WorldWideScience

Sample records for altered stress performance

  1. Post-fire wood management alters water stress, growth, and performance of pine regeneration in a Mediterranean ecosystem

    Science.gov (United States)

    Maranon-Jimenez, Sara; Castro, Jorge; Querejeta, José Ignacio; Fernandez-Ondono, Emilia; Allen, Craig D.

    2013-01-01

    Extensive research has focused on comparing the impacts of post-fire salvage logging versus those of less aggressive management practices on forest regeneration. However, few studies have addressed the effects of different burnt-wood management options on seedling/sapling performance, or the ecophysiological mechanisms underlying differences among treatments. In this study, we experimentally assess the effects of post-fire management of the burnt wood on the growth and performance of naturally regenerating pine seedlings (Pinus pinaster). Three post-fire management treatments varying in degree of intervention were implemented seven months after a high-severity wildfire burned Mediterranean pine forests in the Sierra Nevada, southeast Spain: (a) “No Intervention” (NI, all burnt trees left standing); (b) “Partial Cut plus Lopping” (PCL, felling most of the burnt trees, cutting off branches, and leaving all the biomass on site without mastication); and (c) “Salvage Logging” (SL, felling the burnt trees, piling up the logs and masticating the fine woody debris). Three years after the fire, the growth, foliar nutrient concentrations, and leaf carbon, nitrogen and oxygen isotopic composition (δ13C, δ18O and δ15N) of naturally regenerating seedlings were measured in all the treatments. Pine seedlings showed greatest vigor and size in the PCL treatment, whereas growth was poorest in SL. The nutrient concentrations were similar among treatments, although greater growth in the two treatments with residual wood present indicated higher plant uptake. Seedlings in the SL treatment showed high leaf δ13C and δ18O values indicating severe water stress, in contrast to significantly alleviated water stress indications in the PCL treatment. Seedling growth and physiological performance in NI was intermediate between that of PCL and SL. After six growing seasons, P. pinaster saplings in PCL showed greater growth and cone production than SL saplings. In summary

  2. 5-HTT deficiency affects neuroplasticity and increases stress sensitivity resulting in altered spatial learning performance in the Morris water maze but not in the Barnes maze.

    Directory of Open Access Journals (Sweden)

    Margherita M Karabeg

    Full Text Available The purpose of this study was to evaluate whether spatial hippocampus-dependent learning is affected by the serotonergic system and stress. Therefore, 5-HTT knockout (-/-, heterozygous (+/- and wildtype (+/+ mice were subjected to the Barnes maze (BM and the Morris water maze (WM, the latter being discussed as more aversive. Additionally, immediate early gene (IEG expression, hippocampal adult neurogenesis (aN, and blood plasma corticosterone were analyzed. While the performance of 5-HTT-/- mice in the BM was undistinguishable from both other genotypes, they performed worse in the WM. However, in the course of the repeated WM trials 5-HTT-/- mice advanced to wildtype level. The experience of a single trial of either the WM or the BM resulted in increased plasma corticosterone levels in all genotypes. After several trials 5-HTT-/- mice exhibited higher corticosterone concentrations compared with both other genotypes in both tests. Corticosterone levels were highest in 5-HTT-/- mice tested in the WM indicating greater aversiveness of the WM and a greater stress sensitivity of 5-HTT deficient mice. Quantitative immunohistochemistry in the hippocampus revealed increased cell counts positive for the IEG products cFos and Arc as well as for proliferation marker Ki67 and immature neuron marker NeuroD in 5-HTT-/- mice compared to 5-HTT+/+ mice, irrespective of the test. Most differences were found in the suprapyramidal blade of the dentate gyrus of the septal hippocampus. Ki67-immunohistochemistry revealed a genotype x environment interaction with 5-HTT genotype differences in naïve controls and WM experience exclusively yielding more Ki67-positive cells in 5-HTT+/+ mice. Moreover, in 5-HTT-/- mice we demonstrate that learning performance correlates with the extent of aN. Overall, higher baseline IEG expression and increased an in the hippocampus of 5-HTT-/- mice together with increased stress sensitivity may constitute the neurobiological correlate of

  3. 5-HTT deficiency affects neuroplasticity and increases stress sensitivity resulting in altered spatial learning performance in the Morris water maze but not in the Barnes maze.

    Science.gov (United States)

    Karabeg, Margherita M; Grauthoff, Sandra; Kollert, Sina Y; Weidner, Magdalena; Heiming, Rebecca S; Jansen, Friederike; Popp, Sandy; Kaiser, Sylvia; Lesch, Klaus-Peter; Sachser, Norbert; Schmitt, Angelika G; Lewejohann, Lars

    2013-01-01

    The purpose of this study was to evaluate whether spatial hippocampus-dependent learning is affected by the serotonergic system and stress. Therefore, 5-HTT knockout (-/-), heterozygous (+/-) and wildtype (+/+) mice were subjected to the Barnes maze (BM) and the Morris water maze (WM), the latter being discussed as more aversive. Additionally, immediate early gene (IEG) expression, hippocampal adult neurogenesis (aN), and blood plasma corticosterone were analyzed. While the performance of 5-HTT-/- mice in the BM was undistinguishable from both other genotypes, they performed worse in the WM. However, in the course of the repeated WM trials 5-HTT-/- mice advanced to wildtype level. The experience of a single trial of either the WM or the BM resulted in increased plasma corticosterone levels in all genotypes. After several trials 5-HTT-/- mice exhibited higher corticosterone concentrations compared with both other genotypes in both tests. Corticosterone levels were highest in 5-HTT-/- mice tested in the WM indicating greater aversiveness of the WM and a greater stress sensitivity of 5-HTT deficient mice. Quantitative immunohistochemistry in the hippocampus revealed increased cell counts positive for the IEG products cFos and Arc as well as for proliferation marker Ki67 and immature neuron marker NeuroD in 5-HTT-/- mice compared to 5-HTT+/+ mice, irrespective of the test. Most differences were found in the suprapyramidal blade of the dentate gyrus of the septal hippocampus. Ki67-immunohistochemistry revealed a genotype x environment interaction with 5-HTT genotype differences in naïve controls and WM experience exclusively yielding more Ki67-positive cells in 5-HTT+/+ mice. Moreover, in 5-HTT-/- mice we demonstrate that learning performance correlates with the extent of aN. Overall, higher baseline IEG expression and increased an in the hippocampus of 5-HTT-/- mice together with increased stress sensitivity may constitute the neurobiological correlate of raised

  4. Effect of heat stress during late gestation on immune function and growth performance of calves: isolation of altered colostral and calf factors.

    Science.gov (United States)

    Monteiro, A P A; Tao, S; Thompson, I M; Dahl, G E

    2014-10-01

    Calves born to cows exposed to heat stress during the dry period and fed their dams' colostrum have compromised passive and cell-mediated immunity compared with calves born to cows cooled during heat stress. However, it is unknown if this compromised immune response is caused by calf or colostrum intrinsic factors. Two studies were designed to elucidate the effects of colostrum from those innate to the calf. The objective of the first study was to evaluate the effect of maternal heat stress during the dry period on calf-specific factors related to immune response and growth performance. Cows were dried off 46 d before expected calving and randomly assigned to 1 of 2 treatments: heat stress (HT; n=18) or cooling (CL; n=18). Cows of the CL group were housed with sprinklers, fans and shade, whereas cows of HT group had only shade. After calving, the cows were milked and their colostrum was frozen for the subsequent study. Colostrum from cows exposed to a thermoneutral environment during the dry period was pooled and stored frozen (-20 °C). Within 4h of birth, 3.8L of the pooled colostrum from thermoneutral cows was fed to calves born to both HT and CL cows. Day of birth was considered study d 0. All calves were exposed to the same management and weaned at d 49. Blood samples were collected before colostrum feeding, 24h after birth and twice weekly up to d 28. Total serum IgG concentrations were determined. Body weight was recorded at birth and at d 15, 30, 45, and 60. Relative to CL calves, HT calves were lighter at birth (38.3 vs. 43.1 kg), but no difference in weight gain was observed at d 60. Additionally, HT calves had lower apparent efficiency of IgG absorption (26.0 vs. 30.2%), but no differences were observed for total IgG concentration. The objective of the second study was to evaluate the isolated effect of the colostrum from HT cows on calf immune response and growth performance. The experimental design was identical to the first study, but all calves were

  5. How stress alters memory in 'smart' snails.

    Directory of Open Access Journals (Sweden)

    Sarah Dalesman

    Full Text Available Cognitive ability varies within species, but whether this variation alters the manner in which memory formation is affected by environmental stress is unclear. The great pond snail, Lymnaea stagnalis, is commonly used as model species in studies of learning and memory. The majority of those studies used a single laboratory strain (i.e. the Dutch strain originating from a wild population in the Netherlands. However, our recent work has identified natural populations that demonstrate significantly enhanced long-term memory (LTM formation relative to the Dutch strain following operant conditioning of aerial respiratory behaviour. Here we assess how two populations with enhanced memory formation (i.e. 'smart' snails, one from Canada (Trans Canada 1: TC1 and one from the U.K. (Chilton Moor: CM respond to ecologically relevant stressors. In control conditions the Dutch strain forms memory lasting 1-3 h following a single 0.5 h training session in our standard calcium pond water (80 mg/l [Ca(2+], whereas the TC1 and CM populations formed LTM lasting 5+ days following this training regime. Exposure to low environmental calcium pond water (20 mg/l [Ca(2+], which blocks LTM in the Dutch strain, reduced LTM retention to 24 h in the TC1 and CM populations. Crowding (20 snails in 100 ml immediately prior to training blocks LTM in the Dutch strain, and also did so in TC1 and CM populations. Therefore, snails with enhanced cognitive ability respond to these ecologically relevant stressors in a similar manner to the Dutch strain, but are more robust at forming LTM in a low calcium environment. Despite the two populations (CM and TC1 originating from different continents, LTM formation was indistinguishable in both control and stressed conditions. This indicates that the underlying mechanisms controlling cognitive differences among populations may be highly conserved in L. stagnalis.

  6. Chronic Stress and Performance

    Science.gov (United States)

    2011-09-01

    to the cannabinoid CB(1) receptor agonist HU-210 following chronic stress. European Journal of Pharmacology, 499(3), 291-295. Holscher, C. (1999...learning and memory, has the highest concentration of GC receptors in the brain and is involved in the stress response. Extensive research has... receptor levels than stressed male rodents (Konkle, 2003; Figueiredo, 2002; Handa, 1994). Males and females react to stress differently, so two models

  7. Stress-related alteration of urine compositions

    NARCIS (Netherlands)

    W. van den Berg; C. Uhlemann; A. Meissner; N. Laube

    2011-01-01

    Increased emotional stress in everyday life influences the way of living and metabolism of people living in developed countries. Contemporaneously, the incidence and prevalence of urolithiasis rises. Does a pathogenetically relevant relationship exist between chronic stress burden and permanently al

  8. Social stress reactivity alters reward and punishment learning.

    Science.gov (United States)

    Cavanagh, James F; Frank, Michael J; Allen, John J B

    2011-06-01

    To examine how stress affects cognitive functioning, individual differences in trait vulnerability (punishment sensitivity) and state reactivity (negative affect) to social evaluative threat were examined during concurrent reinforcement learning. Lower trait-level punishment sensitivity predicted better reward learning and poorer punishment learning; the opposite pattern was found in more punishment sensitive individuals. Increasing state-level negative affect was directly related to punishment learning accuracy in highly punishment sensitive individuals, but these measures were inversely related in less sensitive individuals. Combined electrophysiological measurement, performance accuracy and computational estimations of learning parameters suggest that trait and state vulnerability to stress alter cortico-striatal functioning during reinforcement learning, possibly mediated via medio-frontal cortical systems.

  9. Intellectual Performance Under Stress

    Science.gov (United States)

    1975-06-01

    Processing: Tutorials in Performance and Cognition. B. H. Kantowitz (Ed.), Lawrence Erlbaum Associates, Washington, D. C., 1974. Wickens, C. D. The effects...motor performance. In B. Kantowitz (Ed.), Human information processing: Tutorials in performance and cognition. Hillsdale, N. J.: Lawrence Erlbaum

  10. Stress alters personal moral decision making.

    Science.gov (United States)

    Youssef, Farid F; Dookeeram, Karine; Basdeo, Vasant; Francis, Emmanuel; Doman, Mekaeel; Mamed, Danielle; Maloo, Stefan; Degannes, Joel; Dobo, Linda; Ditshotlo, Phatsimo; Legall, George

    2012-04-01

    While early studies of moral decision making highlighted the role of rational, conscious executive processes involving frontal lobe activation more recent work has suggested that emotions and gut reactions have a key part to play in moral reasoning. Given that stress can activate many of the same brain regions that are important for and connected to brain centres involved in emotional processing we sought to evaluate if stress could influence moral decision making. Sixty-five undergraduate volunteers were randomly assigned to control (n=33) and experimental groups (n=32). The latter underwent the Trier Social Stress Test (TSST) and induction of stress was assessed by measurement of salivary cortisol levels. Subjects were then required to provide a response to thirty moral dilemmas via a computer interface that recorded both their decision and reaction time. Three types of dilemmas were used: non-moral, impersonal moral and personal moral. Using a binary logistic model there were no significant predicators of utilitarian response in non-moral and impersonal moral dilemmas. However the stressed group and females were found to predict utilitarian responses to personal moral dilemmas. When comparing percentage utilitarian responses there were no significant differences noted for the non-moral and impersonal moral dilemmas but the stressed group showed significantly less utilitarian responses compared to control subjects. The stress response was significantly negatively correlated with utilitarian responses. Females also showed significantly less utilitarian responses than males. We conclude that activation of the stress response predisposed participants to less utilitarian responses when faced with high conflict personal moral dilemmas and suggest that this offers further support for dual process theory of moral judgment. We also conclude that females tend to make less utilitarian personal moral decisions compared to males, providing further evidence that there are

  11. Prenatal stress alters amygdala functional connectivity in preterm neonates.

    Science.gov (United States)

    Scheinost, Dustin; Kwon, Soo Hyun; Lacadie, Cheryl; Sze, Gordon; Sinha, Rajita; Constable, R Todd; Ment, Laura R

    2016-01-01

    Exposure to prenatal and early-life stress results in alterations in neural connectivity and an increased risk for neuropsychiatric disorders. In particular, alterations in amygdala connectivity have emerged as a common effect across several recent studies. However, the impact of prenatal stress exposure on the functional organization of the amygdala has yet to be explored in the prematurely-born, a population at high risk for neuropsychiatric disorders. We test the hypothesis that preterm birth and prenatal exposure to maternal stress alter functional connectivity of the amygdala using two independent cohorts. The first cohort is used to establish the effects of preterm birth and consists of 12 very preterm neonates and 25 term controls, all without prenatal stress exposure. The second is analyzed to establish the effects of prenatal stress exposure and consists of 16 extremely preterm neonates with prenatal stress exposure and 10 extremely preterm neonates with no known prenatal stress exposure. Standard resting-state functional magnetic resonance imaging and seed connectivity methods are used. When compared to term controls, very preterm neonates show significantly reduced connectivity between the amygdala and the thalamus, the hypothalamus, the brainstem, and the insula (p cortex (p subcortical regions is decreased in preterm neonates compared to term controls. In addition, these data, for the first time, suggest that prenatal stress exposure amplifies these decreases.

  12. Studies on effect of stress preconditioning in restrain stress-induced behavioral alterations.

    Science.gov (United States)

    Kaur, Rajneet; Jaggi, Amteshwar Singh; Singh, Nirmal

    2010-02-01

    Stress preconditioning has been documented to confer on gastroprotective effects on stress-induced gastric ulcerations. However, the effects of prior exposure of stress preconditioning episodes on stress-induced behavioral changes have not been explored yet. Therefore the present study was designed to investigate the ameliorative effects of stress preconditioning in immobilization stress-induced behavioral alterations in rats. The rats were subjected to restrain stress by placing in restrainer (5.5 cm in diameter and 18 cm in length) for 3.5 h. Stress preconditioning was induced by subjecting the rats to two cycles of restraint and restrain-free periods of 15 min each. Furthermore, a similar type of stress preconditioning was induced using different time cycles of 30 and 45 min. The extent and severity of the stress-induced behavioral alterations were assessed using different behavioral tests such as hole-board test, social interaction test, open field test, and actophotometer. Restrain stress resulted in decrease in locomotor activity, frequency of head dips and rearing in hole board, line crossing and rearing in open field, and decreased following and increased avoidance in social interaction test. Stress preconditioning with two cycles of 15, 30 or 45 min respectively, did not attenuate stress-induced behavioral changes to any extent. It may be concluded that stress preconditioning does not seem to confer any protective effect in modulating restrain stress-induced behavioral alterations.

  13. Altered Gravity Induces Oxidative Stress in Drosophila Melanogaster

    Science.gov (United States)

    Bhattacharya, Sharmila; Hosamani, Ravikumar

    2015-01-01

    Altered gravity environments can induce increased oxidative stress in biological systems. Microarray data from our previous spaceflight experiment (FIT experiment on STS-121) indicated significant changes in the expression of oxidative stress genes in adult fruit flies after spaceflight. Currently, our lab is focused on elucidating the role of hypergravity-induced oxidative stress and its impact on the nervous system in Drosophila melanogaster. Biochemical, molecular, and genetic approaches were combined to study this effect on the ground. Adult flies (2-3 days old) exposed to acute hypergravity (3g, for 1 hour and 2 hours) showed significantly elevated levels of Reactive Oxygen Species (ROS) in fly brains compared to control samples. This data was supported by significant changes in mRNA expression of specific oxidative stress and antioxidant defense related genes. As anticipated, a stress-resistant mutant line, Indy302, was less vulnerable to hypergravity-induced oxidative stress compared to wild-type flies. Survival curves were generated to study the combined effect of hypergravity and pro-oxidant treatment. Interestingly, many of the oxidative stress changes that were measured in flies showed sex specific differences. Collectively, our data demonstrate that altered gravity significantly induces oxidative stress in Drosophila, and that one of the organs where this effect is evident is the brain.

  14. REPEATED ACUTE STRESS INDUCED ALTERATIONS IN CARBOHYDRATE METABOLISM IN RAT

    Directory of Open Access Journals (Sweden)

    Nirupama R.

    2010-09-01

    Full Text Available Acute stress induced alterations in the activity levels of rate limiting enzymes and concentration of intermediates of different pathways of carbohydrate metabolism have been studied. Adult male Wistar rats were restrained (RS for 1 h and after an interval of 4 h they were subjected to forced swimming (FS exercise and appropriate controls were maintained. Five rats were killed before the commencement of the experiment (initial controls, 5 control and equal number of stressed rats were killed 2 h after RS and remaining 5 rats in each group were killed 4 h after FS. There was a significant increase in the adrenal 3β- hydroxy steroid dehydrogenase activity following RS, which showed further increase after FS compared to controls and thereby indicated stress response of rats. There was a significant increase in the blood glucose levels following RS which showed further increase and reached hyperglycemic condition after FS. The hyperglycemic condition due to stress was accompanied by significant increases in the activities of glutamate- pyruvate transaminase, glutamate- oxaloacetate transaminase, glucose -6- phosphatase and lactate dehydrogenase and significant decrease in the glucose -6- phosphate dehydrogenase and pyruvate dehydrogenase activities, whereas pyruvate kinase activity did not show any alteration compared to controls. Further, the glycogen and total protein contents of the liver were decreased whereas those of pyruvate and lactate showed significant increase compared to controls after RS as well as FS.The results put together indicate that acute stress induced hyperglycemia results due to increased gluconeogenesis and glycogenolysis without alteration in glycolysis. The study first time reveals that after first acute stress exposure, the subsequent stressful experience augments metabolic stress response leading to hyperglycemia. The results have relevance to human health as human beings are exposed to several stressors in a day and

  15. Ultrastructural alterations of the hepatopancreas in Porcellio scaber under stress.

    Science.gov (United States)

    Znidaršič, Nada; Strus, Jasna; Drobne, Damjana

    2003-04-01

    Cellular ultrastructure varies in accordance with physiological processes, also reflecting responses to environmental stress factors. Ultrastructural changes of the hepatopancreatic cells in the terrestrial isopod Porcellio scaber exposed to sublethal concentrations of zinc or cadmium in their food were identified by transmission electron microscopy. The exclusive structural characteristic of the hepatopancreas of animals exposed to metal-dosed food was grain-like electrondense deposits (EDD) observed in the intercellular spaces and in vesicles of B cells. In addition, hepatopancreatic cells of metal-exposed animals displayed non-specific, stress-indicating alterations such as cellular disintegration, the reduction of energetic reserves (lipid droplets, glycogen), electron dense cytoplasm, ultrastructural alterations of granular endoplasmic reticulum (GER), the Golgi complex and mitochondria.

  16. Adulthood stress responses in rats are variably altered as a factor of adolescent stress exposure.

    Science.gov (United States)

    Moore, Nicole L T; Altman, Daniel E; Gauchan, Sangeeta; Genovese, Raymond F

    2016-05-01

    Stress exposure during development may influence adulthood stress response severity. The present study investigates persisting effects of two adolescent stressors upon adulthood response to predator exposure (PE). Rats were exposed to underwater trauma (UWT) or PE during adolescence, then to PE after reaching adulthood. Rats were then exposed to predator odor (PO) to test responses to predator cues alone. Behavioral and neuroendocrine assessments were conducted to determine acute effects of each stress experience. Adolescent stress altered behavioral response to adulthood PE. Acoustic startle response was blunted. Bidirectional changes in plus maze exploration were revealed as a factor of adolescent stress type. Neuroendocrine response magnitude did not predict severity of adolescent or adult stress response, suggesting that different adolescent stress events may differentially alter developmental outcomes regardless of acute behavioral or neuroendocrine response. We report that exposure to two different stressors in adolescence may differentially affect stress response outcomes in adulthood. Acute response to an adolescent stressor may not be consistent across all stressors or all dependent measures, and may not predict alterations in developmental outcomes pertaining to adulthood stress exposure. Further studies are needed to characterize factors underlying long-term effects of a developmental stressor.

  17. Restraint stress alters neutrophil and macrophage phenotypes during wound healing.

    Science.gov (United States)

    Tymen, Stéphanie D; Rojas, Isolde G; Zhou, Xiaofeng; Fang, Zong Juan; Zhao, Yan; Marucha, Phillip T

    2013-02-01

    Previous studies reported that stress delays wound healing, impairs bacterial clearance, and elevates the risk for opportunistic infection. Neutrophils and macrophages are responsible for the removal of bacteria present at the wound site. The appropriate recruitment and functions of these cells are necessary for efficient bacterial clearance. In our current study we found that restraint stress induced an excessive recruitment of neutrophils extending the inflammatory phase of healing, and the gene expression of neutrophil attracting chemokines MIP-2 and KC. However, restraint stress did not affect macrophage infiltration. Stress decreased the phagocytic abilities of phagocytic cells ex vivo, yet it did not affect superoxide production. The cell surface expression of adhesion molecules CD11b and TLR4 were decreased in peripheral blood monocytes in stressed mice. The phenotype of macrophages present at the wound site was also altered. Gene expression of markers of pro-inflammatory classically activated macrophages, CXCL10 and CCL5, were down-regulated; as were markers associated with wound healing macrophages, CCL22, IGF-1, RELMα; and the regulatory macrophage marker, chemokine CCL1. Restraint stress also induced up-regulation of IL10 gene expression. In summary, our study has shown that restraint stress suppresses the phenotype shift of the macrophage population, as compared to the changes observed during normal wound healing, while the number of macrophages remains constant. We also observed a general suppression of chemokine gene expression. Modulation of the macrophage phenotype could provide a new therapeutic approach in the treatment of wounds under stress conditions in the clinical setting.

  18. Oxidative stress can alter the antigenicity of immunodominant peptides

    DEFF Research Database (Denmark)

    Weiskopf, Daniela; Schwanninger, Angelika; Weinberger, Birgit

    2010-01-01

    APCs operate frequently under oxidative stress induced by aging, tissue damage, pathogens, or inflammatory responses. Phagocytic cells produce peroxides and free-radical species that facilitate pathogen clearance and can in the case of APCs, also lead to oxidative modifications of antigenic...... molecule is not impaired. Additionally, we show that CD8(+) T cells have a decreased proliferation and IFN-gamma production when stimulated with oxidized CMVpp65(495-503) peptide. Spectratyping the antigen-binding site of the TCR of responding T cells demonstrates that the CMVpp65(495-503) and the CMVoxpp...... of antigenic peptides may affect T cell responses severely by binding T cell clones with different affinity. This may lead to an altered immune response against infectious agents as well as against tumor or autoantigens under oxidative stress conditions....

  19. Oxidative stress alters physiological and morphological neuronal properties.

    Science.gov (United States)

    Hasan, Sonia M; Joe, Mary; Alshuaib, Waleed B

    2007-07-01

    We investigated the effects of H(2)O(2)-induced oxidative stress on the delayed-rectifier current (IK(DR)), neuronal physiological and morphological properties. Measurements were obtained from hippocampal CA1 neurons in control solution and from the same neurons after exposure to oxidative stress (short- and long-term H(2)O(2) external applications at 0.1, 1, and 10 mM). With short-term (6 min) H(2)O(2) (1 mM) treatment, IK(DR) measured in the H(2)O(2)-containing solution (778 +/- 23 pA, n=20), was smaller than that measured in the control Ca(2+)-free Hepes solution (1,112 +/- 38 pA, n=20). Coenzyme Q(10) (0.1 mM) pretreatment prevented the H(2)O(2)-induced inhibition of IK(DR). With long-term (40, 80 min) H(2)O(2) (0.1, 10 mM) treatment, the neuron lost its distinctive shape (rounded up) and the neurite almost disappeared. These results suggest that oxidative stress, which inhibits IK(DR), can alter neural activity. The morphological changes caused by H(2)O(2) support the idea that oxidative stress causes intracellular damage and compromises neural function.

  20. EFFECT OF WORKPLACE STRESS ON JOB PERFORMANCE

    Directory of Open Access Journals (Sweden)

    Azman Ismail

    2015-05-01

    Full Text Available The study examines the relationship between workplace stress and job performance. A survey method was employed to gather self-administered questionnaires from executive and non-executive employees of a leading private investment bank in Peninsular Malaysia. The outcomes of SmartPLS path model analysis of the data showed two important findings: firstly, physiological stress was positively and significantly correlated with job performance. Secondly, psychological stress was positively and significantly correlated with job performance. This finding reveals that physiological and psychological stresses act as important predictors of job performance in the studied organization. The paper provides discussion, implications and conclusion.

  1. Adolescent chronic mild stress alters hippocampal CB1 receptor-mediated excitatory neurotransmission and plasticity.

    Science.gov (United States)

    Reich, C G; Mihalik, G R; Iskander, A N; Seckler, J C; Weiss, M S

    2013-12-03

    Endocannabinoids (eCBs) are involved in the stress response and alterations in eCB signaling may contribute to the etiology of mood disorders. Exposure to chronic mild stress (CMS), a model of depression, produces downregulation of the cannabinoid 1 (CB1) receptor in the hippocampus of male rats. However, it is unknown how this stress-induced change in CB1 levels affects eCB-mediated neurotransmission. In vitro, field potential recordings from CMS-exposed (21-days) rats were performed to assess the effects of stress on eCB-regulated glutamatergic neurotransmission in/on hippocampal area CA1. We observed that application of the CB1 agonist, WIN 55,212-5 (1 μM), in stress animals resulted in a ∼135% increase in excitatory neurotransmission, whereas CB1 activation in non-stress animals leads to a ∼30% decrease. However, during blockade of GABA(A) neurotransmission with picrotoxin, CB1 activation yielded a ∼35% decrease in stress animals. These findings indicate that CMS does not directly affect glutamatergic neurotransmission. Rather, CMS sensitizes CB1 function on GABAergic terminals, leading to less inhibition and an increase in excitatory neurotransmission. This finding is reinforced in that induction of weak long-term-potentiation (LTP) is enhanced in CMS-exposed animals compared to controls and this enhancement is CB1-dependent. Lastly, we observed that the LTP-blocking property of WIN 55,212-5 shifts from being glutamate-dependent in non-stress animals to being GABA-dependent in stress animals. These results effectively demonstrate that CMS significantly alters hippocampal eCB-mediated neurotransmission and synaptic plasticity.

  2. Altered oxidative stress and carbohydrate metabolism in canine mammary tumors

    Directory of Open Access Journals (Sweden)

    K. Jayasri

    2016-12-01

    Full Text Available Aim: Mammary tumors are the most prevalent type of neoplasms in canines. Even though cancer induced metabolic alterations are well established, the clinical data describing the metabolic profiles of animal tumors is not available. Hence, our present investigation was carried out with the aim of studying changes in carbohydrate metabolism along with the level of oxidative stress in canine mammary tumors. Materials and Methods: Fresh mammary tumor tissues along with the adjacent healthy tissues were collected from the college surgical ward. The levels of thiobarbituric acid reactive substances (TBARS, glutathione, protein, hexose, hexokinase, glucose-6-phosphatase, fructose-1, 6-bisphosphatase, and glucose-6-phosphate dehydrogenase (G6PD were analyzed in all the tissues. The results were analyzed statistically. Results: More than two-fold increase in TBARS and three-fold increase in glutathione levels were observed in neoplastic tissues. Hexokinase activity and hexose concentration (175% was found to be increased, whereas glucose-6-phosphatase (33%, fructose-1, 6-bisphosphatase (42%, and G6PD (5 fold activities were reduced in tumor mass compared to control. Conclusion: Finally, it was revealed that lipid peroxidation was increased with differentially altered carbohydrate metabolism in canine mammary tumors.

  3. Altered Functional Performance in Patients with Fibromyalgia

    Science.gov (United States)

    Costa, Isis da Silva; Gamundí, Antoni; Miranda, José G. Vivas; França, Lucas G. Souza; De Santana, Charles Novaes; Montoya, Pedro

    2017-01-01

    Fibromyalgia is a common chronic pain condition that exerts a considerable impact on patients' daily activities and quality of life. Objectives: The main objective of the present study was to evaluate kinematic parameters of gait, functional performance, and balance in women with fibromyalgia syndrome. Methods: The study included 26 female patients with fibromyalgia (49.2 ± 8.0 years) according to the criteria of the American College of Rheumatology, as well as 16 pain-free women (43.5 ± 8.5 years). Gait and balance parameters were extracted from video recordings of participants performing several motor tasks. Non-linear dynamic of body sway time series was also analyzed by computing the Hurst exponent. In addition, functional performance and clinical pain were obtained by using standardized motor tests (Berg's balance scale, 6-min walking test, timed up and go task, Romberg's balance test) and self-report questionnaires (Fibromyalgia Impact Questionnaire). Results: Walking speed was significantly diminished (p balance also revealed significant differences between fibromyalgia and pain-free controls on body sway in the medial-lateral and anterior-posterior axes (all ps balance were significantly associated with high levels of pain, depression, stiffness, anxiety, and fatigue in fibromyalgia. Conclusion: Our data revealed that both gait and balance were severely impaired in FM, and that subjective complaints associated with FM could contribute to functional disability in these patients. These findings suggest that optimal rehabilitation and fall prevention in fibromyalgia require a comprehensive assessment of both psychological responses to pain and physical impairments during postural control and gait. PMID:28184193

  4. Atropine, Stress and Human Performance

    Science.gov (United States)

    1987-08-01

    substance use and abuse and for fitness (exercise stress test) exactly as in the first-year studies. b.2 Research design The research design was A1...Physiological Correlates. New York: Plenum Press, 705-718. 20. Callaway, E. (1984). Human information-processing: Some effects of methylphenidate , age and

  5. Oxidative stress and an altered methionine metabolism in alcoholism.

    Science.gov (United States)

    Bleich, S; Spilker, K; Kurth, C; Degner, D; Quintela-Schneider, M; Javaheripour, K; Rüther, E; Kornhuber, J; Wiltfang, J

    2000-11-03

    The exact mechanism of brain atrophy in patients with chronic alcoholism remains unknown. There is growing evidence that chronic alcoholism is associated with oxidative stress and with a derangement in sulphur amino acid metabolism (e.g. ethanol-induced hyperhomocysteinemia). Furthermore, it has been reported that homocysteine induces neuronal cell death by stimulating N-methyl-D-aspartate receptors as well as by producing free radicals. To further evaluate this latter hypothesis we analysed serum levels of both homocysteine and markers of oxidative stress (malondialdehyde) in alcoholic patients who underwent withdrawal from alcohol. Homocysteine and malondialdehyde were quantified by high performance liquid chromatography (HPLC) in serum samples of 35 patients (active drinkers). There was a significant correlation (Pbrain shrinkage.

  6. Mechanical Alterations Associated with Repeated Treadmill Sprinting under Heat Stress

    Science.gov (United States)

    Brocherie, Franck; Morin, Jean-Benoit; Racinais, Sébastien; Millet, Grégoire P.; Périard, Julien D.

    2017-01-01

    Purpose Examine the mechanical alterations associated with repeated treadmill sprinting performed in HOT (38°C) and CON (25°C) conditions. Methods Eleven recreationally active males performed a 30-min warm-up followed by three sets of five 5-s sprints with 25-s recovery and 3-min between sets in each environment. Constant-velocity running for 1-min at 10 and 20 km.h-1 was also performed prior to and following sprinting. Results Mean skin (37.2±0.7 vs. 32.7±0.8°C; P<0.001) and core (38.9±0.2 vs. 38.8±0.3°C; P<0.05) temperatures, together with thermal comfort (P<0.001) were higher following repeated sprinting in HOT vs. CON. Step frequency and vertical stiffness were lower (-2.6±1.6% and -5.5±5.5%; both P<0.001) and contact time (+3.2±2.4%; P<0.01) higher in HOT for the mean of sets 1–3 compared to CON. Running distance per sprint decreased from set 1 to 3 (-7.0±6.4%; P<0.001), with a tendency for shorter distance covered in HOT vs. CON (-2.7±3.4%; P = 0.06). Mean vertical (-2.6±5.5%; P<0.01), horizontal (-9.1±4.4%; P<0.001) and resultant ground reaction forces (-3.0±2.8%; P<0.01) along with vertical stiffness (-12.9±2.3%; P<0.001) and leg stiffness (-8.4±2.7%; P<0.01) decreased from set 1 to 3, independently of conditions. Propulsive power decreased from set 1 to 3 (-16.9±2.4%; P<0.001), with lower propulsive power values in set 2 (-6.6%; P<0.05) in HOT vs. CON. No changes in constant-velocity running patterns occurred between conditions, or from pre-to-post repeated-sprint exercise. Conclusions Thermal strain alters step frequency and vertical stiffness during repeated sprinting; however without exacerbating mechanical alterations. The absence of changes in constant-velocity running patterns suggests a strong link between fatigue-induced velocity decrements during sprinting and mechanical alterations. PMID:28146582

  7. Stress, stress-induced cortisol responses, and eyewitness identification performance.

    Science.gov (United States)

    Sauerland, Melanie; Raymaekers, Linsey H C; Otgaar, Henry; Memon, Amina; Waltjen, Thijs T; Nivo, Maud; Slegers, Chiel; Broers, Nick J; Smeets, Tom

    2016-07-01

    In the eyewitness identification literature, stress and arousal at the time of encoding are considered to adversely influence identification performance. This assumption is in contrast with findings from the neurobiology field of learning and memory, showing that stress and stress hormones are critically involved in forming enduring memories. This discrepancy may be related to methodological differences between the two fields of research, such as the tendency for immediate testing or the use of very short (1-2 hours) retention intervals in eyewitness research, while neurobiology studies insert at least 24 hours. Other differences refer to the extent to which stress-responsive systems (i.e., the hypothalamic-pituitary-adrenal axis) are stimulated effectively under laboratory conditions. The aim of the current study was to conduct an experiment that accounts for the contemporary state of knowledge in both fields. In all, 123 participants witnessed a live staged theft while being exposed to a laboratory stressor that reliably elicits autonomic and glucocorticoid stress responses or while performing a control task. Salivary cortisol levels were measured to control for the effectiveness of the stress induction. One week later, participants attempted to identify the thief from target-present and target-absent line-ups. According to regression and receiver operating characteristic analyses, stress did not have robust detrimental effects on identification performance. Copyright © 2016 John Wiley & Sons, Ltd. © 2016 The Authors Behavioral Sciences & the Law Published by John Wiley & Sons Ltd.

  8. Performance-Based Rewards and Work Stress

    Science.gov (United States)

    Ganster, Daniel C.; Kiersch, Christa E.; Marsh, Rachel E.; Bowen, Angela

    2011-01-01

    Even though reward systems play a central role in the management of organizations, their impact on stress and the well-being of workers is not well understood. We review the literature linking performance-based reward systems to various indicators of employee stress and well-being. Well-controlled experiments in field settings suggest that certain…

  9. Mitochondrial alterations, oxidative stress and neuroinflammation in Alzheimer's disease.

    Science.gov (United States)

    Verri, M; Pastoris, O; Dossena, M; Aquilani, R; Guerriero, F; Cuzzoni, G; Venturini, L; Ricevuti, G; Bongiorno, A I

    2012-01-01

    Alzheimer's disease (AD) is a multifactorial disorder characterized by the progressive deterioration of neuronal networks. The primary cause and sequence of its progression are only partially understood but abnormalities in folding and accumulation of insoluble proteins such as beta-amyloid and Tau-protein are both associated with the pathogenesis of AD. Mitochondria play a crucial role in cell survival and death, and changes in mitochondrial structure and/or function are related to many human diseases. Increasing evidence suggests that compromised mitochondrial function contributes to the aging process and thus may increase the risk of AD. Dysfunctional mitochondria contribute to reactive oxygen species which can lead to extensive macromolecule oxidative damage and the progression of amyloid pathology. Oxidative stress and amyloid toxicity leave neurons chemically vulnerable. The mitochondrial toxicity induced by beta-amyloid is still not clear but may include numerous mechanisms, such as the increased permeability of mitochondrial membranes, the disruption of calcium homeostasis, the alteration of oxidative phosphorylation with a consequent overproduction of reactive oxygen species. Other mechanisms have been associated with the pathophysiology of AD. Inflammatory changes are observed in AD brain overall, particularly at the amyloid deposits, which are rich in activated microglia. Once stimulated, the microglia release a wide variety of pro-inflammatory mediators including cytokines, complement components and free radicals, all of which potentially contribute to further neuronal dysfunction and eventually death. Clinically, novel approaches to visualize early neuroinflammation in the human brain are needed to improve the monitoring and control of therapeutic strategies that target inflammatory and other pathological mechanisms. Similarly, there is growing interest in developing agents that modulate mitochondrial function.

  10. FKBP5 polymorphisms influence pre-learning stress-induced alterations of learning and memory.

    Science.gov (United States)

    Zoladz, Phillip R; Dailey, Alison M; Nagle, Hannah E; Fiely, Miranda K; Mosley, Brianne E; Brown, Callie M; Duffy, Tessa J; Scharf, Amanda R; Earley, McKenna B; Rorabaugh, Boyd R

    2017-03-01

    FK506 binding protein 51 (FKBP5) is a co-chaperone of heat shock protein 90 and significantly influences glucocorticoid receptor sensitivity. Single nucleotide polymorphisms (SNPs) in the FKBP5 gene are associated with altered hypothalamus-pituitary-adrenal (HPA) axis function, changes in the structure and function of several cognitive brain areas, and increased susceptibility to post-traumatic stress disorder, major depression, bipolar disorder and suicidal events. The mechanisms underlying these associations are largely unknown, but it has been speculated that the influence of these SNPs on emotional memory systems may play a role. In the present study, 112 participants were exposed to the socially evaluated cold pressor test (stress) or control (no stress) conditions immediately prior to learning a list of 42 words. Participant memory was assessed immediately after learning (free recall) and 24 h later (free recall and recognition). Participants provided a saliva sample that enabled the genotyping of three FKBP5 polymorphisms: rs1360780, rs3800373 and rs9296158. Results showed that stress impaired immediate recall in risk allele carriers. More importantly, stress enhanced long-term recall and recognition memory in non-carriers of the risk alleles, effects that were completely absent in risk allele carriers. Follow-up analyses revealed that memory performance was correlated with salivary cortisol levels in non-carriers, but not in carriers. These findings suggest that FKBP5 risk allele carriers may possess a sensitized stress response system, perhaps specifically for stress-induced changes in corticosteroid levels, which might aid our understanding of how SNPs in the FKBP5 gene confer increased risk for stress-related psychological disorders and their related phenotypes.

  11. Alterations in magnesium and oxidative status during chronic emotional stress.

    Science.gov (United States)

    Cernak, I; Savic, V; Kotur, J; Prokic, V; Kuljic, B; Grbovic, D; Veljovic, M

    2000-03-01

    Magnesium and oxidative status were investigated in young volunteers exposed to chronic stress (political intolerance, awareness of potential military attacks, permanent stand-by duty and reduced holidays more than 10 years) or subchronic stress consisting of everyday mortal danger in military actions lasting more than 3 months. Significant decreases in plasma ionized Mg2+, total Mg and ionized Ca2+ concentrations were found in both groups. Similarly, both study groups exhibited oxidative stress as assessed by increased plasma superoxide anions and malondialdehyde and modified antioxidant defense. There were no significant differences between the two stress groups. A negative correlation between magnesium balance and oxidative stress was observed suggesting that the same etiological factor (chronic stress) initiate decreases in both free and total magnesium concentrations and simultaneously increase oxidative stress intensity. These findings support the need for magnesium supplementation with antioxidant vitamins for people living in conditions of chronic stress.

  12. Alterations in the growth and adhesion pattern of Vero cells induced by nutritional stress conditions.

    Science.gov (United States)

    Genari, S C; Gomes, L; Wada, M L

    1998-01-01

    The pattern of growth, adhesion and protein synthesis in Vero cells submitted to nutritional stress conditions was investigated. The control cells presented a characteristic pattern, with monolayer growth, while the stressed cells presented multilayered growth, with aggregate or spheroid formation which detached on the flask surface and continued their growth in another region. In the soft agar assay, with reduced amount of nutrients, only the stressed cells presented growth, indicating physical and nutritional independence. A 44-kDa protein was observed in stressed cells and was absent in non-stressed cells. The adhesion index and fibronectin synthesis and distribution were altered in stressed cells. After confluence, control cells presented fibronectin accumulation in lateral cell-cell contact regions, while this fibronectin accumulation pattern was not observed in stressed cells. These alterations may be responsible for the multilayered growth and decreased adhesion index observed in stressed cells which were transformed by nutritional stress conditions.

  13. Alterations in cognitive flexibility in a rat model of post-traumatic stress disorder.

    Science.gov (United States)

    George, Sophie A; Rodriguez-Santiago, Mariana; Riley, John; Abelson, James L; Floresco, Stan B; Liberzon, Israel

    2015-06-01

    Exposure to stressful or traumatic events is associated with increased vulnerability to post-traumatic stress disorder (PTSD). This vulnerability may be partly mediated by effects of stress on the prefrontal cortex (PFC) and associated circuitry. The PFC mediates critical cognitive functions, including cognitive flexibility, which reflects an organism's ability to adaptively alter behavior in light of changing contingencies. Prior work suggests that chronic or acute stress exerts complex effects on different forms of cognitive flexibility, via actions on the PFC. Similarly, PFC dysfunction is reported in PTSD, as are executive function deficits. Animal models that permit study of the effects of stress/trauma on cognitive flexibility may be useful in illuminating ways in which stress-linked cognitive changes contribute to PTSD. Here, we examined the behavioral effects of a rodent model of PTSD - single prolonged stress (SPS) - on performance of two forms of cognitive flexibility: reversal learning and strategy set-shifting. SPS did not impair acquisition of either a response or visual-cue discrimination but did cause slight impairments in the retrieval of the visual-cue rule. During response discrimination reversal, SPS rats made more perseverative errors. In comparison, during set-shifting from the visual-cue to response discrimination, SPS rats did not show enhanced perseveration, but did display increased never-reinforced errors, indicative of impairment in selecting a novel strategy. These data demonstrate that SPS leads to a complex and intriguing pattern of deficits in flexible responding and suggest that impairments in executive functioning associated with PTSD could, in part, be a neuro-cognitive consequence of trauma exposure.

  14. The war within : Neurobiological alterations in posttraumatic stress disorder

    NARCIS (Netherlands)

    Geuze, E.

    2006-01-01

    For a large number of veterans, war does not end after they are removed from a combat zone. Traumatic stress affects nearly all veterans, but while the majority of veterans learn to live with their experiences, for some veterans traumatic stress seethes inside. In this dissertation posttraumatic str

  15. Prenatal stress alters amygdala functional connectivity in preterm neonates

    Directory of Open Access Journals (Sweden)

    Dustin Scheinost

    2016-01-01

    Functional connectivity from the amygdala to other subcortical regions is decreased in preterm neonates compared to term controls. In addition, these data, for the first time, suggest that prenatal stress exposure amplifies these decreases.

  16. Improved Growth and Stress Tolerance in the Arabidopsis oxt1 Mutant Triggered by Altered Adenine Metabolism

    Institute of Scientific and Technical Information of China (English)

    Suchada Sukrong; Kil-Young Yun; Patrizia Stadler; Charan Kumar; Tony Facciuolo; Barbara A.Moffatt; Deane L.Falcone

    2012-01-01

    Plants perceive and respond to environmental stresses with complex mechanisms that are often associated with the activation of antioxidant defenses.A genetic screen aimed at isolating oxidative stress-tolerant lines of Arabidopsis thaliana has identified oxt1,a line that exhibits improved tolerance to oxidative stress and elevated temperature but displays no apparent deleterious growth effects under non-stress conditions.Oxt1 harbors a mutation that arises from the altered expression of a gene encoding adenine phosphoribosyltransferase (APT1),an enzyme that converts adenine to adenosine monophosphate (AMP),indicating a link between purine metabolism,whole-plant growth responses,and stress acclimation.The oxt1 mutation results in decreased APT1 expression that leads to reduced enzymatic activity.Correspondingly,oxt1 plants possess elevated levels of adenine.Decreased APT enzyme activity directly correlates with stress resistance in transgenic lines that ectopically express APT1.The metabolic alteration in oxt1 plants also alters the expression of several antioxidant defense genes and the response of these genes to oxidative challenge.Finally,it is shown that manipulation of adenine levels can induce stress tolerance to wild-type plants.Collectively,these results show that alterations in cellular adenine levels can trigger stress tolerance and improve growth,leading to increases in plant biomass.The results also suggest that adenine might play a part in the signals that modulate responses to abiotic stress and plant growth.

  17. Oxidative Stress and Heart Failure in Altered Thyroid States

    Directory of Open Access Journals (Sweden)

    Pallavi Mishra

    2012-01-01

    Full Text Available Increased or reduced action of thyroid hormone on certain molecular pathways in the heart and vasculature causes relevant cardiovascular derangements. It is well established that hyperthyroidism induces a hyperdynamic cardiovascular state, which is associated with a faster heart rate, enhanced left ventricular systolic and diastolic function whereas hypothyroidism is characterized by the opposite changes. Hyperthyroidism and hypothyroidism represent opposite clinical conditions, albeit not mirror images. Recent experimental and clinical studies have suggested the involvement of ROS tissue damage under altered thyroid status. Altered-thyroid state-linked changes in heart modify their susceptibility to oxidants and the extent of the oxidative damage they suffer following oxidative challenge. Chronic increase in the cellular levels of ROS can lead to a catastrophic cycle of DNA damage, mitochondrial dysfunction, further ROS generation and cellular injury. Thus, these cellular events might play an important role in the development and progression of myocardial remodeling and heart failure in altered thyroid states (hypo- and hyper-thyroidism. The present review aims at elucidating the various signaling pathways mediated via ROS and their modulation under altered thyroid state and the possibility of antioxidant therapy.

  18. Hormonal contraception use alters stress responses and emotional memory.

    Science.gov (United States)

    Nielsen, Shawn E; Segal, Sabrina K; Worden, Ian V; Yim, Ilona S; Cahill, Larry

    2013-02-01

    Emotionally arousing material is typically better remembered than neutral material. Since norepinephrine and cortisol interact to modulate emotional memory, sex-related influences on stress responses may be related to sex differences in emotional memory. Two groups of healthy women - one naturally cycling (NC women, n=42) and one using hormonal contraceptives (HC women, n=36) - viewed emotionally arousing and neutral images. Immediately after, they were assigned to Cold Pressor Stress (CPS) or a control procedure. One week later, participants received a surprise free recall test. Saliva samples were collected and later assayed for salivary alpha-amylase (biomarker for norepinephrine) and cortisol. Compared to NC women, HC women exhibited significantly blunted stress hormone responses to the images and CPS. Recall of emotional images differed between HC and NC women depending on noradrenergic and cortisol responses. These findings may have important implications for understanding the neurobiology of emotional memory disorders, especially those that disproportionately affect women.

  19. Stress during Adolescence Alters Palatable Food Consumption in a Context-Dependent Manner.

    Science.gov (United States)

    Handy, Christine; Yanaga, Stephanie; Reiss, Avery; Zona, Nicole; Robinson, Emily; Saxton, Katherine B

    2016-01-01

    Food consumption and preferences may be shaped by exposure to stressful environments during sensitive periods in development, and even small changes in consumption can have important effects on long term health. Adolescence is increasingly recognized as a sensitive period, in which adverse experiences can alter development, but the specific programming effects that may occur during adolescence remain incompletely understood. The current study seeks to explore the effects of stress during late adolescence on consumption of a palatable, high-fat, high-sugar food in adulthood-under basal conditions, as well following acute stress. Male Long-Evans rats were exposed to a regimen of variable stress for seven days in late adolescence (PND 45-51). During the stress regimen, stressed animals gained significantly less weight than control animals, but weight in adulthood was unaffected by adolescent stress. Palatable food consumption differed between experimental groups, and the direction of effect depended on context; stressed rats ate significantly more palatable food than controls upon first exposure, but ate less following an acute stressor. Leptin levels and exploratory behaviors did not differ between stressed and non-stressed groups, suggesting that other factors regulate preference for a palatable food. Altered food consumption following adolescent stress suggests that rats remain sensitive to stress during late adolescence, and that adult feeding behavior may be affected by previous adverse experiences. Such programming effects highlight adolescence as a period of plasticity, with the potential to shape long term food consumption patterns and preferences.

  20. Social stress reactivity alters reward and punishment learning

    OpenAIRE

    Cavanagh, James F.; Frank, Michael J.; Allen, John J.B.

    2010-01-01

    To examine how stress affects cognitive functioning, individual differences in trait vulnerability (punishment sensitivity) and state reactivity (negative affect) to social evaluative threat were examined during concurrent reinforcement learning. Lower trait-level punishment sensitivity predicted better reward learning and poorer punishment learning; the opposite pattern was found in more punishment sensitive individuals. Increasing state-level negative affect was directly related to punishme...

  1. Dual-task performance under acute stress in female adolescents with borderline personality disorder.

    Science.gov (United States)

    Kaess, Michael; Parzer, Peter; Koenig, Julian; Resch, Franz; Brunner, Romuald

    2016-09-01

    Research to elucidate early alterations of higher cognitive processes in adolescents with BPD is rare. This study investigated differences in dual-task performance in adolescents with BPD during stress and non-stress conditions. The study sample comprised 30 female adolescents with BPD and 34 healthy controls. The impact of stress on dual-task performance was measured using a standardized stressor. Self-reports of distress and measures of heart rate (HR) were obtained to measure stress reactivity. There were no group differences in task performance. Under stress conditions, the performance on the auditory task decreased in both groups but without significant group differences. Healthy controls showed an increase of mean HR after stress induction compared to no change in the BPD group. The finding of attenuated HR response to acute stress in adolescent patients with BPD may contradict current theories that the affective hyperresponsivity in BPD is based on a biologically determined mechanism.

  2. Psychoneuroendocrine immunology: perception of stress can alter body temperature and natural killer cell activity.

    Science.gov (United States)

    Hiramoto, R N; Solvason, H B; Hsueh, C M; Rogers, C F; Demissie, S; Hiramoto, N S; Gauthier, D K; Lorden, J F; Ghanta, V K

    1999-01-01

    Psychoimmunology has been credited with using the mind as a way to alter immunity. The problem with this concept is that many of the current psychoimmunology techniques in use are aimed at alleviating stress effects on the immune system rather than at direct augmentation of immunity by the brain. Studies in animals provide a model that permits us to approach the difficulties associated with gaining an understanding of the CNS-immune system connection. A particular advantage of using animals over humans is that psychological and social contributions play a less prominent role for animals than for human subjects, since the animals are all inbred and reared under identical controlled conditions. If the insightful information provided by animal studies is correct, then psychotherapy for the treatment of diseases might be made more effective if some aspect of this knowledge is included in the design of the treatment. We emphasize conditioning as a regimen and an acceptable way to train the brain to remember an output pathway to raise immunity. We propose that a specific drug or perception (mild stress, represented by rotation, total body heating or handling) could substitute and kindle the same output pathway without the need for conditioning. If this view is correct, then instead of using conditioning, it may be possible to use an antigen to activate desired immune cells, and substitute a drug or an external environmental sensory stimulus (perception) to energize the output pathway to these cells. Alternatively, monitoring alterations of body temperature in response to a drug or perception might allow us to follow how effectively the brain is performing in altering immunity. Studies with animals suggest that there are alternative ways to use the mind to raise natural or acquired immunity in man.

  3. Central immune alterations in passive strategy following chronic defeat stress.

    Science.gov (United States)

    Joana, Perez-Tejada; Amaia, Arregi; Arantza, Azpiroz; Garikoitz, Beitia; Eneritz, Gomez-Lazaro; Larraitz, Garmendia

    2016-02-01

    The relationship between stress, mood disorders and immune disorders is known, but what remains to be resolved is why certain individuals are more susceptible than others to suffer different disorders, along with the biological mechanisms that underlie these differences. The objective of this study was to analyze the changes in the expression patterns of proinflammatory cytokines in the hypothalamus, hippocampus, amygdala and prefrontal cortex after chronic defeat, depending on the coping strategy used. The expression levels of α1b and α2a adrenergic receptors and cytokine-inducible nitric oxide synthase (iNOS) in the prefrontal cortex were also measured. The results indicated that subjects with a passive coping strategy showed high levels of interleukin-6 (IL-6) and interleukin-1β (IL-1β) expression in several cerebral structures in resting conditions after 21 days of chronic stress and increases in these cytokine levels in the hippocampus following an additional stress. Low expression levels of tumour necrosis factor-alpha (TNF-α) in the prefrontal cortex in active subjects at rest and in passive subjects after an additional defeat were detected. The iNOS expression levels were lower in the prefrontal cortex of the active group at rest. With respect to adrenergic receptor expression, there were no changes as a function of stress, but there were changes as a function of coping strategy. These results indicate differences in the variables studied in terms of the coping strategy adopted, with passive subjects having a biological profile that could be considered more vulnerable to the development of stress-related disorders.

  4. Conformational altered p53 as an early marker of oxidative stress in Alzheimer's disease.

    Science.gov (United States)

    Buizza, Laura; Cenini, Giovanna; Lanni, Cristina; Ferrari-Toninelli, Giulia; Prandelli, Chiara; Govoni, Stefano; Buoso, Erica; Racchi, Marco; Barcikowska, Maria; Styczynska, Maria; Szybinska, Aleksandra; Butterfield, David Allan; Memo, Maurizio; Uberti, Daniela

    2012-01-01

    In order to study oxidative stress in peripheral cells of Alzheimer's disease (AD) patients, immortalized lymphocytes derived from two peculiar cohorts of patients, referring to early onset AD (EOSAD) and subjects harboured AD related mutation (ADmut), were used. Oxidative stress was evaluated measuring i) the typical oxidative markers, such as HNE Michel adducts, 3 Nitro-Tyrosine residues and protein carbonyl on protein extracts, ii) and the antioxidant capacity, following the enzymatic kinetic of superoxide dismutase (SOD), glutathione peroxidase (GPx) and glutathione reductase (GRD). We found that the signs of oxidative stress, measured as oxidative marker levels, were evident only in ADmut but not in EOSAD patients. However, oxidative imbalance in EOSAD as well as ADmut lymphocytes was underlined by a reduced SOD activity and GRD activity in both pathological groups in comparison with cells derived from healthy subjects. Furthermore, a redox modulated p53 protein was found conformational altered in both EOSAD and ADmut B lymphocytes in comparison with control cells. This conformational altered p53 isoform, named "unfolded p53", was recognized by the use of two specific conformational anti-p53 antibodies. Immunoprecipitation experiments, performed with the monoclonal antibodies PAb1620 (that recognizes p53wt) and PAb240 (that is direct towards unfolded p53), and followed by the immunoblotting with anti-4-hydroxynonenal (HNE) and anti- 3-nitrotyrosine (3NT) antibodies, showed a preferential increase of nitrated tyrosine residues in unfolded p53 isoform comparing to p53 wt protein, in both ADmut and EOSAD. In addition, a correlation between unfolded p53 and SOD activity was further found. Thus this study suggests that ROS/RNS contributed to change of p53 tertiary structure and that unfolded p53 can be considered as an early marker of oxidative imbalance in these patients.

  5. Conformational altered p53 as an early marker of oxidative stress in Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Laura Buizza

    Full Text Available In order to study oxidative stress in peripheral cells of Alzheimer's disease (AD patients, immortalized lymphocytes derived from two peculiar cohorts of patients, referring to early onset AD (EOSAD and subjects harboured AD related mutation (ADmut, were used. Oxidative stress was evaluated measuring i the typical oxidative markers, such as HNE Michel adducts, 3 Nitro-Tyrosine residues and protein carbonyl on protein extracts, ii and the antioxidant capacity, following the enzymatic kinetic of superoxide dismutase (SOD, glutathione peroxidase (GPx and glutathione reductase (GRD. We found that the signs of oxidative stress, measured as oxidative marker levels, were evident only in ADmut but not in EOSAD patients. However, oxidative imbalance in EOSAD as well as ADmut lymphocytes was underlined by a reduced SOD activity and GRD activity in both pathological groups in comparison with cells derived from healthy subjects. Furthermore, a redox modulated p53 protein was found conformational altered in both EOSAD and ADmut B lymphocytes in comparison with control cells. This conformational altered p53 isoform, named "unfolded p53", was recognized by the use of two specific conformational anti-p53 antibodies. Immunoprecipitation experiments, performed with the monoclonal antibodies PAb1620 (that recognizes p53wt and PAb240 (that is direct towards unfolded p53, and followed by the immunoblotting with anti-4-hydroxynonenal (HNE and anti- 3-nitrotyrosine (3NT antibodies, showed a preferential increase of nitrated tyrosine residues in unfolded p53 isoform comparing to p53 wt protein, in both ADmut and EOSAD. In addition, a correlation between unfolded p53 and SOD activity was further found. Thus this study suggests that ROS/RNS contributed to change of p53 tertiary structure and that unfolded p53 can be considered as an early marker of oxidative imbalance in these patients.

  6. Morning anaerobic performance is not altered by vigilance impairment.

    Directory of Open Access Journals (Sweden)

    Romain Lericollais

    Full Text Available The aim of this study was to determine the role played by vigilance on the anaerobic performance recorded during a Wingate test performed at the bathyphase (nadir of the circadian rhythmicity. Twenty active male participants performed a 60-s Wingate test at 6 a.m. during 3 test sessions in counter-balanced order the day after either (i a normal reference night, (ii a total sleep deprivation night, or (iii a total sleep deprivation night associated with an extended simulated driving task from 9 p.m. to 5 a.m. During this task, the number of inappropriate line crossings (ILCs was used to control and quantify the effective decrease in the level of vigilance. The main findings show that (i vigilance of each participant was significantly altered (i.e., a drastic and progressive increase in ILCs is shown during the 7.5 hours of driving by the sleep deprivation night associated with an extended driving task; (ii the subjective evaluation of vigilance performed by self-rated scale revealed an increased impairment of the vigilance level between the normal reference night, the total sleep deprivation night and the total sleep deprivation night associated with an extended driving task; and (iii the morning following this last condition, during the Wingate test, the recorded cycling biomechanical parameters (peak power, mean power and fatigue index values, power decrease, and cycling kinetic and kinematic patterns were not significantly different from the two other conditions. Consequently, these results show that anaerobic performances recorded during a Wingate test performed at the bathyphase of the circadian rhythmicity are not altered by a drastic impairment in vigilance. These findings seem to indicate that vigilance is probably not a factor that contributes to circadian variations in anaerobic performance.

  7. Surviving endoplasmic reticulum stress is coupled to altered chondrocyte differentiation and function.

    Directory of Open Access Journals (Sweden)

    Kwok Yeung Tsang

    2007-03-01

    Full Text Available In protein folding and secretion disorders, activation of endoplasmic reticulum (ER stress signaling (ERSS protects cells, alleviating stress that would otherwise trigger apoptosis. Whether the stress-surviving cells resume normal function is not known. We studied the in vivo impact of ER stress in terminally differentiating hypertrophic chondrocytes (HCs during endochondral bone formation. In transgenic mice expressing mutant collagen X as a consequence of a 13-base pair deletion in Col10a1 (13del, misfolded alpha1(X chains accumulate in HCs and elicit ERSS. Histological and gene expression analyses showed that these chondrocytes survived ER stress, but terminal differentiation is interrupted, and endochondral bone formation is delayed, producing a chondrodysplasia phenotype. This altered differentiation involves cell-cycle re-entry, the re-expression of genes characteristic of a prehypertrophic-like state, and is cell-autonomous. Concomitantly, expression of Col10a1 and 13del mRNAs are reduced, and ER stress is alleviated. ERSS, abnormal chondrocyte differentiation, and altered growth plate architecture also occur in mice expressing mutant collagen II and aggrecan. Alteration of the differentiation program in chondrocytes expressing unfolded or misfolded proteins may be part of an adaptive response that facilitates survival and recovery from the ensuing ER stress. However, the altered differentiation disrupts the highly coordinated events of endochondral ossification culminating in chondrodysplasia.

  8. Can Architectural Design alter the Physiological reaction to Psychosocial Stress ?

    DEFF Research Database (Denmark)

    Brorson Fich, Lars; Jönsson, Peter; Kirkegaard, Poul Henning

    2014-01-01

    Is has long been established, that views to natural scenes can a have a dampening effect on physiological stress responses. However, as people in Europe, Canada and North America today spent 50-85% of their time indoors, attention might also be paid to how the artificial man-made indoor environment...... is computer generated and properties of the space therefore can be systematically varied, we measured saliva cortisol and heart rate variability in participants in a closed room versus a room with openings. As shown by a significant linear contrast interaction between groups and TSST conditions, participants...

  9. Global metabolomic responses of Nitrosomonas europaea 19718 to cold stress and altered ammonia feeding patterns

    KAUST Repository

    Lu, Huijie

    2015-11-05

    © 2015 Springer-Verlag Berlin Heidelberg The model ammonia-oxidizing bacterium Nitrosomonas europaea represents one of the environmentally and biotechnologically significant microorganisms. Genome-based studies over the last decade have led to many intriguing discoveries about its cellular biochemistry and physiology. However, knowledge regarding the regulation of overall metabolic routes in response to various environmental stresses is limited due to a lack of comprehensive, time-resolved metabolomic analyses. In this study, gas chromatography–mass spectrometry (GC-MS)-based metabolic profiling was performed to characterize the temporal variations of N. europaea 19718 intercellular metabolites in response to varied temperature (23 and 10 °C) and ammonia feeding patterns (shock loading and continuous feeding of 20 mg N/L). Approximately 87 metabolites were successfully identified and mapped to the existing pathways of N. europaea 19718, allowing interpretation of the influence of temperature and feeding pattern on metabolite levels. In general, varied temperature had a more profound influence on the overall metabolism than varied feeding patterns. Total extracellular metabolite concentrations (relative to internal standards and normalized to biomass weight) were lower under cold stress and shock loading conditions compared with the control (continuous feeding at 23 °C). Cold stress caused the widespread downregulation of metabolites involved in central carbon metabolism, amino acid, and lipid synthesis (e.g., malonic acid, succinic acid, putrescine, and phosphonolpyruvate). Metabolites that showed differences under varied feeding patterns were mainly involved in nucleotide acid, amino acid, and lipid metabolism (e.g., adenine, uracil, and spermidine). This study highlighted the roles of central carbon and nitrogen metabolism in countering cold stress and altered ammonia availability. In addition, transcriptomic, proteomic, and metabolomic data from three

  10. Salt stress alters DNA methylation levels in alfalfa (Medicago spp).

    Science.gov (United States)

    Al-Lawati, A; Al-Bahry, S; Victor, R; Al-Lawati, A H; Yaish, M W

    2016-02-26

    Modification of DNA methylation status is one of the mechanisms used by plants to adjust gene expression at both the transcriptional and posttranscriptional levels when plants are exposed to suboptimal conditions. Under abiotic stress, different cultivars often show heritable phenotypic variation accompanied by epigenetic polymorphisms at the DNA methylation level. This variation may provide the raw materials for plant breeding programs that aim to enhance abiotic stress tolerance, including salt tolerance. In this study, methylation-sensitive amplified polymorphism (MSAP) analysis was used to assess cytosine methylation levels in alfalfa (Medicago spp) roots exposed to increasing NaCl concentrations (0.0, 8.0, 12.0, and 20.0 dS/m). Eleven indigenous landraces were analyzed, in addition to a salt-tolerant cultivar that was used as a control. There was a slight increase in DNA methylation upon exposure to high levels of soil salinity. Phylogenetic analysis using MSAP showed epigenetic variation within and between the alfalfa landraces when exposed to saline conditions. Based on MSAP and enzyme-linked immunosorbent assay results, we found that salinity increased global DNA methylation status, particularly in plants exposed to the highest level of salinity (20 dS/m). Quantitative reverse transcription-polymerase chain reaction indicated that this might be mediated by the overexpression of methyltransferase homolog genes after exposure to saline conditions. DNA demethylation using 5-azacytidine reduced seedling lengths and dry and fresh weights, indicating a possible decrease in salinity tolerance. These results suggest that salinity affects DNA methylation flexibility.

  11. Cell proliferation alterations in Chlorella cells under stress conditions

    Energy Technology Data Exchange (ETDEWEB)

    Rioboo, Carmen [Laboratorio de Microbiologia, Facultad de Ciencias, Universidad de A Coruna, Campus da Zapateira s/n, 15008 A Coruna (Spain); O' Connor, Jose Enrique [Laboratorio de Citomica, Unidad Mixta de Investigacion CIPF-UVEG, Centro de Investigacion Principe Felipe, Avda. Autopista del Saler, 16, 46013 Valencia (Spain); Prado, Raquel; Herrero, Concepcion [Laboratorio de Microbiologia, Facultad de Ciencias, Universidad de A Coruna, Campus da Zapateira s/n, 15008 A Coruna (Spain); Cid, Angeles, E-mail: cid@udc.es [Laboratorio de Microbiologia, Facultad de Ciencias, Universidad de A Coruna, Campus da Zapateira s/n, 15008 A Coruna (Spain)

    2009-09-14

    Very little is known about growth and proliferation in relation to the cell cycle regulation of algae. The lack of knowledge is even greater when referring to the potential toxic effects of pollutants on microalgal cell division. To assess the effect of terbutryn, a triazine herbicide, on the proliferation of the freshwater microalga Chlorella vulgaris three flow cytometric approaches were used: (1) in vivo cell division using 5-,6-carboxyfluorescein diacetate succinimidyl ester (CFSE) staining was measured, (2) the growth kinetics were determined by cytometric cell counting and (3) cell viability was evaluated with the membrane-impermeable double-stranded nucleic acid stain propidium iodide (PI). The results obtained in the growth kinetics study using CFSE to identify the microalgal cell progeny were consistent with those determined by cytometric cell counting. In all C. vulgaris cultures, each mother cell had undergone only one round of division through the 96 h of assay and the cell division occurred during the dark period. Cell division of the cultures exposed to the herbicide was asynchronous. Terbutryn altered the normal number of daughter cells (4 autospores) obtained from each mother cell. The number was only two in the cultures treated with 250 nM. The duration of the lag phase after the exposure to terbutryn could be dependent on the existence of a critical cell size to activate cytoplasmic division. Cell size, complexity and fluorescence of chlorophyll a of the microalgal cells presented a marked light/dark (day/night) cycle, except in the non-dividing 500 nM cultures, where terbutryn arrested cell division at the beginning of the cycle. Viability results showed that terbutryn has an algastatic effect in C. vulgaris cells at this concentration. The rapid and precise determination of cell proliferation by CFSE staining has allowed us to develop a model for assessing both the cell cycle of C. vulgaris and the in vivo effects of pollutants on growth and

  12. Piroxicam attenuates 3-nitropropionic acid-induced brain oxidative stress and behavioral alteration in mice.

    Science.gov (United States)

    C, Jadiswami; H M, Megha; Dhadde, Shivsharan B; Durg, Sharanbasappa; Potadar, Pandharinath P; B S, Thippeswamy; V P, Veerapur

    2014-12-01

    3-Nitropropionic acid (3-NP) is a fungal toxin that produces Huntington's disease like symptoms in both animals and humans. Piroxicam, a non-selective cyclooxygenase (COX) inhibitor, used as anti-inflammatory agent and also known to decrease free oxygen radical production. In this study, the effect of piroxicam was evaluated against 3-NP-induced brain oxidative stress and behavioral alteration in mice. Adult male Swiss albino mice were injected with vehicle/piroxicam (10 and 20 mg/kg, i.p.) 30 min before 3-NP challenge (15 mg/kg, i.p.) regularly for 14 days. Body weights of the mice were measured on alternative days of the experiment. At the end of the treatment schedule, mice were evaluated for behavioral alterations (movement analysis, locomotor test, beam walking test and hanging wire test) and brain homogenates were used for the estimation of oxidative stress markers (lipid peroxidation, reduced glutathione and catalase). Administration of 3-NP significantly altered the behavioral activities and brain antioxidant status in mice. Piroxicam, at both the tested doses, caused a significant reversal of 3-NP-induced behavioral alterations and oxidative stress in mice. These findings suggest piroxicam protects the mice against 3-NP-induced brain oxidative stress and behavioral alteration. The antioxidant properties of piroxicam may be responsible for the observed beneficial actions.

  13. Bone alterations by stress in athletes. Schaedigung des Knochens durch Ueberlastung bei Leistungssportlern

    Energy Technology Data Exchange (ETDEWEB)

    Doege, H. (Bezirkskrankenhaus ' Friedrich Wolf' , Abt. fuer Nuklearmedizin, Chemnitz (Germany))

    1990-01-01

    This report describes our experiences with the bone imaging in athletes. We studied 10 athletes and 10 other patients with spondylolisthesis of the lumbar spine and 16 athletes with suspicion of alterations of extremities. An increased uptake of this radiopharmaceutical was detected in six of 10 athletes with spondylolisthesis caused probably by stress fracture. Bone scans were negative in seven of 16 athletes with suspicion of lesion of extremities. In the remaining 9 patients scans were abnormal and showed periosteal injuries, epiphyseal alteration, joint abnormalities, tibial stress fractures and couvert fracture. It was also abnormal in bone injuries not evident in radiography. (orig.).

  14. Maternal chewing during prenatal stress ameliorates stress-induced hypomyelination, synaptic alterations, and learning impairment in mouse offspring.

    Science.gov (United States)

    Suzuki, Ayumi; Iinuma, Mitsuo; Hayashi, Sakurako; Sato, Yuichi; Azuma, Kagaku; Kubo, Kin-Ya

    2016-11-15

    Maternal chewing during prenatal stress attenuates both the development of stress-induced learning deficits and decreased cell proliferation in mouse hippocampal dentate gyrus. Hippocampal myelination affects spatial memory and the synaptic structure is a key mediator of neuronal communication. We investigated whether maternal chewing during prenatal stress ameliorates stress-induced alterations of hippocampal myelin and synapses, and impaired development of spatial memory in adult offspring. Pregnant mice were divided into control, stress, and stress/chewing groups. Stress was induced by placing mice in a ventilated restraint tube, and was initiated on day 12 of pregnancy and continued until delivery. Mice in the stress/chewing group were given a wooden stick to chew during restraint. In 1-month-old pups, spatial memory was assessed in the Morris water maze, and hippocampal oligodendrocytes and synapses in CA1 were assayed by immunohistochemistry and electron microscopy. Prenatal stress led to impaired learning ability, and decreased immunoreactivity of myelin basic protein (MBP) and 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) in the hippocampal CA1 in adult offspring. Numerous myelin sheath abnormalities were observed. The G-ratio [axonal diameter to axonal fiber diameter (axon plus myelin sheath)] was increased and postsynaptic density length was decreased in the hippocampal CA1 region. Maternal chewing during stress attenuated the prenatal stress-induced impairment of spatial memory, and the decreased MBP and CNPase immunoreactivity, increased G-ratios, and decreased postsynaptic-density length in the hippocampal CA1 region. These findings suggest that chewing during prenatal stress in dams could be an effective coping strategy to prevent hippocampal behavioral and morphologic impairments in their offspring.

  15. A new stress model, a scream sound, alters learning and monoamine levels in rat brain.

    Science.gov (United States)

    Hu, Lili; Yang, Juan; Song, Tusheng; Hou, Ni; Liu, Yong; Zhao, Xiaoge; Zhang, Dianzeng; Wang, Lumin; Wang, Tao; Huang, Chen

    2014-01-17

    Most existing animal models for stress involve the simultaneous application of physical and psychological stress factors. In the current study, we described and used a novel psychological stress model (scream sound stress). To study the validity of it, we carried out acute and chronic scream sound stress. First, adult Sprague-Dawley (SD) rats were randomly divided into white noise, stress and background groups. The white noise group and stress group were treated with white noise and scream sound for 4h in the morning respectively. Compared with white noise and background groups, exposure to acute scream sound increased corticosterone (CORT) level and decreased latency in Morris water maze (MWM) test. The levels of noradrenaline (NE), dopamine (DA), 5-hydroxytryptamine (5-HT), 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA) and 5-hydroxyindoleacetic acid (5-HIAA) were altered in the striatum, hypothalamus and hippocampus of stress rats. Second, adult SD rats were randomly divided into background and stress groups, which were treated with scream sound for three weeks. Exposure to chronic scream sound suppressed body weight gain, increased corticosterone (CORT) level, influenced the morphology of adrenal gland, improved spleen and thymus indices, and decreased latency in MWM test. NE, DA, DOPAC, HVA and 5-HIAA levels were also altered in the brain of stress rats. Our results suggested that scream sound, as a novel stressor, facilitated learning ability, as well as altered monoamine levels in the rat brain. Moreover, scream sound is easy to apply and can be applied in more animals at the same time.

  16. Corticotropin-releasing factor receptors and stress-related alterations of gut motor function.

    OpenAIRE

    2007-01-01

    International audience; Over the past few decades, corticotropin-releasing factor (CRF) signaling pathways have been shown to be the main coordinators of the endocrine, behavioral, and immune responses to stress. Emerging evidence also links the activation of CRF receptors type 1 and type 2 with stress-related alterations of gut motor function. Here, we review the role of CRF receptors in both the brain and the gut as part of key mechanisms through which various stressors impact propulsive ac...

  17. Renal Oxidative Stress Induced by Long-Term Hyperuricemia Alters Mitochondrial Function and Maintains Systemic Hypertension

    Directory of Open Access Journals (Sweden)

    Magdalena Cristóbal-García

    2015-01-01

    Full Text Available We addressed if oxidative stress in the renal cortex plays a role in the induction of hypertension and mitochondrial alterations in hyperuricemia. A second objective was to evaluate whether the long-term treatment with the antioxidant Tempol prevents renal oxidative stress, mitochondrial alterations, and systemic hypertension in this model. Long-term (11-12 weeks and short-term (3 weeks effects of oxonic acid induced hyperuricemia were studied in rats (OA, 750 mg/kg BW, OA+Allopurinol (AP, 150 mg/L drinking water, OA+Tempol (T, 15 mg/kg BW, or vehicle. Systolic blood pressure, renal blood flow, and vascular resistance were measured. Tubular damage (urine N-acetyl-β-D-glucosaminidase and oxidative stress markers (lipid and protein oxidation along with ATP levels were determined in kidney tissue. Oxygen consumption, aconitase activity, and uric acid were evaluated in isolated mitochondria from renal cortex. Short-term hyperuricemia resulted in hypertension without demonstrable renal oxidative stress or mitochondrial dysfunction. Long-term hyperuricemia induced hypertension, renal vasoconstriction, tubular damage, renal cortex oxidative stress, and mitochondrial dysfunction and decreased ATP levels. Treatments with Tempol and allopurinol prevented these alterations. Renal oxidative stress induced by hyperuricemia promoted mitochondrial functional disturbances and decreased ATP content, which represent an additional pathogenic mechanism induced by chronic hyperuricemia. Hyperuricemia-related hypertension occurs before these changes are evident.

