WorldWideScience

Sample records for altered pten expression

  1. EXPRESSION AND SIGNIFICANCE OF PTEN IN ENDOMETRIAL CARCINOMA

    Institute of Scientific and Technical Information of China (English)

    GE Xiu-jun; LIU Zhi-hui; LI Ying-yong; Gao Rui-ping

    2005-01-01

    Objective: To investigate the expression of PTEN in endometrial carcinoma and its clinical significance. Methods: Reverse transcriptase-polymerase chain reaction and Western-blot methods were used to detect PTEN expression in 28 cases of endometrial carcinoma. Results: mRNA and protein expression levels of PTEN in endometrial carcinomas were significantly lower than those in normal endometrium (P<0.01). Conclusion: PTEN may play an important role in the tumorigenesis of endometrial carcinoma.

  2. Relationship between PTEN, DNA mismatch repair, and tumor histotype in endometrial carcinoma: retained positive expression of PTEN preferentially identifies sporadic non-endometrioid carcinomas.

    Science.gov (United States)

    Djordjevic, Bojana; Barkoh, Bedia A; Luthra, Rajyalakshmi; Broaddus, Russell R

    2013-10-01

    Loss of PTEN (phosphatase and tensin homolog) expression and microsatellite instability are two of the more common molecular alterations in endometrial carcinoma. From the published literature, it is controversial as to whether there is a relationship between these different molecular mechanisms. Therefore, a cohort of 187 pure endometrioid and non-endometrioid endometrial carcinomas, carefully characterized as to clinical and pathological features, was examined for PTEN sequence abnormalities and the immunohistochemical expression of PTEN and the DNA mismatch repair proteins MLH1, MSH2, MSH6, and PMS2. MLH1 methylation analysis was performed when tumors had loss of MLH1 protein. Mismatch repair protein loss was more frequent in endometrioid carcinomas compared with non-endometrioid carcinomas, a difference primarily attributable to the presence of MLH1 methylation in a greater proportion of endometrioid tumors. Among the non-endometrioid group, mixed endometrioid/non-endometrioid carcinomas were the histotype that most commonly had loss of a mismatch repair protein. In endometrioid tumors, the frequency of PTEN loss measured by immunohistochemistry and mutation did not differ significantly between the mismatch repair protein intact or mismatch repair protein loss groups, suggesting that PTEN loss is independent of mismatch protein repair status in this group. However, in non-endometrioid carcinomas, both intact positive PTEN immunohistochemical expression and PTEN wild type were highly associated with retained positive expression of mismatch repair proteins in the tumor. Relevant to screening endometrial cancers for Lynch Syndrome, an initial PTEN immunohistochemistry determination may be able to replace the use of four mismatch repair immunohistochemical markers in 63% of patients with non-endometrioid endometrial carcinoma. Therefore, PTEN immunohistochemistry, in combination with tumor histotype, is a useful adjunct in the clinical evaluation of endometrial

  3. Variable expression of PIK3R3 and PTEN in Ewing Sarcoma impacts oncogenic phenotypes.

    Directory of Open Access Journals (Sweden)

    Brian F Niemeyer

    Full Text Available Ewing Sarcoma is an aggressive malignancy of bone and soft tissue affecting children and young adults. Ewing Sarcoma is driven by EWS/Ets fusion oncoproteins, which cause widespread alterations in gene expression in the cell. Dysregulation of receptor tyrosine kinase signaling, particularly involving IGF-1R, also plays an important role in Ewing Sarcoma pathogenesis. However, the basis of this dysregulation, including the relative contribution of EWS/Ets-dependent and independent mechanisms, is not well understood. In the present study, we identify variable expression of two modifiers of PI3K signaling activity, PIK3R3 and PTEN, in Ewing Sarcoma, and examine the consequences of this on PI3K pathway regulation and oncogenic phenotypes. Our findings indicate that PIK3R3 plays a growth-promotional role in Ewing Sarcoma, but suggest that this role is not strictly dependent on regulation of PI3K pathway activity. We further show that expression of PTEN, a well-established, potent tumor suppressor, is lost in a subset of Ewing Sarcomas, and that this loss strongly correlates with high baseline PI3K pathway activity in cell lines. In support of functional importance of PTEN loss in Ewing Sarcoma, we show that re-introduction of PTEN into two different PTEN-negative Ewing Sarcoma cell lines results in downregulation of PI3K pathway activity, and sensitization to the IGF-1R small molecule inhibitor OSI-906. Our findings also suggest that PTEN levels may contribute to sensitivity of Ewing Sarcoma cells to the microtubule inhibitor vincristine, a relevant chemotherapeutic agent in this cancer. Our studies thus identify PIK3R3 and PTEN as modifiers of oncogenic phenotypes in Ewing Sarcoma, with potential clinical implications.

  4. Nongenomic Mechanisms of PTEN Regulation

    Directory of Open Access Journals (Sweden)

    Jimmie E. Fata

    2012-01-01

    Full Text Available A large amount of data supports the view that PTEN is a bona fide tumor suppressor gene. However, recent evidence suggests that derailment of cellular localization and expression levels of functional nonmutated PTEN is a determining force in inducing abnormal cellular and tissue outcomes. As the cellular mechanisms that regulate normal PTEN enzymatic activity resolve, it is evident that deregulation of these mechanisms can alter cellular processes and tissue architecture and ultimately lead to oncogenic transformation. Here we discuss PTEN ubiquitination, PTEN complex formation with components of the adherens junction, PTEN nuclear localization, and microRNA regulation of PTEN as essential regulatory mechanisms that determine PTEN function independent of gene mutations and epigenetic events.

  5. PTEN overexpression improves cisplatin-resistance of human ovarian cancer cells through upregulating KRT10 expression

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Huijuan; Wang, Ke; Liu, Wenxin; Hao, Quan, E-mail: quan_haotj@126.com

    2014-02-07

    Highlights: • Overexpression of PTEN enhanced the sensitivity of C13K cells to cisplatin. • KRT10 is a downstream molecule of PTEN involved in the resistance-reversing effect. • Overexpression of KRT10 enhanced the chemosensitivity of C13K cells to cisplatin. - Abstract: Multi-drug resistance (MDR) is a common cause of the failure of chemotherapy in ovarian cancer. PTEN, a tumor suppressor gene, has been demonstrated to be able to reverse cisplatin-resistance in ovarian cancer cell line C13K. However, the downstream molecules of PTEN involved in the resistance-reversing effect have not been completely clarified. Therefore, we screened the downstream molecules of PTEN and studied their interactions in C13K ovarian cancer cells using a 3D culture model. Firstly, we constructed an ovarian cancer cell line stably expressing PTEN, C13K/PTEN. MTT assay showed that overexpression of PTEN enhanced the sensitivity of C13K cells to cisplatin, but not to paclitaxel. Then we examined the differently expressed proteins that interacted with PTEN in C13K/PTEN cells with or without cisplatin treatment by co-immunoprecipitation. KRT10 was identified as a differently expressed protein in cisplatin-treated C13K/PTEN cells. Further study confirmed that cisplatin could induce upregulation of KRT10 mRNA and protein in C13K/PTEN cells and there was a directly interaction between KRT10 and PTEN. Forced expression of KRT10 in C13K cells also enhanced cisplatin-induced proliferation inhibition and apoptosis of C13K cells. In addition, KRT10 siRNA blocked cisplatin-induced proliferation inhibition of C13K/PTEN cells. In conclusion, our data demonstrate that KRT10 is a downstream molecule of PTEN which improves cisplatin-resistance of ovarian cancer and forced KRT10 overexpression may also act as a therapeutic method for overcoming MDR in ovarian cancer.

  6. PTEN overexpression improves cisplatin-resistance of human ovarian cancer cells through upregulating KRT10 expression

    International Nuclear Information System (INIS)

    Highlights: • Overexpression of PTEN enhanced the sensitivity of C13K cells to cisplatin. • KRT10 is a downstream molecule of PTEN involved in the resistance-reversing effect. • Overexpression of KRT10 enhanced the chemosensitivity of C13K cells to cisplatin. - Abstract: Multi-drug resistance (MDR) is a common cause of the failure of chemotherapy in ovarian cancer. PTEN, a tumor suppressor gene, has been demonstrated to be able to reverse cisplatin-resistance in ovarian cancer cell line C13K. However, the downstream molecules of PTEN involved in the resistance-reversing effect have not been completely clarified. Therefore, we screened the downstream molecules of PTEN and studied their interactions in C13K ovarian cancer cells using a 3D culture model. Firstly, we constructed an ovarian cancer cell line stably expressing PTEN, C13K/PTEN. MTT assay showed that overexpression of PTEN enhanced the sensitivity of C13K cells to cisplatin, but not to paclitaxel. Then we examined the differently expressed proteins that interacted with PTEN in C13K/PTEN cells with or without cisplatin treatment by co-immunoprecipitation. KRT10 was identified as a differently expressed protein in cisplatin-treated C13K/PTEN cells. Further study confirmed that cisplatin could induce upregulation of KRT10 mRNA and protein in C13K/PTEN cells and there was a directly interaction between KRT10 and PTEN. Forced expression of KRT10 in C13K cells also enhanced cisplatin-induced proliferation inhibition and apoptosis of C13K cells. In addition, KRT10 siRNA blocked cisplatin-induced proliferation inhibition of C13K/PTEN cells. In conclusion, our data demonstrate that KRT10 is a downstream molecule of PTEN which improves cisplatin-resistance of ovarian cancer and forced KRT10 overexpression may also act as a therapeutic method for overcoming MDR in ovarian cancer

  7. CLINICOPATHOLOGICAL SIGNIFICANCE OF PTEN AND CASPASE-3 EXPRESSIONS IN BREAST CANCER

    Institute of Scientific and Technical Information of China (English)

    Xue-fei Yang; Yan Xin; Li-li Mao

    2008-01-01

    Objective To investigate the expressions of PTEN and Caspase-3 proteins in human breast carcinoma, and to evaluate their clinicopathological implications during the tumorigenesis and progression of breast cancer.Methods The expressions of PTEN and Caspase-3 proteins in 95 cases of breast cancer and 15 cases of benignbreast diseases were investigated immunohistochemically. Correlations between the expression of PTEN protein,Caspase-3 protein, and clinicopathological features of breast cancers were analyzed.Results The loss expression rate of PTEN protein in tumor tissues was significantly higher than that in benignbreast diseases (33.7% vs. 0, P 0. 05). In addition,the expression of PTEN protein had significantly positive correlation with the expression of Caspase-3 protein in breast cancer (P <0.01 ).Conclusion The combination detection of PTEN and Caspase-3 may serve as an important index to estimate the pathobiological behavior and pognosis of breast cancer.

  8. Subtle variations in Pten dose determine cancer susceptibility.

    Science.gov (United States)

    Alimonti, Andrea; Carracedo, Arkaitz; Clohessy, John G; Trotman, Lloyd C; Nardella, Caterina; Egia, Ainara; Salmena, Leonardo; Sampieri, Katia; Haveman, William J; Brogi, Edi; Richardson, Andrea L; Zhang, Jiangwen; Pandolfi, Pier Paolo

    2010-05-01

    Cancer susceptibility has been attributed to at least one heterozygous genetic alteration in a tumor suppressor gene (TSG). It has been hypothesized that subtle variations in TSG expression can promote cancer development. However, this hypothesis has not yet been definitively supported in vivo. Pten is a TSG frequently lost in human cancer and mutated in inherited cancer-predisposition syndromes. Here we analyze Pten hypermorphic mice (Pten(hy/+)), expressing 80% normal levels of Pten. Pten(hy/+) mice develop a spectrum of tumors, with breast tumors occurring at the highest penetrance. All breast tumors analyzed here retained two intact copies of Pten and maintained Pten levels above heterozygosity. Notably, subtle downregulation of Pten altered the steady-state biology of the mammary tissues and the expression profiles of genes involved in cancer cell proliferation. We present an alterative working model for cancer development in which subtle reductions in the dose of TSGs predispose to tumorigenesis in a tissue-specific manner.

  9. Relationsip between PTEN and VEGF Expression and Clinicopathological Characteristics in HCC

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    To investigate the expressions and significance of the tumor suppressor gene phosphatase and tensin homlog deleted on chromosome ten protein (PTEN) and vascular endothelial growth factor (VEGF) in hepatocellular carcinoma (HCC), and to analyze the relationship between their expressions and the tumor's invasion and their pericarcinomatous tissues, the correlation of their expressions with the tumor's clinicopathological characteristics and invasion potential were studied. Our study showed that the expression level of PTEN in HCC was remarkably lower than that in pericarcinomatous liver tissues, while the expressions of both VEGF and MVD were higher than that in pericarcinomatous liver tissues. Correlation analysis revealed that the expression of PTEN was negatively related to the progression of the pathological differentiation and invasion of tumor, whereas the expressions of VEGF and MVD were positively related. Moreover, there was a negative relationship between the expression of PTEN and the expressions of VEGF and MVD, and a positive one between VEGF and MVD. The expressions of PTEN and VEGF may reveal the degree of differentiation and the invasive potential of HCC tissues. The mechanism by which the lack of PTEN expression probably induces abnormal hyperexpression of VEGF may play an important role in the invasion and metastasis of HCC.

  10. Construction and Expression of Human PTEN Tumor Suppressor Gene Recombinant Adenovirus Vector

    Institute of Scientific and Technical Information of China (English)

    CHEN Qingyong; WANG Chunyou; CHEN Daoda; CHEN Jianying; JIANG Chunfang; ZHENG Hai

    2006-01-01

    The recombinant defective adenovirus vector carrying human PTEN tumor suppres sor gene was constructed by using AdEasy-1 system and its expression was detected in human breast cancer cell line MDA-MB-468. Human PTEN cDNA was cloned into adenovirus shuttle plasmid pAdTrack-CMV to generate a recombinant plasmid pAdTrack-CMV-PTEN, then homologeous recombination was carried out in the E. coli BJ5183 by contransforming linearized shuttle vector with adenovirus backbone plasmid pAdEasy-1. The newly recombined defective adenovirus vector AdPTEN containing green fluorescent protein (GFP) was packaged and propagated in 293 cells. After being purified by cesium chloride gradient centrifugation, the adenovirus was transfected into human breast cancer cell line MDA-MB-468 in vitro. The expression of PTEN mRNA and protein in infected human breast cancer cell line MDA-MB-468 was detected by RT-PCR and Western blot respectively. The recombinant defective adenovirus vector carrying PTEN gene was constructed successfully. The viral titer of purified adenovirus was 2.5×1010 pfu/mL, and about 70 % breast cancer cells were infected with Ad PTEN when multiplicity of infection (MOI) reached 50. The exogenous PTEN mRNA and protein were expressed in MDA-MB-468 cells infected with Ad-PTEN by RT-PCR and Western blot. The recombinant defective adenovirus vector of PTEN gene was constructed successfully using AdEasy-1 system rapidly, which paved a sound foundation for gene study of breast cancer.

  11. Loss of tumour suppressor PTEN expression in renal injury initiates SMAD3- and p53-dependent fibrotic responses

    NARCIS (Netherlands)

    Samarakoon, Rohan; Helo, Sevann; Dobberfuhl, Amy D; Khakoo, Nidah S; Falke, Lucas; Overstreet, Jessica M; Goldschmeding, Roel; Higgins, Paul J

    2015-01-01

    Deregulation of the tumour suppressor PTEN occurs in lung and skin fibrosis and diabetic and ischaemic renal injury. However, the potential role of PTEN and associated mechanisms in the progression of kidney fibrosis is unknown. Tubular and interstitial PTEN expression was dramatically decreased in

  12. Expression and significance of PTEN and PCNA in human laryngeal squamous cell carcinoma

    Institute of Scientific and Technical Information of China (English)

    李长青; 文莲姬; 金春顺; 崔树勋

    2004-01-01

    Objective: To elucidate the expression and significance of PTEN and PCNA in human laryngeal squamous cell carcinoma. Methods: Immunochemical method was used to study 60 cases of laryngeal carcinoma, 20 cases of normal laryngeal tissues which were closely adjacent to carcinoma and 10 cases of normal laryngeal tissues. Results: It was showed that PTEN gene was expressed in 85 % laryngeal carcinoma tissues. The percentage of lymph node metastasis of laryngeal carcinoma which were negative or positive of PTEN protein was 77.8 % and 33.3 % respectively, and the difference was significance ( P < 0.05). Conclusion: Expression of PTEN in laryngeal carcinoma was different from that of normal laryngeal tissues. It may play a role but not important in the tumorigenesis and development of laryngeal carcinoma.

  13. Deletion of PTEN produces autism-like behavioral deficits and alterations in synaptic proteins.

    Science.gov (United States)

    Lugo, Joaquin N; Smith, Gregory D; Arbuckle, Erin P; White, Jessika; Holley, Andrew J; Floruta, Crina M; Ahmed, Nowrin; Gomez, Maribel C; Okonkwo, Obi

    2014-01-01

    Many genes have been implicated in the underlying cause of autism but each gene accounts for only a small fraction of those diagnosed with autism. There is increasing evidence that activity-dependent changes in neuronal signaling could act as a convergent mechanism for many of the changes in synaptic proteins. One candidate signaling pathway that may have a critical role in autism is the PI3K/AKT/mTOR pathway. A major regulator of this pathway is the negative repressor phosphatase and tensin homolog (PTEN). In the current study we examined the behavioral and molecular consequences in mice with neuron subset-specific deletion of PTEN. The knockout (KO) mice showed deficits in social chamber and social partition test. KO mice demonstrated alterations in repetitive behavior, as measured in the marble burying test and hole-board test. They showed no changes in ultrasonic vocalizations emitted on postnatal day 10 or 12 compared to wildtype (WT) mice. They exhibited less anxiety in the elevated-plus maze test and were more active in the open field test compared to WT mice. In addition to the behavioral alterations, KO mice had elevation of phosphorylated AKT, phosphorylated S6, and an increase in S6K. KO mice had a decrease in mGluR but an increase in total and phosphorylated fragile X mental retardation protein. The disruptions in intracellular signaling may be why the KO mice had a decrease in the dendritic potassium channel Kv4.2 and a decrease in the synaptic scaffolding proteins PSD-95 and SAP102. These findings demonstrate that deletion of PTEN results in long-term alterations in social behavior, repetitive behavior, activity, and anxiety. In addition, deletion of PTEN significantly alters mGluR signaling and many synaptic proteins in the hippocampus. Our data demonstrates that deletion of PTEN can result in many of the behavioral features of autism and may provide insights into the regulation of intracellular signaling on synaptic proteins.

  14. The drug-resistance to gefitinib in PTEN low expression cancer cells is reversed by irradiation in vitro

    Directory of Open Access Journals (Sweden)

    Zhao Lu-Jun

    2009-09-01

    Full Text Available Abstract Background Despite of the recent success of EGFR inhibitory agents, the primary drug-resistant becomes a major challenge for EGFR inhibitor therapies. PTEN gene is an important positive regulatory factor for response to EGFR inhibitor therapy. Low-expression of PTEN is clearly one of the important reasons why tumor cells resisted to tyrosine kinase inhibitors. Methods To investigate the drug-resistance reversal to gefitinb and the mechanism in PTEN low expression cells which radiated with X-rays in vitro, We demonstrated that H-157 lung cancer cells (low-expression of PTEN but phospho-EGFR overexpressed tumor cells exposed to X-rays. The PTEN expressions and radiosensitizing effects of tyrosine kinase inhibitor before and after irradiation were observed. The cell-survival rates were evaluated by colony-forming assays. The cell apoptosis was investigated using FCM. The expressions of phospho-EGFR and PTEN were determined by Western blot analysis. Results The results showed that the PTEN expressions were significantly enhanced by X-rays. Moreover, the cell growth curve and survival curve were down-regulated in the gefitinib-treated groups after irradiation. Meanwhile, the radiation-induced apoptosis of tumor cells was increased by inhibition of the EGFR through up-regulation of PTEN. Conclusion These results suggested that PTEN gene is an important regulator on TKI inhibition, and the resistance to tyrosine kinase inhibitors might be reversed by irradiation in PTEN low expression cancer cells.

  15. Tbx3 represses PTEN and is over-expressed in head and neck squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Burgucu Durmus

    2012-10-01

    Full Text Available Abstract Background Despite advances in diagnostic and treatment strategies, head and neck squamous cell cancer (HNSCC constitutes one of the worst cancer types in terms of prognosis. PTEN is one of the tumour suppressors whose expression and/or activity have been found to be reduced in HNSCC, with rather low rates of mutations within the PTEN gene (6-8%. We reasoned that low expression levels of PTEN might be due to a transcriptional repression governed by an oncogene. Tbx2 and Tbx3, both of which are transcriptional repressors, have been found to be amplified or over-expressed in various cancer types. Thus, we hypothesize that Tbx3 may be over expressed in HNSCC and may repress PTEN, thus leading to cancer formation and/or progression. Methods Using immunohistochemistry and quantitative PCR (qPCR, protein and mRNA levels of PTEN and Tbx3 were identified in samples excised from cancerous and adjacent normal tissues from 33 patients who were diagnosed with HNSCC. In addition, HeLa and HEK cell lines were transfected with a Tbx3 expressing plasmid and endogenous PTEN mRNA and protein levels were determined via qPCR and flow cytometry. Transcription assays were performed to demonstrate effects of Tbx3 on PTEN promoter activity. Mann–Whitney, Spearman’s Correlation and Wilcoxon signed-rank tests were used to analyze the data. Results We demonstrate that in HNSCC samples, Tbx3 mRNA levels are increased with respect to their normal tissue counterparts (p Conclusions We show that Tbx3 is up-regulated in tissue samples of HNSCC patients and that Tbx3 represses PTEN transcription. Thus, our data not only reveals a new mechanism that may be important in cancer formation, but also suggests that Tbx3 can be used as a potential biomarker in cancer.

  16. Expression and significance of PTEN, hypoxia-inducible factor-1 alpha in colorectal adenoma and adenocarcinoma

    Institute of Scientific and Technical Information of China (English)

    Ying-An Jiang; Li-Fang Fan; Chong-Qing Jiang; You-Yuan Zhang; He-Sheng Luo; Zhi-Jiao Tang; Dong Xia; Ming Wang

    2003-01-01

    AIM: To investigate the expression and significance of PTEN,hypoxia-inducible factor-1 alpha (HIF-1α), and targeting gene VEGF during colorectal carciogenesis.METHODS: Total 71 cases colorectal neoplasms (9 cases of colorectal adenoma and 62 colorectal adenocarcinoma)were formalin fixed and paraffin-embedded, and all specimens were evaluated for PTEN mRNA, HIF-1α mRNA and VEGF protein expression. PTEN mRNA, HIF-1α mRNA were detected by in situ hybridization. VEGF protein was identified by citrate-microwave SP immunohistochemical method.RESULTS: There were significant differences in PTEN, HIF1α and VEGF expression between colorectal adenomas and colorectal adenocarcinoma (P<0.05). The level of PTEN expression decreased as the pathologic stage increased.Conversely, HIF-1α and VEGF expression increased with the Dukes stage as follows: stage A (0.1029±0.0457:0.1207± 0.0436), stage B (0.1656±0.0329: 0.1572±0.0514),and stage C+D (0.2335±0.0748: 0.2219±0.0803). For PTEN expression, there was a significant difference among Dukes stage A, B, and C+D, and the level of PTEN expression was found to be significant higher in Dukes stage A or B than that of Dukes stage C or D. For HIF-1α expression,there was a significant difference between Dukes stage A and B, and the level of HIF-1α expression was found to be significantly higher in Dukes stage C+D than that of Dukes stage A or B. The VEGF expression had similar results as HIF-1α expression. In colorectal adenocarcinoma,decreased levels of PTEN were significantly associated with increased expression of HIF-1α mRNA (r=-0.36, P<0.05)and VEGF protein (r=-0.48, P<0.05) respectively. The levels of HIF-1 were positively correlated with VEGF expression (r=0.71, P<0.01).CONCLUSION: Loss of PTEN expression and increased levels of HIF-1α and VEGF may play an important role in carcinogenesis and progression of colorectal adenocarcinoma.

