WorldWideScience

Sample records for altered thalamocortical connectivity

  1. A critical period for auditory thalamocortical connectivity

    DEFF Research Database (Denmark)

    Rinaldi Barkat, Tania; Polley, Daniel B; Hensch, Takao K

    2011-01-01

    connectivity by in vivo recordings and day-by-day voltage-sensitive dye imaging in an acute brain slice preparation. Passive tone-rearing modified response strength and topography in mouse primary auditory cortex (A1) during a brief, 3-d window, but did not alter tonotopic maps in the thalamus. Gene......-targeted deletion of a forebrain-specific cell-adhesion molecule (Icam5) accelerated plasticity in this critical period. Consistent with its normal role of slowing spinogenesis, loss of Icam5 induced precocious stubby spine maturation on pyramidal cell dendrites in neocortical layer 4 (L4), identifying a primary...

  2. Mapping Thalamocortical Networks in Rat Brain using Resting-State Functional Connectivity

    OpenAIRE

    Liang, Zhifeng; Li, Tao; King, Jean; Zhang, Nanyin

    2013-01-01

    Thalamocortical connectivity plays a vital role in brain function. The anatomy and function of thalamocortical networks have been extensively studied in animals by numerous invasive techniques. Non-invasively mapping thalamocortical networks in humans has also been demonstrated by utilizing resting-state functional magnetic resonance imaging (rsfMRI). However, success in simultaneously imaging multiple thalamocortical networks in animals is rather limited. This is largely due to the profound ...

  3. Decreased thalamocortical functional connectivity after 36 hours of total sleep deprivation: evidence from resting state FMRI.

    Directory of Open Access Journals (Sweden)

    Yongcong Shao

    Full Text Available OBJECTIVES: The thalamus and cerebral cortex are connected via topographically organized, reciprocal connections, which hold a key function in segregating internally and externally directed awareness information. Previous task-related studies have revealed altered activities of the thalamus after total sleep deprivation (TSD. However, it is still unclear how TSD impacts on the communication between the thalamus and cerebral cortex. In this study, we examined changes of thalamocortical functional connectivity after 36 hours of total sleep deprivation by using resting state function MRI (fMRI. MATERIALS AND METHODS: Fourteen healthy volunteers were recruited and performed fMRI scans before and after 36 hours of TSD. Seed-based functional connectivity analysis was employed and differences of thalamocortical functional connectivity were tested between the rested wakefulness (RW and TSD conditions. RESULTS: We found that the right thalamus showed decreased functional connectivity with the right parahippocampal gyrus, right middle temporal gyrus and right superior frontal gyrus in the resting brain after TSD when compared with that after normal sleep. As to the left thalamus, decreased connectivity was found with the right medial frontal gyrus, bilateral middle temporal gyri and left superior frontal gyrus. CONCLUSION: These findings suggest disruptive changes of the thalamocortical functional connectivity after TSD, which may lead to the decline of the arousal level and information integration, and subsequently, influence the human cognitive functions.

  4. Investigation of Anatomical Thalamo-Cortical Connectivity and fMRI Activation in Schizophrenia

    OpenAIRE

    Marenco, Stefano; Stein, Jason L; Savostyanova, Antonina A.; Sambataro, Fabio; Tan, Hao-Yang; Goldman, Aaron L; Verchinski, Beth A.; Barnett, Alan S; Dickinson, Dwight; Apud, José A; Callicott, Joseph H.; Meyer-Lindenberg, Andreas; Weinberger, Daniel R.

    2011-01-01

    The purpose of this study was to examine measures of anatomical connectivity between the thalamus and lateral prefrontal cortex (LPFC) in schizophrenia and to assess their functional implications. We measured thalamocortical connectivity with diffusion tensor imaging (DTI) and probabilistic tractography in 15 patients with schizophrenia and 22 age- and sex-matched controls. The relationship between thalamocortical connectivity and prefrontal cortical blood-oxygenation-level-dependent (BOLD) f...

  5. Specialization and integration of functional thalamocortical connectivity in the human infant

    NARCIS (Netherlands)

    Toulmin, H.; Beckmann, C.F.; O'Muircheartaigh, J.; Ball, G.; Nongena, P.; Makropoulis, A.; Ederies, A.; Counsell, S.J.; Kennea, N.; Arichi, T.; Tusor, N.; Rutherford, M.A.; Azzopardi, D.; Gonzalez-Cinca, N.; Hajnal, J.V.; Edwards, A.D.

    2015-01-01

    Connections between the thalamus and cortex develop rapidly before birth, and aberrant cerebral maturation during this period may underlie a number of neurodevelopmental disorders. To define functional thalamocortical connectivity at the normal time of birth, we used functional MRI (fMRI) to measure

  6. Thalamocortical functional connectivity and behavioral disruptions in neonates with prenatal cocaine exposure.

    Science.gov (United States)

    Salzwedel, Andrew P; Grewen, Karen M; Goldman, Barbara D; Gao, Wei

    2016-01-01

    Prenatal cocaine exposure (PCE) affects neurobehavioral development, however, disentangling direct drug-related mechanisms from contextual effects (e.g., socioeconomic status) has proven challenging in humans. The effects of environmental confounds are minimal immediately after birth thus we aimed to delineate neurobehavioral correlates of PCE in a large cohort of neonates (2-6weeks of age, N=152) with and without drug exposure using resting state functional magnetic resonance imaging (rsfMRI) and developmental assessments at 3months with the Bayley Scales of Infant & Toddler Development, 3rd edition. The cohort included healthy controls and neonates with similar poly-drug exposure±cocaine. We focused on the thalamus given its critical importance in early brain development and its unique positioning in the dopamine system. Our results revealed PCE-related hyper-connectivity between the thalamus and frontal regions and a drug-common hypo-connective signature between the thalamus and motor-related regions. PCE-specific neonatal thalamo-frontal connectivity was inversely related to cognitive and fine motor scores and thalamo-motor connectivity showed a positive relationship with composite (gross plus fine) motor scores. Finally, cocaine by selective-serotonin-reuptake-inhibitor (SSRI) interactions were detected, suggesting the combined use of these drugs during pregnancy could have additional consequences on fetal development. Overall, our findings provide the first delineation of PCE-related disruptions of thalamocortical functional connectivity, neurobehavioral correlations, and drug-drug interactions during infancy. PMID:27242332

  7. Alterations in Neuronal Activity in Basal Ganglia-Thalamocortical Circuits in the Parkinsonian State

    Directory of Open Access Journals (Sweden)

    Adriana Galvan

    2015-02-01

    Full Text Available In patients with Parkinson’s disease and in animal models of this disorder, neurons in the basal ganglia and related regions in thalamus and cortex show changes that can be recorded by using electrophysiologic single-cell recording techniques, including altered firing rates and patterns, pathologic oscillatory activity and increased inter-neuronal synchronization. In addition, changes in synaptic potentials or in the joint spiking activities of populations of neurons can be monitored as alterations in local field potentials, electroencephalograms or electrocorticograms. Most of the mentioned electrophysiologic changes are probably related to the degeneration of diencephalic dopaminergic neurons, leading to dopamine loss in the striatum and other basal ganglia nuclei, although degeneration of non-dopaminergic cell groups may also have a role. The altered electrical activity of the basal ganglia and associated nuclei may contribute to some of the motor signs of the disease. We here review the current knowledge of the electrophysiologic changes at the single cell level, the level of local populations of neural elements, and the level of the entire basal ganglia-thalamocortical network in parkinsonism, and discuss the possible use of this information to optimize treatment approaches to Parkinson’s disease, such as deep brain stimulation therapy.

  8. Altered functional connectivity in persistent developmental stuttering.

    Science.gov (United States)

    Yang, Yang; Jia, Fanlu; Siok, Wai Ting; Tan, Li Hai

    2016-01-01

    Persistent developmental stuttering (PDS) is a speech disorder that impairs communication skills. Despite extensive research, the core causes of PDS are elusive. Converging evidence from task-induced neuroimaging methods has demonstrated the contributions of the basal ganglia and the cerebellum to PDS, but such task-state neuroimaging findings are often confounded by behavioral performance differences between subjects who stutter and normal controls. Here, using resting-state functional magnetic resonance imaging, we investigated functional connectivity within cerebellar-cortical and basal ganglia-thalamocortical networks in 16 adults who stutter and 18 age-matched fluent speakers. Seed-to-voxel analysis demonstrated that, compared to controls, adults who stutter showed alternations in functional connectivity of cerebellum to motor cortex as well as connectivity among different locals within cerebellum. Additionally, we found that functional connectivity within cerebellar circuits was significantly correlated with severity of stuttering. The alternations of functional connectivity within basal ganglia-thalamocortical networks were identified as the reduced connectivity of the putamen to the superior temporal gyrus and inferior parietal lobules in adults who stutter. The abnormalities of resting state functional connectivity are assumed to affect language planning and motor execution critical for speaking fluently. Our findings may yield neurobiological cues to the biomarkers of PDS. PMID:26743821

  9. Altered functional connectivity in lesional peduncular hallucinosis with REM sleep behavior disorder.

    Science.gov (United States)

    Geddes, Maiya R; Tie, Yanmei; Gabrieli, John D E; McGinnis, Scott M; Golby, Alexandra J; Whitfield-Gabrieli, Susan

    2016-01-01

    Brainstem lesions causing peduncular hallucinosis (PH) produce vivid visual hallucinations occasionally accompanied by sleep disorders. Overlapping brainstem regions modulate visual pathways and REM sleep functions via gating of thalamocortical networks. A 66-year-old man with paroxysmal atrial fibrillation developed abrupt-onset complex visual hallucinations with preserved insight and violent dream enactment behavior. Brain MRI showed restricted diffusion in the left rostrodorsal pons suggestive of an acute ischemic stroke. REM sleep behavior disorder (RBD) was diagnosed on polysomnography. We investigated the integrity of ponto-geniculate-occipital circuits with seed-based resting-state functional connectivity MRI (rs-fcMRI) in this patient compared to 46 controls. Rs-fcMRI revealed significantly reduced functional connectivity between the lesion and lateral geniculate nuclei (LGN), and between LGN and visual association cortex compared to controls. Conversely, functional connectivity between brainstem and visual association cortex, and between visual association cortex and prefrontal cortex (PFC) was significantly increased in the patient. Focal damage to the rostrodorsal pons is sufficient to cause RBD and PH in humans, suggesting an overlapping mechanism in both syndromes. This lesion produced a pattern of altered functional connectivity consistent with disrupted visual cortex connectivity via de-afferentation of thalamocortical pathways. PMID:26656284

  10. Altered Functional Connectivity within and between Brain Modules in Absence Epilepsy: A Resting-State Functional Magnetic Resonance Imaging Study

    Directory of Open Access Journals (Sweden)

    Cui-Ping Xu

    2013-01-01

    Full Text Available Functional connectivity has been correlated with a patient’s level of consciousness and has been found to be altered in several neuropsychiatric disorders. Absence epilepsy patients, who experience a loss of consciousness, are assumed to suffer from alterations in thalamocortical networks; however, previous studies have not explored the changes at a functional module level. We used resting-state functional magnetic resonance imaging to examine the alteration in functional connectivity that occurs in absence epilepsy patients. By parcellating the brain into 90 brain regions/nodes, we uncovered an altered functional connectivity within and between functional modules. Some brain regions had a greater number of altered connections and therefore behaved as key nodes in the changed network pattern; these regions included the superior frontal gyrus, the amygdala, and the putamen. In particular, the superior frontal gyrus demonstrated both an increased value of connections with other nodes of the frontal default mode network and a decreased value of connections with the limbic system. This divergence is positively correlated with epilepsy duration. These findings provide a new perspective and shed light on how functional connectivity and the balance of within/between module connections may contribute to both the state of consciousness and the development of absence epilepsy.

  11. Altered thalamic functional connectivity in multiple sclerosis

    International Nuclear Information System (INIS)

    Highlights: •We demonstrated decreased connectivity between thalamus and cortical regions in MS. •Increased intra- and inter-thalamic connectivity was also observed in MS. •The increased functional connectivity is attenuated by increasing disease duration. -- Abstract: Objective: To compare thalamic functional connectivity (FC) in patients with multiple sclerosis (MS) and healthy controls (HC), and correlate these connectivity measures with other MRI and clinical variables. Methods: We employed resting-state functional MRI (fMRI) to examine changes in thalamic connectivity by comparing thirty-five patients with MS and 35 age- and sex-matched HC. Thalamic FC was investigated by correlating low frequency fMRI signal fluctuations in thalamic voxels with voxels in all other brain regions. Additionally thalamic volume fraction (TF), T2 lesion volume (T2LV), EDSS and disease duration were recorded and correlated with the FC changes. Results: MS patients were found to have a significantly lower TF than HC in bilateral thalami. Compared to HC, the MS group showed significantly decreased FC between thalamus and several brain regions including right middle frontal and parahippocampal gyri, and the left inferior parietal lobule. Increased intra- and inter-thalamic FC was observed in the MS group compared to HC. These FC alterations were not correlated with T2LV, thalamic volume or lesions. In the MS group, however, there was a negative correlation between disease duration and inter-thalamic connectivity (r = −0.59, p < 0.001). Conclusion: We demonstrated decreased FC between thalamus and several cortical regions, while increased intra- and inter-thalamic connectivity in MS patients. These complex functional changes reflect impairments and/or adaptations that are independent of T2LV, thalamic volume or presence of thalamic lesions. The negative correlation between disease duration and inter-thalamic connectivity could indicate an adaptive role of thalamus that is

  12. Altered thalamic functional connectivity in multiple sclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yaou; Liang, Peipeng; Duan, Yunyun; Huang, Jing; Ren, Zhuoqiong; Jia, Xiuqin [Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China); Dong, Huiqing; Ye, Jing [Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China); Shi, Fu-Dong [Department of Neurology and Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052 (China); Butzkueven, Helmut [Department of Medicine, University of Melbourne, Parkville 3010 (Australia); Li, Kuncheng, E-mail: kunchengli55@gmail.com [Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China)

    2015-04-15

    Highlights: •We demonstrated decreased connectivity between thalamus and cortical regions in MS. •Increased intra- and inter-thalamic connectivity was also observed in MS. •The increased functional connectivity is attenuated by increasing disease duration. -- Abstract: Objective: To compare thalamic functional connectivity (FC) in patients with multiple sclerosis (MS) and healthy controls (HC), and correlate these connectivity measures with other MRI and clinical variables. Methods: We employed resting-state functional MRI (fMRI) to examine changes in thalamic connectivity by comparing thirty-five patients with MS and 35 age- and sex-matched HC. Thalamic FC was investigated by correlating low frequency fMRI signal fluctuations in thalamic voxels with voxels in all other brain regions. Additionally thalamic volume fraction (TF), T2 lesion volume (T2LV), EDSS and disease duration were recorded and correlated with the FC changes. Results: MS patients were found to have a significantly lower TF than HC in bilateral thalami. Compared to HC, the MS group showed significantly decreased FC between thalamus and several brain regions including right middle frontal and parahippocampal gyri, and the left inferior parietal lobule. Increased intra- and inter-thalamic FC was observed in the MS group compared to HC. These FC alterations were not correlated with T2LV, thalamic volume or lesions. In the MS group, however, there was a negative correlation between disease duration and inter-thalamic connectivity (r = −0.59, p < 0.001). Conclusion: We demonstrated decreased FC between thalamus and several cortical regions, while increased intra- and inter-thalamic connectivity in MS patients. These complex functional changes reflect impairments and/or adaptations that are independent of T2LV, thalamic volume or presence of thalamic lesions. The negative correlation between disease duration and inter-thalamic connectivity could indicate an adaptive role of thalamus that is

  13. Connective tissue alteration in abdominal wall hernia

    DEFF Research Database (Denmark)

    Henriksen, N A; Yadete, D H; Sørensen, Lars Tue; Ågren, Sven Per Magnus; Jørgensen, Lars Nannestad

    2011-01-01

    The aetiology and pathogenesis of abdominal wall hernia formation is complex. Optimal treatment of hernias depends on a full understanding of the pathophysiological mechanisms involved in their formation. The aim of this study was to review the literature on specific collagen alterations in abdom...

  14. Thalamocortical dysrhythmia: a theoretical update in tinnitus

    Directory of Open Access Journals (Sweden)

    Dirk eDe Ridder

    2015-06-01

    Full Text Available Tinnitus is the perception of a sound in the absence of an external sound source. Pathophysiologically it has been attributed to bottom up deafferentation and/or top down noise-cancelling deficit. Both mechanisms are proposed to alter auditory thalamocortical signal transmission resulting in thalamocortical dysrhythmia (TCD. In deafferentation, TCD is characterized by a slowing down of resting state alpha to theta activity associated with an increase in surrounding gamma activity, resulting in persisting cross-frequency coupling between theta and gamma activity. Theta burst-firing increases network synchrony and recruitment, a mechanism which might enable long range synchrony, which in turn could represent a means for finding the missing thalamocortical information and for gaining access to consciousness. Theta oscillations could function as a carrier wave to integrate the tinnitus related focal auditory gamma activity in a consciousness enabling network, as envisioned by the global workspace model. This model suggests that focal activity in the brain does not reach consciousness, except if the focal activity becomes functionally coupled to a consciousness enabling network, aka the global workspace. In limited deafferentation the missing information can be retrieved from the auditory cortical neighborhood, decreasing surround inhibition, resulting in TCD. When the deafferentation is too wide in bandwidth it is hypothesized that the missing information is retrieved from theta mediated parahippocampal auditory memory. This suggests that based on the amount of deafferentation TCD might change to parahippocampo-cortical persisting and thus pathological theta-gamma rhythm. From a Bayesian point of view, in which the brain is conceived as a prediction machine that updates its memory-based predictions through sensory updating, tinnitus is the result of a prediction error between the predicted and sensed auditory input. The decrease in sensory updating

  15. Altered connections on the road to psychopathy.

    Science.gov (United States)

    Craig, M C; Catani, M; Deeley, Q; Latham, R; Daly, E; Kanaan, R; Picchioni, M; McGuire, P K; Fahy, T; Murphy, D G M

    2009-10-01

    Psychopathy is strongly associated with serious criminal behaviour (for example, rape and murder) and recidivism. However, the biological basis of psychopathy remains poorly understood. Earlier studies suggested that dysfunction of the amygdala and/or orbitofrontal cortex (OFC) may underpin psychopathy. Nobody, however, has ever studied the white matter connections (such as the uncinate fasciculus (UF)) linking these structures in psychopaths. Therefore, we used in vivo diffusion tensor magnetic resonance imaging (DT-MRI) tractography to analyse the microstructural integrity of the UF in psychopaths (defined by a Psychopathy Checklist Revised (PCL-R) score of > or = 25) with convictions that included attempted murder, manslaughter, multiple rape with strangulation and false imprisonment. We report significantly reduced fractional anisotropy (FA) (P<0.003), an indirect measure of microstructural integrity, in the UF of psychopaths compared with age- and IQ-matched controls. We also found, within psychopaths, a correlation between measures of antisocial behaviour and anatomical differences in the UF. To confirm that these findings were specific to the limbic amygdala-OFC network, we also studied two 'non-limbic' control tracts connecting the posterior visual and auditory areas to the amygdala and the OFC, and found no significant between-group differences. Lastly, to determine that our findings in UF could not be totally explained by non-specific confounds, we carried out a post hoc comparison with a psychiatric control group with a past history of drug abuse and institutionalization. Our findings remained significant. Taken together, these results suggest that abnormalities in a specific amygdala-OFC limbic network underpin the neurobiological basis of psychopathy. PMID:19506560

  16. Altered functional connectivity of prefrontal cortex in chronic heroin abusers

    Institute of Scientific and Technical Information of China (English)

    Yinbao Qi; Xianming Fu; Ruobing Qian; Chaoshi Niu; Xiangpin Wei

    2011-01-01

    In this study, we investigated alterations in the resting-state functional connectivity of the pre-frontal cortex in chronic heroin abusers using functional magnetic resonance imaging. We found that, compared with normal controls, in heroin abusers the left prefrontal cortex showed decreased functional connectivity with the left hippocampus, right anterior cingulate, left middle frontal gyrus, right middle frontal gyrus and right precuneus. However, the right prefrontal cortex showed decreased functional connectivity with the left orbital frontal cortex and the left middle frontal gyrus in chronic heroin abusers. These alterations of resting-state functional connectivity in the prefrontal cortices of heroin abusers suggest that their frontal executive neural network may be impaired, and that this may contribute to their continued heroin abuse and relapse after withdrawal.

  17. Functional topography of the thalamocortical system in human.

    Science.gov (United States)

    Yuan, Rui; Di, Xin; Taylor, Paul A; Gohel, Suril; Tsai, Yuan-Hsiung; Biswal, Bharat B

    2016-05-01

    Various studies have indicated that the thalamus is involved in controlling both cortico-cortical information flow and cortical communication with the rest of the brain. Detailed anatomy and functional connectivity patterns of the thalamocortical system are essential to understanding the cortical organization and pathophysiology of a wide range of thalamus-related neurological and neuropsychiatric diseases. The current study used resting-state fMRI to investigate the topography of the human thalamocortical system from a functional perspective. The thalamus-related cortical networks were identified by performing independent component analysis on voxel-based thalamic functional connectivity maps across a large group of subjects. The resulting functional brain networks were very similar to well-established resting-state network maps. Using these brain network components in a spatial regression model with each thalamic voxel's functional connectivity map, we localized the thalamic subdivisions related to each brain network. For instance, the medial dorsal nucleus was shown to be associated with the default mode, the bilateral executive, the medial visual networks; and the pulvinar nucleus was involved in both the dorsal attention and the visual networks. These results revealed that a single nucleus may have functional connections with multiple cortical regions or even multiple functional networks, and may be potentially related to the function of mediation or modulation of multiple cortical networks. This observed organization of thalamocortical system provided a reference for studying the functions of thalamic sub-regions. The importance of intrinsic connectivity-based mapping of the thalamocortical relationship is discussed, as well as the applicability of the approach for future studies. PMID:25924563

  18. Altered intrinsic connectivity of the auditory cortex in congenital amusia.

    Science.gov (United States)

    Leveque, Yohana; Fauvel, Baptiste; Groussard, Mathilde; Caclin, Anne; Albouy, Philippe; Platel, Hervé; Tillmann, Barbara

    2016-07-01

    Congenital amusia, a neurodevelopmental disorder of music perception and production, has been associated with abnormal anatomical and functional connectivity in a right frontotemporal pathway. To investigate whether spontaneous connectivity in brain networks involving the auditory cortex is altered in the amusic brain, we ran a seed-based connectivity analysis, contrasting at-rest functional MRI data of amusic and matched control participants. Our results reveal reduced frontotemporal connectivity in amusia during resting state, as well as an overconnectivity between the auditory cortex and the default mode network (DMN). The findings suggest that the auditory cortex is intrinsically more engaged toward internal processes and less available to external stimuli in amusics compared with controls. Beyond amusia, our findings provide new evidence for the link between cognitive deficits in pathology and abnormalities in the connectivity between sensory areas and the DMN at rest. PMID:27009161

  19. The thalamus and brainstem act as key hubs in alterations of human brain network connectivity induced by mild propofol sedation

    OpenAIRE

    Gili, Tommaso; Saxena, Neeraj; Diukova, Ana; Murphy, Kevin; Hall, Judith E.; Wise, Richard G

    2013-01-01

    Despite their routine use during surgical procedures, no consensus has yet been reached on the precise mechanisms by which hypnotic anesthetic agents produce their effects. Molecular, animal and human studies have suggested disruption of thalamocortical communication as a key component of anesthetic action at the brain systems level. Here, we used the anesthetic agent, propofol, to modulate consciousness and to evaluate differences in the interactions of remote neural networks during altered ...

  20. Altered striatal intrinsic functional connectivity in pediatric anxiety.

    Science.gov (United States)

    Dorfman, Julia; Benson, Brenda; Farber, Madeline; Pine, Daniel; Ernst, Monique

    2016-05-01

    Anxiety disorders are among the most common psychiatric disorders of adolescence. Behavioral and task-based imaging studies implicate altered reward system function, including striatal dysfunction, in adolescent anxiety. However, no study has yet examined alterations of the striatal intrinsic functional connectivity in adolescent anxiety disorders. The current study examines striatal intrinsic functional connectivity (iFC), using six bilateral striatal seeds, among 35 adolescents with anxiety disorders and 36 healthy comparisons. Anxiety is associated with abnormally low iFC within the striatum (e.g., between nucleus accumbens and caudate nucleus), and between the striatum and prefrontal regions, including subgenual anterior cingulate cortex, posterior insula and supplementary motor area. The current findings extend prior behavioral and task-based imaging research, and provide novel data implicating decreased striatal iFC in adolescent anxiety. Alterations of striatal neurocircuitry identified in this study may contribute to the perturbations in the processing of motivational, emotional, interoceptive, and motor information seen in pediatric anxiety disorders. This pattern of the striatal iFC perturbations can guide future research on specific mechanisms underlying anxiety. PMID:27004799

  1. Altered resting state cortico-striatal connectivity in mild to moderate stage Parkinson’s disease

    Directory of Open Access Journals (Sweden)

    Youngbin Kwak

    2010-09-01

    Full Text Available Parkinson’s disease (PD is a progressive neurodegenerative disorder that is characterized by dopamine depletion in the striatum. One consistent pathophysiological hallmark of PD is an increase in spontaneous oscillatory activity in the basal ganglia thalamocortical networks. We evaluated these effects using resting state functional connectivity MRI (fcMRI in mild to moderate stage Parkinson’s patients on and off L-DOPA and age-matched controls using six different striatal seed regions. We observed an overall increase in the strength of cortico-striatal functional connectivity in PD patients off L-DOPA compared to controls. This enhanced connectivity was down-regulated by L-DOPA as shown by an overall decrease in connectivity strength, particularly within motor cortical regions. We also performed a frequency content analysis of the BOLD signal time course extracted from the six striatal seed regions. PD off L-DOPA exhibited increased power in the frequency band 0.02 – 0.05 Hz compared to controls and to PD on L-DOPA. The L-DOPA associated decrease in the power of this frequency range modulated the L-DOPA associated decrease in connectivity strength between striatal seeds and the thalamus. In addition, the L-DOPA associated decrease in power in this frequency band also correlated with the L-DOPA associated improvement in cognitive performance. Our results demonstrate that PD and L-DOPA modulate striatal resting state BOLD signal oscillations and corticostriatal network coherence.

  2. Intensive reasoning training alters patterns of brain connectivity at rest.

    Science.gov (United States)

    Mackey, Allyson P; Miller Singley, Alison T; Bunge, Silvia A

    2013-03-13

    Patterns of correlated activity among brain regions reflect functionally relevant networks that are widely assumed to be stable over time. We hypothesized that if these correlations reflect the prior history of coactivation of brain regions, then a marked shift in cognition could alter the strength of coupling between these regions. We sought to test whether intensive reasoning training in humans would result in tighter coupling among regions in the lateral frontoparietal network, as measured with resting-state fMRI (rs-fMRI). Rather than designing an artificial training program, we studied individuals who were preparing for a standardized test that places heavy demands on relational reasoning, the Law School Admissions Test (LSAT). LSAT questions require test takers to group or sequence items according to a set of complex rules. We recruited young adults who were enrolled in an LSAT course that offers 70 h of reasoning instruction (n = 25), and age- and IQ-matched controls intending to take the LSAT in the future (n = 24). rs-fMRI data were collected for all subjects during two scanning sessions separated by 90 d. An analysis of pairwise correlations between brain regions implicated in reasoning showed that fronto-parietal connections were strengthened, along with parietal-striatal connections. These findings provide strong evidence for neural plasticity at the level of large-scale networks supporting high-level cognition. PMID:23486950

  3. Thalamocortical dynamics of sleep: roles of purinergic neuromodulation

    OpenAIRE

    Halassa, Michael M.

    2011-01-01

    Thalamocortical dynamics, the millisecond to second changes in activity of thalamocortical circuits, are central to perception, action and cognition. Generated by local circuitry and sculpted by neuromodulatory systems, these dynamics reflect the expression of vigilance states. In sleep, thalamocortical dynamics are thought to mediate “offline” functions including memory consolidation and synaptic scaling. Here, I discuss thalamocortical sleep dynamics and their modulation by the ascending ar...

  4. Enhanced thalamocortical phase synchronization reflects successful memory retrieval

    OpenAIRE

    Tobias Staudigl; Tino Zaehle; Jürgen Voges; Simon Hanslmayr

    2011-01-01

    Thalamic lesions can cause severe cognitive impairments including anterograde and retrograde amnesia. It has been argued that deficits in memory retrieval reflect a disconnection of thalamocortical pathways. However, direct experimental evidence for a contribution of thalamocortical communication to memory retrieval is scarce. We hypothesized that phase synchronization of thalamic and cortical oscillations reflects such thalamocortical communication. Intracranial thalamic EEG was recorded in ...

  5. Modeling altered functional connectivity in brain disease states

    Czech Academy of Sciences Publication Activity Database

    Hlinka, Jaroslav

    Lorentz Center, 2011. [Computational Neuroscience and the Dynamics of Disease States. 08.08.2012-12.08.2012, Leiden] Institutional research plan: CEZ:AV0Z10300504 Keywords : synchronization * brain disease * computational modelling * functional connectivity * graph theory * structural connectivity Subject RIV: FH - Neurology http://www.lorentzcenter.nl/lc/web/2011/457/abstracts.php3?wsid=457&type=presentations

  6. Altered intrahemispheric structural connectivity in Gilles de la Tourette syndrome

    Directory of Open Access Journals (Sweden)

    Bastian Cheng

    2014-01-01

    Full Text Available Gilles de la Tourette syndrome (GTS is a common developmental neuropsychiatric disorder characterized by tics and frequent psychiatric comorbidities, often causing significant disability. Tic generation has been linked to disturbed networks of brain areas involved in planning, controlling and execution of actions, particularly structural and functional disorders in the striatum and cortico–striato–thalamo–cortical loops. We therefore applied structural diffusion tensor imaging (DTI to characterize changes in intrahemispheric white matter connectivity in cortico-subcortical circuits engaged in motor control in 15 GTS patients without psychiatric comorbidities. White matter connectivity was analyzed by probabilistic fiber tractography between 12 predefined cortical and subcortical regions of interest. Connectivity values were combined with measures of clinical severity rated by the Yale Global Tic Severity Scale (YGTSS. GTS patients showed widespread structural connectivity deficits. Lower connectivity values were found specifically in tracts connecting the supplementary motor areas (SMA with basal ganglia (pre-SMA–putamen, SMA–putamen and in frontal cortico-cortical circuits. There was an overall trend towards negative correlations between structural connectivity in these tracts and YGTSS scores. Structural connectivity of frontal brain networks involved in planning, controlling and executing actions is reduced in adult GTS patients which is associated with tic severity. These findings are in line with the concept of GTS as a neurodevelopmental disorder of brain immaturity.

  7. Transient and Persistent Pain Induced Connectivity Alterations in Pediatric Complex Regional Pain Syndrome

    OpenAIRE

    Linnman, Clas; Becerra, Lino; Lebel, Alyssa; Berde, Charles Benjamin; Grant, P. Ellen; Borsook, David

    2013-01-01

    Evaluation of pain-induced changes in functional connectivity was performed in pediatric complex regional pain syndrome (CRPS) patients. High field functional magnetic resonance imaging was done in the symptomatic painful state and at follow up in the asymptomatic pain free/recovered state. Two types of connectivity alterations were defined: (1) Transient increases in functional connectivity that identified regions with increased cold-induced functional connectivity in the affected limb vs. u...

  8. Altered resting brain connectivity in persistent cancer related fatigue

    Directory of Open Access Journals (Sweden)

    Johnson P. Hampson

    2015-01-01

    Full Text Available There is an estimated 3 million women in the US living as breast cancer survivors and persistent cancer related fatigue (PCRF disrupts the lives of an estimated 30% of these women. PCRF is associated with decreased quality of life, decreased sleep quality, impaired cognition and depression. The mechanisms of cancer related fatigue are not well understood; however, preliminary findings indicate dysfunctional activity in the brain as a potential factor. Here we investigate the relationship between PCRF on intrinsic resting state connectivity in this population. Twenty-three age matched breast cancer survivors (15 fatigued and 8 non-fatigued who completed all cancer-related treatments at least 12 weeks prior to the study, were recruited to undergo functional connectivity magnetic resonance imaging (fcMRI. Intrinsic resting state networks were examined with both seed based and independent component analysis methods. Comparisons of brain connectivity patterns between groups as well as correlations with self-reported fatigue symptoms were performed. Fatigued patients displayed greater left inferior parietal lobule to superior frontal gyrus connectivity as compared to non-fatigued patients (P < 0.05 FDR corrected. This enhanced connectivity was associated with increased physical fatigue (P = 0.04, r = 0.52 and poor sleep quality (P = 0.04, r = 0.52 in the fatigued group. In contrast greater connectivity in the non-fatigued group was found between the right precuneus to the periaqueductal gray as well as the left IPL to subgenual cortex (P < 0.05 FDR corrected. Mental fatigue scores were associated with greater default mode network (DMN connectivity to the superior frontal gyrus (P = 0.05 FDR corrected among fatigued subjects (r = 0.82 and less connectivity in the non-fatigued group (r = −0.88. These findings indicate that there is enhanced intrinsic DMN connectivity to the frontal gyrus in breast cancer survivors with persistent

  9. Thalamocortical synchronization and cognition: implications for schizophrenia?

    OpenAIRE

    Uhlhaas, Peter J.; Roux, Frederic; Singer, Wolf

    2013-01-01

    Cognitive deficits are a core dysfunction in schizophrenia. In this issue of Neuron, Parnaudeau et al. (2013) investigated synchronization in thalamocortical pathways in an animal model to address the disconnection between brain regions as a mechanism for working memory impairments in the disorder.implicated dysfunctional neural oscillations in the explanation of cognitive deficits and certain clinical symptoms of schizophrenia. Specifically, we will focus on findings that have examined neura...

  10. Altered amygdala-prefrontal connectivity during emotion perception in schizophrenia.

    Science.gov (United States)

    Bjorkquist, Olivia A; Olsen, Emily K; Nelson, Brady D; Herbener, Ellen S

    2016-08-01

    Individuals with schizophrenia evidence impaired emotional functioning. Abnormal amygdala activity has been identified as an etiological factor underlying affective impairment in this population, but the exact nature remains unclear. The current study utilized psychophysiological interaction analyses to examine functional connectivity between the amygdala and medial prefrontal cortex (mPFC) during an emotion perception task. Participants with schizophrenia (SZ) and healthy controls (HC) viewed and rated positive, negative, and neutral images while undergoing functional neuroimaging. Results revealed a significant group difference in right amygdala-mPFC connectivity during perception of negative versus neutral images. Specifically, HC participants demonstrated positive functional coupling between the amygdala and mPFC, consistent with co-active processing of salient information. In contrast, SZ participants evidenced negative functional coupling, consistent with top-down inhibition of the amygdala by the mPFC. A significant positive correlation between connectivity strength during negative image perception and clinician-rated social functioning was also observed in SZ participants, such that weaker right amygdala-mPFC coupling during negative compared to neutral image perception was associated with poorer social functioning. Overall, results suggest that emotional dysfunction and associated deficits in functional outcome in schizophrenia may relate to abnormal interactions between the amygdala and mPFC during perception of emotional stimuli. This study adds to the growing literature on abnormal functional connections in schizophrenia and supports the functional disconnection hypothesis of schizophrenia. PMID:27083779

  11. "Does the thalamo-cortical synchrony play a role in seizure termination?

    Directory of Open Access Journals (Sweden)

    Elisa eEvangelista

    2015-09-01

    Full Text Available The mechanisms underlying seizure termination are still unclear despite their therapeutic importance. We studied thalamo-cortical connectivity and synchrony in human mesial temporal lobe seizures in order to analyze their role in seizure termination.Twenty-two seizures from ten patients with drug-resistant mesial temporal lobe epilepsy undergoing pre-surgical evaluation were analyzed using intracerebral recordings (stereoelectroencephalography, SEEG. We performed a measure of SEEG signal interdependencies (non-linear correlation, to estimate the functional connectivity between thalamus and cortical regions. Then we derived synchronization indices, namely global, thalamic, mesio-temporal and thalamo-mesio temporal index at the onset and the end of seizures. In addition, an estimation of thalamic outputs and inputs connectivity was proposed.Thalamus was consistently involved in the last phase of all analyzed seizures and thalamic synchronization index was significantly more elevated at the end of seizure than at the onset. The global synchronization index at the end of seizure negatively correlated with seizure duration (p= 0.045 and in the same way the thalamic synchronization index showed an inverse tendency with seizure duration. Six seizures out of twenty-two displayed a particular thalamo-cortical spike and wave pattern (SWP at the end. They were associated to higher values of all synchronization indices and outputs from thalamus ( p = 0.0079.SWP seizures displayed a higher and sustained increase of cortical and thalamo-cortical synchronization with a stronger participation of thalamic outputs. We suggest that thalamo-cortical oscillations might contribute to seizure termination via modulation of cortical synchronization. In the subgroup of SWP seizures thalamus may exert a control on temporal lobe structures by inducing a stable hypersynchronization that ultimately leads to seizure termination.

  12. Altered interhemispheric connectivity in individuals with Tourette's disorder

    DEFF Research Database (Denmark)

    Plessen, Kerstin J; Wentzel-Larsen, Tore; Hugdahl, Kenneth;

    2004-01-01

    OBJECTIVE: The corpus callosum is the major commissure connecting the cerebral hemispheres. Prior evidence suggests involvement of the corpus callosum in the pathophysiology of Tourette's disorder. The authors assessed corpus callosum size and anatomical connectivity across the cerebral hemispheres...... in persons with Tourette's disorder. METHOD: The size of the corpus callosum was determined on the true midsagittal slices of reformatted, high-resolution magnetic resonance imaging scans and compared across groups in a cross-sectional case-control study of 158 subjects with Tourette's disorder and...... 121 healthy comparison subjects, ages 5-65 years. RESULTS: In the context of increasing midsagittal corpus callosum area from childhood to age 30 years, children with Tourette's disorder had smaller overall corpus callosum size, whereas adults with Tourette's disorder on average had larger corpus...

  13. Intensive reasoning training alters patterns of brain connectivity at rest

    OpenAIRE

    Mackey, AP; Singley, ATM; Bunge, SA

    2013-01-01

    Patterns of correlated activity among brain regions reflect functionally relevant networks that are widely assumed to be stable over time. We hypothesized that if these correlations reflect the prior history of coactivation of brain regions, then a marked shift in cognition could alter the strength of coupling between these regions. We sought to test whether intensive reasoning training in humans would result in tighter coupling among regions in the lateral frontoparietal network, as measured...

  14. Addiction Related Alteration in Resting-state Brain Connectivity

    OpenAIRE

    Ma, Ning; Liu, Ying; Li, Nan; Wang, Chang-Xin; Zhang, Hao; Jiang, Xiao-Feng; Xu, Hu-Sheng; Fu, Xian-ming; Hu, Xiaoping; Zhang, Da-Ren

    2009-01-01

    It is widely accepted that addictive drug use is related to abnormal functional organization in the user’s brain. The present study aimed to identify this type of abnormality within the brain networks implicated in addiction by resting-state functional connectivity measured with functional magnetic resonance imaging (fMRI). With fMRI data acquired during resting state from 14 chronic heroin users (12 of whom were being treated with methadone) and 13 non-addicted controls, we investigated the ...

  15. Specific functional connectivity alterations of the dorsal striatum in young people with depression

    Directory of Open Access Journals (Sweden)

    Rebecca Kerestes

    2015-01-01

    Conclusions: The results provide evidence that alterations in corticostriatal connectivity are evident at the early stages of the illness and are not a result of antidepressant treatment. Increased connectivity between the dorsal caudate, which is usually associated with cognitive processes, and the more affectively related ventrolateral prefrontal cortex may reflect a compensatory mechanism for dysfunctional cognitive-emotional processing in youth depression.

  16. Parallel Alterations of Functional Connectivity during Execution and Imagination after Motor Imagery Learning

    OpenAIRE

    Zhang, Hang; Xu, Lele; Zhang, Rushao; Hui, Mingqi; Long, Zhiying; Zhao, Xiaojie; Yao, Li

    2012-01-01

    Background Neural substrates underlying motor learning have been widely investigated with neuroimaging technologies. Investigations have illustrated the critical regions of motor learning and further revealed parallel alterations of functional activation during imagination and execution after learning. However, little is known about the functional connectivity associated with motor learning, especially motor imagery learning, although benefits from functional connectivity analysis attract mor...

  17. Altered oscillation patterns and connectivity during picture naming in autism

    Directory of Open Access Journals (Sweden)

    Isabelle eBuard

    2013-11-01

    Full Text Available Similar behavioral deficits are shared between individuals with autism spectrum disorders (ASD and their first-degree relatives, such as impaired face memory, object recognition and some language aspects. Functional neuroimaging studies have reported abnormalities in ASD in at least one brain area implicated in those functions, the fusiform gyrus (FG. High frequency oscillations have also been described as abnormal in ASD in a separate line of research. The present study examined whether low- and high-frequency oscillatory power, localized in part to FG and other language-related regions, differs in ASD subjects and first-degree relatives. Twelve individuals with ASD, 16 parents of children with ASD, and 35 healthy controls participated in a picture-naming task using magnetoencephalography (MEG to assess oscillatory power and connectivity. Relative to controls, we observed reduced evoked high-gamma activity in the right superior temporal gyrus (STG and reduced high-beta/low-gamma evoked power in the left inferior frontal gyrus (IFG in the ASD group. Finally, reductions in phase-locked beta-band were also seen in the ASD group relative to controls, especially in the occipital lobes (OCC. First degree relatives, in contrast, exhibited higher high-gamma band power in the left STG compared with controls, as well as increased high-beta/low-gamma evoked power in the left FG. In the left hemisphere, beta- and gamma-band functional connectivity between the IFG and FG and between STG and OCC were higher in the autism group than in controls. This suggests that intrahemispheric patterns of connectivity at different frequencies are different in autism. The lack of behavioral correlation for the findings warrants some caution in interpreting the relevance of such changes for language function in ASD. Our findings in parents further implicates the gamma- and beta-band ranges as potential endophenotypes in autism.

  18. Altered functional connectivity and small-world in mesial temporal lobe epilepsy.

    Directory of Open Access Journals (Sweden)

    Wei Liao

    Full Text Available BACKGROUND: The functional architecture of the human brain has been extensively described in terms of functional connectivity networks, detected from the low-frequency coherent neuronal fluctuations that can be observed in a resting state condition. Little is known, so far, about the changes in functional connectivity and in the topological properties of functional networks, associated with different brain diseases. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we investigated alterations related to mesial temporal lobe epilepsy (mTLE, using resting state functional magnetic resonance imaging on 18 mTLE patients and 27 healthy controls. Functional connectivity among 90 cortical and subcortical regions was measured by temporal correlation. The related values were analyzed to construct a set of undirected graphs. Compared to controls, mTLE patients showed significantly increased connectivity within the medial temporal lobes, but also significantly decreased connectivity within the frontal and parietal lobes, and between frontal and parietal lobes. Our findings demonstrated that a large number of areas in the default-mode network of mTLE patients showed a significantly decreased number of connections to other regions. Furthermore, we observed altered small-world properties in patients, along with smaller degree of connectivity, increased n-to-1 connectivity, smaller absolute clustering coefficients and shorter absolute path length. CONCLUSIONS/SIGNIFICANCE: We suggest that the mTLE alterations observed in functional connectivity and topological properties may be used to define tentative disease markers.

  19. Functional Connectivity with the Default Mode Network Is Altered in Fibromyalgia Patients.

    Science.gov (United States)

    Fallon, Nicholas; Chiu, Yee; Nurmikko, Turo; Stancak, Andrej

    2016-01-01

    Fibromyalgia syndrome (FMS) patients show altered connectivity with the network maintaining ongoing resting brain activity, known as the default mode network (DMN). The connectivity patterns of DMN with the rest of the brain in FMS patients are poorly understood. This study employed seed-based functional connectivity analysis to investigate resting-state functional connectivity with DMN structures in FMS. Sixteen female FMS patients and 15 age-matched, healthy control subjects underwent T2-weighted resting-state MRI scanning and functional connectivity analyses using DMN network seed regions. FMS patients demonstrated alterations to connectivity between DMN structures and anterior midcingulate cortex, right parahippocampal gyrus, left superior parietal lobule and left inferior temporal gyrus. Correlation analysis showed that reduced functional connectivity between the DMN and the right parahippocampal gyrus was associated with longer duration of symptoms in FMS patients, whereas augmented connectivity between the anterior midcingulate and posterior cingulate cortices was associated with tenderness and depression scores. Our findings demonstrate alterations to functional connectivity between DMN regions and a variety of regions which are important for pain, cognitive and emotional processing in FMS patients, and which may contribute to the development or maintenance of chronic symptoms in FMS. PMID:27442504

  20. Pseudorabies virus infection alters neuronal activity and connectivity in vitro.

    Directory of Open Access Journals (Sweden)

    Kelly M McCarthy

    2009-10-01

    Full Text Available Alpha-herpesviruses, including human herpes simplex virus 1 & 2, varicella zoster virus and the swine pseudorabies virus (PRV, infect the peripheral nervous system of their hosts. Symptoms of infection often include itching, numbness, or pain indicative of altered neurological function. To determine if there is an in vitro electrophysiological correlate to these characteristic in vivo symptoms, we infected cultured rat sympathetic neurons with well-characterized strains of PRV known to produce virulent or attenuated symptoms in animals. Whole-cell patch clamp recordings were made at various times after infection. By 8 hours of infection with virulent PRV, action potential (AP firing rates increased substantially and were accompanied by hyperpolarized resting membrane potentials and spikelet-like events. Coincident with the increase in AP firing rate, adjacent neurons exhibited coupled firing events, first with AP-spikelets and later with near identical resting membrane potentials and AP firing. Small fusion pores between adjacent cell bodies formed early after infection as demonstrated by transfer of the low molecular weight dye, Lucifer Yellow. Later, larger pores formed as demonstrated by transfer of high molecular weight Texas red-dextran conjugates between infected cells. Further evidence for viral-induced fusion pores was obtained by infecting neurons with a viral mutant defective for glycoprotein B, a component of the viral membrane fusion complex. These infected neurons were essentially identical to mock infected neurons: no increased AP firing, no spikelet-like events, and no electrical or dye transfer. Infection with PRV Bartha, an attenuated circuit-tracing strain delayed, but did not eliminate the increased neuronal activity and coupling events. We suggest that formation of fusion pores between infected neurons results in electrical coupling and elevated firing rates, and that these processes may contribute to the altered neural

  1. Dynamic functional connectivity reveals altered variability in functional connectivity among patients with major depressive disorder.

    Science.gov (United States)

    Demirtaş, Murat; Tornador, Cristian; Falcón, Carles; López-Solà, Marina; Hernández-Ribas, Rosa; Pujol, Jesús; Menchón, José M; Ritter, Petra; Cardoner, Narcis; Soriano-Mas, Carles; Deco, Gustavo

    2016-08-01

    Resting-state fMRI (RS-fMRI) has become a useful tool to investigate the connectivity structure of mental health disorders. In the case of major depressive disorder (MDD), recent studies regarding the RS-fMRI have found abnormal connectivity in several regions of the brain, particularly in the default mode network (DMN). Thus, the relevance of the DMN to self-referential thoughts and ruminations has made the use of the resting-state approach particularly important for MDD. The majority of such research has relied on the grand averaged functional connectivity measures based on the temporal correlations between the BOLD time series of various brain regions. We, in our study, investigated the variations in the functional connectivity over time at global and local level using RS-fMRI BOLD time series of 27 MDD patients and 27 healthy control subjects. We found that global synchronization and temporal stability were significantly increased in the MDD patients. Furthermore, the participants with MDD showed significantly increased overall average (static) functional connectivity (sFC) but decreased variability of functional connectivity (vFC) within specific networks. Static FC increased to predominance among the regions pertaining to the default mode network (DMN), while the decreased variability of FC was observed in the connections between the DMN and the frontoparietal network. Hum Brain Mapp 37:2918-2930, 2016. © 2016 Wiley Periodicals, Inc. PMID:27120982

  2. Transient and persistent pain induced connectivity alterations in pediatric complex regional pain syndrome.

    Directory of Open Access Journals (Sweden)

    Clas Linnman

    Full Text Available Evaluation of pain-induced changes in functional connectivity was performed in pediatric complex regional pain syndrome (CRPS patients. High field functional magnetic resonance imaging was done in the symptomatic painful state and at follow up in the asymptomatic pain free/recovered state. Two types of connectivity alterations were defined: (1 Transient increases in functional connectivity that identified regions with increased cold-induced functional connectivity in the affected limb vs. unaffected limb in the CRPS state, but with normalized connectivity patterns in the recovered state; and (2 Persistent increases in functional connectivity that identified regions with increased cold-induced functional connectivity in the affected limb as compared to the unaffected limb that persisted also in the recovered state (recovered affected limb versus recovered unaffected limb. The data support the notion that even after symptomatic recovery, alterations in brain systems persist, particularly in amygdala and basal ganglia systems. Connectivity analysis may provide a measure of temporal normalization of different circuits/regions when evaluating therapeutic interventions for this condition. The results add emphasis to the importance of early recognition and management in improving outcome of pediatric CRPS.

  3. Transient and persistent pain induced connectivity alterations in pediatric complex regional pain syndrome.

    Science.gov (United States)

    Linnman, Clas; Becerra, Lino; Lebel, Alyssa; Berde, Charles; Grant, P Ellen; Borsook, David

    2013-01-01

    Evaluation of pain-induced changes in functional connectivity was performed in pediatric complex regional pain syndrome (CRPS) patients. High field functional magnetic resonance imaging was done in the symptomatic painful state and at follow up in the asymptomatic pain free/recovered state. Two types of connectivity alterations were defined: (1) Transient increases in functional connectivity that identified regions with increased cold-induced functional connectivity in the affected limb vs. unaffected limb in the CRPS state, but with normalized connectivity patterns in the recovered state; and (2) Persistent increases in functional connectivity that identified regions with increased cold-induced functional connectivity in the affected limb as compared to the unaffected limb that persisted also in the recovered state (recovered affected limb versus recovered unaffected limb). The data support the notion that even after symptomatic recovery, alterations in brain systems persist, particularly in amygdala and basal ganglia systems. Connectivity analysis may provide a measure of temporal normalization of different circuits/regions when evaluating therapeutic interventions for this condition. The results add emphasis to the importance of early recognition and management in improving outcome of pediatric CRPS. PMID:23526938

  4. Altered Default Network Resting-State Functional Connectivity in Adolescents with Internet Gaming Addiction

    OpenAIRE

    Ding, Wei-na; Sun, Jin-Hua; Sun, Ya-Wen; Zhou, Yan; Li, Lei; Xu, Jian-Rong; Du, Ya-Song

    2013-01-01

    Purpose Excessive use of the Internet has been linked to a variety of negative psychosocial consequences. This study used resting-state functional magnetic resonance imaging (fMRI) to investigate whether functional connectivity is altered in adolescents with Internet gaming addiction (IGA). Methods Seventeen adolescents with IGA and 24 normal control adolescents underwent a 7.3 minute resting-state fMRI scan. Posterior cingulate cortex (PCC) connectivity was determined in all subjects by inve...

  5. Perfusion deficits and functional connectivity alterations in patients with post-traumatic stress disorder

    Science.gov (United States)

    Liu, Yang; Li, Baojuan; Zhang, Xi; Zhang, Linchuan; Li, Liang; Lu, Hongbing

    2016-03-01

    To explore the alteration in cerebral blood flow (CBF) and functional connectivity between survivors with recent onset post-traumatic stress disorder (PTSD) and without PTSD, survived from the same coal mine flood disaster. In this study, a processing pipeline using arterial spin labeling (ASL) sequence was proposed. Considering low spatial resolution of ASL sequence, a linear regression method was firstly used to correct the partial volume (PV) effect for better CBF estimation. Then the alterations of CBF between two groups were analyzed using both uncorrected and PV-corrected CBF maps. Based on altered CBF regions detected from the CBF analysis as seed regions, the functional connectivity abnormities in PTSD patients was investigated. The CBF analysis using PV-corrected maps indicates CBF deficits in the bilateral frontal lobe, right superior frontal gyrus and right corpus callosum of PTSD patients, while only right corpus callosum was identified in uncorrected CBF analysis. Furthermore, the regional CBF of the right superior frontal gyrus exhibits significantly negative correlation with the symptom severity in PTSD patients. The resting-state functional connectivity indicates increased connectivity between left frontal lobe and right parietal lobe. These results indicate that PV-corrected CBF exhibits more subtle perfusion changes and may benefit further perfusion and connectivity analysis. The symptom-specific perfusion deficits and aberrant connectivity in above memory-related regions may be putative biomarkers for recent onset PTSD induced by a single prolonged trauma exposure and help predict the severity of PTSD.

  6. Detecting altered connectivity patterns in HIV associated neurocognitive impairment using mutual connectivity analysis

    Science.gov (United States)

    Abidin, Anas Zainul; D'Souza, Adora M.; Nagarajan, Mahesh B.; Wismüller, Axel

    2016-03-01

    The use of functional Magnetic Resonance Imaging (fMRI) has provided interesting insights into our understanding of the brain. In clinical setups these scans have been used to detect and study changes in the brain network properties in various neurological disorders. A large percentage of subjects infected with HIV present cognitive deficits, which are known as HIV associated neurocognitive disorder (HAND). In this study we propose to use our novel technique named Mutual Connectivity Analysis (MCA) to detect differences in brain networks in subjects with and without HIV infection. Resting state functional MRI scans acquired from 10 subjects (5 HIV+ and 5 HIV-) were subject to standard preprocessing routines. Subsequently, the average time-series for each brain region of the Automated Anatomic Labeling (AAL) atlas are extracted and used with the MCA framework to obtain a graph characterizing the interactions between them. The network graphs obtained for different subjects are then compared using Network-Based Statistics (NBS), which is an approach to detect differences between graphs edges while controlling for the family-wise error rate when mass univariate testing is performed. Applying this approach on the graphs obtained yields a single network encompassing 42 nodes and 65 edges, which is significantly different between the two subject groups. Specifically connections to the regions in and around the basal ganglia are significantly decreased. Also some nodes corresponding to the posterior cingulate cortex are affected. These results are inline with our current understanding of pathophysiological mechanisms of HIV associated neurocognitive disease (HAND) and other HIV based fMRI connectivity studies. Hence, we illustrate the applicability of our novel approach with network-based statistics in a clinical case-control study to detect differences connectivity patterns.

  7. Altered functional connectivity networks in acallosal and socially impaired BTBR mice.

    Science.gov (United States)

    Sforazzini, Francesco; Bertero, Alice; Dodero, Luca; David, Gergely; Galbusera, Alberto; Scattoni, Maria Luisa; Pasqualetti, Massimo; Gozzi, Alessandro

    2016-03-01

    Agenesis of the corpus callosum (AgCC) is a congenital condition associated with wide-ranging emotional and social impairments often overlapping with the diagnostic criteria for autism. Mapping functional connectivity in the acallosal brain can help identify neural correlates of the deficits associated with this condition, and elucidate how congenital white matter alterations shape the topology of large-scale functional networks. By using resting-state BOLD functional magnetic resonance imaging (rsfMRI), here we show that acallosal BTBR T+tpr3tf/J (BTBR) mice, an idiopathic model of autism, exhibit impaired intra-hemispheric connectivity in fronto-cortical, but not in posterior sensory cortical areas. We also document profoundly altered subcortical and intra-hemispheric connectivity networks, with evidence of marked fronto-thalamic and striatal disconnectivity, along with aberrant spatial extension and strength of ipsilateral and local connectivity. Importantly, inter-hemispheric tracing of monosynaptic connections in the primary visual cortex using recombinant rabies virus confirmed the absence of direct homotopic pathways between posterior cortical areas of BTBR mice, suggesting a polysynaptic origin for the synchronous rsfMRI signal observed in these regions. Collectively, the observed long-range connectivity impairments recapitulate hallmark neuroimaging findings in autism, and are consistent with the behavioral phenotype of BTBR mice. In contrast to recent rsfMRI studies in high functioning AgCC individuals, the profound fronto-cortical and subcortical disconnectivity mapped suggest that compensatory mechanism may not necessarily restore the full connectional topology of the brain, resulting in residual connectivity alterations that serve as plausible substrates for the cognitive and emotional deficits often associated with AgCC. PMID:25445840

  8. Alteration of long-distance functional connectivity and network topology in patients with supratentorial gliomas

    International Nuclear Information System (INIS)

    The need for information regarding functional alterations in patients with brain gliomas is increasing, but little is known about the functional consequences of focal brain tumors throughout the entire brain. Using resting-state functional MR imaging (rs-fMRI), this study assessed functional connectivity in patients with supratentorial brain gliomas with possible alterations in long-distance connectivity and network topology. Data from 36 patients with supratentorial brain gliomas and 12 healthy subjects were acquired using rs-fMRI. The functional connectivity matrix (FCM) was created using 32 pairs of cortical seeds on Talairach coordinates in each individual subject. Local and distant connectivity were calculated using z-scores in the individual patient's FCM, and the averaged FCM of patients was compared with that of healthy subjects. Weighted network analysis was performed by calculating local efficiency, global efficiency, clustering coefficient, and small-world topology, and compared between patients and healthy controls. When comparing the averaged FCM of patients with that of healthy controls, the patients showed decreased long-distance, inter-hemispheric connectivity (0.32 ± 0.16 in patients vs. 0. 42 ± 0.15 in healthy controls, p = 0.04). In network analysis, patients showed increased local efficiency (p < 0.05), but global efficiency, clustering coefficient, and small-world topology were relatively preserved compared to healthy subjects. Patients with supratentorial brain gliomas showed decreased long-distance connectivity while increased local efficiency and preserved small-world topology. The results of this small case series may provide a better understanding of the alterations of functional connectivity in patients with brain gliomas across the whole brain scale. (orig.)

  9. Alteration of long-distance functional connectivity and network topology in patients with supratentorial gliomas

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ji Eun; Kim, Ho Sung; Kim, Sang Joon; Shim, Woo Hyun [University of Ulsan College of Medicine, Department of Radiology and Research Institute of Radiology, Asan Medical Center, Songpa-Gu, Seoul (Korea, Republic of); Kim, Jeong Hoon [University of Ulsan College of Medicine, Department of Neurosurgery, Asan Medical Center, Seoul (Korea, Republic of)

    2016-03-15

    The need for information regarding functional alterations in patients with brain gliomas is increasing, but little is known about the functional consequences of focal brain tumors throughout the entire brain. Using resting-state functional MR imaging (rs-fMRI), this study assessed functional connectivity in patients with supratentorial brain gliomas with possible alterations in long-distance connectivity and network topology. Data from 36 patients with supratentorial brain gliomas and 12 healthy subjects were acquired using rs-fMRI. The functional connectivity matrix (FCM) was created using 32 pairs of cortical seeds on Talairach coordinates in each individual subject. Local and distant connectivity were calculated using z-scores in the individual patient's FCM, and the averaged FCM of patients was compared with that of healthy subjects. Weighted network analysis was performed by calculating local efficiency, global efficiency, clustering coefficient, and small-world topology, and compared between patients and healthy controls. When comparing the averaged FCM of patients with that of healthy controls, the patients showed decreased long-distance, inter-hemispheric connectivity (0.32 ± 0.16 in patients vs. 0. 42 ± 0.15 in healthy controls, p = 0.04). In network analysis, patients showed increased local efficiency (p < 0.05), but global efficiency, clustering coefficient, and small-world topology were relatively preserved compared to healthy subjects. Patients with supratentorial brain gliomas showed decreased long-distance connectivity while increased local efficiency and preserved small-world topology. The results of this small case series may provide a better understanding of the alterations of functional connectivity in patients with brain gliomas across the whole brain scale. (orig.)

  10. Altered neural connectivity during response inhibition in adolescents with attention-deficit/hyperactivity disorder and their unaffected siblings

    Directory of Open Access Journals (Sweden)

    Daan van Rooij

    2015-01-01

    Discussion: Subjects with ADHD fail to integrate activation within the response inhibition network and to inhibit connectivity with task-irrelevant regions. Unaffected siblings show similar alterations only during failed stop trials, as well as unique suppression of motor areas, suggesting compensatory strategies. These findings support the role of altered functional connectivity in understanding the neurobiology and familial transmission of ADHD.

  11. Pukala intrusion, its age and connection to hydrothermal alteration in Orivesi, southwestern Finland

    Directory of Open Access Journals (Sweden)

    Matti Talikka

    2005-01-01

    Full Text Available The Pukala intrusion is situated in the Paleoproterozoic Svecofennian domain of the Fennoscandian Shield in the contact region between the Central Finland Granitoid Complex and the Tampere Belt. The acid subvolcanic intrusion, which is in contact or close to severalaltered domains, mainly consists of porphyritic granodiorite and trondhjemite. The Pukala intrusion was emplaced into volcanic sequence in an island-arc or fore-arc setting before or during the early stages of the main regional deformation phase of the Svecofennian orogeny. On the basis of the geochemical data, the Pukala intrusion is a peraluminous volcanic-arc granitoid. After crystallisation at 1896±3 Ma, multiphase deformation and metamorphismcaused alteration, recrystallisation, and orientation of the minerals, and tilted the intrusion steeply towards south. The 1851±5 Ma U-Pb age for titanite is connected to the late stages of the Svecofennian tectonometamorphic evolution of the region. Several hydrothermally altered domains are located in the felsic and intermediate metavolcanic rocks of the Tampere Belt within less than one kilometre south of the Pukala intrusion. Alteration is divided into three basic types: partial silica alteration, chlorite-sericite±silica alteration, and sericite alteration in shear zones. The first two types probably formed during the emplacement and crystallisation of the Pukala intrusion, and the third is linked to late shearing. Intense sericitisation and comb quartz bands in the contact of theintrusion and the altered domain at Kutemajärvi suggest that the hydrothermal system was driven by the Pukala intrusion.

  12. Exercise alters resting state functional connectivity of motor circuits in Parkinsonian rats

    OpenAIRE

    Wang, Zhuo; Guo, Yumei; Myers, Kalisa G.; Heintz, Ryan; Peng, Yu-Hao; Maarek, Jean-Michel I.; Holschneider, Daniel P.

    2014-01-01

    Few studies have examined changes in functional connectivity after long-term aerobic exercise. We examined the effects of 4 weeks of forced running wheel exercise on the resting-state functional connectivity (rsFC) of motor circuits of rats subjected to bilateral 6-hydroxydopamine lesion of the dorsal striatum. Our results showed substantial similarity between lesion-induced changes in rsFC in the rats and alterations in rsFC reported in Parkinson’s disease subjects, including disconnection o...

  13. Altered default network resting-state functional connectivity in adolescents with Internet gaming addiction.

    Directory of Open Access Journals (Sweden)

    Wei-na Ding

    Full Text Available PURPOSE: Excessive use of the Internet has been linked to a variety of negative psychosocial consequences. This study used resting-state functional magnetic resonance imaging (fMRI to investigate whether functional connectivity is altered in adolescents with Internet gaming addiction (IGA. METHODS: Seventeen adolescents with IGA and 24 normal control adolescents underwent a 7.3 minute resting-state fMRI scan. Posterior cingulate cortex (PCC connectivity was determined in all subjects by investigating synchronized low-frequency fMRI signal fluctuations using a temporal correlation method. To assess the relationship between IGA symptom severity and PCC connectivity, contrast images representing areas correlated with PCC connectivity were correlated with the scores of the 17 subjects with IGA on the Chen Internet Addiction Scale (CIAS and Barratt Impulsiveness Scale-11 (BIS-11 and their hours of Internet use per week. RESULTS: There were no significant differences in the distributions of the age, gender, and years of education between the two groups. The subjects with IGA showed longer Internet use per week (hours (p<0.0001 and higher CIAS (p<0.0001 and BIS-11 (p = 0.01 scores than the controls. Compared with the control group, subjects with IGA exhibited increased functional connectivity in the bilateral cerebellum posterior lobe and middle temporal gyrus. The bilateral inferior parietal lobule and right inferior temporal gyrus exhibited decreased connectivity. Connectivity with the PCC was positively correlated with CIAS scores in the right precuneus, posterior cingulate gyrus, thalamus, caudate, nucleus accumbens, supplementary motor area, and lingual gyrus. It was negatively correlated with the right cerebellum anterior lobe and left superior parietal lobule. CONCLUSION: Our results suggest that adolescents with IGA exhibit different resting-state patterns of brain activity. As these alterations are partially consistent with those in patients

  14. Imaging of thalamocortical dysrhythmia in neuropsychiatry

    Directory of Open Access Journals (Sweden)

    Joshua J Schulman

    2011-07-01

    Full Text Available Abnormal brain activity dynamics, in the sense of a thalamocortical dysrhythmia (TCD, has been proposed as the underlying mechanism for a subset of disorders that bridge the traditional delineations of neurology and neuropsychiatry. In order to test this proposal from a psychiatric perspective, a study using magnetoencephalography (MEG was implemented in subjects with schizophrenic spectrum disorder (SSD (n=14, obsessive-compulsive disorder (OCD (n = 10, or depressive disorder (DD (n=5 and in control individuals (n = 18. Detailed CNS electrophysiological analysis of these patients, using MEG, revealed the presence of abnormal theta range spectral power with typical TCD characteristics, in all cases. The use of independent component analysis (ICA and minimum-norm-based methods localized such TCD to ventromedial prefrontal and temporal cortices. The observed mode of oscillation was spectrally equivalent but spatially distinct from that of TCD observed in other related disorders, including Parkinson’s disease, central tinnitus, neuropathic pain, and autism. The present results indicate that the functional basis for much of these pathologies may relate most fundamentally to the category of calcium channelopathies and serve as a model for the cellular substrate for low frequency oscillations present in these psychiatric disorders, providing a basis for therapeutic strategies.

  15. The thalamus and brainstem act as key hubs in alterations of human brain network connectivity induced by mild propofol sedation.

    Science.gov (United States)

    Gili, Tommaso; Saxena, Neeraj; Diukova, Ana; Murphy, Kevin; Hall, Judith E; Wise, Richard G

    2013-02-27

    Despite their routine use during surgical procedures, no consensus has yet been reached on the precise mechanisms by which hypnotic anesthetic agents produce their effects. Molecular, animal and human studies have suggested disruption of thalamocortical communication as a key component of anesthetic action at the brain systems level. Here, we used the anesthetic agent, propofol, to modulate consciousness and to evaluate differences in the interactions of remote neural networks during altered consciousness. We investigated the effects of propofol, at a dose that produced mild sedation without loss of consciousness, on spontaneous cerebral activity of 15 healthy volunteers using functional magnetic resonance imaging (fMRI), exploiting oscillations (data as a graph, or complex network of nodes and links, and used eigenvector centrality (EC) to characterize brain network properties. The EC mapping of fMRI data in healthy humans under propofol mild sedation demonstrated a decrease of centrality of the thalamus versus an increase of centrality within the pons of the brainstem, highlighting the important role of these two structures in regulating consciousness. Specifically, the decrease of thalamus centrality results from its disconnection from a widespread set of cortical and subcortical regions, while the increase of brainstem centrality may be a consequence of its increased influence, in the mildly sedated state, over a few highly central cortical regions key to the default mode network such as the posterior and anterior cingulate cortices. PMID:23447611

  16. Oral contraceptive pill use and menstrual cycle phase are associated with altered resting state functional connectivity

    OpenAIRE

    Petersen, Nicole; Kilpatrick, Lisa A.; Goharzad, Azaadeh; Cahill, Larry

    2013-01-01

    At rest, brain activity can be characterized not by an absence of organized activity but instead by spatially and temporally correlated patterns of activity. In this experiment, we investigated whether and to what extent resting state functional connectivity is modulated by sex hormones in women, both across the menstrual cycle and when altered by oral contraceptive pills. Sex hormones have been shown to have important effects on task-related activity, but few studies have investigated the ex...

  17. Directional Connectivity between Frontal and Posterior Brain Regions Is Altered with Increasing Concentrations of Propofol

    OpenAIRE

    Maksimow, Anu; Silfverhuth, Minna; Långsjö, Jaakko; Kaskinoro, Kimmo; Georgiadis, Stefanos; Jääskeläinen, Satu; Scheinin, Harry

    2014-01-01

    Recent studies using electroencephalography (EEG) suggest that alteration of coherent activity between the anterior and posterior brain regions might be used as a neurophysiologic correlate of anesthetic-induced unconsciousness. One way to assess causal relationships between brain regions is given by renormalized partial directed coherence (rPDC). Importantly, directional connectivity is evaluated in the frequency domain by taking into account the whole multichannel EEG, as opposed to time do...

