 Pg C, ±0.8 s.d.). There was a significant inverse relationship between average annual fossil fuel and biomass burning emissions. Fossil fuel emissions explained 8% of the variation in biomass burning emissions at a global scale, but this varied substantially by land cover. For example, fossil fuel burning explained 31% of the variation in biomass burning in woody savannas, but was a non-significant predictor for evergreen needleleaf forests. In the land covers most dominated by human use, croplands and urban areas, fossil fuel emissions were more than 30- and 500-fold greater than biomass burning emissions. This relationship suggests that combustion practices may be shifting from open landscape burning to contained combustion for industrial purposes, and highlights the need to take into account how humans appropriate combustion in global modelling of contemporary fire. Industrialized combustion is not only an important driver of atmospheric change, but also an important driver of landscape change through companion declines in human-started fires.This article is part of the themed issue 'The interaction of fire and mankind'. PMID:27216509

  4. Combustion characterization of beneficiated coal-based fuels. Quarterly report No. 9, April--June 1991

    Energy Technology Data Exchange (ETDEWEB)

    Chow, O.K.; Nsakala, N.Y.

    1991-08-01

    The Pittsburgh Energy Technology Center of the US Department of Energy has contracted with Combustion Engineering, Inc. (CE) to perform a five-year project on ``Combustion Characterization of Beneficiated Coal-Based Fuels.`` The beneficiated coals are produced by other contractors under the DOE Coal Preparation Program. Several contractor-developed advanced coal cleaning processes are run at pilot-scale cleaning facilities to produce 20-ton batches of fuels for shipment to CE`s laboratory in Windsor, Connecticut. CE then processes the products into either a coal-water fuel (CWF) or a dry microfine pulverized coa1 (DMPC) form for combustion testing. The objectives of this project include: (1) the development of an engineering data base which will provide detailed information on the properties of BCFs influencing combustion, ash deposition, ash erosion, particulate collection, and emissions; and (2) the application of this technical data base to predict the performance and economic impacts of firing the BCFs in various commercial boiler designs. During the second quarter of 1991, the following technical progress was made: completed drop tube furnace devolatilization tests of the spherical oil agglomeration beneficiated products; continued analyses of samples to determine devolatilization kinetics; continued analyses of the data and samples from the CE pilot-scale tests of nine fuels; completed writing a summary topical report including all results to date on he nine fuels tested; and presented three technical papers on the project results at the 16th International Conference on Coal & Slurry Technologies.

  5. Combustion performance of an aluminum melting furnace operating with liquid fuel

    Energy Technology Data Exchange (ETDEWEB)

    Nieckele, Angela Ourivio; Naccache, Monica Feijo; Gomes, Marcos Sebastiao de P. [Pontificia Universidade Catolica (PUC-Rio), Rio de Janeiro, RJ (Brazil). Dept. de Engenharia Mecanica], E-mails: nieckele@puc-rio.br, naccache@puc-rio.br, mspgomes@puc-rio.br

    2010-10-15

    The characteristics associated with the delivery of the fuel to be used as the energy source in any industrial combustion equipment are of extreme importance, as for example, in improving the performance of the combustion process and in the preservation of the equipment. A clean and efficient combustion may be achieved by carefully selecting the fuel and oxidant, as well as the operational conditions of the delivery system for both. In the present work, numerical simulations were carried out using the commercial code FLUENT for analyzing some of the relevant operational conditions inside an aluminum reverb furnace employing liquid fuel and air as the oxidant. Different fuel droplets sizes as well as inlet droplet stream configurations were examined. These characteristics, associated with the burner geometry and the fuel dispersion and delivery system may affect the flame shape, and consequently the temperature and the heat flux distribution within the furnace. Among the results obtained in the simulations, it was shown the possible damages to the equipment, which may occur as a result of the combustion process, if the flame is too long or too intense and concentrated. (author)

  6. Moving beyond alternative fuel hype to decarbonize transportation

    Science.gov (United States)

    Melton, Noel; Axsen, Jonn; Sperling, Daniel

    2016-03-01

    In the past three decades, government, industry and other stakeholders have repeatedly been swept up with the ‘fuel du jour’, claiming that a particular alternative fuel vehicle (AFV) technology can succeed in replacing conventional gasoline-powered vehicles. However, AFV technologies have experienced relatively little success, with fossil fuels still accounting for about 95% of global transport energy use. Here, using the US as a case study, we conduct a media analysis to show how society’s attention has skipped among AFV types between 1980 and 2013, including methanol, natural gas, plug-in electric, hybrid electric, hydrogen and biofuels. Although our results provide no indication as to whether hype ultimately has a net positive or negative impact on AFV innovation, we offer several recommendations that governments can follow to move past hype to support significant AFV adoption and displace fossil fuel use in the transportation sector.