  17. Alterations in PTEN and PIK3CA in colorectal cancers in the EPIC Norfolk study: associations with clinicopathological and dietary factors

    Directory of Open Access Journals (Sweden)

    Mitrou Panagiota N

    2011-04-01

    Full Text Available Abstract Background The PTEN tumour suppressor gene and PIK3CA proto-oncogene encode proteins which contribute to regulation and propagation of signal transduction through the PI3K/AKT signalling pathway. This study investigates the prevalence of loss of PTEN expression and mutations in both PTEN and PIK3CA in colorectal cancers (CRC and their associations with tumour clinicopathological features, lifestyle factors and dietary consumptions. Methods 186 adenocarcinomas and 16 adenomas from the EPIC Norfolk study were tested for PTEN and PIK3CA mutations by DNA sequencing and PTEN expression changes by immunohistochemistry. Dietary and lifestyle data were collected prospectively using seven day food diaries and lifestyle questionnaires. Results Mutations in exons 7 and 8 of PTEN were observed in 2.2% of CRC and PTEN loss of expression was identified in 34.9% CRC. Negative PTEN expression was associated with lower blood low-density lipoprotein concentrations (p = 0.05. PIK3CA mutations were observed in 7% of cancers and were more frequent in CRCs in females (p = 0.04. Analysis of dietary intakes demonstrated no link between PTEN expression status and any specific dietary factor. PTEN expression negative, proximal CRC were of more advanced Dukes' stage (p = 0.02 and poor differentiation (p PIK3CA mutations and loss of PTEN expression demonstrated that these two events were independent (p = 0.55. Conclusion These data demonstrated the frequent occurrence (34.9% of PTEN loss of expression in colorectal cancers, for which gene mutations do not appear to be the main cause. Furthermore, dietary factors are not associated with loss of PTEN expression. PTEN expression negative CRC were not homogenous, as proximal cancers were associated with a more advanced Dukes' stage and poor differentiation, whereas distal cancers were associated with earlier Dukes' stage.

  18. Differences in Circulating microRNAs between Grazing and Grain-Fed Wagyu Cattle Are Associated with Altered Expression of Intramuscular microRNA, the Potential Target PTEN, and Lipogenic Genes.

    Science.gov (United States)

    Muroya, Susumu; Shibata, Masahiro; Hayashi, Masayuki; Oe, Mika; Ojima, Koichi

    2016-01-01

    We aimed to understand the roles of miRNAs in the muscle tissue maturation and those of circulating microRNAs (c-miRNAs) in beef production of Japanese Black (JB) cattle (Wagyu), a breed with genetically background of superior intermuscular fat depot, by comparing different feeding conditions (indoor grain-feeding vs. grazing on pasture). The cattle at 18 months old were assigned to pasture feeding or conventional indoor grain feeding conditions for 5 months. Microarray analysis of c-miRNAs from the plasma extracellular vesicles led to the detection of a total of 202 bovine miRNAs in the plasma, including 15 miRNAs that differed between the feeding conditions. Validation of the microarray results by qPCR showed that the circulating miR-10b level in the grazing cattle was upregulated compared to that of the grain-fed cattle. In contrast, the levels of miR-17-5p, miR-19b, miR-29b, miR-30b-5p, miR-98, miR-142-5p, miR-301a, miR-374b, miR-425-5p, and miR-652 were lower in the grazing cattle than in the grain-fed cattle. Bioinformatic analysis indicated that the predicted target genes of those c-miRNAs were enriched in gene ontology terms associated with blood vessel morphogenesis, plasma membrane, focal adhesion, endocytosis, collagen, ECM-receptor interaction, and phosphorylation. In the grazing cattle, the elevation of miR-10b expression in the plasma was coincident with its elevation in the longissimus lumborum (LL) muscle. Expression of bovine-specific miR-2478, the most plasma-enriched miRNA, tended to be also upregulated in the muscle but not in the plasma. Furthermore, grazing caused the downregulated mRNA expression of predicted miR-10b and/or miR-2478 target genes, such as DNAJB2, PTEN, and SCD1. Thus, the feeding system used for JB cattle affected the c-miRNAs that could be indicators of grain feeding. Among these, miR-10b expression was especially associated with feeding-induced changes and with the expression of the potential target genes responsible for

  19. Poor prognostic clinicopathologic features correlate with VEGF expression but not with PTEN expression in squamous cell carcinoma of the larynx

    Directory of Open Access Journals (Sweden)

    Karagoz Filiz

    2010-06-01

    Full Text Available Abstract Background The aim of this study was to assess the relationship between expression of vascular endothelial growth factor (VEGF and phosphatase and tensin homolog deleted in chromosome ten (PTEN, angiogenesis and clinicopathological parameters of squamous cell carcinoma of the larynx. Methods We examined immunohistochemical expression of VEGF and PTEN and CD34 for microvessel density (MVD in sections of formalin-fixed, paraffin embedded tissue blocks of 140 patients with squamous cell carcinoma of the larynx. The intensity of VEGF and PTEN staining and the proportion of cells staining were scored. Results The tumor grade was not significantly related to PTEN expression, but it was to VEGF expression (p = 0.400; p = 0.015, respectively. While there was no significant relationship between PTEN expression and tumor size and cartilage invasion (p = 0.311, p = 0.128, there was a significant relationship between the severity of VEGF expression and tumor size (p = 0.006 and lymph node metastasis (p = 0.048 but not cartilage invasion (p = 0.129. MVD was significantly higher in high-grade tumors (p = 0.003 but had no significant relationship between MVD, lymph node metastasis, and cartilage invasion (p = 0.815, p = 0.204. There was also no significant relationship between PTEN and VEGF expression (p = 0.161 and between PTEN and VEGF expression and the MVD (p = 0.120 and p = 0.175, respectively. Conclusions Increased VEGF expression may play an important role in the outcome of squamous cell carcinoma of the larynx. PTEN expression was not related to VEGF expression and clinicopathological features of squamous cell carcinoma of the larynx.

  20. EFFECTS OF MUTATION AND EXPRESSION OF PTEN GENE mRNA ON TUMORIGENESIS AND PROGRESSION OF EPITHELIAL OVARIAN CANCER

    Institute of Scientific and Technical Information of China (English)

    陈颖; 郑华川; 杨雪飞; 孙丽梅; 辛彦

    2004-01-01

    Objective To investigate the mutation and expression of tumor suppressor gene-PTEN mRNA and explore their roles in tumorigenesis and progression of ovarian cancer. Methods Mutated exon 5 of PTEN gene was examined in normal ovary (n = 5), ovarian cyst (n =5), ovarian borderline tumor (n=9), epithelial ovarian cancer (n=60), and ovarian cancer cell line (n= 1)by polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP). mRNA expression of PTEN gene was evaluated in corresponding tissues and cell line by reverse transcription polymerase chain reaction(RT-PCR). The mutation and mRNA expression of PTEN gene were compared with clinicopathological features of ovarian cancer. Results Mutated exon 5 of PTEN gene was detected only in 5 (7.1%) cases of epithelial ovarian cancer. mRNA expression level of PTEN gene in ovarian borderline tumor or ovarian cancer was lower than that in normal ovary or ovarian cyst (P < 0.05). The level of PTEN gene mRNA expression was negatively correlated with clinicopathological staging of ovarian cancer, whereas positively correlated with histological differentiation (P < 0.05). mRNA expression level of PTEN gene in ovarian endometrioid cancer was significantly lower than that in ovarian serous or mucinous cancer (P < 0.05). Conclusions Mutation of PTEN gene occurs in ovarian cancer. Down-regulated expression of PTEN is probably an important molecular event in tumorigenesis of ovarian cancer. Abnormal expression of PTEN gene is involved in progression of ovarian cancer. Reduced expression of PTEN gene is closely associated with tumorigenesis and pathobiological behaviors of ovarian endometrioid cancer.

  1. mRNA EXPRESSION OF PTEN AND VEGF GENES IN EPITHELIAL OVARIAN CANCER

    Institute of Scientific and Technical Information of China (English)

    陈颖; 赵雨杰; 郑华川; 杨雪飞; 汪桂兰; 辛彦

    2003-01-01

    Objective: To investigate the mRNA expression of PTEN and vascular endothelial growth factor (VEGF) genes in ovarian cancer. Methods:We examined mRNA expression of PTEN and VEGF165 in normal ovary (n=5), ovarian cyst (n=5), ovarian borderline tumor (n=9), epithelial ovarian cancer (n=60) and ovarian cancer cell line (CAOV-3) by RT-PCR. Their expressions were compared with clinicopathological features of ovarian cancer. The relationship between their expressions was concerned in all ovarian samples as well. Results:mRNA expression level of PTEN gene was significantly lower in ovarian borderline tumor or ovarian cancer than that in normal ovary or ovarian cyst(P<0.05). It was negatively correlated with clinicopathological staging(P<0.05),whereas positively with histological differentiation (P<0.05). mRNA expression level of PTEN gene was significantly lower in ovarian endometrioid cancer than ovarian serous or mucinous cancer(P<0.05). mRNA expression level of VEGF165 gene was significantly higher in ovarian cancer than that in normal ovary or ovarian cyst(P<0.05). It was positively correlated with clinicopathological staging(P<0.05), whereas negatively with histological differentiation (P<0.05). mRNA expression level of VEGF165 gene was significantly higher in ovarian serous cancer than in other ovarian epithelial cancers (P<0.05). mRNA expression of VEGF165 gene was inversely correlated with mRNA expression level of PTEN gene. Conclusion:Down-regulated expression of PTEN and up-regulated expression of VEGF were considered as two important events in tumorigenesis of ovarian cancer and could be used as molecular markers to indicate the pathobiological behaviors of ovarian cancer. Decreased PTEN expression and increased VEGF expression were closely associated with tumorigenesis and pathobiological behaviors of ovarian endometrioid and serous cancer respectively. Reduced expression of PTEN gene might be involved in carcinogenesis and progression of ovarian cancer by

  2. Imatinib causes epigenetic alterations of PTEN gene via upregulation of DNA methyltransferases and polycomb group proteins

    International Nuclear Information System (INIS)

    We have recently reported the possible imatinib-resistant mechanism; long-term exposure of leukemia cells to imatinib downregulated levels of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) via hypermethylation of its promoter region (Leukemia 2010; 24: 1631). The present study explored the molecular mechanisms by which imatinib caused methylation on the promoter region of this tumor suppressor gene in leukemia cells. Real-time reverse transcription PCR found that long-term exposure of chronic eosinophilic leukemia EOL-1 cells expressing FIP1L1/platelet-derived growth factor receptor-α to imatinib induced expression of DNA methyltransferase 3A (DNMT3A) and histone-methyltransferase enhancer of zeste homolog 2 (EZH2), a family of polycomb group, thereby increasing methylation of the gene. Immunoprecipitation assay found the increased complex formation of DNMT3A and EZH2 proteins in these cells. Moreover, chromatin immunoprecipitation assay showed that amounts of both DNMT3A and EZH2 proteins bound around the promoter region of PTEN gene were increased in EOL-1 cells after exposure to imatinib. Furthermore, we found that levels of DNMT3A and EZH2 were strikingly increased in leukemia cells isolated from individuals with chronic myelogenous leukemia (n=1) and Philadelphia chromosome-positive acute lymphoblastic leukemia (n=2), who relapsed after treatment with imatinib compared with those isolated at their initial presentation. Taken together, imatinib could cause drug-resistance via recruitment of polycomb gene complex to the promoter region of the PTEN and downregulation of this gene's transcripts in leukemia patients

  3. C-reactive protein inhibits survivin expression via Akt/mTOR pathway downregulation by PTEN expression in cardiac myocytes.

    Directory of Open Access Journals (Sweden)

    Beom Seob Lee

    Full Text Available C-reactive protein (CRP is one of the most important biomarkers for arteriosclerosis and cardiovascular disease. Recent studies have shown that CRP affects cell cycle and inflammatory process in cardiac myocytes. Survivin is also involved in cardiac myocytes replication and apoptosis. Reduction of survivin expression is associated with less favorable cardiac remodeling in animal models. However, the effect of CRP on survivin expression and its cellular mechanism has not yet been studied. We demonstrated that treatment of CRP resulted in a significant decrease of survivin protein expression in a concentration-dependent manner in cardiac myocytes. The upstream signaling proteins of survivin, such as Akt, mTOR and p70S6K, were also downregulated by CRP treatment. In addition, CRP increased the protein and mRNA levels of PTEN. The siRNA transfection or specific inhibitor treatment for PTEN restored the CRP-induced downregulation of Akt/mTOR/p70S6K pathway and survivin protein expression. Moreover, pretreatment with a specific p53 inhibitor decreased the CRP-induced PTEN expression. ERK-specific inhibitor also blocked the p53 phosphorylation and PTEN expression induced by CRP. Our study provides a novel insight into CRP-induced downregulation of survivin protein expression in cardiac myocytes through mechanisms that involved in downregulation of Akt/mTOR/p70S6K pathway by expression of PTEN.

  4. MAGI3 Suppresses Glioma Cell Proliferation via Upregulation of PTEN Expression

    Institute of Scientific and Technical Information of China (English)

    MA Qian; ZHAO Ji Zong; HE Jun Qi; ZHANG Yan; MENG Ran; XIE Kun Ming; XIONG Ying; LIN Song; HE Zong Lin K; TAO Tao; YANG Ying

    2015-01-01

    Objective To investigate the role and molecular mechanism of membrane-associated guanylate kinase inverted 3 (MAGI3) in glioma cell proliferation. Methods The expression levels of MAGI3 and PTEN were assessed in glioma samples by Western blotting. MAGI3 was stably transfected into C6 glioma cells to obtain C6-MAGI3 cells. Then, the proliferation, the expression levels of MAGI3 and PTEN, and Akt phosphorylation were evaluated in C6 and C6-MAGI3 cells. Xenograft tumor models were established by subcutaneous injection of C6 and C6-MAGI3 cells into nude mice, and the growth rates of xenografts in the mice were compared. The potential role of MAGI3 expression in PI3K/Akt signaling activation was further investigated by examining the correlation between MAGI3 expression and the expression of PI3K/Akt signaling downstream target genes in a glioma dataset using gene set enrichment analysis (GSEA). Results Expression levels of MAGI3 and PTEN were significantly downregulated in gliomas. Overexpression of MAGI3 in the glioma C6 cell line upregulated PTEN protein expression, inhibited the phosphorylation of Akt, and suppressed cell proliferation. MAGI3 overexpression also inhibited the growth of C6 glioma tumor xenografts in nude mice. Analysis based on the GEO database confirmed the negative correlation between activation of PI3K/Akt pathway and MAGI3 mRNA levels in human glioma samples. Conclusion The loss of MAGI3 expression in glioma may enhance the proliferation of glioma cells via downregulation of PTEN expression, leading to the activation of the PI3K/Akt pathway. MAGI3 is a potential glioma suppressor.

  5. ZN2+ INDUCES COX-2 EXPRESSION THROUGH DOWNREGULATION OF LIPID PHOSPHATASE PTEN

    Science.gov (United States)

    Zn2+ Induces COX-2 Expression through Downregulation of Lipid Phosphatase PTEN Weidong Wu*, James M. Samet, Philip A. Bromberg*?, Young E. Whang?, and Lee M. Graves* ?*CEMALB, ?Department of Medicine, and ?Department of Pharmacology, UNC-Chapel Hill, NC27599; Human Studie...

  6. Correlation between Protein Expression of PTEN in Human Pancreatic Cancer and the Proliferation, Infiltration, Metastasis and Prognosis

    Institute of Scientific and Technical Information of China (English)

    TAO Jing; XIONG Jiongxin; LI Tao; YANG Zhiyong; LI Xiaohui; LI Kai; WU Heshui; WANG Chunyou

    2006-01-01

    In order to investigate the correlation between protein expression of PTEN and the proliferation, infiltration, metastasis and prognosis in pancreatic cancer, immunohistochemical SP method was used to examine the protein expression of PTEN, PCNA, MVD, MMP-2, MMP-9 and TUNEL method to detect the levels of apoptosis of pancreatic cells in 41 pancreatic head cancers from regional pancreatectomy (RP) and 10 normal pancreatic tissues. The results showed that among 41 cases of pancreatic cancers, the positive staining of PTNE (39.02 %) was significantly weaker than that in normal pancreatic tissues (P<0.05). The levels of PCNA labeling index (LI), apoptotic index(AI), microvessel density (MVD), MMP-2 LI and MMP-9 LI were decreased gradually with the increase of the expression intensity of PTEN, and there was a significant difference in the above parameters among the patients having different expression levels of PTEN (P<0.01 or P<0.05). There was a negative correlation between the expression of PTEN and PCNA LI, MVD, MMP-2 LI,MMP-9 LI, and a positive correlation between AI and the expression of PTEN. The expression intensity of PTEN was correlated with the postoperative survival of the patients with pancreatic cancer(x2=22.3400, P<0.0001, RR=2.030). It was suggested that the expression levels of PTEN protein were closely related with proliferation, infiltration and metastasis in human pancreatic cancer, and the expression of PTEN protein was one of the prognostic factors for pancreatic cancer following RP.

  7. DNA demethylation in the PTEN gene promoter induced by 5-azacytidine activates PTEN expression in the MG-63 human osteosarcoma cell line.

    Science.gov (United States)

    Song, Deye; Ni, Jiangdong; Xie, Hongming; Ding, Muliang; Wang, Jun

    2014-05-01

    This study used the MG-63 osteosarcoma cell line to investigate the demethylation of the phosphate and tension homolog (PTEN) gene promoter and the change in PTEN gene expression levels, which are caused by the methylation inhibitor 5-azacytidine (5-Zac), and the association between the two. Different concentrations of 5-Zac (0, 5 and 10 μmol/l) were added into the MG-63 cell culture medium and the cells were cultured for 72 h. The following techniques were performed on the cells: Western blot analysis to detect the PTEN protein; reverse transcription-polymerase chain reaction (PCR) to detect the mRNA transcription levels of the PTEN gene; flow cytometry to detect the cell apoptotic rate; and sodium bisulfate to deal with the DNA of each group. The genes of the PTEN promoter and the transcription factors specificity protein 1 (Sp1) and Myc were PCR amplified and transformed into Escherichia coli, then a number of clones were selected for sequencing and the methylation status of the amplified PTEN promoter fragment was detected. Following culture of the MG-63 cells with 5-Zac at concentrations of 0, 5 and 10 μmol/l for 72 h, the expression levels of PTEN protein in each group were gradually increased, presenting a concentration-dependent effect: Group 0 μmol/l compared with groups 5 and 10 μmol/l, P<0.05; and group 5 μmol/l compared with group 10 μmol/l, P=0.007. The mRNA expression levels of the PTEN gene significantly increased. The apoptotic rates of groups 0, 5 and 10 μmol/l were 0.69±0.42, 2.50±0.30 and 6.59±0.62%, and significant differences (P<0.01) were observed between every two groups. The bisulfate DNA sequencing results of three groups showed that, following the treatment with 5-Zac, the binding of the CG site to transcription factors was affected by demethylation. The average rate of demethylation indicated a statistical difference among the three groups. In conclusion, the methylation inhibitor 5-Zac leads to a significant increase in the

  8. DNA demethylation in the PTEN gene promoter induced by 5-azacytidine activates PTEN expression in the MG-63 human osteosarcoma cell line

    Science.gov (United States)

    SONG, DEYE; NI, JIANGDONG; XIE, HONGMING; DING, MULIANG; WANG, JUN

    2014-01-01

    This study used the MG-63 osteosarcoma cell line to investigate the demethylation of the phosphate and tension homolog (PTEN) gene promoter and the change in PTEN gene expression levels, which are caused by the methylation inhibitor 5-azacytidine (5-Zac), and the association between the two. Different concentrations of 5-Zac (0, 5 and 10 μmol/l) were added into the MG-63 cell culture medium and the cells were cultured for 72 h. The following techniques were performed on the cells: Western blot analysis to detect the PTEN protein; reverse transcription-polymerase chain reaction (PCR) to detect the mRNA transcription levels of the PTEN gene; flow cytometry to detect the cell apoptotic rate; and sodium bisulfate to deal with the DNA of each group. The genes of the PTEN promoter and the transcription factors specificity protein 1 (Sp1) and Myc were PCR amplified and transformed into Escherichia coli, then a number of clones were selected for sequencing and the methylation status of the amplified PTEN promoter fragment was detected. Following culture of the MG-63 cells with 5-Zac at concentrations of 0, 5 and 10 μmol/l for 72 h, the expression levels of PTEN protein in each group were gradually increased, presenting a concentration-dependent effect: Group 0 μmol/l compared with groups 5 and 10 μmol/l, P<0.05; and group 5 μmol/l compared with group 10 μmol/l, P=0.007. The mRNA expression levels of the PTEN gene significantly increased. The apoptotic rates of groups 0, 5 and 10 μmol/l were 0.69±0.42, 2.50±0.30 and 6.59±0.62%, and significant differences (P<0.01) were observed between every two groups. The bisulfate DNA sequencing results of three groups showed that, following the treatment with 5-Zac, the binding of the CG site to transcription factors was affected by demethylation. The average rate of demethylation indicated a statistical difference among the three groups. In conclusion, the methylation inhibitor 5-Zac leads to a significant increase in the

  9. Inhibition of AMPK and Krebs cycle gene expression drives metabolic remodeling of Pten-deficient preneoplastic thyroid cells.

    Science.gov (United States)

    Antico Arciuch, Valeria G; Russo, Marika A; Kang, Kristy S; Di Cristofano, Antonio

    2013-09-01

    Rapidly proliferating and neoplastically transformed cells generate the energy required to support rapid cell division by increasing glycolysis and decreasing flux through the oxidative phosphorylation (OXPHOS) pathway, usually without alterations in mitochondrial function. In contrast, little is known of the metabolic alterations, if any, which occur in cells harboring mutations that prime their neoplastic transformation. To address this question, we used a Pten-deficient mouse model to examine thyroid cells where a mild hyperplasia progresses slowly to follicular thyroid carcinoma. Using this model, we report that constitutive phosphoinositide 3-kinase (PI3K) activation caused by PTEN deficiency in nontransformed thyrocytes results in a global downregulation of Krebs cycle and OXPHOS gene expression, defective mitochondria, reduced respiration, and an enhancement in compensatory glycolysis. We found that this process does not involve any of the pathways classically associated with the Warburg effect. Moreover, this process was independent of proliferation but contributed directly to thyroid hyperplasia. Our findings define a novel metabolic switch to glycolysis driven by PI3K-dependent AMPK inactivation with a consequent repression in the expression of key metabolic transcription regulators.

  10. Loss of function of PTEN alters the relationship between glucose concentration and cell proliferation, increases glycolysis, and sensitizes cells to 2-deoxyglucose.