  18. Alterations in Interhemispheric Functional and Anatomical Connectivity are Associated with Tobacco Smoking in Humans

    Directory of Open Access Journals (Sweden)

    Humsini eViswanath

    2015-03-01

    Full Text Available Abnormal interhemispheric functional connectivity correlates with several neurologic and psychiatric conditions, including depression, obsessive-compulsive disorder, schizophrenia, and stroke. Abnormal interhemispheric functional connectivity also correlates with abuse of cannabis and cocaine. In the current report, we evaluated whether tobacco abuse (i.e., cigarette smoking is associated with altered interhemispheric connectivity. To that end, we examined resting state functional connectivity using magnetic resonance imaging (MRI in short term tobacco deprived and smoking as usual tobacco smokers, and in non-smoker controls. Additionally, we compared diffusion tensor imaging (DTI in the same subjects to study differences in white matter. The data reveal a significant increase in interhemispheric functional connectivity in sated tobacco smokers when compared to controls. This difference was larger in frontal regions, and was positively correlated with the average number of cigarettes smoked per day. In addition, we found a negative correlation between the number of DTI streamlines in the genual corpus callosum and the number of cigarettes smoked per day. Taken together, our results implicate changes in interhemispheric functional and anatomical connectivity in current cigarette smokers.

  19. Alterations in interhemispheric functional and anatomical connectivity are associated with tobacco smoking in humans.

    Science.gov (United States)

    Viswanath, Humsini; Velasquez, Kenia M; Thompson-Lake, Daisy Gemma Yan; Savjani, Ricky; Carter, Asasia Q; Eagleman, David; Baldwin, Philip R; De La Garza, Richard; Salas, Ramiro

    2015-01-01

    Abnormal interhemispheric functional connectivity correlates with several neurologic and psychiatric conditions, including depression, obsessive-compulsive disorder, schizophrenia, and stroke. Abnormal interhemispheric functional connectivity also correlates with abuse of cannabis and cocaine. In the current report, we evaluated whether tobacco abuse (i.e., cigarette smoking) is associated with altered interhemispheric connectivity. To that end, we examined resting state functional connectivity (RSFC) using magnetic resonance imaging (MRI) in short term tobacco deprived and smoking as usual tobacco smokers, and in non-smoker controls. Additionally, we compared diffusion tensor imaging (DTI) in the same subjects to study differences in white matter. The data reveal a significant increase in interhemispheric functional connectivity in sated tobacco smokers when compared to controls. This difference was larger in frontal regions, and was positively correlated with the average number of cigarettes smoked per day. In addition, we found a negative correlation between the number of DTI streamlines in the genual corpus callosum and the number of cigarettes smoked per day. Taken together, our results implicate changes in interhemispheric functional and anatomical connectivity in current cigarette smokers. PMID:25805986

  20. Characterization of Phase Transition in the Thalamocortical System during Anesthesia-Induced Loss of Consciousness

    OpenAIRE

    Hwang, Eunjin; Kim, Seunghwan; Han, Kyungreem; Choi, Jee Hyun

    2012-01-01

    The thalamocortical system plays a key role in the breakdown or emergence of consciousness, providing bottom-up information delivery from sensory afferents and integrating top-down intracortical and thalamocortical reciprocal signaling. A fundamental and so far unanswered question for cognitive neuroscience remains whether the thalamocortical switch for consciousness works in a discontinuous manner or not. To unveil the nature of thalamocortical system phase transition in conjunction with con...

  1. Altered functional connectivity of the insular cortex across prefrontal networks in cocaine addiction.

    Science.gov (United States)

    Cisler, Josh M; Elton, Amanda; Kennedy, Ashley P; Young, Jonathan; Smitherman, Sonet; Andrew James, George; Kilts, Clinton D

    2013-07-30

    Interoception is theorized to be an important process mediating substance use disorders, and the insular cortex is recognized as a core neural region supporting interoception. The purpose of this study was to compare the integration of the insular cortex into prefrontal-related resting-state networks between individuals with cocaine dependence and healthy controls. Participants comprised 41 patients with cocaine dependence and 19 controls who underwent a resting-state 3-T functional magnetic resonance imaging scan. Individuals with cocaine dependence demonstrated altered functional connectivity of the insular cortex, predominantly the right insular cortex, with all eight prefrontal-related resting-state networks identified through Independent Component Analysis (ICA). A conjunction analysis demonstrated that the right insular cortex was the neural region with the highest number of common group differences across the networks. There was no evidence that insular cortex connectivity commonly differed between groups for non-prefrontal-related networks. Further, seed-based functional connectivity analyses extended the network analyses and indicated that cocaine dependence was associated with greater connectivity of the right insula with the dorsomedial prefrontal cortex, inferior frontal gyrus, and bilateral dorsolateral prefrontal cortex. These data support the hypothesis that cocaine dependence is related to altered functional interactions of the insular cortex with prefrontal networks. The results suggest possible neural mechanisms by which the insular cortex and interoceptive information influence cognitive control and decision-making processes presumably mediated by prefrontal networks in the cocaine dependence process. PMID:23684980

  2. Slow-wave activity saturation and thalamocortical isolation during propofol anesthesia in humans.

    Science.gov (United States)

    Ní Mhuircheartaigh, Róisín; Warnaby, Catherine; Rogers, Richard; Jbabdi, Saad; Tracey, Irene

    2013-10-23

    The altered state of consciousness produced by general anesthetics is associated with a variety of changes in the brain's electrical activity. Under hyperpolarizing influences such as anesthetic drugs, cortical neurons oscillate at ~1 Hz, which is measurable as slow waves in the electroencephalogram (EEG). We have administered propofol anesthesia to 16 subjects and found that, after they had lost behavioral responsiveness (response to standard sensory stimuli), each individual's EEG slow-wave activity (SWA) rose to saturation and then remained constant despite increasing drug concentrations. We then simultaneously collected functional magnetic resonance imaging and EEG data in 12 of these subjects during propofol administration and sensory stimulation. During the transition to SWA saturation, the thalamocortical system became isolated from sensory stimuli, whereas internal thalamocortical exchange persisted. Rather, an alternative and more fundamental cortical network (which includes the precuneus) responded to all sensory stimulation. We conclude that SWA saturation is a potential individualized indicator of perception loss that could prove useful for monitoring depth of anesthesia and studying altered states of consciousness. PMID:24154602

  3. Altered causal connectivity of resting state brain networks in amnesic MCI.

    Directory of Open Access Journals (Sweden)

    Peipeng Liang

    Full Text Available Most neuroimaging studies of resting state networks in amnesic mild cognitive impairment (aMCI have concentrated on functional connectivity (FC based on instantaneous correlation in a single network. The purpose of the current study was to investigate effective connectivity in aMCI patients based on Granger causality of four important networks at resting state derived from functional magnetic resonance imaging data--default mode network (DMN, hippocampal cortical memory network (HCMN, dorsal attention network (DAN and fronto-parietal control network (FPCN. Structural and functional MRI data were collected from 16 aMCI patients and 16 age, gender-matched healthy controls. Correlation-purged Granger causality analysis was used, taking gray matter atrophy as covariates, to compare the group difference between aMCI patients and healthy controls. We found that the causal connectivity between networks in aMCI patients was significantly altered with both increases and decreases in the aMCI group as compared to healthy controls. Some alterations were significantly correlated with the disease severity as measured by mini-mental state examination (MMSE, and California verbal learning test (CVLT scores. When the whole-brain signal averaged over the entire brain was used as a nuisance co-variate, the within-group maps were significantly altered while the between-group difference maps did not. These results suggest that the alterations in causal influences may be one of the possible underlying substrates of cognitive impairments in aMCI. The present study extends and complements previous FC studies and demonstrates the coexistence of causal disconnection and compensation in aMCI patients, and thus might provide insights into biological mechanism of the disease.

  4. Ultrastructural studies of ALS mitochondria connect altered function and permeability with defects of mitophagy and mitochondriogenesis

    Directory of Open Access Journals (Sweden)

    Alessandro Frati

    2015-09-01

    Full Text Available The key role of mitochondria in patients affected by amyotrophic lateral sclerosis (ALS is well documented by electron microscopy studies of motor neurons within spinal cord and brainstem. Nonetheless, recent studies challenged the role of mitochondria placed within the cell body of motor neuron. In fact, it was demonstrated that, despite preservation of mitochondria placed within this compartment, there is no increase in the lifespan of transgenic mouse models of ALS. Thus, the present mini-review comments on morphological findings of mitochondrial alterations in ALS patients in connection with novel findings about mitochondrial dynamics within various compartments of motor neurons. The latter issue was recently investigated in relationship with altered calcium homeostasis and autophagy, which affect mitochondria in ALS. In fact, it was recently indicated that a pathological mitophagy, mitochondriogenesis and calcium homeostasis produce different ultrastructural effects within specific regions of motor neurons. This might explain why specific compartments of motor neurons possess different thresholds to mitochondrial damage. In particular, it appears that motor axons represent the most sensitive compartment which undergoes the earliest and most severe alterations in the course of ALS. It is now evident that altered calcium buffering is compartment-dependent, as well as mitophagy and mitochondriogenesis. On the other hand, mitochondrial homeostasis strongly relies on calcium handling, the removal of altered mitochondria through the autophagy flux (mitophagy and the biogenesis of novel mitochondria (mitochondriogenesis. Thus, recent findings related to altered calcium storage and impaired autophagy flux in ALS may help to understand the occurrence of mitochondrial alterations as a hallmark in ALS patients. At the same time, the compartmentalization of such dysfunctions may be explained considering the compartments of calcium dynamics and

  5. Evidence for altered basal ganglia-brainstem connections in cervical dystonia.

    Directory of Open Access Journals (Sweden)

    Anne J Blood

    Full Text Available BACKGROUND: There has been increasing interest in the interaction of the basal ganglia with the cerebellum and the brainstem in motor control and movement disorders. In addition, it has been suggested that these subcortical connections with the basal ganglia may help to coordinate a network of regions involved in mediating posture and stabilization. While studies in animal models support a role for this circuitry in the pathophysiology of the movement disorder dystonia, thus far, there is only indirect evidence for this in humans with dystonia. METHODOLOGY/PRINCIPAL FINDINGS: In the current study we investigated probabilistic diffusion tractography in DYT1-negative patients with cervical dystonia and matched healthy control subjects, with the goal of showing that patients exhibit altered microstructure in the connectivity between the pallidum and brainstem. The brainstem regions investigated included nuclei that are known to exhibit strong connections with the cerebellum. We observed large clusters of tractography differences in patients relative to healthy controls, between the pallidum and the brainstem. Tractography was decreased in the left hemisphere and increased in the right hemisphere in patients, suggesting a potential basis for the left/right white matter asymmetry we previously observed in focal dystonia patients. CONCLUSIONS/SIGNIFICANCE: These findings support the hypothesis that connections between the basal ganglia and brainstem play a role in the pathophysiology of dystonia.

  6. Altered cerebellar-amygdala connectivity in violent offenders: A resting-state fMRI study.

    Science.gov (United States)

    Leutgeb, Verena; Wabnegger, Albert; Leitner, Mario; Zussner, Thomas; Scharmüller, Wilfried; Klug, Doris; Schienle, Anne

    2016-01-01

    It has repeatedly been reported, that there are differences in grey matter volume (GMV) between violent offenders and non-violent controls. However, it remains unclear, if structural brain abnormalities influence resting-state functional connectivity (RS-fc) between brain regions. Therefore, in the present investigation, 31 male high-risk violent prisoners were compared to 30 non-criminal controls with respect to RS-fc between brain areas. Seed regions for resting-state analysis were selected based on GMV differences between the two groups. Overall, inmates had more GMV in the cerebellum than controls and revealed higher RS-fc between the cerebellum and the amygdala. In contrast, controls relative to prisoners showed higher RS-fc between the cerebellum and the orbitofrontal cortex (OFC). In addition, controls showed more GMV in the dorsolateral prefrontal cortex (DLPFC). Inmates relative to controls had higher RS-fc within the DLPFC. Results are discussed with respect to cerebellar contributions to a brain network underlying moral behavior and violence. Enhanced cerebellar-amygdala connectivity in violent offenders might reflect alterations in the processing of moral emotions. Heightened functional connectivity between cerebellar hemispheres and the OFC in controls could be a correlate of enhanced emotion regulation capacities. Higher functional intra-DLPFC connectivity in violent offenders might represent an effort to regulate emotions. PMID:26523791

  7. Hypothalamic feedforward inhibition of thalamocortical network controls arousal and consciousness.

    Science.gov (United States)

    Herrera, Carolina Gutierrez; Cadavieco, Marta Carus; Jego, Sonia; Ponomarenko, Alexey; Korotkova, Tatiana; Adamantidis, Antoine

    2016-02-01

    During non-rapid eye movement (NREM) sleep, synchronous synaptic activity in the thalamocortical network generates predominantly low-frequency oscillations (transmission increased the duration of NREM sleep and amplitude of delta (1-4 Hz) oscillations. Collectively, these results demonstrate that TRN cells integrate subcortical arousal inputs selectively during NREM sleep and may participate in sleep intensity. PMID:26691833

  8. [Functional analysis of the thalamocortical pathways in eye movements].

    Science.gov (United States)

    Kunimatsu, Jun; Tanaka, Masaki

    2011-08-01

    Although the roles of the thalamocortical pathways in somatic movements are well documented, their roles in eye movements have only recently been examined. The oculomotor-related areas in the frontal cortex receive inputs from the basal ganglia and the cerebellum via the thalamus. Consistent with this, neurons in the paralaminar part of the ventrolateral (VL), ventroanterior (VA), and mediodorsal (MD) nuclei and those in the intralaminar nuclei exhibit a variety of eye movement-related responses. To date, the thalamocortical pathways are known to play at least 2 roles in eye movements. First, they are involved in the generation of volitional, but not reactive, saccades. Thalamic neurons discharge during anti-saccades, which are known to be impaired in several neurological and psychiatric disorders, such as Parkinson's disease, attention deficit/hyperactivity disorder, and schizophrenia. In addition, neurons in the thalamus also exhibit a gradual increase in firing rate that predicts the timing of self-initiated saccades. Recent inactivation experiments have established the causal roles of these thalamic signals in the generation of volitional saccades. Second, the thalamocortical pathways transmit the efference copy signals for eye movements. During inactivation of the MD thalamus, which relays signals from the superior colliculus to the frontal eye field (FEF), the accuracy of the saccade is reduced in tasks requiring efference copy signals. In addition, inactivation of the same pathways reduces the predictive visual response associated with saccades in neurons in the FEF. Moreover the VL thalamus has been reported to play a role in monitoring smooth pursuit. While the functional analysis of thalamocortical pathways in eye movements is just a beginning, the anatomical data suggest their important roles. Analysis of eye movement control may shed light on the functions of the thalamocortical pathways in general, and may reveal the neural mechanisms of cerebro

  9. Early silent microstructural degeneration and atrophy of the thalamocortical network in multiple sclerosis.

    Science.gov (United States)

    Deppe, Michael; Krämer, Julia; Tenberge, Jan-Gerd; Marinell, Jasmin; Schwindt, Wolfram; Deppe, Katja; Groppa, Sergiu; Wiendl, Heinz; Meuth, Sven G

    2016-05-01

    Recent studies on patients with clinically isolated syndrome (CIS) and multiple sclerosis (MS) demonstrated thalamic atrophy. Here we addressed the following question: Is early thalamic atrophy in patients with CIS and relapsing-remitting MS (RRMS) mainly a direct consequence of white matter (WM) lesions-as frequently claimed-or is the atrophy stronger correlated to "silent" (nonlesional) microstructural thalamic alterations? One-hundred and ten patients with RRMS, 12 with CIS, and 30 healthy controls were admitted to 3 T magnetic resonance imaging. Fractional anisotropy (FA) was computed from diffusion tensor imaging (DTI) to assess thalamic and WM microstructure. The relative thalamic volume (RTV) and thalamic FA were significantly reduced in patients with CIS and RRMS relative to healthy controls. Both measures were also correlated. The age, gender, WM lesion load, thalamic FA, and gray matter volume-corrected RTV were reduced even in the absence of thalamic and extensive white matter lesions-also in patients with short disease duration (≤24 months). A voxel-based correlation analysis revealed that the RTV reduction had a significant effect on local WM FA-in areas next to the thalamus and basal ganglia. These WM alterations could not be explained by WM lesions, which had a differing spatial distribution. Early thalamic atrophy is mainly driven by silent microstructural thalamic alterations. Lesions do not disclose the early damage of thalamocortical circuits, which seem to be much more affected in CIS and RRMS than expected. Thalamocortical damage can be detected by DTI in normal appearing brain tissue. Hum Brain Mapp 37:1866-1879, 2016. © 2016 Wiley Periodicals, Inc. PMID:26920497

  10. Thalamocortical relationship in epileptic patients with generalized spike and wave discharges — A multimodal neuroimaging study

    Directory of Open Access Journals (Sweden)

    Clara Huishi Zhang

    2015-01-01

    Full Text Available Unlike focal or partial epilepsy, which has a confined range of influence, idiopathic generalized epilepsy (IGE often affects the whole or a larger portion of the brain without obvious, known cause. It is important to understand the underlying network which generates epileptic activity and through which epileptic activity propagates. The aim of the present study was to investigate the thalamocortical relationship using non-invasive imaging modalities in a group of IGE patients. We specifically investigated the roles of the mediodorsal nuclei in the thalami and the medial frontal cortex in generating and spreading IGE activities. We hypothesized that the connectivity between these two structures is key in understanding the generation and propagation of epileptic activity in brains affected by IGE. Using three imaging techniques of EEG, fMRI and EEG-informed fMRI, we identified important players in generation and propagation of generalized spike-and-wave discharges (GSWDs. EEG-informed fMRI suggested multiple regions including the medial frontal area near to the anterior cingulate cortex, mediodorsal nuclei of the thalamus, caudate nucleus among others that related to the GSWDs. The subsequent seed-based fMRI analysis revealed a reciprocal cortical and bi-thalamic functional connection. Through EEG-based Granger Causality analysis using (DTF and adaptive DTF, within the reciprocal thalamocortical circuitry, thalamus seems to serve as a stronger source in driving cortical activity from initiation to the propagation of a GSWD. Such connectivity change starts before the GSWDs and continues till the end of the slow wave discharge. Thalamus, especially the mediodorsal nuclei, may serve as potential targets for deep brain stimulation to provide more effective treatment options for patients with drug-resistant generalized epilepsy.

  11. Insulin Resistance-Associated Interhemispheric Functional Connectivity Alterations in T2DM: A Resting-State fMRI Study

    Directory of Open Access Journals (Sweden)

    Wenqing Xia

    2015-01-01

    Full Text Available We aim to investigate whether decreased interhemispheric functional connectivity exists in patients with type 2 diabetes mellitus (T2DM by using resting-state functional magnetic resonance imaging (rs-fMRI. In addition, we sought to determine whether interhemispheric functional connectivity deficits associated with cognition and insulin resistance (IR among T2DM patients. We compared the interhemispheric resting state functional connectivity of 32 T2DM patients and 30 healthy controls using rs-fMRI. Partial correlation coefficients were used to detect the relationship between rs-fMRI information and cognitive or clinical data. Compared with healthy controls, T2DM patients showed bidirectional alteration of functional connectivity in several brain regions. Functional connectivity values in the middle temporal gyrus (MTG and in the superior frontal gyrus were inversely correlated with Trail Making Test-B score of patients. Notably, insulin resistance (log homeostasis model assessment-IR negatively correlated with functional connectivity in the MTG of patients. In conclusion, T2DM patients exhibit abnormal interhemispheric functional connectivity in several default mode network regions, particularly in the MTG, and such alteration is associated with IR. Alterations in interhemispheric functional connectivity might contribute to cognitive dysfunction in T2DM patients.

  12. Reduced brain functional reserve and altered functional connectivity in patients with multiple sclerosis.

    Science.gov (United States)

    Cader, Sarah; Cifelli, Alberto; Abu-Omar, Yasir; Palace, Jacqueline; Matthews, Paul M

    2006-02-01

    Cognitive dysfunction (affecting particularly attention and working memory) occurs early in patients with multiple sclerosis. Previous studies have focused on identifying potentially adaptive functional reorganization through recruitment of new brain regions that could limit expression of these deficits. However, lesion studies remind us that functional specializations in the brain make certain brain regions necessary for a given task. We therefore have asked whether altered functional interactions between regions normally recruited provide an alternative adaptive mechanism with multiple sclerosis pathology. We used a version of the n-back task to probe working memory in patients with early multiple sclerosis. We applied a functional connectivity analysis to test whether relationships between relative activations in different brain regions change in potentially adaptive ways with multiple sclerosis. We studied 21 patients with relapsing-remitting multiple sclerosis and 16 age- and sex-matched healthy controls with 3T functional MRI. The two groups performed equally well on the task. Task-related activations were found in similar regions for patients and controls. However, patients showed relatively reduced activation in the superior frontal and anterior cingulate gyri (P > 0.01). Patients also showed a variable, but generally substantially smaller increase in activation than healthy controls with greater task complexity, depending on the specific brain region assessed (P memory. Functional connectivity analysis suggests that altered inter-hemispheric interactions between dorsal and lateral prefrontal regions may provide an adaptive mechanism that could limit clinical expression of the disease distinct from recruitment of novel processing regions. Together, these results suggest that therapeutic enhancement of the coherence of interactions between brain regions normally recruited (functional enhancement), as well as recruitment of alternative areas or use of

  13. High serotonin levels during brain development alter the structural input-output connectivity of neural networks in the rat somatosensory layer IV

    Directory of Open Access Journals (Sweden)

    Stéphanie Miceli

    2013-06-01

    Full Text Available Homeostatic regulation of serotonin (5-HT concentration is critical for “normal” topographical organization and development of thalamocortical (TC afferent circuits. Down-regulation of the serotonin transporter (SERT and the consequent impaired reuptake of 5-HT at the synapse, results in a reduced terminal branching of developing TC afferents within the primary somatosensory cortex (S1. Despite the presence of multiple genetic models, the effect of high extracellular 5-HT levels on the structure and function of developing intracortical neural networks is far from being understood. Here, using juvenile SERT knockout (SERT-/- rats we investigated, in vitro, the effect of increased 5-HT levels on the structural organization of (i the thalamocortical projections of the ventroposteromedial thalamic nucleus towards S1, (ii the general barrel-field pattern and (iii the electrophysiological and morphological properties of the excitatory cell population in layer IV of S1 (spiny stellate and pyramidal cells. Our results confirmed previous findings that high levels of 5-HT during development lead to a reduction of the topographical precision of TCA projections towards the barrel cortex. Also, the barrel pattern was altered but not abolished in SERT-/- rats. In layer IV, both excitatory spiny stellate and pyramidal cells showed a significantly reduced intracolumnar organization of their axonal projections. In addition, the layer IV spiny stellate cells gave rise to a prominent projection towards the infragranular layer Vb. Our findings point to a structural and functional reorganization, of TCAs, as well as early stage intracortical microcircuitry, following the disruption of 5-HT reuptake during critical developmental periods. The increased projection pattern of the layer IV neurons suggests that the intracortical network changes are not limited to the main entry layer IV but may also affect the subsequent stages of the canonical circuits of the barrel

  14. Directional connectivity between frontal and posterior brain regions is altered with increasing concentrations of propofol.

    Science.gov (United States)

    Maksimow, Anu; Silfverhuth, Minna; Långsjö, Jaakko; Kaskinoro, Kimmo; Georgiadis, Stefanos; Jääskeläinen, Satu; Scheinin, Harry

    2014-01-01

    Recent studies using electroencephalography (EEG) suggest that alteration of coherent activity between the anterior and posterior brain regions might be used as a neurophysiologic correlate of anesthetic-induced unconsciousness. One way to assess causal relationships between brain regions is given by renormalized partial directed coherence (rPDC). Importantly, directional connectivity is evaluated in the frequency domain by taking into account the whole multichannel EEG, as opposed to time domain or two channel approaches. rPDC was applied here in order to investigate propofol induced changes in causal connectivity between four states of consciousness: awake (AWA), deep sedation (SED), loss (LOC) and return of consciousness (ROC) by gathering full 10/20 system human EEG data in ten healthy male subjects. The target-controlled drug infusion was started at low rate with subsequent gradual stepwise increases at 10 min intervals in order to carefully approach LOC (defined as loss of motor responsiveness to a verbal stimulus). The direction of the causal EEG-network connections clearly changed from AWA to SED and LOC. Propofol induced a decrease (p = 0.002-0.004) in occipital-to-frontal rPDC of 8-16 Hz EEG activity and an increase (p = 0.001-0.040) in frontal-to-occipital rPDC of 10-20 Hz activity on both sides of the brain during SED and LOC. In addition, frontal-to-parietal rPDC within 1-12 Hz increased in the left hemisphere at LOC compared to AWA (p = 0.003). However, no significant changes were detected between the SED and the LOC states. The observed decrease in back-to-front EEG connectivity appears compatible with impaired information flow from the posterior sensory and association cortices to the executive prefrontal areas, possibly related to decreased ability to perceive the surrounding world during sedation. The observed increase in the opposite (front-to-back) connectivity suggests a propofol concentration dependent association and is not directly related

  15. Directional connectivity between frontal and posterior brain regions is altered with increasing concentrations of propofol.

    Directory of Open Access Journals (Sweden)

    Anu Maksimow

    Full Text Available Recent studies using electroencephalography (EEG suggest that alteration of coherent activity between the anterior and posterior brain regions might be used as a neurophysiologic correlate of anesthetic-induced unconsciousness. One way to assess causal relationships between brain regions is given by renormalized partial directed coherence (rPDC. Importantly, directional connectivity is evaluated in the frequency domain by taking into account the whole multichannel EEG, as opposed to time domain or two channel approaches. rPDC was applied here in order to investigate propofol induced changes in causal connectivity between four states of consciousness: awake (AWA, deep sedation (SED, loss (LOC and return of consciousness (ROC by gathering full 10/20 system human EEG data in ten healthy male subjects. The target-controlled drug infusion was started at low rate with subsequent gradual stepwise increases at 10 min intervals in order to carefully approach LOC (defined as loss of motor responsiveness to a verbal stimulus. The direction of the causal EEG-network connections clearly changed from AWA to SED and LOC. Propofol induced a decrease (p = 0.002-0.004 in occipital-to-frontal rPDC of 8-16 Hz EEG activity and an increase (p = 0.001-0.040 in frontal-to-occipital rPDC of 10-20 Hz activity on both sides of the brain during SED and LOC. In addition, frontal-to-parietal rPDC within 1-12 Hz increased in the left hemisphere at LOC compared to AWA (p = 0.003. However, no significant changes were detected between the SED and the LOC states. The observed decrease in back-to-front EEG connectivity appears compatible with impaired information flow from the posterior sensory and association cortices to the executive prefrontal areas, possibly related to decreased ability to perceive the surrounding world during sedation. The observed increase in the opposite (front-to-back connectivity suggests a propofol concentration dependent association and is not directly

  16. Experience-dependent plasticity in white matter microstructure: Reasoning training alters structural connectivity

    Directory of Open Access Journals (Sweden)

    Allyson P Mackey

    2012-08-01

    Full Text Available Diffusion tensor imaging (DTI techniques have made it possible to investigate white matter plasticity in humans. Changes in DTI measures, principally increases in fractional anisotropy (FA, have been observed following training programs as diverse as juggling, meditation, and working memory. Here, we sought to test whether three months of reasoning training could alter white matter microstructure. We recruited participants (n=23 who were enrolled in a course to prepare for the Law School Admission Test (LSAT, a test that places strong demands on reasoning skills, as well as age- and IQ-matched controls planning to take the LSAT in the future (n=22. DTI data were collected at two scan sessions scheduled three months apart. In trained participants but not controls, we observed decreases in radial diffusivity (RD in white matter connecting frontal cortices, and in mean diffusivity (MD within frontal and parietal lobe white matter. Further, participants exhibiting larger gains on the LSAT exhibited greater decreases in MD in the right internal capsule. In summary, reasoning training altered multiple measures of white matter structure in young adults. While the cellular underpinnings are unknown, these results provide evidence of experience-dependent white matter changes that may not be limited to myelination.

  17. Experience-dependent plasticity in white matter microstructure: reasoning training alters structural connectivity.

    Science.gov (United States)

    Mackey, Allyson P; Whitaker, Kirstie J; Bunge, Silvia A

    2012-01-01

    Diffusion tensor imaging (DTI) techniques have made it possible to investigate white matter plasticity in humans. Changes in DTI measures, principally increases in fractional anisotropy (FA), have been observed following training programs as diverse as juggling, meditation, and working memory. Here, we sought to test whether three months of reasoning training could alter white matter microstructure. We recruited participants (n = 23) who were enrolled in a course to prepare for the Law School Admission Test (LSAT), a test that places strong demands on reasoning skills, as well as age- and IQ-matched controls planning to take the LSAT in the future (n = 22). DTI data were collected at two scan sessions scheduled three months apart. In trained participants but not controls, we observed decreases in radial diffusivity (RD) in white matter connecting frontal cortices, and in mean diffusivity (MD) within frontal and parietal lobe white matter. Further, participants exhibiting larger gains on the LSAT exhibited greater decreases in MD in the right internal capsule. In summary, reasoning training altered multiple measures of white matter structure in young adults. While the cellular underpinnings are unknown, these results provide evidence of experience-dependent white matter changes that may not be limited to myelination. PMID:22936899

  18. Astrocytes Assemble Thalamocortical Synapses by Bridging NRX1α and NL1 via Hevin.

    Science.gov (United States)

    Singh, Sandeep K; Stogsdill, Jeff A; Pulimood, Nisha S; Dingsdale, Hayley; Kim, Yong Ho; Pilaz, Louis-Jan; Kim, Il Hwan; Manhaes, Alex C; Rodrigues, Wandilson S; Pamukcu, Arin; Enustun, Eray; Ertuz, Zeynep; Scheiffele, Peter; Soderling, Scott H; Silver, Debra L; Ji, Ru-Rong; Medina, Alexandre E; Eroglu, Cagla

    2016-01-14

    Proper establishment of synapses is critical for constructing functional circuits. Interactions between presynaptic neurexins and postsynaptic neuroligins coordinate the formation of synaptic adhesions. An isoform code determines the direct interactions of neurexins and neuroligins across the synapse. However, whether extracellular linker proteins can expand such a code is unknown. Using a combination of in vitro and in vivo approaches, we found that hevin, an astrocyte-secreted synaptogenic protein, assembles glutamatergic synapses by bridging neurexin-1alpha and neuroligin-1B, two isoforms that do not interact with each other. Bridging of neurexin-1alpha and neuroligin-1B via hevin is critical for the formation and plasticity of thalamocortical connections in the developing visual cortex. These results show that astrocytes promote the formation of synapses by modulating neurexin/neuroligin adhesions through hevin secretion. Our findings also provide an important mechanistic insight into how mutations in these genes may lead to circuit dysfunction in diseases such as autism. PMID:26771491

  19. Acupuncture induces divergent alterations of functional connectivity within conventional frequency bands: evidence from MEG recordings.

    Directory of Open Access Journals (Sweden)

    Youbo You

    Full Text Available As an ancient Chinese healing modality which has gained increasing popularity in modern society, acupuncture involves stimulation with fine needles inserted into acupoints. Both traditional literature and clinical data indicated that modulation effects largely depend on specific designated acupoints. However, scientific representations of acupoint specificity remain controversial. In the present study, considering the new findings on the sustained effects of acupuncture and its time-varied temporal characteristics, we employed an electrophysiological imaging modality namely magnetoencephalography with a temporal resolution on the order of milliseconds. Taken into account the differential band-limited signal modulations induced by acupuncture, we sought to explore whether or not stimulation at Stomach Meridian 36 (ST36 and a nearby non-meridian point (NAP would evoke divergent functional connectivity alterations within delta, theta, alpha, beta and gamma bands. Whole-head scanning was performed on 28 healthy participants during an eyes-closed no-task condition both preceding and following acupuncture. Data analysis involved calculation of band-limited power (BLP followed by pair-wise BLP correlations. Further averaging was conducted to obtain local and remote connectivity. Statistical analyses revealed the increased connection degree of the left temporal cortex within delta (0.5-4 Hz, beta (13-30 Hz and gamma (30-48 Hz bands following verum acupuncture. Moreover, we not only validated the closer linkage of the left temporal cortex with the prefrontal and frontal cortices, but further pinpointed that such patterns were more extensively distributed in the ST36 group in the delta and beta bands compared to the restriction only to the delta band for NAP. Psychophysical results for significant pain threshold elevation further confirmed the analgesic effect of acupuncture at ST36. In conclusion, our findings may provide a new perspective to lend

  20. Differences in functional brain connectivity alterations associated with cerebral amyloid deposition in amnestic mild cognitive impairment

    Directory of Open Access Journals (Sweden)

    Dahyun eYi

    2015-02-01

    Full Text Available Despite potential implications for the early detection of impending AD, very little is known about the differences of large scale brain networks between amnestic MCI (aMCI with high cerebral amyloid beta protein (Aβ deposition (i.e., aMCI+ and aMCI with no or very little Aβ deposition (i.e., aMCI-. We first aimed to extend the current literature on altering intrinsic functional connectivity (FC of the default mode network (DMN and salience network (SN from CN to AD dementia. Second, we further examined the differences of the DMN and the SN between aMCI-, aMCI+, and CN. Forty-three older adult (12 CN, 10 aMCI+, 10 aMCI-, and 11 AD dementia subjects were included. All participants received clinical and neuropsychological assessment, resting state functional MRI, structural MRI, and Pittsburgh compound-B-PET scans. FC data were preprocessed using Multivariate Exploratory Linear Optimized Decomposition into Independent Components of FSL. Group comparisons were carried out using the dual-regression approach. In addition, to verify presence of grey matter (GM volume changes with intrinsic functional network alterations, Voxel Based Morphometry was performed on the acquired T1-weighted data. As expected, AD dementia participants exhibited decreased FC in the DMN compared to CN (in precuneus and cingulate gyrus. The degree of alteration in the DMN in aMCI+ compared to CN was intermediate to that of AD. In contrast, aMCI- exhibited increased FC in the DMN compared to CN (in precuneus as well as aMCI+. In terms of the SN, aMCI- exhibited decreased FC compared to both CN and aMCI+ particularly in the inferior frontal gyrus. FC within the SN in aMCI+ and AD did not differ from CN. Compared to CN, aMCI- showed atrophy in bilateral superior temporal gyri whereas aMCI+ showed atrophy in right precuneus. The results indicate that despite of the similarity in cross-sectional cognitive features aMCI- has quite different functional brain connectivity compared to

  1. Linking topography to tonotopy in the mouse auditory thalamocortical circuit

    DEFF Research Database (Denmark)

    Hackett, Troy A; Rinaldi Barkat, Tania; O'Brien, Barbara M J;

    2011-01-01

    order of subthreshold VSD maps was reduced in layer IV and even further degraded in layer II/III. Therefore, the precision of AI topography varies according to the source and layer of the mapping signal. Our findings further bridge the gap between in vivo and in vitro approaches for the detailed...... cellular study of auditory thalamocortical circuit organization and plasticity in the genetically tractable mouse model....

  2. High thalamocortical theta coherence in patients with Parkinson's disease

    OpenAIRE

    Sarnthein, J.; Jeanmonod, D.

    2007-01-01

    Research investigating the pathophysiology of Parkinson's disease (PD) mostly focuses on basal ganglia dysfunction. However, the main output from the basal ganglia is via the thalamus, and corticothalamic feedback constitutes the primary source of synapses in the thalamus. We therefore focus on the thalamocortical interplay. During the surgical intervention in six patients, local field potentials (LFPs) were recorded from pallidal-recipient thalamic nuclei VA and VLa. Simultaneously, EEG was ...

  3. Assessment of the structural brain network reveals altered connectivity in children with unilateral cerebral palsy due to periventricular white matter lesions

    Directory of Open Access Journals (Sweden)

    Kerstin Pannek

    2014-01-01

    Conclusion: This study shows that network-based analysis of structural connectivity can identify alterations in FA in unilateral CP, and that these alterations in FA are related to clinical function. Application of this connectome-based analysis to investigate alterations in connectivity following treatment may elucidate the neurological correlates of improved functioning due to intervention.

  4. Altered functional connectivity of fusiform gyrus in subjects with amnestic mild cognitive impairment: a resting state fMRI study

    OpenAIRE

    Liyu Huang

    2015-01-01

    Visual cognition such as face recognition requires a high level of functional interaction between distributed regions of a network. It has been reported that the fusiform gyrus (FG) is an important brain area involved in facial cognition; altered connectivity of FG to some other regions may lead to a deficit in visual cognition especially face recognition. However, whether functional connectivity between the FG and other brain regions changes remains unclear during the resting state in amnest...

  5. Altered resting-state effective connectivity of fronto-parietal motor control systems on the primary motor network following stroke

    OpenAIRE

    Inman, Cory S.; James, G. Andrew; Hamann, Stephan; Rajendra, Justin K.; Pagnoni, Giuseppe; Butler, Andrew J.

    2011-01-01

    Previous brain imaging work suggests that stroke alters the effective connectivity (the influence neural regions exert upon each other) of motor execution networks. The present study examines the intrinsic effective connectivity of top-down motor control in stroke survivors (n=13) relative to healthy participants (n=12). Stroke survivors exhibited significant deficits in motor function, as assessed by the Fugl-Meyer Motor Assessment. We used structural equation modeling (SEM) of resting-state...

  6. Altered neural connectivity in excitatory and inhibitory cortical circuits in autism

    Directory of Open Access Journals (Sweden)

    Basilis eZikopoulos

    2013-09-01

    Full Text Available Converging evidence from diverse studies suggests that atypical brain connectivity in autism affects in distinct ways short- and long-range cortical pathways, disrupting neural communication and the balance of excitation and inhibition. This hypothesis is based mostly on functional non-invasive studies that show atypical synchronization and connectivity patterns between cortical areas in children and adults with autism. Indirect methods to study the course and integrity of major brain pathways at low resolution show changes in fractional anisotropy or diffusivity of the white matter in autism. Findings in post-mortem brains of adults with autism provide evidence of changes in the fine structure of axons below prefrontal cortices, which communicate over short- or long-range pathways with other cortices and subcortical structures. Here we focus on evidence of cellular and axon features that likely underlie the changes in short- and long-range communication in autism. We review recent findings of changes in the shape, thickness, and volume of brain areas, cytoarchitecture, neuronal morphology, cellular elements, and structural and neurochemical features of individual axons in the white matter, where pathology is evident even in gross images. We relate cellular and molecular features to imaging and genetic studies that highlight a variety of polymorphisms and epigenetic factors that primarily affect neurite growth and synapse formation and function in autism. We report preliminary findings of changes in autism in the ratio of distinct types of inhibitory neurons in prefrontal cortex, known to shape network dynamics and the balance of excitation and inhibition. Finally we present a model that synthesizes diverse findings by relating them to developmental events, with a goal to identify common processes that perturb development in autism and affect neural communication, reflected in altered patterns of attention, social interactions, and language.

  7. Altered cortico-striatal-thalamic connectivity in relation to spatial working memory capacity in children with ADHD

    Directory of Open Access Journals (Sweden)

    KathrynL.Mills

    2012-01-01

    Results/Conclusions: Using these thalamic regions, we found atypical rs-fcMRI between specific thalamic groupings with the basal ganglia. To identify the thalamic connections that relate to spatial working memory in ADHD, only connections identified in both the correlational and comparative analyses were considered. Multiple connections between the thalamus and basal ganglia, particularly between medial and anterior dorsal thalamus and the putamen, were related to spatial working memory and also altered in ADHD. These thalamo-striatal disruptions may be one of multiple atypical neural and cognitive mechanisms that relate to the ADHD clinical phenotype.

  8. Altered functional connectivity of the default mode network in Williams syndrome: a multimodal approach.

    Science.gov (United States)

    Sampaio, Adriana; Moreira, Pedro Silva; Osório, Ana; Magalhães, Ricardo; Vasconcelos, Cristiana; Férnandez, Montse; Carracedo, Angel; Alegria, Joana; Gonçalves, Óscar F; Soares, José Miguel

    2016-07-01

    Resting state brain networks are implicated in a variety of relevant brain functions. Importantly, abnormal patterns of functional connectivity (FC) have been reported in several neurodevelopmental disorders. In particular, the Default Mode Network (DMN) has been found to be associated with social cognition. We hypothesize that the DMN may be altered in Williams syndrome (WS), a neurodevelopmental genetic disorder characterized by an unique cognitive and behavioral phenotype. In this study, we assessed the architecture of the DMN using fMRI in WS patients and typically developing matched controls (sex and age) in terms of FC and volumetry of the DMN. Moreover, we complemented the analysis with a functional connectome approach. After excluding participants due to movement artifacts (n = 3), seven participants with WS and their respective matched controls were included in the analyses. A decreased FC between the DMN regions was observed in the WS group when compared with the typically developing group. Specifically, we found a decreased FC in a posterior hub of the DMN including the precuneus, calcarine and the posterior cingulate of the left hemisphere. The functional connectome approach showed a focalized and global increased FC connectome in the WS group. The reduced FC of the posterior hub of the DMN in the WS group is consistent with immaturity of the brain FC patterns and may be associated with the singularity of their visual spatial phenotype. PMID:27412230

  9. Activity and High-Order Effective Connectivity Alterations in Sanfilippo C Patient-Specific Neuronal Networks

    Science.gov (United States)

    Canals, Isaac; Soriano, Jordi; Orlandi, Javier G.; Torrent, Roger; Richaud-Patin, Yvonne; Jiménez-Delgado, Senda; Merlin, Simone; Follenzi, Antonia; Consiglio, Antonella; Vilageliu, Lluïsa; Grinberg, Daniel; Raya, Angel

    2015-01-01

    Summary Induced pluripotent stem cell (iPSC) technology has been successfully used to recapitulate phenotypic traits of several human diseases in vitro. Patient-specific iPSC-based disease models are also expected to reveal early functional phenotypes, although this remains to be proved. Here, we generated iPSC lines from two patients with Sanfilippo type C syndrome, a lysosomal storage disorder with inheritable progressive neurodegeneration. Mature neurons obtained from patient-specific iPSC lines recapitulated the main known phenotypes of the disease, not present in genetically corrected patient-specific iPSC-derived cultures. Moreover, neuronal networks organized in vitro from mature patient-derived neurons showed early defects in neuronal activity, network-wide degradation, and altered effective connectivity. Our findings establish the importance of iPSC-based technology to identify early functional phenotypes, which can in turn shed light on the pathological mechanisms occurring in Sanfilippo syndrome. This technology also has the potential to provide valuable readouts to screen compounds, which can prevent the onset of neurodegeneration. PMID:26411903

  10. Activity and High-Order Effective Connectivity Alterations in Sanfilippo C Patient-Specific Neuronal Networks

    Directory of Open Access Journals (Sweden)

    Isaac Canals

    2015-10-01

    Full Text Available Induced pluripotent stem cell (iPSC technology has been successfully used to recapitulate phenotypic traits of several human diseases in vitro. Patient-specific iPSC-based disease models are also expected to reveal early functional phenotypes, although this remains to be proved. Here, we generated iPSC lines from two patients with Sanfilippo type C syndrome, a lysosomal storage disorder with inheritable progressive neurodegeneration. Mature neurons obtained from patient-specific iPSC lines recapitulated the main known phenotypes of the disease, not present in genetically corrected patient-specific iPSC-derived cultures. Moreover, neuronal networks organized in vitro from mature patient-derived neurons showed early defects in neuronal activity, network-wide degradation, and altered effective connectivity. Our findings establish the importance of iPSC-based technology to identify early functional phenotypes, which can in turn shed light on the pathological mechanisms occurring in Sanfilippo syndrome. This technology also has the potential to provide valuable readouts to screen compounds, which can prevent the onset of neurodegeneration.

  11. Alterations of multiple resting state network connectivity in physiological, pharmacological and pathological consciousness states.

    Directory of Open Access Journals (Sweden)

    LizetteHeine

    2012-08-01

    Full Text Available In order to better understand the functional contribution of resting state activity to conscious cognition, we aimed to review increases and decreases in fMRI functional connectivity under physiological (sleep, pharmacological (anesthesia and pathological altered states of consciousness, such as brain death, coma, vegetative state/unresponsive wakefulness syndrome, and minimally conscious state. The reviewed RSNs were the DMN, left and right executive control, salience, sensorimotor, auditory and visual networks. We highlight some methodological issues concerning resting state analyses in severely injured brains mainly in terms of hypothesis-driven seed-based correlation analysis and data-driven independent components analysis approaches. Finally, we attempt to contextualize our discussion within theoretical frameworks of conscious processes. We think that this “lesion” approach allows us to better determine the necessary conditions under which normal conscious cognition takes place. At the clinical level, we acknowledge the technical merits of the resting state paradigm. Indeed, fast and easy acquisitions are preferable to activation paradigms in clinical populations. Finally, we emphasize the need to validate the diagnostic and prognostic value of fMRI resting state measurements in non-communicating brain damaged patients.

  12. Evaluation of alteration in mucogingival line location following use of subepithelial connective tissue graft

    Directory of Open Access Journals (Sweden)

    Saber Fariba

    2010-01-01

    Full Text Available Aim and Objective : The aim of this study is to evaluate the positional changes that occur in mucogingival line following the use of subepithelial connective tissue graft (SCTG. Materials and Methods : In 19 Miller class I or II gingival recession defects, distance between mucogingival line (MGL and cemento-enamel junction, also width of keratinized and attached gingiva, and clinical attachment level were measured. SCTG were used for covering the exposed roots. A fore mentioned parameters were repeated at 3, 6 and 12 months after surgery and alterations were measured. Paired t test was used to analyze the results. Results : MGL had been moved in coronal direction (4.39 ± 0.77 mm on average during surgical approach. After 1 year, MGL shifted 2.11 ± 0.7 mm apically. In accordance with this apical shift, a significant increase in the width of keratinized and attached gingival width (2.89 ± 0.63 mm and 2.82 ± 0.5 mm, respectively was seen (P < 0.05. Conclusion : MGL tended to revert back to its original position following the use of SCTG, and this reversion is accompanied with an increase in the keratinized and attached gingival width.

  13. Alterations of Dermal Connective Tissue Collagen in Diabetes: Molecular Basis of Aged-Appearing Skin

    Science.gov (United States)

    Argyropoulos, Angela J.; Robichaud, Patrick; Balimunkwe, Rebecca Mutesi; Fisher, Gary J.; Hammerberg, Craig; Yan, Yan

    2016-01-01

    Alterations of the collagen, the major structural protein in skin, contribute significantly to human skin connective tissue aging. As aged-appearing skin is more common in diabetes, here we investigated the molecular basis of aged-appearing skin in diabetes. Among all known human matrix metalloproteinases (MMPs), diabetic skin shows elevated levels of MMP-1 and MMP-2. Laser capture microdissection (LCM) coupled real-time PCR indicated that elevated MMPs in diabetic skin were primarily expressed in the dermis. Furthermore, diabetic skin shows increased lysyl oxidase (LOX) expression and higher cross-linked collagens. Atomic force microscopy (AFM) further indicated that collagen fibrils were fragmented/disorganized, and key mechanical properties of traction force and tensile strength were increased in diabetic skin, compared to intact/well-organized collagen fibrils in non-diabetic skin. In in vitro tissue culture system, multiple MMPs including MMP-1 and MM-2 were induced by high glucose (25 mM) exposure to isolated primary human skin dermal fibroblasts, the major cells responsible for collagen homeostasis in skin. The elevation of MMPs and LOX over the years is thought to result in the accumulation of fragmented and cross-linked collagen, and thus impairs dermal collagen structural integrity and mechanical properties in diabetes. Our data partially explain why old-looking skin is more common in diabetic patients. PMID:27104752

  14. Cold acclimation alters the connective tissue content of the zebrafish (Danio rerio) heart.

    Science.gov (United States)

    Johnson, Amy C; Turko, Andy J; Klaiman, Jordan M; Johnston, Elizabeth F; Gillis, Todd E

    2014-06-01

    Thermal acclimation can alter cardiac function and morphology in a number of fish species, but little is known about the regulation of these changes. The purpose of the present study was to determine how cold acclimation affects zebrafish (Danio rerio) cardiac morphology, collagen composition and connective tissue regulation. Heart volume, the thickness of the compact myocardium, collagen content and collagen fiber composition were compared between control (27°C) and cold-acclimated (20°C) zebrafish using serially sectioned hearts stained with Picrosirius Red. Collagen content and fiber composition of the pericardial membrane were also examined. Cold acclimation did not affect the volume of the contracted heart; however, there was a significant decrease in the thickness of the compact myocardium. There was also a decrease in the collagen content of the compact myocardium and in the amount of thick collagen fibers throughout the heart. Cold-acclimated zebrafish also increased expression of the gene transcript for matrix metalloproteinase 2, matrix metalloproteinase 9, tissue inhibitor of metalloproteinase 2 and collagen Type I α1. We propose that the reduction in the thickness of the compact myocardium as well as the change in collagen content may help to maintain the compliance of the ventricle as temperatures decrease. Together, these results clearly demonstrate that the zebrafish heart undergoes significant remodeling in response to cold acclimation. PMID:24577447

  15. Mindfulness meditation training alters stress-related amygdala resting state functional connectivity: a randomized controlled trial.

    Science.gov (United States)

    Taren, Adrienne A; Gianaros, Peter J; Greco, Carol M; Lindsay, Emily K; Fairgrieve, April; Brown, Kirk Warren; Rosen, Rhonda K; Ferris, Jennifer L; Julson, Erica; Marsland, Anna L; Bursley, James K; Ramsburg, Jared; Creswell, J David

    2015-12-01

    Recent studies indicate that mindfulness meditation training interventions reduce stress and improve stress-related health outcomes, but the neural pathways for these effects are unknown. The present research evaluates whether mindfulness meditation training alters resting state functional connectivity (rsFC) of the amygdala, a region known to coordinate stress processing and physiological stress responses. We show in an initial discovery study that higher perceived stress over the past month is associated with greater bilateral amygdala-subgenual anterior cingulate cortex (sgACC) rsFC in a sample of community adults (n = 130). A follow-up, single-blind randomized controlled trial shows that a 3-day intensive mindfulness meditation training intervention (relative to a well-matched 3-day relaxation training intervention without a mindfulness component) reduced right amygdala-sgACC rsFC in a sample of stressed unemployed community adults (n = 35). Although stress may increase amygdala-sgACC rsFC, brief training in mindfulness meditation could reverse these effects. This work provides an initial indication that mindfulness meditation training promotes functional neuroplastic changes, suggesting an amygdala-sgACC pathway for stress reduction effects. PMID:26048176

  16. Resting-state functional connectivity bias of middle temporal gyrus and caudate with altered gray matter volume in major depression.

    Directory of Open Access Journals (Sweden)

    Chaoqiong Ma

    Full Text Available Magnetic resonance imaging (MRI studies have indicated that the structure deficits and resting-state functional connectivity (FC imbalances in cortico-limbic circuitry might underline the pathophysiology of MDD. Using structure and functional MRI, our aim is to investigate gray matter abnormalities in patients with treatment-resistant depression (TRD and treatment-responsive depression (TSD, and test whether the altered gray matter is associated with altered FC. Voxel-based morphometry was used to investigate the regions with gray matter abnormality and FC analysis was further conducted between each gray matter abnormal region and the remaining voxels in the brain. Using one-way analysis of variance, we found significant gray matter abnormalities in the right middle temporal cortex (MTG and bilateral caudate among the TRD, TSD and healthy controls. For the FC of the right MTG, we found that both the patients with TRD and TSD showed altered connectivity mainly in the default-mode network (DMN. For the FC of the right caudate, both patient groups showed altered connectivity in the frontal regions. Our results revealed the gray matter reduction of right MTG and bilateral caudate, and disrupted functional connection to widely distributed circuitry in DMN and frontal regions, respectively. These results suggest that the abnormal DMN and reward circuit activity might be biomarkers of depression trait.

  17. Cross-modal plasticity in sensory deprived animal models: From the thalamocortical development point of view.

    Science.gov (United States)

    Mezzera, Cecilia; López-Bendito, Guillermina

    2016-09-01

    Over recent decades, our understanding of the plasticity of the central nervous system has expanded enormously. Accordingly, it is now widely accepted that the brain can adapt to changes by reorganizing its circuitry, both in response to external stimuli and experience, as well as through intrinsic mechanisms. A clear example of this is the activation of a deprived sensory area and the expansion of spared sensory cortical regions in individuals who suffered peripheral sensory loss. Despite the efforts to understand these neuroplastic changes, the mechanisms underlying such adaptive remodeling remains poorly understood. Progress in understanding these events may be hindered by the highly varied data obtained from the distinct experimental paradigms analyzed, which include different animal models and neuronal systems, as well as studies into the onset of sensory loss. Here, we will establish the current state-of-the-art describing the principal observations made according to the time of sensory deprivation with respect to the development of the thalamocortical connectivity. We will review the experimental data obtained from animal models where sensory deprivation has been induced either before or after thalamocortical axons reach and invade their target cortical areas. The anatomical and functional effects of sensory loss on the primary sensory areas of the cortex will be presented. Indeed, we consider that the comparative approach of this review is a necessary step in order to help deciphering the processes that underlie sensory neuroplasticity, for which studies in animal models have been indispensable. Understanding these mechanisms will then help to develop restorative strategies and prostheses that will overcome the functional loss. PMID:26459021

  18. Altered functional connectivity of the dorsolateral prefrontal cortex in first-episode patients with major depressive disorder

    International Nuclear Information System (INIS)

    Background: The aim of this study was to investigate resting-state functional connectivity alteration of the right dorsolateral prefrontal cortex (DLPFC) in patients with first-episode major depressive disorder (MDD). Methods: Twenty-two first-episode MDD patients and thirty age-, gender- and education-matched healthy control subjects were enrolled. Rest state functional magnetic resonance images and structure magnetic resonance images were scanned. The functional connectivity analysis was done based on the result of voxel-based morphometry (VBM). And the right DLPFC was chosen as the seed region of interests (ROI), as its gray matter density (GMD) decreased in the MDD patients compared with controls and its GMD values were negative correlation with the Hamilton Depression Rating Scale (HDRS) scores. Results: Compared to healthy controls, the MDD patients showed increased functional connectivity with right the DLPFC in the left dorsal anterior cingulate cortex (ACC), left parahippocampal gyrus (PHG), thalamus and precentral gyrus. In contrast, there were decreased functional connectivity between the right DLPFC and right parietal lobe. Conclusions: By applying the VBM results to the functional connectivity analysis, the study suggested that abnormality of GMD in right DLPFC might be related to the functional connectivity alteration in the pathophysiology of MDD, which might be useful in further characterizing structure–function relations in this disorder.

  19. Altered functional connectivity of the dorsolateral prefrontal cortex in first-episode patients with major depressive disorder

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Ting, E-mail: yeting@ihep.ac.cn [Key Laboratory of Nuclear Analytical Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, PO Box 918, Yu-Quan St, Shijingshan District, Beijing 100049 (China); Graduate School of Chinese Academy of Sciences, PO Box 918, Yu-Quan St, Shijingshan District, Beijing 100049 (China); Peng, Jing, E-mail: ppengjjing@sina.com.cn [Department of Radiology, Xuanwu Hospital of Capital Medical University, No. 45, Chang-Chun St, Xuanwu District, Beijing 100053 (China); Nie, Binbin, E-mail: niebb@ihep.ac.cn [Key Laboratory of Nuclear Analytical Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, PO Box 918, Yu-Quan St, Shijingshan District, Beijing 100049 (China); Gao, Juan, E-mail: gaojuan@ihep.ac.cn [Key Laboratory of Nuclear Analytical Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, PO Box 918, Yu-Quan St, Shijingshan District, Beijing 100049 (China); Graduate School of Chinese Academy of Sciences, PO Box 918, Yu-Quan St, Shijingshan District, Beijing 100049 (China); Liu, Jiangtao, E-mail: Liujiangtao813@sina.com [Department of Radiology, Xuanwu Hospital of Capital Medical University, No. 45, Chang-Chun St, Xuanwu District, Beijing 100053 (China); Li, Yang, E-mail: Liyang2007428@hotmail.com [Department of Psychiatry, Anding Hospital of Capital Medical University, No. 5, An Kang Hutong, Deshengmen wai, Xicheng District, Beijing 100088 (China); Wang, Gang, E-mail: gangwang@gmail.com [Department of Psychiatry, Anding Hospital of Capital Medical University, No. 5, An Kang Hutong, Deshengmen wai, Xicheng District, Beijing 100088 (China); Ma, Xin, E-mail: lijianshe@medmail.com.cn [Department of Psychiatry, Anding Hospital of Capital Medical University, No. 5, An Kang Hutong, Deshengmen wai, Xicheng District, Beijing 100088 (China); Li, Kuncheng [Department of Radiology, Xuanwu Hospital of Capital Medical University, No. 45, Chang-Chun St, Xuanwu District, Beijing 100053 (China); and others

    2012-12-15

    Background: The aim of this study was to investigate resting-state functional connectivity alteration of the right dorsolateral prefrontal cortex (DLPFC) in patients with first-episode major depressive disorder (MDD). Methods: Twenty-two first-episode MDD patients and thirty age-, gender- and education-matched healthy control subjects were enrolled. Rest state functional magnetic resonance images and structure magnetic resonance images were scanned. The functional connectivity analysis was done based on the result of voxel-based morphometry (VBM). And the right DLPFC was chosen as the seed region of interests (ROI), as its gray matter density (GMD) decreased in the MDD patients compared with controls and its GMD values were negative correlation with the Hamilton Depression Rating Scale (HDRS) scores. Results: Compared to healthy controls, the MDD patients showed increased functional connectivity with right the DLPFC in the left dorsal anterior cingulate cortex (ACC), left parahippocampal gyrus (PHG), thalamus and precentral gyrus. In contrast, there were decreased functional connectivity between the right DLPFC and right parietal lobe. Conclusions: By applying the VBM results to the functional connectivity analysis, the study suggested that abnormality of GMD in right DLPFC might be related to the functional connectivity alteration in the pathophysiology of MDD, which might be useful in further characterizing structure–function relations in this disorder.

  20. Alterations of amygdala-prefrontal connectivity with real-time fMRI neurofeedback in BPD patients.

    Science.gov (United States)

    Paret, Christian; Kluetsch, Rosemarie; Zaehringer, Jenny; Ruf, Matthias; Demirakca, Traute; Bohus, Martin; Ende, Gabriele; Schmahl, Christian

    2016-06-01

    With the use of real-time functional magnetic resonance imaging neurofeedback (NF), amygdala activitiy can be visualized in real time. In this study, continuous amygdala NF was provided to patients with borderline personality disorder (BPD) with the instruction to down-regulate. During four sessions of NF training, patients viewed aversive pictures and received feedback from a thermometer display, which showed the amygdala blood oxygenation level-dependent signal. Conditions of regulation and viewing without regulation were presented. Each session started with a resting-state scan and was followed by a transfer run without NF. Amygdala regulation, task-related and resting-state functional brain connectivity were analyzed. Self-ratings of dissociation and difficulty in emotion regulation were collected. BPD patients down-regulated right amygdala activation but there were no improvements over time. Task-related amygdala-ventromedial prefrontal cortex connectivity was altered across the four sessions, with an increased connectivity when regulating vs viewing pictures. Resting-state amygdala-lateral prefrontal cortex connectivity was altered and dissociation, as well as scores for 'lack of emotional awareness', decreased with training. Results demonstrated that amygdala NF may improve healthy brain connectivity, as well as emotion regulation. A randomized-controlled trial is needed to investigate whether amygdala NF is instrumental for improving neural regulation and emotion regulation in BPD patients. PMID:26833918

  1. Altered functional brain network connectivity and glutamate system function in transgenic mice expressing truncated Disrupted-in-Schizophrenia 1.

    Science.gov (United States)

    Dawson, N; Kurihara, M; Thomson, D M; Winchester, C L; McVie, A; Hedde, J R; Randall, A D; Shen, S; Seymour, P A; Hughes, Z A; Dunlop, J; Brown, J T; Brandon, N J; Morris, B J; Pratt, J A

    2015-01-01

    Considerable evidence implicates DISC1 as a susceptibility gene for multiple psychiatric diseases. DISC1 has been intensively studied at the molecular, cellular and behavioral level, but its role in regulating brain connectivity and brain network function remains unknown. Here, we utilize a set of complementary approaches to assess the functional brain network abnormalities present in mice expressing a truncated Disc1 gene (Disc1tr Hemi mice). Disc1tr Hemi mice exhibited hypometabolism in the prefrontal cortex (PFC) and reticular thalamus along with a reorganization of functional brain network connectivity that included compromised hippocampal-PFC connectivity. Altered hippocampal-PFC connectivity in Disc1tr Hemi mice was confirmed by electrophysiological analysis, with Disc1tr Hemi mice showing a reduced probability of presynaptic neurotransmitter release in the monosynaptic glutamatergic hippocampal CA1-PFC projection. Glutamate system dysfunction in Disc1tr Hemi mice was further supported by the attenuated cerebral metabolic response to the NMDA receptor (NMDAR) antagonist ketamine and decreased hippocampal expression of NMDAR subunits 2A and 2B in these animals. These data show that the Disc1 truncation in Disc1tr Hemi mice induces a range of translationally relevant endophenotypes underpinned by glutamate system dysfunction and altered brain connectivity. PMID:25989143

  2. Altered Cortico-Striatal Connectivity in Offspring of Schizophrenia Patients Relative to Offspring of Bipolar Patients and Controls.

    Directory of Open Access Journals (Sweden)

    Cristina Solé-Padullés

    Full Text Available Schizophrenia (SZ and bipolar disorder (BD share clinical features, genetic risk factors and neuroimaging abnormalities. There is evidence of disrupted connectivity in resting state networks in patients with SZ and BD and their unaffected relatives. Resting state networks are known to undergo reorganization during youth coinciding with the period of increased incidence for both disorders. We therefore focused on characterizing resting state network connectivity in youth at familial risk for SZ or BD to identify alterations arising during this period. We measured resting-state functional connectivity in a sample of 106 youth, aged 7-19 years, comprising offspring of patients with SZ (N = 27, offspring of patients with BD (N = 39 and offspring of community control parents (N = 40. We used Independent Component Analysis to assess functional connectivity within the default mode, executive control, salience and basal ganglia networks and define their relationship to grey matter volume, clinical and cognitive measures. There was no difference in connectivity within any of the networks examined between offspring of patients with BD and offspring of community controls. In contrast, offspring of patients with SZ showed reduced connectivity within the left basal ganglia network compared to control offspring, and they showed a positive correlation between connectivity in this network and grey matter volume in the left caudate. Our findings suggest that dysconnectivity in the basal ganglia network is a robust correlate of familial risk for SZ and can be detected during childhood and adolescence.

  3. NMDA spike/plateau potentials in dendrites of thalamocortical neurons.

    Science.gov (United States)

    Augustinaite, Sigita; Kuhn, Bernd; Helm, Paul Johannes; Heggelund, Paul

    2014-08-13

    Dendritic NMDA spike/plateau potentials, first discovered in cortical pyramidal neurons, provide supralinear integration of synaptic inputs on thin and distal dendrites, thereby increasing the impact of these inputs on the soma. The more specific functional role of these potentials has been difficult to clarify, partly due to the complex circuitry of cortical neurons. Thalamocortical (TC) neurons in the dorsal lateral geniculate nucleus participate in simpler circuits. They receive their primary afferent input from retina and send their output to visual cortex. Cortex, in turn, regulates this output through massive feedback to distal dendrites of the TC neurons. The TC neurons can operate in two modes related to behavioral states: burst mode prevailing during sleep, when T-type calcium bursts largely disrupt the transfer of signals from retina to cortex, and tonic mode, which provides reliable transfer of retinal signals to cortex during wakefulness. We studied dendritic potentials in TC neurons with combined two-photon calcium imaging and whole-cell recording of responses to local dendritic glutamate iontophoresis in acute brain slices from mice. We found that NMDA spike/plateaus can be elicited locally at distal dendrites of TC neurons. We suggest that these dendritic potentials have important functions in the cortical regulation of thalamocortical transmission. NMDA spike/plateaus can induce shifts in the functional mode from burst to tonic by blockade of T-type calcium conductances. Moreover, in tonic mode, they can facilitate the transfer of retinal signals to cortex by depolarization of TC neurons. PMID:25122891

  4. Alterations of Resting State Functional Connectivity in the Default Network in Adolescents with Autism Spectrum Disorders

    OpenAIRE

    Weng, Shih-Jen; Wiggins, Jillian Lee; Peltier, Scott J.; Carrasco, Melisa; Risi, Susan; Lord, Catherine; Monk, Christopher S.

    2009-01-01

    Autism spectrum disorders (ASD) are associated with disturbances of neural connectivity. Functional connectivity between neural structures is typically examined within the context of a cognitive task, but also exists in the absence of a task (i.e., “rest”). Connectivity during rest is particularly active in a set of structures called the default network, which includes the posterior cingulate cortex (PCC), retrosplenial cortex, lateral parietal cortex/angular gyrus, medial prefrontal cortex, ...

  5. Resting state networks and consciousness Alterations of multiple resting state network connectivity in physiological, pharmacological and pathological consciousness states

    OpenAIRE

    Heine, Lizette; Soddu, Andrea; Gomez Jaramillo, Francisco Albeiro(*); Vanhaudenhuyse, Audrey; Tshibanda, Luaba; Thonnard, Marie; Charland-Verville, Vanessa; Kirsch, Murielle; Laureys, Steven; Demertzi, Athina

    2012-01-01

    In order to better understand the functional contribution of resting state activity to conscious cognition, we aimed to review increases and decreases in fMRI functional connectivity under physiological (sleep), pharmacological (anesthesia) and pathological altered states of consciousness, such as brain death, coma, vegetative state/unresponsive wakefulness syndrome, and minimally conscious state. The reviewed RSNs were the DMN, left and right executive control, salience, sensorimotor, audito...

  6. Altered resting state neuromotor connectivity in men with chronic prostatitis/chronic pelvic pain syndrome: A MAPP

    Directory of Open Access Journals (Sweden)

    Jason J. Kutch

    2015-01-01

    Full Text Available Brain network activity associated with altered motor control in individuals with chronic pain is not well understood. Chronic Prostatitis/Chronic Pelvic Pain Syndrome (CP/CPPS is a debilitating condition in which previous studies have revealed altered resting pelvic floor muscle activity in men with CP/CPPS compared to healthy controls. We hypothesized that the brain networks controlling pelvic floor muscles would also show altered resting state function in men with CP/CPPS. Here we describe the results of the first test of this hypothesis focusing on the motor cortical regions, termed pelvic-motor, that can directly activate pelvic floor muscles. A group of men with CP/CPPS (N = 28, as well as group of age-matched healthy male controls (N = 27, had resting state functional magnetic resonance imaging scans as part of the Multidisciplinary Approach to the Study of Chronic Pelvic Pain (MAPP Research Network study. Brain maps of the functional connectivity of pelvic-motor were compared between groups. A significant group difference was observed in the functional connectivity between pelvic-motor and the right posterior insula. The effect size of this group difference was among the largest effect sizes in functional connectivity between all pairs of 165 anatomically-defined subregions of the brain. Interestingly, many of the atlas region pairs with large effect sizes also involved other subregions of the insular cortices. We conclude that functional connectivity between motor cortex and the posterior insula may be among the most important markers of altered brain function in men with CP/CPPS, and may represent changes in the integration of viscerosensory and motor processing.

  7. Altered intrinsic functional connectivity of anterior and posterior insular regions in high-functioning participants with autism spectrum disorder

    OpenAIRE

    Ebisch, S.; Gallese, V.; Willems, R.; Mantini, D.; Groen, W; Romani, G; Buitelaar, J.; Bekkering, H

    2011-01-01

    Impaired understanding of others' sensations and emotions as well as abnormal experience of their own emotions and sensations is frequently reported in individuals with Autism Spectrum Disorder (ASD). It is hypothesized that these abnormalities are based on altered connectivity within “shared” neural networks involved in emotional awareness of self and others. The insula is considered a central brain region in a network underlying these functions, being located at the transition of informatio...