  18. Repeated stress-induced stimulation of catecholamine response is not followed by altered immune cell redistribution.

    Science.gov (United States)

    Imrich, Richard; Tibenska, Elena; Koska, Juraj; Ksinantova, Lucia; Kvetnansky, Richard; Bergendiova-Sedlackova, Katarina; Blazicek, Pavol; Vigas, Milan

    2004-06-01

    Stress response is considered an important factor in the modulation of immune function. Neuroendocrine hormones, including catecholamines, affect the process of immune cell redistribution, important for cell-mediated immunity. This longitudinal investigation was aimed at evaluating the effect of repeated stress-induced elevation of catecholamines on immune cell redistribution and expression of adhesive molecules. We assessed the responses of epinephrine (EPI), norepinephrine (NE), cortisol, changes in lymphocytes subpopulations, and percentages of CD11a+, CD11b+, and CD62L+ lymphocytes to a 20-min treadmill exercise of an intensity equal to 80% of the individual's Vo(2)max. The exercise was performed before and after 6 weeks of endurance training consisting of a 1-h run 4 times a week (ET) and after 5 days of bed rest (HDBR) in 10 healthy males. We did not observe any significant changes in the basal levels of EPI, NE, and cortisol in the plasma, nor in the immune parameters after ET and HDBR. The exercise test led to a significant (P <.001) elevation of EPI and NE levels after both ET and HDBR, a significant elevation (P <.01) of cortisol after HDBR, an increase in the absolute numbers of leukocytes, granulocytes, monocytes, CD3+, CD4+, CD8+, CD16+, CD19+ lymphocytes, percentage of CD11a+ and CD11b+ lymphocytes, and to a decrease of CD62L1 before, after ET, and after HDBR. We found comparable changes in all measured immune parameters after ET and HDBR. In conclusion, repeated stress-induced elevation of EPI and NE was not associated with an alteration in immune cell redistribution found in response to the single bout of exercise.

  19. Nursing students’ perceived stress and influences in clinical performance

    OpenAIRE

    Laila Akhu-Zaheya; Insaf Shaban; Wejdan Khater

    2015-01-01

    Background: It is known that stress related to clinical training among nursing students could contribute to many physical and mental problems. However, little empirical evidence about the influence of stress in nurse students’ clinical performance Objective: The objective of this study was to assess the association between perceived stresses, stress related factors, and students’ clinical performance. Method: Using the perceived stress scale, 539 Jordanian nursing students from 2 publ...

  20. Performance, Stress, and Health: Overall Reaction.

    Science.gov (United States)

    Landers, Daniel M.

    1994-01-01

    Reviews articles on stress and exercise. After defining stress, the paper analyzes competition as either eustress or distress, provides evidence for Berger's taxonomy of stress and exercise, examines Type A behavior, discusses multidimensional anxiety and stress management, describes the inverted-U hypothesis and task characteristics, and explains…

  1. Restraint stress alters immune parameters and induces oxidative stress in the mouse uterus during embryo implantation.

    Science.gov (United States)

    Liu, Guanhui; Dong, Yulan; Wang, Zixu; Cao, Jing; Chen, Yaoxing

    2014-12-01

    The influence of stress on embryo implantation is not well understood. Prior studies have focused on later gestational stages and the long-term impact of stress on immune function. The objective of this study is to investigate the effects of restraint stress on the immune parameters and the oxidative states of the uterus during implantation. In this study, pregnant CD1 mice were subjected to restraint stress (4 h/d) on embryonic day 1 (E1) and sacrificed on E3, E5, and E7. Maternal plasma corticosterone (CORT) secretion and implantation sites in the uterus were examined. The uterine (excluding embryos) homogenate and uterine lymphocytes were collected to examine oxidative stress states and associated immune parameters. The results demonstrated that restraint stress increased maternal plasma CORT secretion and reduced the number of implantation sites by 15.3% on E5 and by 26.1% on E7. Moreover, restraint stress decreased the density of uterine natural killer (uNK) cells in the endometrium by 22.1-47.9% and increased the density of mast cells in the myometrium by 55.6-76.9%. Restraint stress remarkably decreased the CD3(+)CD4(+) T/CD3(+)CD8(+) T cell ratio (by 26.2-28.9%) and attenuated uterine lymphocyte proliferation and secretion of cytokines. In addition, restraint stress threatened the intracellular equilibrium between oxidants and antioxidants, resulting in decreased glutathione peroxidase (GSH-PX) (32.2% and 45.7%), superoxide dismutase (SOD) (15.5% and 26.1%), and total antioxidant capacity (T-AOC) (18.4% and 18.2%) activities and increased malondialdehyde (MDA) (34.4% and 43.0%) contents on E5 and E7. In conclusion, these findings demonstrate that restraint stress causes abnormal implantation and negatively impacts immune parameters in association with oxidative stress in mice.

  2. Corticotropin-releasing factor receptors and stress-related alterations of gut motor function.

    Science.gov (United States)

    Taché, Yvette; Bonaz, Bruno

    2007-01-01

    Over the past few decades, corticotropin-releasing factor (CRF) signaling pathways have been shown to be the main coordinators of the endocrine, behavioral, and immune responses to stress. Emerging evidence also links the activation of CRF receptors type 1 and type 2 with stress-related alterations of gut motor function. Here, we review the role of CRF receptors in both the brain and the gut as part of key mechanisms through which various stressors impact propulsive activity of the gastrointestinal system. We also examine how these mechanisms translate into the development of new approaches for irritable bowel syndrome, a multifactorial disorder for which stress has been implicated in the pathophysiology.

  3. Stress during development alters dendritic morphology in the nucleus accumbens and prefrontal cortex.

    Science.gov (United States)

    Muhammad, A; Carroll, C; Kolb, B

    2012-08-02

    The long-term effects of stress during development have been well characterized. However, the effects of developmental stress on the underlying neurological mechanisms related to the reward system are not well understood. The present report studied the long term effects of stress during development on the structural plasticity in the cortical and subcortical regions. Rats exposed to stress during embryonic development (prenatal stress; PS) or soon after birth (maternal separation; MS) were studied for structural alteration at the neuronal level in the nucleus accumbens (NAc), orbital frontal cortex (OFC), and medial prefrontal cortex (mPFC). The findings show that stress during development increased dendritic branching, length, and spine density in the NAc, and subregions of the PFC. PS experience increased dendritic branching and length in the mPFC apical and basilar dendrites. In contrast, a PS-associated decrease in dendritic branching and length was observed in the basilar branches of the OFC. MS resulted in an increase in dendritic growth and spine density in the subregions of the PFC. The effect of PS on neuroanatomy was more robust than MS despite the shorter duration and intensity. The altered dendritic growth and spine density associated with stress during development could have potential impact on NAc and PFC related behaviors.

  4. Youth offspring of mothers with posttraumatic stress disorder have altered stress reactivity in response to a laboratory stressor.

    Science.gov (United States)

    Danielson, Carla Kmett; Hankin, Benjamin L; Badanes, Lisa S

    2015-03-01

    Parental Posttraumatic Stress Disorder (PTSD), particularly maternal PTSD, confers risk for stress-related psychopathology among offspring. Altered hypothalamic-pituitary-adrenal (HPA) axis functioning is one mechanism proposed to explain transmission of this intergenerational risk. Investigation of this mechanism has been largely limited to general stress response (e.g., diurnal cortisol), rather than reactivity in response to an acute stressor. We examined cortisol reactivity in response to a laboratory stressor among offspring of mothers with a lifetime diagnosis of PTSD (n=36) and age- and gender- matched control offspring of mothers without PTSD (n=36). Youth (67% girls; mean age=11.4, SD=2.6) participated in a developmentally sensitive laboratory stressor and had salivary cortisol assessed five times (one pre-stress, one immediate post-stress, and three recovery measures, spaced 15min apart). Results were consistent with the hypothesis that offspring of mothers with PTSD would exhibit a dysregulated, blunted cortisol reactivity profile, and control offspring would display the expected adaptive peak in cortisol response to challenge profile. Findings were maintained after controlling for youth traumatic event history, physical anxiety symptoms, and depression, as well as maternal depression. This finding contributes to the existing literature indicating that attenuated HPA axis functioning, inclusive of hyposecretion of cortisol in response to acute stress, is robust among youth of mothers with PTSD. Future research is warranted in elucidating cortisol reactivity as a link between maternal PTSD and stress-related psychopathology vulnerability among offspring.

  5. Sprint performance under heat stress: A review.

    Science.gov (United States)

    Girard, O; Brocherie, F; Bishop, D J

    2015-06-01

    Training and competition in major track-and-field events, and for many team or racquet sports, often require the completion of maximal sprints in hot (>30 °C) ambient conditions. Enhanced short-term (heat exposure (muscle temperature rise), can be attributed to improved muscle contractility. Under heat stress, elevations in skin/core temperatures are associated with increased cardiovascular and metabolic loads in addition to decreasing voluntary muscle activation; there is also compelling evidence to suggest that large performance decrements occur when repeated-sprint exercise (consisting of brief recovery periods between sprints, usually 39 °C). Here we also discuss strategies (heat acclimatization, precooling, hydration strategies) employed by "sprint" athletes to mitigate the negative influence of higher environmental temperatures.

  6. The biopsychosocial model of stress in adolescence: self-awareness of performance versus stress reactivity.

    Science.gov (United States)

    Rith-Najarian, Leslie R; McLaughlin, Katie A; Sheridan, Margaret A; Nock, Matthew K

    2014-03-01

    Extensive research among adults supports the biopsychosocial (BPS) model of challenge and threat, which describes relationships among stress appraisals, physiological stress reactivity, and performance; however, no previous studies have examined these relationships in adolescents. Perceptions of stressors as well as physiological reactivity to stress increase during adolescence, highlighting the importance of understanding the relationships among stress appraisals, physiological reactivity, and performance during this developmental period. In this study, 79 adolescent participants reported on stress appraisals before and after a Trier Social Stress Test in which they performed a speech task. Physiological stress reactivity was defined by changes in cardiac output and total peripheral resistance from a baseline rest period to the speech task, and performance on the speech was coded using an objective rating system. We observed in adolescents only two relationships found in past adult research on the BPS model variables: (1) pre-task stress appraisal predicted post-task stress appraisal and (2) performance predicted post-task stress appraisal. Physiological reactivity during the speech was unrelated to pre- and post-task stress appraisals and to performance. We conclude that the lack of association between post-task stress appraisal and physiological stress reactivity suggests that adolescents might have low self-awareness of physiological emotional arousal. Our findings further suggest that adolescent stress appraisals are based largely on their performance during stressful situations. Developmental implications of this potential lack of awareness of one's physiological and emotional state during adolescence are discussed.

  7. Cytosine methylation alteration in natural populations of Leymus chinensis induced by multiple abiotic stresses.

    Directory of Open Access Journals (Sweden)

    Yingjie Yu

    Full Text Available BACKGROUND: Human activity has a profound effect on the global environment and caused frequent occurrence of climatic fluctuations. To survive, plants need to adapt to the changing environmental conditions through altering their morphological and physiological traits. One known mechanism for phenotypic innovation to be achieved is environment-induced rapid yet inheritable epigenetic changes. Therefore, the use of molecular techniques to address the epigenetic mechanisms underpinning stress adaptation in plants is an important and challenging topic in biological research. In this study, we investigated the impact of warming, nitrogen (N addition, and warming+nitrogen (N addition stresses on the cytosine methylation status of Leymus chinensis Tzvel. at the population level by using the amplified fragment length polymorphism (AFLP, methylation-sensitive amplified polymorphism (MSAP and retrotransposon based sequence-specific amplification polymorphism (SSAP techniques. METHODOLOGY/PRINCIPAL FINDINGS: Our results showed that, although the percentages of cytosine methylation changes in SSAP are significantly higher than those in MSAP, all the treatment groups showed similar alteration patterns of hypermethylation and hypomethylation. It meant that the abiotic stresses have induced the alterations in cytosine methylation patterns, and the levels of cytosine methylation changes around the transposable element are higher than the other genomic regions. In addition, the identification and analysis of differentially methylated loci (DML indicated that the abiotic stresses have also caused targeted methylation changes at specific loci and these DML might have contributed to the capability of plants in adaptation to the abiotic stresses. CONCLUSIONS/SIGNIFICANCE: Our results demonstrated that abiotic stresses related to global warming and nitrogen deposition readily evoke alterations of cytosine methylation, and which may provide a molecular basis for rapid

  8. Effect of Hemin on Brain Alterations and Neuroglobin Expression in Water Immersion Restraint Stressed Rats

    Directory of Open Access Journals (Sweden)

    Merhan Ragy

    2016-01-01

    Full Text Available In the brain, the heme oxygenase (HO system has been reported to be very active and its modulation seems to play a crucial role in the pathophysiology of neurodegenerative disorders. Hemin as HO-1 inducer has been shown to attenuate neuronal injury so the goal of this study was to assess the effect of hemin therapy on the acute stress and how it would modulate neurological outcome. Thirty male albino rats were divided into three groups: control group and stressed group with six-hour water immersion restraint stress (WIRS and stressed group, treated with hemin, in which each rat received a single intraperitoneal injection of hemin at a dose level of 50 mg/kg body weight at 12 hours before exposure to WIRS. Stress hormones, oxidative stress markers, malondialdehyde (MDA, and total antioxidant capacity (TAC were measured and expressions of neuroglobin and S100B mRNA in brain tissue were assayed. Our results revealed that hemin significantly affects brain alterations induced by acute stress and this may be through increased expression of neuroglobin and through antioxidant effect. Hemin decreased blood-brain barrier damage as it significantly decreased the expression of S100B. These results suggest that hemin may be an effective therapy for being neuroprotective against acute stress.

  9. Mindfulness meditation training alters stress-related amygdala resting state functional connectivity: a randomized controlled trial.

    Science.gov (United States)

    Taren, Adrienne A; Gianaros, Peter J; Greco, Carol M; Lindsay, Emily K; Fairgrieve, April; Brown, Kirk Warren; Rosen, Rhonda K; Ferris, Jennifer L; Julson, Erica; Marsland, Anna L; Bursley, James K; Ramsburg, Jared; Creswell, J David

    2015-12-01

    Recent studies indicate that mindfulness meditation training interventions reduce stress and improve stress-related health outcomes, but the neural pathways for these effects are unknown. The present research evaluates whether mindfulness meditation training alters resting state functional connectivity (rsFC) of the amygdala, a region known to coordinate stress processing and physiological stress responses. We show in an initial discovery study that higher perceived stress over the past month is associated with greater bilateral amygdala-subgenual anterior cingulate cortex (sgACC) rsFC in a sample of community adults (n = 130). A follow-up, single-blind randomized controlled trial shows that a 3-day intensive mindfulness meditation training intervention (relative to a well-matched 3-day relaxation training intervention without a mindfulness component) reduced right amygdala-sgACC rsFC in a sample of stressed unemployed community adults (n = 35). Although stress may increase amygdala-sgACC rsFC, brief training in mindfulness meditation could reverse these effects. This work provides an initial indication that mindfulness meditation training promotes functional neuroplastic changes, suggesting an amygdala-sgACC pathway for stress reduction effects.

  10. Mycorrhizas alter sucrose and proline metabolism in trifoliate orange exposed to drought stress

    Science.gov (United States)

    Wu, Hui-Hui; Zou, Ying-Ning; Rahman, Mohammed Mahabubur; Ni, Qiu-Dan; Wu, Qiang-Sheng

    2017-01-01

    Arbuscular mycorrhizal fungi (AMF) can enhance drought tolerance in plants, whereas little is known regarding AMF contribution to sucrose and proline metabolisms under drought stress (DS). In this study, Funneliformis mosseae and Paraglomus occultum were inoculated into trifoliate orange (Poncirus trifoliata) under well watered and DS. Although the 71-days DS notably (P < 0.05) inhibited mycorrhizal colonization, AMF seedlings showed significantly (P < 0.05) higher plant growth performance and leaf relative water content, regardless of soil water status. AMF inoculation significantly (P < 0.05) increased leaf sucrose, glucose and fructose concentration under DS, accompanied with a significant increase of leaf sucrose phosphate synthase, neutral invertase, and net activity of sucrose-metabolized enzymes and a decrease in leaf acid invertase and sucrose synthase activity. AMF inoculation produced no change in leaf ornithine-δ-aminotransferase activity, but significantly (P < 0.05) increased leaf proline dehydrogenase activity and significantly (P < 0.05) decreased leaf both Δ1-pyrroline-5-carboxylate reductase and Δ1-pyrroline-5-carboxylate synthetase activity, resulting in lower proline accumulation in AMF plants under DS. Our results therefore suggest that AMF strongly altered leaf sucrose and proline metabolism through regulating sucrose- and proline-metabolized enzyme activities, which is important for osmotic adjustment of the host plant. PMID:28181575

  11. Prenatal stress is a vulnerability factor for altered morphology and biological activity of microglia cells.

    Directory of Open Access Journals (Sweden)

    Joanna eŚlusarczyk

    2015-03-01

    Full Text Available Several lines of evidence suggest that the dysregulation of the immune system is an important factor in the development of depression. Microglia are the resident macrophages of the central nervous system and a key player in innate immunity of the brain. We hypothesized that prenatal stress (an animal model of depression as a priming factor could affect microglial cells and might lead to depressive-like disturbances in adult male rat offspring. We investigated the behavioral changes (sucrose preference test, Porsolt test, the expression of C1q and CD40 mRNA and the level of microglia (Iba1 positive in 3 month old control and prenatally stressed male offspring rats. In addition, we characterized the morphological and biochemical parameters of potentially harmful (NO, iNOS, IL-1β, IL-18, IL-6, TNF-α, CCL2, CXCL12, CCR2, CXCR4 and beneficial (IGF-1, BDNF phenotypes in cultures of microglia obtained from the cortices of 1-2 days old control and prenatally stressed pups. The adult prenatally stressed rats showed behavioral (anhedonic- and depression-like disturbances, enhanced expression of microglial activation markers and an increased number of Iba1-immunopositive cells in the hippocampus and frontal cortex. The morphology of glia was altered in cultures from prenatally stressed rats, as demonstrated by immunofluorescence microscopy. Moreover, in these cultures, we observed enhanced expression of CD40 and MHC II and release of pro-inflammatory cytokines, including IL-1β, IL-18, TNF-α and IL-6. Prenatal stress significantly up-regulated levels of the chemokines CCL2, CXCL12 and altered expression of their receptors, CCR2 and CXCR4 while IGF-1 production was suppressed in cultures of microglia from prenatally stressed rats.Our results suggest that prenatal stress may lead to excessive microglia activation and contribute to the behavioral changes observed in depression in adulthood.

  12. Chronic mild stress alters circadian expressions of molecular clock genes in the liver.

    Science.gov (United States)

    Takahashi, Kei; Yamada, Tetsuya; Tsukita, Sohei; Kaneko, Keizo; Shirai, Yuta; Munakata, Yuichiro; Ishigaki, Yasushi; Imai, Junta; Uno, Kenji; Hasegawa, Yutaka; Sawada, Shojiro; Oka, Yoshitomo; Katagiri, Hideki

    2013-02-01

    Chronic stress is well known to affect metabolic regulation. However, molecular mechanisms interconnecting stress response systems and metabolic regulations have yet to be elucidated. Various physiological processes, including glucose/lipid metabolism, are regulated by the circadian clock, and core clock gene dysregulation reportedly leads to metabolic disorders. Glucocorticoids, acting as end-effectors of the hypothalamus-pituitary-adrenal (HPA) axis, entrain the circadian rhythms of peripheral organs, including the liver, by phase-shifting core clock gene expressions. Therefore, we examined whether chronic stress affects circadian expressions of core clock genes and metabolism-related genes in the liver using the chronic mild stress (CMS) procedure. In BALB/c mice, CMS elevated and phase-shifted serum corticosterone levels, indicating overactivation of the HPA axis. The rhythmic expressions of core clock genes, e.g., Clock, Npas2, Bmal1, Per1, and Cry1, were altered in the liver while being completely preserved in the hypothalamic suprachiasmatic nuculeus (SCN), suggesting that the SCN is not involved in alterations in hepatic core clock gene expressions. In addition, circadian patterns of glucose and lipid metabolism-related genes, e.g., peroxisome proliferator activated receptor (Ppar) α, Pparγ-1, Pparγ-coactivator-1α, and phosphoenolepyruvate carboxykinase, were also disturbed by CMS. In contrast, in C57BL/6 mice, the same CMS procedure altered neither serum corticosterone levels nor rhythmic expressions of hepatic core clock genes and metabolism-related genes. Thus, chronic stress can interfere with the circadian expressions of both core clock genes and metabolism-related genes in the liver possibly involving HPA axis overactivation. This mechanism might contribute to metabolic disorders in stressful modern societies.

  13. Inclusion of biotic stress (consumer pressure) alters predictions from the stress gradient hypothesis

    NARCIS (Netherlands)

    Smit, Christian; Rietkerk, Max; Wassen, Martin J.

    2009-01-01

    The stress gradient hypothesis (SGH) predicts a shift from net negative interactions in benign environments towards net positive in harsh environments in ecological communities. While several studies found support for the SGH, others found evidence against it, leading to a debate on how nature and s

  14. Methionine Metabolism Alters Oxidative Stress Resistance via the Pentose Phosphate Pathway.

    Science.gov (United States)

    Campbell, Kate; Vowinckel, Jakob; Keller, Markus A; Ralser, Markus

    2016-04-01

    Nutrient uptake and metabolism have a significant impact on the way cells respond to stress. The amino acid methionine is, in particular, a key player in the oxidative stress response, and acting as a reactive oxygen species scavenger, methionine is implicated in caloric restriction phenotypes and aging. We here provide evidence that some effects of methionine in stress situations are indirect and caused by altered activity of the nicotinamide adenine dinucleotide phosphate (NADPH) producing oxidative part of the pentose phosphate pathway (PPP). In Saccharomyces cerevisiae, both methionine prototrophic (MET15) and auxotrophic (met15Δ) cells supplemented with methionine showed an increase in PPP metabolite concentrations downstream of the NADPH producing enzyme, 6-phosphogluconate dehydrogenase. Proteomics revealed this enzyme to also increase in expression compared to methionine self-synthesizing cells. Oxidant tolerance was increased in cells preincubated with methionine; however, this effect was abolished when flux through the oxidative PPP was prevented by deletion of its rate limiting enzyme, ZWF1. Stress resistance phenotypes that follow methionine supplementation hence involve the oxidative PPP. Effects of methionine on oxidative metabolism, stress signaling, and aging have thus to be seen in the context of an altered activity of this NADP reducing pathway.

  15. Adaptogenic potential of curcumin in experimental chronic stress and chronic unpredictable stress-induced memory deficits and alterations in functional homeostasis.

    Science.gov (United States)

    Bhatia, Nitish; Jaggi, Amteshwar Singh; Singh, Nirmal; Anand, Preet; Dhawan, Ravi

    2011-07-01

    The present study was designed to investigate the role of curcumin in chronic stress and chronic unpredictable stress-induced memory deficits and alteration of functional homeostasis in mice. Chronic stress was induced by immobilizing the animal for 2 h daily for 10 days, whereas chronic unpredictable stress was induced by employing a battery of stressors of variable magnitude and time for 10 days. Curcumin was administered to drug-treated mice prior to induction of stress. Body weight, adrenal gland weight, ulcer index and biochemical levels of glucose, creatine kinase, cholesterol, corticosterone, thiobarbituric acid reactive substances (TBARS) and reduced glutathione (GSH) were evaluated to assess stress-induced functional changes. Memory deficits were evaluated using the elevated plus maze (EPM) model. Chronic stress and chronic unpredictable stress significantly increased the levels of corticosterone, glucose and creatine kinase and decreased cholesterol levels. Moreover, chronic stress and chronic unpredictable stress resulted in severe memory deficits along with adrenal hypertrophy, weight loss and gastric ulceration. Chronic stress and chronic unpredictable stress also increased oxidative stress assessed in terms of increase in TBARS and decrease in GSH levels. Pretreatment with curcumin (25 and 50 mg/kg p.o.) attenuated chronic stress and chronic unpredictable stress-associated memory deficits, biochemical alterations, pathological outcomes and oxidative stress. It may be concluded that curcumin-mediated antioxidant actions and decrease in corticosterone secretion are responsible for its adaptogenic and memory restorative actions in chronic and chronic unpredictable stress.

  16. Alterations of CNS structure & function by charged particle radiation & resultant oxidative stress

    Science.gov (United States)

    Nelson, Gregory; Chang, Polly; Favre, Cecile; Fike, John; Komarova, Natalia; Limoli, Charles; Mao, Xiao-Wen; Obenaus, Andre; Raber, Jacob; Spigelman, Igor; Soltesz, Ivan; Song, Sheng-Kwei; Stampanoni, Marco; Vlkolinsky, Roman; Wodarz, Dominik

    were complex and suggested continuous remodeling of the brain for up to 6 months. Thus we demonstrated a suite of CNS structural and functional changes after proton and iron ion exposure in the low dose regime. Based on these findings we will now test whether oxidative stress mediates the reactions of CNS to radiation exposure and what role radiation quality and dose rate play in the responses. We will use cultured neural precursor cells (mouse human) to detect changes in oxidative status and differentiation as functions of charged particle charge and velocity. These results will inform the selection of particles for many in vivo measurements that will compare wild type mice to a transgenic strain that over-expresses a human catalase gene (which inactivates hydrogen peroxide) in the mitochondrial compartment. This will explicitly test the role of reactive oxygen species in mediating the mechanisms underlying the CNS endpoints that we will measure. We will extend the electrophysiological measurements on individual nerves in hippocampal slices to characterize both inhibitory and excitatory synapses. Further, multi-electrode arrays will be used to follow correlated electrical activity in different hippocampal regions in order to understand network-level function as well as synaptic efficacy and plasticity. Controlled oxidative stress on irradiated samples will explore whether response mechanisms are shared. To link alterations in neurogenesis to performance we will explore behavioral changes mediated by the hippocampus simultaneously with measures of expression of the Arc gene in newly-born neurons. This will test whether decrements in performance correlate with loss of new cells and whether behavior properly stimulates functional integration of the new cells; the behavioral paradigm will be contextual fear conditioning. We will develop mathematical frameworks for CNS responses to radiation in order to inform risk estimates. Finally, we will couple a high

  17. Protective effect of Labisia pumila on stress-induced behavioral, biochemical, and immunological alterations.

    Science.gov (United States)

    Kour, Kiranjeet; Sharma, Neelam; Chandan, Bal Krishan; Koul, Surrinder; Sangwan, Payare Lal; Bani, Sarang

    2010-10-01

    The aim of the present study was to investigate the antistress potential of LABISIA PUMILA aqueous extract (LPPM/A003) using a battery of tests widely employed in different stressful situations. Pretreatment of experimental animals with LPPM/A003 caused an increase in the swimming endurance and hypoxia time and also showed the recovery of physical stress-induced depletion of neuromuscular coordination and scopolamine induced memory deficit. LPPM/A003 at graded doses reversed the chronic restraint stress (RST), induced depletion of CD4 (+) and CD8 (+) T lymphocytes, NK cell population, and corresponding cytokines expression besides downregulating the stress-induced increase in plasma corticosterone, a major stress hormone. In addition, LPPM/A003 reversed the chronic stress-induced increase in adrenal gland weight, serum alanine aminotransferase (ALT), alkaline phosphatase (ALP), and hepatic lipid peroxidation (LP) levels and augmented the RST induced decrease in hepatic glutathione (GSH), thymus and spleen weight. Thus, we conclude that LPPM/A003 has the ability to reverse the alterations produced by various stressful stimuli and therefore restores homeostasis.

  18. Use Stress to Improve Your Job Performance.

    Science.gov (United States)

    Saville, Anthony; Kavina, George

    1982-01-01

    On-the-job stress can be constructive (eustress) or destructive (distress). A survey of 276 school superintendents in 13 western states identified their 10 most distressful situations, the frequency of job-related illnesses, their habits and personality types, and their methods of coping with stress. (RW)

  19. Enhancing Performance Under Stress: Stress Inoculation Training for Battlefield Airmen

    Science.gov (United States)

    2014-01-01

    as imagery rehearsal, has been advocated to manage the stress of rehabilitation from a sports injury (Driediger, Hall, and Callow, 2006) and has been...1136–1142. Baumann, A., and R. Deber (1989). The limits of decision analysis for rapid decision making in ICU nursing. Journal of Nursing Scholarship...CyberTherapy & Rehabilitation , 1(1), 7. Riva, G., F. Davide, and W. A. IJsselsteijn (2003). Being there: Concepts, Effects and Measurements of User Presence

  20. Role of CRF in stress-related alterations of gastric and colonic motor function.

    Science.gov (United States)

    Taché, Y; Mönnikes, H; Bonaz, B; Rivier, J

    1993-10-29

    Major advances have been made in the understanding of the pathophysiology of stress-related alteration of gut function. A wealth of information indicates that CRF is involved in the central mechanisms by which stress inhibits gastric emptying while stimulating colonic motor function. CRF acts in the PVN to trigger both the inhibition of gastric emptying and the stimulation of colonic motor function in response to stress, in addition to previously established endocrine and behavioral responses. Preliminary evidence exists that CRF acts in the locus coeruleus to induce a selective stimulation of colonic transit without influencing gastric emptying. The central actions of CRF to alter gastric and colonic motor function are conveyed by autonomic pathways and are unrelated to the associated stimulation of pituitary hormone secretion. The demonstration that central CRF plays a role in mediating gastric stasis resulting from surgery, peritonitis or high levels of central interleukin-1 provides new insight into the mechanisms involved in gastric ileus induced postoperatively or by infectious disease. Likewise, the demonstration that CRF in the PVN and locus coeruleus induce the anxiogenic and colonic motor responses to stress and that colonic distention activates neurons in the locus coeruleus opens new avenues for the understanding of the pathogenesis of a subset of IBS patients with colonic hypersensitivity associated with psychopathological disturbance and diarrhea-predominant symptoms.

  1. Prolonged endoplasmic reticulum stress alters placental morphology and causes low birth weight

    Energy Technology Data Exchange (ETDEWEB)

    Kawakami, Takashige, E-mail: tkawakami@ph.bunri-u.ac.jp; Yoshimi, Masaki; Kadota, Yoshito; Inoue, Masahisa; Sato, Masao; Suzuki, Shinya

    2014-03-01

    The role of endoplasmic reticulum (ER) stress in pregnancy remains largely unknown. Pregnant mice were subcutaneously administered tunicamycin (Tun), an ER stressor, as a single dose [0, 50, and 100 μg Tun/kg/body weight (BW)] on gestation days (GDs) 8.5, 12.5, and 15.5. A high incidence (75%) of preterm delivery was observed only in the group treated with Tun 100 μg/kg BW at GD 15.5, indicating that pregnant mice during late gestation are more susceptible to ER stress on preterm delivery. We further examined whether prolonged in utero exposure to ER stress affects fetal development. Pregnant mice were subcutaneously administered a dose of 0, 20, 40, and 60 μg Tun/kg from GD 12.5 to 16.5. Tun treatment decreased the placental and fetal weights in a dose-dependent manner. Histological evaluation showed the formation of a cluster of spongiotrophoblast cells in the labyrinth zone of the placenta of Tun-treated mice. The glycogen content of the fetal liver and placenta from Tun-treated mice was lower than that from control mice. Tun treatment decreased mRNA expression of Slc2a1/glucose transporter 1 (GLUT1), which is a major transporter for glucose, but increased placental mRNA levels of Slc2a3/GLUT3. Moreover, maternal exposure to Tun resulted in a decrease in vascular endothelial growth factor receptor-1 (VEGFR-1), VEGFR-2, and placental growth factor. These results suggest that excessive and exogenous ER stress may induce functional abnormalities in the placenta, at least in part, with altered GLUT and vascular-related gene expression, resulting in low infant birth weight. - Highlights: • Maternal exposure to excessive ER stress induced preterm birth and IUGR. • Prolonged excessive ER stress altered the formation of the placental labyrinth. • ER stress decreased GLUT1 mRNA expression in the placenta, but increased GLUT3. • ER stress-induced IUGR causes decreased glycogen and altered glucose transport.

  2. Low dose effects of a Withania somnifera extract on altered marble burying behavior in stressed mice

    Science.gov (United States)

    Dey, Amitabha; Chatterjee, Shyam Sunder; Kumar, Vikas

    2016-01-01

    Aim: Withania somnifera root (WSR) extracts are often used in traditionally known Indian systems of medicine for prevention and cure of psychosomatic disorders. The reported experiment was designed to test whether low daily oral doses of such extracts are also effective in suppressing marble burying behavior in stressed mice or not. Materials and Methods: Groups of mice treated with 10, 20, or 40 mg/kg daily oral doses of WSR were subjected to a foot shock stress-induced hyperthermia test on the 1st, 5th, 7th, and 10th day of the experiment. On the 11th and 12th treatment days, they were subjected to marble burying tests. Stress response suppressing effects of low dose WSR were estimated by its effects on body weight and basal core temperature of animals during the course of the experiment. Results: Alterations in bodyweight and basal core temperature triggered by repeated exposures to foot shock stress were absent even in the 10 mg/kg/day WSR treated group, whereas the effectiveness of the extract in foot shock stress-induced hyperthermia and marble burying tests increased with its increasing daily dose. Conclusion: Marble burying test in stressed mice is well suited for identifying bioactive constituents of W. somnifera like medicinal plants with adaptogenic, anxiolytic and antidepressant activities, or for quantifying pharmacological interactions between them. PMID:27366354

  3. Microbiota alteration is associated with the development of stress-induced despair behavior

    Science.gov (United States)

    Marin, Ioana A.; Goertz, Jennifer E.; Ren, Tiantian; Rich, Stephen S.; Onengut-Gumuscu, Suna; Farber, Emily; Wu, Martin; Overall, Christopher C.; Kipnis, Jonathan; Gaultier, Alban

    2017-01-01

    Depressive disorders often run in families, which, in addition to the genetic component, may point to the microbiome as a causative agent. Here, we employed a combination of behavioral, molecular and computational techniques to test the role of the microbiota in mediating despair behavior. In chronically stressed mice displaying despair behavior, we found that the microbiota composition and the metabolic signature dramatically change. Specifically, we observed reduced Lactobacillus and increased circulating kynurenine levels as the most prominent changes in stressed mice. Restoring intestinal Lactobacillus levels was sufficient to improve the metabolic alterations and behavioral abnormalities. Mechanistically, we identified that Lactobacillus-derived reactive oxygen species may suppress host kynurenine metabolism, by inhibiting the expression of the metabolizing enzyme, IDO1, in the intestine. Moreover, maintaining elevated kynurenine levels during Lactobacillus supplementation diminished the treatment benefits. Collectively, our data provide a mechanistic scenario for how a microbiota player (Lactobacillus) may contribute to regulating metabolism and resilience during stress. PMID:28266612

  4. SaliCylic Acid-Altering Arabidopsis Mutants Response to Cd Stress

    Institute of Scientific and Technical Information of China (English)

    Lu; Tian; Liang; Wu

    2012-01-01

    To evaluate the role of endogenous SA in plant response to Cd stress,Arabidopsis wild type(Columbia)and its SA-altering mutants snc1 (suppressor of npr1-1, constitutive) with high SA level, nahG(tansgenic line)with low SA level and npr1-1(non-expressor of PR gene)with SA signaling blockage were used in this study. Results showed that a greater growth inhibition occurred in snc1,while a less inhibition was observed in nahG and npr1-1 plants. Although the anti-oxidative enzymes SOD and POD increased upon Cd exposure,they were insufficient to remove oxidative stress,especially in snc1 plants. The accumulations of soluble sugar and proline in the tested plants were positively related to their tolerance to Cd stress.

  5. Stress induced alterations in pre-pubertal ovarian follicular development in rat

    Directory of Open Access Journals (Sweden)

    Yajurvedi H.N.

    2011-12-01

    Full Text Available The objective of the study was to find out whether stress experienced during neo-natal period alters the timing of formation of pre-antral and antral follicles and if so, whether pre-treatment with CRH receptor antagonist prevents these effects in rats. New born rat pups (n= 15 were exposed to maternal separation (6 hours/ day from post-natal day (PND 1 to 7 and were killed on PND 8, 11 and 15. The time of exposure was randomly changed every day during light phase (7Am to 7Pm of the day to avoid habituation. There was a significant increase in serum corticosterone levels on PND 8 and 11 in stress group rats compared to controls indicating stress response in these pups. The ovary of both control and stressed rats contained oocytes and primary follicles on PND 8 and 11 and in showed progress of follicular development upto to pre-antral and early antral follicle formation on PND 11 and 15. However, mean number of healthy oocytes and all categories of follicles at all ages studied were significantly lower in stressed rats compared to controls. Concomitant with these changes, number of atreatic follicles showed an increase over control values in stressed rats. The increase in atresia of follicles was due to apoptosis as shown by increase in the percentage of granulosa cells showing TUNEL positive staining and caspase 3 activity. On the other hand, pre-treatment with CRH- receptor antagonist (CRH 9-41 2ng/ 0.1 ml/ rat prior to undergoing stress regime on PND 1 to 7, prevented alterations in pre- pubertal follicular development thereby indicating that the ovarian changes were due to effects of stress induced activation of HPA axis. The results indicate that, stress during neonatal phase, though does not affect timing of formation of pre-antral and antral follicles, it does enhance atresia of follicles of all categories, including follicular reserve, which may affect the reproductive potential of adults. The results, for the first time reveal that CRF

  6. Cannabinoids Prevent the Development of Behavioral and Endocrine Alterations in a Rat Model of Intense Stress

    Science.gov (United States)

    Ganon-Elazar, Eti; Akirav, Irit

    2012-01-01

    Cannabinoids have recently emerged as a possible treatment of stress- and anxiety-related disorders such as post-traumatic stress disorder (PTSD). Here, we examined whether cannabinoid receptor activation could prevent the effects of traumatic stress on the development of behavioral and neuroendocrine measures in a rat model of PTSD, the single-prolonged stress (SPS) model. Rats were injected with the CB1/CB2 receptor agonist WIN55,212-2 (WIN) systemically or into the basolateral amygdala (BLA) at different time points following SPS exposure and were tested 1 week later for inhibitory avoidance (IA) conditioning and extinction, acoustic startle response (ASR), hypothalamic-pituitary-adrenal (HPA) axis function, and anxiety levels. Exposure to SPS enhanced conditioned avoidance and impaired extinction while enhancing ASR, negative feedback on the HPA axis, and anxiety. WIN (0.5 mg/kg) administered intraperitoneally 2 or 24 h (but not 48 h) after SPS prevented the trauma-induced alterations in IA conditioning and extinction, ASR potentiation, and HPA axis inhibition. WIN microinjected into the BLA (5 μg/side) prevented SPS-induced alterations in IA and ASR. These effects were blocked by intra-BLA co-administration of the CB1 receptor antagonist AM251 (0.3 ng/side), suggesting the involvement of CB1 receptors. These findings suggest that (i) there may be an optimal time window for intervention treatment with cannabinoids after exposure to a highly stressful event, (ii) some of the preventive effects induced by WIN are mediated by an activation of CB1 receptors in the BLA, and (iii) cannabinoids could serve as a pharmacological treatment of stress- and trauma-related disorders. PMID:21918506

  7. Effect of yoga on academic performance in relation to stress

    Directory of Open Access Journals (Sweden)

    Kauts Amit

    2009-01-01

    Full Text Available Background: Academic performance is concerned with the quantity and quality of learning attained in a subject or group of subjects after a long period of instruction. Excessive stress hampers students′ performance. Improvement in academic performance and alertness has been reported in several yogic studies. Aims and Objectives: The main objective of the study was to assess the effect of yoga on academic performance in relation to stress. Materials and Methods: The study started with 800 adolescent students; 159 high-stress students and 142 low-stress students were selected on the basis of scores obtained through Stress Battery. Experimental group and control group were given pre test in three subjects, i.e., Mathematics, Science, and Social Studies. A yoga module consisting of yoga asanas, pranayama, meditation, and a value orientation program was administered on experimental group for 7 weeks. The experimental and control groups were post-tested for their performance on the three subjects mentioned above. Results: The results show that the students, who practiced yoga performed better in academics. The study further shows that low-stress students performed better than high-stress students, meaning thereby that stress affects the students′ performance.

  8. Chronic stress effects in contralateral medial pterygoid muscle of rats with occlusion alteration.

    Science.gov (United States)

    Loyola, Bruno Melo; Nascimento, Glauce Crivelaro; Fernández, Rodrigo Alberto Restrepo; Iyomasa, Daniela Mizusaki; Pereira, Yamba Carla Lara; Leite-Panissi, Christie Ramos Andrade; Issa, João Paulo Mardegan; Iyomasa, Mamie Mizusaki

    2016-10-01

    +US groups, the deeply stained fibers increased compared to NO+C.·The exodontia factor was able to increase the ROS activity in muscle, whereas the stress factor does not significantly alter ROS in this tissue. It was concluded that both unpredictable chronic stress and the extraction induce metabolic and density of capillary changes in the contralateral medial pterygoid muscle to extraction, suggesting that these factors for a longer period of this experiment could induce muscle damage related to TMD.

  9. Carbohydrate intake improves cognitive performance of stress-prone individuals under controllable laboratory stress

    NARCIS (Netherlands)

    Markus, C.R.; Panhuysen, G.; Jonkman, L.M.; Bachman, M.

    1999-01-01

    Cognitive performance has been found to decline after exposure to stress, particularly in stress-prone subjects. The present study investigated whether a carbohydrate-rich, protein-poor (CR/PP) diet, which may enhance cerebral serotonin function in stress-prone subjects due to increases in the avail

  10. Effect of yoga on academic performance in relation to stress

    OpenAIRE

    Kauts Amit; Sharma Neelam

    2009-01-01

    Background: Academic performance is concerned with the quantity and quality of learning attained in a subject or group of subjects after a long period of instruction. Excessive stress hampers students′ performance. Improvement in academic performance and alertness has been reported in several yogic studies. Aims and Objectives: The main objective of the study was to assess the effect of yoga on academic performance in relation to stress. Materials and Methods: The study started ...

  11. Environmental enrichment reduces behavioural alterations induced by chronic stress in Japanese quail.

    Science.gov (United States)

    Laurence, A; Houdelier, C; Calandreau, L; Arnould, C; Favreau-Peigné, A; Leterrier, C; Boissy, A; Lumineau, S

    2015-02-01

    Animals perceiving repeated aversive events can become chronically stressed. Chronic activation of the hypothalamic-pituitary-adrenal (HPA) axis can have deleterious consequences on physiological parameters (e.g. BW, blood chemistry) and behaviour (e.g. emotional reactivity, stereotypies, cognition). Environmental enrichment (EE) can be a mean to reduce animal stress and to improve welfare. The aim of this study was first, to assess the effects of EE in battery cages on the behaviour of young Japanese quail and second, to evaluate the impact of EE on quail exposed to chronic stress. The experiment involved quail housed in EE cages and submitted or not to a chronic stress procedure (CSP) (EE cages, control quail: n=16, CSP quail: n=14) and quail housed in standard cages and exposed or not to the CSP (standard non-EE cages, control quail: n=12, CSP quail: n=16). Our procedure consisted of repeated aversive events (e.g. ventilators, delaying access to food, physical restraint, noise) presented two to five times per 24 h, randomly, for 15 days. During CSP, EE improved quail's welfare as their stereotypic pacing decreased and they rested more. CSP decreased exploration in all quail. After the end of CSP, quail presented increased emotional reactivity in emergence test. However, the effect of EE varied with test. Finally, chronic stress effects on comfort behaviours in the emergence test were alleviated by EE. These results indicate that EE can alleviate some aspects of behavioural alterations induced by CSP.

  12. The timing of embryonic exposure to elevated temperature alters stress endocrinology in domestic chickens (Gallus domesticus).

    Science.gov (United States)

    Wilsterman, Kathryn; Mast, Andrew D; Luu, Thuyvan H; Haussmann, Mark F

    2015-02-01

    Patterns of glucocorticoid (GC) release in response to stimuli vary both among individuals and within individuals across their lifetime. While much work has focused on how the prenatal steroid environment can affect GC release, relatively little is known about how environmental parameters, such as incubation temperature affect GCs. We tested the hypothesis that variation and timing of elevated incubation temperature within the thermoneutral zone can alter the pattern of GC release. We incubated domestic chicken eggs (Gallus domesticus) at the optimal incubation temperature (37.5 °C) or at a slightly higher temperature (+1.1 °C) either early, late, or throughout incubation. At three weeks post-hatch, all birds were (i) exposed to a capture-restraint stress to measure stress-induced GC release (naïve). Three days following the naïve stressor, birds were (ii) exposed to a heat challenge, which was followed the next day by a second capture-restraint stress (post-heat challenge). Regardless of treatment, birds had similar patterns of GC release following the naïve stress series. However, during the post-heat challenge stress series, birds incubated at optimal temperatures increased their peak GC release. In contrast, birds exposed to slightly elevated temperatures for any period of development failed to increase peak GC release, and their specific response varied with timing of exposure to the elevated incubation temperature. Our results demonstrate that subtle variation in the embryonic environment, such as elevated incubation temperature within the thermoneutral zone, can impact the pattern of GC release of offspring. Further work is needed to understand the mechanisms underlying these changes and the relationship between fitness and environmentally-altered phenotypes.

  13. The Effects of Heat Stress on Job Satisfaction, Job Performance and Occupational Stress in Casting Workers

    Directory of Open Access Journals (Sweden)

    Dehghan

    2016-06-01

    Full Text Available Background Job satisfaction, job performance, job stress and heat stress affect the productivity of workers. Objectives This research aimed to study the relationship between heat stress indices with job satisfaction, job performance and job stress in casting workers. Patients and Methods This descriptive-analytical cross sectional survey was performed during summer 2013 on one hundred casting workers. Data were collected by questionnaires of occupational stress, job satisfaction and job performance. Heat stress was measured by the Wet Bulb Globe Temperature (WBGT and Heat Strain Score Index (HSSI questionnaire. The data were analyzed using correlation coefficient by the SPSS16 software. Results The results showed that job satisfaction had a negative correlation with WBGT index (R = -0.42, P < 0.001 and HSSI (R = -0.49, P < 0.001. Also, there was no statistical correlation among occupational stress and job performance with heat stress indices. Conclusions The present study showed that heat stress had a negative effect on job satisfaction; also there were no significant effects on job stress and job performance.

  14. Stress-induced alterations in 5-HT1A receptor transcriptional modulators NUDR and Freud-1.

    Science.gov (United States)

    Szewczyk, Bernadeta; Kotarska, Katarzyna; Daigle, Mireille; Misztak, Paulina; Sowa-Kucma, Magdalena; Rafalo, Anna; Curzytek, Katarzyna; Kubera, Marta; Basta-Kaim, Agnieszka; Nowak, Gabriel; Albert, Paul R

    2014-11-01

    The effect of stress on the mRNA and protein level of the 5-HT1A receptor and two of its key transcriptional modulators, NUDR and Freud-1, was examined in the prefrontal cortex (PFC) and hippocampus (Hp) using rodent models: olfactory bulbectomy (OB) and prenatal stress (PS) in male and female rats; chronic mild stress in male rats (CMS) and pregnancy stress. In PFC, CMS induced the most widespread changes, with significant reduction in both mRNA and protein levels of NUDR, 5-HT1A receptor and in Freud-1 mRNA; while in Hp 5-HT1A receptor and Freud-1 protein levels were also decreased. In male, but not female OB rats PFC Freud-1 and 5-HT1A receptor protein levels were reduced, while in Hp 5-HT1A receptor, Freud-1 and NUDR mRNA's but not protein were reduced. In PS rats PFC 5-HT1A receptor protein was reduced more in females than males; while in Hp Freud-1 protein was increased in females. In pregnancy stress, PFC NUDR, Freud-1 and 5-HT1A protein receptor levels were reduced, and in HP 5-HT1A receptor protein levels were also reduced; in HP only NUDR and Freud-1 mRNA levels were reduced. Overall, CMS and stress during pregnancy produced the most salient changes in 5-HT1A receptor and transcription factor expression, suggesting a primary role for altered transcription factor expression in chronic regulation of 5-HT1A receptor expression. By contrast, OB (in males) and PS (in females) produced gender-specific reductions in PFC 5-HT1A receptor protein levels, suggesting a role for post-transcriptional regulation. These and previous data suggest that chronic stress might be a key regulator of NUDR/Freud-1 gene expression.

  15. 14 CFR 121.379 - Authority to perform and approve maintenance, preventive maintenance, and alterations.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Authority to perform and approve maintenance, preventive maintenance, and alterations. 121.379 Section 121.379 Aeronautics and Space FEDERAL... OPERATIONS Maintenance, Preventive Maintenance, and Alterations § 121.379 Authority to perform and...

  16. Oxidative Stress Alters miRNA and Gene Expression Profiles in Villous First Trimester Trophoblasts

    Directory of Open Access Journals (Sweden)

    Courtney E. Cross

    2015-01-01

    Full Text Available The relationship between oxidative stress and miRNA changes in placenta as a potential mechanism involved in preeclampsia (PE is not fully elucidated. We investigated the impact of oxidative stress on miRNAs and mRNA expression profiles of genes associated with PE in villous 3A first trimester trophoblast cells exposed to H2O2 at 12 different concentrations (0-1 mM for 0.5, 4, 24, and 48 h. Cytotoxicity, determined using the SRB assay, was used to calculate the IC50 of H2O2. RNA was extracted after 4 h exposure to H2O2 for miRNA and gene expression profiling. H2O2 exerted a concentration- and time-dependent cytotoxicity on 3A trophoblast cells. Short-term exposure of 3A cells to low concentration of H2O2 (5% of IC50 significantly altered miRNA profile as evidenced by significant changes in 195 out of 595 evaluable miRNAs. Tool for annotations of microRNAs (TAM analysis indicated that these altered miRNAs fall into 43 clusters and 34 families, with 41 functions identified. Exposure to H2O2 altered mRNA expression of 22 out of 84 key genes involved in dysregulation of placental development. In conclusion, short-term exposure of villous first trimester trophoblasts to low concentrations of H2O2 significantly alters miRNA profile and expression of genes implicated in placental development.

  17. Trypanosoma cruzi disrupts thymic homeostasis by altering intrathymic and systemic stress-related endocrine circuitries.

    Directory of Open Access Journals (Sweden)

    Ailin Lepletier

    2013-11-01

    Full Text Available We have previously shown that experimental infection caused by Trypanosoma cruzi is associated with changes in the hypothalamus-pituitary-adrenal axis. Increased glucocorticoid (GC levels are believed to be protective against the effects of acute stress during infection but result in depletion of CD4(+CD8(+ thymocytes by apoptosis, driving to thymic atrophy. However, very few data are available concerning prolactin (PRL, another stress-related hormone, which seems to be decreased during T. cruzi infection. Considering the immunomodulatory role of PRL upon the effects caused by GC, we investigated if intrathymic cross-talk between GC and PRL receptors (GR and PRLR, respectively might influence T. cruzi-induced thymic atrophy. Using an acute experimental model, we observed changes in GR/PRLR cross-activation related with the survival of CD4(+CD8(+ thymocytes during infection. These alterations were closely related with systemic changes, characterized by a stress hormone imbalance, with progressive GC augmentation simultaneously to PRL reduction. The intrathymic hormone circuitry exhibited an inverse modulation that seemed to counteract the GC-related systemic deleterious effects. During infection, adrenalectomy protected the thymus from the increase in apoptosis ratio without changing PRL levels, whereas an additional inhibition of circulating PRL accelerated the thymic atrophy and led to an increase in corticosterone systemic levels. These results demonstrate that the PRL impairment during infection is not caused by the increase of corticosterone levels, but the opposite seems to occur. Accordingly, metoclopramide (MET-induced enhancement of PRL secretion protected thymic atrophy in acutely infected animals as well as the abnormal export of immature and potentially autoreactive CD4(+CD8(+ thymocytes to the periphery. In conclusion, our findings clearly show that Trypanosoma cruzi subverts mouse thymus homeostasis by altering intrathymic and

  18. Influence of carbonyl stress on rheological alterations of blood materials and decarbonylation effect of glutathione

    Institute of Scientific and Technical Information of China (English)

    彭密军; 蔡建光; 贺洪; 龚萍; 李国林; 汤婷; 朱泽瑞; 印大中

    2008-01-01

    The effects of various toxic carbonyls such as malondialdehyde(MDA),a secondary product of lipid peroxidation,and other aldehydes on rheological parameters and their relationship with aging-associated alterations were studied.Both MDA and glutaraldehyde(Glu) in different concentrations significantly increase viscosity,plastic viscosity and yield stress of human plasma and erythrocyte suspensions.MDA(20 mmol/L) reduces sharply the typical fluorescence of proteins(excitation 280 nm/emission 350 nm),and produces age pigment-like fluorescence with a strong emission peak at 460 nm when excites at 395 nm by only being incubated for some hours.In contrast,Glu decreases merely the fluorescence of proteins without producing age pigment-like fluorescence.These data suggest interestingly that the MDA-induced gradual protein cross linking seems to form from different mechanisms compared to the fast rheological changes of blood materials which may take place either in acute and chronic diseases or during aging.On the other hand,MDA induces various deleterious alterations of erythrocytes whereas glutathione(GSH) inhibits the MDA-related carbonyl stress in a concentration-dependent manner.The results indicate that carbonyl-amino reaction exists in the blood widely and GSH has the ability to interrupt or reverse this reaction in a certain way.It implies that carbonyl stress may be one of the important factors in blood stasis and suggests a theoretical and practical approach in anti-stresses and anti-aging.

  19. Oxidative Stress and Erythrocyte Membrane Alterations in Children with Autism: Correlation with Clinical Features.

    Directory of Open Access Journals (Sweden)

    Alessandro Ghezzo

    Full Text Available It has been suggested that oxidative stress may play a role in the pathogenesis of Autism Spectrum Disorders (ASD, but the literature reports somewhat contradictory results. To further investigate the issue, we evaluated a high number of peripheral oxidative stress parameters, and some related issues such as erythrocyte membrane functional features and lipid composition. Twenty-one autistic children (Au aged 5 to 12 years, were gender and age-matched with 20 typically developing children (TD. Erythrocyte thiobarbituric acid reactive substances, urinary isoprostane and hexanoyl-lysine adduct levels were elevated in Au, thus confirming the occurrence of an imbalance of the redox status of Au, whilst other oxidative stress markers or associated parameters (urinary 8-oxo-dG, plasma radical absorbance capacity and carbonyl groups, erythrocyte superoxide dismutase and catalase activities were unchanged. A very significant reduction of Na(+/K(+-ATPase activity (-66%, p<0.0001, a reduction of erythrocyte membrane fluidity and alteration in erythrocyte fatty acid membrane profile (increase in monounsaturated fatty acids, decrease in EPA and DHA-ω3 with a consequent increase in ω6/ω3 ratio were found in Au compared to TD, without change in membrane sialic acid content. Some Au clinical features appear to be correlated with these findings; in particular, hyperactivity score appears to be related with some parameters of the lipidomic profile and membrane fluidity. Oxidative stress and erythrocyte membrane alterations may play a role in the pathogenesis of ASD and prompt the development of palliative therapeutic protocols. Moreover, the marked decrease in NKA could be potentially utilized as a peripheral biomarker of ASD.

  20. Acute stress alters auditory selective attention in humans independent of HPA: a study of evoked potentials.

    Directory of Open Access Journals (Sweden)

    Ludger Elling

    Full Text Available BACKGROUND: Acute stress is a stereotypical, but multimodal response to a present or imminent challenge overcharging an organism. Among the different branches of this multimodal response, the consequences of glucocorticoid secretion have been extensively investigated, mostly in connection with long-term memory (LTM. However, stress responses comprise other endocrine signaling and altered neuronal activity wholly independent of pituitary regulation. To date, knowledge of the impact of such "paracorticoidal" stress responses on higher cognitive functions is scarce. We investigated the impact of an ecological stressor on the ability to direct selective attention using event-related potentials in humans. Based on research in rodents, we assumed that a stress-induced imbalance of catecholaminergic transmission would impair this ability. METHODOLOGY/PRINCIPAL FINDINGS: The stressor consisted of a single cold pressor test. Auditory negative difference (Nd and mismatch negativity (MMN were recorded in a tonal dichotic listening task. A time series of such tasks confirmed an increased distractibility occurring 4-7 minutes after onset of the stressor as reflected by an attenuated Nd. Salivary cortisol began to rise 8-11 minutes after onset when no further modulations in the event-related potentials (ERP occurred, thus precluding a causal relationship. This effect may be attributed to a stress-induced activation of mesofrontal dopaminergic projections. It may also be attributed to an activation of noradrenergic projections. Known characteristics of the modulation of ERP by different stress-related ligands were used for further disambiguation of causality. The conjuncture of an attenuated Nd and an increased MMN might be interpreted as indicating a dopaminergic influence. The selective effect on the late portion of the Nd provides another tentative clue for this. CONCLUSIONS/SIGNIFICANCE: Prior studies have deliberately tracked the adrenocortical influence

  1. Dynamic microglial alterations underlie stress-induced depressive-like behavior and suppressed neurogenesis.

    Science.gov (United States)

    Kreisel, T; Frank, M G; Licht, T; Reshef, R; Ben-Menachem-Zidon, O; Baratta, M V; Maier, S F; Yirmiya, R

    2014-06-01

    The limited success in understanding the pathophysiology of major depression may result from excessive focus on the dysfunctioning of neurons, as compared with other types of brain cells. Therefore, we examined the role of dynamic alterations in microglia activation status in the development of chronic unpredictable stress (CUS)-induced depressive-like condition in rodents. We report that following an initial period (2-3 days) of stress-induced microglial proliferation and activation, some microglia underwent apoptosis, leading to reductions in their numbers within the hippocampus, but not in other brain regions, following 5 weeks of CUS exposure. At that time, microglia displayed reduced expression of activation markers as well as dystrophic morphology. Blockade of the initial stress-induced microglial activation by minocycline or by transgenic interleukin-1 receptor antagonist overexpression rescued the subsequent microglial apoptosis and decline, as well as the CUS-induced depressive-like behavior and suppressed neurogenesis. Similarly, the antidepressant drug imipramine blocked the initial stress-induced microglial activation as well as the CUS-induced microglial decline and depressive-like behavior. Treatment of CUS-exposed mice with either endotoxin, macrophage colony-stimulating factor or granulocyte-macrophage colony-stimulating factor, all of which stimulated hippocampal microglial proliferation, partially or completely reversed the depressive-like behavior and dramatically increased hippocampal neurogenesis, whereas treatment with imipramine or minocycline had minimal or no anti-depressive effects, respectively, in these mice. These findings provide direct causal evidence that disturbances in microglial functioning has an etiological role in chronic stress-induced depression, suggesting that microglia stimulators could serve as fast-acting anti-depressants in some forms of depressive and stress-related conditions.

  2. ABA pretreatment can alter the distribution of polysomes in salt-stressed barley sprouts

    Directory of Open Access Journals (Sweden)

    Szypulska Ewa

    2016-12-01

    Full Text Available The study analyzed caryopses of barley (Hordeum vulgare cv. Stratus. Caryopses were germinated in darkness at 20°C in three experimental setups: (a in distilled water for 24 hours, followed by 100 mM NaCl for another 24 hours (salinity stress, SS, (b in 100 μM of abscisic acid for the first 24 hours, followed by rinsing with distilled water to remove residual ABA, and in 100 mM NaCl for another 24 hours (ABA pretreatment + salinity stress, ABAS, (c in distilled water only (control, C. Changes in the content of free polysomes (FP, membrane-bound polysomes (MBP, cytoskeleton-bound polysomes (CBP and cytomatrix-bound polysomes (CMBP were examined in barley sprouts germinated in SS and ABAS treatments for 48 hours. In salt-stressed barley sprouts, the concentrations of membrane-bound and cytoskeleton-bound polysomes (MBP, CBP and CMBP decreased significantly, whereas an increase was noted only in the free polysome (FP fraction. ABA pretreatment altered the distribution of polysomes in stressed plants. The content of cytoskeletonbound polysomes (CBP and CMBP increased, FP levels decreased, whereas no changes in MBP content were observed in response to ABA treatment. Our results suggest that plants respond to salt stress by increasing the concentrations of free polysomes that are probably released from damaged cell structures, mainly membranes. Our present and previous findings indicate that ABA could inhibit the release of FP in stressed plants by enhancing polysome binding to the cytoskeleton.

  3. Correlation between oxidative stress and alteration of intracellular calcium handling in isoproterenol-induced myocardial infarction.

    Science.gov (United States)

    Díaz-Muñoz, Mauricio; Alvarez-Pérez, Marco Antonio; Yáñez, Lucía; Vidrio, Susana; Martínez, Lidia; Rosas, Gisele; Yáñez, Mario; Ramírez, Sotero; de Sánchez, Victoria Chagoya

    2006-09-01

    Myocardial Ca(2+) overload and oxidative stress are well documented effects associated to isoproterenol (ISO)-induced myocardial necrosis, but information correlating these two issues is scarce. Using an ISO-induced myocardial infarction model, 3 stages of myocardial damage were defined: pre-infarction (0-12 h), infarction (12-24 h) and post-infarction (24-96 h). Alterations in Ca(2+) homeostasis and oxidative stress were studied in mitochondria, sarcoplasmic reticulum and plasmalemma by measuring the Ca(2+) content, the activity of Ca(2+) handling proteins, and by quantifying TBARs, nitric oxide (NO) and oxidative protein damage (changes in carbonyl and thiol groups). Free radicals generated system, antioxidant enzymes and oxidative stress (GSH/GSSG ratio) were also monitored at different times of ISO-induced cardiotoxicity. The Ca(2+) overload induced by ISO was counterbalanced by a diminution in the ryanodine receptor activity and the Na(+)-Ca(+2) exchanger as well as by the increase in both calcium ATPases activities (vanadate- and thapsigargine-sensitive) and mitochondrial Ca(2+) uptake during pre-infarction and infarction stages. Pro-oxidative reactions and antioxidant defences during the 3 stages of cardiotoxicity were observed, with maximal oxidative stress during the infarction. Significant correlations were found among pro-oxidative reactions with plasmalemma and sarcoplasmic reticulum Ca(2+) ATPases, and ryanodine receptor activities at the onset and development of ISO-induced infarction. These findings could be helpful in the design of antioxidant therapies in this pathology.

  4. When does stress help or harm? The effects of stress controllability and subjective stress response on Stroop performance.

    Directory of Open Access Journals (Sweden)

    Roselinde Kaiser Henderson

    2012-06-01

    Full Text Available The ability to engage in goal-directed behavior despite exposure to stress is critical to resilience. Questions of how stress can impair or improve behavioral functioning are important in diverse settings, from athletic competitions to academic testing to clinical therapy. Previous research suggests that controllability is a key factor in the impact of stress on behavior: learning how to control stressors buffers people from the negative effects of stress on subsequent cognitively demanding tasks. In addition, research suggests that the impact of stress on cognitive functioning depends on an individual’s response to stressors: moderate responses to stress can lead to improved performance while extreme (high or low responses can lead to impaired performance. The present studies tested the hypothesis that 1 learning to behaviorally control stressors leads to improved performance on a test of general executive functioning, the color-word Stroop, and that 2 this improvement emerges specifically for people who report moderate (subjective responses to stress. Experiment 1: Stroop performance, measured before and after a stress manipulation, was compared across groups of undergraduate participants (n=109. People who learned to control a noise stressor and received accurate performance feedback demonstrated reduced Stroop interference compared with people exposed to uncontrollable noise stress and feedback indicating an exaggerated rate of failure. In the group who learned behavioral control, those who reported moderate levels of stress showed the greatest reduction in Stroop interference. In contrast, in the group exposed to uncontrollable events, self-reported stress failed to predict performance. Experiment 2: In a second sample (n=90, we specifically investigated the role of controllability by keeping the rate of failure feedback constant across groups. In the group who learned behavioral control, those who reported moderate levels of stress

  5. Deployments, Stress, and Soldiers' Academic Performance

    Science.gov (United States)

    Perot, Mindy

    2012-01-01

    This study focused on identifying whether certain factors affected the academic performance of Soldiers attending an Army educational institution. Academic performance was measured by the grade percentile average of the participant upon the completion of their course of enrollment. Factors that were considered within the study through…

  6. Curcumin Supplementation Decreases Intestinal Adiposity Accumulation, Serum Cholesterol Alterations, and Oxidative Stress in Ovariectomized Rats

    Directory of Open Access Journals (Sweden)

    Maurilio da Silva Morrone

    2016-01-01

    Full Text Available The aim of this study was to investigate the potential of curcumin oral supplementation (50 and 100 mg/Kg/day, for 30 days in circumventing menopause-associated oxidative stress and lipid profile dysfunctions in a rat ovariectomy (OVX model. Female Wistar rats were operated and randomly divided into either sham-operated or OVX groups. Sham-operated group (n=8 and one OVX group (n=11 were treated with vehicle (refined olive oil, and the other two OVX groups received curcumin at 50 or 100 mg/Kg/day doses (n=8/group. OVX vehicle-treated animals presented a higher deposition of intestinal adipose tissue as well as increased serum levels of IL-6, LDL, and total cholesterol when compared to sham-operated rats. In addition, several oxidative stress markers in serum, blood, and liver (such as TBARS, carbonyl, reduced-sulphydryl, and nonenzymatic antioxidant defenses were altered toward a prooxidant status by OVX. Interestingly, curcumin supplementation attenuated most of these parameters to sham comparable values. Thus, the herein presented results show that curcumin may be useful to ameliorate lipid metabolism alterations and oxidative damage associated with hormone deprivation in menopause.

  7. Curcumin Supplementation Decreases Intestinal Adiposity Accumulation, Serum Cholesterol Alterations, and Oxidative Stress in Ovariectomized Rats.

    Science.gov (United States)

    Morrone, Maurilio da Silva; Schnorr, Carlos Eduardo; Behr, Guilherme Antônio; Gasparotto, Juciano; Bortolin, Rafael Calixto; da Boit Martinello, Katia; Saldanha Henkin, Bernardo; Rabello, Thallita Kelly; Zanotto-Filho, Alfeu; Gelain, Daniel Pens; Moreira, José Cláudio Fonseca

    2016-01-01

    The aim of this study was to investigate the potential of curcumin oral supplementation (50 and 100 mg/Kg/day, for 30 days) in circumventing menopause-associated oxidative stress and lipid profile dysfunctions in a rat ovariectomy (OVX) model. Female Wistar rats were operated and randomly divided into either sham-operated or OVX groups. Sham-operated group (n = 8) and one OVX group (n = 11) were treated with vehicle (refined olive oil), and the other two OVX groups received curcumin at 50 or 100 mg/Kg/day doses (n = 8/group). OVX vehicle-treated animals presented a higher deposition of intestinal adipose tissue as well as increased serum levels of IL-6, LDL, and total cholesterol when compared to sham-operated rats. In addition, several oxidative stress markers in serum, blood, and liver (such as TBARS, carbonyl, reduced-sulphydryl, and nonenzymatic antioxidant defenses) were altered toward a prooxidant status by OVX. Interestingly, curcumin supplementation attenuated most of these parameters to sham comparable values. Thus, the herein presented results show that curcumin may be useful to ameliorate lipid metabolism alterations and oxidative damage associated with hormone deprivation in menopause.

  8. Embryo-larval exposure to atrazine reduces viability and alters oxidative stress parameters in Drosophila melanogaster.

    Science.gov (United States)

    Figueira, Fernanda Hernandes; Aguiar, Lais Mattos de; Rosa, Carlos Eduardo da

    2017-01-01

    The herbicide atrazine has been used worldwide with subsequent residual contamination of water and food, which may cause adverse effects on non-target organisms. Animal exposure to this herbicide may affect development, reproduction and energy metabolism. Here, the effects of atrazine regarding survival and redox metabolism were assessed in the fruit fly D. melanogaster exposed during embryonic and larval development. The embryos (newly fertilized eggs) were exposed to different atrazine concentrations (10μM and 100μM) in the diet until the adult fly emerged. Pupation and emergence rates, developmental time and sex ratio were determined as well as oxidative stress parameters and gene expression of the antioxidant defence system were evaluated in newly emerged male and female flies. Atrazine exposure reduced pupation and emergence rates in fruit flies without alterations to developmental time and sex ratio. Different redox imbalance patterns were observed between males and females exposed to atrazine. Atrazine caused an increase in oxidative damage, reactive oxygen species generation and antioxidant capacity and decreased thiol-containing molecules. Further, atrazine exposure altered the mRNA expression of antioxidant genes (keap1, sod, sod2, cat, irc, gss, gclm, gclc, trxt, trxr-1 and trxr-2). Reductions in fruit fly larval and pupal viability observed here are likely consequences of the oxidative stress induced by atrazine exposure.

  9. Alterations in Soluble Class III Peroxidases of Maize Shoots by Flooding Stress

    Directory of Open Access Journals (Sweden)

    Claudia-Nicole Meisrimler

    2014-06-01

    Full Text Available Due to changing climate, flooding (waterlogged soils and submergence becomes a major problem in agriculture and crop production. In the present study, the effect of waterlogging was investigated on peroxidases of maize (Zea mays L. leaves. The plants showed typical adaptations to flooding stress, i.e., alterations in chlorophyll a/b ratios and increased basal shoot diameter. Seven peroxidase bands could be detected by first dimension modified SDS-PAGE and 10 bands by first dimension high resolution Clear Native Electrophoresis that altered in dependence on plant development and time of waterlogging. Native isoelectric focusing revealed three acidic to neutral and four alkaline guaiacol peroxidases that could be further separated by high resolution Clear Native Electrophorese in the second dimension. One neutral peroxidase (pI 7.0 appeared to be down-regulated within four hours after flooding, whereas alkaline peroxidases (pI 9.2, 8.0 and 7.8 were up-regulated after 28 or 52 h. Second dimensions revealed molecular masses of 133 kDa and 85 kDa for peroxidases at pI 8.0 and 7.8, respectively. Size exclusion chromatography revealed native molecular masses of 30–58 kDa for peroxidases identified as class III peroxidases and ascorbate peroxidases by mass spectrometry. Possible functions of these peroxidases in flooding stress will be discussed.

  10. High glucose alters retinal astrocytes phenotype through increased production of inflammatory cytokines and oxidative stress.

    Directory of Open Access Journals (Sweden)

    Eui Seok Shin

    Full Text Available Astrocytes are macroglial cells that have a crucial role in development of the retinal vasculature and maintenance of the blood-retina-barrier (BRB. Diabetes affects the physiology and function of retinal vascular cells including astrocytes (AC leading to breakdown of BRB. However, the detailed cellular mechanisms leading to retinal AC dysfunction under high glucose conditions remain unclear. Here we show that high glucose conditions did not induce the apoptosis of retinal AC, but instead increased their rate of DNA synthesis and adhesion to extracellular matrix proteins. These alterations were associated with changes in intracellular signaling pathways involved in cell survival, migration and proliferation. High glucose conditions also affected the expression of inflammatory cytokines in retinal AC, activated NF-κB, and prevented their network formation on Matrigel. In addition, we showed that the attenuation of retinal AC migration under high glucose conditions, and capillary morphogenesis of retinal endothelial cells on Matrigel, was mediated through increased oxidative stress. Antioxidant proteins including heme oxygenase-1 and peroxiredoxin-2 levels were also increased in retinal AC under high glucose conditions through nuclear localization of transcription factor nuclear factor-erythroid 2-related factor-2. Together our results demonstrated that high glucose conditions alter the function of retinal AC by increased production of inflammatory cytokines and oxidative stress with significant impact on their proliferation, adhesion, and migration.

  11. Ozone-induced injury and oxidative stress in bronchiolar epithelium are associated with altered pulmonary mechanics.

    Science.gov (United States)

    Sunil, Vasanthi R; Vayas, Kinal N; Massa, Christopher B; Gow, Andrew J; Laskin, Jeffrey D; Laskin, Debra L

    2013-06-01

    In these studies, we analyzed the effects of ozone on bronchiolar epithelium. Exposure of rats to ozone (2 ppm, 3 h) resulted in rapid (within 3 h) and persistent (up to 72 h) histological changes in the bronchiolar epithelium, including hypercellularity, loss of cilia, and necrotizing bronchiolitis. Perivascular edema and vascular congestion were also evident, along with a decrease in Clara cell secretory protein in bronchoalveolar lavage, which was maximal 24 h post-exposure. Ozone also induced the appearance of 8-hydroxy-2'-deoxyguanosine, Ym1, and heme oxygenase-1 in the bronchiolar epithelium. This was associated with increased expression of cleaved caspase-9 and beclin-1, indicating initiation of apoptosis and autophagy. A rapid and persistent increase in galectin-3, a regulator of epithelial cell apoptosis, was also observed. Following ozone exposure (3-24 h), increased expression of cyclooxygenase-2, inducible nitric oxide synthase, and arginase-1 was noted in bronchiolar epithelium. Ozone-induced injury and oxidative stress in bronchiolar epithelium were linked to methacholine-induced alterations in pulmonary mechanics. Thus, significant increases in lung resistance and elastance, along with decreases in lung compliance and end tidal volume, were observed at higher doses of methacholine. This indicates that ozone causes an increase in effective stiffness of the lung as a consequence of changes in the conducting airways. Collectively, these studies demonstrate that bronchiolar epithelium is highly susceptible to injury and oxidative stress induced by acute exposure to ozone; moreover, this is accompanied by altered lung functioning.

  12. Alterations in Soluble Class III Peroxidases of Maize Shoots by Flooding Stress

    Science.gov (United States)

    Meisrimler, Claudia-Nicole; Buck, Friedrich; Lüthje, Sabine

    2014-01-01

    Due to changing climate, flooding (waterlogged soils and submergence) becomes a major problem in agriculture and crop production. In the present study, the effect of waterlogging was investigated on peroxidases of maize (Zea mays L.) leaves. The plants showed typical adaptations to flooding stress, i.e., alterations in chlorophyll a/b ratios and increased basal shoot diameter. Seven peroxidase bands could be detected by first dimension modified SDS-PAGE and 10 bands by first dimension high resolution Clear Native Electrophoresis that altered in dependence on plant development and time of waterlogging. Native isoelectric focusing revealed three acidic to neutral and four alkaline guaiacol peroxidases that could be further separated by high resolution Clear Native Electrophorese in the second dimension. One neutral peroxidase (pI 7.0) appeared to be down-regulated within four hours after flooding, whereas alkaline peroxidases (pI 9.2, 8.0 and 7.8) were up-regulated after 28 or 52 h. Second dimensions revealed molecular masses of 133 kDa and 85 kDa for peroxidases at pI 8.0 and 7.8, respectively. Size exclusion chromatography revealed native molecular masses of 30–58 kDa for peroxidases identified as class III peroxidases and ascorbate peroxidases by mass spectrometry. Possible functions of these peroxidases in flooding stress will be discussed.

  13. How different types of participant payments alter task performance

    Directory of Open Access Journals (Sweden)

    Gary L. Brase

    2009-08-01

    Full Text Available Researchers typically use incentives (such as money or course credit in order to obtain participants who engage in the specific behaviors of interest to the researcher. There is, however, little understanding or agreement on the effects of different types and levels of incentives used. Some results in the domain of statistical reasoning suggest that performance differences --- previously deemed theoretically important --- may actually be due to differences in incentive types across studies. 704 participants completed one of five variants of a statistical reasoning task, for which they received either course credit, flat fee payment, or performance-based payment incentives. Successful task completion was more frequent with performance-based incentives than with either of the other incentive types. Performance on moderately difficult tasks (compared to very easy and very hard tasks was most sensitive to incentives. These results can help resolve existing debates about inconsistent findings, guide more accurate comparisons across studies, and be applied beyond research settings.