    Science.gov (United States)

    Blouin, Marie-José; Zhao, Yunhua; Zakikhani, Mahvash; Algire, Carolyn; Piura, Esther; Pollak, Michael

    2010-03-28

    PTEN loss of function enhances proliferation, but effects on cellular energy metabolism are less well characterized. We used an inducible PTEN expression vector in a PTEN-null glioma cell line to examine this issue. While proliferation of PTEN-positive cells was insensitive to increases in glucose concentration beyond 2.5mM, PTEN-null cells significantly increased proliferation with increasing glucose concentration across the normal physiologic range to approximately 10mM, coinciding with a shift to glycolysis and "glucose addiction". This demonstrates that the impact of loss of function of PTEN is modified by glucose concentration, and may be relevant to epidemiologic results linking hyperglycemia to cancer risk and cancer mortality. PMID:19744772

  11. SIGNIFICANCE OF Skp2 EXPRESSION IN HUMAN GASTRIC CARCINOMA AND THE RELATIONSHIP BETWEEN Skp2,p27 AND PTEN EXPRESSION

    Institute of Scientific and Technical Information of China (English)

    MA Xiu-mei; ZUO Lian-fu

    2005-01-01

    Objective: S-phase kinase-associated protein 2 (Skp2) is a positive regulator of G1-S transition and promotes ubiquitin-mediated proteolysis of the cyclin-dependent kinase inhibitor p27. Its overexpression has been implicated in cell transformation and oncogenesis. In this study, we investigated significance of Skp2 expression in human gastric carcinoma and the relationship between Skp2, p27 and PTEN expression. Methods: Immunohistochemical analysis was performed on 138 surgical resected primary gastric carcinoma specimens, 102 paired metastasis carcinoma tissue specimens in lymph node from the same set of 138 surgical resected primary gastric carcinoma specimens, 30 dysplasia specimens, 30 intestinal metaplasia specimens, and 20 normal gastric mucosa specimens for Skp2 and performed on the same set of 138 surgical resected primary gastric carcinoma specimens for p27 and PTEN. Results: Skp2 labeling frequency % was increased dramatically in intestinal metaplasia, dysplasia, and primary gastric carcinoma compared with normal gastric mucosa (P=0.000, all the same). Skp2 labeling frequency % in metastasis gastric carcinoma in lymph node was significantly higher than primary gastric carcinoma (P=0.037). Skp2 labeling frequency % was positively associated with differentiated degree (rho=0.315, P=0.000), vessel invasion (rho=0.303, P=0.000) and lymph node metastasis (rho=0.254, P=0.000) respectively.An inverse correlation of Skp2 was observed with both its biochemical target p27 expression in gastric carcinoma (rho=-0.451, P=0.000) and with its putative negative regulator, the PTEN tumor suppressor protein (rho=-0.480, P=0.000).p27 expression had positive relationship with PTEN expression in gastric carcinoma (rho=0.642, P=0.000). Conclusion:Skp2 overexpression is correlated with carcinogenesis and progression of gastric carcinoma: elevated Skp2 expression is correlated with decreased p27 and PTEN in gastric carcinoma, and p27 expression is parallel with PTEN expression

  12. MCT-1 expression and PTEN deficiency synergistically promote neoplastic multinucleation through the Src/p190B signaling activation.

    Science.gov (United States)

    Wu, M-H; Chen, Y-A; Chen, H-H; Chang, K-W; Chang, I-S; Wang, L-H; Hsu, H-L

    2014-10-23

    Multinucleation is associated with malignant neoplasms; however, the molecular mechanism underlying the nuclear abnormality remains unclear. Loss or mutation of PTEN promotes the development of malignant tumors. We now demonstrate that increased expression of the oncogene MCT-1 (multiple copies in T-cell malignancy 1) antagonizes PTEN gene presentation, PTEN protein stability and PTEN functional activity, thereby further promoting phosphoinositide 3 kinase/AKT signaling, survival rate and malignancies of the PTEN-deficient cells. In the PTEN-null cancer cells, MCT-1 interacts with p190B and Src in vivo, supporting that they are in proximity of the signaling complexes. MCT-1 overexpression and PTEN loss synergistically augments the Src/p190B signaling function that leads to inhibition of RhoA activity. Under such a condition, the incidence of mitotic catastrophes including spindle multipolarity and cytokinesis failure is enhanced, driving an Src/p190B/RhoA-dependent neoplastic multinucleation. Targeting MCT-1 by the short hairpin RNA markedly represses the Src/p190B function, improves nuclear structures and suppresses xenograft tumorigenicity of the PTEN-null breast cancer cells. Consistent with the oncogenic effects in vitro, clinical evidence has confirmed that MCT-1 gene stimulation is correlated with p190B gene promotion and PTEN gene suppression in human breast cancer. Accordingly, MCT-1 gene induction is recognized as a potential biomarker of breast tumor development. Abrogating MCT-1 function may be a promising stratagem for management of breast cancer involving Src hyperactivation and/or PTEN dysfunction. PMID:24858043

  13. Early Behavioral Abnormalities and Perinatal Alterations of PTEN/AKT Pathway in Valproic Acid Autism Model Mice.

    Science.gov (United States)

    Yang, Eun-Jeong; Ahn, Sangzin; Lee, Kihwan; Mahmood, Usman; Kim, Hye-Sun

    2016-01-01

    Exposure to valproic acid (VPA) during pregnancy has been linked with increased incidence of autism, and has repeatedly been demonstrated as a useful autism mouse model. We examined the early behavioral and anatomical changes as well as molecular changes in mice prenatally exposed to VPA (VPA mice). In this study, we first showed that VPA mice showed developmental delays as assessed with self-righting, eye opening tests and impaired social recognition. In addition, we provide the first evidence that primary cultured neurons from VPA-treated embryos present an increase in dendritic spines, compared with those from control mice. Mutations in phosphatase and tensin homolog (PTEN) gene are also known to be associated with autism, and mice with PTEN knockout show autistic characteristics. Protein expression of PTEN was decreased and the ratio of p-AKT/AKT was increased in the cerebral cortex and the hippocampus, and a distinctive anatomical change in the CA1 region of the hippocampus was observed. Taken together, our study suggests that prenatal exposure to VPA induces developmental delays and neuroanatomical changes via the reduction of PTEN level and these changes were detectable in the early days of life.

  14. EGFR- and AKT-mediated reduction in PTEN expression contributes to tyrphostin resistance and is reversed by mTOR inhibition in endometrial cancer cells.

    Science.gov (United States)

    Li, Tian; Yang, Yuebo; Li, Xiaomao; Xu, Chengfang; Meng, Lirong

    2012-02-01

    Loss or mutation of the PTEN (phosphatase and tensin homologue deleted on chromosome 10) gene is associated with resistance to epidermal growth factor receptor (EGFR) inhibitors. However, the mechanism underlying remains elusive. In this study, we aimed to explore whether sensitivity to the EGFR tyrosine kinase inhibitor (TKI) is affected by PTEN status in endometrial cancer cells. PTEN siRNA and the PTEN gene were transfected into HEC-1A and Ishikawa endometrial cancer cells using lentiviral vectors. Cells were treated under various concentrations of RG14620 and rapamycin, which are EGFR and mammalian target of rapamycin (mTOR) inhibitors, respectively. The IC(50) of RG16420 was determined by using the MTT method. Cell apoptosis and the cell cycle were studied, and activation of EGFR, AKT, and p70S6 were detected by Western blot analysis. Loss of PTEN promoted cell proliferation and led to significant increases in the levels of EGFR, phospho-EGFR, AKT, phospho-AKT, and phospho-mTOR proteins. Ishikawa and HEC-1A(PTENkd) cells that displayed loss and inactivation of PTEN function were resistant to RG14620. HEC-1A and Ishikawa(PTEN) cells with intact PTEN were sensitive to RG14620. The combination of two inhibitors was more effective than both monotherapies, particularly in carcinoma cells with PTEN dysfunction. Decreased phospho-EGFR protein expression was observed in all cell lines that were sensitive to RG14620. Decreased phospho-AKT and phospho-p70S6 protein expression was observed in PTEN-intact cells that were sensitive to RG14620. PTEN loss results in resistance to EGFR TKI, which was reversed by PTEN reintroduction or mTOR inhibitor treatment. The combined treatment of EGFR TKI and the mTOR inhibitor provided a synergistic effect by promoting cell death in PTEN-deficient and PTEN-intact endometrial cancer cells, particularly in PTEN-deficient carcinoma cells with up-regulated EGFR activation.

  15. Characterization of a novel PTEN mutation in MDA-MB-453 breast carcinoma cell line

    Directory of Open Access Journals (Sweden)

    Singh Gobind

    2011-11-01

    Full Text Available Abstract Background Cowden Syndrome (CS patients with germ line point mutations in the PTEN gene are at high risk for developing breast cancer. It is believed that cells harboring these mutant PTEN alleles are predisposed to malignant conversion. This article will characterize the biochemical and biological properties of a mutant PTEN protein found in a commonly used metastatic breast cancer cell line. Methods The expression of PTEN in human breast carcinoma cell lines was evaluated by Western blotting analysis. Cell line MDA-MB-453 was selected for further analysis. Mutation analysis of the PTEN gene was carried out using DNA isolated from MDA-MB-453. Site-directed mutagenesis was used to generate a PTEN E307K mutant cDNA and ectopic expressed in PC3, U87MG, MCF7 and Pten-/- mouse embryo fibroblasts (MEFS. Histidine (His-tagged PTEN fusion protein was generated in Sf9 baculovirus expression system. Lipid phosphatase and ubiquitination assays were carried out to characterize the biochemical properties of PTEN E307K mutant. The intracellular localization of PTEN E307K was determined by subcellular fractionation experiments. The ability of PTEN E307K to alter cell growth, migration and apoptosis was analyzed in multiple PTEN-null cell lines. Results We found a mutation in the PTEN gene at codon 307 in MDA-MB-453 cell line. The glutamate (E to lysine (K substitution rendered the mutant protein to migrate with a faster mobility on SDS-PAGE gels. Biochemically, the PTEN E307K mutant displayed similar lipid phosphatase and growth suppressing activities when compared to wild-type (WT protein. However, the PTEN E307K mutant was present at higher levels in the membrane fraction and suppressed Akt activation to a greater extent than the WT protein. Additionally, the PTEN E307K mutant was polyubiquitinated to a greater extent by NEDD4-1 and displayed reduced nuclear localization. Finally, the PTEN E307K mutant failed to confer chemosensitivity to

  16. Expression of PIK3CA, PTEN mRNA and PIK3CA mutations in primary breast cancer

    DEFF Research Database (Denmark)

    Palimaru, Irina; Brügmann, Anja; Wium-Andersen, Marie Kim;

    2013-01-01

    tissue samples of breast carcinoma and normal breast tissue were obtained from 175 breast cancer patients at the time of primary surgery, of these 105 patients were lymph node positive. Expression of PIK3CA and PTEN mRNA was quantified with Quantitative Real Time PCR. Somatic mutations in exon 9 and exon......PURPOSE: High activity of the intracellular phosphatidylinositol-3 kinase (PI3K) pathway is common in breast cancer. Here, we explore differences in expression of important PI3K pathway regulators: the activator, phosphatidylinositol-3-kinase catalytic subunit alpha (PIK3CA), and the tumour...... suppressor, phosphatase and tensin homolog (PTEN), in breast carcinoma tissue and normal breast tissue. Furthermore, we examine whether expression of PIK3CA and PTEN mRNA and occurrence of PIK3CA mutations are associated with lymph node metastases in patients with primary breast cancer. METHODS: Paired...

  17. The dietary isothiocyanate sulforaphane modulates gene expression and alternative gene splicing in a PTEN null preclinical murine model of prostate cancer

    Directory of Open Access Journals (Sweden)

    Ball Richard Y

    2010-07-01

    Full Text Available Abstract Background Dietary or therapeutic interventions to counteract the loss of PTEN expression could contribute to the prevention of prostate carcinogenesis or reduce the rate of cancer progression. In this study, we investigate the interaction between sulforaphane, a dietary isothiocyanate derived from broccoli, PTEN expression and gene expression in pre malignant prostate tissue. Results We initially describe heterogeneity in expression of PTEN in non-malignant prostate tissue of men deemed to be at risk of prostate cancer. We subsequently use the mouse prostate-specific PTEN deletion model, to show that sulforaphane suppresses transcriptional changes induced by PTEN deletion and induces additional changes in gene expression associated with cell cycle arrest and apoptosis in PTEN null tissue, but has no effect on transcription in wild type tissue. Comparative analyses of changes in gene expression in mouse and human prostate tissue indicate that similar changes can be induced in humans with a broccoli-rich diet. Global analyses of exon expression demonstrated that sulforaphane interacts with PTEN deletion to modulate alternative gene splicing, illustrated through a more detailed analysis of DMBT1 splicing. Conclusion To our knowledge, this is the first report of how diet may perturb changes in transcription induced by PTEN deletion, and the effects of diet on global patterns of alternative gene splicing. The study exemplifies the complex interaction between diet, genotype and gene expression, and the multiple modes of action of small bioactive dietary components.

  18. PTEN at 18: Still Growing.

    Science.gov (United States)

    Gorbenko, Olena; Stambolic, Vuk

    2016-01-01

    Discovered in 1997, PTEN remains one of the most studied tumor suppressors. In this issue of Methods in Molecular Biology, we assembled a series of papers describing various clinical and experimental approaches to studying PTEN function. Due to its broad expression, regulated subcellular localization, and intriguing phosphatase activity, methodologies aimed at PTEN study have often been developed in the context of mutations affecting various aspects of its regulation, found in patients burdened with PTEN loss-driven tumors. PTEN's extensive posttranslational modifications and dynamic localization pose unique challenges for studying PTEN features in isolation and necessitate considerable development of experimental systems to enable controlled characterization. Nevertheless, ongoing efforts towards the development of PTEN knockout and knock-in animals and cell lines, antibodies, and enzymatic assays have facilitated a huge body of work, which continues to unravel the fascinating biology of PTEN.

  19. Gene Expression Analysis of an EGFR Indirectly Related Pathway Identified PTEN and MMP9 as Reliable Diagnostic Markers for Human Glial Tumor Specimens

    Directory of Open Access Journals (Sweden)

    Sergio Comincini

    2009-01-01

    Full Text Available In this study the mRNA levels of five EGFR indirectly related genes, EGFR, HB-EGF, ADAM17, PTEN, and MMP9, have been assessed by Real-time PCR in a panel of 37 glioblastoma multiforme specimens and in 5 normal brain samples; as a result, in glioblastoma, ADAM17 and PTEN expression was significantly lower than in normal brain samples, and, in particular, a statistically significant inverse correlation was found between PTEN and MMP9 mRNA levels. To verify if this correlation was conserved in gliomas, PTEN and MMP9 expression was further investigated in an additional panel of 16 anaplastic astrocytoma specimens and, in parallel, in different human normal and astrocytic tumor cell lines. In anaplastic astrocytomas PTEN expression was significantly higher than in glioblastoma multiforme, but no significant correlation was found between PTEN and MMP9 expression. PTEN and MMP9 mRNA levels were also employed to identify subgroups of specimens within the different glioma malignancy grades and to define a gene expression-based diagnostic classification scheme. In conclusion, this gene expression survey highlighted that the combined measurement of PTEN and MMP9 transcripts might represent a novel reliable tool for the differential diagnosis of high-grade gliomas, and it also suggested a functional link involving these genes in glial tumors.

  20. Melittin restores PTEN expression by down-regulating HDAC2 in human hepatocelluar carcinoma HepG2 cells.

    Directory of Open Access Journals (Sweden)

    Hui Zhang

    Full Text Available Melittin is a water-soluble toxic peptide derived from the venom of the bee. Although many studies show the anti-tumor activity of melittin in human cancer including glioma cells, the underlying mechanisms remain elusive. Here the effect of melittin on human hepatocelluar carcinoma HepG2 cell proliferation in vitro and further mechanisms was investigated. We found melittin could inhibit cell proliferation in vitro using Flow cytometry and MTT method. Besides, we discovered that melittin significantly downregulated the expressions of CyclinD1 and CDK4. Results of western Blot and Real-time PCR analysis indicated that melittin was capable to upregulate the expression of PTEN and attenuate histone deacetylase 2 (HDAC2 expression. Further studies demonstrated that knockdown of HDAC2 completely mimicked the effects of melittin on PTEN gene expression. Conversely, it was that the potential utility of melittin on PTEN expression was reversed in cells treated with a recombinant pEGFP-C2-HDAC2 plasmid. In addition, treatment with melittin caused a downregulation of Akt phosphorylation, while overexpression of HDAC2 promoted Akt phosphorylation. These findings suggested that the inhibitory of cell growth by melittin might be led by HDAC2-mediated PTEN upregulation, Akt inactivation, and inhibition of the PI3K/Akt signaling pathways.

  1. Deletion of Pten in CD45-expressing cells leads to development of T-cell lymphoblastic lymphoma but not myeloid malignancies.

    Science.gov (United States)

    Mirantes, Cristina; Dosil, Maria Alba; Hills, David; Yang, Jian; Eritja, Núria; Santacana, Maria; Gatius, Sònia; Vilardell, Felip; Medvinsky, Alexander; Matias-Guiu, Xavier; Dolcet, Xavier

    2016-04-14

    Since its discovery in the late 1990s, Pten has turned out to be one of the most important tumor suppressor genes. Pten loss results in increased activation of the phosphatidylinositol 3-kinase/Akt signaling pathway, which is associated with increased proliferation, survival, and neoplastic growth. Here, we have addressed the effects of conditional deletion of Pten in hematopoietic cells by crossing Pten conditional knockout mice with a knock-in mouse expressing the Cre recombinase in the CD45 locus. CD45 is also known as leukocyte common antigen, and it is expressed in virtually all white cells and in hematopoietic stem cells. Using a reporter mouse, we demonstrate that CD45:Cre mouse displays recombinase activity in both myeloid and lymphoid cells. However, deletion of Pten in CD45-expressing cells induces development of T-cell acute lymphoblastic leukemia and lymphoma, but not other hematologic malignancies. PMID:26773036

  2. Impact of PTEN on the expression of insulin-like growth factors (IGFs) and IGF-binding proteins in human gastric adenocarcinoma cells

    International Nuclear Information System (INIS)

    PTEN is a tumor suppressor gene that is frequently mutated or deleted in a variety of human cancers including human gastric cancer. PTEN functions primarily as a lipid phosphatase and plays a key role in the regulation of the PI3 kinase/Akt pathway, thereby modulating cell proliferation and cell survival. On the other hand, the IGF system plays an important role in cell proliferation and cell survival via the PI3 kinase/Akt and MAP kinase pathways in many cancer cells. To characterize the impact of PTEN on the IGF-IGFR-IGFBP axis in gastric cancer, we overexpressed PTEN using an adenovirus gene transfer system in human gastric adenocarcinoma cells, SNU-484 and SNU-663, which lack PTEN. Overexpression of PTEN inhibited serum-induced as well as IGF-I-induced cell proliferation as compared to control cells. PTEN overexpression resulted in a significant decrease in the expression of IGF-I, -II, and IGF-IR. Interestingly, amongst the six IGFBPs, only IGFBP-3 was upregulated by PTEN, whereas IGFBP-4 and -6 were reduced. The IGFBP-3 promoter activity assay and Western immunoblotting demonstrate that PTEN regulates IGFBP-3 at the transcriptional level. In addition, the PI3 kinase inhibitor, LY294002, upregulates IGFBP-3 expression but downregulates IGF-I and IGF-II, indicating that PTEN controls IGFBP-3 and IGFs by an Akt-dependent pathway. These findings suggest that PTEN may inhibit antiapoptotic IGF actions not only by blocking the IGF-IGFR-induced Akt activity, but also by regulating expression of components of the IGF system, in particular, upregulation of IGFBP-3, which is known to exert antiproliferative effects through IGF-dependent and IGF-independent mechanisms in cancer cells

  3. Subtle variations in Pten dose determine cancer susceptibility

    Science.gov (United States)

    Alimonti, Andrea; Carracedo, Arkaitz; Clohessy, John G; Trotman, Lloyd C; Nardella, Caterina; Egia, Ainara; Salmena, Leonardo; Sampieri, Katia; Haveman, William J; Brogi, Edi; Richardson, Andrea L; Zhang, Jiangwen; Pandolfi, Pier Paolo

    2010-01-01

    Cancer susceptibility has been attributed to at least one heterozygous genetic alteration in a tumor suppressor gene (TSG)1. It has been hypothesized that subtle variations in TSG expression can promote cancer development2,3. However, this hypothesis has not yet been definitively supported in vivo. PTEN is a TSG frequently lost in human cancer and mutated in inherited cancer-predisposition syndromes4. Here, we analyze Pten hypermorphic mice (Ptenhy/+), expressing 80% normal levels of Pten. Ptenhy/+ mice develop a spectrum of tumors, with breast tumors occurring at the highest penetrance. All breast tumors analyzed here retained two intact copies of Pten and maintained Pten levels above heterozygosis. Notably, subtle downregulation of Pten altered the steady-state biology of the mammary tissues and the expression profiles of genes involved in cancer cell proliferation. We present an alterative working model for cancer development in which subtle reductions in the dose of TSGs predispose to tumorigenesis in a tissue-specific manner. PMID:20400965

  4. Complicated biallelic inactivation of Pten in radiation-induced mouse thymic lymphomas

    International Nuclear Information System (INIS)

    Inactivation of the phosphatase and tensin homolog gene (Pten) occurs via multiple tissue-dependent mechanisms including epigenetic silencing, point mutations, insertions, and deletions. Although frequent loss of heterozygosity around the Pten locus and plausible involvement of epigenetic silencing have been reported in radiation-induced thymic lymphomas, the proportion of lymphomas with inactivated Pten and the spectrum of causal aberrations have not been extensively characterized. Here, we assessed the mode of Pten inactivation by comprehensive analysis of the expression and alteration of Pten in 23 radiation-induced thymic lymphomas developed in B6C3F1 mice. We found no evidence for methylation-associated silencing of Pten; rather, complex structural abnormalities comprised of missense and nonsense mutations, 1- and 3-bp insertions, and focal deletions were identified in 8 of 23 lymphomas (35%). Sequencing of deletion breakpoints suggested that aberrant V(D)J recombination and microhomology-mediated rearrangement were responsible for the focal deletions. Seven of the 8 lymphomas had biallelic alterations, and 4 of them did not express Pten protein. These Pten aberrations coincided with downstream Akt phosphorylation. In conclusion, we demonstrate that Pten inactivation is frequently biallelic and is caused by a variety of structural abnormalities (rather than by epigenetic silencing) and is involved in radiation-induced lymphomagenesis.

  5. Clinicopathological Research and Expression of PTEN/PI3K/Akt Signaling Pathway in Non-small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Hong SHU

    2009-08-01

    Full Text Available Background and objective It has been known that abnormality of PTEN/PI3K/Akt signal pathway played an important role in initiation of some malignant tumors. The aim of this study is to examine the expression and clinicopathological significance of PTEN, PI3K and Akt in non-small cell lung cancer (NSCLC. Methods Expression levels of PTEN, PI3K and Akt protein were determined using immunohistochemistry S-P in 61 specimens of NSCLC with follow-up. Results ①The levels of PTEN protein was higher than that of control group, and levels of PI3K and Akt protein were lower than that of control group; ②Expression of PTEN and PI3K were related to histotype, clinical stage, lymphonode metastasis and survival rate; Expression of Akt was related to clinical stage, lymphonode metastasis and survival rate; ③The Cox Monovariable Analyses revealed that both smoking and negative expression of PTEN were the risking factors on the death of the NSCLC patients after surgery; ④The expression of PTEN protein was negatively correlated to that of PI3K and Akt respectively, while the expression of PI3K was positively correlated to that of Akt. Conclusion In NSCLC, the lack of PTEN induced up-regulation of PI3K and Akt, which demonstrated that PTEN/PI3K/Akt signaling pathway contributed to the tumorigenesis and development of NSCLC. They could be used as the indicators of prognosis and targets of therapy.