  8. More consistently altered connectivity patterns for cerebellum and medial temporal lobes than for amygdala and striatum in schizophrenia

    Directory of Open Access Journals (Sweden)

    Henning ePeters

    2016-02-01

    Full Text Available Background: Brain architecture can be divided into a cortico-thalamic system and modulatory ‘subcortical-cerebellar’ systems containing key structures such as striatum, medial temporal lobes (MTLs, amygdala, and cerebellum. Subcortical-cerebellar systems are known to be altered in schizophrenia. In particular, intrinsic functional brain connectivity (iFC between these systems has been consistently demonstrated in patients. While altered connectivity is known for each subcortical-cerebellar system separately, it is unknown whether subcortical-cerebellar systems’ connectivity patterns with the cortico-thalamic system are comparably altered across systems, i.e., if separate subcortical-cerebellar systems’ connectivity patterns are consistent across patients. Methods: To investigate this question, 18 patients with schizophrenia (3 unmedicated, 15 medicated with atypical antipsychotics and 18 healthy controls were assessed by resting-state functional magnetic resonance imaging (fMRI. Independent component analysis of fMRI data revealed cortical intrinsic brain networks (NWs with time courses representing proxies for cortico-thalamic system activity. Subcortical-cerebellar systems’ activity was represented by fMRI-based time courses of selected regions-of-interest (ROIs (i.e., striatum, MTL, amygdala, cerebellum. Correlation analysis among ROI- and NWs-time courses yielded individual connectivity matrices (i.e. connectivity between NW and ROIs (allROIs-NW, separateROI-NW, only NWs (NWs-NWs, and only ROIs (allROIs-allROIs as main outcome measures, which were classified by support-vector-machine-based leave-one-out cross-validation. Differences in classification accuracy were statistically evaluated for consistency across subjects and systems. Results: Correlation matrices based on allROIs-NWs yielded 91% classification accuracy, which was significantly superior to allROIs-allROIs and NWs-NWs (56% and 74%, respectively. Considering separate

  9. Altered Corticostriatal Connectivity and Exploration/Exploitation Imbalance Emerge as Intermediate Phenotypes for a Neonatal Dopamine Dysfunction.

    Science.gov (United States)

    Braz, Barbara Y; Galiñanes, Gregorio L; Taravini, Irene R E; Belforte, Juan E; Murer, M Gustavo

    2015-10-01

    Findings showing that neonatal lesions of the forebrain dopaminergic system in rodents lead to juvenile locomotor hyperactivity and learning deficits have been taken as evidence of face validity for the attention deficit hyperactivity disorder. However, the core cognitive and physiological intermediate phenotypes underlying this rodent syndrome remain unknown. Here we show that early postnatal dopaminergic lesions cause long-lasting deficits in exploitation of shelter, social and nutritional resources, and an imbalanced exploratory behavior, where nondirected local exploration is exacerbated, whereas sophisticated search behaviors involving sequences of goal directed actions are degraded. Importantly, some behavioral deficits do not diminish after adolescence but instead worsen or mutate, particularly those related to the exploration of wide and spatially complex environments. The in vivo electrophysiological recordings and morphological reconstructions of striatal medium spiny neurons reveal corticostriatal alterations associated to the behavioral phenotype. More specifically, an attenuation of corticostriatal functional connectivity, affecting medial prefrontal inputs more markedly than cingulate and motor inputs, is accompanied by a contraction of the dendritic arbor of striatal projection neurons in this animal model. Thus, dopaminergic neurons are essential during postnatal development for the functional and structural maturation of corticostriatal connections. From a bottom-up viewpoint, our findings suggest that neuropsychiatric conditions presumably linked to developmental alterations of the dopaminergic system should be evaluated for deficits in foraging decision making, alterations in the recruitment of corticostriatal circuits during foraging tasks, and structural disorganization of the frontostriatal connections. PMID:25872916

  10. The responsive amygdala: treatment-induced alterations in functional connectivity in pediatric complex regional pain syndrome.

    Science.gov (United States)

    Simons, L E; Pielech, M; Erpelding, N; Linnman, C; Moulton, E; Sava, S; Lebel, A; Serrano, P; Sethna, N; Berde, C; Becerra, L; Borsook, D

    2014-09-01

    The amygdala is a key brain region with efferent and afferent neural connections that involve complex behaviors such as pain, reward, fear, and anxiety. This study evaluated resting state functional connectivity of the amygdala with cortical and subcortical regions in a group of chronic pain patients (pediatric complex regional pain syndrome) with age-sex matched control subjects before and after intensive physical-biobehavioral pain treatment. Our main findings include (1) enhanced functional connectivity from the amygdala to multiple cortical, subcortical, and cerebellar regions in patients compared with control subjects, with differences predominantly in the left amygdala in the pretreated condition (disease state); (2) dampened hyperconnectivity from the left amygdala to the motor cortex, parietal lobe, and cingulate cortex after intensive pain rehabilitation treatment within patients with nominal differences observed among healthy control subjects from time 1 to time 2 (treatment effects); (3) functional connectivity to several regions key to fear circuitry (prefrontal cortex, bilateral middle temporal lobe, bilateral cingulate, hippocampus) correlated with higher pain-related fear scores; and (4) decreases in pain-related fear associated with decreased connectivity between the amygdala and the motor and somatosensory cortex, cingulate, and frontal areas. Our data suggest that there are rapid changes in amygdala connectivity after an aggressive treatment program in children with chronic pain and intrinsic amygdala functional connectivity activity serving as a potential indicator of treatment response. PMID:24861582

  11. Altered functional connectivity of the language network in ASD: Role of classical language areas and cerebellum

    Directory of Open Access Journals (Sweden)

    Marjolein Verly

    2014-01-01

    Full Text Available The development of language, social interaction and communicative skills is remarkably different in the child with autism spectrum disorder (ASD. Atypical brain connectivity has frequently been reported in this patient population. However, the neural correlates underlying their disrupted language development and functioning are still poorly understood. Using resting state fMRI, we investigated the functional connectivity properties of the language network in a group of ASD patients with clear comorbid language impairment (ASD-LI; N = 19 and compared them to the language related connectivity properties of 23 age-matched typically developing children. A verb generation task was used to determine language components commonly active in both groups. Eight joint language components were identified and subsequently used as seeds in a resting state analysis. Interestingly, both the interregional and the seed-based whole brain connectivity analysis showed preserved connectivity between the classical intrahemispheric language centers, Wernicke's and Broca's areas. In contrast however, a marked loss of functional connectivity was found between the right cerebellar region and the supratentorial regulatory language areas. Also, the connectivity between the interhemispheric Broca regions and modulatory control dorsolateral prefrontal region was found to be decreased. This disruption of normal modulatory control and automation function by the cerebellum may underlie the abnormal language function in children with ASD-LI.

  12. Altered temporal features of intrinsic connectivity networks in boys with combined type of attention deficit hyperactivity disorder

    International Nuclear Information System (INIS)

    Highlights: • Temporal patterns within ICNs provide new way to investigate ADHD brains. • ADHD exhibits enhanced temporal activities within and between ICNs. • Network-wise ALFF influences functional connectivity between ICNs. • Univariate patterns within ICNs are correlated to behavior scores. - Abstract: Purpose: Investigating the altered temporal features within and between intrinsic connectivity networks (ICNs) for boys with attention-deficit/hyperactivity disorder (ADHD); and analyzing the relationships between altered temporal features within ICNs and behavior scores. Materials and methods: A cohort of boys with combined type of ADHD and a cohort of age-matched healthy boys were recruited from ADHD-200 Consortium. All resting-state fMRI datasets were preprocessed and normalized into standard brain space. Using general linear regression, 20 ICNs were taken as spatial templates to analyze the time-courses of ICNs for each subject. Amplitude of low frequency fluctuations (ALFFs) were computed as univariate temporal features within ICNs. Pearson correlation coefficients and node strengths were computed as bivariate temporal features between ICNs. Additional correlation analysis was performed between temporal features of ICNs and behavior scores. Results: ADHD exhibited more activated network-wise ALFF than normal controls in attention and default mode-related network. Enhanced functional connectivities between ICNs were found in ADHD. The network-wise ALFF within ICNs might influence the functional connectivity between ICNs. The temporal pattern within posterior default mode network (pDMN) was positively correlated to inattentive scores. The subcortical network, fusiform-related DMN and attention-related networks were negatively correlated to Intelligence Quotient (IQ) scores. Conclusion: The temporal low frequency oscillations of ICNs in boys with ADHD were more activated than normal controls during resting state; the temporal features within ICNs could

  13. Altered temporal features of intrinsic connectivity networks in boys with combined type of attention deficit hyperactivity disorder

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xun-Heng, E-mail: xhwang@hdu.edu.cn [College of Life Information Science and Instrument Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096 (China); Li, Lihua [College of Life Information Science and Instrument Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China)

    2015-05-15

    Highlights: • Temporal patterns within ICNs provide new way to investigate ADHD brains. • ADHD exhibits enhanced temporal activities within and between ICNs. • Network-wise ALFF influences functional connectivity between ICNs. • Univariate patterns within ICNs are correlated to behavior scores. - Abstract: Purpose: Investigating the altered temporal features within and between intrinsic connectivity networks (ICNs) for boys with attention-deficit/hyperactivity disorder (ADHD); and analyzing the relationships between altered temporal features within ICNs and behavior scores. Materials and methods: A cohort of boys with combined type of ADHD and a cohort of age-matched healthy boys were recruited from ADHD-200 Consortium. All resting-state fMRI datasets were preprocessed and normalized into standard brain space. Using general linear regression, 20 ICNs were taken as spatial templates to analyze the time-courses of ICNs for each subject. Amplitude of low frequency fluctuations (ALFFs) were computed as univariate temporal features within ICNs. Pearson correlation coefficients and node strengths were computed as bivariate temporal features between ICNs. Additional correlation analysis was performed between temporal features of ICNs and behavior scores. Results: ADHD exhibited more activated network-wise ALFF than normal controls in attention and default mode-related network. Enhanced functional connectivities between ICNs were found in ADHD. The network-wise ALFF within ICNs might influence the functional connectivity between ICNs. The temporal pattern within posterior default mode network (pDMN) was positively correlated to inattentive scores. The subcortical network, fusiform-related DMN and attention-related networks were negatively correlated to Intelligence Quotient (IQ) scores. Conclusion: The temporal low frequency oscillations of ICNs in boys with ADHD were more activated than normal controls during resting state; the temporal features within ICNs could

  14. The Responsive Amygdala: Treatment-induced Alterations in Functional Connectivity in Pediatric Complex Regional Pain Syndrome

    OpenAIRE

    Simons, LE; Pielech, M; Erpelding, N; Linnman, C; Moulton, E; Sava, S; Lebel, A.; Serrano, P.; Sethna, N; Berde, C; Becerra, L.; Borsook, D.

    2014-01-01

    The amygdala is a key brain region with efferent and afferent neural connections that involve complex behaviors such as pain, reward, fear and anxiety. This study evaluated resting state functional connectivity of the amygdala with cortical and subcortical regions in a group of chronic pain patients (pediatric complex regional pain syndrome) with age-gender matched controls before and after intensive physical-biobehavioral pain treatment. Our main findings include (1) enhanced ...

  15. Altered neural connectivity in excitatory and inhibitory cortical circuits in autism

    OpenAIRE

    Basilis Zikopoulos

    2013-01-01

    Converging evidence from diverse studies suggests that atypical brain connectivity in autism affects in distinct ways short- and long-range cortical pathways, disrupting neural communication and the balance of excitation and inhibition. This hypothesis is based mostly on functional non-invasive studies that show atypical synchronization and connectivity patterns between cortical areas in children and adults with autism. Indirect methods to study the course and integrity of major brain pathway...

  16. Altered network connectivity in frontotemporal dementia with C9orf72 hexanucleotide repeat expansion.

    Science.gov (United States)

    Lee, Suzee E; Khazenzon, Anna M; Trujillo, Andrew J; Guo, Christine C; Yokoyama, Jennifer S; Sha, Sharon J; Takada, Leonel T; Karydas, Anna M; Block, Nikolas R; Coppola, Giovanni; Pribadi, Mochtar; Geschwind, Daniel H; Rademakers, Rosa; Fong, Jamie C; Weiner, Michael W; Boxer, Adam L; Kramer, Joel H; Rosen, Howard J; Miller, Bruce L; Seeley, William W

    2014-11-01

    Hexanucleotide repeat expansion in C9orf72 represents the most common genetic cause of familial and sporadic behavioural variant frontotemporal dementia. Previous studies show that some C9orf72 carriers with behavioural variant frontotemporal dementia exhibit distinctive atrophy patterns whereas others show mild or undetectable atrophy despite severe behavioural impairment. To explore this observation, we examined intrinsic connectivity network integrity in patients with or without the C9orf72 expansion. We studied 28 patients with behavioural variant frontotemporal dementia, including 14 C9orf72 mutation carriers (age 58.3 ± 7.7 years, four females) and 14 non-carriers (age 60.8 ± 6.9 years, four females), and 14 age- and sex-matched healthy controls. Both patient groups included five patients with comorbid motor neuron disease. Neuropsychological data, structural brain magnetic resonance imaging, and task-free functional magnetic resonance imaging were obtained. Voxel-based morphometry delineated atrophy patterns, and seed-based intrinsic connectivity analyses enabled group comparisons of the salience, sensorimotor, and default mode networks. Single-patient analyses were used to explore network imaging as a potential biomarker. Despite contrasting atrophy patterns in C9orf72 carriers versus non-carriers, patient groups showed topographically similar connectivity reductions in the salience and sensorimotor networks. Patients without C9orf72 expansions exhibited increases in default mode network connectivity compared to controls and mutation carriers. Across all patients, behavioural symptom severity correlated with diminished salience network connectivity and heightened default mode network connectivity. In C9orf72 carriers, salience network connectivity reduction correlated with atrophy in the left medial pulvinar thalamic nucleus, and this region further showed diminished connectivity with key salience network hubs. Single-patient analyses revealed salience

  17. Altered resting-state functional connectivity in post-traumatic stress disorder: a perfusion MRI study

    Science.gov (United States)

    Li, Baojuan; Liu, Jian; Liu, Yang; Lu, Hong-Bing; Yin, Hong

    2013-03-01

    The majority of studies on posttraumatic stress disorder (PTSD) so far have focused on delineating patterns of activations during cognitive processes. Recently, more and more researches have started to investigate functional connectivity in PTSD subjects using BOLD-fMRI. Functional connectivity analysis has been demonstrated as a powerful approach to identify biomarkers of different brain diseases. This study aimed to detect resting-state functional connectivity abnormities in patients with PTSD using arterial spin labeling (ASL) fMRI. As a completely non-invasive technique, ASL allows quantitative estimates of cerebral blood flow (CBF). Compared with BOLD-fMRI, ASL fMRI has many advantages, including less low-frequency signal drifts, superior functional localization, etc. In the current study, ASL images were collected from 10 survivors in mining disaster with recent onset PTSD and 10 survivors without PTSD. Decreased regional CBF in the right middle temporal gyrus, lingual gyrus, and postcentral gyrus was detected in the PTSD patients. Seed-based resting-state functional connectivity analysis was performed using an area in the right middle temporal gyrus as region of interest. Compared with the non-PTSD group, the PTSD subjects demonstrated increased functional connectivity between the right middle temporal gyrus and the right superior temporal gyrus, the left middle temporal gyrus. Meanwhile, decreased functional connectivity between the right middle temporal gyrus and the right postcentral gyrus, the right superior parietal lobule was also found in the PTSD patients. This is the first study which investigated resting-state functional connectivity in PTSD using ASL images. The results may provide new insight into the neural substrates of PTSD.

  18. Altered effective connectivity within default mode network in major depression disorder

    Science.gov (United States)

    Li, Liang; Li, Baojuan; Bai, Yuanhan; Wang, Huaning; Zhang, Linchuan; Cui, Longbiao; Lu, Hongbing

    2016-03-01

    Understanding the neural basis of Major Depressive Disorder (MDD) is important for the diagnosis and treatment of this mental disorder. The default mode network (DMN) is considered to be highly involved in the MDD. To find directed interaction between DMN regions associated with the development of MDD, the effective connectivity within the DMN of the MDD patients and matched healthy controls was estimated by using a recently developed spectral dynamic causal modeling. Sixteen patients with MDD and sixteen matched healthy control subjects were included in this study. While the control group underwent the resting state fMRI scan just once, all patients underwent resting state fMRI scans before and after two months' treatment. The spectral dynamic causal modeling was used to estimate directed connections between four DMN nodes. Statistical analysis on connection strengths indicated that efferent connections from the medial frontal cortex (MFC) to posterior cingulate cortex (PCC) and to right parietal cortex (RPC) were significant higher in pretreatment MDD patients than those of the control group. After two-month treatment, the efferent connections from the MFC decreased significantly, while those from the left parietal cortex (LPC) to MFC, PCC and RPC showed a significant increase. These findings suggest that the MFC may play an important role for inhibitory conditioning of the DMN, which was disrupted in MDD patients. It also indicates that disrupted suppressive function of the MFC could be effectively restored after two-month treatment.

  19. Different Resting-State Functional Connectivity Alterations in Smokers and Nonsmokers with Internet Gaming Addiction

    Directory of Open Access Journals (Sweden)

    Xue Chen

    2014-01-01

    Full Text Available This study investigated changes in resting-state functional connectivity (rsFC of posterior cingulate cortex (PCC in smokers and nonsmokers with Internet gaming addiction (IGA. Twenty-nine smokers with IGA, 22 nonsmokers with IGA, and 30 healthy controls (HC group underwent a resting-state fMRI scan. PCC connectivity was determined in all subjects by investigating synchronized low-frequency fMRI signal fluctuations using a temporal correlation method. Compared with the nonsmokers with IGA, the smokers with IGA exhibited decreased rsFC with PCC in the right rectus gyrus. Left middle frontal gyrus exhibited increased rsFC. The PCC connectivity with the right rectus gyrus was found to be negatively correlated with the CIAS scores in the smokers with IGA before correction. Our results suggested that smokers with IGA had functional changes in brain areas related to motivation and executive function compared with the nonsmokers with IGA.

  20. Altered resting-state functional connectivity in patients with chronic bilateral vestibular failure

    Directory of Open Access Journals (Sweden)

    Martin Göttlich

    2014-01-01

    Using whole brain resting-state connectivity analysis in BVF patients we show that enduring bilateral deficient or missing vestibular input leads to changes in resting-state connectivity of the brain. These changes in the resting brain are robust and task-independent as they were found in the absence of sensory stimulation and without a region-related a priori hypothesis. Therefore they may indicate a fundamental disease-related change in the resting brain. They may account for the patients' persistent deficits in visuo-spatial attention, spatial orientation and unsteadiness. The relation of increasing connectivity in the inferior parietal lobe, specifically SMG, to improvement of VOR during active head movements reflects cortical plasticity in BVF and may play a clinical role in vestibular rehabilitation.

  1. Characterization of phase transition in the thalamocortical system during anesthesia-induced loss of consciousness.

    Directory of Open Access Journals (Sweden)

    Eunjin Hwang

    Full Text Available The thalamocortical system plays a key role in the breakdown or emergence of consciousness, providing bottom-up information delivery from sensory afferents and integrating top-down intracortical and thalamocortical reciprocal signaling. A fundamental and so far unanswered question for cognitive neuroscience remains whether the thalamocortical switch for consciousness works in a discontinuous manner or not. To unveil the nature of thalamocortical system phase transition in conjunction with consciousness transition, ketamine/xylazine was administered unobtrusively to ten mice under a forced working test with motion tracker, and field potentials in the sensory and motor-related cortex and thalamic nuclei were concomitantly collected. Sensory and motor-related thalamocortical networks were found to behave continuously at anesthesia induction and emergence, as evidenced by a sigmoidal response function with respect to anesthetic concentration. Hyperpolarizing and depolarizing susceptibility diverged, and a non-discrete change of transitional probability occurred at transitional regimes, which are hallmarks of continuous phase transition. The hyperpolarization curve as a function of anesthetic concentration demonstrated a hysteresis loop, with a significantly higher anesthetic level for transition to the down state compared to transition to the up state. Together, our findings concerning the nature of phase transition in the thalamocortical system during consciousness transition further elucidate the underlying basis for the ambiguous borderlines between conscious and unconscious brains. Moreover, our novel analysis method can be applied to systematic and quantitative handling of subjective concepts in cognitive neuroscience.

  2. Thalamocortical input onto layer 5 pyramidal neurons measured using quantitative large-scale array tomography.

    Science.gov (United States)

    Rah, Jong-Cheol; Bas, Erhan; Colonell, Jennifer; Mishchenko, Yuriy; Karsh, Bill; Fetter, Richard D; Myers, Eugene W; Chklovskii, Dmitri B; Svoboda, Karel; Harris, Timothy D; Isaac, John T R

    2013-01-01

    The subcellular locations of synapses on pyramidal neurons strongly influences dendritic integration and synaptic plasticity. Despite this, there is little quantitative data on spatial distributions of specific types of synaptic input. Here we use array tomography (AT), a high-resolution optical microscopy method, to examine thalamocortical (TC) input onto layer 5 pyramidal neurons. We first verified the ability of AT to identify synapses using parallel electron microscopic analysis of TC synapses in layer 4. We then use large-scale array tomography (LSAT) to measure TC synapse distribution on L5 pyramidal neurons in a 1.00 × 0.83 × 0.21 mm(3) volume of mouse somatosensory cortex. We found that TC synapses primarily target basal dendrites in layer 5, but also make a considerable input to proximal apical dendrites in L4, consistent with previous work. Our analysis further suggests that TC inputs are biased toward certain branches and, within branches, synapses show significant clustering with an excess of TC synapse nearest neighbors within 5-15 μm compared to a random distribution. Thus, we show that AT is a sensitive and quantitative method to map specific types of synaptic input on the dendrites of entire neurons. We anticipate that this technique will be of wide utility for mapping functionally-relevant anatomical connectivity in neural circuits. PMID:24273494

  3. Thalamocortical input onto layer 5 pyramidal neurons measured using quantitative large-scale array tomography

    Directory of Open Access Journals (Sweden)

    Jong-Cheol eRah

    2013-11-01

    Full Text Available The subcellular locations of synapses on pyramidal neurons strongly influences dendritic integration and synaptic plasticity. Despite this, there is little quantitative data on spatial distributions of specific types of synaptic input. Here we use array tomography (AT, a high-resolution optical microscopy method, to examine thalamocortical (TC input onto layer 5 pyramidal neurons. We first verified the ability of AT to identify synapses using parallel electron microscopic analysis of TC synapses in layer 4. We then use large-scale AT to measure TC synapse distribution on L5 pyramdial neurons in a 1.00 x 0.83 x 0.21 mm^3 volume of mouse somatosensory cortex. We found that TC synapses primarily target basal dendrites in layer 5, but also make a considerable input to proximal apical dendrites in L4, consistent with previous work. Our analysis further suggests that TC inputs are biased towards certain branches and, within branches, synapses show significant clustering with an excess of TC synapse nearest neighbors within 5-15 μm compared to a random distribution. Thus, we show that AT is a sensitive and quantitative method to map specific types of synaptic input on the dendrites of entire neurons. We anticipate that this technique will be of wide utility for mapping functionally-relevant anatomical connectivity in neural circuits.

  4. Microstructure alterations in beef intramuscular connective tissue caused by hydrodynamic pressure processing

    Science.gov (United States)

    Scanning electron microscopy (SEM) was utilized to evaluate microstructural changes in intramuscular connective tissue of beef semimembranosus muscle subjected to hydrodynamic pressure processing (HDP). Samples were HDP treated in a plastic container (HDP-PC) or a steel commercial unit (HDP-CU). C...

  5. Alterations in conflict monitoring are related to functional connectivity in Parkinson's disease.

    Science.gov (United States)

    Rosenberg-Katz, Keren; Maidan, Inbal; Jacob, Yael; Giladi, Nir; Mirelman, Anat; Hausdorff, Jeffrey M

    2016-09-01

    Patients with Parkinson's disease (PD) have difficulties in executive functions including conflict monitoring. The neural mechanisms underlying these difficulties are not yet fully understood. In order to examine the neural mechanisms related to conflict monitoring in PD, we evaluated 35 patients with PD and 20 healthy older adults while they performed a word-color Stroop paradigm in the MRI. Specifically, we focused on changes between the groups in task-related functional connectivity using psycho-physiological interaction (PPI) analysis. The anterior cingulate cortex (ACC), which is a brain node previously associated with the Stroop paradigm, was selected as the seed region for this analysis. Patients with PD, as compared to healthy controls, had reduced task-related functional connectivity between the ACC and parietal regions including the precuneus and inferior parietal lobe. This was seen only in the incongruent Stroop condition. A higher level of connectivity between the ACC and precuneus was correlated with a lower error rate in the conflicting, incongruent Stroop condition in the healthy controls, but not in the patients with PD. Furthermore, the patients also had reduced functional connectivity between the ACC and the superior frontal gyrus which was present in both the incongruent and congruent task condition. The present findings shed light on brain mechanisms that are apparently associated with specific cognitive difficulties in patients with PD. Among patients with PD, impaired conflict monitoring processing within the ACC-based fronto-parietal network may contribute to difficulties under increased executive demands. PMID:27453508

  6. Effective connectivity of hippocampal neural network and its alteration in Mg2+-free epilepsy model.

    Directory of Open Access Journals (Sweden)

    Xin-Wei Gong

    Full Text Available Understanding the connectivity of the brain neural network and its evolution in epileptiform discharges is meaningful in the epilepsy researches and treatments. In the present study, epileptiform discharges were induced in rat hippocampal slices perfused with Mg2+-free artificial cerebrospinal fluid. The effective connectivity of the hippocampal neural network was studied by comparing the normal and epileptiform discharges recorded by a microelectrode array. The neural network connectivity was constructed by using partial directed coherence and analyzed by graph theory. The transition of the hippocampal network topology from control to epileptiform discharges was demonstrated. Firstly, differences existed in both the averaged in- and out-degree between nodes in the pyramidal cell layer and the granule cell layer, which indicated an information flow from the pyramidal cell layer to the granule cell layer during epileptiform discharges, whereas no consistent information flow was observed in control. Secondly, the neural network showed different small-worldness in the early, middle and late stages of the epileptiform discharges, whereas the control network did not show the small-world property. Thirdly, the network connectivity began to change earlier than the appearance of epileptiform discharges and lasted several seconds after the epileptiform discharges disappeared. These results revealed the important network bases underlying the transition from normal to epileptiform discharges in hippocampal slices. Additionally, this work indicated that the network analysis might provide a useful tool to evaluate the neural network and help to improve the prediction of seizures.

  7. Altered resting-state functional connectivity of the insula in young adults with Internet gaming disorder.

    Science.gov (United States)

    Zhang, Jin-Tao; Yao, Yuan-Wei; Li, Chiang-Shan R; Zang, Yu-Feng; Shen, Zi-Jiao; Liu, Lu; Wang, Ling-Jiao; Liu, Ben; Fang, Xiao-Yi

    2016-05-01

    The insula has been implicated in salience processing, craving, and interoception, all of which are critical to the clinical manifestations of drug and behavioral addiction. In this functional magnetic resonance imaging (fMRI) study, we examined resting-state functional connectivity (rsFC) of the insula and its association with Internet gaming characteristics in 74 young adults with Internet gaming disorder (IGD) and 41 age- and gender-matched healthy control subjects (HCs). In comparison with HCs, IGD subjects (IGDs) exhibited enhanced rsFC between the anterior insula and a network of regions including anterior cingulate cortex (ACC), putamen, angular gyrus, and precuneous, which are involved in salience, craving, self-monitoring, and attention. IGDs also demonstrated significantly stronger rsFC between the posterior insula and postcentral gyrus, precentral gyrus, supplemental motor area, and superior temporal gyrus (STG), which are involved in interoception, movement control, and auditory processing. Furthermore, IGD severity was positively associated with connectivity between the anterior insula and angular gyrus, and STG, and with connectivity between the posterior insula and STG. Duration of Internet gaming was positively associated with connectivity between the anterior insula and ACC. These findings highlight a key role of the insula in manifestation of the core symptoms of IGD and the importance to examine functional abnormalities of the anterior and posterior insula separately in IGDs. PMID:25899520

  8. Altered resting-state network connectivity in stroke patients with and without apraxia of speech

    Directory of Open Access Journals (Sweden)

    Anneliese B. New

    2015-01-01

    Full Text Available Motor speech disorders, including apraxia of speech (AOS, account for over 50% of the communication disorders following stroke. Given its prevalence and impact, and the need to understand its neural mechanisms, we used resting state functional MRI to examine functional connectivity within a network of regions previously hypothesized as being associated with AOS (bilateral anterior insula (aINS, inferior frontal gyrus (IFG, and ventral premotor cortex (PM in a group of 32 left hemisphere stroke patients and 18 healthy, age-matched controls. Two expert clinicians rated severity of AOS, dysarthria and nonverbal oral apraxia of the patients. Fifteen individuals were categorized as AOS and 17 were AOS-absent. Comparison of connectivity in patients with and without AOS demonstrated that AOS patients had reduced connectivity between bilateral PM, and this reduction correlated with the severity of AOS impairment. In addition, AOS patients had negative connectivity between the left PM and right aINS and this effect decreased with increasing severity of non-verbal oral apraxia. These results highlight left PM involvement in AOS, begin to differentiate its neural mechanisms from those of other motor impairments following stroke, and help inform us of the neural mechanisms driving differences in speech motor planning and programming impairment following stroke.

  9. Alterations in Functional and Structural Connectivity in Pediatric-Onset Multiple Sclerosis.

    Directory of Open Access Journals (Sweden)

    Nadine Akbar

    Full Text Available Reduced white matter (WM integrity is a fundamental aspect of pediatric multiple sclerosis (MS, though relations to resting-state functional MRI (fMRI connectivity remain unknown. The objective of this study was to relate diffusion-tensor imaging (DTI measures of WM microstructural integrity to resting-state network (RSN functional connectivity in pediatric-onset MS to test the hypothesis that abnormalities in RSN reflects changes in structural integrity.This study enrolled 19 patients with pediatric-onset MS (mean age = 19, range 13-24 years, 14 female, mean disease duration = 65 months, mean age of disease onset = 13 years and 16 age- and sex-matched healthy controls (HC. All subjects underwent 3.0T anatomical and functional MRI which included DTI and resting-state acquisitions. DTI processing was performed using Tract-Based Spatial Statistics (TBSS. RSNs were identified using Independent Components Analysis, and a dual regression technique was used to detect between-group differences in the functional connectivity of RSNs. Correlations were investigated between DTI measures and RSN connectivity.Lower fractional anisotropy (FA was observed in the pediatric-onset MS group compared to HC group within the entire WM skeleton, and particularly the corpus callosum, posterior thalamic radiation, corona radiata and sagittal stratum (all p < .01, corrected. Relative to HCs, MS patients showed higher functional connectivity involving the anterior cingulate cortex and right precuneus of the default-mode network, as well as involving the anterior cingulate cortex and left middle frontal gyrus of the frontoparietal network (all p < .005 uncorrected, k≥30 voxels. Higher functional connectivity of the right precuneus within the default-mode network was associated with lower FA of the entire WM skeleton (r = -.525, p = .02, genu of the corpus callosum (r = -.553, p = .014, and left (r = -.467, p = .044 and right (r = -.615, p = .005 sagittal stratum.Loss of

  10. Presynaptic adenosine receptor-mediated regulation of diverse thalamocortical short-term plasticity in the mouse whisker pathway

    Directory of Open Access Journals (Sweden)

    Giovanni eFerrati

    2016-02-01

    Full Text Available Short-term synaptic plasticity (STP sets the sensitivity of a synapse to incoming activity and determines the temporal patterns that it best transmits. In driver thalamocortical (TC synaptic populations, STP is dominated by depression during stimulation from rest. However, during ongoing stimulation, lemniscal TC connections onto layer 4 neurons in mouse barrel cortex express variable STP. Each synapse responds to input trains with a distinct pattern of depression or facilitation around its mean steady-state response. As a result, in common with other synaptic populations, lemniscal TC synapses express diverse rather than uniform dynamics, allowing for a rich representation of temporally varying stimuli. Here we show that this STP diversity is regulated presynaptically. Presynaptic adenosine receptors of the A1R type, but not kainate receptors, modulate STP behavior. Blocking the receptors does not eliminate diversity, indicating that diversity is related to heterogeneous expression of multiple mechanisms in the pathway from presynaptic calcium influx to neurotransmitter release.

  11. Experience-dependent plasticity in white matter microstructure: reasoning training alters structural connectivity

    OpenAIRE

    Mackey, Allyson P.; Whitaker, Kirstie J.; Bunge, Silvia A.

    2012-01-01

    Diffusion tensor imaging (DTI) techniques have made it possible to investigate white matter plasticity in humans. Changes in DTI measures, principally increases in fractional anisotropy (FA), have been observed following training programs as diverse as juggling, meditation, and working memory. Here, we sought to test whether three months of reasoning training could alter white matter microstructure. We recruited participants (n = 23) who were enrolled in a course to prepare for the Law School...

  12. Experience-dependent plasticity in white matter microstructure: Reasoning training alters structural connectivity

    OpenAIRE

    Mackey, Allyson P.; Whitaker, Kirstie J.; Bunge, Silvia A.

    2012-01-01

    Diffusion tensor imaging (DTI) techniques have made it possible to investigate white matter plasticity in humans. Changes in DTI measures, principally increases in fractional anisotropy (FA), have been observed following training programs as diverse as juggling, meditation, and working memory. Here, we sought to test whether three months of reasoning training could alter white matter microstructure. We recruited participants (n=23) who were enrolled in a course to prepare for the Law School A...

  13. Microstructure alterations in beef intramuscular connective tissue caused by hydrodynamic pressure processing.

    Science.gov (United States)

    Zuckerman, H; Bowker, B C; Eastridge, J S; Solomon, M B

    2013-11-01

    Scanning electron microscopy (SEM) was utilized to evaluate microstructural changes in intramuscular connective tissue of beef semimembranosus muscle subjected to hydrodynamic pressure processing (HDP). Samples were HDP treated in a plastic container (HDP-PC) or a steel commercial unit (HDP-CU). Control and HDP samples were obtained immediately post-treatment and after 14days of aging for SEM and Warner-Bratzler shear force (WBSF) analysis. Immediately post-treatment, HDP treated samples exhibited lower (Ptenderization of HDP. PMID:23803280

  14. Alterations of functional and structural connectivity of freezing of gait in Parkinson's disease.

    Science.gov (United States)

    Wang, Min; Jiang, Siming; Yuan, Yongsheng; Zhang, Li; Ding, Jian; Wang, Jianwei; Zhang, Jiejin; Zhang, Kezhong; Wang, Jie

    2016-08-01

    This study assessed the patterns of functional and structural connectivity abnormalities in patients with Parkinson's disease with freezing of gait (PD FOG+) compared with those without freezing (PD FOG-) and healthy controls (HCs). Resting state functional MRI (rs-fMRI) and diffusion tensor imaging (DTI) scans were obtained from 14 PD FOG+, 16 PD FOG- and 16HCs. Between-group difference in pedunculopontine nucleus (PPN) functional connectivity (FC) was performed to assess FC dysfunction. Tract-based spatial statistics (TBSS) was applied to compare white matter (WM) impairment across the whole brain between groups. PD FOG+ patients exhibited abnormal PPN FC, compared with HCs and with PD FOG-, mainly in the corticopontine-cerebellar pathways (in the bilateral cerebellum and in the pons), as well as the visual temporal areas (in the right middle temporal gyrus and in the right inferior temporal gyrus). Moreover, PD FOG+ patients, showed more pronounced WM abnormalities, relative to controls, including the interhemispheric connections of corpus callosum, the cortico-cortical WM tracts of the cingulum, the superior longitudinal fasciculus and inferior fronto-occipital fasciculus, the corticofugal tract (cerebral peduncles, internal capsule, corona radiata), as well as tracts connecting the thalamus (thalamic radiation). This study suggests that FOG in PD is associated with abnormal PPN FC network, mainly affecting the corticopontine-cerebellar pathways as well as visual temporal areas involved in visual processing, and with diffuse WM deficits extending to motor, sensory and cognitive regions. Combining rs-fMRI and DTI method, our study should advance the understanding of neural mechanisms underlying FOG in PD. PMID:27230857

  15. Stimulating brain tissue with bright light alters functional connectivity in brain at the resting state

    OpenAIRE

    Timo Takala; Markku Timonen; Juha Nikkinen; Jukka Remes; Antti Aunio; Ahmed Abou-Elseoud; Juuso Nissilä; Tuomo Starck; Osmo Tervonen; Vesa Kiviniemi

    2012-01-01

    Light is considered to modulate human brain function only via the retinal pathway, a way of thinking that we aimed to challenge in the present study. Literature provides evidence of inherent phototransduction for instance in the rat brain and there are potentially photosensitive opsin proteins like melanopsin and panopsin in the human brain too. In order to investigate a short term response, functional connectivity changes of the brain were studied in the resting state with functional magneti...

  16. Evidence for Altered Basal Ganglia-Brainstem Connections in Cervical Dystonia

    OpenAIRE

    Kuster, John K.; Woodman, Sandra C.; Kirlic, Namik; Multhaupt-Buell, Trisha J.; Makris, Nikos; Parent, Martin; Sjalander, Greta; Breiter, Henry; Blood, Anne J.; Makhlouf, Miriam Louise; Sudarsky, Lewis Richard; Breiter, Hans Charles; Sharma, Nutan

    2012-01-01

    Background: There has been increasing interest in the interaction of the basal ganglia with the cerebellum and the brainstem in motor control and movement disorders. In addition, it has been suggested that these subcortical connections with the basal ganglia may help to coordinate a network of regions involved in mediating posture and stabilization. While studies in animal models support a role for this circuitry in the pathophysiology of the movement disorder dystonia, thus far, there is onl...

  17. Alteration of functional connectivity in autism spectrum disorder: effect of age and anatomical distance

    Science.gov (United States)

    Long, Zhiliang; Duan, Xujun; Mantini, Dante; Chen, Huafu

    2016-01-01

    Autism spectrum disorder (ASD) is associated with disruption of local- and long-range functional connectivity (FC). The direction of those changes in FC (increase or decrease), however, is inconsistent across studies. Further, age-dependent changes of distance-specific FC in ASD remain unclear. In this study, we used resting-state functional magnetic resonance imaging data from sixty-four typical controls (TC) and sixty-four patients with ASD, whom we further classified into child (18 years). Functional connectivity (FC) analysis was conducted at voxel level. We employed a three-way analysis of covariance on FC to conduct statistical analyses. Results revealed that patients with ASD had lower FC than TC in cerebellum, fusiform gyrus, inferior occipital gyrus and posterior inferior temporal gyrus. Significant diagnosis-by-distance interaction was observed in ASD patients with reduced short-range and long-range FC in posterior cingulate cortex and medial prefrontal cortex. Importantly, we found significant diagnosis-by-age-by-distance interaction in orbitofrontal cortex with short-range FC being lower in autistic children, but –to a less extent– higher in autistic adults. Our findings suggest a major role of connection length in development changes of FC in ASD. We hope our study will facilitate deeper understanding of the neural mechanisms underlying ASD. PMID:27194227

  18. Altered functional connectivity of fusiform gyrus in subjects with amnestic mild cognitive impairment: a resting state fMRI study

    Directory of Open Access Journals (Sweden)

    Liyu Huang

    2015-08-01

    Full Text Available Visual cognition such as face recognition requires a high level of functional interaction between distributed regions of a network. It has been reported that the fusiform gyrus (FG is an important brain area involved in facial cognition; altered connectivity of FG to some other regions may lead to a deficit in visual cognition especially face recognition. However, whether functional connectivity between the FG and other brain regions changes remains unclear during the resting state in amnestic mild cognitive impairment (aMCI subjects. Here, we employed a resting state functional MRI (fMRI to examine changes in functional connectivity of left/right FG comparing aMCI patients with age-matched control subjects. Forty-eight aMCI and thirty-eight control subjects from the Alzheimer’s disease Neuroimaging Initiative (ADNI were analyzed. We focused on the correlation between low frequency fMRI signal fluctuations in the FG and those in all other brain regions. Compared to the control group, we found some discrepant regions in the aMCI group which presented increased or decreased connectivity with the left/right FG including the left precuneus, left lingual gyrus, right thalamus, supramarginal gyrus, left supplementary motor area, left inferior temporal gyrus, and left parahippocampus. More importantly, we also obtained that both left and right FG have increased functional connections with the left middle occipital gyrus (MOG and right anterior cingulate gyrus (ACC in aMCI patients. That was not a coincidence and might imply that the MOG and ACC also play a critical role in visual cognition, especially face recognition. These findings in a large part supported our hypothesis and provided a new insight in understanding the important subtype of MCI.

  19. Modification of a Colliculo-thalamocortical Mouse Brain Slice, Incorporating 3-D printing of Chamber Components and Multi-scale Optical Imaging.

    Science.gov (United States)

    Slater, Bernard J; Fan, Anthony Y; Stebbings, Kevin A; Saif, M Taher A; Llano, Daniel A

    2015-01-01

    The ability of the brain to process sensory information relies on both ascending and descending sets of projections. Until recently, the only way to study these two systems and how they interact has been with the use of in vivo preparations. Major advances have been made with acute brain slices containing the thalamocortical and cortico-thalamic pathways in the somatosensory, visual, and auditory systems. With key refinements to our recent modification of the auditory thalamocortical slice(1), we are able to more reliably capture the projections between most of the major auditory midbrain and forebrain structures: the inferior colliculus (IC), medial geniculate body (MGB), thalamic reticular nucleus (TRN), and the auditory cortex (AC). With portions of all these connections retained, we are able to answer detailed questions that complement the questions that can be answered with in vivo preparations. The use of flavoprotein autofluorescence imaging enables us to rapidly assess connectivity in any given slice and guide the ensuing experiment. Using this slice in conjunction with recording and imaging techniques, we are now better equipped to understand how information processing occurs at each point in the auditory forebrain as information ascends to the cortex, and the impact of descending cortical modulation. 3-D printing to build slice chamber components permits double-sided perfusion and broad access to networks within the slice and maintains the widespread connections key to fully utilizing this preparation. PMID:26437382

  20. Alterations in sociability and functional brain connectivity caused by early-life seizures are prevented by bumetanide.

    Science.gov (United States)

    Holmes, Gregory L; Tian, Chengju; Hernan, Amanda E; Flynn, Sean; Camp, Devon; Barry, Jeremy

    2015-05-01

    There is a well-described association between infantile epilepsy and pervasive cognitive and behavioral deficits, including a high incidence of autism spectrum disorders. Despite the robustness of the relationship between early-life seizures and the development of autism, the pathophysiological mechanism by which this occurs has not been explored. As a result of increasing evidence that autism is a disorder of brain connectivity we hypothesized that early-life seizures would interrupt normal brain connectivity during brain maturation and result in an autistic phenotype. Normal rat pups underwent recurrent flurothyl-induced seizures from postnatal (P)days 5-14 and then tested, along with controls, for developmental alterations of development brain oscillatory activity from P18-P25. Specifically we wished to understand how normal changes in rhythmicity in and between brain regions change as a function of age and if this rhythmicity is altered or interrupted by early life seizures. In rat pups with early-life seizures, field recordings from dorsal and ventral hippocampus and prefrontal cortex demonstrated marked increase in coherence as well as a decrease in voltage correlation at all bandwidths compared to controls while there were minimal differences in total power and relative power spectral densities. Rats with early-life seizures had resulting impairment in the sociability and social novelty tests but demonstrated no evidence of increased activity or generalized anxiety as measured in the open field. In addition, rats with early-life seizures had lower seizure thresholds than controls, indicating long-standing alterations in the excitatory/inhibition balance. Bumetanide, a pharmacological agent that blocks the activity of NKCC1 and induces a significant shift of ECl toward more hyperpolarized values, administration at the time of the seizures precluded the subsequent abnormalities in coherence and voltage correlation and resulted in normal sociability and seizure

  1. Altered periaqueductal gray resting state functional connectivity in migraine and the modulation effect of treatment.

    Science.gov (United States)

    Li, Zhengjie; Liu, Mailan; Lan, Lei; Zeng, Fang; Makris, Nikos; Liang, Yilin; Guo, Taipin; Wu, Feng; Gao, Yujie; Dong, Mingkai; Yang, Jie; Li, Ying; Gong, Qiyong; Liang, Fanrong; Kong, Jian

    2016-01-01

    The aims of this study were to 1) compare resting state functional connectivity (rs-fc) of the periaqueductal gray (PAG), a key region in the descending pain modulatory system (DPMS) between migraine without aura (MwoA) patients and healthy controls (HC), and 2) investigate how an effective treatment can influence the PAG rs-fc in MwoA patients. One hundred MwoA patients and forty-six matched HC were recruited. Patients were randomized to verum acupuncture, sham acupuncture, and waiting list groups. Resting state fMRI data were collected and seed based functional connectivity analysis was applied. Compared with HC, MwoA patients showed reduced rs-fc between the PAG and rostral anterior cingulate cortex/medial prefrontal cortex (rACC/mPFC), key regions in the DPMS and other pain related brain regions. The reduced rs-fc between the PAG and rACC/mPFC was associated with increased migraine headache intensity at the baseline. After treatments, rs-fc between the PAG and the rACC in MwoA patients significantly increased. The changes of rs-fc among the PAG, rACC and ventral striatum were significantly associated with headache intensity improvement. Impairment of the DPMS is involved in the neural pathophysiology of migraines. Impaired DPMS in migraine patients can be normalized after effective treatment. PMID:26839078

  2. Resting-State Brain Functional Connectivity Is Altered in Type 2 Diabetes

    OpenAIRE

    Musen, Gail; Jacobson, Alan M.; Bolo, Nicolas R.; Simonson, Donald C.; Martha E. Shenton; McCartney, Richard L.; Flores, Veronica L.; Hoogenboom, Wouter S.

    2012-01-01

    Type 2 diabetes mellitus (T2DM) is a risk factor for Alzheimer disease (AD). Populations at risk for AD show altered brain activity in the default mode network (DMN) before cognitive dysfunction. We evaluated this brain pattern in T2DM patients. We compared T2DM patients (n = 10, age = 56 ± 2.2 years, fasting plasma glucose [FPG] = 8.4 ± 1.3 mmol/L, HbA1c = 7.5 ± 0.54%) with nondiabetic age-matched control subjects (n = 11, age = 54 ± 1.8 years, FPG = 4.8 ± 0.2 mmol/L) using resting-state fun...

  3. Dynamics of circadian thalamocortical flow of information during a peripheral neuropathic pain condition

    Directory of Open Access Journals (Sweden)

    Helder Cardoso-Cruz

    2011-08-01

    Full Text Available It is known that the thalamocortical loop plays a crucial role in the encoding of sensory-discriminative features of painful stimuli. However, only a few studies have addressed the changes in thalamocortical dynamics that may occur after the onset of chronic pain. Our goal was to evaluate how the induction of chronic neuropathic pain affected the flow of information within the thalamocortical loop throughout the brain states of the sleep-wake cycle. To address this issue we recorded local field potentials – LFPs – both before and after the establishment of neuropathic pain in awake freely moving adult rats chronically implanted with arrays of multielectrodes in the lateral thalamus and primary somatosensory cortex. Our results show that the neuropathic injury induced changes in the number of wake and slow-wave-sleep state episodes, and especially in the total number of transitions between brain states. Moreover, partial directed coherence – PDC – analysis revealed that the amount of information flow between cortex and thalamus in neuropathic animals decreased significantly, indicating that the overall thalamic activity had less weight over the cortical activity. However, thalamocortical LFPs displayed higher phase-locking during awake and slow-wave-sleep episodes after the nerve lesion, suggesting faster transmission of relevant information along the thalamocortical loop. The observed changes are in agreement with the hypothesis of thalamic dysfunction after the onset of chronic pain, and may result from diminished inhibitory effect of the primary somatosensory cortex over the lateral thalamus.

  4. Altered Functional Connectivity of Cognitive-Related Cerebellar Subregions in Well-Recovered Stroke Patients

    Directory of Open Access Journals (Sweden)

    Wei Li

    2013-01-01

    Full Text Available The cerebellum contains several cognitive-related subregions that are involved in different functional networks. The cerebellar crus II is correlated with the frontoparietal network (FPN, whereas the cerebellar IX is associated with the default-mode network (DMN. These two networks are anticorrelated and cooperatively implicated in cognitive control, which may facilitate the motor recovery in stroke patients. In the present study, we aimed to investigate the resting-state functional connectivity (rsFC changes in 25 subcortical ischemic stroke patients with well-recovered global motor function. Consistent with previous studies, the crus II was correlated with the FPN, including the dorsolateral prefrontal cortex (DLPFC and posterior parietal cortex, and the cerebellar IX was correlated with the DMN, including the posterior cingulate cortex/precuneus (PCC/Pcu, medial prefrontal cortex (MPFC, DLPFC, lateral parietal cortices, and anterior temporal cortices. No significantly increased rsFCs of these cerebellar subregions were found in stroke patients, suggesting that the rsFCs of the cognitive-related cerebellar subregions are not the critical factors contributing to the recovery of motor function in stroke patients. The finding of the disconnection in the cerebellar-related cognitive control networks may possibly explain the deficits in cognitive control function even in stroke patients with well-recovered global motor function.

  5. Traffic pollution exposure is associated with altered brain connectivity in school children.

    Science.gov (United States)

    Pujol, Jesus; Martínez-Vilavella, Gerard; Macià, Dídac; Fenoll, Raquel; Alvarez-Pedrerol, Mar; Rivas, Ioar; Forns, Joan; Blanco-Hinojo, Laura; Capellades, Jaume; Querol, Xavier; Deus, Joan; Sunyer, Jordi

    2016-04-01

    Children are more vulnerable to the effects of environmental elements due to their active developmental processes. Exposure to urban air pollution has been associated with poorer cognitive performance, which is thought to be a result of direct interference with brain maturation. We aimed to assess the extent of such potential effects of urban pollution on child brain maturation using general indicators of vehicle exhaust measured in the school environment and a comprehensive imaging evaluation. A group of 263 children, aged 8 to 12years, underwent MRI to quantify regional brain volumes, tissue composition, myelination, cortical thickness, neural tract architecture, membrane metabolites, functional connectivity in major neural networks and activation/deactivation dynamics during a sensory task. A combined measurement of elemental carbon and NO2 was used as a putative marker of vehicle exhaust. Air pollution exposure was associated with brain changes of a functional nature, with no evident effect on brain anatomy, structure or membrane metabolites. Specifically, a higher content of pollutants was associated with lower functional integration and segregation in key brain networks relevant to both inner mental processes (the default mode network) and stimulus-driven mental operations. Age and performance (motor response speed) both showed the opposite effect to that of pollution, thus indicating that higher exposure is associated with slower brain maturation. In conclusion, urban air pollution appears to adversely affect brain maturation in a critical age with changes specifically concerning the functional domain. PMID:26825441

  6. Altered mGluR5-Homer scaffolds and corticostriatal connectivity in a Shank3 complete knockout model of autism

    Science.gov (United States)

    Wang, Xiaoming; Bey, Alexandra L.; Katz, Brittany M.; Badea, Alexandra; Kim, Namsoo; David, Lisa K.; Duffney, Lara J.; Kumar, Sunil; Mague, Stephen D.; Hulbert, Samuel W.; Dutta, Nisha; Hayrapetyan, Volodya; Yu, Chunxiu; Gaidis, Erin; Zhao, Shengli; Ding, Jin-Dong; Xu, Qiong; Chung, Leeyup; Rodriguiz, Ramona M.; Wang, Fan; Weinberg, Richard J.; Wetsel, William C.; Dzirasa, Kafui; Yin, Henry; Jiang, Yong-hui

    2016-01-01

    Human neuroimaging studies suggest that aberrant neural connectivity underlies behavioural deficits in autism spectrum disorders (ASDs), but the molecular and neural circuit mechanisms underlying ASDs remain elusive. Here, we describe a complete knockout mouse model of the autism-associated Shank3 gene, with a deletion of exons 4–22 (Δe4–22). Both mGluR5-Homer scaffolds and mGluR5-mediated signalling are selectively altered in striatal neurons. These changes are associated with perturbed function at striatal synapses, abnormal brain morphology, aberrant structural connectivity and ASD-like behaviour. In vivo recording reveals that the cortico-striatal-thalamic circuit is tonically hyperactive in mutants, but becomes hypoactive during social behaviour. Manipulation of mGluR5 activity attenuates excessive grooming and instrumental learning differentially, and rescues impaired striatal synaptic plasticity in Δe4–22−/− mice. These findings show that deficiency of Shank3 can impair mGluR5-Homer scaffolding, resulting in cortico-striatal circuit abnormalities that underlie deficits in learning and ASD-like behaviours. These data suggest causal links between genetic, molecular, and circuit mechanisms underlying the pathophysiology of ASDs. PMID:27161151

  7. Altered mGluR5-Homer scaffolds and corticostriatal connectivity in a Shank3 complete knockout model of autism.

    Science.gov (United States)

    Wang, Xiaoming; Bey, Alexandra L; Katz, Brittany M; Badea, Alexandra; Kim, Namsoo; David, Lisa K; Duffney, Lara J; Kumar, Sunil; Mague, Stephen D; Hulbert, Samuel W; Dutta, Nisha; Hayrapetyan, Volodya; Yu, Chunxiu; Gaidis, Erin; Zhao, Shengli; Ding, Jin-Dong; Xu, Qiong; Chung, Leeyup; Rodriguiz, Ramona M; Wang, Fan; Weinberg, Richard J; Wetsel, William C; Dzirasa, Kafui; Yin, Henry; Jiang, Yong-Hui

    2016-01-01

    Human neuroimaging studies suggest that aberrant neural connectivity underlies behavioural deficits in autism spectrum disorders (ASDs), but the molecular and neural circuit mechanisms underlying ASDs remain elusive. Here, we describe a complete knockout mouse model of the autism-associated Shank3 gene, with a deletion of exons 4-22 (Δe4-22). Both mGluR5-Homer scaffolds and mGluR5-mediated signalling are selectively altered in striatal neurons. These changes are associated with perturbed function at striatal synapses, abnormal brain morphology, aberrant structural connectivity and ASD-like behaviour. In vivo recording reveals that the cortico-striatal-thalamic circuit is tonically hyperactive in mutants, but becomes hypoactive during social behaviour. Manipulation of mGluR5 activity attenuates excessive grooming and instrumental learning differentially, and rescues impaired striatal synaptic plasticity in Δe4-22(-/-) mice. These findings show that deficiency of Shank3 can impair mGluR5-Homer scaffolding, resulting in cortico-striatal circuit abnormalities that underlie deficits in learning and ASD-like behaviours. These data suggest causal links between genetic, molecular, and circuit mechanisms underlying the pathophysiology of ASDs. PMID:27161151

  8. Alterations in functional connectivity of resting state networks during experimental endotoxemia - An exploratory study in healthy men.

    Science.gov (United States)

    Labrenz, Franziska; Wrede, Karsten; Forsting, Michael; Engler, Harald; Schedlowski, Manfred; Elsenbruch, Sigrid; Benson, Sven

    2016-05-01

    Systemic inflammation impairs mood and cognitive functions, and seems to be involved in the pathophysiology of psychiatric disorders. Functional magnetic resonance imaging (fMRI) studies revealed altered task-related blood-oxygen-level-dependent (BOLD) responses during experimental endotoxemia, but little is known about effects of systemic inflammation on resting-state activity of the brain. Thus, we conducted a randomized, placebo-controlled study in healthy men receiving an intravenous injection of either low-dose (0.4ng/kg) lipopolysaccharide (LPS) (N=20) or placebo (N=25). Resting state activity was measured at baseline and 3.5h post-injection. Based on a two (condition)×two (group) design, we used multi-subject independent component analysis (ICA) to decompose and estimate functional connectivity within resting-state networks (RSNs). Seed-based analyses were applied to investigate the effect of LPS on the functional coupling for a priori-defined regions-of-interest (ROIs). ICA analyses identified 13 out of 35 components displaying common RSNs. Seed based analysis revealed greater functional connectivity between the left thalamus and the cerebellum after LPS compared to placebo administration, while the functional coupling between seeds within the amygdala, insula, and cingulate cortex and various brain regions including parieto-frontal networks was significantly reduced. Within the LPS group, endotoxin-induced increases in Interleukin (IL)-6 were significantly associated with resting-state connectivity between the left thalamus and left precuneus as well as the right posterior cingulate cortex. In summary, this exploratory study provides first evidence that systemic inflammation affects the coupling and regulation of multiple networks within the human brain at rest. PMID:26597151

  9. Altered Functional Connectivity in Patients with Subcortical Vascular Cognitive Impairment--A Resting-State Functional Magnetic Resonance Imaging Study.

    Directory of Open Access Journals (Sweden)

    Weina Ding

    Full Text Available Recent neuroimaging studies have shown that people with subcortical vascular cognitive impairment (sVCI have structural and functional abnormalities in the frontal lobe and subcortical brain sites. In this study, we used seed-based resting-state functional connectivity (rsFC analysis and voxel-mirrored homotopic connectivity (VMHC techniques to investigate the alteration of rsFC in patients with sVCI. rsFC and structural magnetic resonance images were acquired for 51 patients with subcortical cerebrovascular disease. All patients were subdivided based on cognitive status into 29 with sVCI and 22 controls; patient characteristics were matched. rsFC of the posterior cingulate cortex (PCC and VMHC were calculated separately, and rsFC of the PCC and VMHC between the two groups were compared. The regions showing abnormal rsFC of the PCC or VMHC in sVCI patients were adopted as regions of interest for correlation analyses. Our results are as follows: The patients with sVCI exhibited increases in rsFC in the left middle temporal lobe, right inferior temporal lobe and left superior frontal gyrus, and significant decreases in rsFC of the left thalamus with the PCC. sVCI patients showed a significant deficit in VMHC between the bilateral lingual gyrus, putamen, and precentral gyrus. Additionally, the z-memory score was significantly positively associated with connectivity between the left thalamus and the PCC (r = 0.41, p = 0.03, uncorrected in the sVCI group. Our findings suggest that the frontal lobe and subcortical brain sites play an important role in the pathogenesis of sVCI. Furthermore, rsFC between the left thalamus and the PCC might indicate the severity of sVCI.

  10. Mapping remodeling of thalamocortical projections in the living reeler mouse brain by diffusion tractography

    OpenAIRE

    Harsan, Laura-Adela; Dávid, Csaba; Reisert, Marco; Schnell, Susanne; Hennig, Jürgen; von Elverfeldt, Dominik; Staiger, Jochen F.

    2013-01-01

    Alterations of brain connectional circuits are often associated with developing brain disorders. Pathology, however, can also trigger adaptive brain plasticity and compensatory connectivity changes. This paper provides a verified noninvasive framework for high-resolution mapping of living mouse brain connectional anatomy. We show that pathological changes in the formation of the cortical sheet, such as gross laminar distortions induced by reelin gene mutation in mice, lead to spectacular comp...

  11. Altered brain morphology and functional connectivity reflect a vulnerable affective state after cumulative multigenerational stress in rats.

    Science.gov (United States)

    McCreary, J Keiko; Truica, L Sorina; Friesen, Becky; Yao, Youli; Olson, David M; Kovalchuk, Igor; Cross, Albert R; Metz, Gerlinde A S

    2016-08-25

    Prenatal stress is a risk factor for abnormal neuroanatomical, cognitive, behavioral and mental health outcomes with potentially transgenerational consequences. Females in general seem more resilient to the effects of prenatal stress than males. Here, we examined if repeated stress across generations may diminish stress resiliency and cumulatively enhance the susceptibility for adverse health outcomes in females. Pregnant female rats of three successive generations were exposed to stress from gestational days 12-18 to generate multigenerational prenatal stress (MPS) in the maternal lineage. Stress response was measured by plasma corticosterone levels and open-field exploration in each generation. Neuromorphological consequences of MPS were investigated in the F3 generation using in vivo manganese-enhanced magnetic resonance imaging (MEMRI), T2-relaxometry, and cytoarchitectonics in relation to candidate gene expression involved in brain plasticity and mental health. Each additional generation of prenatal stress incrementally elevated hypothalamic-pituitary-adrenal axis activation, anxiety-like and aversive behaviors in adult female offspring. Elevated stress responses in the MPS F3 generation were accompanied by reduced neural density in prefrontal cortex, hippocampus and whole brain along with altered brain activation patterns in in vivo MEMRI. MPS increased ephrin receptor A5 (Epha5), neuronal growth regulator (Negr1) and synaptosomal-associated protein 25 (Snap25) gene expression and reduced fibroblast growth factor 12 (Fgf12) in prefrontal cortex. These genes regulate neuronal maturation, arborization and synaptic plasticity and may explain altered brain cytoarchitectonics and connectivity. These findings emphasize that recurrent stress across generations may cumulatively increase stress vulnerability and the risk of adverse health outcomes through perinatal programing in females. PMID:27241944

  12. Resting state networks and consciousness: alterations of multiple resting state network connectivity in physiological, pharmacological, and pathological consciousness States.

    Science.gov (United States)

    Heine, Lizette; Soddu, Andrea; Gómez, Francisco; Vanhaudenhuyse, Audrey; Tshibanda, Luaba; Thonnard, Marie; Charland-Verville, Vanessa; Kirsch, Murielle; Laureys, Steven; Demertzi, Athena

    2012-01-01

    In order to better understand the functional contribution of resting state activity to conscious cognition, we aimed to review increases and decreases in functional magnetic resonance imaging (fMRI) functional connectivity under physiological (sleep), pharmacological (anesthesia), and pathological altered states of consciousness, such as brain death, coma, vegetative state/unresponsive wakefulness syndrome, and minimally conscious state. The reviewed resting state networks were the DMN, left and right executive control, salience, sensorimotor, auditory, and visual networks. We highlight some methodological issues concerning resting state analyses in severely injured brains mainly in terms of hypothesis-driven seed-based correlation analysis and data-driven independent components analysis approaches. Finally, we attempt to contextualize our discussion within theoretical frameworks of conscious processes. We think that this "lesion" approach allows us to better determine the necessary conditions under which normal conscious cognition takes place. At the clinical level, we acknowledge the technical merits of the resting state paradigm. Indeed, fast and easy acquisitions are preferable to activation paradigms in clinical populations. Finally, we emphasize the need to validate the diagnostic and prognostic value of fMRI resting state measurements in non-communicating brain damaged patients. PMID:22969735

  13. Altered functional connectivity links in neuroleptic-naïve and neuroleptic-treated patients with schizophrenia, and their relation to symptoms including volition

    Directory of Open Access Journals (Sweden)

    Weidan Pu

    2014-01-01

    Full Text Available In order to analyze functional connectivity in untreated and treated patients with schizophrenia, resting-state fMRI data were obtained for whole-brain functional connectivity analysis from 22 first-episode neuroleptic-naïve schizophrenia (NNS, 61 first-episode neuroleptic-treated schizophrenia (NTS patients, and 60 healthy controls (HC. Reductions were found in untreated and treated patients in the functional connectivity between the posterior cingulate gyrus and precuneus, and this was correlated with the reduction in volition from the Positive and Negative Symptoms Scale (PANSS, that is in the willful initiation, sustenance, and control of thoughts, behavior, movements, and speech, and with the general and negative symptoms. In addition in both patient groups interhemispheric functional connectivity was weaker between the orbitofrontal cortex, amygdala and temporal pole. These functional connectivity changes and the related symptoms were not treated by the neuroleptics. Differences between the patient groups were that there were more strong functional connectivity links in the NNS patients (including in hippocampal, frontal, and striatal circuits than in the NTS patients. These findings with a whole brain analysis in untreated and treated patients with schizophrenia provide evidence on some of the brain regions implicated in the volitional, other general, and negative symptoms, of schizophrenia that are not treated by neuroleptics so have implications for the development of other treatments; and provide evidence on some brain systems in which neuroleptics do alter the functional connectivity.

  14. Presynaptic Adenosine Receptor-Mediated Regulation of Diverse Thalamocortical Short-Term Plasticity in the Mouse Whisker Pathway

    Science.gov (United States)

    Ferrati, Giovanni; Martini, Francisco J.; Maravall, Miguel

    2016-01-01

    Short-term synaptic plasticity (STP) sets the sensitivity of a synapse to incoming activity and determines the temporal patterns that it best transmits. In “driver” thalamocortical (TC) synaptic populations, STP is dominated by depression during stimulation from rest. However, during ongoing stimulation, lemniscal TC connections onto layer 4 neurons in mouse barrel cortex express variable STP. Each synapse responds to input trains with a distinct pattern of depression or facilitation around its mean steady-state response. As a result, in common with other synaptic populations, lemniscal TC synapses express diverse rather than uniform dynamics, allowing for a rich representation of temporally varying stimuli. Here, we show that this STP diversity is regulated presynaptically. Presynaptic adenosine receptors of the A1R type, but not kainate receptors (KARs), modulate STP behavior. Blocking the receptors does not eliminate diversity, indicating that diversity is related to heterogeneous expression of multiple mechanisms in the pathway from presynaptic calcium influx to neurotransmitter release. PMID:26941610

  15. Altered resting-state functional connectivity of the frontal-striatal reward system in social anxiety disorder.

    Science.gov (United States)

    Manning, Joshua; Reynolds, Gretchen; Saygin, Zeynep M; Hofmann, Stefan G; Pollack, Mark; Gabrieli, John D E; Whitfield-Gabrieli, Susan

    2015-01-01

    We investigated differences in the intrinsic functional brain organization (functional connectivity) of the human reward system between healthy control participants and patients with social anxiety disorder. Functional connectivity was measured in the resting-state via functional magnetic resonance imaging (fMRI). 53 patients with social anxiety disorder and 33 healthy control participants underwent a 6-minute resting-state fMRI scan. Functional connectivity of the reward system was analyzed by calculating whole-brain temporal correlations with a bilateral nucleus accumbens seed and a ventromedial prefrontal cortex seed. Patients with social anxiety disorder, relative to the control group, had (1) decreased functional connectivity between the nucleus accumbens seed and other regions associated with reward, including ventromedial prefrontal cortex; (2) decreased functional connectivity between the ventromedial prefrontal cortex seed and lateral prefrontal regions, including the anterior and dorsolateral prefrontal cortices; and (3) increased functional connectivity between both the nucleus accumbens seed and the ventromedial prefrontal cortex seed with more posterior brain regions, including anterior cingulate cortex. Social anxiety disorder appears to be associated with widespread differences in the functional connectivity of the reward system, including markedly decreased functional connectivity between reward regions and between reward regions and lateral prefrontal cortices, and markedly increased functional connectivity between reward regions and posterior brain regions. PMID:25928647

  16. Altered brain activation and functional connectivity in working memory related networks in patients with type 2 diabetes: An ICA-based analysis

    OpenAIRE

    Yang Zhang; Shan Lu; Chunlei Liu; Huimei Zhang; Xuanhe Zhou; Changlin Ni; Wen Qin; Quan Zhang

    2016-01-01

    Type 2 diabetes mellitus (T2DM) can cause multidimensional cognitive deficits, among which working memory (WM) is usually involved at an early stage. However, the neural substrates underlying impaired WM in T2DM patients are still unclear. To clarify this issue, we utilized functional magnetic resonance imaging (fMRI) and independent component analysis to evaluate T2DM patients for alterations in brain activation and functional connectivity (FC) in WM networks and to determine their associati...

  17. Aberrant Thalamocortical Synchrony Associated with Behavioral Manifestations in Git1 -/- Mice

    OpenAIRE

    Mah, Won

    2015-01-01

    Cross-talk between the thalamus and cortex has been implicated in attention but its pathogenic role in attention-deficit/hyperactivity disorder (ADHD) remains unknown. Here, I demonstrate that Git1 -/- mice, previously proposed as an animal model for ADHD, show abnormal theta oscillation in the thalamus. Multi-electrode recordings revealed that Git1 -/- mice have hyper-synchrony of neural activities between the thalamus and cortex. The abnormal thalamic oscillation and thalamocortical synchro...

  18. Thalamocortical input onto layer 5 pyramidal neurons measured using quantitative large-scale array tomography

    OpenAIRE

    Jong-Cheol eRah; Erhan eBas; Jennifer eColonell; Yuriy eMishchenko; Bill eKarsh; Fetter, Richard D.; Myers, Eugene W; Chklovskii, Dmitri B.; Karel eSvoboda; Harris, Timothy D.; Isaac, John T. R.

    2013-01-01

    The subcellular locations of synapses on pyramidal neurons strongly influences dendritic integration and synaptic plasticity. Despite this, there is little quantitative data on spatial distributions of specific types of synaptic input. Here we use array tomography (AT), a high-resolution optical microscopy method, to examine thalamocortical (TC) input onto layer 5 pyramidal neurons. We first verified the ability of AT to identify synapses using parallel electron microscopic analysis of TC syn...

  19. Rapid Extragranular Plasticity in the Absence of Thalamocortical Plasticity in the Developing Primary Visual Cortex

    OpenAIRE

    Trachtenberg, Joshua T.; Trepel, Christopher; Stryker, Michael P.

    2000-01-01

    Monocular deprivation during early postnatal development remodels the circuitry of the primary visual cortex so that most neurons respond poorly to stimuli presented to the deprived eye. This rapid physiological change is ultimately accompanied by a matching anatomical loss of input from the deprived eye. This remodeling is thought to be initiated at the thalamocortical synapse. Ocular dominance plasticity after brief (24 hours) monocular deprivation was analyzed by intrinsic signal optical i...