  14. Epigenetic alterations caused by nutritional stress during fetal programming of the endocrine pancreas.

    Science.gov (United States)

    Sosa-Larios, Tonantzin C; Cerbón, Marco A; Morimoto, Sumiko

    2015-02-01

    Nutrition during critical periods of development is one of the pivotal factors in establishing a lifelong healthy metabolism. Different nutritional deficiencies such as a low availability of proteins in the maternal diet produce alterations in offspring that include changes in insulin and glucose metabolism, a decrease in the size and number of cells of pancreatic islets of Langerhans, and premature ageing of the secretory function of pancreatic β cells. Moreover, it has been reported that chronic nutritional stress is associated with epigenetic alterations in mechanisms of gene regulation during pancreatic development and function. These alterations can lead to dysfunctional states in pancreatic β cells, which in the long run are responsible for the onset of metabolic diseases like type 2 diabetes. The present review summarizes the most important evidence in relation to the participation of epigenetic mechanisms in the regulation of gene expression during the intrauterine programming of the endocrine pancreas in animal models. Such mechanisms include DNA methylation as well as modifications of histones and microRNAs (miRNAs).

  15. Perfusion deficits and functional connectivity alterations in patients with post-traumatic stress disorder

    Science.gov (United States)

    Liu, Yang; Li, Baojuan; Zhang, Xi; Zhang, Linchuan; Li, Liang; Lu, Hongbing

    2016-03-01

    To explore the alteration in cerebral blood flow (CBF) and functional connectivity between survivors with recent onset post-traumatic stress disorder (PTSD) and without PTSD, survived from the same coal mine flood disaster. In this study, a processing pipeline using arterial spin labeling (ASL) sequence was proposed. Considering low spatial resolution of ASL sequence, a linear regression method was firstly used to correct the partial volume (PV) effect for better CBF estimation. Then the alterations of CBF between two groups were analyzed using both uncorrected and PV-corrected CBF maps. Based on altered CBF regions detected from the CBF analysis as seed regions, the functional connectivity abnormities in PTSD patients was investigated. The CBF analysis using PV-corrected maps indicates CBF deficits in the bilateral frontal lobe, right superior frontal gyrus and right corpus callosum of PTSD patients, while only right corpus callosum was identified in uncorrected CBF analysis. Furthermore, the regional CBF of the right superior frontal gyrus exhibits significantly negative correlation with the symptom severity in PTSD patients. The resting-state functional connectivity indicates increased connectivity between left frontal lobe and right parietal lobe. These results indicate that PV-corrected CBF exhibits more subtle perfusion changes and may benefit further perfusion and connectivity analysis. The symptom-specific perfusion deficits and aberrant connectivity in above memory-related regions may be putative biomarkers for recent onset PTSD induced by a single prolonged trauma exposure and help predict the severity of PTSD.

  16. Overcoming the effects of stress on reactor operator performance

    Energy Technology Data Exchange (ETDEWEB)

    He Xuhong; Wei Li; Zhao Bingquan [Tsinghua Univ., Nuclear Power Plant Simulation Training Center, Beijing (China)

    2003-03-01

    Reactor operators may be exposed to significant levels of stress during plant emergencies and their performance may be affected by the stress. This paper first identified the potential sources of stress in the nuclear power plant, then discussed the ways in which stress is likely to affect the reactor operators, and finally identified several training approaches for reducing or eliminating stress effects. The challenges for effective stress reducing training may seem daunting, yet the challenges are real and must be addressed. This paper reviewed researches in training design, knowledge and skill acquisition, and training transfer point to a number of strategies that can be used to address these challenges and lead to more effective training and development. (author)

  17. Exposure to forced swim stress alters local circuit activity and plasticity in the dentate gyrus of the hippocampus.

    Science.gov (United States)

    Yarom, Orli; Maroun, Mouna; Richter-Levin, Gal

    2008-01-01

    Studies have shown that, depending on its severity and context, stress can affect neural plasticity. Most related studies focused on synaptic plasticity and long-term potentiation (LTP) of principle cells. However, evidence suggests that following high-frequency stimulation, which induces LTP in principal cells, modifications also take place at the level of complex interactions with interneurons within the dentate gyrus, that is, at the local circuit level. So far, the possible effects of stress on local circuit activity and plasticity were not studied. Therefore, we set out to examine the possible alterations in local circuit activity and plasticity following exposure to stress. Local circuit activity and plasticity were measured by using frequency dependant inhibition (FDI) and commissural modulation protocols following exposure to a 15 minute-forced swim trial. Exposure to stress did not alter FDI. The application of theta-burst stimulation (TBS) reduced FDI in both control and stressed rats, but this type of plasticity was greater in stressed rats. Commissural-induced inhibition was significantly higher in stressed rats both before and after applying theta-burst stimulation. These findings indicate that the exposure to acute stress affects aspects of local circuit activity and plasticity in the dentate gyrus. It is possible that these alterations underlie some of the behavioral consequences of the stress experience.

  18. Exposure to Forced Swim Stress Alters Local Circuit Activity and Plasticity in the Dentate Gyrus of the Hippocampus

    Directory of Open Access Journals (Sweden)

    Orli Yarom

    2008-01-01

    Full Text Available Studies have shown that, depending on its severity and context, stress can affect neural plasticity. Most related studies focused on synaptic plasticity and long-term potentiation (LTP of principle cells. However, evidence suggests that following high-frequency stimulation, which induces LTP in principal cells, modifications also take place at the level of complex interactions with interneurons within the dentate gyrus, that is, at the local circuit level. So far, the possible effects of stress on local circuit activity and plasticity were not studied. Therefore, we set out to examine the possible alterations in local circuit activity and plasticity following exposure to stress. Local circuit activity and plasticity were measured by using frequency dependant inhibition (FDI and commissural modulation protocols following exposure to a 15 minute-forced swim trial. Exposure to stress did not alter FDI. The application of theta-burst stimulation (TBS reduced FDI in both control and stressed rats, but this type of plasticity was greater in stressed rats. Commissural-induced inhibition was significantly higher in stressed rats both before and after applying theta-burst stimulation. These findings indicate that the exposure to acute stress affects aspects of local circuit activity and plasticity in the dentate gyrus. It is possible that these alterations underlie some of the behavioral consequences of the stress experience.

  19. Artificial light at night alters delayed-type hypersensitivity reaction in response to acute stress in Siberian hamsters.

    Science.gov (United States)

    Bedrosian, Tracy A; Aubrecht, Taryn G; Kaugars, Katherine E; Weil, Zachary M; Nelson, Randy J

    2013-11-01

    Several physiological and behavioral processes rely on precisely timed light information derived from the natural solar cycle. Using this information, traits have adapted to allow individuals within specific niches to optimize survival and reproduction, but urbanization by humans has significantly altered natural habitats. Nighttime light exposure alters immune function in several species, which could lead to decreased fitness or survival, particularly in the face of an environmental challenge. We exposed male Siberian hamsters (Phodopus sungorus) to five lux of light at night for four weeks, and then administered six hours of acute restraint stress. Delayed-type hypersensitivity (DTH) response was assessed immediately following stress. Acute restraint increased the DTH reaction in dark nights, but exposure to nighttime light prevented this response. Exposure to light at night prolonged the DTH response in non-stressed control hamsters. These results suggest that light pollution may significantly alter physiological responses in Siberian hamsters, particularly in response to a salient environmental challenge such as stress.

  20. Gestational heat stress alters postnatal offspring body composition indices and metabolic parameters in pigs.

    Directory of Open Access Journals (Sweden)

    Rebecca L Boddicker

    Full Text Available The study objectives were to test the hypothesis that heat stress (HS during gestational development alters postnatal growth, body composition, and biological response to HS conditions in pigs. To investigate this, 14 first parity crossbred gilts were exposed to one of four environmental treatments (TNTN, TNHS, HSTN, or HSHS during gestation. TNTN and HSHS dams were exposed to thermal neutral (TN, cyclical 18-22°C or HS conditions (cyclical 28-34°C during the entire gestation, respectively. Dams assigned to HSTN and TNHS treatments were heat-stressed for the first or second half of gestation, respectively. Postnatal offspring were exposed to one of two thermal environments for an acute (24 h or chronic (five weeks duration in either constant TN (21°C or HS (35°C environment. Exposure to chronic HS during their growth phase resulted in decreased longissimus dorsi cross-sectional area (LDA in offspring from HSHS and HSTN treated dams whereas LDA was larger in offspring from dams in TNTN and TNHS conditions. Irrespective of HS during prepubertal postnatal growth, pigs from dams that experienced HS during the first half of gestation (HSHS and HSTN had increased (13.9% subcutaneous fat thickness compared to pigs from dams exposed to TN conditions during the first half of gestation. This metabolic repartitioning towards increased fat deposition in pigs from dams heat-stressed during the first half of gestation was accompanied by elevated blood insulin concentrations (33%; P = 0.01. Together, these results demonstrate HS during the first half of gestation altered metabolic and body composition parameters during future development and in biological responses to a subsequent HS challenge.

  1. Gestational heat stress alters postnatal offspring body composition indices and metabolic parameters in pigs.

    Science.gov (United States)

    Boddicker, Rebecca L; Seibert, Jacob T; Johnson, Jay S; Pearce, Sarah C; Selsby, Joshua T; Gabler, Nicholas K; Lucy, Matthew C; Safranski, Timothy J; Rhoads, Robert P; Baumgard, Lance H; Ross, Jason W

    2014-01-01

    The study objectives were to test the hypothesis that heat stress (HS) during gestational development alters postnatal growth, body composition, and biological response to HS conditions in pigs. To investigate this, 14 first parity crossbred gilts were exposed to one of four environmental treatments (TNTN, TNHS, HSTN, or HSHS) during gestation. TNTN and HSHS dams were exposed to thermal neutral (TN, cyclical 18-22°C) or HS conditions (cyclical 28-34°C) during the entire gestation, respectively. Dams assigned to HSTN and TNHS treatments were heat-stressed for the first or second half of gestation, respectively. Postnatal offspring were exposed to one of two thermal environments for an acute (24 h) or chronic (five weeks) duration in either constant TN (21°C) or HS (35°C) environment. Exposure to chronic HS during their growth phase resulted in decreased longissimus dorsi cross-sectional area (LDA) in offspring from HSHS and HSTN treated dams whereas LDA was larger in offspring from dams in TNTN and TNHS conditions. Irrespective of HS during prepubertal postnatal growth, pigs from dams that experienced HS during the first half of gestation (HSHS and HSTN) had increased (13.9%) subcutaneous fat thickness compared to pigs from dams exposed to TN conditions during the first half of gestation. This metabolic repartitioning towards increased fat deposition in pigs from dams heat-stressed during the first half of gestation was accompanied by elevated blood insulin concentrations (33%; P = 0.01). Together, these results demonstrate HS during the first half of gestation altered metabolic and body composition parameters during future development and in biological responses to a subsequent HS challenge.

  2. Acute physiological stress promotes clustering of synaptic markers and alters spine morphology in the hippocampus.

    Directory of Open Access Journals (Sweden)

    Veronica Sebastian

    Full Text Available GluA2-containing AMPA receptors and their association with protein kinase M zeta (PKMζ and post-synaptic density-95 (PSD-95 are important for learning, memory and synaptic plasticity processes. Here we investigated these synaptic markers in the context of an acute 1h platform stress, which can disrupt spatial memory retrieval for a short-term memory on the object placement task and long-term memory retrieval on a well-learned radial arm maze task. Acute stress increased serum corticosterone and elevated the expression of synaptic PKMζ while decreasing synaptic GluA2. Using co-immunoprecipitation, we found that this stressor promotes the clustering of GluA2, PKMζ and PSD-95, which is consistent with effects reported from overexpression of PKMζ in cell culture. Because PKMζ overexpression has also been shown to induce spine maturation in culture, we examined how stress impacts synaptic markers within changing spines across various hippocampal subfields. To achieve this, we employed a new technique combining Golgi staining and immmunohistochemistry to perform 3D reconstruction of tertiary dendrites, which can be analyzed for differences in spine types and the colocalization of synaptic markers within these spines. In CA1, stress increased the densities of long-thin and mushroom spines and the colocalization of GluA2/PSD-95 within these spines. Conversely, in CA3, stress decreased the densities of filopodia and stubby spines, with a concomitant reduction in the colocalization of GluA2/PSD-95 within these spines. In the outer molecular layer (OML of the dentate gyrus (DG, stress increased both stubby and long-thin spines, together with greater GluA2/PSD-95 colocalization. These data reflect the rapid effects of stress on inducing morphological changes within specific hippocampal subfields, highlighting a potential mechanism by which stress can modulate memory consolidation and retrieval.

  3. Jump-Down Performance Alterations after Space Flight

    Science.gov (United States)

    Reschke, M. F.; Kofman, I. S.; Cerisano, J. M.; Fisher, E. A.; Peters, B. T.; Miller, C. A.; Harm, D. L.; Bloomberg, J. J.

    2011-01-01

    INTRODUCTION: Successful jump performance requires functional coordination of visual, vestibular, and somatosensory systems, which are affected by prolonged exposure to microgravity. Astronauts returning from space flight exhibit impaired ability to coordinate effective landing strategies when jumping from a platform to the ground. This study compares jump strategies used by astronauts before and after flight, changes to those strategies within a test session, and recoveries in jump-down performance parameters across several postflight test sessions. These data were obtained as part of an ongoing interdisciplinary study (Functional Task Test, FTT) designed to evaluate both astronaut postflight functional performance and related physiological changes. METHODS: Seven astronauts from short-duration (Shuttle) and three from long-duration (International Space Station) flights performed 3 two-footed jumps from a platform 30 cm high onto a force plate that measured the ground reaction forces and center-of-pressure displacement from the landings. Neuromuscular activation data were collected from the medial gastrocnemius and anterior tibialis of both legs using surface electromyography electrodes. Two load cells in the platform measured the load exerted by each foot during the takeoff phase of the jump. Data were collected in 2 preflight sessions, on landing day (Shuttle only), and 1, 6, and 30 days after flight. RESULTS: Postural settling time was significantly increased on the first postflight test session and many of the astronauts tested were unable to maintain balance on their first jump landing but recovered by the third jump, showing a learning progression in which performance improvements could be attributed to adjustments in takeoff or landing strategy. Jump strategy changes were evident in reduced air time (time between takeoff and landing) and also in increased asymmetry in foot latencies on takeoff. CONCLUSIONS: The test results revealed significant decrements

  4. Expectancy of Stress-Reducing Aromatherapy Effect and Performance on a Stress-Sensitive Cognitive Task

    Directory of Open Access Journals (Sweden)

    Irina Chamine

    2015-01-01

    Full Text Available Objective. Stress-reducing therapies help maintain cognitive performance during stress. Aromatherapy is popular for stress reduction, but its effectiveness and mechanism are unclear. This study examined stress-reducing effects of aromatherapy on cognitive function using the go/no-go (GNG task performance and event related potentials (ERP components sensitive to stress. The study also assessed the importance of expectancy in aromatherapy actions. Methods. 81 adults were randomized to 3 aroma groups (active experimental, detectable, and undetectable placebo and 2 prime subgroups (prime suggesting stress-reducing aroma effects or no-prime. GNG performance, ERPs, subjective expected aroma effects, and stress ratings were assessed at baseline and poststress. Results. No specific aroma effects on stress or cognition were observed. However, regardless of experienced aroma, people receiving a prime displayed faster poststress median reaction times than those receiving no prime. A significant interaction for N200 amplitude indicated divergent ERP patterns between baseline and poststress for go and no-go stimuli depending on the prime subgroup. Furthermore, trends for beneficial prime effects were shown on poststress no-go N200/P300 latencies and N200 amplitude. Conclusion. While there were no aroma-specific effects on stress or cognition, these results highlight the role of expectancy for poststress response inhibition and attention.

  5. A model of premature aging in mice based on altered stress-related behavioral response and immunosenescence.

    Science.gov (United States)

    Viveros, María-Paz; Arranz, Lorena; Hernanz, Angel; Miquel, Jaime; De la Fuente, Mónica

    2007-01-01

    The intensity of behavioral and neuroendocrine responses to stressful stimuli in rodent strains seems to be inversely related to their life span. We have previously shown that interindividual differences in members of outbred Swiss and inbred BALB/c mouse populations, both male and female, may be related to their behavior in a simple T-maze test. The animals that explore the maze slowly show impaired neuromuscular vigor and coordination, decreased locomotor activity, increased level of emotionality/anxiety, decreased levels of brain biogenic amines as well as immunosenescence and decreased life span, when compared to their control counterparts, which quickly explore the maze. These traits are similar to some of the alterations previously observed in aging animals and therefore we proposed that those 'slow mice' are biologically older than the fast animals and may be a model of prematurely aging mice (PAM). Although most of our work on this model has been performed on chronologically adult-mature animals, we have also shown that certain characteristics of PAM, such as increased anxiety and deficient immune response, are already present in chronologically young animals. Thus, it is tempting to hypothesize that chronic hyperreactivity to stress (trait anxiety) leading to immune dysfunction may have a causal relationship with impaired health and premature aging. In view of the link between oxidative stress and the aging process, the redox state of peritoneal leukocytes from PAM has been studied, showing an oxidative stress situation. In the present work we have determined the levels of a key antioxidant, reduced glutathione (GSH), and the oxidant malondialdehyde (MDA), a marker of lipid peroxidation, both in the spleen and brain of male and female PAM and non-PAM (NPAM). We found that GSH and MDA are decreased and increased, respectively, in PAM with respect to NPAM. Moreover, diet supplementation with antioxidants showed to be an effective strategy for protection

  6. The effect of stress inoculation training on self-reported stress, observer's rating of stress, heart rate and gymnastics performance.

    Science.gov (United States)

    Mace, R D; Carroll, D

    1989-01-01

    Eighteen volunteer female subjects received preliminary instruction in a simple gymnastics bench sequence. They were then given a pre-intervention test on a bench at ground level. Self-reported distress, an independent observer's ratings of distress and heart rates were monitored immediately prior to performance of the sequence. Performances were also videotaped and formally scored by a qualified gymnastics judge. Subjects were then randomly assigned to a stress inoculation training group or a 'no stress management' training control group. Stress inoculation group subjects then received seven sessions of training in relaxation, imagery and making self-statements in order to develop a set of coping skills. Control group subjects also received seven training sessions during which they practised a series of coordination exercises, but no psychological stress management training was given to this group. All subjects were then re-tested on the bench sequence but this time at a height of 1.52 m. Self-reported stress, observer's ratings of distress and heart rate were recorded as before. Performance was again videotaped for scoring. The stress inoculation group reported significantly less stress prior to the test on the elevated beam than the control group. However, the groups did not differ in terms of heart rate. Further, the stress inoculation group performed reliably better than the control group on the elevated bench.

  7. Short communication: Maternal heat stress during the dry period alters postnatal whole-body insulin response of calves.

    Science.gov (United States)

    Tao, S; Monteiro, A P A; Hayen, M J; Dahl, G E

    2014-02-01

    Heat stress during the dry period not only negatively affects a cow's performance but also affects her offspring. Previous studies indicate that calves born to cows heat-stressed during late gestation have lower birth weight but similar overall weight gain during the prepubertal period compared with those cooled in utero. However, it is unclear if whole-body insulin response, and thus metabolism, of calves is altered in their postnatal life after in utero heat stress. The aim of the present study was to examine the effects of maternal heat stress during the dry period on whole-body insulin response of calves after weaning. Calves (10/treatment) were born to cows exposed to heat stress (HT) or cooling (CL) when dry. Calves were immediately separated from their dams and fed 3.8L of high-quality colostrum within 1h after birth and then 1.9L 12h later. All calves were fed 1.9 to 3.8L of pasteurized milk in the morning and afternoon from 2 to 42 d of age and then only in the morning until weaning at 49 d. Calf starter and water were offered ad libitum starting at 2 d of age. All calves were managed in the same manner throughout the study. All calves were subjected to a glucose tolerance test (GTT) and an insulin challenge (IC) at 55 d of age. Calves heat-stressed in utero were born lighter (40 ± 1.4 vs. 45 ± 1.4 kg) compared with CL calves. Both groups of calves had similar weaning weights (HT: 68 ± 3.2 kg; CL: 71 ± 3.3 kg) and body weight gain from birth to weaning (HT: 28 ± 2.2 kg; CL: 26 ± 2.3 kg). Compared with those cooled in utero, HT calves had a similar insulin response to GTT and insulin clearance during IC but faster glucose clearance during GTT and IC. In conclusion, in addition to impaired fetal growth, maternal heat stress during the dry period enhances the whole-body insulin response of calves after weaning, which suggests the possibility of accelerated lipogenesis and fat deposition in early life.

  8. ORGANIZATIONAL STRESS AND ITS IMPACT ON WORK PERFORMANCE

    Directory of Open Access Journals (Sweden)

    Costin Madalina - Adriana

    2011-07-01

    Full Text Available Nowadays, in times of economic crisis, most managers or entrepreneurs have to cope with a lot of new job challenges which can easily transform into stressors. Work related stress is of growing concern because it has significant economic implications for the organization. Even if some stress is a normal part of life, excessive stress can influence one's productivity, health and emotions and it has to be taken under control. When people lose confidence, they refuse to take responsibilities, they get quickly irritated, they are unsatisfied of their job, their performance will be very low and the organization will be in danger. Fortunately, most managers and entrepreneurs know which stress main symptoms are and have the necessary knowledge for managing and reducing it before it can affect employees' daily work. Stress can have an impact both on the organizational welfare and on personal behavior of supervisors or employees, that's why, the ability of managing it can make the difference between job's success or failure. The purpose of this paper is to study Romanian managers and entrepreneurs from Bihor County's perception regarding the stress phenomenon, if they feel that they are affected by stress, if they promote some methods to reduce it and if they consider that stress can influence the organizational performance. As a research method we used an online questionnaire, applied to a number of 75 managers and entrepreneurs that represent the target group of the project "Flexibility and performance through management", project financed by the European Social Fund - "Invest in people". Each participant had to answer a number of 35 questions regarding stress and the results will be presented in this paper. The main conclusion is that, even if job itself is seen as a stressor, there are other important factors that can produce stress such as: family problems, personal problems or social problems.

  9. Fluoxetine alters reproductive performance of female fighting fish, Betta splendens

    Directory of Open Access Journals (Sweden)

    Mohammad Navid Forsatkar

    2014-07-01

    Full Text Available This study was aimed to investigate the effects of waterborne fluoxetine on the reproduction performance of female fighting fish (Betta splendens. For this purpose, mature, ready for spawning females were exposed to concentrations of 0, 0.54 and 54.0 µg/l fluoxetine for 7 days. Then they were introduced into the spawning tank containing pre-acclimated male and reproductive consequences including number of copulations per spawning, number of eggs per copulation, duration of spawning, fecundity and hatching rate were assessed. Fluoxetine concentration of 54.0 µg/l, was significantly affected on the number of produced eggs per copulation, fecundity and hatching rate. In addition, the mean number of copulations per spawning was not different between treatments but significantly different for the spawning duration between control and 54.0 µg/l treatments. The results suggest that fluoxetine can impacts on reproductive performance of female fighting fish at concentrations greater than those found in the aquatic environments.

  10. An ambient agent model for analyzing managers' performance during stress

    Science.gov (United States)

    ChePa, Noraziah; Aziz, Azizi Ab; Gratim, Haned

    2016-08-01

    Stress at work have been reported everywhere. Work related performance during stress is a pattern of reactions that occurs when managers are presented with work demands that are not matched with their knowledge, skills, or abilities, and which challenge their ability to cope. Although there are many prior findings pertaining to explain the development of manager performance during stress, less attention has been given to explain the same concept through computational models. In such, a descriptive nature in psychological theories about managers' performance during stress can be transformed into a causal-mechanistic stage that explains the relationship between a series of observed phenomena. This paper proposed an ambient agent model for analyzing managers' performance during stress. Set of properties and variables are identified through past literatures to construct the model. Differential equations have been used in formalizing the model. Set of equations reflecting relations involved in the proposed model are presented. The proposed model is essential and can be encapsulated within an intelligent agent or robots that can be used to support managers during stress.

  11. The effect of occupational stress, psychological stress and burnout on employee performance: Evidence from banking industry

    Directory of Open Access Journals (Sweden)

    Shahram Hashemnia

    2014-09-01

    Full Text Available This paper presents an empirical investigation on the effects of occupational stress, psychological stress as well as job burnout on women’s employee performance in city of Karaj, Iran. The proposed study designs a questionnaire in Likert scale and distributes it among all female employees who worked for Bank Maskan in this city. In our survey, employee performance consists of three parts of interpersonal performance, job performance as well as organizational performance. Cronbach alpha has been used to verify the overall questionnaire, all components were within acceptable levels, and the implementation of Kolmogorov-Smirnov test has indicated that the data were not normally distributed. Using Spearman correlation ratio as well as regression techniques, the study has determined that while psychological stress influenced significantly on all three components of employee performance including interpersonal performance, job performance as well as organizational performance, the effect on job performance was greater than the other components. In addition, occupational stress only influences on organizational as well as interpersonal performance. Finally, employee burnout has no impact on any components of employee performance.

  12. Low oxygen alters mitochondrial function and response to oxidative stress in human neural progenitor cells

    Directory of Open Access Journals (Sweden)

    Yury M. Lages

    2015-12-01

    Full Text Available Oxygen concentration should be carefully regulated in all living tissues, beginning at the early embryonic stages. Unbalances in oxygen regulation can lead to cell death and disease. However, to date, few studies have investigated the consequences of variations in oxygen levels for fetal-like cells. Therefore, in the present work, human neural progenitor cells (NPCs derived from pluripotent stem cells grown in 3% oxygen (v/v were compared with NPCs cultured in 21% (v/v oxygen. Low oxygen concentrations altered the mitochondrial content and oxidative functions of the cells, which led to improved ATP production, while reducing generation of reactive oxygen species (ROS. NPCs cultured in both conditions showed no differences in proliferation and glucose metabolism. Furthermore, antioxidant enzymatic activity was not altered in NPCs cultured in 3% oxygen under normal conditions, however, when exposed to external agents known to induce oxidative stress, greater susceptibility to DNA damage was observed. Our findings indicate that the management of oxygen levels should be considered for in vitro models of neuronal development and drug screening.

  13. The tomato res mutant which accumulates JA in roots in non-stressed conditions restores cell structure alterations under salinity.

    Science.gov (United States)

    Garcia-Abellan, José O; Fernandez-Garcia, Nieves; Lopez-Berenguer, Carmen; Egea, Isabel; Flores, Francisco B; Angosto, Trinidad; Capel, Juan; Lozano, Rafael; Pineda, Benito; Moreno, Vicente; Olmos, Enrique; Bolarin, Maria C

    2015-11-01

    Jasmonic acid (JA) regulates a wide spectrum of plant biological processes, from plant development to stress defense responses. The role of JA in plant response to salt stress is scarcely known, and even less known is the specific response in root, the main plant organ responsible for ionic uptake and transport to the shoot. Here we report the characterization of the first tomato (Solanum lycopersicum) mutant, named res (restored cell structure by salinity), that accumulates JA in roots prior to exposure to stress. The res tomato mutant presented remarkable growth inhibition and displayed important morphological alterations and cellular disorganization in roots and leaves under control conditions, while these alterations disappeared when the res mutant plants were grown under salt stress. Reciprocal grafting between res and wild type (WT) (tomato cv. Moneymaker) indicated that the main organ responsible for the development of alterations was the root. The JA-signaling pathway is activated in res roots prior to stress, with transcripts levels being even higher in control condition than in salinity. Future studies on this mutant will provide significant advances in the knowledge of JA role in root in salt-stress tolerance response, as well as in the energy trade-off between plant growth and response to stress.

  14. Repeated exposure of adult rats to transient oxidative stress induces various long-lasting alterations in cognitive and behavioral functions.

    Directory of Open Access Journals (Sweden)

    Yoshio Iguchi

    Full Text Available Exposure of neonates to oxidative stress may increase the risk of psychiatric disorders such as schizophrenia in adulthood. However, the effects of moderate oxidative stress on the adult brain are not completely understood. To address this issue, we systemically administrated 2-cyclohexen-1-one (CHX to adult rats to transiently reduce glutathione levels. Repeated administration of CHX did not affect the acquisition or motivation of an appetitive instrumental behavior (lever pressing rewarded by a food outcome under a progressive ratio schedule. In addition, response discrimination and reversal learning were not affected. However, acute CHX administration blunted the sensitivity of the instrumental performance to outcome devaluation, and this effect was prolonged in rats with a history of repeated CHX exposure, representing pro-depression-like phenotypes. On the other hand, repeated CHX administration reduced immobility in forced swimming tests and blunted acute cocaine-induced behaviors, implicating antidepressant-like effects. Multivariate analyses segregated a characteristic group of behavioral variables influenced by repeated CHX administration. Taken together, these findings suggest that repeated administration of CHX to adult rats did not cause a specific mental disorder, but it induced long-term alterations in behavioral and cognitive functions, possibly related to specific neural correlates.

  15. Catecholamine stress alters neutrophil trafficking and impairs wound healing by β2-adrenergic receptor-mediated upregulation of IL-6.

    Science.gov (United States)

    Kim, Min-Ho; Gorouhi, Farzam; Ramirez, Sandra; Granick, Jennifer L; Byrne, Barbara A; Soulika, Athena M; Simon, Scott I; Isseroff, R Rivkah

    2014-03-01

    Stress-induced hormones can alter the inflammatory response to tissue injury; however, the precise mechanism by which epinephrine influences inflammatory response and wound healing is not well defined. Here we demonstrate that epinephrine alters the neutrophil (polymorphonuclear leukocyte (PMN))-dependent inflammatory response to a cutaneous wound. Using noninvasive real-time imaging of genetically tagged PMNs in a murine skin wound, chronic, epinephrine-mediated stress was modeled by sustained delivery of epinephrine. Prolonged systemic exposure of epinephrine resulted in persistent PMN trafficking to the wound site via an IL-6-mediated mechanism, and this in turn impaired wound repair. Further, we demonstrate that β2-adrenergic receptor-dependent activation of proinflammatory macrophages is critical for epinephrine-mediated IL-6 production. This study expands our current understanding of stress hormone-mediated impairment of wound healing and provides an important mechanistic link to explain how epinephrine stress exacerbates inflammation via increased number and lifetime of PMNs.

  16. Relationship between mental toughness, stress appraisal, and innovation performance of R&D personnel

    Directory of Open Access Journals (Sweden)

    Feng Jin

    2016-01-01

    Full Text Available Four hundred and two R&D personnel were surveyed through questionnaires to study the relationship between mental toughness, stress appraisal (including experience of stress and stress control, and innovation performance. The findings reveal a significant negative correlation between mental toughness and stress experience and a significant positive correlation between mental toughness and both stress control and innovation performance. Furthermore, although the experience of stress was negatively correlated with innovation performance, stress control had the opposite effect. Experience of stress and stress control were the mediating variables for mental toughness and innovation performance, respectively. There was also a significant interaction effect between stress appraisal and mental toughness.

  17. Stress and the gastrointestinal tract III. Stress-related alterations of gut motor function: role of brain corticotropin-releasing factor receptors.

    Science.gov (United States)

    Taché, Y; Martinez, V; Million, M; Wang, L

    2001-02-01

    Alterations of gastrointestinal (GI) motor function are part of the visceral responses to stress. Inhibition of gastric emptying and stimulation of colonic motor function are the commonly encountered patterns induced by various stressors. Activation of brain corticotropin-releasing factor (CRF) receptors mediates stress-related inhibition of upper GI and stimulation of lower GI motor function through interaction with different CRF receptor subtypes. CRF subtype 1 receptors are involved in the colonic and anxiogenic responses to stress and may have clinical relevance in the comorbidity of anxiety/depression and irritable bowel syndrome.

  18. Investigating The Effect Of Job Stress On Performance Of Employees

    Directory of Open Access Journals (Sweden)

    Oyungerel Altangerel

    2015-02-01

    Full Text Available Abstract This study is conducted to investigate the effect of job stress on job performance. A random sampling technique is used to collect primary data of 120 employees of four telecommunication companies of Mongolia i.e. Mobicom Unitel Skytel and G-mobile. A well-structured questionnaire is utilized to collect relevant data descriptive and logistic analysis is used to estimate and describe the findings of results. It is found that work overload is major reason of stress among employees and majority of employees reduce their productivity and loss of interest in job due to stress. As for concern health issue eyes strain dizziness and disorder in sleep are due to job stress. According to results of logit model parameters of education experience and salary per month are statistically significant and have positive impact on employees performance but age family size no relaxation time giving to employees during working hours and work overload are statistically significant and have negative impact on employees job performance. For suggestions companies should increase salaries of employees and give reward to employees those have work overload. Workload of employees should reduce by proper work redesign and efficient management by proper allocation of job. It is also found that stress also becomes reason of several illnesses and majority of employees dont have medical facilities first aid at working place therefore it is suggested that companies should also provide medical facilities first aid for employees at work place.

  19. 14 CFR 125.245 - Organization required to perform maintenance, preventive maintenance, and alteration.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Organization required to perform maintenance, preventive maintenance, and alteration. 125.245 Section 125.245 Aeronautics and Space FEDERAL... GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Maintenance § 125.245 Organization required to perform...

  20. Student stress and academic performance: home hospital program.

    Science.gov (United States)

    Yucha, Carolyn B; Kowalski, Susan; Cross, Chad

    2009-11-01

    The purpose of this study was to evaluate whether nursing students assigned to a home hospital experience less stress and improved academic performance. Students were assigned to a home hospital clinical placement (n = 78) or a control clinical placement (n = 79). Stress was measured using the Student Nurse Stress Index (SNSI) and Spielberger's State Anxiety Inventory. Academic performance included score on the RN CAT, a standardized mock NCLEX-RN(®)-type test; nursing grade point average; and first attempt pass-fail on the NCLEX-RN. There were no statistically significant differences between the two groups for age, gender, marital status, ethnicity, or score on the nurse entrance examination. There were significant changes in SNSI over time but not between groups. Academic load and state anxiety showed an interaction of time by group, with the home hospital group showing reductions over time, compared with the control group.

  1. Effects of exercise training on stress-induced vascular reactivity alterations: role of nitric oxide and prostanoids

    Directory of Open Access Journals (Sweden)

    Thiago Bruder-Nascimento

    2015-06-01

    Full Text Available Background: Physical exercise may modify biologic stress responses. Objective: To investigate the impact of exercise training on vascular alterations induced by acute stress, focusing on nitric oxide and cyclooxygenase pathways. Method: Wistar rats were separated into: sedentary, trained (60-min swimming, 5 days/week during 8 weeks, carrying a 5% body-weight load, stressed (2 h-immobilization, and trained/stressed. Response curves for noradrenaline, in the absence and presence of L-NAME or indomethacin, were obtained in intact and denuded aortas (n=7-10. Results: None of the procedures altered the denuded aorta reactivity. Intact aortas from stressed, trained, and trained/stressed rats showed similar reduction in noradrenaline maximal responses (sedentary 3.54±0.15, stressed 2.80±0.10*, trained 2.82±0.11*, trained/stressed 2.97± 0.21*, *P<0.05 relate to sedentary. Endothelium removal and L-NAME abolished this hyporeactivity in all experimental groups, except in trained/stressed rats that showed a partial aorta reactivity recovery in L-NAME presence (L-NAME: sedentary 5.23±0,26#, stressed 5.55±0.38#, trained 5.28±0.30#, trained/stressed 4.42±0.41, #P<0.05 related to trained/stressed. Indomethacin determined a decrease in sensitivity (EC50 in intact aortas of trained rats without abolishing the aortal hyporeactivity in trained, stressed, and trained/stressed rats. Conclusions: Exercise-induced vascular adaptive response involved an increase in endothelial vasodilator prostaglandins and nitric oxide. Stress-induced vascular adaptive response involved an increase in endothelial nitric oxide. Beside the involvement of the endothelial nitric oxide pathway, the vascular response of trained/stressed rats involved an additional mechanism yet to be elucidated. These findings advance on the understanding of the vascular processes after exercise and stress alone and in combination.

  2. Predicting Performance Under Acute Stress : The Role of Individual Characteristics

    NARCIS (Netherlands)

    Delahaij, R.; Dam, K. van; Gaillard, A.W.K.; Soeters, J.

    2011-01-01

    This prospective study examined how differences in coping style, coping self-efficacy, and metacognitive awareness influence coping behavior and performance during a realistic acute stressful exercise in 2 military samples (n = 122 and n = 132). Results showed that coping self-efficacy and coping st

  3. Academic Performance and Perceived Stress among University Students

    Science.gov (United States)

    Talib, Nadeem; Zia-ur-Rehman, Muhammad

    2012-01-01

    This study aims to investigate the effect of factor such as perceived stress on the academic performance of the students. A sample of 199 university graduates and undergraduates in Rawalpindi and Islamabad was selected as a statistical frame. Instrumentation used for this study is previously validated construct in order to evaluate the effect of…

  4. Nutrient Stress During Ontogeny Alters Patterns of Resource Allocation in two Species of Horned Beetles.

    Science.gov (United States)

    Schwab, Daniel B; Moczek, Armin P

    2016-10-01

    The elaboration of exaggerated, sexually selected weapons and ornaments often comes at a cost to other traits. For instance, by sustaining the growth of an exaggerated weapon during development, shared and limited resources such as morphogens, growth factors, and nutrients may become depleted and limit the size to which other structures can grow. Such interactions are characteristic of resource allocation trade-offs, which can constrain the production of phenotypic variation and bias evolutionary trajectories. Across many species of Onthophagus beetles, males produce extravagant horns that are used as weapons in male-male competition over mates. Previous studies have reported resource allocation trade-offs between horns and both proximally and distally developing structures. However, more recent studies have largely failed to recover these patterns, leading to the hypothesis that trade-offs may manifest only in certain species, populations, or environmental conditions. Here, we investigate (i) patterns of resource allocation into horns, eyes, and genitalia in Onthophagus gazella and O. taurus, and assess (ii) how these patterns of resource allocation are influenced by nutrient stress during larval development. We find that nutrient stress alters patterns of resource allocation within and among traits, but recover a trade-off only in the species that invests most heavily into horn production (O. taurus), and in individuals of that species that invested a disproportionately large or small amount of resources into horn growth. These results suggest that resource allocation trade-offs may not be as prevalent as previously described, and that their presence and magnitude may instead be highly context dependent.

  5. Alteration of hepatic structure and oxidative stress induced by intravenous nanoceria

    Energy Technology Data Exchange (ETDEWEB)

    Tseng, Michael T., E-mail: mttsen01@louisville.edu [Dept of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky (United States); Lu, Xiaoqin, E-mail: x0lu0003@louisville.edu [Dept of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky (United States); Duan, Xiaoxian, E-mail: x0duan02@louisville.edu [Dept of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky (United States); Hardas, Sarita S., E-mail: sarita.hardas@uky.edu [Dept. of Chemistry, University of Kentucky, Lexington, Kentucky (United States); Sultana, Rukhsana, E-mail: rsult2@uky.edu [Dept. of Chemistry, University of Kentucky, Lexington, Kentucky (United States); Wu, Peng, E-mail: peng.wu@uky.edu [Dept of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky (United States); Unrine, Jason M., E-mail: jason.unrine@uky.edu [Dept of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky (United States); Graham, Uschi, E-mail: graham@caer.uky.edu [Center for Applied Energy Research, University of Kentucky, Lexington, Kentucky (United States); Butterfield, D. Allan, E-mail: dabcns@uky.edu [Dept. of Chemistry, University of Kentucky, Lexington, Kentucky (United States); Grulke, Eric A., E-mail: eric.grulke@uky.edu [Dept of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky (United States); Yokel, Robert A., E-mail: ryokel@email.uky.edu [Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky (United States)

    2012-04-15

    Beyond the traditional use of ceria as an abrasive, the scope of nanoceria applications now extends into fuel cell manufacturing, diesel fuel additives, and for therapeutic intervention as a putative antioxidant. However, the biological effects of nanoceria exposure have yet to be fully defined, which gave us the impetus to examine its systemic biodistribution and biological responses. An extensively characterized nanoceria (5 nm) dispersion was vascularly infused into rats, which were terminated 1 h, 20 h or 30 days later. Light and electron microscopic tissue characterization was conducted and hepatic oxidative stress parameters determined. We observed acute ceria nanoparticle sequestration by Kupffer cells with subsequent bioretention in parenchymal cells as well. The internalized ceria nanoparticles appeared as spherical agglomerates of varying dimension without specific organelle penetration. In hepatocytes, the agglomerated nanoceria frequently localized to the plasma membrane facing bile canaliculi. Hepatic stellate cells also sequestered nanoceria. Within the sinusoids, sustained nanoceria bioretention was associated with granuloma formations comprised of Kupffer cells and intermingling CD3{sup +} T cells. A statistically significant elevation of serum aspartate aminotransferase (AST) level was seen at 1 and 20 h, but subsided by 30 days after ceria administration. Further, elevated apoptosis was observed on day 30. These findings, together with increased hepatic protein carbonyl levels on day 30, indicate ceria-induced hepatic injury and oxidative stress, respectively. Such observations suggest a single vascular infusion of nanoceria can lead to persistent hepatic retention of particles with possible implications for occupational and therapeutic exposures. -- Highlights: ► Time course study on nanoceria induced hepatic alterations in rats. ► Serum AST elevation indicated acute hepatotoxicity. ► Ceria is retained for up to 30 days in Kupffer cells

  6. Moringa oleifera extract enhances sexual performance in stressed rats.

    Science.gov (United States)

    Prabsattroo, Thawatchai; Wattanathorn, Jintanaporn; Iamsaard, Sitthichai; Somsapt, Pichet; Sritragool, Opass; Thukhummee, Wipawee; Muchimapura, Supaporn

    2015-03-01

    Aphrodisiacs are required to improve male sexual function under stressful conditions. Due to the effects of oxidative stress and dopamine on male sexual function, we hypothesized that Moringa oleifera leaves might improve male sexual dysfunction induced by stress. Therefore, the effects on various factors playing important roles in male sexual behavior, such as antioxidant effects, the suppression of monoamine and phosphodiesterase type 5 (PDE-5) activities, serum testosterone and corticosterone levels, and histomorphological changes in the testes, of a hydroethanolic extract of M. oleifera leaves were investigated. Various doses of extract including 10, 50, and 250 mg/kg body weight (BW) were given orally to male Wistar rats before exposure to 12 h-immobilization stress for 7 d. The results demonstrated that the extract showed both antioxidant and monoamine oxidase type B (MAO-B) suppression activities. At 7 d of treatment, the low dose of extract improved sexual performance in stress-exposed rats by decreasing intromission latency and increasing intromission frequency. It also suppressed PDE-5 activity, decreased serum corticosterone level, but increased serum testosterone, numbers of interstitial cells of Leydig and spermatozoa. The increased numbers of interstitial cells of Leydig and spermatozoa might have been due to the antioxidant effect of the extract. The increased sexual performance during the intromission phase might have been due to the suppression of MAO-B and PDE-5 activities and increased testosterone. Therefore, M. oleifera is a potential aphrodisiac, but further research concerning the precise underlying mechanisms is still needed.

  7. Altered mitochondrial function and oxidative stress in leukocytes of anorexia nervosa patients.

    Directory of Open Access Journals (Sweden)

    Victor M Victor

    Full Text Available CONTEXT: Anorexia nervosa is a common illness among adolescents and is characterised by oxidative stress. OBJECTIVE: The effects of anorexia on mitochondrial function and redox state in leukocytes from anorexic subjects were evaluated. DESIGN AND SETTING: A multi-centre, cross-sectional case-control study was performed. PATIENTS: Our study population consisted of 20 anorexic patients and 20 age-matched controls, all of which were Caucasian women. MAIN OUTCOME MEASURES: Anthropometric and metabolic parameters were evaluated in the study population. To assess whether anorexia nervosa affects mitochondrial function and redox state in leukocytes of anorexic patients, we measured mitochondrial oxygen consumption, membrane potential, reactive oxygen species production, glutathione levels, mitochondrial mass, and complex I and III activity in polymorphonuclear cells. RESULTS: Mitochondrial function was impaired in the leukocytes of the anorexic patients. This was evident in a decrease in mitochondrial O2 consumption (P<0.05, mitochondrial membrane potential (P<0.01 and GSH levels (P<0.05, and an increase in ROS production (P<0.05 with respect to control subjects. Furthermore, a reduction of mitochondrial mass was detected in leukocytes of the anorexic patients (P<0.05, while the activity of mitochondrial complex I (P<0.001, but not that of complex III, was found to be inhibited in the same population. CONCLUSIONS: Oxidative stress is produced in the leukocytes of anorexic patients and is closely related to mitochondrial dysfunction. Our results lead us to propose that the oxidative stress that occurs in anorexia takes place at mitochondrial complex I. Future research concerning mitochondrial dysfunction and oxidative stress should aim to determine the physiological mechanism involved in this effect and the physiological impact of anorexia.

  8. Acute stress alters transcript expression pattern and reduces processing of proBDNF to mature BDNF in Dicentrarchus labrax

    Directory of Open Access Journals (Sweden)

    Saroglia Marco

    2010-01-01

    Full Text Available Abstract Background Stress involves alterations of brain functioning that may precipitate to mood disorders. The neurotrophin Brain Derived Neurotrophic Factor (BDNF has recently been involved in stress-induced adaptation. BDNF is a key regulator of neuronal plasticity and adaptive processes. Regulation of BDNF is complex and may reflect not only stress-specific mechanisms but also hormonal and emotional responses. For this reason we used, as an animal model of stress, a fish whose brain organization is very similar to that of higher vertebrates, but is generally considered free of emotional reactions. Results We provide a comprehensive characterization of BDNF gene in the Dicentrarchus labrax and its transcriptional, translational and post-translational regulation following acute stress. While total BDNF mRNA levels are unchanged, BDNF transcripts 1c and 1d resulted down regulated after acute stress. Acute stress induces also a significant increase in proBDNF levels and reduction in mature BDNF suggesting altered regulation of proBDNF proteolytic processing. Notably, we provide here the first evidence that fishes possess a simplified proteolytic regulation of BDNF since the pro28Kda form, generated by the SKI-1 protease in mammals, is absent in fishes because the cleavage site has first emerged in reptilians. Finally, we show that the proBDNF/totBDNF ratio is a highly predictive novel quantitative biomarker to detect stress in fishes with sensitivity = 100%, specificity = 87%, and Negative Predictive Value = 100%. Conclusion The high predictivity of proBDNF/totBDNF ratio for stress in lower vertebrates indicates that processing of BDNF is a central mechanism in adaptation to stress and predicts that a similar regulation of pro/mature BDNF has likely been conserved throughout evolution of vertebrates from fish to man.

  9. Altered stress fibers and integrin expression in the Malpighian epithelium of Drosophila type IV collagen mutants

    Directory of Open Access Journals (Sweden)

    András A. Kiss

    2016-06-01

    Full Text Available Basement membranes (BMs are highly specialized extracellular matrices (ECMs that provide support and polarization cues for epithelial cells. Proper adhesion to the BM is pivotal in epithelial cell function and survival. Type IV collagens are the predominant components of all types of BMs, that form an irregular, polygonal lattice and serve as a scaffold for numerous other BM components and BM-associated cells. Mutations in the ubiquitous human BM components COL4A1 and COL4A2 cause a multisystem disorder involving nephropathy. Affected patients develop renal dysfunction and chronic kidney failure with or without hematuria. Mouse Col4a1 and Col4a2 mutants recapitulate the human symptoms. In vertebrates, excretion is accomplished by the kidneys and by the Malpighian tubules in insects, including the fruit fly Drosophila. Our present results with dominant, temperature-sensitive mutation of the Drosophila col4a1 gene demonstrate altered integrin expression and amplified effects of mechanical stress on the Malpighian epithelial cytoskeleton.

  10. Combined neonicotinoid pesticide and parasite stress alter honeybee queens’ physiology and survival

    Science.gov (United States)

    Dussaubat, Claudia; Maisonnasse, Alban; Crauser, Didier; Tchamitchian, Sylvie; Bonnet, Marc; Cousin, Marianne; Kretzschmar, André; Brunet, Jean-Luc; Le Conte, Yves

    2016-01-01

    Honeybee colony survival strongly relies on the queen to overcome worker losses exposed to combined stressors like pesticides and parasites. Queen’s capacity to withstand these stressors is however very little known. The effects of the common neonicotinoid pesticide imidacloprid in a chronic and sublethal exposure together with the wide distributed parasite Nosema ceranae have therefore been investigated on queen’s physiology and survivorship in laboratory and field conditions. Early physiological changes were observed on queens, particularly the increase of enzyme activities (catalase [CAT] and glutathione-S-transferase [GST] in the heads) related to protective responses to xenobiotics and oxidative stress against pesticide and parasite alone or combined. Stressors also alter the activity of two other enzymes (carboxylesterase alpha [CaE α] and carboxylesterase para [CaE p] in the midguts) involved in metabolic and detoxification functions. Furthermore, single and combined effects of pesticide and parasite decrease survivorship of queens introduced into mating hives for three months. Because colony demographic regulation relies on queen’s fertility, the compromise of its physiology and life can seriously menace colony survival under pressure of combined stressors. PMID:27578396

  11. Combined neonicotinoid pesticide and parasite stress alter honeybee queens' physiology and survival.

    Science.gov (United States)

    Dussaubat, Claudia; Maisonnasse, Alban; Crauser, Didier; Tchamitchian, Sylvie; Bonnet, Marc; Cousin, Marianne; Kretzschmar, André; Brunet, Jean-Luc; Le Conte, Yves

    2016-01-01

    Honeybee colony survival strongly relies on the queen to overcome worker losses exposed to combined stressors like pesticides and parasites. Queen's capacity to withstand these stressors is however very little known. The effects of the common neonicotinoid pesticide imidacloprid in a chronic and sublethal exposure together with the wide distributed parasite Nosema ceranae have therefore been investigated on queen's physiology and survivorship in laboratory and field conditions. Early physiological changes were observed on queens, particularly the increase of enzyme activities (catalase [CAT] and glutathione-S-transferase [GST] in the heads) related to protective responses to xenobiotics and oxidative stress against pesticide and parasite alone or combined. Stressors also alter the activity of two other enzymes (carboxylesterase alpha [CaE α] and carboxylesterase para [CaE p] in the midguts) involved in metabolic and detoxification functions. Furthermore, single and combined effects of pesticide and parasite decrease survivorship of queens introduced into mating hives for three months. Because colony demographic regulation relies on queen's fertility, the compromise of its physiology and life can seriously menace colony survival under pressure of combined stressors.

  12. Chronic unpredictive mild stress leads to altered hepatic metabolic profile and gene expression.

    Science.gov (United States)

    Jia, Hong-Mei; Li, Qi; Zhou, Chao; Yu, Meng; Yang, Yong; Zhang, Hong-Wu; Ding, Gang; Shang, Hai; Zou, Zhong-Mei

    2016-03-23

    Depression is a complex disease characterized by a series of pathological changes. Research on depression is mainly focused on the changes in brain, but not on liver. Therefore, we initially explored the metabolic profiles of hepatic extracts from rats treated with chronic unpredictive mild stress (CUMS) by UPLC-Q-TOF/MS. Using multivariate statistical analysis, a total of 26 altered metabolites distinguishing CUMS-induced depression from normal control were identified. Using two-stage receiver operating characteristic (ROC) analysis, 18 metabolites were recognized as potential biomarkers related to CUMS-induced depression via 12 metabolic pathways. Subsequently, we detected the mRNA expressions levels of apoptosis-associated genes such as Bax and Bcl-2 and four key enzymes including Pla2g15, Pnpla6, Baat and Gad1 involved in phospholipid and primary bile acid biosynthesis in liver tissues of CUMS rats by real-time qRT-PCR assay. The expression levels of Bax, Bcl-2, Pla2g15, Pnpla6 and Gad1 mRNA were 1.43,1.68, 1.74, 1.67 and 1.42-fold higher, and those of Baat, Bax/Bcl-2 ratio mRNA were 0.83, 0.85-fold lower in CUMS rats compared with normal control. Results of liver-targeted metabonomics and mRNA expression demonstrated that CUMS-induced depression leads to variations in hepatic metabolic profile and gene expression, and ultimately results in liver injury.

  13. Altered resting-state amygdala functional connectivity in men with posttraumatic stress disorder

    Science.gov (United States)

    Sripada, Rebecca K.; King, Anthony P.; Garfinkel, Sarah N.; Wang, Xin; Sripada, Chandra S.; Welsh, Robert C.; Liberzon, Israel

    2012-01-01

    Background Converging neuroimaging research suggests altered emotion neurocircuitry in individuals with posttraumatic stress disorder (PTSD). Emotion activation studies in these individuals have shown hyperactivation in emotion-related regions, including the amygdala and insula, and hypoactivation in emotion-regulation regions, including the medial prefrontal cortex (mPFC) and anterior cingulate cortex (ACC). However, few studies have examined patterns of connectivity at rest in individuals with PTSD, a potentially powerful method for illuminating brain network structure. Methods Using the amygdala as a seed region, we measured resting-state brain connectivity using 3 T functional magnetic resonance imaging in returning male veterans with PTSD and combat controls without PTSD. Results Fifteen veterans with PTSD and 14 combat controls enrolled in our study. Compared with controls, veterans with PTSD showed greater positive connectivity between the amygdala and insula, reduced positive connectivity between the amygdala and hippocampus, and reduced anticorrelation between the amygdala and dorsal ACC and rostral ACC. Limitations Only male veterans with combat exposure were tested, thus our findings cannot be generalized to women or to individuals with non–combat related PTSD. Conclusion These results demonstrate that studies of functional connectivity during resting state can discern aberrant patterns of coupling within emotion circuits and suggest a possible brain basis for emotion-processing and emotion-regulation deficits in individuals with PTSD. PMID:22313617

  14. Ameliorative potential of sodium cromoglycate and diethyldithiocarbamic acid in restraint stress-induced behavioral alterations in rats.

    Science.gov (United States)

    Manchanda, Rajneet K; Jaggi, Amteshwar S; Singh, Nirmal

    2011-01-01

    The present study was designed to investigate the ameliorative effects of sodium cromoglycate and diethyldithiocarbamic acid in acute stress-induced behavioral alterations in rats subjected to restraint stress. The rats were placed in the restrainer (5.5 cm in diameter and 18 cm in length) for 3.5 h. Restraint stress-induced behavioral alterations were assessed using the hole-board, social interactions and open field tests. Restraint stress resulted in a decrease in the frequency of head dips, rearing in the hole board, line crossings and rearings in the open field, and an increase in avoidance behaviors in the social interaction tests. Sodium cromoglycate (25 mg/kg and 50 mg/kg, ip), a mast cell stabilizer, and diethyldithiocarbamic acid (75 mg/kg and 150 mg/kg, ip), a selective NF-κB inhibitor, were employed to modulate restraint stress-induced behavioral changes. The administration of sodium cromoglycate and diethyldithiocarbamic acid significantly attenuated the restraint stress-induced behavioral changes. The noted beneficial effects of sodium cromoglycate and diethyldithiocarbamic acid may possibly be attributed to mast cell stabilization and inhibition of NF-κB activity, respectively.

  15. Chronic unpredicted mild stress-induced depression alter saxagliptin pharmacokinetics and CYP450 activity in GK rats

    Directory of Open Access Journals (Sweden)

    Zhengchao Xia

    2016-01-01

    Full Text Available Background. This study was to explore the pharmacokinetics of saxagliptin (Sax in Goto–Kakizaki (GK rats complicated with depression induced by chronic unpredicted mild stress (CUMS. The comorbidity of diabetic patients with depression is becoming more and more epidemic. Whether depression mental disorder alters the pharmacokinetics of hypoglycemic drugs in diabetes patients is not clear.Methods. Five-week-old male GK rats were kept in the cage for 7 weeks in a specific pathogen free (SPF-grade lab until the emergence of diabetes and were then divided into two groups: control group and depression model group. Rats in the CUMS-induced depression group were exposed to a series of stressors for 8 weeks. Plasma serotonin and dopamine levels and behavior of open-field test were used to confirm the establishment of the depression model. All rats were given 0.5 mg/kg Sax orally after 8 weeks and blood samples were collected at different time points. The Sax concentration was assayed by high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS. The CYP450 activity of the liver microsomes was determined by using cocktails of probe drugs in which the activities of CYP enzymes were assessed through the determination of the production of the probe drugs.Results. Statistically significant differences in Sax pharmacokinetics were observed for area under curve, clearance, peak concentration, peak time and mean residence time between the depression rats and the control rats, while no statistical differences were observed for half-time and distribution volume by HPLC-MS/MS analysis. The CYP450 activity had different changes in the depression group.Conclusions. These results indicated that CUMS-induced depression alters the drug metabolic process of Sax and CYP450 activity of the liver microsomal enzymes in GK rats.

  16. Performance of a Nb(3)Sn Quadrupole Under High Stress

    CERN Document Server

    Felice, H; Ferracin, P; De Rijk, G; Bajko, M; Caspi, S; Bingham, B; Giloux, C; Bordini, B; Milanese, A; Bottura, L; Sabbi, G L; Hafalia, R; Godeke, A; Dietderich, D

    2011-01-01

    Future upgrades of the Large Hadron Collider (LHC) will require large aperture and high gradient quadrupoles. Nb(3)Sn is the most viable option for this application but is also known for its strain sensitivity. In high field magnets, with magnetic fields above 12 T, the Lorentz forces will generate mechanical stresses that may exceed 200 MPa in the windings. The existing measurements of critical current versus strain of Nb(3)Sn strands or cables are not easily applicable to magnets. In order to investigate the impact of high mechanical stress on the quench performance, a series of tests was carried out within a LBNL/CERN collaboration using the magnet TQS03 (a LHC Accelerator Research Program (LARP) 1-meter long, 90-mm aperture Nb(3)Sn quadrupole). The magnet was tested four times at CERN under various pre-stress conditions. The average mechanical compressive azimuthal pre-stress on the coil at 4.2 K ranged from 120 MPa to 200 MPa. This paper reports on the magnet performance during the four tests focusing on...

  17. Effect of St. John's Wort (Hypericum perforatum treatment on restraint stress-induced behavioral and biochemical alteration in mice

    Directory of Open Access Journals (Sweden)

    Prakash Atish K

    2010-05-01

    Full Text Available Abstract Background A stressful stimulus is a crucial determinant of health and disease. Antidepressants are used to manage stress and their related effects. The present study was designed to investigate the effect of St. John's Wort (Hypericum perforatum in restraint stress-induced behavioral and biochemical alterations in mice. Methods Animals were immobilized for a period of 6 hr. St. John's Wort (50 and 100 mg/kg was administered 30 minutes before the animals were subjecting to acute immobilized stress. Various behavioral tests parameters for anxiety, locomotor activity and nociceptive threshold were assessed followed by biochemical assessments (malondialdehyde level, glutathione, catalase, nitrite and protein subsequently. Results 6-hr acute restraint stress caused severe anxiety like behavior, antinociception and impaired locomotor activity as compared to unstressed animals. Biochemical analyses revealed an increase in malondialdehyde, nitrites concentration, depletion of reduced glutathione and catalase activity as compared to unstressed animal brain. Five days St. John's Wort treatment in a dose of 50 mg/kg and 100 mg/kg significantly attenuated restraint stress-induced behavioral (improved locomotor activity, reduced tail flick latency and antianxiety like effect and oxidative damage as compared to control (restraint stress. Conclusion Present study highlights the modest activity of St. John's Wort against acute restraint stress induced modification.

  18. Partial genetic deletion of neuregulin 1 and adolescent stress interact to alter NMDA receptor binding in the medial prefrontal cortex

    Directory of Open Access Journals (Sweden)

    Tariq Waseem Chohan

    2014-09-01

    Full Text Available Schizophrenia is thought to arise due to a complex interaction between genetic and environmental factors during early neurodevelopment. We have recently shown that partial genetic deletion of the schizophrenia susceptibility gene neuregulin 1 (Nrg1 and adolescent stress interact to disturb sensorimotor gating, neuroendocrine activity and dendritic morphology in mice. Both stress and Nrg1 may have converging effects upon N-methyl-D-aspartate receptors (NMDARs which are implicated in the pathogenesis of schizophrenia, sensorimotor gating and dendritic spine plasticity. Using an identical repeated restraint stress paradigm to our previous study, here we determined NMDAR binding across various brain regions in adolescent Nrg1 heterozygous (HET and wild-type (WT mice using [3H] MK-801 autoradiography. Repeated restraint stress increased NMDAR binding in the ventral part of the lateral septum (LSV and the dentate gyrus (DG of the hippocampus irrespective of genotype. Partial genetic deletion of Nrg1 interacted with adolescent stress to promote an altered pattern of NMDAR binding in the infralimbic (IL subregion of the medial prefrontal cortex. In the IL, whilst stress tended to increase NMDAR binding in WT mice, it decreased binding in Nrg1 HET mice. However in the DG, stress selectively increased the expression of NMDAR binding in Nrg1 HET mice but not WT mice. These results demonstrate a Nrg1-stress interaction during adolescence on NMDAR binding in the medial prefrontal cortex.

  19. Effects of late-gestation heat stress on immunity and performance of calves.

    Science.gov (United States)

    Dahl, G E; Tao, S; Monteiro, A P A

    2016-04-01

    Lactating cows that experience heat stress will have reduced dry matter intake and milk yield and shift metabolism, which ultimately reduces the efficiency of milk production. Dry cows that are heat stressed similarly experience lower intake, reduced mammary growth, and compromised immune function that ultimately results in a poorer transition into lactation and lower milk yield in the next lactation. A recent focus in our laboratory is on the effects of late gestation, in utero heat stress on calf survival and performance. We have completed a series of studies to examine preweaning growth and health, and later reproductive and productive responses, in an attempt to quantify acute and persistent effects of in utero heat strain. Late gestation heat stress results in calves with lower body weight at birth, shorter stature at weaning, and failure to achieve the same weight or height at 12 mo of age observed in calves from dams that are cooled when dry. A portion of the reduced growth may result from the lower immune status observed in calves heat stressed in utero, which begins with poorer apparent efficiency of immunoglobulin absorption and extends to lower survival rates through puberty. Heat-stressed calves, however, have permanent shifts in metabolism that are consistent with greater peripheral accumulation of energy and less lean growth relative to those from cooled dams. Comparing reproductive performance in calves heat stressed versus those cooled in utero, we observe that the cooled heifers require fewer services to attain pregnancy and become pregnant at an earlier age. Tracking the milk production in calves that were heat stressed in utero versus those cooled in late gestation revealed a significant reduction of yield in the first lactation, approximately 5 kg/d through 35 wk of lactation, despite similar body weight and condition score at calving. These observations indicate that a relatively brief period of heat stress in late gestation dramatically alters

  20. 3-Bromopyruvate treatment induces alterations of metabolic and stress-related pathways in glioblastoma cells.

    Science.gov (United States)

    Chiasserini, Davide; Davidescu, Magdalena; Orvietani, Pier Luigi; Susta, Federica; Macchioni, Lara; Petricciuolo, Maya; Castigli, Emilia; Roberti, Rita; Binaglia, Luciano; Corazzi, Lanfranco

    2017-01-30

    Glioblastoma (GBM) is the most common and aggressive brain tumour of adults. The metabolic phenotype of GBM cells is highly dependent on glycolysis; therefore, therapeutic strategies aimed at interfering with glycolytic pathways are under consideration. 3-Bromopyruvate (3BP) is a potent antiglycolytic agent, with a variety of targets and possible effects on global cell metabolism. Here we analyzed the changes in protein expression on a GBM cell line (GL15 cells) caused by 3BP treatment using a global proteomic approach. Validation of differential protein expression was performed with immunoblotting and enzyme activity assays in GL15 and U251 cell lines. The results show that treatment of GL15 cells with 3BP leads to extensive changes in the expression of glycolytic enzymes and stress related proteins. Importantly, other metabolisms were also affected, including pentose phosphate pathway, aminoacid synthesis, and glucose derivatives production. 3BP elicited the activation of stress response proteins, as shown by the phosphorylation of HSPB1 at serine 82, caused by the concomitant activation of the p38 pathway. Our results show that inhibition of glycolysis in GL15 cells by 3BP influences different but interconnected pathways. Proteome analysis may help in the molecular characterization of the glioblastoma response induced by pharmacological treatment with antiglycolytic agents.

  1. Carbonated soft drinks induce oxidative stress and alter the expression of certain genes in the brains of Wistar rats.

    Science.gov (United States)

    El-Terras, Adel; Soliman, Mohamed Mohamed; Alkhedaide, Adel; Attia, Hossam Fouad; Alharthy, Abdullah; Banaja, Abdel Elah

    2016-04-01

    In Saudi Arabia, the consumption of carbonated soft drinks is common and often occurs with each meal. Carbonated soft drink consumption has been shown to exhibit effects on the liver, kidney and bone. However, the effects of these soft drinks on brain activity have not been widely examined, particularly at the gene level. Therefore, the current study was conducted with the aim of evaluating the effects of chronic carbonated soft drink consumption on oxidative stress, brain gene biomarkers associated with aggression and brain histology. In total, 40 male Wistar rats were divided into four groups: Group 1 served as a control and was provided access to food and water ad libitum; and groups 2‑4 were given free access to food and carbonated soft drinks only (Cola for group 2, Pepsi for group 3 and 7‑UP for group 4). Animals were maintained on these diets for 3 consecutive months. Upon completion of the experimental period, animals were sacrificed and serological and histopathological analyses were performed on blood and tissues samples. Reverse transcription‑polymerase chain reaction was used to analyze alterations in gene expression levels. Results revealed that carbonated soft drinks increased the serum levels of malondialdehyde (MDA). Carbonated soft drinks were also observed to downregulate the expression of antioxidants glutathione reductase (GR), catalase and glutathione peroxidase (GPx) in the brain when compared with that in the control rats. Rats administered carbonated soft drinks also exhibited decreased monoamine oxidase A (MAO‑A) and acetylcholine esterase (AChE) serum and mRNA levels in the brain. In addition, soft drink consumption upregulated mRNA expression of dopamine D2 receptor (DD2R), while 5-hydroxytryptamine transporter (5‑HTT) expression was decreased. However, following histological examination, all rats had a normal brain structure. The results of this study demonstrated that that carbonated soft drinks induced oxidative stress and

  2. 14 CFR 135.437 - Authority to perform and approve maintenance, preventive maintenance, and alterations.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Authority to perform and approve maintenance, preventive maintenance, and alterations. 135.437 Section 135.437 Aeronautics and Space FEDERAL... AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Maintenance, Preventive Maintenance,...

  3. 14 CFR 43.3 - Persons authorized to perform maintenance, preventive maintenance, rebuilding, and alterations.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Persons authorized to perform maintenance, preventive maintenance, rebuilding, and alterations. 43.3 Section 43.3 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT MAINTENANCE, PREVENTIVE MAINTENANCE, REBUILDING,...

  4. Altered amygdala resting-state functional connectivity in post-traumatic stress disorder

    Directory of Open Access Journals (Sweden)

    Christine Anne Rabinak

    2011-11-01

    Full Text Available Post-traumatic stress disorder (PTSD is often characterized by aberrant amygdala activation and functional abnormalities in corticolimbic circuitry, as elucidated by functional neuroimaging. These ‘activation’ studies have primarily relied on tasks designed to induce region-specific, and task-dependent brain responses in limbic (e.g., amygdala and paralimbic brain areas through the use of evocative probes such as personalized traumatic script-driven imagery and other negatively valenced emotional stimuli (e.g., threatening faces, aversive scenes, traumatic cues. It remains unknown if these corticolimbic circuit abnormalities exist at baseline or ‘at rest’, in the absence of fear/anxiety-related provocation and outside the context of task demands. Recently, a new approach to studying functional interconnectivity of brain regions derived from ‘resting state’ scans has elucidated systems-level neural network function that may be obscured by activation tasks and may help inform functional interpretations of brain activation patterns. Little is known about whether altered amygdala connectivity patterns exist at rest in PTSD. Therefore the primary aim of the present experiment was to investigate aberrant amygdala functional connectivity patterns in combat-related PTSD patients during resting state. Seventeen Operation Enduring Freedom/Operation Iraqi Freedom (OEF/OIF veterans with combat-related PTSD (PTSD group and seventeen combat-exposed OEF/OIF veterans without PTSD (Combat-Exposed Control [CEC] group underwent an 8-minute resting-state functional magnetic resonance imaging scan. Using conventional methods to generate connectivity maps, we extracted the time series from an anatomically-derived amygdala ‘seed’ region and conducted voxel-wise correlation analyses across the entire brain to search for group differences (between PTSD and CEC groups in amygdala functional connectivity, which we hypothesized would localize to the medial

  5. Correlation of enhanced oxidative stress with altered thyroid profile: Probable role in spontaneous abortion

    Science.gov (United States)

    Ramandeep, Kaur; Kapil, Gupta; Harkiran, Kaur

    2017-01-01

    Background: Spontaneous abortion or miscarriage is defined as the loss of a clinically recognized pregnancy that occurs before 20 weeks of gestational age. Changes in thyroid function can impact greatly on reproductive function before, during, and after conception. Oxidative stress affects both implantation and early embryo development by modifying the key of transcription. Malondialdehyde (MDA) is a major breakdown product of split off from lipid peroxidation. Superoxide dismutase (SOD) is responsible for detoxification of superoxide anion and required for normal health and reproduction. Aim: The aim of this study was to define the involvement of thyroid hormones, MDA and SOD levels and to establish MDA levels as an index of lipid peroxidation in women with spontaneous abortion by comparing the results with healthy pregnant females as controls. Materials and Methods: A cross-sectional case-control study was designed with two groups of women with 30 each in healthy pregnancy and with spontaneous abortion. Results: Demographic characteristics such as maternal age, paternal age, gestational age, body mass index, waist-hip ratio as well as biochemical parameters such as blood pressure, hemoglobin (Hb), sugar levels were found to be similar in both the participating groups. Characteristics like gravida and parity were found to be higher in the study group and differ significantly from control group. Spontaneous abortion before 24 weeks of gestational age was found to be associated with significant increase in mean serum thyroid stimulating hormone (TSH) (P = 0.0115) and MDA (P = 0.0001) levels and a significant decrease in mean serum T3 (P = 0.0003) and SOD (P = 0.0005) levels. The linear (Pearson) correlation analysis demonstrated a significant positive correlation of TSH with MDA and negative correlation with SOD in women with spontaneous abortion. Conclusion: The study demonstrates that altered thyroid profile, increased lipid peroxidation in terms of increased MDA

  6. Shear Stress-Induced Alteration of Epithelial Organization in Human Renal Tubular Cells.

    Directory of Open Access Journals (Sweden)

    Damien Maggiorani

    Full Text Available Tubular epithelial cells in the kidney are continuously exposed to urinary fluid shear stress (FSS generated by urine movement and recent in vitro studies suggest that changes of FSS could contribute to kidney injury. However it is unclear whether FSS alters the epithelial characteristics of the renal tubule. Here, we evaluated in vitro and in vivo the influence of FSS on epithelial characteristics of renal proximal tubular cells taking the organization of junctional complexes and the presence of the primary cilium as markers of epithelial phenotype. Human tubular cells (HK-2 were subjected to FSS (0.5 Pa for 48 h. Control cells were maintained under static conditions. Markers of tight junctions (Claudin-2, ZO-1, Par polarity complex (Pard6, adherens junctions (E-Cadherin, β-Catenin and the primary cilium (α-acetylated Tubulin were analysed by quantitative PCR, Western blot or immunocytochemistry. In response to FSS, Claudin-2 disappeared and ZO-1 displayed punctuated and discontinuous staining in the plasma membrane. Expression of Pard6 was also decreased. Moreover, E-Cadherin abundance was decreased, while its major repressors Snail1 and Snail2 were overexpressed, and β-Catenin staining was disrupted along the cell periphery. Finally, FSS subjected-cells exhibited disappeared primary cilium. Results were confirmed in vivo in a uninephrectomy (8 months mouse model where increased FSS induced by adaptive hyperfiltration in remnant kidney was accompanied by both decreased epithelial gene expression including ZO-1, E-cadherin and β-Catenin and disappearance of tubular cilia. In conclusion, these results show that proximal tubular cells lose an important number of their epithelial characteristics after long term exposure to FSS both in vitro and in vivo. Thus, the changes in urinary FSS associated with nephropathies should be considered as potential insults for tubular cells leading to disorganization of the tubular epithelium.

  7. Mechanisms of Aerobic Performance Impairment With Heat Stress and Dehydration

    Science.gov (United States)

    2010-08-01

    27), the fact remains that substrate depletion is accelerated by heat stress (27, 50) at a time when oxidation rates of ingested carbohydrates are...strategy and athletic performance. Sports Med 17: 77–85, 1994. 29. Fritzsche RG, Switzer TW, Hodgkinson BJ, Coyle EF. Stroke volume decline during prolonged...R, Below PR, Coyle EF. Dehy- dration markedly impairs cardiovascular function in hyperthermic endur- ance athletes during exercise. J Appl Physiol 82

  8. Prenatal stress alters the behavior and dendritic morphology of the medial orbitofrontal cortex in mouse offspring during lactation.

    Science.gov (United States)

    Gutiérrez-Rojas, Cristian; Pascual, Rodrigo; Bustamante, Carlos

    2013-11-01

    Several preclinical and clinical studies have shown that prenatal stress alters neuronal dendritic development in the prefrontal cortex, together with behavioral disturbances (anxiety). Nevertheless, neither whether these alterations are present during the lactation period, nor whether such findings may reflect the onset of anxiety disorders observed in childhood and adulthood has been studied. The central aim of the present study was to determine the effects of prenatal stress on the neuronal development and behavior of mice offspring during lactation (postnatal days 14 and 21). We studied 24 CF-1 male mice, grouped as follows: (i) control P14 (n=6), (ii) stressed P14 (n=6), (iii) control P21 (n=6) and (iv) stressed P21 (n=6). On the corresponding days, animals were evaluated with the open field test and sacrificed. Their brains were then stained in Golgi-Cox solution for 30 days. The morphological analysis dealt with the study of 96 pyramidal neurons. The results showed, first, that prenatal stress resulted in a significant (i) decrease in the apical dendritic length of pyramidal neurons in the orbitofrontal cortex at postnatal day 14, (ii) increase in the apical dendritic length of pyramidal neurons in the orbitofrontal cortex at postnatal day 21, and (iii) reduction in exploratory behavior at postnatal day 14 and 21.

  9. Psychologic stress related to injury and impact on sport performance.

    Science.gov (United States)

    Nippert, Angela H; Smith, Aynsley M

    2008-05-01

    Injury rates are high among children and adolescent athletes. Psychosocial stressors, such as personality, history of stressors, and life event stress can influence injury occurrence. After injury, those same factors plus athletic identity, self-esteem, and significant others-such as parents, coaches, and teammates-can affect injury response, recovery and subsequent sport performance. Goal setting, positive self-talk, attribution theory, and relaxation or mental imagery are psychologic interventions that can help injured athletes cope with psychosocial stressors. Medical professionals should be aware of the potential influence that psychosocial stressors and psychologic interventions can have on injury occurrence, injury recovery, and sport performance.