  6. 视网膜母细胞瘤组织中 Ki-67、PTEN 表达的变化%Expressions of Ki-67 and PTEN in the Retinoblastoma

    Institute of Scientific and Technical Information of China (English)

    孟海洋

    2016-01-01

    Objective To investigate the expressions of Ki-67 and PTEN in the retinoblastoma and the signifi-cance. Methods Immunohistochemical S-P method was used to detect the expressions of Ki-67 and PTEN in the 97 patients with retinoblastoma and 28 patients with normal retina tissues,their relationship with clinicopathological pa-rameters were analyzed. Results The positive rate of Ki-67 was 66. 0%(64 / 97)in the retinoblastoma,and was 14. 3%(4 / 28)in the normal retina tissues( χ2 = 23. 406,P < 0. 05). The positive rate of Ki-67 was 53. 6%(52 / 97)in the retinoblastoma,and was 92. 9%(26 / 28)in the normal retina tissues(χ2 = 14. 266,P < 0. 05). The expressions of Ki-67 and PTEN in the retinoblastoma were related with cell differentiation degree and clinical stage (P < 0. 05). In the retinoblastoma,the expression of Ki-67 was negatively related with PTEN(r = - 0. 493,P <0. 05). Conclusion Abnormal expressions of Ki-67 and PTEN may be related to the infiltration and development of retinoblastoma.%目的:探讨视网膜母细胞瘤组织中 Ki-67、PTEN 表达的变化及其临床意义。方法采用免疫组化S-P 法检测97例视网膜母细胞瘤和28例正常视网膜组织中 Ki-67、PTEN 的表达水平,并分析两者与视网膜母细胞瘤临床病理参数的关系。结果视网膜母细胞瘤组织中 Ki-67的阳性率为66.0%(64/97),高于正常视网膜组织的14.3%(4/28)(χ2=23.406,P <0.05);视网膜母细胞瘤组织中 PTEN 的阳性率为53.6%(52/97),低于正常视网膜组织的92.9%(26/28)(χ2=14.266,P <0.05)。视网膜母细胞瘤组织中 Ki-67、PTEN 的表达均与患者的分化程度、临床分期有关(P <0.05)。视网膜母细胞瘤组织中 Ki-67、PTEN 的表达呈负相关关系(r =-0.493,P <0.05)。结论 Ki-67、PTEN 的异常表达参与了视网膜母细胞瘤的侵袭和病程进展。

  7. Mir-190b negatively contributes to the Trypanosoma cruzi- infected cell survival by repressing PTEN protein expression

    Directory of Open Access Journals (Sweden)

    Cíntia Júnia Monteiro

    2015-12-01

    Full Text Available Chagas disease, which is caused by the intracellular protozoanTrypanosoma cruzi, is a serious health problem in Latin America. The heart is one of the major organs affected by this parasitic infection. The pathogenesis of tissue remodelling, particularly regarding cardiomyocyte behaviour after parasite infection, and the molecular mechanisms that occur immediately following parasite entry into host cells are not yet completely understood. Previous studies have reported that the establishment of parasitism is connected to the activation of the phosphatidylinositol-3 kinase (PI3K, which controls important steps in cellular metabolism by regulating the production of the second messenger phosphatidylinositol-3,4,5-trisphosphate. Particularly, the tumour suppressor PTEN is a negative regulator of PI3K signalling. However, mechanistic details of the modulatory activity of PTEN on Chagas disease have not been elucidated. To address this question, H9c2 cells were infected with T. cruzi Berenice 62 strain and the expression of a specific set of microRNAs (miRNAs were investigated. Our cellular model demonstrated that miRNA-190b is correlated to the decrease of cellular viability rates by negatively modulating PTEN protein expression in T. cruzi-infected cells.

  8. The mitogen-activated protein kinase (MAPK) cascade controls phosphatase and tensin homolog (PTEN) expression through multiple mechanisms.

    Science.gov (United States)

    Ciuffreda, Ludovica; Di Sanza, Cristina; Cesta Incani, Ursula; Eramo, Adriana; Desideri, Marianna; Biagioni, Francesca; Passeri, Daniela; Falcone, Italia; Sette, Giovanni; Bergamo, Paola; Anichini, Andrea; Sabapathy, Kanaga; McCubrey, James A; Ricciardi, Maria Rosaria; Tafuri, Agostino; Blandino, Giovanni; Orlandi, Augusto; De Maria, Ruggero; Cognetti, Francesco; Del Bufalo, Donatella; Milella, Michele

    2012-06-01

    The mitogen-activated protein kinase (MAPK) and PI3K pathways are regulated by extensive crosstalk, occurring at different levels. In tumors, transactivation of the alternate pathway is a frequent "escape" mechanism, suggesting that combined inhibition of both pathways may achieve synergistic antitumor activity. Here we show that, in the M14 melanoma model, simultaneous inhibition of both MEK and mammalian target of rapamycin (mTOR) achieves synergistic effects at suboptimal concentrations, but becomes frankly antagonistic in the presence of relatively high concentrations of MEK inhibitors. This observation led to the identification of a novel crosstalk mechanism, by which either pharmacologic or genetic inhibition of constitutive MEK signaling restores phosphatase and tensin homolog (PTEN) expression, both in vitro and in vivo, and inhibits downstream signaling through AKT and mTOR, thus bypassing the need for double pathway blockade. This appears to be a general regulatory mechanism and is mediated by multiple mechanisms, such as MAPK-dependent c-Jun and miR-25 regulation. Finally, PTEN upregulation appears to be a major effector of MEK inhibitors' antitumor activity, as cancer cells in which PTEN is inactivated are consistently more resistant to the growth inhibitory and anti-angiogenic effects of MEK blockade. PMID:22215152

  9. Pten regulates development and lactation in the mammary glands of dairy cows.

    Directory of Open Access Journals (Sweden)

    Zhuoran Wang

    Full Text Available Pten is a tumor suppressor gene regulating many cellular processes, including growth, adhesion, and apoptosis. In the aim of investigating the role of Pten during mammary gland development and lactation of dairy cows, we analyzed Pten expression levels in the mammary glands of dairy cows by using western blotting, immunohistochemistry, and quantitative polymerase chain reaction (qPCR assays. Dairy cow mammary epithelial cells (DCMECs were used to study the function of Pten in vitro. We determined concentrations of β-casein, triglyceride, and lactose in the culture medium following Pten overexpression and siRNA inhibition. To determine whether Pten affected DCMEC viability and proliferation, cells were analyzed by CASY-TT and flow cytometry. Genes involved in lactation-related signaling pathways were detected. Pten expression was also assessed by adding prolactin and glucose to cell cultures. When Pten was overexpressed, proliferation of DCMECs and concentrations for β-casein, triglyceride, and lactose were significantly decreased. Overexpression of Pten down-regulated expression of MAPK, CYCLIN D1, AKT, MTOR, S6K1, STAT5, SREBP1, PPARγ, PRLR, and GLUT1, but up-regulated 4EBP1 in DCMECs. The Pten siRNA inhibition experiments revealed results that opposed those from the gene overexpression experiments. Introduction of prolactin (PRL increased secretion of β-casein, triglyceride, and lactose, but decreased Pten expression levels. Introduction of glucose also increased β-casein and triglyceride concentrations, but did not significantly alter Pten expression levels. The Pten mRNA and protein expression levels were decreased 0.3- and 0.4-fold in mammary glands of lactating cows producing high quality milk (milk protein >3.0%, milk fat >3.5%, compared with those cows producing low quality milk (milk protein <3.0%, milk fat <3.5%. In conclusion, Pten functions as an inhibitor during mammary gland development and lactation in dairy cows. It can down

  10. PTEN dosage is essential for neurofibroma development and malignant transformation.

    Science.gov (United States)

    Gregorian, Caroline; Nakashima, Jonathan; Dry, Sarah M; Nghiemphu, P Leia; Smith, Kate Barzan; Ao, Yan; Dang, Julie; Lawson, Gregory; Mellinghoff, Ingo K; Mischel, Paul S; Phelps, Michael; Parada, Luis F; Liu, Xin; Sofroniew, Michael V; Eilber, Fritz C; Wu, Hong

    2009-11-17

    Patients with neurofibromatosis type 1 (NF1) carry approximately a 10% lifetime risk of developing a malignant peripheral nerve sheath tumor (MPNST). Although the molecular mechanisms underlying NF1 to MPNST malignant transformation remain unclear, alterations of both the RAS/RAF/MAPK and PI3K/AKT/mTOR signaling pathways have been implicated. In a series of genetically engineered murine models, we perturbed RAS/RAF/MAPK or/and PTEN/PI3K/AKT pathway, individually or simultaneously, via conditional activation of K-ras oncogene or deletion of Nf1 or Pten tumor suppressor genes. Only K-Ras activation in combination with a single Pten allele deletion led to 100% penetrable development of NF lesions and subsequent progression to MPNST. Importantly, loss or decrease in PTEN expression was found in all murine MPNSTs and a majority of human NF1-associated MPNST lesions, suggesting that PTEN dosage and its controlled signaling pathways are critical for transformation of NFs to MPNST. Using noninvasive in vivo PET-CT imaging, we demonstrated that FDG can be used to identify the malignant transformation in both murine and human MPNSTs. Our data suggest that combined inhibition of RAS/RAF/MAPK and PTEN/PI3K/AKT pathways may be beneficial for patients with MPNST.

  11. PTEN dosage is essential for neurofibroma development and malignant transformation.

    Science.gov (United States)

    Gregorian, Caroline; Nakashima, Jonathan; Dry, Sarah M; Nghiemphu, P Leia; Smith, Kate Barzan; Ao, Yan; Dang, Julie; Lawson, Gregory; Mellinghoff, Ingo K; Mischel, Paul S; Phelps, Michael; Parada, Luis F; Liu, Xin; Sofroniew, Michael V; Eilber, Fritz C; Wu, Hong

    2009-11-17

    Patients with neurofibromatosis type 1 (NF1) carry approximately a 10% lifetime risk of developing a malignant peripheral nerve sheath tumor (MPNST). Although the molecular mechanisms underlying NF1 to MPNST malignant transformation remain unclear, alterations of both the RAS/RAF/MAPK and PI3K/AKT/mTOR signaling pathways have been implicated. In a series of genetically engineered murine models, we perturbed RAS/RAF/MAPK or/and PTEN/PI3K/AKT pathway, individually or simultaneously, via conditional activation of K-ras oncogene or deletion of Nf1 or Pten tumor suppressor genes. Only K-Ras activation in combination with a single Pten allele deletion led to 100% penetrable development of NF lesions and subsequent progression to MPNST. Importantly, loss or decrease in PTEN expression was found in all murine MPNSTs and a majority of human NF1-associated MPNST lesions, suggesting that PTEN dosage and its controlled signaling pathways are critical for transformation of NFs to MPNST. Using noninvasive in vivo PET-CT imaging, we demonstrated that FDG can be used to identify the malignant transformation in both murine and human MPNSTs. Our data suggest that combined inhibition of RAS/RAF/MAPK and PTEN/PI3K/AKT pathways may be beneficial for patients with MPNST. PMID:19846776

  12. KRAS, BRAF and PIK3CA mutations and the loss of PTEN expression in Chinese patients with colorectal cancer.

    Directory of Open Access Journals (Sweden)

    Chen Mao

    Full Text Available BACKGROUND: To investigate the frequency and relationship of the KRAS, BRAF and PIK3CA mutations and the loss of PTEN expression in Chinese patients with colorectal cancer (CRC. METHODOLOGY/PRINCIPAL FINDINGS: Genomic DNA was extracted from the formalin-fixed paraffin-embedded (FFPE tissues of 69 patients with histologically confirmed CRC. Automated sequencing analysis was conducted to detect mutations in the KRAS (codons 12, 13, and 14, BRAF (codon 600 and PIK3CA (codons 542, 545 and 1047. PTEN protein expression was evaluated by immunohistochemistry on 3 mm FFPE tissue sections. Statistical analysis was carried out using SPSS 16.0 software. The frequency of KRAS, BRAF and PIK3CA mutations and loss of PTEN expression was 43.9% (25/57, 25.4% (15/59, 8.2% (5/61 and 47.8% (33/69, respectively. The most frequent mutation in KRAS, BRAF and PIK3CA was V14G (26.7% of all mutations, V600E (40.0% of all mutations and V600L (40.0% of all mutations, and H1047L (80.0% of all mutations, respectively. Six KRAS mutant patients (24.0% harbored BRAF mutations. BRAF and PIK3CA mutations were mutually exclusive. No significant correlation was observed between the four biomarkers and patients' characteristics. CONCLUSIONS/SIGNIFICANCE: BRAF mutation rate is much higher in this study than in other studies, and overlap a lot with KRAS mutations. Besides, the specific types of KRAS and PIK3CA mutations in Chinese patients could be quite different from that of patients in other countries. Further studies are warranted to examine their impact on prognosis and response to targeted treatment.

  13. Effects of intermittent high glucose on apoptosis and PTEN expression in islet cells%波动性葡萄糖对胰岛细胞凋亡及 PTEN 表达的影响

    Institute of Scientific and Technical Information of China (English)

    李晓琳; 王涤非; 邵晨; 费宁; 李国娇; 曲必成

    2015-01-01

    [ ABSTRACT] AIM:To investigate whether the increase in PTEN expression is related to apoptosis, and whether it is regulated by reactive oxygen species( ROS) .METHODS: The rat islet cells were divided into constant low glucose group ( group L) , constant high glucose group ( group H) , glucose fluctuation group ( group F) , low glucose after high glucose group (group HL) and low glucose after fluctuation group (group FL).The ROS level, apoptotic rate, intracellu-lar calcium, insulin release and PTEN protein expression were analyzed.RESULTS:Compared with groups H and L, the insulin secretion decreased, and intracellular calcium, ROS level, PTEN protein expression and apoptotic rate increased in group F ( P<0.05) .Compared with group H, the intracellular calcium, ROS level, PTEN protein expression and apoptot-ic rate in group HL decreased, but were still higher than those in group L (P<0.05).Compared with group F, the intra-cellular calcium, ROS level, PTEN protein expression and apoptotic rate in group FL decreased, but were still higher than those in group L (P<0.05).CONCLUSION:Glucose fluctuation can cause the apoptosis of islet cells more easily than constant high glucose.This may be related to the change of intracellular calcium and increase in oxidative stress which pro-motes PTEN expression.The recovery of glucose level to some extent relieves oxidative stress, decrease PTEN expression and reduce cell damage.%目的:研究细胞凋亡是否与PTEN 表达升高相关,并探讨PTEN表达升高是否通过活性氧簇( ROS)进行调控。方法:细胞分为5组:恒定低糖组( L组)、恒定高糖组( H组)、葡萄糖波动组( F组)、高糖后低糖组( HL组)及波动后低糖组( FL组)。检测各组ROS水平、细胞凋亡率、细胞内钙离子浓度、胰岛素水平和PTEN蛋白的表达。结果:F组较H、L组钙离子浓度升高,胰岛素分泌减少,ROS水平升高,PTEN蛋白表达

  14. Tumor suppressor PTEN affects tau phosphorylation: deficiency in the phosphatase activity of PTEN increases aggregation of an FTDP-17 mutant Tau

    Directory of Open Access Journals (Sweden)

    Zhang Xue

    2006-07-01

    null PTEN increases the mutant tau phosphorylation at these sites. The changes of the tau phosphorylation status by ectopic expression of PTEN correlate to the alteration of the mutant tau's cellular distribution. In addition, the overexpression of the mutant PTEN can increase the level of the mutant tau aggregates and lead to the formation of visible aggregates in the cells.

  15. Neural transcriptome of constitutional Pten dysfunction in mice and its relevance to human idiopathic autism spectrum disorder.

    Science.gov (United States)

    Tilot, A K; Bebek, G; Niazi, F; Altemus, J B; Romigh, T; Frazier, T W; Eng, C

    2016-01-01

    Autism spectrum disorder (ASD) is a neurodevelopmental condition with a clear, but heterogeneous, genetic component. Germline mutations in the tumor suppressor Pten are a well-established risk factor for ASD with macrocephaly, and conditional Pten mouse models have impaired social behavior and brain development. Some mutations observed in patients disrupt the normally balanced nuclear-cytoplasmic localization of the Pten protein, and we developed the Pten(m3m4) model to study the effects of a cytoplasm-predominant Pten. In this model, germline mislocalization of Pten causes inappropriate social behavior with intact learning and memory, a profile reminiscent of high-functioning ASD. These animals also exhibit histological evidence of neuroinflammation and expansion of glial populations by 6 weeks of age. We hypothesized that the neural transcriptome of this model would be altered in a manner that could inform human idiopathic ASD, a constitutional condition. Using total RNA sequencing, we found progressive disruption of neural gene expression in Pten(m3m4) mice from 2-6 weeks of age, involving both immune and synaptic pathways. These alterations include downregulation of many highly coexpressed human ASD-susceptibility genes. Comparison with a human cortical development coexpression network revealed that genes disrupted in Pten(m3m4) mice were enriched in the same areas as those of human ASD. Although Pten-related ASD is relatively uncommon, our observations suggest that the Pten(m3m4) model recapitulates multiple molecular features of human ASD, and that Pten operates far upstream of common pathways within ASD pathogenesis. PMID:25754085

  16. KRAS and BRAF Mutations and PTEN Expression Do Not Predict Efficacy of Cetuximab-Based Chemoradiotherapy in Locally Advanced Rectal Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Erben, Philipp, E-mail: philipp.erben@medma.uni-heidelberg.de [III. Medizinische Klinik, Universitaetsmedizin Mannheim, Universitaet Heidelberg, Mannheim (Germany); Stroebel, Philipp [Pathologisches Institut, Universitaetsmedizin Mannheim, Universitaet Heidelberg, Mannheim (Germany); Horisberger, Karoline [Chirurgische Klinik, Universitaetsmedizin Mannheim, Universitaet Heidelberg, Mannheim (Germany); Popa, Juliana; Bohn, Beatrice; Hanfstein, Benjamin [III. Medizinische Klinik, Universitaetsmedizin Mannheim, Universitaet Heidelberg, Mannheim (Germany); Kaehler, Georg; Kienle, Peter; Post, Stefan [Chirurgische Klinik, Universitaetsmedizin Mannheim, Universitaet Heidelberg, Mannheim (Germany); Wenz, Frederik [Klinik fuer Strahlentherapie und Radioonkologie, Universitaetsmedizin Mannheim, Universitaet Heidelberg, Mannheim (Germany); Hochhaus, Andreas [III. Medizinische Klinik, Universitaetsmedizin Mannheim, Universitaet Heidelberg, Mannheim (Germany); Klinik fuer Innere Medizin II, Abteilung Haematologie/Onkologie, Universitaetsklinikum Jena, Jena (Germany); Hofheinz, Ralf-Dieter [III. Medizinische Klinik, Universitaetsmedizin Mannheim, Universitaet Heidelberg, Mannheim (Germany)

    2011-11-15

    Purpose: Mutations in KRAS and BRAF genes as well as the loss of expression of phosphatase and tensin homolog (PTEN) (deleted on chromosome 10) are associated with impaired activity of antibodies directed against epidermal growth factor receptor in patients with metastatic colorectal cancer. The predictive and prognostic value of the KRAS and BRAF point mutations as well as PTEN expression in patients with locally advanced rectal cancer (LARC) treated with cetuximab-based neoadjuvant chemoradiotherapy is unknown. Methods and Materials: We have conducted phase I and II trials of the combination of weekly administration of cetuximab and irinotecan and daily doses of capecitabine in conjunction with radiotherapy (45 Gy plus 5.4 Gy) in patients with LARC (stage uT3/4 or uN+). The status of KRAS and BRAF mutations was determined with direct sequencing, and PTEN expression status was determined with immunohistochemistry testing of diagnostic tumor biopsies. Tumor regression was evaluated by using standardized regression grading, and disease-free survival (DFS) was calculated according to the Kaplan-Meier method. Results: A total of 57 patients were available for analyses. A total of 31.6% of patients carried mutations in the KRAS genes. No BRAF mutations were found, while the loss of PTEN expression was observed in 9.6% of patients. Six patients achieved complete remission, and the 3-year DFS rate was 73%. No correlation was seen between tumor regression or DFS rate and a single marker or a combination of all markers. Conclusions: In the present series, no BRAF mutation was detected. The presence of KRAS mutations and loss of PTEN expression were not associated with impaired response to cetuximab-based chemoradiotherapy and 3-year DFS.

  17. Somatic Copy Number Alterations at Oncogenic Loci Show Diverse Correlations with Gene Expression

    Science.gov (United States)

    Roszik, Jason; Wu, Chang-Jiun; Siroy, Alan E.; Lazar, Alexander J.; Davies, Michael A.; Woodman, Scott E.; Kwong, Lawrence N.

    2016-01-01

    Somatic copy number alterations (SCNAs) affecting oncogenic drivers have a firmly established role in promoting cancer. However, no agreed-upon standard exists for calling locus-specific amplifications and deletions in each patient sample. Here, we report the correlative analysis of copy number amplitude and length with gene expression across 6,109 samples from The Cancer Genome Atlas (TCGA) dataset across 16 cancer types. Using specificity, sensitivity, and precision-based scores, we assigned optimized amplitude and length cutoffs for nine recurrent SCNAs affecting known oncogenic drivers, using mRNA expression as a functional readout. These cutoffs captured the majority of SCNA-driven, highly-expression-altered samples. The majority of oncogenes required only amplitude cutoffs, as high amplitude samples were almost invariably focal; however, CDKN2A and PTEN uniquely required both amplitude and length cutoffs as primary predictors. For PTEN, these extended to downstream AKT activation. In contrast, SCNA genes located peri-telomerically or in fragile sites showed poor expression-copy number correlations. Overall, our analyses identify optimized amplitude and length cutoffs as efficient predictors of gene expression changes for specific oncogenic SCNAs, yet warn against one-size-fits-all interpretations across all loci. Our results have implications for cancer data analyses and the clinic, where copy number and mutation data are increasingly used to personalize cancer therapy.

  18. Inhibition of transfected PTEN on human colon cancer

    Institute of Scientific and Technical Information of China (English)

    Shou-Shui Xu; Wen-Lu Shen; Song-Ying Ouyang

    2004-01-01

    AIM: To study the inhibitory effect of transfected PTEN on LoVo cells.METHODS: Human PTEN cDNA was transferred into LoVo cells via lipofectin and PTEN mRNA levels and its expression were analyzed by Western blot and flow cytometry. Before or after transfection, the effects of 5-Fu on inhibiting cell proliferation and inducing apoptosis were measured by flow cytometry, DNA bands and MTT.RESULTS: PTEN transfection significantly up-regulated PTEN expression in LoVo cells. 5-Fu inhibited cell proliferation and induced apoptosis in transfected LoVo cells.CONCLUSION: Transfected PTEN can remark ably up-regulate PTEN expression in LoVo cells and promote the apoptosis.PTEN transfection is associated with 5-Fu treatment effect and has a cooperatively cytotoxic effect.