  20. Early altered resting-state functional connectivity predicts the severity of post-traumatic stress disorder symptoms in acutely traumatized subjects.

    Directory of Open Access Journals (Sweden)

    Yan Zhou

    Full Text Available The goal of this study was to investigate the relationship between resting-state functional connectivity and the severity of post-traumatic stress disorder (PTSD symptoms in 15 people who developed PTSD following recent trauma. Fifteen participants who experienced acute traumatic events underwent a 7.3-min resting functional magnetic resonance imaging scan within 2 days post-event. All the patients were diagnosed with PTSD within 1 to 6 months after trauma. Brain areas in which activity was correlated with that of the posterior cingulate cortex (PCC were assessed. To assess the relationship between the severity of PTSD symptoms and PCC connectivity, contrast images representing areas positively correlated with the PCC were correlated with the subject's Clinician-Administered PTSD Scale scores (CAPS when they were diagnosed. Furthermore, the PCC, medial prefrontal cortex and bilateral amygdala were selected to assess the correlation of the strength of functional connectivity with the CAPS. Resting state connectivity with the PCC was negatively correlated with CAPS scores in the left superior temporal gyrus and right hippocampus/amygdala. Furthermore, the strength of connectivity between the PCC and bilateral amygdala, and even between the bilateral amygdala could predict the severity of PTSD symptoms later. These results suggest that early altered resting-state functional connectivity of the PCC with the left superior temporal gyrus, right hippocampus and amygdala could predict the severity of the disease and may be a major risk factor that predisposes patients to develop PTSD.

  1. Characterization of early cortical population response to thalamocortical input in vitro

    Directory of Open Access Journals (Sweden)

    Michael Raymond Heliodor Hill

    2014-01-01

    Full Text Available The in vitro thalamocortical slice preparation of mouse barrel cortex allows for stimulation of the cortex through its natural afferent thalamocortical pathway. This preparation was used here to investigate the first stage of cortical processing in the large postsynaptic dendritic networks as revealed by voltage sensitive dye imaging. We identified the precise location and dimensions of two clearly distinguishable dendritic networks, one in the granular layer IV and one in the infragranular layer V and VI and showed that they have different physiological properties. DiI fluorescent staining further revealed that thalamocortical axons project on to these two networks in the typical barrel like form, not only in the granular but also in the infragranular layer. Finally we investigated the short term dynamics of both the voltage sensitive dye imaging signal and the local field potential in response to a train of eight-pulses at various frequencies in both these layers. We found evidence of differences in the plasticity between the first two response peaks compared to the remaining six peaks as well as differences in short term plasticity between the voltage sensitive dye imaging response and the local field potential. Our findings suggest, that at least early cortical processing takes place in two separate dendritic networks that may stand at the beginning of further parallel computation. The detailed characterization of the parameters of these networks may provide tools for further research into the complex dynamics of large dendritic networks and their role in cortical computation.

  2. State-dependent firing determines intrinsic dendritic Ca2+ signaling in thalamocortical neurons.

    Science.gov (United States)

    Errington, Adam C; Renger, John J; Uebele, Victor N; Crunelli, Vincenzo

    2010-11-01

    Activity-dependent dendritic Ca(2+) signals play a critical role in multiple forms of nonlinear cellular output and plasticity. In thalamocortical neurons, despite the well established spatial separation of sensory and cortical inputs onto proximal and distal dendrites, respectively, little is known about the spatiotemporal dynamics of intrinsic dendritic Ca(2+) signaling during the different state-dependent firing patterns that are characteristic of these neurons. Here we demonstrate that T-type Ca(2+) channels are expressed throughout the entire dendritic tree of rat thalamocortical neurons and that they mediate regenerative propagation of low threshold spikes, typical of, but not exclusive to, sleep states, resulting in global dendritic Ca(2+) influx. In contrast, actively backpropagating action potentials, typical of wakefulness, result in smaller Ca(2+) influxes that can temporally summate to produce dendritic Ca(2+) accumulations that are linearly related to firing frequency but spatially confined to proximal dendritic regions. Furthermore, dendritic Ca(2+) transients evoked by both action potentials and low-threshold spikes are shaped by Ca(2+) uptake by sarcoplasmic/endoplasmic reticulum Ca(2+) ATPases but do not rely on Ca(2+)-induced Ca(2+) release. Our data demonstrate that thalamocortical neurons are endowed with intrinsic dendritic Ca(2+) signaling properties that are spatially and temporally modified in a behavioral state-dependent manner and suggest that backpropagating action potentials faithfully inform proximal sensory but not distal corticothalamic synapses of neuronal output, whereas corticothalamic synapses only "detect" Ca(2+) signals associated with low-threshold spikes. PMID:21048143

  3. Early Somatostatin Interneuron Connectivity Mediates the Maturation of Deep Layer Cortical Circuits.

    Science.gov (United States)

    Tuncdemir, Sebnem N; Wamsley, Brie; Stam, Floor J; Osakada, Fumitaka; Goulding, Martyn; Callaway, Edward M; Rudy, Bernardo; Fishell, Gord

    2016-02-01

    The precise connectivity of somatostatin and parvalbumin cortical interneurons is generated during development. An understanding of how these interneuron classes incorporate into cortical circuitry is incomplete but essential to elucidate the roles they play during maturation. Here, we report that somatostatin interneurons in infragranular layers receive dense but transient innervation from thalamocortical afferents during the first postnatal week. During this period, parvalbumin interneurons and pyramidal neurons within the same layers receive weaker thalamocortical inputs, yet are strongly innervated by somatostatin interneurons. Further, upon disruption of the early (but not late) somatostatin interneuron network, the synaptic maturation of thalamocortical inputs onto parvalbumin interneurons is perturbed. These results suggest that infragranular somatostatin interneurons exhibit a transient early synaptic connectivity that is essential for the establishment of thalamic feedforward inhibition mediated by parvalbumin interneurons. PMID:26844832

  4. The effects of hemorrhagic parenchymal infarction on the establishment of sensori-motor structural and functional connectivity in early infancy

    Energy Technology Data Exchange (ETDEWEB)

    Arichi, T.; Edwards, A.D. [Kings College London, St Thomas' Hospital, Department of Perinatal Imaging and Health, Division of Imaging Sciences and Biomedical Engineering, London (United Kingdom); Imperial College London, Department of Bioengineering, London (United Kingdom); Counsell, S.J.; Mondi, V.; Tusor, N.; Merchant, N. [Kings College London, St Thomas' Hospital, Department of Perinatal Imaging and Health, Division of Imaging Sciences and Biomedical Engineering, London (United Kingdom); Allievi, A.G.; Burdet, E. [Imperial College London, Department of Bioengineering, London (United Kingdom); Chew, A.T. [Kings College London, St Thomas' Hospital, Department of Perinatal Imaging and Health, Division of Imaging Sciences and Biomedical Engineering, London (United Kingdom); Imperial College Healthcare NHS Trust, Department of Paediatrics, London (United Kingdom); Martinez-Biarge, M.; Cowan, F.M. [Imperial College Healthcare NHS Trust, Department of Paediatrics, London (United Kingdom)

    2014-11-15

    The objective of the study was to characterize alterations of structural and functional connectivity within the developing sensori-motor system in infants with focal perinatal brain injury and at high risk of cerebral palsy. Functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) data were used to study the developing functional and structural connectivity framework in six infants born prematurely at term equivalent age. This was first characterised in three infants without focal pathology, which was then compared to that derived from three infants with unilateral haemorrhagic parenchymal infarction and a subsequent focal periventricular white matter lesion who developed later haemiparesis. Functional responses to passive hand movement were in the contralateral perirolandic cortex, regardless of focal pathology. In infants with unilateral periventricular injury, afferent thalamo-cortical tracts appeared to have developed compensatory trajectories which circumvented areas of damage. In contrast, efferent corticospinal tracts showed marked asymmetry at term equivalent age following focal brain injury. Sensori-motor network analysis suggested that inter-hemispheric functional connectivity is largely preserved despite pathology and that impairment may be associated with adverse neurodevelopmental outcome. Following focal perinatal brain injury, altered structural and functional connectivity is already present and can be characterized with MRI at term equivalent age. The results of this small case series suggest that these techniques may provide valuable new information about prognosis and the pathophysiology underlying cerebral palsy. (orig.)

  5. The effects of hemorrhagic parenchymal infarction on the establishment of sensori-motor structural and functional connectivity in early infancy

    International Nuclear Information System (INIS)

    The objective of the study was to characterize alterations of structural and functional connectivity within the developing sensori-motor system in infants with focal perinatal brain injury and at high risk of cerebral palsy. Functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) data were used to study the developing functional and structural connectivity framework in six infants born prematurely at term equivalent age. This was first characterised in three infants without focal pathology, which was then compared to that derived from three infants with unilateral haemorrhagic parenchymal infarction and a subsequent focal periventricular white matter lesion who developed later haemiparesis. Functional responses to passive hand movement were in the contralateral perirolandic cortex, regardless of focal pathology. In infants with unilateral periventricular injury, afferent thalamo-cortical tracts appeared to have developed compensatory trajectories which circumvented areas of damage. In contrast, efferent corticospinal tracts showed marked asymmetry at term equivalent age following focal brain injury. Sensori-motor network analysis suggested that inter-hemispheric functional connectivity is largely preserved despite pathology and that impairment may be associated with adverse neurodevelopmental outcome. Following focal perinatal brain injury, altered structural and functional connectivity is already present and can be characterized with MRI at term equivalent age. The results of this small case series suggest that these techniques may provide valuable new information about prognosis and the pathophysiology underlying cerebral palsy. (orig.)

  6. Morphologic and Functional Connectivity Alterations of Corticostriatal and Default Mode Network in Treatment-Naïve Patients with Obsessive-Compulsive Disorder

    Science.gov (United States)

    Hou, Jingming; Song, Lingheng; Zhang, Wei; Wu, Wenjing; Wang, Jian; Zhou, Daiquan; Qu, Wei; Guo, Junwei; Gu, Shanshan; He, Mei; Xie, Bing; Li, Haitao

    2013-01-01

    Background Previous studies have demonstrated that structural deficits and functional connectivity imbalances might underlie the pathophysiology of obsessive-compulsive disorder (OCD). The purpose of the present study was to investigate gray matter deficits and abnormal resting-state networks in patients with OCD and further investigate the association between the anatomic and functional alterations and clinical symptoms. Methods Participants were 33 treatment-naïve OCD patients and 33 matched healthy controls. Voxel-based morphometry was used to investigate the regions with gray matter abnormalities and resting-state functional connectivity analysis was further conducted between each gray matter abnormal region and the remaining voxels in the brain. Results Compared with healthy controls, patients with OCD showed significantly increased gray matter volume in the left caudate, left thalamus, and posterior cingulate cortex, as well as decreased gray matter volume in the bilateral medial orbitofrontal cortex, left anterior cingulate cortex, and left inferior frontal gyrus. By using the above morphologic deficits areas as seed regions, functional connectivity analysis found abnormal functional integration in the cortical-striatum-thalamic-cortical (CSTC) circuits and default mode network. Subsequent correlation analyses revealed that morphologic deficits in the left thalamus and increased functional connectivity within the CSTC circuits positively correlated with the total Y-BOCS score. Conclusion This study provides evidence that morphologic and functional alterations are seen in CSTC circuits and default mode network in treatment-naïve OCD patients. The association between symptom severity and the CSTC circuits suggests that anatomic and functional alterations in CSTC circuits are especially important in the pathophysiology of OCD. PMID:24358320

  7. Altered brain connectivity in 3-to 7-year-old children with autism spectrum disorder ☆ ☆☆

    OpenAIRE

    Kikuchi, Mitsuru; Shitamichi, Kiyomi; Yoshimura, Yuko; Ueno, Sanae; Hiraishi, Hirotoshi; Hirosawa, Tetsu; Munesue, Toshio; Nakatani, Hideo; Tsubokawa, Tsunehisa; Haruta, Yasuhiro; Oi, Manabu; Niida, Yo; Gerard B. Remijn; Takahashi, Tsutomu; Suzuki, Michio

    2013-01-01

    Autism spectrum disorder (ASD) is often described as a disorder of aberrant neural connectivity and/or aberrant hemispheric lateralization. Although it is important to study the pathophysiology of the developing ASD cortex, the physiological connectivity of the brain in young children with ASD under conscious conditions has not yet been described. Magnetoencephalography (MEG) is a noninvasive brain imaging technique that is practical for use in young children. MEG produces a reference-free si...

  8. Communication of brain network core connections altered in behavioral variant frontotemporal dementia but possibly preserved in early-onset Alzheimer's disease

    Science.gov (United States)

    Daianu, Madelaine; Jahanshad, Neda; Mendez, Mario F.; Bartzokis, George; Jimenez, Elvira E.; Thompson, Paul M.

    2015-03-01

    Diffusion imaging and brain connectivity analyses can assess white matter deterioration in the brain, revealing the underlying patterns of how brain structure declines. Fiber tractography methods can infer neural pathways and connectivity patterns, yielding sensitive mathematical metrics of network integrity. Here, we analyzed 1.5-Tesla wholebrain diffusion-weighted images from 64 participants - 15 patients with behavioral variant frontotemporal dementia (bvFTD), 19 with early-onset Alzheimer's disease (EOAD), and 30 healthy elderly controls. Using whole-brain tractography, we reconstructed structural brain connectivity networks to map connections between cortical regions. We evaluated the brain's networks focusing on the most highly central and connected regions, also known as hubs, in each diagnostic group - specifically the "high-cost" structural backbone used in global and regional communication. The high-cost backbone of the brain, predicted by fiber density and minimally short pathways between brain regions, accounted for 81-92% of the overall brain communication metric in all diagnostic groups. Furthermore, we found that the set of pathways interconnecting high-cost and high-capacity regions of the brain's communication network are globally and regionally altered in bvFTD, compared to healthy participants; however, the overall organization of the high-cost and high-capacity networks were relatively preserved in EOAD participants, relative to controls. Disruption of the major central hubs that transfer information between brain regions may impair neural communication and functional integrity in characteristic ways typical of each subtype of dementia.

  9. Causal connectivity alterations of cortical-subcortical circuit anchored on reduced hemodynamic response brain regions in first-episode drug-naïve major depressive disorder.

    Science.gov (United States)

    Gao, Qing; Zou, Ke; He, Zongling; Sun, Xueli; Chen, Huafu

    2016-01-01

    Some efforts were done to investigate the disruption of brain causal connectivity networks involved in major depressive disorder (MDD) using Granger causality (GC) analysis. However, the homogenous hemodynamic response function (HRF) assumption over the brain may disturb the inference of temporal precedence. Here we applied a blind deconvolution approach to examine the altered HRF shape in first-episode, drug-naïve MDD patients. The regions with abnormal HRF shape in patients were chosen as seeds to detect the GC alterations in MDD. The results demonstrated significantly decreased magnitude of spontaneous hemodynamic response of the orbital frontal cortex (OFC) and the caudate nucleus (CAU) in MDD comparing to healthy controls, suggesting MDD patients likely had alterations in neurovascular coupling and cerebrovascular physiology in these two regions. GC mapping showed increased/decreased GC in OFC-/CAU centered networks in MDD. The outgoing GC values from OFC to anterior cingulate cortex and occipital regions were positively correlated with Hamilton Depression Scale (HAMD) scores, while the incoming GC from insula, middle and superior temporal gyrus to CAU were negatively correlated with HAMD scores of MDD. The abnormalities of directional connections in the cortico-subcortico-cerebellar network may lead to unbalanced integrating the emotional-related information for MDD, and further exacerbating depressive symptoms. PMID:26911651

  10. Altered activity and functional connectivity of superior temporal gyri in anxiety disorders: A functional magnetic resonance imaging study

    International Nuclear Information System (INIS)

    The prior functional MRI studies have demonstrated significantly abnormal activity in the bilateral superior temporal gyrus (STG) of anxiety patients. The purpose of the current investigation was to determine whether the abnormal activity in these regions was related to a loss of functional connectivity between these regions. Ten healthy controls and 10 anxiety patients underwent noninvasive fMRI while actively listening to emotionally neutral words alternated by silence (Task 1) or threat-related words (Task 2). The participants were instructed to silently make a judgment of each word's valence (i.e., unpleasant, pleasant, or neutral). A coherence analysis was applied to the functional MRI data to examine the functional connectivity between the left and the right STG, which was selected as the primary region of interest on the basis of our prior results. The data demonstrated that the anxiety patients exhibited significantly increased activation in the bilateral STG than the normal controls. The functional connectivity analysis indicated that the patient group showed significantly decreased degree of connectivity between the bilateral STG during processing Task 2 compared to Task 1 (t = 2.588, p = 0.029). In addition, a significantly decreased connectivity was also observed in the patient group compared to the control group during processing Task 2 (t = 2.810, p = 0.012). Anxiety patients may exhibit increased activity of the STG but decreased functional connectivity between the left and right STG, which may reflect the underlying neural abnormality of anxiety disorder, and this will provide new insights into this disease.

  11. Altered activity and functional connectivity of superior temporal gyri in anxiety disorders: A functional magnetic resonance imaging study

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xiaohu; Xi, Qian; Wang, Peijun; Li, Chunbo [Tong Ji Hospital of Tong Ji University, Shanghai (China); He, Hongjian [Bio-X lab, Dept. of Physics, Zhe Jiang University, Hangzhou (China)

    2014-08-15

    The prior functional MRI studies have demonstrated significantly abnormal activity in the bilateral superior temporal gyrus (STG) of anxiety patients. The purpose of the current investigation was to determine whether the abnormal activity in these regions was related to a loss of functional connectivity between these regions. Ten healthy controls and 10 anxiety patients underwent noninvasive fMRI while actively listening to emotionally neutral words alternated by silence (Task 1) or threat-related words (Task 2). The participants were instructed to silently make a judgment of each word's valence (i.e., unpleasant, pleasant, or neutral). A coherence analysis was applied to the functional MRI data to examine the functional connectivity between the left and the right STG, which was selected as the primary region of interest on the basis of our prior results. The data demonstrated that the anxiety patients exhibited significantly increased activation in the bilateral STG than the normal controls. The functional connectivity analysis indicated that the patient group showed significantly decreased degree of connectivity between the bilateral STG during processing Task 2 compared to Task 1 (t = 2.588, p = 0.029). In addition, a significantly decreased connectivity was also observed in the patient group compared to the control group during processing Task 2 (t = 2.810, p = 0.012). Anxiety patients may exhibit increased activity of the STG but decreased functional connectivity between the left and right STG, which may reflect the underlying neural abnormality of anxiety disorder, and this will provide new insights into this disease.

  12. Is Broca's area part of a basal ganglia thalamocortical circuit?

    Science.gov (United States)

    Ullman, Michael T

    2006-05-01

    The cortex constituting Broca's area does not exist in isolation. Rather, like other cortical regions, Broca's area is connected to other brain structures, which likely play closely related functional roles. This paper focuses on the basal ganglia, a set of subcortical structures that project through topographically organized "channels" via the thalamus to different frontal regions. It is hypothesized that the basal ganglia project to Broca's area. This circuitry is further posited to encompass at least two channels. One channel can be characterized as subserving procedural memory, while the other underlies the retrieval of knowledge from declarative memory. These hypotheses are supported by both anatomical and functional evidence. Implications and issues for further investigation are discussed. PMID:16881254

  13. Adults with high social anhedonia have altered neural connectivity with ventral lateral prefrontal cortex when processing positive social signals

    Directory of Open Access Journals (Sweden)

    Hong Yin

    2015-08-01

    Full Text Available Social anhedonia (SA is a debilitating characteristic of schizophrenia and a vulnerability for developing schizophrenia among people at risk. Prior work (Hooker et al, 2014 has revealed neural deficits in ventral lateral prefrontal cortex (VLPFC during processing of positive emotion in a community sample of people with high social anhedonia. Deficits in VLPFC neural activity are related to worse self-reported schizophrenia-spectrum symptoms and worse mood and behavior after social stress. In the current study, psychophysiological interaction (PPI analysis was applied to investigate the neural mechanisms mediated by VLPFC during emotion processing. PPI analysis revealed that, compared to low SA controls, participants with high SA displayed reduced VLPFC integration, specifically reduced connectivity between VLPFC and premotor cortex, inferior parietal and posterior temporal regions when viewing positive relative to neutral emotion. Across all participants, connectivity between VLPFC and inferior parietal region when viewing positive (versus neutral emotion was significantly correlated with measures of emotion management and attentional control. Additionally connectivity between VLPFC and superior temporal sulcus was related to reward and pleasure anticipation, and connectivity between VLPFC and inferior temporal sulcus correlated with attentional control measure. Our results suggest that impairments to VLPFC mediated neural circuitry underlie the cognitive and emotional deficits.

  14. Altered resting state functional connectivity of anterior cingulate cortex in drug naïve adolescents at the earliest stages of anorexia nervosa

    OpenAIRE

    Gaudio, Santino; Piervincenzi, Claudia; Beomonte Zobel, Bruno; Romana Montecchi, Francesca; Riva, Giuseppe; Carducci, Filippo; Cosimo Quattrocchi, Carlo

    2015-01-01

    Previous Resting-State Functional Connectivity (RSFC) studies have shown several functional alterations in adults with or recovered from long Anorexia Nervosa (AN). The aim of this paper was to investigate whole brain RSFC in adolescents with AN in the earliest stages, less than 6 months, of the disorder. Sixteen drug-naïve outpatient female adolescents with AN-restrictive type (AN-r) (mean age: 15,8; SD 1,7) were compared to 16 age-matched healthy female (mean age: 16,3; SD 1,4). Relevant re...

  15. Alteration of cortical functional connectivity as a result of traumatic brain injury revealed by graph theory, ICA, and sLORETA analyses of EEG signals.

    Science.gov (United States)

    Cao, C; Slobounov, S

    2010-02-01

    In this paper, a novel approach to examine the cortical functional connectivity using multichannel electroencephalographic (EEG) signals is proposed. First we utilized independent component analysis (ICA) to transform multichannel EEG recordings into independent processes and then applied source reconstruction algorithm [i.e., standardize low resolution brain electromagnetic (sLORETA)] to identify the cortical regions of interest (ROIs). Second, we performed a graph theory analysis of the bipartite network composite of ROIs and independent processes to assess the connectivity between ROIs. We applied this proposed algorithm and compared the functional connectivity network properties under resting state condition using 29 student-athletes prior to and shortly after sport-related mild traumatic brain injury (MTBI). The major findings of interest are the following. There was 1) alterations in vertex degree at frontal and occipital regions in subjects suffering from MTBI, ( p world network configuration in MTBI subjects. These major findings are discussed in relation to current debates regarding the brain functional connectivity within and between local and distal regions both in normal controls in pathological subjects. PMID:20064767

  16. Distinct thalamo-cortical controls for shoulder, elbow, and wrist during locomotion

    Directory of Open Access Journals (Sweden)

    Irina N. Beloozerova

    2013-05-01

    Full Text Available Recent data from this laboratory on differential controls for the shoulder, elbow, and wrist exerted by the thalamo-cortical network during locomotion is presented, based on experiments involving chronically instrumented cats walking on a flat surface and along a horizontal ladder. The activity of the following three groups of neurons is characterized: 1 neurons of the motor cortex that project to the pyramidal tract (PTNs, 2 neurons of the ventrolateral thalamus (VL, many identified as projecting to the motor cortex (thalamo-cortical neurons, TCs, and 3 neurons of the reticular nucleus of thalamus (RE, which inhibit TCs. Neurons were grouped according to their receptive field into shoulder-, elbow-, and wrist/paw-related categories. During simple locomotion, shoulder-related PTNs were most active in the late stance and early swing, and on the ladder, often increased activity and step-related modulation while reducing discharge duration. Elbow-related PTNs were most active during late swing/early stance and typically remained similar on the ladder. Wrist-related PTNs were most active during swing, and on the ladder often decreased activity and increased modulation while reducing discharge duration.In the VL, shoulder-related neurons were more active during transition from swing to stance. Elbow-related cells tended to be more active during transition from stance to swing and on the ladder often decreased their activity and increased modulation. Wrist-related neurons were more active throughout the stance phase. In the RE, shoulder-related cells had low discharge rates and depths of modulation and long periods of activity distributed evenly across the cycle. In contrast, wrist/paw-related cells discharged synchronously during end of stance and swing with short periods of high activity, high modulation, and frequent sleep-type bursting. We conclude that thalamo-cortical network processes information related to different segments of the forelimb

  17. Impairments of thalamic resting-state functional connectivity in patients with chronic tinnitus

    International Nuclear Information System (INIS)

    Highlights: • Tinnitus patients have aberrant thalamic connectivity to many brain regions. • Decreased thalamic connectivity is linked with tinnitus characteristics. • Thalamocortical connectivity disturbances can reflect tinnitus-related networks. - Abstract: Purpose: The phantom sound of tinnitus is believed to arise from abnormal functional coupling between the thalamus and cerebral cortex. To explore this hypothesis, we used resting-state functional magnetic resonance imaging (fMRI) to compare the degree of thalamocortical functional connectivity in chronic tinnitus patients and controls. Materials and methods: Resting-state fMRI scans were obtained from 31 chronic tinnitus patients and 33 well-matched healthy controls. Thalamocortical functional connectivity was characterized using a seed-based whole-brain correlation method. The resulting thalamic functional connectivity measures were correlated with other clinical data. Results: We found decreased functional connectivity between the seed region in left thalamus and right middle temporal gyrus (MTG), right middle orbitofrontal cortex, left middle frontal gyrus, right precentral gyrus, and bilateral calcarine cortex. Decreased functional connectivity was detected between the seed in the right thalamus and the left superior temporal gyrus (STG), left amygdala, right superior frontal gyrus, left precentral gyrus, and left middle occipital gyrus. Tinnitus distress correlated negatively with thalamic functional connectivity in right MTG; tinnitus duration correlated negatively with thalamic functional connectivity in left STG. Increased functional connectivity between the bilateral thalamus and a set of regions were also observed. Conclusions: Chronic tinnitus patients have disrupted thalamocortical functional connectivity to selected brain regions which is associated with specific tinnitus characteristics. Resting-state thalamic functional connectivity disturbances may play an important role in

  18. Impairments of thalamic resting-state functional connectivity in patients with chronic tinnitus

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jian [Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing (China); Chen, Yu-Chen [Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing (China); Center for Hearing and Deafness, University at Buffalo, State University of New York, Buffalo, NY (United States); Feng, Xu [Department of Otolaryngology, Zhongda Hospital, Medical School, Southeast University, Nanjing (China); Yang, Ming; Liu, Bin; Qian, Cheng [Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing (China); Wang, Jian [Department of Physiology, Southeast University, Nanjing (China); School of Human Communication Disorders, Dalhousie University, Halifax, NS (Canada); Salvi, Richard [Center for Hearing and Deafness, University at Buffalo, State University of New York, Buffalo, NY (United States); Teng, Gao-Jun, E-mail: gjteng@vip.sina.com [Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing (China)

    2015-07-15

    Highlights: • Tinnitus patients have aberrant thalamic connectivity to many brain regions. • Decreased thalamic connectivity is linked with tinnitus characteristics. • Thalamocortical connectivity disturbances can reflect tinnitus-related networks. - Abstract: Purpose: The phantom sound of tinnitus is believed to arise from abnormal functional coupling between the thalamus and cerebral cortex. To explore this hypothesis, we used resting-state functional magnetic resonance imaging (fMRI) to compare the degree of thalamocortical functional connectivity in chronic tinnitus patients and controls. Materials and methods: Resting-state fMRI scans were obtained from 31 chronic tinnitus patients and 33 well-matched healthy controls. Thalamocortical functional connectivity was characterized using a seed-based whole-brain correlation method. The resulting thalamic functional connectivity measures were correlated with other clinical data. Results: We found decreased functional connectivity between the seed region in left thalamus and right middle temporal gyrus (MTG), right middle orbitofrontal cortex, left middle frontal gyrus, right precentral gyrus, and bilateral calcarine cortex. Decreased functional connectivity was detected between the seed in the right thalamus and the left superior temporal gyrus (STG), left amygdala, right superior frontal gyrus, left precentral gyrus, and left middle occipital gyrus. Tinnitus distress correlated negatively with thalamic functional connectivity in right MTG; tinnitus duration correlated negatively with thalamic functional connectivity in left STG. Increased functional connectivity between the bilateral thalamus and a set of regions were also observed. Conclusions: Chronic tinnitus patients have disrupted thalamocortical functional connectivity to selected brain regions which is associated with specific tinnitus characteristics. Resting-state thalamic functional connectivity disturbances may play an important role in

  19. High field fMRI reveals thalamocortical integration of segregated cognitive and emotional processing in mediodorsal and intralaminar thalamic nuclei

    Directory of Open Access Journals (Sweden)

    Coraline Danielle Metzger

    2010-11-01

    Full Text Available Thalamocortical loops, connecting functionally segregated, higher order cortical regions and basal ganglia, have been proposed not only for well described motor and sensory regions, but also for limbic and prefrontal areas relevant for affective and cognitive processes. These functions are, however, more specific to humans, rendering most invasive neuroanatomical approaches impossible and interspecies translations difficult. In contrast, non invasive imaging of functional neuroanatomy using fMRI allows for the development of elaborate task paradigms capable of testing the specific functionalities proposed for these circuits. Until recently, spatial resolution largely limited the anatomical definition of functional clusters at the level of distinct thalamic nuclei. Since their anatomical distinction seems crucial not only for the segregation of cognitive and limbic loops but also for the detection of their functional interaction during cognitive-emotional integration, we applied high resolution fMRI on 7 Tesla.Using an event related design, we could isolate thalamic effects for preceding attention as well as experience of erotic stimuli. We could demonstrate specific thalamic effects of general emotional arousal in mediodorsal nucleus and effects specific to preceding attention and expectancy in intralaminar centromedian/parafascicular complex (CM/PF. These thalamic effects were paralleled by specific coactivations in the head of caudate nucleus as well as segregated portions of rostral or caudal cingulate cortex and anterior insula supporting distinct thalamo-striato-cortical loops. In addition to predescribed effects of sexual arousal in hypothalamus and ventral striatum, high resolution fMRI could extent this network to paraventricular thalamus encompassing laterodorsal and parataenial nuclei. We could lend evidence to segregated subcortical loops which integrate cognitive and emotional aspects of basic human behaviour such as sexual

  20. Withdrawal-Associated Increases and Decreases in Functional Neural Connectivity Associated with Altered Emotional Regulation in Alcoholism

    OpenAIRE

    O'Daly, Owen G; Trick, Leanne; Scaife, Jess; Marshall, Jane; Ball, David; Phillips, Mary L.; Williams, Stephen SC; Stephens, David N.; Duka, Theodora

    2012-01-01

    Alcoholic patients who have undergone multiple detoxifications/relapses show altered processing of emotional signals. We performed functional magnetic resonance imaging during performance of implicit and explicit versions of a task in which subjects were presented with morphs of fearful facial emotional expressions. Participants were abstaining, multiply detoxified (MDTx; n=12) or singly detoxified patients (SDTx; n=17), and social drinker controls (n=31). Alcoholic patients were less able th...

  1. Altered functional brain network connectivity and glutamate system function in transgenic mice expressing truncated Disrupted-in-Schizophrenia 1

    OpenAIRE

    Dawson, N.; Kurihara, M.; Thomson, D. M.; Winchester, C L; McVie, A.; Hedde, J.R.; Randall, A.D.; Shen, S.; Seymour, P.A.; Hughes, Z.A.; Dunlop, J; Brown, J.T.; Brandon, N. J.; Morris, B J; Pratt, J.A.

    2015-01-01

    Considerable evidence implicates DISC1 as a susceptibility gene for multiple psychiatric diseases. DISC1 has been intensively studied at the molecular, cellular and behavioral level, but its role in regulating brain connectivity and brain network function remains unknown. Here, we utilize a set of complementary approaches to assess the functional brain network abnormalities present in mice expressing a truncated Disc1 gene (Disc1tr Hemi mice). Disc1tr Hemi mice exhibited hypometabolism in the...

  2. Altered Resting-State Amygdala Functional Connectivity after Real-Time fMRI Emotion Self-Regulation Training

    OpenAIRE

    Zhonglin Li; Li Tong; Min Guan; Wenjie He; Linyuan Wang; Haibin Bu; Dapeng Shi; Bin Yan

    2016-01-01

    Real-time fMRI neurofeedback (rtfMRI-nf) is a promising tool for enhancing emotion regulation capability of subjects and for the potential alleviation of neuropsychiatric disorders. The amygdala is composed of structurally and functionally distinct nuclei, such as the basolateral amygdala (BLA) and centromedial amygdala (CMA), both of which are involved in emotion processing, generation, and regulation. However, the effect of rtfMRI-nf on the resting-state functional connectivity (rsFC) of BL...

  3. Altered Intrinsic Functional Connectivity in Language-Related Brain Regions in Association with Verbal Memory Performance in Euthymic Bipolar Patients

    Directory of Open Access Journals (Sweden)

    David E. J. Linden

    2013-09-01

    Full Text Available Potential abnormalities in the structure and function of the temporal lobes have been studied much less in bipolar disorder than in schizophrenia. This may not be justified because language-related symptoms, such as pressured speech and flight of ideas, and cognitive deficits in the domain of verbal memory are amongst the hallmark of bipolar disorder (BD, and contribution of temporal lobe dysfunction is therefore likely. In the current study, we examined resting-state functional connectivity (FC between the auditory cortex (Heschl’s gyrus [HG], planum temporale [PT] and whole brain using seed correlation analysis in n = 21 BD euthymic patients and n = 20 matched healthy controls and associated it with verbal memory performance. In comparison to controls BD patients showed decreased functional connectivity between Heschl’s gyrus and planum temporale and the left superior and middle temporal gyrus. Additionally, fronto-temporal functional connectivity with the right inferior frontal/precentral gyrus and the insula was increased in patients. Verbal episodic memory deficits in the investigated sample of BD patients and language-related symptoms might therefore be associated with a diminished FC within the auditory/temporal gyrus and a compensatory fronto-temporal pathway.

  4. Altered white matter integrity and functional connectivity of hyperacute-stage cerebral ischemia in a rat model.

    Science.gov (United States)

    Cha, Jihoon; Kim, Sung Tae; Jung, Won Beom; Han, Yong Hee; Im, Geun Ho; Lee, Jung Hee

    2016-10-01

    Ischemic stroke is accompanied by structural deformation and functional deficits in the affected hemisphere. Within a couple of hours after symptom onset, the accurate identification of brain characteristics is critical to design the therapeutic strategies and it can potentially improve overall brain tissue viability by minimizing irreversible brain damage. In this study, white matter integrity and functional connectivity within 2-4h after right middle cerebral artery occlusion in rats were investigated using multimodal magnetic resonance imaging. During this stage, diffusion tensor image (DTI) revealed that fractional anisotropy along the ipsilesional external capsule was slightly increased as compared with preoperative baseline. Resting state functional MRI (rs-fMRI) showed that the inter-hemispheric functional connectivities from primary motor (M1), primary somatosensory of forelimb (S1FL), and barrel field (S1BF) seeds were considerably reduced at the hyperacute stage. Fractional amplitudes of low frequency fluctuations (fALFF) from rs-fMRI were significantly enhanced at the hyperacute stage in the frequency spectrum between 0.01 and 0.08Hz. In addition, the changes in fALFF were negatively correlated with the number of functionally connected voxels in M1, S1FL and S1BF. Our results suggest that these techniques are useful tools to evaluate remarkable brain changes in the hyperacute stage of ischemic stroke. PMID:27108358

  5. Daily Carnosine and Anserine Supplementation Alters Verbal Episodic Memory and Resting State Network Connectivity in Healthy Elderly Adults.

    Science.gov (United States)

    Rokicki, Jaroslav; Li, Lucia; Imabayashi, Etsuko; Kaneko, Jun; Hisatsune, Tatsuhiro; Matsuda, Hiroshi

    2015-01-01

    Carnosine and anserine are strong antioxidants, previously demonstrated to reduce cognitive decline in animal studies. We aimed to investigate their cognitive and neurophysiological effects, using functional MRI, on humans. Thirty-one healthy participants (age 40-78, 10 male/21 female) were recruited to a double-blind placebo-controlled study. Participants were assigned to twice-daily doses of imidazole dipeptide formula (n = 14), containing 500 mg (carnosine/anserine, ratio 1/3) or an identical placebo (n = 17). Functional MRI and neuropsychological assessments were carried out at baseline and after 3 months of supplementation. We analyzed resting state functional connectivity with the FSL fMRI analysis package. There were no differences in neuropsychological scores between the groups at baseline. After 3 months of supplementation, the carnosine/anserine group had better verbal episodic memory performance and decreased connectivity in the default mode network, the posterior cingulate cortex and the right fronto parietal network, as compared with the placebo group. Furthermore, there was a correlation between the extents of cognitive and neuroimaging changes. These results suggest that daily carnosine/anserine supplementation can impact cognitive function and that network connectivity changes are associated with its effects. PMID:26640437

  6. Daily carnosine and anserine supplementation alters verbal episodic memory and resting state network connectivity in healthy elderly adults

    Directory of Open Access Journals (Sweden)

    Jaroslav eRokicki

    2015-11-01

    Full Text Available Carnosine and anserine are strong antioxidants, previously demonstrated to reduce cognitive decline in animal studies. We aimed to investigate their cognitive and neurophysiological effects, using functional MRI, on humans.Thirty-one healthy participants (age 40-78, 10~male/21~female were recruited to a double-blind placebo-controlled study. Participants were assigned to twice-daily doses of imidazole dipeptide formula ($n = 14$, containing 500~mg (carnosine/anserine, ratio 1/3 or an identical placebo ($n = 17$. Functional MRI and neuropsychological assessments were carried out at baseline and after 3 months of supplementation. We analyzed resting state functional connectivity with the FSL fMRI analysis package. There were no differences in neuropsychological scores between the groups at baseline. After 3 months of supplementation, the carnosine/anserine group had better verbal episodic memory performance and decreased connectivity in the Default Mode Network, the Posterior Cingulate Cortex and the Right Fronto Parietal Network, as compared with the placebo group. Furthermore, there was a correlation between the extents of cognitive and neuroimaging changes. These results suggest that daily carnosine/anserine supplementation can impact cognitive function and that network connectivity changes are associated with its effects.

  7. Hydrologic and geomorphic considerations in restoration of river-floodplain connectivity in a highly altered river system, Lower Missouri River, USA

    Science.gov (United States)

    Jacobson, Robert B.; Janke, Tyler P.; Skold, Jason J.

    2011-01-01

    Planning for restoration of river-floodplain systems requires understanding how often and how much of a floodplain may be inundated, and how likely the floodplain is to retain the water once flooded. These factors depend fundamentally on hydrology and geomorphology of the channel and floodplain. We discuss application of an index of river-floodplain connectivity, the Land Capability Potential Index (LCPI), to regional-scale restoration planning along 600 km of the Lower Missouri River. The LCPI integrates modeled water-surface elevations, floodplain topography, and soils to index relative wetness of floodplain patches. Geomorphic adjustment of the Lower Missouri River to impoundment and channel engineering has altered the natural relations among hydrology, geomorphology, and floodplain soils, and has resulted in a regional upstream to downstream gradient in connectivity potential. As a result, flow-regime management is limited in its capacity to restore floodplain ecosystems. The LCPI provides a tool for identifying and mapping floodplain restoration potential, accounting for the geomorphic adjustment. Using simple criteria, we illustrate the utility of LCPI-like approaches in regional planning for restoration of plains cottonwood (Populus deltoides) communities, hydrologically connected floodplain wetlands, and seasonal floodplain wetlands.

  8. Altered resting state functional connectivity of anterior cingulate cortex in drug naïve adolescents at the earliest stages of anorexia nervosa

    Science.gov (United States)

    Gaudio, Santino; Piervincenzi, Claudia; Beomonte Zobel, Bruno; Romana Montecchi, Francesca; Riva, Giuseppe; Carducci, Filippo; Cosimo Quattrocchi, Carlo

    2015-01-01

    Previous Resting-State Functional Connectivity (RSFC) studies have shown several functional alterations in adults with or recovered from long Anorexia Nervosa (AN). The aim of this paper was to investigate whole brain RSFC in adolescents with AN in the earliest stages, less than 6 months, of the disorder. Sixteen drug-naïve outpatient female adolescents with AN-restrictive type (AN-r) (mean age: 15,8; SD 1,7) were compared to 16 age-matched healthy female (mean age: 16,3; SD 1,4). Relevant resting state networks (RSNs) were identified using independent component analysis (ICA) from functional magnetic resonance imaging data; a dual regression technique was used to detect between-group differences in the RSNs. Between-group differences of the functional connectivity maps were found in the executive control network (ECN). Particularly, decreased temporal correlation was observed in AN-r patients relative to healthy controls between the ECN functional connectivity maps and the anterior cingulate cortex (p < 0.05 corrected). Our results in AN adolescents may represent an early trait-related biomarker of the disease. Considering that the above mentioned network and its area are mainly involved in cognitive control and emotional processing, our findings could explain the impaired cognitive flexibility in relation to body image and appetite in AN patients. PMID:26043139

  9. Altered resting state functional connectivity of anterior cingulate cortex in drug naïve adolescents at the earliest stages of anorexia nervosa.

    Science.gov (United States)

    Gaudio, Santino; Piervincenzi, Claudia; Beomonte Zobel, Bruno; Romana Montecchi, Francesca; Riva, Giuseppe; Carducci, Filippo; Quattrocchi, Carlo Cosimo

    2015-01-01

    Previous Resting-State Functional Connectivity (RSFC) studies have shown several functional alterations in adults with or recovered from long Anorexia Nervosa (AN). The aim of this paper was to investigate whole brain RSFC in adolescents with AN in the earliest stages, less than 6 months, of the disorder. Sixteen drug-naïve outpatient female adolescents with AN-restrictive type (AN-r) (mean age: 15,8; SD 1,7) were compared to 16 age-matched healthy female (mean age: 16,3; SD 1,4). Relevant resting state networks (RSNs) were identified using independent component analysis (ICA) from functional magnetic resonance imaging data; a dual regression technique was used to detect between-group differences in the RSNs. Between-group differences of the functional connectivity maps were found in the executive control network (ECN). Particularly, decreased temporal correlation was observed in AN-r patients relative to healthy controls between the ECN functional connectivity maps and the anterior cingulate cortex (p emotional processing, our findings could explain the impaired cognitive flexibility in relation to body image and appetite in AN patients. PMID:26043139

  10. Dynamic functional connectivity analysis reveals transient states of dysconnectivity in schizophrenia

    Directory of Open Access Journals (Sweden)

    E. Damaraju

    2014-01-01

    Full Text Available Schizophrenia is a psychotic disorder characterized by functional dysconnectivity or abnormal integration between distant brain regions. Recent functional imaging studies have implicated large-scale thalamo-cortical connectivity as being disrupted in patients. However, observed connectivity differences in schizophrenia have been inconsistent between studies, with reports of hyperconnectivity and hypoconnectivity between the same brain regions. Using resting state eyes-closed functional imaging and independent component analysis on a multi-site data that included 151 schizophrenia patients and 163 age- and gender matched healthy controls, we decomposed the functional brain data into 100 components and identified 47 as functionally relevant intrinsic connectivity networks. We subsequently evaluated group differences in functional network connectivity, both in a static sense, computed as the pairwise Pearson correlations between the full network time courses (5.4 minutes in length, and a dynamic sense, computed using sliding windows (44 s in length and k-means clustering to characterize five discrete functional connectivity states. Static connectivity analysis revealed that compared to healthy controls, patients show significantly stronger connectivity, i.e., hyperconnectivity, between the thalamus and sensory networks (auditory, motor and visual, as well as reduced connectivity (hypoconnectivity between sensory networks from all modalities. Dynamic analysis suggests that (1, on average, schizophrenia patients spend much less time than healthy controls in states typified by strong, large-scale connectivity, and (2, that abnormal connectivity patterns are more pronounced during these connectivity states. In particular, states exhibiting cortical–subcortical antagonism (anti-correlations and strong positive connectivity between sensory networks are those that show the group differences of thalamic hyperconnectivity and sensory hypoconnectivity

  11. The Contribution of Thalamocortical Core and Matrix Pathways to Sleep Spindles.

    Science.gov (United States)

    Piantoni, Giovanni; Halgren, Eric; Cash, Sydney S

    2016-01-01

    Sleep spindles arise from the interaction of thalamic and cortical neurons. Neurons in the thalamic reticular nucleus (TRN) inhibit thalamocortical neurons, which in turn excite the TRN and cortical neurons. A fundamental principle of anatomical organization of the thalamocortical projections is the presence of two pathways: the diffuse matrix pathway and the spatially selective core pathway. Cortical layers are differentially targeted by these two pathways with matrix projections synapsing in superficial layers and core projections impinging on middle layers. Based on this anatomical observation, we propose that spindles can be classified into two classes, those arising from the core pathway and those arising from the matrix pathway, although this does not exclude the fact that some spindles might combine both pathways at the same time. We find evidence for this hypothesis in EEG/MEG studies, intracranial recordings, and computational models that incorporate this difference. This distinction will prove useful in accounting for the multiple functions attributed to spindles, in that spindles of different types might act on local and widespread spatial scales. Because spindle mechanisms are often hijacked in epilepsy and schizophrenia, the classification proposed in this review might provide valuable information in defining which pathways have gone awry in these neurological disorders. PMID:27144033

  12. The Contribution of Thalamocortical Core and Matrix Pathways to Sleep Spindles

    Science.gov (United States)

    Piantoni, Giovanni; Halgren, Eric; Cash, Sydney S.

    2016-01-01

    Sleep spindles arise from the interaction of thalamic and cortical neurons. Neurons in the thalamic reticular nucleus (TRN) inhibit thalamocortical neurons, which in turn excite the TRN and cortical neurons. A fundamental principle of anatomical organization of the thalamocortical projections is the presence of two pathways: the diffuse matrix pathway and the spatially selective core pathway. Cortical layers are differentially targeted by these two pathways with matrix projections synapsing in superficial layers and core projections impinging on middle layers. Based on this anatomical observation, we propose that spindles can be classified into two classes, those arising from the core pathway and those arising from the matrix pathway, although this does not exclude the fact that some spindles might combine both pathways at the same time. We find evidence for this hypothesis in EEG/MEG studies, intracranial recordings, and computational models that incorporate this difference. This distinction will prove useful in accounting for the multiple functions attributed to spindles, in that spindles of different types might act on local and widespread spatial scales. Because spindle mechanisms are often hijacked in epilepsy and schizophrenia, the classification proposed in this review might provide valuable information in defining which pathways have gone awry in these neurological disorders.

  13. What Is Lost During Dreamless Sleep: The Relationship Between Neural Connectivity Patterns and Consciousness

    Directory of Open Access Journals (Sweden)

    Michaela Klimova

    2014-09-01

    Full Text Available Non-rapid eye movement (NREM sleep is characterised by reduced consciousness; thus, studying its neural characteristics acts as a useful indication of what is needed for conscious experience. The integrated information theory (Tononi, 2008 states that the ability of different thalamocortical regions to interact is crucial for consciousness, thereby motivating research concerning connectivity changes in the thalamocortical system that accompany changing consciousness levels. This review aims to discuss investigations of functional connectivity of resting-state and large-scale brain networks, applying correlational approaches to neuroimaging data as well as studies that used brain stimulation to investigate effective connectivity. Most findings suggest a reorganisation of functional brain networks where inter-region connectivity is reduced and intra-region connectivity is stronger in deep sleep than wakefulness.

  14. Brain connectivity in pathological and pharmacological coma

    Directory of Open Access Journals (Sweden)

    Quentin Noirhomme

    2010-12-01

    Full Text Available Recent studies in patients with disorders of consciousness (DOC tend to support the view that awareness is not related to activity in a single brain region but to thalamo-cortical connectivity in the frontoparietal network. Functional neuroimaging studies have shown preserved albeit disconnected low level cortical activation in response to external stimulation in patients in a vegetative state or unresponsive wakefulness syndrome. While activation of these primary sensory cortices does not necessarily reflect conscious awareness, activation in higher order associative cortices in minimally conscious state patients seems to herald some residual perceptual awareness. PET studies have identified a metabolic dysfunction in a widespread fronto-parietal global neuronal workspace in DOC patients including the midline default mode network, ‘intrinsic’ system, and the lateral frontoparietal cortices or ‘extrinsic system’. Recent studies have investigated the relation of awareness to the functional connectivity within intrinsic and extrinsic networks, and with the thalami in both pathological and pharmacological coma. In brain damaged patients, connectivity in all default network areas was found to be non-linearly correlated with the degree of clinical consciousness impairment, ranging from healthy controls and locked-in syndrome to minimally conscious, vegetative, coma and brain dead patients. Anesthesia-induced loss of consciousness was also shown to correlate with a global decrease in cortico-cortical and thalamo-cortical connectivity in both intrinsic and extrinsic networks, but not in auditory or visual networks. In anesthesia, unconsciousness was also associated with a loss of cross-modal interactions between networks. These results suggest that conscious awareness critically depends on the functional integrity of thalamo-cortical and cortico-cortical frontoparietal connectivity within and between intrinsic and extrinsic brain networks.

  15. Brain Connectivity in Pathological and Pharmacological Coma

    Science.gov (United States)

    Noirhomme, Quentin; Soddu, Andrea; Lehembre, Rémy; Vanhaudenhuyse, Audrey; Boveroux, Pierre; Boly, Mélanie; Laureys, Steven

    2010-01-01

    Recent studies in patients with disorders of consciousness (DOC) tend to support the view that awareness is not related to activity in a single brain region but to thalamo-cortical connectivity in the frontoparietal network. Functional neuroimaging studies have shown preserved albeit disconnected low-level cortical activation in response to external stimulation in patients in a “vegetative state” or unresponsive wakefulness syndrome. While activation of these “primary” sensory cortices does not necessarily reflect conscious awareness, activation in higher-order associative cortices in minimally conscious state patients seems to herald some residual perceptual awareness. PET studies have identified a metabolic dysfunction in a widespread frontoparietal “global neuronal workspace” in DOC patients including the midline default mode network (“intrinsic” system) and the lateral frontoparietal cortices or “extrinsic system.” Recent studies have investigated the relation of awareness to the functional connectivity within intrinsic and extrinsic networks, and with the thalami in both pathological and pharmacological coma. In brain damaged patients, connectivity in all default network areas was found to be non-linearly correlated with the degree of clinical consciousness impairment, ranging from healthy controls and locked-in syndrome to minimally conscious, vegetative, coma, and brain dead patients. Anesthesia-induced loss of consciousness was also shown to correlate with a global decrease in cortico-cortical and thalamo-cortical connectivity in both intrinsic and extrinsic networks, but not in auditory, or visual networks. In anesthesia, unconsciousness was also associated with a loss of cross-modal interactions between networks. These results suggest that conscious awareness critically depends on the functional integrity of thalamo-cortical and cortico-cortical frontoparietal connectivity within and between “intrinsic” and “extrinsic” brain

  16. Brain connectivity in pathological and pharmacological coma.

    Science.gov (United States)

    Noirhomme, Quentin; Soddu, Andrea; Lehembre, Rémy; Vanhaudenhuyse, Audrey; Boveroux, Pierre; Boly, Mélanie; Laureys, Steven

    2010-01-01

    Recent studies in patients with disorders of consciousness (DOC) tend to support the view that awareness is not related to activity in a single brain region but to thalamo-cortical connectivity in the frontoparietal network. Functional neuroimaging studies have shown preserved albeit disconnected low-level cortical activation in response to external stimulation in patients in a "vegetative state" or unresponsive wakefulness syndrome. While activation of these "primary" sensory cortices does not necessarily reflect conscious awareness, activation in higher-order associative cortices in minimally conscious state patients seems to herald some residual perceptual awareness. PET studies have identified a metabolic dysfunction in a widespread frontoparietal "global neuronal workspace" in DOC patients including the midline default mode network ("intrinsic" system) and the lateral frontoparietal cortices or "extrinsic system." Recent studies have investigated the relation of awareness to the functional connectivity within intrinsic and extrinsic networks, and with the thalami in both pathological and pharmacological coma. In brain damaged patients, connectivity in all default network areas was found to be non-linearly correlated with the degree of clinical consciousness impairment, ranging from healthy controls and locked-in syndrome to minimally conscious, vegetative, coma, and brain dead patients. Anesthesia-induced loss of consciousness was also shown to correlate with a global decrease in cortico-cortical and thalamo-cortical connectivity in both intrinsic and extrinsic networks, but not in auditory, or visual networks. In anesthesia, unconsciousness was also associated with a loss of cross-modal interactions between networks. These results suggest that conscious awareness critically depends on the functional integrity of thalamo-cortical and cortico-cortical frontoparietal connectivity within and between "intrinsic" and "extrinsic" brain networks. PMID:21191476

  17. Altered Resting-State Amygdala Functional Connectivity after Real-Time fMRI Emotion Self-Regulation Training.

    Science.gov (United States)

    Li, Zhonglin; Tong, Li; Guan, Min; He, Wenjie; Wang, Linyuan; Bu, Haibin; Shi, Dapeng; Yan, Bin

    2016-01-01

    Real-time fMRI neurofeedback (rtfMRI-nf) is a promising tool for enhancing emotion regulation capability of subjects and for the potential alleviation of neuropsychiatric disorders. The amygdala is composed of structurally and functionally distinct nuclei, such as the basolateral amygdala (BLA) and centromedial amygdala (CMA), both of which are involved in emotion processing, generation, and regulation. However, the effect of rtfMRI-nf on the resting-state functional connectivity (rsFC) of BLA and CMA remains to be elucidated. In our study, participants were provided with ongoing information on their emotion states by using real-time multivariate voxel pattern analysis. Results showed that participants presented significantly increased rsFC of BLA and CMA with prefrontal cortex, rostral anterior cingulate cortex, and some others related to emotion after rtfMRI-nf training. The findings provide important evidence for the emotion regulation effectiveness of rtfMRI-nf training and indicate its usefulness as a tool for the self-regulation of emotion. PMID:26998482

  18. Resting-state functional connectivity density mapping of etiology confirmed unilateral pulsatile tinnitus patients: Altered functional hubs in the early stage of disease.

    Science.gov (United States)

    Han, L; Pengfei, Z; Zhaohui, L; Fei, Y; Ting, L; Cheng, D; Zhenchang, W

    2015-12-01

    Functional magnetic resonance imaging (fMRI) has been widely used to identify altered intrinsic local neural activities and global networks of tinnitus patients. In this study, functional connectivity density (FCD) mapping, a newly developed voxelwise data-driven method based on fMRI, was applied for the first time to measure the functional reorganization pattern in thirty-two unilateral pulsatile tinnitus (PT) patients in the early stage of disease (less than 48 months). FCD analysis was employed to compute short-range and long-range FCD values. A correlation analysis with clinical variables was also performed. Compared with normal controls, PT patients showed significantly increased short-range FCD, mainly in the precuneus (PCu), bilateral inferior frontal gyrus (IFG) and middle occipital gyrus (MOG), and increased long-range FCD in the PCu, posterior cingulate cortex (PCC), and bilateral middle frontal gyrus (MFG). In addition, correlation analysis showed positive correlations between PT duration and short-range FCD values in the right MOG. Positive correlations were also found between the disease duration and the long-range FCD value in the PCC. The increased short-/long-range FCD in bilateral dorsal visual areas indicated that the enhanced pathway between the auditory cortex and bilateral dorsal visual areas may have activated the "auditory occipital activations" (AOAs) pathway. The bilaterally altered FCD values in the dorsal visual areas reflected the cooperation of different brain areas. This study is a foundation of the connectivity research in PT patients. Our work may advance the understanding of the disrupted neural network of patients with PT. PMID:26384961

  19. Thalamocortical Interactions

    OpenAIRE

    Sherman, S. Murray

    2012-01-01

    Glutamatergic pathways dominate information processing in the brain, but these are not homogeneous. They include two distinct types: Class 1, which carries the main information for processing, and Class 2, which serves a modulatory role. Identifying the Class 1 inputs in a circuit can lead to a better understanding of its function. Also, identifying Class 1 inputs to a thalamic nucleus tells us its main function (e.g., LGN is the relay of retinal Class 1 input), and such identification leads ...

  20. Thalamocortical NMDA conductances and intracortical inhibition can explain cortical temporal tuning

    Science.gov (United States)

    Krukowski, A. E.; Miller, K. D.

    2001-01-01

    Cells in cerebral cortex fail to respond to fast-moving stimuli that evoke strong responses in the thalamic nuclei innervating the cortex. The reason for this behavior has remained a mystery. We study an experimentally motivated model of the thalamic input-recipient layer of cat primary visual cortex that accounts for many aspects of cortical orientation tuning. In this circuit, inhibition dominates over excitation, but temporal modulations of excitation and inhibition occur out of phase with one another, allowing excitation to transiently drive cells. We show that this circuit provides a natural explanation of cortical low-pass temporal frequency tuning, provided N-methyl-D-aspartate (NMDA) receptors are present in thalamocortical synapses in proportions measured experimentally. This suggests a new and unanticipated role for NMDA conductances in shaping the temporal response properties of cortical cells, and suggests that common cortical circuit mechanisms underlie both spatial and temporal response tuning.

  1. Connection to deep groundwater alters ecosystem carbon fluxes and budgets: an example from a Costa Rican rainforest (Invited)

    Science.gov (United States)

    Genereux, D. P.; Osburn, C. L.; Nagy, L.; Oberbauer, S. F.; Rojas-Jiménez, L. D.

    2013-12-01

    differs between the two watersheds. Slope ratio, a property of the light absorbance by DOM, was higher in the Arboleda than in the Taconazo, consistent with the DOM from regional groundwater being lower in molecular mass and/or weakly-aromatic (perhaps more degraded after its long subsurface residence time, ~3000 yr). Preliminary data suggest older DOM from regional groundwater is less bioavailable in rainforest streams. Regional groundwater inputs may alter watershed export of DOC (the C in DOM) in two ways: additional input of DOM to the watershed, and input of DOM that is more likely to experience hydrologic export from the watershed. Correct interpretation of the C source/sink status of this ecosystem from field data requires accounting for the role of regional groundwater. The widespread occurrence of two key factors (regional interbasin groundwater flow, and elevated dissolved C in regional groundwater) suggests regional groundwater may affect C fluxes and budgets at many sites.

  2. Evidence for Thalamocortical Circuit Abnormalities and Associated Cognitive Dysfunctions in Underweight Individuals with Anorexia Nervosa.

    Science.gov (United States)

    Biezonski, Dominik; Cha, Jiook; Steinglass, Joanna; Posner, Jonathan

    2016-05-01

    Anorexia nervosa (AN) is characterized by extremely low body weight resulting from pathological food restriction, and carries a mortality rate among the highest of any psychiatric illness. AN, particularly during the acute, underweight state of the illness, has been associated with abnormalities across a range of brain regions, including the frontal cortex and basal ganglia. Few studies of AN have investigated the thalamus, a key mediator of information flow through frontal-basal ganglia circuit loops. We examined both thalamic surface morphology using anatomical MRI and thalamo-frontal functional connectivity using resting-state functional MRI. Individuals with AN (n=28) showed localized inward deformations of the thalamus relative to healthy controls (HC, n=22), and abnormal functional connectivity between the thalamus and the dorsolateral and anterior prefrontal cortices. Alterations in thalamo-frontal connectivity were associated with deficits in performance on tasks probing cognitive control (Stroop task) and working memory (Letter-Number Sequencing (LNS) task). Our findings suggest that abnormalities in thalamo-frontal circuits may have a role in mediating aspects of cognitive dysfunction in underweight individuals with AN. PMID:26462619

  3. White matter alterations related to attention-deficit hyperactivity disorder and COMT val158met polymorphism: children with valine homozygote attention-deficit hyperactivity disorder have altered white matter connectivity in the right cingulum (cingulate gyrus)

    Science.gov (United States)

    Kabukcu Basay, Burge; Buber, Ahmet; Basay, Omer; Alacam, Huseyin; Ozturk, Onder; Suren, Serkan; Izci Ay, Ozlem; Acikel, Cengizhan; Agladıoglu, Kadir; Erdal, Mehmet Emin; Ercan, Eyup Sabri; Herken, Hasan

    2016-01-01

    Introduction In this article, the COMT gene val158met polymorphism and attention-deficit hyperactivity disorder (ADHD)-related differences in diffusion-tensor-imaging-measured white matter (WM) structure in children with ADHD and controls were investigated. Patients and methods A total of 71 children diagnosed with ADHD and 24 controls aged 8–15 years were recruited. Using diffusion tensor imaging, COMT polymorphism and ADHD-related WM alterations were investigated, and any interaction effect between the COMT polymorphism and ADHD was also examined. The effects of age, sex, and estimated total IQ were controlled by multivariate analysis of covariance (MANCOVA). Results First, an interaction between the COMT val158met polymorphism and ADHD in the right (R) cingulum (cingulate gyrus) (CGC) was found. According to this, valine (val) homozygote ADHD-diagnosed children had significantly lower fractional anisotropy (FA) and higher radial diffusivity (RD) in the R-CGC than ADHD-diagnosed methionine (met) carriers, and val homozygote controls had higher FA and lower RD in the R-CGC than val homozygote ADHD patients. Second, met carriers had higher FA and axial diffusivity in the left (L)-uncinate fasciculus and lower RD in the L-posterior corona radiata and L-posterior thalamic radiation (include optic radiation) than the val homozygotes, independent of ADHD diagnosis. Third, children with ADHD had lower FA in the L-CGC and R-retrolenticular part of the internal capsule than the controls, independent of the COMT polymorphism. Conclusion Significant differences reported here may be evidence that the COMT gene val158met polymorphism variants, as well as ADHD, could affect brain development. ADHD and the COMT polymorphism might be interactively affecting WM development in the R-CGC to alter the WM connectivity in children with val homozygote ADHD. PMID:27143897

  4. A combined method to estimate parameters of the thalamocortical model from a heavily noise-corrupted time series of action potential

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ruofan; Wang, Jiang; Deng, Bin, E-mail: dengbin@tju.edu.cn; Liu, Chen; Wei, Xile [Department of Electrical and Automation Engineering, Tianjin University, Tianjin (China); Tsang, K. M.; Chan, W. L. [Department of Electrical Engineering, The Hong Kong Polytechnic University, Kowloon (Hong Kong)

    2014-03-15

    A combined method composing of the unscented Kalman filter (UKF) and the synchronization-based method is proposed for estimating electrophysiological variables and parameters of a thalamocortical (TC) neuron model, which is commonly used for studying Parkinson's disease for its relay role of connecting the basal ganglia and the cortex. In this work, we take into account the condition when only the time series of action potential with heavy noise are available. Numerical results demonstrate that not only this method can estimate model parameters from the extracted time series of action potential successfully but also the effect of its estimation is much better than the only use of the UKF or synchronization-based method, with a higher accuracy and a better robustness against noise, especially under the severe noise conditions. Considering the rather important role of TC neuron in the normal and pathological brain functions, the exploration of the method to estimate the critical parameters could have important implications for the study of its nonlinear dynamics and further treatment of Parkinson's disease.

  5. A combined method to estimate parameters of the thalamocortical model from a heavily noise-corrupted time series of action potential

    International Nuclear Information System (INIS)

    A combined method composing of the unscented Kalman filter (UKF) and the synchronization-based method is proposed for estimating electrophysiological variables and parameters of a thalamocortical (TC) neuron model, which is commonly used for studying Parkinson's disease for its relay role of connecting the basal ganglia and the cortex. In this work, we take into account the condition when only the time series of action potential with heavy noise are available. Numerical results demonstrate that not only this method can estimate model parameters from the extracted time series of action potential successfully but also the effect of its estimation is much better than the only use of the UKF or synchronization-based method, with a higher accuracy and a better robustness against noise, especially under the severe noise conditions. Considering the rather important role of TC neuron in the normal and pathological brain functions, the exploration of the method to estimate the critical parameters could have important implications for the study of its nonlinear dynamics and further treatment of Parkinson's disease

  6. Termination and initial branch formation of SNAP-25 deficient thalamocortical fibres in heterochronic organotypic co-cultures

    OpenAIRE

    Blakey, Daniel; Wilson, Michael C.; Molnár, Zoltán

    2012-01-01

    We are interested in the role of neural activity mediated through regulated vesicular release in the stopping and early branching of the thalamic projections in the cortex. Axon outgrowth, arrival to cortical subplate, side branch formation during the waiting period and cortical plate innervation of embryonic thalamocortical projections occurs without major abnormalities in the absence of regulated release in Snap25−/− mice (Washbourne et al., 2002; Molnár et al., 2002). The fact that Snap25−...

  7. Altered brain activation and functional connectivity in working memory related networks in patients with type 2 diabetes: An ICA-based analysis.

    Science.gov (United States)

    Zhang, Yang; Lu, Shan; Liu, Chunlei; Zhang, Huimei; Zhou, Xuanhe; Ni, Changlin; Qin, Wen; Zhang, Quan

    2016-01-01

    Type 2 diabetes mellitus (T2DM) can cause multidimensional cognitive deficits, among which working memory (WM) is usually involved at an early stage. However, the neural substrates underlying impaired WM in T2DM patients are still unclear. To clarify this issue, we utilized functional magnetic resonance imaging (fMRI) and independent component analysis to evaluate T2DM patients for alterations in brain activation and functional connectivity (FC) in WM networks and to determine their associations with cognitive and clinical variables. Twenty complication-free T2DM patients and 19 matched healthy controls (HCs) were enrolled, and fMRI data were acquired during a block-designed 1-back WM task. The WM metrics of the T2DM patients showed no differences compared with those of the HCs, except for a slightly lower accuracy rate in the T2DM patients. Compared with the HCs, the T2DM patients demonstrated increased activation within their WM fronto-parietal networks, and activation strength was significantly correlated with WM performance. The T2DM patients also showed decreased FC within and between their WM networks. Our results indicate that the functional integration of WM sub-networks was disrupted in the complication-free T2DM patients and that strengthened regional activity in fronto-parietal networks may compensate for the WM impairment caused by T2DM. PMID:27021340

  8. White matter alterations related to attention-deficit hyperactivity disorder and COMT val158met polymorphism: children with valine homozygote attention-deficit hyperactivity disorder have altered white matter connectivity in the right cingulum (cingulate gyrus

    Directory of Open Access Journals (Sweden)

    Kabukcu Basay B

    2016-04-01

    -posterior thalamic radiation (include optic radiation than the val homozygotes, independent of ADHD diagnosis. Third, children with ADHD had lower FA in the L-CGC and R-retrolenticular part of the internal capsule than the controls, independent of the COMT polymorphism.Conclusion: Significant differences reported here may be evidence that the COMT gene val158met polymorphism variants, as well as ADHD, could affect brain development. ADHD and the COMT polymorphism might be interactively affecting WM development in the R-CGC to alter the WM connectivity in children with val homozygote ADHD.Keywords: neuroimaging, attention deficit, hyperactivity, catechol-O-methyltransferase

  9. Phasic and tonic mGlu7 receptor activity modulates the thalamocortical network

    Directory of Open Access Journals (Sweden)

    Valériane eTassin

    2016-04-01

    Full Text Available Mutation of the metabotropic glutamate receptor type 7 (mGlu7 induces absence-like epileptic seizures, but its precise role in the somatosensory thalamocortical network remains unknown. By combining electrophysiological recordings, optogenetics and pharmacology we dissected the contribution of the mGlu7 receptor at mouse thalamic synapses. We found that mGlu7 is functionally expressed at both glutamatergic and GABAergic synapses, where it can inhibit neurotransmission and regulate short-term plasticity. These effects depend on the PDZ-ligand of the receptor, as they are lost in mutant mice. Interestingly, the very low affinity of mGlu7 receptors for glutamate raises the question of how it can be activated, namely at GABAergic synapses and in basal conditions. Inactivation of the receptor activity with the mGlu7 negative allosteric modulator (NAM, ADX71743, enhances thalamic synaptic transmission. In vivo administration of the NAM induces a lethargic state with spindle and/or spike-and-wave discharges accompanied by a behavioral arrest typical of absence epileptic seizures. This provides evidence for mGlu7 receptor-mediated tonic modulation of a physiological function in vivo preventing synchronous and potentially pathological oscillations.