  10. Puffed and bothered: Personality, performance, and the effects of stress on checkered pufferfish.

    Science.gov (United States)

    Pleizier, Naomi; Wilson, Alexander D M; Shultz, Aaron D; Cooke, Steven J

    2015-12-01

    Although consistent individual-level differences in behaviour are widespread and potentially important in evolutionary and ecological processes, relatively few studies focus on the physiological mechanisms that might underlie and regulate these individual-level differences in wild populations. We conducted experiments to determine whether checkered pufferfish (Sphoeroides testudineus), which were collected from a dynamic (in terms of depth and water temperature) tidal mangrove creek environment in The Bahamas, have consistent individual-level differences in locomotor activity and the response to a simulated predator threat, as well as swimming performance and puffing in response to stressors. The relationships between personality and performance traits were evaluated to determine whether they represented stress-coping styles or syndromes. Subsequently, a displacement study was conducted to determine how personality and performance in the laboratory compared to movements in the field. In addition, we tested whether a physiological dose of the stress hormone cortisol would alter individual consistency in behavioural and performance traits. We found that pufferfish exhibited consistent individual differences in personality traits over time (e.g., activity and the duration of a response to a threat) and that performance was consistent between the lab and the natural enclosure. Locomotor activity and the duration of startled behaviour were not associated with swimming and puffing performance. Locomotor activity, puffing performance, and swimming performance were not related to whether fish returned to the tidal creek of capture after displacement. Similarly, a cortisol treatment did not modify behaviour or performance in the laboratory. The results reveal that consistent individual-level differences in behaviour and performance were present in a population from a fluctuating and physiologically challenging environment but that such traits are not necessarily correlated

  11. Advanced glycation end products, oxidative stress and metalloproteinases are altered in the cerebral microvasculature during aging.

    Science.gov (United States)

    Safciuc, Florentina; Constantin, Alina; Manea, Adrian; Nicolae, Manuela; Popov, Doina; Raicu, Monica; Alexandru, Dorin; Constantinescu, Elena

    2007-11-01

    Biological aging is associated with an increased incidence of cerebrovascular disease. Recent findings indicate that oxidative stress promoting age-related changes of cerebral circulation are involved in neurodegenerative disorders such as Alzheimer's disease (AD) and Parkinson's disease. The aim of this study was to evaluate the contribution of cerebral microvessels to the oxidative stress during brain aging, by: (i) assessment of precursors for advanced glycation end products (AGE) formation, (ii) activities of antioxidant enzymes, namely superoxide dismutase (SOD), glutathione peroxidase (GPx) and glutathione disulfide reductase (GR), and (iii) the activities of metalloproteinases (MMPs), MMP-2 and MMP-9, involved in synaptogenesis and memory consolidation. The experiments were performed on two groups of male Wistar rats: 15 young (3-6 months old) and 15 aged (18-24 months old) animals. The cerebral microvessels were isolated by mechanical homogenization, the concentration of protein carbonyls and the activity of antioxidant enzymes were evaluated by spectrophotometry, and gelatin SDS-PAGE zymography was employed to evaluate MMP-2 and MMP-9 activities. The results showed that, by comparison with young rats, aged brain microvessels contain: (i) approximately 106 % increase of protein carbonyls production; (ii) approximately 68% higher GPx activity, unmodified activities of SOD and GR; (iii) approximately 30% diminishment in MMP-2 activity, and the specific occurrence of MMP-9 enzyme. The data suggest that the age-related changes of microvessels could increase the propensity for cerebral diseases and might represent, at least in part, a prerequisite for the deterioration of mental and physical status in the elderly.

  12. Overcrowding-mediated stress alters cell proliferation in key neuroendocrine areas during larval development in Rhinella arenarum.

    Science.gov (United States)

    Distler, Mijal J; Jungblut, Lucas D; Ceballos, Nora R; Paz, Dante A; Pozzi, Andrea G

    2016-02-01

    Exposure to adverse environmental conditions can elicit a stress response, which results in an increase in endogenous corticosterone levels. In early life stages, it has been thoroughly demonstrated that amphibian larval growth and development is altered as a consequence of chronic stress by interfering with the metamorphic process, however, the underlying mechanisms involved have only been partially disentangled. We examined the effect of intraspecific competition on corticosterone levels during larval development of the toad Rhinella arenarum and its ultimate effects on cell proliferation in particular brain areas as well as the pituitary gland. While overcrowding altered the number of proliferating cells in the pituitary gland, hypothalamus, and third ventricle of the brain, no differences were observed in areas which are less associated with neuroendocrine processes, such as the first ventricle of the brain. Apoptosis was increased in hypothalamic regions but not in the pituitary. With regards to pituitary cell populations, thyrotrophs but not somatoatrophs and corticotrophs showed a decrease in the cell number in overcrowded larvae. Our study shows that alterations in growth and development, produced by stress, results from an imbalance in the neuroendocrine systems implicated in orchestrating the timing of metamorphosis.

  13. Chronic stress alters the dendritic morphology of callosal neurons and the acute glutamate stress response in the rat medial prefrontal cortex.

    Science.gov (United States)

    Luczynski, Pauline; Moquin, Luc; Gratton, Alain

    2015-01-01

    We have previously reported that interhemispheric regulation of medial prefrontal cortex (PFC)-mediated stress responses is subserved by glutamate (GLU)- containing callosal neurons. Evidence of chronic stress-induced dendritic and spine atrophy among PFC pyramidal neurons led us to examine how chronic restraint stress (CRS) might alter the apical dendritic morphology of callosal neurons and the acute GLU stress responses in the left versus right PFC. Morphometric analyses of retrogradely labeled, dye-filled PFC callosal neurons revealed hemisphere-specific CRS-induced dendritic retraction; whereas significant dendritic atrophy occurred primarily within the distal arbor of left PFC neurons, it was observed within both the proximal and distal arbor of right PFC neurons. Overall, CRS also significantly reduced spine densities in both hemispheres with the greatest loss occurring among left PFC neurons, mostly at the distal extent of the arbor. While much of the overall decrease in dendritic spine density was accounted by the loss of thin spines, the density of mushroom-shaped spines, despite being fewer in number, was halved. Using microdialysis we found that, compared to controls, basal PFC GLU levels were significantly reduced in both hemispheres of CRS animals and that their GLU response to 30 min of tail-pinch stress was significantly prolonged in the left, but not the right PFC. Together, these findings show that a history of chronic stress alters the dendritic morphology and spine density of PFC callosal neurons and suggest a mechanism by which this might disrupt the interhemispheric regulation of PFC-mediated responses to subsequent stressors.

  14. Functional Task Test: 1. Sensorimotor changes Associated with Postflight Alterations in Astronaut Functional Task Performance

    Science.gov (United States)

    Bloomberg, J. J.; Arzeno, N. H.; Buxton, R. E.; Feiveson, A. H.; Kofman, I. S.; Lee, S. M. C.; Miller, C. A.; Mulavara, A. P.; Platts, S. H.; Peters, B. T.; Phillips, T.; Ploutz-Snyder, L. L.; Reschke, M. F.; Ryder, J. W.; Spiering, B. A.; Stenger, M. B.; Taylor, L. C.; Wickwire, P. J.; Wood, S. J.

    2011-01-01

    Space flight is known to cause alterations in multiple physiological systems including changes in sensorimotor, cardiovascular, and neuromuscular systems. These changes may affect a crewmember s ability to perform critical mission tasks immediately after landing on a planetary surface. The overall goal of this project is to determine the effects of space flight on functional tests that are representative of high priority exploration mission tasks and to identify the key underlying physiological factors that contribute to decrements in performance. This presentation will focus on the sensorimotor contributions to postflight functional performance.

  15. STRESS; THE VULNERABILITY AND ASSOCIATION WITH DRIVING PERFORMANCE

    Directory of Open Access Journals (Sweden)

    B. M.T. Shamsul

    2014-01-01

    Full Text Available Several factors may contribute to occurrence of road accidents which are human factors, vehicle factor, road factor and environmental factor. There has been recent evidence of a relationship between road accidents and emotional distress as well as fatigue. Monotonous and complex road environments are the road factor that relates to the internal factor within driver. The overall aim of this study was to compare driving stress, fatigue and driving error between complex and monotonous driving. This experimental study was carried out to measure the stress level, fatigue status and driving performance among hundred male drivers (20-59 years with driving experience more than one year. Cortisol concentration from respondents’ saliva was obtained to measure the stress level due to the driving test. Cortisols were measured using Salimetrics cortisol Enzyme Immunoassay kit (ELISA. Fatigue status was measured by using EEG test to the respondents while conducted the simulator driving test. Driving performance was measured based on the recorded data of Running-of-the Roads (RORI and Large Speed Variation (LSV index from the simulator system. This study found that there was a significant difference (p<0.05 between cortisol levels, EEG value and driving errors of monotonous and complex driving. Salivary cortisol level was found higher during monotonous driving compared to complex driving. Theta wave which indicates sleepy and fatigue condition was found higher on monotonous driving compared to other brainwaves which is alpha and beta state. RORI and LSV index was higher recorded during driving in complex road environments. The main implications of this study for road safety shows that monotonous driving had significantly induced driving stress and fatigue while complex driving lead to higher driving errors. Human factors and road factors could possibly put drivers in a higher risk to be involved in road accidents.

  16. The swimming speed alteration of two freshwater rotifers Brachionus calyciflorus and Asplanchna brightwelli under dimethoate stress.

    Science.gov (United States)

    Chen, Jianqiu; Wang, Zhiliang; Li, Guoping; Guo, Ruixin

    2014-01-01

    Two common freshwater rotifer species Brachionus calyciflorus and Asplanchna brightwelli were employed as test organisms to investigate the toxic effects of the widely used organophosphate pesticide, dimethoate. The swimming angular speed and linear speed alteration of two rotifers were evaluated under the toxic stress in four concentrations (0.4, 0.8, 1.2, and 1.6 mg L(-1)). For B. calyciflorus, the rotifer swimming angular speed and linear speed were both adversely affected as a function of the toxicant concentrations. After a 2h exposure, the angular speeds at four concentrations were 39.37, 30.74, 26.68 and 23.96° s(-1), 65.30%, 50.98%, 44.25% and 39.74% of that of the control, respectively, while the mean linear speed decreased from 194.80 to 91.85×10(-3) mm s(-1), which was 70.12%, 48.14%, 34.02% and 33.06% of that of the control (277.82×10(-3) mm s(-1)), respectively. The pesticide also significantly inhibited the swimming angular speed of A. brightwelli. After a 2h exposure, the angular speeds of this rotifer at four concentrations were 39.37, 30.74, 26.68 and 23.96° s(-1), only 22.99%, 17.16%, 16.21% and 13.63% of that of the control (170.80° s(-1)), respectively. Compared with the results of B. calyciflorus, A. brightwelli was more sensitive on the swimming angular speed when exposed to the toxicant. It implied that A. brightwelli should be an alternative candidate model species about the toxicities of aquatic pollutants. In addition, when the rotifer A. brightwelli was exposed to four pesticide concentrations, the swimming linear speed displayed symptoms of hormesis, characterized by the conversion of low-concentration stimulate to high-concentration inhibition. Our results show that dimethoate had a significant effect on swimming of freshwater rotifers.

  17. Over-expression of the apple spermidine synthase gene in pear confers multiple abiotic stress tolerance by altering polyamine titers.

    Science.gov (United States)

    Wen, Xiao-Peng; Pang, Xiao-Ming; Matsuda, Narumi; Kita, Masayuki; Inoue, Hiromichi; Hao, Yu-Jin; Honda, Chikako; Moriguchi, Takaya

    2008-04-01

    An apple spermidine synthase (SPDS) gene (MdSPDS1) was verified to encode a functional protein by the complementation of the spe3 yeast mutant, which lacks the SPDS gene. To justify our hypothesis that apple SPDS is involved in abiotic stress responses and to obtain transgenic fruit trees tolerant to abiotic stresses as well, MdSPDS1-over-expressing transgenic European pear (Pyrus communis L. 'Ballad') plants were created by Agrobacterium-mediated transformation. A total of 21 transgenic lines showing various spermidine (Spd) titers and MdSPDS1 expression levels were obtained. Selected lines were exposed to salt (150 mM NaCl), osmosis (300 mM mannitol), and heavy metal (500 microM CuSO4) stresses for evaluating their stress tolerances. Transgenic line no. 32, which was revealed to have the highest Spd accumulation and expression level of MdSPDS1, showed the strongest tolerance to these stresses. When growth increments, electrolyte leakage (EL), and values of thiobarbituric acid reactive substances (TBARS) were monitored, line no. 32 showed the lowest growth inhibition and the least increase in EL or TBARS under stress conditions. Spd titers in wild-type and transgenic lines showed diverse changes upon stresses, and these changes were not consistent with the changes in MdSPDS1 expressions. Moreover, there were no differences in the sodium concentration in the shoots between the wild type and line no. 32, whereas the copper concentration was higher in the wild type than in line no. 32. Although the mechanism(s) underlying the involvement of polyamines in stress responses is not known, these results suggest that the over-expression of the SPDS gene substantially increased the tolerance to multiple stresses by altering the polyamine titers in pear. Thus, MdSPDS1-over-expressing transgenic pear plants could be used to improve desert land and/or to repair polluted environments.

  18. Role of peripheral CRF signalling pathways in stress-related alterations of gut motility and mucosal function.

    Science.gov (United States)

    Taché, Y; Perdue, M H

    2004-04-01

    Central corticotrophin releasing-factor (CRF) signalling pathways are involved in the endocrine, behavioural and visceral responses to stress. Recent studies indicate that peripheral CRF-related mechanisms also contribute to stress-induced changes in gut motility and intestinal mucosal function. Peripheral injection of CRF or urocortin inhibits gastric emptying and motility through interaction with CRF2 receptors and stimulates colonic transit, motility, Fos expression in myenteric neurones and defecation through activation of CRF1 receptors. With regard to intestinal epithelial cell function, intraperitoneal CRF increases ion secretion and mucosal permeability to macromolecules. The motility and mucosal changes induced by peripheral CRF mimic those induced by acute stress. In addition, CRF receptor antagonists given peripherally prevent acute restraint and water avoidance stress-induced delayed gastric emptying, stimulation of colonic motor function and mucosal permeability. Similarly, early trauma enhanced intestinal mucosal dysfunction to an acute stressor in adult rats and the response is prevented by peripheral injection of CRF antagonist. Chronic psychological stress results in reduced host defence and initiates intestinal inflammation through mast cell-dependent mechanisms. These findings provide convergent evidence that activation of peripheral CRF receptors and mast cells are important mechanisms involved in stress-related alterations of gut physiology.

  19. Algorithms based on CWT and classifiers to control cardiac alterations and stress using an ECG and a SCR.

    Science.gov (United States)

    Villarejo, María Viqueira; Zapirain, Begoña García; Zorrilla, Amaia Méndez

    2013-05-10

    This paper presents the results of using a commercial pulsimeter as an electrocardiogram (ECG) for wireless detection of cardiac alterations and stress levels for home control. For these purposes, signal processing techniques (Continuous Wavelet Transform (CWT) and J48) have been used, respectively. The designed algorithm analyses the ECG signal and is able to detect the heart rate (99.42%), arrhythmia (93.48%) and extrasystoles (99.29%). The detection of stress level is complemented with Skin Conductance Response (SCR), whose success is 94.02%. The heart rate variability does not show added value to the stress detection in this case. With this pulsimeter, it is possible to prevent and detect anomalies for a non-intrusive way associated to a telemedicine system. It is also possible to use it during physical activity due to the fact the CWT minimizes the motion artifacts.

  20. Mechanisms of aerobic performance impairment with heat stress and dehydration.

    Science.gov (United States)

    Cheuvront, Samuel N; Kenefick, Robert W; Montain, Scott J; Sawka, Michael N

    2010-12-01

    Environmental heat stress can challenge the limits of human cardiovascular and temperature regulation, body fluid balance, and thus aerobic performance. This minireview proposes that the cardiovascular adjustments accompanying high skin temperatures (T(sk)), alone or in combination with high core body temperatures (T(c)), provide a primary explanation for impaired aerobic exercise performance in warm-hot environments. The independent (T(sk)) and combined (T(sk) + T(c)) effects of hyperthermia reduce maximal oxygen uptake (Vo(2max)), which leads to higher relative exercise intensity and an exponential decline in aerobic performance at any given exercise workload. Greater relative exercise intensity increases cardiovascular strain, which is a prominent mediator of rated perceived exertion. As a consequence, incremental or constant-rate exercise is more difficult to sustain (earlier fatigue) or requires a slowing of self-paced exercise to achieve a similar sensation of effort. It is proposed that high T(sk) and T(c) impair aerobic performance in tandem primarily through elevated cardiovascular strain, rather than a deterioration in central nervous system (CNS) function or skeletal muscle metabolism. Evaporative sweating is the principal means of heat loss in warm-hot environments where sweat losses frequently exceed fluid intakes. When dehydration exceeds 3% of total body water (2% of body mass) then aerobic performance is consistently impaired independent and additive to heat stress. Dehydration augments hyperthermia and plasma volume reductions, which combine to accentuate cardiovascular strain and reduce Vo(2max). Importantly, the negative performance consequences of dehydration worsen as T(sk) increases.

  1. Stress induces altered CRE/CREB pathway activity and BDNF expression in the hippocampus of glucocorticoid receptor-impaired mice.

    Science.gov (United States)

    Alboni, Silvia; Tascedda, Fabio; Corsini, Daniela; Benatti, Cristina; Caggia, Federica; Capone, Giacomo; Barden, Nicholas; Blom, Joan M C; Brunello, Nicoletta

    2011-06-01

    The gene coding for the neurotrophin Brain-Derived Neurotrophic Factor (BDNF) is a stress-responsive gene. Changes in its expression may underlie some of the pathological effects of stress-related disorders like depression. Data on the stress-induced regulation of the expression of BDNF in pathological conditions are rare because often research is conducted using healthy animals. In our experiments, we used transgenic mice with glucocorticoid receptor impaired (GR-i) expression in the hypothalamus created as a tool to study the neuroendocrine changes occurring in stress-related disorders. First, under basal condition, GR-i mice displayed lower levels of BDNF exons IX and IV and decreased CRE(BDNF) binding activity with respect to wild-type (WT) mice in the hippocampus. Then, we exposed GR-i and WT mice to an acute restraint stress (ARS) to test the hypothesis that GR-i mice display: 1] different ARS induced expression of BDNF, and 2] altered activation of signaling pathways implicated in regulating BDNF gene expression in the hippocampus with respect to WT mice. Results indicate that ARS enhanced BDNF mRNA expression mainly in the CA3 hippocampal sub-region of GR-i mice in the presence of enhanced levels of pro-BDNF protein, while no effect was observed in WT mice. Moreover, ARS reduced CREB signaling and binding to the BDNF promoter in GR-i mice but enhanced signaling and binding, possibly through ERK1/2 activation, in WT mice. Thus, life-long central GR dysfunction resulted in an altered sensitivity at the transcriptional level that may underlie an impaired response to an acute psycho-physical stress. This article is part of a Special Issue entitled 'Trends in neuropharmacology: in memory of Erminio Costa'.

  2. On the performance of the ASM 150 stressed membrane heliostat

    Energy Technology Data Exchange (ETDEWEB)

    Weinrebe, G. [Plataforma Solar de Almeria, Tabernas (Spain); Schmitz-Goeb, M. [L and C Steinmueller, Gummersbach (Germany); Schiel, W. [Schlaich Bergermann and Partner, Stuttgart (Germany)

    1996-12-31

    A single element, 150 m{sup 2} stressed-membrane central receiver heliostat was designed and manufactured by private German companies engaged in the development of commercial central receiver technology. It was installed at the Spanish-German solar test site, the Plataforma Solar de Almeria (PSA) near Tabernas in southern Spain in spring `95 (Haeger, M. et al., 1995). It is being evaluated together with two Spanish glass-metal heliostats in the frame of an extensive test program through 1996. First results of the test program are the subject of this paper. Results of beam quality measurements, performance tests of the focusing system and power consumption data are presented.

  3. Prenatal Transportation Stress Alters Temperament and Serum Cortisol Concentrations in Suckling Brahman Calves

    Science.gov (United States)

    This experiment examined the relationship between prenatal stress and subsequent calf temperament through weaning. The prenatal stressor utilized was repeated transportation of pregnant Brahman cows for 2 hours at 60, 80, 100, 120, and 140 days of gestation. Prenatally stressed calves (n = 41) were ...

  4. Psychosocial stress, glucocorticoids, and structural alterations in the tree shrew hippocampus.

    Science.gov (United States)

    Fuchs, E; Flügge, G; Ohl, F; Lucassen, P; Vollmann-Honsdorf, G K; Michaelis, T

    2001-06-01

    Animal models for chronic stress represent an indispensable preclinical approach to human pathology since clinical data point to a major role of psychological stress experiences, acute and/or chronic, to the development of behavioral and physiological disturbances. Chronic emotional arousal is a consequence of various types of social interactions, and one major neurohumoral accompaniment is the activation of the classic stress circuit, the limbic--hypothalamic--pituitary--adrenocortical (LHPA) axis. The adrenocortical glucocorticoid hormones cortisol and corticosterone are principal effectors within this circuit since they affect neurotransmission and neuroendocrine control, thus having profound effects on mood and behavior. Using the experimental paradigm of chronic psychosocial stress in tree shrews, we investigated the impact of aversive chronic social encounters on hippocampal structure and function. In chronically stressed animals, we observed dendritic atrophy of hippocampal pyramidal neurons and an impairment of neurogenesis in the dentate gyrus. However, a stress-induced loss of hippocampal neurons was not observed in this animal model. This review summarizes our recent results on structural changes occurring during chronic stress in neurons of the hippocampus and their potential influence on learning and memory. We discuss whether these changes are reversible and to what extent glucocorticoids might be responsible for the stress-induced effects.

  5. In utero programming alters adult response to chronic mild stress: part 3 of a longitudinal study.

    Science.gov (United States)

    Baker, Stephanie L; Mileva, Guergana; Huta, Veronika; Bielajew, Catherine

    2014-11-07

    Exposure to stress before birth may lay the foundation for the development of sensitivities or protection from psychiatric disorders while later stress exposure may trigger either their expression or suppression. This report, part three of a longitudinal study conducted in our laboratory, aimed to examine the interaction between early and adult stress and their effects on measures of anxiety and depression. In parts one and two, we reported the effects of gestational stress (GS) in Long Evans rat dams and their juvenile and young adult offspring. In this third and final installment, we evaluated the effects of GS and chronic mild stress (CMS) in the adult female offspring at 6 month and 12 month time-points. The two by two design included a combination of GS and CMS and the appropriate control groups. Using Hierarchical Linear Modeling, main effects of GS on corticosterone level at the 12 month time-point was found while main effects of CMS were seen in body weight, sucrose preference, and corticosterone, and significant interactions between group at the 6 and 12 month time-points. The GS group had the lowest sucrose preference during CMS at 6 months supporting a cumulative effect of early and later life stress. The GS/CMS group showed lower corticosterone at 12 months than the GS/noCMS group indicating a possible mismatch between prenatal programming and later life stress. These results highlight the importance of early life factors in exerting potentially protective effects in models involving later life stress.

  6. Trauma exposure relates to heightened stress, altered amygdala morphology and deficient extinction learning: Implications for psychopathology.

    Science.gov (United States)

    Cacciaglia, Raffaele; Nees, Frauke; Grimm, Oliver; Ridder, Stephanie; Pohlack, Sebastian T; Diener, Slawomira J; Liebscher, Claudia; Flor, Herta

    2017-02-01

    Stress exposure causes a structural reorganization in neurons of the amygdala. In particular, animal models have repeatedly shown that both acute and chronic stress induce neuronal hypertrophy and volumetric increase in the lateral and basolateral nuclei of amygdala. These effects are visible on the behavioral level, where stress enhances anxiety behaviors and provokes greater fear learning. We assessed stress and anxiety levels in a group of 18 healthy human trauma-exposed individuals (TR group) compared to 18 non-exposed matched controls (HC group), and related these measurements to amygdala volume. Traumas included unexpected adverse experiences such as vehicle accidents or sudden loss of a loved one. As a measure of aversive learning, we implemented a cued fear conditioning paradigm. Additionally, to provide a biological marker of chronic stress, we measured the sensitivity of the hypothalamus-pituitary-adrenal (HPA) axis using a dexamethasone suppression test. Compared to the HC, the TR group showed significantly higher levels of chronic stress, current stress and trait anxiety, as well as increased volume of the left amygdala. Specifically, we observed a focal enlargement in its lateral portion, in line with previous animal data. Compared to HC, the TR group also showed enhanced late acquisition of conditioned fear and deficient extinction learning, as well as salivary cortisol hypo-suppression to dexamethasone. Left amygdala volumes positively correlated with suppressed morning salivary cortisol. Our results indicate differences in trauma-exposed individuals which resemble those previously reported in animals exposed to stress and in patients with post-traumatic stress disorder and depression. These data provide new insights into the mechanisms through which traumatic stress might prompt vulnerability for psychopathology.

  7. Acute stress alters autonomic modulation during sleep in women approaching menopause.

    Science.gov (United States)

    de Zambotti, Massimiliano; Sugarbaker, David; Trinder, John; Colrain, Ian M; Baker, Fiona C

    2016-04-01

    Hot flashes, hormones, and psychosocial factors contribute to insomnia risk in the context of the menopausal transition. Stress is a well-recognized factor implicated in the pathophysiology of insomnia; however the impact of stress on sleep and sleep-related processes in perimenopausal women remains largely unknown. We investigated the effect of an acute experimental stress (impending Trier Social Stress Task in the morning) on pre-sleep measures of cortisol and autonomic arousal in perimenopausal women with and without insomnia that developed in the context of the menopausal transition. In addition, we assessed the macro- and micro-structure of sleep and autonomic functioning during sleep. Following adaptation to the laboratory, twenty two women with (age: 50.4 ± 3.2 years) and eighteen women without (age: 48.5 ± 2.3 years) insomnia had two randomized in-lab overnight recordings: baseline and stress nights. Anticipation of the task resulted in higher pre-sleep salivary cortisol levels and perceived tension, faster heart rate and lower vagal activity, based on heart rate variability measures, in both groups of women. The effect of the stress manipulation on the autonomic nervous system extended into the first 4 h of the night in both groups. However, vagal tone recovered 4-6 h into the stress night in controls but not in the insomnia group. Sleep macrostructure was largely unaltered by the stress, apart from a delayed latency to REM sleep in both groups. Quantitative analysis of non-rapid eye movement sleep microstructure revealed greater electroencephalographic (EEG) power in the beta1 range (15-≤23 Hz), reflecting greater EEG arousal during sleep, on the stress night compared to baseline, in the insomnia group. Hot flash frequency remained similar on both nights for both groups. These results show that pre-sleep stress impacts autonomic nervous system functioning before and during sleep in perimenopausal women with and without insomnia. Findings also indicate

  8. Altered resting-state functional connectivity in post-traumatic stress disorder: a perfusion MRI study

    Science.gov (United States)

    Li, Baojuan; Liu, Jian; Liu, Yang; Lu, Hong-Bing; Yin, Hong

    2013-03-01

    The majority of studies on posttraumatic stress disorder (PTSD) so far have focused on delineating patterns of activations during cognitive processes. Recently, more and more researches have started to investigate functional connectivity in PTSD subjects using BOLD-fMRI. Functional connectivity analysis has been demonstrated as a powerful approach to identify biomarkers of different brain diseases. This study aimed to detect resting-state functional connectivity abnormities in patients with PTSD using arterial spin labeling (ASL) fMRI. As a completely non-invasive technique, ASL allows quantitative estimates of cerebral blood flow (CBF). Compared with BOLD-fMRI, ASL fMRI has many advantages, including less low-frequency signal drifts, superior functional localization, etc. In the current study, ASL images were collected from 10 survivors in mining disaster with recent onset PTSD and 10 survivors without PTSD. Decreased regional CBF in the right middle temporal gyrus, lingual gyrus, and postcentral gyrus was detected in the PTSD patients. Seed-based resting-state functional connectivity analysis was performed using an area in the right middle temporal gyrus as region of interest. Compared with the non-PTSD group, the PTSD subjects demonstrated increased functional connectivity between the right middle temporal gyrus and the right superior temporal gyrus, the left middle temporal gyrus. Meanwhile, decreased functional connectivity between the right middle temporal gyrus and the right postcentral gyrus, the right superior parietal lobule was also found in the PTSD patients. This is the first study which investigated resting-state functional connectivity in PTSD using ASL images. The results may provide new insight into the neural substrates of PTSD.

  9. Nitric oxide synthase and nitric oxide alterations in chronically stressed rats: a model for nitric oxide in major depressive disorder.

    Science.gov (United States)

    Gao, Shang-Feng; Lu, Yun-Rong; Shi, Li-Gen; Wu, Xue-Yan; Sun, Bo; Fu, Xin-Yan; Luo, Jian-Hong; Bao, Ai-Min

    2014-09-01

    Nitric oxide (NO) and NO synthase-1 (NOS1) are involved in the stress response and in depression. We compared NOS-NO alterations in rats exposed to chronic unpredictable stress (CUS) with alterations in major depressive disorder (MDD) in humans. In the hypothalamus of male CUS rats we determined NOS activity, and in the paraventricular nucleus (PVN) we determined NOS1-immunoreactive (ir) cell densities and co-localization of NOS1 with stress-related neuropeptides corticotropin-releasing hormone (CRH), vasopressin (AVP) or oxytocin (OXT). We measured plasma NO levels and cortisol in male medicine-naïve MDD patients and plasma NO and corticosterone (CORT) in CUS rats. In the CUS rat total NOS activity in the hypothalamus (P=0.018) and NOS1-ir cell density in the PVN were both significantly decreased (P=0.018), while NOS1 staining was mainly expressed in OXT-ir neurons in this nucleus. Interestingly, plasma NO levels were significantly increased both in male CUS rats (P=0.001) and in male MDD patients (Pdepression.

  10. Neonatal pain-related stress and NFKBIA genotype are associated with altered cortisol levels in preterm boys at school age.

    Science.gov (United States)

    Grunau, Ruth E; Cepeda, Ivan L; Chau, Cecil M Y; Brummelte, Susanne; Weinberg, Joanne; Lavoie, Pascal M; Ladd, Mihoko; Hirschfeld, Aaron F; Russell, Evan; Koren, Gideon; Van Uum, Stan; Brant, Rollin; Turvey, Stuart E

    2013-01-01

    Neonatal pain-related stress is associated with elevated salivary cortisol levels to age 18 months in children born very preterm, compared to full-term, suggesting early programming effects. Importantly, interactions between immune/inflammatory and neuroendocrine systems may underlie programming effects. We examined whether cortisol changes persist to school age, and if common genetic variants in the promoter region of the NFKBIA gene involved in regulation of immune and inflammatory responses, modify the association between early experience and later life stress as indexed by hair cortisol levels, which provide an integrated index of endogenous HPA axis activity. Cortisol was assayed in hair samples from 128 children (83 born preterm ≤ 32 weeks gestation and 45 born full-term) without major sensory, motor or cognitive impairments at age 7 years. We found that hair cortisol levels were lower in preterm compared to term-born children. Downregulation of the HPA axis in preterm children without major impairment, seen years after neonatal stress terminated, suggests persistent alteration of stress system programming. Importantly, the etiology was gender-specific such that in preterm boys but not girls, specifically those with the minor allele for NFKBIA rs2233409, lower hair cortisol was associated with greater neonatal pain (number of skin-breaking procedures from birth to term), independent of medical confounders. Moreover, the minor allele (CT or TT) of NFKBIA rs2233409 was associated with higher secretion of inflammatory cytokines, supporting the hypothesis that neonatal pain-related stress may act as a proinflammatory stimulus that induces long-term immune cell activation. These findings are the first evidence that a long-term association between early pain-related stress and cortisol may be mediated by a genetic variants that regulate the activity of NF-κB, suggesting possible involvement of stress/inflammatory mechanisms in HPA programming in boys born very

  11. μ-opioid Receptor-Mediated Alterations of Allergen-Induced Immune Responses of Bronchial Lymph Node Cells in a Murine Model of Stress Asthma

    Directory of Open Access Journals (Sweden)

    Kaori Okuyama

    2012-01-01

    Conclusions: Restraint stress aggravated allergic airway inflammation in association with alterations in local immunity characterized by greater Th2-associated cytokine production and a reduced development of regulatory T cells, mediated by MORs.

  12. Oxidative stress-induced proteome alterations target different cellular pathways in human myoblasts

    DEFF Research Database (Denmark)

    Baraibar, Martin A; Hyzewicz, Janek; Rogowska-Wrzesinska, Adelina;

    2011-01-01

    , and α-enolase were shifted to a more acidic isoelectric point upon oxidative stress, indicating posttranslational modifications. Oxidized proteins were evidenced by immunodetection of derivatized carbonyl groups followed by identification by mass spectrometry. The carbonylated proteins identified...

  13. Genome-wide DNA methylation levels and altered cortisol stress reactivity following childhood trauma in humans.

    Science.gov (United States)

    Houtepen, Lotte C; Vinkers, Christiaan H; Carrillo-Roa, Tania; Hiemstra, Marieke; van Lier, Pol A; Meeus, Wim; Branje, Susan; Heim, Christine M; Nemeroff, Charles B; Mill, Jonathan; Schalkwyk, Leonard C; Creyghton, Menno P; Kahn, René S; Joëls, Marian; Binder, Elisabeth B; Boks, Marco P M

    2016-03-21

    DNA methylation likely plays a role in the regulation of human stress reactivity. Here we show that in a genome-wide analysis of blood DNA methylation in 85 healthy individuals, a locus in the Kit ligand gene (KITLG; cg27512205) showed the strongest association with cortisol stress reactivity (P=5.8 × 10(-6)). Replication was obtained in two independent samples using either blood (N=45, P=0.001) or buccal cells (N=255, P=0.004). KITLG methylation strongly mediates the relationship between childhood trauma and cortisol stress reactivity in the discovery sample (32% mediation). Its genomic location, a CpG island shore within an H3K27ac enhancer mark, and the correlation between methylation in the blood and prefrontal cortex provide further evidence that KITLG methylation is functionally relevant for the programming of stress reactivity in the human brain. Our results extend preclinical evidence for epigenetic regulation of stress reactivity to humans and provide leads to enhance our understanding of the neurobiological pathways underlying stress vulnerability.

  14. Identification of Resilient Individuals and Those at Risk for Performance Deficits under Stress

    Directory of Open Access Journals (Sweden)

    Brent eWinslow

    2015-09-01

    Full Text Available Human task performance is affected by exposure to physiological and psychological stress. The ability to measure the physiological response to stressors and correlate that to task performance could be used to identify resilient individuals or those at risk for stress-related performance decrements. Accomplishing this prior to performance under severe stress or the development of clinical stress disorders could facilitate focused preparation such as tailoring training to individual needs. Here we measure the effects of stress on physiological response and performance through behavior, physiological sensors, and subjective ratings, and identify which individuals are at risk for stress-related performance decrements. Participants performed military-relevant training tasks under stress in a virtual environment, with autonomic and hypothalamic-pituitary-adrenal axis (HPA reactivity analyzed. Self-reported stress, as well as physiological indices of stress, increased in the group pre-exposed to socioevaluative stress. Stress response was effectively captured via electrodermal and cardiovascular measures of heart rate and skin conductance level. A resilience classification algorithm was developed based upon physiological reactivity, which correlated with baseline unstressed physiological and self-reported stress values. Outliers were identified in the experimental group that had a significant mismatch between self-reported stress and salivary cortisol. Baseline stress measurements were predictive of individual resilience to stress, including the impact stress had on physiological reactivity and performance. Such an approach may have utility in identifying individuals at risk for problems performing under severe stress. Continuing work has focused on adapting this method for military personnel, and assessing the utility of various coping and decision-making strategies on performance and physiological stress.

  15. Ectopic expression of a stress-inducible glycosyltransferase from saffron enhances salt and oxidative stress tolerance in Arabidopsis while alters anchor root formation.

    Science.gov (United States)

    Ahrazem, Oussama; Rubio-Moraga, Angela; Trapero-Mozos, Almudena; Climent, María Fernanda López; Gómez-Cadenas, Aurelio; Gómez-Gómez, Lourdes

    2015-05-01

    Glycosyltransferases play diverse roles in cellular metabolism by modifying the activities of regulatory metabolites. Three stress-regulated UDP-glucosyltransferase-encoding genes have been isolated from the stigmas of saffron, UGT85U1, UGT85U2 and UGT85V1, which belong to the UGT85 family that includes members associated with stress responses and cell cycle regulation. Arabidopsis constitutively expressing UGT85U1 exhibited and increased anchor root development. No differences were observed in the timing of root emergence, in leaf, stem and flower morphology or flowering time. However, salt and oxidative stress tolerance was enhanced in these plants. Levels of glycosylated compounds were measured in these plants and showed changes in the composition of several indole-derivatives. Moreover, auxin levels in the roots were higher compared to wild type. The expression of several key genes related to root development and auxin homeostasis, including CDKB2.1, CDKB2.2, PIN2, 3 and 4; TIR1, SHR, and CYCD6, were differentially regulated with an increase of expression level of SHR, CYCD6, CDKB2.1 and PIN2. The obtained results showed that UGT85U1 takes part in root growth regulation via auxin signal alteration and the modified expression of cell cycle-related genes, resulting in significantly improved survival during oxidative and salt stress treatments.

  16. HIV-1 Gag Blocks Selenite-Induced Stress Granule Assembly by Altering the mRNA Cap-Binding Complex

    Directory of Open Access Journals (Sweden)

    Alessandro Cinti

    2016-03-01

    Full Text Available Stress granules (SGs are dynamic accumulations of stalled preinitiation complexes and translational machinery that assemble under stressful conditions. Sodium selenite (Se induces the assembly of noncanonical type II SGs that differ in morphology, composition, and mechanism of assembly from canonical SGs. Se inhibits translation initiation by altering the cap-binding activity of eukaryotic translation initiation factor 4E (eIF4E-binding protein 1 (4EBP1. In this work, we show that human immunodeficiency virus type 1 (HIV-1 Gag is able to block the assembly of type II noncanonical SGs to facilitate continued Gag protein synthesis. We demonstrate that expression of Gag reduces the amount of hypophosphorylated 4EBP1 associated with the 5′ cap potentially through an interaction with its target, eIF4E. These results suggest that the assembly of SGs is an important host antiviral defense that HIV-1 has evolved for inhibition through several distinct mechanisms.

  17. Aftershocks can Significantly Alter Stress Change Patterns Produced by Their Mainshock

    Science.gov (United States)

    Felzer, K. R.; Becker, T. W.; Abercrombie, R. E.; Ekström, G.; Rice, J. R.

    2001-12-01

    Many studies over the last decade have used the static Coulomb stress change produced by a mainshock to predict the locations of triggered earthquakes. This method has shown some success, but often fails to predict the locations of 20% to 40% of the aftershocks of a given mainshock. We use statistical Monte Carlo modeling to show that this amount of failure is consistent with the perturbation to the stress field provided by the aftershocks themselves. Although most aftershocks are more than a magnitude unit smaller than their mainshocks, the ability of earthquakes of all magnitudes to produce large static stress changes at short range, and the pronounced clustering of aftershock hypocenters, implies that many aftershock hypocenters in a sequence may be primarily stressed by a previous aftershock rather than by the mainshock itself. The exact percentage stressed by previous aftershocks increases with the activity of the aftershock sequence, the magnitude of the mainshock, and the time since the mainshock. Our model predicts that two days after the average California M7 earthquake, for example, over 50% of new aftershocks are primarily in response to stress changes from previous aftershocks. This means that the majority of the new aftershocks are most likely to occur near previous aftershocks, and not necessarily within regions of Coulomb stress increase from the mainshock. The same happens three days after the average M6, and three weeks after the average M5 mainshock. Our statistical modeling uses Omori's Law for aftershock decay, the Gutenberg-Richter magnitude frequency relationship, Baath's Law, and the assumptions that earthquakes of all sizes are capable of generating aftershocks and that the timing of each aftershock is essentially determined by a single mainshock. We apply our model to the 1999 M7.1 Hector Mine earthquake, which may be classified as an aftershock of the 1992 M7.3 Landers earthquake. Our modeling shows that at the time of the Hector Mine

  18. Prenatal Cocaine Exposure Alters Cortisol Stress Reactivity in 11 Year Old Children

    Science.gov (United States)

    Lester, Barry M.; LaGasse, Linda L.; Shankaran, Seetha; Bada, Henrietta S.; Bauer, Charles R.; Lin, Richard; Das, Abhik; Higgins, Rosemary

    2011-01-01

    Objective Determine the association between prenatal cocaine exposure and postnatal environmental adversity on salivary cortisol stress reactivity in school aged children. Study design Subjects included 743 11 year old children (n=320 cocaine exposed; 423 comparison) followed since birth in a longitudinal prospective multisite study. Saliva samples were collected to measure cortisol at baseline and after a standardized procedure to induce psychological stress. Children were divided into those who showed an increase in cortisol from baseline to post stress and those who showed a decrease or blunted cortisol response. Covariates measured included site, birthweight, maternal pre and postnatal use of alcohol, tobacco or marijuana, social class, changes in caretakers, maternal depression and psychological symptoms, domestic and community violence, child abuse and quality of the home. Results With adjustment for confounding variables, cortisol reactivity to stress was more likely to be blunted in children with prenatal cocaine exposure. Cocaine exposed children exposed to domestic violence showed the strongest effects. Conclusion The combination of prenatal cocaine exposure and an adverse postnatal environment could down regulate the hypothalamic-pituitary-adrenal axis (HPA) resulting in the blunted cortisol response to stress possibly increasing risk for later psychopathology and adult disease. PMID:20400094

  19. Proteomic Alterations of Antarctic Ice Microalga Chlamydomonas sp. Under Low-Temperature Stress

    Institute of Scientific and Technical Information of China (English)

    Guang-Feng Kan; Jin-Lai Miao; Cui-Juan Shi; Guang-You Li

    2006-01-01

    Antarctic ice microalga can survive and thrive in cold channels or pores in the Antarctic ice layer. In order to understand the adaptive mechanisms to low temperature, in the present study we compared two-dimensional polyacrylamide gel electrophoresis (2-DE) profiles of normal and low temperature-stressed Antarctic ice microalga Chlamydomonas sp. cells. In addition, new protein spots induced by low temperature were identified with peptide mass fingerprinting based on matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and database searching. Well-resolved and reproducible 2-DE patterns of both normal and low temperature-stressed cells were acquired. A total of 626 spots was detected in control cells and 652 spots were detected in the corresponding low temperature-stressed cells. A total of 598 spots was matched between normal and stressed cells. Two newly synthesized proteins (a and b) in low temperature-stressed cells were characterized. Protein spot A (53 kDa, pI 6.0) was similar to isopropylmalate/homocitrate/citramalate synthases, which act in the transport and metabolism of amino acids. Protein spot b (25 kDa, pI 8.0) was related to glutathione S-transferase, which functions as a scavenger of active oxygen, free radicals, and noxious metabolites. The present study is valuable for the application of ice microalgae, establishing an ice microalga Chlamydomonas sp. proteome database, and screening molecular biomarkers for further studies.

  20. Mitochondrial Dysfunctions and Altered Metals Homeostasis: New Weapons to Counteract HCV-Related Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Mario Arciello

    2013-01-01

    Full Text Available The hepatitis C virus (HCV infection produces several pathological effects in host organism through a wide number of molecular/metabolic pathways. Today it is worldwide accepted that oxidative stress actively participates in HCV pathology, even if the antioxidant therapies adopted until now were scarcely effective. HCV causes oxidative stress by a variety of processes, such as activation of prooxidant enzymes, weakening of antioxidant defenses, organelle damage, and metals unbalance. A focal point, in HCV-related oxidative stress onset, is the mitochondrial failure. These organelles, known to be the “power plants” of cells, have a central role in energy production, metabolism, and metals homeostasis, mainly copper and iron. Furthermore, mitochondria are direct viral targets, because many HCV proteins associate with them. They are the main intracellular free radicals producers and targets. Mitochondrial dysfunctions play a key role in the metal imbalance. This event, today overlooked, is involved in oxidative stress exacerbation and may play a role in HCV life cycle. In this review, we summarize the role of mitochondria and metals in HCV-related oxidative stress, highlighting the need to consider their deregulation in the HCV-related liver damage and in the antiviral management of patients.

  1. Inflammation in adult women with a history of child maltreatment: The involvement of mitochondrial alterations and oxidative stress.

    Science.gov (United States)

    Boeck, Christina; Koenig, Alexandra Maria; Schury, Katharina; Geiger, Martha Leonie; Karabatsiakis, Alexander; Wilker, Sarah; Waller, Christiane; Gündel, Harald; Fegert, Jörg Michael; Calzia, Enrico; Kolassa, Iris-Tatjana

    2016-09-01

    The experience of maltreatment during childhood is associated with chronic low-grade inflammation in adulthood. However, the molecular mechanisms underlying this pro-inflammatory phenotype remain unclear. Mitochondria were recently found to principally coordinate inflammatory processes via both inflammasome activation and inflammasome-independent pathways. To this end, we hypothesized that alterations in immune cell mitochondrial functioning and oxidative stress might be at the interface between the association of maltreatment experiences during childhood and inflammation. We analyzed pro-inflammatory biomarkers (levels of C-reactive protein, cytokine secretion by peripheral blood mononuclear cells (PBMC) in vitro, PBMC composition, lysophosphatidylcholine levels), serum oxidative stress levels (arginine:citrulline ratio, l-carnitine and acetylcarnitine levels) and mitochondrial functioning (respiratory activity and density of mitochondria in PBMC) in peripheral blood samples collected from 30 women (aged 22-44years) with varying degrees of maltreatment experiences in form of abuse and neglect during childhood. Exposure to maltreatment during childhood was associated with an increased ROS production, higher levels of oxidative stress and an increased mitochondrial activity in a dose-response relationship. Moreover, the increase in mitochondrial activity and ROS production were positively associated with the release of pro-inflammatory cytokines by PBMC. Decreased serum levels of lysophosphatidylcholines suggested higher inflammasome activation with increasing severity of child maltreatment experiences. Together these findings offer preliminary evidence for the association of alterations in immune cell mitochondrial functioning, oxidative stress and the pro-inflammatory phenotype observed in individuals with a history of maltreatment during childhood. The results emphasize that the early prevention of child abuse and neglect warrants more attention, as the

  2. Effects of quercetin on predator stress-related hematological and behavioral alterations in pregnant rats and their offspring

    Indian Academy of Sciences (India)

    Mohamed L Toumi; Sameha Merzoug; Abdelkrim Tahraoui

    2016-06-01

    This study aims at investigating the effect of a psychogenic stress during gestation on the behaviour and haematological indices in dams as well as on the neonatal haematological status and periadolescent behaviour in their offspring. Moreover, the ability of quercetin, a natural flavonoid, to prevent the stress-induced changes was estimated. Pregnant Wistar rats were pretreated with quercetin before the exposure to a predator stress on gestational day 19. Post-stress maternal anxiety-like behaviour was assessed with a concomitant haematological analysis. In the offspring, haematological analysis and behavioural testing were performed during the postnatal stage. Our results revealed that predator stress causes an anxiety-like behaviour in dams along with a decrease in erythrocytes, a microcytosis, and a thrombocytosis. Prenatally stressed neonates manifested microcytosis and thrombocytosis with a significant polycythemia. Signs of motor hyperactivity, anxiety-like behaviour, and memory dysfunction were detected at periadolescence. Quercetin pretreatment alleviated the stress-induced behavioural and haematological impairments in dams but failed to attenuate the haematological changes in neonates. A sex-dependent effect of quercetin on behaviour was found at periadolescence. Our findings suggest that, besides a beneficial effect on haematological and behavioural anomalies in traumatized dams, quercetin may lastingly modulate the behaviour of their progeny.

  3. Mild traumatic brain injury with social defeat stress alters anxiety, contextual fear extinction, and limbic monoamines in adult rats

    Directory of Open Access Journals (Sweden)

    Daniel eDavies

    2016-04-01

    Full Text Available Mild traumatic brain injury (mTBI produces symptoms similar to those typifying posttraumatic stress disorder (PTSD in humans. We sought to determine whether a rodent model of stress concurrent with mTBI produces characteristics of PTSD such as impaired contextual fear extinction, while also examining concurrent alterations to limbic monoamine activity in brain regions relevant to fear and anxiety states. Male rats were exposed to social stress or control conditions immediately prior to mTBI induction, and 6 days later were tested either for anxiety-like behavior using the elevated plus maze (EPM, or for contextual fear conditioning and extinction. Brains were collected 24 hr after EPM testing, and tissue from various limbic regions analyzed for content of monoamines, their precursors and metabolites using HPLC with electrochemical detection. Either social defeat or mTBI alone decreased time spent in open arms of the EPM, indicating greater anxiety-like behavior. However, this effect was enhanced by the combination of treatments. Further, rats exposed to both social defeat and mTBI exhibited greater freezing within extinction sessions compared to all other groups, suggesting impaired contextual fear extinction. Social defeat combined with mTBI also had greater effects on limbic monoamines than either insult alone, particularly with respect to serotonergic effects associated with anxiety and fear learning. The results suggest social stress concurrent with mTBI produces provides a relevant animal model for studying the prevention and treatment of post-concussive psychobiological outcomes.

  4. Tissue specific responses alter the biomass accumulation in wheat under gradual and sudden salt stress

    Directory of Open Access Journals (Sweden)

    Yumurtaci A.

    2012-11-01

    Full Text Available Salinity is one the major limiting environmental factors which has negative side effects on crop production. The purpose of this study was to investigate the differences between the gradual and sudden salt stress effects on biomass accumulation associated with whole plant development in three different tissues of two wheat species ( Triticum aestivum and Triticum durum under hydroponic conditions in the long term. Considering the effects of sudden and gradual stress for biomass accumulation, while importance of salinity x genotype interaction for fresh weights was 5%, association for salinity x tissue type was found as 1% important. Interestingly, root branching and development of lateral roots were much more negatively affected by gradual stress rather than sudden salt application. Our results demonstrated that root and leaf were both critical tissues to test the salt tolerance by physiologically but sheath tissue might be used as an alternative source of variation for solving the interactions between root and leaves in wheat.

  5. Altered DNA repair, oxidative stress and antioxidant status in coronary artery disease

    Indian Academy of Sciences (India)

    A Supriya Simon; V Chithra; Anoop Vijayan; Roy D Dinesh; T Vijayakumar

    2013-06-01

    Coronary artery disease (CAD) is a multifactorial disease caused by the interplay of environmental risk factors with multiple predisposing genes. The present study was undertaken to evaluate the role of DNA repair efficiency and oxidative stress and antioxidant status in CAD patients. Malonaldehyde (MDA), which is an indicator of oxidative stress, and mean break per cell (b/c) values, which is an indicator of decreased DNA repair efficiency, were found to be significantly increased in patients compared to normal controls ( < 0.05) whereas ascorbic acid and GSH were found to be lower among patients than the control group. It has been found that elevated oxidative stress decreased antioxidant level and decreased DNA repair efficiency can contribute to the development of CAD. This study also showed that high MDA, low ascorbic acid and GSH were significantly associated with high b/c value.

  6. Prenatal transportation stress alters temperament and serum cortisol concentrations in suckling Brahman calves.

    Science.gov (United States)

    Littlejohn, B P; Price, D M; Banta, J P; Lewis, A W; Neuendorff, D A; Carroll, J A; Vann, R C; Welsh, T H; Randel, R D

    2016-02-01

    This experiment examined the relationship between prenatal stress and subsequent calf temperament through weaning. The prenatal stressor used was repeated transportation of pregnant Brahman cows for 2 h at 60 ± 5, 80 ± 5, 100 ± 5, 120 ± 5, and 140 ± 5 d of gestation. Prenatally stressed calves ( = 41) were compared with controls ( = 44; dams did not undergo transportation during pregnancy) from 2 wk of age until weaning (average age at weaning = 174.8 ± 1.3 d). Temperament was defined by pen score (PS; 1 = calm and 5 = excitable), exit velocity (EV; m/sec), and temperament score (TS; (PS + EV)/2) and was recorded for each calf on d -168, -140, -112, -84, -56, -28, and 0 relative to weaning (d 0 = weaning). Cortisol concentrations were determined in serum samples obtained on d -168, -140, -28, and 0 relative to weaning. Birth weight and weaning weight were not different between treatment groups ( > 0.1). Pen score was greater ( = 0.03) in prenatally stressed calves (2.84 ± 0.21) relative to controls (2.31 ± 0.21). Exit velocity was greater ( < 0.01) in prenatally stressed calves (2.1 ± 0.14 m/sec) than in controls (1.61 ± 0.14 m/sec). Exit velocity was affected by a treatment × calf sex interaction ( = 0.04) and was greater in prenatally stressed females. Exit velocity was also affected by day ( < 0.0001). Temperament score was greater ( = 0.01) in prenatally stressed calves (2.45 ± 0.16) than in controls (1.95 ± 0.16). Temperament score was affected by day ( < 0.01). Basal cortisol concentrations were greater ( = 0.04) in prenatally stressed calves (15.87 ± 1.04 ng/mL) than in controls (13.42 ± 1.03 ng/mL). Basal cortisol concentrations were greater ( < 0.01) in females (16.61 ± 1.06 ng/mL) than in males (12.68 ± 1.02 ng/mL). Cortisol concentrations were positively correlated ( < 0.01) with PS ( = 0.55, < 0.01), EV ( = 0.4, < 0.01), and TS ( = 0.55, < 0.01). Overall, suckling Brahman calves that were prenatally stressed were more temperamental and

  7. Salt stress induced lipid accumulation in heterotrophic culture cells of Chlorella protothecoides: Mechanisms based on the multi-level analysis of oxidative response, key enzyme activity and biochemical alteration.

    Science.gov (United States)

    Wang, Tao; Ge, Haiyan; Liu, Tingting; Tian, Xiwei; Wang, Zejian; Guo, Meijin; Chu, Ju; Zhuang, Yingping

    2016-06-20

    Salt stress as an effective stress factor that could improve the lipid content and lipid yield of glucose in the heterotrophic culture cells of Chlorella protothecoides was demonstrated in this study. The highest lipid content of 41.2% and lipid yield of 185.8mg/g were obtained when C. protothecoides was stressed under 30g/L NaCl condition at its late logarithmic growth phase. Moreover, the effects of salt and osmotic stress on lipid accumulation were comparatively analyzed, and it was found that the effects of NaCl and KCl stress had no significant differences at the same osmolarity level of 1150mOsm/kg with lipid contents of 41.7 and 40.8% as well as lipid yields of 192.9 and 186.8mg/g, respectively, whereas these results were obviously higher than those obtained under the iso-osmotic glycerol and sorbitol stresses. Furthermore, basing on the multi-level analysis of oxidative response, key enzyme activity and biochemical alteration, the superior performance of salt stress driving lipid over-synthesis was probably ascribed to the more ROS production as a result of additional ion effect besides the osmotic effect, subsequently mediating the alteration from carbohydrate storage to lipid accumulation in signal transduction process of C. protothecoides.

  8. Alteration of cyclic nucleotides levels and oxidative stress in saliva of human subjects with periodontitis.

    Science.gov (United States)

    Mashayekhi, Fereshteh; Aghahoseini, Farzaneh; Rezaie, Ali; Zamani, Mohammad J; Khorasani, Reza; Abdollahi, Mohammad

    2005-11-15

    Experimental findings suggest a protective role for cyclic nucleotides against induction of oxidative stress in saliva. Oxidative stress is a major contributor to the pathogenesis of inflammatory diseases. This study was conducted to evaluate salivary oxidative stress along with cGMP and cAMP levels in periodontitis subjects. cAMP and cGMP are second messengers that have important roles in salivary gland functions. Unstimulated whole saliva samples were obtained from periodontitis patients and age- and sex-matched healthy individuals. Saliva samples were analyzed for thiobarbituric reactive substances (TBARS) as a marker of lipid peroxidation, ferric reducing ability (total antioxidant power, TAP), and levels of cAMP and cGMP. Concentrations of cAMP and cGMP were reduced in the saliva of patients with moderate and severe periodontitis. Saliva of patients with severe periodontitis had higher TBARS and lower TAP than control subjects. The presence of oxidative stress and lower levels of salivary cGMP and cAMP in periodontitis are in association with disease severity.

  9. Do depression, stress, sleep disruption, and inflammation alter hippocampal apoptosis and neurogenesis?

    NARCIS (Netherlands)

    Lucassen, P.J.; Meerlo, P.; Naylor, A.S.; van Dam, A.M.; Dayer, A.G.; Czeh, B.; Oomen, C.A.; Pariante, C.M.

    2009-01-01

    We discuss the regulation of cellular plasticity, focusing on neurogenesis and apoptosis in the adult hippocampus, by stress, sleep, inflammation, and depression. This is the fourth of five chapters in this book that present not only clinical data but also experimental evidence from animal models re

  10. Can architectural design alter the physiological reaction to psychosocial stress? A virtual TSST experiment.

    Science.gov (United States)

    Fich, Lars Brorson; Jönsson, Peter; Kirkegaard, Poul Henning; Wallergård, Mattias; Garde, Anne Helene; Hansen, Åse

    2014-08-01

    Is has long been established, that views to natural scenes can a have a dampening effect on physiological stress responses. However, as people in Europe, Canada and North America today spent 50-85% of their time indoors, attention might also be paid to how the artificial man-made indoor environment influences these mechanisms. The question that this study attempts to start addressing is therefore whether certain design, characteristics of indoor spaces can make a difference to the physiological stress response as well. Using a virtual version of the Trier Social Stress Test, in which the space is computer generated and properties of the space therefore can be systematically varied, we measured saliva cortisol and heart rate variability in participants in a closed room versus a room with openings. As shown by a significant linear contrast interaction between groups and TSST conditions, participants in the closed room responded with more pronounced cortisol reactivity to stress induction, and continued to show higher levels throughout recovery, compared to participants in the open room. No differences were found regarding any part of the autonomic nervous system.

  11. Acute brief heat stress in late gestation alters neonatal calf innate immune functions

    Science.gov (United States)

    Heat stress (HS), as one of the environmental stressors affecting the dairy industry, compromises the cow's milk production, immune function, and reproductive system. However, few studies have looked at how prenatal HS affects the offspring. The objective of this study was to evaluate the effect of ...

  12. Extracellular stress stimuli alter galectin expression profiles and adhesion characteristics of HL-60 cells.

    Science.gov (United States)

    Timoshenko, A V; Lanteigne, J; Kozak, K

    2016-02-01

    Galectins, a family of soluble β-galactoside-binding proteins, are involved in the regulation of various cellular functions, which are essential for adaptive cellular stress responses (CSRs). Although expression patterns of galectins and galectin-binding glycans change during tissue development and cancer, the requirement and role of galectin networks in the CSRs are not completely understood. In this study, we report that the treatment of human promyelocytic HL-60 cells with stimuli mimicking hypoxia (CoCl2), inducing the endoplasmic reticulum stress (tunicamycin), and stimulating cell differentiation, result in stress-specific differential expression of galectin transcripts. In addition, we show that CoCl2 increases the expression of cell surface glycans recognized by both β-galactoside- and GlcNAc-binding lectins. Thus, microenvironmental stress changes the glycobiological status of cells representing expression profiles of endogenous lectins and corresponding glycans. These findings introduce a novel classification of galectins in HL-60 cells, which suggests diverse functions of galectin members in CSRs.

  13. Sleep alterations following exposure to stress predict fear-associated memory impairments in a rodent model of PTSD.

    Science.gov (United States)

    Vanderheyden, William M; George, Sophie A; Urpa, Lea; Kehoe, Michaela; Liberzon, Israel; Poe, Gina R

    2015-08-01

    Sleep abnormalities, such as insomnia, nightmares, hyper-arousal, and difficulty initiating or maintaining sleep, are diagnostic criteria of posttraumatic stress disorder (PTSD). The vivid dream state, rapid eye movement (REM) sleep, has been implicated in processing emotional memories. We have hypothesized that REM sleep is maladaptive in those suffering from PTSD. However, the precise neurobiological mechanisms regulating sleep disturbances following trauma exposure are poorly understood. Using single prolonged stress (SPS), a well-validated rodent model of PTSD, we measured sleep alterations in response to stressor exposure and over a subsequent 7-day isolation period during which the PTSD-like phenotype develops. SPS resulted in acute increases in REM sleep and transition to REM sleep, and decreased waking in addition to alterations in sleep architecture. The severity of the PTSD-like phenotype was later assessed by measuring freezing levels on a fear-associated memory test. Interestingly, the change in REM sleep following SPS was significantly correlated with freezing behavior during extinction recall assessed more than a week later. Reductions in theta (4-10 Hz) and sigma (10-15 Hz) band power during transition to REM sleep also correlated with impaired fear-associated memory processing. These data reveal that changes in REM sleep, transition to REM sleep, waking, and theta and sigma power may serve as sleep biomarkers to identify individuals with increased susceptibility to PTSD following trauma exposure.

  14. Significant alterations in reported clinical practice associated with increased oversight of organ transplant center performance.

    Science.gov (United States)

    Schold, Jesse D; Arrington, Charlotte J; Levine, Greg

    2010-09-01

    In the past several years, emphasis on quality metrics in the field of organ transplantation has increased significantly, largely because of the new conditions of participation issued by the Centers for Medicare and Medicaid Services. These regulations directly associate patients' outcomes and measured performance of centers with the distribution of public funding to institutions. Moreover, insurers and marketing ventures have used publicly available outcomes data from transplant centers for business decision making and advertisement purposes. We gave a 10-question survey to attendees of the Transplant Management Forum at the 2009 meeting of the United Network for Organ Sharing to ascertain how centers have responded to the increased oversight of performance. Of 63 responses, 55% indicated a low or near low performance rating at their center in the past 3 years. Respondents from low-performing centers were significantly more likely to indicate increased selection criteria for candidates (81% vs 38%, P = .001) and donors (77% vs 31%, P < .001) as well as alterations in clinical protocols (84% vs 52%, P = .007). Among respondents indicating lost insurance contracts (31%), these differences were also highly significant. Based on respondents' perceptions, outcomes of performance evaluations are associated with significant changes in clinical practice at transplant centers. The transplant community and policy makers should practice vigilance that performance evaluations and regulatory oversight do not inadvertently lead to diminished access to care among viable candidates or decreased transplant volume.

  15. Polyphenol supplementation: benefits for exercise performance or oxidative stress?

    Science.gov (United States)

    Myburgh, Kathryn H

    2014-05-01

    Supplement use among athletes is widespread, including non-traditional and biological compounds. Despite increasing research, a comprehensive and critical review on polyphenol supplementation and exercise is still lacking. This review is relevant for researchers directly involved in the topic, as well as those with a broad interest in athletic performance enhancement and sports nutrition. The purpose of this review is to present background information on groups of polyphenols and their derivatives because their differing chemical structures influence mechanisms of action; to discuss the potential of plant, fruit and vegetable-based biological supplements, high in polyphenol content, to affect exercise performance and biomarkers of oxidative stress and exercise-induced muscle damage; and to critically discuss the exercise studies and biomarkers used. Subjects in the studies reviewed were either sedentary, healthy individuals, or active, recreationally trained or well-trained athletes. Polyphenol supplementation in exercise studies included mainly extracts (multicomponent or purified), juices, infusions or an increased intake of polyphenol-rich foods. This review includes details of supplement doses and exercise test protocols. Many studies considered only the performance or one or two selected biomarkers of antioxidant capacity instead of a comprehensive choice of biomarkers to assess damage to lipids or proteins. Evidence is insufficient to make recommendations for or against the use of polyphenol supplementation (neither specific polyphenols nor specific doses) for either recreational, competitive or elite athletes. Polyphenols have multiple biological effects, and future exercise studies must be designed appropriately and specifically to determine physiological interactions between exercise and the selected supplement, rather than considering performance alone.

  16. Sunflower oil supplementation alters meat quality but not performance of growing partridges (Alectoris chukar).

    Science.gov (United States)

    Gülşen, N; Umucalilar, H D; Kirikçi, K; Hayirli, A; Aktümsek, A; Alaşahan, S

    2010-04-01

    This study was conducted to evaluate the effects of sunflower oil supplementation (0%, 3%, 6% and 9%) to partridge chicks (Alectoris chukar) on growth performance, nutrient digestibility and carcass characteristics. Feed consumption and live weight gain were responsive to dietary sunflower oil inclusion during the starter period, but not during the grower period. Increasing sunflower oil level linearly increased crude protein and fat digestibilities. Except for abdominal fat, weights of inedible parts and edible organs remained unchanged by the diets. The treatments linearly decreased weight and efficiency of carcass and weights of wings and breast and did not alter weights of thighs and neck. Breast meat saturated fatty acids decreased linearly by 17.9% and unsaturated fatty acids increased linearly by 10.6%, as sunflower oil level increased in the diets. Monounsaturated fatty acids decreased linearly by 27.3%, whereas polyunsaturated fatty acids increased linearly by 51%. Overall, n-3 (0.78% vs. 0.59%) and n-6 (42.6% vs. 29.8%) were greater in breast meat in treatment groups than in control group. In conclusion, sunflower addition into diets has minimal effects on performance of growing partridges, but significantly alters meat fatty acid composition.

  17. Stress-restress evokes sustained iNOS activity and altered GABA levels and NMDA receptors in rat hippocampus

    DEFF Research Database (Denmark)

    Harvey, Brian H; Oosthuizen, Frasia; Brand, Linda

    2004-01-01

    -methyl-D-aspartate (NMDA) receptor binding characteristics and GABA levels were studied in Sprague-Dawley rats 21 days after exposure to a stress-restress paradigm, using radiometric analysis, radioligand studies and high-performance liquid chromatography (HPLC) analysis with electrochemical detection, respectively...

  18. Long-term in vivo polychlorinated biphenyl 126 exposure induces oxidative stress and alters proteomic profile on islets of Langerhans

    Science.gov (United States)

    Loiola, Rodrigo Azevedo; Dos Anjos, Fabyana Maria; Shimada, Ana Lúcia; Cruz, Wesley Soares; Drewes, Carine Cristiane; Rodrigues, Stephen Fernandes; Cardozo, Karina Helena Morais; Carvalho, Valdemir Melechco; Pinto, Ernani; Farsky, Sandra Helena

    2016-06-01

    It has been recently proposed that exposure to polychlorinated biphenyls (PCBs) is a risk factor to type 2 diabetes mellitus (DM2). We investigated this hypothesis using long-term in vivo PCB126 exposure to rats addressing metabolic, cellular and proteomic parameters. Male Wistar rats were exposed to PCB126 (0.1, 1 or 10 μg/kg of body weight/day; for 15 days) or vehicle by intranasal instillation. Systemic alterations were quantified by body weight, insulin and glucose tolerance, and blood biochemical profile. Pancreatic toxicity was measured by inflammatory parameters, cell viability and cycle, free radical generation, and proteomic profile on islets of Langerhans. In vivo PCB126 exposure enhanced the body weight gain, impaired insulin sensitivity, reduced adipose tissue deposit, and elevated serum triglycerides, cholesterol, and insulin levels. Inflammatory parameters in the pancreas and cell morphology, viability and cycle were not altered in islets of Langerhans. Nevertheless, in vivo PCB126 exposure increased free radical generation and modified the expression of proteins related to oxidative stress on islets of Langerhans, which are indicative of early β-cell failure. Data herein obtained show that long-term in vivo PCB126 exposure through intranasal route induced alterations on islets of Langerhans related to early end points of DM2.

  19. Presymptomatic alterations in energy metabolism and oxidative stress in the APP23 mouse model of Alzheimer disease.

    Science.gov (United States)

    Hartl, Daniela; Schuldt, Victoria; Forler, Stephanie; Zabel, Claus; Klose, Joachim; Rohe, Michael

    2012-06-01

    Glucose hypometabolism is the earliest symptom observed in the brains of Alzheimer disease (AD) patients. In a former study, we analyzed the cortical proteome of the APP23 mouse model of AD at presymptomatic age (1 month) using a 2-D electrophoresis-based approach. Interestingly, long before amyloidosis can be observed in APP23 mice, proteins associated with energy metabolism were predominantly altered in transgenic as compared to wild-type mice indicating presymptomatic changes in energy metabolism. In the study presented here, we analyzed whether the observed changes were associated with oxidative stress and confirmed our previous findings in primary cortical neurons, which exhibited altered ADP/ATP levels if transgenic APP was expressed. Reactive oxygen species produced during energy metabolism have important roles in cell signaling and homeostasis as they modify proteins. We observed an overall up-regulation of protein oxidation status as shown by increased protein carbonylation in the cortex of presymptomatic APP23 mice. Interestingly, many carbonylated proteins, such as Vilip1 and Syntaxin were associated to synaptic plasticity. This demonstrates an important link between energy metabolism and synaptic function, which is altered in AD. In summary, we demonstrate that changes in cortical energy metabolism and increased protein oxidation precede the amyloidogenic phenotype in a mouse model for AD. These changes might contribute to synaptic failure observed in later disease stages, as synaptic transmission is particularly dependent on energy metabolism.

  20. Altered consolidation of extinction-like inhibitory learning in genotype-specific dysfunctional coping fostered by chronic stress in mice.

    Science.gov (United States)

    Campus, P; Maiolati, M; Orsini, C; Cabib, S

    2016-12-15

    Genetic and stress-related factors interact to foster mental disorders, possibly through dysfunctional learning. In a previous study we reported that a temporary experience of reduced food availability increases forced swim (FS)-induced helplessness tested 14days after a first experience in mice of the standard inbred C57BL/6(B6) strain but reduces it in mice of the genetically unrelated DBA/2J (D2) strain. Because persistence of FS-induced helplessness influences adaptive coping with stress challenge and involve learning processes the present study tested whether the behavioral effects of restricted feeding involved altered consolidation of FS-related learning. First, we demonstrated that restricted feeding does not influence behavior expressed on the first FS experience, supporting a specific effect on persistence rather then development of helplessness. Second, we found that FS-induced c-fos expression in the infralimbic cortex (IL) was selectively enhanced in food-restricted (FR) B6 mice and reduced in FR D2 mice, supporting opposite alterations of consolidation processes involving this brain area. Third, we demonstrated that immediate post-FS inactivation of IL prevents 24h retention of acquired helplessness by continuously free-fed mice of both strains, indicating the requirement of a functioning IL for consolidation of FS-related learning in either mouse strain. Finally, in line with the known role of IL in consolidation of extinction memories, we found that restricted feeding selectively facilitated 24h retention of an acquired extinction in B6 mice whereas impairing it in D2 mice. These findings support the conclusion that an experience of reduced food availability strain-specifically affects persistence of newly acquired passive coping strategies by altering consolidation of extinction-like inhibitory learning.

  1. Altered small-world brain networks in schizophrenia patients during working memory performance.

    Science.gov (United States)

    He, Hao; Sui, Jing; Yu, Qingbao; Turner, Jessica A; Ho, Beng-Choon; Sponheim, Scott R; Manoach, Dara S; Clark, Vincent P; Calhoun, Vince D

    2012-01-01

    Impairment of working memory (WM) performance in schizophrenia patients (SZ) is well-established. Compared to healthy controls (HC), SZ patients show aberrant blood oxygen level dependent (BOLD) activations and disrupted functional connectivity during WM performance. In this study, we examined the small-world network metrics computed from functional magnetic resonance imaging (fMRI) data collected as 35 HC and 35 SZ performed a Sternberg Item Recognition Paradigm (SIRP) at three WM load levels. Functional connectivity networks were built by calculating the partial correlation on preprocessed time courses of BOLD signal between task-related brain regions of interest (ROIs) defined by group independent component analysis (ICA). The networks were then thresholded within the small-world regime, resulting in undirected binarized small-world networks at different working memory loads. Our results showed: 1) at the medium WM load level, the networks in SZ showed a lower clustering coefficient and less local efficiency compared with HC; 2) in SZ, most network measures altered significantly as the WM load level increased from low to medium and from medium to high, while the network metrics were relatively stable in HC at different WM loads; and 3) the altered structure at medium WM load in SZ was related to their performance during the task, with longer reaction time related to lower clustering coefficient and lower local efficiency. These findings suggest brain connectivity in patients with SZ was more diffuse and less strongly linked locally in functional network at intermediate level of WM when compared to HC. SZ show distinctly inefficient and variable network structures in response to WM load increase, comparing to stable highly clustered network topologies in HC.

  2. Altered small-world brain networks in schizophrenia patients during working memory performance.

    Directory of Open Access Journals (Sweden)

    Hao He

    Full Text Available Impairment of working memory (WM performance in schizophrenia patients (SZ is well-established. Compared to healthy controls (HC, SZ patients show aberrant blood oxygen level dependent (BOLD activations and disrupted functional connectivity during WM performance. In this study, we examined the small-world network metrics computed from functional magnetic resonance imaging (fMRI data collected as 35 HC and 35 SZ performed a Sternberg Item Recognition Paradigm (SIRP at three WM load levels. Functional connectivity networks were built by calculating the partial correlation on preprocessed time courses of BOLD signal between task-related brain regions of interest (ROIs defined by group independent component analysis (ICA. The networks were then thresholded within the small-world regime, resulting in undirected binarized small-world networks at different working memory loads. Our results showed: 1 at the medium WM load level, the networks in SZ showed a lower clustering coefficient and less local efficiency compared with HC; 2 in SZ, most network measures altered significantly as the WM load level increased from low to medium and from medium to high, while the network metrics were relatively stable in HC at different WM loads; and 3 the altered structure at medium WM load in SZ was related to their performance during the task, with longer reaction time related to lower clustering coefficient and lower local efficiency. These findings suggest brain connectivity in patients with SZ was more diffuse and less strongly linked locally in functional network at intermediate level of WM when compared to HC. SZ show distinctly inefficient and variable network structures in response to WM load increase, comparing to stable highly clustered network topologies in HC.

  3. Chronic stress induces structural alterations in splenic lymphoid tissue that are associated with changes in corticosterone levels in wistar-kyoto rats.

    Science.gov (United States)

    Hernandez, María Eugenia; Martinez-Mota, Lucia; Salinas, Citlaltepetl; Marquez-Velasco, Ricardo; Hernandez-Chan, Nancy G; Morales-Montor, Jorge; Pérez-Tapia, Mayra; Streber, María L; Granados-Camacho, Ivonne; Becerril, Enrique; Javier, Baquera-Heredia; Pavón, Lenin

    2013-01-01

    Major depressive disorder patients present chronic stress and decreased immunity. The Wistar-Kyoto rat (WKY) is a strain in which the hypothalamic-pituitary-adrenal axis is overactivated. To determine whether chronic stress induces changes in corticosterone levels and splenic lymphoid tissue, 9-week-old male rats were subject to restraint stress (3 h daily), chemical stress (hydrocortisone treatment, 50 mg/Kg weight), mixed stress (restraint plus hydrocortisone), or control treatment (without stress) for 1, 4, and 7 weeks. The serum corticosterone levels by RIA and spleens morphology were analyzed. Corticosterone levels as did the structure, size of the follicles and morphology of the parenchyma (increase in red pulp) in the spleen, varied depending on time and type of stressor. These changes indicate that chronic stress alters the immune response in the spleen in WKY rats by inducing morphological changes, explaining in part the impaired immunity that develops in organisms that are exposed to chronic stress.

  4. Electroconvulsive Stimulation, but not Chronic Restraint Stress, Causes Structural Alterations in Adult Rat Hippocampus

    DEFF Research Database (Denmark)

    Olesen, Mikkel V.; Wörtwein, Gitta; Pakkenberg, Bente

    2015-01-01

    The neurobiological mechanisms underlying depression are not fully understood. Only a few previous studies have used validated stereological methods to test how stress and animal paradigms of depression affect adult hippocampal neurogenesis and whether antidepressant therapy can counteract possible...... changes in an animal model. Thus, in this study we applied methods that are state of the art in regard to stereological cell counting methods. Using a validated rat model of depression in combination with a clinically relevant schedule of electroconvulsive stimulation, we estimated the total number...... induces depression-like behavior, without significantly changing neurogenesis, the total number of neurons or the volume of the hippocampus. Further, electroconvulsive stimulation prevents stress-induced depression-like behavior and increases neurogenesis. The total number of neurons and the granule cell...

  5. Cross-fostering alters advertisement vocalizations of grasshopper mice (Onychomys): Evidence for the developmental stress hypothesis.