  19. Relation of overexpression of S phase kinase-associated protein 2 with reduced expression of p27 and PTEN in human gastric carcinoma

    Institute of Scientific and Technical Information of China (English)

    Xiu-Mei Ma; Ying Liu; Jian-Wen Guo; Jiang-Hui Liu; Lian-Fu Zuo

    2005-01-01

    AIM: To investigate the significance of S phase kinaseassociated protein 2 (Skp2) expression in human gastric carcinoma and the relation between expressions of Skp2,p27 and PTEN.METHODS: Immunohistochemical analysis was performed on 138 gastric carcinoma specimens, their paired adjacent mucosa specimens, 102 paired lymphatic metastatic carcinoma tissue specimens, 30 dysplasia specimens, 30 intestinal metaplasia specimens, 10chronic superficial gastritis specimens and 5 normal gastric mucosa specimens for Skp2 expression and on 138 gastric carcinoma specimens for p27 and PTEN expression.RESULTS: Skp2 labeling frequency was significantly higher in intestinal metaplasia (12.68±0.86) and adjacent mucosa (19.32±1.22) than in normal gastric mucosa (0.53±0.13) and chronic superficial gastritis (0.47±0.19) (P = 0.000); in dysplasia (16.74±0.82) than in intestinal metaplasia (P = 0.000); in gastric primary carcinoma (31.34±2.17) than in dysplasia and adjacent mucosa (P = 0.000); in metastasis gastric carcinoma in lymph nodes (39.76±2.00) than in primary gastric carcinoma (P = 0.037), respectively. Skp2 labeling frequency was positively associated with differentiation degree (rho = 0.315, P = 0.000), vessel invasion (rho = 0.303, P = 0.000) and lymph node metastasis (rho = 0.254, P = 0.000) of gastric cancer. Expression of Skp2 was negatively associated with p27(rho = -0.451, P = 0.000) and PTEN (rho = -0.480,P = 0.000) expression in gastric carcinoma. p27 expression was positively associated with PTEN expression in gastric carcinoma (rho = 0.642, P = 0.000).CONCLUSION: Skp2 overexpression may be involved in carcinogenesis and progression of human gastric carcinoma in vivo, possibly via p27 proteolysis. PTEN may regulate the expression of p27 by negatively regulating Skp2 expression.

  20. Cytotoxic activities of amentoflavone against human breast and cervical cancers are mediated by increasing of PTEN expression levels due to peroxisomes proliferate-activated receptor {gamma} activation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eunjung; Shin, Soyoung; Lee, Jeeyoung; Lee, So Jung; Kim, Jinkyoung; Yoon, Doyoung; Kim, Yangmee [Konkuk Univ., Seoul (Korea, Republic of); Woo, Eunrhan [Chosun Univ., Gwangju (Korea, Republic of)

    2012-07-15

    Human peroxisomes proliferate-activated receptor gamma (hPPAR{gamma}) has been implicated in numerous pathologies, including obesity, diabetes, and cancer. Previously, we verified that amentoflavone is an activator of hPPAR{gamma} and probed the molecular basis of its action. In this study, we investigated the mechanism of action of amentoflavone in cancer cells and demonstrated that amentoflavone showed strong cytotoxicity against MCF-7 and HeLa cancer cell lines. We showed that hPPAR{gamma} expression in MCF-7 and HeLa cells is specifically stimulated by amentoflavone, and suggested that amentoflavone-induced cytotoxic activities are mediated by activation of hPPAR{gamma} in these two cancer cell lines. Moreover, amentoflavone increased PTEN levels in these two cancer cell lines, indicating that the cytotoxic activities of amentoflavone are mediated by increasing of PTEN expression levels due to hPPAR{gamma} activation.

  1. PTEN Deficiency Contributes to the Development and Progression of Head and Neck Cancer

    Directory of Open Access Journals (Sweden)

    Cristiane H Squarize

    2013-05-01

    Full Text Available The sequencing of the head and neck cancer has provided a blueprint of the most frequent genetic alterations in this cancer type. They include inactivating mutations in Notch, p53, and p16ink4a tumor suppressor genes, in addition to nonoverlapping activating mutations of the PIK3CA and RAS oncogenes or inactivation of the tumor suppressor gene PTEN. Notably, these genetic alterations, along with epigenetic changes, result in increased activity of phosphoinositide 3-kinase (PI3K/AKT/mammalian target of rapamycin (mTOR pathway, which is present in most head and neck squamous cell carcinomas (HNSCCs. Moreover, we show here that approximately 30% of HNSCCs exhibit reduced PTEN expression. We challenged the biologic relevance of this finding by combining the intraoral administration of a tobacco surrogate, 4-nitroquinoline 1-oxide, with a genetically defined animal model displaying reduced PTEN expression, achieved by the conditional deletion of Pten using the keratin promoter 14 CRE-lox system. This provided a specific genetic and environmentally defined animal model for HNSCC that resulted in the rapid development of oral-specific carcinomas. Under these experimental conditions, control mice did not develop HNSCC lesions. In contrast, most mice harboring Pten deficiency developed multiple SCC lesions in the lateral border and ventral part of the tongue and floor of the mouth, which are the preferred anatomic sites for human HNSCC. Overall, our study highlights the likely clinical relevance of reduced PTEN expression and/or inactivation in HNSCC progression, while the combined Pten deletion with exposure to tobacco carcinogens or their surrogates may provide a unique experimental model system to study novel molecular targeted treatments for HNSCC patients.

  2. Effects of mir-21 on Cardiac Microvascular Endothelial Cells After Acute Myocardial Infarction in Rats: Role of Phosphatase and Tensin Homolog (PTEN)/Vascular Endothelial Growth Factor (VEGF) Signal Pathway

    Science.gov (United States)

    Yang, Feng; Liu, Wenwei; Yan, Xiaojuan; Zhou, Hanyun; Zhang, Hongshen; Liu, Jianfei; Yu, Ming; Zhu, Xiaoshan; Ma, Kezhong

    2016-01-01

    Background This study investigated how miR-21 expression is reflected in acute myocardial infarction and explored the role of miR-21 and the PTEN/VEGF signaling pathway in cardiac microvascular endothelial cells. Material/Methods We used an in vivo LAD rat model to simulate acute myocardial infarction. MiR-21 mimics and miR-21 inhibitors were injected and transfected into model rats in order to alter miR-21 expression. Cardiac functions were evaluated using echocardiographic measurement, ELISA, and Masson staining. In addition, lenti-PTEN and VEGF siRNA were transfected into CMEC cells using standard procedures for assessing the effect of PTEN and VEGE on cell proliferation, apoptosis, and angiogenesis. MiR-21, PTEN, and VEGF expressions were examined by RT-PCR and Western blot. The relationship between miR-21 and PTEN was determined by the luciferase activity assay. Results We demonstrated that miR-21 bonded with the 3′-UTR of PTEN and suppressed PTEN expressions. Established models significantly induced cardiac infarct volume and endothelial injury marker expressions as well as miR-21 and PTEN expressions (PMiR-21 mimics exhibited significantly protective effects since they down-regulated both infarction size and injury marker expressions by increasing VEGF expression and inhibiting PTEN expression (PmiR-21 on cell proliferation, apoptosis, and angiogenesis (PMiR-21 exerts protective effects on endothelial injury through the PTEN/VEGF pathway after acute myocardial infarction. PMID:27708252

  3. A novel PTEN gene promoter mutation and untypical Cowden syndrome

    Institute of Scientific and Technical Information of China (English)

    Chen Liu; Guangbing Li; Rongrong Chen; Xiaobo Yang; Xue Zhao; Haitao Zhao

    2013-01-01

    Cowden syndrome (CS),an autosomal dominant disorder,is one of a spectrum of clinical disorders that have been linked to germline mutations in the phosphatase and tensin homolog (PTEN) gene.Although 70-80% of patients with CS have an identifiable germline PTEN mutation,the clinical diagnosis presents many challenges because of the phenotypic and genotypic variations.In the present study,we sequenced the exons and the promoter of PTEN gene,mutations and variations in the promoter and exons were identified,and a PTEN protein expression negative region was determined by immunohistochemistry (IHC).In conclusion,a novel promoter mutation we found in PTEN gene may turn off PTEN protein expression occasionally,leading to the disorder of PTEN and untypical CS manifestations.

  4. Phosphorylation of PTEN at STT motif is associated with DNA damage response

    Energy Technology Data Exchange (ETDEWEB)

    Misra, Sandip; Mukherjee, Ananda; Karmakar, Parimal, E-mail: pkarmakar_28@yahoo.co.in

    2014-12-15

    Highlights: • Phosphorylation PTEN at the C-terminal STT motif is necessary for DNA repair. • DNA damage induces phosphorylation of STT motif of PTEN. • Phospho-PTEN translocates to nucleus after DNA damage. • Phospho-PTEN forms nuclear foci after DNA damage which co localized with γH2AX. - Abstract: Phosphatase and tensin homolog deleted on chromosome Ten (PTEN), a tumor suppressor protein participates in multiple cellular activities including DNA repair. In this work we found a relationship between phosphorylation of carboxy (C)-terminal STT motif of PTEN and DNA damage response. Ectopic expression of C-terminal phospho-mutants of PTEN, in PTEN deficient human glioblastoma cells, U87MG, resulted in reduced viability and DNA repair after etoposide induced DNA damage compared to cells expressing wild type PTEN. Also, after etoposide treatment phosphorylation of PTEN increased at C-terminal serine 380 and threonine 382/383 residues in PTEN positive HEK293T cells and wild type PTEN transfected U87MG cells. One-step further, DNA damage induced phosphorylation of PTEN was confirmed by immunoprecipitation of total PTEN from cellular extract followed by immunobloting with phospho-specific PTEN antibodies. Additionally, phospho-PTEN translocated to nucleus after etoposide treatment as revealed by indirect immunolabeling. Further, phosphorylation dependent nuclear foci formation of PTEN was observed after ionizing radiation or etoposide treatment which colocalized with γH2AX. Additionally, etoposide induced γH2AX, Mre11 and Ku70 foci persisted for a longer period of times in U87MG cells after ectopic expression of PTEN C-terminal phospho-mutant constructs compared to wild type PTEN expressing cells. Thus, our findings strongly suggest that DNA damage induced phosphorylation of C-terminal STT motif of PTEN is necessary for DNA repair.

  5. Expression and clinical significance of MN1 and PTEN gene in patients with acute myeloid leukemia%MH1和PTEN基因在急性髓系白血病中的表达及临床意义

    Institute of Scientific and Technical Information of China (English)

    Xueshen Yan; Fanjun Meng; Hongguo Zhao; Jie Yang

    2011-01-01

    Objective: The aim of our study was to explore the correlations between both the genes, evolution and prognosis of the disease by detecting the expression of MN1 (meningioma 1) gene and PTEN (phosphatase and tensin homolog) gene in patients with acute myeloid leukemia (AML). Method: MN1 and PTEN mRNA were detected by reverse transcription-PCR in mononuclear cells of 38 patients with AML and 13 patients with normal bone marrow. Results: Positive rates of MN1 and PTEN genes were 76.3% and 60.5% respectively in bone marrow mononuclear cells. The expression level of MN1 mRNA for the de novo group increased comparing with that for normal control group (P < 0.05), the expression level of PTEN mRNA for de novo group decreased obviously comparing with that for normal control group (P < 0.01), MN1 mRNA level decreased in remission group, while PTEN mRNA level increased comparing with that in de novo group (P < 0.05). MN1 mRNA level increased and PTEN mRNA decreased in relapsed group comparing with that in control group, and their difference was statistical significance (P < 0.05). The two genes' levels had negative correlations in acute myeloid leukemia (r = –0.314, P < 0.05). Conclusion: There is close correlations between expression of MN1 and PTEN genes and the prognosis and occurrence of acute myeloid leukemia, and their expression can be taken as significant indexes to access the de novo, relapse and prognosis of acute myeloid leukemia.

  6. PTEN和 Syk在人大肠癌组织中的表达%Expressions of PTEN and Syk in human colorectal cancer tissues

    Institute of Scientific and Technical Information of China (English)

    董华承; 张冬梅

    2014-01-01

    Objective:To evaluate expression levels of PTEN and Syk in human colorectal cancer tissues and their relationships with the occurrence, development, metastasis, and prognosis of colorectal cancer. Methods:The expression levels of PTEN and Syk proteins in 60 cases with colorectal cancer and 30 health people were determined by the immunohistochemical SP method. Their corre-lations with clinic pathologic features were analyzed. Results:The positive rates of PTEN and Syk expression were 90% and 96. 67%in normal tissue, and 36. 67% and 31. 67% in the colorectal cancer tissues, respectively. The expression rates of the two types of pro-teins were significantly different between the two groups (P0. 01), but were significantly related with the dif-ferentiation degree of the cancer tissue, depth of invasion, lymph node metastasis, and Duke's staging(P0.01),但与大肠癌的浸润程度、淋巴结转移、肿瘤分化程度及临床分期负相关(P<0.01)。人大肠癌中PTEN和Syk的阳性表达呈正相关(r=0.634,P<0.01)。结论:PTEN和Syk在人大肠癌组织中的表达与其发生、发展及浸润转移有密切关系,联合检测可作为判断人结直肠癌生物学行为的重要指标。

  7. Effects of meloxicam on proliferation,migration and expression of PTEN of human colorectal cancer cells%美洛昔康对人结肠癌细胞增殖、迁移和 PTEN 基因表达的影响

    Institute of Scientific and Technical Information of China (English)

    周密; 邱峰; 张渊; 王家玉; 秧茂盛

    2015-01-01

    目的:研究美洛昔康(meloxicam,Mel)对人结直肠癌LoVo 细胞增殖和迁移能力的抑制作用及其对抑癌基因PTEN 表达水平的影响。方法以人结肠癌细胞株 LoVo 为试验对象,通过集落形成试验分析 Mel 对 LoVo 细胞增殖的影响,Western blot 检测 Mel 对 PCNA 蛋白和 PTEN 蛋白表达水平的影响;细胞迁移试验分析 Mel 对 LoVo 细胞活性的影响;RT-PCR 检测 Mel 对 LoVo 细胞中 PTEN mRNA 表达水平的影响;使用重组腺病毒作为干预手段,Annexin-V 试验验证Mel 是否通过 PTEN 发挥抑癌作用。结果与对照组相比, Mel 能明显抑制 LoVo 细胞的集落形成能力,能抑制 LoVo 细胞的细胞核增殖抗原 PCNA 的蛋白表达水平,80μmol·L -1 Mel 干预48 h,可将 LoVo 细胞中 PCNA 的蛋白表达水平抑制到61.57%±2.81%(T =7.086,P =0.019);Mel 能上调LoVo 细胞内抑癌基因 PTEN 的 mRNA 表达水平,80μmol· L -1 Mel 干预48 h 后 PTEN 的 mRNA 表达水平上调至160.43%±4.71%(T =24.244,P =0.002);Mel 能上调 LoVo细胞内 PTEN 的蛋白表达水平,80μmol·L -1 Mel 干预48 h后 PTEN 的蛋白表达水平上调至152.63%±3.33%(T =27.359,P =0.001);Annexin-V 试验结果说明 Mel 的对 LoVo细胞的抑制作用可能与上调 PTEN 基因表达有关。结论Mel 能抑制LoVo 细胞的增殖和迁移,其机制可能与上调PTEN 的表达水平有关。%Aim To investigate the effects of meloxi-cam on the proliferation,migration and expression of PTEN of human colorectal cancer LoVo cells.Meth-ods The colony formation test was used to detect the effect of meloxicam on the proliferation of LoVo cells. The cell migration assay was applied to analyze the effect of meloxicam on LoVo cells activity.The RT-PCR assay was used to detect the effect of meloxicam on the mRNA expression of PCNA and PTEN gene. The western blot assay was applied to analyze the effects of

  8. PTEN and PI-3 kinase inhibitors control LPS signaling and the lymphoproliferative response in the CD19+ B cell compartment

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Alok R. [UCSD Department of Pediatrics, Moores UCSD Cancer Center, University of California School of Medicine, San Diego, CA 92093 (United States); Peirce, Susan K. [Department of Pediatrics, Emory University School of Medicine, Atlanta, GA (United States); Joshi, Shweta [UCSD Department of Pediatrics, Moores UCSD Cancer Center, University of California School of Medicine, San Diego, CA 92093 (United States); Durden, Donald L., E-mail: ddurden@ucsd.edu [UCSD Department of Pediatrics, Moores UCSD Cancer Center, University of California School of Medicine, San Diego, CA 92093 (United States); Division of Pediatric Hematology-Oncology, UCSD Rady Children' s Hospital, La Jolla, CA (United States)

    2014-09-10

    Pattern recognition receptors (PRRs), e.g. toll receptors (TLRs) that bind ligands within the microbiome have been implicated in the pathogenesis of cancer. LPS is a ligand for two TLR family members, TLR4 and RP105 which mediate LPS signaling in B cell proliferation and migration. Although LPS/TLR/RP105 signaling is well-studied; our understanding of the underlying molecular mechanisms controlling these PRR signaling pathways remains incomplete. Previous studies have demonstrated a role for PTEN/PI-3K signaling in B cell selection and survival, however a role for PTEN/PI-3K in TLR4/RP105/LPS signaling in the B cell compartment has not been reported. Herein, we crossed a CD19cre and PTEN{sup fl/fl} mouse to generate a conditional PTEN knockout mouse in the CD19+ B cell compartment. These mice were further crossed with an IL-14α transgenic mouse to study the combined effect of PTEN deletion, PI-3K inhibition and expression of IL-14α (a cytokine originally identified as a B cell growth factor) in CD19+ B cell lymphoproliferation and response to LPS stimulation. Targeted deletion of PTEN and directed expression of IL-14α in the CD19+ B cell compartment (IL-14+PTEN-/-) lead to marked splenomegaly and altered spleen morphology at baseline due to expansion of marginal zone B cells, a phenotype that was exaggerated by treatment with the B cell mitogen and TLR4/RP105 ligand, LPS. Moreover, LPS stimulation of CD19+ cells isolated from these mice display increased proliferation, augmented AKT and NFκB activation as well as increased expression of c-myc and cyclinD1. Interestingly, treatment of LPS treated IL-14+PTEN-/- mice with a pan PI-3K inhibitor, SF1126, reduced splenomegaly, cell proliferation, c-myc and cyclin D1 expression in the CD19+ B cell compartment and normalized the splenic histopathologic architecture. These findings provide the direct evidence that PTEN and PI-3K inhibitors control TLR4/RP105/LPS signaling in the CD19+ B cell compartment and that pan PI

  9. PPAR, PTEN, and the Fight against Cancer

    Directory of Open Access Journals (Sweden)

    Rosemary E. Teresi

    2008-01-01

    Full Text Available Peroxisome proliferator-activated receptor gamma (PPAR is a ligand-activated transcription factor, which belongs to the family of nuclear hormone receptors. Recent in vitro studies have shown that PPAR can regulate the transcription of phosphatase and tensin homolog on chromosome ten (PTEN, a known tumor suppressor. PTEN is a susceptibility gene for a number of disorders, including breast and thyroid cancer. Activation of PPAR through agonists increases functional PTEN protein levels that subsequently induces apoptosis and inhibits cellular growth, which suggests that PPAR may be a tumor suppressor. Indeed, several in vivo studies have demonstrated that genetic alterations of PPAR can promote tumor progression. These results are supported by observations of the beneficial effects of PPAR agonists in the in vivo cancer setting. These studies signify the importance of PPAR and PTEN's interaction in cancer prevention.

  10. Expression and mutation sites analysis of PTEN gene in esophageal squa-mous cell carcinoma cells%食管鳞癌细胞中 PTEN基因表达水平及突变位点分析

    Institute of Scientific and Technical Information of China (English)

    侯桂琴; 贝维娟; 杨帅; 王琼叶; 鲁照明

    2013-01-01

    Aim:To study the expression level and mutation of PTEN gene in esophageal squamous cell carcinoma (ESCC) cells.Methods:The expression of PTEN mRNA in three ESCC cell lines (EC9706,EC1 of low differentiation and Eca109 of high differentiation ) was detected by RT-PCR.The full length of PTEN gene in the cell lines mentioned above was cloned , and then the sequences of PTEN gene were blasted with the sequence of wide type PTEN gene on GenBank to analyze the mutation sites.Results: The expression levels of PTEN in EC1, EC9706 and Eca109 cells were(0.06 ± 0.02),(0.24 ±0.02) and (0.41 ±0.01), and there were significant difference among the three cell lines (F=306.330, P <0.001).That was higher in Eca109 cells with well differentiation degree than those in EC 9706 and EC1 cells with low differentiation degree(P<0.05).The mutations of PTEN gene in the three ESCC cell lines were found and the mutation sites mainly focused on exon 5 and 8.Conclusion: The expression level of PTEN has correlation with the differentiation degree and there are mutations of PTEN gene in ESCC .%目的:探讨PTEN基因在食管鳞癌细胞中的表达水平及突变情况。方法:采用RT-PCR技术检测高分化的Eca109、低分化的EC 9706和EC1食管鳞癌细胞株细胞中PTEN mRNA的表达水平,并克隆PTEN基因全长,与野生型PTEN基因序列比对,分析突变情况。结果:EC1、EC9706、Eca109细胞株中PTEN mRNA的表达水平分别为(0.06±0.02)、(0.24±0.02)、(0.41±0.01),3株细胞中PTEN mRNA 的表达水平差异有统计学意义(F =306.330,P<0.001),Eca109细胞中PTEN mRNA的表达水平高于 EC9706和 EC1细胞(P<0.05)。3株细胞中PTEN基因均存在不同程度突变,突变主要集中在外显子5和8。结论:食管鳞癌细胞中PTEN表达水平与细胞的分化程度有关,PTEN基因突变与食管鳞癌的发生发展有关。

  11. PTEN loss and chromosome 8 alterations in Gleason grade 3 prostate cancer cores predicts the presence of un-sampled grade 4 tumor: implications for active surveillance.

    Science.gov (United States)

    Trock, Bruce J; Fedor, Helen; Gurel, Bora; Jenkins, Robert B; Knudsen, B S; Fine, Samson W; Said, Jonathan W; Carter, H Ballentine; Lotan, Tamara L; De Marzo, Angelo M

    2016-07-01

    Men who enter active surveillance because their biopsy exhibits only Gleason grade 3 (G3) frequently have higher grade tumor missed by biopsy. Thus, biomarkers are needed that, when measured on G3 tissue, can predict the presence of higher grade tumor in the whole prostate. We evaluated whether PTEN loss, chromosome 8q gain (MYC) and/or 8p loss (LPL) measured only on G3 cores is associated with un-sampled G4 tumor. A tissue microarray was constructed of prostatectomy tissue from patients whose prostates exhibited only Gleason score 3+3, only 3+4 or only 4+3 tumor (n=50 per group). Cores sampled only from areas of G3 were evaluated for PTEN loss by immunohistochemistry, and PTEN deletion, LPL/8p loss and MYC/8q gain by fluorescence in situ hybridization. Biomarker results were compared between Gleason score 6 vs 7 tumors using conditional logistic regression. PTEN protein loss, odds ratio=4.99, P=0.033; MYC/8q gain, odds ratio=5.36, P=0.010; and LPL/8p loss, odds ratio=3.96, P=0.003 were significantly more common in G3 cores derived from Gleason 7 vs Gleason 6 tumors. PTEN gene deletion was not statistically significant. Associations were stronger comparing Gleason 4+3 vs 6 than for Gleason 3+4 vs 6. MYC/8q gain, LPL/8p loss and PTEN protein loss measured in G3 tissue microarray cores strongly differentiate whether the core comes from a Gleason 6 or Gleason 7 tumor. If validated to predict upgrading from G3 biopsy to prostatectomy these biomarkers could reduce the likelihood of enrolling high-risk men and facilitate safe patient selection for active surveillance.

  12. DNMT1-mediated PTEN hypermethylation confers hepatic stellate cell activation and liver fibrogenesis in rats

    Energy Technology Data Exchange (ETDEWEB)

    Bian, Er-Bao; Huang, Cheng; Ma, Tao-Tao; Tao, Hui; Zhang, Hui; Cheng, Chang; Lv, Xiong-Wen; Li, Jun, E-mail: hunkahmu@126.com

    2012-10-01

    Hepatic stellate cell (HSC) activation is an essential event during liver fibrogenesis. Phosphatase and tension homolog deleted on chromosome 10 (PTEN), a tumor suppressor, is a negative regulator of this process. PTEN promoter hypermethylation is a major epigenetic silencing mechanism in tumors. The present study aimed to investigate whether PTEN promoter methylation was involved in HSC activation and liver fibrosis. Treatment of activated HSCs with the DNA methylation inhibitor 5-aza-2′-deoxycytidine (5-azadC) decreased aberrant hypermethylation of the PTEN gene promoter and prevented the loss of PTEN expression that occurred during HSC activation. Silencing DNA methyltransferase 1 (DNMT1) gene also decreased the PTEN gene promoter methylation and upregulated the PTEN gene expression in activated HSC-T6 cells. In addition, knockdown of DNMT1 inhibited the activation of both ERK and AKT pathways in HSC-T6 cells. These results suggest that DNMT1-mediated PTEN hypermethylation caused the loss of PTEN expression, followed by the activation of the PI3K/AKT and ERK pathways, resulting in HSC activation. Highlights: ► PTEN methylation status and loss of PTEN expression ► DNMT1 mediated PTEN hypermethylation. ► Hypermethylation of PTEN contributes to the activation of ERK and AKT pathways.