  10. Phasic and Tonic mGlu7 Receptor Activity Modulates the Thalamocortical Network.

    Science.gov (United States)

    Tassin, Valériane; Girard, Benoît; Chotte, Apolline; Fontanaud, Pierre; Rigault, Delphine; Kalinichev, Mikhail; Perroy, Julie; Acher, Francine; Fagni, Laurent; Bertaso, Federica

    2016-01-01

    Mutation of the metabotropic glutamate receptor type 7 (mGlu7) induces absence-like epileptic seizures, but its precise role in the somatosensory thalamocortical network remains unknown. By combining electrophysiological recordings, optogenetics, and pharmacology, we dissected the contribution of the mGlu7 receptor at mouse thalamic synapses. We found that mGlu7 is functionally expressed at both glutamatergic and GABAergic synapses, where it can inhibit neurotransmission and regulate short-term plasticity. These effects depend on the PDZ-ligand of the receptor, as they are lost in mutant mice. Interestingly, the very low affinity of mGlu7 receptors for glutamate raises the question of how it can be activated, namely at GABAergic synapses and in basal conditions. Inactivation of the receptor activity with the mGlu7 negative allosteric modulator (NAM), ADX71743, enhances thalamic synaptic transmission. In vivo administration of the NAM induces a lethargic state with spindle and/or spike-and-wave discharges accompanied by a behavioral arrest typical of absence epileptic seizures. This provides evidence for mGlu7 receptor-mediated tonic modulation of a physiological function in vivo preventing synchronous and potentially pathological oscillations. PMID:27199672

  11. Thalamocortical integration of instrumental learning and performance and their disintegration in addiction.

    Science.gov (United States)

    Balleine, Bernard W; Morris, Richard W; Leung, Beatrice K

    2015-12-01

    A recent focus of addiction research has been on the effect of drug exposure on the neural processes that mediate the acquisition and performance of goal-directed instrumental actions. Deficits in goal-directed control and a consequent dysregulation of habit learning processes have been described as resulting in compulsive drug seeking. Similarly, considerable research has focussed on the motivational and emotional changes that drugs produce and that result in changes in the incentive processes that modulate goal-directed performance. Although these areas have developed independently, we argue that the effects they described are likely not independent. Here we hypothesize that these changes result from a core deficit in the way the learning and performance factors that support goal-directed action are integrated at a neural level to maintain behavioural control. A dorsal basal ganglia stream mediating goal-directed learning and a ventral stream mediating various performance factors find several points of integration in the cortical basal ganglia system, most notably in the thalamocortical network linking basal ganglia output to a variety of cortical control centres. Recent research in humans and other animals is reviewed suggesting that learning and performance factors are integrated in a network centred on the mediodorsal thalamus and that disintegration in this network may provide the basis for a 'switch' from recreational to dysregulated drug seeking resulting in the well documented changes associated with addiction. PMID:25514336

  12. Analysis of morphological features of thalamocortical neurons from the ventroposterolateral nucleus of the cat.

    Science.gov (United States)

    Zomorrodi, Reza; Ferecskó, Alex S; Kovács, Krisztina; Kröger, Helmut; Timofeev, Igor

    2010-09-01

    Morphological features of the dendritic arborization can affect neuronal responses and thus the input-output function of a particular neuron. In this study, morphological data of eight fully reconstructed thalamocortical (TC) neurons from the ventroposterolateral (VPL) nucleus of adult cats have been analyzed. We examined several geometrical and topological parameters, which have been previously shown to have a high impact on the neuron firing pattern and propagation of signals in the dendritic tree. In addition to well-known morphological parameters such as number of dendritic trees (8.3 +/- 1.5) and number of branching points (80-120), we investigated the distribution of dendritic membrane area, branching points, geometrical ratio, asymmetry index, and mean path length for all subtrees of the TC neurons. We demonstrate that due to extensive branching in proximal and middle dendritic sections, the maximum value of the dendritic area distribution is reached at 120-160 mum from the soma. Our analysis reveals that TC neurons are highly branched cells and their dendritic branching pattern does not follow Rall's 3/2 power rule; average values at proximal vs. distal dendritic sections were different. We also found that the dendritic branching pattern of each subtree of the cell had a wide range in symmetry index, whereas the mean path length did not show a large variation through the dendritic arborizations. PMID:20593357

  13. Celsr3 and Fzd3 Organize a Pioneer Neuron Scaffold to Steer Growing Thalamocortical Axons.

    Science.gov (United States)

    Feng, Jia; Xian, Quanxiang; Guan, Tingting; Hu, Jing; Wang, Meizhi; Huang, Yuhua; So, Kwok-Fai; Evans, Sylvia M; Chai, Guoliang; Goffinet, Andre M; Qu, Yibo; Zhou, Libing

    2016-07-01

    Celsr3 and Fzd3 regulate the development of reciprocal thalamocortical projections independently of their expression in cortical or thalamic neurons. To understand this cell non autonomous mechanism further, we tested whether Celsr3 and Fzd3 could act via Isl1-positive guidepost cells. Isl1-positive cells appear in the forebrain at embryonic day (E) 9.5-E10.5 and, from E12.5, they form 2 contingents in ventral telencephalon and prethalamus. In control mice, corticothalamic axons run in the ventral telencephalic corridor in close contact with Isl1-positive cells. When Celsr3 or Fzd3 is inactivated in Isl1-expressing cells, corticofugal fibers stall and loop in the ventral telencephalic corridor of high Isl1 expression, and thalamic axons fail to cross the diencephalon-telencephalon junction (DTJ). At E12.5, before thalamic and cortical axons emerge, pioneer projections from Isl1-positive cells cross the DTJ from both sides in control but not mutant embryos. These early projections appear to act like a bridge to guide later growing thalamic axons through the DTJ. Our data suggest that Celsr3 and Fzd3 orchestrate the formation of a scaffold of pioneer neurons and their axons. This scaffold extends from prethalamus to ventral telencephalon and subcortex, and steers reciprocal corticothalamic fibers. PMID:27170656

  14. Subthalamic Nucleus High-Frequency Stimulation Restores Altered Electrophysiological Properties of Cortical Neurons in Parkinsonian Rat

    OpenAIRE

    Bertrand Degos; Jean-Michel Deniau; Mario Chavez; Nicolas Maurice

    2013-01-01

    Electrophysiological recordings performed in parkinsonian patients and animal models have confirmed the occurrence of alterations in firing rate and pattern of basal ganglia neurons, but the outcome of these changes in thalamo-cortical networks remains unclear. Using rats rendered parkinsonian, we investigated, at a cellular level in vivo, the electrophysiological changes induced in the pyramidal cells of the motor cortex by the dopaminergic transmission interruption and further characterized...

  15. Urethane anesthesia depresses activities of thalamocortical neurons and alters its response to nociception in terms of dual firing modes

    Directory of Open Access Journals (Sweden)

    Yeowool eHuh

    2013-10-01

    Full Text Available Anesthetics are often used to characterize the activity of single neurons in-vivo for its advantages such as reduced noise level and convenience in noxious stimulations. Of the anesthetics, urethane had been widely used in some thalamic studies under the assumption that sensory signals are still relayed to the thalamus under urethane anesthesia and that thalamic response would therefore reflect the response of the awake state. We tested whether this assumption stands by comparing thalamic activity in terms of tonic and burst firing modes during ‘the awake state’ or under ‘urethane anesthesia’ utilizing the extracellular single unit recording technique. First we have tested how thalamic relay neurons respond to the introduction of urethane and then tested how urethane influences thalamic discharges under formalin-induced nociception. Urethane significantly depressed overall firing rates of thalamic relay neurons, which was sustained despite the delayed increase of burst activity over the 4 hour recording period. Thalamic response to nociception under anesthesia was also similar overall except for the slight and transient increase of burst activity. Overall, results demonstrated that urethane suppresses the activity of thalamic relay neurons and that, despite the slight fluctuation of burst firing, formalin-induced nociception cannot significantly change the firing pattern of thalamic relay neurons that was caused by urethane.

  16. Orexin-dependent activation of layer VIb enhances cortical network activity and integration of non-specific thalamocortical inputs.

    Science.gov (United States)

    Hay, Y Audrey; Andjelic, Sofija; Badr, Sammy; Lambolez, Bertrand

    2015-11-01

    Neocortical layer VI is critically involved in thalamocortical activity changes during the sleep/wake cycle. It receives dense projections from thalamic nuclei sensitive to the wake-promoting neuropeptides orexins, and its deepest part, layer VIb, is the only cortical lamina reactive to orexins. This convergence of wake-promoting inputs prompted us to investigate how layer VIb can modulate cortical arousal, using patch-clamp recordings and optogenetics in rat brain slices. We found that the majority of layer VIb neurons were excited by nicotinic agonists and orexin through the activation of nicotinic receptors containing α4-α5-β2 subunits and OX2 receptor, respectively. Specific effects of orexin on layer VIb neurons were potentiated by low nicotine concentrations and we used this paradigm to explore their intracortical projections. Co-application of nicotine and orexin increased the frequency of excitatory post-synaptic currents in the ipsilateral cortex, with maximal effect in infragranular layers and minimal effect in layer IV, as well as in the contralateral cortex. The ability of layer VIb to relay thalamocortical inputs was tested using photostimulation of channelrhodopsin-expressing fibers from the orexin-sensitive rhomboid nucleus in the parietal cortex. Photostimulation induced robust excitatory currents in layer VIa neurons that were not pre-synaptically modulated by orexin, but exhibited a delayed, orexin-dependent, component. Activation of layer VIb by orexin enhanced the reliability and spike-timing precision of layer VIa responses to rhomboid inputs. These results indicate that layer VIb acts as an orexin-gated excitatory feedforward loop that potentiates thalamocortical arousal. PMID:25108310

  17. Dynamic analysis of the conditional oscillator underlying slow waves in thalamocortical neurons

    Directory of Open Access Journals (Sweden)

    Francois eDavid

    2016-02-01

    Full Text Available During non-REM sleep the EEG shows characteristics waves that are generated by the dynamic interactions between cortical and thalamic oscillators. In thalamic neurons, low-threshold T-type Ca2+ channels play a pivotal role in almost every type of neuronal oscillations, including slow (<1 Hz waves, sleep spindles and delta waves. The transient opening of T channels gives rise to the low threshold spikes (LTSs, and associated high frequency bursts of action potentials, that are characteristically present during sleep spindles and delta waves, whereas the persistent opening of a small fraction of T channels, (i.e. ITwindow is responsible for the membrane potential bistability underlying sleep slow oscillations. Surprisingly thalamocortical (TC neurons express a very high density of T channels that largely exceed the amount required to generate LTSs and therefore, to support certain, if not all, sleep oscillations. Here, to clarify the relationship between T current density and sleep oscillations, we systematically investigated the impact of the T conductance level on the intrinsic rhythmic activities generated in TC neurons, combining in vitro experiments and TC neuron simulation. Using bifurcation analysis, we provide insights into the dynamical processes taking place at the transition between slow and delta oscillations. Our results show that although stable delta oscillations can be evoked with minimal T conductance, the full range of slow oscillation patterns, including groups of delta oscillations separated by Up states (grouped-delta slow waves requires a high density of T channels. Moreover, high levels of T conductance ensure the robustness of different types of slow oscillations.

  18. Development of thalamocortical connections between the mediodorsal thalamus and the prefrontal cortex and its implication in cognition

    OpenAIRE

    Ferguson, Brielle R.; Gao, Wen-Jun

    2015-01-01

    The mediodorsal thalamus (MD) represents a fundamental subcortical relay to the prefrontal cortex (PFC), and is thought to be highly implicated in modulation of cognitive performance. Additionally, it undergoes highly conserved developmental stages, which, when dysregulated, can have detrimental consequences. Embryonically, the MD experiences a tremendous surge in neurogenesis and differentiation, and disruption of this process may underlie the pathology in certain neurodevelopmental disorder...

  19. Altered intrinsic organisation of brain networks implicated in attentional processes in adult attention-deficit/hyperactivity disorder: a resting-state study of attention, default mode and salience network connectivity.

    Science.gov (United States)

    Sidlauskaite, Justina; Sonuga-Barke, Edmund; Roeyers, Herbert; Wiersema, Jan R

    2016-06-01

    Deficits in task-related attentional engagement in attention-deficit/hyperactivity disorder (ADHD) have been hypothesised to be due to altered interrelationships between attention, default mode and salience networks. We examined the intrinsic connectivity during rest within and between these networks. Six-minute resting-state scans were obtained. Using a network-based approach, connectivity within and between the dorsal and ventral attention, the default mode and the salience networks was compared between the ADHD and control group. The ADHD group displayed hyperconnectivity between the two attention networks and within the default mode and ventral attention network. The salience network was hypoconnected to the dorsal attention network. There were trends towards hyperconnectivity within the dorsal attention network and between the salience and ventral attention network in ADHD. Connectivity within and between other networks was unrelated to ADHD. Our findings highlight the altered connectivity within and between attention networks, and between them and the salience network in ADHD. One hypothesis to be tested in future studies is that individuals with ADHD are affected by an imbalance between ventral and dorsal attention systems with the former playing a dominant role during task engagement, making individuals with ADHD highly susceptible to distraction by salient task-irrelevant stimuli. PMID:26260900

  20. Analysis of the role of the low threshold currents IT and Ih in intrinsic delta oscillations of thalamocortical neurons

    Directory of Open Access Journals (Sweden)

    Yimy eAmarillo

    2015-05-01

    Full Text Available Thalamocortical neurons are involved in the generation and maintenance of brain rhythms associated with global functional states. The repetitive burst firing of TC neurons at delta frequencies (1-4 Hz has been linked to the oscillations recorded during deep sleep and during episodes of absence seizures. To get insight into the biophysical properties that are the basis for intrinsic delta oscillations in these neurons, we performed a bifurcation analysis of a minimal conductance-based thalamocortical neuron model including only the IT channel and the sodium and potassium leak channels. This analysis unveils the dynamics of repetitive burst firing of TC neurons, and describes how the interplay between the amplifying variable mT and the recovering variable hT of the calcium channel IT is sufficient to generate low threshold oscillations in the delta band. We also explored the role of the hyperpolarization activated cationic current Ih in this reduced model and determine that, albeit not required, Ih amplifies and stabilizes the oscillation.

  1. Enduring Effects of Early Life Stress on Firing Patterns of Hippocampal and Thalamocortical Neurons in Rats: Implications for Limbic Epilepsy.

    Directory of Open Access Journals (Sweden)

    Idrish Ali

    Full Text Available Early life stress results in an enduring vulnerability to kindling-induced epileptogenesis in rats, but the underlying mechanisms are not well understood. Recent studies indicate the involvement of thalamocortical neuronal circuits in the progression of kindling epileptogenesis. Therefore, we sought to determine in vivo the effects of early life stress and amygdala kindling on the firing pattern of hippocampus as well as thalamic and cortical neurons. Eight week old male Wistar rats, previously exposed to maternal separation (MS early life stress or early handling (EH, underwent amygdala kindling (or sham kindling. Once fully kindled, in vivo juxtacellular recordings in hippocampal, thalamic and cortical regions were performed under neuroleptic analgesia. In the thalamic reticular nucleus cells both kindling and MS independently lowered firing frequency and enhanced burst firing. Further, burst firing in the thalamic reticular nucleus was significantly increased in kindled MS rats compared to kindled EH rats (p<0.05. In addition, MS enhanced burst firing of hippocampal pyramidal neurons. Following a stimulation-induced seizure, somatosensory cortical neurons exhibited a more pronounced increase in burst firing in MS rats than in EH rats. These data demonstrate changes in firing patterns in thalamocortical and hippocampal regions resulting from both MS and amygdala kindling, which may reflect cellular changes underlying the enhanced vulnerability to kindling in rats that have been exposed to early life stress.

  2. Altered temporal variance and neural synchronization of spontaneous brain activity in anesthesia.

    Science.gov (United States)

    Huang, Zirui; Wang, Zhiyao; Zhang, Jianfeng; Dai, Rui; Wu, Jinsong; Li, Yuan; Liang, Weimin; Mao, Ying; Yang, Zhong; Holland, Giles; Zhang, Jun; Northoff, Georg

    2014-11-01

    Recent studies at the cellular and regional levels have pointed out the multifaceted importance of neural synchronization and temporal variance of neural activity. For example, neural synchronization and temporal variance has been shown by us to be altered in patients in the vegetative state (VS). This finding nonetheless leaves open the question of whether these abnormalities are specific to VS or rather more generally related to the absence of consciousness. The aim of our study was to investigate the changes of inter- and intra-regional neural synchronization and temporal variance of resting state activity in anesthetic-induced unconsciousness state. Applying an intra-subject design, we compared resting state activity in functional magnetic resonance imaging (fMRI) between awake versus anesthetized states in the same subjects. Replicating previous studies, we observed reduced functional connectivity within the default mode network (DMN) and thalamocortical network in the anesthetized state. Importantly, intra-regional synchronization as measured by regional homogeneity (ReHo) and temporal variance as measured by standard deviation (SD) of the BOLD signal were significantly reduced in especially the cortical midline regions, while increased in the lateral cortical areas in the anesthetized state. We further found significant frequency-dependent effects of SD in the thalamus, which showed abnormally high SD in Slow-5 (0.01-0.027 Hz) in the anesthetized state. Our results show for the first time of altered temporal variance of resting state activity in anesthesia. Combined with our findings in the vegetative state, these findings suggest a close relationship between temporal variance, neural synchronization and consciousness. PMID:24867379

  3. Alterations in default-mode network connectivity may be influenced by cerebrovascular changes within 1 week of sports related concussion in college varsity athletes: a pilot study.

    Science.gov (United States)

    Militana, Adam R; Donahue, Manus J; Sills, Allen K; Solomon, Gary S; Gregory, Andrew J; Strother, Megan K; Morgan, Victoria L

    2016-06-01

    The goal of this pilot study is to use complementary MRI strategies to quantify and relate cerebrovascular reactivity, resting cerebral blood flow and functional connectivity alterations in the first week following sports concussion in college varsity athletes. Seven college athletes (3F/4M, age = 19.7 ± 1.2 years) were imaged 3-6 days following a diagnosed sports related concussion and compared to eleven healthy controls with no history of concussion (5M/6F, 18-23 years, 7 athletes). Cerebrovascular reactivity and functional connectivity were measured using functional MRI during a hypercapnia challenge and via resting-state regional partial correlations, respectively. Resting cerebral blood flow was quantified using arterial spin labeling MRI methods. Group comparisons were made within and between 18 regions of interest. Cerebrovascular reactivity was increased after concussion when averaged across all regions of interest (p = 0.04), and within some default-mode network regions, the anterior cingulate and the right thalamus (p regions of the default-mode network within days of a single sports related concussion in college athletes. Our findings emphasize the utility of complementary cerebrovascular measures in the interpretation of alterations in functional connectivity following concussion. PMID:25972119

  4. Alteration of Cortical Functional Connectivity as a Result of Traumatic Brain Injury Revealed by Graph Theory, ICA, and sLORETA Analyses of EEG Signals

    OpenAIRE

    Cao, C.; Slobounov, S.

    2009-01-01

    In this paper, a novel approach to examine the cortical functional connectivity using multichannel electroen-cephalographic (EEG) signals is proposed. First we utilized independent component analysis (ICA) to transform multichannel EEG recordings into independent processes and then applied source reconstruction algorithm [i.e., standardize low resolution brain electromagnetic (sLORETA)] to identify the cortical regions of interest (ROIs). Second, we performed a graph theory analysis of the bi...

  5. The Impact of Cortical Lesions on Thalamo-Cortical Network Dynamics after Acute Ischaemic Stroke: A Combined Experimental and Theoretical Study.

    Science.gov (United States)

    van Wijngaarden, Joeri B G; Zucca, Riccardo; Finnigan, Simon; Verschure, Paul F M J

    2016-08-01

    The neocortex and thalamus provide a core substrate for perception, cognition, and action, and are interconnected through different direct and indirect pathways that maintain specific dynamics associated with functional states including wakefulness and sleep. It has been shown that a lack of excitation, or enhanced subcortical inhibition, can disrupt this system and drive thalamic nuclei into an attractor state of low-frequency bursting and further entrainment of thalamo-cortical circuits, also called thalamo-cortical dysrhythmia (TCD). The question remains however whether similar TCD-like phenomena can arise with a cortical origin. For instance, in stroke, a cortical lesion could disrupt thalamo-cortical interactions through an attenuation of the excitatory drive onto the thalamus, creating an imbalance between excitation and inhibition that can lead to a state of TCD. Here we tested this hypothesis by comparing the resting-state EEG recordings of acute ischaemic stroke patients (N = 21) with those of healthy, age-matched control-subjects (N = 17). We observed that these patients displayed the hallmarks of TCD: a characteristic downward shift of dominant α-peaks in the EEG power spectra, together with increased power over the lower frequencies (δ and θ-range). Contrary to general observations in TCD, the patients also displayed a broad reduction in β-band activity. In order to explain the genesis of this stroke-induced TCD, we developed a biologically constrained model of a general thalamo-cortical module, allowing us to identify the specific cellular and network mechanisms involved. Our model showed that a lesion in the cortical component leads to sustained cell membrane hyperpolarization in the corresponding thalamic relay neurons, that in turn leads to the de-inactivation of voltage-gated T-type Ca2+-channels, switching neurons from tonic spiking to a pathological bursting regime. This thalamic bursting synchronises activity on a population level through

  6. Smectite alteration

    International Nuclear Information System (INIS)

    This report contains the proceedings of a second workshop in Washington DC December 8-9, 1983 on the alteration of smectites intended for use as buffer materials in the long-term containment of nuclear wastes. It includes extended summaries of all presentations and a transcript of the detailed scientific discussion. The discussions centered on three main questions: What is the prerequisite for and what is the precise mechanism by which smectite clays may be altered to illite. What are likly sources of potassium with respect to the KBS project. Is it likely that the conversion of smectite to illite will be of importance in the 10 5 to the 10 6 year time frame. The workshop was convened to review considerations and conclusions in connection to these questions and also to broaden the discussion to consider the use of smectite clays as buffer materials for similar applications in different geographical and geological settings. SKBF/KBS technical report 83-03 contains the proceedings from the first workshop on these matters that was held at the State University of New York, Buffalo May 26-27, 1982. (Author)

  7. Pulmonary connective tissue modifications induced by internal α-irradiation. II. Alterations of collagen and non collagen proteins biosynthesis following inhalation of plutonium 239 dioxide aerosol in rat

    International Nuclear Information System (INIS)

    Preliminary studies have shown that internal α irradiation following inhalation of plutonium 239 dioxide in rat increased collagen content in the lung. Effect was maximal at 200 days with the highest dose. This increase was found transient and collagen dropped back to control values after 400 days in rats with the same initial lung burden or the same total dose. A new increase was observed later on, largely related to oncoming death. Here, we have studied, simultaneously, content and biosynthesis of collagen and non collagen proteins, 200 d and 400 d after 239PuO2 inhalation (100-150 nCi ILB). The results confirmed a biphasic effect of inhaled 239PuO2 on the pulmonary connective tissue: a/ A significant increase (p < 0.01) of soluble non-collagen proteins correlated to a decrease of the insoluble fraction was observed 200 d after inhalation. Similar parameters were not significantly different in controls on irradiated rats after 400 days. b/ Soluble and non-soluble collagen contents increased by a factor of 3 and 1.5 respectively 200 d after inhalation. No effect after 400 d. c/ Biosynthesis of non-collagen connective tissue components were 2 to 5 lower than in controls at 400d. d/collagen biosynthesis was decreased by a factor between 4 and 6 for the soluble and insoluble fractions at 200 d but normal at 400 d

  8. Functional microstates within human REM sleep: first evidence from fMRI of a thalamocortical network specific for phasic REM periods.

    Science.gov (United States)

    Wehrle, Renate; Kaufmann, Christian; Wetter, Thomas C; Holsboer, Florian; Auer, Dorothee P; Pollmächer, Thomas; Czisch, Michael

    2007-02-01

    High thalamocortical neuronal activity characterizes both, wakefulness and rapid eye movement (REM) sleep, but apparently this network fulfills other roles than processing external information during REM sleep. To investigate thalamic and cortical reactivity during human REM sleep, we used functional magnetic resonance imaging with simultaneous polysomnographic recordings while applying acoustic stimulation. Our observations indicate two distinct functional substates within general REM sleep. Acoustic stimulation elicited a residual activation of the auditory cortex during tonic REM sleep background without rapid eye movements. By contrast, periods containing bursts of phasic activity such as rapid eye movements appear characterized by a lack of reactivity to sensory stimuli. We report a thalamocortical network including limbic and parahippocampal areas specifically active during phasic REM periods. Thus, REM sleep has to be subdivided into tonic REM sleep with residual alertness, and phasic REM sleep with the brain acting as a functionally isolated and closed intrinsic loop. PMID:17328781

  9. Frequent loss and alteration of the MOXD2 gene in catarrhines and whales: a possible connection with the evolution of olfaction.

    Science.gov (United States)

    Kim, Dong Seon; Wang, Yao; Oh, Hye Ji; Lee, Kangseok; Hahn, Yoonsoo

    2014-01-01

    The MOXD2 gene encodes a membrane-bound monooxygenase similar to dopamine-β-hydroxylase, and has been proposed to be associated with olfaction. In this study, we analyzed MOXD2 genes from 64 mammalian species, and identified loss-of-function mutations in apes (humans, Sumatran and Bornean orangutans, and five gibbon species from the four major gibbon genera), toothed whales (killer whales, bottlenose dolphins, finless porpoises, baijis, and sperm whales), and baleen whales (minke whales and fin whales). We also identified a shared 13-nt deletion in the last exon of Old World cercopithecine monkeys that results in conversion of a membrane-bound protein to a soluble form. We hypothesize that the frequent inactivation and alteration of MOXD2 genes in catarrhines and whales may be associated with the evolution of olfaction in these clades. PMID:25102179

  10. Sleep EEG Fingerprints Reveal Accelerated Thalamocortical Oscillatory Dynamics in Williams Syndrome

    Science.gov (United States)

    Bodizs, Robert; Gombos, Ferenc; Kovacs, Ilona

    2012-01-01

    Sleep EEG alterations are emerging features of several developmental disabilities, but detailed quantitative EEG data on the sleep phenotype of patients with Williams syndrome (WS, 7q11.23 microdeletion) is still lacking. Based on laboratory (Study I) and home sleep records (Study II) here we report WS-related features of the patterns of…

  11. Multiple Sclerosis: Changes in Thalamic Resting-State Functional Connectivity Induced by a Home-based Cognitive Rehabilitation Program.

    Science.gov (United States)

    De Giglio, Laura; Tona, Francesca; De Luca, Francesca; Petsas, Nikolaos; Prosperini, Luca; Bianchi, Valentina; Pozzilli, Carlo; Pantano, Patrizia

    2016-07-01

    Purpose To investigate thalamic connectivity changes after use of a video game-based cognitive rehabilitation program, as thalamic damage and alterations in thalamocortical functional connectivity (FC) are important factors in cognitive dysfunction in patients with multiple sclerosis (MS). Materials and Methods This prospective study was approved by the local ethical committee. Twenty-four patients with MS and cognitive impairment were randomly assigned to either an intervention or a wait-list group. Patients were evaluated with cognitive tests and 3-T resting-state functional magnetic resonance (MR) imaging at baseline and after an 8-week period. In addition, 11 healthy subjects underwent baseline resting-state functional MR imaging. Patients in the intervention group performed the video game-based cognitive rehabilitation program, while those in the wait-list group served as control subjects. Repeated measures analysis of variance was used to test efficacy of the intervention. The thalamic resting-state network was identified with a seed-based method; both first-level and high-level analyses were performed by using software tools. Results Patients showed lower baseline FC compared with healthy subjects. A significant improvement was seen in results of the Paced Auditory Serial Addition Test and the Stroop Test after 8 weeks of cognitive rehabilitation (F = 6.616, [P = .018] and F = 5.325 [P = .030], respectively). At follow-up, the intervention group had an increased FC in the cingulum, precuneus, and bilateral parietal cortex and a lower FC in the cerebellum and in left prefrontal cortex compared with the wait-list group (P game-based cognitive rehabilitation program. (©) RSNA, 2016. PMID:26953867

  12. Cardiac Arrest-Induced Global Brain Hypoxia-Ischemia during Development Affects Spontaneous Activity Organization in Rat Sensory and Motor Thalamocortical Circuits during Adulthood.

    Science.gov (United States)

    Shoykhet, Michael; Middleton, Jason W

    2016-01-01

    Normal maturation of sensory information processing in the cortex requires patterned synaptic activity during developmentally regulated critical periods. During early development, spontaneous synaptic activity establishes required patterns of synaptic input, and during later development it influences patterns of sensory experience-dependent neuronal firing. Thalamocortical neurons occupy a critical position in regulating the flow of patterned sensory information from the periphery to the cortex. Abnormal thalamocortical inputs may permanently affect the organization and function of cortical neuronal circuits, especially if they occur during a critical developmental window. We examined the effect of cardiac arrest (CA)-associated global brain hypoxia-ischemia in developing rats on spontaneous and evoked firing of somatosensory thalamocortical neurons and on large-scale correlations in the motor thalamocortical circuit. The mean spontaneous and sensory-evoked firing rate activity and variability were higher in CA injured rats. Furthermore, spontaneous and sensory-evoked activity and variability were correlated in uninjured rats, but not correlated in neurons from CA rats. Abnormal activity patterns of ventroposterior medial nucleus (VPm) neurons persisted into adulthood. Additionally, we found that neurons in the entopeduncular nucleus (EPN) in the basal ganglia had lower firing rates yet had higher variability and higher levels of burst firing after injury. Correlated levels of power in local field potentials (LFPs) between the EPN and the motor cortex (MCx) were also disrupted by injury. Our findings indicate that hypoxic-ischemic injury during development leads to abnormal spontaneous and sensory stimulus-evoked input patterns from thalamus to cortex. Abnormal thalamic inputs likely permanently and detrimentally affect the organization of cortical circuitry and processing of sensory information. Hypoxic-ischemic injury also leads to abnormal single neuron and

  13. System identification of the nonlinear dynamics in the thalamocortical circuit in response to patterned thalamic microstimulation in vivo

    Science.gov (United States)

    Millard, Daniel C.; Wang, Qi; Gollnick, Clare A.; Stanley, Garrett B.

    2013-12-01

    Objective. Nonlinear system identification approaches were used to develop a dynamical model of the network level response to patterns of microstimulation in vivo. Approach. The thalamocortical circuit of the rodent vibrissa pathway was the model system, with voltage sensitive dye imaging capturing the cortical response to patterns of stimulation delivered from a single electrode in the ventral posteromedial thalamus. The results of simple paired stimulus experiments formed the basis for the development of a phenomenological model explicitly containing nonlinear elements observed experimentally. The phenomenological model was fit using datasets obtained with impulse train inputs, Poisson-distributed in time and uniformly varying in amplitude. Main results. The phenomenological model explained 58% of the variance in the cortical response to out of sample patterns of thalamic microstimulation. Furthermore, while fit on trial-averaged data, the phenomenological model reproduced single trial response properties when simulated with noise added into the system during stimulus presentation. The simulations indicate that the single trial response properties were dependent on the relative sensitivity of the static nonlinearities in the two stages of the model, and ultimately suggest that electrical stimulation activates local circuitry through linear recruitment, but that this activity propagates in a highly nonlinear fashion to downstream targets. Significance. The development of nonlinear dynamical models of neural circuitry will guide information delivery for sensory prosthesis applications, and more generally reveal properties of population coding within neural circuits.

  14. Effects of Patterned Sound Deprivation on Short- and Long-Term Plasticity in the Rat Thalamocortical Auditory System In Vivo

    Directory of Open Access Journals (Sweden)

    Chloe N. Soutar

    2016-01-01

    Full Text Available Postnatal sensory experience plays a significant role in the maturation and synaptic stabilization of sensory cortices, such as the primary auditory cortex (A1. Here, we examined the effects of patterned sound deprivation (by rearing in continuous white noise, WN during early postnatal life on short- and long-term plasticity of adult male rats using an in vivo preparation (urethane anesthesia. Relative to age-matched control animals reared under unaltered sound conditions, rats raised in WN (from postnatal day 5 to 50–60 showed greater levels of long-term potentiation (LTP of field potentials in A1 induced by theta-burst stimulation (TBS of the medial geniculate nucleus (MGN. In contrast, analyses of short-term plasticity using paired-pulse stimulation (interstimulus intervals of 25–1000 ms did not reveal any significant effects of WN rearing. However, LTP induction resulted in a significant enhancement of paired-pulse depression (PPD for both rearing conditions. We conclude that patterned sound deprivation during early postnatal life results in the maintenance of heightened, juvenile-like long-term plasticity (LTP into adulthood. Further, the enhanced PPD following LTP induction provides novel evidence that presynaptic mechanisms contribute to thalamocortical LTP in A1 under in vivo conditions.

  15. A novel role of dendritic gap junction and mechanisms underlying its interaction with thalamocortical conductance in fast spiking inhibitory neurons

    Directory of Open Access Journals (Sweden)

    Sun Qian-Quan

    2009-10-01

    Full Text Available Abstract Background Little is known about the roles of dendritic gap junctions (GJs of inhibitory interneurons in modulating temporal properties of sensory induced responses in sensory cortices. Electrophysiological dual patch-clamp recording and computational simulation methods were used in combination to examine a novel role of GJs in sensory mediated feed-forward inhibitory responses in barrel cortex layer IV and its underlying mechanisms. Results Under physiological conditions, excitatory post-junctional potentials (EPJPs interact with thalamocortical (TC inputs within an unprecedented few milliseconds (i.e. over 200 Hz to enhance the firing probability and synchrony of coupled fast-spiking (FS cells. Dendritic GJ coupling allows fourfold increase in synchrony and a significant enhancement in spike transmission efficacy in excitatory spiny stellate cells. The model revealed the following novel mechanisms: 1 rapid capacitive current (Icap underlies the activation of voltage-gated sodium channels; 2 there was less than 2 milliseconds in which the Icap underlying TC input and EPJP was coupled effectively; 3 cells with dendritic GJs had larger input conductance and smaller membrane response to weaker inputs; 4 synchrony in inhibitory networks by GJ coupling leads to reduced sporadic lateral inhibition and increased TC transmission efficacy. Conclusion Dendritic GJs of neocortical inhibitory networks can have very powerful effects in modulating the strength and the temporal properties of sensory induced feed-forward inhibitory and excitatory responses at a very high frequency band (>200 Hz. Rapid capacitive currents are identified as main mechanisms underlying interaction between two transient synaptic conductances.

  16. T-type calcium channels promote predictive homeostasis of input-output relations in thalamocortical neurons of lateral geniculate nucleus

    Directory of Open Access Journals (Sweden)

    Christopher D. Fiorillo

    2014-08-01

    Full Text Available A general theory views the function of all neurons as prediction, and one component of this theory is that of “predictive homeostasis” or “prediction error.” It is well established that sensory systems adapt so that neuronal output maintains sensitivity to sensory input, in accord with information theory. Predictive homeostasis applies the same principle at the cellular level, where the challenge is to maintain membrane excitability at the optimal homeostatic level so that spike generation is maximally sensitive to small gradations in synaptic drive. Negative feedback is a hallmark of homeostatic mechanisms, as exemplified by depolarization-activated potassium channels. However, T-type calcium channels exhibit positive feedback that appears at odds with the theory. In thalamocortical neurons of lateral geniculate nucleus (LGN, T-type channels are capable of causing bursts of spikes with an all-or-none character in response to excitation from a hyperpolarized potential. This “burst mode” would partially uncouple visual input from spike output and reduce the information spikes convey about gradations in visual input. However, past observations of T-type-driven bursts may have resulted from unnaturally high membrane excitability. By mimicking natural patterns of synaptic conductance that occur during vision, we found that T-type channels in rat brain slices did not cause bursts, but rather enabled retinogeniculate excitation to cause spikes despite sustained hyperpolarization, thereby restoring the homeostatic input-output relation observed at depolarized potentials. Our results suggest that T-type channels help to maintain a single optimal mode of transmission rather than creating a second mode. In addition, our results provide evidence for the general theory, which seeks to predict the properties of a neuron’s ion channels and synapses given knowledge of natural patterns of synaptic input.

  17. Network and neuronal membrane properties in hybrid networks reciprocally regulate selectivity to rapid thalamocortical inputs.

    Science.gov (United States)

    Pesavento, Michael J; Pinto, David J

    2012-11-01

    Rapidly changing environments require rapid processing from sensory inputs. Varying deflection velocities of a rodent's primary facial vibrissa cause varying temporal neuronal activity profiles within the ventral posteromedial thalamic nucleus. Local neuron populations in a single somatosensory layer 4 barrel transform sparsely coded input into a spike count based on the input's temporal profile. We investigate this transformation by creating a barrel-like hybrid network with whole cell recordings of in vitro neurons from a cortical slice preparation, embedding the biological neuron in the simulated network by presenting virtual synaptic conductances via a conductance clamp. Utilizing the hybrid network, we examine the reciprocal network properties (local excitatory and inhibitory synaptic convergence) and neuronal membrane properties (input resistance) by altering the barrel population response to diverse thalamic input. In the presence of local network input, neurons are more selective to thalamic input timing; this arises from strong feedforward inhibition. Strongly inhibitory (damping) network regimes are more selective to timing and less selective to the magnitude of input but require stronger initial input. Input selectivity relies heavily on the different membrane properties of excitatory and inhibitory neurons. When inhibitory and excitatory neurons had identical membrane properties, the sensitivity of in vitro neurons to temporal vs. magnitude features of input was substantially reduced. Increasing the mean leak conductance of the inhibitory cells decreased the network's temporal sensitivity, whereas increasing excitatory leak conductance enhanced magnitude sensitivity. Local network synapses are essential in shaping thalamic input, and differing membrane properties of functional classes reciprocally modulate this effect. PMID:22896716

  18. Nonlinear interactions in the thalamocortical loop in essential tremor: A model-based frequency domain analysis.

    Science.gov (United States)

    He, F; Sarrigiannis, P G; Billings, S A; Wei, H; Rowe, J; Romanowski, C; Hoggard, N; Hadjivassilliou, M; Rao, D G; Grünewald, R; Khan, A; Yianni, J

    2016-06-01

    There is increasing evidence to suggest that essential tremor has a central origin. Different structures appear to be part of the central tremorogenic network, including the motor cortex, the thalamus and the cerebellum. Some studies using electroencephalogram (EEG) and magnetoencephalography (MEG) show linear association in the tremor frequency between the motor cortex and the contralateral tremor electromyography (EMG). Additionally, high thalamomuscular coherence is found with the use of thalamic local field potential (LFP) recordings and tremulous EMG in patients undergoing surgery for deep brain stimulation (DBS). Despite a well-established reciprocal anatomical connection between the thalamus and cortex, the functional association between the two structures during "tremor-on" periods remains elusive. Thalamic (Vim) LFPs, ipsilateral scalp EEG from the sensorimotor cortex and contralateral tremor arm EMG recordings were obtained from two patients with essential tremor who had undergone successful surgery for DBS. Coherence analysis shows a strong linear association between thalamic LFPs and contralateral tremor EMG, but the relationship between the EEG and the thalamus is much less clear. These measurements were then analyzed by constructing a novel parametric nonlinear autoregressive with exogenous input (NARX) model. This new approach uncovered two distinct and not overlapping frequency "channels" of communication between Vim thalamus and the ipsilateral motor cortex, defining robustly "tremor-on" versus "tremor-off" states. The associated estimated nonlinear time lags also showed non-overlapping values between the two states, with longer corticothalamic lags (exceeding 50ms) in the tremor active state, suggesting involvement of an indirect multisynaptic loop. The results reveal the importance of the nonlinear interactions between cortical and subcortical areas in the central motor network of essential tremor. This work is important because it demonstrates

  19. The Fuzzy Logic of Network Connectivity in Mouse Visual Thalamus.

    Science.gov (United States)

    Morgan, Josh Lyskowski; Berger, Daniel Raimund; Wetzel, Arthur Willis; Lichtman, Jeff William

    2016-03-24

    In an attempt to chart parallel sensory streams passing through the visual thalamus, we acquired a 100-trillion-voxel electron microscopy (EM) dataset and identified cohorts of retinal ganglion cell axons (RGCs) that innervated each of a diverse group of postsynaptic thalamocortical neurons (TCs). Tracing branches of these axons revealed the set of TCs innervated by each RGC cohort. Instead of finding separate sensory pathways, we found a single large network that could not be easily subdivided because individual RGCs innervated different kinds of TCs and different kinds of RGCs co-innervated individual TCs. We did find conspicuous network subdivisions organized on the basis of dendritic rather than neuronal properties. This work argues that, in the thalamus, neural circuits are not based on a canonical set of connections between intrinsically different neuronal types but, rather, may arise by experience-based mixing of different kinds of inputs onto individual postsynaptic cells. PMID:27015312

  20. Connected Traveler

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, Alex

    2015-11-01

    The Connected Traveler project is a multi-disciplinary undertaking that seeks to validate potential for transformative transportation system energy savings by incentivizing efficient traveler behavior. This poster outlines various aspects of the Connected Traveler project, including market opportunity, understanding traveler behavior and decision-making, automation and connectivity, and a projected timeline for Connected Traveler's key milestones.

  1. Development of thalamocortical connections between the mediodorsal nucleus of the thalamus and the prefrontal cortex and its implication in executive and cognitive function

    OpenAIRE

    Wen-Jun Gao

    2015-01-01

    The mediodorsal thalamus (MD) represents a fundamental subcortical relay to the prefrontal cortex (PFC), and is thought to be highly implicated in modulation of cognitive ability. Additionally, it undergoes highly conserved developmental stages, which, when dysregulated, can have detrimental consequences. Embryonically, MD experiences a tremendous surge in neurogenesis and differentiation, and disruption of this process may underlie the pathology in certain neurodevelopmental disorders. Ho...

  2. Strengthening connections: functional connectivity and brain plasticity

    OpenAIRE

    Kelly, Clare; Castellanos, F. Xavier

    2014-01-01

    The ascendancy of functional neuroimaging has facilitated the addition of network-based approaches to the neuropsychologist’s toolbox for evaluating the sequelae of brain insult. In particular, intrinsic functional connectivity (iFC) mapping of resting state fMRI (R-fMRI) data constitutes an ideal approach to measuring macro-scale networks in the human brain. Beyond the value of iFC mapping for charting how the functional topography of the brain is altered by insult and injury, iFC analyses c...

  3. Time is the key Music and Altered States of Consciusness

    OpenAIRE

    Fachner, Jörg

    2011-01-01

    Introduction: In this chapter, I will summarize the literature on how music and altered states of consciousness (ASC) are connected. Essential aspects include induction and expression of emotions and rhythmic body movements to music and how an altered experience of music is connected to states of altered temporality. Winkelman (2000) stressed the human capacity for experiencing ASC as a fundamental biological function. Studies on brain functions of altered music experience a...

  4. About Connections

    Directory of Open Access Journals (Sweden)

    Kathleen S Rockland

    2015-05-01

    Full Text Available Despite the attention attracted by connectomics, one can lose sight of the very real questions concerning What are connections? In the neuroimaging community, structural connectivity is ground truth and underlying constraint on functional or effective connectivity. It is referenced to underlying anatomy; but, as increasingly remarked, there is a large gap between the wealth of human brain mapping and the relatively scant data on actual anatomical connectivity. Moreover, connections have typically been discussed as pairwise, point x projecting to point y (or: to points y and z, or more recently, in graph theoretical terms, as nodes or regions and the interconnecting edges. This is a convenient shorthand, but tends not to capture the richness and nuance of basic anatomical properties as identified in the classic tradition of tracer studies. The present short review accordingly revisits connectional weights, heterogeneity, reciprocity, topography, and hierarchical organization, drawing on concrete examples. The emphasis is on presynaptic long-distance connections, motivated by the intention to probe current assumptions and promote discussions about further progress and synthesis.

  5. HR Connect

    Data.gov (United States)

    US Agency for International Development — HR Connect is the USAID HR personnel system which allows HR professionals to process HR actions related to employee's personal and position information. This system...

  6. Modelagem neurocomputacional do circuito tálamo-cortical: implicações para compreensão do transtorno de défi cit de atenção e hiperatividade A neurocomputational model for the thalamocortical loop: towards a better understanding of attention deficit hyperactivity disorder

    Directory of Open Access Journals (Sweden)

    Daniele Q.M. Madureira

    2007-12-01

    in ADHD. PURPOSE: Elaborating a neurocomputational model from biochemical knowledge of mesocortical and mesotalamic dopamine systems, to investigate how different levels of mesothalamic dopamine influence the thalamocortical loop, leading to some attention deficits observed in ADHD. METHOD: First, we model physiological properties of thalamic neurons with a set of mathematical equations. Next, we simulate computationally the modeled thalamocortical loop under different levels of mesothalamic dopamine, and also the mesocortical dopaminergic decrease. RESULTS: Low levels of mesothalamic dopamine hinders the attentional shift and, high levels of such neuromodulator lead to distraction. When such alterations occur together with a decrease in the mesocortical dopamine level, the attention deficit turns into incapacity of perceiving environmental stimuli, due to a no winner competition between low activated thalamic areas. Inattention in ADHD also has its origins in dopaminergic disturbs throughout the mesothalamic pathway, which enhance a high focusing or do not allow the attention focus consolidation. CONCLUSION: In ADHD, the inattention is related to dopaminergic alterations that are not restricted to the mesocortical system.

  7. Gendered Connections

    DEFF Research Database (Denmark)

    Jensen, Steffen Bo

    2009-01-01

    This article explores the gendered nature of urban politics in Cape Town by focusing on a group of female, township politicians. Employing the Deleuzian concept of `wild connectivity', it argues that these politically entrepreneurial women were able to negotiate a highly volatile urban landscape by...... space also drew on quite traditional notions of female respectability. Furthermore, the article argues, the form of wild connectivity to an extent was a function of the political transition, which destabilized formal structures of gendered authority. It remains a question whether this form of...

  8. Connected Traveler

    Energy Technology Data Exchange (ETDEWEB)

    2016-06-01

    The Connected Traveler framework seeks to boost the energy efficiency of personal travel and the overall transportation system by maximizing the accuracy of predicted traveler behavior in response to real-time feedback and incentives. It is anticipated that this approach will establish a feedback loop that 'learns' traveler preferences and customizes incentives to meet or exceed energy efficiency targets by empowering individual travelers with information needed to make energy-efficient choices and reducing the complexity required to validate transportation system energy savings. This handout provides an overview of NREL's Connected Traveler project, including graphics, milestones, and contact information.

  9. The Altered Functional Connectivity of Prefrontal Cortex in Heroin Dependent Individuals:fMRI Study%慢性海洛因依赖患者前额叶皮质功能连接变化的fMRI研究

    Institute of Scientific and Technical Information of China (English)

    杨伟川; 王亚蓉; 李强; 李玮; 朱佳; 黄玉芳; 王玮

    2011-01-01

    目的 通过分析慢性海洛因成瘾者认知抑制性控制环路的关键脑区-前额叶功能连接的变化,探讨其在成瘾中的作用.方法 慢性海洛因依赖男性患者12例,与之年龄、受教育程度和尼古丁依赖水平匹配的健康被试12例参加本研究.采用3.0 T磁共振扫描仪,8通道头线圈,对被试分别进行头颅结构和静息态功能磁共振扫描,后利用SPM8软件以双侧前额叶为感兴趣区,分别进行组内和组间前额叶静息态功能网络分析.结果 与对照组比较,慢性海洛因依赖组前额叶与额眶回、角回、颞中回、双侧苍白球功能连接度显著上升,与前扣带回的功能连接显著下降(t=3.5,P5).结论慢性海洛因依赖者认知抑制性控制功能的神经环路受损,而奖赏以及动机驱动环路功能出现异常强化.%Objective To investigate whether the functional connectivity of the brain region, prefrontal cortex (PFC), which implicated in cognition and inhibitory control, changed in chronic heroin dependent individuals. Methods Twelve male chronic heroin users and 12 age- , gender- and nicotine dependence- matched healthy subjects participated in the present study. The participants received a resting state fMRI scan with a General Electric 3.0 Tesla scanner and a 8-channel birdcage head coil. Functional connectivity was analyzed based on resting state fMRI data in order to determine the temporal correlation between PFC and the other regions on the whole brain scale. Finally, one-sample t-test and two-sample t-test were applied to observe the change of functional connectivity of PFC between the two groups. Results The PFC of heroin group showed higher strength of functional connectivity between PFC and orbitofrontal cortex ( OFC), pallium, but lower between PFC and anterior cingulate cortex ( ACC) in chronic heroin users than that in healthy subjects (t= 3.52 P<0. 001). Conclusion Dysfunctional connectivity of PFC-OFC, PFC- lentiform

  10. 78 FR 55684 - ConnectED Workshop

    Science.gov (United States)

    2013-09-11

    ... National Telecommunications and Information Administration ConnectED Workshop AGENCY: National... in the United States to next- generation broadband. This Notice announces that the ConnectED Workshop... ConnectED Workshop will discuss the growing bandwidth needs of K-12 schools as more schools use...

  11. Relation between functional connectivity and rhythm discrimination in children who do and do not stutter.

    Science.gov (United States)

    Chang, Soo-Eun; Chow, Ho Ming; Wieland, Elizabeth A; McAuley, J Devin

    2016-01-01

    Our ability to perceive and produce rhythmic patterns in the environment supports fundamental human capacities ranging from music and language processing to the coordination of action. This article considers whether spontaneous correlated brain activity within a basal ganglia-thalamocortical (rhythm) network is associated with individual differences in auditory rhythm discrimination. Moreover, do children who stutter with demonstrated deficits in rhythm perception have weaker links between rhythm network functional connectivity and rhythm discrimination? All children in the study underwent a resting-state fMRI session, from which functional connectivity measures within the rhythm network were extracted from spontaneous brain activity. In a separate session, the same children completed an auditory rhythm-discrimination task, where behavioral performance was assessed using signal detection analysis. We hypothesized that in typically developing children, rhythm network functional connectivity would be associated with behavioral performance on the rhythm discrimination task, but that this relationship would be attenuated in children who stutter. Results supported our hypotheses, lending strong support for the view that (1) children who stutter have weaker rhythm network connectivity and (2) the lack of a relation between rhythm network connectivity and rhythm discrimination in children who stutter may be an important contributing factor to the etiology of stuttering. PMID:27622141

  12. Discordant connections

    OpenAIRE

    Arora-Jonsson, Seema

    2009-01-01

    The importance of gender-equality and of women’s work in relation to the environment are considered to be crucial questions for development in ‘third world’ rural societies. ‘Development’ and a certain standard of welfare make these issues appear to be less urgent in a wealthier country like Sweden. In this paper I trace some of the contradictions and connections in the ways in which gender equality is conceptualised in women’s struggles vis á vis environmental issues in rural areas in Swede...

  13. Frontoparietal Connectivity and Hierarchical Structure of the Brain’s Functional Network during Sleep

    Directory of Open Access Journals (Sweden)

    VictorISpoormaker

    2012-05-01

    Full Text Available Frontal and parietal regions are associated with some of the most complex cognitive functions, and several frontoparietal resting-state networks can be observed in wakefulness. We used functional magnetic resonance imaging (fMRI data acquired in polysomnographically validated wakefulness, light sleep and slow-wave sleep to examine the hierarchical structure of a low-frequency functional brain network, and to examine whether frontoparietal connectivity would disintegrate in sleep. Whole-brain analyses with hierarchical cluster analysis on predefined atlases were performed, as well as regression of inferior parietal lobules seeds against all voxels in the brain, and an evaluation of the integrity of voxel time-courses in subcortical regions-of-interest. We observed that frontoparietal functional connectivity disintegrated in sleep stage 1 and was absent in deeper sleep stages. Slow-wave sleep was characterized by strong hierarchical clustering of local submodules. Frontoparietal connectivity between inferior parietal lobules and superior medial and right frontal gyrus was lower in sleep stages than in wakefulness. Moreover, thalamus voxels showed maintained integrity in sleep stage 1, making intrathalamic desynchronization an unlikely source of reduced thalamocortical connectivity in this sleep stage. Our data suggest a transition from a globally integrated functional brain network in wakefulness to a disintegrated network consisting of local submodules in slow-wave sleep, in which frontoparietal inter-modular nodes may play a crucial role, possibly in combination with the thalamus.

  14. Frontoparietal Connectivity and Hierarchical Structure of the Brain’s Functional Network during Sleep

    Science.gov (United States)

    Spoormaker, Victor I.; Gleiser, Pablo M.; Czisch, Michael

    2011-01-01

    Frontal and parietal regions are associated with some of the most complex cognitive functions, and several frontoparietal resting-state networks can be observed in wakefulness. We used functional magnetic resonance imaging data acquired in polysomnographically validated wakefulness, light sleep, and slow-wave sleep to examine the hierarchical structure of a low-frequency functional brain network, and to examine whether frontoparietal connectivity would disintegrate in sleep. Whole-brain analyses with hierarchical cluster analysis on predefined atlases were performed, as well as regression of inferior parietal lobules (IPL) seeds against all voxels in the brain, and an evaluation of the integrity of voxel time-courses in subcortical regions-of-interest. We observed that frontoparietal functional connectivity disintegrated in sleep stage 1 and was absent in deeper sleep stages. Slow-wave sleep was characterized by strong hierarchical clustering of local submodules. Frontoparietal connectivity between IPL and superior medial and right frontal gyrus was lower in sleep stages than in wakefulness. Moreover, thalamus voxels showed maintained integrity in sleep stage 1, making intrathalamic desynchronization an unlikely source of reduced thalamocortical connectivity in this sleep stage. Our data suggest a transition from a globally integrated functional brain network in wakefulness to a disintegrated network consisting of local submodules in slow-wave sleep, in which frontoparietal inter-modular nodes may play a role, possibly in combination with the thalamus. PMID:22629253

  15. Frontoparietal Connectivity and Hierarchical Structure of the Brain's Functional Network during Sleep.

    Science.gov (United States)

    Spoormaker, Victor I; Gleiser, Pablo M; Czisch, Michael

    2012-01-01

    Frontal and parietal regions are associated with some of the most complex cognitive functions, and several frontoparietal resting-state networks can be observed in wakefulness. We used functional magnetic resonance imaging data acquired in polysomnographically validated wakefulness, light sleep, and slow-wave sleep to examine the hierarchical structure of a low-frequency functional brain network, and to examine whether frontoparietal connectivity would disintegrate in sleep. Whole-brain analyses with hierarchical cluster analysis on predefined atlases were performed, as well as regression of inferior parietal lobules (IPL) seeds against all voxels in the brain, and an evaluation of the integrity of voxel time-courses in subcortical regions-of-interest. We observed that frontoparietal functional connectivity disintegrated in sleep stage 1 and was absent in deeper sleep stages. Slow-wave sleep was characterized by strong hierarchical clustering of local submodules. Frontoparietal connectivity between IPL and superior medial and right frontal gyrus was lower in sleep stages than in wakefulness. Moreover, thalamus voxels showed maintained integrity in sleep stage 1, making intrathalamic desynchronization an unlikely source of reduced thalamocortical connectivity in this sleep stage. Our data suggest a transition from a globally integrated functional brain network in wakefulness to a disintegrated network consisting of local submodules in slow-wave sleep, in which frontoparietal inter-modular nodes may play a role, possibly in combination with the thalamus. PMID:22629253

  16. Thalamocortical network in idiopathic generalized epilepsy:Advances in neuroimaging study%原发全面性癫痫丘脑皮层网络的神经影像学研究进展

    Institute of Scientific and Technical Information of China (English)

    王正阁

    2012-01-01

    Idiopathic generalized epilepsy presents a group of epilepsy without apparent abnormalities in routine MRI. It is currently proposed that the thalamocortical circuits play an important role in the pathogenesis of idiopathic generalized epilepsy. Current multi-modality neuroimaging techniques can provide information of structure, function, cerebral blood flow and metabolism of human brain, therefore can be used for investigating the mechanism of idiopathic generalized epilepsy. The progresses of neuroimaging study in thalamocortical network of idiopathic generalized epilepsy were reviewed in this article.%原发全面性癫痫患者脑内无器质性病变;常规影像学检查不能发现异常.目前普遍认为丘脑皮层网络在原发全面性癫痫的发病中起着重要作用.多模态神经影像学可从结构、功能、血流及代谢等方面观察大脑异常,为研究原发全面性癫痫的发病机制提供方法.本文对原发全面性癫痫的丘脑皮层网络的神经影像学研究进展进行综述.

  17. 海马旁回功能连接变化在脑震荡后记忆障碍中作用的研究%Alteration of parahippocampal gyrus functional connectivity in the role of memory disorder after concussion: a fMRI study

    Institute of Scientific and Technical Information of China (English)

    夏春生; 傅先明; 钱若兵; 彭楠; 张栋; 李顺利; 林彬; 牛朝诗; 汪业汉

    2016-01-01

    Objective To investigate the alteration of functional connectivity and its significance in post-concussion syndrome (PCS) patients with memory disorders using resting-state functional magnetic resonance imaging (rs-fMRI).Methods From September 2014 to April 2015,28 PCS patients with memory disorders admitted to the Department of Neurosurgery,Anhui Provincial Hospital,Anhui Medical University and 28 health controls (HC) recruited in the same period were studied.The RS-fMRI data were collected and processed.The left and right parahippocampal gyri were used as the regions of interest (ROI) to make functional connectivity with the whole brain and were analyzed in order to obtain the altered brain areas of hippocampal gyrus and whole brain functional connectivity in patients with PCS.Results The functional connectivity of the left parahippocampal gyrus and bilateral prefrontal lobe,bilateral temporal lobe,right precuneus,and right precentral gyrus reduced (all P < 0.05),and the functional connectivity with the bilateral occipital lobe,bilateral lingual lobe,and left superior parietal lobule enhanced (all P < 0.05).The functional connectivity of the right parahippocampal gyrus,right inferior frontal gyrus,bilateral temporal lobe,and bilateral occipital lobe reduced (all P < 0.05),and the functional connectivity with the bilateral middle frontal gyrus,left inferior frontal gyrus,right orbital frontal gyrus,left inferior temporal gyrus,left middle occipital lobe,bilateral angular gyrus,right lingual lobe,and left parietal lobule enhanced (all P < 0.05).Conclusion In resting state,the abnormality of function connectivity of the parahippocampal gyrus in patients with PCS may be one of the reasons for resulting in memory impairment in patients with PCS.%目的 应用静息态功能磁共振成像(RS-fMRI)探讨脑震荡后综合征(PCS)伴记忆障碍患者海马旁回的功能连接变化及其意义.方法 收集2014年9月至2015年4月安徽医科大学附属省

  18. Subthalamic nucleus high-frequency stimulation restores altered electrophysiological properties of cortical neurons in parkinsonian rat.

    Directory of Open Access Journals (Sweden)

    Bertrand Degos

    Full Text Available Electrophysiological recordings performed in parkinsonian patients and animal models have confirmed the occurrence of alterations in firing rate and pattern of basal ganglia neurons, but the outcome of these changes in thalamo-cortical networks remains unclear. Using rats rendered parkinsonian, we investigated, at a cellular level in vivo, the electrophysiological changes induced in the pyramidal cells of the motor cortex by the dopaminergic transmission interruption and further characterized the impact of high-frequency electrical stimulation of the subthalamic nucleus, a procedure alleviating parkinsonian symptoms. We provided evidence that a lesion restricted to the substantia nigra pars compacta resulted in a marked increase in the mean firing rate and bursting pattern of pyramidal neurons of the motor cortex. These alterations were underlain by changes of the electrical membranes properties of pyramidal cells including depolarized resting membrane potential and increased input resistance. The modifications induced by the dopaminergic loss were more pronounced in cortico-striatal than in cortico-subthalamic neurons. Furthermore, subthalamic nucleus high-frequency stimulation applied at parameters alleviating parkinsonian signs regularized the firing pattern of pyramidal cells and restored their electrical membrane properties.

  19. Altered interhemispheric connectivity in individuals with Tourette's disorder

    DEFF Research Database (Denmark)

    Plessen, Kerstin J; Wentzel-Larsen, Tore; Hugdahl, Kenneth;

    2004-01-01

    callosum size, yielding a prominent interaction of diagnosis with age. Corpus callosum size correlated positively with tic severity. Corpus callosum size also correlated inversely with dorsolateral prefrontal and orbitofrontal cortical volumes in both the subjects with Tourette's disorder and the...... regulation of tic symptoms, the current findings suggest that neural plasticity may contribute to smaller corpus callosum size in persons with Tourette's disorder, which thereby limits neuronal trafficking across the cerebral hemispheres and reduces input to cortical inhibitory interneurons within the...... prefrontal cortices. Reduced inhibitory input may in turn enhance prefrontal excitation, thus helping to control tics and possibly contributing to the cortical hyperexcitatibility reported previously in patients with Tourette's disorder....

  20. Cerebro-cerebellar connectivity is increased in primary lateral sclerosis

    Directory of Open Access Journals (Sweden)

    Avner Meoded

    2015-01-01

    Full Text Available Increased functional connectivity in resting state networks was found in several studies of patients with motor neuron disorders, although diffusion tensor imaging studies consistently show loss of white matter integrity. To understand the relationship between structural connectivity and functional connectivity, we examined the structural connections between regions with altered functional connectivity in patients with primary lateral sclerosis (PLS, a long-lived motor neuron disease. Connectivity matrices were constructed from resting state fMRI in 16 PLS patients to identify areas of differing connectivity between patients and healthy controls. Probabilistic fiber tracking was used to examine structural connections between regions of differing connectivity. PLS patients had 12 regions with increased functional connectivity compared to controls, with a predominance of cerebro-cerebellar connections. Increased functional connectivity was strongest between the cerebellum and cortical motor areas and between the cerebellum and frontal and temporal cortex. Fiber tracking detected no difference in connections between regions with increased functional connectivity. We conclude that functional connectivity changes are not strongly based in structural connectivity. Increased functional connectivity may be caused by common inputs, or by reduced selectivity of cortical activation, which could result from loss of intracortical inhibition when cortical afferents are intact.

  1. Hindlimb unloading alters ligament healing

    Science.gov (United States)

    Provenzano, Paolo P.; Martinez, Daniel A.; Grindeland, Richard E.; Dwyer, Kelley W.; Turner, Joanne; Vailas, Arthur C.; Vanderby, Ray Jr

    2003-01-01

    We investigated the hypothesis that hindlimb unloading inhibits healing in fibrous connective tissue such as ligament. Male rats were assigned to 3- and 7-wk treatment groups with three subgroups each: sham control, ambulatory healing, and hindlimb-suspended healing. Ambulatory and suspended animals underwent surgical rupture of their medial collateral ligaments, whereas sham surgeries were performed on control animals. After 3 or 7 wk, mechanical and/or morphological properties were measured in ligament, muscle, and bone. During mechanical testing, most suspended ligaments failed in the scar region, indicating the greatest impairment was to ligament and not to bone-ligament insertion. Ligament testing revealed significant reductions in maximum force, ultimate stress, elastic modulus, and low-load properties in suspended animals. In addition, femoral mineral density, femoral strength, gastrocnemius mass, and tibialis anterior mass were significantly reduced. Microscopy revealed abnormal scar formation and cell distribution in suspended ligaments with extracellular matrix discontinuities and voids between misaligned, but well-formed, collagen fiber bundles. Hence, stress levels from ambulation appear unnecessary for formation of fiber bundles yet required for collagen to form structurally competent continuous fibers. Results support our hypothesis that hindlimb unloading impairs healing of fibrous connective tissue. In addition, this study provides compelling morphological evidence explaining the altered structure-function relationship in load-deprived healing connective tissue.

  2. Connectivity and functional profiling of abnormal brain structures in pedophilia

    Science.gov (United States)

    Poeppl, Timm B.; Eickhoff, Simon B.; Fox, Peter T.; Laird, Angela R.; Rupprecht, Rainer; Langguth, Berthold; Bzdok, Danilo

    2015-01-01

    Despite its 0.5–1% lifetime prevalence in men and its general societal relevance, neuroimaging investigations in pedophilia are scarce. Preliminary findings indicate abnormal brain structure and function. However, no study has yet linked structural alterations in pedophiles to both connectional and functional properties of the aberrant hotspots. The relationship between morphological alterations and brain function in pedophilia as well as their contribution to its psychopathology thus remain unclear. First, we assessed bimodal connectivity of structurally altered candidate regions using meta-analytic connectivity modeling (MACM) and resting-state correlations employing openly accessible data. We compared the ensuing connectivity maps to the activation likelihood estimation (ALE) maps of a recent quantitative meta-analysis of brain activity during processing of sexual stimuli. Second, we functionally characterized the structurally altered regions employing meta-data of a large-scale neuroimaging database. Candidate regions were functionally connected to key areas for processing of sexual stimuli. Moreover, we found that the functional role of structurally altered brain regions in pedophilia relates to nonsexual emotional as well as neurocognitive and executive functions, previously reported to be impaired in pedophiles. Our results suggest that structural brain alterations affect neural networks for sexual processing by way of disrupted functional connectivity, which may entail abnormal sexual arousal patterns. The findings moreover indicate that structural alterations account for common affective and neurocognitive impairments in pedophilia. The present multi-modal integration of brain structure and function analyses links sexual and nonsexual psychopathology in pedophilia. PMID:25733379

  3. Connectivity and functional profiling of abnormal brain structures in pedophilia.

    Science.gov (United States)

    Poeppl, Timm B; Eickhoff, Simon B; Fox, Peter T; Laird, Angela R; Rupprecht, Rainer; Langguth, Berthold; Bzdok, Danilo

    2015-06-01

    Despite its 0.5-1% lifetime prevalence in men and its general societal relevance, neuroimaging investigations in pedophilia are scarce. Preliminary findings indicate abnormal brain structure and function. However, no study has yet linked structural alterations in pedophiles to both connectional and functional properties of the aberrant hotspots. The relationship between morphological alterations and brain function in pedophilia as well as their contribution to its psychopathology thus remain unclear. First, we assessed bimodal connectivity of structurally altered candidate regions using meta-analytic connectivity modeling (MACM) and resting-state correlations employing openly accessible data. We compared the ensuing connectivity maps to the activation likelihood estimation (ALE) maps of a recent quantitative meta-analysis of brain activity during processing of sexual stimuli. Second, we functionally characterized the structurally altered regions employing meta-data of a large-scale neuroimaging database. Candidate regions were functionally connected to key areas for processing of sexual stimuli. Moreover, we found that the functional role of structurally altered brain regions in pedophilia relates to nonsexual emotional as well as neurocognitive and executive functions, previously reported to be impaired in pedophiles. Our results suggest that structural brain alterations affect neural networks for sexual processing by way of disrupted functional connectivity, which may entail abnormal sexual arousal patterns. The findings moreover indicate that structural alterations account for common affective and neurocognitive impairments in pedophilia. The present multimodal integration of brain structure and function analyses links sexual and nonsexual psychopathology in pedophilia. PMID:25733379

  4. Effect of cocaine dependence on brain connections: clinical implications.

    Science.gov (United States)

    Ma, Liangsuo; Steinberg, Joel L; Moeller, F Gerard; Johns, Sade E; Narayana, Ponnada A

    2015-01-01

    Cocaine dependence (CD) is associated with several cognitive deficits. Accumulating evidence, based on human and animal studies, has led to models for interpreting the neural basis of cognitive functions as interactions between functionally related brain regions. In this review, we focus on magnetic resonance imaging (MRI) studies using brain connectivity techniques as related to CD. The majority of these brain connectivity studies indicated that cocaine use is associated with altered brain connectivity between different structures, including cortical-striatal regions and default mode network. In cocaine users some of the altered brain connectivity measures are associated with behavioral performance, history of drug use, and treatment outcome. The implications of these brain connectivity findings to the treatment of CD and the pros and cons of the major brain connectivity techniques are discussed. Finally potential future directions in cocaine use disorder research using brain connectivity techniques are briefly described. PMID:26512421

  5. Cognitive control network connectivity in adolescent women with and without a parental history of depression

    Directory of Open Access Journals (Sweden)

    Peter C. Clasen

    2014-01-01

    Conclusions: Depressed parents may transmit depression vulnerability to their adolescent daughters via alterations in functional connectivity within neural circuits that underlie cognitive control of emotional information.

  6. Medial Prefrontal and Anterior Insular Connectivity in Early Schizophrenia and Major Depressive Disorder: A Resting Functional MRI Evaluation of Large-Scale Brain Network Models.