    Science.gov (United States)

    Pasch, Bret; Abbasi, Mustafa Z; Wilson, Macey; Zhao, Daniel; Searle, Jeremy B; Webster, Michael S; Rice, Aaron N

    2016-04-01

    Nutritional stress can have lasting impacts on the development of traits involved in vocal production. Cross-fostering experiments are often used to examine the propensity for vocal learning in a variety of taxa, but few studies assess the influence of malnourishment that can occur as a byproduct of this technique. In this study, we reciprocally cross-fostered sister taxa of voluble grasshopper mice (genus Onychomys) to explore their propensity for vocal learning. Vocalizations of Onychomys leucogaster did not differ between control and cross-fostered animals, but cross-fostered Onychomys arenicola produced vocalizations that were higher in frequency in a direction away from tutors. These same animals exhibited a transient reduction in body mass early in development, indicative of malnutrition. Our findings simultaneously refute vocal learning and support the developmental stress hypothesis to highlight the importance of early ontogeny on the production of vocalizations later in life.

  6. Effect of Wall Shear Stress on Corrosion Inhibitor Film Performance

    Science.gov (United States)

    Canto Maya, Christian M.

    In oil and gas production, internal corrosion of pipelines causes the highest incidence of recurring failures. Ensuring the integrity of ageing pipeline infrastructure is an increasingly important requirement. One of the most widely applied methods to reduce internal corrosion rates is the continuous injection of chemicals in very small quantities, called corrosion inhibitors. These chemical substances form thin films at the pipeline internal surface that reduce the magnitude of the cathodic and/or anodic reactions. However, the efficacy of such corrosion inhibitor films can be reduced by different factors such as multiphase flow, due to enhanced shear stress and mass transfer effects, loss of inhibitor due to adsorption on other interfaces such as solid particles, bubbles and droplets entrained by the bulk phase, and due to chemical interaction with other incompatible substances present in the stream. The first part of the present project investigated the electrochemical behavior of two organic corrosion inhibitors (a TOFA/DETA imidazolinium, and an alkylbenzyl dimethyl ammonium chloride), with and without an inorganic salt (sodium thiosulfate), and the resulting enhancement. The second part of the work explored the performance of corrosion inhibitor under multiphase (gas/liquid, solid/liquid) flow. The effect of gas/liquid multiphase flow was investigated using small and large scale apparatus. The small scale tests were conducted using a glass cell and a submersed jet impingement attachment with three different hydrodynamic patterns (water jet, CO 2 bubbles impact, and water vapor cavitation). The large scale experiments were conducted applying different flow loops (hilly terrain and standing slug systems). Measurements of weight loss, linear polarization resistance (LPR), and adsorption mass (using an electrochemical quartz crystal microbalance, EQCM) were used to quantify the effect of wall shear stress on the performance and integrity of corrosion inhibitor

  7. Developmental alterations and osmoregulatory physiology of a larval anuran under osmotic stress

    OpenAIRE

    2004-01-01

    Water salinity represents an environmental stress for many species. Amphibians are particularly sensitive because they are generally poor osmoregulators, and most species are completely absent from brackish and saline environments. We experimentally examined the effect of different salinity levels on larvae of the toad Bufo calamita L., a species that occupies freshwater ponds but can also breed in brackish ponds. Two independent experiments are reported here. In both experiments, tadpoles un...

  8. Early and later life stress alter brain activity and sleep in rats.

    Science.gov (United States)

    Mrdalj, Jelena; Pallesen, Ståle; Milde, Anne Marita; Jellestad, Finn Konow; Murison, Robert; Ursin, Reidun; Bjorvatn, Bjørn; Grønli, Janne

    2013-01-01

    Exposure to early life stress may profoundly influence the developing brain in lasting ways. Neuropsychiatric disorders associated with early life adversity may involve neural changes reflected in EEG power as a measure of brain activity and disturbed sleep. The main aim of the present study was for the first time to characterize possible changes in adult EEG power after postnatal maternal separation in rats. Furthermore, in the same animals, we investigated how EEG power and sleep architecture were affected after exposure to a chronic mild stress protocol. During postnatal day 2-14 male rats were exposed to either long maternal separation (180 min) or brief maternal separation (10 min). Long maternally separated offspring showed a sleep-wake nonspecific reduction in adult EEG power at the frontal EEG derivation compared to the brief maternally separated group. The quality of slow wave sleep differed as the long maternally separated group showed lower delta power in the frontal-frontal EEG and a slower reduction of the sleep pressure. Exposure to chronic mild stress led to a lower EEG power in both groups. Chronic exposure to mild stressors affected sleep differently in the two groups of maternal separation. Long maternally separated offspring showed more total sleep time, more episodes of rapid eye movement sleep and higher percentage of non-rapid eye movement episodes ending in rapid eye movement sleep compared to brief maternal separation. Chronic stress affected similarly other sleep parameters and flattened the sleep homeostasis curves in all offspring. The results confirm that early environmental conditions modulate the brain functioning in a long-lasting way.

  9. The biological basis of autism spectrum disorders: evaluation of oxidative stress and erytrocyte membrane alterations

    OpenAIRE

    Ghezzo, Alessandro

    2015-01-01

    This case-control study involved a total of 29 autistic children (Au) aged 6 to 12 years, and 28 gender and age-matched typically developing children (TD). We evaluated a high number of peripheral oxidative stress parameters, erythrocyte and lymphocyte membrane functional features and membrane lipid composition of erythrocyte. Erythrocyte TBARS, Peroxiredoxin II, Protein Carbonyl Groups and urinary HEL and isoprostane levels were elevated in AU (confirming an imbalance of the redox status of...

  10. Oxidative stress and alteration of biochemical markers in liver and kidney by malathion in rat pups.

    Science.gov (United States)

    Selmi, Slimen; El-Fazaa, Saloua; Gharbi, Najoua

    2015-09-01

    The present study was undertaken to determine the effects of malathion exposure through maternal milk on oxidative stress, functional an metabolic parameters in kidney and liver of rat pups. We found that lactational exposure to malation (200 mg/kg, body weight (bw)) induced an oxidative stress status assessed by an increase in malondialdhyde (MDA) content, reflecting lipoperoxidation, a decrease in thiol groups' content as well as depletion of enzyme activities as a superoxide dismutase (SOD) and catalase (CAT) on postnatal days (Pnds) 21 and 51. Moreover, the current study showed that malathion induced liver and kidney dysfunctions demonstrated by considerable increase in phosphatase alkaline (PAL), aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities as well as total and direct bilirubin, creatinine urea and acid uric contents. We also observed an increase in triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C) and a decrease in high-density lipoprotein cholesterol (HDL-C) in the plasma of treated rat pups. These findings evidenced that malathion exposure during lactation through maternal milk of rats pups induced kidney and liver oxidative stress as well as functional and metabolic disorders that play a role in the development of others pathologies as cardiovascular diseases and cancers.

  11. Experienced stress produces inhibitory deficits in old adults' Flanker task performance: First evidence for lifetime stress effects beyond memory.

    Science.gov (United States)

    Marshall, Amanda C; Cooper, Nicholas R; Geeraert, Nicolas

    2016-01-01

    Studies regarding aged individuals' performance on the Flanker task differ with respect to reporting impaired or intact executive control. Past work has explained this discrepancy by hypothesising that elderly individuals use increased top-down control mechanisms advantageous to Flanker performance. This study investigated this mechanism, focussing on cumulative experienced stress as a factor that may impact on its execution, thereby leading to impaired performance. Thirty elderly and thirty young participants completed a version of the Flanker task paired with electroencephalographic recordings of the alpha frequency, whose increased synchronisation indexes inhibitory processes. Among high stress elderly individuals, findings revealed a general slowing of reaction times for congruent and incongruent stimuli, which correlated with alpha desynchronisation for both stimulus categories. Results found high performing (low stress) elderly revealed neither a behavioural nor electrophysiological difference compared to young participants. Therefore, rather than impacting on top-down compensatory mechanisms, findings indicate that stress may affect elderly participants' inhibitory control in attentional and sensorimotor domains.

  12. Stress modulates instrumental learning performances in horses (Equus caballus in interaction with temperament.

    Directory of Open Access Journals (Sweden)

    Mathilde Valenchon

    Full Text Available The present study investigates how the temperament of the animal affects the influence of acute stress on the acquisition and reacquisition processes of a learning task. After temperament was assessed, horses were subjected to a stressor before or after the acquisition session of an instrumental task. Eight days later, horses were subjected to a reacquisition session without any stressor. Stress before acquisition tended to enhance the number of successes at the beginning of the acquisition session. Eight days later, during the reacquisition session, contrary to non-stressed animals, horses stressed after acquisition, and, to a lesser extent, horses stressed before acquisition, did not improve their performance between acquisition and reacquisition sessions. Temperament influenced learning performances in stressed horses only. Particularly, locomotor activity improved performances whereas fearfulness impaired them under stressful conditions. Results suggest that direct exposure to a stressor tended to increase acquisition performances, whereas a state of stress induced by the memory of a stressor, because it has been previously associated with the learning context, impaired reacquisition performances. The negative effect of a state of stress on reacquisition performances appeared to be stronger when exposure to the stressor occurred after rather than before the acquisition session. Temperament had an impact on both acquisition and reacquisition processes, but under stressful conditions only. These results suggest that stress is necessary to reveal the influence of temperament on cognitive performances.

  13. Stress modulates instrumental learning performances in horses (Equus caballus) in interaction with temperament.

    Science.gov (United States)

    Valenchon, Mathilde; Lévy, Frédéric; Prunier, Armelle; Moussu, Chantal; Calandreau, Ludovic; Lansade, Léa

    2013-01-01

    The present study investigates how the temperament of the animal affects the influence of acute stress on the acquisition and reacquisition processes of a learning task. After temperament was assessed, horses were subjected to a stressor before or after the acquisition session of an instrumental task. Eight days later, horses were subjected to a reacquisition session without any stressor. Stress before acquisition tended to enhance the number of successes at the beginning of the acquisition session. Eight days later, during the reacquisition session, contrary to non-stressed animals, horses stressed after acquisition, and, to a lesser extent, horses stressed before acquisition, did not improve their performance between acquisition and reacquisition sessions. Temperament influenced learning performances in stressed horses only. Particularly, locomotor activity improved performances whereas fearfulness impaired them under stressful conditions. Results suggest that direct exposure to a stressor tended to increase acquisition performances, whereas a state of stress induced by the memory of a stressor, because it has been previously associated with the learning context, impaired reacquisition performances. The negative effect of a state of stress on reacquisition performances appeared to be stronger when exposure to the stressor occurred after rather than before the acquisition session. Temperament had an impact on both acquisition and reacquisition processes, but under stressful conditions only. These results suggest that stress is necessary to reveal the influence of temperament on cognitive performances.

  14. Effects of dexamethasone on small bowel and kidney oxidative stress and histological alterations in bile duct-ligated rats.

    Science.gov (United States)

    Ozturk, Hayrettin; Eken, Halil; Ozturk, Hulya; Buyukbayram, Huseyin

    2006-09-01

    Oxidative stress plays an important role in the pathogenesis of toxic liver diseases and other hepatic alterations including obstruction of bile flow. It has been shown that the gastrointestinal tract and renal tissue is particularly affected during obstruction of bile flow. In this study, we aimed to evaluate the effects of dexamethasone on small bowel and kidney oxidative stress and histological alterations in bile duct-ligated (BDL) rats. A total of 40 male Sprague-Dawley rats weighing 200-240 g were used in this study. Group 1 (Sham-control, n = 10) rats underwent laparotomy and bile duct was dissected from the surrounding tissue. Group 2 (Dexa-control, n = 10) rats underwent laparotomy and bile duct was dissected from the surrounding tissue. The rats received daily dexamethasone. Group 3 (BDL/Untreated, n = 10) rats were subjected to bile duct ligation and no drug was applied. Group 4 (BDL/Dexa, n = 10) rats received daily dexamethasone by orogastric tube for 14 days after BDL. At the end of the 2-week period, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), and malondialdehyde (MDA) were measured and biochemical and histological evaluation were processed. The mean serum bilirubin, liver enzymes, MDA level, and histopathological score significantly decreased and SOD, CAT, and GSH-Px values were significantly increased in group 4 when compared to group 3. Group 3 presented a significant increase in caecal count of E. coli and in aerobe/anaerobe ratio. In group 4, liver was moderately damaged. Ileal biopsies from group 4 demonstrated a significant increase in villus height, total mucosal thickness, and villus density when compared to group 3. Glomerular injury scores (GIS) and arterial injury scores (AIS) in group 3 rats were increased in the juxtamedullary region. In contrast to group 4, tubulo-interstitial lesions were diffuse in group 3 animals. Dexamethasone reduced small bowel and kidney oxidative stress and histological

  15. Effect of Exercise and Vitamin E on Cardiac Troponin Alterations in Myocardium and Serum of Rats after Stressful Intense Exercise

    Directory of Open Access Journals (Sweden)

    N.S. AL-Sowyan

    2010-01-01

    Full Text Available Increased concentrations of biomarkers reflecting myocardial stress such as cardiac troponin have been observed following strenuous exercise. The aim of this study was to determine whether the stress of forced exercise would result in injury to the myocardium. The effects of stress induced by short bout strenuous exercise and long term exercise on serum, cardiac and skeletal muscle troponin, also blood glucose and insulin were measured. Moreover, to determine whether vitamin E supplementation could modulate these effects or not. Five groups of rats were investigated, control, strenuous exercised rats, exercised and supplemented rats with vitamin E, long term exercise and long term exercised rats supplemented with vitamin E. Strenuous exercised rats and supplemented rats with vitamin E. produced significant increase in serum, cardiac and skeletal muscle troponin concentration. Long term exercise and long term exercised rats supplemented with vitamin E induced insignificant elevation of serum and muscle troponin concentration with significant increase in cardiac troponin level. In rats subjected to both strenuous and long term exercise and after supplementation of both group with vitamin E, there was a significant decrease in blood glucose and insulin level. These results suggest that stressful exercise induces alteration in myocardial troponin and that training before exercise and vitamin E attenuates the exercise induced heart damage. Accordingly, we can advise individuals who are subjected to strenuous exercise to supplement their diet with vitamin E to protect their heart from myocardial damage and sudden death which may be recorded in some athletes. Furthermore, these results demonstrate another support for the importance of exercise in diabetes mellitus.

  16. Altered memory capacities and response to stress in p300/CBP-associated factor (PCAF) histone acetylase knockout mice.

    Science.gov (United States)

    Maurice, Tangui; Duclot, Florian; Meunier, Johann; Naert, Gaëlle; Givalois, Laurent; Meffre, Julie; Célérier, Aurélie; Jacquet, Chantal; Copois, Virginie; Mechti, Nadir; Ozato, Keiko; Gongora, Céline

    2008-06-01

    Chromatin remodeling by posttranslational modification of histones plays an important role in brain plasticity, including memory, response to stress and depression. The importance of H3/4 histones acetylation by CREB-binding protein (CBP) or related histone acetyltransferase, including p300, was specifically demonstrated using knockout (KO) mouse models. The physiological role of a related protein that also acts as a transcriptional coactivator with intrinsic histone acetylase activity, the p300/CBP-associated factor (PCAF), is poorly documented. We analyzed the behavioral phenotype of homozygous male and female PCAF KO mice and report a marked impact of PCAF deletion on memory processes and stress response. PCAF KO animals showed short-term memory deficits at 2 months of age, measured using spontaneous alternation, object recognition, or acquisition of a daily changing platform position in the water maze. Acquisition of a fixed platform location was delayed, but preserved, and no passive avoidance deficit was noted. No gender-related difference was observed. These deficits were associated with hippocampal alterations in pyramidal cell layer organization, basal levels of Fos immunoreactivity, and MAP kinase activation. PCAF KO mice also showed an exaggerated response to acute stress, forced swimming, and conditioned fear, associated with increased plasma corticosterone levels. Moreover, learning and memory impairments worsened at 6 and 12 months of age, when animals failed to acquire the fixed platform location in the water maze and showed passive avoidance deficits. These observations demonstrate that PCAF histone acetylase is involved lifelong in the chromatin remodeling necessary for memory formation and response to stress.

  17. Social instability stress in adolescent male rats alters hippocampal neurogenesis and produces deficits in spatial location memory in adulthood.

    Science.gov (United States)

    McCormick, Cheryl M; Thomas, Catherine M; Sheridan, Cheryl S; Nixon, Feather; Flynn, Jennifer A; Mathews, Iva Z

    2012-06-01

    The ongoing development of the hippocampus in adolescence may be vulnerable to stressors. The effects of social instability stress (SS) in adolescence (daily 1 h isolation and change of cage partner postnatal days 30-45) on cell proliferation in the dentate gyrus (DG) in adolescence (on days 33 and 46, experiment 1) and in adulthood (experiment 2) was examined in Long Evans male rats and compared to nonstressed controls (CTL). Additionally, in experiment 2, a separate group of SS and CTL rats was tested on either a spatial (hippocampal-dependent) or nonspatial (nonhippocampal dependent) version of an object memory test and also were used to investigate hippocampal expression of markers of synaptic plasticity. No memory impairment was evident until the SS rats were adults, and the impairment was only on the spatial test. SS rats initially (postnatal day 33) had increased cell proliferation based on counts of Ki67 immunoreactive (ir) cells and greater survival of immature neurons based on counts of doublecortin ir cells on day 46 and in adulthood, irrespective of behavioral testing. Counts of microglia in the DG did not differ by stress group, but behavioral testing was associated with reduced microglia counts compared to nontested rats. As adults, SS and CTL rats did not differ in hippocampal expression of synaptophysin, but compared to CTL rats, SS rats had higher expression of basal calcium/calmodulin-dependent kinase II (CamKII), and lower expression of the phosphorylated CamKII subunit threonine 286, signaling molecules related to synaptic plasticity. The results are contrasted with those from previous reports of chronic stress in adult rats, and we conclude that adolescent stress alters the ongoing development of the hippocampus leading to impaired spatial memory in adulthood, highlighting the heightened vulnerability to stressors in adolescence.

  18. β-carotene treatment alters the cellular death process in oxidative stress-induced K562 cells.

    Science.gov (United States)

    Akçakaya, Handan; Tok, Sabiha; Dal, Fulya; Cinar, Suzan Adin; Nurten, Rustem

    2017-03-01

    Oxidizing agents (e.g., H2 O2 ) cause structural and functional disruptions of molecules by affecting lipids, proteins, and nucleic acids. As a result, cellular mechanisms related to disrupted macro molecules are affected and cell death is induced. Oxidative damage can be prevented at a certain point by antioxidants or the damage can be reversed. In this work, we studied the cellular response against oxidative stress induced by H2 O2 and antioxidant-oxidant (β-carotene-H2 O2 ) interactions in terms of time, concentration, and treatment method (pre-, co-, and post) in K562 cells. We showed that co- or post-treatment with β-carotene did not protect cells from the damage of oxidative stress furthermore co- and post-β-carotene-treated oxidative stress induced cells showed similar results with only H2 O2 treated cells. However, β-carotene pre-treatment prevented oxidative damage induced by H2 O2 at concentrations lower than 1,000 μM compared with only H2 O2 -treated and co- and post-β-carotene-treated oxidative stress-induced cells in terms of studied cellular parameters (mitochondrial membrane potential [Δψm ], cell cycle and apoptosis). Prevention effect of β-carotene pre-treatment was lost at concentrations higher than 1,000 μM H2 O2 (2-10 mM). These findings suggest that β-carotene pre-treatment alters the effects of oxidative damage induced by H2 O2 and cell death processes in K562 cells.

  19. Testosterone manipulation postcastration does not alter cloacal gland growth differences in male quail selected for divergent plasma corticosterone stress response.

    Science.gov (United States)

    Busso, J M; Satterlee, D G; Roberts, M L; Buchanan, K L; Evans, M R; Marin, R H

    2010-12-01

    Japanese quail selected for reduced (low-stress, LS) rather than exaggerated (high-stress, HS) plasma corticosterone response to brief restraint have consistently shown greater cloacal gland (CG) development, an androgen-dependent trait. In this study, the effects of testosterone implants on levels of plasma testosterone and CG development in castrated LS and HS quail were determined. Stress-line males were castrated and randomly allocated to 1 of 3 testosterone treatments: the empty testosterone (ET), low testosterone (LT), or high testosterone (HT) implant group. Cloacal gland volume was determined at 4 weekly intervals that represented ranges of 1 to 9 d, 8 to 17 d, 15 to 24 d, and 22 to 31 d after castration and testosterone implantation. Levels of plasma testosterone were also assessed at the end of the study. Development of the CG was affected by quail line (LS > HS), testosterone treatment (HT > LT > ET), and time of measurement (1 to 9 d quail, but not in ET-treated quail). However, even though HT implant treatments induced higher CG development than did LT treatments beyond the first interval of CG volume measurement, and despite the finding of greater CG volumes in LS than HS quail during the last 2 measurement intervals within each of the LT and HT groups, no interaction was observed between testosterone implant dosages and quail stress line on CG volume. Thus, by the end of the study, regardless of testosterone dose, CG volume was consistently greater in LS quail than in their HS counterparts. In addition, although, as expected, the testosterone implant treatment significantly altered levels of plasma testosterone (HT > LT > ET), neither quail line nor its interaction with testosterone treatment affected plasma testosterone. The present findings suggest that the often-observed depressed CG development in the HS line may be independent of testosterone effects.

  20. Medulloblastoma-associated DDX3 variant selectively alters the translational response to stress.

    Science.gov (United States)

    Oh, Sekyung; Flynn, Ryan A; Floor, Stephen N; Purzner, James; Martin, Lance; Do, Brian T; Schubert, Simone; Vaka, Dedeepya; Morrissy, Sorana; Li, Yisu; Kool, Marcel; Hovestadt, Volker; Jones, David T W; Northcott, Paul A; Risch, Thomas; Warnatz, Hans-Jörg; Yaspo, Marie-Laure; Adams, Christopher M; Leib, Ryan D; Breese, Marcus; Marra, Marco A; Malkin, David; Lichter, Peter; Doudna, Jennifer A; Pfister, Stefan M; Taylor, Michael D; Chang, Howard Y; Cho, Yoon-Jae

    2016-05-10

    DDX3X encodes a DEAD-box family RNA helicase (DDX3) commonly mutated in medulloblastoma, a highly aggressive cerebellar tumor affecting both children and adults. Despite being implicated in several facets of RNA metabolism, the nature and scope of DDX3's interactions with RNA remain unclear. Here, we show DDX3 collaborates extensively with the translation initiation machinery through direct binding to 5'UTRs of nearly all coding RNAs, specific sites on the 18S rRNA, and multiple components of the translation initiation complex. Impairment of translation initiation is also evident in primary medulloblastomas harboring mutations in DDX3X, further highlighting DDX3's role in this process. Arsenite-induced stress shifts DDX3 binding from the 5'UTR into the coding region of mRNAs concomitant with a general reduction of translation, and both the shift of DDX3 on mRNA and decreased translation are blunted by expression of a catalytically-impaired, medulloblastoma-associated DDX3R534H variant. Furthermore, despite the global repression of translation induced by arsenite, translation is preserved on select genes involved in chromatin organization in DDX3R534H-expressing cells. Thus, DDX3 interacts extensively with RNA and ribosomal machinery to help remodel the translation landscape in response to stress, while cancer-related DDX3 variants adapt this response to selectively preserve translation.

  1. Alteration of hepatic structure and oxidative stress induced by intravenous nanoceria.

    Science.gov (United States)

    Tseng, Michael T; Lu, Xiaoqin; Duan, Xiaoxian; Hardas, Sarita S; Sultana, Rukhsana; Wu, Peng; Unrine, Jason M; Graham, Uschi; Butterfield, D Allan; Grulke, Eric A; Yokel, Robert A

    2012-04-15

    Beyond the traditional use of ceria as an abrasive, the scope of nanoceria applications now extends into fuel cell manufacturing, diesel fuel additives, and for therapeutic intervention as a putative antioxidant. However, the biological effects of nanoceria exposure have yet to be fully defined, which gave us the impetus to examine its systemic biodistribution and biological responses. An extensively characterized nanoceria (5 nm) dispersion was vascularly infused into rats, which were terminated 1 h, 20 h or 30 days later. Light and electron microscopic tissue characterization was conducted and hepatic oxidative stress parameters determined. We observed acute ceria nanoparticle sequestration by Kupffer cells with subsequent bioretention in parenchymal cells as well. The internalized ceria nanoparticles appeared as spherical agglomerates of varying dimension without specific organelle penetration. In hepatocytes, the agglomerated nanoceria frequently localized to the plasma membrane facing bile canaliculi. Hepatic stellate cells also sequestered nanoceria. Within the sinusoids, sustained nanoceria bioretention was associated with granuloma formations comprised of Kupffer cells and intermingling CD3⁺ T cells. A statistically significant elevation of serum aspartate aminotransferase (AST) level was seen at 1 and 20 h, but subsided by 30 days after ceria administration. Further, elevated apoptosis was observed on day 30. These findings, together with increased hepatic protein carbonyl levels on day 30, indicate ceria-induced hepatic injury and oxidative stress, respectively. Such observations suggest a single vascular infusion of nanoceria can lead to persistent hepatic retention of particles with possible implications for occupational and therapeutic exposures.

  2. Altered Ca2+ Homeostasis and Endoplasmic Reticulum Stress in Myotonic Dystrophy Type 1 Muscle Cells

    Directory of Open Access Journals (Sweden)

    Gyorgy Szabadkai

    2013-06-01

    Full Text Available The pathogenesis of Myotonic Dystrophy type 1 (DM1 is linked to unstable CTG repeats in the DMPK gene which induce the mis-splicing to fetal/neonatal isoforms of many transcripts, including those involved in cellular Ca2+ homeostasis. Here we monitored the splicing of three genes encoding for Ca2+ transporters and channels (RyR1, SERCA1 and CACN1S during maturation of primary DM1 muscle cells in parallel with the functionality of the Excitation-Contraction (EC coupling machinery. At 15 days of differentiation, fetal isoforms of SERCA1 and CACN1S mRNA were significantly higher in DM1 myotubes compared to controls. Parallel functional studies showed that the cytosolic Ca2+ response to depolarization in DM1 myotubes did not increase during the progression of differentiation, in contrast to control myotubes. While we observed no differences in the size of intracellular Ca2+ stores, DM1 myotubes showed significantly reduced RyR1 protein levels, uncoupling between the segregated ER/SR Ca2+ store and the voltage-induced Ca2+ release machinery, parallel with induction of endoplasmic reticulum (ER stress markers. In conclusion, our data suggest that perturbed Ca2+ homeostasis, via activation of ER stress, contributes to muscle degeneration in DM1 muscle cells likely representing a premature senescence phenotype.

  3. Red blood cells in Rett syndrome: oxidative stress, morphological changes and altered membrane organization.

    Science.gov (United States)

    Ciccoli, Lucia; De Felice, Claudio; Leoncini, Silvia; Signorini, Cinzia; Cortelazzo, Alessio; Zollo, Gloria; Pecorelli, Alessandra; Rossi, Marcello; Hayek, Joussef

    2015-11-01

    In this review, we summarize the current evidence on the erythrocyte as a previously unrecognized target cell in Rett syndrome, a rare (1:10 000 females) and devastating neurodevelopmental disorder caused by loss-of-function mutations in a single gene (i.e. MeCP2, CDKL5, or rarely FOXG1). In particular, we focus on morphological changes, membrane oxidative damage, altered membrane fatty acid profile, and aberrant skeletal organization in erythrocytes from patients with typical Rett syndrome and MeCP2 gene mutations. The beneficial effects of ω-3 polyunsaturated fatty acids (PUFAs) are also summarized for this condition to be considered as a 'model' condition for autism spectrum disorders.

  4. Relationship of Perceived Stress, Perfectionism and Social Support with Students’ Academic Burnout and -Academic Performance

    Directory of Open Access Journals (Sweden)

    Pourseyyed SM

    2015-07-01

    Conclusion: Perceived stress has negative direct relationship with social support and positive direct relationship with academic burnout. Social support also has positive direct relationship with academic performance. Relationship of maladaptive perfectionism with academic burnout and also the relationship of adaptive perfectionism with academic performance is direct positive. Relationship of perceived stress with academic performance is indirect mediated by social support.

  5. Skeletal muscle alterations and exercise performance decrease in erythropoietin-deficient mice: a comparative study

    Directory of Open Access Journals (Sweden)

    Mille-Hamard Laurence

    2012-06-01

    Full Text Available Abstract Background Erythropoietin (EPO is known to improve exercise performance by increasing oxygen blood transport and thus inducing a higher maximum oxygen uptake (VO2max. Furthermore, treatment with (or overexpression of EPO induces protective effects in several tissues, including the myocardium. However, it is not known whether EPO exerts this protective effect when present at physiological levels. Given that EPO receptors have been identified in skeletal muscle, we hypothesized that EPO may have a direct, protective effect on this tissue. Thus, the objectives of the present study were to confirm a decrease in exercise performance and highlight muscle transcriptome alterations in a murine EPO functional knock-out model (the EPO-d mouse. Methods We determined VO2max peak velocity and critical speed in exhaustive runs in 17 mice (9 EPO-d animals and 8 inbred controls, using treadmill enclosed in a metabolic chamber. Mice were sacrificed 24h after a last exhaustive treadmill exercise at critical speed. The tibialis anterior and soleus muscles were removed and total RNA was extracted for microarray gene expression analysis. Results The EPO-d mice’s hematocrit was about 50% lower than that of controls (p  1.4 and 115 were strongly down-regulated (normalized ratio  Conclusions Our results showed that the lack of functional EPO induced a decrease in the aerobic exercise capacity. This decrease was correlated with the hematocrit and reflecting poor oxygen supply to the muscles. The observed alterations in the muscle transcriptome suggest that physiological concentrations of EPO exert both direct and indirect muscle-protecting effects during exercise. However, the signaling pathway involved in these protective effects remains to be described in detail.

  6. Systematically Altering Bacterial SOS Activity under Stress Reveals Therapeutic Strategies for Potentiating Antibiotics.

    Science.gov (United States)

    Mo, Charlie Y; Manning, Sara A; Roggiani, Manuela; Culyba, Matthew J; Samuels, Amanda N; Sniegowski, Paul D; Goulian, Mark; Kohli, Rahul M

    2016-01-01

    The bacterial SOS response is a DNA damage repair network that is strongly implicated in both survival and acquired drug resistance under antimicrobial stress. The two SOS regulators, LexA and RecA, have therefore emerged as potential targets for adjuvant therapies aimed at combating resistance, although many open questions remain. For example, it is not well understood whether SOS hyperactivation is a viable therapeutic approach or whether LexA or RecA is a better target. Furthermore, it is important to determine which antimicrobials could serve as the best treatment partners with SOS-targeting adjuvants. Here we derived Escherichia coli strains that have mutations in either lexA or recA genes in order to cover the full spectrum of possible SOS activity levels. We then systematically analyzed a wide range of antimicrobials by comparing the mean inhibitory concentrations (MICs) and induced mutation rates for each drug-strain combination. We first show that significant changes in MICs are largely confined to DNA-damaging antibiotics, with strains containing a constitutively repressed SOS response impacted to a greater extent than hyperactivated strains. Second, antibiotic-induced mutation rates were suppressed when SOS activity was reduced, and this trend was observed across a wider spectrum of antibiotics. Finally, perturbing either LexA or RecA proved to be equally viable strategies for targeting the SOS response. Our work provides support for multiple adjuvant strategies, while also suggesting that the combination of an SOS inhibitor with a DNA-damaging antibiotic could offer the best potential for lowering MICs and decreasing acquired drug resistance. IMPORTANCE Our antibiotic arsenal is becoming depleted, in part, because bacteria have the ability to rapidly adapt and acquire resistance to our best agents. The SOS pathway, a widely conserved DNA damage stress response in bacteria, is activated by many antibiotics and has been shown to play central role in

  7. The impact of initiation: Early onset marijuana smokers demonstrate altered Stroop performance and brain activation

    Directory of Open Access Journals (Sweden)

    K.A. Sagar

    2015-12-01

    Full Text Available Marijuana (MJ use is on the rise, particularly among teens and emerging adults. This poses serious public health concern, given the potential deleterious effects of MJ on the developing brain. We examined 50 chronic MJ smokers divided into early onset (regular MJ use prior to age 16; n = 24 and late onset (age 16 or later; n = 26, and 34 healthy control participants (HCs. All completed a modified Stroop Color Word Test during fMRI. Results demonstrated that MJ smokers exhibited significantly poorer performance on the Interference subtest of the Stroop, as well as altered patterns of activation in the cingulate cortex relative to HCs. Further, early onset MJ smokers exhibited significantly poorer performance relative to both HCs and late onset smokers. Additionally, earlier age of MJ onset as well as increased frequency and magnitude (grams/week of MJ use were predictive of poorer Stroop performance. fMRI results revealed that while late onset smokers demonstrated a more similar pattern of activation to the control group, a different pattern was evident in the early onset group. These findings underscore the importance of assessing age of onset and patterns of MJ use and support the need for widespread education and intervention efforts among youth.

  8. Zn(II)-curcumin protects against hemorheological alterations, oxidative stress and liver injury in a rat model of acute alcoholism.

    Science.gov (United States)

    Yu, Chuan; Mei, Xue-Ting; Zheng, Yan-Ping; Xu, Dong-Hui

    2014-03-01

    Curcumin can chelate metal ions, forming metallocomplexes. We compared the effects of Zn(II)-curcumin with curcumin against hemorheological alterations, oxidative stress and liver injury in a rat model of acute alcoholism. Oral administration of Zn(II)-curcumin dose-dependently prevented the ethanol-induced elevation of serum malondialdehyde (MDA) content and reductions in glutathione level and superoxide dismutase (SOD) activity. Zn(II)-curcumin also inhibited ethanol-induced liver injury. Additionally, Zn(II)-curcumin dose-dependently inhibited hemorheological abnormalities, including the ethanol-induced elevation of whole blood viscosity, plasma viscosity, blood viscosity at corrected hematocrit (45%), erythrocyte aggregation index, erythrocyte rigidity index and hematocrit. Compared to curcumin at the same dose, Zn(II)-curcumin more effectively elevated SOD activity, ameliorated liver injury and improved hemorheological variables. These results suggest that Zn(II)-curcumin protected the rats from ethanol-induced liver injury and hemorheological abnormalities via the synergistic effect of curcumin and zinc.

  9. The APP670/671 mutation alters calcium signaling and response to hyperosmotic stress in rat primary hippocampal neurons

    DEFF Research Database (Denmark)

    Kloskowska, Ewa; Bruton, Joseph D; Winblad, Bengt;

    2008-01-01

    on the effect of the APP670/671 mutation on spontaneous calcium oscillations in embryonic hippocampal neurons derived from the tg6590 transgenic rat. Intracellular free calcium levels were imaged by confocal microscopy using the fluorescent dye fluo-3AM. Hyperosmotic shrinkage, which can occur in a variety......Altered calcium homeostasis is implicated in the pathogenesis of Alzheimer's disease and much effort has been put into understanding the association between the autosomal dominant gene mutations causative of this devastating disease and perturbed calcium signaling. We have focused our attention...... of pathophysiological conditions, has been shown to induce multiple cellular responses, including activation of volume-regulatory ion transport, cytoskeletal reorganization, and cell death. When exposed to hyperosmotic stress (addition of 50mM sucrose) the frequency of calcium oscillations was suppressed to an equal...

  10. Acute brief heat stress in late gestation alters neonatal calf innate immune functions.

    Science.gov (United States)

    Strong, R A; Silva, E B; Cheng, H W; Eicher, S D

    2015-11-01

    Heat stress, as one of the environmental stressors affecting the dairy industry, compromises the cow milk production, immune function, and reproductive system. However, few studies have looked at how prenatal heat stress (HS) affects the offspring. The objective of this study was to evaluate the effect of HS during late gestation on calf immunity. Calves were born to cows exposed to evaporative cooling (CT) or HS (cyclic 23-35°C) for 1 wk at 3 wk before calving. Both bull and heifer calves (CT, n=10; HS, n=10) were housed in similar environmental temperatures after birth. Both CT and HS calves received 3.78 L of pooled colostrum within 12 h after birth and were fed the same diet throughout the study. In addition to tumor necrosis factor α, IL-1β, IL-1 receptor antagonist (IL-1RA), and toll-like receptor (TLR)2, and TLR4 mRNA expression, the expression of CD14(+) and CD18(+) cells, and DEC205(+) dendritic cells were determined in whole blood samples at d 0, 3, 7, 14, 21, and 28. The neutrophil to lymphocyte ratio, differential cell counts, and the hematocrit were also determined. During late gestation, the HS cows had greater respiration rates, rectal temperatures, and tended to spend more time standing compared with the CT cows. The HS calves had less expression of tumor necrosis factor-α and TLR2 and greater levels of IL-1β, IL-1RA, and TLR4 compared with CT calves. The HS calves also had a greater percentage of CD18(+) cells compared with the CT calves. Additionally, a greater percentage of neutrophils and lesser percentage of lymphocytes were in the HS calves compared with the CT calves. The results indicate that biomarkers of calves' immunity are affected in the first several weeks after birth by HS in the dam during late gestation.

  11. Overexpression of plastidial thioredoxins f and m differentially alters photosynthetic activity and response to oxidative stress in tobacco plants

    Directory of Open Access Journals (Sweden)

    Pascal eREY

    2013-10-01

    Full Text Available Plants display a remarkable diversity of thioredoxins (Trxs, reductases controlling the thiol redox status of proteins. The physiological function of many of them remains elusive, particularly for plastidial Trxs f and m, which are presumed based on biochemical data to regulate photosynthetic reactions and carbon metabolism. Recent reports revealed that Trxs f and m participate in vivo in the control of starch metabolism and cyclic photosynthetic electron transfer around photosystem I, respectively. To further delineate their in planta function, we compared the photosynthetic characteristics, the level and/or activity of various Trx targets and the responses to oxidative stress in transplastomic tobacco plants overexpressing either Trx f or Trx m. We found that plants overexpressing Trx m specifically exhibit altered growth, reduced chlorophyll content, impaired photosynthetic linear electron transfer and decreased pools of glutathione and ascorbate. In both transplastomic lines, activities of two enzymes involved in carbon metabolism, NADP-malate dehydrogenase and NADP-glyceraldehyde-3-phosphate dehydrogenase are markedly and similarly altered. In contrast, plants overexpressing Trx m specifically display increased capacity for methionine sulfoxide reductases, enzymes repairing damaged proteins by regenerating methionine from oxidized methionine. Finally, we also observed that transplastomic plants exhibit distinct responses when exposed to oxidative stress conditions generated by methyl viologen or exposure to high light combined with low temperature, the plants overexpressing Trx m being notably more tolerant than Wt and those overexpressing Trx f. Altogether, these data indicate that Trxs f and m fulfill distinct physiological functions. They prompt us to propose that the m type is involved in key processes linking photosynthetic activity, redox homeostasis and antioxidant mechanisms in the chloroplast.

  12. The Relationship of Academic Stress with Aggression, Depression and Academic Performance of College Students in Iran

    Science.gov (United States)

    Khanehkeshi, Ali; Basavarajappa

    2011-01-01

    This paper investigates the relationship of academic stress with aggression, depression and academic performance of college students. Using a random sampling technique, 60 students consist of boys and girls were selected as students having academic stress. The scale for assessing academic stress (Sinha, Sharma and Mahendra, 2001); the Buss-Perry…

  13. Factors affecting Safety Performance in Repair, Maintenance, Alteration, and Addition (RMAA Projects

    Directory of Open Access Journals (Sweden)

    Adnan Enshassi

    2014-11-01

    Full Text Available Repair, Maintenance, Alteration and Addition (RMAA works are playing an increasingly important role in developing countries. The accidents and fatalities records of RMAA sector in Gaza Strip have been alarmingly high; however, research in the RMAA sector remains limited. Safety of RMAA works has long been neglected because the project sizes of RMAA are small and only last for a short period of time, which make the working environment of RMAA works more difficult to control than new building works. The aim of this paper is to identify, valuate and rank the most important factors that affect safety performance and the most important causes of fatal accidents in RMAA projects. A questionnaire survey was used in this study. The results revealed that poor safety awareness of managers in maintenance firms and lack of training of RMAA workers for handling multi-tasks were the most important factors that affecting safety performance of RMAA works. The results showed that ineffectiveness of lack of training and certification of competence; immature corporate systems of firms which does not care with safety and health through RMAA works, and lack of leadership from government as a key client are the most significant causes of construction fatal accidents of RMAA projects. The results also indicated that the macro level factor is the most important category that causes fatal accidents in RMAA works. It is recommended to enhance the awareness of construction firms, project managers and workers regarding the importance of safety performance in repair and maintenance works and strengthen site monitoring and supervision system in construction firms. Safety training courses should be organized for workers and project managers in order to improve their safety culture and competence regarding safety performance through repair and maintenance works. Furthermore the RMAA subcontractors should be selected according to their good records of safety performance.

  14. Physiological and molecular alterations in plants exposed to high [CO2] under phosphorus stress.

    Science.gov (United States)

    Pandey, Renu; Zinta, Gaurav; AbdElgawad, Hamada; Ahmad, Altaf; Jain, Vanita; Janssens, Ivan A

    2015-01-01

    Atmospheric [CO2] has increased substantially in recent decades and will continue to do so, whereas the availability of phosphorus (P) is limited and unlikely to increase in the future. P is a non-renewable resource, and it is essential to every form of life. P is a key plant nutrient controlling the responsiveness of photosynthesis to [CO2]. Increases in [CO2] typically results in increased biomass through stimulation of net photosynthesis, and hence enhance the demand for P uptake. However, most soils contain low concentrations of available P. Therefore, low P is one of the major growth-limiting factors for plants in many agricultural and natural ecosystems. The adaptive responses of plants to [CO2] and P availability encompass alterations at morphological, physiological, biochemical and molecular levels. In general low P reduces growth, whereas high [CO2] enhances it particularly in C3 plants. Photosynthetic capacity is often enhanced under high [CO2] with sufficient P supply through modulation of enzyme activities involved in carbon fixation such as ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). However, high [CO2] with low P availability results in enhanced dry matter partitioning towards roots. Alterations in below-ground processes including root morphology, exudation and mycorrhizal association are influenced by [CO2] and P availability. Under high P availability, elevated [CO2] improves the uptake of P from soil. In contrast, under low P availability, high [CO2] mainly improves the efficiency with which plants produce biomass per unit P. At molecular level, the spatio-temporal regulation of genes involved in plant adaptation to low P and high [CO2] has been studied individually in various plant species. Genome-wide expression profiling of high [CO2] grown plants revealed hormonal regulation of biomass accumulation through complex transcriptional networks. Similarly, differential transcriptional regulatory networks are involved in P

  15. Rorschach Performance Assessment System (R-PAS) and vulnerability to stress: A preliminary study on electrodermal activity during stress.

    Science.gov (United States)

    Giromini, Luciano; Ando', Agata; Morese, Rosalba; Salatino, Adriana; Di Girolamo, Marzia; Viglione, Donald J; Zennaro, Alessandro

    2016-12-30

    This study investigated the predictive validity of the ten Rorschach Performance Assessment System (R-PAS) variables from the Stress and Distress domain, by testing whether they predicted increased sympathetic reactivity to a mild, laboratory-induced stress, occurred one week after Rorschach administration. A relatively small student sample (N=52) contributed to this research: During a first meeting (T1) participants were administered the Rorschach task according to R-PAS guidelines; about one week later (T2) their electrodermal activity (EDA) was recorded during exposure to a mild laboratory stress-inducing task. Based on literature indicating that exposure to stress tends to increase physiological vulnerability/reactivity to stressful situations, we anticipated that Stress and Distress R-PAS variables measured at T1 would positively correlate with increased sympathetic reactivity to stress at T2, as indicated by greater EDA changes from baseline to stress and recovery. Results partially confirmed our hypotheses: (a) the mean of and (b) the majority of the Stress and Distress R-PAS variables were significantly correlated, in the expected direction, with medium and medium to large effect sizes.

  16. Experimental study and stress analysis of rock bolt anchorage performance

    Directory of Open Access Journals (Sweden)

    Yu Chen

    2014-10-01

    Full Text Available A new method was developed to apply pull-and-shear loads to the bolt specimen in order to evaluate the anchorage performance of the rebar bolt and the D-Bolt. In the tests, five displacing angles (0°, 20°, 40°, 60°, and 90°, two joint gaps (0 mm and 30 mm, and three kinds of host rock materials (weak concrete, strong concrete, and concrete-granite were considered, and stress–strain measurements were conducted. Results show that the ultimate loads of both the D-Bolt and the rebar bolt remained constant with any displacing angles. The ultimate displacement of the D-Bolt changed from 140 mm at the 0° displacing angle (pure pull to approximately 70 mm at a displacing angle greater than 40°. The displacement capacity of the D-Bolt is approximately 3.5 times that of the rebar bolt under pure pull and 50% higher than that of the rebar bolt under pure shear. The compressive stress exists at 50 mm from the bolt head, and the maximum bending moment value rises with the increasing displacing angle. The rebar bolt mobilises greater applied load than the D-Bolt when subjected to the maximum bending. The yielding length (at 0° of the D-Bolt is longer than that of the rebar bolt. The displacement capacity of the bolts increased with the joint gap. The bolt subjected to joint gap effect yields more quickly with greater bending moment and smaller applied load. The displacement capacities of the D-Bolt and the rebar bolt are greater in the weak host rock than that in the hard host rock. In pure shear condition, the ultimate load of the bolts slightly decreases in the hard rock. The yielding speed in the hard rock is higher than that in the weak rock.

  17. Cytomorphological alterations of the thymus, spleen, head-kidney, and liver in cardinal fish (Apogonidae, Teleostei) as bioindicators of stress.

    Science.gov (United States)

    Fishelson, Lev

    2006-01-01

    Morphological and cytological alterations at the light microscope (LM) and transmission electron microscope (TEM) levels were observed in the thymus, spleen, head-kidney, and liver of cardinal fishes (Apogonidae, Teleostei) from the Gulf of Aqaba, Red Sea, sampled from a strongly polluted site at the northern end of the gulf, and compared to similar samples from a clean, reference site. At the polluted site, the most prominent change was the formation of numerous deposits of cells rich in phagosomes with lipofucin, melanin granules, and phagocytosed debris, including a high increase in number and dimensions of Hassall's corpuscles and melano-macrophage centers. The number of Hassall's corpuscles was 20 (+/-8.0)/mm(2) and of melano-macrophage centers 18 (+/-4.0)/mm(2) at the polluted site, and 7.0 (+/-4.0)/m(2) vs. 5.0 (+/-2.0)/mm(2) respectively at the reference site. In numerous instances the head kidney's melano-macrophage centers in fishes from the polluted site were encapsulated by reticulocytes, a phenomenon recognized as a marker of neoplasmosis and possible malignancy. In the spleens of fishes from the polluted site, numerous deposits of cell debris, peroxisomes, and enlarged lysosomes were also observed. The livers (hepatopancreas) of fishes from polluted waters demonstrated very strong hyperlipogeny. Many of their hepatocytes were laden with lipid vesicles, fragmented endoplasmic reticulula, and aberrant mitochondria. Although the observed alterations in the glands and liver do not indicate any immediate threat to the life of the fish, they can become crucial with respect to energy turnover and fecundity trajectories. This study strongly suggests the use of cytological alterations in vital organs, such as were observed, as pathological biomarkers to environmental stress.

  18. Alterations in cancer cell mechanical properties after fluid shear stress exposure: a micropipette aspiration study

    Directory of Open Access Journals (Sweden)

    Chivukula VK

    2015-01-01

    Full Text Available Venkat Keshav Chivukula,1 Benjamin L Krog,1,2 Jones T Nauseef,2 Michael D Henry,2 Sarah C Vigmostad1 1Department of Biomedical Engineering, 2Department of Molecular Physiology and Biophysics, Holden Comprehensive Cancer Center, University of Iowa, Seamans Center for the Engineering Arts and Sciences, Iowa City, IA, USA Abstract: Over 90% of cancer deaths result not from primary tumor development, but from metastatic tumors that arise after cancer cells circulate to distal sites via the circulatory system. While it is known that metastasis is an inefficient process, the effect of hemodynamic parameters such as fluid shear stress (FSS on the viability and efficacy of metastasis is not well understood. Recent work has shown that select cancer cells may be able to survive and possibly even adapt to FSS in vitro. The current research seeks to characterize the effect of FSS on the mechanical properties of suspended cancer cells in vitro. Nontransformed prostate epithelial cells (PrEC LH and transformed prostate cancer cells (PC-3 were used in this study. The Young's modulus was determined using micropipette aspiration. We examined cells in suspension but not exposed to FSS (unsheared and immediately after exposure to high (6,400 dyn/cm2 and low (510 dyn/cm2 FSS. The PrEC LH cells were ~140% stiffer than the PC-3 cells not exposed to FSS. Post-FSS exposure, there was an increase of ~77% in Young's modulus after exposure to high FSS and a ~47% increase in Young's modulus after exposure to low FSS for the PC-3 cells. There was no significant change in the Young's modulus of PrEC LH cells post-FSS exposure. Our findings indicate that cancer cells adapt to FSS, with an increased Young's modulus being one of the adaptive responses, and that this adaptation is specific only to PC-3 cells and is not seen in PrEC LH cells. Moreover, this adaptation appears to be graded in response to the magnitude of FSS experienced by the cancer cells. This is the first study

  19. Stress and its impact on a performance at work

    OpenAIRE

    Jeřábek, David

    2016-01-01

    The topic of this bachelor thesis is focused on the term stress and examining the influence of stress factors on performance at work. The work is divided into two main parts - theoretical and empirical. Introduction of the theoretical part provides on the basis of literature searches basic knowledge about actual issue of stress, its kinds, causes, stages and responses to stress. Furthermore, this section describes the stressors that affect humans according to several aspects, techniqu...

  20. A case study to determine stress sources affecting the academic performance

    OpenAIRE

    Aytaç Aydın; Kemal Üçüncü; Taner Taşdemir

    2011-01-01

    Job stress affects academicians in terms of performance, scientific production, job satisfaction and health. This effect may differ according to the academicians in the structure of the organization. It is possible to mention about positive stress if organization structure positively affects academician, but it is called negative stress if it negatively affects. Lack of fee and powers, injustice employee evaluation, not getting in return for work are important stress sources. In this study, s...

  1. The daily rhythms of mitochondrial gene expression and oxidative stress regulation are altered by aging in the mouse liver.

    Science.gov (United States)

    Gong, Changxia; Li, Chengwei; Qi, Xiaoqing; Song, Zhiyin; Wu, Jianguo; Hughes, Michael E; Li, Xiaodong

    2015-01-01

    The circadian clock regulates many cellular processes, notably including the cell cycle, metabolism and aging. Mitochondria play essential roles in metabolism and are the major sites of reactive oxygen species (ROS) production in the cell. The clock regulates mitochondrial functions by driving daily changes in NAD(+) levels and Sirt3 activity. In addition to this central route, in the present study, we find that the expression of some mitochondrial genes is also rhythmic in the liver, and that there rhythms are disrupted by the Clock(Δ19) mutation in young mice, suggesting that they are regulated by the core circadian oscillator. Related to this observation, we also find that the regulation of oxidative stress is rhythmic in the liver. Since mitochondria and ROS play important roles in aging, and mitochondrial functions are also disturbed by aging, these related observations prompt the compelling hypothesis that circadian oscillators influence aging by regulating ROS in mitochondria. During aging, the expression rhythms of some mitochondrial genes were altered in the liver and the temporal regulation over the dynamics of mitochondrial oxidative stress was disrupted. However, the expression of clock genes was not affected. Our results suggested that mitochondrial functions are combinatorially regulated by the clock and other age-dependent mechanism(s), and that aging disrupts mitochondrial rhythms through mechanisms downstream of the clock.

  2. Caffeine impacts in the clam Ruditapes philippinarum: Alterations on energy reserves, metabolic activity and oxidative stress biomarkers.

    Science.gov (United States)

    Cruz, Diogo; Almeida, Ângela; Calisto, Vânia; Esteves, Valdemar I; Schneider, Rudolf J; Wrona, Frederick J; Soares, Amadeu M V M; Figueira, Etelvina; Freitas, Rosa

    2016-10-01

    Caffeine is known to be one of the most consumed psychoactive drugs. For this reason, caffeine is continuously released into the environment with potential impacts on inhabiting organisms. The current study evaluated the biochemical alterations induced in the clam species Ruditapes philippinarum after exposure for 28 days to caffeine (0.5, 3.0 and 18.0 μg/L). The results obtained showed that, with the increasing caffeine concentrations, an increase in clams defense mechanisms (such as antioxidant and biotransformation enzymes activity) was induced which was accompanied by an increase in protein content. Nevertheless, although an increase on defense mechanisms was observed, clams were not able to prevent cells from lipid peroxidation that increased with the increase of caffeine concentration. Furthermore, with the increase of exposure concentrations, clams increased their metabolic activity (measured by electron transport activity), reducing their energy reserves (glycogen content), to fight against oxidative stress. Overall, the present study demonstrated that caffeine may impact bivalves, even at environmentally relevant concentrations, inducing oxidative stress in organisms. The present study is an important contribution to address knowledge gaps regarding the impacts of long-term exposures to pharmaceuticals since most of the studies assessed the effects after acute exposures, most of them up to 96 h.

  3. Remodelling of bone and bones. Effects of altered mechanical stress on anlages.

    Science.gov (United States)

    Storey, E; Feik, S A

    1982-04-01

    Tails from 4-day-old Sprague-Dawley rats were bent in situ or skinned bent tail segments were transplanted s.c. into 50 g hosts. Tissue changes were studied for up to 24 weeks by radiographic and histological techniques. The early changes in situ resulted largely from limited translation of bones within their encasing tissues with resorption on the leading (pressure) side inducing thinning, and on the trailing (tension) side thickening of bone. The changes in transplanted anlages occurred in 3 stages: initially, bending of the anlages, with tension between the stretched periosteum and the outer bone surface inducing formation, and compression of cartilage and bone on the inner aspect leading to resorption; then resumption of longitudinal growth and expansion of the bent loop leading to translation of bones within the encasing soft tissues with resorption and thinning of bone on the leading pressure side and formation, with thickening of the inner shaft, on the trailing tension side; and finally with cessation of growth and translation, a reversal to the previous phase. The results support the hypothesis that 2 processes are involved: first, internal stress, and second, translation of bones with, in all instances, pressure inducing resorption and tension inducing formation of bone.

  4. Developmental alterations and osmoregulatory physiology of a larval anuran under osmotic stress.

    Science.gov (United States)

    Gomez-Mestre, I; Tejedo, M; Ramayo, E; Estepa, J

    2004-01-01

    Water salinity represents an environmental stress for many species. Amphibians are particularly sensitive because they are generally poor osmoregulators, and most species are completely absent from brackish and saline environments. We experimentally examined the effect of different salinity levels on larvae of the toad Bufo calamita L., a species that occupies freshwater ponds but can also breed in brackish ponds. Two independent experiments are reported here. In both experiments, tadpoles under saline conditions (ranging between 85 and 200 mOsm) showed a slower developmental rate, metamorphosing between 4 and 9 d later than the controls. Bufo calamita tadpoles reared in brackish water increased their osmolality and solute concentration (mainly sodium and chloride), decreased their levels of glucose, and decreased the total protein content, all measured from whole-animal extracts. Although most larval anurans are strictly ammoniotelic until the completion of metamorphosis, a few species exposed to dehydrating environments have evolved the ability to use urea as an osmolyte during the larval phase. The data presented here reveal that although B. calamita seems to be yet another exception to the rule of larval strict ammoniotelism, the tadpoles are not able to use urea as an osmolyte and rely on sodium-chloride balance instead. Preliminary immunoassays of thyroid hormone content suggest a possible decrease in hormone levels induced in water salinity conditions that correlate with a decreased developmental rate.

  5. Subchronic and mild social defeat stress alter mouse nest building behavior.

    Science.gov (United States)

    Otabi, Hikari; Goto, Tatsuhiko; Okayama, Tsuyoshi; Kohari, Daisuke; Toyoda, Atsushi

    2016-01-01

    Behavioral and physiological evaluations of animal models of depression are essential to thoroughly understand the mechanisms of depression in humans. Various models have been developed and characterized, and the socially defeated mouse has been widely used for studying depression. Here, we developed and characterized a mouse model of social aversion using a subchronic and mild social defeat stress (sCSDS) paradigm. Compared to control mice, sCSDS mice showed significantly increased body weight gain, water intake, and social aversion to dominant mice on the social interaction test. We observed nest building behavior in sCSDS mice using the pressed cotton as a nest material. Although sCSDS mice eventually successfully built nests, the onset of nest building was severely delayed compared to control mice. The underlying mechanism of this significant delay in nest building by sCSDS mice is unclear. However, our results demonstrate that nest building evaluation is a simple and useful assay for understanding behavior in socially defeated mice and screening drugs such as antidepressants.

  6. Genetic variations alter physiological responses following heat stress in 2 strains of laying hens.

    Science.gov (United States)

    Felver-Gant, J N; Mack, L A; Dennis, R L; Eicher, S D; Cheng, H W

    2012-07-01

    Heat stress (HS) is a major problem experienced by the poultry industry during high-temperature conditions. The ability to manage the detrimental effects of HS can be attributed to multiple factors, including genetic background of flocks. The objective of the present study was to determine the genetic variation in HS effects on laying hens' physiological homeostasis. Ninety 28-wk-old White Leghorn hens of 2 strains were used: a commercial line of individually selected hens for high egg production, DeKalb XL (DXL), and a line of group-selected hens for high productivity and survivability, named kind gentle bird (KGB). Hens were randomly paired by strain and assigned to hot or control treatment for 14 d. Physical and physiological parameters were analyzed at d 8 and 14 posttreatment. Compared with controls, HS increased hen's core body temperature (P hens exposed to HS (P hens, KGB hens had higher heat shock protein 70 concentrations (P hens' liver weight decreased following HS, with less of a response in the KGB line (P hens due to genetic variations. These data provide evidence that is valuable for determining genetic interventions for laying hens under HS.

  7. Evaluation of proteome alterations induced by cadmium stress in sunflower (Helianthus annuus L.) cultures.

    Science.gov (United States)

    Lopes Júnior, Cícero Alves; Barbosa, Herbert de Sousa; Moretto Galazzi, Rodrigo; Ferreira Koolen, Hector Henrique; Gozzo, Fábio Cesar; Arruda, Marco Aurélio Zezzi

    2015-09-01

    The present study evaluates, at a proteomic level, changes in protein abundance in sunflower leaves in the absence or presence (at 50 or 700mg) of cadmium (as CdCl2). At the end of the cultivation period (45 days), proteins are extracted from leaves with phenol, separated by two-dimensional difference gel electrophoresis (2-D DIGE), and excised from the gels. The differential protein abundances (for proteins differing by more than 1.8 fold, which corresponds to 90% variation) are characterized using nESI-LC-MS/MS. The protein content decreases by approximately 41% in plants treated with 700mg Cd compared with control plants. By comparing all groups of plants evaluated in this study (Control vs. Cd-lower, Control vs. Cd-higher and Cd-lower vs. Cd-higher), 39 proteins are found differential and 18 accurately identified; the control vs. Cd-higher treatment is that presenting the most differential proteins. From identified proteins, those involved in energy and disease/defense (including stress), are the ribulose bisphosphate carboxylase large chain, transketolase, and heat shock proteins are the most differential abundant proteins. Thus, at the present study, photosynthesis is the main process affected by Cd in sunflowers, although these plants are highly tolerant to Cd.

  8. Nighttime feeding likely alters morning metabolism but not exercise performance in female athletes.

    Science.gov (United States)

    Ormsbee, Michael J; Gorman, Katherine A; Miller, Elizabeth A; Baur, Daniel A; Eckel, Lisa A; Contreras, Robert J; Panton, Lynn B; Spicer, Maria T

    2016-07-01

    The timing of morning endurance competition may limit proper pre-race fueling and resulting performance. A nighttime, pre-sleep nutritional strategy could be an alternative method to target the metabolic and hydrating needs of the early morning athlete without compromising sleep or gastrointestinal comfort during exercise. Therefore, the purpose of this investigation was to examine the acute effects of pre-sleep chocolate milk (CM) ingestion on next-morning running performance, metabolism, and hydration status. Twelve competitive female runners and triathletes (age, 30 ± 7 years; peak oxygen consumption, 53 ± 4 mL·kg(-1)·min(-1)) randomly ingested either pre-sleep CM or non-nutritive placebo (PL) ∼30 min before sleep and 7-9 h before a morning exercise trial. Resting metabolic rate (RMR) was assessed prior to exercise. The exercise trial included a warm-up, three 5-min incremental workloads at 55%, 65%, and 75% peak oxygen consumption, and a 10-km treadmill time trial (TT). Physiological responses were assessed prior, during (incremental and TT), and postexercise. Paired t tests and magnitude-based inferences were used to determine treatment differences. TT performances were not different ("most likely trivial" improvement with CM) between conditions (PL: 52.8 ± 8.4 min vs CM: 52.8 ± 8.0 min). RMR was "likely" increased (4.8%) and total carbohydrate oxidation (g·min(-1)) during exercise was "possibly" or likely increased (18.8%, 10.1%, 9.1% for stage 1-3, respectively) with CM versus PL. There were no consistent changes to hydration indices. In conclusion, pre-sleep CM may alter next-morning resting and exercise metabolism to favor carbohydrate oxidation, but effects did not translate to 10-km running performance improvements.

  9. Dietary pollutants induce oxidative stress, altering maternal antioxidant provisioning and reproductive output in the temperate sea urchin Evechinus chloroticus.

    Science.gov (United States)

    Lister, Kathryn N; Lamare, Miles D; Burritt, David J

    2016-08-01

    Evidence is growing to suggest that the capacity to withstand oxidative stress may play an important role in shaping life-history trade-offs, although little is known on the relationship in broadcast spawning marine invertebrates. In this group, variation in gamete quantity and quality are important drivers of offspring survival and successful recruitment. Therefore the provisioning of eggs with antioxidants may be an important driver of life history strategies because they play a critical role in preventing damage from reactive oxygen species to macromolecules. In this study, a suite of oxidative stress biomarkers was measured in the gonads and eggs of the sea urchin Evechinus chloroticus exposed to polycyclic aromatic hydrocarbons (PAHs). Links between oxidative stress markers and core components of fitness including fecundity, gamete quality and maternal transfer of antioxidants were assessed. Experimental induction of oxidative stress was achieved via exposure to a mix of four PAHs over a 21-day period. In PAH exposed individuals, we observed a significant upregulation of the antioxidant defence and detoxification enzymes SOD, CAT, GR, GPx and GST, as well as a greater pool of the non-enzymatic antioxidant glutathione in gonad tissue and eggs. In contrast, glutathione redox status was not affected by PAH exposure, with the percentage of reduced glutathione remaining at approximately 80% in both gonad tissue and released eggs. PAH-exposed adults experienced greater than three- and five-fold increases in oxidative protein and lipid damage, respectively, in gonad tissue. In contrast, eggs maintained low levels of damage, not differing from baseline levels found in eggs released from PAH-naïve mothers. PAH exposure also resulted in a 2-fold reduction in fecundity of reproductively mature females but no significant alteration to egg diameter. Although PAH-exposed females released fewer eggs, successful fertilisation of those eggs was slightly enhanced with average

  10. Altered Microstructural Caudate Integrity in Posttraumatic Stress Disorder but Not Traumatic Brain Injury

    Science.gov (United States)

    Waltzman, Dana; Soman, Salil; Fairchild, J. Kaci; Kinoshita, Lisa M.; Wintermark, Max; Ashford, J. Wesson; Yesavage, Jerome; Williams, Leanne

    2017-01-01

    Objective Given the high prevalence and comorbidity of combat-related PTSD and TBI in Veterans, it is often difficult to disentangle the contributions of each disorder. Examining these pathologies separately may help to understand the neurobiological basis of memory impairment in PTSD and TBI independently of each other. Thus, we investigated whether a) PTSD and TBI are characterized by subcortical structural abnormalities by examining diffusion tensor imaging (DTI) metrics and volume and b) if these abnormalities were specific to PTSD versus TBI. Method We investigated whether individuals with PTSD or TBI display subcortical structural abnormalities in memory regions by examining DTI metrics and volume of the hippocampus and caudate in three groups of Veterans: Veterans with PTSD, Veterans with TBI, and Veterans with neither PTSD nor TBI (Veteran controls). Results While our results demonstrated no macrostructural differences among the groups in these regions, there were significant alterations in microstructural DTI indices in the caudate for the PTSD group but not the TBI group compared to Veteran controls. Conclusions The result of increased mean, radial, and axial diffusivity, and decreased fractional anisotropy in the caudate in absence of significant volume atrophy in the PTSD group suggests the presence of subtle abnormalities evident only at a microstructural level. The caudate is thought to play a role in the physiopathology of PTSD, and the habit-like behavioral features of the disorder could be due to striatal-dependent habit learning mechanisms. Thus, DTI appears to be a vital tool to investigate subcortical pathology, greatly enhancing the ability to detect subtle brain changes in complex disorders. PMID:28114393

  11. Altered olfactory processing of stress-related body odors and artificial odors in patients with panic disorder.

    Directory of Open Access Journals (Sweden)

    Gloria-Beatrice Wintermann

    Full Text Available BACKGROUND: Patients with Panic Disorder (PD direct their attention towards potential threat, followed by panic attacks, and increased sweat production. Onés own anxiety sweat odor influences the attentional focus, and discrimination of threat or non-threat. Since olfactory projection areas overlap with neuronal areas of a panic-specific fear network, the present study investigated the neuronal processing of odors in general and of stress-related sweat odors in particular in patients with PD. METHODS: A sample of 13 patients with PD with/ without agoraphobia and 13 age- and gender-matched healthy controls underwent an fMRI investigation during olfactory stimulation with their stress-related sweat odors (TSST, ergometry as well as artificial odors (peach, artificial sweat as non-fearful non-body odors. PRINCIPAL FINDINGS: The two groups did not differ with respect to their olfactory identification ability. Independent of the kind of odor, the patients with PD showed activations in fronto-cortical areas in contrast to the healthy controls who showed activations in olfaction-related areas such as the amygdalae and the hippocampus. For artificial odors, the patients with PD showed a decreased neuronal activation of the thalamus, the posterior cingulate cortex and the anterior cingulate cortex. Under the presentation of sweat odor caused by ergometric exercise, the patients with PD showed an increased activation in the superior temporal gyrus, the supramarginal gyrus, and the cingulate cortex which was positively correlated with the severity of the psychopathology. For the sweat odor from the anxiety condition, the patients with PD showed an increased activation in the gyrus frontalis inferior, which was positively correlated with the severity of the psychopathology. CONCLUSIONS: The results suggest altered neuronal processing of olfactory stimuli in PD. Both artificial odors and stress-related body odors activate specific parts of a fear

  12. Implications of altered glutathione metabolism in aspirin-induced oxidative stress and mitochondrial dysfunction in HepG2 cells.

    Directory of Open Access Journals (Sweden)

    Haider Raza

    Full Text Available We have previously reported that acetylsalicylic acid (aspirin, ASA induces cell cycle arrest, oxidative stress and mitochondrial dysfunction in HepG2 cells. In the present study, we have further elucidated that altered glutathione (GSH-redox metabolism in HepG2 cells play a critical role in ASA-induced cytotoxicity. Using selected doses and time point for ASA toxicity, we have demonstrated that when GSH synthesis is inhibited in HepG2 cells by buthionine sulfoximine (BSO, prior to ASA treatment, cytotoxicity of the drug is augmented. On the other hand, when GSH-depleted cells were treated with N-acetyl cysteine (NAC, cytotoxicity/apoptosis caused by ASA was attenuated with a significant recovery in oxidative stress, GSH homeostasis, DNA fragmentation and some of the mitochondrial functions. NAC treatment, however, had no significant effects on the drug-induced inhibition of mitochondrial aconitase activity and ATP synthesis in GSH-depleted cells. Our results have confirmed that aspirin increases apoptosis by increased reactive oxygen species production, loss of mitochondrial membrane potential and inhibition of mitochondrial respiratory functions. These effects were further amplified when GSH-depleted cells were treated with ASA. We have also shown that some of the effects of aspirin might be associated with reduced GSH homeostasis, as treatment of cells with NAC attenuated the effects of BSO and aspirin. Our results strongly suggest that GSH dependent redox homeostasis in HepG2 cells is critical in preserving mitochondrial functions and preventing oxidative stress associated complications caused by aspirin treatment.

  13. Increased growth in sunflower correlates with reduced defences and altered gene expression in response to biotic and abiotic stress.

    Science.gov (United States)

    Mayrose, Maya; Kane, Nolan C; Mayrose, Itay; Dlugosch, Katrina M; Rieseberg, Loren H

    2011-11-01

    Cultivated plants have been selected by humans for increased yield in a relatively benign environment, where nutrient and water resources are often supplemented, and biotic enemy loads are kept artificially low. Agricultural weeds have adapted to this same benign environment as crops and often have high growth and reproductive rates, even though they have not been specifically selected for yield. Considering the competing demands for resources in any plant, a key question is whether adaptation to agricultural environments has been accompanied by life history trade-offs, in which resistance to (largely absent) stress has been lost in favour of growth and reproduction. The experiments reported here were designed to test for growth-defence trade-offs in agricultural weeds, crops and native varieties of common sunflower (Helianthus annuus L., Asteraceae) by comparing their performance in the presence or absence of abiotic (drought and crowding) or biotic (simulated herbivory, insect herbivory and fungal) stress. We found that growth, as well as viability of crops and weeds, was reduced by abiotic drought stress. The weakened defence in the agricultural genotypes was further evident as increased susceptibility to fungal infection and higher level of insect palatability. To uncover molecular mechanisms underlying these trade-offs, we monitored gene expression kinetics in drought-stressed plants. By correlating phenotypic observations with molecular analyses, we report the identification of several genes, including a protein phosphatase 2C and the HD-Zip transcription factor Athb-8, whose expression is associated with the observed phenotypic variation in common sunflower.

  14. Methylphenidate administration to juvenile rats alters brain areas involved in cognition, motivated behaviors, appetite, and stress.

    Science.gov (United States)

    Gray, Jason D; Punsoni, Michael; Tabori, Nora E; Melton, Jay T; Fanslow, Victoria; Ward, Mary J; Zupan, Bojana; Menzer, David; Rice, Jackson; Drake, Carrie T; Romeo, Russell D; Brake, Wayne G; Torres-Reveron, Annelyn; Milner, Teresa A

    2007-07-04

    Thousands of children receive methylphenidate (MPH; Ritalin) for attention deficit/hyperactivity disorder (ADHD), yet the long-term neurochemical consequences of MPH treatment are unknown. To mimic clinical Ritalin treatment in children, male rats were injected with MPH (5 mg/kg) or vehicle twice daily from postnatal day 7 (PND7)-PND35. At the end of administration (PND35) or in adulthood (PND135), brain sections from littermate pairs were immunocytochemically labeled for neurotransmitters and cytological markers in 16 regions implicated in MPH effects and/or ADHD etiology. At PND35, the medial prefrontal cortex (mPFC) of rats given MPH showed 55% greater immunoreactivity (-ir) for the catecholamine marker tyrosine hydroxylase (TH), 60% more Nissl-stained cells, and 40% less norepinephrine transporter (NET)-ir density. In hippocampal dentate gyrus, MPH-receiving rats showed a 51% decrease in NET-ir density and a 61% expanded distribution of the new-cell marker PSA-NCAM (polysialylated form of neural cell adhesion molecule). In medial striatum, TH-ir decreased by 21%, and in hypothalamus neuropeptide Y-ir increased by 10% in MPH-exposed rats. At PND135, MPH-exposed rats exhibited decreased anxiety in the elevated plus-maze and a trend for decreased TH-ir in the mPFC. Neither PND35 nor PND135 rats showed major structural differences with MPH exposure. These findings suggest that developmental exposure to high therapeutic doses of MPH has short-term effects on select neurotransmitters in brain regions involved in motivated behaviors, cognition, appetite, and stress. Although the observed neuroanatomical changes largely resolve with time, chronic modulation of young brains with MPH may exert effects on brain neurochemistry that modify some behaviors even in adulthood.

  15. The impact of interpersonal discrimination and stress on health and performance for early career STEM academicians

    Directory of Open Access Journals (Sweden)

    Katharine Ridgway O'Brien

    2016-04-01

    Full Text Available The present study examines the consequences of perceived interpersonal discrimination on stress, health, and performance in a sample of 210 STEM academicians. Using a path model, we test the relation that perceived interpersonal discrimination has on stress and the relation of stress to physical health maladies and on current and future performance. In so doing, we assess the link between discrimination and decrements in performance over time. Additionally, we test supervisor social support as a moderator of the discrimination–stress relation. Findings support relations between perceived interpersonal discrimination and stress, which in turn relates to declines in physical health and performance outcomes. Moreover, supervisory support is shown to mitigate the influence of interpersonal discrimination on stress in STEM academicians.

  16. The Effect of Stress and Recovery on Field-test Performance in Floorball

    NARCIS (Netherlands)

    van der Does, H. T. D.; Brink, M. S.; Visscher, C.; Huijgen, B. C. H.; Frencken, W. G. P.; Lemmink, K. A. P. M.

    2015-01-01

    Physical and psychosocial stress and recovery are important performance determinants. A holistic approach that monitors these performance determinants over a longer period of time is lacking. Therefore this study aims to investigate the effect of a player's physical and psychosocial stress and recov

  17. Challenge and Hindrance Stress: Relationships with Exhaustion, Motivation to Learn, and Learning Performance

    Science.gov (United States)

    LePine, Jeffrey A.; LePine, Marcie A.; Jackson, Christine L.

    2004-01-01

    In a study of 696 learners, the authors found that stress associated with challenges in the learning environment had a positive relationship with learning performance and that stress associated with hindrances in the learning environment had a negative relationship with learning performance. They also found evidence suggesting that these…

  18. Spatial and temporal task characteristics as stress: a test of the dynamic adaptability theory of stress, workload, and performance.

    Science.gov (United States)

    Szalma, James L; Teo, Grace W L

    2012-03-01

    The goal for this study was to test assertions of the dynamic adaptability theory of stress, which proposes two fundamental task dimensions, information rate (temporal properties of a task) and information structure (spatial properties of a task). The theory predicts adaptive stability across stress magnitudes, with progressive and precipitous changes in adaptive response manifesting first as increases in perceived workload and stress and then as performance failure. Information structure was manipulated by varying the number of displays to be monitored (1, 2, 4 or 8 displays). Information rate was manipulated by varying stimulus presentation rate (8, 12, 16, or 20 events/min). A signal detection task was used in which critical signals were pairs of digits that differed by 0 or 1. Performance accuracy declined and workload and stress increased as a function of increased task demand, with a precipitous decline in accuracy at the highest demand levels. However, the form of performance change as well as the pattern of relationships between speed and accuracy and between performance and workload/stress indicates that some aspects of the theory need revision. Implications of the results for the theory and for future research are discussed.

  19. Stress and School Performance. Parents and Children Together Series.

    Science.gov (United States)

    ERIC Clearinghouse on Reading, English, and Communication, Bloomington, IN.