  7. Analysis of alternative light water reactor (LWR) fuel cycles

    International Nuclear Information System (INIS)

    Nine alternative LWR fuel cycles are analyzed in terms of the isotopic content of the fuel material, the relative amounts of primary and recycled material, the uranium and thorium requirements, the fuel cycle costs and the fraction of energy which must be generated at secured sites. The fuel materials include low-enriched uranium (LEU), plutonium-uranium (MOX), highly-enriched uranium-thorium (HEU-Th), denatured uranium-thorium (DU-Th) and plutonium-thorium (Pu-Th). The analysis is based on tracing the material requirements of a generic pressurized water reactor (PWR) for a 30-year period at constant annual energy output. During this time period all the created fissile material is recycled unless its reactivity worth is less than 0.2% uranium enrichment plant tails

  8. Power generation costs for alternate reactor fuel cycles

    International Nuclear Information System (INIS)

    The total electric generating costs at the power plant busbar are estimated for various nuclear reactor fuel cycles which may be considered for power generation in the future. The reactor systems include pressurized water reactors (PWR), heavy-water reactors (HWR), high-temperature gas cooled reactors (HTGR), liquid-metal fast breeder reactors (LMFBR), light-water pre-breeder and breeder reactors (LWPR, LWBR), and a fast mixed spectrum reactor (FMSR). Fuel cycles include once-through, uranium-only recycle, and full recycle of the uranium and plutonium in the spent fuel assemblies. The U3O8 price for economic transition from once-through LWR fuel cycles to both PWR recycle and LMFBR systems is estimated. Electric power generation costs were determined both for a reference set of unit cost parameters and for a range of uncertainty in these parameters. In addition, cost sensitivity parameters are provided so that independent estimations can be made for alternate cost assumptions

  9. Fluidized bed combustion and its application to refused fuels. Combustion en leche fluido y su aplicacion a combustibles residuales

    Energy Technology Data Exchange (ETDEWEB)

    Euba, J.

    1994-01-01

    As a consequence of the energetic crisis produced in th 70's it was proposed to find new power supplies and it also was the start of the use of traditional energy, which up to that date had not been profitable. At the same time, the worry about the pollutant emissions to the environment was increasing and finally it was approved a new legislation on atmosphere pollution, which is the Directive of the European community Council of 24th November 1988. Under these circumstances there are very important the new technologies for the supply of residual combustion with low values of pollution, where it is very important the combustion in fluidized bed. (Author)

  10. Fuel reactor modelling in chemical-looping combustion of coal: 1. model formulation

    OpenAIRE

    Abad Secades, Alberto; Gayán Sanz, Pilar; Diego Poza, Luis F. de; García Labiano, Francisco; Adánez Elorza, Juan

    2013-01-01

    A fundamental part of the reliability of the Chemical-Looping Combution system when a 13 solid fuel, such as coal, is fed to the reactor is based on the behaviour of the fuel reactor, which determines the conversion of the solid fuel. The objective of this work is to develop a model describing the fuel reactor in the Chemical–Looping Combustion with coal (CLCC) process. The model is used to simulate the performance of the 1 MWth CLCC rig built in the Technology University of Darmsta...

  11. Alternative Fuel Cycle Evaluation Program. Volume IV. International Fuel Service Center evaluation. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, L D [comp.

    1979-11-01

    This Alternative Fuel Cycle Evaluation Program (AFCEP) study presents the technical, economic and social aspects of the International Fuel Service Center (IFSC) as an institutional approach to nuclear fuel cycle development and is provided in support of the Nonproliferation Alternative Systems Assessment program (NASAP). Four types of IFSCs are described and evaluated in terms of three different twenty-year nuclear growth scenarios. Capital costs for each IFSC and comparable dispersed facility costs are discussed. Finally, the possible impact of each scenario and IFSC on the environmental and socio-economic structure is examined. 14 refs., 33 figs., 15 tabs.