    Science.gov (United States)

    Penner, Jacob; Ford, Kristen A; Taylor, Reggie; Schaefer, Betsy; Théberge, Jean; Neufeld, Richard W J; Osuch, Elizabeth A; Menon, Ravi S; Rajakumar, Nagalingam; Allman, John M; Williamson, Peter C

    2016-01-01

    Anomalies in the medial prefrontal cortex, anterior insulae, and large-scale brain networks associated with them have been proposed to underlie the pathophysiology of schizophrenia and major depressive disorder (MDD). In this study, we examined the connectivity of the medial prefrontal cortices and anterior insulae in 24 healthy controls, 24 patients with schizophrenia, and 24 patients with MDD early in illness with seed-based resting state functional magnetic resonance imaging analysis using Statistical Probability Mapping. As hypothesized, reduced connectivity was found between the medial prefrontal cortex and the dorsal anterior cingulate cortex and other nodes associated with directed effort in patients with schizophrenia compared to controls while patients with MDD had reduced connectivity between the medial prefrontal cortex and ventral prefrontal emotional encoding regions compared to controls. Reduced connectivity was found between the anterior insulae and the medial prefrontal cortex in schizophrenia compared to controls, but contrary to some models emotion processing regions failed to demonstrate increased connectivity with the medial prefrontal cortex in MDD compared to controls. Although, not statistically significant after correction for multiple comparisons, patients with schizophrenia tended to demonstrate decreased connectivity between basal ganglia-thalamocortical regions and the medial prefrontal cortex compared to patients with MDD, which might be expected as these regions effect action. Results were interpreted to support anomalies in nodes associated with directed effort in schizophrenia and nodes associated with emotional encoding network in MDD compared to healthy controls. PMID:27064387

  7. Medial Prefrontal and Anterior Insular Connectivity in Early Schizophrenia and Major Depressive Disorder: A Resting Functional MRI Evaluation of Large-Scale Brain Network Models

    Science.gov (United States)

    Penner, Jacob; Ford, Kristen A.; Taylor, Reggie; Schaefer, Betsy; Théberge, Jean; Neufeld, Richard W. J.; Osuch, Elizabeth A.; Menon, Ravi S.; Rajakumar, Nagalingam; Allman, John M.; Williamson, Peter C.

    2016-01-01

    Anomalies in the medial prefrontal cortex, anterior insulae, and large-scale brain networks associated with them have been proposed to underlie the pathophysiology of schizophrenia and major depressive disorder (MDD). In this study, we examined the connectivity of the medial prefrontal cortices and anterior insulae in 24 healthy controls, 24 patients with schizophrenia, and 24 patients with MDD early in illness with seed-based resting state functional magnetic resonance imaging analysis using Statistical Probability Mapping. As hypothesized, reduced connectivity was found between the medial prefrontal cortex and the dorsal anterior cingulate cortex and other nodes associated with directed effort in patients with schizophrenia compared to controls while patients with MDD had reduced connectivity between the medial prefrontal cortex and ventral prefrontal emotional encoding regions compared to controls. Reduced connectivity was found between the anterior insulae and the medial prefrontal cortex in schizophrenia compared to controls, but contrary to some models emotion processing regions failed to demonstrate increased connectivity with the medial prefrontal cortex in MDD compared to controls. Although, not statistically significant after correction for multiple comparisons, patients with schizophrenia tended to demonstrate decreased connectivity between basal ganglia-thalamocortical regions and the medial prefrontal cortex compared to patients with MDD, which might be expected as these regions effect action. Results were interpreted to support anomalies in nodes associated with directed effort in schizophrenia and nodes associated with emotional encoding network in MDD compared to healthy controls. PMID:27064387

  8. Minimum cost connection networks

    DEFF Research Database (Denmark)

    Hougaard, Jens Leth; Tvede, Mich

    In the present paper we consider the allocation of cost in connection networks. Agents have connection demands in form of pairs of locations they want to be connected. Connections between locations are costly to build. The problem is to allocate costs of networks satisfying all connection demands....... We use three axioms to characterize allocation rules that truthfully implement cost minimizing networks satisfying all connection demands in a game where: (1) a central planner announces an allocation rule and a cost estimation rule; (2) every agent reports her own connection demand as well as all...... connection costs; and, (3) the central planner selects a cost minimizing network satisfying reported connection demands based on estimated connection costs and allocates true connection costs of the selected network....

  9. Connectivity changes underlying spectral EEG changes during propofol-induced loss of consciousness

    Science.gov (United States)

    Boly, Mélanie; Moran, Rosalyn; Murphy, Michael; Boveroux, Pierre; Bruno, Marie-Aurélie; Noirhomme, Quentin; Ledoux, Didier; Bonhomme, Vincent; Brichant, Jean-François; Tononi, Giulio; Laureys, Steven; Friston, Karl

    2012-01-01

    The mechanisms underlying anesthesia-induced loss of consciousness remain a matter of debate. Recent electrophysiological reports suggest that while initial propofol infusion provokes an increase in fast rhythms (from beta to gamma range), slow activity (delta to alpha) rises selectively during loss of consciousness. Dynamic causal modeling was used to investigate the neural mechanisms mediating these changes in spectral power in humans. We analyzed source-reconstructed data from frontal and parietal cortices during normal wakefulness, propofol-induced mild sedation and loss of consciousness. Bayesian model selection revealed that the best model for explaining spectral changes across the three states involved changes in cortico-thalamic interactions. Compared to wakefulness, mild sedation was accounted for by an increase in thalamic excitability, which did not further increase during loss of consciousness. In contrast, loss of consciousness per se was accompanied by a decrease in backward cortico-cortical connectivity from frontal to parietal cortices, while thalamo-cortical connectivity remained unchanged. These results emphasize the importance of recurrent cortico-cortical communication in the maintenance of consciousness and suggest a direct effect of propofol on cortical dynamics. PMID:22593076

  10. Minimum cost connection networks

    DEFF Research Database (Denmark)

    Hougaard, Jens Leth; Tvede, Mich

    2015-01-01

    In the present paper we consider the allocation of costs in connection networks. Agents have connection demands in form of pairs of locations they want to have connected. Connections between locations are costly to build. The problem is to allocate costs of networks satisfying all connection...... demands. We use a few axioms to characterize allocation rules that truthfully implement cost minimizing networks satisfying all connection demands in a game where: (1) a central planner announces an allocation rule and a cost estimation rule; (2) every agent reports her own connection demand as well...... as all connection costs; (3) the central planner selects a cost minimizing network satisfying reported connection demands based on the estimated costs; and, (4) the planner allocates the true costs of the selected network. It turns out that an allocation rule satisfies the axioms if and only if relative...

  11. Abnormalities of Intrinsic Functional Connectivity in Autism Spectrum Disorders

    OpenAIRE

    Monk, Christopher S.; Peltier, Scott J.; Wiggins, Jillian Lee; Weng, Shih-Jen; Carrasco, Melisa; Risi, Susan; Lord, Catherine

    2009-01-01

    Autism spectrum disorders (ASD) impact social functioning and communication, and individuals with these disorders often have restrictive and repetitive behaviors. Accumulating data indicate that ASD is associated with alterations of neural circuitry. Functional MRI (FMRI) studies have focused on connectivity in the context of psychological tasks. However, even in the absence of a task, the brain exhibits a high degree of functional connectivity, known as intrinsic or resting connectivity. Not...

  12. Connectivity Changes in Parkinson's Disease.

    Science.gov (United States)

    Cerasa, Antonio; Novellino, Fabiana; Quattrone, Aldo

    2016-10-01

    Parkinson's disease (PD) is a chronic and progressive movement disorder of the central nervous system characterized by widespread alterations in several non-motor aspects such as mood, sleep, olfactory, and cognition in addition to motor dysfunctions. Advanced neuroimaging using functional connectivity reconstruction of the human brain has provided a vast knowledge on the pathophysiological mechanisms underlying this disorder, but this, however, does not cover the overall inter-/intra-individual variability of PD phenotypes. The present review is aimed at discussing to what extent the evidence provided by group-based neuroimaging analysis in this field of study (using seed-based, network-based, or graph theory approaches) may be generalized. In particular, we summarized the literature on the application of resting-state functional connectivity studies to explore different neural correlates of motor and non-motor symptoms of PD and the neural mechanisms involved in treatment effects: effects of levodopa or deep brain stimulation. The lesson learnt from one decade of studies provides consistent evidence on the role of the altered communication between the striato-frontal pathways as a marker of PD-related motor degeneration, whereas in the non-motor domain, several missing pieces of a complex puzzle are provided. However, the main target is to present a new era of intelligent neuroimaging applications, where automated multivariate analysis of functional connectivity data may be used for moving from group-level statistical results to personalized predictions in a clinical setting. Although in its relative infancy, the evidence gathered so far suggests a new era of clinical neuroimaging is starting. PMID:27568202

  13. MedlinePlus Connect

    Science.gov (United States)

    ... IT systems, patient portals and electronic health record (EHR) systems to relevant, authoritative patient health information from ... they need it via their patient portal or EHR. How does MedlinePlus Connect work? MedlinePlus Connect responds ...

  14. Galois connections and applications

    CERN Document Server

    Erné, M; Wismath, S

    2004-01-01

    This book presents the main ideas of General Galois Theory as a generalization of Classical Galois Theory It sketches the development of Galois connections through the last three centuries Examples of Galois connections as powerful tools in Category Theory and Universal Algebra are given Applications of Galois connections in Linguistic and Data Analysis are presented

  15. Reconceptualizing functional brain connectivity in autism from a developmental perspective

    Directory of Open Access Journals (Sweden)

    Lucina Q Uddin

    2013-08-01

    Full Text Available While there is almost universal agreement amongst researchers that autism is associated with alterations in brain connectivity, the precise nature of these alterations continues to be debated. Theoretical and empirical work is beginning to reveal that autism is associated with a complex functional phenotype characterized by both hypo- and hyper-connectivity of large-scale brain systems. It is not yet understood why such conflicting patterns of brain connectivity are observed across different studies, and the factors contributing to these heterogeneous findings have not been identified. Develoopmental changes in functional connectivity have received inadequate attention to date. We propose that discrepancies between findings of autism related hypo-connectivity and hyper-connectivity might be reconciled by taking developmental changes into account. We review neuroimaging studies of autism, with an emphasis on functional magnetic resonance imaging studies of intrinsic functional connectivity in children, adolescents and adults. The consistent pattern emerging across several studies is that while intrinsic functional connectivity in adolescents and adults with autism is generally reduced compared with age-matched controls, functional connectivity in younger children with the disorder appears to be increased. We suggest that by placing recent empirical findings within a developmental framework, and explicitly characterizing age and pubertal stage in future work, it may be possible to resolve conflicting findings of hypo- and hyper-connectivity in the extant literature and arrive at a more comprehensive understanding of the neurobiology of autism.

  16. Asymptotically hyperbolic connections

    CERN Document Server

    Fine, Joel; Krasnov, Kirill; Scarinci, Carlos

    2015-01-01

    General Relativity in 4 dimensions can be equivalently described as a dynamical theory of SO(3)-connections rather than metrics. We introduce the notion of asymptotically hyperbolic connections, and work out an analog of the Fefferman-Graham expansion in the language of connections. As in the metric setup, one can solve the arising "evolution" equations order by order in the expansion in powers of the radial coordinate. The solution in the connection setting is arguably simpler, and very straightforward algebraic manipulations allow one to see how the obstruction appears at third order in the expansion. Another interesting feature of the connection formulation is that the "counter terms" required in the computation of the renormalised volume all combine into the Chern-Simons functional of the restriction of the connection to the boundary. As the Chern-Simons invariant is only defined modulo large gauge transformations, the requirement that the path integral over asymptotically hyperbolic connections is well-d...

  17. ALTERED STATES OF LITERATURE: SHAMANIC ASSIMILATION AND ROMANTIC INSPIRATION

    OpenAIRE

    Marcel de Lima Santos

    2012-01-01

    This article deals with the connections between the assimilation of certain shamanic practices related to Romantic inspiration in English literature. The interest in the world of altered states of consciousness as a manifestation of the sacred is typical among Romantic writers in nineteenth-century England. These writers in fact sought the manifestation of the world of dreams by means of ingesting substances that alter consciousness, thus assimilating a practice that is likewise and primarily...

  18. Attention Alters Perceived Attractiveness.

    Science.gov (United States)

    Störmer, Viola S; Alvarez, George A

    2016-04-01

    Can attention alter the impression of a face? Previous studies showed that attention modulates the appearance of lower-level visual features. For instance, attention can make a simple stimulus appear to have higher contrast than it actually does. We tested whether attention can also alter the perception of a higher-order property-namely, facial attractiveness. We asked participants to judge the relative attractiveness of two faces after summoning their attention to one of the faces using a briefly presented visual cue. Across trials, participants judged the attended face to be more attractive than the same face when it was unattended. This effect was not due to decision or response biases, but rather was due to changes in perceptual processing of the faces. These results show that attention alters perceived facial attractiveness, and broadly demonstrate that attention can influence higher-level perception and may affect people's initial impressions of one another. PMID:26966228

  19. Handbook of networking & connectivity

    CERN Document Server

    McClain, Gary R

    1994-01-01

    Handbook of Networking & Connectivity focuses on connectivity standards in use, including hardware and software options. The book serves as a guide for solving specific problems that arise in designing and maintaining organizational networks.The selection first tackles open systems interconnection, guide to digital communications, and implementing TCP/IP in an SNA environment. Discussions focus on elimination of the SNA backbone, routing SNA over internets, connectionless versus connection-oriented networks, internet concepts, application program interfaces, basic principles of layering, proto

  20. Inverse Degree and Connectivity

    Institute of Scientific and Technical Information of China (English)

    MA Xiao-ling; TIAN Ying-zhi

    2013-01-01

    Let G be a connected graph with vertex set V(G),order n =丨V(G)丨,minimum degree δ(G) and connectivity κ(G).The graph G is called maximally connected if κ(G) =δ(G).Define the inverse degree of G with no isolated vertices as R(G) =Σv∈V(G)1/d(v),where d(v) denotes the degree of the vertex v.We show that G is maximally connected if R(G) < 1 + 2/δ + n-2δ+1/(n-1)(n-3).

  1. Connecting Arithmetic to Algebra

    Science.gov (United States)

    Darley, Joy W.; Leapard, Barbara B.

    2010-01-01

    Algebraic thinking is a top priority in mathematics classrooms today. Because elementary school teachers lay the groundwork to develop students' capacity to think algebraically, it is crucial for teachers to have a conceptual understanding of the connections between arithmetic and algebra and be confident in communicating these connections. Many…

  2. Handbook of Brain Connectivity

    CERN Document Server

    Jirsa, Viktor K

    2007-01-01

    Our contemporary understanding of brain function is deeply rooted in the ideas of the nonlinear dynamics of distributed networks. Cognition and motor coordination seem to arise from the interactions of local neuronal networks, which themselves are connected in large scales across the entire brain. The spatial architectures between various scales inevitably influence the dynamics of the brain and thereby its function. But how can we integrate brain connectivity amongst these structural and functional domains? Our Handbook provides an account of the current knowledge on the measurement, analysis and theory of the anatomical and functional connectivity of the brain. All contributors are leading experts in various fields concerning structural and functional brain connectivity. In the first part of the Handbook, the chapters focus on an introduction and discussion of the principles underlying connected neural systems. The second part introduces the currently available non-invasive technologies for measuring struct...

  3. Generalized connectivity of graphs

    CERN Document Server

    Li, Xueliang

    2016-01-01

    Noteworthy results, proof techniques, open problems and conjectures in generalized (edge-) connectivity are discussed in this book. Both theoretical and practical analyses for generalized (edge-) connectivity of graphs are provided. Topics covered in this book include: generalized (edge-) connectivity of graph classes, algorithms, computational complexity, sharp bounds, Nordhaus-Gaddum-type results, maximum generalized local connectivity, extremal problems, random graphs, multigraphs, relations with the Steiner tree packing problem and generalizations of connectivity. This book enables graduate students to understand and master a segment of graph theory and combinatorial optimization. Researchers in graph theory, combinatorics, combinatorial optimization, probability, computer science, discrete algorithms, complexity analysis, network design, and the information transferring models will find this book useful in their studies.

  4. Altered cingulostriatal coupling in obsessive-compulsive disorder.

    Science.gov (United States)

    Beucke, Jan Carl; Kaufmann, Christian; Linnman, Clas; Gruetzmann, Rosa; Endrass, Tanja; Deckersbach, Thilo; Dougherty, Darin D; Kathmann, Norbert

    2012-01-01

    Neurobiological models of obsessive-compulsive disorder (OCD) assume abnormalities in corticostriatal networks involving cingulate and orbitofrontal cortices, but the connectivity within these systems is rarely addressed in experimental imaging studies in this patient group. Using an established monetary reinforcement paradigm known to involve the cingulate cortex and the ventral striatum, the present study sought to test for altered corticostriatal coupling in OCD patients anticipating potential punishment. The anterior midcingulate cortex (aMCC), a region integrating negative emotion, pain, and cognitive control, was chosen as a seed region due to its particular relevance in OCD, representing the neurosurgical target for cingulotomy, and showing increased responses to errors in OCD patients. Results from psychophysiological interaction analyses revealed that significantly altered, inverse coupling occurs between the aMCC and the ventral striatum when OCD patients anticipate potential punishment. This abnormality links the two major contemporary neurosurgical OCD target sites, and provides direct experimental evidence of altered corticostriatal connectivity in OCD. Noteworthy, an abnormal aMCC coupling with cortical areas outside of traditional corticostriatal circuitry was identified besides the alteration in the cingulostriatal pathway. In conclusion, these findings support the importance of applying connectivity methods to study corticostriatal networks in OCD, and favor the application of effective connectivity methods to study corticostriatal abnormalities in OCD patients performing tasks that involve symptom provocation and reinforcement learning. PMID:22823561

  5. Extension of non-invasive EEG into the kHz range for evoked thalamocortical activity by means of very low noise amplifiers

    International Nuclear Information System (INIS)

    Ultrafast electroencephalographic signals, having frequencies above 500 Hz, can be observed in somatosensory evoked potential measurements. Usually, these recordings have a poor signal-to-noise ratio (SNR) because weak signals are overlaid by intrinsic noise of much higher amplitude like that generated by biological sources and the amplifier. As an example, recordings at the scalp taken during electrical stimulation of the median nerve show a 600 Hz burst with submicro-volt amplitudes which can be extracted from noise by the use of massive averaging and digital signal processing only. We have investigated this signal by means of a very low noise amplifier made in-house (minimal voltage noise 2.7 nV Hz−1/2, FET inputs). We examined how the SNR of the data is altered by the bandwidth and the use of amplifiers with different intrinsic amplifier noise levels of 12 and 4.8 nV Hz−1/2, respectively. By analyzing different frequency contributions of the signal, we found an extremely weak 1 kHz component superimposed onto the well-known 600 Hz burst. Previously such high-frequency electroencephalogram responses around 1 kHz have only been observed by deep brain electrodes implanted for tremor therapy of Parkinson patients. For the non-invasive measurement of such signals, we recommend that amplifier noise should not exceed 4 nV Hz−1/2. (note)

  6. Re-establishment of connectivity for fish populations in regulated rivers

    OpenAIRE

    Calles, Olle

    2005-01-01

    The hydropower industry has altered connectivity in many rivers during the last century. Many fish species depend on both an intact longitudinal connectivity to be able to migrate between spawning, feeding and winter habitats, and vertical connectivity for development and survival of incubating embryos and larvae in the gravel. The objective of this thesis was to examine problems and remedial measures associated with disrupted longitudinal and vertical connectivity in regulated rivers. The is...

  7. Optogenetically induced sleep spindle rhythms alter sleep architectures in mice

    OpenAIRE

    Kim, Angela; Latchoumane, Charles; Lee, Soojung; Kim, Guk Bae; Cheong, Eunji; Augustine, George J.; Shin, Hee-Sup

    2012-01-01

    Sleep spindles are rhythmic patterns of neuronal activity generated within the thalamocortical circuit. Although spindles have been hypothesized to protect sleep by reducing the influence of external stimuli, it remains to be confirmed experimentally whether there is a direct relationship between sleep spindles and the stability of sleep. We have addressed this issue by using in vivo photostimulation of the thalamic reticular nucleus of mice to generate spindle oscillations that are structura...

  8. BDNF Genotype Modulates Resting Functional Connectivity in Children

    OpenAIRE

    Thomason, Moriah E.; Daniel J Yoo; Glover, Gary H.; Gotlib, Ian H.

    2009-01-01

    A specific polymorphism of the brain-derived neurotrophic factor (BDNF) gene is associated with alterations in brain anatomy and memory; its relevance to the functional connectivity of brain networks, however, is unclear. Given that altered hippocampal function and structure has been found in adults who carry the methionine (met) allele of the BDNF gene and the molecular studies elucidating the role of BDNF in neurogenesis and synapse formation, we examined the association between BDNF gene v...

  9. BDNF genotype modulates resting functional connectivity in children

    OpenAIRE

    Daniel J Yoo; Glover, Gary H.

    2009-01-01

    A specific polymorphism of the brain-derived neurotrophic factor (BDNF) gene is associated with alterations in brain anatomy and memory; its relevance to the functional connectivity of brain networks, however, is unclear. Given that altered hippocampal function and structure has been found in adults who carry the methionine (met) allele of the BDNF gene and the molecular studies elucidating the role of BDNF in neurogenesis and synapse formation, we examined in the association between BDNF gen...

  10. Structural connectivity analyses in motor recovery research after stroke

    OpenAIRE

    Koch, Philipp; Schulz, Robert; Hummel, Friedhelm C.

    2016-01-01

    Abstract Structural connectivity analyses by means of diffusion‐weighted imaging have substantially advanced the understanding of stroke‐related network alterations and their implications for motor recovery processes and residual motor function. Analyses of the corticospinal tract, alternate corticofugal pathways as well as intrahemispheric and interhemispheric corticocortical connections have not only been related to residual motor function in cross‐sectional studies, but have also been eval...

  11. Low Pore Connectivity Increases Bacterial Diversity in Soil▿

    OpenAIRE

    Carson, Jennifer K.; Gonzalez-Quiñones, Vanesa; Murphy, Daniel V.; Hinz, Christoph; Shaw, Jeremy A.; Gleeson, Deirdre B.

    2010-01-01

    One of soil microbiology's most intriguing puzzles is how so many different bacterial species can coexist in small volumes of soil when competition theory predicts that less competitive species should decline and eventually disappear. We provide evidence supporting the theory that low pore connectivity caused by low water potential (and therefore low water content) increases the diversity of a complex bacterial community in soil. We altered the pore connectivity of a soil by decreasing water ...

  12. Covariant Magnetic Connection Hypersurfaces

    CERN Document Server

    Pegoraro, F

    2016-01-01

    In the single fluid, nonrelativistic, ideal-Magnetohydrodynamic (MHD) plasma description magnetic field lines play a fundamental role by defining dynamically preserved "magnetic connections" between plasma elements. Here we show how the concept of magnetic connection needs to be generalized in the case of a relativistic MHD description where we require covariance under arbitrary Lorentz transformations. This is performed by defining 2-D {\\it magnetic connection hypersurfaces} in the 4-D Minkowski space. This generalization accounts for the loss of simultaneity between spatially separated events in different frames and is expected to provide a powerful insight into the 4-D geometry of electromagnetic fields when ${\\bf E} \\cdot {\\bf B} = 0$.

  13. HIV-AIDS Connection

    Science.gov (United States)

    ... Content Marketing Share this: Main Content Area The HIV-AIDS Connection AIDS was first recognized in 1981 ... cancers. Why is there overwhelming scientific consensus that HIV causes AIDS? Before HIV infection became widespread in ...

  14. Can we measure connectivity?

    Science.gov (United States)

    Brazier, Richard; Vericat, Damia; Cerda, Artemi; Brardinoni, Francesco; Batalla, Ramon; Masselink, Rens; Wittenberg, Lea; Nadal Romero, Estela; López-Tarazón, José; Estrany, Joan; Keesstra, Saskia

    2015-04-01

    Whilst the term 'connectivity' in hydrological and sediment-based research is becoming increasing well-known, it is neither used consistently in the existing literature, nor is it clear from that literature, that the connectivity of a landscape, or part of a landscape can be measured. However, it is argued that understanding how well critical source areas of water or sediment are connected to receiving surface waters, may be an essential step towards improvement of land management to mitigate flooding, soil erosion and water quality problems. The first part of this paper, therefore, explores what is currently meant by the term connectivity; addressing the differences between structural and functional, or process-based connectivity, specifically with reference to the movement of water and sediment through an ecosystem. We argue that most existing studies do not measure connectivity. Instead, they address only part of the story. Existing work may describe structural change in a landscape, which can perhaps elucidate the potential for connectivity to occur, or indeed the emergent spatial properties of an ecosystem, but it rarely quantifies the connectivity of an ecosystem in a process-based manner through time. Alternatively, a great deal of work describes fluxes of water and sediment at (sometimes multiple) points in a landscape and infers connectivity of the system via analysis of time series data; from rainfall peak to hydrograph peak or start of sediment flux until peak sediment flux within an event. Such data are doubtless useful to understand catchment function, but alone, they do not provide evidence that quantifies (for example) how well connected sediment sources are to the outlets of the catchments from which they flux. Finally, there are many examples of water and particularly sediment tracing studies, which attempt to link, either directly or indirectly water or sediment sources with their sinks (which might more usefully be termed temporary stores

  15. Green Connections Network

    Data.gov (United States)

    City of San Francisco — Green Connections aims to increase access to parks, open spaces, and the waterfront by envisioning a network of ���green connectors�۪ ��� city streets that will be...

  16. Series connection of IGBT

    OpenAIRE

    Nguyen, The Van; Jeannin, Pierre-Olivier; Vagnon, Eric; Frey, David; Crébier, Jean-Christophe

    2010-01-01

    International audience This article analyzes the effects of parasitic capacitances in the series connection of IGBT, which exist naturally due to gate driver and power circuit geometry. Two solutions, that can be combined, are proposed to minimize these effects in order to achieve a better voltage balancing. The first one is based on gate driver self-powering technique. The second one is based on a vertical structure assembly of IGBT connected in series. The performance offered by these tw...

  17. Altered resting state brain networks in Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Martin Göttlich

    Full Text Available Parkinson's disease (PD is a neurodegenerative disorder affecting dopaminergic neurons in the substantia nigra leading to dysfunctional cortico-striato-thalamic-cortical loops. In addition to the characteristic motor symptoms, PD patients often show cognitive impairments, affective changes and other non-motor symptoms, suggesting system-wide effects on brain function. Here, we used functional magnetic resonance imaging and graph-theory based analysis methods to investigate altered whole-brain intrinsic functional connectivity in PD patients (n = 37 compared to healthy controls (n = 20. Global network properties indicated less efficient processing in PD. Analysis of brain network modules pointed to increased connectivity within the sensorimotor network, but decreased interaction of the visual network with other brain modules. We found lower connectivity mainly between the cuneus and the ventral caudate, medial orbitofrontal cortex and the temporal lobe. To identify regions of altered connectivity, we mapped the degree of intrinsic functional connectivity both on ROI- and on voxel-level across the brain. Compared to healthy controls, PD patients showed lower connectedness in the medial and middle orbitofrontal cortex. The degree of connectivity was also decreased in the occipital lobe (cuneus and calcarine, but increased in the superior parietal cortex, posterior cingulate gyrus, supramarginal gyrus and supplementary motor area. Our results on global network and module properties indicated that PD manifests as a disconnection syndrome. This was most apparent in the visual network module. The higher connectedness within the sensorimotor module in PD patients may be related to compensation mechanism in order to overcome the functional deficit of the striato-cortical motor loops or to loss of mutual inhibition between brain networks. Abnormal connectivity in the visual network may be related to adaptation and compensation processes as a consequence

  18. Quick connect fastener

    Science.gov (United States)

    Weddendorf, Bruce (Inventor)

    1994-01-01

    A quick connect fastener and method of use is presented wherein the quick connect fastener is suitable for replacing available bolts and screws, the quick connect fastener being capable of installation by simply pushing a threaded portion of the connector into a member receptacle hole, the inventive apparatus being comprised of an externally threaded fastener having a threaded portion slidably mounted upon a stud or bolt shaft, wherein the externally threaded fastener portion is expandable by a preloaded spring member. The fastener, upon contact with the member receptacle hole, has the capacity of presenting cylindrical threads of a reduced diameter for insertion purposes and once inserted into the receiving threads of the receptacle member hole, are expandable for engagement of the receptacle hole threads forming a quick connect of the fastener and the member to be fastened, the quick connect fastener can be further secured by rotation after insertion, even to the point of locking engagement, the quick connect fastener being disengagable only by reverse rotation of the mated thread engagement.

  19. Structural Connectivity Networks of Transgender People.

    Science.gov (United States)

    Hahn, Andreas; Kranz, Georg S; Küblböck, Martin; Kaufmann, Ulrike; Ganger, Sebastian; Hummer, Allan; Seiger, Rene; Spies, Marie; Winkler, Dietmar; Kasper, Siegfried; Windischberger, Christian; Swaab, Dick F; Lanzenberger, Rupert

    2015-10-01

    Although previous investigations of transsexual people have focused on regional brain alterations, evaluations on a network level, especially those structural in nature, are largely missing. Therefore, we investigated the structural connectome of 23 female-to-male (FtM) and 21 male-to-female (MtF) transgender patients before hormone therapy as compared with 25 female and 25 male healthy controls. Graph theoretical analysis of whole-brain probabilistic tractography networks (adjusted for differences in intracranial volume) showed decreased hemispheric connectivity ratios of subcortical/limbic areas for both transgender groups. Subsequent analysis revealed that this finding was driven by increased interhemispheric lobar connectivity weights (LCWs) in MtF transsexuals and decreased intrahemispheric LCWs in FtM patients. This was further reflected on a regional level, where the MtF group showed mostly increased local efficiencies and FtM patients decreased values. Importantly, these parameters separated each patient group from the remaining subjects for the majority of significant findings. This work complements previously established regional alterations with important findings of structural connectivity. Specifically, our data suggest that network parameters may reflect unique characteristics of transgender patients, whereas local physiological aspects have been shown to represent the transition from the biological sex to the actual gender identity. PMID:25217469

  20. Structural Connectivity Networks of Transgender People

    Science.gov (United States)

    Hahn, Andreas; Kranz, Georg S.; Küblböck, Martin; Kaufmann, Ulrike; Ganger, Sebastian; Hummer, Allan; Seiger, Rene; Spies, Marie; Winkler, Dietmar; Kasper, Siegfried; Windischberger, Christian; Swaab, Dick F.; Lanzenberger, Rupert

    2015-01-01

    Although previous investigations of transsexual people have focused on regional brain alterations, evaluations on a network level, especially those structural in nature, are largely missing. Therefore, we investigated the structural connectome of 23 female-to-male (FtM) and 21 male-to-female (MtF) transgender patients before hormone therapy as compared with 25 female and 25 male healthy controls. Graph theoretical analysis of whole-brain probabilistic tractography networks (adjusted for differences in intracranial volume) showed decreased hemispheric connectivity ratios of subcortical/limbic areas for both transgender groups. Subsequent analysis revealed that this finding was driven by increased interhemispheric lobar connectivity weights (LCWs) in MtF transsexuals and decreased intrahemispheric LCWs in FtM patients. This was further reflected on a regional level, where the MtF group showed mostly increased local efficiencies and FtM patients decreased values. Importantly, these parameters separated each patient group from the remaining subjects for the majority of significant findings. This work complements previously established regional alterations with important findings of structural connectivity. Specifically, our data suggest that network parameters may reflect unique characteristics of transgender patients, whereas local physiological aspects have been shown to represent the transition from the biological sex to the actual gender identity. PMID:25217469

  1. Algebraic connectivity and graph robustness.

    Energy Technology Data Exchange (ETDEWEB)

    Feddema, John Todd; Byrne, Raymond Harry; Abdallah, Chaouki T. (University of New Mexico)

    2009-07-01

    Recent papers have used Fiedler's definition of algebraic connectivity to show that network robustness, as measured by node-connectivity and edge-connectivity, can be increased by increasing the algebraic connectivity of the network. By the definition of algebraic connectivity, the second smallest eigenvalue of the graph Laplacian is a lower bound on the node-connectivity. In this paper we show that for circular random lattice graphs and mesh graphs algebraic connectivity is a conservative lower bound, and that increases in algebraic connectivity actually correspond to a decrease in node-connectivity. This means that the networks are actually less robust with respect to node-connectivity as the algebraic connectivity increases. However, an increase in algebraic connectivity seems to correlate well with a decrease in the characteristic path length of these networks - which would result in quicker communication through the network. Applications of these results are then discussed for perimeter security.

  2. Developmental alterations of the septohippocampal cholinergic projection in a lissencephalic mouse model.

    Science.gov (United States)

    Garcia-Lopez, Raquel; Pombero, Ana; Dominguez, Eduardo; Geijo-Barrientos, Emilio; Martinez, Salvador

    2015-09-01

    LIS1 is one of principal genes related with Type I lissencephaly, a severe human brain malformation characterized by abnormal neuronal migration in the cortex. The LIS1 gene encodes a brain-specific 45kDa non-catalytic subunit of platelet-activating factor (PAF) acetylhydrolase-1b (PAFAH1b), an enzyme that inactivates the PAF. We have studied the role of Lis1 using a Lis1/sLis1 murine model, which has deleted the first coding exon from Lis1 gene. Homozygous mice are not viable but heterozygous have shown a delayed corticogenesis and neuronal dysplasia, with enhanced cortical excitability. Lis1/sLis1 embryos also exhibited a delay of cortical innervation by the thalamocortical fibers. We have explored in Lis1/sLis1 mice anomalies in forebrain cholinergic neuron development, which migrate from pallium to subpallium, and functionally represent the main cholinergic input to the cerebral cortex, modulating cortical activity and facilitating attention, learning, and memory. We hypothesized that primary migration anomalies and/or disorganized cortex could affect cholinergic projections from the basal forebrain and septum in Lis1/sLis1 mouse. To accomplish our objective we have first studied basal forebrain neurons in Lis1/sLis1 mice during development, and described structural and hodological differences between wild-type and Lis1/sLis1 embryos. In addition, septohippocampal projections showed altered development in mutant embryos. Basal forebrain abnormalities could contribute to hippocampal excitability anomalies secondary to Lis1 mutations and may explain the cognitive symptoms associated to cortical displasia-related mental diseases and epileptogenic syndromes. PMID:26079645

  3. Estimation of dynamic functional connectivity using Multiplication of Temporal Derivatives.

    Science.gov (United States)

    Shine, James M; Koyejo, Oluwasanmi; Bell, Peter T; Gorgolewski, Krzysztof J; Gilat, Moran; Poldrack, Russell A

    2015-11-15

    Functional connectivity provides an informative and powerful framework for exploring brain organization. Despite this, few statistical methods are available for the accurate estimation of dynamic changes in functional network architecture. To date, the majority of existing statistical techniques have assumed that connectivity structure is stationary, which is in direct contrast to emerging data that suggests that the strength of connectivity between regions is variable over time. Therefore, the development of statistical methods that enable exploration of dynamic changes in functional connectivity is currently of great importance to the neuroscience community. In this paper, we introduce the 'Multiplication of Temporal Derivatives' (MTD) and then demonstrate the utility of this metric to: (i) detect dynamic changes in connectivity using data from a novel state-switching simulation; (ii) accurately estimate graph structure in a previously-described 'ground-truth' simulated dataset; and (iii) identify task-driven alterations in functional connectivity. We show that the MTD is more sensitive than existing sliding-window methods in detecting dynamic alterations in connectivity structure across a range of correlation strengths and window lengths in simulated data. In addition to the temporal precision offered by MTD, we demonstrate that the metric is also able to accurately estimate stationary network structure in both simulated and real task-based data, suggesting that the method may be used to identify dynamic changes in network structure as they evolve through time. PMID:26231247

  4. Pectus excavatum and heritable disorders of the connective tissue

    Directory of Open Access Journals (Sweden)

    Francesca Tocchioni

    2013-09-01

    Full Text Available Pectus excavatum, the most frequent congenital chest wall deformity, may be rarely observed as a sole deformity or as a sign of an underlying connective tissue disorder. To date, only few studies have described correlations between this deformity and heritable connective tissue disorders such as Marfan, Ehlers-Danlos, Poland, MASS (Mitral valve prolapse, not progressive Aortic enlargement, Skeletal and Skin alterations phenotype among others. When concurring with connective tissue disorder, cardiopulmonary and vascular involvement may be associated to the thoracic defect. Ruling out the concomitance of pectus excavatum and connective tissue disorders, therefore, may have a direct implication both on surgical outcome and long term prognosis. In this review we focused on biological bases of connective tissue disorders which may be relevant to the pathogenesis of pectus excavatum, portraying surgical and clinical implication of their concurrence.

  5. VANET Connectivity Analysis

    CERN Document Server

    Kafsi, M; Dousse, O; Alpcan, T; Hubaux, J -P

    2009-01-01

    Vehicular Ad Hoc Networks (VANETs) are a peculiar subclass of mobile ad hoc networks that raise a number of technical challenges, notably from the point of view of their mobility models. In this paper, we provide a thorough analysis of the connectivity of such networks by leveraging on well-known results of percolation theory. By means of simulations, we study the influence of a number of parameters, including vehicle density, proportion of equipped vehicles, and radio communication range. We also study the influence of traffic lights and roadside units. Our results provide insights on the behavior of connectivity. We believe this paper to be a valuable framework to assess the feasibility and performance of future applications relying on vehicular connectivity in urban scenarios.

  6. Connectivity and superconductivity

    CERN Document Server

    Rubinstein, Jacob

    2000-01-01

    The motto of connectivity and superconductivity is that the solutions of the Ginzburg--Landau equations are qualitatively influenced by the topology of the boundaries, as in multiply-connected samples. Special attention is paid to the "zero set", the set of the positions (also known as "quantum vortices") where the order parameter vanishes. The effects considered here usually become important in the regime where the coherence length is of the order of the dimensions of the sample. It takes the intuition of physicists and the awareness of mathematicians to find these new effects. In connectivity and superconductivity, theoretical and experimental physicists are brought together with pure and applied mathematicians to review these surprising results. This volume is intended to serve as a reference book for graduate students and researchers in physics or mathematics interested in superconductivity, or in the Schrödinger equation as a limiting case of the Ginzburg--Landau equations.

  7. Functional connectivity of emotional processing in depression.

    LENUS (Irish Health Repository)

    Carballedo, Angela

    2012-02-01

    OBJECTIVES: The aim of the study is to map a neural network of emotion processing and to identify differences in major depression compared to healthy controls. It is hypothesized that intentional perception of emotional faces activates connections between amygdala (Demir et al.), orbitofrontal cortex (OFC), anterior cingulate cortex (ACC) and prefrontal cortex (PFC) and that frontal-amygdala connections are altered in major depressive disorder (MDD). METHODS: Fifteen medication-free patients with MDD and fifteen healthy controls were enrolled. All subjects were assessed using the same face-matching functional Magnetic Resonance Imaging (fMRI) task, known to involve those areas. Brain activations were obtained using Statistical Parametric Mapping version 5 (SPM5) for data analysis and MARSBAR for extracting of fMRI time series. Then data was analyzed using structural equation modeling (SEM). RESULTS: A valid model was established for the left and the right hemispheres showing a circuit involving ACC, OFC, PFC and AMY. The left hemisphere shows significant lower connectivity strengths in patients than controls, for the pathway that goes from AMY to the OF11, and a trend of higher connectivity in patients for the path that goes from the PF9 to the OF11. In the right hemisphere, patients show lower connectivity coefficients in the paths from the AMY to OF11, from the AMY to ACC, and from the ACC to PF9. By the contrary, controls show lower connectivity strengths for the path that goes from ACC to AMY. CONCLUSIONS: Functional disconnection between limbic and frontal brain regions could be demonstrated using structural equation modeling. The interpretation of these findings could be that there is an emotional processing bias with disconnection bilaterally between amygdala to orbitofrontal cortices and in addition a right disconnection between amygdala and ACC as well as between ACC and prefrontal cortex possibly in line with a more prominent role for the right hemisphere

  8. Quantum group connections

    OpenAIRE

    Lewandowski, Jerzy; Okolow, Andrzej

    2008-01-01

    The Ahtekar-Isham C*-algebra known from Loop Quantum Gravity is the algebra of continuous functions on the space of (generalized) connections with a compact structure Lie group. The algebra can be constructed by some inductive techniques from the C*-algebra of continuous functions on the group and a family of graphs embedded in the manifold underlying the connections. We generalize the latter construction replacing the commutative C*-algebra of continuous functions on the group by a non-commu...

  9. A super soliton connection

    International Nuclear Information System (INIS)

    Integrable super non-linear classical partial differential equations are considered. A super s1(2,R) algebra valued connection 1-form is constructed. It is shown that curvature 2-form of this super connection vanishes by virtue of the integrable super equations of motion. A super extension of the AKNS scheme is presented and a class of super extension of the Lax hierarchy and super non-linear Schroedinger equation are found. O(N) extension and the Baecklund transformations of the above super equations are also considered. (author)

  10. Altered fingerprints: analysis and detection.

    Science.gov (United States)

    Yoon, Soweon; Feng, Jianjiang; Jain, Anil K

    2012-03-01

    The widespread deployment of Automated Fingerprint Identification Systems (AFIS) in law enforcement and border control applications has heightened the need for ensuring that these systems are not compromised. While several issues related to fingerprint system security have been investigated, including the use of fake fingerprints for masquerading identity, the problem of fingerprint alteration or obfuscation has received very little attention. Fingerprint obfuscation refers to the deliberate alteration of the fingerprint pattern by an individual for the purpose of masking his identity. Several cases of fingerprint obfuscation have been reported in the press. Fingerprint image quality assessment software (e.g., NFIQ) cannot always detect altered fingerprints since the implicit image quality due to alteration may not change significantly. The main contributions of this paper are: 1) compiling case studies of incidents where individuals were found to have altered their fingerprints for circumventing AFIS, 2) investigating the impact of fingerprint alteration on the accuracy of a commercial fingerprint matcher, 3) classifying the alterations into three major categories and suggesting possible countermeasures, 4) developing a technique to automatically detect altered fingerprints based on analyzing orientation field and minutiae distribution, and 5) evaluating the proposed technique and the NFIQ algorithm on a large database of altered fingerprints provided by a law enforcement agency. Experimental results show the feasibility of the proposed approach in detecting altered fingerprints and highlight the need to further pursue this problem. PMID:21808092

  11. Tweaking synchronization by connectivity modifications

    Science.gov (United States)

    Schultz, Paul; Peron, Thomas; Eroglu, Deniz; Stemler, Thomas; Ramírez Ávila, Gonzalo Marcelo; Rodrigues, Francisco A.; Kurths, Jürgen

    2016-06-01

    Natural and man-made networks often possess locally treelike substructures. Taking such tree networks as our starting point, we show how the addition of links changes the synchronization properties of the network. We focus on two different methods of link addition. The first method adds single links that create cycles of a well-defined length. Following a topological approach, we introduce cycles of varying length and analyze how this feature, as well as the position in the network, alters the synchronous behavior. We show that in particular short cycles can lead to a maximum change of the Laplacian's eigenvalue spectrum, dictating the synchronization properties of such networks. The second method connects a certain proportion of the initially unconnected nodes. We simulate dynamical systems on these network topologies, with the nodes' local dynamics being either discrete or continuous. Here our main result is that a certain number of additional links, with the relative position in the network being crucial, can be beneficial to ensure stable synchronization.

  12. Moduli Space of General Connections

    CERN Document Server

    Dubrovskiy, Stanislav

    2010-01-01

    We consider local invariants of general connections (with torsion). The group of origin-preserving diffeomorphisms acts on a space of jets of general connections. Dimensions of moduli spaces of generic connections are calculated. Poincar\\'e series of the geometric structure of connection is constructed, and shown to be a rational function, confirming the finiteness assertion of Tresse.

  13. Covert connection of filaments

    CERN Document Server

    Filippov, Boris

    2015-01-01

    We analyse the relationship between two near filaments, which do not show any connection in H-alpha images but reveal close magnetic connectivity during filament activations in Extreme Ultraviolet (EUV) observations. A twisted flux rope, which connects a half of one filament with another filament, becomes visible during several activations but seems to exist all the time of the filaments presence on the disc. Solar Dynamic Observatory} (SDO) and Solar Terrestrial Relations Observatory (STEREO) observed the region with the filaments from two points of view separated by the angle of about 120 deg. On 2012 July 27, SDO observed the filament activation on disc, while for the STEREO B position the filaments were visible at the limb. Nearly identical interaction episode was observed on 2012 August 04 by STEREO A on disc and by SDO at the limb. This good opportunity allows us to disentangle the 3-D shape of the connecting flux rope and in particular to determine with high reliability the helicity sign of the flux ro...

  14. Connectivity measures: a review

    Czech Academy of Sciences Publication Activity Database

    Kindlmann, Pavel; Burel, F.

    2008-01-01

    Roč. 23, č. 1 (2008), s. 879-890. ISSN 0921-2973 R&D Projects: GA MŠk LC06073; GA AV ČR(CZ) IAA6087301 Institutional research plan: CEZ:AV0Z60870520 Keywords : Conservation biology * Habitat fragmentation * Landscape connectivity * Measures * Species extinction Subject RIV: EH - Ecology, Behaviour Impact factor: 2.453, year: 2008

  15. Connecting to Compete 2016

    OpenAIRE

    Arvis, Jean-François; Saslavsky, Daniel; Ojala, Lauri; Shepherd, Ben; Busch, Christina; Raj, Anasuya; Naula, Tapio

    2016-01-01

    The LPI has provided valuable information for policy makers, traders, and other stakeholders, including researchers and academics, on the role of logistics for growth and the policies needed to support logistics in areas such as infrastructure planning, service provision, and crossborder trade and transport facilitation. The results of Connecting to Compete 2016 point to Germany as the bes...

  16. Connections that Count

    Science.gov (United States)

    Lloyd-Zannini, Lou

    2012-01-01

    What can parents and educators of gifted children do to help them build the connections that will allow them to thrive? In this article, the author suggests a few practical and simple things that parents and educators of gifted children might want to consider as they live and work with them day by day. He breaks those suggestions out into two…

  17. Clip, Connect, Clone

    DEFF Research Database (Denmark)

    Fujima, Jun; Lunzer, Aran; Hornbæk, Kasper Anders Søren;

    2010-01-01

    using three mechanisms: clipping of input and result elements from existing applications to form cells on a spreadsheet; connecting these cells using formulas, thus enabling result transfer between applications; and cloning cells so that multiple requests can be handled side by side. We demonstrate a...

  18. High Quality Connections

    OpenAIRE

    Balslev, Lise; Molin, Jan

    2014-01-01

    Gode og stærke relationer er afgørende for en organisations livskraft. Motivation, engagement, effektivitet, kreativitet mv. er nemlig ofte direkte forbundet med organisationens evne til at skabe stærke relationer mellem ledere, medarbejdere, kunder og omverden. Jane Dutton, Professor of Business Administration and Psychology ved Michigan University, introducerer begrebet High Quality Connections (HQC) og siger.

  19. The CONNECT project

    DEFF Research Database (Denmark)

    Assaf, Yaniv; Alexander, Daniel C; Jones, Derek K;

    2013-01-01

    tractography to infer connectivity between brain regions. In parallel to the development of tractography, additional diffusion MRI based frameworks (CHARMED, AxCaliber, ActiveAx) were developed enabling the extraction of a multitude of micro-structural parameters (axon diameter distribution, mean axonal...

  20. From connection to customer

    International Nuclear Information System (INIS)

    Energy companies can no longer be certain that a customer today will remain a customer tomorrow. They have to work hard to achieve that. They are going from thinking in terms of connections to pampering their customers. Good Customer Relationship Management is a way to achieve a competitive advantage. The whole organisation has to adapt, particularly the customer orientation of employees

  1. Music alters visual perception.

    Directory of Open Access Journals (Sweden)

    Jacob Jolij

    Full Text Available BACKGROUND: Visual perception is not a passive process: in order to efficiently process visual input, the brain actively uses previous knowledge (e.g., memory and expectations about what the world should look like. However, perception is not only influenced by previous knowledge. Especially the perception of emotional stimuli is influenced by the emotional state of the observer. In other words, how we perceive the world does not only depend on what we know of the world, but also by how we feel. In this study, we further investigated the relation between mood and perception. METHODS AND FINDINGS: We let observers do a difficult stimulus detection task, in which they had to detect schematic happy and sad faces embedded in noise. Mood was manipulated by means of music. We found that observers were more accurate in detecting faces congruent with their mood, corroborating earlier research. However, in trials in which no actual face was presented, observers made a significant number of false alarms. The content of these false alarms, or illusory percepts, was strongly influenced by the observers' mood. CONCLUSIONS: As illusory percepts are believed to reflect the content of internal representations that are employed by the brain during top-down processing of visual input, we conclude that top-down modulation of visual processing is not purely predictive in nature: mood, in this case manipulated by music, may also directly alter the way we perceive the world.

  2. Genetic Alterations in Glioma

    International Nuclear Information System (INIS)

    Gliomas are the most common type of primary brain tumor and have a dismal prognosis. Understanding the genetic alterations that drive glioma formation and progression may help improve patient prognosis by identification of novel treatment targets. Recently, two major studies have performed in-depth mutation analysis of glioblastomas (the most common and aggressive subtype of glioma). This systematic approach revealed three major pathways that are affected in glioblastomas: The receptor tyrosine kinase signaling pathway, the TP53 pathway and the pRB pathway. Apart from frequent mutations in the IDH1/2 gene, much less is known about the causal genetic changes of grade II and III (anaplastic) gliomas. Exceptions include TP53 mutations and fusion genes involving the BRAF gene in astrocytic and pilocytic glioma subtypes, respectively. In this review, we provide an update on all common events involved in the initiation and/or progression across the different subtypes of glioma and provide future directions for research into the genetic changes

  3. An improved molecular connectivity index

    Institute of Scientific and Technical Information of China (English)

    李新华; 俞庆森; 朱龙观

    2000-01-01

    Through modification of the delta values of the molecular connectivity indexes, and connecting the quantum chemistry with topology method effectively, the molecular connectivity indexes are converted into quantum-topology indexes. The modified indexes not only keep all information obtained from the original molecular connectivity method but also have their own virtue in application, and at the same time make up some disadvantages of the quantum and molecular connectivity methods.

  4. Change in brain network connectivity during PACAP38-induced migraine attacks

    DEFF Research Database (Denmark)

    Amin, Faisal Mohammad; Hougaard, Anders; Magon, Stefano; Asghar, Mohammad Sohail; Ahmad, Nur Nabil; Rostrup, Egill; Sprenger, Till; Ashina, Messoud

    2016-01-01

    visual cortices) and decreased (right cerebellum and left frontal lobe) connectivity with DMN. We found no resting-state network changes after VIP (n = 15). CONCLUSIONS: PACAP38-induced migraine attack is associated with altered connectivity of several large-scale functional networks of the brain....... connectivity with the bilateral opercular part of the inferior frontal gyrus in the SN. In SMN, there was increased connectivity with the right premotor cortex and decreased connectivity with the left visual cortex. Several areas showed increased (left primary auditory, secondary somatosensory, premotor, and...

  5. Disrupted white matter connectivity underlying developmental dyslexia: A machine learning approach.

    Science.gov (United States)

    Cui, Zaixu; Xia, Zhichao; Su, Mengmeng; Shu, Hua; Gong, Gaolang

    2016-04-01

    Developmental dyslexia has been hypothesized to result from multiple causes and exhibit multiple manifestations, implying a distributed multidimensional effect on human brain. The disruption of specific white-matter (WM) tracts/regions has been observed in dyslexic children. However, it remains unknown if developmental dyslexia affects the human brain WM in a multidimensional manner. Being a natural tool for evaluating this hypothesis, the multivariate machine learning approach was applied in this study to compare 28 school-aged dyslexic children with 33 age-matched controls. Structural magnetic resonance imaging (MRI) and diffusion tensor imaging were acquired to extract five multitype WM features at a regional level: white matter volume, fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity. A linear support vector machine (LSVM) classifier achieved an accuracy of 83.61% using these MRI features to distinguish dyslexic children from controls. Notably, the most discriminative features that contributed to the classification were primarily associated with WM regions within the putative reading network/system (e.g., the superior longitudinal fasciculus, inferior fronto-occipital fasciculus, thalamocortical projections, and corpus callosum), the limbic system (e.g., the cingulum and fornix), and the motor system (e.g., the cerebellar peduncle, corona radiata, and corticospinal tract). These results were well replicated using a logistic regression classifier. These findings provided direct evidence supporting a multidimensional effect of developmental dyslexia on WM connectivity of human brain, and highlighted the involvement of WM tracts/regions beyond the well-recognized reading system in dyslexia. Finally, the discriminating results demonstrated a potential of WM neuroimaging features as imaging markers for identifying dyslexic individuals. PMID:26787263

  6. The Impact of Neuroimmune Alterations in Autism Spectrum Disorder

    OpenAIRE

    Gottfried, Carmem; Bambini-Junior, Victorio; Francis, Fiona; Riesgo, Rudimar; Savino, Wilson

    2015-01-01

    Autism spectrum disorder (ASD) involves a complex interplay of both genetic and environmental risk factors, with immune alterations and synaptic connection deficiency in early life. In the past decade, studies of ASD have substantially increased, in both humans and animal models. Immunological imbalance (including autoimmunity) has been proposed as a major etiological component in ASD, taking into account increased levels of pro-inflammatory cytokines observed in postmortem brain from patient...

  7. Age-dependent alterations of decorin glycosaminoglycans in human skin

    OpenAIRE

    Yong Li; Ying Liu; Wei Xia; Dan Lei; Voorhees, John J.; Fisher, Gary J.

    2013-01-01

    Proteoglycans, a family of glycosaminoglycan (GAG) conjugated proteins, are important constituents of human skin connective tissue (dermis) and are essential for maintaining mechanical strength of the skin. Age-related alterations of dermal proteoglycans have not been fully elucidated. We quantified transcripts of 20 known interstitial proteoglycans in human skin and found that decorin was the most highly expressed. Decorin was predominantly produced by dermal fibroblasts. Decorin was localiz...

  8. Metabolic Alterations Associated to Brain Dysfunction in Diabetes

    OpenAIRE

    João M N Duarte

    2015-01-01

    From epidemiological studies it is known that diabetes patients display increased risk of developing dementia. Moreover, cognitive impairment and Alzheimer’s disease (AD) are also accompanied by impaired glucose homeostasis and insulin signalling. Although there is plenty of evidence for a connection between insulin-resistant diabetes and AD, definitive linking mechanisms remain elusive. Cerebrovascular complications of diabetes, alterations in glucose homeostasis and insulin signalling, as w...

  9. Connecting to Everyday Practices

    DEFF Research Database (Denmark)

    Iversen, Ole Sejer; Smith, Rachel Charlotte

    We suggest that social media can contribute to reconnecting audiences’ everyday practices to issues of cultural heritage in museum institutions. Social media can support the creation of dialogical spaces in the museum, both playful and reflective, that allow audiences to engage in the ongoing...... construction and reproduction of cultural heritage creating novel connections between self and others and between past, present and future. We present experiences from a current research project, the Digital Natives exhibition, in which social media was designed as an integral part of the exhibition to connect...... issues of digital heritage with audiences’ everyday practices in a museum. We point to the fact the use of social media in museums not only challenge us to rethink the design of technology for museum experiences. Social media also challenge us to rethink conceptions of museums and cultural heritage...

  10. The Will to Connection

    DEFF Research Database (Denmark)

    Jensen, Ole B.

    ). Crucially, ‘visibly impressing the path into the surface of the earth’ is no longer sufficient evidence of connections and interactions since networked technologies create connections by ‘invisible’ linkages across time and space suggesting the we need to add ‘digital connectivity’ to ‘physical proximity...... in particular. Here the paper engages with notions of ‘NetLocality’ (Gordon & Silva 2011), ‘CodeSpace’ (Kitchin & Dodge 2011), ‘Digital Ground’ (McCullough 2004), ‘Splintering Urbanism’ (Graham & Marvin 2001) and the ‘Sentient City’ (Shephard 2011) in order to qualify the networked technology dimension......This paper put forward the argument that mobilities research need to pay increased attention to the way network technologies and location aware media are influencing the movement in everyday life. The title of the paper is from a quote of Georg Simmel who more than a century ago argued...

  11. Evaluation of 604 Connect

    OpenAIRE

    Ladner, S.; Ihnat, M.

    2000-01-01

    The Vancouver Community Network (VCN) is a not-for-profit Internet Service Provider (ISP), based on the “freenet” model of public Internet access. As a VolNet delivery agency, VCN committed to providing participating organizations with the following: (1) A communications protocol, (2) Internet Access, (3) Computer Equipment, (4) Training, and (5) Technical Support. In April 1999, VCN began receiving applications from non-profit organizations for its 604 Connect program, so named for the 604 t...

  12. Empowering Human Connected Communities

    OpenAIRE

    Cerri, Stefano A.

    2012-01-01

    International audience The keynote's goal is to reflect on emergent opportunities for human Discovery (in science), Creativity (in art & industry), and Learning (in education) as processes often occurring serendipitously in individuals and in communities empowered by dynamic Web connections in the global village. These reflections seem to fit best with the mandate of the CBIE Conference: sustainable education. Having been influenced by the pioneering work of the late ecologist Francesco Di...

  13. Financing ASEAN Connectivity

    OpenAIRE

    Fauziah ZEN; Regan, Michael

    2013-01-01

    This report gives deeper insights on how the infrastructure development is being funded in different ASEAN Member States (AMSs) for ASEAN Connectivity. In this regards, the Public-Private Partnership (PPP) Program is also seen as one way to help build the infrastructure in ASEAN. The AMSs are having different levels of infrastructure policy, financing method and financial capacity. The PPP Program has been significantly developed and utilized in Malaysia, Indonesia, Thailand and the Philippin...

  14. Mobile connections : curator's statement.

    OpenAIRE

    Hemment, Drew

    2004-01-01

    The Mobile Connections exhibition at the Futuresonic 2004 festival explored how mobile and locative media reconfigure social, cultural and information space. It looked beyond computing in its current form, towards the social and cultural possibilities opened by a new generation of networked, location-aware media. It sought an art of mobile communications: asking, are there any forms of expression that are intrinsic or unique to mobile and locative media?

  15. Finding significantly connected voxels based on histograms of connection strengths

    DEFF Research Database (Denmark)

    Kasenburg, Niklas; Pedersen, Morten; Darkner, Sune

    2016-01-01

    We explore a new approach for structural connectivity based segmentations of subcortical brain regions. Connectivity based segmentations are usually based on fibre connections from a seed region to predefined target regions. We present a method for finding significantly connected voxels based on...... the distribution of connection strengths. Paths from seed voxels to all voxels in a target region are obtained from a shortest-path tractography. For each seed voxel we approximate the distribution with a histogram of path scores. We hypothesise that the majority of estimated connections are false-positives...... and that their connection strength is distributed differently from true-positive connections. Therefore, an empirical null-distribution is defined for each target region as the average normalized histogram over all voxels in the seed region. Single histograms are then tested against the corresponding...

  16. Simulation of Local Blood Flow in Human Brain under Altered Gravity

    Science.gov (United States)

    Kim, Chang Sung; Kiris, Cetin; Kwak, Dochan

    2003-01-01

    In addition to the altered gravitational forces, specific shapes and connections of arteries in the brain vary in the human population (Cebral et al., 2000; Ferrandez et al., 2002). Considering the geometric variations, pulsatile unsteadiness, and moving walls, computational approach in analyzing altered blood circulation will offer an economical alternative to experiments. This paper presents a computational approach for modeling the local blood flow through the human brain under altered gravity. This computational approach has been verified through steady and unsteady experimental measurements and then applied to the unsteady blood flows through a carotid bifurcation model and an idealized Circle of Willis (COW) configuration under altered gravity conditions.

  17. Energy storage connection system

    Science.gov (United States)

    Benedict, Eric L.; Borland, Nicholas P.; Dale, Magdelena; Freeman, Belvin; Kite, Kim A.; Petter, Jeffrey K.; Taylor, Brendan F.

    2012-07-03

    A power system for connecting a variable voltage power source, such as a power controller, with a plurality of energy storage devices, at least two of which have a different initial voltage than the output voltage of the variable voltage power source. The power system includes a controller that increases the output voltage of the variable voltage power source. When such output voltage is substantially equal to the initial voltage of a first one of the energy storage devices, the controller sends a signal that causes a switch to connect the variable voltage power source with the first one of the energy storage devices. The controller then causes the output voltage of the variable voltage power source to continue increasing. When the output voltage is substantially equal to the initial voltage of a second one of the energy storage devices, the controller sends a signal that causes a switch to connect the variable voltage power source with the second one of the energy storage devices.

  18. Cutter Connectivity Bandwidth Study

    Science.gov (United States)

    2002-10-01

    The goal of this study was to determine how much bandwidth is required for cutters to meet emerging data transfer requirements. The Cutter Connectivity Business Solutions Team with guidance front the Commandant's 5 Innovation Council sponsored this study. Today, many Coast Guard administrative and business functions are being conducted via electronic means. Although our larger cutters can establish part-time connectivity using commercial satellite communications (SATCOM) while underway, there are numerous complaints regarding poor application performance. Additionally, smaller cutters do not have any standard means of underway connectivity. The R&D study shows the most important factor affecting web performance and enterprise applications onboard cutters was latency. Latency describes the time it takes the signal to reach the satellite and come back down through space. The latency due to use of higher orbit satellites is causing poor application performance and inefficient use of expensive SATCOM links. To improve performance, the CC must, (1) reduce latency by using alternate communications links such as low-earth orbit satellites, (2) tailor applications to the SATCOM link and/or (3) optimize protocols used for data communication to minimize time required by present applications to establish communications between the user and the host systems.

  19. Default mode network connectivity as a function of familial and environmental risk for psychotic disorder.

    Directory of Open Access Journals (Sweden)

    Sanne C T Peeters

    Full Text Available Research suggests that altered interregional connectivity in specific networks, such as the default mode network (DMN, is associated with cognitive and psychotic symptoms in schizophrenia. In addition, frontal and limbic connectivity alterations have been associated with trauma, drug use and urban upbringing, though these environmental exposures have never been examined in relation to DMN functional connectivity in psychotic disorder.Resting-state functional MRI scans were obtained from 73 patients with psychotic disorder, 83 non-psychotic siblings of patients with psychotic disorder and 72 healthy controls. Posterior cingulate cortex (PCC seed-based correlation analysis was used to estimate functional connectivity within the DMN. DMN functional connectivity was examined in relation to group (familial risk, group × environmental exposure (to cannabis, developmental trauma and urbanicity and symptomatology.There was a significant association between group and PCC connectivity with the inferior parietal lobule (IPL, the precuneus (PCu and the medial prefrontal cortex (MPFC. Compared to controls, patients and siblings had increased PCC connectivity with the IPL, PCu and MPFC. In the IPL and PCu, the functional connectivity of siblings was intermediate to that of controls and patients. No significant associations were found between DMN connectivity and (subclinical psychotic/cognitive symptoms. In addition, there were no significant interactions between group and environmental exposures in the model of PCC functional connectivity.Increased functional connectivity in individuals with (increased risk for psychotic disorder may reflect trait-related network alterations. The within-network "connectivity at rest" intermediate phenotype was not associated with (subclinical psychotic or cognitive symptoms. The association between familial risk and DMN connectivity was not conditional on environmental exposure.

  20. Bi-connected Gravity Fields

    CERN Document Server

    Bel, Lluís

    2016-01-01

    I describe a bi-connection formalism of General relativity based on the dual role of the Weitzenb\\"{o}ck connection defining the parallelism at a distance and the concomitant Levi-Civita connection derived from the Riemannian metric. A more explicit tensor writing of the geodesic and loxodromic equations clarifies their joint meaning.

  1. Positive fast sealing union connections

    Science.gov (United States)

    Kleber, C. M.

    1972-01-01

    Union connections are designed for connecting high pressure flexible hoses from gas storage manifolds to gas transport trailers. Connection uses O ring seals which can be quickly assembled and disassembled without use of wrenches, and which do not twist hose. Worn or damaged O rings are easily replaced.

  2. Epigenetic alterations in gastric carcinogenesis

    Institute of Scientific and Technical Information of China (English)

    In-Seon CHOI; Tsung-Teh WU

    2005-01-01

    Gastric cancer is believed to result in part from the accumulation of multiple genetic alterations leading to oncogene overexpression and tumor suppressor loss. Epigenetic alterations as a distinct and crucial mechanism to silence a variety of methylated tissue-specific and imprinted genes, have been extensively studied in gastric carcinoma and play important roles in gastric carcinogenesis. This review will briefly discuss the basic aspects of DNA methylation and CpG island methylation, in particular the epigenetic alterations of certain critical genes implicated in gastric carcinogenesis and its relevance of clinical implications.

  3. The Berry's connection

    International Nuclear Information System (INIS)

    A course on the Berry's connection is presented. The main steps leading to the Berry's discovery are reviewed and the obtained equations are examined. Some applications of Berry's formulation are presented. They include diatomic molecules, dipole-quadrupole interaction in spherical mucleus and diabolic pair transfer. The experimental results presented are the spectrum of the Na3 molecule, the propagation of photons in an helical optical fiber and the neutron spin rotation. Non-abelian problems and the Aharonow-Anandan phase are discussed

  4. Skeletal muscle connective tissue

    DEFF Research Database (Denmark)

    Brüggemann, Dagmar Adeline

      The connective tissue content of skeletal muscle is believed to be the major factor responsible for defining the eating quality of different meat cuts, although attempts to correlate quantifications based on traditional histological methods have not as yet been able to prove this relation...... systems of muscle have been visualized in their full complexity, including the ‘neglected' lymphatic capillaries at the level of the endomysium. These findings serve to remind us that muscle contraction is not only about force generation and transmission, but also about nutrient supply and waste removal...

  5. Pulmonary alterations in Behcet's disease

    International Nuclear Information System (INIS)

    Purpose: This study aims to demonstrate pulmonary alterations (PA) in patients with Behcet's disease by using CT. Materials and methods: CTs of 50 patients with Behcet's disease and 20 others in a control group have been evaluated retrospectively for PA (septal, reticular, nodular, atelectatic opacities). Results: Eight out of 50 patients (16%) with Behcet's disease showed PA. Three out of 20 (15%) in the control group showed PA. No differences were observed between Behcet's disease patients and the control group regarding pulmonary alterations (p = 0.917). No differences were observed in the disease duration, ages and sex in either group in those with and without PA. Conclusion: Pulmonary alterations can be seen in patients with Behcet's disease, but these alterations are not significant.

  6. LHCb connects its pipes

    CERN Multimedia

    2006-01-01

    Two weeks ago the first beryllium section of the LHCb beam vacuum chamber was installed. This three-day operation, after requiring lengthy preparation work, demanded patience and precision as the first of four sections of the beampipe was connected to the vertex locator (VeLo) vacuum vessel. The AT-VAC Group with the collaboration of PH/LBD, including Gloria Corti, Tatsuya Nakada, Patrice Mermet, Delios Ramos, Frans Mul, Bruno Versollato, Bernard Corajod, and Raymond Veness. (Not pictured: Adriana Rossi and Laurent Bouvet) This first installed section is composed of a nearly two-metre long conical tube of one-millimetre thick beryllium and of a thin spherical-shaped window, 800 millimeter diameter, made of an aluminum alloy, and has the appearance of a mushroom lying on its side. The window is connected to the conical part of the beampipe through an aluminum alloy bellow, which is needed to allow for mechanical alignment once the assembly is installed. Beryllium was chosen as the material for 12 m of the 19...

  7. Piston and connecting rod assembly

    Science.gov (United States)

    Brogdon, James William (Inventor); Gill, David Keith (Inventor); Chatten, John K. (Inventor)

    2001-01-01

    A piston and connecting rod assembly includes a piston crown, a piston skirt, a connecting rod, and a bearing insert. The piston skirt is a component separate from the piston crown and is connected to the piston crown to provide a piston body. The bearing insert is a component separate from the piston crown and the piston skirt and is fixedly disposed within the piston body. A bearing surface of a connecting rod contacts the bearing insert to thereby movably associate the connecting rod and the piston body.