    This book, one of a series, focuses on how stress affects children's learning. The message of the series urges parents and children to spend time together, talk about stories, and learn together. The first part of each book presents stories appropriate for varying grade levels, both younger children and those in grades three and four, and each…

  20. Ambient particulate air pollution induces oxidative stress and alterations of mitochondria and gene expression in brown and white adipose tissues

    Directory of Open Access Journals (Sweden)

    Harkema Jack R

    2011-07-01

    Full Text Available Abstract Background Prior studies have demonstrated a link between air pollution and metabolic diseases such as type II diabetes. Changes in adipose tissue and its mitochondrial content/function are closely associated with the development of insulin resistance and attendant metabolic complications. We investigated changes in adipose tissue structure and function in brown and white adipose depots in response to chronic ambient air pollutant exposure in a rodent model. Methods Male ApoE knockout (ApoE-/- mice inhaled concentrated fine ambient PM (PM 2.5 or filtered air (FA for 6 hours/day, 5 days/week, for 2 months. We examined superoxide production by dihydroethidium staining; inflammatory responses by immunohistochemistry; and changes in white and brown adipocyte-specific gene profiles by real-time PCR and mitochondria by transmission electron microscopy in response to PM2.5 exposure in different adipose depots of ApoE-/- mice to understand responses to chronic inhalational stimuli. Results Exposure to PM2.5 induced an increase in the production of reactive oxygen species (ROS in brown adipose depots. Additionally, exposure to PM2.5 decreased expression of uncoupling protein 1 in brown adipose tissue as measured by immunohistochemistry and Western blot. Mitochondrial number was significantly reduced in white (WAT and brown adipose tissues (BAT, while mitochondrial size was also reduced in BAT. In BAT, PM2.5 exposure down-regulated brown adipocyte-specific genes, while white adipocyte-specific genes were differentially up-regulated. Conclusions PM2.5 exposure triggers oxidative stress in BAT, and results in key alterations in mitochondrial gene expression and mitochondrial alterations that are pronounced in BAT. We postulate that exposure to PM2.5 may induce imbalance between white and brown adipose tissue functionality and thereby predispose to metabolic dysfunction.

  1. Protection of hepatotoxicity using Spondias pinnata by prevention of ethanol-induced oxidative stress, DNA-damage and altered biochemical markers in Wistar rats

    Directory of Open Access Journals (Sweden)

    Shoaib Shadab Iqbal

    2016-12-01

    Conclusion: S. pinnata extracts AE and EE possess a potent hepatoprotective effect against ethanol-induced liver injury in Wistar rats, and protect them from hepatotoxicity by prevention of ethanol-induced oxidative stress, DNA-damage and altered biochemical markers.

  2. D-Methionine attenuated cisplatin-induced vestibulotoxicity through altering ATPase activities and oxidative stress in guinea pigs.

    Science.gov (United States)

    Cheng, Po-Wen; Liu, Shing-Hwa; Young, Yi-Ho; Lin-Shiau, Shoei-Yn

    2006-09-01

    Cisplatin has been used as a chemotherapeutic agent to treat many kinds of malignancies. Its damage to the vestibulo-ocular reflex (VOR) system has been reported. However, the underlying biochemical change in the inner ear or central vestibular nervous system is not fully understood. In this study, we attempted to examine whether cisplatin-induced vestibulotoxicity and D-methionine protection were correlated with the changes of ATPase activities and oxidative stress of ampullary tissue of vestibules as well as cerebellar cortex (the inhibitory center of VOR system) of guinea pigs. By means of a caloric test coupled with electronystagmographic recordings, we found that cisplatin exposure caused a dose-dependent (1, 3, or 5 mg/kg) vestibular dysfunction as revealed by a decrease of slow phase velocity (SPV). In addition, cisplatin significantly inhibited the Na(+), K(+)-ATPase and Ca(2+)-ATPase activities in the ampullary tissue with a good dose-response relationship but not those of cerebellar cortex. Regression analysis indicated that a decrease of SPV was well correlated with the reduction of Na(+), K(+)-ATPase and Ca(2+)-ATPase activities of the ampullary tissue. D-Methionine (300 mg/kg) reduced both abnormalities of SPV and ATPase activities in a correlated manner. Moreover, cisplatin exposure led to a significant dose-dependent increase of lipid peroxidation and nitric oxide concentrations of the vestibules, which could be significantly suppressed by D-methionine. However, cisplatin did not alter the levels of lipid peroxidation and nitric oxide of the cerebellum. In conclusion, cisplatin inhibited ATPase activities and increased oxidative stress in guinea pig vestibular labyrinths. D-Methionine attenuated cisplatin-induced vestibulotoxicity associated with ionic disturbance through its antioxidative property.

  3. Alteration of leaf metabolism in Bt-transgenic rice (Oryza sativa L.) and its wild type under insecticide stress.

    Science.gov (United States)

    Zhou, Jia; Zhang, Lei; Chang, Yuwei; Lu, Xin; Zhu, Zhen; Xu, Guowang

    2012-08-03

    Insecticide is always used to control the damage from pests, while the potential influence on plants is rarely known. Time-course metabolic changes of wild and Bacillus thuringiensis (Bt) transgenic rice (Oryza sativa L.) plants after insecticide treatment were investigated by using gas chromatography-mass spectrometry (GC-MS). A combined statistical strategy of 2-way ANOVA and multivariate analyses (principal component analysis and hierarchal cluster analysis) was performed to find the stress-associated effects. The results reveal that a wide range of metabolites were dynamically varied in both varieties as a response to insecticide, in multiple metabolic pathways, such as biosynthesis and metabolism of amino acids, carbohydrates, fatty acids, TCA cycle, and the shikimate/phenylpropanoid pathway, and most of the changes were correlated with the exposure time and dependent on the variety. A set of stress defenses were activated, including phytohormone signaling pathway, antioxidant defense system, shikimate-mediated secondary metabolism, and so on. In particular, insecticide led to much stronger regulations of signaling molecules (salicylate and the precursor of jasmonate) and antioxidants (α-tocopherol and dehydroascorbate/ascorbate) in Bt-transgenic variety at the early stage. Our results demonstrated that the Bt-transgenic rice had a more acute and drastic response to insecticide stress than its non-transgenic counterpart in antioxidant system and signaling regulation.

  4. Molecular hydrogen protects chondrocytes from oxidative stress and indirectly alters gene expressions through reducing peroxynitrite derived from nitric oxide

    Directory of Open Access Journals (Sweden)

    Hanaoka Teruyasu

    2011-08-01

    Full Text Available Abstract Background Molecular hydrogen (H2 functions as an extensive protector against oxidative stress, inflammation and allergic reaction in various biological models and clinical tests; however, its essential mechanisms remain unknown. H2 directly reacts with the strong reactive nitrogen species peroxynitrite (ONOO- as well as hydroxyl radicals (•OH, but not with nitric oxide radical (NO•. We hypothesized that one of the H2 functions is caused by reducing cellular ONOO-, which is generated by the rapid reaction of NO• with superoxides (•O2-. To verify this hypothesis, we examined whether H2 could restore cytotoxicity and transcriptional alterations induced by ONOO- derived from NO• in chondrocytes. Methods We treated cultured chondrocytes from porcine hindlimb cartilage or from rat meniscus fibrecartilage with a donor of NO•, S-nitroso-N-acetylpenicillamine (SNAP in the presence or absence of H2. Chondrocyte viability was determined using a LIVE/DEAD Viability/Cytotoxicity Kit. Gene expressions of the matrix proteins of cartilage and the matrix metalloproteinases were analyzed by reverse transcriptase-coupled real-time PCR method. Results SNAP treatment increased the levels of nitrated proteins. H2 decreased the levels of the nitrated proteins, and suppressed chondrocyte death. It is known that the matrix proteins of cartilage (including aggrecan and type II collagen and matrix metalloproteinases (such as MMP3 and MMP13 are down- and up-regulated by ONOO-, respectively. H2 restoratively increased the gene expressions of aggrecan and type II collagen in the presence of H2. Conversely, the gene expressions of MMP3 and MMP13 were restoratively down-regulated with H2. Thus, H2 acted to restore transcriptional alterations induced by ONOO-. Conclusions These results imply that one of the functions of H2 exhibits cytoprotective effects and transcriptional alterations through reducing ONOO-. Moreover, novel pharmacological strategies

  5. Monitoring Perceived Stress and Recovery in Relation to Cycling Performance in Female Athletes.

    Science.gov (United States)

    Otter, R T A; Brink, M S; van der Does, H T D; Lemmink, K A P M

    2016-01-01

    The purpose was to investigate perceived stress and recovery related to cycling performance of female athletes over one full year. 20 female athletes (age, 27±8 years; ˙VO2max, 50.3±4.6 mL·kg(-1)·min(-1)) were measured 8 times in one year to determine perceived stress and recovery (RESTQ-Sport) in relation to cycling performance (Lamberts and Lambert Submaximal Cycle Test (LSCT)). All 19 RESTQ-Sport scales were calculated and scores of the 4 main categories were determined (i. e., general stress, general recovery, sport-specific stress and sport-specific recovery). A balance score of total stress and recovery was calculated by recovery-stress. Power at the second stage (P80), third stage (P90) and heart rate recovery (HRR60 s) of the LSCT were determined as performance parameters. 110 RESTQ-Sports and LSCTs were analysed using a multilevel approach (random intercepts model). Higher self-efficacy was related to improvement of all performance parameters. Higher total recovery stress, and lower emotional stress were related to improvement of P90 and HRR60 s. Higher sport-specific recovery was related to P80, higher general stress, fatigue and physical complaints were related to decreased P90 and higher social stress and injury were related to decreased HRR60 s. Improved perceived recovery and stress contributed to an improved performance. Relevant information could be provided by monitoring changes in perceived stress and recovery of female athletes.

  6. Growth and Eco-Physiological Performance of Cotton Under Water Stress Conditions

    Institute of Scientific and Technical Information of China (English)

    WANG Chun-yan; Isoda Akihiro; LI Mao-song; WANG Dao-long

    2007-01-01

    A cotton cultivar Xinluzao 8 was grown under four levels of water stress treatments (normal irrigation, slight, mild and severe water stress) from the initial reproductive growth stage in Shihezi, Xinjiang, China, in 2002, to evaluate the growth and eco-physiological performances. Under water stress conditions, the transpiration ability decreased while the leaf temperature increased. Although the relative leaf water content decreased as water stress increased, the differences among the treatments were small, indicating that cotton has high ability in maintaining water in leaf. The stomatal density increased as water stress increased, while the maximum stomatal aperture reduced only in the severest stressed plants.The time of the maximum stomatal aperture was delayed in the mild and severe stressed plants. When severe stress occurred, the stomata were kept open until the transpiration decreased to nearly zero, suggesting that the stomata might not be the main factor in adjusting transpiration in cotton. Cotton plant has high adaptation ability to water stress conditions because of decrease in both stomatal conductance and hydraulic conductance from soil-to-leaf pathway. The actual quantum yield of photosystem Ⅱ (PS Ⅱ) decreased under water stress conditions, while the maximum quantum yield of PS Ⅱ did not vary among treatments, suggesting that PS Ⅱ would not be damaged by water stress. The total dry weight reduced as water stress increased.

  7. Altered regional homogeneity in post-traumatic stress disorder: a resting-state functional magnetic resonance imaging study

    Institute of Scientific and Technical Information of China (English)

    Yan Yin; Baoci Shan; Qiyong Gong; Lingjiang Li; Changfeng Jin; Lisa T.Eyler; Hua Jin; Xiaolei Hu; Lian Duan; Huirong Zheng; Bo Feng; Xuanyin Huang

    2012-01-01

    Objective Little is known about the brain systems that contribute to vulnerability to post-traumatic stress disorder (PTSD).Comparison of the resting-state patterns of intrinsic functional synchronization,as measured by functional magnetic resonance imaging (fMRI),between groups with and without PTSD following a traumatic event can help identify the neural mechanisms of the disorder and targets for intervention.Methods Fifty-four PTSD patients and 72 matched traumatized subjects who experienced the 2008 Sichuan earthquake were imaged with blood oxygen level-dependent (BOLD) fMRI and analyzed using the measure of regional homogeneity (ReHo) during the resting state.Results PTSD patients presented enhanced ReHo in the left inferior parietal lobule and right superior frontal gyrus,and reduced ReHo in the right middle temporal gyrus and lingual gyrus,relative to traumatized individuals without PTSD.Conclusion Our findings showed that abnormal brain activity exists under resting conditions in PTSD patients who had been exposed to a major earthquake.Alterations in the local functional connectivity of cortical regions are likely to contribute to the neural mechanisms underlying PTSD.

  8. Senescence-inducible expression of isopentenyl transferase extends leaf life, increases drought stress resistance and alters cytokinin metabolism in cassava.

    Science.gov (United States)

    Zhang, Peng; Wang, Wen-Quan; Zhang, Gen-Liang; Kaminek, Miroslav; Dobrev, Petre; Xu, Jia; Gruissem, Wilhelm

    2010-07-01

    Cassava (Manihot esculenta Crantz) sheds its leaves during growth, especially within the tropical dry season. With the production of SAG12-IPT transgenic cassava we want to test the level of leaf retention and altered cytokinin metabolism of transgenic plants via the autoregulatory senescence inhibition system. After confirmation of transgene expression by molecular analysis and phenotype examination in greenhouse plants, two transgenic plant lines, 529-28 and 529-48, were chosen for further investigation. Detached mature leaves of 529-28 plants retained high levels of chlorophyll compared with wild-type leaves after dark-induced senescence treatment. Line 529-28 showed significant drought tolerance as indicated by stay-green capacity after drought stress treatment. Field experiments proved that leaf senescence syndrome was significantly delayed in 529-28 plants in comparison with wild-type and 529-48 plants. Physiological and agronomical characterizations of these plants also revealed that the induced expression of IPT had effects on photosynthesis, sugar allocation and nitrogen partitioning. Importantly, the 529-28 plants accumulated a high level of trans-zeatin-type cytokinins particularly of corresponding storage O-glucosides to maintain cytokinin homeostasis. Our study proves the feasibility of prolonging the leaf life of woody cassava and also sheds light on the control of cytokinin homeostasis in cassava leaves.

  9. Histopathological Evaluation of Dose Dependent Sulfadiazine-Associated Nephrotoxicity and Alteration on Oxidative Stress in Chicken Embryos

    Directory of Open Access Journals (Sweden)

    Reza Sayrafi

    2016-06-01

    Full Text Available Background Numerous epidemiological and experimental researches indicate that in utero exposure to some environmental chemicals and prescribed drugs during pregnancy can mediate various embryonic abnormalities and complications via reactive oxygen species (ROS generation, which damages cellular macromolecules. Objectives The aim of the present study was to evaluate the sulfonamide-associated nephrotoxicity with possible underlying mechanisms in chicken embryo. Materials and Methods In this experimental study, one hundred fertile eggs were obtained and divided into five groups: 1 control group (without injection, 2 group injected with 2 mg sulfadiazine, 3 group injected with 10 mg sulfadiazine, 4 group injected with 30 mg sulfadiazine and 5 group injected with 70 mg sulfadiazine. After hatching, the renal tissue from the newly hatched chick was harvested for histopathologic investigation and also measurement of oxidative stress parameters [the ferric reducing capacity assay, the glutathione content (GSH and the situation of lipid peroxidation (LPO] by spectrophotometer. Results Histologic examination of the renal tissue revealed that sulfadiazine induces hydropic degeneration, tubular necrosis, glomerular and tubular atrophy, formation of hyaline cast, congestion, hemorrhage, interstitial nephritis and fibrosis. Conclusions Result showed the dose-dependent administration of sulfadiazine significantly altered the histopathologic structure of renal tissues of chickens. Furthermore, the major histopathologic events in the course of sulfadiazine cytotoxicity are renal tubule epithelial cell necrosis, interstitial nephritis and fibrosis, formation of hyaline cast and congestion and hemorrhage, although sulfadiazine at dose 30 mg and 70 mg caused perturbation in antioxidant defense system by marked increase in LPO, and decrease in GSH.

  10. DIABETES ASSOCIATED OXIDATIVE STRESS AND INFLAMMATION ALTERS THE PROTECTIVE EFFECT OF OBESITY ON SURVIVAL IN CHD PATIENTS

    Directory of Open Access Journals (Sweden)

    Serpil M. Deger

    2012-06-01

    Full Text Available In contrast to the adverse outcomes of obesity in general population, increased body mass index (BMI is associated with improved survival in hemodialysis (CHD patients. The aim of this retrospective study was to evaluate the association between obesity and mortality by diabetic status among 98 maintenance CHD patients. The median follow up was 33 (19, 56 months. Mean age was 49±13 years, 66% were male and 48 % had obesity. 45% of obese subjects were diabetic. Among the subgroups of study population, survival of diabetic obese patients was significantly lower compared to non-diabetic obese subjects (p=0.007 (Figure 1. The subgroup comparisons showed that diabetic obese patients tend to have higher truncal fat percentage (p<0.001 and lower lean body mass standardized by body surface area compared to nondiabetic counterparts although difference was not statistically significance. Diabetic obese patients had higher leptin (p=0.001 and high sensitivity C-reactive protein levels (0.005. Additionally, protein thiols (P-SH were significantly decreased in diabetic obese participants (p=0.03. Although, elevated body fatness appears to be protective for CHD population, presence of overt diabetes alters this advantage by increasing inflammation and oxidative stress.fx1

  11. Exercise-induced Alteration in Brain Activity during Motor Performance under Cognitive Stress

    Science.gov (United States)

    2014-07-02

    obtained according to previous studies ( Halliday et al. 1995; Johnson & Shinohara 2012; Rosenberg et al. 1989). Perceived exertion and physiological...after exercise: a quantitative synthesis. Psychophysiology 41:563-574, 2004 Halliday DM, Rosenberg JR, Amjad AM, Breeze P, Conway BA, and Farmer SF. A...Breeze P, Brillinger DR, and Halliday DM. The Fourier approach to the identification of functional coupling between neuronal spike trains. Progress

  12. Relationship between Occupational Stress, Emotional Intelligence and Job Performance: An Empirical Study in Malaysia

    Directory of Open Access Journals (Sweden)

    Azman Ismail

    2009-10-01

    Full Text Available This study was conducted to examine the effect of emotional intelligence in the relationship between occupational stress and job performance using 104 usable questionnaires gathered from academic employees who work in private institutions of higher learning in Kuching City, Malaysia. The outcomes of testing research hypothesis using a stepwise regression analysis showed that relationship between occupational stress and emotional intelligence significantly correlated with job performance. Statistically, the result confirms that the inclusion of emotional intelligence in the analysis has mediated the effect of occupational stress on job performance in the organizational sector sample. Further, implications and discussion are elaborated.

  13. Diagnostic Methods for Predicting Performance Impairment Associated With Combat Stress

    Science.gov (United States)

    2004-12-01

    participants must mobilize additional effort to maintain safety and performance, and this additional effort may focus attention on the task, and mitigate the...pituitary-adrenocortical (HPA) axis (sometimes known as the fight-or-flight response). The HPA has an acute ’proactive! role in mobilizing energy and...features on vigilance performance and mental workload. In M.W. Scerbo & M. Mouloua (Eds.), Automation techonology and human performance: Current research

  14. The Relationship between Mental Health, Acculturative Stress, and Academic Performance in a Latino Middle School Sample

    Science.gov (United States)

    Albeg, Loren J.; Castro-Olivo, Sara M.

    2014-01-01

    This study evaluated the relationship between acculturative stress, symptoms of internalizing mental health problems, and academic performance in a sample of 94 Latino middle school students. Students reported on symptoms indicative of depression and anxiety related problems and acculturative stress. Teachers reported on students' academic…

  15. Relationship between Occupational Stress, Emotional Intelligence and Job Performance: An Empirical Study in Malaysia

    OpenAIRE

    Azman Ismail; Yeo Suh-Suh; Mohd Na’eim Ajis; Noor Faizzah Dollah

    2009-01-01

    This study was conducted to examine the effect of emotional intelligence in the relationship between occupational stress and job performance using 104 usable questionnaires gathered from academic employees who work in private institutions of higher learning in Kuching City, Malaysia. The outcomes of testing research hypothesis using a stepwise regression analysis showed that relationship between occupational stress and emotional intelligence significantly correlated with job...

  16. Monitoring Perceived Stress and Recovery in Relation to Cycling Performance in Female Athletes

    NARCIS (Netherlands)

    Otter, R. T. A.; Brink, M. S.; van der Does, H. T. D.; Lemmink, K. A. P. M.

    2016-01-01

    The purpose was to investigate perceived stress and recovery related to cycling performance of female athletes over one full year. 20 female athletes ( age, 27 +/- 8 years; VO2max, 50.3 +/- 4.6 mL center dot kg(-1) center dot min(-1)) were measured 8 times in one year to determine perceived stress a

  17. Perceived Stress, Energy Drink Consumption, and Academic Performance among College Students

    Science.gov (United States)

    Pettit, Michele L.; DeBarr, Kathy A.

    2011-01-01

    Objective: This study explored relationships regarding perceived stress, energy drink consumption, and academic performance among college students. Participants: Participants included 136 undergraduates attending a large southern plains university. Methods: Participants completed surveys including items from the Perceived Stress Scale and items to…

  18. Detecting Stress Patterns Is Related to Children's Performance on Reading Tasks

    Science.gov (United States)

    Gutierrez-Palma, Nicolas; Raya-Garcia, Manuel; Palma-Reyes, Alfonso

    2009-01-01

    This paper investigates the relationship between the ability to detect changes in prosody and reading performance in Spanish. Participants were children aged 6-8 years who completed tasks involving reading words, reading pseudowords, stressing pseudowords, and reproducing pseudoword stress patterns. Results showed that the capacity to reproduce…

  19. ORGANIZATIONAL STRESS MANAGEMENT AND APPLIED ANALYSIS OF EFFECT OF STRESS ON WORK PERFORMANCE OF İSTANBUL METROPOLITAN MUNICIPALITY EMPLOYEES

    Directory of Open Access Journals (Sweden)

    Murat KORKMAZ

    2012-06-01

    Full Text Available Stress which can be also defined as modern disease of our age creates considerably negative effects on life comfort and work performance and efficiency. These stress problems affect the individual’s socio-cultural comfort deeply like performance loss, decrease in efficiency, communication problem, physical and mental problems. In this study, an applied research was carried out on 250 employees working in Istanbul Metropolitan Municipality. The enclosed questionnaire was used in the research and participants to questionnaire were demanded to answer the questions directed to demographic and stress factor. This process lasted 4 months approximately. Questionnaire reliability and Cranach’s Alpha 964 value were obtained following the implementation. When we look at the participant distribution, 124 men and 126 women attended the application. Questionnaire data were analyzed with SPSS statistics 17 program. Some technical terms were used statistically in the analysis. Following the study, it was concluded that stress factor decreases both social life and work life quality of employees, and creates negative effect on performance and efficiency.

  20. Deployments, Stress, and Soldiers' Academic Performance

    Science.gov (United States)

    Perot, Mindy

    2012-01-01

    This study focused on identifying whether certain factors affected the academic performance of Soldiers attending an Army educational institution. Academic performance was measured by the grade percentile average of the participant upon the completion of their course of enrollment. Factors that were considered within the study through…

  1. Altered blood oxygen level-dependent signal variability in chronic post-traumatic stress disorder during symptom provocation

    Directory of Open Access Journals (Sweden)

    Ke J

    2015-07-01

    Full Text Available Jun Ke,1,* Li Zhang,2,* Rongfeng Qi,1,* Qiang Xu,1 Weihui Li,2 Cailan Hou,3 Yuan Zhong,1 Zhiqiang Zhang,1 Zhong He,4 Lingjiang Li,2,5 Guangming Lu11Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, 2Mental Health Institute, the Second Xiangya Hospital, National Technology Institute of Psychiatry, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, Changsha, 3Guangdong Academy of Medical Science, Guangdong General Hospital, Guangdong Mental Health Center, Guangzhou, 4Department of Radiology of the Second Xiangya Hospital, Central South University, Changsha, 5Shenzhen Kangning Hospital of Guangdong Province, Shenzhen, People’s Republic of China*These authors contributed equally to this workBackground: Recent research suggests that variability in brain signal provides important information about brain function in health and disease. However, it is unknown whether blood oxygen level-dependent (BOLD signal variability is altered in post-traumatic stress disorder (PTSD. We aimed to identify the BOLD signal variability changes of PTSD patients during symptom provocation and compare the brain patterns of BOLD signal variability with those of brain activation.Methods: Twelve PTSD patients and 14 age-matched controls, who all experienced a mining accident, underwent clinical assessment as well as fMRI scanning while viewing trauma-related and neutral pictures. BOLD signal variability and brain activation were respectively examined with standard deviation (SD and general linear model analysis, and compared between the PTSD and control groups. Multiple regression analyses were conducted to explore the association between PTSD symptom severity and these two brain measures across all subjects as well as in the PTSD group.Results: PTSD patients showed increased activation in the middle occipital gyrus compared with controls, and an inverse correlation was found between PTSD

  2. Relationship Between Organizational Climate, Job Stress And Job Performance Officer At State Education Department

    Directory of Open Access Journals (Sweden)

    Turiman Suandi

    2014-01-01

    Full Text Available This research aims at finding out the relationship between Organizational Climate, job stress and job performance among State Education Department (JPN officers . The focus of the research is to determeane the job performance of state education department officers, level of job stress among the officers, level of connection between organizational climate with job stress of State Education Department officers, looking at the difference in level of performance according to demographic factors and looking at the influence of organizational climate and job stress towards job performance . Research findings pertaining level of job performance showed that 75.8% of the respondents are at a high level, 23.7% respondents are at a moderate level while 0.5% respondents are at a low level. For organizational climate, findings show that 79.0% respondents are in the moderate level, 1.6 % respondents are at a highlevel and 19.4% respondents are at a low level. Findings on overall level of job stress found that as many as 92.5% respondents are at a normal job stress. Only about 7.5% respondents are at a moderate level of job stress. There is not even one respondent who are facing a high level of job stress.  In terms of the relationship between independent variables (organizational climate, job stress and dependent variable (job performance, the research findings show that there is a moderate level of positive relationship which is quite significant between organizational climate and job performance of the State Education Department officers at α = 0.01 (p < 0.01; r = 0.396.

  3. Chronic Stress Induces Structural Alterations in Splenic Lymphoid Tissue That Are Associated with Changes in Corticosterone Levels in Wistar-Kyoto Rats

    Directory of Open Access Journals (Sweden)

    María Eugenia Hernandez

    2013-01-01

    Full Text Available Major depressive disorder patients present chronic stress and decreased immunity. The Wistar-Kyoto rat (WKY is a strain in which the hypothalamic-pituitary-adrenal axis is overactivated. To determine whether chronic stress induces changes in corticosterone levels and splenic lymphoid tissue, 9-week-old male rats were subject to restraint stress (3 h daily, chemical stress (hydrocortisone treatment, 50 mg/Kg weight, mixed stress (restraint plus hydrocortisone, or control treatment (without stress for 1, 4, and 7 weeks. The serum corticosterone levels by RIA and spleens morphology were analyzed. Corticosterone levels as did the structure, size of the follicles and morphology of the parenchyma (increase in red pulp in the spleen, varied depending on time and type of stressor. These changes indicate that chronic stress alters the immune response in the spleen in WKY rats by inducing morphological changes, explaining in part the impaired immunity that develops in organisms that are exposed to chronic stress.

  4. Chronic Stress Induces Structural Alterations in Splenic Lymphoid Tissue That Are Associated with Changes in Corticosterone Levels in Wistar-Kyoto Rats

    Science.gov (United States)

    Hernandez, María Eugenia; Martinez-Mota, Lucia; Salinas, Citlaltepetl; Marquez-Velasco, Ricardo; Hernandez-Chan, Nancy G.; Morales-Montor, Jorge; Pérez-Tapia, Mayra; Streber, María L.; Granados-Camacho, Ivonne; Becerril, Enrique; Javier, Baquera-Heredia; Pavón, Lenin

    2013-01-01

    Major depressive disorder patients present chronic stress and decreased immunity. The Wistar-Kyoto rat (WKY) is a strain in which the hypothalamic-pituitary-adrenal axis is overactivated. To determine whether chronic stress induces changes in corticosterone levels and splenic lymphoid tissue, 9-week-old male rats were subject to restraint stress (3 h daily), chemical stress (hydrocortisone treatment, 50 mg/Kg weight), mixed stress (restraint plus hydrocortisone), or control treatment (without stress) for 1, 4, and 7 weeks. The serum corticosterone levels by RIA and spleens morphology were analyzed. Corticosterone levels as did the structure, size of the follicles and morphology of the parenchyma (increase in red pulp) in the spleen, varied depending on time and type of stressor. These changes indicate that chronic stress alters the immune response in the spleen in WKY rats by inducing morphological changes, explaining in part the impaired immunity that develops in organisms that are exposed to chronic stress. PMID:23533999

  5. Creatine and pyruvate prevent the alterations caused by tyrosine on parameters of oxidative stress and enzyme activities of phosphoryltransfer network in cerebral cortex of Wistar rats.

    Science.gov (United States)

    de Andrade, Rodrigo Binkowski; Gemelli, Tanise; Rojas, Denise Bertin; Bonorino, Narielle Ferner; Costa, Bruna May Lopes; Funchal, Cláudia; Dutra-Filho, Carlos Severo; Wannmacher, Clovis Milton Duval

    2015-01-01

    Tyrosine accumulates in inborn errors of tyrosine catabolism, especially in tyrosinemia type II. In this disease caused by tyrosine aminotransferase deficiency, eyes, skin, and central nervous system disturbances are found. In the present study, we investigated the chronic effect of tyrosine methyl ester (TME) and/or creatine plus pyruvate on some parameters of oxidative stress and enzyme activities of phosphoryltransfer network in cerebral cortex homogenates of 21-day-old Wistar. Chronic administration of TME induced oxidative stress and altered the activities of adenylate kinase and mitochondrial and cytosolic creatine kinase. Total sulfhydryls content, GSH content, and GPx activity were significantly diminished, while DCFH oxidation, TBARS content, and SOD activity were significantly enhanced by TME. On the other hand, TME administration decreased the activity of CK from cytosolic and mitochondrial fractions but enhanced AK activity. In contrast, TME did not affect the carbonyl content and PK activity in cerebral cortex of rats. Co-administration of creatine plus pyruvate was effective in the prevention of alterations provoked by TME administration on the oxidative stress and the enzymes of phosphoryltransfer network, except in mitochondrial CK, AK, and SOD activities. These results indicate that chronic administration of TME may stimulate oxidative stress and alter the enzymes of phosphoryltransfer network in cerebral cortex of rats. In case this also occurs in the patients affected by these disorders, it may contribute, along with other mechanisms, to the neurological dysfunction of hypertyrosinemias, and creatine and pyruvate supplementation could be beneficial to the patients.

  6. Investigating the effect of job stress and emotional intelligence on job performance

    Directory of Open Access Journals (Sweden)

    Mojtaba Rafiee

    2013-09-01

    Full Text Available Researchers and scholars of management and behavioral sciences have tried to determine effective factors, which influence on efficiency and effectiveness in order to increase organization performance and they have tried to identify factors, which create job stress. In this research, we investigate the effect of job stress on job performance through emotional, organizational and moral intelligence. The study is a descriptive-analytic one, which is based on correlation, uses survey method to gather data and they are analyzed using structural equation modeling. The population of this research includes all the personnel of Registry Organization in Arak city. The results suggest that job stress influences on job performance through organizational intelligence and moral intelligence, but job stress does not influence on job performance through emotional intelligence. Regarding research hypotheses, results and findings after analyzing obtained data suggest that job stress influences on emotional, organizational and moral intelligence, but job stress does not influence on job performance. In addition, the results show that organizational and moral intelligence influence on job performance but emotional intelligence does not influence on job performance.

  7. Desmodium gangeticum (Linn.) DC. exhibits antihypertrophic effect in isoproterenol-induced cardiomyoblasts via amelioration of oxidative stress and mitochondrial alterations.

    Science.gov (United States)

    Sankar, Vandana; Pangayarselvi, Balasubramaniam; Prathapan, Ayyappan; Raghu, Kozhiparambil Gopalan

    2013-01-01

    Cardiac hypertrophy occurs in response to increased workload, such as hypertension or valvular heart disease. Oxidative stress has been implicated in cardiac hypertrophy and in its transition to heart failure. This study was taken up with the objective to evaluate the role of oxidative stress in cardiomyoblast hypertrophy and its modulation by Desmodium gangeticum (DG) that has been traditionally used in Ayurveda, an Indian system of medicine. The methanolic root extract was analyzed for total phenolic content and tested for antioxidant potential. Hypertrophy was induced by exposing H9c2 cell line to β-adrenergic receptor agonist, isoproterenol (ISO), for 96 hours. Analyses of reactive oxygen species (ROS) generation, mitochondrial transmembrane potential ([INCREMENT]Ψm), and integrity of permeability transition were performed in ISO as well as Desmodium and ISO-cotreated cells. The results demonstrated potent free radical scavenging activity of DG. Cell line studies showed significant increase in ROS generation, dissipation of [INCREMENT]Ψm, and permeability transition pore opening in ISO-treated cells. Desmodium was found to attenuate ISO-induced hypertrophy by reduction of ROS generation, restoration of [INCREMENT]Ψm, and prevention of permeability transition pore opening. This study is the first documentation of the modulatory effect of DG on cardiac hypertrophy.

  8. Beneficial Effects of Tianeptine on Hippocampus-Dependent Long-Term Memory and Stress-Induced Alterations of Brain Structure and Function

    Directory of Open Access Journals (Sweden)

    Carmen Muñoz

    2010-10-01

    Full Text Available Tianeptine is a well-described antidepressant which has been shown to prevent stress from producing deleterious effects on brain structure and function. Preclinical studies have shown that tianeptine blocks stress-induced alterations of neuronal morphology and synaptic plasticity. Moreover, tianeptine prevents stress from impairing learning and memory, and, importantly, demonstrates memory-enhancing properties in the absence of stress. Recent research has indicated that tianeptine works by normalizing glutamatergic neurotransmission, a mechanism of action that may underlie its effectiveness as an antidepressant. These findings emphasize the value in focusing on the mechanisms of action of tianeptine, and specifically, the glutamatergic system, in the development of novel pharmacotherapeutic strategies in the treatment of depression.

  9. Inhibitor of Phosphodiestearse-4 improves memory deficits, oxidative stress, neuroinflammation and neuropathological alterations in mouse models of dementia of Alzheimer's Type.

    Science.gov (United States)

    Kumar, Amit; Singh, Nirmal

    2017-04-01

    The study investigates the potential of Rolipram a phosphodiesterase-4 inhibitor in cognitive deficits induced by streptozotocin (STZ, 3mg/kg intracerebroventricularly) and natural ageing in mice. Morris water maze (MWM) test was employed to evaluate learning and memory of the animals. Extent of oxidative stress was measured by estimating the levels of brain glutathione (GSH) and thiobarbituric acid reactive species (TBARS). Brain acetylcholinestrase (AChE) activity was also estimated. The brain activity of myeloperoxidase (MPO) was measured as a marker of inflammation. STZ and ageing results in marked decline in MWM performance of the animals, reflecting impairment of learning and memory. STZ treated mice and aged mice exhibited a marked accentuation of AChE activity, TBARS and MPO activity along with fall in GSH level. Further the stained micrographs of STZ treated mice and aged mice indicate pathological changes, severe neutrophilic infiltration and amyloid deposition. Rolipram treatment significantly attenuated STZ induced and age related memory deficits, biochemical and histopathological alterations. The findings demonstrate the potential of Rolipram in memory dysfunctions which may probably be attributed to its anti-cholinesterase, anti-amyloid, anti-oxidative and anti-inflammatory effects. The study concludes that PDE-4 can be explored as a potential therapeutic target in dementia.

  10. Plasma omega 3 polyunsaturated fatty acid status and monounsaturated fatty acids are altered by chronic social stress and predict endocrine responses to acute stress in titi monkeys

    Science.gov (United States)

    Disturbances in fatty acid (FA) metabolism may link chronic psychological stress, endocrine responsiveness, and psychopathology. Therefore, lipid metabolome-wide responses and their relationships with endocrine (cortisol; insulin; adiponectin) responsiveness to acute stress (AS) were assessed in a ...

  11. Stress among Medical Students and Its Association with Substance Use and Academic Performance

    OpenAIRE

    Leta Melaku; Andualem Mossie; Alemayehu Negash

    2015-01-01

    Background. Chronic stress among medical students affects academic performance of students and leads to depression, substance use, and suicide. There is, however, a shortage of such research evidence in Ethiopia. Objective. We aimed to estimate the prevalence and severity of stress and its association with substance use and academic performance among medical students. Methods. A cross-sectional survey was conducted on a sample of 329 medical students at Jimma University. Data were collected u...

  12. Relationship between Occupational Stress, Emotional Intelligence and Job Performance: An Empirical Study in Malaysia

    OpenAIRE

    Azman Ismail; Yeo Suh-Suh; Mohd Na’eim Ajis,; Noor Faizzah Dollah

    2009-01-01

    This study was conducted to examine the effect of emotional intelligence in the relationship between occupational stress and job performance using 104 usable questionnaires gathered from academic employees who work in private institutions of higher learning in Kuching City, Malaysia. The outcomes of testing research hypothesis using a stepwise regression analysis showed that relationship between occupational stress and emotional intelligence significantly correlated with job performance. Stat...

  13. Investigating the effect of job stress and emotional intelligence on job performance

    OpenAIRE

    Mojtaba Rafiee; Hojat Kazemi; Mustafa Alimiri

    2013-01-01

    Researchers and scholars of management and behavioral sciences have tried to determine effective factors, which influence on efficiency and effectiveness in order to increase organization performance and they have tried to identify factors, which create job stress. In this research, we investigate the effect of job stress on job performance through emotional, organizational and moral intelligence. The study is a descriptive-analytic one, which is based on correlation, uses survey method to ga...

  14. Identifying blood biomarkers and physiological processes that distinguish humans with superior performance under psychological stress.

    Directory of Open Access Journals (Sweden)

    Amanda M Cooksey

    Full Text Available BACKGROUND: Attrition of students from aviation training is a serious financial and operational concern for the U.S. Navy. Each late stage navy aviator training failure costs the taxpayer over $1,000,000 and ultimately results in decreased operational readiness of the fleet. Currently, potential aviators are selected based on the Aviation Selection Test Battery (ASTB, which is a series of multiple-choice tests that evaluate basic and aviation-related knowledge and ability. However, the ASTB does not evaluate a person's response to stress. This is important because operating sophisticated aircraft demands exceptional performance and causes high psychological stress. Some people are more resistant to this type of stress, and consequently better able to cope with the demands of naval aviation, than others. METHODOLOGY/PRINCIPAL FINDINGS: Although many psychological studies have examined psychological stress resistance none have taken advantage of the human genome sequence. Here we use high-throughput -omic biology methods and a novel statistical data normalization method to identify plasma proteins associated with human performance under psychological stress. We identified proteins involved in four basic physiological processes: innate immunity, cardiac function, coagulation and plasma lipid physiology. CONCLUSIONS/SIGNIFICANCE: The proteins identified here further elucidate the physiological response to psychological stress and suggest a hypothesis that stress-susceptible pilots may be more prone to shock. This work also provides potential biomarkers for screening humans for capability of superior performance under stress.

  15. Behavioral and molecular neuroepigenetic alterations in prenatally stressed mice: relevance for the study of chromatin remodeling properties of antipsychotic drugs

    Science.gov (United States)

    Dong, E; Tueting, P; Matrisciano, F; Grayson, D R; Guidotti, A

    2016-01-01

    We have recently reported that mice born from dams stressed during pregnancy (PRS mice), in adulthood, have behavioral deficits reminiscent of behaviors observed in schizophrenia (SZ) and bipolar (BP) disorder patients. Furthermore, we have shown that the frontal cortex (FC) and hippocampus of adult PRS mice, like that of postmortem chronic SZ patients, are characterized by increases in DNA-methyltransferase 1 (DNMT1), ten-eleven methylcytosine dioxygenase 1 (TET1) and exhibit an enrichment of 5-methylcytosine (5MC) and 5-hydroxymethylcytosine (5HMC) at neocortical GABAergic and glutamatergic gene promoters. Here, we show that the behavioral deficits and the increased 5MC and 5HMC at glutamic acid decarboxylase 67 (Gad1), reelin (Reln) and brain-derived neurotrophic factor (Bdnf) promoters and the reduced expression of the messenger RNAs (mRNAs) and proteins corresponding to these genes in FC of adult PRS mice is reversed by treatment with clozapine (5 mg kg−1 twice a day for 5 days) but not by haloperidol (1 mg kg−1 twice a day for 5 days). Interestingly, clozapine had no effect on either the behavior, promoter methylation or the expression of these mRNAs and proteins when administered to offspring of nonstressed pregnant mice. Clozapine, but not haloperidol, reduced the elevated levels of DNMT1 and TET1, as well as the elevated levels of DNMT1 binding to Gad1, Reln and Bdnf promoters in PRS mice suggesting that clozapine, unlike haloperidol, may limit DNA methylation by interfering with DNA methylation dynamics. We conclude that the PRS mouse model may be useful preclinically in screening for the potential efficacy of antipsychotic drugs acting on altered epigenetic mechanisms. Furthermore, PRS mice may be invaluable for understanding the etiopathogenesis of SZ and BP disorder and for predicting treatment responses at early stages of the illness allowing for early detection and remedial intervention. PMID:26756904

  16. Growth at elevated ozone or elevated carbon dioxide concentration alters antioxidant capacity and response to acute oxidative stress in soybean (Glycine max)

    Energy Technology Data Exchange (ETDEWEB)

    Gillespie, K.M.; Rogers, A.; Ainsworth, E. A.

    2011-01-31

    Soybeans (Glycine max Merr.) were grown at elevated carbon dioxide concentration ([CO{sub 2}]) or chronic elevated ozone concentration ([O{sub 3}]; 90 ppb), and then exposed to an acute O{sub 3} stress (200 ppb for 4 h) in order to test the hypothesis that the atmospheric environment alters the total antioxidant capacity of plants, and their capacity to respond to an acute oxidative stress. Total antioxidant metabolism, antioxidant enzyme activity, and antioxidant transcript abundance were characterized before, immediately after, and during recovery from the acute O{sub 3} treatment. Growth at chronic elevated [O{sub 3}] increased the total antioxidant capacity of plants, while growth at elevated [CO{sub 2}] decreased the total antioxidant capacity. Changes in total antioxidant capacity were matched by changes in ascorbate content, but not phenolic content. The growth environment significantly altered the pattern of antioxidant transcript and enzyme response to the acute O{sub 3} stress. Following the acute oxidative stress, there was an immediate transcriptional reprogramming that allowed for maintained or increased antioxidant enzyme activities in plants grown at elevated [O{sub 3}]. Growth at elevated [CO{sub 2}] appeared to increase the response of antioxidant enzymes to acute oxidative stress, but dampened and delayed the transcriptional response. These results provide evidence that the growth environment alters the antioxidant system, the immediate response to an acute oxidative stress, and the timing over which plants return to initial antioxidant levels. The results also indicate that future elevated [CO{sub 2}] and [O{sub 3}] will differentially affect the antioxidant system.

  17. Incubation temperature alters thermal preference and response to heat stress of broiler chickens along the rearing phase.

    Science.gov (United States)

    Morita, V S; Almeida, V R; Matos Junior, J B; Vicentini, T I; van den Brand, H; Boleli, I C

    2016-08-01

    The current study aimed to investigate whether embryonic temperature manipulation may alter thermal preference throughout the rearing phase of broiler chickens and how this manipulation may affect response to thermal challenge, metabolism, growth rate and feed intake rate. Eggs were exposed to a constant incubation temperature [machine temperatures: 36°C (Low), 37.5°C (Control), and 39°C (High); eggshell temperature of 37.4 ± 0.08°C, 37.8 ± 0.15°C, and 38.8 ± 0.33°C, respectively] from d 13 till hatching. Low treatment chickens showed lower plasma T3 and GH levels at d 1 of age and lower T3 level at d 42 of age compared to the Control treatment. Preferred ambient, rectal temperature, T4 level, growth rate, food intake rate, and response to thermal challenge were not altered in these chickens. On the other hand, High-treatment chickens exhibited high preferred ambient temperature and rectal temperature during the first 2 wk post-hatch, lower plasma T3 level at d 21 and 42 and a delayed increase in respiratory movement in response to thermal challenge compared to the Control treatment. However, chickens subjected to the Control and High treatments did not differ in T4 and GH level and performance. We conclude that exposure to high temperature during late embryonic development has long-lasting effects on the thermoregulatory system of broiler chickens by affecting the heat tolerance of these chickens. Moreover, the preferred ambient temperature of the chickens from heat-treated eggs correspond to those recommended for the strain under study, whereas for the cold-treated and control-chickens it was 1°C below, indicating that incubation temperature might have consequences on the ambient temperature chickens require during the rearing phase.

  18. Stress-induced cortisol secretion impairs detection performance in x-ray baggage screening for hidden weapons by screening novices.

    Science.gov (United States)

    Thomas, Livia; Schwaninger, Adrian; Heimgartner, Nadja; Hedinger, Patrik; Hofer, Franziska; Ehlert, Ulrike; Wirtz, Petra H

    2014-09-01

    Aviation security strongly depends on screeners' performance in the detection of threat objects in x-ray images of passenger bags. We examined for the first time the effects of stress and stress-induced cortisol increases on detection performance of hidden weapons in an x-ray baggage screening task. We randomly assigned 48 participants either to a stress or a nonstress group. The stress group was exposed to a standardized psychosocial stress test (TSST). Before and after stress/nonstress, participants had to detect threat objects in a computer-based object recognition test (X-ray ORT). We repeatedly measured salivary cortisol and X-ray ORT performance before and after stress/nonstress. Cortisol increases in reaction to psychosocial stress induction but not to nonstress independently impaired x-ray detection performance. Our results suggest that stress-induced cortisol increases at peak reactivity impair x-ray screening performance.

  19. Psychological and psychobiological stress in the relationship between basic cognitive function and school performance

    Directory of Open Access Journals (Sweden)

    Eugenia Fernández-Martín

    2015-01-01

    Full Text Available This study analyses the role played by daily stress, assessed through self-report and at the psychobiological level, in relation to basic cognitive function when predicting school performance. The sample comprised 100 schoolchildren (55 girls and 45 boys, age range 8 to 11 years from a state school in the city of Malaga (Spain. Daily stress was assessed through the Children's Daily Stress Inventory (IIEC m Spanish; Tnanes et al., 2009. Psychobiological stress was measured through the cortisol/DHEAS ratio, derived from saliva samples taken in the morning on two consecutive days. Basic cognitive skills were assessed by means of the Computerized Cognitive Assessment System (CDR battery; Wesnes et al., 2003, 2000. Finally, the measure of school performance was the mean value of the final grades recorded in the child's school report. In addition to descriptive and correlational statistical analyses, multiple regression analyses were conducted in order to assess the model. The results show that children's daily stress self-reported contributes to predict school performance, and has proven to be more influential than basic cognitive function when it comes to predict school performance. Therefore, in order to achieve good school performance, a pupil not only requires good basic cognitive function, but must also present low levels of self-reported daily stress. These findings suggest a new way of explaining and predicting school failure.

  20. New insights into the regulation of aquaporins by the arbuscular mycorrhizal symbiosis in maize plants under drought stress and possible implications for plant performance.

    Science.gov (United States)

    Bárzana, Gloria; Aroca, Ricardo; Bienert, Gerd Patrick; Chaumont, François; Ruiz-Lozano, Juan Manuel

    2014-04-01

    The relationship between modulation by arbuscular mycorrhizae (AM) of aquaporin expression in the host plant and changes in root hydraulic conductance, plant water status, and performance under stressful conditions is not well known. This investigation aimed to elucidate how the AM symbiosis modulates the expression of the whole set of aquaporin genes in maize plants under different growing and drought stress conditions, as well as to characterize some of these aquaporins in order to shed further light on the molecules that may be involved in the mycorrhizal responses to drought. The AM symbiosis regulated a wide number of aquaporins in the host plant, comprising members of the different aquaporin subfamilies. The regulation of these genes depends on the watering conditions and the severity of the drought stress imposed. Some of these aquaporins can transport water and also other molecules which are of physiological importance for plant performance. AM plants grew and developed better than non-AM plants under the different conditions assayed. Thus, for the first time, this study relates the well-known better performance of AM plants under drought stress to not only the water movement in their tissues but also the mobilization of N compounds, glycerol, signaling molecules, or metalloids with a role in abiotic stress tolerance. Future studies should elucidate the specific function of each aquaporin isoform regulated by the AM symbiosis in order to shed further light on how the symbiosis alters the plant fitness under stressful conditions.

  1. Enhancing performance and reducing stress in sports technological advances

    CERN Document Server

    Ivancevic, Tijana; Greenberg, Ronald

    2015-01-01

    This book is designed to help athletes and individuals interested in high sports performance in their journey towards the perfection of human sports abilities and achievements. It has two main goals: accelerating the acquisition of motor skills and preparing and vigilantly reducing the recovery time after training and competition. The Diamond Sports Protocol (DSP) presents state-of-the-art techniques for current sport and health technologies, particularly neuromuscular electrical stimulation (Sports Wave), oxygen infusion (Oxy Sports), infrared (Sports Infrared Dome) and lactic acid cleaning (Turbo Sports). The book suggest DSP as an essential part of every future athlete's training, competition and health maintenance. The book is for everyone interested in superior sports performance, fast and effective rehabilitation from training and competition and sports injury prevention.

  2. Personal and Job Related Predictors of Teacher Stress and Job Performance among School Teachers

    Directory of Open Access Journals (Sweden)

    Rubina Hanif

    2011-12-01

    Full Text Available The present study was conducted to find out role of personal and job related variables in teacher stress and job performance of school teachers. Furthermore, levels and sources of stress and their relationship with job performance among teachers were also explored. The measures used in this study were indigenously developed i.e., Teacher Stress Inventory (TSI-Urdu, Teachers Job Performance Scale and personal and job related Information sheet. Two independent samples were selected from Government and Private Schools of Islamabad (Pakistan. Sample I was comprised of 400 teachers (men and women from Primary and secondary schools. For the evaluation of teachers’ job performance another sample of 1200 students from the classes of teachers of sample I was selected. Three students were randomly selected from each teacher’s class. The students were requested to evaluate their respective teachers’ job performance. The findings revealed that negative significant relationship exists between teachers stress and job performance. The step-wise regression analysis revealed school system, gender, job experience, number of family members, and number of students as significant predictors of teacher stress and gender, school system, family members, job experience and age as significant predictors of teachers’ job performance.

  3. Stress among Medical Students and Its Association with Substance Use and Academic Performance

    Directory of Open Access Journals (Sweden)

    Leta Melaku

    2015-01-01

    Full Text Available Background. Chronic stress among medical students affects academic performance of students and leads to depression, substance use, and suicide. There is, however, a shortage of such research evidence in Ethiopia. Objective. We aimed to estimate the prevalence and severity of stress and its association with substance use and academic performance among medical students. Methods. A cross-sectional survey was conducted on a sample of 329 medical students at Jimma University. Data were collected using the General Health Questionnaire (GHQ-12, Medical Students Stress Questionnaire (MSSQ-20, and Drug Abuse Surveillance Test (DAST. Data were analyzed using SPSS version 20.0. Logistic regression analysis and Student’s t-test were applied. Results. The mean age of the respondents was 23.02 (SD = 2.074 years. The current prevalence of stress was 52.4%. Academic related stressor domain was the main source of stress among 281 (88.6% students. Stress was significantly associated with khat chewing [AOR = 3.03, 95% CI (1.17, 7.85], smoking [AOR = 4.55, 95% CI (1.05, 19.77], and alcohol intake [AOR = 1.93, 95% CI (1.03, 3.60]. The prevalence of stress was high during the initial three years of study. Stress was significantly (p=0.001 but negatively (r=-0.273 correlated with academic achievement. Conclusion. Stress was a significant problem among medical students and had a negative impact on their academic performance. Year of study, income, and substance use were associated with stress. Counseling and awareness creation are recommended.

  4. Water Stress and Foliar Boron Application Altered Cell Wall Boron and Seed Nutrition in Near-Isogenic Cotton Lines Expressing Fuzzy and Fuzzless Seed Phenotypes.

    Directory of Open Access Journals (Sweden)

    Nacer Bellaloui

    Full Text Available Our previous research, conducted under well-watered conditions without fertilizer application, showed that fuzziness cottonseed trait resulted in cottonseed nutrition differences between fuzzy (F and fuzzless (N cottonseed. Under water stress conditions, B mobility is further limited, inhibiting B movement within the plant, affecting seed nutrition (quality. Therefore, we hypothesized that both foliar B and water stress can affect B mobility, altering cottonseed protein, oil, and mineral nutrition. The objective of the current research was to evaluate the effects of the fuzziness seed trait on boron (B and seed nutrition under water stress and foliar B application using near-isogenic cotton lines (NILs grown in a repeated greenhouse experiment. Plants were grown under-well watered conditions (The soil water potential was kept between -15 to -20 kPa, considered field capacity and water stress conditions (soil water potential between -100 and -150 kPa, stressed conditions. Foliar B was applied at a rate of 1.8 kg B ha(-1 as H3BO3. Under well-watered conditions without B the concentrations of seed oil in N lines were higher than in F lines, and seed K and N levels were lower in N lines than in F lines. Concentrations of K, N, and B in leaves were higher in N lines than in F lines, opposing the trend in seeds. Water-stress resulted in higher seed protein concentrations, and the contribution of cell wall (structural B to the total B exceeded 90%, supporting the structural role of B in plants. Foliar B application under well-watered conditions resulted in higher seed protein, oil, C, N, and B in only some lines. This research showed that cottonseed nutrition differences can occur due to seed fuzziness trait, and water stress and foliar B application can alter cottonseed nutrition.

  5. Water Stress and Foliar Boron Application Altered Cell Wall Boron and Seed Nutrition in Near-Isogenic Cotton Lines Expressing Fuzzy and Fuzzless Seed Phenotypes.

    Science.gov (United States)

    Bellaloui, Nacer; Turley, Rickie B; Stetina, Salliana R

    2015-01-01

    Our previous research, conducted under well-watered conditions without fertilizer application, showed that fuzziness cottonseed trait resulted in cottonseed nutrition differences between fuzzy (F) and fuzzless (N) cottonseed. Under water stress conditions, B mobility is further limited, inhibiting B movement within the plant, affecting seed nutrition (quality). Therefore, we hypothesized that both foliar B and water stress can affect B mobility, altering cottonseed protein, oil, and mineral nutrition. The objective of the current research was to evaluate the effects of the fuzziness seed trait on boron (B) and seed nutrition under water stress and foliar B application using near-isogenic cotton lines (NILs) grown in a repeated greenhouse experiment. Plants were grown under-well watered conditions (The soil water potential was kept between -15 to -20 kPa, considered field capacity) and water stress conditions (soil water potential between -100 and -150 kPa, stressed conditions). Foliar B was applied at a rate of 1.8 kg B ha(-1) as H3BO3. Under well-watered conditions without B the concentrations of seed oil in N lines were higher than in F lines, and seed K and N levels were lower in N lines than in F lines. Concentrations of K, N, and B in leaves were higher in N lines than in F lines, opposing the trend in seeds. Water-stress resulted in higher seed protein concentrations, and the contribution of cell wall (structural) B to the total B exceeded 90%, supporting the structural role of B in plants. Foliar B application under well-watered conditions resulted in higher seed protein, oil, C, N, and B in only some lines. This research showed that cottonseed nutrition differences can occur due to seed fuzziness trait, and water stress and foliar B application can alter cottonseed nutrition.

  6. COMT Val158Met genotype selectively alters prefrontal [18F]fallypride displacement and subjective feelings of stress in response to a psychosocial stress challenge.

    Directory of Open Access Journals (Sweden)

    Dennis Hernaus

    Full Text Available Catechol-O-methyltransferase (COMT plays an essential role in degradation of extracellular dopamine in prefrontal regions of the brain. Although a polymorphism in this gene, COMT Val(158Met, affects human behavior in response to stress little is known about its effect on dopaminergic activity associated with the human stress response, which may be of interest for stress-related psychiatric disorders such as psychosis. We aimed to investigate the effect of variations in COMT genotype on in vivo measures of stress-induced prefrontal cortex (PFC dopaminergic processing and subjective stress responses. A combined sample of healthy controls and healthy first-degree relatives of psychosis patients (n = 26 were subjected to an [(18F]fallypride Positron Emission Tomography scan. Psychosocial stress during the scan was induced using the Montreal Imaging Stress Task and subjective stress was assessed every 12 minutes. Parametric t-maps, generated using the linear extension of the simplified reference region model, revealed an effect of COMT genotype on the spatial extent of [(18F]fallypride displacement. Detected effects of exposure to psychosocial stress were unilateral and remained restricted to the left superior and right inferior frontal gyrus, with Met-hetero- and homozygotes showing less [(18F]fallypride displacement than Val-homozygotes. Additionally, Met-hetero- and homozygotes experienced larger subjective stress responses than Val-homozygotes. The direction of the effects remained the same when the data was analyzed separately for controls and first-degree relatives. The human stress response may be mediated in part by COMT-dependent dopaminergic PFC activity, providing speculation for the neurobiology underlying COMT-dependent differences in human behaviour following stress. Implications of these results for stress-related psychopathology and models of dopaminergic functioning are discussed.

  7. Early-life stress exposure associated with altered prefrontal resting-state fMRI connectivity in young children

    Directory of Open Access Journals (Sweden)

    Özlem Ece Demir-Lira

    2016-06-01

    Full Text Available Early-life stress (ELS exposure is associated with adverse outcomes across the lifespan. We examined the relation of ELS exposure to resting-state fMRI in children ages 4–7 years. ELS in the first years of life, but not concurrent, was associated with higher regional homogeneity of resting-state fMRI in the left lateral frontal cortex. Resting-state fMRI functional connectivity analyses showed that the region of left lateral frontal cortex demonstrating heightened regional homogeneity associated with ELS was negatively correlated with right temporal/parahippocampal areas. Moreover, higher regional homogeneity in the left lateral frontal cortex and its negative coupling with the right middle temporal/parahippocampal areas were associated with poorer performance on a reversal-learning task performed outside the scanner. Association of ELS exposure with regional homogeneity was independent of other early adversities. These findings suggest that ELS may influence the development of cognitive control in the lateral prefrontal cortex and its interactions with temporal cortex.

  8. Context-dependent enhancement of declarative memory performance following acute psychosocial stress.

    Science.gov (United States)

    Smeets, T; Giesbrecht, T; Jelicic, M; Merckelbach, H

    2007-09-01

    Studies on how acute stress affects learning and memory have yielded inconsistent findings, with some studies reporting enhancing effects while others report impairing effects. Recently, Joëls et al. [Joëls, M., Pu, Z., Wiegert, O., Oitzl, M.S., Krugers, H.J., 2006. Learning under stress: how does it work? Trends in Cognitive Sciences, 10, 152-158] argued that stress will enhance memory only when the memory acquisition phase and stressor share the same spatiotemporal context (i.e., context-congruency). The current study tested this hypothesis by looking at whether context-congruent stress enhances declarative memory performance. Undergraduates were assigned to a personality stress group (n=16), a memory stress group (n=18), or a no-stress control group (n=18). While being exposed to the acute stressor or a control task, participants encoded personality- and memory-related words and were tested for free recall 24h later. Relative to controls, stress significantly enhanced recall of context-congruent words, but only for personality words. This suggests that acute stress may strengthen the consolidation of memory material when the stressor matches the to-be-remembered information in place and time.

  9. Environmental heat stress enhances mental fatigue during sustained attention task performing: evidence from an ASL perfusion study.

    Science.gov (United States)

    Qian, Shaowen; Li, Min; Li, Guoying; Liu, Kai; Li, Bo; Jiang, Qingjun; Li, Li; Yang, Zhen; Sun, Gang

    2015-03-01

    This study was to investigate the potential enhancing effect of heat stress on mental fatigue progression during sustained attention task using arterial spin labeling (ASL) imaging. Twenty participants underwent two thermal exposures in an environmental chamber: normothermic (NT) condition (25°C, 1h) and hyperthermic (HT) condition (50°C, 1h). After thermal exposure, they performed a twenty-minute psychomotor vigilance test (PVT) in the scanner. Behavioral analysis revealed progressively increasing subjective fatigue ratings and reaction time as PVT progressed. Moreover, heat stress caused worse performance. Perfusion imaging analyses showed significant resting-state cerebral blood flow (CBF) alterations after heat exposure. Specifically, increased CBF mainly gathered in thalamic-brainstem area while decreased CBF predominantly located in fronto-parietal areas, anterior cingulate cortex, posterior cingulate cortex, and medial frontal cortex. More importantly, diverse CBF distributions and trend of changes between both conditions were observed as the fatigue level progressed during subsequent PVT task. Specifically, higher CBF and enhanced rising trend were presented in superior parietal lobe, precuneus, posterior cingulate cortex and anterior cingulate cortex, while lower CBF or inhibited rising trend was found in dorsolateral frontal cortex, medial frontal cortex, inferior parietal lobe and thalamic-brainstem areas. Furthermore, the decrease of post-heat resting-state CBF in fronto-parietal cortex was correlated with subsequent slower reaction time, suggesting prior disturbed resting-state CBF might be indicator of performance potential and fatigue level in following task. These findings may provide proof for such a view: heat stress has a potential fatigue-enhancing effect when individual is performing highly cognition-demanding attention task.

  10. Stress and Cognitive Reserve as independent factors of neuropsychological performance in healthy elderly

    Directory of Open Access Journals (Sweden)

    João Carlos Centurion Cabral

    Full Text Available Abstract Exposure to high levels of cortisol and self-reported stress, as well as cognitive reserve, have been linked to Alzheimer’s disease pathology. However, there are no studies on the interaction of these variables. The present study aims to assess the associations of measures of cortisol, self-reported stress, and cognitive reserve with neuropsychological performance in healthy elderly people; besides, to test the interactions between these variables. Cross-sectional analyzes were conducted using data on stress, cognitive reserve and clinical conditions in 145 healthy elderly adults. A neuropsychological battery was used to assess executive functions, verbal memory and processing speed. Measurement of salivary cortisol at the circadian nadir was taken. A negative association between different stress measures and performance on tasks of memory, executive functions and processing speed was observed. Elderly people with higher cognitive reserve showed superior performance on all neuropsychological measures. No significant interaction between stress and cognitive reserve to neuropsychological performance was observed. These results indicate that older adults with high levels of stress and reduced cognitive reserve may be more susceptible to cognitive impairment.

  11. Neuroprotection via Reduction in Stress: Altered Menstrual Patterns as a Marker for Stress and Implications for Long-Term Neurologic Health in Women

    Science.gov (United States)

    Prokai, David; Berga, Sarah L.

    2016-01-01

    Individuals under chronic psychological stress can be difficult to identify clinically. There is often no outwardly visible phenotype. Chronic stress of sufficient magnitude not only impacts reproductive function, but also concomitantly elicits a constellation of neuroendocrine changes that may accelerate aging in general and brain aging in particular. Functional hypothalamic amenorrhea, a phenotypically recognizable form of stress, is due to stress-induced suppression of endogenous gonadotropin-releasing hormone secretion. Reversal of functional hypothalamic amenorrhea includes restoration of ovulatory ovarian function and fertility and amelioration of hypercortisolism and hypothyroidism. Taken together, recovery from functional hypothalamic amenorrhea putatively offers neuroprotection and ameliorates stress-induced premature brain aging and possibly syndromic Alzheimer’s disease. Amenorrhea may be viewed as a sentinel indicator of stress. Hypothalamic hypogonadism is less clinically evident in men and the diagnosis is difficult to establish. Whether there are other sex differences in the impact of stress on brain aging remains to be better investigated, but it is likely that both low estradiol from stress-induced anovulation and low testosterone from stress-induced hypogonadism compromise brain health. PMID:27999413

  12. Evidences for structural basis of altered ascorbate peroxidase activity in cadmium-stressed rice plants exposed to jasmonate.

    Science.gov (United States)

    Singh, Indra; Shah, Kavita

    2014-04-01

    Binding interactions of cadmium (Cd) with rice ascorbate peroxidase (OsAPX) in presence or absence of jasmonate was examined in-silico. OsAPX is a 250 amino acid long protein with 90 % sequence similarity to soybean-APX. The 3D model of OsAPX obtained by homology modeling using soybean APX (PDBID:1OAF) as template was associated with -15975.85 kJ/mol energy, 100 % residues in favoured region, verify score of 0.85, ERRAT score 89.625 and a negative ProSA graph, suggesting OsAPX model to be of good quality, robust and reliable which was submitted with Protein Model Database with PMDBID: PM0078091. The rice ascorbate peroxidase ascorbate [OsAPX-Asc] complex had a substrate binding cavity involving residues at position (30)KSCAPL(35), (167)RCH(169) and (172)R wherein ascorbate accommodated via three H-bonds involving (30)Lys at the γ-edge of heme. (169)His served as a bridge between heme-porphyrin of OsAPX and ascorbate creating a charge relay system. Cd bound in [OsAPX-Asc-Cd] complex at (29)EKSCAPL(35), a site similar to ascorbate binding site. The binding of Cd caused breaking of (169)His bridge shifting the protein conformation. Cadmium exhibited four electrostatic interactions via (29)Glu of OsAPX backbone. Docking of [OsAPX-Asc] with jasmonic acid (JA) resulted in [OsAPX-Asc-JA] complex where 4-H-bonds held JA to OsAPX in a cavity at γ-edge on the distal side of heme. The binding of [OsAPX-Asc-JA] to Cd show the metal to bind at a position other than that involved in binding of OsAPX with Cd alone. Results indicate that Cd does not replace iron or ascorbate or JA but binds to OsAPX on the surface at a separate site electrostatically. In presence of JA the interactions involved in formation of [OsAPXAsc] are restored which is otherwise altered by the presence of Cd. The formation and reformation of H-bond take place between the [OsAPX-Asc] and Cd/JA. It is the interaction between heme and ascorbate which is modulated differently in presence of Cd/JA. In absence

  13. Pectin May Hinder the Unfolding of Xyloglucan Chains during Cell Deformation: Implications of the Mechanical Performance of Arabidopsis Hypocotyls with Pectin Alterations

    Institute of Scientific and Technical Information of China (English)

    Willie Abasolo; Michaela Eder; Kazuchika Yamauchi; Nicolai Obel; Antje Reinecke; Lutz Neumetzler; John W.C. Dunlop; Gregory Mouille; Markus Pauly; Herman H(o)fte; Ingo Burgert

    2009-01-01

    Plant cell walls, like a multitude of other biological materials, are natural fiber-reinforced composite materials. Their mechanical properties are highly dependent on the interplay of the stiff fibrous phase and the soft matrix phase and on the matrix deformation itself. Using specific Arabidopsis thaliana mutants, we studied the mechanical role of the matrix assembly in primary cell walls of hypocotyls with altered xyloglucan and pectin composition. Standard microtensile tests and cyclic loading protocols were performed on rnurl hypocotyls with affected RGII borate diester cross-links and a hin-dered xyloglucan fucosylation as well as qua2 exhibiting 50% less homogalacturonan in comparison to wild-type. As a con-trol, wild-type plants (Col-0) and tour2 exhibiting a specific xyloglucan fucosylation and no differences in the pectin network were utilized. In the standard tensile tests, the ultimate stress levels (-tensile strength) of the hypocotyls of the mutants with pectin alterations (rnurl, qua2) were rather unaffected, whereas their tensile stiffness was noticeably reduced in comparison to Col-0. The cyclic loading tests indicated a stiffening of all hypocotyls after the first cycle and a plastic deformation during the first straining, the degree of which, however, was much higher for murl and qua2 hypo-cotyls. Based on the mechanical data and current cell wall models, it is assumed that folded xyloglucan chains between cellulose fibrils may tend to unfold during straining of the hypocotyls. This response is probably hindered by geometrical constraints due to pectin rigidity.

  14. Workplace Stress: Implications for Organizational Performance in a Nigerian Public University

    Directory of Open Access Journals (Sweden)

    Omotayo A. Osibanjo

    2016-09-01

    Full Text Available This study investigated the implications of workplace stress on organizational performance in a Nigerian Public University. The survey method was deployed in sampling one hundred and seventy (170 staff members of the University. The Structural Equation Modelling was adopted using AMOS to establish fitness. Results of the analyses indicate that role congruence, equity, recognition, and distance, have significant influence on organizational performance. This makes it imperative for organizations to invest necessary resources in developing strategies and interventions to reduce workplace stress. If this is achieved, there will be endless opportunities in terms of increased performance and overall sustainability.

  15. School Performance, School Segregation, and Stress-Related Symptoms: Comparing Helsinki and Stockholm

    Science.gov (United States)

    Modin, Bitte; Karvonen, Sakari; Rahkonen, Ossi; Östberg, Viveca

    2015-01-01

    This study investigates cross-cultural differences in the interrelation between school performance, school segregation, and stress-related health among 9th-grade students in the greater Stockholm and Helsinki areas. Contrary to the Swedish case, it has been proposed that school performance in Finland is largely independent of the specific school…

  16. Sodium Butyrate, a Histone Deacetylase Inhibitor, Reverses Behavioral and Mitochondrial Alterations in Animal Models of Depression Induced by Early- or Late-life Stress.

    Science.gov (United States)

    Valvassori, Samira S; Resende, Wilson R; Budni, Josiane; Dal-Pont, Gustavo C; Bavaresco, Daniela V; Réus, Gislaine Z; Carvalho, André F; Gonçalves, Cinara L; Furlanetto, Camila B; Streck, Emilio L; Quevedo, João

    2015-01-01

    The aim of the present study was to evaluate the effects of sodium butyrate on depressive-like behavior and mitochondrial alteration parameters in animal models of depression induced by maternal deprivation or chronic mild stress in Wistar rats. maternal deprivation was established by separating pups from their mothers for 3 h daily from postnatal day 1 to day 10. Chronic mild stress was established by water deprivation, food deprivation, restraint stress, isolation and flashing lights. Sodium butyrate or saline was administered twice a day for 7 days before the behavioral tests. Depressive behavior was evaluated using the forced swim test. The activity of tricarboxylic acid cycle enzymes (succinate dehydrogenase and malate dehydrogenase) and of mitochondrial chain complexes (I, II, II-III and IV) was measured in the striatum of rats. From these analyses it can be observed that sodium butyrate reversed the depressive-like behavior observed in both animal models of depression. Additionally, maternal deprivation and chronic mild stress inhibited mitochondrial respiratory chain complexes and increased the activity of tricarboxylic acid cycle enzymes. Sodium butyrate treatment reversed -maternal deprivation and chronic mild stress- induced dysfunction in the striatum of rats. In conclusion, sodium butyrate showed antidepressant effects in maternal deprivation and chronic mild stress-treated rats, and this effect can be attributed to its action on the neurochemical pathways related to depression.

  17. Early Transcriptomic Adaptation to Na2CO3 Stress Altered the Expression of a Quarter of the Total Genes in the Maize Genome and Exhibited Shared and Distinctive Profiles with NaCl and High pH Stresses

    Institute of Scientific and Technical Information of China (English)

    LiMin Zhang; XiangGuo Liu; XinNing Qu; Ying Yu; SiPing Han; Yao Dou; YaoYao Xu; HaiChun Jing; DongYun Hao

    2013-01-01

    Sodium carbonate (Na2CO3) presents a huge challenge to plants by the combined damaging effects of Naþ, high pH, and CO32-. Little is known about the cellular responses to Na2CO3 stress. In this study, the transcriptome of maize (Zea mays L. cv. B73) roots exposed to Na2CO3 stress for 5 h was compared with those of NaCl and NaOH stresses. The expression of 8,319 genes, representing over a quarter of the total number of genes in the maize genome, was altered by Na2CO3 stress, and the downregulated genes (5,232) outnumbered the upregulated genes (3,087). The effects of Na2CO3 differed from those of NaCl and NaOH, primarily by downregulating different categories of genes. Pathways commonly altered by Na2CO3, NaCl, and NaOH were enriched in phenylpropanoid biosynthesis, oxidation of unsaturated fatty acids, ATP-binding cassette (ABC) transporters, as well as the metabolism of secondary metabolites. Genes for brassinosteroid biosynthesis were specifically upregulated by Na2CO3, while genes involved in ascorbate and aldarate metabolism, protein processing in the endoplasmic reticulum and by N-glycosylation, fatty acid biosynthesis, and the circadian rhythm were downregulated. This work provides the first holistic picture of early transcriptomic adaptation to Na2CO3 stress, and highlights potential molecular pathways that could be manipulated to improve tolerance in maize.

  18. Effects of stress on auditors' organizational commitment, job satisfaction, and job performance

    OpenAIRE

    Abolghasem Masihabadi; Alireza Rajaei; Amir Shams Koloukhi; Hossein Parsian

    2015-01-01

    This study was designed to measure the effects of job stress on organizational commitment, job satisfaction, and job performance. A total of 170 questionnaires were distributed among auditors in the audit institutions in Tehran and Mashhad. To test the hypotheses, path analysis and structural equation and regression were employed. The results showed that the job stress had a negative effect on organizational commitment and job satisfaction and there was not a negative correlation between job...

  19. Monitoring Perceived Stress and Recovery in Relation to Cycling Performance in Female Athletes

    NARCIS (Netherlands)

    Otter, R T A; Brink, M S; van der Does, H T D; Lemmink, K A P M

    2015-01-01

    The purpose was to investigate perceived stress and recovery related to cycling performance of female athletes over one full year. 20 female athletes (age, 27±8 years; ˙VO2max, 50.3±4.6 mL·kg(-1)·min(-1)) were measured 8 times in one year to determine perceived stress and recovery (RESTQ-Sport) in r

  20. Increased stress responsivity in schizotypy leads to diminished spatial working memory performance.

    Science.gov (United States)

    Smith, Nathan T; Lenzenweger, Mark F

    2013-10-01

    Past research has emphasized the association between stress and the manifestation of psychotic symptoms in schizophrenia, yet relatively little is known about how environmental stressors affect cognitive processes in the illness. The present study sought to determine the effects of a loud noise stressor on a range of cognitive tasks, including spatial working memory (SWM), short-term visual memory, and sustained visual attention. Twenty-nine (29) schizotypic subjects and 45 controls performed the cognitive tasks across four waves of data collection: baseline, a noisy stress condition, and two follow-up conditions. Heart rate (BPM) was measured at each wave and subjective ratings of stress were collected in response to the loud noise stressor. Schizotypic subjects exhibited significantly greater increases in BPM during the loud, noisy stressor in comparison to controls. Additionally, schizotypic subjects' subjective ratings of stress in response to the loud noise were significantly greater than the controls' ratings. As hypothesized a priori, schizotypic subjects experienced significant decreases in SWM from baseline to the noisy stress condition in comparison to controls. Performance on non-SWM cognitive tasks did not significantly differ during the noisy stress condition and SWM performance did not significantly differ during noise-free conditions. Results from the present study highlight SWM as being particularly susceptible to loud noise stressors in a schizotypic population. Although the source of the induced impairment is not clear, one possibility is that the encoding stage of SWM was negatively affected by the loud noise.

  1. Maternal consumption of organic trace minerals alters calf systemic and neutrophil mRNA and microRNA indicators of inflammation and oxidative stress.

    Science.gov (United States)

    Jacometo, Carolina B; Osorio, Johan S; Socha, Michael; Corrêa, Marcio N; Piccioli-Cappelli, Fiorenzo; Trevisi, Erminio; Loor, Juan J

    2015-11-01

    Organic trace mineral (ORG) supplementation to dairy cows in substitution of sulfate (INO) sources has been associated with improvement in immune function during stressful states such as the peripartal period. However, the effect of supplemental ORG during pregnancy on the neonatal calf is unknown. Therefore, our aim was to investigate the effects of ORG supplementation during late pregnancy on the immune system and growth of the neonatal calf. Of specific interest was the evaluation of inflammation-related microRNA (miRNA) and target gene expression in blood neutrophils as indicators of possible nutritional programming. Forty multiparous cows were supplemented for 30d prepartum with 40 mg/kg of Zn, 20 mg/kg of Mn, 5 mg/kg of Cu, and 1mg/kg of Co from either organic (ORG) or sulfate (INO) sources (total diet contained supplemental 75 mg/kg of Zn, 65 mg/kg of Mn, 11 mg/kg of Cu, and 1 mg/kg of Co, and additional Zn, Mn, and Co provided by sulfates), and a subset of calves (n=8/treatment) was used for blood immunometabolic marker and polymorphonuclear leukocyte (PMNL) gene and miRNA expression analyses. Samples were collected at birth (before colostrum feeding), 1d (24 h after colostrum intake), and 7 and 21d of age. Data were analyzed as a factorial design with the PROC MIXED procedure of SAS. No differences were detected in BW, but maternal ORG tended to increase calf withers height. Calves from INO-fed cows had greater concentrations of blood glucose, GOT, paraoxonase, myeloperoxidase, and reactive oxygen metabolites. Antioxidant capacity also was greater in INO calves. The PMNL expression of toll-like receptor pathway genes indicated a pro-inflammatory state in INO calves, with greater expression of the inflammatory mediators MYD88, IRAK1, TRAF6, NFKB, and NFKBIA. The lower expression of miR-155 and miR-125b in ORG calves indicated the potential for maternal organic trace minerals in regulating the PMNL inflammatory response at least via alterations in mRNA and

  2. Cooling of heat-stressed cows during the dry period alters lymphocyte but not mammary gland gene expression

    Science.gov (United States)

    Heat stress (HT) during the dry period compromises mammary gland development, decreases future milk production, and impairs immune status of dairy cows. Our objective was to evaluate the effects of cooling heat-stressed cows during the dry period on gene expression of the mammary gland and lymphocyt...