  13. PTEN and PI-3 kinase inhibitors control LPS signaling and the lymphoproliferative response in the CD19+ B cell compartment

    International Nuclear Information System (INIS)

    Pattern recognition receptors (PRRs), e.g. toll receptors (TLRs) that bind ligands within the microbiome have been implicated in the pathogenesis of cancer. LPS is a ligand for two TLR family members, TLR4 and RP105 which mediate LPS signaling in B cell proliferation and migration. Although LPS/TLR/RP105 signaling is well-studied; our understanding of the underlying molecular mechanisms controlling these PRR signaling pathways remains incomplete. Previous studies have demonstrated a role for PTEN/PI-3K signaling in B cell selection and survival, however a role for PTEN/PI-3K in TLR4/RP105/LPS signaling in the B cell compartment has not been reported. Herein, we crossed a CD19cre and PTENfl/fl mouse to generate a conditional PTEN knockout mouse in the CD19+ B cell compartment. These mice were further crossed with an IL-14α transgenic mouse to study the combined effect of PTEN deletion, PI-3K inhibition and expression of IL-14α (a cytokine originally identified as a B cell growth factor) in CD19+ B cell lymphoproliferation and response to LPS stimulation. Targeted deletion of PTEN and directed expression of IL-14α in the CD19+ B cell compartment (IL-14+PTEN-/-) lead to marked splenomegaly and altered spleen morphology at baseline due to expansion of marginal zone B cells, a phenotype that was exaggerated by treatment with the B cell mitogen and TLR4/RP105 ligand, LPS. Moreover, LPS stimulation of CD19+ cells isolated from these mice display increased proliferation, augmented AKT and NFκB activation as well as increased expression of c-myc and cyclinD1. Interestingly, treatment of LPS treated IL-14+PTEN-/- mice with a pan PI-3K inhibitor, SF1126, reduced splenomegaly, cell proliferation, c-myc and cyclin D1 expression in the CD19+ B cell compartment and normalized the splenic histopathologic architecture. These findings provide the direct evidence that PTEN and PI-3K inhibitors control TLR4/RP105/LPS signaling in the CD19+ B cell compartment and that pan PI-3

  14. Pten Regulates Epithelial Cytodifferentiation during Prostate Development.

    Directory of Open Access Journals (Sweden)

    Isabel B Lokody

    Full Text Available Gene expression and functional studies have indicated that the molecular programmes involved in prostate development are also active in prostate cancer. PTEN has been implicated in human prostate cancer and is frequently mutated in this disease. Here, using the Nkx3.1:Cre mouse strain and a genetic deletion approach, we investigate the role of Pten specifically in the developing mouse prostate epithelia. In contrast to its role in other developing organs, this gene is dispensable for the initial developmental processes such as budding and branching. However, as cytodifferentiation progresses, abnormal luminal cells fill the ductal lumens together with augmented epithelial proliferation. This phenotype resembles the hyperplasia seen in postnatal Pten deletion models that develop neoplasia at later stages. Consistent with this, gene expression analysis showed a number of genes affected that are shared with Pten mutant prostate cancer models, including a decrease in androgen receptor regulated genes. In depth analysis of the phenotype of these mice during development revealed that loss of Pten leads to the precocious differentiation of epithelial cells towards a luminal cell fate. This study provides novel insight into the role of Pten in prostate development as part of the process of coordinating the differentiation and proliferation of cell types in time and space to form a functional organ.

  15. Impact of KRAS, BRAF, PIK3CA mutations, PTEN, AREG, EREG expression and skin rash in ≥ 2 line cetuximab-based therapy of colorectal cancer patients.

    Directory of Open Access Journals (Sweden)

    Zacharenia Saridaki

    Full Text Available BACKGROUND: To investigate the predictive significance of KRAS, BRAF, PIK3CA mutational status, AREG- EREG mRNA expression, PTEN protein expression and skin rash in metastatic colorectal cancer (mCRC patients treated with cetuximab containing salvage chemotherapy. METHODS: Primary tumors from 112 mCRC patients were analyzed. The worst skin toxicity during treatment was recorded. RESULTS: KRAS, BRAF and PIK3CA mutations were present in 37 (33%, 8 (7.2% and 11 (9.8% cases, respectively, PTEN was lost in 21 (19.8% cases, AREG and EREG were overexpressed in 48 (45% and 51 (49% cases. In the whole study population, time to tumor progression (TTP and overall survival (OS was significantly lower in patients with KRAS (p = 0.001 and p = 0.026, respectively or BRAF (p = 0.001 and p<0.0001, respectively mutant tumors, downregulation of AREG (p = 0.018 and p = 0.013, respectively or EREG (p = 0.002 and p = 0.004, respectively and grade 0-1 skin rash (p<0.0001 and p<0.0001, respectively. In KRAS wt patients TTP and OS was significantly lower in patients with BRAF (p = 0.0001 and p<0.0001, respectively mutant tumors, downregulation of AREG (p = 0.021 and p = 0.004, respectively or EREG (p = 0.0001 and p<0.0001, respectively and grade 0-1 skin rash (p<0.0001 and p<0.0001, respectively. TTP was significantly lower in patients with PIK3CA mutations (p = 0.01 or lost PTEN (p = 0.002. Multivariate analysis revealed KRAS (Hazard Ratio [HR] 4.3, p<0.0001, BRAF mutation (HR: 5.1, p<0.0001, EREG low expression (HR: 1.6, p = 0.021 and absence of severe/moderate skin rash (HR: 4.0, p<0.0001 as independent prognostic factors for decreased TTP. Similarly, KRAS (HR 2.9, p = 0.01, BRAF mutation (HR: 3.0, p = 0.001, EREG low expression (HR: 1.7, p = 0.021, absence of severe/moderate skin rash (HR: 3.7, p<0.0001 and the presence of undifferantited tumours (HR: 2.2, p = 0.001 were revealed as independent prognostic factors for decreased OS. CONCLUSIONS: These results

  16. C-Myc negatively controls the tumor suppressor PTEN by upregulating miR-26a in glioblastoma multiforme cells

    International Nuclear Information System (INIS)

    Highlights: •The c-Myc oncogene directly upregulates miR-26a expression in GBM cells. •ChIP assays demonstrate that c-Myc interacts with the miR-26a promoter. •Luciferase reporter assays show that PTEN is a specific target of miR-26a. •C-Myc–miR-26a suppression of PTEN may regulate the PTEN/AKT pathway. •Overexpression of c-Myc enhances the proliferative capacity of GBM cells. -- Abstract: The c-Myc oncogene is amplified in many tumor types. It is an important regulator of cell proliferation and has been linked to altered miRNA expression, suggesting that c-Myc-regulated miRNAs might contribute to tumor progression. Although miR-26a has been reported to be upregulated in glioblastoma multiforme (GBM), the mechanism has not been established. We have shown that ectopic expression of miR-26a influenced cell proliferation by targeting PTEN, a tumor suppressor gene that is inactivated in many common malignancies, including GBM. Our findings suggest that c-Myc modulates genes associated with oncogenesis in GBM through deregulation of miRNAs via the c-Myc–miR-26a–PTEN signaling pathway. This may be of clinical relevance

  17. C-Myc negatively controls the tumor suppressor PTEN by upregulating miR-26a in glioblastoma multiforme cells

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Pin; Nie, Quanmin; Lan, Jin; Ge, Jianwei [Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127 (China); Qiu, Yongming, E-mail: qiuzhoub@hotmail.com [Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127 (China); Shanghai Institute of Head Trauma, Shanghai 200127 (China); Mao, Qing, E-mail: maoq@netease.com [Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127 (China); Shanghai Institute of Head Trauma, Shanghai 200127 (China)

    2013-11-08

    Highlights: •The c-Myc oncogene directly upregulates miR-26a expression in GBM cells. •ChIP assays demonstrate that c-Myc interacts with the miR-26a promoter. •Luciferase reporter assays show that PTEN is a specific target of miR-26a. •C-Myc–miR-26a suppression of PTEN may regulate the PTEN/AKT pathway. •Overexpression of c-Myc enhances the proliferative capacity of GBM cells. -- Abstract: The c-Myc oncogene is amplified in many tumor types. It is an important regulator of cell proliferation and has been linked to altered miRNA expression, suggesting that c-Myc-regulated miRNAs might contribute to tumor progression. Although miR-26a has been reported to be upregulated in glioblastoma multiforme (GBM), the mechanism has not been established. We have shown that ectopic expression of miR-26a influenced cell proliferation by targeting PTEN, a tumor suppressor gene that is inactivated in many common malignancies, including GBM. Our findings suggest that c-Myc modulates genes associated with oncogenesis in GBM through deregulation of miRNAs via the c-Myc–miR-26a–PTEN signaling pathway. This may be of clinical relevance.

  18. C-Reactive Protein Inhibits Survivin Expression via Akt/mTOR Pathway Downregulation by PTEN Expression in Cardiac Myocytes

    OpenAIRE

    Beom Seob Lee; Soo Hyuk Kim; Jaewon Oh; Taewon Jin; Eun Young Choi; Sungha Park; Sang-Hak Lee; Ji Hyung Chung; Seok-Min Kang

    2014-01-01

    C-reactive protein (CRP) is one of the most important biomarkers for arteriosclerosis and cardiovascular disease. Recent studies have shown that CRP affects cell cycle and inflammatory process in cardiac myocytes. Survivin is also involved in cardiac myocytes replication and apoptosis. Reduction of survivin expression is associated with less favorable cardiac remodeling in animal models. However, the effect of CRP on survivin expression and its cellular mechanism has not yet been studied. We ...

  19. Deficiency of Pten accelerates mammary oncogenesis in MMTV-Wnt-1 transgenic mice

    Directory of Open Access Journals (Sweden)

    Crane Allison

    2001-01-01

    Full Text Available Abstract Background Germline mutations in the tumor suppressor PTEN predispose human beings to breast cancer, and genetic and epigenetic alterations of PTEN are also detected in sporadic human breast cancer. Germline Pten mutations in mice lead to the development of a variety of tumors, but mammary carcinomas are infrequently found, especially in mice under the age of six months. Results To better understand the role of PTEN in breast tumor development, we have crossed Pten heterozygous mice to MMTV-Wnt-1 transgenic mice that routinely develop ductal carcinomas in the mammary gland. Female Wnt-1 transgenics heterozygous for Pten developed mammary tumors earlier than Wnt-1 transgenics that were wild type for Pten. In most tumors arising in Pten heterozygotes, the Pten wild-type allele was lost, suggesting that cells lacking Pten function have a growth advantage over cells retaining a wild type allele. Tumors with LOH contained high levels of activated AKT/PKB, a downstream target of the PTEN/PI3K pathway. Conclusions An animal model has been developed in which the absence of Pten collaborates with Wnt-1 to induce ductal carcinoma in the mammary gland. This animal model may be useful for testing therapies specific for tumors deregulated in the PTEN/PI3K/AKT pathway.

  20. Fine-Tuning of Pten Localization and Phosphatase Activity Is Essential for Zebrafish Angiogenesis

    Science.gov (United States)

    Stumpf, Miriam; Blokzijl-Franke, Sasja; den Hertog, Jeroen

    2016-01-01

    The lipid- and protein phosphatase PTEN is an essential tumor suppressor that is highly conserved among all higher eukaryotes. As an antagonist of the PI3K/Akt cell survival and proliferation pathway, it exerts its most prominent function at the cell membrane, but (PIP3-independent) functions of nuclear PTEN have been discovered as well. PTEN subcellular localization is tightly controlled by its protein conformation. In the closed conformation, PTEN localizes predominantly to the cytoplasm. Opening up of the conformation of PTEN exposes N-terminal and C-terminal regions of the protein that are required for both interaction with the cell membrane and translocation to the nucleus. Lack of Pten leads to hyperbranching of the intersegmental vessels during zebrafish embryogenesis, which is rescued by expression of exogenous Pten. Here, we observed that expression of mutant PTEN with an open conformation rescued the hyperbranching phenotype in pten double homozygous embryos and suppressed the increased p-Akt levels that are characteristic for embryos lacking Pten. In addition, in pten mutant and wild type embryos alike, open conformation PTEN induced stalled intersegmental vessels, which fail to connect with the dorsal longitudinal anastomotic vessel. Functional hyperactivity of open conformation PTEN in comparison to wild type PTEN seems to result predominantly from its enhanced recruitment to the cell membrane. Enhanced recruitment of phosphatase inactive mutants to the membrane did not induce the stalled vessel phenotype nor did it rescue the hyperbranching phenotype in pten double homozygous embryos, indicating that PTEN phosphatase activity is indispensable for its regulatory function during angiogenesis. Taken together, our data suggest that PTEN phosphatase activity needs to be carefully fine-tuned for normal embryogenesis and that the control of its subcellular localization is a key mechanism in this process. PMID:27138341

  1. Shadows alter facial expressions of Noh masks.

    Directory of Open Access Journals (Sweden)

    Nobuyuki Kawai

    Full Text Available BACKGROUND: A Noh mask, worn by expert actors during performance on the Japanese traditional Noh drama, conveys various emotional expressions despite its fixed physical properties. How does the mask change its expressions? Shadows change subtly during the actual Noh drama, which plays a key role in creating elusive artistic enchantment. We here describe evidence from two experiments regarding how attached shadows of the Noh masks influence the observers' recognition of the emotional expressions. METHODOLOGY/PRINCIPAL FINDINGS: In Experiment 1, neutral-faced Noh masks having the attached shadows of the happy/sad masks were recognized as bearing happy/sad expressions, respectively. This was true for all four types of masks each of which represented a character differing in sex and age, even though the original characteristics of the masks also greatly influenced the evaluation of emotions. Experiment 2 further revealed that frontal Noh mask images having shadows of upward/downward tilted masks were evaluated as sad/happy, respectively. This was consistent with outcomes from preceding studies using actually tilted Noh mask images. CONCLUSIONS/SIGNIFICANCE: Results from the two experiments concur that purely manipulating attached shadows of the different types of Noh masks significantly alters the emotion recognition. These findings go in line with the mysterious facial expressions observed in Western paintings, such as the elusive qualities of Mona Lisa's smile. They also agree with the aesthetic principle of Japanese traditional art "yugen (profound grace and subtlety", which highly appreciates subtle emotional expressions in the darkness.

  2. PTEN在氯化锂-匹罗卡品癫痫模型中的表达研究%Expression of PTEN in the lithium -pilocarpine model of epilepsy

    Institute of Scientific and Technical Information of China (English)

    吕耀东; 王学峰

    2013-01-01

    目的:检测第10号染色体同源丢失性磷酸酶张力蛋白基因(phosphatase and tensin homolog deleted on chromosome ten ,PTEN)在癫痫模型大鼠中的表达情况,初步探讨其在癫痫发病中的作用。方法:成年雄性SD 大鼠腹腔注射氯化锂-匹罗卡品(lithium -pilocarpine )构建癫痫模型,分别在癫痫发作后不同时间点(1 d、3 d、7 d、14 d、30 d)提取海马组织,利用荧光定量PCR和western blot分别测定PTEN mRNA和蛋白质的表达。结果:荧光定量PCR和western blot显示,PTEN mRNA 和蛋白质在癫痫发作后1 d的表达显著降低(P<0.05),到30 d 时仍维持在较低的水平(P<0.05)。结论:PTEN在氯化锂-匹罗卡品致痫大鼠海马组织中表达的降低,提示PTEN可能参与了癫痫的发生发展过程。%Objective :To investigate the expression of phosphatase and tensin homolog deleted on chromosome ten (PTEN) in a rat model of epilepsy and its potential role in epilepsy .Methods Adult male SD rats were intraperitoneally injected with lithium -pilocarpine for the epilepsy model .And at different time points (1 d、3 d、7 d、14 d、30 d) after seizures ,the expression of PTEN at mRNA and protein was detected in the hippocampus using real -time PCR and western blot respectively .Results :The expression of PTEN at mRNA and protein was significantly decreased at 1 d (P<0 .05) ,and remained at a lower level by 30 d (P<0 .05) after pilocarpine -induced seizures .Conclusion The expression of PTEN was markedly decreased in the hippocampus in the rat lithium -pilocarpine model of epilepsy ,indicating that PTEN may be involved in epileptogenesis .

  3. Activating PTEN by COX-2 inhibitors antagonizes radiation-induced AKT activation contributing to radiosensitization

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Zhen [Central Laboratory, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081 (China); Department of Oral & Maxillofacial Surgery, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081 (China); Gan, Ye-Hua, E-mail: kqyehuagan@bjmu.edu.cn [Central Laboratory, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081 (China); Department of Oral & Maxillofacial Surgery, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081 (China)

    2015-05-01

    Radiotherapy is still one of the most effective nonsurgical treatments for many tumors. However, radioresistance remains a major impediment to radiotherapy. Although COX-2 inhibitors can induce radiosensitization, the underlying mechanism is not fully understood. In this study, we showed that COX-2 selective inhibitor celecoxib enhanced the radiation-induced inhibition of cell proliferation and apoptosis in HeLa and SACC-83 cells. Treatment with celecoxib alone dephosphorylated phosphatase and tensin homolog deleted on chromosome ten (PTEN), promoted PTEN membrane translocation or activation, and correspondingly dephosphorylated or inactivated protein kinase B (AKT). By contrast, treatment with radiation alone increased PTEN phosphorylation, inhibited PTEN membrane translocation and correspondingly activated AKT in the two cell lines. However, treatment with celecoxib or another COX-2 selective inhibitor (valdecoxib) completely blocked radiation-induced increase of PTEN phosphorylation, rescued radiation-induced decrease in PTEN membrane translocation, and correspondingly inactivated AKT. Moreover, celecoxib could also upregulate PTEN protein expression by downregulating Sp1 expression, thereby leading to the activation of PTEN transcription. Our results suggested that COX-2 inhibitors could enhance radiosensitization at least partially by activating PTEN to antagonize radiation-induced AKT activation. - Highlights: • COX-2 inhibitor, celecoxib, could enhance radiosensitization. • Radiation induced PTEN inactivation (phosphorylation) and AKT activation. • COX-2 inhibitor induced PTEN expression and activation, and inactivated AKT. • COX-2 inhibitor enhanced radiosensitization through activating PTEN.

  4. Hematopoietic Stem Cell Activity Is Regulated by Pten Phosphorylation Through a Niche-Dependent Mechanism.

    Science.gov (United States)

    Li, Jing; Zhang, Jun; Tang, Minghui; Xin, Junping; Xu, Yan; Volk, Andrew; Hao, Caiqin; Hu, Chenglong; Sun, Jiewen; Wei, Wei; Cao, Quichan; Breslin, Peter; Zhang, Jiwang

    2016-08-01

    The phosphorylated form of Pten (p-Pten) is highly expressed in >70% of acute myeloid leukemia samples. However, the role of p-Pten in normal and abnormal hematopoiesis has not been studied. We found that Pten protein levels are comparable among long-term (LT) hematopoietic stem cells (HSCs), short-term (ST) HSCs, and multipotent progenitors (MPPs); however, the levels of p-Pten are elevated during the HSC-to-MPP transition. To study whether p-Pten is involved in regulating self-renewal and differentiation in HSCs, we compared the effects of overexpression of p-Pten and nonphosphorylated Pten (non-p-Pten) on the hematopoietic reconstitutive capacity (HRC) of HSCs. We found that overexpression of non-p-Pten enhances the LT-HRC of HSCs, whereas overexpression of p-Pten promotes myeloid differentiation and compromises the LT-HRC of HSCs. Such phosphorylation-regulated Pten functioning is mediated by repressing the cell:cell contact-induced activation of Fak/p38 signaling independent of Pten's lipid phosphatase activity because both p-Pten and non-p-Pten have comparable activity in repressing PI3K/Akt signaling. Our studies suggest that, in addition to repressing PI3K/Akt/mTor signaling, non-p-Pten maintains HSCs in bone marrow niches via a cell-contact inhibitory mechanism by inhibiting Fak/p38 signaling-mediated proliferation and differentiation. In contrast, p-Pten promotes the proliferation and differentiation of HSCs by enhancing the cell contact-dependent activation of Src/Fak/p38 signaling. Stem Cells 2016;34:2130-2144. PMID:27096933

  5. A Novel PTEN/Mutant p53/c-Myc/Bcl-XL Axis Mediates Context-Dependent Oncogenic Effects of PTEN with Implications for Cancer Prognosis and Therapy

    Directory of Open Access Journals (Sweden)

    Xiaoping Huang

    2013-08-01

    Full Text Available Phosphatase and tensin homolog located on chromosome 10 (PTEN is one of the most frequently mutated tumor suppressors in human cancer including in glioblastoma. Here, we show that PTEN exerts unconventional oncogenic effects in glioblastoma through a novel PTEN/mutant p53/c-Myc/Bcl-XL molecular and functional axis. Using a wide array of molecular, genetic, and functional approaches, we demonstrate that PTEN enhances a transcriptional complex containing gain-of-function mutant p53, CBP, and NFY in human glioblastoma cells and tumor tissues. The mutant p53/CBP/NFY complex transcriptionally activates the oncogenes c-Myc and Bcl-XL, leading to increased cell proliferation, survival, invasion, and clonogenicity. Disruption of the mutant p53/c-Myc/Bcl-XL axis or mutant p53/CBP/NFY complex reverses the transcriptional and oncogenic effects of PTEN and unmasks its tumor-suppressive function. Consistent with these data, we find that PTEN expression is associated with worse patient survival than PTEN loss in tumors harboring mutant p53 and that a small molecule modulator of p53 exerts greater antitumor effects in PTEN-expressing cancer cells. Altogether, our study describes a new signaling pathway that mediates context-dependent oncogenic/tumor-suppressive role of PTEN. The data also indicate that the combined mutational status of PTEN and p53 influences cancer prognosis and anticancer therapies that target PTEN and p53.

  6. Alterated integrin expression in lichen planopilaris

    Directory of Open Access Journals (Sweden)

    Erriquez Roberta

    2007-02-01

    Full Text Available Abstract Background Lichen planopilaris (LPP is an inflammatory disease characterized by a lymphomononuclear infiltrate surrounding the isthmus and infundibulum of the hair follicle of the scalp, that evolves into atrophic/scarring alopecia. In the active phase of the disease hairs are easily plucked with anagen-like hair-roots. In this study we focused on the expression of integrins and basement membrane components of the hair follicle in active LPP lesions. Methods Scalp biopsies were taken in 10 patients with LPP and in 5 normal controls. Using monoclonal antibodies against α3β1 and α6β4 integrins we showed the expression of these integrins and of the basement membrane components of the hair follicle in active LPP lesions and in healthy scalp skin. Results In the LPP involved areas, α3β1 was distributed in a pericellular pattern, the α6 subunit was present with a basolateral distribution while the β4 subunit showed discontinuous expression at the basal pole and occasionally, basolateral staining of the hair follicle. Conclusion: An altered distribution of the integrins in active LPP lesions can explain the phenomenon of easy pulling-out of the hair with a "gelatinous" root-sheath.