  8. Identification of neural connectivity signatures of autism using machine learning

    Directory of Open Access Journals (Sweden)

    Gopikrishna Deshpande

    2013-10-01

    Full Text Available Alterations in neural connectivity have been suggested as a signature of the pathobiology of autism. Although disrupted correlation between cortical regions observed from functional MRI is considered to be an explanatory model for autism, the directional causal influence between brain regions is a vital link missing in these studies. The current study focuses on addressing this in an fMRI study of Theory-of-Mind in 15 high-functioning adolescents and adults with autism (ASD and 15 typically developing (TD controls. Participants viewed a series of comic strip vignettes in the MRI scanner and were asked to choose the most logical end to the story from three alternatives, separately for trials involving physical and intentional causality. Causal brain connectivity obtained from a multivariate autoregressive model, along with assessment scores, functional connectivity values, and fractional anisotropy obtained from DTI data for each participant, were submitted to a recursive cluster elimination based support vector machine classifier to determine the accuracy with which the classifier can predict a novel participant’s group membership (ASD or TD. We found a maximum classification accuracy of 95.9 % with 19 features which had the highest discriminative ability between the groups. All of the 19 features were effective connectivity paths, indicating that causal information may be critical in discriminating between ASD and TD groups. These effective connectivity paths were also found to be significantly greater in controls as compared to ASD participants and consisted predominantly of outputs from the fusiform face area and middle temporal gyrus indicating impaired connectivity in ASD participants, particularly in the social brain areas. These findings collectively point towards the fact that alterations in causal brain connectivity in individuals with ASD could serve as a potential non-invasive neuroimaging signature for autism

  9. Abnormal Connectional Fingerprint in Schizophrenia: A Novel Network Analysis of Diffusion Tensor Imaging Data.

    Science.gov (United States)

    Edwin Thanarajah, Sharmili; Han, Cheol E; Rotarska-Jagiela, Anna; Singer, Wolf; Deichmann, Ralf; Maurer, Konrad; Kaiser, Marcus; Uhlhaas, Peter J

    2016-01-01

    The graph theoretical analysis of structural magnetic resonance imaging (MRI) data has received a great deal of interest in recent years to characterize the organizational principles of brain networks and their alterations in psychiatric disorders, such as schizophrenia. However, the characterization of networks in clinical populations can be challenging, since the comparison of connectivity between groups is influenced by several factors, such as the overall number of connections and the structural abnormalities of the seed regions. To overcome these limitations, the current study employed the whole-brain analysis of connectional fingerprints in diffusion tensor imaging data obtained at 3 T of chronic schizophrenia patients (n = 16) and healthy, age-matched control participants (n = 17). Probabilistic tractography was performed to quantify the connectivity of 110 brain areas. The connectional fingerprint of a brain area represents the set of relative connection probabilities to all its target areas and is, hence, less affected by overall white and gray matter changes than absolute connectivity measures. After detecting brain regions with abnormal connectional fingerprints through similarity measures, we tested each of its relative connection probability between groups. We found altered connectional fingerprints in schizophrenia patients consistent with a dysconnectivity syndrome. While the medial frontal gyrus showed only reduced connectivity, the connectional fingerprints of the inferior frontal gyrus and the putamen mainly contained relatively increased connection probabilities to areas in the frontal, limbic, and subcortical areas. These findings are in line with previous studies that reported abnormalities in striatal-frontal circuits in the pathophysiology of schizophrenia, highlighting the potential utility of connectional fingerprints for the analysis of anatomical networks in the disorder. PMID:27445870

  10. Connecting Science with Society

    DEFF Research Database (Denmark)

    of two seas are exchanged, but also goods and culture. In a similar way, Current Research Information Systems are at the intersection between (publicly funded) research and society. They do not only connect actors, activities and results within the research domain but also play a crucial role in raising...... awareness of the important questions of our society reflected in scientific research and of the answers produced by these research activities. The CRIS2010 conference, entitled “Bringing Science to Society”, therefore seeks to highlight the role of Current Research Information Systems for communicating...... research outcomes to the relevant stakeholders in society as a whole. Researchers, research managers, policy makers and Chief Information Officers, to name just a view, are not the only groups which value the richness of research data a CRIS provides for planning, managing and evaluating research...

  11. Connecting the Production Multiple

    DEFF Research Database (Denmark)

    Lichen, Alex Yu; Mouritsen, Jan

    was implementing sales and operations planning (S&OP) process to foster integration on its demand chain. Although actors wanted to see what it is to produce, that is to say, the object Production, as a singular object that could be diffused across time and space, Production became more multiple because the S......&OP process itself is a fluid object, but there is still possibility to organise the messy Production. There are connections between the Production multiple and the managerial technology fluid. The fluid enacted the multiplicity of Production thus making it more difficult to be organised because there were...... in this sense attracts different absent local practices, which in turn make accounting fluid to account for the Production multiple. The accounting fluid brings together accounting inscriptions and particularity of locals. In the language of circulating references, reduction and amplification no longer go...

  12. Quick-Connect Nut

    Science.gov (United States)

    1999-01-01

    Marshall Space Flight Center (MSFC) has developed a specially-designed nut, called the Quick-Connect Nut, for quick and easy assembly of components in the harsh environment of space, as in assembly of International Space Station. The design permits nuts to be installed simply by pushing them onto standard bolts, then giving a quick twist. To remove, they are unscrewed like conventional nuts. Possible applications include the mining industry for erecting support barriers, assembling underwater oil drilling platforms, fire-fighting equipment, scaffolding, assembly-line machinery, industrial cranes, and even changing lug nuts on race cars. The speed of assembly can make the difference between life and death in different aspects of life on Earth.

  13. More features, greater connectivity.

    Science.gov (United States)

    Hunt, Sarah

    2015-09-01

    Changes in our political infrastructure, the continuing frailties of our economy, and a stark growth in population, have greatly impacted upon the perceived stability of the NHS. Healthcare teams have had to adapt to these changes, and so too have the technologies upon which they rely to deliver first-class patient care. Here Sarah Hunt, marketing co-ordinator at Aid Call, assesses how the changing healthcare environment has affected one of its fundamental technologies - the nurse call system, argues the case for wireless such systems in terms of what the company claims is greater adaptability to changing needs, and considers the ever-wider range of features and functions available from today's nurse call equipment, particularly via connectivity with both mobile devices, and ancillaries ranging from enuresis sensors to staff attack alert 'badges'. PMID:26548128

  14. Connect the future

    Institute of Scientific and Technical Information of China (English)

    李柯翰

    2015-01-01

    <正>China has been developed so rapidly that it economic strength grows fast like a rocket.It leads China to become the World’s second-largest economy.Because the change of our life conditions,more and more people are wiling to go abroad,in order to feel the fresh air,civilized language,advanced science,and harmony atmosphere,all of these things like baptism which shocked people’s heart.The pursuit of better life quality requires more and more important elements such as beautiful landscape,clean lake,elegant buildings,rigorous law and kind people,since the beauty of landscape depends on it’s quality,the prosperity of a country rely on it’s power.I’ve been dreaming to become a messenger who can establish connect between different countries and various people.

  15. Identifying diagnostically-relevant resting state brain functional connectivity in the ventral posterior complex via genetic data mining in autism spectrum disorder.

    Science.gov (United States)

    Baldwin, Philip R; Curtis, Kaylah N; Patriquin, Michelle A; Wolf, Varina; Viswanath, Humsini; Shaw, Chad; Sakai, Yasunari; Salas, Ramiro

    2016-05-01

    Exome sequencing and copy number variation analyses continue to provide novel insight to the biological bases of autism spectrum disorder (ASD). The growing speed at which massive genetic data are produced causes serious lags in analysis and interpretation of the data. Thus, there is a need to develop systematic genetic data mining processes that facilitate efficient analysis of large datasets. We report a new genetic data mining system, ProcessGeneLists and integrated a list of ASD-related genes with currently available resources in gene expression and functional connectivity of the human brain. Our data-mining program successfully identified three primary regions of interest (ROIs) in the mouse brain: inferior colliculus, ventral posterior complex of the thalamus (VPC), and parafascicular nucleus (PFn). To understand its pathogenic relevance in ASD, we examined the resting state functional connectivity (RSFC) of the homologous ROIs in human brain with other brain regions that were previously implicated in the neuro-psychiatric features of ASD. Among them, the RSFC of the VPC with the medial frontal gyrus (MFG) was significantly more anticorrelated, whereas the RSFC of the PN with the globus pallidus was significantly increased in children with ASD compared with healthy children. Moreover, greater values of RSFC between VPC and MFG were correlated with severity index and repetitive behaviors in children with ASD. No significant RSFC differences were detected in adults with ASD. Together, these data demonstrate the utility of our data-mining program through identifying the aberrant connectivity of thalamo-cortical circuits in children with ASD. Autism Res 2016, 9: 553-562. © 2015 International Society for Autism Research, Wiley Periodicals, Inc. PMID:26451751

  16. The Connectivity Analysis of Intermittent Connected Wireless Network

    Institute of Scientific and Technical Information of China (English)

    Li Yun; Zhou Yahui; Liu Qilie; Wang Xiaoying

    2009-01-01

    The connectivity is a basic and important characteristic to the network, it expresses the situation of link connectivity directly, and provides important reference for the entire network plan. Using statistics and probability Theory, this article emphasizes the probability between any two nodes in the network which nodes are equally distributed and the connectivity of whole network. At last, this article has made verification through simulation and has made out a conclusion, the simulation result agrees with theoretical analysis.

  17. Bayesian network models in brain functional connectivity analysis

    OpenAIRE

    Ide, Jaime S.; Zhang, Sheng; Chiang-shan R. Li

    2013-01-01

    Much effort has been made to better understand the complex integration of distinct parts of the human brain using functional magnetic resonance imaging (fMRI). Altered functional connectivity between brain regions is associated with many neurological and mental illnesses, such as Alzheimer and Parkinson diseases, addiction, and depression. In computational science, Bayesian networks (BN) have been used in a broad range of studies to model complex data set in the presence of uncertainty and wh...

  18. Role of Age-Associated Alterations of the Dermal Extracellular Matrix Microenvironment in Human Skin Aging

    OpenAIRE

    Quan, Taihao; Fisher, Gary J.

    2015-01-01

    Human skin is largely composed of a collagen-rich connective tissue, which provides structural and functional support. The collagen-rich connective tissue is produced, organized, and maintained by dermal fibroblasts. During aging, dermal collagen fibrils undergo progressive loss and fragmentation, leading to thin and structurally weakened skin. Age-related alterations of collagen fibrils impairs skin structure and function and creates a tissue microenvironment that promotes age-related skin d...

  19. Smooth Muscle-Mediated Connective Tissue Remodeling in Pulmonary Hypertension

    Science.gov (United States)

    Mecham, Robert P.; Whitehouse, Loren A.; Wrenn, David S.; Parks, William C.; Griffin, Gail L.; Senior, Robert M.; Crouch, Edmond C.; Stenmark, Kurt R.; Voelkel, Norbert F.

    1987-07-01

    Abnormal accumulation of connective tissue in blood vessels contributes to alterations in vascular physiology associated with disease states such as hypertension and atherosclerosis. Elastin synthesis was studied in blood vessels from newborn calves with severe pulmonary hypertension induced by alveolar hypoxia in order to investigate the cellular stimuli that elicit changes in pulmonary arterial connective tissue production. A two- to fourfold increase in elastin production was observed in pulmonary artery tissue and medial smooth muscle cells from hypertensive calves. This stimulation of elastin production was accompanied by a corresponding increase in elastin messenger RNA consistent with regulation at the transcriptional level. Conditioned serum harvested from cultures of pulmonary artery smooth muscle cells isolated from hypertensive animals contained one or more low molecular weight elastogenic factors that stimulated the production of elastin in both fibroblasts and smooth muscle cells and altered the chemotactic responsiveness of fibroblasts to elastin peptides. These results suggest that connective tissue changes in the pulmonary vasculature in response to pulmonary hypertension are orchestrated by the medial smooth muscle cell through the generation of specific differentiation factors that alter both the secretory phenotype and responsive properties of surrounding cells.

  20. Small vessel disease and cognitive impairment: The relevance of central network connections.

    Science.gov (United States)

    Reijmer, Yael D; Fotiadis, Panagiotis; Piantoni, Giovanni; Boulouis, Gregoire; Kelly, Kathleen E; Gurol, Mahmut E; Leemans, Alexander; O'Sullivan, Michael J; Greenberg, Steven M; Viswanathan, Anand

    2016-07-01

    Central brain network connections greatly contribute to overall network efficiency. Here we examined whether small vessel disease (SVD) related white matter alterations in central brain network connections have a greater impact on executive functioning than alterations in non-central brain network connections. Brain networks were reconstructed from diffusion-weighted MRI scans in 72 individuals (75 ± 8 years) with cognitive impairment and SVD on MRI. The centrality of white matter connections in the network was defined using graph theory. The association between the fractional anisotropy (FA) of central versus non-central connections, executive functioning, and markers of SVD was evaluated with linear regression and mediation analysis. Lower FA in central network connections was more strongly associated with impairment in executive functioning than FA in non-central network connections (r = 0.41 vs. r = 0.27; P 50%-10% connections). Higher SVD burden was associated with lower FA in central as well as non-central network connections. However, only central network FA mediated the relationship between white matter hyperintensity volume and executive functioning [change in regression coefficient after mediation (95% CI): -0.15 (-0.35 to -0.02)]. The mediation effect was not observed for FA alterations in non-central network connections [-0.03 (-0.19 to 0.04)]. These findings suggest that the centrality of network connections, and thus their contribution to global network efficiency, appears to be relevant for understanding the relationship between SVD and cognitive impairment. Hum Brain Mapp 37:2446-2454, 2016. © 2016 Wiley Periodicals, Inc. PMID:27004840

  1. Interstate Connections - CEHC [ds619

    Data.gov (United States)

    California Department of Resources — The California Department of Transportation (Caltrans) and California Department of Fish and Game (CDFG) commissioned the California Essential Habitat Connectivity...

  2. Greater Insula White Matter Fiber Connectivity in Women Recovered from Anorexia Nervosa.

    Science.gov (United States)

    Shott, Megan E; Pryor, Tamara L; Yang, Tony T; Frank, Guido K W

    2016-01-01

    Anorexia nervosa is a severe psychiatric disorder associated with reduced drive to eat. Altered taste-reward circuit white matter fiber organization in anorexia nervosa after recovery could indicate a biological marker that alters the normal motivation to eat. Women recovered from restricting-type anorexia (Recovered AN, n = 24, age = 30.3 ± 8.1 years) and healthy controls (n = 24, age = 27.4 ± 6.3 years) underwent diffusion weighted imaging of the brain. Probabilistic tractography analyses calculated brain white matter connectivity (streamlines) as an estimate of fiber connections in taste-reward-related white matter tracts, and microstructural integrity (fractional anisotropy, FA) was assessed using tract-based spatial statistics. Recovered AN showed significantly (range Panorexia after recovery in tracts that connect taste-reward processing regions. Greater connectivity together with less-fiber integrity could indicate altered neural activity between those regions, which could interfere with normal food-reward circuit function. Correlations between connectivity and illness duration suggest that connectivity could be a marker for illness severity. Whether greater connectivity can predict prognosis of the disorder requires further study. PMID:26076832

  3. Aberrant cerebellar connectivity in motor and association networks in schizophrenia

    Directory of Open Access Journals (Sweden)

    Ann K. Shinn

    2015-03-01

    Full Text Available Schizophrenia is a devastating illness characterized by disturbances in multiple domains. The cerebellum is involved in both motor and non-motor functions, and the cognitive dysmetria and dysmetria of thought models propose that abnormalities of the cerebellum may contribute to schizophrenia signs and symptoms. The cerebellum and cerebral cortex are reciprocally connected via a modular, closed-loop network architecture, but few schizophrenia neuroimaging studies have taken into account the topographical and functional heterogeneity of the cerebellum. In this study, using a previously defined 17-network cerebral cortical parcellation system as the basis for our functional connectivity seeds, we systematically investigated connectivity abnormalities within the cerebellum of 44 schizophrenia patients and 28 healthy control participants. We found selective alterations in cerebro-cerebellar functional connectivity. Specifically, schizophrenia patients showed decreased cerebro-cerebellar functional connectivity in higher level association networks (ventral attention, salience, control, and default mode networks relative to healthy control participants. Schizophrenia patients also showed increased cerebro-cerebellar connectivity in somatomotor and default mode networks, with the latter showing no overlap with the regions found to be hypoconnected within the same default mode network. Finally, we found evidence to suggest that somatomotor and default mode networks may be inappropriately linked in schizophrenia. The relationship of these dysconnectivities to schizophrenia symptoms, such as neurological soft signs and altered sense of agency, is discussed. We conclude that the cerebellum ought to be considered for analysis in all future studies of network abnormalities in SZ, and further suggest the cerebellum as a potential target for further elucidation, and possibly treatment, of the underlying mechanisms and network abnormalities producing symptoms of

  4. Art as Alterity in Education

    Science.gov (United States)

    Zhao, Guoping

    2014-01-01

    In education, art has often been perceived as entertainment and decoration and is the first subject to go when there are budget cuts or test-score pressures. Drawing on Emmanuel Lévinas's idea of the primacy of radical alterity that breaks the totality of our being, enables self-transformation and ethics, and ensures community as a totality…

  5. Uncommon Connections with Common Numerators

    Science.gov (United States)

    Lesser, Lawrence M.; Guthrie, Joe A.

    2012-01-01

    Undergraduate students who are pre-service teachers need to make connections between the college mathematics they are learning and the pre-college mathematics they will be teaching. Spanning a broad range of undergraduate curricula, this article describes useful lesser-known connections, explorations, and original proofs involving fractions. In…

  6. The Always-Connected Generation

    Science.gov (United States)

    Bull, Glen

    2010-01-01

    The Pew Internet and American Life project characterizes the millennials--the first generation to come of age in the new millennium--as the first "always-connected" generation. Significant aspects of culture are changing as a result. A changing world where all students are connected all the time has substantial educational implications. Despite…

  7. Ideal Systems and Connecting Orbits

    Institute of Scientific and Technical Information of China (English)

    Shu-xiang Yu; Zuo-huan Zheng; Fan-nu Hu

    2004-01-01

    In this paper,we study a class of dynamical systems in R nideal systems and give an existence criterion of quasi-connecting orbits for such systems.Also,an existence criterion of connecting orbits for general systems is given.

  8. Carl Sagan's Cosmic Connection

    Science.gov (United States)

    Sagan, Carl; Agel, Jerome

    2000-08-01

    Foreword Freeman Dyson; Personal reflections Ann Druyan; Preface; Part I. Cosmic Perspective: 1. A transitional animal; 2. The Unicorn of Cetus; 3. A message from earth; 4. A message to earth; 5. Experiments in utopias; 6. Chauvinism; 7. Space exploration as a human enterprise I. The scientific interest; 8. Space exploration as a human enterprise II. The public interest; 9. Space exploration as a human enterprise III. The historical interest; Part II. The Solar System: 10. On teaching the first grade; 11. 'The ancient and legendary Gods of old'; 12. The Venus detective story; 13. Venus is hell; 14. Science and 'intelligence'; 15. The moons of Barsoom; 16. The mountains of Mars I. Observations from earth; 17. The mountains of Mars II. Observations from space; 18. The canals of Mars; 19. The lost pictures of Mars; 20. The Ice Age and the cauldron; 21. Beginnings and ends of the Earth; 22. Terraforming the plants; 23. The exploration and utlization of the solar system; Part III. Beyond the Solar System: 24. Some of my best friends are dolphins; 25. 'Hello, central casting? Send me twenty extraterrestrials'; 26. The cosmic connection; 27. Extraterrestrial life: an idea whose time has come; 28. Has the Earth been visited?; 29. A search strategy for detecting extraterrestrial intelligence; 30. If we succeed 31. Cables, drums, and seashells; 32. The night freight to the stars; 33. Astroengineering; 34. Twenty questions: a classification of cosmic civilisations; 35. Galactic cultural exchanges; 36. A passage to elsewhere; 37. Starfolk I. A Fable; 38. Starfolk II. A future; 39. Starfolk III. The cosmic Cheshire cats; Epilog David Morrison; Index.

  9. Weakly connected domination critical graphs

    Directory of Open Access Journals (Sweden)

    Magdalena Lemańska

    2008-01-01

    Full Text Available A dominating set \\(D \\subset V(G\\ is a weakly connected dominating set in \\(G\\ if the subgraph \\(G[D]_w = (N_{G}[D],E_w\\ weakly induced by \\(D\\ is connected, where \\(E_w\\ is the set of all edges with at least one vertex in \\(D\\. The weakly connected domination number \\(\\gamma_w(G\\ of a graph \\(G\\ is the minimum cardinality among all weakly connected dominating sets in \\(G\\. The graph is said to be weakly connected domination critical (\\(\\gamma_w\\-critical if for each \\(u, v \\in V(G\\ with \\(v\\ not adjacent to \\(u\\, \\(\\gamma_w(G + vu \\lt \\gamma_w (G\\. Further, \\(G\\ is \\(k\\-\\(\\gamma_w\\-critical if \\(\\gamma_w(G = k\\ and for each edge \\(e \

  10. ALTERED STATES OF LITERATURE: SHAMANIC ASSIMILATION AND ROMANTIC INSPIRATION

    Directory of Open Access Journals (Sweden)

    Marcel de Lima Santos

    2012-12-01

    Full Text Available This article deals with the connections between the assimilation of certain shamanic practices related to Romantic inspiration in English literature. The interest in the world of altered states of consciousness as a manifestation of the sacred is typical among Romantic writers in nineteenth-century England. These writers in fact sought the manifestation of the world of dreams by means of ingesting substances that alter consciousness, thus assimilating a practice that is likewise and primarily shamanic. This search is the object under investigation in this article, which aims at showing that, despite conspicuous cultural differences, there are indeed similarities that pervade shamanic practices and the Romantic ideal in their quests toward the sacred.

  11. Revealing alteration of membrane structures during ischema using impedance spectroscopy

    Directory of Open Access Journals (Sweden)

    Mihaela Gheorghiu

    2002-11-01

    Full Text Available Alterations of membrane structure and function are essential characteristics of cells undergoing ischemia. Noninvasive monitoring of tissue alterations during ischemia and the estimation of the reversibility domain (corresponding to organ capability to fully recover its functions after shifting back to normal blood perfusion are important for biomedical applications allowing better time management during surgical interventions, especially in organ transplantation. Due to it’s capability to reveal inhomogeneities, as well as it’s noninvasive character, impedance spectroscopy was used for continuous monitoring of the progression of excised tissue samples during ischemia. We have developed a fast, noninvasive, automated method for quantitative analysis of impedance spectra of tissue samples, capable of revealing, through characteristic parameters (dispersion amplitudes, time constants and distribution parameters membrane based microscopic processes like the closure ofgap-junctions (a characteristic of the early alterations of ischemic tissues in the reversibility phase. Microscopic and equivalent circuit modeling was used to probe the effect of closure of cell connections and of changes in electrical properties of cell constituents on impedance spectra. We have developed a normalizing procedure emphasizing the pattern of ischemic alterations and enabling the comparison of different data sets.

  12. Altered network communication following a neuroprotective drug treatment.

    Directory of Open Access Journals (Sweden)

    Kathleen Vincent

    Full Text Available Preconditioning is defined as a range of stimuli that allow cells to withstand subsequent anaerobic and other deleterious conditions. While cell protection under preconditioning is well established, this paper investigates the influence of neuroprotective preconditioning drugs, 4-aminopyridine and bicuculline (4-AP/bic, on synaptic communication across a broad network of in vitro rat cortical neurons. Using a permutation test, we evaluated cross-correlations of extracellular spiking activity across all pairs of recording electrodes on a 64-channel multielectrode array. The resulting functional connectivity maps were analyzed in terms of their graph-theoretic properties. A small-world effect was found, characterized by a functional network with high clustering coefficient and short average path length. Twenty-four hours after exposure to 4-AP/bic, small-world properties were comparable to control cultures that were not treated with the drug. Four hours following drug washout, however, the density of functional connections increased, while path length decreased and clustering coefficient increased. These alterations in functional connectivity were maintained at four days post-washout, suggesting that 4-AP/bic preconditioning leads to long-term effects on functional networks of cortical neurons. Because of their influence on communication efficiency in neuronal networks, alterations in small-world properties hold implications for information processing in brain systems. The observed relationship between density, path length, and clustering coefficient is captured by a phenomenological model where connections are added randomly within a spatially-embedded network. Taken together, results provide information regarding functional consequences of drug therapies that are overlooked in traditional viability studies and present the first investigation of functional networks under neuroprotective preconditioning.

  13. Adolescent nicotine induces persisting changes in development of neural connectivity.

    Science.gov (United States)

    Smith, Robert F; McDonald, Craig G; Bergstrom, Hadley C; Ehlinger, Daniel G; Brielmaier, Jennifer M

    2015-08-01

    Adolescent nicotine induces persisting changes in development of neural connectivity. A large number of brain changes occur during adolescence as the CNS matures. These changes suggest that the adolescent brain may still be susceptible to developmental alterations by substances which impact its growth. Here we review recent studies on adolescent nicotine which show that the adolescent brain is differentially sensitive to nicotine-induced alterations in dendritic elaboration, in several brain areas associated with processing reinforcement and emotion, specifically including nucleus accumbens, medial prefrontal cortex, basolateral amygdala, bed nucleus of the stria terminalis, and dentate gyrus. Both sensitivity to nicotine, and specific areas responding to nicotine, differ between adolescent and adult rats, and dendritic changes in response to adolescent nicotine persist into adulthood. Areas sensitive to, and not sensitive to, structural remodeling induced by adolescent nicotine suggest that the remodeling generally corresponds to the extended amygdala. Evidence suggests that dendritic remodeling is accompanied by persisting changes in synaptic connectivity. Modeling, electrophysiological, neurochemical, and behavioral data are consistent with the implication of our anatomical studies showing that adolescent nicotine induces persisting changes in neural connectivity. Emerging data thus suggest that early adolescence is a period when nicotine consumption, presumably mediated by nicotine-elicited changes in patterns of synaptic activity, can sculpt late brain development, with consequent effects on synaptic interconnection patterns and behavior regulation. Adolescent nicotine may induce a more addiction-prone phenotype, and the structures altered by nicotine also subserve some emotional and cognitive functions, which may also be altered. We suggest that dendritic elaboration and associated changes are mediated by activity-dependent synaptogenesis, acting in part

  14. Oxidative stress and CCN1 protein in human skin connective tissue aging

    OpenAIRE

    Zhaoping Qin; Patrick Robichaud; Taihao Quan

    2016-01-01

    Reactive oxygen species (ROS) is an important pathogenic factor involved in human aging. Human skin is a primary target of oxidative stress from ROS generated from both extrinsic and intrinsic sources, like ultraviolet irradiation (UV) and endogenous oxidative metabolism. Oxidative stress causes the alterations of collagen-rich extracellular matrix (ECM), the hallmark of skin connective tissue aging. Age-related alteration of dermal collagenous ECM impairs skin structural integrity and create...

  15. Abnormal functional connectivity of default mode sub-networks in autism spectrum disorder patients

    OpenAIRE

    Assaf, Michal; Jagannathan, Kanchana; Calhoun, Vince D.; Miller, Laura; Stevens, Michael C.; Sahl, Robert; O'Boyle, Jacqueline G.; Schultz, Robert T.; Godfrey D. Pearlson

    2010-01-01

    Autism spectrum disorders (ASDs) are characterized by deficits in social and communication processes. Recent data suggest that altered functional connectivity (FC), i.e. synchronous brain activity, might contribute to these deficits. Of specific interest is the FC integrity of the default mode network (DMN), a network active during passive resting states and cognitive processes related to social deficits seen in ASD, e.g. Theory of Mind. We investigated the role of altered FC of default mode ...

  16. Hyperthermia-induced disruption of functional connectivity in the human brain network.

    Directory of Open Access Journals (Sweden)

    Gang Sun

    Full Text Available BACKGROUND: Passive hyperthermia is a potential risk factor to human cognitive performance and work behavior in many extreme work environments. Previous studies have demonstrated significant effects of passive hyperthermia on human cognitive performance and work behavior. However, there is a lack of a clear understanding of the exact affected brain regions and inter-regional connectivities. METHODOLOGY AND PRINCIPAL FINDINGS: We simulated 1 hour environmental heat exposure to thirty-six participants under two environmental temperature conditions (25 °C and 50 °C, and collected resting-state functional brain activity. The functional connectivities with a preselected region of interest (ROI in the posterior cingulate cortex and precuneus (PCC/PCu, furthermore, inter-regional connectivities throughout the entire brain using a prior Anatomical Automatic Labeling (AAL atlas were calculated. We identified decreased correlations of a set of regions with the PCC/PCu, including the medial orbitofrontal cortex (mOFC and bilateral medial temporal cortex, as well as increased correlations with the partial orbitofrontal cortex particularly in the bilateral orbital superior frontal gyrus. Compared with the normal control (NC group, the hyperthermia (HT group showed 65 disturbed functional connectivities with 50 of them being decreased and 15 of them being increased. While the decreased correlations mainly involved with the mOFC, temporal lobe and occipital lobe, increased correlations were mainly located within the limbic system. In consideration of physiological system changes, we explored the correlations of the number of significantly altered inter-regional connectivities with differential rectal temperatures and weight loss, but failed to obtain significant correlations. More importantly, during the attention network test (ANT we found that the number of significantly altered functional connectivities was positively correlated with an increase in

  17. Changes in functional connectivity and GABA levels with long-term motor learning

    OpenAIRE

    Sampaio-Baptista, Cassandra; Filippini, Nicola; Stagg, Charlotte J.; Near, Jamie; Scholz, Jan; Johansen-Berg, Heidi

    2015-01-01

    Learning novel motor skills alters local inhibitory circuits within primary motor cortex (M1) (Floyer-Lea et al., 2006) and changes long-range functional connectivity (Albert et al., 2009). Whether such effects occur with long-term training is less well established. In addition, the relationship between learning-related changes in functional connectivity and local inhibition, and their modulation by practice, has not previously been tested. Here, we used resting-state functional magnetic reso...

  18. Resting State Interhemispheric Motor Connectivity and White Matter Integrity Correlate with Motor Impairment in Chronic Stroke

    OpenAIRE

    Chen, Joyce L.; Schlaug, Gottfried

    2013-01-01

    Functional and structural reorganization in the brain occurs after stroke. The ability to predict motor outcomes may depend on patterns of brain functional and structural connectivity. We tested the hypothesis that alterations in motor transcallosal and corticospinal connections correlate with motor impairment in patients with chronic stroke. Eleven ischemic stroke patients underwent the Upper Extremity Fugl-Meyer (UE-FM) assessment, resting state functional magnetic resonance imaging, and di...

  19. Meditation-State Functional Connectivity (msFC): Strengthening of the Dorsal Attention Network and Beyond

    OpenAIRE

    Brett Froeliger; Garland, Eric L.; Kozink, Rachel V.; Modlin, Leslie A.; Nan-Kuei Chen; F. Joseph McClernon; Greeson, Jeffrey M.; Paul Sobin

    2012-01-01

    Meditation practice alters intrinsic resting-state functional connectivity (rsFC) in the default mode network (DMN). However, little is known regarding the effects of meditation on other resting-state networks. The aim of current study was to investigate the effects of meditation experience and meditation-state functional connectivity (msFC) on multiple resting-state networks (RSNs). Meditation practitioners (MPs) performed two 5-minute scans, one during rest, one while meditating. A meditati...

  20. Impaired effective cortical connectivity in vegetative state : Preliminary investigation using PET

    OpenAIRE

    Laureys, Steven; Goldman, Serge; Phillips, Christophe; Van Bogaert, Patrick; Aerts, Joël; Luxen, André; Franck, Georges; Maquet, Pierre

    1999-01-01

    Vegetative state (VS) is a condition of abolished awareness with persistence of arousal. Awareness is part of consciousness, which itself is thought to represent an emergent property of cerebral neural networks. Our hypothesis was that part of the neural correlate underlying VS is an altered connectivity, especially between the associative cortices. We assessed regional cerebral glucose metabolism (rCMRGlu) and effective cortical connectivity in four patients in VS by means of statistical par...

  1. Chemosensory alterations and cancer therapies

    International Nuclear Information System (INIS)

    Taste and olfaction provide sensory information and sensory pleasure. Cancer therapies affect both. Chemotherapy has not been shown to produce dramatic losses of taste or smell, but systematic studies on various chemotherapeutic agents and types of cancer are lacking. Radiation therapy does produce clear losses of both taste and smell. Both chemotherapy and radiation therapy alter the pleasure produced by taste and smell through the formation of conditioned aversions. That is, foods consumed in proximity with the nausea of therapy come to be unpleasant. The impact of conditioned aversions can be diminished by providing a scapegoat food just before therapy. Alterations in foods may be beneficial to the cancer patient. Increasing the concentrations of flavor ingredients can compensate for sensory losses, and providing pureed foods that retain the cognitive integrity of a meal can benefit the patient who has chewing or swallowing problems

  2. Altered states: psychedelics and anesthetics.

    Science.gov (United States)

    Icaza, Eduardo E; Mashour, George A

    2013-12-01

    The psychedelic experience has been reported since antiquity, but there is relatively little known about the underlying neural mechanisms. A recent neuroimaging study on psilocybin revealed a pattern of decreased cerebral blood flow and functional disconnections that is surprisingly similar to that caused by various anesthetics. In this article, the authors review historical examples of psychedelic experiences induced by general anesthetics and then contrast the mechanisms by which these two drug classes generate altered states of consciousness. PMID:24061599

  3. Framework for Connections on Facebook

    DEFF Research Database (Denmark)

    Sudzina, Frantisek

    There is a substantial amount of current information systems and marketing research focused on social networking sites, most frequently on Facebook. Often, these studies utilize available metadata on user on-line behavior, such as what links the users clicked on. In order to better understand...... behavior of Facebook users, it makes sense to investigate also whom the users connect to. It is possible to hypothesize that behavior of people, who connect only to relatives on Facebook, differs from behavior of people, who are connected only to their classmates. The paper offers a framework of Facebook...

  4. Buccal alterations in diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Negrato Carlos

    2010-01-01

    Full Text Available Abstract Long standing hyperglycaemia besides damaging the kidneys, eyes, nerves, blood vessels, heart, can also impair the function of the salivary glands leading to a reduction in the salivary flow. When salivary flow decreases, as a consequence of an acute hyperglycaemia, many buccal or oral alterations can occur such as: a increased concentration of mucin and glucose; b impaired production and/or action of many antimicrobial factors; c absence of a metalloprotein called gustin, that contains zinc and is responsible for the constant maturation of taste papillae; d bad taste; e oral candidiasis f increased cells exfoliation after contact, because of poor lubrication; g increased proliferation of pathogenic microorganisms; h coated tongue; i halitosis; and many others may occur as a consequence of chronic hyperglycaemia: a tongue alterations, generally a burning mouth; b periodontal disease; c white spots due to demineralization in the teeth; d caries; e delayed healing of wounds; f greater tendency to infections; g lichen planus; h mucosa ulcerations. Buccal alterations found in diabetic patients, although not specific of this disease, have its incidence and progression increased when an inadequate glycaemic control is present.

  5. 33 CFR 156.130 - Connection.

    Science.gov (United States)

    2010-07-01

    ... operations unless it is: (1) A bolted or full threaded connection; or (2) A quick-connect coupling acceptable... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Connection. 156.130 Section 156....130 Connection. (a) Each person who makes a connection for transfer operations shall: (1) Use...

  6. Strongly 2-connected orientations of graphs

    DEFF Research Database (Denmark)

    Thomassen, Carsten

    2014-01-01

    We prove that a graph admits a strongly 2-connected orientation if and only if it is 4-edge-connected, and every vertex-deleted subgraph is 2-edge-connected. In particular, every 4-connected graph has such an orientation while no cubic 3-connected graph has such an orientation....

  7. Functional connectivity disruption in neonates with prenatal marijuana exposure

    Directory of Open Access Journals (Sweden)

    Karen Grewen

    2015-11-01

    Full Text Available Prenatal marijuana exposure (PME is linked to neurobehavioral and cognitive impairments, however findings in childhood and adolescence are inconsistent. Type-1 cannabinoid receptors (CB1R modulate fetal neurodevelopment, mediating PME effects on growth of functional circuitry sub-serving behaviors critical for academic and social success. The purpose of this study was to investigate the effects of prenatal marijuana on development of early brain functional circuitry prior to prolonged postnatal environmental influences. We measured resting state functional connectivity during unsedated sleep in infants at 2-6 weeks (+MJ: 20 with PME in combination with nicotine, alcohol, opiates, and/or SSRI; -MJ: 23 exposed to the same other drugs without marijuana, CTR: 20 drug free controls. Connectivity of subcortical seed regions with high fetal CB1R expression was examined. Marijuana-specific differences were observed in insula and three striatal connections: anterior insula – cerebellum, right caudate – cerebellum, right caudate – right fusiform gyrus/inferior occipital, left caudate – cerebellum. +MJ neonates had hypoconnectivity in all clusters compared with -MJ and CTR groups. Altered striatal connectivity to areas involved in visual spatial and motor learning, attention, and in fine-tuning of motor outputs involved in movement and language production may contribute to neurobehavioral deficits reported in this at-risk group. Disrupted anterior insula connectivity may contribute to altered integration of interoceptive signals with salience estimates, motivation, decision-making, and later drug use. Compared with CTRs, both +MJ and -MJ groups demonstrated hyperconnectivity of left amygdala seed with orbital frontal cortex and hypoconnectivity of posterior thalamus seed with hippocampus, suggesting vulnerability to multiple drugs in these circuits.

  8. Cybersecurity for Connected Diabetes Devices.

    Science.gov (United States)

    Klonoff, David C

    2015-09-01

    Diabetes devices are increasingly connected wirelessly to each other and to data-displaying reader devices. Threats to the accurate flow of information and commands may compromise the function of these devices and put their users at risk of health complications. Sound cybersecurity of connected diabetes devices is necessary to maintain confidentiality, integrity, and availability of the data and commands. Diabetes devices can be hacked by unauthorized agents and also by patients themselves to extract data that are not automatically provided by product software. Unauthorized access to connected diabetes devices has been simulated and could happen in reality. A cybersecurity standard designed specifically for connected diabetes devices will improve the safety of these products and increase confidence of users that the products will be secure. PMID:25883162

  9. Twistor connection and conformal gravity

    International Nuclear Information System (INIS)

    The notion of the local twistor connection is introduced. For the Yang-Mills lagrangian of the standard twistor connection (depending on the metric and its first and second partial derivatives) two variational principles are formulated: variations for the connection (leading to 60 equations of which 50 turn out to be zero identically); variations for the metric tensor (leading to 10 equations). It is shown that extreme equations of both variational principles coincide with each other and are equivalent to the vacuum Bach equations of gravity. The modification of the standard twistor connection is suggested (depending also on the Maxwell tensor). It is shown that both variational principles lead again to the same equations, ie. in the this case, to conformally invariant Bach equations of gravity in the presence of the electromagnetic field and to the free Maxwell equations

  10. THE EXISTENCE OF CONNECTING ORBITS

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    In this paper,using the notion of an isolating block and Conley's attractor theory,an existence criterion of trajectories connecting a pair of invariant sets of ordinary differential equations is given.

  11. Formal connections in deformation quantization

    DEFF Research Database (Denmark)

    Masulli, Paolo

    manifold. Gammelgaard gave an explicit formula for a class of star products in this setting. We review his construction, which is combinatorial and based on a certain family of graphs and extend it, to provide the graph formalism with the notions of composition and differentiation. We shall focus our...... attention on symplectic manifolds equipped with a family of star products, indexed by a parameter space. In this situation we can define a connection in the trivial bundle over the parameter space with fibres the formal smooth functions on the manifold, which relates the star products in the family and is...... called a formal connection. We study the question of classifying such formal connections. To each star product we can associate a certain cohomology class called the characteristic class. It turns out that a formal connection exists if and only if all the star products in the family have the same...

  12. Cybersecurity for Connected Diabetes Devices

    OpenAIRE

    Klonoff, David C.

    2015-01-01

    Diabetes devices are increasingly connected wirelessly to each other and to data-displaying reader devices. Threats to the accurate flow of information and commands may compromise the function of these devices and put their users at risk of health complications. Sound cybersecurity of connected diabetes devices is necessary to maintain confidentiality, integrity, and availability of the data and commands. Diabetes devices can be hacked by unauthorized agents and also by patients themselves to...

  13. Connected Correlators in Quantum Gravity

    OpenAIRE

    Ambjorn, J.; Bialas, P.; Jurkiewicz, J.(Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, ul. prof. Stanislawa Lojasiewicza 11, Krakow, PL 30-348, Poland)

    1998-01-01

    We discuss the concept of connected, reparameterization invariant matter correlators in quantum gravity. We analyze the effect of discretization in two solvable cases: branched polymers and two-dimensional simplicial gravity. In both cases the naively defined connected correlators for a fixed volume display an anomalous behavior, which could be interpreted as a long-range order. We suggest that this is in fact only a highly non-trivial finite-size effect and propose an improved definition of ...

  14. Pleura: In connective tissue diseases

    OpenAIRE

    Kaushik Saha

    2016-01-01

    Connective tissue diseases (CTDs) (or collagen vascular diseases) represent a heterogeneous group of immunologically mediated disorders that affects many organs of the body including pleura. Frequency, presentation, and prognosis of pleural involvement depend on the underlying CTD. Connective tissue disorders may be heritable such as Marfan syndrome, Ehlers-Danlos syndrome, and osteogenesis imperfecta; and autoimmune such as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), syste...

  15. Servicing a Connected Car Service

    OpenAIRE

    Svensson, Benjamin; Varnai, Kristian

    2015-01-01

    Increased wireless connectivity to vehicles invites both existing and new digital methods of attack, requiring the high prioritisation of security throughout the development of not just the vehicle, but also the services provided for it. This report examines such a connected car service used by thousands of customers every day and evaluates it from a security standpoint. The methods used for this evaluation include both direct testing of vulnerabilities, as well as the examination of design c...

  16. Connected searching of weighted trees

    CERN Document Server

    Dereniowski, Dariusz

    2010-01-01

    In this paper we consider the problem of connected edge searching of weighted trees. It is shown that there exists a polynomial-time algorithm for finding optimal connected search strategy for bounded degree trees with arbitrary weights on the edges and vertices of the tree. The problem is NP-complete for general node-weighted trees (the weight of each edge is 1).

  17. The effects of psychosis risk variants on brain connectivity: A Meta-analysis

    Directory of Open Access Journals (Sweden)

    Omar eMothersill

    2012-03-01

    Full Text Available In light of observed changes in connectivity in schizophrenia and the highly heritable nature of the disease, neural connectivity may serve as an important intermediate phenotype for schizophrenia. However, how individual variants confer altered connectivity and which measure of brain connectivity is more proximal to the underlying genetic architecture (i.e. functional or structural has not been well delineated. In this review we consider these issues and the relative sensitivity of imaging methodologies to schizophrenia-related changes in connectivity.We searched PubMed for studies considering schizophrenia risk genes AND functional or structural connectivity. Where data was available, summary statistics were used to determine an estimate of effect size (i.e. Cohen’s d. A random-effects meta-analysis was used to consider (1 the largest effect and (2 all significant effects between functional and structural studies. Schizophrenia risk variants involved in neurotransmission, neurodevelopment and myelin function were found to be associated with altered neural connectivity. On average, schizophrenia risk genes had a large effect on functional (mean d=0.76 and structural connectivity (mean d=1.04. The examination of the largest effect size indicated that the outcomes of functional and structural studies were comparable (Q=2.17, p>0.05. Conversely, consideration of effect size estimates for all significant effects suggest that reported effect sizes in structural connectivity studies were more variable than in functional connectivity studies, and that there was a significant lack of homogeneity across the modalities (Q=6.928, p=0.008.Given the more variable profile of effect sizes associated with structural connectivity, these data may suggest that structural imaging methods are more sensitive to a wider range of effects, as opposed to functional studies which may only be able to determine large effects. These conclusions are limited by

  18. Connecting Genomic Alterations to Cancer Biology with Proteomics: The NCI Clinical Proteomic Tumor Analysis Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, Matthew; Gillette, Michael; Carr, Steven A.; Paulovich, Amanda G.; Smith, Richard D.; Rodland, Karin D.; Townsend, Reid; Kinsinger, Christopher; Mesri, Mehdi; Rodriguez, Henry; Liebler, Daniel

    2013-10-03

    The National Cancer Institute (NCI) Clinical Proteomic Tumor Analysis Consortium is applying the latest generation of proteomic technologies to genomically annotated tumors from The Cancer Genome Atlas (TCGA) program, a joint initiative of the NCI and the National Human Genome Research Institute. By providing a fully integrated accounting of DNA, RNA, and protein abnormalities in individual tumors, these datasets will illuminate the complex relationship between genomic abnormalities and cancer phenotypes, thus producing biologic insights as well as a wave of novel candidate biomarkers and therapeutic targets amenable to verifi cation using targeted mass spectrometry methods.

  19. Altered Inhibition-Related Frontolimbic Connectivity in Obsessive-Compulsive Disorder

    NARCIS (Netherlands)

    van Velzen, Laura S.; de Wit, Stella J.; Curcic-Blake, Branisalava; Cath, Danielle C.; de Vries, Froukje E.; Veltman, Dick J.; van der Werf, Ysbrand D.; van den Heuvel, Odile A.

    2015-01-01

    Background: Recent studies have shown that response inhibition is impaired in patients with obsessive-compulsive disorder and their unaffected siblings, suggesting that these deficits may be considered a cognitive endophenotype of obsessive-compulsive disorder. Structural and functional neural corre

  20. Exogenous And Endogenous Factors Connected With P16 Gene Alteration In Egyptian Patients With Oesophageal Cancer

    International Nuclear Information System (INIS)

    Certain areas of Egypt have a high incidence of oesophageal cancer which is one of the most common causes of cancer related deaths in the world. Comparisons of the dietary and cultural habits of people from geographically distinct high-incidence areas in the world have revealed very few similarities to suggest a common induction mechanism. The present study aimed to investigate the effects of sex, age and smoking on some biochemical parameters, p16 gene mutations, methylation and incidence of oesophageal cancer. The study included 50 Egyptian patients with oesophageal cancer with average age 55.6 years (aged between 23-79 years). The results showed significant decrease in superoxide dismutase (SOD), increase in glutathione reductase (GR), increase in lipid peroxidation end product (malonaldehyde) and incidence of oesophageal cancer. Moreover, two mutations were detected in exon 2 of gene p16 and significant increase in p16 methylation in tissues and plasma of oesophageal cancer patients, as compared to healthy control, were observed.

  1. Altered amygdala resting-state functional connectivity in post-traumatic stress disorder

    OpenAIRE

    Rabinak, Christine A.; Angstadt, Mike; Welsh, Robert C.; Kenndy, Amy E.; Lyubkin, Mark; Martis, Brian; Phan, K. Luan

    2011-01-01

    Post-traumatic stress disorder (PTSD) is often characterized by aberrant amygdala activation and functional abnormalities in corticolimbic circuitry, as elucidated by functional neuroimaging. These “activation” studies have primarily relied on tasks designed to induce region-specific, and task-dependent brain responses in limbic (e.g., amygdala) and paralimbic brain areas through the use of aversive evocative probes. It remains unknown if these corticolimbic circuit abnormalities exist at bas...

  2. Altered Functional Connectivity of the Insular Cortex across Prefrontal Networks in Cocaine Addiction

    OpenAIRE

    Cisler, Josh M.; Elton, Amanda; Kennedy, Ashley P.; Young, Jonathan; Smitherman, Sonet; James, George Andrew; Kilts, Clinton D

    2013-01-01

    Interoception is theorized to be an important process mediating substance use disorders, and the insular cortex is recognized as a core neural region supporting interoception. The purpose of this study was to compare the integration of the insular cortex into prefrontal-related resting-state networks between individuals with cocaine dependence and healthy controls. 41 participants with cocaine dependence and 19 control participants underwent a resting-state 3T fMRI scan. Individuals with coca...

  3. Ultrastructural studies of ALS mitochondria connect altered function and permeability with defects of mitophagy and mitochondriogenesis

    OpenAIRE

    Alessandro Frati; Francesco Fornai

    2015-01-01

    The key role of mitochondria in patients affected by amyotrophic lateral sclerosis (ALS) is well documented by electron microscopy studies of motor neurons within spinal cord and brainstem. Nonetheless, recent studies challenged the role of mitochondria placed within the cell body of motor neuron. In fact, it was demonstrated that, despite preservation of mitochondria placed within this compartment, there is no increase in the lifespan of transgenic mouse models of ALS. Thus, the present mini...

  4. Quantitative Chemical-Genetic Interaction Map Connects Gene Alterations to Drug Responses | Office of Cancer Genomics

    Science.gov (United States)

    In a recent Cancer Discovery report, CTD2 researchers at the University of California in San Francisco developed a new quantitative chemical-genetic interaction mapping approach to evaluate drug sensitivity or resistance in isogenic cell lines. Performing a high-throughput screen with isogenic cell lines allowed the researchers to explore the impact of a panel of emerging and established drugs on cells overexpressing a single cancer-associated gene in isolation.

  5. Altered intrahemispheric structural connectivity in Gilles de la Tourette syndrome ☆ ☆☆

    OpenAIRE

    Bastian Cheng; Hanna Braass; Christos Ganos; Andras Treszl; Katja Biermann-Ruben; Hummel, Friedhelm C.; Kirsten Müller-Vahl; Alfons Schnitzler; Christian Gerloff; Alexander Münchau; Götz Thomalla

    2013-01-01

    Gilles de la Tourette syndrome (GTS) is a common developmental neuropsychiatric disorder characterized by tics and frequent psychiatric comorbidities, often causing significant disability. Tic generation has been linked to disturbed networks of brain areas involved in planning, controlling and execution of actions, particularly structural and functional disorders in the striatum and cortico–striato–thalamo–cortical loops. We therefore applied structural diffusion tensor imaging (DTI) to chara...

  6. Developmental Alterations of Frontal-Striatal-Thalamic Connectivity in Obsessive-Compulsive Disorder

    Science.gov (United States)

    Fitzgerald, Kate Dimond; Welsh, Robert C.; Stern, Emily R.; Angstadt, Mike; Hanna, Gregory L.; Abelson, James L.; Taylor, Stephan F.

    2011-01-01

    Objective: Pediatric obsessive-compulsive disorder is characterized by abnormalities of frontal-striatal-thalamic circuitry that appear near illness onset and persist over its course. Distinct frontal-striatal-thalamic loops through cortical centers for cognitive control (anterior cingulate cortex) and emotion processing (ventral medial frontal…

  7. Multiple scenarios of bentonite alteration

    International Nuclear Information System (INIS)

    Performance assessment for TRU waste repositories has shown that soluble and poorly sorbing nuclides such as I-129 and C-14 dominate the dose. These nuclides are expected to migrate with groundwater flow, hence hydraulic conditions and their evolution with time in the repository are key issues for repository safety. Cementitious material will be used for waste packaging, backfilling and structural material in a TRU waste repository. Bentonite is also expected to be used for some TRU wastes to provide the function of a hydraulic barrier in the disposal system. There is concern that the coexistence of cementitious material and bentonite cause the alteration of smectite due to interaction with hyperalkaline leachates and consequent deleterious perturbation of the function of bentonite as a hydraulic barrier. Many research studies have been performed to identify possible mechanisms of cement-bentonite interaction. However, uncertainties still exist in our understanding of the precise chemical scheme of bentonite alteration in highly alkaline conditions, especially the space and time variation of secondary mineral occurrences. In order to reflect this uncertainty, multiple scenarios of bentonite alteration were developed based on the possible mineralogical changes derived from knowledge of both experiments and observation of natural systems. It was focused that the mineral reaction involving hyperalkaline fluids would thermodynamically depend on the variable chemical condition in bentonite buffer and that kinetics would be important as well as thermodynamic stability in controlling their occurrence, i.e., the kinetic controls may operate to remain metastable minerals over the long term. The mineralogical consequences of the interaction between clays and alkaline fluids are summarized as follows. Clay → C-S-H gel and other solids which can rapidly precipitate. Clay and gel → illite. Clay and gel → metastable zeolite. Clay and gel → metastable zeolite → stable

  8. Acid Sulfate Alteration on Mars

    Science.gov (United States)

    Ming, D. W.; Morris, R. V.

    2016-01-01

    A variety of mineralogical and geochemical indicators for aqueous alteration on Mars have been identified by a combination of surface and orbital robotic missions, telescopic observations, characterization of Martian meteorites, and laboratory and terrestrial analog studies. Acid sulfate alteration has been identified at all three landing sites visited by NASA rover missions (Spirit, Opportunity, and Curiosity). Spirit landed in Gusev crater in 2004 and discovered Fe-sulfates and materials that have been extensively leached by acid sulfate solutions. Opportunity landing on the plains of Meridiani Planum also in 2004 where the rover encountered large abundances of jarosite and hematite in sedimentary rocks. Curiosity landed in Gale crater in 2012 and has characterized fluvial, deltaic, and lacustrine sediments. Jarosite and hematite were discovered in some of the lacustrine sediments. The high elemental abundance of sulfur in surface materials is obvious evidence that sulfate has played a major role in aqueous processes at all landing sites on Mars. The sulfate-rich outcrop at Meridiani Planum has an SO3 content of up to 25 wt.%. The interiors of rocks and outcrops on the Columbia Hills within Gusev crater have up to 8 wt.% SO3. Soils at both sites generally have between 5 to 14 wt.% SO3, and several soils in Gusev crater contain around 30 wt.% SO3. After normalization of major element compositions to a SO3-free basis, the bulk compositions of these materials are basaltic, with a few exceptions in Gusev crater and in lacustrine mudstones in Gale crater. These observations suggest that materials encountered by the rovers were derived from basaltic precursors by acid sulfate alteration under nearly isochemical conditions (i.e., minimal leaching). There are several cases, however, where acid sulfate alteration minerals (jarosite and hematite) formed in open hydrologic systems, e.g., in Gale crater lacustrine mudstones. Several hypotheses have been suggested for the

  9. Review on Cold-Formed Steel Connections

    Science.gov (United States)

    Tan, Cher Siang; Mohammad, Shahrin; Md Tahir, Mahmood; Shek, Poi Ngian

    2014-01-01

    The concept of cold-formed light steel framing construction has been widespread after understanding its structural characteristics with massive research works over the years. Connection serves as one of the important elements for light steel framing in order to achieve its structural stability. Compared to hot-rolled steel sections, cold-formed steel connections perform dissimilarity due to the thin-walled behaviour. This paper aims to review current researches on cold-formed steel connections, particularly for screw connections, storage rack connections, welded connections, and bolted connections. The performance of these connections in the design of cold-formed steel structures is discussed. PMID:24688448

  10. Intermodal Passenger Connectivity Database - Raw Data

    Data.gov (United States)

    Department of Transportation — The Intermodal Passenger Connectivity Database (IPCD) is a nationwide data table of passenger transportation terminals, with data on the availability of connections...

  11. Intermodal Passenger Connectivity Database: Raw Data

    Data.gov (United States)

    Department of Transportation — The Intermodal Passenger Connectivity Database (IPCD) is a nationwide data table of passenger transportation terminals, with data on the availability of connections...

  12. Escitalopram Decreases Cross-Regional Functional Connectivity within the Default-Mode Network.

    Directory of Open Access Journals (Sweden)

    Vincent van de Ven

    Full Text Available The default-mode network (DMN, which comprises medial frontal, temporal and parietal regions, is part of the brain's intrinsic organization. The serotonergic (5-HT neurotransmitter system projects to DMN regions from midbrain efferents, and manipulation of this system could thus reveal insights into the neurobiological mechanisms of DMN functioning. Here, we investigate intrinsic functional connectivity of the DMN as a function of activity of the serotonergic system, through the administration of the selective serotonin reuptake inhibitor (SSRI escitalopram. We quantified DMN functional connectivity using an approach based on dual-regression. Specifically, we decomposed group data of a subset of the functional time series using spatial independent component analysis, and projected the group spatial modes to the same and an independent resting state time series of individual participants. We found no effects of escitalopram on global functional connectivity of the DMN at the map-level; that is, escitalopram did not alter the global functional architecture of the DMN. However, we found that escitalopram decreased DMN regional pairwise connectivity, which included anterior and posterior cingulate cortex, hippocampal complex and lateral parietal regions. Further, regional DMN connectivity covaried with alertness ratings across participants. Our findings show that escitalopram altered intrinsic regional DMN connectivity, which suggests that the serotonergic system plays an important role in DMN connectivity and its contribution to cognition. Pharmacological challenge designs may be a useful addition to resting-state functional MRI to investigate intrinsic brain functional organization.

  13. Correlated alteration effects in CM carbonaceous chondrites

    Science.gov (United States)

    Browning, Lauren B.; McSween, Harry Y., Jr.; Zolensky, Michael E.

    1996-07-01

    Three parameters are proposed to determine the relative extent of alteration in CM chondrites. The mineralogic alteration index monitors the relative progress of coupled substitutions in the progressive alteration of cronstedtite to Mg-serpentine and increases with increasing alteration. To calculate values of this index, an algorithm has been developed to estimate the average matrix phyllosilicate composition in individual CM chondrites. The second parameter is the volume percent of isolated matrix silicates, which decreases with progressive alteration due to mineral hydration. Finally, the volume percent of chondrule alteration monitors the extent of chondrule phyllosilicate production and increases as alteration proceeds. These parameters define the first CM alteration scale that relies on multiple indicators of progressive alteration. The following relative order of increasing alteration is established by this model: Murchison ≤ Bells Cochabamba and Boriskino experienced is less precisely constrained, although both fall near the middle of this sequence. A comparison between the mineralogic alteration index and literature values for the whole-rock chemistry of CM chondrites reveals several correlations. A positive, nearly linear correlation between bulk H content and progressive CM alteration suggests an approximately constant production rate of new phyllosilicates relative to the mineralogical transition from cronstedtite to Mg-serpentine. The abundance of trapped planetary 36Ar decreases systematically in progressively altered CM chondrites, suggesting the wholesale destruction of primary noble gas carrier phase (s) by aqueous reactions. Because low temperature fluid-rock reactions are generally associated with large isotopic mass fractionation factors, we also compared our model predictions with δ18O values for bulk CM samples. Although some of these data are poorly resolved, the order of increasing δ18O values approximates the order of increasing

  14. TWO STAGE FRAMEWORK FOR ALTERED FINGERPRINT MATCHING

    OpenAIRE

    T. R. Anoop; M.G. Mini

    2015-01-01

    Fingerprint alteration is the process of masking one’s identity from personal identification systems especially in boarder control security systems. Failure of matching the altered fingerprint of the criminals against the watch list of fingerprints can help them to break the security system. This fact leads to the need of a method for altered fingerprint matching. This paper presents a two stage method for altered fingerprint matching. In first stage, approximated global ridge orientation fie...

  15. Control System interaction in the VSC-HVDC Grid Connected Offshore Wind Power Plant

    DEFF Research Database (Denmark)

    Glasdam, Jakob Bærholm; Kocewiak, Łukasz Hubert; Hjerrild, Jesper;

    2015-01-01

    source of the instability has been identified and mitigation methods have been designed and implemented. This procedure is not straightforward and can have a long lead time. The harmonic instability can have severe economic consequences for the OWPP owner due to the large investment. Harmonic stability...... or converter interaction studies have therefore become an important part of the system design studies of a high voltage alternating current (HVAC) grid connected OWPP. The voltage sourced converter high voltage direct current (VSC-HVDC) has become a preferred choice for grid connection of remotely...... located OWPPs. As for the HVAC grid connected OWPPs, there is a need to conduct harmonic stability studies in the design phase of an HVDC grid connected OWPP. As the offshore electrical environment is significantly altered compared to the offshore network in an HVAC connected OWPP, there is a need to...

  16. Atypical functional connectivity in autism spectrum disorder is associated with disrupted white matter microstructural organisation

    Directory of Open Access Journals (Sweden)

    Jane McGrath

    2013-09-01

    Full Text Available Disruption of structural and functional neural connectivity has been widely reported in Autism Spectrum Disorder (ASD but there is a striking lack of research attempting to integrate analysis of functional and structural connectivity in the same study population, an approach that may provide key insights into the specific neurobiological underpinnings of altered functional connectivity in autism. The aims of this study were 1. to determine whether functional connectivity abnormalities were associated with structural abnormalities of white matter (WM in ASD and 2. to examine the relationships between aberrant neural connectivity and behaviour in ASD. 22 individuals with ASD and 22 age, IQ-matched controls completed a high-angular-resolution diffusion MRI scan. Structural connectivity was analysed using constrained spherical deconvolution based tractography. Regions for tractography were generated from the results of a previous study, in which 10 pairs of brain regions showed abnormal functional connectivity during visuospatial processing in ASD. WM tracts directly connected 5 of the 10 region pairs that showed abnormal functional connectivity; linking a region in the left occipital lobe (left BA19 and five paired regions: left caudate head, left caudate body, left uncus, left thalamus and left cuneus. Measures of WM microstructural organisation were extracted from these tracts. Fractional anisotropy reductions in the ASD group relative to controls were significant for WM connecting left BA19 to left caudate head and left BA19 to left thalamus. Using a multimodal imaging approach, this study has revealed aberrant white matter microstructure in tracts that directly connect brain regions that are abnormally functionally connected in ASD. These results provide novel evidence to suggest that structural brain pathology may contribute 1. to abnormal functional connectivity and 2. to atypical visuospatial processing in ASD.

  17. Continuously Connected With Mobile IP

    Science.gov (United States)

    2002-01-01

    Cisco Systems developed Cisco Mobile Networks, making IP devices mobile. With this innovation, a Cisco router and its connected IP devices can roam across network boundaries and connection types. Because a mobile user is able to keep the same IP address while roaming, a live IP connection can be maintained without interruption. Glenn Research Center jointly tested the technology with Cisco, and is working to use it on low-earth-orbiting research craft. With Cisco's Mobile Networks functionality now available in Cisco IOS Software release 12.2(4)T, the commercial advantages and benefits are numerous. The technology can be applied to public safety, military/homeland security, emergency management services, railroad and shipping systems, and the automotive industry. It will allow ambulances, police, firemen, and the U.S. Coast Guard to stay connected to their networks while on the move. In the wireless battlefield, the technology will provide rapid infrastructure deployment for U.S. national defense. Airline, train, and cruise passengers utilizing Cisco Mobile Networks can fly all around the world with a continuous Internet connection. Cisco IOS(R) Software is a registered trademark of Cisco Systems.

  18. Tendon Extracellular Matrix Alterations in Ullrich Congenital Muscular Dystrophy

    Science.gov (United States)

    Sardone, Francesca; Traina, Francesco; Bondi, Alice; Merlini, Luciano; Santi, Spartaco; Maraldi, Nadir Mario; Faldini, Cesare; Sabatelli, Patrizia

    2016-01-01

    Collagen VI (COLVI) is a non-fibrillar collagen expressed in skeletal muscle and most connective tissues. Mutations in COLVI genes cause two major clinical forms, Bethlem myopathy and Ullrich congenital muscular dystrophy (UCMD). In addition to congenital muscle weakness, patients affected by COLVI myopathies show axial and proximal joint contractures and distal joint hypermobility, which suggest the involvement of the tendon function. We examined a peroneal tendon biopsy and tenocyte culture of a 15-year-old patient affected by UCMD with compound heterozygous COL6A2 mutations. In patient’s tendon biopsy, we found striking morphological alterations of tendon fibrils, consisting in irregular profiles and reduced mean diameter. The organization of the pericellular matrix of tenocytes, the primary site of collagen fibril assembly, was severely affected, as determined by immunoelectron microscopy, which showed an abnormal accumulation of COLVI and altered distribution of collagen I (COLI) and fibronectin (FBN). In patient’s tenocyte culture, COLVI web formation and cell surface association were severely impaired; large aggregates of COLVI, which matched with COLI labeling, were frequently detected in the extracellular matrix. In addition, metalloproteinase MMP-2, an extracellular matrix-regulating enzyme, was increased in the conditioned medium of patient’s tenocytes, as determined by gelatin zymography and western blot. Altogether, these data indicate that COLVI deficiency may influence the organization of UCMD tendon matrix, resulting in dysfunctional fibrillogenesis. The alterations of tendon matrix may contribute to the complex pathogenesis of COLVI related myopathies. PMID:27375477

  19. Intrinsic Brain Activity in Altered States of Consciousness

    Science.gov (United States)

    Boly, M.; Phillips, C.; Tshibanda, L.; Vanhaudenhuyse, A.; Schabus, M.; Dang-Vu, T.T.; Moonen, G.; Hustinx, R.; Maquet, P.; Laureys, S.

    2010-01-01

    Spontaneous brain activity has recently received increasing interest in the neuroimaging community. However, the value of resting-state studies to a better understanding of brain–behavior relationships has been challenged. That altered states of consciousness are a privileged way to study the relationships between spontaneous brain activity and behavior is proposed, and common resting-state brain activity features observed in various states of altered consciousness are reviewed. Early positron emission tomography studies showed that states of extremely low or high brain activity are often associated with unconsciousness. However, this relationship is not absolute, and the precise link between global brain metabolism and awareness remains yet difficult to assert. In contrast, voxel-based analyses identified a systematic impairment of associative frontoparieto–cingulate areas in altered states of consciousness, such as sleep, anesthesia, coma, vegetative state, epileptic loss of consciousness, and somnambulism. In parallel, recent functional magnetic resonance imaging studies have identified structured patterns of slow neuronal oscillations in the resting human brain. Similar coherent blood oxygen level–dependent (BOLD) systemwide patterns can also be found, in particular in the default-mode network, in several states of unconsciousness, such as coma, anesthesia, and slow-wave sleep. The latter results suggest that slow coherent spontaneous BOLD fluctuations cannot be exclusively a reflection of conscious mental activity, but may reflect default brain connectivity shaping brain areas of most likely interactions in a way that transcends levels of consciousness, and whose functional significance remains largely in the dark. PMID:18591474

  20. Tendon Extracellular Matrix Alterations in Ullrich Congenital Muscular Dystrophy.

    Science.gov (United States)

    Sardone, Francesca; Traina, Francesco; Bondi, Alice; Merlini, Luciano; Santi, Spartaco; Maraldi, Nadir Mario; Faldini, Cesare; Sabatelli, Patrizia

    2016-01-01

    Collagen VI (COLVI) is a non-fibrillar collagen expressed in skeletal muscle and most connective tissues. Mutations in COLVI genes cause two major clinical forms, Bethlem myopathy and Ullrich congenital muscular dystrophy (UCMD). In addition to congenital muscle weakness, patients affected by COLVI myopathies show axial and proximal joint contractures and distal joint hypermobility, which suggest the involvement of the tendon function. We examined a peroneal tendon biopsy and tenocyte culture of a 15-year-old patient affected by UCMD with compound heterozygous COL6A2 mutations. In patient's tendon biopsy, we found striking morphological alterations of tendon fibrils, consisting in irregular profiles and reduced mean diameter. The organization of the pericellular matrix of tenocytes, the primary site of collagen fibril assembly, was severely affected, as determined by immunoelectron microscopy, which showed an abnormal accumulation of COLVI and altered distribution of collagen I (COLI) and fibronectin (FBN). In patient's tenocyte culture, COLVI web formation and cell surface association were severely impaired; large aggregates of COLVI, which matched with COLI labeling, were frequently detected in the extracellular matrix. In addition, metalloproteinase MMP-2, an extracellular matrix-regulating enzyme, was increased in the conditioned medium of patient's tenocytes, as determined by gelatin zymography and western blot. Altogether, these data indicate that COLVI deficiency may influence the organization of UCMD tendon matrix, resulting in dysfunctional fibrillogenesis. The alterations of tendon matrix may contribute to the complex pathogenesis of COLVI related myopathies. PMID:27375477

  1. Altered Interhemispheric Functional Coordination in Chronic Tinnitus Patients

    Directory of Open Access Journals (Sweden)

    Yu-Chen Chen

    2015-01-01

    Full Text Available Purpose. Recent studies suggest that tinnitus may be due in part to aberrant callosal structure and interhemispheric interaction. To explore this hypothesis we use a novel method, voxel-mirrored homotopic connectivity (VMHC, to examine the resting-state interhemispheric functional connectivity and its relationships with clinical characteristics in chronic tinnitus patients. Materials and Methods. Twenty-eight chronic tinnitus patients with normal hearing thresholds and 30 age-, sex-, education-, and hearing threshold-matched healthy controls were included in this study and underwent the resting-state fMRI scanning. We computed the VMHC to analyze the interhemispheric functional coordination between homotopic points of the brain in both groups. Results. Compared to the controls, tinnitus patients showed significantly increased VMHC in the middle temporal gyrus, middle frontal gyrus, and superior occipital gyrus. In tinnitus patients, a positive correlation was found between tinnitus duration and VMHC of the uncus. Moreover, correlations between VMHC changes and tinnitus distress were observed in the transverse temporal gyrus, superior temporal pole, precentral gyrus, and calcarine cortex. Conclusions. These results show altered interhemispheric functional connectivity linked with specific tinnitus characteristics in chronic tinnitus patients, which may be implicated in the neuropathophysiology of tinnitus.