  3. Progesterone regulates corticosterone elevation and alterations in spatial memory and exploratory behavior induced by stress in Wistar rats

    Directory of Open Access Journals (Sweden)

    Yolanda Diaz-Burke

    2010-02-01

    Full Text Available The hippocampus is sensitive to high levels of glucocorticoids during stress responses; it suffers biochemical and cellular changes that affect spatial memory and exploratory behavior, among others. We analyzed the influence of the neurosteroid progesterone (PROG on stress-induced changes in urinary corticosterone (CORT levels, spatial memory and exploratory behavior.Castrated adult male rats were implanted with PROG or vehicle (VEHI,and then exposed for ten days to chronic stress created by overcrowding or ultrasonic noise. PROG and CORT levels were assessed in urine using highperformanceliquid chromatography (HPLC. Implanted PROG inhibited the rise of stress-induced CORT, prevented spatial memory impairment in the Morris water maze, and eliminated increased exploratory behavior in the hole-board test. These results suggest a protective role of PROG, possibly mediated by its anxiolytic mechanisms, against corticosteroids elevation and the behavioral deficit generated by stressful situations.

  4. Universal stress protein Rv2624c alters abundance of arginine and enhances intracellular survival by ATP binding in mycobacteria

    Science.gov (United States)

    Jia, Qiong; Hu, Xinling; Shi, Dawei; Zhang, Yan; Sun, Meihao; Wang, Jianwei; Mi, Kaixia; Zhu, Guofeng

    2016-01-01

    The universal stress protein family is a family of stress-induced proteins. Universal stress proteins affect latency and antibiotic resistance in mycobacteria. Here, we showed that Mycobacterium smegmatis overexpressing M. tuberculosis universal stress protein Rv2624c exhibits increased survival in human monocyte THP-1 cells. Transcriptome analysis suggested that Rv2624c affects histidine metabolism, and arginine and proline metabolism. LC-MS/MS analysis showed that Rv2624c affects the abundance of arginine, a modulator of both mycobacteria and infected THP-1 cells. Biochemical analysis showed that Rv2624c is a nucleotide-binding universal stress protein, and an Rv2624c mutant incapable of binding ATP abrogated the growth advantage in THP-1 cells. Rv2624c may therefore modulate metabolic pathways in an ATP-dependent manner, changing the abundance of arginine and thus increasing survival in THP-1 cells. PMID:27762279

  5. Differential relations between youth internalizing/externalizing problems and cortisol responses to performance vs. interpersonal stress.

    Science.gov (United States)

    Laurent, Heidemarie; Vergara-Lopez, Chrystal; Stroud, Laura R

    2016-09-01

    Efforts to define hypothalamic-pituitary-adrenal (HPA) axis profiles conferring risk for psychopathology have yielded inconclusive results, perhaps in part due to limited assessment of the stress response. In particular, research has typically focused on HPA responses to performance tasks, while neglecting the interpersonal stressors that become salient during adolescence. In this study we investigated links between psychosocial adjustment - youth internalizing and externalizing problems, as well as competence - and HPA responses to both performance and interpersonal stressors in a normative sample of children and adolescents. Participants (n = 59) completed a set of performance (public speaking, mental arithmetic, mirror tracing) and/or interpersonal (peer rejection) tasks and gave nine saliva samples, which were assayed for cortisol. Hierarchical linear models of cortisol response trajectories in relation to child behavior checklist (CBCL) scores revealed stressor- and sex-specific associations. Whereas internalizing problems related to earlier peaking, less dynamic cortisol responses to interpersonal stress (across males and females), externalizing problems related to lower, earlier peaking and less dynamic cortisol responses to performance stress for males only, and competence-related to later peaking cortisol responses to interpersonal stress for females only. Implications for understanding contextual stress profiles underlying different forms of psychopathology are discussed.

  6. Effects of immune stress on growth performance, immunity, and cecal microflora in chickens.

    Science.gov (United States)

    Yang, X J; Li, W L; Feng, Y; Yao, J H

    2011-12-01

    Immune stress is the loss of immune homeostasis by external forces. This study investigated the effects of different types of immune stress on growth performance, immunity, and the distribution of cecal microflora in broiler chickens. In total, 540 one-day-old Cobb 500 broilers were randomly assigned to receive 1 of 5 (n = 108 birds/group) treatments: 1) no vaccination; 2) simplified vaccination, which included the infectious bronchitis vaccine (H120), the inactivated avian influenza vaccine (AI), the live vaccine strain Clone-30 of the Newcastle disease virus (NDV), and the combined inactive vaccine for infectious bursal diseases and the Newcastle disease vaccine (ND-IB); 3) normal vaccination (simplified vaccination + second dose of ND-IB, H120, and AI); 4) lipopolysaccharide (LPS) stress (normal vaccination+LPS); or 5) cyclophosphamide (CPM) stress (normal vaccination+CPM).The results showed that the average BW and average feed intake decreased significantly after treatment with LPS or CPM (P Chickens that were challenged by LPS or CPM had a lower ileal CP digestibility than that of the control group (P chickens that were treated with LPS or CPM (P chickens were higher than those in the control group chickens at 21 and 42 d of age, respectively (P stress on the microbial populations of treated birds. These data suggest that broilers with simplified vaccinations or without vaccinations can achieve the same growth performance as broilers with general vaccinations, but immune stress can break the homeostasis of cecal microflora and impair intestinal mucosal immune function.

  7. Protection against 1,2-di-methylhydrazine-induced systemic oxidative stress and altered brain neurotransmitter status by probiotic Escherichia coli CFR 16 secreting pyrroloquinoline quinone.

    Science.gov (United States)

    Pandey, Sumeet; Singh, Ashish; Chaudhari, Nirja; Nampoothiri, Laxmipriya P; Kumar, G Naresh

    2015-05-01

    Exposure to environmental pollutant 1,2-dimethylhydrazine (DMH) is attributed to systemic oxidative stress and is known to cause neurotropic effect by altering brain neurotransmitter status. Probiotics are opted as natural therapeutic against oxidative stress and also have the ability to modulate gut-brain axis. Pyrroloquinoline quinone (PQQ) is water-soluble, heat-stable antioxidant molecule. Aim of the present study was to evaluate the antioxidant efficacy of PQQ-producing probiotic E. coli CFR 16 on DMH-induced systemic oxidative damage and altered neurotransmitter status in rat brain. Adult virgin Charles Forster rats (200-250 g) were given DMH dose (25 mg/kg body weight, s.c.) for 8 weeks. Blood lipid peroxidation levels exhibited a marked increase while antioxidant enzyme activities of superoxide dismutase, catalase, glucose-6-phosphate dehydrogenase and glutathione peroxidase were found to be reduced in DMH-treated rats. Likewise, brain serotonin and norepinephrine levels displayed a significant decrease, whereas epinephrine levels demonstrated a marked increase in brain of these rats. PQQ-producing E. coli CFR 16 supplementation reduced systemic oxidative stress and also restored brain neurotransmitter status. However, E. coli CFR 16 did not show any effect on these parameters. In contrast, E. coli CFR 16:: vgb-gfp and E. coli CFR 16:: vgb-gfp vector exhibited some degree of protection again oxidative stress but they were not able to modulate neurotransmitter levels. In conclusion, continuous and sustained release of PQQ by probiotic E. coli in rat intestine ameliorates systemic oxidative stress and restored brain neurotransmitter levels.

  8. The decrease in histone methyltransferase EZH2 in response to fluid shear stress alters endothelial gene expression and promotes quiescence.

    Science.gov (United States)

    Maleszewska, Monika; Vanchin, Byambasuren; Harmsen, Martin C; Krenning, Guido

    2016-01-01

    High uniform fluid shear stress (FSS) is atheroprotective and preserves the endothelial phenotype and function through activation of downstream mediators such as MAPK7 (Erk5). Endothelial cells respond to FSS thanks to mechanotransduction. However, how the resulting signaling is integrated and resolved at the epigenetic level remains elusive. We hypothesized that Polycomb methyltransferase EZH2 is involved in the effects of FSS in human endothelial cells. We showed that FSS decreases the expression of the Polycomb methyltransferase EZH2. Despite simultaneous activation of MAPK7, MAPK7 pathway does not directly influence the transcription of EZH2. Interestingly though, the knockdown of EZH2 activates the protective MAPK7 signaling in endothelial cells, even in the absence of FSS. To understand the influence of the FSS-decreased expression of EZH2 on endothelial transcriptome, we performed RNA-seq and differential gene expression analysis. We identified candidate groups of genes dependent on both EZH2 and FSS. Among those, Gene Ontology overrepresentation analysis revealed highly significant enrichment of the cell cycle-related genes, suggesting changes in proliferation. Indeed, the depletion of EZH2 strongly inhibited endothelial proliferation, indicating cell cycle arrest. The concomitant decrease in CCNA expression suggests the transition of endothelial cells into a quiescent phenotype. Further bioinformatical analysis suggested TXNIP as a possible mediator between EZH2 and cell cycle-related gene network. Our data show that EZH2 is a FSS-responsive gene. Decreased EZH2 levels enhance the activation of the atheroprotective MAPK7 signaling. Decrease in EZH2 under FSS mediates the decrease in the expression of the network of cell cycle-related genes, which allows the cells to enter quiescence. EZH2 is therefore important for the protective effects of FSS in endothelium.

  9. Prozac Alters Reproductive Performance and Filial Cannibalism in Male Fighting Fish, Betta Splendens

    Directory of Open Access Journals (Sweden)

    Mohammad Navid Forsatkar

    2014-09-01

    Full Text Available Background: Fluoxetine (ProzacTM is one of the most popular antidepressant that can be released to aquatic systems via sewage-treatment effluents. It is suspected to provoke substantial effects in the aquatic environment. Methods: In spawning tanks, specimens were exposed to concentrations of 0 and 0.54 µgl-1 fluoxetine from male introduction until the larvae had hatched. Prior to spawning, nest area and time spent for nest building were measured. Also, spawning duration, number of copulations per spawning and eggs per copulation, total produced eggs and hatching rate were recorded. Results: The number of copulations, eggs per copulation and total produced eggs did not differ between the two treatments. Fluoxetine treatment significantly decreased the nest size, time spent for nest building and spawning duration. Also hatching rate was significantly lower during fluoxetine treatment than in the control condition. Notably, five fluoxetine treated males cannibalized their eggs and larvae. Conclusion: We showed that environmental exposure of fighting fish to fluoxetine potentially alters specific aspects of nest building and sexual behavior and, as a consequence, reproductive output.

  10. Psychological stress alters the ultrastructure and increases IL-1β and TNF-α in mandibular condylar cartilage

    Directory of Open Access Journals (Sweden)

    Xin Lv

    2012-10-01

    Full Text Available Psychological factors can be correlated with temporomandibular disorders (TMDs, but the mechanisms are unknown. In the present study, we examined the microstructural changes and expression of proinflammatory cytokines in mandibular condylar cartilage of the temporomandibular joint (TMJ in a psychological stress animal model. Male Sprague-Dawley rats (8 weeks old, 210 ± 10 g were randomly divided into 3 groups: psychological stress (PS, N = 48, foot shock (FS, N = 24, and control (N = 48. After inducing psychological stress using a communication box with the FS rats for 1, 3, or 5 weeks, PS rats were sacrificed and compared to their matched control littermates, which received no stress and were killed at the same times as the PS rats. Body and adrenal gland weight were measured and corticosterone and adrenocorticotropic hormone levels were determined by radioimmunoassay. After hematoxylin-eosin staining for histological observation, the ultrastructure of the TMJ was examined by scanning electron microscopy. Transcription and protein levels of interleukin-1β (IL-1β and tumor necrosis factor-α (TNF-α were evaluated by ELISA and semi-quantitative RT-PCR. The PS group showed a significantly higher adrenal gland weight after 3 weeks of stress and higher hormone levels at weeks 1, 3, and 5. Histopathological changes and thinning cartilage were apparent at weeks 3 and 5. In the PS group, TNF-α increased at 1, 3, and 5 weeks and IL-1β increased significantly after 1 and 3 weeks of stress, and then decreased to normal levels by 5 weeks. Psychological stress increased plasma hormone levels and RT-PCR indicated increased IL-1β and TNF-α expression in the TMJ in a time-dependent manner. These results suggest that cytokine up-regulation was accompanied by stress-induced cartilage degeneration in the mandibular condyle. The proinflammatory cytokines play a potential role in initiating the cartilage destruction that eventually leads to the TMDs.

  11. Predator stress engages corticotropin-releasing factor and opioid systems to alter the operating mode of locus coeruleus norepinephrine neurons.

    Science.gov (United States)

    Curtis, Andre L; Leiser, Steven C; Snyder, Kevin; Valentino, Rita J

    2012-03-01

    The norepinephrine nucleus, locus coeruleus (LC), has been implicated in cognitive aspects of the stress response, in part through its regulation by the stress-related neuropeptide, corticotropin-releasing factor (CRF). LC neurons discharge in tonic and phasic modes that differentially modulate attention and behavior. Here, the effects of exposure to an ethologically relevant stressor, predator odor, on spontaneous (tonic) and auditory-evoked (phasic) LC discharge were characterized in unanesthetized rats. Similar to the effects of CRF, stressor presentation increased tonic LC discharge and decreased phasic auditory-evoked discharge, thereby decreasing the signal-to-noise ratio of the sensory response. This stress-induced shift in LC discharge toward a high tonic mode was prevented by a CRF antagonist. Moreover, CRF antagonism during stress unmasked a large decrease in tonic discharge rate that was opioid mediated because it was prevented by pretreatment with the opiate antagonist, naloxone. Elimination of both CRF and opioid influences with an antagonist combination rendered LC activity unaffected by the stressor. These results demonstrate that both CRF and opioid afferents are engaged during stress to fine-tune LC activity. The predominant CRF influence shifts the operational mode of LC activity toward a high tonic state that is thought to facilitate behavioral flexibility and may be adaptive in coping with the stressor. Simultaneously, stress engages an opposing opioid influence that restrains the CRF influence and may facilitate recovery toward pre-stress levels of activity. Changes in the balance of CRF:opioid regulation of the LC could have consequences for stress vulnerability.

  12. Psychological stress alters the ultrastructure and increases IL-1β and TNF-α in mandibular condylar cartilage

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Xin; Li, Qiang; Wu, Shun; Sun, Jing; Zhang, Min; Chen, Yong-Jin [Department of General Dentistry and Emergency, School of Stomatology, Fourth Military Medical University, Xi' an, Shaanxi (China)

    2012-06-22

    Psychological factors can be correlated with temporomandibular disorders (TMDs), but the mechanisms are unknown. In the present study, we examined the microstructural changes and expression of proinflammatory cytokines in mandibular condylar cartilage of the temporomandibular joint (TMJ) in a psychological stress animal model. Male Sprague-Dawley rats (8 weeks old, 210 ± 10 g) were randomly divided into 3 groups: psychological stress (PS, N = 48), foot shock (FS, N = 24), and control (N = 48). After inducing psychological stress using a communication box with the FS rats for 1, 3, or 5 weeks, PS rats were sacrificed and compared to their matched control littermates, which received no stress and were killed at the same times as the PS rats. Body and adrenal gland weight were measured and corticosterone and adrenocorticotropic hormone levels were determined by radioimmunoassay. After hematoxylin-eosin staining for histological observation, the ultrastructure of the TMJ was examined by scanning electron microscopy. Transcription and protein levels of interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) were evaluated by ELISA and semi-quantitative RT-PCR. The PS group showed a significantly higher adrenal gland weight after 3 weeks of stress and higher hormone levels at weeks 1, 3, and 5. Histopathological changes and thinning cartilage were apparent at weeks 3 and 5. In the PS group, TNF-α increased at 1, 3, and 5 weeks and IL-1β increased significantly after 1 and 3 weeks of stress, and then decreased to normal levels by 5 weeks. Psychological stress increased plasma hormone levels and RT-PCR indicated increased IL-1β and TNF-α expression in the TMJ in a time-dependent manner. These results suggest that cytokine up-regulation was accompanied by stress-induced cartilage degeneration in the mandibular condyle. The proinflammatory cytokines play a potential role in initiating the cartilage destruction that eventually leads to the TMDs.

  13. Elevated temperature altered photosynthetic products in wheat seedlings and organic compounds and biological activity in rhizopshere soil under cadmium stress

    Science.gov (United States)

    Jia, Xia; Zhao, Yonghua; Wang, Wenke; He, Yunhua

    2015-09-01

    The objective of this study was to investigate the effects of slightly elevated atmospheric temperature in the spring on photosynthetic products in wheat seedlings and on organic compounds and biological activity in rhizosphere soil under cadmium (Cd) stress. Elevated temperature was associated with increased soluble sugars, reducing sugars, starch, and total sugars, and with decreased amino acids in wheat seedlings under Cd stress. Elevated temperature improved total soluble sugars, free amino acids, soluble phenolic acids, and organic acids in rhizosphere soil under Cd stress. The activity of amylase, phenol oxidase, invertase, β-glucosidase, and L-asparaginase in rhizosphere soil was significantly improved by elevated temperature under Cd stress; while cellulase, neutral phosphatase, and urease activity significantly decreased. Elevated temperature significantly improved bacteria, fungi, actinomycetes, and total microorganisms abundance and fluorescein diacetate activity under Cd stress. In conclusion, slightly elevated atmospheric temperature in the spring improved the carbohydrate levels in wheat seedlings and organic compounds and biological activity in rhizosphere soil under Cd stress in the short term. In addition, elevated atmospheric temperature in the spring stimulated available Cd by affecting pH, DOC, phenolic acids, and organic acids in rhizosphere soil, which resulted in the improvement of the Cd uptake by wheat seedlings.

  14. Stress Alters the Discriminative Stimulus and Response Rate Effects of Cocaine Differentially in Lewis and Fischer Inbred Rats

    Directory of Open Access Journals (Sweden)

    Therese A. Kosten

    2012-03-01

    Full Text Available Stress enhances the behavioral effects of cocaine, perhaps via hypothalamic-pituitary-adrenal (HPA axis activity. Yet, compared to Fischer 344 (F344 rats, Lewis rats have hyporesponsive HPA axis function and more readily acquire cocaine self-administration. We hypothesized that stress would differentially affect cocaine behaviors in these strains. The effects of three stressors on the discriminative stimulus and response rate effects of cocaine were investigated. Rats of both strains were trained to discriminate cocaine (10 mg/kg from saline using a two-lever, food-reinforced (FR10 procedure. Immediately prior to cumulative dose (1, 3, 10 mg/kg cocaine test sessions, rats were restrained for 15-min, had 15-min of footshock in a distinct context, or were placed in the shock-paired context. Another set of F344 and Lewis rats were tested similarly except they received vehicle injections to test if stress substituted for cocaine. Most vehicle-tested rats failed to respond after stressor exposures. Among cocaine-tested rats, restraint stress enhanced cocaine’s discriminative stimulus effects in F344 rats. Shock and shock-context increased response rates in Lewis rats. Stress-induced increases in corticosterone levels showed strain differences but did not correlate with behavior. These data suggest that the behavioral effects of cocaine can be differentially affected by stress in a strain-selective manner.

  15. Multiple abiotic stress tolerance in Vigna mungo is altered by overexpression of ALDRXV4 gene via reactive carbonyl detoxification.

    Science.gov (United States)

    Singh, Preeti; Kumar, Deepak; Sarin, Neera Bhalla

    2016-06-01

    Vigna mungo (blackgram) is an important leguminous pulse crop, which is grown for its protein rich edible seeds. Drought and salinity are the major abiotic stresses which adversely affect the growth and productivity of crop plants including blackgram. The ALDRXV4 belongs to the aldo-keto reductase superfamily of enzymes that catalyze the reduction of carbonyl metabolites in the cells and plays an important role in the osmoprotection and detoxification of the reactive carbonyl species. In the present study, we developed transgenic plants of V. mungo using Agrobacterium mediated transformation. The transgene integration was confirmed by Southern blot analysis whereas the expression was confirmed by RT-PCR, Western blot and enzyme activity. The T1 generation transgenic plants displayed improved tolerance to various environmental stresses, including drought, salt, methyl viologen and H2O2 induced oxidative stress. The increased aldose reductase activity, higher sorbitol content and less accumulation of the toxic metabolite, methylglyoxal in the transgenic lines under non-stress and stress (drought and salinity) conditions resulted in increased protection through maintenance of better photosynthetic efficiency, higher relative water content and less photooxidative damage. The accumulation of reactive oxygen species was remarkably decreased in the transgenic lines as compared with the wild type plants. This study of engineering multiple stress tolerance in blackgram, is the first report to date and this strategy for trait improvement is proposed to provide a novel germplasm for blackgram production on marginal lands.

  16. Trivers-Willard hypothesis revisited:Does heat stress peri-insemination alter secondary sex ratio in crossbred dairy cattle?

    Institute of Scientific and Technical Information of China (English)

    FA Khan; SSD Sacchan; MP Singh; RA Patoo; Shiv Prasad; HP Gupta

    2013-01-01

    Objective: To test the hypothesis that heat stress peri-insemination skews towards female the secondary sex ratio in dairy cattle. In addition, the effect of heat stress peri-insemination on birth weight of resultant calves was investigated. Methods: Data on the date of insemination and sex and birth weight of the resultant calf were collected for a total of 934 single births on a crossbred dairy farm and grouped into thermoneutral and heat stress peri-insemination groups on the basis of temperature humidity indices on the day of insemination. Results: Logistic regression revealed no difference in the secondary sex ratios between thermoneutral (53.4:46.6) and heat stress (52.5:47.5) peri-insemination groups. These sex ratios were not different from the expected 50:50 ratio on Chi-square goodness of fit test. Differences in birth weight of calves between thermoneutral and heat stress peri-insemination groups did not approach statistical significance.Conclusions: These results indicate that heat stress peri-insemination does not affect secondary sex ratio and calf birth weight in crossbred dairy cattle.

  17. A single gene all3940 (Dps) overexpression in Anabaena sp. PCC 7120 confers multiple abiotic stress tolerance via proteomic alterations.

    Science.gov (United States)

    Narayan, Om Prakash; Kumari, Nidhi; Bhargava, Poonam; Rajaram, Hema; Rai, Lal Chand

    2016-01-01

    DNA-binding proteins (Dps) induced during starvation play an important role in gene regulation and maintaining homeostasis in bacteria. The nitrogen-fixing cyanobacterium, Anabaena PCC7120, has four genes annotated as coding for Dps; however, the information on their physiological roles is limiting. One of the genes coding for Dps, 'all3940' was found to be induced under different abiotic stresses in Anabaena and upon overexpression enhanced the tolerance of Anabaena to a multitude of stresses, which included salinity, heat, heavy metals, pesticide, and nutrient starvation. On the other hand, mutation in the gene resulted in decreased growth of Anabaena. The modulation in the levels of All3940 in Anabaena, achieved either by overexpression of the protein or mutation of the gene, resulted in changes in the proteome, which correlated well with the physiological changes observed. Proteins required for varied physiological activities, such as photosynthesis, carbon-metabolism, oxidative stress alleviation, exhibited change in protein profile upon modulation of All3940 levels in Anabaena. This suggested a direct or an indirect effect of All3940 on the expression of the above stress-responsive proteins, thereby enhancing tolerance in Anabaena PCC7120. Thus, All3940, though categorized as a Dps, is possibly a general stress protein having a global role in regulating tolerance to multitude of stresses in Anabaena.

  18. Heat and oxidative stress alter the expression of orexin and its related receptors in avian liver cells.

    Science.gov (United States)

    Greene, Elizabeth; Khaldi, Stephanie; Ishola, Peter; Bottje, Walter; Ohkubo, Takeshi; Anthony, Nicholas; Dridi, Sami

    2016-01-01

    Orexins (A and B) or hypocretins (1 and 2) are hypothalamic orexigenic neuropeptides that are involved in the regulation of several physiological processes in mammals. Recently, orexin has been shown to activate the hypothalamic-pituitary-adrenal (HPA) stress axis and emerging evidences identify it as a stress modulator in mammals. However, the regulation of orexin system by stress itself remains unclear. Here, we investigate the effects of heat, 4-Hydroxynonenal (4-HNE) and hydrogen peroxide (H2O2) stress on the hepatic expression of orexin (ORX) and its related receptors (ORXR1/2) in avian species. Using in vivo and in vitro models, we found that heat stress significantly down-regulated ORX and ORXR1/2 mRNA and protein abundances in quail liver and LMH cells. H2O2, however, decreased ORX protein and increased ORX mRNA levels in a dose dependent manner (Porexin mRNA and protein levels suggests that H2O2 treatment modulates post-transcriptional mechanisms. 4-HNE had a biphasic effect on orexin system expression, with a significant up-regulation at low doses (10 and 20μM) and a significant down-regulation at a high dose (30μM). Taken together, our data indicated that hepatic orexin system could be a molecular signature in the heat and oxidative stress response.

  19. Performances of carbon nanotube field effect transistors with altered channel length

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The influence of channel length on the performances of carbon nanotube field effect transistors(CNT-FETs) has been studied.Buffered oxide etching was used to remove approximately a 60 nm layer from the original 100 nm silicon dioxide layer,to thin the dielectric layer of the back gate.Channel length of the CNT-FETs was changed along with the etching process.The dependence of drain-source current on gate voltage was measured to analyze the performance of the CNT-FETs,including the transconductance,carrier mobility,current ON/OFF ratio,etc.The results indicate that the devices still keep good quality.

  20. Alterations to movement mechanics can greatly reduce anterior cruciate ligament loading without reducing performance.

    Science.gov (United States)

    Myers, Casey A; Hawkins, David

    2010-10-19

    Anterior cruciate ligament (ACL) injuries are one of the most common and potentially debilitating sports injuries. Approximately 70% of ACL injuries occur without contact and are believed to be preventable. Jump stop movements are associated with many non-contact ACL injuries. It was hypothesized that an athlete performing a jump stop movement can reduce their peak tibial shear force (PTSF), a measure of ACL loading, without compromising performance, by modifying their knee flexion angle, shank angle, and foot contact location during landing. PTSF was calculated for fourteen female basketball players performing jump stops using their normal mechanics and mechanics modified to increase their knee flexion angle, decrease their shank angle relative to vertical and land more on their toes during landing. Every subject tested experienced drastic reductions in their PTSF (average reduction=56.4%) using modified movement mechanics. The athletes maintained or improved their jump height with the modified movement mechanics (an average increase in jump height of 2.5cm). The hypothesis was supported: modifications to jump stop movement mechanics greatly reduced PTSF and therefore ACL loading without compromising performance. The results from this study identify crucial biomechanical quantities that athletes can easily modify to reduce ACL loading and therefore should be targeted in any physical activity training programs designed to reduce non-contact ACL injuries.

  1. Environmental stress alters genes expression and induces ovule abortion: reactive oxygen species appear as ovules commit to abort.

    Science.gov (United States)

    Sun, Kelian; Cui, Yuehua; Hauser, Bernard A

    2005-11-01

    Environmental stress dramatically reduces plant reproduction. Previous results showed that placing roots in 200 mM NaCl for 12 h caused 90% of the developing Arabidopsis ovules to abort (Sun et al. in Plant Physiol 135:2358-2367, 2004). To discover the molecular responses that occur during ovule abortion, gene expression was monitored using Affymetrix 24k genome arrays. Transcript levels were measured in pistils that were stressed for 6, 12, 18, and 24 h, then compared with the levels in healthy pistils. Over the course of this experiment, a total of 535 salt-responsive genes were identified. Cluster analysis showed that differentially expressed genes exhibited reproducible changes in expression. The expression of 65 transcription factors, some of which are known to be involved in stress responses, were modulated during ovule abortion. In flowers, salt stress led to a 30-fold increase in Na+ ions and modest, but significant, decreases in the accumulation of other ions. The expression of cation exchangers and ion transporters were induced, presumably to reestablish ion homeostasis following salt stress. Genes that encode enzymes that detoxify reactive oxygen species (ROS), including ascorbate peroxidase and peroxidase, were downregulated after ovules committed to abort. These changes in gene expression coincided with the synthesis of ROS in female gametophytes. One day after salt stress, ROS spread from the gametophytes to the maternal chalaza and integuments. In addition, genes encoding proteins that regulate ethylene responses, including ethylene biosynthesis, ethylene signal transduction and ethylene-responsive transcription factors, were upregulated after stress. Hypotheses are proposed on the basis of this expression analysis, which will be evaluated further in future experiments.

  2. The Effects of Acute Stress on Cognitive Performance. A Pilot Study

    Science.gov (United States)

    2010-12-01

    Determining the relationship of acute stress, anxiety, and salivary a-amylase level with performance of student nurse anesthesiologists during...Philippa, H, Miller , D.L., Gregory, K.B., Smith, R.M., Weldon, K.J., Co, E.L., McNally, K.L., and Lebacqz, J.V.(1994). Fatigue in operational settings

  3. The impact of assessing simulated bad news consultations on medical students' stress response and communication performance.

    NARCIS (Netherlands)

    Dulmen, S. van; Tromp, F.; Grosfeld, F.; Cate, O. ten; Bensing, J.M.

    2007-01-01

    Seventy second-year medical students volunteered to participate in a study with the aim of evaluating the impact of the assessment of simulated bad news consultations on their physiological and psychological stress and communication performance. Measurements were taken of salivary cortisol, systolic

  4. Stress among Academic Staff and Students' Satisfaction of Their Performances in Payame Noor University of Miandoab

    Science.gov (United States)

    Jabari, Kamran; Moradi Sheykhjan, Tohid

    2015-01-01

    Present study examined the relationship between stress among academic staff and students' satisfaction of their performances in Payame Noor University (PNU) of Miandoab City, Iran in 2014. The methodology of the research is descriptive and correlation that descriptive and inferential statistics were used to analyze the data. Statistical Society…

  5. Steps to a formal analysis of the cognitive-energetic model of stress and human performance

    NARCIS (Netherlands)

    P.C.M. Molenaar; M.W. van der Molen

    1986-01-01

    A. F. Sanders's cognitive-energetic model of stress and human performance attempts to bridge linear stage and capacity models of information processing. It is argued that the identifiability of effects of variations of some subset of component processes can only be properly evaluated through an appr

  6. Workplace Stress: Implications for Organizational Performance in a Nigerian Public University

    OpenAIRE

    Omotayo A. Osibanjo; Odunayo P. Salau; Hezekiah O. Falola; Adebukola E. Oyewunmi

    2016-01-01

    This study investigated the implications of workplace stress on organizational performance in a Nigerian Public University. The survey method was deployed in sampling one hundred and seventy (170) staff members of the University. The Structural Equation Modelling was adopted using AMOS to establish fitness. Results of the analyses indicate that role congruence, equity, recognition, and distance, have significant influence on organizational performance. This makes it imperative for organizatio...

  7. A case study to determine stress sources affecting the academic performance

    Directory of Open Access Journals (Sweden)

    Aytaç Aydın

    2011-07-01

    Full Text Available Job stress affects academicians in terms of performance, scientific production, job satisfaction and health. This effect may differ according to the academicians in the structure of the organization. It is possible to mention about positive stress if organization structure positively affects academician, but it is called negative stress if it negatively affects. Lack of fee and powers, injustice employee evaluation, not getting in return for work are important stress sources. In this study, some of the factors that affect stress levels (individual, organizational and physical environmental factors of academicians (professors, associate professors and assistant professors who work in Karadeniz Technical University are investigated by questionnaire method. The survey data is evaluated with Structural Equation Model (SEM which is prepared in statistical package programs SPSS 16.0 and AMOS 16.0 and the results are revealed. As a result, factors effecting academic members' stress levels are determined as individual and organizational factors (p<0,1. Thus, it is concluded that physical environmental factors such as noise, lightening and crowded place do not cause tension on academician

  8. Performance monitoring is altered in adult ADHD: a familial event-related potential investigation

    OpenAIRE

    McLoughlin, G; Albrecht, B.; Banaschewski, T.; Rothenberger, A.; Brandeis, D; Asherson, P.; Kuntsi, J.

    2009-01-01

    BACKGROUND: Attention deficit hyperactivity disorder (ADHD) is a common neurodevelopmental disorder that starts in childhood and frequently persists in adults. Electrophysiological studies in children with ADHD provide evidence for abnormal performance monitoring processes and familial association of these processes with ADHD. It is not yet known whether these processes show the same abnormalities and familial effects in adults. METHOD: We investigated event-related potential (ERP) indices of...

  9. Improvement of fermentation ability under baking-associated stress conditions by altering the POG1 gene expression in baker's yeast.

    Science.gov (United States)

    Sasano, Yu; Haitani, Yutaka; Hashida, Keisuke; Oshiro, Satoshi; Shima, Jun; Takagi, Hiroshi

    2013-08-01

    During the bread-making process, yeast cells are exposed to many types of baking-associated stress. There is thus a demand within the baking industry for yeast strains with high fermentation abilities under these stress conditions. The POG1 gene, encoding a putative transcription factor involved in cell cycle regulation, is a multicopy suppressor of the yeast Saccharomyces cerevisiae E3 ubiquitin ligase Rsp5 mutant. The pog1 mutant is sensitive to various stresses. Our results suggested that the POG1 gene is involved in stress tolerance in yeast cells. In this study, we showed that overexpression of the POG1 gene in baker's yeast conferred increased fermentation ability in high-sucrose-containing dough, which is used for sweet dough baking. Furthermore, deletion of the POG1 gene drastically increased the fermentation ability in bread dough after freeze-thaw stress, which would be a useful characteristic for frozen dough baking. Thus, the engineering of yeast strains to control the POG1 gene expression level would be a novel method for molecular breeding of baker's yeast.

  10. Altered expression and activities of enzymes involved in thiamine diphosphate biosynthesis in Saccharomyces cerevisiae under oxidative and osmotic stress.

    Science.gov (United States)

    Kowalska, Ewa; Kujda, Marta; Wolak, Natalia; Kozik, Andrzej

    2012-08-01

    Thiamine diphosphate (TDP) serves as a cofactor for enzymes engaged in pivotal carbohydrate metabolic pathways, which are known to be modulated under stress conditions to ensure the cell survival. Recent reports have proven a protective role of thiamine (vitamin B(1)) in the response of plants to abiotic stress. This work aimed at verifying a hypothesis that also baker's yeast, which can synthesize thiamine de novo similarly to plants and bacteria, adjust thiamine metabolism to adverse environmental conditions. Our analyses on the gene expression and enzymatic activity levels generally showed an increased production of thiamine biosynthesis enzymes (THI4 and THI6/THI6), a TDP synthesizing enzyme (THI80/THI80) and a TDP-requiring enzyme, transketolase (TKL1/TKL) by yeast subjected to oxidative (1 mM hydrogen peroxide) and osmotic (1 M sorbitol) stress. However, these effects differed in magnitude, depending on yeast growth phase and presence of thiamine in growth medium. A mutant thi4Δ with increased sensitivity to oxidative stress exhibited enhanced TDP biosynthesis as compared with the wild-type strain. Similar tendencies were observed in mutants yap1Δ and hog1Δ defective in the signaling pathways of the defense against oxidative and osmotic stress, respectively, suggesting that thiamine metabolism can partly compensate damages of yeast general defense systems.

  11. Deletion of Kinin B2 Receptor Alters Muscle Metabolism and Exercise Performance.

    Directory of Open Access Journals (Sweden)

    Felipe C G Reis

    Full Text Available Metabolic syndrome is a cluster of metabolic risk factors such as obesity, diabetes and cardiovascular diseases. Mitochondria is the main site of ATP production and its dysfunction leads to decreased oxidative phosphorylation, resulting in lipid accumulation and insulin resistance. Our group has demonstrated that kinins can modulate glucose and lipid metabolism as well as skeletal muscle mass. By using B2 receptor knockout mice (B2R-/- we investigated whether kinin action affects weight gain and physical performance of the animals. Our results show that B2R-/- mice are resistant to high fat diet-induced obesity, have higher glucose tolerance as well as increased mitochondrial mass. These features are accompanied by higher energy expenditure and a lower feed efficiency associated with an increase in the proportion of type I fibers and intermediary fibers characterized by higher mitochondrial content and increased expression of genes related to oxidative metabolism. Additionally, the increased percentage of oxidative skeletal muscle fibers and mitochondrial apparatus in B2R-/- mice is coupled with a higher aerobic exercise performance. Taken together, our data give support to the involvement of kinins in skeletal muscle fiber type distribution and muscle metabolism, which ultimately protects against fat-induced obesity and improves aerobic exercise performance.

  12. Performance in the cranio-cervical flexion test is altered in elderly subjects.

    Science.gov (United States)

    Uthaikhup, Sureeporn; Jull, Gwendolen

    2009-10-01

    The cranio-cervical flexion test (CCFT) tests the coordination of the deep and superficial cervical flexor muscles during a cranio-cervical flexion task. The test has revealed impairments in muscle function in younger/middle aged patients with various neck pain disorders. Neck pain and headache are common in elders but it is unknown if age alone affects performance in the CCFT. This study compared performance in the CCFT between healthy asymptomatic elderly and younger subjects. Electromyographic (EMG) amplitude in the sternocleidomastoid (SCM), angle of cranio-cervical flexion and ability to target the pressure levels of each test stage were examined in 44 elderly and 39 young participants. The results indicated that the elderly group had higher measures of normalized EMG signal amplitude in the SCM during the test (pcervical flexion range of motion for the five successive stages of the test (particularly at 26, 28 and 30 mm Hg stages) compared to young subjects. Clinicians must be aware of this occurrence when assessing performance in the CCFT in elders with neck pain.

  13. Incubation temperature alters thermal preference and response to heat stress of broiler chickens along the rearing phase

    NARCIS (Netherlands)

    Morita, V.S.; Almeida, V.R.; Matos Junior, J.B.; Vicentini, T.I.; Brand, van den H.; Boleli, I.C.

    2016-01-01

    The current study aimed to investigate whether embryonic temperature manipulation may alter thermal preference throughout the rearing phase of broiler chickens and how this manipulation may affect response to thermal challenge, metabolism, growth rate and feed intake rate. Eggs were exposed to a

  14. Soybean seed phenol, lignin, and isoflavones and sugars composition are altered by Foliar Boron application in soybean under water stress

    Science.gov (United States)

    Previous research showed that foliar boron (B) fertilizer at flowering or seed-fill growth stages altered seed protein, oil, and fatty acids. The objective of this research was to investigate the effects of foliar B fertilizer on seed phenolics (phenol, lignin, and isoflavones) and sugars concentrat...

  15. Early endocrine alterations reflect prolonged stress and relate to one year functional outcome in patients with severe brain injury

    DEFF Research Database (Denmark)

    Marina, Djordje; Klose, Marianne; Nordenbo, Annette

    2015-01-01

    OBJECTIVE: Severe brain injury poses a risk of developing acute and chronic hypopituitarism. Pituitary hormone alterations developed in the early recovery phase after brain injury may have implications for long-term functional recovery. The objective was to assess the pattern and prevalence...

  16. Medial prefrontal cortex neuronal activation and synaptic alterations after stress-induced reinstatement of palatable food seeking: a study using c-fos-GFP transgenic female rats.

    Science.gov (United States)

    Cifani, Carlo; Koya, Eisuke; Navarre, Brittany M; Calu, Donna J; Baumann, Michael H; Marchant, Nathan J; Liu, Qing-Rong; Khuc, Thi; Pickel, James; Lupica, Carl R; Shaham, Yavin; Hope, Bruce T

    2012-06-20

    Relapse to maladaptive eating habits during dieting is often provoked by stress and there is evidence for a role of ovarian hormones in stress responses and feeding. We studied the role of these hormones in stress-induced reinstatement of food seeking and medial prefrontal cortex (mPFC) neuronal activation in c-fos-GFP transgenic female rats, which express GFP in strongly activated neurons. Food-restricted ovariectomized or sham-operated c-fos-GFP rats were trained to lever-press for palatable food pellets. Subsequently, lever-pressing was extinguished and reinstatement of food seeking and mPFC neuronal activation was assessed after injections of the pharmacological stressor yohimbine (0.5-2 mg/kg) or pellet priming (1-4 noncontingent pellets). Estrous cycle effects on reinstatement were also assessed in wild-type rats. Yohimbine- and pellet-priming-induced reinstatement was associated with Fos and GFP induction in mPFC; both reinstatement and neuronal activation were minimally affected by ovarian hormones in both c-fos-GFP and wild-type rats. c-fos-GFP transgenic rats were then used to assess glutamatergic synaptic alterations within activated GFP-positive and nonactivated GFP-negative mPFC neurons following yohimbine-induced reinstatement of food seeking. This reinstatement was associated with reduced AMPA receptor/NMDA receptor current ratios and increased paired-pulse facilitation in activated GFP-positive but not GFP-negative neurons. While ovarian hormones do not appear to play a role in stress-induced relapse of food seeking in our rat model, this reinstatement was associated with unique synaptic alterations in strongly activated mPFC neurons. Our paper introduces the c-fos-GFP transgenic rat as a new tool to study unique synaptic changes in activated neurons during behavior.

  17. MONITORING TRAINING LOADS, STRESS, IMMUNE-ENDOCRINE RESPONSES AND PERFORMANCE IN TENNIS PLAYERS

    Science.gov (United States)

    Moreira, A.; Lodo, L.; Nosaka, K.; Coutts, A.J.; Aoki, M.S.

    2013-01-01

    The study aim was to investigate the effect of a periodised pre-season training plan on internal training load and subsequent stress tolerance, immune-endocrine responses and physical performance in tennis players. Well-trained young tennis players (n = 10) were monitored across the pre-season period, which was divided into 4 weeks of progressive overloading training and a 1-week tapering period. Weekly measures of internal training load, training monotony and stress tolerance (sources and symptoms of stress) were taken, along with salivary testosterone, cortisol and immunoglobulin A. One repetition maximum strength, running endurance, jump height and agility were assessed before and after training. The periodised training plan led to significant weekly changes in training loads (i.e. increasing in weeks 3 and 4, decreasing in week 5) and post-training improvements in strength, endurance and agility (P < 0.05). Cortisol concentration and the symptoms of stress also increased in weeks 3 and/or 4, before returning to baseline in week 5 (P < 0.05). Conversely, the testosterone to cortisol ratio decreased in weeks 3 and 4, before returning to baseline in week 5 (P < 0.05). In conclusion, the training plan evoked adaptive changes in stress tolerance and hormonal responses, which may have mediated the improvements in physical performance. PMID:24744485

  18. EFFECT OF MEAN STRESS ON FATIGUE PERFORMANCE OF WELDED JOINTS TREATED BY UPT

    Institute of Scientific and Technical Information of China (English)

    Wang Dongpo; Huo Lixing; Wang Ting; Li Jie; Zhang Yufeng

    2004-01-01

    The fatigue contrast tests of unload longitudinal direction corner joints as original welded and treated by ultrasonic peening of Q235B in various stress ratio are directed. The improvements of fatigue performance of unload longitudinal direction corner joints resulted by ultrasonic peening are studied. The effect pattern of stress ratio on fatigue performance of welded joints that are treated by ultrasonic peening is studied. As tests results indicate that: ① In the condition of stress ratio R= -1, the fatigue strength of specimen treated by ultrasonic peening is increased by 165% of that of the original welded specimen. And the fatigue life of specimen treated by ultrasonic peening is as much as 75~210 times of that of the latter. When R=0.1, the fatigue strength is increased by 87% and the fatigue life is extended by 21~29 times. When R= -0.5, the fatigue strength is increased by 123% and the fatigue life is extended by 42~59 times. When R=0.45, the fatigue strength is increased by 51% and the fatigue life is extended by 3~14 times. ② If the welded joints are treated by ultrasonic peening, the fatigue strength is no longer independent on the applied mean stress. The more the stress ratio R, the less the fatigue stress range which can be sustained by the joints is. ③ Whether the high value residual stress is in the joints or not, the dead load portion of the applied load must be considered in the design of the joints which should be treated by ultrasonic peening.

  19. Constitutive Expression of Rice MicroRNA528 Alters Plant Development and Enhances Tolerance to Salinity Stress and Nitrogen Starvation in Creeping Bentgrass.

    Science.gov (United States)

    Yuan, Shuangrong; Li, Zhigang; Li, Dayong; Yuan, Ning; Hu, Qian; Luo, Hong

    2015-09-01

    MicroRNA528 (miR528) is a conserved monocot-specific small RNA that has the potential of mediating multiple stress responses. So far, however, experimental functional studies of miR528 are lacking. Here, we report that overexpression of a rice (Oryza sativa) miR528 (Osa-miR528) in transgenic creeping bentgrass (Agrostis stolonifera) alters plant development and improves plant salt stress and nitrogen (N) deficiency tolerance. Morphologically, miR528-overexpressing transgenic plants display shortened internodes, increased tiller number, and upright growth. Improved salt stress resistance is associated with increased water retention, cell membrane integrity, chlorophyll content, capacity for maintaining potassium homeostasis, CATALASE activity, and reduced ASCORBIC ACID OXIDASE (AAO) activity; while enhanced tolerance to N deficiency is associated with increased biomass, total N accumulation and chlorophyll synthesis, nitrite reductase activity, and reduced AAO activity. In addition, AsAAO and COPPER ION BINDING PROTEIN1 are identified as two putative targets of miR528 in creeping bentgrass. Both of them respond to salinity and N starvation and are significantly down-regulated in miR528-overexpressing transgenics. Our data establish a key role that miR528 plays in modulating plant growth and development and in the plant response to salinity and N deficiency and indicate the potential of manipulating miR528 in improving plant abiotic stress resistance.

  20. Attenuation of oxidative stress and alteration of hepatic tissue ultrastructure by D-pinitol in streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Sivakumar, Selvaraj; Palsamy, Periyasamy; Subramanian, Sorimuthu Pillai

    2010-06-01

    The present study was aimed to investigate the effect of D-pinitol on hyperglycaemia mediated oxidative stress by analysing the hepatic antioxidant competence, pro-inflammatory cytokines and ultrastructural changes in liver tissues of streptozotocin-induced diabetic rats. Oral administration of D-pinitol (50 mg/kg b.w.) resulted in significant (p pinitol instigated a significant escalation in the levels of hepatic tissue non-enzymatic antioxidants and the activities enzymatic antioxidants of diabetic rats with significant (p pinitol on the hepatic tissues from oxidative stress-induced liver damage. These biochemical observations were complemented by histological and ultrastructural examination of liver section. Thus, the present study demonstrates the hepatoprotective nature of D-pinitol by attenuating hyperglycaemia-mediated pro-inflammatory cytokines and oxidative stress.

  1. The Campylobacter jejuni Oxidative Stress Regulator RrpB Is Associated with a Genomic Hypervariable Region and Altered Oxidative Stress Resistance

    Science.gov (United States)

    Gundogdu, Ozan; da Silva, Daiani T.; Mohammad, Banaz; Elmi, Abdi; Wren, Brendan W.; van Vliet, Arnoud H. M.; Dorrell, Nick

    2016-01-01

    Campylobacter jejuni is the leading cause of bacterial foodborne diarrhoeal disease worldwide. Despite the microaerophilic nature of the bacterium, C. jejuni can survive the atmospheric oxygen conditions in the environment. Bacteria that can survive either within a host or in the environment like C. jejuni require variable responses to survive the stresses associated with exposure to different levels of reactive oxygen species. The MarR-type transcriptional regulators RrpA and RrpB have recently been shown to play a role in controlling both the C. jejuni oxidative and aerobic stress responses. Analysis of 3,746 C. jejuni and 486 C. coli genome sequences showed that whilst rrpA is present in over 99% of C. jejuni strains, the presence of rrpB is restricted and appears to correlate with specific MLST clonal complexes (predominantly ST-21 and ST-61). C. coli strains in contrast lack both rrpA and rrpB. In C. jejuni rrpB+ strains, the rrpB gene is located within a variable genomic region containing the IF subtype of the type I Restriction-Modification (hsd) system, whilst this variable genomic region in C. jejuni rrpB- strains contains the IAB subtype hsd system and not the rrpB gene. C. jejuni rrpB- strains exhibit greater resistance to peroxide and aerobic stress than C. jejuni rrpB+ strains. Inactivation of rrpA resulted in increased sensitivity to peroxide stress in rrpB+ strains, but not in rrpB- strains. Mutation of rrpA resulted in reduced killing of Galleria mellonella larvae and enhanced biofilm formation independent of rrpB status. The oxidative and aerobic stress responses of rrpB- and rrpB+ strains suggest adaptation of C. jejuni within different hosts and niches that can be linked to specific MLST clonal complexes. PMID:28082970

  2. Exercise-induced dehydration does not alter time trial or neuromuscular performance.

    Science.gov (United States)

    Stewart, C J; Whyte, D G; Cannon, J; Wickham, J; Marino, F E

    2014-08-01

    This study examined the effect of exercise-induced dehydration by ~4% body mass loss on 5-km cycling time trial (TT) performance and neuromuscular drive, independent of hyperthermia. 7 active males were dehydrated on 2 occasions, separated by 7 d. Participants remained dehydrated (DEH, -3.8±0.5%) or were rehydrated (REH, 0.2±0.6%) over 2 h before completing the TT at 18-25 °C, 20-30% relative humidity. Neuromuscular function was determined before dehydration and immediately prior the TT. The TT started at the same core temperature (DEH, 37.3±0.3°C; REH, 37.0±0.2 °C (P>0.05). Neither TT performance (DEH, 7.31±1.5 min; REH, 7.10±1.3 min (P>0.05)) or % voluntary activation were affected by dehydration (DEH, 88.7±6.4%; REH, 90.6±6.1% (P>0.05)). Quadriceps peak torque was significantly elevated in both trials prior to the TT (Pperformance and neuromuscular function are not reduced by dehydration, independent of hyperthermia.

  3. Biotechnology predictors of physical security personnel performance: cerebral potential measures related to stress. Special report No. 3

    Energy Technology Data Exchange (ETDEWEB)

    Malkoff, D.B.

    1984-02-01

    The research literature related to stress, personality measurements, electrical and magnetic measurements of brain activity, and stress task-protocols was reviewed to determine whether measurements of brain activity can be used to predict job performance under conditions of stress. Results indicated that brain activity measurements show great promise for predicting general response-tendencies of individuals when subjected to stress and as an investigative method for learning more about brain function. Recommendations were made for a research protocol for ascertaining whether measurements of brain activity can be used to predict job performance under stress.

  4. Altered cognitive performance and synaptic function in the hippocampus of mice lacking C3.

    Science.gov (United States)

    Perez-Alcazar, Marta; Daborg, Jonny; Stokowska, Anna; Wasling, Pontus; Björefeldt, Andreas; Kalm, Marie; Zetterberg, Henrik; Carlström, Karl E; Blomgren, Klas; Ekdahl, Christine T; Hanse, Eric; Pekna, Marcela

    2014-03-01

    Previous work implicated the complement system in adult neurogenesis as well as elimination of synapses in the developing and injured CNS. In the present study, we used mice lacking the third complement component (C3) to elucidate the role the complement system plays in hippocampus-dependent learning and synaptic function. We found that the constitutive absence of C3 is associated with enhanced place and reversal learning in adult mice. Our findings of lower release probability at CA3-CA1 glutamatergic synapses in combination with unaltered overall efficacy of these synapses in C3 deficient mice implicate C3 as a negative regulator of the number of functional glutamatergic synapses in the hippocampus. The C3 deficient mice showed no signs of spontaneous epileptiform activity in the hippocampus. We conclude that C3 plays a role in the regulation of the number and function of glutamatergic synapses in the hippocampus and exerts negative effects on hippocampus-dependent cognitive performance.

  5. Differential stress-induced alterations of colonic corticotropin-releasing factor receptors in the Wistar Kyoto rat.

    Science.gov (United States)

    o'malley, D; Julio-Pieper, M; Gibney, S M; Gosselin, R D; Dinan, T G; Cryan, J F

    2010-03-01

    BACKGROUND A growing body of data implicates increased life stresses with the initiation, persistence and severity of symptoms associated with functional gut disorders such as irritable bowel syndrome (IBS). Activation of central and peripheral corticotropin-releasing factor (CRF) receptors is key to stress-induced changes in gastrointestinal (GI) function. METHODS This study utilised immunofluorescent and Western blotting techniques to investigate colonic expression of CRF receptors in stress-sensitive Wistar Kyoto (WKY) and control Sprague Dawley (SD) rats. KEY RESULTS No intra-strain differences were observed in the numbers of colonic CRFR1 and CRFR2 positive cells. Protein expression of functional CRFR1 was found to be comparable in control proximal and distal colon samples. Sham levels of CRFR1 were also similar in the proximal colon but significantly higher in WKY distal colons (SD: 0.38 +/- 0.14, WKY: 2.06 +/- 0.52, P CRF receptor expression and further support a role for local colonic CRF signalling in stress-induced changes in GI function.

  6. The decrease in histone methyltransferase EZH2 in response to fluid shear stress alters endothelial gene expression and promotes quiescence.

    NARCIS (Netherlands)

    Maleszewska, Monika; Vanchin, Byambasuren; Harmsen, Martin; Krenning, Guido

    2016-01-01

    High uniform fluid shear stress (FSS) is atheroprotective and preserves the endothelial phenotype and function through activation of downstream mediators such as MAPK7 (Erk5). Endothelial cells respond to FSS thanks to mechanotransduction. However, how the resulting signaling is integrated and resol

  7. The decrease in histone methyltransferase EZH2 in response to fluid shear stress alters endothelial gene expression and promotes quiescence

    NARCIS (Netherlands)

    Maleszewska, Monika; Vanchin, Byambasuren; Harmsen, Martin C.; Krenning, Guido

    2016-01-01

    High uniform fluid shear stress (FSS) is atheroprotective and preserves the endothelial phenotype and function through activation of downstream mediators such as MAPK7 (Erk5). Endothelial cells respond to FSS thanks to mechanotransduction. However, how the resulting signaling is integrated and resol

  8. Social instability stress in adolescent male rats alters hippocampal neurogenesis and produces deficits in spatial location memory in adulthood.

    NARCIS (Netherlands)

    McCormick, C.M.; Thomas, C.M.G.; Sheridan, C.S.; Nixon, F.; Flynn, J.A.; Mathews, I.Z.

    2012-01-01

    The ongoing development of the hippocampus in adolescence may be vulnerable to stressors. The effects of social instability stress (SS) in adolescence (daily 1 h isolation and change of cage partner postnatal days 30-45) on cell proliferation in the dentate gyrus (DG) in adolescence (on days 33 and

  9. Alterations in antioxidant enzyme activities and proline content in pea leaves under long-term drought stress.

    Science.gov (United States)

    Karataş, Ilhami; Öztürk, Lokman; Demir, Yavuz; Unlükara, Ali; Kurunç, Ahmet; Düzdemir, Oral

    2014-09-01

    The effects of long-term drought stress on chlorophyll, proline, protein and hydrogen peroxide (H2O2) contents, malondialdehyde (MDA) in terms of lipid peroxidation and on the changes in the activities of antioxidant enzymes such as superoxide dismutase (SOD, EC 1.15.1.1), ascorbate peroxidase (APX, EC 1.11.1.11), catalase (CAT, EC 1.11.1.6) and peroxidase (POX; EC 1.11.1.7) in the leaves of pea (Pisum sativum L.) were studied in field conditions. Chlorophyll and protein contents in leaves decreased significantly with increased drought stress. The proline content increased markedly under water deficit. MDA amounts were elevated as a result of water shortage, whereas H(2)O(2) content changed slightly in pea leaves exposed to drought stress. Drought stress markedly enhanced the activities of SOD, CAT and POX but slightly changed the activity of APX. We conclude that in field conditions, long-term water shortage increased the susceptibility to drought in peas.

  10. Heat stress during development alters post-harvest sugar contents and chip processing quality of potato tubers

    Science.gov (United States)

    Environmental stresses that increase tuber contents of the reducing sugars glucose and fructose decrease the value of chipping potatoes because such tubers produce dark-colored chips that are unacceptable to processors and consumers. Stem-end chip defect (SECD), which causes regions of dark color al...

  11. Does learning performance in horses relate to fearfulness, baseline stress hormone, and social rank?

    DEFF Research Database (Denmark)

    Christensen, Janne Winther; Ahrendt, Line Peerstrup; Lintrup, Randi

    2012-01-01

    The ability of horses to learn and remember new tasks is fundamentally important for their use by humans. Fearfulness may, however, interfere with learning, because stimuli in the environment can overshadow signals from the rider or handler. In addition, prolonged high levels of stress hormones can...... affect neurons within the hippocampus; a brain region central to learning and memory. In a series of experiments, we aimed to investigate the link between performance in two learning tests, the baseline level of stress hormones, measured as faecal cortisol metabolites (FCM), fearfulness, and social rank....... Twenty-five geldings (2 or 3 years old) pastured in one group were included in the study. The learning tests were performed by professional trainers and included a number of predefined stages during which the horses were gradually trained to perform exercises, using either negative (NR) or positive...

  12. Effects of acceptance-based coping on task performance and subjective stress.

    Science.gov (United States)

    Kishita, Naoko; Shimada, Hironori

    2011-03-01

    This paper examines the interactive effects of acceptance-based coping and job control on task performance, subjective stress, and perceived control. Forty-eight undergraduate and graduate students first participated in brief educational programs based on either acceptance or control coping strategies. They then participated in a 30-min high workload task under either high or low job control conditions. The results demonstrated a significant interactive effect of acceptance-based coping and job control on perceived control and task performance. No such effect was found for subjective stress. We conclude that to improve employees' perceived control and job performance, there should be an increase not only in job control through work redesign, but also in psychological acceptance.

  13. Effect of aging on performance, muscle activation and perceived stress during mentally demanding computer tasks

    DEFF Research Database (Denmark)

    Alkjaer, Tine; Pilegaard, Marianne; Bakke, Merete

    2005-01-01

    OBJECTIVES: This study examined the effects of age on performance, muscle activation, and perceived stress during computer tasks with different levels of mental demand. METHODS: Fifteen young and thirteen elderly women performed two computer tasks [color word test and reference task] with different...... levels of mental demand but similar physical demands. The performance (clicking frequency, percentage of correct answers, and response time for correct answers) and electromyography from the forearm, shoulder, and neck muscles were recorded. Visual analogue scales were used to measure the participants....... Likewise, a higher level of self-reported stress was found for the elderly participants after the color word test. During the reference task higher electromyographic levels and reported difficulty were recorded for the elderly group than for the young group. CONCLUSIONS: The findings suggest that mental...

  14. Motion and emotion: depression reduces psychomotor performance and alters affective movements in caregiving interactions

    Directory of Open Access Journals (Sweden)

    Katherine S Young

    2015-02-01

    Full Text Available Background: Impaired social functioning is a well-established feature of depression. Evidence to date suggests that disrupted processing of emotional cues may constitute part of this impairment. Beyond processing of emotional cues, fluent social interactions require that people physically move in synchronised, contingent ways. Disruptions to physical movements are a diagnostic feature of depression (psychomotor disturbance but have not previously been assessed in the context of social functioning. Here we investigated the impact of psychomotor disturbance in depression on physical responsive behaviour in both an experimental and observational setting.Methods: In Experiment 1, we examined motor disturbance in depression in response to salient emotional sounds, using a laboratory-based effortful motor task. In Experiment 2, we explored whether psychomotor disturbance was apparent in real-life social interactions. Using mother-infant interactions as a model affective social situation, we compared physical behaviours of mothers with and without postnatal depression (PND.Results: We found impairments in precise, controlled psychomotor performance in adults with depression relative to healthy adults (Experiment 1. Despite this disruption, all adults showed enhanced performance following exposure to highly salient emotional cues (infant cries. Examining real-life interactions, we found differences in physical movements, namely reduced affective touching, in mothers with PND responding to their infants, compared to healthy mothers (Experiment 2.Conclusions: Together, these findings suggest that psychomotor disturbance may be an important feature of depression that can impair social functioning. Future work investigating whether improvements in physical movement in depression could have a positive impact on social interactions would be of much interest.

  15. Acute heat stress up-regulates neuropeptide Y precursor mRNA expression and alters brain and plasma concentrations of free amino acids in chicks.

    Science.gov (United States)

    Ito, Kentaro; Bahry, Mohammad A; Hui, Yang; Furuse, Mitsuhiro; Chowdhury, Vishwajit S

    2015-09-01

    Heat stress causes an increase in body temperature and reduced food intake in chickens. Several neuropeptides and amino acids play a vital role in the regulation of food intake. However, the responses of neuropeptides and amino acids to heat-stress-induced food-intake regulation are poorly understood. In the current study, the hypothalamic mRNA expression of some neuropeptides related to food intake and the content of free amino acids in the brain and plasma was examined in 14-day-old chicks exposed to a high ambient temperature (HT; 40±1 °C for 2 or 5 h) or to a control thermoneutral temperature (CT; 30±1 °C). HT significantly increased rectal temperature and plasma corticosterone level and suppressed food intake. HT also increased the expression of neuropeptide Y (NPY) and agouti-signaling protein (ASIP) precursor mRNA, while no change was observed in pro-opiomelanocortin, cholecystokinin, ghrelin, or corticotropin-releasing hormone precursor mRNA. It was further found that the diencephalic content of free amino acids - namely, tryptophan, leucine, isoleucine, valine and serine - was significantly higher in HT chicks with some alterations in their plasma amino acids in comparison with CT chicks. The induction of NPY and ASIP expression and the alteration of some free amino acids during HT suggest that these changes can be the results or causes the suppression of food intake.

  16. Tetrachlorodibenzo-p-dioxin exposure alters radial arm maze performance and hippocampal morphology in female AhR mice.

    Science.gov (United States)

    Powers, B E; Lin, T-M; Vanka, A; Peterson, R E; Juraska, J M; Schantz, S L

    2005-02-01

    Perinatal exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) has been reported to alter spatial learning in rats tested on a radial arm maze (RAM). TCDD is believed to exert most of its effects through binding to the aryl hydrocarbon receptor (AhR). To determine whether the AhR mediates TCDD-induced alterations in spatial learning, we tested male and female AhR-knockout (AhR-/-), heterozygous (AhR+/-) and wild-type (AhR+/+) mice on the RAM. AhR+/- male and female mice were time mated, and treated dams were dosed with 5 microg TCDD/kg body weight on day 13 of gestation. When offspring reached adulthood, male and female AhR+/+, AhR+/- and AhR-/- mice from TCDD-exposed and unexposed litters were tested on the eight-arm RAM. After testing, we examined hippocampal morphology as visualized by the Timm's silver sulfide stain. TCDD-exposed female AhR+/- mice made more errors than their respective controls on the RAM and exhibited a decrease in the size of the intra- and infrapyramidal mossy fiber (IIP-MF) field of the hippocampus. None of the other TCDD-exposed groups differed from their respective control groups with regard to maze performance or hippocampal morphology. The reduction of IIP-MF field indicates a possible morphological basis for the learning deficit that was observed in the female AhR+/- mice. It is hypothesized that the effect of TCDD exposure is AhR dependent and that TCDD may alter GABAergic activity in the hippocampus of female mice during development.

  17. Time and motion, experiment M151. [human performance and space flight stress

    Science.gov (United States)

    Kubis, J. F.; Elrod, J. T.; Rusnak, R.; Mcbride, G. H.; Barnes, J. E.; Saxon, S. C.

    1973-01-01

    Astronaut work performance during the preparation and execution of experiments in simulated Skylab tests was analyzed according to time and motion in order to evaluate the efficiency and consistency of performance (adaptation function) for several different types of activity over the course of the mission; to evaluate the procedures to be used by the same experiment in Skylab; to generate characteristic adaptation functions for later comparison with Skylab data; and to examine astronaut performance for any behavioral stress due to the environment. The overall results indicate that the anticipated adaptation function was obtained both for individual and for averaged data.

  18. Can Management Practices Make a Difference? Nonprofit Organization Financial Performance during Times of Economic Stress

    Directory of Open Access Journals (Sweden)

    Qian HU

    2015-05-01

    Full Text Available The economic crisis presented unprecedented challenges to nonprofit organizations to sustain their services. In this study, we examined both financial and management factors that influence the financial performance of nonprofit organizations during times of economic stress. In particular, we investigated whether strategic planning and plan implementation, revenue diversification, and board involvement help nonprofit organizations deal with financial uncertainty and strengthen financial performance. Despite the negative impacts that the economic downturn had on nonprofit organizations, we found that the implementation of strategic plans can help nonprofit organizations reduce financial vulnerability. Our findings call attention to key management factors that influence the financial performance of nonprofit organizations.

  19. Can Management Practices Make a Difference? Nonprofit Organization Financial Performance during Times of Economic Stress

    Directory of Open Access Journals (Sweden)

    Qian Hu

    2016-02-01

    Full Text Available The economic crisis presented unprecedented challenges to nonprofit organizations to sustain their services. In this study, we examined both financial and management factors that influence the financial performance of nonprofit organizations during times of economic stress. In particular, we investigated whether strategic planning and plan implementation, revenue diversification, and board involvement help nonprofit organizations deal with financial uncertainty and strengthen financial performance. Despite the negative impacts that the economic downturn had on nonprofit organizations, we found that the implementation of strategic plans can help nonprofit organizations reduce financial vulnerability. Our findings call attention to key management factors that influence the financial performance of nonprofit organizations.

  20. Basal regulation of HPA and dopamine systems is altered differentially in males and females by prenatal alcohol exposure and chronic variable stress.

    Science.gov (United States)

    Uban, Kristina A; Comeau, Wendy L; Ellis, Linda A; Galea, Liisa A M; Weinberg, Joanne

    2013-10-01

    Effects of prenatal alcohol exposure (PAE) on central nervous system function include an increased prevalence of mental health problems, including substance use disorders (SUD). The hypothalamic-pituitary-adrenal (HPA) and dopamine (DA) systems have overlapping neurocircuitries and are both implicated in SUD. PAE alters both HPA and dopaminergic activity and regulation, resulting in increased HPA tone and an overall reduction in tonic DA activity. However, effects of PAE on the interaction between HPA and DA systems have not been investigated. The present study examined PAE effects on basal regulation of central stress and DA systems in key brain regions where these systems intersect. Adult Sprague-Dawley male and female offspring from prenatal alcohol-exposed (PAE), pairfed (PF), and ad libitum-fed control (C) groups were subjected to chronic variable stress (CVS) or remained as a no stress (non-CVS) control group. Corticotropin releasing hormone (CRH) mRNA, as well as glucocorticoid and DA receptor (DA-R) expression were measured under basal conditions 24h following the end of CVS. We show, for the first time, that regulation of basal HPA and DA systems, and likely, HPA-DA interactions, are altered differentially in males and females by PAE and CVS. PAE augmented the typical attenuation in weight gain during CVS in males and caused increased weight loss in females. Increased basal corticosterone levels in control, but not PAE, females suggest that PAE alters the profile of basal hormone secretion throughout CVS. CVS downregulated basal CRH mRNA in the prefrontal cortex and throughout the bed nucleus of the stria terminalis (BNST) in PAE females but only in the posterior BNST of control females. PAE males and females exposed to CVS exhibited more widespread upregulation of basal mineralocorticoid receptor mRNA throughout the hippocampus, and an attenuated decrease in DA-R expression throughout the nucleus accumbens and striatum compared to CVS-exposed control

  1. Effect of residual stresses and metallographic stability on the over all performance of integral diaphragm material

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Geetha [Liquid Propulsion System Centre, ISRO, Bangalore 560 008 (India); Sampathkumaran, P., E-mail: psampathkumar29@yahoo.com [Materials Technology Division, Central Power Research Institute, Bangalore 560 080, Karnadaka (India); Nadig, D.S.; Manjunatha, R. [Centre for Cryogenic Technology, Indian Institute of Science, Bangalore 560 012 (India); Seetharamu, S. [Materials Technology Division, Central Power Research Institute, Bangalore 560 080, Karnadaka (India)

    2009-08-20

    The integral diaphragm pressure transducer consists of a diaphragm machined from precipitation hardened martensitic (APX4) steel. Its performance is quite significant as it depends upon various factors such as mechanical properties including induced residual stress levels, metallurgical and physical parameters due to different stages of processing involved. Hence, the measurement and analysis of residual stress becomes very important from the point of in-service assessment of a component. In the present work, the stress measurements have been done using the X-ray diffraction (XRD) technique, which is a non-destructive test (NDT). This method is more reliable and widely used compared to the other NDT techniques. The metallurgical aspects have been studied by adopting the conventional metallographic practices including examination of microstructure using light microscope. The dimensional measurements have been carried out using dimensional gauge. The results of the present investigation reveals that the diaphragm material after undergoing series of realization processes has yielded good amount of retained austenite in it. Also, the presence of higher compressive stresses induced in the transducer results in non-linearity, zero shift and dimensional instability. The problem of higher retained austenite content and higher compressive stress have been overcome by adopting a new realization process involving machining and cold and hot stabilization soak which has brought down the retained austenite content to about 5-6% and acceptable level of compressive stress in the range -100 to -150 MPa with fine tempered martensitic phase structure and good dimensional stability. The new realization process seems to be quite effective in terms of controlling retained austenite content, residual stress, metallurgical phase as well as dimensional stability and this may result in minimum zero shift of the diaphragm system.

  2. Social play in juvenile hamsters alters dendritic morphology in the medial prefrontal cortex and attenuates effects of social stress in adulthood.

    Science.gov (United States)

    Burleson, Cody A; Pedersen, Robert W; Seddighi, Sahba; DeBusk, Lauren E; Burghardt, Gordon M; Cooper, Matthew A

    2016-08-01

    Social play is a fundamental aspect of behavioral development in many species. Social play deprivation in rats alters dendritic morphology in the ventromedial prefrontal cortex (vmPFC) and we have shown that this brain region regulates responses to social defeat stress in Syrian hamsters. In this study, we tested whether play deprivation during the juvenile period disrupts dendritic morphology in the prefrontal cortex and potentiates the effects of social defeat stress. At weaning, male hamsters were either group-housed with peers or pair-housed with their mother, with whom they do not play. In adulthood, animals received acute social defeat stress or no-defeat control treatment. The hamsters were then tested for a conditioned defeat response in a social interaction test with a novel intruder, and were also tested for social avoidance of a familiar opponent. Brains were collected for Golgi-Cox staining and analysis of dendritic morphology in the infralimbic (IL), prelimbic (PL), and orbitofrontal cortex (OFC). Play-deprived animals showed an increased conditioned defeat response and elevated avoidance of a familiar opponent compared with play-exposed animals. Furthermore, play-deprived animals showed increased total length and branch points in apical dendrites of pyramidal neurons in the IL and PL cortices, but not in the OFC. These findings suggest that social play deprivation in juvenile hamsters disrupts neuronal development in the vmPFC and increases vulnerability to the effects of social stress in adulthood. Overall, these results suggest that social play is necessary for the natural dendritic pruning process during adolescence and promotes coping with stress in adulthood. (PsycINFO Database Record

  3. Altered gene expression and spine density in nucleus accumbens of adolescent and adult male mice exposed to emotional and physical stress.

    Science.gov (United States)

    Warren, Brandon L; Sial, Omar K; Alcantara, Lyonna F; Greenwood, Maria A; Brewer, Jacob S; Rozofsky, John P; Parise, Eric M; Bolaños-Guzmán, Carlos A

    2014-01-01

    Stressful early life experiences are implicated in lifelong health. However, little is known about the consequences of emotional stress (ES) or physical stress (PS) on neurobiology. Therefore, the following set of experiments was designed to assess changes in transcription and translation of key proteins within the nucleus accumbens (NAc). Male adolescent (postnatal day 35) or adult (8-week-old) mice were exposed to ES or PS using a witness social defeat paradigm. Then, 24 h after the last stress session, we measured levels of specific mRNAs and proteins within the NAc. Spine density was also assessed in separate groups of mice. Exposure to ES or PS disrupted extracellular signal-related kinase 2 (ERK2), reduced transcription of ΔFosB and had no effect on cAMP response element-binding protein (CREB) mRNA. Western blots revealed that exposure to ES or PS decreased ERK2 phosphorylation in adolescents, whereas the same stress regimen increased ERK2 phosphorylation in adults. Exposure to ES or PS had no effect on ΔFosB or CREB phosphorylation. ES and PS increased spine density in the NAc of adolescent exposed mice, but only exposure to PS increased spine density in adults. Together, these findings demonstrate that exposure to ES or PS is a potent stressor in adolescent and adult mice and can disturb the integrity of the NAc by altering transcription and translation of important signaling molecules in an age-dependent manner. Furthermore, exposure to ES and PS induces substantial synaptic plasticity of the NAc.

  4. Workplace stress, job satisfaction, job performance, and turnover intention of health care workers in rural Taiwan.

    Science.gov (United States)

    Chao, Ming-Che; Jou, Rong-Chang; Liao, Cing-Chu; Kuo, Chung-Wei

    2015-03-01

    Workplace stress (WS) has been found to affect job satisfaction (JS), performance, and turnover intentions (TIs) in developed countries, but there is little evidence from other countries and especially rural areas. In rural Taiwan, especially, there is an insufficient health care workforce, and the situation is getting worse. To demonstrate the relationship, we used a cross-sectional structured questionnaire, and data from 344 licensed professionals in 1 rural regional hospital were analyzed using the structural equation model. The results showed that WS had a positive effect on both TI and job performance (JP) but a negative effect on satisfaction. JS did improve performance. For the staff with an external locus of control, stress affected JP and satisfaction significantly. For the staff with lower perceived job characteristics, JS affected performance significantly. The strategies to decrease stress relating to work load, role conflict, family factors, and working environment should be focused and implemented urgently to lower the turnover rate of health care workers in rural Taiwan.

  5. Heat stress impairs performance and induces intestinal inflammation in broiler chickens infected with Salmonella Enteritidis.

    Science.gov (United States)

    Quinteiro-Filho, W M; Gomes, A V S; Pinheiro, M L; Ribeiro, A; Ferraz-de-Paula, V; Astolfi-Ferreira, C S; Ferreira, A J P; Palermo-Neto, J

    2012-10-01

    Stressful situations reduce the welfare, production indices and immune status of chickens. Salmonella spp. are a major zoonotic pathogens that annually cause over 1 billion infections worldwide. We therefore designed the current experiment to analyse the effects of 31±1°C heat stress (HS) (from 35 to 41 days) on performance parameters, Salmonella invasion and small intestine integrity in broiler chickens infected with Salmonella Enteritidis. We observed that HS decreased body weight gain and feed intake. However, feed conversion was only increased when HS was combined with Salmonella Enteritidis infection. In addition, we observed an increase in serum corticosterone levels in all of the birds that were subjected to HS, showing a hypothalamus-pituitary-adrenal axis activation. Furthermore, mild acute multifocal lymphoplasmacytic enteritis, characterized by foci of heterophil infiltration in the duodenum, jejunum and ileum, was observed in the HS group. In contrast, similar but more evident enteritis was noted in the heat-stressed and Salmonella-infected group. In this group, moderate enteritis was observed in all parts of the small intestine. Lastly, we observed an increase in Salmonella counts in the spleens of the stressed and Salmonella-infected chickens. The combination of HS and Salmonella Enteritidis infection may therefore disrupt the intestinal barrier, which would allow pathogenic bacteria to migrate through the intestinal mucosa to the spleen and generate an inflammatory infiltrate in the gut, decreasing performance parameters.