  12. Combustion of Microalgae Oil and Ethanol Blended with Diesel Fuel

    OpenAIRE

    Saddam H. Al-lwayzy; Talal Yusaf

    2015-01-01

    Using renewable oxygenated fuels such as ethanol is a proposed method to reduce diesel engine emission. Ethanol has lower density, viscosity, cetane number and calorific value than petroleum diesel (PD). Microalgae oil is renewable, environmentally friendly and has the potential to replace PD. In this paper, microalgae oil (10%) and ethanol (10%) have been mixed and added to (80%) diesel fuel as a renewable source of oxygenated fuel. The mixture of microalgae oil, ethanol and petroleum diesel...

  13. Fuel-cycle greenhouse gas emissions impacts of alternative transportation fuels and advanced vehicle technologies

    International Nuclear Information System (INIS)

    At an international conference on global warming, held in Kyoto, Japan, in December 1997, the United States committed to reduce its greenhouse gas (GHG) emissions by 7% over its 1990 level by the year 2012. To help achieve that goal, transportation GHG emissions need to be reduced. Using Argonne's fuel-cycle model, I estimated GHG emissions reduction potentials of various near- and long-term transportation technologies. The estimated per-mile GHG emissions results show that alternative transportation fuels and advanced vehicle technologies can help significantly reduce transportation GHG emissions. Of the near-term technologies evaluated in this study, electric vehicles; hybrid electric vehicles; compression-ignition, direct-injection vehicles; and E85 flexible fuel vehicles can reduce fuel-cycle GHG emissions by more than 25%, on the fuel-cycle basis. Electric vehicles powered by electricity generated primarily from nuclear and renewable sources can reduce GHG emissions by 80%. Other alternative fuels, such as compressed natural gas and liquefied petroleum gas, offer limited, but positive, GHG emission reduction benefits. Among the long-term technologies evaluated in this study, conventional spark ignition and compression ignition engines powered by alternative fuels and gasoline- and diesel-powered advanced vehicles can reduce GHG emissions by 10% to 30%. Ethanol dedicated vehicles, electric vehicles, hybrid electric vehicles, and fuel-cell vehicles can reduce GHG emissions by over 40%. Spark ignition engines and fuel-cell vehicles powered by cellulosic ethanol and solar hydrogen (for fuel-cell vehicles only) can reduce GHG emissions by over 80%. In conclusion, both near- and long-term alternative fuels and advanced transportation technologies can play a role in reducing the United States GHG emissions

  14. The nuclear fuel cycle; Le cycle du combustible nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-05-01

    After a short introduction about nuclear power in the world, fission physics and the French nuclear power plants, this brochure describes in a digest way the different steps of the nuclear fuel cycle: uranium prospecting, mining activity, processing of uranium ores and production of uranium concentrates (yellow cake), uranium chemistry (conversion of the yellow cake into uranium hexafluoride), fabrication of nuclear fuels, use of fuels, reprocessing of spent fuels (uranium, plutonium and fission products), recycling of energetic materials, and storage of radioactive wastes. (J.S.)

  15. Ethanol as an Alternative Fuel for Automobiles: Using the First Law of Thermodynamics to Calculate the "Corn-Area-per-Car" Ratio

    Science.gov (United States)

    Pietro, William J.

    2009-01-01

    Students will use the first law of thermodynamics to determine the feasibility of using corn ethanol as an alternative to fossil fuels in automobiles. Energy flow is tracked from the Sun, to photosynthesized carbohydrate, to ethanol through fermentation, and finally to work in the combustion engine. Feasibility is gauged by estimating a…

  16. Part 2. Design and performance characteristics of alternative fuels and fuel cycles

    International Nuclear Information System (INIS)

    This report documents performance characteristics of a wide range of fast breeder reactor designs and fuel cycle options to provide the bases for the study of alternatives that is the primary focus of the International Nuclear Fuel Cycle Evaluation. Since breeding performance is at the center of many of the feasibility questions connected with alternative forms of breeder development, particular attention was given to a consistent comparison between various alternatives and quantitative analyses that provide physical understanding of intrinsic differences in their breeding performance

  17. Chemical effects of a high CO2 concentration in oxy-fuel combustion of methane

    DEFF Research Database (Denmark)

    Glarborg, Peter; Bentzen, L.L.B.