  7. Clinical Significance of PTEN Expression in Patients with Gestational Diabetes Mellitus%PTEN表达对妊娠期糖尿病患者的临床意义研究

    Institute of Scientific and Technical Information of China (English)

    申舒静

    2015-01-01

    目的 探讨PTEN表达对妊娠期糖尿病患者的临床意义. 方法 选取2014年1月至2015年6月在我院就诊的妊娠期糖尿病患者60例, 根据血糖和糖化血红蛋白水平分为血糖控制良好组和血糖控制不良组, 每组各30例, 另选同期在我院正常分娩的孕妇30例作为正常组. 使用免疫组织化学的方法检测各组的胎盘组织中PTEN的表达水平并进行分析. 结果 PTEN阳性表达于胎盘血管内皮细胞, 绒毛间质细胞和合体滋养层细胞几乎无PTEN表达阳性反应; 血糖控制不良组、 血糖控制良好组、 正常组的PTEN表达依次升高, 组间两两比较, P<0.05, 差异具有统计学意义. 结论 妊娠期糖尿病存在不同程度的PTEN表达水平降低, PTEN可能在妊娠期糖尿病的病理过程中发挥作用.%Objective To explore the significance of PTEN expression in patients with gestational diabetes mellitus. Methods 60 patients who suffered from the gestational diabetes mellitus were selected and divided into good blood glucose control group and poor blood glucose control group, with 30 patients in each group. 30 normal pregnant women in our hospital at the same period were selected as normal group. The expression levels of PTEN in placenta tissues of 3 groups were detected by immunohistochemistry. Results The expression of PTEN was in placental vascular endothelial cells, while villous stromal cells and syncytiotrophoblast had almost no PTEN positive reaction. The expression of PTEN in the poor blood glucose control group, good blood glucose control group and normal group increased in turn, with statistically significant difference (P<0.05). Conclusions PTEN is decreasingly expressed in gestational diabetes mellitus, which may play a role in the pathological process of gestational diabetes mellitus.

  8. Suppression of gastric cancer growth by adenovirus-mediated transfer of the PTEN gene

    Institute of Scientific and Technical Information of China (English)

    Ying Hang; Yong-Chen Zheng; Yan Cao; Qing-Shan Li; Yu-Jie Sui

    2005-01-01

    AIM: To investigate the tumor-suppressive effect of the phosphatase and tensin homologue deleted from chromosome (PTEN) in human gastric cancer cells th atwere wild type for PTEN.METHODS: Adenoviruses expressing PTEN or luciferase as a control were introduced into gastric cancer cells.The effect of exogenous PTEN gene on the growth and apoptosis of gastric cancer cells that are wtPTEN were examined in vitro and in vivo.RESULTS: Adenovirus-mediated transfer of PTEN (AdPTEN) suppressed cell growth and induced apoptosis significantly in gastric cancer cells (MGC-803, SGC-7901)carrying wtPTEN in comparison with that in normal gastric epithelial cells (GES-1) carrying wtPTEN. This suppression was induced through downregulation of the Akt/PKB pathway, dephosphorylation of focal adhesion kinase and mitogen-activated protein kinase and cell-cycle arrest at the G2/M phase but not at the G1 phase. Furthermore,treatment of human gastric tumor xenografts (MGC-803,SGC-7901) with Ad-PTEN resulted in a significant (P<0.01)suppression of tumor growth.CONCLUSION: These results indicate a significant tumorsuppressive effect of Ad-PTEN against human gastric cancer cells. Thus, Ad-PTEN may be used as a potential therapeutic strategy for treatment of gastric cancers.

  9. Imbalanced PTEN and PI3K Signaling Impairs Class Switch Recombination.

    Science.gov (United States)

    Chen, Zhangguo; Getahun, Andrew; Chen, Xiaomi; Dollin, Yonatan; Cambier, John C; Wang, Jing H

    2015-12-01

    Class switch recombination (CSR) generates isotype-switched Abs with distinct effector functions. B cells express phosphatase and tensin homolog (PTEN) and multiple isoforms of class IA PI3K catalytic subunits, including p110α and p110δ, whose roles in CSR remain unknown or controversial. In this article, we demonstrate a direct effect of PTEN on CSR signaling by acute deletion of Pten specifically in mature B cells, thereby excluding the developmental impact of Pten deletion. We show that mature B cell-specific PTEN overexpression enhances CSR. More importantly, we establish a critical role for p110α in CSR. Furthermore, we identify a cooperative role for p110α and p110δ in suppressing CSR. Mechanistically, dysregulation of p110α or PTEN inversely affects activation-induced deaminase expression via modulating AKT activity. Thus, our study reveals that a signaling balance between PTEN and PI3K isoforms is essential to maintain normal CSR. PMID:26500350

  10. Epstein-Barr virus-encoded microRNA BART1 induces tumour metastasis by regulating PTEN-dependent pathways in nasopharyngeal carcinoma.

    Science.gov (United States)

    Cai, Longmei; Ye, Yanfen; Jiang, Qiang; Chen, Yuxiang; Lyu, Xiaoming; Li, Jinbang; Wang, Shuang; Liu, Tengfei; Cai, Hongbing; Yao, Kaitai; Li, Ji-Liang; Li, Xin

    2015-01-01

    Epstein-Barr virus (EBV), aetiologically linked to nasopharyngeal carcinoma (NPC), is the first human virus found to encode many miRNAs. However, how these viral miRNAs precisely regulate the tumour metastasis in NPC remains obscure. Here we report that EBV-miR-BART1 is highly expressed in NPC and closely associated with pathological and advanced clinical stages of NPC. Alteration of EBV-miR-BART1 expression results in an increase in migration and invasion of NPC cells in vitro and causes tumour metastasis in vivo. Mechanistically, EBV-miR-BART1 directly targets the cellular tumour suppressor PTEN. Reduction of PTEN dosage by EBV-miR-BART1 activates PTEN-dependent pathways including PI3K-Akt, FAK-p130(Cas) and Shc-MAPK/ERK1/2 signalling, drives EMT, and consequently increases migration, invasion and metastasis of NPC cells. Reconstitution of PTEN rescues all phenotypes generated by EBV-miR-BART1, highlighting the role of PTEN in EBV-miR-BART-driven metastasis in NPC. Our findings provide new insights into the metastasis of NPC regulated by EBV and advocate for developing clinical intervention strategies against NPC. PMID:26135619

  11. PTEN encoding product: a marker for tumorigenesis and progression of gastric carcinoma

    Institute of Scientific and Technical Information of China (English)

    Lin Yang; Li-Ge Kuang; Hua-Chuan Zheng; Jin-Yi Li; Dong-Ying Wu; Su-Min Zhang; Yan Xin

    2003-01-01

    AIM: To detect the expression of PTEN encoding productin normal mucosa, intestinal metaplasia (IM), dysplasia andcarcinoma of the stomach, and to investigate its clinicalimplication in tumorigenesis and progression of gastriccarcinoma.METHODS: Formalin-fixed paraffin embedded specimens from184 cases of gastric carcinoma, their adjacent normal mucosa,IM and dysplasia were evaluated for PTEN protein expressionby SABC immunohistochemistry. PTEN expression wascompared with tumor stage, lymph node metastasis, Lauren'sand WHO's histological classification of gastric carcinoma.Expression of VEGF was also detected in 60 cases of gastriccarcinoma and its correlation with PTEN was concerned.RESULTS: The positive rates of PTEN protein were 100 %(102/102), 98.5 %(65/66), 66.7 % (4/6) and 47.8 %(88/184)in normal mucosa, IM, dysplasia and carcinoma of the stomach,respectively. The positive rates in dysplasia and carcinomawere lower than in normal mucosa and IM (P<0.01).Advanced gastric cancers expressed less frequent PTEN thanearly gastric cancer (42.9 % v567.6 %, P<0.01). The positiverate of PTEN protein was lower in gastric cancer with thanwithout lymph node metastasis (40.3 % v563.3 %, P<0.01).PTEN was less expressed in diffuse-type than in intestinal-type gastric cancer (41.5 % v557.8 %,P<0.05). Signet ringcell carcinoma showed the expression of PTEN at the lowestlevel (25.0 %, 7/28); less than well and moderatelydifferentiated ones (P<0.01). Expression of PTEN was notcorrelated with expression of VEGF (P>0.05).CONCLUSION: Loss or reduced expression of PTEN proteinoccures commonly in tumorigenesis and progression of gastriccarcinoma. It is suggested that PTEN can be an objective markerfor pathologically biological behaviors of gastric carcinoma.

  12. Expression and significance of matrix metalloproteinase-2 and PTEN in human brain astrocytoma%MMP-2及PTEN在人脑星形细胞瘤中的表达及意义

    Institute of Scientific and Technical Information of China (English)

    夏大勇; 徐善水; 江晓春; 李真保; 戴易; 毛捷; 包正夫; 方兴根; 朱明峰

    2012-01-01

    目的 探讨基质金属蛋白酶2(MMP-2)及抑癌基因PTEN在人脑星形瘤中的表达及二者与人脑星形细胞瘤侵袭性的关系.方法 用免疫组织化学SABC法检测50例人脑星形细胞瘤组织和10例正常人脑组织中的MMP-2和PTEN蛋白的表达,并且分析二者与人脑星形细胞瘤临床病理分级的关系.结果 MMP-2和PTEN在低度恶性星形细胞瘤和高度恶性星形细胞瘤组织中表达差别有统计学意义(p<0.05).随着星形细胞瘤恶性度增高,MMP-2的表达强度呈上升趋势而PTEN表达强度逐渐下降;Spearman等级相关分析表明人脑星形细胞瘤中MMP-2和PTEN之间呈负相关(Rs=-0.518,P<0.01).结论 MMP-2和PTEN是人脑星形细胞瘤分化程度和转移的潜在生物学指标,联合检测MMP-2和PTEN更有利于判断星形细胞瘤生物学行为和病理分级.%Objective To investigate the expressions of MMP-2 and the tumor suppressor genes PTEN in human brain astrocytoma and their relationships between the expressions and tumor invasion. Methods The expressions of MMP-2 and phosphatase and tensin homolog deleted on chromosome ten (PTEN) protein were examined by immunohistochemistry ( SABC method) in 50 human brain astrocytoma tissues and 10 nomal brain tissues,and their relationships of clinicopathological factors of human brain astrocytoma were analyzed. Results The expression rates of MMP-2 and PTEN had significantly difference between low grade human brain astrocytoma tissues and high human brain astrocytoma tissues. In nomal brain tissues (P<0.01),as the tumor's malignancy degree increased, the expression of MMP-2 increased but the expression of PTEN decreased. The expression of MMP-2 was negatively correlation with the expression of PTEN in hunman brain astrocytoma ( Rs =-0.518 , P <0.01). Conclusions MMP-2 and PTEN are potential markers for differentiation and metastasis of human brain astrocytoma. Combined detection of MMP-2 and PTEN can estimate the biological

  13. Regulation of mammary stem/progenitor cells by PTEN/Akt/beta-catenin signaling.

    OpenAIRE

    Hasan Korkaya; Amanda Paulson; Emmanuelle Charafe-Jauffret; Christophe Ginestier; Marty Brown; Julie Dutcher; Clouthier, Shawn G.; Wicha, Max S.

    2009-01-01

    International audience Recent evidence suggests that many malignancies, including breast cancer, are driven by a cellular subcomponent that displays stem cell-like properties. The protein phosphatase and tensin homolog (PTEN) is inactivated in a wide range of human cancers, an alteration that is associated with a poor prognosis. Because PTEN has been reported to play a role in the maintenance of embryonic and tissue-specific stem cells, we investigated the role of the PTEN/Akt pathway in t...

  14. PTEN Controls the DNA Replication Process through MCM2 in Response to Replicative Stress

    Directory of Open Access Journals (Sweden)

    Jiawen Feng

    2015-11-01

    Full Text Available PTEN is a tumor suppressor frequently mutated in human cancers. PTEN inhibits the phosphatidylinositol 3-kinase (PI3K-AKT cascade, and nuclear PTEN guards the genome by multiple mechanisms. Here, we report that PTEN physically associates with the minichromosome maintenance complex component 2 (MCM2, which is essential for DNA replication. Specifically, PTEN dephosphorylates MCM2 at serine 41 (S41 and restricts replication fork progression under replicative stress. PTEN disruption results in unrestrained fork progression upon replication stalling, which is similar to the phenotype of cells expressing the phosphomimic MCM2 mutant S41D. Moreover, PTEN is necessary for prevention of chromosomal aberrations under replication stress. This study demonstrates that PTEN regulates DNA replication through MCM2 and loss of PTEN function leads to replication defects and genomic instability. We propose that PTEN plays a critical role in maintaining genetic stability through a replication-specific mechanism, and this is a crucial facet of PTEN tumor suppressor activity.

  15. Combined Phosphatase and Tensin Homolog (PTEN Loss and Fatty Acid Synthase (FAS Overexpression Worsens the Prognosis of Chinese Patients with Hepatocellular Carcinoma

    Directory of Open Access Journals (Sweden)

    Xuehua Zhu

    2012-08-01

    Full Text Available We aimed to investigate the expression pattern of phosphatase and tensin homolog (PTEN, to evaluate the relationship between PTEN expression and clinicopathological characteristics, including fatty acid synthase (FAS expression, and to determine the correlations of PTEN and FAS expression with survival in Chinese patients with hepatocellular carcinoma (HCC. The expression patterns of PTEN and FAS were determined using tissue microarrays and immunohistochemistry. The expression of PTEN was compared with the clinicopathological characteristics of HCC, including FAS expression. Receiver operator characteristic curves were used to calculate the clinical sensitivity and specificity of PTEN expression. Kaplan-Meier survival curves were constructed to evaluate the correlations of PTEN loss and FAS overexpression with overall survival. We found that the loss of PTEN expression occurred predominantly in the cytoplasm, while FAS was mainly localized to the cytoplasm. Cytoplasmic and total PTEN expression levels were significantly decreased in HCC compared with adjacent non-neoplastic tissue (both, p < 0.0001. Decreased cytoplasmic and total PTEN expression showed significant clinical sensitivity and specificity for HCC (both, p < 0.0001. Downregulation of PTEN in HCC relative to non-neoplastic tissue was significantly correlated with histological grade (p = 0.043 for histological grades I–II versus grade III. Loss of total PTEN was significantly correlated with FAS overexpression (p = 0.014. Loss of PTEN was also associated with poor prognosis of patients with poorly differentiated HCC (p = 0.049. Moreover, loss of PTEN combined with FAS overexpression was associated with significantly worse prognosis compared with other HCC cases (p = 0.011. Our data indicate that PTEN may serve as a potential diagnostic and prognostic marker of HCC. Upregulating PTEN expression and inhibiting FAS

  16. Gene expression analysis of PTEN positive glioblastoma stem cells identifies DUB3 and Wee1 modulation in a cell differentiation model.

    Directory of Open Access Journals (Sweden)

    Stefano Forte

    Full Text Available The term astrocytoma defines a quite heterogeneous group of neoplastic diseases that collectively represent the most frequent brain tumors in humans. Among them, glioblastoma multiforme represents the most malignant form and its associated prognosis is one of the poorest among tumors of the central nervous system. It has been demonstrated that a small population of tumor cells, isolated from the brain neoplastic tissue, can reproduce the parental tumor when transplanted in immunodeficient mouse. These tumor initiating cells are supposed to be involved in cancer development and progression and possess stem cell-like features; like their normal counterpart, these cells remain quiescent until they are committed to differentiation. Many studies have shown that the role of the tumor suppressor protein PTEN in cell cycle progression is fundamental for tumor dynamics: in low grade gliomas, PTEN contributes to maintain cells in G1 while the loss of its activity is frequently observed in high grade gliomas. The mechanisms underlying the above described PTEN activity have been studied in many tumors, but those involved in the maintenance of tumor initiating cells quiescence remain to be investigated in more detail. The aim of the present study is to shed light on the role of PTEN pathway on cell cycle regulation in Glioblastoma stem cells, through a cell differentiation model. Our results suggest the existence of a molecular mechanism, that involves DUB3 and WEE1 gene products in the regulation of Cdc25a, as functional effector of the PTEN/Akt pathway.

  17. Expression and significance of Survivin, PTEN and mutant type P53 in human brain astrocytom%Survivin和PTEN与P53在人脑星形细胞瘤的表达及意义

    Institute of Scientific and Technical Information of China (English)

    张信芳

    2011-01-01

    Objective To investigate the expressions of apoptosis inhibitor gene-Survivin and tumor suppressor gene-PTEN ,mutant type P53 in human brain astrocytoma and the relationship between these genes and the pathological features of astrocytoma. Methods SP immunohistochemical method was used to detect the expression of Survivin,PTEN and mutant type P53 gene in 15 cases of normal brain tissue and 40 cases of cerebral astrocytoma. Results The positive rates of Survivin,PTEN and mutant type P53 in normal brain tissue were 0%,100% and 0% respectively. The positive rates in astrocytoma were 52.5% ,60.0% and 45.0% respectively. There was a significant difference in the expressions of Survivin,PTEN and mutant type P53 between normal brain tissue and astrocytoma. The expressions of Survivin,P53 were increased with the increase of tumor's grade,however,the expression of PTEN was decreased. Conclusion Survivin, PTEN and mutant type P53 in the occurrence and development of astrocytoma play an important role and the positive rates of Survivin, PTEN and mutant type P53 in astrocytoma are correlated with astrocytoma's grade.%目的 探讨凋亡抑制基因Survivin和抑癌基因PTEN、P53在人脑星形细胞瘤中的表达及与临床病理特征之间的关系.方法 应用SP免疫组织化学法,检测Survivin、PTEN与P53基因在15例正常脑组织(对照组)、40例脑星形细胞瘤(脑星形细胞瘤组)中的表达情况.结果 在正常脑组织和脑星形细胞瘤中 Survivin的阳性率为0%、52.5%;PTEN的阳性率为100%、60.0%;P53的阳性率为0%,45%.2组差异有统计学意义(P<0.05 或<0.01).Survivin、PTEN与P53在脑星形细胞瘤不同分级中有不同的表达,Survivin、P53随着分级的增加表达的阳性率增加,而PTEN随着分级的增加其表达的阳性率降低.结论 Survivin、PTEN与P53在其发生发展过程中起着一定的作用,并与人脑星形细胞瘤的分级相关.

  18. Hydrocephalus caused by conditional ablation of the Pten or beta-catenin gene

    Directory of Open Access Journals (Sweden)

    Ohtoshi Akihira

    2008-10-01

    Full Text Available Abstract To investigate the roles of Pten and β-Catenin in the midbrain, either the Pten gene or the β-catenin gene was conditionally ablated, using Dmbx1 (diencephalon/mesencephalon-expressed brain homeobox gene 1-Cre mice. Homozygous disruption of the Pten or β-catenin gene in Dmbx1-expressing cells caused severe hydrocephalus and mortality during the postnatal period. Conditional deletion of Pten resulted in enlargement of midbrain structures. β-catenin conditional mutant mice showed malformation of the superior and inferior colliculi and stenosis of the midbrain aqueduct. These results demonstrate that both Pten and β-Catenin are essential for proper midbrain development, and provide the direct evidence that mutations of both Pten and β-catenin lead to hydrocephalus.

  19. Adenovirus mediated homozygous endometrial epithelial Pten deletion results in aggressive endometrial carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Ayesha; Ellenson, Lora Hedrick, E-mail: lora.ellenson@med.cornell.edu

    2011-07-01

    Pten is the most frequently mutated gene in uterine endometriod carcinoma (UEC) and its precursor complex atypical hyperplasia (CAH). Because the mutation frequency is similar in CAH and UEC, Pten mutations are thought to occur relatively early in endometrial tumorigenesis. Previous work from our laboratory using the Pten{sup +/-} mouse model has demonstrated somatic inactivation of the wild type allele of Pten in both CAH and UEC. In the present study, we injected adenoviruses expressing Cre into the uterine lumen of adult Pten floxed mice in an attempt to somatically delete both alleles of Pten specifically in the endometrium. Our results demonstrate that biallelic inactivation of Pten results in an increased incidence of carcinoma as compared to the Pten{sup +/-} mouse model. In addition, the carcinomas were more aggressive with extension beyond the uterus into adjacent tissues and were associated with decreased expression of nuclear ER{alpha} as compared to associated CAH. Primary cultures of epithelial and stromal cells were prepared from uteri of Pten floxed mice and Pten was deleted in vitro using Cre expressing adenovirus. Pten deletion was evident in both the epithelial and stromal cells and the treatment of the primary cultures with estrogen had different effects on Akt activation as well as Cyclin D3 expression in the two purified components. This study demonstrates that somatic biallelic inactivation of Pten in endometrial epithelium in vivo results in an increased incidence and aggressiveness of endometrial carcinoma compared to mice carrying a germline deletion of one allele and provides an important in vivo and in vitro model system for understanding the genetic underpinnings of endometrial carcinoma.

  20. Adenovirus mediated homozygous endometrial epithelial Pten deletion results in aggressive endometrial carcinoma

    International Nuclear Information System (INIS)

    Pten is the most frequently mutated gene in uterine endometriod carcinoma (UEC) and its precursor complex atypical hyperplasia (CAH). Because the mutation frequency is similar in CAH and UEC, Pten mutations are thought to occur relatively early in endometrial tumorigenesis. Previous work from our laboratory using the Pten+/- mouse model has demonstrated somatic inactivation of the wild type allele of Pten in both CAH and UEC. In the present study, we injected adenoviruses expressing Cre into the uterine lumen of adult Pten floxed mice in an attempt to somatically delete both alleles of Pten specifically in the endometrium. Our results demonstrate that biallelic inactivation of Pten results in an increased incidence of carcinoma as compared to the Pten+/- mouse model. In addition, the carcinomas were more aggressive with extension beyond the uterus into adjacent tissues and were associated with decreased expression of nuclear ERα as compared to associated CAH. Primary cultures of epithelial and stromal cells were prepared from uteri of Pten floxed mice and Pten was deleted in vitro using Cre expressing adenovirus. Pten deletion was evident in both the epithelial and stromal cells and the treatment of the primary cultures with estrogen had different effects on Akt activation as well as Cyclin D3 expression in the two purified components. This study demonstrates that somatic biallelic inactivation of Pten in endometrial epithelium in vivo results in an increased incidence and aggressiveness of endometrial carcinoma compared to mice carrying a germline deletion of one allele and provides an important in vivo and in vitro model system for understanding the genetic underpinnings of endometrial carcinoma.

  1. Tetracycline regulator expression alters the transcriptional program of mammalian cells

    OpenAIRE

    Hackl, Hubert; Rommer, Anna; Konrad, Torsten A; Nassimbeni, Christine; Wieser, Rotraud

    2010-01-01

    Tetracycline regulated ectopic gene expression is a widely used tool to study gene function. However, the tetracycline regulator (tetR) itself has been reported to cause certain phenotypic changes in mammalian cells. We, therefore, asked whether human myeloid U937 cells expressing the tetR in an autoregulated manner would exhibit alterations in gene expression upon removal of tetracycline.

  2. Selective deletion of Pten in pancreatic beta cells leads to increased islet mass and resistance to STZ-induced diabetes.