  6. Inactivation of the mTORC1-Eukaryotic Translation Initiation Factor 4E Pathway Alters Stress Granule Formation

    Science.gov (United States)

    Fournier, Marie-Josée; Coudert, Laetitia; Mellaoui, Samia; Adjibade, Pauline; Gareau, Cristina; Côté, Marie-France; Sonenberg, Nahum; Gaudreault, René C.

    2013-01-01

    Stress granules (SG) are cytoplasmic multimeric RNA bodies that form under stress conditions known to inhibit cap-dependent translation. SG contain translation initiation factors, RNA binding proteins, and signaling molecules. SG are known to inhibit apoptotic pathways, thus contributing to chemo- and radioresistance in tumor cells. However, whether stress granule formation involves oncogenic signaling pathways is currently unknown. Here, we report a novel role of the mTORC1-eukaryotic translation initiation factor 4E (eIF4E) pathway, a key regulator of cap-dependent translation initiation of oncogenic factors, in SG formation. mTORC1 specifically drives the eIF4E-mediated formation of SG through the phosphorylation of 4E-BP1, a key factor known to inhibit formation of the mTORC1-dependent eIF4E-eIF4GI interactions. Disrupting formation of SG by inactivation of mTOR with its specific inhibitor pp242 or by depletion of eIF4E or eIF4GI blocks the SG-associated antiapoptotic p21 pathway. Finally, pp242 sensitizes cancer cells to death in vitro and inhibits the growth of chemoresistant tumors in vivo. This work therefore highlights a novel role of the oncogenic mTORC1-eIF4E pathway, namely, the promotion of formation of antiapoptotic SG. PMID:23547259

  7. Alterations in copper homeostasis and oxidative stress biomarkers in women using the intrauterine device TCu380A.

    Science.gov (United States)

    Arnal, Nathalie; de Alaniz, María J T; Marra, Carlos A

    2010-02-15

    Copper ions participate in the Häber-Weiss reaction to produce ROS, which can be toxic when in excess. The purpose of this study was to measure the copper concentration (Cu) in the plasma of women using Cu-IUDs and determine (i) the effect of Cu on oxidative stress biomarkers, (ii) the levels of copper transport proteins in the plasma and (iii) the status of some liver damage markers in relation to the length of the intrauterine device use. Thirty-nine controls and 35 T380-IUD users were recruited. Various oxidative stress biomarkers, ceruloplasmin (CRP), metallothioneins (MTs), Cu and enzyme activities involved in liver function were measured in the plasma. The Cu concentration was higher in women with IUDs, concomitantly with time-dependent increases in the main oxidative stress biomarkers (TBARS, protein carbonyls, glutathione and nitrates+nitrites), hepatic enzymes (LDH and transaminases), MTs and CRP. We concluded that the use of Cu-IUDs for more than 2 consecutive years should be avoided in order to prevent oxidative damage.

  8. Hypothyroidism minimizes the effects of acute hepatic failure caused by endoplasmic reticulum stress and redox environment alterations in rats.

    Science.gov (United States)

    Blas-Valdivia, Vanessa; Cano-Europa, Edgar; Martinez-Perez, Yoalli; Lezama-Palacios, Ruth; Franco-Colin, Margarita; Ortiz-Butron, Rocio

    2015-10-01

    The aim of this study was to investigate if a protective effect from hypothyroidism in acute liver failure resulted from reduced endoplasmic reticulum stress and changes to the redox environment. Twenty male Sprague-Dawley rats were divided in four groups: (1) euthyroid (sham surgery), (2) hypothyroid, (3) euthyroid (sham surgery)+thioacetamide and (4) hypothyroid+thioacetamide. Hypothyroidism was confirmed two weeks after thyroidectomy, and thioacetamide (TAA) (400mg/kg, ip) was administrated to the appropriate groups for three days with supportive therapy. Grades of encephalopathy in all animals were determined using behavioral tests. Animals were decapitated and their blood was obtained to assess liver function. The liver was dissected: the left lobe was used for histology and the right lobe was frozen for biochemical assays. Body weight, rectal temperature and T4 concentration were lower in hypothyroid groups. When measurements of oxidative stress markers, redox environment, γ-glutamylcysteine synthetase and glutathione-S-transferase were determined, we observed that hypothyroid animals with TAA compensated better with oxidative damage than euthyroid animals treated with TAA. Furthermore, we measured reduced expressions of GADD34, caspase-12 and GRP78 and subsequently less hypothyroidism-induced cellular damage in hypothyroid animals. We conclude that hypothyroidism protects against hepatic damage caused by TAA because it reduces endoplasmic reticulum stress and changes to the redox environment.

  9. Dietary polyphenols preconditioning protects 3T3-L1 preadipocytes from mitochondrial alterations induced by oxidative stress.

    Science.gov (United States)

    Baret, Pascal; Septembre-Malaterre, Axelle; Rigoulet, Michel; Lefebvre d'Hellencourt, Christian; Priault, Muriel; Gonthier, Marie-Paule; Devin, Anne

    2013-01-01

    Numerous studies indicate that an increase in reactive oxygen species (ROS) significantly affects white adipose tissue biology and leads to an inflammatory profile and insulin resistance, which could contribute to obesity-associated diabetes and cardiovascular diseases. Mitochondria play a key role in adipose tissue energy metabolism and constitute the main source of cellular ROS such as H(2)O(2). Polyphenols constitute the most abundant antioxidants provided by the human diet. Indeed, they are widely distributed in fruits, vegetables and some plant-derived beverages such as coffee and tea. Thus, the biological effects of dietary polyphenols that may increase the antioxidant capacity of the body against obesity-induced oxidative stress are of high interest. Here, we studied the capacity of polyphenols to modulate the impact of oxidative stress on the mitochondria of preadipocytes, which are important cells governing the adipose tissue development for energy homeostasis. Whereas H(2)O(2) treatment induces a proliferation arrest associated with an increase in mitochondrial content in 3T3-L1 preadipocytes, preconditioning with some major dietary polyphenols totally or partially protects the cells against oxidative stress consequences. This article is part of a Directed Issue entitled: Bioenergetic dysfunction, adaptation and therapy.

  10. Suppressing Sorbitol Synthesis Substantially Alters the Global Expression Profile of Stress Response Genes in Apple (Malus domestica) Leaves.

    Science.gov (United States)

    Wu, Ting; Wang, Yi; Zheng, Yi; Fei, Zhangjun; Dandekar, Abhaya M; Xu, Kenong; Han, Zhenhai; Cheng, Lailiang

    2015-09-01

    Sorbitol is a major product of photosynthesis in apple (Malus domestica) that is involved in carbohydrate metabolism and stress tolerance. However, little is known about how the global transcript levels in apple leaves respond to decreased sorbitol synthesis. In this study we used RNA sequencing (RNA-seq) profiling to characterize the transcriptome of leaves from transgenic lines of the apple cultivar 'Greensleeves' exhibiting suppressed expression of aldose-6-phosphate reductase (A6PR) to gain insights into sorbitol function and the consequences of decreased sorbitol synthesis on gene expression. We observed that, although the leaves of the low sorbitol transgenic lines accumulate higher levels of various primary metabolites, only very limited changes were found in the levels of transcripts associated with primary metabolism. We suggest that this is indicative of post-transcriptional and/or post-translational regulation of primary metabolite accumulation and central carbon metabolism. However, we identified significantly enriched gene ontology terms belonging to the 'stress related process' category in the antisense lines (P-value sorbitol plays a role in the responses of apple trees to abiotic and biotic stresses.

  11. Long-term in vivo polychlorinated biphenyl 126 exposure induces oxidative stress and alters proteomic profile on islets of Langerhans

    OpenAIRE

    2016-01-01

    It has been recently proposed that exposure to polychlorinated biphenyls (PCBs) is a risk factor to type 2 diabetes mellitus (DM2). We investigated this hypothesis using long-term in vivo PCB126 exposure to rats addressing metabolic, cellular and proteomic parameters. Male Wistar rats were exposed to PCB126 (0.1, 1 or 10 μg/kg of body weight/day; for 15 days) or vehicle by intranasal instillation. Systemic alterations were quantified by body weight, insulin and glucose tolerance, and blood bi...

  12. Ultrastructural changes, increased oxidative stress, inflammation, and altered cardiac hypertrophic gene expressions in heart tissues of rats exposed to incense smoke.

    Science.gov (United States)

    Al-Attas, Omar S; Hussain, Tajamul; Ahmed, Mukhtar; Al-Daghri, Nasser; Mohammed, Arif A; De Rosas, Edgard; Gambhir, Dikshit; Sumague, Terrance S

    2015-07-01

    Incense smoke exposure has recently been linked to cardiovascular disease risk, heart rate variability, and endothelial dysfunction. To test the possible underlying mechanisms, oxidative stress, and inflammatory markers, gene expressions of cardiac hypertrophic and xenobiotic-metabolizing enzymes and ultrastructural changes were measured, respectively, using standard, ELISA-based, real-time PCR, and transmission electron microscope procedures in heart tissues of Wistar rats after chronically exposing to Arabian incense. Malondialdehyde, tumor necrosis alpha (TNF)-α, and IL-4 levels were significantly increased, while catalase and glutathione levels were significantly declined in incense smoke-exposed rats. Incense smoke exposure also resulted in a significant increase in atrial natriuretic peptide, brain natriuretic peptide, β-myosin heavy chain, CYP1A1 and CYP1A2 messenger RNAs (mRNAs). Rats exposed to incense smoke displayed marked ultrastructural changes in heart muscle with distinct cardiac hypertrophy, which correlated with the augmented hypertrophic gene expression as well as markers of cardiac damage including creatine kinase-myocardial bound (CK-MB) and lactate dehydrogenase (LDH). Increased oxidative stress, inflammation, altered cardiac hypertrophic gene expression, tissue damage, and architectural changes in the heart may collectively contribute to increased cardiovascular disease risk in individuals exposed to incense smoke. Increased gene expressions of CYP1A1 and CYP1A2 may be instrumental in the incense smoke-induced oxidative stress and inflammation. Thus, incense smoke can be considered as a potential environmental pollutant and its long-term exposure may negatively impact human health.

  13. Iron Dextran Increases Hepatic Oxidative Stress and Alters Expression of Genes Related to Lipid Metabolism Contributing to Hyperlipidaemia in Murine Model

    Directory of Open Access Journals (Sweden)

    Maísa Silva

    2015-01-01

    Full Text Available The objective of this study was to investigate the effects of iron dextran on lipid metabolism and to determine the involvement of oxidative stress. Fischer rats were divided into two groups: the standard group (S, which was fed the AIN-93M diet, and the standard plus iron group (SI, which was fed the same diet but also received iron dextran injections. Serum cholesterol and triacylglycerol levels were higher in the SI group than in the S group. Iron dextran was associated with decreased mRNA levels of pparα, and its downstream gene cpt1a, which is involved in lipid oxidation. Iron dextran also increased mRNA levels of apoB-100, MTP, and L-FABP indicating alterations in lipid secretion. Carbonyl protein and TBARS were consistently higher in the liver of the iron-treated rats. Moreover, a significant positive correlation was found between oxidative stress products, lfabp expression, and iron stores. In addition, a negative correlation was found between pparα expression, TBARS, carbonyl protein, and iron stores. In conclusion, our results suggest that the increase observed in the transport of lipids in the bloodstream and the decreased fatty acid oxidation in rats, which was promoted by iron dextran, might be attributed to increased oxidative stress.

  14. Analysis of Workplace Stress and Organizational Performance in Human Resource Management: A Case Study of Air Traffic Controllers of Pakistan

    OpenAIRE

    MUHAMMAD IQBAL; AYSE KUCUK YILMAZ

    2014-01-01

    Today main issue in management and organization is corporate sustainability which includes organizational performance. Organizational performance is one of the strategic issues for any management. The purpose of the study is to investigate the relationship between workplace stress and organizational performance; and mediational affect of employees’ health issues between workplace stress and organizational performance. Both primary and secondary data were used for the current study. A self-dev...

  15. In Healthy Young Men, a Short Exhaustive Exercise Alters the Oxidative Stress Only Slightly, Independent of the Actual Fitness.

    Science.gov (United States)

    Finkler, Maya; Hochman, Ayala; Pinchuk, Ilya; Lichtenberg, Dov

    2016-01-01

    The aim of the present study was to evaluate the apparent disagreement regarding the effect of a typical cycling progressive exercise, commonly used to assess VO2max, on the kinetics of ex vivo copper induced peroxidation of serum lipids. Thirty-two (32) healthy young men, aged 24-30 years, who do not smoke and do not take any food supplements, participated in the study. Blood was withdrawn from each participant at three time points (before the exercise and 5 minutes and one hour after exercise). Copper induced peroxidation of sera made of the blood samples was monitored by spectrophotometry. For comparison, we also assayed TBARS concentration and the activity of oxidation-related enzymes. The physical exercise resulted in a slight and reversible increase of TBARS and slight changes in the activities of the studied antioxidant enzymes and the lag preceding peroxidation did not change substantially. Most altered parameters returned to baseline level one hour after exercise. Notably, the exercise-induced changes in OS did not correlate with the physical fitness of the subjects, as evaluated in this study (VO2max = 30-60 mL/min/kg). We conclude that in healthy young fit men a short exhaustive exercise alters only slightly the OS, independent of the actual physical fitness.

  16. The relationship between high gravity brewing, key performance indicators and yeast osmotic stress response

    OpenAIRE

    S. Zhuang

    2014-01-01

    High Gravity (HG) and Very High Gravity (VHG) fermentations are increasingly attractive within the brewing industry as a means of energy-saving and to optimise process efficiency. However, the use of highly concentrated worts is concomitant with a number of biological stress factors and in particular elevated osmotic pressure, which can impact on yeast quality and fermentation performance. In order to eliminate or reduce such negative effects, yeast cells often respond to their environment by...

  17. Post-exercise cold water immersion does not alter high intensity interval training-induced exercise performance and Hsp72 responses, but enhances mitochondrial markers.

    Science.gov (United States)

    Aguiar, Paula Fernandes; Magalhães, Sílvia Mourão; Fonseca, Ivana Alice Teixeira; da Costa Santos, Vanessa Batista; de Matos, Mariana Aguiar; Peixoto, Marco Fabrício Dias; Nakamura, Fábio Yuzo; Crandall, Craig; Araújo, Hygor Nunes; Silveira, Leonardo Reis; Rocha-Vieira, Etel; de Castro Magalhães, Flávio; Amorim, Fabiano Trigueiro

    2016-09-01

    it was not affected by CWI (p = 0.99). Cold water immersion does not alter HIIT-induced Hsp72, AMPK, p38 MAPK, and exercise performance but was able to increase some markers of cellular stress response and signaling molecules related to mitochondria biogenesis.

  18. A case study to determine stress sources affecting the academic performance

    Directory of Open Access Journals (Sweden)

    Aytaç Aydın

    2011-07-01

    Full Text Available 800x600 Normal 0 21 false false false TR X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Normal Tablo"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman","serif";} Job stress affects academicians in terms of performance, scientific production, job satisfaction and health. This effect may differ according to the academicians in the structure of the organization. It is possible to mention about positive stress if organization structure positively affects academician, but it is called negative stress if it negatively affects. Lack of fee and powers, injustice employee evaluation, not getting in return for work are important stress sources. In this study, some of the factors that affect stress levels (individual, organizational and physical environmental factors of academicians (professors, associate professors and assistant professors who work in Karadeniz Technical University are investigated by questionnaire method. The survey data is evaluated with Structural Equation Model (SEM which is prepared in statistical package programs SPSS 16.0 and AMOS 16.0 and the results are revealed. As a result, factors effecting academic members' stress levels are determined as individual and organizational factors (p<0,1. Thus, it is concluded that physical environmental factors such as noise, lightening and crowded place do not cause tension on academician

  19. Chronic stress induces sex-specific alterations in methylation and expression of corticotropin-releasing factor gene in the rat.

    Directory of Open Access Journals (Sweden)

    Linda Sterrenburg

    Full Text Available BACKGROUND: Although the higher prevalence of depression in women than in men is well known, the neuronal basis of this sex difference is largely elusive. METHODS: Male and female rats were exposed to chronic variable mild stress (CVMS after which immediate early gene products, corticotropin-releasing factor (CRF mRNA and peptide, various epigenetic-associated enzymes and DNA methylation of the Crf gene were determined in the hypothalamic paraventricular nucleus (PVN, oval (BSTov and fusiform (BSTfu parts of the bed nucleus of the stria terminalis, and central amygdala (CeA. RESULTS: CVMS induced site-specific changes in Crf gene methylation in all brain centers studied in female rats and in the male BST and CeA, whereas the histone acetyltransferase, CREB-binding protein was increased in the female BST and the histone-deacetylase-5 decreased in the male CeA. These changes were accompanied by an increased amount of c-Fos in the PVN, BSTfu and CeA in males, and of FosB in the PVN of both sexes and in the male BSTov and BSTfu. In the PVN, CVMS increased CRF mRNA in males and CRF peptide decreased in females. CONCLUSIONS: The data confirm our hypothesis that chronic stress affects gene expression and CRF transcriptional, translational and secretory activities in the PVN, BSTov, BSTfu and CeA, in a brain center-specific and sex-specific manner. Brain region-specific and sex-specific changes in epigenetic activity and neuronal activation may play, too, an important role in the sex specificity of the stress response and the susceptibility to depression.

  20. Altered lipid peroxidation markers are related to post-traumatic stress disorder (PTSD) and not trauma itself in earthquake survivors.

    Science.gov (United States)

    Atli, Abdullah; Bulut, Mahmut; Bez, Yasin; Kaplan, İbrahim; Özdemir, Pınar Güzel; Uysal, Cem; Selçuk, Hilal; Sir, Aytekin

    2016-06-01

    The traumatic life events, including earthquakes, war, and interpersonal conflicts, cause a cascade of psychological and biological changes known as post-traumatic stress disorder (PTSD). Malondialdehyde (MDA) is a reliable marker of lipid peroxidation, and paraoxonase is a known antioxidant enzyme. The aims of this study were to investigate the relationship between earthquake trauma, PTSD effects on oxidative stress and the levels of serum paraoxonase 1 (PON1) enzyme activity, and levels of serum MDA. The study was carried out on three groups called: the PTSD group, the traumatized with earthquake exercise group, and healthy control group, which contained 32, 31, and 38 individuals, respectively. Serum MDA levels and PON1 enzyme activities from all participants were measured, and the results were compared across all groups. There were no significant differences between the PTSD patients and non-PTSD earthquake survivors in terms of the study variables. The mean PON1 enzyme activity from PTSD patients was significantly lower, while the mean MDA level was significantly higher than that of the healthy control group (p earthquake survivors who did not develop PTSD showed higher MDA levels and lower PON1 activity when compared to healthy controls. However, the differences between these groups did not reach a statistically significant level. Increased MDA level and decreased PON1 activity measured in PTSD patients after earthquake and may suggest increased oxidative stress in these patients. The nonsignificant trends that are observed in lipid peroxidation markers of earthquake survivors may indicate higher impact of PTSD development on these markers than trauma itself. For example, PTSD diagnosis seems to add to the effect of trauma on serum MDA levels and PON1 enzyme activity. Thus, serum MDA levels and PON1 enzyme activity may serve as biochemical markers of PTSD diagnosis.

  1. Growth temperature alters Salmonella Enteritidis heat/acid resistance, membrane lipid composition and stress/virulence related gene expression.

    Science.gov (United States)

    Yang, Yishan; Khoo, Wei Jie; Zheng, Qianwang; Chung, Hyun-Jung; Yuk, Hyun-Gyun

    2014-02-17

    The influence of growth temperature (10, 25, 37, and 42 °C) on the survival of Salmonella Enteritidis in simulated gastric fluid (SGF; pH=2.0) and during heat treatment (54, 56, 58, and 60 °C), on the membrane fatty acid composition, as well as on stress-/virulence-related gene expression was studied. Cells incubated at temperatures lower or higher than 37 °C did not increase their acid resistance, with the maximum D-value of 3.07 min in cells grown at 37 °C; while those incubated at higher temperature increased their heat resistance, with the maximum D60 °C-values of 1.4 min in cells grown at 42 °C. A decrease in the ratio of unsaturated to saturated fatty acids was observed as the growth temperature increased. Compared to the control cells grown at 37 °C, the expression of rpoS was 16.5- and 14.4-fold higher in cells cultivated at 10 and 25 °C, respectively; while the expression of rpoH was 2.9-fold higher in those cultivated at 42 °C. The increased expression of stress response gene rpoH and the decreased ratio of unsaturated to saturated fatty acids correlated with the greater heat resistance of bacteria grown at 42 °C; while the decreased expression of stress response gene rpoS at 42 °C might contribute to the decrease in acid resistance. Virulence related genes-spvR, hilA, avrA-were induced in cells cultivated at 42 °C, except sefA which was induced in the control cells. This study indicates that environmental temperature may affect the virulence potential of S. Enteritidis, thus temperature should be well controlled during food storage.

  2. Morbillivirus glycoprotein expression induces ER stress, alters Ca2+ homeostasis and results in the release of vasostatin.

    Directory of Open Access Journals (Sweden)

    Jean-Marc Brunner

    Full Text Available Although the pathology of Morbillivirus in the central nervous system (CNS is well described, the molecular basis of neurodegenerative events still remains poorly understood. As a model to explore Morbillivirus-mediated CNS dysfunctions, we used canine distemper virus (CDV that we inoculated into two different cell systems: a monkey cell line (Vero and rat primary hippocampal neurons. Importantly, the recombinant CDV used in these studies not only efficiently infects both cell types but recapitulates the uncommon, non-cytolytic cell-to-cell spread mediated by virulent CDVs in brain of dogs. Here, we demonstrated that both CDV surface glycoproteins (F and H markedly accumulated in the endoplasmic reticulum (ER. This accumulation triggered an ER stress, characterized by increased expression of the ER resident chaperon calnexin and the proapoptotic transcription factor CHOP/GADD 153. The expression of calreticulin (CRT, another ER resident chaperon critically involved in the response to misfolded proteins and in Ca(2+ homeostasis, was also upregulated. Transient expression of recombinant CDV F and H surface glycoproteins in Vero cells and primary hippocampal neurons further confirmed a correlation between their accumulation in the ER, CRT upregulation, ER stress and disruption of ER Ca(2+ homeostasis. Furthermore, CDV infection induced CRT fragmentation with re-localisation of a CRT amino-terminal fragment, also known as vasostatin, on the surface of infected and neighbouring non-infected cells. Altogether, these results suggest that ER stress, CRT fragmentation and re-localization on the cell surface may contribute to cytotoxic effects and ensuing cell dysfunctions triggered by Morbillivirus, a mechanism that might potentially be relevant for other neurotropic viruses.

  3. Oxidative Stress in Retinal Muller Cells contributes to Dysfunction of Retinal Glutamate Uptake and Altered Protein Expression

    DEFF Research Database (Denmark)

    Toft-Kehler, Anne Katrine; Skytt, Dorte Marie; Kolko, Miriam

    2015-01-01

    Purpose: The viability of retinal ganglion cells (RGC) is essential to maintain the neuronal function of the retina. Müller cells (MC) are assumed to be vital in neuroprotection of the RGC. In this study, we evaluate the ability of oxidative stressed and energy restricted MC to remove glutamate f...... from the extracellular space and evaluate related changes in gene and protein expressions. Methods: The human Müller glial cell line, MIO-M1, kindly provided by Astrid Limb, was used in all experiments. Changes in glutamate uptake were evaluated by kinetic uptake studies using 3H...

  4. Stress

    DEFF Research Database (Denmark)

    Keller, Hanne Dauer

    2015-01-01

    Kapitlet handler om stress som følelse, og det trækker primært på de få kvalitative undersøgelser, der er lavet af stressforløb.......Kapitlet handler om stress som følelse, og det trækker primært på de få kvalitative undersøgelser, der er lavet af stressforløb....

  5. Carbofuran induced oxidative stress mediated alterations in Na⁺-K⁺-ATPase activity in rat brain: amelioration by vitamin E.

    Science.gov (United States)

    Jaiswal, Sunil Kumar; Siddiqi, Nikhat Jamal; Sharma, Bechan

    2014-07-01

    Pesticides cause oxidative stress and adversely influence Na(+)-K(+)-ATPase activity in animals. Since impact of carbofuran has not been properly studied in the mammalian brain, the ability of carbofuran to induce oxidative stress and modulation in Na(+)-K(+)-ATPase activity and its amelioration by vitamin E was performed. The rats divided into six groups received two different doses of carbofuran (15% and 30% LD50) for 15 days. The results suggested that the carbofuran treatment caused a significant elevation in levels of malonaldehyde and reduced glutathione and sharp inhibition in the activities of super oxide dismutase, catalase, and glutathione-S-transferase; the effect being dose dependent. Carbofuran at different doses also caused sharp reduction in the activity of Na(+)-K(+)-ATPase. The pretreatment of vitamin E, however, showed a significant recovery in these indices. The pretreatment of rats with vitamin E offered protection from carbofuran-induced oxidative stress.

  6. Serum leptin and cortisol, related to acutely perceived academic examination stress and performance in female university students.

    Science.gov (United States)

    Haleem, Darakhshan J; Inam, Qurrat-Ul-Aen; Haider, Saida; Perveen, Tahira; Haleem, Muhammad Abdul

    2015-12-01

    Leptin, identified as an antiobesity hormone, also has important role in responses to stress and processing of memory. This study was designed to determine effects of academic examination stress-induced changes in serum leptin and its impact on academic performance. Eighty five healthy female students (age 19-21 years; BMI 21.9 ± 1.6) were recruited for the study. Serum leptin and cortisol were monitored at base line (beginning of academic session) and on the day of examination; using a standardized ELISA kit. Acute perception of academic examination stress was determined with the help of a questionnaire derived from Hamilton Anxiety Scale and self report of stress perception. Academic performance was evaluated by the percentage of marks obtained in the examination. Serum cortisol levels were positively correlated (p academic performance. There was an inverted U-shape relationship between level of stress and academic performance. Leptin increased in all stress groups and correlated (p academic performance. There was an inverted U-shape relationship between level of stress and circulating leptin. The findings suggest the peptide hormone, leptin, is a biomarker of stress perception and a mediator of facilitating effects of stress on cognition.

  7. Common chromosomal fragile sites (CFS) may be involved in normal and traumatic cognitive stress memory consolidation and altered nervous system immunity.

    Science.gov (United States)

    Gericke, G S

    2010-05-01

    Previous reports of specific patterns of increased fragility at common chromosomal fragile sites (CFS) found in association with certain neurobehavioural disorders did not attract attention at the time due to a shift towards molecular approaches to delineate neuropsychiatric disorder candidate genes. Links with miRNA, altered methylation and the origin of copy number variation indicate that CFS region characteristics may be part of chromatinomic mechanisms that are increasingly linked with neuroplasticity and memory. Current reports of large-scale double-stranded DNA breaks in differentiating neurons and evidence of ongoing DNA demethylation of specific gene promoters in adult hippocampus may shed new light on the dynamic epigenetic changes that are increasingly appreciated as contributing to long-term memory consolidation. The expression of immune recombination activating genes in key stress-induced memory regions suggests the adoption by the brain of this ancient pattern recognition and memory system to establish a structural basis for long-term memory through controlled chromosomal breakage at highly specific genomic regions. It is furthermore considered that these mechanisms for management of epigenetic information related to stress memory could be linked, in some instances, with the transfer of the somatically acquired information to the germline. Here, rearranged sequences can be subjected to further selection and possible eventual retrotranscription to become part of the more stable coding machinery if proven to be crucial for survival and reproduction. While linkage of cognitive memory with stress and fear circuitry and memory establishment through structural DNA modification is proposed as a normal process, inappropriate activation of immune-like genomic rearrangement processes through traumatic stress memory may have the potential to lead to undesirable activation of neuro-inflammatory processes. These theories could have a significant impact on the

  8. PEP3 overexpression shortens lag phase but does not alter growth rate in Saccharomyces cerevisiae exposed to acetic acid stress.

    Science.gov (United States)

    Ding, Jun; Holzwarth, Garrett; Bradford, C Samuel; Cooley, Ben; Yoshinaga, Allen S; Patton-Vogt, Jana; Abeliovich, Hagai; Penner, Michael H; Bakalinsky, Alan T

    2015-10-01

    In fungi, two recognized mechanisms contribute to pH homeostasis: the plasma membrane proton-pumping ATPase that exports excess protons and the vacuolar proton-pumping ATPase (V-ATPase) that mediates vacuolar proton uptake. Here, we report that overexpression of PEP3 which encodes a component of the HOPS and CORVET complexes involved in vacuolar biogenesis, shortened lag phase in Saccharomyces cerevisiae exposed to acetic acid stress. By confocal microscopy, PEP3-overexpressing cells stained with the vacuolar membrane-specific dye, FM4-64 had more fragmented vacuoles than the wild-type control. The stained overexpression mutant was also found to exhibit about 3.6-fold more FM4-64 fluorescence than the wild-type control as determined by flow cytometry. While the vacuolar pH of the wild-type strain grown in the presence of 80 mM acetic acid was significantly higher than in the absence of added acid, no significant difference was observed in vacuolar pH of the overexpression strain grown either in the presence or absence of 80 mM acetic acid. Based on an indirect growth assay, the PEP3-overexpression strain exhibited higher V-ATPase activity. We hypothesize that PEP3 overexpression provides protection from acid stress by increasing vacuolar surface area and V-ATPase activity and, hence, proton-sequestering capacity.

  9. Alteration of oxidative stress parameters in red blood cells of rats after chronic in vivo treatment with cisplatin and selenium

    Directory of Open Access Journals (Sweden)

    Marković Snežana D.

    2011-01-01

    Full Text Available In this study we evaluated the possible protective effects of selenium (Se on hematological and oxidative stress parameters in rats chronically treated with cisplatin (cisPt. Four groups of Wistar albino rats were examined: a control, untreated rats (I, rats treated with Se (II, rats treated with cisPt (III, and rats treated with Se and cisPt (IV. All animals were treated for 5 days successively and killed 24 h after the last treatment. Hematological and oxidative stress parameters were followed in whole blood and red blood cells (RBC. Results showed that the chronic application of Se was followed by a higher number of reticulocytes and platelets, increased lipid peroxidation and GSH content in the RBC. Cisplatin treatment induced depletion of RBC and platelet numbers and an elevation of the superoxide anion, nitrites and glutathione levels. Se and cisPt co-treatment was followed by an elevation of the hematological parameters and the recovery of the glutathione status when compared to the control and cisPt-treated rats.

  10. Cardiac-Specific Disruption of GH Receptor Alters Glucose Homeostasis While Maintaining Normal Cardiac Performance in Adult Male Mice.

    Science.gov (United States)

    Jara, Adam; Liu, Xingbo; Sim, Don; Benner, Chance M; Duran-Ortiz, Silvana; Qian, Yanrong; List, Edward O; Berryman, Darlene E; Kim, Jason K; Kopchick, John J

    2016-05-01

    GH is considered necessary for the proper development and maintenance of several tissues, including the heart. Studies conducted in both GH receptor null and bovine GH transgenic mice have demonstrated specific cardiac structural and functional changes. In each of these mouse lines, however, GH-induced signaling is altered systemically, being decreased in GH receptor null mice and increased in bovine GH transgenic mice. Therefore, to clarify the direct effects GH has on cardiac tissue, we developed a tamoxifen-inducible, cardiac-specific GHR disrupted (iC-GHRKO) mouse line. Cardiac GH receptor was disrupted in 4-month-old iC-GHRKO mice to avoid developmental effects due to perinatal GHR gene disruption. Surprisingly, iC-GHRKO mice showed no difference vs controls in baseline or postdobutamine stress test echocardiography measurements, nor did iC-GHRKO mice show differences in longitudinal systolic blood pressure measurements. Interestingly, iC-GHRKO mice had decreased fat mass and improved insulin sensitivity at 6.5 months of age. By 12.5 months of age, however, iC-GHRKO mice no longer had significant decreases in fat mass and had developed glucose intolerance and insulin resistance. Furthermore, investigation via immunoblot analysis demonstrated that iC-GHRKO mice had appreciably decreased insulin stimulated Akt phosphorylation, specifically in heart and liver, but not in epididymal white adipose tissue. These changes were accompanied by a decrease in circulating IGF-1 levels in 12.5-month-old iC-GHRKO mice. These data indicate that whereas the disruption of cardiomyocyte GH-induced signaling in adult mice does not affect cardiac function, it does play a role in systemic glucose homeostasis, in part through modulation of circulating IGF-1.

  11. Risk of prenatal depression and stress treatment: alteration on serotonin system of offspring through exposure to Fluoxetine

    Science.gov (United States)

    Pei, Siran; Liu, Li; Zhong, Zhaomin; Wang, Han; Lin, Shuo; Shang, Jing

    2016-01-01

    Fluoxetine is widely used to treat depression, including depression in pregnant and postpartum women. Studies suggest that fluoxetine may have adverse effects on offspring, presumably through its action on various serotonin receptors (HTRs). However, definitive evidence and the underlying mechanisms are largely unavailable. As initial steps towards establishing a human cellular and animal model, we analyzed the expression patterns of several HTRs through the differentiation of human induced pluripotent stem (hiPS) cells into neuronal cells, and analyzed expression pattern in zebrafish embryos. Treatment of zebrafish embryos with fluoxetine significantly blocked the expression of multiple HTRs. Furthermore, fluoxetine gave rise to a change in neuropsychology. Embryos treated with fluoxetine continued to exhibit abnormal behavior upto 12 days post fertilization due to changes in HTRs. These findings support a possible long-term risk of serotonin pathway alteration, possibly resulting from the “placental drug transfer”. PMID:27703173

  12. What Differentiates Employees' Job Performance Under Stressful Situations: The Role of General Self-Efficacy.

    Science.gov (United States)

    Lu, Chang-Qin; Du, Dan-Yang; Xu, Xiao-Min

    2016-10-02

    The aim of this research is to verify the two-dimensional challenge-hindrance stressor framework in the Chinese context, and investigate the moderating effect of general self-efficacy in the stress process. Data were collected from 164 Chinese employee-supervisor dyads. The results demonstrated that challenge stressors were positively related to job performance while hindrance stressors were negatively related to job performance. Furthermore, general self-efficacy strengthened the positive relationship between challenge stressors and job performance, whereas the attenuating effect of general self-efficacy on the negative relationship between hindrance stressors and job performance was nonsignificant. These findings qualify the two-dimensional challenge-hindrance stressor framework, and support the notion that employees with high self-efficacy benefit more from the positive effect of challenge stressors in the workplace. By investigating the role of an individual difference variable in the challenge-hindrance stressor framework, this research provides a more accurate picture of the nature of job stress, and enhances our understanding of the job stressor-job performance relationship.

  13. Altered regional homogeneity with short-term simulated microgravity and its relationship with changed performance in mental transformation.

    Directory of Open Access Journals (Sweden)

    Yang Liao

    Full Text Available In order to further the insight into the explanation of changed performance in mental transformation under microgravity, we discuss the change of performance in mental transformation and its relationship with altered regional homogeneity (ReHo in resting-state brain by using simulated weightlessness model. Twelve male subjects with age between 24 and 31 received resting-state fMRI scan and mental transformation test both in normal condition and immediately after 72 hours -6° head down tilt (HDT. A paired sample t-test was used to test the difference of behavior performance and brain activity between these two conditions. Compare with normal condition, subjects showed a changed performance in mental transformation with short term simulated microgravity and appeared to be falling. Meanwhile, decreased ReHo were found in right inferior frontal gyrus (IFG and left inferior parietal lobule (IPL after 72 hours -6° HDT, while increased ReHo were found in bilateral medial frontal gyrus (MFG and left superior frontal gyrus (SFG (P<0.05, corrected. Particularly, there was a significant correlation between ReHo values in left IPL and velocity index of mental transformation. Our findings indicate that gravity change may disrupt the function of right IFG and left IPL in the resting-state, among of which functional change in left IPL may contribute to changed abilities of mental transformation. In addition, the enhanced activity of the bilateral MFG and decreased activity of right IFG found in the current study maybe reflect a complementation effect on inhibitory control process.

  14. Stress and Academic Performance in Dental Students: The Role of Coping Strategies and Examination-Related Self-Efficacy.

    Science.gov (United States)

    Crego, Antonio; Carrillo-Diaz, María; Armfield, Jason M; Romero, Martín

    2016-02-01

    Academic stress negatively affects students' performance. However, little is known of the processes that may be involved in this association. This study aimed to analyze how other variables such as coping strategies and exam-related self-efficacy could be related to academic stress and performance for dental students. An online survey, including measures of coping strategies, perceived stress, exam-related self-efficacy, and academic performance, was completed by undergraduate dental students in Madrid, Spain. Of the 275 students invited to take the survey, 201 participated (response rate 73.6%). Rational coping strategies (problem-solving, positive reappraisal, seeking social support) were negatively associated with perceived stress (β=-0.25, pacademic stress (β=0.34, pacademic performance.

  15. Impaired Driving Performance as Evidence of a Magnocellular Deficit in Dyslexia and Visual Stress.

    Science.gov (United States)

    Fisher, Carri; Chekaluk, Eugene; Irwin, Julia

    2015-11-01

    High comorbidity and an overlap in symptomology have been demonstrated between dyslexia and visual stress. Several researchers have hypothesized an underlying or causal influence that may account for this relationship. The magnocellular theory of dyslexia proposes that a deficit in visuo-temporal processing can explain symptomology for both disorders. If the magnocellular theory holds true, individuals who experience symptomology for these disorders should show impairment on a visuo-temporal task, such as driving. Eighteen male participants formed the sample for this study. Self-report measures assessed dyslexia and visual stress symptomology as well as participant IQ. Participants completed a drive simulation in which errors in response to road signs were measured. Bivariate correlations revealed significant associations between scores on measures of dyslexia and visual stress. Results also demonstrated that self-reported symptomology predicts magnocellular impairment as measured by performance on a driving task. Results from this study suggest that a magnocellular deficit offers a likely explanation for individuals who report high symptomology across both conditions. While conclusions about the impact of these disorders on driving performance should not be derived from this research alone, this study provides a platform for the development of future research, utilizing a clinical population and on-road driving assessment techniques.

  16. Emotional intelligence: its relationship to stress, coping, well-being and professional performance in nursing students.

    Science.gov (United States)

    Por, Jitna; Barriball, Louise; Fitzpatrick, Joanne; Roberts, Julia

    2011-11-01

    Emotional intelligence (EI) has been highlighted as an important theoretical and practical construct. It has the potential to enable individuals to cope better and experience less stress thus contributing to a healthy and stable workforce. The study aimed to explore the EI of nursing students (n=130, 52.0%) and its relationship to perceived stress, coping strategies, subjective well-being, perceived nursing competency and academic performance. Students were on the adult pathway of a nursing diploma or degree programme in one Higher Education Institution (HEI) in the United Kingdom (UK). A prospective correlational survey design was adopted. Three methods of data collection were used: i) A self-report questionnaire; ii) an audit of students' academic performance; and iii) mapping of EI teaching in the curricula. Emotional intelligence was positively related to well-being (pnursing competency (pstress (pnursing students to adopt active and effective coping strategies when dealing with stress, which in turn enhances their subjective well-being. This study highlights the potential value of facilitating the EI of students of nursing and other healthcare professions.

  17. Reduction of oxidative stress during recovery accelerates normalization of primary cilia length that is altered after ischemic injury in murine kidneys.

    Science.gov (United States)

    Kim, Jee In; Kim, Jinu; Jang, Hee-Seong; Noh, Mi Ra; Lipschutz, Joshua H; Park, Kwon Moo

    2013-05-15

    The primary cilium is a microtubule-based nonmotile organelle that extends from the surface of cells, including renal tubular cells. Here, we investigated the alteration of primary cilium length during epithelial cell injury and repair, following ischemia/reperfusion (I/R) insult, and the role of reactive oxygen species in this alteration. Thirty minutes of bilateral renal ischemia induced severe renal tubular cell damage and an increase of plasma creatinine (PCr) concentration. Between 8 and 16 days following the ischemia, the increased PCr returned to normal range, although without complete histological restoration. Compared with the primary cilium length in normal kidney tubule cells, the length was shortened 4 h and 1 day following ischemia, increased over normal 8 days after ischemia, and then returned to near normal 16 days following ischemia. In the urine of I/R-subjected mice, acetylated tubulin was detected. The cilium length of proliferating cells was shorter than that in nonproliferating cells. Mature cells had shorter cilia than differentiating cells. Treatment with Mn(III) tetrakis(1-methyl-4-pyridyl) porphyrin (MnTMPyP), an antioxidant, during the recovery of damaged kidneys accelerated normalization of cilia length concomitant with a decrease of oxidative stress and morphological recovery in the kidney. In the Madin-Darby canine kidney (MDCK) cells, H(2)O(2) treatment caused released ciliary fragment into medium, and MnTMPyP inhibited the deciliation. The ERK inhibitor U0126 inhibited elongation of cilia in normal and MDCK cells recovering from H(2)O(2) stress. Taken together, our results suggest that primary cilia length reflects cell proliferation and the length of primary cilium is regulated, at least, in part, by reactive oxygen species through ERK.

  18. Orbitofrontal cortex 5-HT2A receptor mediates chronic stress-induced depressive-like behaviors and alterations of spine density and Kalirin7.

    Science.gov (United States)

    Xu, Chang; Ma, Xin-Ming; Chen, Hui-Bin; Zhou, Meng-He; Qiao, Hui; An, Shu-Cheng

    2016-10-01

    Neuroimaging studies show that patients with major depression have reduced volume of the orbitofrontal cortex (OFC). Although the serotonin (5-HT) 2A receptor, which is abundant in the OFC, has been implicated in depression, the underlying mechanisms in the development of stress-induced depression remain unclear. Kalirin-7 (Kal7) is an essential component of mature excitatory synapses for maintaining dendritic spines density, size and synaptic functions. The aim of this study was to investigate the role of orbitofrontal 5-HT and 5-HT2A receptors in depressive-like behaviors and their associations with Kal7 and dendritic spines using chronic unpredictable mild stress (CUMS), an established animal model of depression. CUMS had no effect on the levels of 5-HT or the 5-HT2A receptor in the OFC. However, CUMS or microinjection of the 5-HT2A/2C receptor agonist (±)-1-(2, 5-Dimethoxy-4-iodophenyl)- 2-aminopropane hydrochloride (DOI, 5 μg/0.5 μL) into the OFC induced depressive-like behaviors, including anhedonia in the sucrose preference test and behavioral despair in the tail suspension test, a significant reduction in body weight gain and locomotor activity in the open field test, which were accompanied by decreased expression of Kal7 and PSD95 as well as decreased density of dendritic spines in the OFC. These alterations induced by CUMS were reversed by pretreatment with the 5-HT2A receptor antagonist Ketanserin (Ket, 5 μg/0.5 μL into the OFC). These results suggest that CUMS alters structural plasticity through activation of the orbital 5-HT2A receptor and is associated with decreased expression of Kal7, thereby resulting in depressive-like behaviors in rats, suggesting an important role of Kal7 in the OFC in depression.

  19. Chronic Early-life Stress in Rat Pups Alters Basal Corticosterone, Intestinal Permeability, and Fecal Microbiota at Weaning: Influence of Sex

    Science.gov (United States)

    Moussaoui, Nabila; Jacobs, Jonathan P; Larauche, Muriel; Biraud, Mandy; Million, Mulugeta; Mayer, Emeran; Taché, Yvette

    2017-01-01

    Background/Aims Wistar rat dams exposed to limited nesting stress (LNS) from post-natal days (PND) 2 to 10 display erratic maternal behavior, and their pups show delayed maturation of the hypothalamic-pituitary-adrenal axis and impaired epithelial barrier at PND10 and a visceral hypersensitivity at adulthood. Little is known about the impact of early life stress on the offspring before adulthood and the influence of sex. We investigated whether male and female rats previously exposed to LNS displays at weaning altered corticosterone, intestinal permeability, and microbiota. Methods Wistar rat dams and litters were maintained from PND2 to 10 with limited nesting/bedding materials and thereafter reverted to normal housing up to weaning (PND21). Control litters had normal housing. At weaning, we monitored body weight, corticosterone plasma levels (enzyme immunoassay), in vivo intestinal to colon permeability (fluorescein isothiocyanate-dextran 4 kDa) and fecal microbiota (DNA extraction and amplification of the V4 region of the 16S ribosomal RNA gene). Results At weaning, LNS pups had hypercorticosteronemia and enhanced intestinal permeability with females > males while body weights were similar. LNS decreased fecal microbial diversity and induced a distinct composition characterized by increased abundance of Gram positive cocci and reduction of fiber-degrading, butyrate-producing, and mucus-resident microbes. Conclusions These data indicate that chronic exposure to LNS during the first week post-natally has sustained effects monitored at weaning including hypercorticosteronemia, a leaky gut, and dysbiosis. These alterations may impact on the susceptibility to develop visceral hypersensitivity in adult rats and have relevance to the development of irritable bowel syndrome in childhood. PMID:27829577

  20. EEG oscillatory patterns are associated with error prediction during music performance and are altered in musician's dystonia.

    Science.gov (United States)

    Ruiz, María Herrojo; Strübing, Felix; Jabusch, Hans-Christian; Altenmüller, Eckart

    2011-04-15

    Skilled performance requires the ability to monitor ongoing behavior, detect errors in advance and modify the performance accordingly. The acquisition of fast predictive mechanisms might be possible due to the extensive training characterizing expertise performance. Recent EEG studies on piano performance reported a negative event-related potential (ERP) triggered in the ACC 70 ms before performance errors (pitch errors due to incorrect keypress). This ERP component, termed pre-error related negativity (pre-ERN), was assumed to reflect processes of error detection in advance. However, some questions remained to be addressed: (i) Does the electrophysiological marker prior to errors reflect an error signal itself or is it related instead to the implementation of control mechanisms? (ii) Does the posterior frontomedial cortex (pFMC, including ACC) interact with other brain regions to implement control adjustments following motor prediction of an upcoming error? (iii) Can we gain insight into the electrophysiological correlates of error prediction and control by assessing the local neuronal synchronization and phase interaction among neuronal populations? (iv) Finally, are error detection and control mechanisms defective in pianists with musician's dystonia (MD), a focal task-specific dystonia resulting from dysfunction of the basal ganglia-thalamic-frontal circuits? Consequently, we investigated the EEG oscillatory and phase synchronization correlates of error detection and control during piano performances in healthy pianists and in a group of pianists with MD. In healthy pianists, the main outcomes were increased pre-error theta and beta band oscillations over the pFMC and 13-15 Hz phase synchronization, between the pFMC and the right lateral prefrontal cortex, which predicted corrective mechanisms. In MD patients, the pattern of phase synchronization appeared in a different frequency band (6-8 Hz) and correlated with the severity of the disorder. The present

  1. Characterization and modelling of fluid flows in fissured and fractured media. relation with hydrothermal alterations and paleo-stress quantification; Caracterisation et modelisation des ecoulements fluides en milieu fissure. relation avec les alterations hydrothermales et quantification des paleocontraintes

    Energy Technology Data Exchange (ETDEWEB)

    Sausse, J.

    1998-10-15

    the modelization of the space-time evolution of the Brezouard granite crack permeability during fluid-rock interactions. The two used permeability models (geometrical or statistical) remain very dependent on the definition of the characteristic opening of fracture or fissure. Real fractures in a rocky mass are characterised by non parallel, flat and thus overlapped walls. The study of these natural fracture surfaces at micro and macroscopic scale is completed by a theoretical modelization of their hydro-mechanical behaviour. This work indicates the influence of the surface roughness on the fluid flow as well as the propagation of the alteration. These fractures were formed and percolated under a particular tectonic regime that controls their orientation. Numerous quartz veins in the Soultz granite are opened and sealed during the Oligocene extension. The characteristic fluid pressure of these opening - sealing stages are quantified thanks to fluid inclusion studies. These inclusions are located in secondary quartz which seal the veins. A new method of paleo-stress quantification is proposed, based on the knowledge of this fluid pressure. It takes i) the geometrical distribution of the vein poles, ii) some empirical considerations of rupture criteria, and iii) the fluid pressures into account. (author)

  2. Stress management for dental students performing their first pediatric restorative procedure.

    Science.gov (United States)

    Piazza-Waggoner, Carrie A; Cohen, Lindsey L; Kohli, Kavita; Taylor, Brandie K

    2003-05-01

    Research has demonstrated that dental students experience considerable stress during their training. Students' anxiety is likely to be especially high when they perform their first pediatric restorative procedure. The aims of this study were to provide a description of dental students' level of anxiety and typical coping strategies and to evaluate the use of a distress management intervention for reducing anxiety around their first pediatric restorative procedure. Dental students were randomly assigned to either an Anxiety Management or an Attention Control group. The management group received training on relaxation strategies (i.e., deep breathing, progressive muscle relaxation). The control group attended a lecture on the relation among stress, anxiety, and health. No significant differences were found between group levels of anxiety related to their first pediatric restorative procedure. Information is provided on students' reported level of anxiety and general coping strategies. Limitations of the current study and suggestions for future research are provided.

  3. Effects of cerium dioxide nanoparticles in Oncorhynchus mykiss liver after an acute exposure: assessment of oxidative stress, genotoxicity and histological alterations

    Directory of Open Access Journals (Sweden)

    Ana Cristina Nunes

    2015-12-01

    Full Text Available At present cerium oxide nanoparticles (CeO2 NP have numerous applications ranging from industry to the household, leading to its wide distribution namely in the aquatic environment. The hereby study aimed to assess the toxic effects of CeO2 NPs in Oncorhynchus mykiss liver following an acute exposure (96h to three different concentrations (0.25, 2.5 and 25 mg/L in terms of the genotoxicity (comet assay, oxidative stress response (Catalase CAT; Glutathione S-Transferases GSTs; Thiobarbituric Acid Reactive Substances TBARS and histopathology. CeO2 NP exposure resulted in genotoxic damage in all exposure treatments, inhibition of CAT in the highest concentration and histopathological changes in all exposure concentrations with predominance of progressive and circulatory alterations. However TBARS and GSTs showed no significant differences comparatively to the control (unexposed group. The results suggest that CeO2 NP are able to cause genotoxicity, biochemical impairment and histological alterations in the liver of rainbow trout.

  4. Tomato plants overexpressing cryptochrome 2 reveal altered expression of energy and stress-related gene products in response to diurnal cues.

    Science.gov (United States)

    Lopez, Loredana; Carbone, Fabrizio; Bianco, Linda; Giuliano, Giovanni; Facella, Paolo; Perrotta, Gaetano

    2012-05-01

    In order to sense and respond to the fluctuating light conditions, higher plants possess several families of photoreceptors, such as phytochromes (PHYs), cryptochromes (CRYs) and phototropins. CRYs are responsible for photomorphogenesis and play a role in circadian, developmental and adaptive growth regulation of plants. In tomato (Solanum lycopersicum), CRY2 controls vegetative development, flowering time, fruit antioxidant content as well as the diurnal transcription of several other photoreceptor genes. We applied large-scale molecular approaches to identify altered transcripts and proteins in tomato wild-type (WT) versus a CRY2 overexpressing transgenic genotype, under a diurnal rhythm. Our results showed that tomato CRY2 profoundly affects both gene and protein expression in response to daily light cycle. Particularly altered molecular pathways are related to biotic/abiotic stress, photosynthesis, including components of the light and dark reactions and of starch and sucrose biosynthesis, as well as to secondary metabolism, such as phenylpropanoid, phenolic and flavonoid/anthocyanin biosynthesis pathways. One of the most interesting results is the coordinated up-regulation, in the transgenic genotype, of a consistent number of transcripts and proteins involved in photorespiration and photosynthesis. It is conceivable that light modulates the energetic metabolism of tomato through a fine CRY2-mediated transcriptional control.

  5. L-carnitine Mediated Reduction in Oxidative Stress and Alteration in Transcript Level of Antioxidant Enzymes in Sheep Embryos Produced In Vitro.

    Science.gov (United States)

    Mishra, A; Reddy, I J; Gupta, P S P; Mondal, S

    2016-04-01

    The objective of this study was to find out the effect of L-carnitine on oocyte maturation and subsequent embryo development, with L-carnitine-mediated alteration if any in transcript level of antioxidant enzymes (GPx, Cu/Zn-SOD (SOD1) and Mn-SOD (SOD2) in oocytes and developing sheep embryos produced in vitro. Different concentrations of L-carnitine (0 mm, 2.5 mm, 5 mm, 7.5 mm and 10 mm) were used in maturation medium. Oocytes matured with 10 mm L-carnitine showed significantly (p carnitine were not significantly different. Maturation rate was not influenced by supplementation of any experimental concentration of L-carnitine. There was a significant (p carnitine-treated oocytes and embryos than control group. Antioxidant effect of L-carnitine was proved by culturing oocytes and embryos with H2O2 in the presence of L-carnitine which could be able to protect oocytes and embryos from H2O2-induced oxidative damage. L-carnitine supplementation significantly (p carnitine supplementation during in vitro maturation reduces oxidative stress-induced embryo toxicity by decreasing intracellular ROS and increasing intracellular GSH that in turn improved developmental potential of oocytes and embryos and alters transcript level of antioxidant enzymes.

  6. Wheat leaf lipids during heat stress: I. High day and night temperatures result in major lipid alterations.

    Science.gov (United States)

    Narayanan, Sruthi; Tamura, Pamela J; Roth, Mary R; Prasad, P V Vara; Welti, Ruth

    2016-04-01

    Understanding how wheat (Triticum aestivum L.) plants under high temperature (HT) regulate lipid composition is critical to developing climate-resilient varieties. We measured 165 glycerolipids and sterol derivatives under optimum and high day and night temperatures in wheat leaves using electrospray ionization-tandem mass spectrometry. Levels of polar lipid fatty acyl chain unsaturation were lower in both heat-tolerant genotype Ventnor and susceptible genotype Karl 92 under HT, compared with optimum temperature. The lower unsaturation was predominantly because of lower levels of 18:3 acyl chains and higher levels of 18:1 and 16:0 acyl chains. Levels of 18:3-containing triacylglycerols increased threefold/more under HT, consistent with their possible role in sequestering fatty acids during membrane lipid remodelling. Phospholipids containing odd-numbered or oxidized acyl chains accumulated in leaves under HT. Sterol glycosides (SG) and 16:0-acylated sterol glycosides (ASG) were higher under HT than optimum temperatures. Ventnor had lower amounts of phospholipids with oxidized acyl chains under HT and higher amounts of SG and 16:0-ASG than Karl 92. Taken together, the data demonstrate that wheat leaf lipid composition is altered by HT, in which some lipids are particularly responsive to HT, and that two wheat genotypes, chosen for their differing physiological responses to HT, differ in lipid profile under HT.

  7. Oxidative stress in mouse sperm impairs embryo development, fetal growth and alters adiposity and glucose regulation in female offspring.

    Directory of Open Access Journals (Sweden)

    Michelle Lane

    Full Text Available Paternal health cues are able to program the health of the next generation however the mechanism for this transmission is unknown. Reactive oxygen species (ROS are increased in many paternal pathologies, some of which program offspring health, and are known to induce DNA damage and alter the methylation pattern of chromatin. We therefore investigated whether a chemically induced increase of ROS in sperm impairs embryo, pregnancy and offspring health. Mouse sperm was exposed to 1500 µM of hydrogen peroxide (H2O2, which induced oxidative damage, however did not affect sperm motility or the ability to bind and fertilize an oocyte. Sperm treated with H2O2 delayed on-time development of subsequent embryos, decreased the ratio of inner cell mass cells (ICM in the resulting blastocyst and reduced implantation rates. Crown-rump length at day 18 of gestation was also reduced in offspring produced by H2O2 treated sperm. Female offspring from H2O2 treated sperm were smaller, became glucose intolerant and accumulated increased levels of adipose tissue compared to control female offspring. Interestingly male offspring phenotype was less severe with increases in fat depots only seen at 4 weeks of age, which was restored to that of control offspring later in life, demonstrating sex-specific impacts on offspring. This study implicates elevated sperm ROS concentrations, which are common to many paternal health pathologies, as a mediator of programming offspring for metabolic syndrome and obesity.

  8. Performance enhancement in uniaxially tensile stressed GeSn n-channel fin tunneling field-effect transistor: Impact of stress direction

    Science.gov (United States)

    Wang, Hongjuan; Han, Genquan; Jiang, Xiangwei; Liu, Yan; Zhang, Chunfu; Zhang, Jincheng; Hao, Yue

    2017-04-01

    In this work, the boosting effect on the performance of GeSn n-channel fin tunneling FET (nFinTFET) enabled by uniaxial tensile stress is investigated theoretically. As the fin rotates within the (001) plane, the uniaxial tensile stress is always along its direction. The electrical characteristics of tensile-stressed GeSn nFinTFETs with point and line tunneling modes are computed utilizing the technology computer aided design (TCAD) simulator in which the dynamic nonlocal band-to-band tunneling (BTBT) algorithm is employed. In comparison with the relaxed devices, tensile-stressed GeSn nFinTFETs achieve a substantial enhancement in band-to-band tunneling generation rate (G BTBT) and on-state current I ON owing to the reduced bandgap E G induced by the tensile stress. Performance improvement of GeSn nFinTFETs induced by tensile stress demonstrates a strong dependence on channel direction and tunneling modes. Under the same magnitude of stress, line-nFinTFETs obtain a more pronounced I ON enhancement over the transistors with point tunneling mode.

  9. Altered behavioral performance and live imaging of circuit-specific neural deficiencies in a zebrafish model for psychomotor retardation.

    Directory of Open Access Journals (Sweden)

    David Zada

    2014-09-01

    Full Text Available The mechanisms and treatment of psychomotor retardation, which includes motor and cognitive impairment, are indefinite. The Allan-Herndon-Dudley syndrome (AHDS is an X-linked psychomotor retardation characterized by delayed development, severe intellectual disability, muscle hypotonia, and spastic paraplegia, in combination with disturbed thyroid hormone (TH parameters. AHDS has been associated with mutations in the monocarboxylate transporter 8 (mct8/slc16a2 gene, which is a TH transporter. In order to determine the pathophysiological mechanisms of AHDS, MCT8 knockout mice were intensively studied. Although these mice faithfully replicated the abnormal serum TH levels, they failed to exhibit the neurological and behavioral symptoms of AHDS patients. Here, we generated an mct8 mutant (mct8-/- zebrafish using zinc-finger nuclease (ZFN-mediated targeted gene editing system. The elimination of MCT8 decreased the expression levels of TH receptors; however, it did not affect the expression of other TH-related genes. Similar to human patients, mct8-/- larvae exhibited neurological and behavioral deficiencies. High-throughput behavioral assays demonstrated that mct8-/- larvae exhibited reduced locomotor activity, altered response to external light and dark transitions and an increase in sleep time. These deficiencies in behavioral performance were associated with altered expression of myelin-related genes and neuron-specific deficiencies in circuit formation. Time-lapse imaging of single-axon arbors and synapses in live mct8-/- larvae revealed a reduction in filopodia dynamics and axon branching in sensory neurons and decreased synaptic density in motor neurons. These phenotypes enable assessment of the therapeutic potential of three TH analogs that can enter the cells in the absence of MCT8. The TH analogs restored the myelin and axon outgrowth deficiencies in mct8-/- larvae. These findings suggest a mechanism by which MCT8 regulates neural circuit

  10. Stress, Cognition, and Human Performance: A Literature Review and Conceptual Framework

    Science.gov (United States)

    Staal, Mark A.

    2004-01-01

    The following literature review addresses the effects of various stressors on cognition. While attempting to be as inclusive as possible, the review focuses its examination on the relationships between cognitive appraisal, attention, memory, and stress as they relate to information processing and human performance. The review begins with an overview of constructs and theoretical perspectives followed by an examination of effects across attention, memory, perceptual-motor functions, judgment and decision making, putative stressors such as workload, thermals, noise, and fatigue and closes with a discussion of moderating variables and related topics. In summation of the review, a conceptual framework for cognitive process under stress has been assembled. As one might imagine, the research literature that addresses stress, theories governing its effects on human performance, and experimental evidence that supports these notions is large and diverse. In attempting to organize and synthesize this body of work, I was guided by several earlier efforts (Bourne & Yaroush, 2003; Driskell, Mullen, Johnson, Hughes, & Batchelor, 1992; Driskell & Salas, 1996; Haridcock & Desmond, 2001; Stokes & Kite, 1994). These authors should be credited with accomplishing the monumental task of providing focused reviews in this area and their collective efforts laid the foundation for this present review. Similarly, the format of this review has been designed in accordance with these previous exemplars. However, each of these previous efforts either simply reported general findings, without sufficient experimental illustration, or narrowed their scope of investigation to the extent that the breadth of such findings remained hidden from the reader. Moreover, none of these examinations yielded an architecture that adequately describes or explains the inter-relations between information processing elements under stress conditions.

  11. Alteration of hepatic cells glucose metabolism as a non-cholinergic detoxication mechanism in counteracting diazinon-induced oxidative stress.

    Science.gov (United States)

    Teimouri, Fatemeh; Amirkabirian, Nasim; Esmaily, Hadi; Mohammadirad, Azadeh; Aliahmadi, Atousa; Abdollahi, Mohammad

    2006-12-01

    The aim of this study was to evaluate effects of acute exposure to various doses of diazinon, a widely used synthetic organophosphorus (OP) insecticide on plasma glucose, hepatic cells key enzymes of glycogenolysis and gluconeogenesis, and oxidative stress in rats. Diazinon was administered by gavage at doses of 15, 30 and 60 mg/ kg. The liver was perfused and removed under anaesthesia. The activities of glycogen phosphorylase (GP), phosphoenolpyruvate carboxykinase (PEPCK), thiobarbituric acid reactive substances (TBARS) and total antioxidant capacity (TAC) were analysed in liver homogenate. Administration of diazinon (15, 30 and 60 mg/kg) increased plasma glucose concentrations by 101.43% (P = 0.001), 103.68% (P = 0.000) and 160.65% (P = 0.000) of control, respectively. Diazinon (15, 30 and 60 mg/kg) increased hepatic GP activity by 43.5% (P = 0.05), 70.3% (P = 0.00) and 117.2% (P = 0.02) of control, respectively. In addition, diazinon (30 and 60 mg/kg) increased hepatic PEPCK by 77.3% (P = 0.000) and 93.5% (P = 0.000) of control, respectively. Diazinon (30 and 60 mg/kg) decreased liver TAC by 38% (P = 0.046) and 48% (P = 0.000) of control, respectively. Also diazinon (30 and 60 mg/kg) increased hepatic cell liver lipid peroxidation by 77% (P = 0.05) and 280% (P = 0.000) of control. The correlations between plasma glucose and hepatic cells TBARS (r2 = 0.537, P = 0.02), between plasma glucose and ChE activity (r2 = 0.81, P = 0.049) and between plasma glucose and hepatic cells GP activity (r2 = 0.833, P = 0.04) were significant. It is concluded that the liver cells are a site of toxic action of diazinon. Diazinon increases glucose release from liver into blood through activation of glycogenolysis and gluconeogenesis as a detoxication non-cholinergic mechanism to overwhelm diazinon-induced toxic stress. The results are in accordance with the hypothesis that OPs are a predisposing factor of diabetes.

  12. Pro-Inflammatory and Oxidative Stress Pathways which Compromise Sperm Motility and Survival May Be Altered by L-Carnitine

    Directory of Open Access Journals (Sweden)

    Adel R. A. Abd-Allah

    2009-01-01

    Full Text Available The testis is an immunologically privileged organ. Sertoli cells can form a blood-testis barrier and protect sperm cells from self-immune system attacks. Spermatogenesis may be inhibited by severe illness, bacterial infections and chronic inflammatory diseases but the mechanism(s is poorly understood. Our objective is to help in understanding such mechanism(s to develop protective agents against temporary or permanent testicular dysfunction. Lipopolysaccaride (LPS is used as a model of animal sepsis while L-carnitine (LCR is used as a protective agent. A total of 60 male Swiss albino rats were divided into four groups (15/group. The control group received Saline; the 2nd group was given LCR (500 mg/kg i.p, once. The third group was treated with LPS (5 mg/kg i.p once and the fourth group received LCR then LPS after three hours. From each group, five rats were used for histopathological examination. Biochemical parameters were assessed in the remaining ten rats. At the end of the experiment, animals were lightly anaesthetized with ether where blood samples were collected and testes were dissected on ice. Sperm count and motility were evaluated from cauda epididymis in each animal. Also, oxidative stress was evaluated by measuring testicular contents of reduced glutathione (GSH, malondialdehyde (MDA and 8-hydroxydeoxyguanosine (8-HDG, the DNA adduct for oxidative damage in testicular DNA. The pro-inflammatory mediator nitric oxide (NO in addition to lactate dehydrogenase (LDHx isoenzyme-x activity as an indicator for normal spermatozoal metabolism were assessed in testicular homogenate. Serum interlukin (IL-2 level was also assessed as a marker for T-helper cell function. The obtained data revealed that LPS induced marked reductions in sperm's count and motility, obstruction in seminiferous tubules, hypospermia and dilated congested blood vessels in testicular sections concomitant with decreased testicular GSH content and LDHx activity. Moreover

  13. A review of stress appraising in sport performers: Where are we now and where do we go from here?

    OpenAIRE

    Didymus, FF; Fletcher, D.

    2013-01-01

    RELATED THEME: Psychology for performance\\ud BACKGROUND: According to transactional stress theory and sport psychology research, appraising is an important component of athletes’ stress transactions. This is because appraisals provide the basis for various psychological, physiological, emotional, and behavioural outcomes. Thus, a review of the sport psychology literature that focuses on appraising is required to facilitate a greater understanding of performers’ stress transactions.\\ud PURPOSE...

  14. Methoxychlor-induced alteration in the levels of HSP70 and clusterin is accompanied with oxidative stress in adult rat testis.

    Science.gov (United States)

    Vaithinathan, S; Saradha, B; Mathur, P P

    2009-01-01

    Methoxychlor, an organochlorine pesticide, has been reported to induce abnormalities in male reproductive tract. However, the insight into the mechanisms of gonadal toxicity induced by methoxychlor is not well known. We investigated whether treatment with methoxychlor would alter the levels of stress proteins, heat shock proteins (HSP), and clusterin (CLU), and oxidative stress-related parameters in the testis of adult male rats. Animals were exposed to a single dose of methoxychlor (50 mg/kg body weight) orally and were terminated at various time points (0, 3, 6, 12, 24, and 72 h) using anesthetic ether. The levels of HSP70, CLU, and the activities of superoxide dismutase (SOD), catalase, and lipid peroxidation levels were evaluated in a 10% testis homogenate. A sequential reduction in the activities of catalase and SOD with concomitant increase in the levels of thiobarbituric acid reactive substance (TBARS) was observed. These changes elicited by methoxychlor were very significant between 6-12 h of posttreatment. Immunoblot analysis of HSP revealed the expression of HSP72, an inducible form of HSP, at certain time points (3-24 h) following exposure to methoxychlor. Similarly, the levels of secretory CLU (sCLU) were also found to be elevated between 3-24 h of treatment. The present data demonstrate methoxychlor-elicited increase in the levels of inducible HSP72 and sCLU, which could be a part of protective mechanism mounted to reduce cellular oxidative damage.

  15. Changes in the structural composition and reactivity of Acer rubrum leaf litter tannins exposed to warming and altered precipitation: climatic stress-induced tannins are more reactive.

    Science.gov (United States)

    Tharayil, Nishanth; Suseela, Vidya; Triebwasser, Daniella J; Preston, Caroline M; Gerard, Patrick D; Dukes, Jeffrey S

    2011-07-01

    • Climate change could increase the frequency with which plants experience abiotic stresses, leading to changes in their metabolic pathways. These stresses may induce the production of compounds that are structurally and biologically different from constitutive compounds. • We studied how warming and altered precipitation affected the composition, structure, and biological reactivity of leaf litter tannins in Acer rubrum at the Boston-Area Climate Experiment, in Massachusetts, USA. • Warmer and drier climatic conditions led to higher concentrations of protective compounds, including flavonoids and cutin. The abundance and structure of leaf tannins also responded consistently to climatic treatments. Drought and warming in combination doubled the concentration of total tannins, which reached 30% of leaf-litter DW. This treatment also produced condensed tannins with lower polymerization and a greater proportion of procyanidin units, which in turn reduced sequestration of tannins by litter fiber. Furthermore, because of the structural flexibility of these tannins, litter from this treatment exhibited five times more enzyme (β-glucosidase) complexation capacity on a per-weight basis. Warmer and wetter conditions decreased the amount of foliar condensed tannins. • Our finding that warming and drought result in the production of highly reactive tannins is novel, and highly relevant to climate change research as these tannins, by immobilizing microbial enzymes, could slow litter decomposition and thus carbon and nutrient cycling in a warmer, drier world.

  16. Mitochondrial alterations and oxidative stress in an acute transient mouse model of muscle degeneration: implications for muscular dystrophy and related muscle pathologies.

    Science.gov (United States)

    Ramadasan-Nair, Renjini; Gayathri, Narayanappa; Mishra, Sudha; Sunitha, Balaraju; Mythri, Rajeswara Babu; Nalini, Atchayaram; Subbannayya, Yashwanth; Harsha, Hindalahalli Chandregowda; Kolthur-Seetharam, Ullas; Srinivas Bharath, Muchukunte Mukunda

    2014-01-03

    Muscular dystrophies (MDs) and inflammatory myopathies (IMs) are debilitating skeletal muscle disorders characterized by common pathological events including myodegeneration and inflammation. However, an experimental model representing both muscle pathologies and displaying most of the distinctive markers has not been characterized. We investigated the cardiotoxin (CTX)-mediated transient acute mouse model of muscle degeneration and compared the cardinal features with human MDs and IMs. The CTX model displayed degeneration, apoptosis, inflammation, loss of sarcolemmal complexes, sarcolemmal disruption, and ultrastructural changes characteristic of human MDs and IMs. Cell death caused by CTX involved calcium influx and mitochondrial damage both in murine C2C12 muscle cells and in mice. Mitochondrial proteomic analysis at the initial phase of degeneration in the model detected lowered expression of 80 mitochondrial proteins including subunits of respiratory complexes, ATP machinery, fatty acid metabolism, and Krebs cycle, which further decreased in expression during the peak degenerative phase. The mass spectrometry (MS) data were supported by enzyme assays, Western blot, and histochemistry. The CTX model also displayed markers of oxidative stress and a lowered glutathione reduced/oxidized ratio (GSH/GSSG) similar to MDs, human myopathies, and neurogenic atrophies. MS analysis identified 6 unique oxidized proteins from Duchenne muscular dystrophy samples (n = 6) (versus controls; n = 6), including two mitochondrial proteins. Interestingly, these mitochondrial proteins were down-regulated in the CTX model thereby linking oxidative stress and mitochondrial dysfunction. We conclude that mitochondrial alterations and oxidative damage significantly contribute to CTX-mediated muscle pathology with implications for human muscle diseases.

  17. Improvement of mood and sleep alterations in posttraumatic stress disorder patients by eye movement desensitization and reprocessing

    Directory of Open Access Journals (Sweden)

    Mara Regina Raboni

    2014-06-01

    Full Text Available Posttraumatic stress disorder (PTSD patients exhibit depressive and anxiety symptoms, in addition to nightmares, which interfere with sleep continuity. Pharmacologic treatment of these sleep problems improves PTSD symptoms, but very few studies have used psychotherapeutic interventions to treat PTSD and examined their effects on sleep quality. Therefore, in the present study, we sought to investigate the effects of Eye Movement Desensitization Reprocessing therapy on indices of mood, anxiety, subjective and objective sleep. The sample was composed of 11 healthy controls and 13 PTSD patients that were victims of assault and/or kidnapping. All participants were assessed before, and one day after, the end of treatment for depressive and anxiety profile, general well-being and subjective sleep by filling out specific questionnaires. In addition, objective sleep patterns were evaluated by polysomnographic recording. Healthy volunteers were submitted to the therapy for three weekly sessions, whereas PTSD patients underwent five sessions, on average. Before treatment, PTSD patients exhibited high levels of anxiety and depression, poor quality of life and poor sleep, assessed both subjectively and objectively; the latter was reflected by increased time of waking after sleep onset. After completion of treatment, patients exhibited improvement in depression and anxiety symptoms, and in quality of life; with indices that were no longer different from control volunteers. Moreover, these patients showed more consolidated sleep, with reduction of time spent awake after sleep onset. In conclusion, Eye Movement Desensitization and Reprocessing was an effective treatment of PTSD patients and improved the associated sleep and psychological symptoms.

  18. PEGylated Carbon Nanotubes Impair Retrieval of Contextual Fear Memory and Alter Oxidative Stress Parameters in the Rat Hippocampus

    Directory of Open Access Journals (Sweden)

    Lidiane Dal Bosco

    2015-01-01

    Full Text Available Carbon nanotubes (CNT are promising materials for biomedical applications, especially in the field of neuroscience; therefore, it is essential to evaluate the neurotoxicity of these nanomaterials. The present work assessed the effects of single-walled CNT functionalized with polyethylene glycol (SWCNT-PEG on the consolidation and retrieval of contextual fear memory in rats and on oxidative stress parameters in the hippocampus. SWCNT-PEG were dispersed in water at concentrations of 0.5, 1.0, and 2.1 mg/mL and infused into the rat hippocampus. The infusion was completed immediately after training and 30 min before testing of a contextual fear conditioning task, resulting in exposure times of 24 h and 30 min, respectively. The results showed that a short exposure to SWCNT-PEG impaired fear memory retrieval and caused lipid peroxidation in the hippocampus. This response was transient and overcome by the mobilization of antioxidant defenses at 24 h. These effects occurred at low and intermediate but not high concentration of SWCNT-PEG, suggesting that the observed biological response may be related to the concentration-dependent increase in particle size in SWCNT-PEG dispersions.

  19. Gray Matter Alterations in Post-Traumatic Stress Disorder, Obsessive-Compulsive Disorder, and Social Anxiety Disorder.

    Science.gov (United States)

    Cheng, Bochao; Huang, Xiaoqi; Li, Shiguang; Hu, Xinyu; Luo, Ya; Wang, Xiuli; Yang, Xun; Qiu, Changjian; Yang, Yanchun; Zhang, Wei; Bi, Feng; Roberts, Neil; Gong, Qiyong

    2015-01-01

    Post-traumatic stress disorder (PTSD), obsessive-compulsive disorder (OCD), and social anxiety disorder (SAD) all bear the core symptom of anxiety and are separately classified in the new DSM-5 system. The aim of the present study is to obtain evidence for neuroanatomical difference for these disorders. We applied voxel-based morphometry (VBM) with Diffeomorphic Anatomical Registration Through Exponentiated Lie to compare gray matter volume (GMV) in magnetic resonance images obtained for 30 patients with PTSD, 29 patients with OCD, 20 patients with SAD, and 30 healthy controls. GMV across all four groups differed in left hypothalamus and left inferior parietal lobule and post hoc analyses revealed that this difference is primarily due to reduced GMV in the PTSD group relative to the other groups. Further analysis revealed that the PTSD group also showed reduced GMV in frontal lobe, temporal lobe, and cerebellum compared to the OCD group, and reduced GMV in frontal lobes bilaterally compared to SAD group. A significant negative correlation with anxiety symptoms is observed for GMV in left hypothalamus in three disorder groups. We have thus found evidence for brain structure differences that in future could provide biomarkers to potentially support classification of these disorders using MRI.

  20. Exposure to extremely low frequency electromagnetic fields alters the behaviour, physiology and stress protein levels of desert locusts.

    Science.gov (United States)

    Wyszkowska, Joanna; Shepherd, Sebastian; Sharkh, Suleiman; Jackson, Christopher W; Newland, Philip L

    2016-11-03

    Electromagnetic fields (EMFs) are present throughout the modern world and are derived from many man-made sources including overhead transmission lines. The risks of extremely-low frequency (ELF) elect