    2008-01-01

    The oxidation of methane in an atmospheric-pres sure flow reactor has been studied experimentally under highly diluted conditions in N-2 and CO2, respectively. The stoichiometry was varied from fuel-lean to fuel-rich, and the temperatures covered the range 1200-1800 K. The results were interpreted...... in terms of a detailed chemical kinetic mechanism for hydrocarbon oxidation. On the basis of results of the present study, it can be expected that oxy-fuel combustion will lead to strongly increased CO concentrations in the near-burner region. The CO2 present will compete with O-2 for atomic hydrogen...... consuming CO2. The high local CO levels may have implications for near-burner corrosion and stagging, but increased problems with CO emission in oxy-fuel combustion are not anticipated....

  18. Effect of fuel characteristics on synthesis of calcium hydroxyapatite by solution combustion route

    Indian Academy of Sciences (India)

    Samir K Ghosh; Asit Prakash; Someswar Datta; Sujit K Roy; Debabrata Basu

    2010-02-01

    The effect of fuel characteristics on the processing of nano sized calcium hydroxyapatite (HA) fine powders by the solution combustion technique is reported. Urea, glycine and glucose were used as fuels in this study. By using different combinations of urea and glycine fuels and occasional addition of small amounts of highly water-soluble glucose, the flame temperature (f) of the process as well as product characteristics could be controlled easily. The powders obtained by this modified solution combustion technique were characterized by XRD, FTIR spectroscopy, SEM, FESEM–EDX, particle size analyser (PSD) and specific surface area (SSA) measurements. The particle size of phase pure HA powder was found to be < 20 nm in this investigation. The effects of glucose addition with stoichiometric ( = 1) and fuel excess ( > 1) urea and glycine precursor batches were investigated separately.

  19. Combustion of hydrogen-based mixtures in gas-fueled reciprocating engines

    Science.gov (United States)

    Smygalina, A. E.; Zaitchenko, V. M.; Ivanov, M. F.; Kiverin, A. D.

    2015-12-01

    The research is devoted to the possibility for application of hydrogen accumulated from renewable energy sources as a fuel for a reciprocating engine, which serves as an electrical generator drive. Hydrogen combustion in the chamber of a reciprocating engine, as a rule, occurs in a detonation mode. In order to obtain less hard modes, the present research proposes the usage of steam additions to hydrogen-air mixture or lean hydrogen-air mixtures. Mathematical simulation is used for investigation of combustion of mentioned mixtures in the combustion chamber of a reciprocating engine with a spark-plug ignition. The comparison of the usage of hydrogen-steam-air mixtures and lean hydrogen-air mixtures as fuels is given. The dependence of arising combustion modes and its quantitative characteristics on hydrogen content in combustible composition is investigated. The analysis of optimal combustion is presented, which is based on the consideration of two parameters: peak pressure in one cycle and the crankshaft angle corresponding to the achievement of the peak pressure.

  20. Combustion Analysis of a CI Engine Performance Using Waste Cooking Biodiesel Fuel with an Artificial Neural Network Aid

    Directory of Open Access Journals (Sweden)

    Gholamhassan NAJAFI

    2007-01-01

    Full Text Available A comprehensive combustion analysis has been conducted to evaluate the performance of a commercial DI engine, water cooled two cylinders, in-line, naturally aspirated, RD270 Ruggerini diesel engine using waste vegetable cooking oil as an alternative fuel. In order to compare the brake power and the torques values of the engine, it has been tested under same operating conditions with diesel fuel and waste cooking biodiesel fuel blends. The results were found to be very comparable. The properties of biodiesel produced from waste vegetable oil was measured based on ASTM standards. The total sulfur content of the produced biodiesel fuel was 18 ppm which is 28 times lesser than the existing diesel fuel sulfur content used in the diesel vehicles operating in Tehran city (500 ppm. The maximum power and torque produced using diesel fuel was 18.2 kW and 64.2 Nm at 3200 and 2400 rpm respectively. By adding 20% of waste vegetable oil methyl ester, it was noticed that the maximum power and torque increased by 2.7 and 2.9% respectively, also the concentration of the CO and HC emissions have significantly decreased when biodiesel was used. An artificial neural network (ANN was developed based on the collected data of this work. Multi layer perceptron network (MLP was used for nonlinear mapping between the input and the output parameters. Different activation functions and several rules were used to assess the percentage error between the desired and the predicted values. The results showed that the training algorithm of Back Propagation was sufficient enough in predicting the engine torque, specific fuel consumption and exhaust gas components for different engine speeds and different fuel blends ratios. It was found that the R2 (R: the coefficient of determination values are 0.99994, 1, 1 and 0.99998 for the engine torque, specific fuel consumption, CO and HC emissions, respectively.