  2. Increased functional connectivity between prefrontal cortex and reward system in pathological gambling.

    Directory of Open Access Journals (Sweden)

    Saskia Koehler

    Full Text Available Pathological gambling (PG shares clinical characteristics with substance-use disorders and is thus discussed as a behavioral addiction. Recent neuroimaging studies on PG report functional changes in prefrontal structures and the mesolimbic reward system. While an imbalance between these structures has been related to addictive behavior, whether their dysfunction in PG is reflected in the interaction between them remains unclear. We addressed this question using functional connectivity resting-state fMRI in male subjects with PG and controls. Seed-based functional connectivity was computed using two regions-of-interest, based on the results of a previous voxel-based morphometry study, located in the prefrontal cortex and the mesolimbic reward system (right middle frontal gyrus and right ventral striatum. PG patients demonstrated increased connectivity from the right middle frontal gyrus to the right striatum as compared to controls, which was also positively correlated with nonplanning aspect of impulsiveness, smoking and craving scores in the PG group. Moreover, PG patients demonstrated decreased connectivity from the right middle frontal gyrus to other prefrontal areas as compared to controls. The right ventral striatum demonstrated increased connectivity to the right superior and middle frontal gyrus and left cerebellum in PG patients as compared to controls. The increased connectivity to the cerebellum was positively correlated with smoking in the PG group. Our results provide further evidence for alterations in functional connectivity in PG with increased connectivity between prefrontal regions and the reward system, similar to connectivity changes reported in substance use disorder.

  3. MANAGERS CONNECTED THROUGH INFORMATION TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Osmarina Pedro Garcia Garcia

    2015-06-01

    Full Text Available This study had as its central objective to ascertain how managers connect with information technology. The methodology applied was an exploratory research, through a structured questionnaire survey based on qualitative and quantitative approach. The study interviewed eighteen managers in a city in Brazil (Cascavel – Paraná, from the industrial segment distributed in several areas, selected by the non-probabilistic method, considering the samples by convenience. The research results showed that the respondents connect with information technology through social networks, applications and technological devices in a normal deliberated way. Literature has showed that Brazil is the second most connected country in social networks, which shows that managers tend to increase the use of information technology over time. We concluded that when managers use those technological tools, are online frequently, to fulfill their entrepreneurial functions, they remain attentive to everything that is happening around them and globally.

  4. Connected correlators in quantum gravity

    International Nuclear Information System (INIS)

    We discuss the concept of connected, reparameterization invariant matter correlators in quantum gravity. We analyze the effect of discretization in two solvable cases: branched polymers and two-dimensional simplicial gravity. In both cases the naively defined connected correlators for a fixed volume display an anomalous behavior, which could be interpreted as a long-range order. We suggest that this is in fact only a highly non-trivial finite-size effect and propose an improved definition of the connected correlator, which reduces the effect. Using this definition we illustrate the appearance of a long-range spin order in the Ising model on a two-dimensional random lattice in an external magnetic field H, when H to 0 and β=βC. (author)

  5. Pleura: In connective tissue diseases

    Directory of Open Access Journals (Sweden)

    Kaushik Saha

    2016-01-01

    Full Text Available Connective tissue diseases (CTDs (or collagen vascular diseases represent a heterogeneous group of immunologically mediated disorders that affects many organs of the body including pleura. Frequency, presentation, and prognosis of pleural involvement depend on the underlying CTD. Connective tissue disorders may be heritable such as Marfan syndrome, Ehlers-Danlos syndrome, and osteogenesis imperfecta; and autoimmune such as systemic lupus erythematosus (SLE, rheumatoid arthritis (RA, systemic sclerosis, mixed connective tissue disease (MCTD, Sjögren's syndrome (SS, dermatomyositis (DM, and polymyositis (PM. The subject of this review is to describe the variety of pleural disorders observed in the most frequent types of CTD: SLE, RA, scleroderma, SS, DM, PM, and MCTD.

  6. EEG functional connectivity, axon delays and white matter disease

    Science.gov (United States)

    Nunez, Paul L.; Srinivasan, Ramesh; Fields, R. Douglas

    2016-01-01

    Objective Both structural and functional brain connectivities are closely linked to white matter disease. We discuss several such links of potential interest to neurologists, neurosurgeons, radiologists, and non-clinical neuroscientists. Methods Treatment of brains as genuine complex systems suggests major emphasis on the multi-scale nature of brain connectivity and dynamic behavior. Cross-scale interactions of local, regional, and global networks are apparently responsible for much of EEG's oscillatory behaviors. Finite axon propagation speed, often assumed to be infinite in local network models, is central to our conceptual framework. Results Myelin controls axon speed, and the synchrony of impulse traffic between distant cortical regions appears to be critical for optimal mental performance and learning. Results Several experiments suggest that axon conduction speed is plastic, thereby altering the regional and global white matter connections that facilitate binding of remote local networks. Conclusions Combined EEG and high resolution EEG can provide distinct multi-scale estimates of functional connectivity in both healthy and diseased brains with measures like frequency and phase spectra, covariance, and coherence. Significance White matter disease may profoundly disrupt normal EEG coherence patterns, but currently these kinds of studies are rare in scientific labs and essentially missing from clinical environments. PMID:24815984

  7. Review: Cortical construction in autism spectrum disorder: columns, connectivity and the subplate.

    Science.gov (United States)

    Hutsler, Jeffrey J; Casanova, Manuel F

    2016-02-01

    The cerebral cortex undergoes protracted maturation during human development and exemplifies how biology and environment are inextricably intertwined in the construction of complex neural circuits. Autism spectrum disorders are characterized by a number of pathological changes arising from this developmental process. These include: (i) alterations to columnar structure that have significant implications for the organization of cortical circuits and connectivity; (ii) alterations to synaptic spines on individual cortical units that may underlie specific types of connectional changes; and (iii) alterations within the cortical subplate, a region that plays a role in proper cortical development and in regulating interregional communication in the mature brain. Although the cerebral cortex is not the only structure affected in the disorder, it is a fundamental contributor to the behaviours that characterize autism. These alterations to cortical circuitry likely underlie the behavioural phenotype in autism and contribute to the unique pattern of deficits and strengths that characterize cognitive functioning. Recent findings within the cortical subplate may indicate that alterations to cortical construction begin prenatally, before activity-dependent connections are established, and are in need of further study. A better understanding of cortical development in autism spectrum disorders will draw bridges between the microanatomical computational circuitry and the atypical behaviours that arise when that circuitry is modified. In addition, it will allow us to better exploit the constructional plasticity within the brain to design more targeted interventions that better manage atypical cortical construction and that can be applied very early in postnatal life. PMID:25630827

  8. Group-ICA model order highlights patterns of functional brain connectivity

    Directory of Open Access Journals (Sweden)

    Ahmed eAbou Elseoud

    2011-06-01

    Full Text Available Resting-state networks (RSNs can be reliably and reproducibly detected using independent component analysis (ICA at both individual subject and group levels. Altering ICA dimensionality (model order estimation can have a significant impact on the spatial characteristics of the RSNs as well as their parcellation into sub-networks. Recent evidence from several neuroimaging studies suggests that the human brain has a modular hierarchical organization which resembles the hierarchy depicted by different ICA model orders. We hypothesized that functional connectivity between-group differences measured with ICA might be affected by model order selection. We investigated differences in functional connectivity using so-called dual-regression as a function of ICA model order in a group of unmedicated seasonal affective disorder (SAD patients compared to normal healthy controls. The results showed that the detected disease-related differences in functional connectivity alter as a function of ICA model order. The volume of between-group differences altered significantly as a function of ICA model order reaching maximum at model order 70 (which seems to be an optimal point that conveys the largest between-group difference then stabilized afterwards. Our results show that fine-grained RSNs enable better detection of detailed disease-related functional connectivity changes. However, high model orders show an increased risk of false positives that needs to be overcome. Our findings suggest that multilevel ICA exploration of functional connectivity enables optimization of sensitivity to brain disorders.

  9. Genetic alterations in pancreatic carcinoma

    Directory of Open Access Journals (Sweden)

    Schmid Roland M

    2003-01-01

    Full Text Available Abstract Cancer of the exocrine pancreas represents the fifth leading cause of cancer death in the Western population with an average survival after diagnosis of 3 to 6 months and a five-year survival rate under 5%. Our understanding of the molecular carcinogenesis has improved in the last few years due to the development of novel molecular biological techniques. Pancreatic cancer is a multi-stage process resulting from the accumulation of genetic changes in the somatic DNA of normal cells. In this article we describe major genetic alterations of pancreatic cancer, mutations in the proto-oncogene K-RAS and the tumor suppressors INK4A, TP53 and DPC4/SMAD4. The accumulation of these genetic changes leads to a profound disturbance in cell cycle regulation and continuous growth. The knowledge of the underlying molecular mechanisms will offer new therapeutic and diagnostic options and hopefully improve the outcome of this aggressive disease.

  10. Genetic alterations in pancreatic cancer

    Institute of Scientific and Technical Information of China (English)

    Muhammad Wasif Saif; Lena Karapanagiotou; Kostas Syrigos

    2007-01-01

    The diagnosis of pancreatic cancer is devastating for patients and their relatives as the incidence rate is approximately the same as mortality rate. Only a small percentage, which ranges from 0.4% to 4% of patients who have been given this diagnosis, will be alive at five years. At the time of diagnosis, 80% of pancreatic cancer patients have unresectable or metastatic disease.Moreover, the therapeutic alternatives offered by chemotherapy or radiotherapy are few, if not zero. For all these reasons, there is an imperative need of analyzing and understanding the primitive lesions that lead to invasive pancreatic adenocarcinoma. Molecular pathology of these lesions is the key of our understanding of the mechanisms underlying the development of this cancer and will probably help us in earlier diagnosis and better therapeutic results. This review focuses on medical research on pancreatic cancer models and the underlying genetic alterations.

  11. Epigenetic alterations underlying autoimmune diseases.

    Science.gov (United States)

    Aslani, Saeed; Mahmoudi, Mahdi; Karami, Jafar; Jamshidi, Ahmad Reza; Malekshahi, Zahra; Nicknam, Mohammad Hossein

    2016-03-01

    Recent breakthroughs in genetic explorations have extended our understanding through discovery of genetic patterns subjected to autoimmune diseases (AID). Genetics, on the contrary, has not answered all the conundrums to describe a comprehensive explanation of causal mechanisms of disease etiopathology with regard to the function of environment, sex, or aging. The other side of the coin, epigenetics which is defined by gene manifestation modification without DNA sequence alteration, reportedly has come in to provide new insights towards disease apprehension through bridging the genetics and environmental factors. New investigations in genetic and environmental contributing factors for autoimmunity provide new explanation whereby the interactions between genetic elements and epigenetic modifications signed by environmental agents may be responsible for autoimmune disease initiation and perpetuation. It is aimed through this article to review recent progress attempting to reveal how epigenetics associates with the pathogenesis of autoimmune diseases. PMID:26761426

  12. 46 CFR 98.30-27 - Connections.

    Science.gov (United States)

    2010-10-01

    ... operations unless it is— (1) A bolted or full threaded connection; or (2) A quick-connect coupling accepted.... (a) Each person who makes a connection for a transfer operation shall— (1) Use suitable material in... less than four bolts in each temporary connection utilizing an American National Standards...

  13. Working memory performance is related to intrinsic resting state functional connectivity changes in community-dwelling elderly cohort.

    Science.gov (United States)

    Charroud, Céline; Le Bars, Emmanuelle; Deverdun, Jérémy; Steffener, Jason; Molino, François; Abdennour, Meriem; Portet, Florence; Bonafe, Alain; Stern, Yaakov; Ritchie, Karen; Akbaraly, Tasnime N; Menjot de Champfleur, Nicolas

    2016-07-01

    Characterization of normal age-related changes in resting state brain networks associated with working memory performance is a major prerequisite for studying neurodegenerative diseases. The aim of this study was to investigate the relationship between performing a working memory task (under MRI) and resting-state brain networks in a large cohort of healthy elderly subjects (n=337). Functional connectivity and interactions between networks were assessed within the default mode (DMN), salience (SN), and right and left central executive (CEN) networks in two groups of subjects classed by their performance (low and high). The low performance group showed lower functional connectivity in both the DMN and SN, and higher functional connectivity in the right and left CEN compared to the high performance group. Overall the functional connectivity within the DMN and the CEN were correlated. The lower functional connectivity within the DMN and SN in the low performance group is suggestive of altered attentional and memory processes and/or altered motivation. The higher functional connectivity within the CEN could be related to compensatory mechanisms, without which the subjects would have even lower performances. The correlation between the DMN and CEN suggests a modulation between the lower functional connectivity within the DMN and the higher functional connectivity within the CEN when performance is reduced. Finally, this study suggests that performance modifications in healthy elderly subjects are associated with reorganization of functional connectivity within the DMN, SN, and CEN. PMID:27234057

  14. Connecting musicological tools with Europeana

    NARCIS (Netherlands)

    van Berchum, M.

    2015-01-01

    Within the Europeana Cloud project (see http://pro.europeana.eu/web/europeana- cloud) small research groups are engaged in the development of new research tools, connected to the content present in Europeana. In 2014 a group of musicologists working on early music subjects was invited to participate

  15. Grouted Connections with Shear Keys

    DEFF Research Database (Denmark)

    Pedersen, Ronnie; Jørgensen, M. B.; Damkilde, Lars;

    2012-01-01

    This paper presents a finite element model in the software package ABAQUS in which a reliable analysis of grouted pile-to-sleeve connections with shear keys is the particular purpose. The model is calibrated to experimental results and a consistent set of input parameters is estimated so that...... different structural problems can be reproduced successfully....

  16. Gigabit Wireless for Network Connectivity

    Science.gov (United States)

    Schoedel, Eric

    2009-01-01

    Uninterrupted, high-bandwidth network connectivity is crucial for higher education. Colleges and universities increasingly adopt gigabit wireless solutions because of their fiber-equivalent performance, quick implementation, and significant return on investment. For just those reasons, Rush University Medical Center switched from free space optics…

  17. Early life stress predicts thalamic hyperconnectivity: A transdiagnostic study of global connectivity.

    Science.gov (United States)

    Philip, Noah S; Tyrka, Audrey R; Albright, Sarah E; Sweet, Lawrence H; Almeida, Jorge; Price, Lawrence H; Carpenter, Linda L

    2016-08-01

    Early life stress (ELS) is an established risk factor for psychiatric illness and is associated with altered functional connectivity within- and between intrinsic neural networks. The widespread nature of these disruptions suggests that broad imaging measures of neural connectivity, such as global based connectivity (GBC), may be particularly appropriate for studies of this population. GBC is designed to identify brain regions having maximal functional connectedness with the rest of the brain, and alterations in GBC may reflect a restriction or broadening of network synchronization. We evaluated whether ELS severity predicted GBC in a sample (N = 46) with a spectrum of ELS exposure. Participants included healthy controls without ELS, those with at least moderate ELS but without psychiatric disorders, and a group of patients with ELS- related psychiatric disorders. The spatial distribution of GBC peaked in regions of the salience and default mode networks, and ELS severity predicted increased GBC of the left thalamus (corrected p < 0.005, r = 0.498). Thalamic connectivity was subsequently evaluated and revealed reduced connectivity with the salience network, particularly the dorsal anterior cingulate cortex (corrected p < 0.005), only in the patient group. These findings support a model of disrupted thalamic connectivity in ELS and trauma-related negative affect states, and underscore the importance of a transdiagnostic, dimensional neuroimaging approach to understanding the sequelae of trauma exposure. PMID:27214526

  18. Connecting leadership and learning: Do versatile learners make connective leaders?

    OpenAIRE

    Robinson, Jill L.

    2016-01-01

    Recent failures in leadership, suggest that creating better-quality leadership development programs is critical. In moving from theory to practice, this paper examined the relationship between learning style and leadership style which may enable us to move away from one-size-fits-all leadership development programs. Utilizing Kolb’s Experiential Learning Model and Connective Leadership theory, approximately 3600 college students were analyzed to discover whether versatility in learning styles...

  19. Hyper-connectivity and hyper-plasticity in the medial prefrontal cortex in the valproic Acid animal model of autism

    DEFF Research Database (Denmark)

    Rinaldi, Tania; Perrodin, Catherine; Markram, Henry;

    2008-01-01

    alterations in the prefrontal cortex in the valproic acid rat model of autism and found that the layer 5 pyramidal neurons are connected to significantly more neighbouring neurons than in controls. These excitatory connections are more plastic displaying enhanced long-term potentiation of the strength of...... synapses. The microcircuit alterations found in the prefrontal cortex are therefore similar to the alterations previously found in the somatosensory cortex. Hyper-connectivity and hyper-plasticity in the prefrontal cortex implies hyper-functionality of one of the highest order processing regions in the...... brain, and stands in contrast to the hypo-functionality that is normally proposed in this region to explain some of the autistic symptoms. We propose that a number of deficits in autism such as sociability, attention, multi-tasking and repetitive behaviours, should be re-interpreted in the light of a...

  20. ConnectED: President Obama's Plan for Connecting All Schools to the Digital Age

    Science.gov (United States)

    The White House, 2013

    2013-01-01

    Driven by new digital technologies, the future of learning is increasingly interactive, individualized, and full of real-world experiences and information. Unfortunately, the average school has about the same connectivity as the average American home, but serves 200 times as many users, and fewer than 20 percent of educators say their school's…

  1. Dolichol alters brain membrane functions

    International Nuclear Information System (INIS)

    It has been well demonstrated that there is a direct correlation between increase in dolichol level in brain and aging. An abnormally high level of dolichol was found in brain tissue of patients with pathological aging disorders. The aim of this study is to examine the physiological significance of dolichol affecting membrane transport activity and phospholipid acyl group turnover. Dolichol added to synaptic plasma membranes resulted in a biphasic effect on (Na+, K+)-ATPase, i.e., an enhancement of activity at low concentrations (5 μg/125 mg protein) and an inhibition of activity at high concentrations (40-100 μg). To probe the membrane acyl group turnover, the incorporation of [14C]-arachidonate into plasma membrane phospholipids was examined in the presence and absence of dolichol. Dolichol elicited an increase in the incorporation of label into phospholipids. However, the effects varied depending on whether BSA is present. In the absence of BSA, the increase in labeling of phosphatidylinositols is higher than that of phosphatidylcholines. These results suggest that dolichols, when inserted into membranes, may alter membrane functions

  2. Dolichol alters brain membrane functions

    Energy Technology Data Exchange (ETDEWEB)

    Sun, G.Y.; Sun, A.Y.; Schroeder, F.; Wood, G.; Strong, R.

    1986-03-05

    It has been well demonstrated that there is a direct correlation between increase in dolichol level in brain and aging. An abnormally high level of dolichol was found in brain tissue of patients with pathological aging disorders. The aim of this study is to examine the physiological significance of dolichol affecting membrane transport activity and phospholipid acyl group turnover. Dolichol added to synaptic plasma membranes resulted in a biphasic effect on (Na/sup +/, K/sup +/)-ATPase, i.e., an enhancement of activity at low concentrations (5 ..mu..g/125 mg protein) and an inhibition of activity at high concentrations (40-100 ..mu..g). To probe the membrane acyl group turnover, the incorporation of (/sup 14/C)-arachidonate into plasma membrane phospholipids was examined in the presence and absence of dolichol. Dolichol elicited an increase in the incorporation of label into phospholipids. However, the effects varied depending on whether BSA is present. In the absence of BSA, the increase in labeling of phosphatidylinositols is higher than that of phosphatidylcholines. These results suggest that dolichols, when inserted into membranes, may alter membrane functions.

  3. Protamine alterations in human spermatozoa.

    Science.gov (United States)

    Jodar, Meritxell; Oliva, Rafael

    2014-01-01

    Protamines are the major nuclear proteins in sperm cells, having a crucial role in the correct packaging of the paternal DNA. The fact that protamine haploinsufficiency in mice resulted in abnormal chromatin packaging and male infertility suggested that the protamines could also be important candidates in explaining some of the idiopathic male infertility cases in humans. The first clinical studies focused on analyzing protamines at the protein level. Various studies have found the presence of an altered amount of protamines in some infertile patients, in contrast to the normal situation in fertile individuals where the two protamines, protamine 1 and protamine 2, are both present in approximately equal quantities. Subsequently, the protamine genes were the subject of various mutational genetic screening studies in search of variants that could be associated with deregulation in the protamine expression observed. The results of these protamine mutational studies showed that the presence of high penetrant mutations is a very rare cause of male infertility. However, some variants and some haplotypes described may behave as risk factors for male infertility. More recently, the presence of RNA in the mature sperm cell has also been investigated. The present chapter will introduce the basic aspects of protamine evolution and function and review the various articles published to date on the relationship between the protamines studied at the DNA, RNA, and protein levels and male infertility. PMID:23955674

  4. Structural Brain Alterations in Motor Subtypes of Parkinson’s Disease: Evidence from Probabilistic Tractography and Shape Analysis

    Science.gov (United States)

    Vervoort, Griet; Leunissen, Inge; Firbank, Michael; Heremans, Elke; Nackaerts, Evelien; Vandenberghe, Wim; Nieuwboer, Alice

    2016-01-01

    Background and Objectives The postural instability and gait disorder (PIGD) and tremor dominant (TD) subtypes of Parkinson’s disease (PD) show different patterns of alterations in functional connectivity (FC) between specific brain regions. This study aimed to investigate the relation between symptomatic heterogeneity in PD and structural alterations underlying these FC changes. Methods 68 PD patients classified as PIGD (n = 41) or TD (n = 19) and 19 age-matched controls underwent Magnetic Resonance Imaging (MRI). Diffusion-weighted images were used to assess fractional anisotropy (FA) and mean diffusivity (MD) at the whole-brain level using tract-based spatial statistics (TBSS). In addition, structural connectivity was assessed between regions that previously showed altered FC using probabilistic tractography. Anatomical images were used to determine shape and volume of the putamen, caudate and pallidum. Results TBSS revealed widespread FA reductions in PIGD compared to controls involving the superior longitudinal fasciculi and corpus callosum. No such differences were found in TD. Both PD subgroups had increased MD compared to controls in tracts connecting the left caudate with the bilateral ventral putamen. TD patients additionally showed increased MD compared to PIGD and controls in tracts connecting the right inferior parietal lobule with the right premotor and primary motor cortex, which previously showed altered FC. We also found grey matter atrophy in the rostrodorsal head of the caudate in PIGD compared to controls. Conclusion Microstructural changes in white matter tracts, particularly in those connecting striatal sub-areas, partly underlie FC alterations in PD subtypes. Caudate shape alterations further implicate the striatum in PIGD pathophysiology. PMID:27314952

  5. Increased connectivity between sensorimotor and attentional areas in Parkinson's disease

    Energy Technology Data Exchange (ETDEWEB)

    Onu, Mihaela [Medical Imaging Department, Clinical Hospital ' ' Prof. Dr. Th. Burghele' ' , Bucharest (Romania); Carol Davila University of Medicine and Pharmacy, Biophysics, Bucharest (Romania); Badea, Liviu [National Institute for Research and Development in Informatics, Artificial Intelligence and Bioinformatics Group, Bucharest (Romania); Roceanu, Adina; Bajenaru, Ovidiu [University of Bucharest Emergency Hospital, Neurology Department, Bucharest (Romania); Tivarus, Madalina [University of Rochester Medical Center, Department of Imaging Sciences and Rochester Center for Brain Imaging, Rochester, NY (United States)

    2015-09-15

    Our study is using Independent Component Analysis (ICA) to evaluate functional connectivity changes in Parkinson's disease (PD) in an unbiased manner. Resting-state functional magnetic resonance imaging (rs-fMRI) data was collected for 27 PD patients and 16 healthy subjects. Differences for intra- and inter-network connectivity between healthy subjects and patients were investigated using FMRIB Software Library (FSL) tools (Melodic ICA, dual regression, FSLNets). Twenty-three ICA maps were identified as components of neuronal origin. For intra-network connectivity changes, eight components showed a significant connectivity increase in patients (p < 0.05); these were correlated with clinical scores and were largest for (sensori)motor networks. For inter-network connectivity changes, we found higher connectivity between the sensorimotor network and the spatial attention network (p = 0.0098) and lower connectivity between anterior and posterior default mode networks (DMN) (p = 0.024), anterior DMN and visual recognition networks (p = 0.026), as well as between visual attention and main dorsal attention networks (p = 0.03), for patients as compared to healthy subjects. The area under the Receiver Operating Characteristics (ROC) curve for the best predictor (partial correlation between sensorimotor and spatial attention networks) was 0.772. These functional alterations were not associated with any gray or white matter structural changes. Our results show higher connectivity between sensorimotor and spatial attention areas in patients that may be related to the reduced movement automaticity in PD. (orig.)

  6. Task-related deactivation and functional connectivity of the subgenual cingulate cortex in major depressive disorder

    Directory of Open Access Journals (Sweden)

    Christopher G Davey

    2012-02-01

    Full Text Available Background: Major depressive disorder is associated with functional alterations in activity and resting-state connectivity of the extended medial frontal network. In this study we aimed to examine how task-related medial network activity and connectivity were affected by depression.Methods: Eighteen patients with major depressive disorder, aged 15- to 24-years-old, were matched with 19 healthy control participants. We characterised task-related activations and deactivations while participants engaged with an executive-control task (the multi-source interference task; MSIT. We used a psycho-physiological interactions (PPI approach to examine functional connectivity changes with subgenual ACC. Voxelwise statistical maps for each analysis were compared between the patient and control groups.Results: There were no differences between groups in their behavioral performances on the MSIT task, and nor in patterns of activation and deactivation. Assessment of functional connectivity with the subgenual cingulate showed that depressed patients did not demonstrate the same reduction in functional connectivity with the ventral striatum during task performance, but that they showed greater reduction in functional connectivity with adjacent ventromedial frontal cortex. The magnitude of this latter connectivity change predicted the relative activation of task-relevant executive control regions in depressed patients.Conclusions: The study reinforces the importance of the subgenual cingulate cortex for depression, and demonstrates how dysfunctional connectivity with ventral brain regions might influence executive–attentional processes.

  7. Ventral medial prefrontal functional connectivity and emotion regulation in chronic schizophrenia: A pilot study

    Institute of Scientific and Technical Information of China (English)

    Feng-Mei Fan; Shu-Ping Tan; Fu-De Yang; Yun-Long Tan; Yan-Li Zhao; Nan Chen; Bin-Bin Li

    2013-01-01

    People with schizophrenia exhibit impaired social cognitive functions,particularly emotion regulation.Abnormal activations of the ventral medial prefrontal cortex (vMPFC) during emotional tasks have been demonstrated in schizophrenia,suggesting its important role in emotion processing in patients.We used the resting-state functional connectivity approach,setting a functionally relevant region,the vMPFC,as a seed region to examine the intrinsic functional interactions and communication between the vMPFC and other brain regions in schizophrenic patients.We found hypo-connectivity between the vMPFC and the medial frontal cortex,right middle temporal lobe (MTL),right hippocampus,parahippocampal cortex (PHC) and amygdala.Further,there was a decreased strength of the negative connectivity (or anticorrelation) between the vMPFC and the bilateral dorsal lateral prefrontal cortex (DLPFC) and pre-supplementary motor areas.Among these connectivity alterations,reduced vMPFCDLPFC connectivity was positively correlated with positive symptoms on the Positive and Negative Syndrome Scale,while vMPFC-right MTL/PHC/amygdala functional connectivity was positively correlated with the performance of emotional regulation in patients.These findings imply that communication and coordination throughout the brain networks are disrupted in schizophrenia.The emotional correlates of vMPFC connectivity suggest a role of the hypo-connectivity between these regions in the neuropathology of abnormal social cognition in chronic schizophrenia.

  8. Increased connectivity between sensorimotor and attentional areas in Parkinson's disease

    International Nuclear Information System (INIS)

    Our study is using Independent Component Analysis (ICA) to evaluate functional connectivity changes in Parkinson's disease (PD) in an unbiased manner. Resting-state functional magnetic resonance imaging (rs-fMRI) data was collected for 27 PD patients and 16 healthy subjects. Differences for intra- and inter-network connectivity between healthy subjects and patients were investigated using FMRIB Software Library (FSL) tools (Melodic ICA, dual regression, FSLNets). Twenty-three ICA maps were identified as components of neuronal origin. For intra-network connectivity changes, eight components showed a significant connectivity increase in patients (p < 0.05); these were correlated with clinical scores and were largest for (sensori)motor networks. For inter-network connectivity changes, we found higher connectivity between the sensorimotor network and the spatial attention network (p = 0.0098) and lower connectivity between anterior and posterior default mode networks (DMN) (p = 0.024), anterior DMN and visual recognition networks (p = 0.026), as well as between visual attention and main dorsal attention networks (p = 0.03), for patients as compared to healthy subjects. The area under the Receiver Operating Characteristics (ROC) curve for the best predictor (partial correlation between sensorimotor and spatial attention networks) was 0.772. These functional alterations were not associated with any gray or white matter structural changes. Our results show higher connectivity between sensorimotor and spatial attention areas in patients that may be related to the reduced movement automaticity in PD. (orig.)

  9. Abnormal amygdala connectivity in patients with primary insomnia: Evidence from resting state fMRI

    International Nuclear Information System (INIS)

    Background: Neurobiological mechanisms underlying insomnia are poorly understood. Previous findings indicated that dysfunction of the emotional circuit might contribute to the neurobiological mechanisms underlying insomnia. The present study will test this hypothesis by examining alterations in functional connectivity of the amygdala in patients with primary insomnia (PI). Methods: Resting-state functional connectivity analysis was used to examine the temporal correlation between the amygdala and whole-brain regions in 10 medication-naive PI patients and 10 age- and sex-matched healthy controls. Additionally, the relationship between the abnormal functional connectivity and insomnia severity was investigated. Results: We found decreased functional connectivity mainly between the amygdala and insula, striatum and thalamus, and increased functional connectivity mainly between the amygdala and premotor cortex, sensorimotor cortex in PI patients as compared to healthy controls. The connectivity of the amygdala with the premotor cortex in PI patients showed significant positive correlation with the total score of the Pittsburgh Sleep Quality Index (PSQI). Conclusions: The decreased functional connectivity between the amygdala and insula, striatum, and thalamus suggests that dysfunction in the emotional circuit might contribute to the neurobiological mechanisms underlying PI. The increased functional connectivity of the amygdala with the premotor and sensorimotor cortex demonstrates a compensatory mechanism to overcome the negative effects of sleep deficits and maintain the psychomotor performances in PI patients.

  10. Hyperglycaemia Alters Thymic Epithelial Cell Function

    Directory of Open Access Journals (Sweden)

    Vera Alexandrovna Abramova

    2013-07-01

    Full Text Available Insulin-dependent diabetes mellitus (IDDM is considered to be a consequence of unchecked auto-immune processes. Alterations in immune system responses are thought to be the cause of the disease, but the possibility that altered metabolite levels (glucose can establish the disease by specifically acting on and altering thymus stroma functions has not been investigated. Therefore, the direct effect of hyperglycaemia (HG on central tolerance mechanisms as a causative agent needs to be investigated.

  11. Reduced beta band connectivity during number estimation in autism

    Directory of Open Access Journals (Sweden)

    Katrin A. Bangel

    2014-01-01

    Full Text Available Recent evidence suggests that disruption of integrative processes in sensation and perception may play a critical role in cognitive and behavioural atypicalities characteristic of ASD. In line with this, ASD is associated with altered structural and functional brain connectivity and atypical patterns of inter-regional communication which have been proposed to contribute to cognitive difficulties prevalent in this group. The present MEG study used atlas-guided source space analysis of inter-regional phase synchronization in ASD participants, as well as matched typically developing controls, during a dot number estimation task. This task included stimuli with globally integrated forms (animal shapes as well as randomly-shaped stimuli which lacked a coherent global pattern. Early task-dependent increases in inter-regional phase synchrony in theta, alpha and beta frequency bands were observed. Reduced long-range beta-band phase synchronization was found in participants with ASD at 70–145 ms during presentation of globally coherent dot patterns. This early reduction in task-dependent inter-regional connectivity encompassed numerous areas including occipital, parietal, temporal, and frontal lobe regions. These results provide the first evidence for inter-regional phase synchronization during numerosity estimation, as well as its alteration in ASD, and suggest that problems with communication among brain areas may contribute to difficulties with integrative processes relevant to extraction of meaningful ‘Gestalt’ features in this population.

  12. Connection between Transmission Quality Parametrs

    Directory of Open Access Journals (Sweden)

    Andrej Sulovec

    2003-01-01

    Full Text Available Errors occuring in digital transmission are the major source of degradation in that they affect voice services in terms of distortion of voice, and data type services in terms of lost or inaccurate information or reduces throughput. Therefore International Telecommunication Union ITU-T defined some objectives that enable to express the measure of digital transmission quality. It is often necessary to know the connection between these parameters.

  13. Connection between Transmission Quality Parametrs

    OpenAIRE

    Andrej Sulovec

    2003-01-01

    Errors occuring in digital transmission are the major source of degradation in that they affect voice services in terms of distortion of voice, and data type services in terms of lost or inaccurate information or reduces throughput. Therefore International Telecommunication Union ITU-T defined some objectives that enable to express the measure of digital transmission quality. It is often necessary to know the connection between these parameters.

  14. The Galaxy Dark Matter Connection

    OpenAIRE

    Bosch, Frank C. van den; Yang, Xiaohu; Mo, H. J.

    2004-01-01

    What galaxy lives in what halo? The answer to this simple question holds important information regarding galaxy formation and evolution. We describe a new statistical technique to link galaxies to their dark matter haloes, or light to mass, using the clustering properties of galaxies as function of their luminosity. The galaxy-dark matter connection thus established, and parameterized through the conditional luminosity function, indicates the presence of two characteristic scales in galaxy fo...

  15. MANAGERS CONNECTED THROUGH INFORMATION TECHNOLOGY

    OpenAIRE

    Osmarina Pedro Garcia Garcia; Claudio Mioranza; Edison Luiz Leismann

    2015-01-01

    This study had as its central objective to ascertain how managers connect with information technology. The methodology applied was an exploratory research, through a structured questionnaire survey based on qualitative and quantitative approach. The study interviewed eighteen managers in a city in Brazil (Cascavel – Paraná), from the industrial segment distributed in several areas, selected by the non-probabilistic method, considering the samples by convenience. The research results showed...

  16. Connecting Remote Clusters with ATM

    Energy Technology Data Exchange (ETDEWEB)

    Hu, T.C.; Wyckoff, P.S.

    1998-10-01

    Sandia's entry into utilizing clusters of networked workstations is called Computational Plant or CPlant for short. The design of CPlant uses Ethernet to boot the individual nodes, Myrinet to communicate within a node cluster, and ATM to connect between remote clusters. This SAND document covers the work done to enable the use of ATM on the CPlant nodes in the Fall of 1997.

  17. Critical Connections: Health and Academics

    OpenAIRE

    Michael, Shannon L; Merlo, Caitlin L.; Basch, Charles E.; Wentzel, Kathryn R; Wechsler, Howell

    2015-01-01

    BACKGROUND While it is a national priority to support the health and education of students, these sectors must better align, integrate, and collaborate to achieve this priority. This article summarizes the literature on the connection between health and academic achievement using the Whole School, Whole Community, and Whole Child (WSCC) framework as a way to address health-related barriers to learning. METHODS A literature review was conducted on the association between student health and aca...

  18. Nonlinear connections and spinor geometry

    Directory of Open Access Journals (Sweden)

    Nadejda A. Vicol

    2004-05-01

    Full Text Available We present an introduction to the geometry of higher-order vector and covector bundles (including higher-order generalizations of the Finsler geometry and Kaluza-Klein gravity and review the basic results on Clifford and spinor structures on spaces with generic local anisotropy modeled by anholonomic frames with associated nonlinear connection structures. We emphasize strong arguments for application of Finsler-like geometries in modern string and gravity theory, noncommutative geometry and noncommutative field theory, and gravity.

  19. Connected Me - Proof of Concept

    OpenAIRE

    Vajravelu, Dilip Kumar

    2013-01-01

    Connected Me is a Human Body Communication (HBC) system, which is used fortransferring data through human body. The working principle is based on theorycalled Body Coupled Communication (BCC), which uses electrostatic couplingfor transferring data between device and human body. Capacitance between bodyand electrode acts as an electrical interface between devices. BCC has become aprominent research area in the field of Personal Area Network (PAN), introducedby Zimmerman in 1995. Until now ther...

  20. Ecovillage as an information connection

    OpenAIRE

    Vorob'ev, V. V.; Koneva, K. A.

    2015-01-01

    Problem Statement. Publications dedicated to the ecovillages consider questions that are called ecological. But in fact such questions as the use of sustainable building materials, reducing the energy needs of buildings and others don’t represent ecological ones. Theoretical principles of ecological environment proposed by researchers for general plans of settlements also don’t show the interaction with the natural network of connections. Meanwhile ecology is first of all the science of the r...

  1. Linking DMN connectivity to episodic memory capacity: What can we learn from patients with medial temporal lobe damage?

    Directory of Open Access Journals (Sweden)

    Cornelia McCormick

    2014-01-01

    Full Text Available Computational models predict that focal damage to the Default Mode Network (DMN causes widespread decreases and increases of functional DMN connectivity. How such alterations impact functioning in a specific cognitive domain such as episodic memory remains relatively unexplored. Here, we show in patients with unilateral medial temporal lobe epilepsy (mTLE that focal structural damage leads indeed to specific patterns of DMN functional connectivity alterations, specifically decreased connectivity between both medial temporal lobes (MTLs and the posterior part of the DMN and increased intrahemispheric anterior–posterior connectivity. Importantly, these patterns were associated with better and worse episodic memory capacity, respectively. These distinct patterns, shown here for the first time, suggest that a close dialogue between both MTLs and the posterior components of the DMN is required to fully express the extensive repertoire of episodic memory abilities.

  2. Performance evaluations of demountable electrical connections

    International Nuclear Information System (INIS)

    Electrical conductors operating in cryogenic environments can require demountable connections along their lengths. The connections must have low resistance and high reliability and should allow ready assembly and disassembly. In this work, the performance of two types of connections has been evaluated. The first connection type is a clamped surface-to-surface joint. The second connection type is a screwed joint that incorporates male and female machine-thread components. The connections for copper conductors have been evaluated experimentally at 77 K. Experimental variables included thread surface treatment and assembly methods. The results of the evaluations are presented

  3. Competitive Oxidation and Hydration During Aqueous Alteration of Asteroids

    Science.gov (United States)

    Zolotov, M. Y.; Mironenko, M. V.; Shock, E. L.

    2005-01-01

    Introduction: Studies of chondrites show that incorporation of H2O ice during formation of asteroids followed by radioactive heating caused partial oxidation and hydration of primary reduced and anhydrous rocks. Oxidation of kamacite, phosphides, troilite and organic polymers occurred through consumption of water s oxygen and release of H2. Hydration caused formation of serpentine, saponite, chlorite, talc and hydrated salts. Since H2O was the major reactant in oxidation and hydration, these processes could have been competitive. Redox reactions in asteroids should have been closely connected to hydration (dehydration) during aqueous alteration and thermal metamorphism. For example, dehydration and reduction release H2O that can be consumed in oxidation and hydration, respectively. We model asteroidal processes in order to quantify the fate of H2O and water s oxygen in major redox and hydration/dehydration reactions. Model: Equilibrium compositions in the gas-solid-liquid

  4. [Cardiovascular alterations associated with doping].

    Science.gov (United States)

    Thieme, D; Büttner, A

    2015-05-01

    Doping -the abuse of anabolic-androgenic steroids in particular- is widespread in amateur and recreational sports and does not solely represent a problem of professional sports. Excessive overdose of anabolic steroids is well documented in bodybuilding or powerlifting leading to significant side effects. Cardiovascular damages are most relevant next to adverse endocrine effects.Clinical cases as well as forensic investigations of fatalities or steroid consumption in connection with trafficking of doping agents provide only anecdotal evidence of correlations between side effects and substance abuse. Analytical verification and self-declarations of steroid users have repeatedly confirmed the presumption of weekly dosages between 300 and 2000 mg, extra to the fact that co-administration of therapeutics to treat side-effects represent a routine procedure. Beside the most frequent use of medications used to treat erectile dysfunction or estrogenic side-effects, a substantial number of antihypertensive drugs of various classes, i.e. beta-blockers, diuretics, angiotensin II receptor antagonists, calcium channel blockers, as well as ACE inhibitors were recently confiscated in relevant doping cases. The presumptive correlation between misuse of anabolic steroids and self-treatment of cardiovascular side effects was explicitly confirmed by detailed user statements.Two representative fatalities of bodybuilders were introduced to outline characteristic, often lethal side effects of excessive steroid abuse. Moreover, illustrative autopsy findings of steroid acne, thrombotic occlusion of Ramus interventricularis anterior and signs of cardiac infarctions are presented.A potential steroid abuse should be carefully considered in cases of medical consultations of patients exhibiting apparent constitutional modifications and corresponding adverse effects. Moreover, common self-medications -as frequently applied by steroid consumers- should be taken into therapeutic considerations

  5. Dolomite effect on borosilicate glass alteration

    International Nuclear Information System (INIS)

    Highlights: ► Dolomite is a common mineral of clayey formations considered for radioactive waste disposals. ► Borosilicate glass/dolomite interaction have been studied by batch tests and solid analysis. ► Mg provided by dolomite combines with Si from glass to yield secondary Mg–silicates. ► This precipitation increases glass alteration, though in a moderate manner. ► Geochemical modeling allows to quantify the alteration mechanisms involved. - Abstract: Dolomite (CaMg(CO3)2) is one of the common rock-forming minerals in many geological media, in particular in clayey layers that are currently considered as potential host formations for a deep radioactive waste disposal facility. Magnesium in solution is one of the elements known to potentially enhance the alteration of nuclear glasses. The alteration of borosilicate glasses with dolomite as a Mg-bearing mineral source was investigated for 8 months in batch tests at 90 °C. Glass composition effects were investigated through two compositions (SiBNaAlCaZrO and SiBNaAlZrO) differing in their Ca content. The Ca-rich glass alteration is slightly enhanced in the presence of dolomite compared to the alteration observed in pure water. This greater alteration is explained by the precipitation of Mg silicate phases on the dolomite and glass surfaces. In contrast, the Ca-free glass alteration decreases in the presence of dolomite compared to the alteration observed in pure water. This behavior is explained by Ca incorporation in the amorphous layer (formed during glass alteration) coming from dolomite dissolution. Calcium acts as a layer reorganizer and limits glass alteration by reducing the diffusion of reactive species through the altered layer. Modeling was performed using the GRAAL model implemented within the CHESS/HYTEC geochemical code to discriminate and interpret the mechanisms involved in glass/dolomite interactions. Magnesium released by dolomite dissolution reacts with silica provided by glass

  6. Decreased functional connectivity of the amygdala in Alzheimer's disease revealed by resting-state fMRI

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Hongxiang [Department of Radiology, Chinese PLA General Hospital, Beijing, 100853 (China); Liu, Yong, E-mail: yliu@nlpr.ia.ac.cn [Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190 (China); National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190 (China); Zhou, Bo; Zhang, Zengqiang [Department of Neurology, Institute of Geriatrics and Gerontology, Chinese PLA General Hospital, Beijing, 100853 (China); An, Ningyu [Department of Radiology, Chinese PLA General Hospital, Beijing, 100853 (China); Wang, Pan; Wang, Luning [Department of Neurology, Institute of Geriatrics and Gerontology, Chinese PLA General Hospital, Beijing, 100853 (China); Zhang, Xi, E-mail: zhangxi@301hospital.com.cn [Department of Neurology, Institute of Geriatrics and Gerontology, Chinese PLA General Hospital, Beijing, 100853 (China); Jiang, Tianzi [Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190 (China); National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190 (China); Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054 (China); The Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072 (Australia)

    2013-09-15

    Alzheimer's disease (AD), the most common cause of dementia, is thought to be a progressive neurodegenerative disease that is clinically characterised by a decline of memory and other cognitive functions. Mild cognitive impairment (MCI) is considered to be the prodromal stage of AD. However, the relationship between AD and MCI and the development process remains unclear. The amygdala is one of the most vulnerable structures in the early stages of AD. To our knowledge, this is the first report on the alteration of the functional connectivity of the amygdala in AD and MCI subjects. We hypothesised that the amygdala-cortical loop is impaired in AD and that these alterations relate to the disease severity. In our study, we used resting-state functional MRIs to investigate the altered amygdala connectivity patterns in 35 AD patients, 27 MCI patients and 27 age- and gender-matched normal controls (NC). Compared with the NC, the decreased functional connectivity found in the AD patients was mainly located between the amygdala and the regions that are included in the default mode, context conditioning and extinction networks. Importantly, the decreased functional connectivity between the amygdala and some of the identified regions was positively correlated with MMSE, which indicated that the cognitive function impairment is related to an altered functional connectivity pattern.

  7. Decreased functional connectivity of the amygdala in Alzheimer's disease revealed by resting-state fMRI

    International Nuclear Information System (INIS)

    Alzheimer's disease (AD), the most common cause of dementia, is thought to be a progressive neurodegenerative disease that is clinically characterised by a decline of memory and other cognitive functions. Mild cognitive impairment (MCI) is considered to be the prodromal stage of AD. However, the relationship between AD and MCI and the development process remains unclear. The amygdala is one of the most vulnerable structures in the early stages of AD. To our knowledge, this is the first report on the alteration of the functional connectivity of the amygdala in AD and MCI subjects. We hypothesised that the amygdala-cortical loop is impaired in AD and that these alterations relate to the disease severity. In our study, we used resting-state functional MRIs to investigate the altered amygdala connectivity patterns in 35 AD patients, 27 MCI patients and 27 age- and gender-matched normal controls (NC). Compared with the NC, the decreased functional connectivity found in the AD patients was mainly located between the amygdala and the regions that are included in the default mode, context conditioning and extinction networks. Importantly, the decreased functional connectivity between the amygdala and some of the identified regions was positively correlated with MMSE, which indicated that the cognitive function impairment is related to an altered functional connectivity pattern

  8. Sediment connectivity: addressing the non-linearity of erosional processes within spatially and temporally variable environments

    Science.gov (United States)

    Turnbull, Laura; Bracken, Louise; Wainwright, John

    2014-05-01

    A major challenge for geomorphologists is to scale up small-magnitude erosional processes to predict landscape form and landscape-scale sediment flux. Here, we present a sediment connectivity framework, showing the controls and dynamics of sediment transport which govern erosional processes across multiple scales. This framework is based on the concept that the interplay of structural components (morphology) and process components (flow of energy/transport vectors and materials) determines the long-term behaviour of the sediment flux, which is manifest as a change in landform. The sediment connectivity framework therefore incorporates all aspects of the geomorphic system that control sediment flux. Because of the link between process (flux) and form, sediment connectivity is a product of sediment entrainment and sediment-transport distance and the emergent characteristics of sediment deposition and sediment residence times. Therefore, depending on the dominant processes in operation and their spatial and temporal configuration, the scaling of erosion differs in form and extent. Sediment-transport distances are an integral component of this sediment connectivity framework, as they provide a means of addressing the non-linearity of erosional processes within spatially and temporally variable environments. We apply this sediment-connectivity framework to test how structural and process components of a system alter sediment flux. Specifically, we use a modelling-based approach to investigate how antecedent soil-moisture content and rainfall characteristics affect hydrological and sediment connectivity over a shrub-encroachment gradient in the southwest USA; a region that is undergoing rapid vegetation transitions. We carried out scenario-based runoff and erosion modelling using MAHLERAN to investigate the impact of changes in runoff and erosion to soil moisture and rainfall characteristics. Using outputs from these simulations, we quantify hydrological and sediment

  9. Altered brain response to reward and punishment in adolescents with Anorexia Nervosa

    OpenAIRE

    Bischoff-Grethe, Amanda; McCurdy, Danyale; Grenesko-Stevens, Emily; (Zoe) Irvine, Laura E.; Wagner, Angela; Yau, Wai-Ying Wendy; Fennema-Notestine, Christine; Wierenga, Christina E.; Fudge, Julie L.; Delgado, Mauricio R.; Kaye, Walter H.

    2013-01-01

    Adults recovered from anorexia nervosa (AN) have altered reward modulation within striatal limbic regions associated with the emotional significance of stimuli, and executive regions concerned with planning and consequences. We hypothesized that adolescents with AN would show similar disturbed reward modulation within the striatum and the anterior cingulate cortex, a region connected to the striatum and involved in reward-guided action selection. Using functional magnetic resonance imaging, t...

  10. Reduced resting state functional connectivity of the somatosensory cortex predicts psychopathological symptoms in women with bulimia nervosa

    OpenAIRE

    Luca eLavagnino; Federico eAmianto; Federico eD'Agata; Zirui eHuang; Paolo eMortara; Giovanni eAbbate Daga; Enrica eMarzola; Angela eSpalatro; Secondo eFassino; Georg eNorthoff

    2014-01-01

    BackgroundAlterations in the resting state functional connectivity (rs-FC) of several brain networks have been demonstrated in eating disorders. However, very few studies are currently available on brain network dysfunctions in bulimia nervosa (BN). The somatosensory network is central in processing body-related stimuli and it may be altered in BN. The present study therefore aimed to investigate rs-FC in the somatosensory network in bulimic women. MethodsSixteen medication-free women with B...

  11. Reduced resting-state functional connectivity of the somatosensory cortex predicts psychopathological symptoms in women with bulimia nervosa.

    OpenAIRE

    Lavagnino, Luca; Amianto, Federico; D’Agata, Federico; Huang, Zirui; Mortara, Paolo; Abbate-Daga, Giovanni; Marzola, Enrica; Spalatro, Angela; Fassino, Secondo; Northoff, Georg

    2014-01-01

    Background: Alterations in the resting-state functional connectivity (rs-FC) of several brain networks have been demonstrated in eating disorders. However, very few studies are currently available on brain network dysfunctions in bulimia nervosa (BN). The somatosensory network is central in processing body-related stimuli and it may be altered in BN. The present study therefore aimed to investigate rs-FC in the somatosensory network in bulimic women. Methods: Sixteen medication-free women ...

  12. Psychosis related to neurological conditions: pro and cons of the dis- / mis-connectivity models of schizophrenia

    OpenAIRE

    Foucher, Jack R; Luck, David

    2006-01-01

    Schizophrenia is still a condition with obscure causes and psychopathology. This paper aims to discuss the “disconnectivity” hypothesis in relation to some neurological conditions which are known to alter brain connectivity, as well as mimicking some aspects of the disorder. After a short historical introduction to the concept, we will examine the evidence for connectivity problems in schizophrenia, separating the anatomical level from the functional level. Then, we will discuss three differe...

  13. Resting-state interhemispheric motor connectivity and white matter integrity correlate with motor impairment in chronic stroke

    OpenAIRE

    GottfriedSchlaug; JoyceLChen

    2013-01-01

    Functional and structural reorganization in the brain occurs after stroke. The ability to predict motor outcomes may depend on patterns of brain functional and structural connectivity. We tested the hypothesis that alterations in motor transcallosal and corticospinal connections correlate with motor impairment in patients with chronic stroke. Eleven ischemic stroke patients underwent the Upper Extremity Fugl Meyer assessment, resting state functional magnetic resonance imaging, and diffusion ...

  14. The effects of hemorrhagic parenchymal infarction on the establishment of sensori-motor structural and functional connectivity in early infancy

    OpenAIRE

    Arichi, T.; Counsell, S; Allievi, A. G.; Martinez-Biarge, M.; Mondi, V.; Tusor, N.; Merchant, N.; Burdet, E.; Cowan, F. M.; Edwards, A. D.

    2014-01-01

    Introduction The objective of the study was to characterize alterations of structural and functional connectivity within the developing sensori-motor system in infants with focal perinatal brain injury and at high risk of cerebral palsy. Methods Functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) data were used to study the developing functional and structural connectivity framework in six infants born prematurely at term equivalent age. This was first characterise...

  15. A kernel version of multivariate alteration detection

    DEFF Research Database (Denmark)

    Nielsen, Allan Aasbjerg; Vestergaard, Jacob Schack

    2013-01-01

    Based on the established methods kernel canonical correlation analysis and multivariate alteration detection we introduce a kernel version of multivariate alteration detection. A case study with SPOT HRV data shows that the kMAD variates focus on extreme change observations....

  16. Altered States of Consciousness and Alcohol.

    Science.gov (United States)

    Jones, Ben Morgan; And Others

    This document contains the reports of research at a symposium on "Altered States of Consciousness and Alcohol." The participants primarily agreed that alcohol induces an altered state of consciousness similar to other drugs, but that this phenomenon has not been explicitly stated due to the current interest in newer and more novel drugs. The…

  17. Altered cortical communication in amyotrophic lateral sclerosis.

    Science.gov (United States)

    Blain-Moraes, Stefanie; Mashour, George A; Lee, Heonsoo; Huggins, Jane E; Lee, Uncheol

    2013-05-24

    Amyotrophic lateral sclerosis (ALS) is a disorder associated primarily with the degeneration of the motor system. More recently, functional connectivity studies have demonstrated potentially adaptive changes in ALS brain organization, but disease-related changes in cortical communication remain unknown. We recruited individuals with ALS and age-matched controls to operate a brain-computer interface while electroencephalography was recorded over three sessions. Using normalized symbolic transfer entropy, we measured directed functional connectivity from frontal to parietal (feedback connectivity) and parietal to frontal (feedforward connectivity) regions. Feedback connectivity was not significantly different between groups, but feedforward connectivity was significantly higher in individuals with ALS. This result was consistent across a broad electroencephalographic spectrum (4-35 Hz), and in theta, alpha and beta frequency bands. Feedback connectivity has been associated with conscious state and was found to be independent of ALS symptom severity in this study, which may have significant implications for the detection of consciousness in individuals with advanced ALS. We suggest that increases in feedforward connectivity represent a compensatory response to the ALS-related loss of input such that sensory stimuli have sufficient strength to cross the threshold necessary for conscious processing in the global neuronal workspace. PMID:23567743

  18. Altered retrieval of melodic information in congenital amusia: Insights from Dynamic Causal Modeling of MEG data

    Directory of Open Access Journals (Sweden)

    Philippe eAlbouy

    2015-02-01

    Full Text Available Congenital amusia is a neuro-developmental disorder that primarily manifests as a difficulty in the perception and memory of pitch-based materials, including music. Recent findings have shown that the amusic brain exhibits altered functioning of a fronto-temporal network during pitch perception and memory. Within this network, during the encoding of melodies, a decreased right backward frontal-to-temporal connectivity was reported in amusia, along with an abnormal connectivity within and between auditory cortices. The present study investigated whether connectivity patterns between these regions were affected during the retrieval of melodies. Amusics and controls had to indicate whether sequences of six tones that were presented in pairs were the same or different. When melodies were different only one tone changed in the second melody. Brain responses to the changed tone in Different trials and to its equivalent (original tone in Same trials were compared between groups using Dynamic Causal Modeling (DCM. DCM results confirmed that congenital amusia is characterized by an altered effective connectivity within and between the two auditory cortices during sound processing. Furthermore, right temporal-to-frontal message passing was altered in comparison to controls, with an increase in Same trials and a decrease in Different trials. An additional analysis in control participants emphasized that the detection of an unexpected event in the typically functioning brain is supported by right fronto-temporal connections. The results can be interpreted in a predictive coding framework as reflecting an abnormal prediction error sent by temporal auditory regions towards frontal areas in the amusic brain.

  19. MOHCS: Towards Mining Overlapping Highly Connected Subgraphs

    CERN Document Server

    Lin, Xiahong; Chen, Kefei; Chiu, David K Y

    2008-01-01

    Many networks in real-life typically contain parts in which some nodes are more highly connected to each other than the other nodes of the network. The collection of such nodes are usually called clusters, communities, cohesive groups or modules. In graph terminology, it is called highly connected graph. In this paper, we first prove some properties related to highly connected graph. Based on these properties, we then redefine the highly connected subgraph which results in an algorithm that determines whether a given graph is highly connected in linear time. Then we present a computationally efficient algorithm, called MOHCS, for mining overlapping highly connected subgraphs. We have evaluated experimentally the performance of MOHCS using real and synthetic data sets from computer-generated graph and yeast protein network. Our results show that MOHCS is effective and reliable in finding overlapping highly connected subgraphs. Keywords-component; Highly connected subgraph, clustering algorithms, minimum cut, m...

  20. MedlinePlus Connect: Web Application

    Science.gov (United States)

    ... MedlinePlus Connect → Web Application URL of this page: https://www.nlm.nih.gov/medlineplus/connect/application.html ... the base URL for the Web application is: https://apps.nlm.nih.gov/medlineplus/services/mpconnect.cfm ...

  1. MedlinePlus Connect: Web Service

    Science.gov (United States)

    ... MedlinePlus Connect → Web Service URL of this page: https://www.nlm.nih.gov/medlineplus/connect/service.html ... the base URL for the Web service is: https://apps.nlm.nih.gov/medlineplus/services/mpconnect_service. ...

  2. MedlinePlus Connect: Email List

    Science.gov (United States)

    ... nih.gov/medlineplus/connect/emaillist.html MedlinePlus Connect: Email List To use the sharing features on this ... developments and exchange ideas with your colleagues. This email list will be useful for health IT developers ...

  3. Connecting Related Rates and Differential Equations

    Science.gov (United States)

    Brandt, Keith

    2012-01-01

    This article points out a simple connection between related rates and differential equations. The connection can be used for in-class examples or homework exercises, and it is accessible to students who are familiar with separation of variables.

  4. Long-term alteration of cementitious materials

    International Nuclear Information System (INIS)

    Long-term alteration of cementitious materials in the geological condition has been discussed for the safety assessment of radioactive waste disposal. This paper describes the status of understanding long-term chemical alteration of cement, by reviewing some of our investigations on this issue in which we developed a thermodynamic incongruent C-S-H dissolution/precipitation model and a reactive transport calculation code. Alteration of C-S-H gel in a saline groundwater and the change of chemical barrier performance of cementitious materials due to the alteration are also discussed. Some key issues to be discussed further are given and suggested for the future studies on the long-term alteration of cementitious materials in the repository environment. (author)

  5. Resting State Functional Connectivity in Early Blind Humans

    Directory of Open Access Journals (Sweden)

    Harold eBurton

    2014-04-01

    Full Text Available Task-based neuroimaging studies in early blind humans (EB have demonstrated heightened visual cortex responses to non-visual paradigms. Several prior functional connectivity studies in EB have shown altered connections consistent with these task-based results. But these studies generally did not consider behavioral adaptations to lifelong blindness typically observed in EB. Enhanced cognitive abilities shown in EB include greater serial recall and attention to memory. Here, we address the question of the extent to which brain intrinsic activity in EB reflects such adaptations. We performed a resting-state functional magnetic resonance imaging study contrasting 14 EB with 14 age/gender matched normally sighted controls (NS. A principal finding was markedly greater functional connectivity in EB between visual cortex and regions typically associated with memory and cognitive control of attention. In contrast, correlations between visual cortex and non-deprived sensory cortices were significantly lower in EB. Thus, the available data, including that obtained in prior task-based and resting state fMRI studies, as well as the present results, indicate that visual cortex in EB becomes more heavily incorporated into functional systems instantiating episodic recall and attention to non-visual events. Moreover, EB appear to show a reduction in interactions between visual and non-deprived sensory cortices, possibly reflecting suppression of inter-sensory distracting activity.

  6. Chemical Detection using Electrically Open Circuits having no Electrical Connections

    Science.gov (United States)

    Woodward, Stanley E.; Olgesby, Donald M.; Taylor, Bryant D.; Shams, Qamar A.

    2008-01-01

    This paper presents investigations to date on chemical detection using a recently developed method for designing, powering and interrogating sensors as electrically open circuits having no electrical connections. In lieu of having each sensor from a closed circuit with multiple electrically connected components, an electrically conductive geometric pattern that is powered using oscillating magnetic fields and capable of storing an electric field and a magnetic field without the need of a closed circuit or electrical connections is used. When electrically active, the patterns respond with their own magnetic field whose frequency, amplitude and bandwidth can be correlated with the magnitude of the physical quantities being measured. Preliminary experimental results of using two different detection approaches will be presented. In one method, a thin film of a reactant is deposited on the surface of the open-circuit sensor. Exposure to a specific targeted reactant shifts the resonant frequency of the sensor. In the second method, a coating of conductive material is placed on a thin non-conductive plastic sheet that is placed over the surface of the sensor. There is no physical contact between the sensor and the electrically conductive material. When the conductive material is exposed to a targeted reactant, a chemical reaction occurs that renders the material non-conductive. The change in the material s electrical resistance within the magnetic field of the sensor alters the sensor s response bandwidth and amplitude, allowing detection of the reaction without having the reactants in physical contact with the sensor.

  7. Aqueous Alteration on Mars. Chapter 23

    Science.gov (United States)

    Ming, Douglas W.; Morris, Richard V.; Clark, Benton C.

    2007-01-01

    Aqueous alteration is the change in composition of a rock, produced in response to interactions with H2O-bearing ices, liquids, and vapors by chemical weathering. A variety of mineralogical and geochemical indicators for aqueous alteration on Mars have been identified by a combination of surface and orbital robotic missions, telescopic observations, characterization of Martian meteorites, and laboratory and terrestrial analog studies. Mineralogical indicators for aqueous alteration include goethite (lander), jarosite (lander), kieserite (orbiter), gypsum (orbiter) and other Fe-, Mg-, and Ca-sulfates (landers), halides (meteorites, lander), phyllosilicates (orbiter, meteorites), hematite and nanophase iron oxides (telescopic, orbiter, lander), and Fe-, Mg-, and Ca-carbonates (meteorites). Geochemical indicators (landers only) for aqueous alteration include Mg-, Ca-, and Fe-sulfates, halides, and secondary aluminosilicates such as smectite. Based upon these indicators, several styles of aqueous alteration have been suggested on Mars. Acid-sulfate weathering (e.g., formation of jarosite, gypsum, hematite, and goethite), may occur during (1) the oxidative weathering of ultramafic igneous rocks containing sulfides, (2) sulfuric acid weathering of basaltic materials, and (3) acid fog (i.e., vapors rich in H2SO4) weathering of basaltic or basaltic-derived materials. Near-neutral or alkaline alteration occurs when solutions with pH near or above 7 move through basaltic materials and form phases such as phyllosilicates and carbonates. Very low water:rock ratios appear to have been prominent at most of the sites visited by landed missions because there is very little alteration (leaching) of the original basaltic composition (i.e., the alteration is isochemical or in a closed hydrologic system). Most of the aqueous alteration appears to have occurred early in the history of the planet (3 to 4.5 billion years ago); however, minor aqueous alteration may be occurring at the

  8. Brain connectivity in autism spectrum disorder

    OpenAIRE

    Mohammad-Rezazadeh, I; Frohlich, J; Loo, SK; Jeste, SS

    2016-01-01

    Many studies have reported that individuals with autism spectrum disorder (ASD) have different brain connectivity patterns compared with typically developing individuals. However, the results of more recent studies do not unanimously support the traditional view in which individuals with ASD have lower connectivity between distant brain regions and increased connectivity within local brain regions. In this review, we discuss different methods for measuring brain connectivity and how the use o...

  9. Fatigue Assessment of Threaded Riser Connections

    OpenAIRE

    Braun, Moritz,

    2014-01-01

    Threaded connections as found in applications like rigid riser, drillstrings, and workover riser are manufactured with sharp notches. Subjected to cyclic loading, those notches lead to high stress concentrations, which increase the risk of fatigue crack initiation significantly. A common connection type that has been the basis for extensive studies is the API Line Pipe connection. The basic API thread type consists of truncated triangular threads. In order to tighten the connection the male a...

  10. Impact of connectivity on sustainable development

    OpenAIRE

    Ylä-Soininmäki, Mea

    2016-01-01

    Connectivity has changed the world for good, and its impact will only increase in the future. Connecting people, and due to Internet of Things (IoT), connecting devices have created and will continue to create various opportunities for individuals, industries and the society. This has a major impact on sustainable development, and it provides solutions that may help improve the economic, social and environmental fields. In the economic field, connectivity and access to the Internet have e...

  11. 46 CFR 64.33 - Pipe connection.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Pipe connection. 64.33 Section 64.33 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MARINE PORTABLE TANKS AND CARGO HANDLING SYSTEMS Standards for an MPT § 64.33 Pipe connection. Each pipe connection that is not a...

  12. Formal Connections for families of Star Products

    DEFF Research Database (Denmark)

    Ellegaard Andersen, Jørgen; Masulli, Paolo; Schaetz, Florian

    We define the notion of a formal connection for a smooth family of star products with fixed underlying symplectic structure. Such a formal connection allows one to relate star products at different points in the family. This generalizes the formal Hitchin connection introduced by the first author...

  13. MedlinePlus Connect: Web Service

    Science.gov (United States)

    ... MedlinePlus Connect → Web Service URL of this page: https://medlineplus.gov/connect/service.html MedlinePlus Connect: Web ... the base URL for the Web service is: https://apps.nlm.nih.gov/medlineplus/services/mpconnect_service. ...

  14. MedlinePlus Connect: Web Application

    Science.gov (United States)

    ... MedlinePlus Connect → Web Application URL of this page: https://medlineplus.gov/connect/application.html MedlinePlus Connect: Web ... the base URL for the Web application is: https://apps.nlm.nih.gov/medlineplus/services/mpconnect.cfm ...

  15. Connections between painting and music

    OpenAIRE

    Jerič, Tina

    2014-01-01

    Music and painting are two of the most widespread and intertwined fields of art. The interaction between the two of them is very common, which can be observed in the names of theoretical painting concepts that derive from music. The thesis explores the influence that music has had on painting both in the past and in the present. The first part of my theoretical section largely deals with the connections between music and painting. I focused on different human senses which allow us to perce...

  16. Women's connectivity in extreme networks.

    Science.gov (United States)

    Manrique, Pedro; Cao, Zhenfeng; Gabriel, Andrew; Horgan, John; Gill, Paul; Qi, Hong; Restrepo, Elvira M; Johnson, Daniela; Wuchty, Stefan; Song, Chaoming; Johnson, Neil

    2016-06-01

    A popular stereotype is that women will play more minor roles than men as environments become more dangerous and aggressive. Our analysis of new longitudinal data sets from offline and online operational networks [for example, ISIS (Islamic State)] shows that although men dominate numerically, women emerge with superior network connectivity that can benefit the underlying system's robustness and survival. Our observations suggest new female-centric approaches that could be used to affect such networks. They also raise questions about how individual contributions in high-pressure systems are evaluated. PMID:27386564

  17. Adobe Connect Pro ohjauksen apuna

    OpenAIRE

    Koukkari, Katja

    2010-01-01

    Tämän kehittämistyön tavoitteena on tarkastella, miten suunnittelijat ja opiskelijat kokevat Adobe Connect Pro -ohjelman käytön ohjauksen apuna sekä miten käytettävä ohjelma on sekä teknisesti että pedagogisesti. Teoriaosuudessa tarkastelen mm. sulautuvaa opetusta ja verkko-ohjauksen erityispiirteitä. Internet tarjoaa mahdollisuuksia sekä eriaikaiseen että reaaliaikaiseen viestintään. Perinteisesti verkkokurssin viestintä on ollut eriaikaista tekstipohjaisuuteen perustuvaa viestintää. Nykyisi...

  18. Connectivity graphs of uncertainty regions

    CERN Document Server

    Chambers, Erin; Lenchner, Jonathan; Sember, Jeff; Srinivasan, Venkatesh; Stege, Ulrike; Stolpner, Svetlana; Weibel, Christophe; Whitesides, Sue

    2010-01-01

    We study a generalization of the well known bottleneck spanning tree problem called "Best Case Connectivity with Uncertainty": Given a family of geometric regions, choose one point per region, such that the length of the longest edge in a spanning tree of a disc intersection graph is minimized. We show that this problem is NP-hard even for very simple scenarios such as line segments and squares. We also give exact and approximation algorithms for the case of line segments and unit discs respectively.

  19. Study of rectenna array connection

    Energy Technology Data Exchange (ETDEWEB)

    Miura, T.; Shinohara, N.; Matsumoto, H. [Kyoto Univ., Uji (Japan). Engineering Research Inst.

    1997-11-01

    A study was conducted in which a new rectenna working at 2.45 GHz microwave was developed for ground-to-ground microwave power transmission. The new rectenna consists of an antenna section and a rectifying section. The new design is simple and therefore more accurate than a micro-strip type patch antenna. The efficiency of conversion of microwave power to direct current depends on the mutual dependence of antenna elements and circuit conditions of rectifying sections. A series of experiments were conducted to analyze the rectenna characteristics and a method for efficiently connecting rectenna arrays was proposed. 3 refs., 2 tabs., 15 figs.

  20. New molecular connections in angiogenesis

    Institute of Scientific and Technical Information of China (English)

    Qiling Xu; David Wilkinson

    2010-01-01

    @@ In vertebrates, oxygen and nutrients are delivered to tissues by the circula-tion of blood through vessels, comprised of a branched network of endothelial tubes termed the vasculature. Crucial for the formation of blood vessels during development is the process of angiogenesis, in which new sprouts form from pre-existing vessels in a complex cascade of cellular events. This involves the activation of an endothelial cell in the vessel to become a highly exploratory 'tip' cell that migrates to invade the surrounding tissues, while remaining tightly connected to the fol-lowing cells that subsequently generate the tubular structures of a new vessel.