    Science.gov (United States)

    Stiles, Bangyan L; Kuralwalla-Martinez, Christine; Guo, Wei; Gregorian, Caroline; Wang, Ying; Tian, Jide; Magnuson, Mark A; Wu, Hong

    2006-04-01

    Phosphatase and tensin homologue deleted on chromosome 10 (PTEN) is a lipid phosphatase. PTEN inhibits the action of phosphatidylinositol-3-kinase and reduces the levels of phosphatidylinositol triphosphate, a crucial second messenger for cell proliferation and survival, as well as insulin signaling. In this study, we deleted Pten specifically in the insulin producing beta cells during murine pancreatic development. Pten deletion leads to increased cell proliferation and decreased cell death, without significant alteration of beta-cell differentiation. Consequently, the mutant pancreas generates more and larger islets, with a significant increase in total beta-cell mass. PTEN loss also protects animals from developing streptozotocin-induced diabetes. Our data demonstrate that PTEN loss in beta cells is not tumorigenic but beneficial. This suggests that modulating the PTEN-controlled signaling pathway is a potential approach for beta-cell protection and regeneration therapies. PMID:16537919

  3. Shadows Alter Facial Expressions of Noh Masks

    OpenAIRE

    Nobuyuki Kawai; Hiromitsu Miyata; Ritsuko Nishimura; Kazuo Okanoya

    2013-01-01

    BACKGROUND: A Noh mask, worn by expert actors during performance on the Japanese traditional Noh drama, conveys various emotional expressions despite its fixed physical properties. How does the mask change its expressions? Shadows change subtly during the actual Noh drama, which plays a key role in creating elusive artistic enchantment. We here describe evidence from two experiments regarding how attached shadows of the Noh masks influence the observers' recognition of the emotional expressio...

  4. A role for Pten in paediatric intestinal dysmotility disorders.

    LENUS (Irish Health Repository)

    O'Donnell, Anne-Marie

    2012-02-01

    PURPOSE: The enteric nervous system (ENS) is a network of neurons and glia that lies within the gut wall. It is responsible for the normal regulation of gut motility and secretory activities. Hirschsprung\\'s disease (HD) is a congenital defect of the ENS, characterised by an absence of ganglia in the distal colon. Intestinal neuronal dysplasia (IND) is a condition that clinically resembles HD, characterised by hyperganglionosis, giant and ectopic ganglia, resulting in intestinal dysmotility. Intestinal ganglioneuromatosis is characterised by hyperplasia and hypertrophy of enteric neuronal cells and causes chronic intestinal pseudo-obstruction (CIPO). Phosphatase and tensin homolog deleted on chromosome 10 (Pten) is a phosphatase that is critical for controlling cell growth, proliferation and cell death. A recent study of Pten knockout mice showed evidence of ganglioneuromatosis in the ENS suggesting a role for this protein in ENS development. Ganglioneuromatosis patients have also been shown to have a decreased level of Pten expression in the colon. The aim of our study was to investigate Pten expression in the ENS of HD and IND patients compared to normal controls. METHODS: Resected tissue from 10 HD and 10 IND type B patients was fixed and embedded in paraffin wax. Normal control colon tissue was obtained from ten patients who underwent a colostomy closure for imperforate anus. Sections were cut and immunohistochemistry was carried out using a Pten antibody. Results were analysed by light microscopy. RESULTS: Staining showed that Pten was strongly expressed in ganglia of both the submucosal and myenteric plexus of normal and HD specimens from the ganglionic colon. Pten expression was significantly reduced in the giant ganglia in IND patients in both the myenteric and submucosal plexuses compared to the normal controls. Specimens from the aganglionic region of HD did not show Pten expression. CONCLUSION: To the best of our knowledge, this is the first study

  5. Expression and clinical sionificance of IL-13Rα2, VEGF and PTEN in astrocytoma%IL-13Rα2、VEGF和PTEN在星形细胞瘤中的表达及临床意义

    Institute of Scientific and Technical Information of China (English)

    涂明; 郑伟明; 李建敏; 黄卡特

    2012-01-01

    目的:测定白细胞介素13受体α2 (IL-13R α2)、血管内皮生长因子(VEGF)和PTEN在星形细胞瘸中的表达,探讨三者与星形细胞瘸的临床病理学特征及生物学行为的关系,对预后进行评估.方法:采用免疫组化法对37例人脑星形细胞瘤石蜡标本中的IL-13Rα2、VEGF和PTEN的表达进行检测.结果:①IL-13Rα2、VEGF和PTEN在不同级别星形细胞瘤中的阳性表达率差异有统计学意义.②IL-13Rα2和VEGF的表达之间存在正相关关系,IL-13Rα2、VEGF分别与PTEN的表达之间存在负相关关系.③IL-13R α2、VEGF和PTEN的表达在不同病人性别和肿瘤大小之间差异无统计学意义.结论:检测IL-13Rα2、VEGF和PTEN对判定肿瘤恶性程度有一定的临床意义,IL-13Rα2、VEGF和PTEN这三种因子在肿瘤发生、发展的作用机制上存在某种联系.%Objective: To determine the expression of IL-13Rα2, VEGF and FTEN in astrocytoma, to analyze the relationship among the expression of IL-138α2, VEGF and PTEN in astrocytoma with the clinical pathology and the biological behaviors of astrocytoma, and to evaluate the prognosis of astrocytoma. Methods: Applying SF immunohistochemical technique, Examination and statistical research were performed on the expression in 37 cases of astrocytoma. Results: ①There was significant difference in IL-13Rα2, VEGF and PTEN expressions among the astrocytomas of different grades. ②The expression of IL-13Rα2 was positively related to the expression of VEGF in human astrocytomas, but the expressions of IL-13Rα2 and VEGF were negatively related to the expression of PTEN in the astrocytomas. ③The IL-13Ra2, VEGF and PTEN expressions were not significantly correlated with gender or tumor size. Conclusion: IL-13Rα2, VEGF and FTEN may serve as a biomarker of the astrocytoma malignancy and may be involved in the progression of astrocytoma. There is relationship between the expression of IL-13Rα2, VEGF and PTEN and pathological

  6. Altered aquaporin expression in glaucoma eyes

    DEFF Research Database (Denmark)

    Tran, Thuy Linh; Bek, Toke; la Cour, Morten;

    2014-01-01

    Aquaporins (AQP) are channels in the cell membrane that mainly facilitate a passive transport of water. In the eye, AQPs are expressed in the ciliary body and retina and may contribute to the pathogenesis of glaucoma and optic neuropathy. We investigated the expression of AQP1, AQP3, AQP4, AQP5......, AQP7 and AQP9 in human glaucoma eyes compared with normal eyes. Nine glaucoma eyes were examined. Of these, three eyes were diagnosed with primary open angle glaucoma; three eyes had neovascular glaucoma; and three eyes had chronic angle-closure glaucoma. Six eyes with normal intraocular pressure...... and without glaucoma were used as control. Immunohistochemistry was performed using antibodies against AQP1, AQP3, AQP4, AQP5, AQP7 and AQP9. For each specimen, optical densities of immunoprecipitates were measured using Photoshop and the staining intensities were calculated. Immunostaining showed labelling...

  7. Molecular alterations of Ras-Raf-mitogen-activated protein kinase and phosphatidylinositol 3-kinase-Akt signaling pathways in colorectal cancers from a tertiary hospital at Kuala Lumpur, Malaysia.

    Science.gov (United States)

    Yip, Wai Kien; Choo, Chee Wei; Leong, Vincent Ching-Shian; Leong, Pooi Pooi; Jabar, Mohd Faisal; Seow, Heng Fong

    2013-10-01

    Molecular alterations in KRAS, BRAF, PIK3CA, and PTEN have been implicated in designing targeted therapy for colorectal cancer (CRC). The present study aimed to determine the status of these molecular alterations in Malaysian CRCs as such data are not available in the literature. We investigated the mutations of KRAS, BRAF, and PTEN, the gene amplification of PIK3CA, and the protein expression of PTEN and phosphatidylinositol 3-kinase (PI3K) catalytic subunit (p110α) by direct DNA sequencing, quantitative real-time PCR, and immunohistochemistry, respectively, in 49 CRC samples. The frequency of KRAS (codons 12, 13, and 61), BRAF (V600E), and PTEN mutations, and PIK3CA amplification was 25.0% (11/44), 2.3% (1/43), 0.0% (0/43), and 76.7% (33/43), respectively. Immunohistochemical staining demonstrated loss of PTEN protein in 54.5% (24/44) of CRCs and no significant difference in PI3K p110α expression between CRCs and the adjacent normal colonic mucosa (p = 0.380). PIK3CA amplification was not associated with PI3K p110α expression level, but associated with male cases (100% of male cases vs 56% of female cases harbored amplified PIK3CA, p = 0.002). PI3K p110α expression was significantly higher (p = 0.041) in poorly/moderately differentiated carcinoma compared with well-differentiated carcinoma. KRAS mutation, PIK3CA amplification, PTEN loss, and PI3K p110α expression did not correlate with Akt phosphorylation or Ki-67 expression. KRAS mutation, PIK3CA amplification, and PTEN loss were not mutually exclusive. This is the first report on CRC in Malaysia showing comparable frequency of KRAS mutation and PTEN loss, lower BRAF mutation rate, higher PIK3CA amplification frequency, and rare PTEN mutation, as compared with published reports.

  8. Carbon Nanomaterials Alter Global Gene Expression Profiles.

    Science.gov (United States)

    Woodman, Sara; Short, John C W; McDermott, Hyoeun; Linan, Alexander; Bartlett, Katelyn; Gadila, Shiva Kumar Goud; Schmelzle, Katie; Wanekaya, Adam; Kim, Kyoungtae

    2016-05-01

    Carbon nanomaterials (CNMs), which include carbon nanotubes (CNTs) and their derivatives, have diverse technological and biomedical applications. The potential toxicity of CNMs to cells and tissues has become an important emerging question in nanotechnology. To assess the toxicity of CNTs and fullerenol C60(OH)24, we in the present work used the budding yeast Saccharomyces cerevisiae, one of the simplest eukaryotic organisms that share fundamental aspects of eukaryotic cell biology. We found that treatment with CNMs, regardless of their physical shape, negatively affected the growth rates, end-point cell densities and doubling times of CNM-exposed yeast cells when compared to unexposed cells. To investigate potential mechanisms behind the CNMs-induced growth defects, we performed RNA-Seq dependent transcriptional analysis and constructed global gene expression profiles of fullerenol C60(OH)24- and CNT-treated cells. When compared to non-treated control cells, CNM-treated cells displayed differential expression of genes whose functions are implicated in membrane transporters and stress response, although differentially expressed genes were not consistent between CNT- and fullerenol C60(OH)24-treated groups, leading to our conclusion that CNMs could serve as environmental toxic factors to eukaryotic cells. PMID:27483901

  9. Adenovirus-mediated transfer of the PTEN gene inhibits human colorectal cancer growth in vitro and in vivo.

    Science.gov (United States)

    Saito, Y; Swanson, X; Mhashilkar, A M; Oida, Y; Schrock, R; Branch, C D; Chada, S; Zumstein, L; Ramesh, R

    2003-11-01

    The tumor-suppressor gene PTEN encodes a multifunctional phosphatase that is mutated in a variety of human cancers. PTEN inhibits the phosphatidylinositol 3-kinase pathway and downstream functions, including activation of Akt/protein kinase B (PKB), cell survival, and cell proliferation in tumor cells carrying mutant- or deletion-type PTEN. In such tumor cells, enforced expression of PTEN decreases cell proliferation through cell-cycle arrest at G1 phase accompanied, in some cases, by induction of apoptosis. More recently, the tumor-suppressive effect of PTEN has been reported in ovarian and thyroid tumors that are wild type for PTEN. In the present study, we examined the tumor-suppressive effect of PTEN in human colorectal cancer cells that are wild type for PTEN. Adenoviral-mediated transfer of PTEN (Ad-PTEN) suppressed cell growth and induced apoptosis significantly in colorectal cancer cells (DLD-1, HT29, and SW480) carrying wtPTEN than in normal colon fibroblast cells (CCD-18Co) carrying wtPTEN. This suppression was induced through downregulation of the Akt/PKB pathway, dephosphorylation of focal adhesion kinase (FAK) and mitogen-activated protein kinase (MAPK) and cell-cycle arrest at the G2/M phase, but not the G1 phase. Furthermore, treatment of human colorectal tumor xenografts (HT-29, and SW480) with Ad-PTEN resulted in significant (P=0.01) suppression of tumor growth. These results indicate that Ad-PTEN exerts its tumor-suppressive effect on colorectal cancer cells through inhibition of cell-cycle progression and induction of cell death. Thus Ad-PTEN may be a potential therapeutic for treatment of colorectal cancers. PMID:14528320

  10. The expression and clinical significance of PTEN and C-erbB-2 protein in endometrial carcinoma%PTEN和C-erbB-2蛋白在子宫内膜癌的表达及临床意义

    Institute of Scientific and Technical Information of China (English)

    赵桂凤; 张艳红

    2013-01-01

    Objective:To study the expression and clinic significance of PTEN and C-erbB-2 protein in endometrial carcinoma and its relationships.Methods:Using immunohistochemistry test (s-p methods),We examined the expression of PTEN and C-erbB -2 protein in 50 cases of endometrial carcinoma,20 cases of endometrial precancerous lesions and 20 cases of normal endometrium.Results:(1) In endometrial carcinoma tissues,the positive rates of PTEN protein expression was significantly lower than that of uterus atypical hyperplasial endometrium and normal endometrium tissues,but the positive rates of C-erbB-2 protein expression was significantly higher than that of uterus atypical hyperplasial endometrium and normal endometrium tissues.(2) The expression of PTEN protein correlated with histological grade and clinical stage,but not with lymph node metastasis.In endometrial carcinoma,with progression of clinical stage and increased histologic grade,the positive rate of PTEN protein expression was correspondingly decreased.(3)The overexpression of C-erbB-2 protein was correlated with clinical stage.In endometrial carcinoma,with progression of clinical stage,the positive rate of C-erbB-2 protein expression was correspondingly decreased,but there was no difference in statistics neither lymph node metastasis nor histological grade correlated with the expression of C-erbB-2 protein.(4) The expression of PTEN protein was negatively correlated with C-erbB-2 protein in endometrial carcinoma.Conclusion:The results suggest that absent PTEN and C-erbB-2 protein overexpression may play an important role in the genesis and development of endometrial carcinoma.There may be a synergetic action among these genes.Binded detections of PTEN and C-erbB-2 protein have positive effect on early diagnosis,prognosis assessment of endometrial carcinoma.%目的 探讨PTEN和C-erbB-2蛋白在子宫内膜癌中表达的临床意义.方法 采用免疫组化S-P法,分别在20例正常子宫内膜组织、20例子

  11. State-related alterations of gene expression in bipolar disorder

    DEFF Research Database (Denmark)

    Munkholm, Klaus; Vinberg, Maj; Berk, Michael;

    2012-01-01

    Munkholm K, Vinberg M, Berk M, Kessing LV. State-related alterations of gene expression in bipolar disorder: a systematic review. Bipolar Disord 2012: 14: 684-696. © 2012 The Authors. Journal compilation © 2012 John Wiley & Sons A/S. Objective:  Alterations in gene expression in bipolar disorder...... on comprehensive database searches for studies on gene expression in patients with bipolar disorder in specific mood states, was conducted. We searched Medline, Embase, PsycINFO, and The Cochrane Library, supplemented by manually searching reference lists from retrieved publications. Results:  A total of 17...

  12. Characterization of novel non-clonal intrachromosomal rearrangements between the H4 and PTEN genes (H4/PTEN) in human thyroid cell lines and papillary thyroid cancer specimens

    Energy Technology Data Exchange (ETDEWEB)

    Puxeddu, Efisio [Division of Endocrinology and Metabolism, University of Cincinnati College of Medicine, PO Box 670547, Cincinnati, OH 45267-0547 (United States); Zhao Guisheng [Division of Endocrinology and Metabolism, University of Cincinnati College of Medicine, PO Box 670547, Cincinnati, OH 45267-0547 (United States); Stringer, James R. [Department of Molecular Genetics, University of Cincinnati College of Medicine, PO Box 670547, Cincinnati, OH 45267-0547 (United States); Medvedovic, Mario [Center for Biostatistic Service, University of Cincinnati College of Medicine, PO Box 670547, Cincinnati, OH 45267-0547 (United States); Moretti, Sonia [Dipartimento di Medicina Interna, Universita degli Studi di Perugia, Via E. dal Pozzo, Perugia 06126, (Italy); Fagin, James A. [Division of Endocrinology and Metabolism, University of Cincinnati College of Medicine, PO Box 670547, Cincinnati, OH 45267-0547 (United States)]. E-mail: james.fagin@uc.edu

    2005-02-15

    The two main forms of RET rearrangement in papillary thyroid carcinomas (PTC) arise from intrachromosomal inversions fusing the tyrosine kinase domain of RET with either the H4 (RET/PTC1) or the ELE1/RFG genes (RET/PTC3). PTEN codes for a dual-specificity phosphatase and maps to chromosome 10q22-23. Germline mutations confer susceptibility to Cowden syndrome whereas somatic mutations or deletions are common in several sporadic human tumors. Decreased PTEN expression has been implicated in thyroid cancer development. We report the characterization of a new chromosome 10 rearrangement involving H4 and PTEN. The initial H4/PTEN rearrangement was discovered as a non-specific product of RT-PCR for RET/PTC1 in irradiated thyroid cell lines. Sequencing revealed a transcript consisting of exon 1 and 2 of H4 fused with exons 3-6 of PTEN. Nested RT-PCR with specific primers bracketing the breakpoints confirmed the H4/PTEN rearrangements in irradiated KAT-1 and KAT-50 cells. Additional H4/PTEN variants, generated by recombination of either exon 1 or exon 2 of H4 with exon 6 of PTEN, were found in non-irradiated KAK-1, KAT-50, ARO and NPA cells. Their origin through chromosomal recombination was confirmed by detection of the reciprocal PTEN/H4 product. H4/PTEN recombination was not a clonal event in any of the cell lines, as Southern blots with appropriate probes failed to demonstrate aberrant bands, and multicolor FISH of KAK1 cells with BAC probes for H4 and PTEN did not show a signal overlap in all cells. Based on PCR of serially diluted samples, the minimal frequency of spontaneous recombination between these loci was estimated to be approximately 1/10{sup 6} cells. H4/PTEN products were found by nested RT-PCR in 4/14 normal thyroid tissues (28%) and 14/18 PTC (78%) (P < 0.01). H4/PTEN is another example of recombination involving the H4 locus, and points to the high susceptibility of thyroid cells to intrachromosomal gene rearrangements. As this also represents a

  13. p33/ING1 and PTEN EXPRESSION IN ESOPHAGUS SCALE CANCER AND ITS SIGNIFICANCE%p33/ING1和PTEN在食管鳞癌中的表达及意义

    Institute of Scientific and Technical Information of China (English)

    李慧娥; 冷雪芹; 宋光明

    2012-01-01

    目的:研究食管癌病人中p33/ING1和PTEN蛋白的表达及其与食管癌病理特征的关系,探讨食管癌的发病机制,以寻求预防、诊断和治疗食管癌的新方法.方法:采用免疫组织化学技术联合检测PTEN基因、凋亡促进因子p33/ING1在食管鳞癌组织、癌旁不典型增生组织及其相应的正常食管黏膜组织中的表达.结果:p33/ING1和PTEN蛋白从正常黏膜-不典型增生-浸润癌渐进性表达减低(P<0.05),与食管癌分化程度、浸润深度、淋巴结转移有关(P<0.05).PTEN蛋白在食管癌中的低表达与p33/ING1蛋白在其中的表达呈正相关.结论:p33/ING1和PTEN基因的失活(或缺失)及蛋白表达的下降在食管鳞癌的发生、分化及浸润转移过程中起重要作用.两者有可能为临床上食管癌早期诊断、相关治疗及预后研究提供新的手段.%Objective: To study p33/INGl and PTEN protein expression and pathological features of esophageal cancer, and to explore the pathogenesis of esophageal cancer in order to seek prevention, diagnosis and treatment of esophageal cancer in new ways. Method: With immunohistochemical detection of PTEN gene, apoptosis - promoting factor p33/INGl in esophageal squamous cell carcinoma, a-typical hyperplasia adjacent and corresponding normal esophageal mucosa tissue. Results; p33/INGl and PTEN protein in normal mucosa — dysplasia - carcinoma expression of progressive reduction (P<0.05), and esophageal cancer differentiation, depth of invasion, lymph node metastasis (P <0.05 ). PTEN protein expression in esophageal cancer and p33/INGl low expression of protein in which a positive correlation. Conclusion; p33/INGl and PTEN gene inactivation ( or loss) and decreased protein expression in esophageal squamous cell carcinoma, differentiation, invasion and metastasis play an important role. Possible to provide new means for both the clinical diagnosis, treatment and prognosis of esophageal cancer.

  14. 星形细胞瘤中PTEN、p53及Ki-67的表达与肿瘤细胞增殖及分级的关系%Expression of PTEN, p53, Ki-67 and its relationship with tumor histopathological grade and proliferation in astrocytoma

    Institute of Scientific and Technical Information of China (English)

    孙艳花; 温文; 关弘; 宋建明; 钟雪云

    2010-01-01

    目的 探讨星形细胞瘤中PTEN、p53及Ki-67的表达水平及其与肿瘤细胞增殖及分级的关系.方法 采用免疫组织化学方法检测68例星形细胞瘤中PTEN、p53及Ki-67的表达水平.结果 星形细胞瘤中PTEN、p53及Ki-67的表达率分别是54.4%、45.6%及48.5%,随着肿瘤级别增加,PTEN的表达率下降,而p53、Ki-67的表达率上升,Spearman等级相关分析显示PTEN的表达与星形细胞瘤的分级呈负相关,p53、Ki-67的表达与分级呈正相关.PTEN阳性表达的37例星形细胞瘤标本中,Ki-67的阳性率是24.3%;而在PTEN阴性的31例标本中,Ki-67的阳性率是77.4%,PTEN表达与Ki-67表达呈负相关.结论 PTEN的表达与星形细胞瘤的分级呈负相关,Ki-67、p53的表达与星形细胞瘤组织病理分级呈正相关.PTEN在一定程度上可以抑制肿瘤细胞的增殖.%Objective To study the incidence of PTEN, p53 and Ki-67 expression in astrocytoma and show the relationship between PTEN, p53 expression and the proliferation activity. Methods The surgical specimens from 68 brain astrocytoma patients were analysed to detect PTEN, p53 and Ki-67 expression with immunohistochemical method. Results The incidence of PTEN, p53 and Ki-67 expression was 54.4 %,45.6 % and 48.5 % respectively in astrocytoma. With the grade of astrocytoma increasing the levels of PTEN protein decreased, on the other hand the levels of p53, Ki-67 increased. There was a negative correlation between PTEN expression and grade of astrocytoma while there was a positive correlation between p53, Ki-67 expression and grade of astrocytoma by using the Spearman Correlation test to analyse the data. The incidence of Ki-67 positive expression was 24.3 % in 37 cases exhibiting PTEN positive staining, whereas the incidence of Ki-67 positive expression was 77.4 % in 31 cases exhibiting PTEN negative staining. In statistics, there was an inverse correlation between PTEN and Ki-67 expression. Conclusion There is an inverse

  15. In Vitro and In Vivo Effects of Tumor Suppressor Gene PTEN on Endometriosis: An Experimental Study

    Science.gov (United States)

    Lv, Juan; Zhu, Qiaoying; Jia, Xuemei; Yu, Ningzhu; Li, Qian

    2016-01-01

    Background Endometriosis can cause dysmenorrhea and infertility. Its pathogenesis has not yet been clarified and its treatment continues to pose enormous challenges. The protein tyrosine phosphatase (PTEN) gene is a tumor suppressor gene. The aim of this study was to investigate the role and significance of PTEN protein in the occurrence, development, and treatment of endometriosis through changes in apoptosis rate, cell cycle, and angiogenesis. Material/Methods PTEN was overexpressed and silenced in lentiviral vectors and inserted into primary endometrial cells. The changes in cell cycle and apoptosis in the different PTEN expression groups were evaluated using flow cytometry. Vessel growth mimicry was observed using 3-dimensional culture. A human-mouse chimeric endometriosis model was constructed using SCID mice. Hematoxylin and eosin staining and immunohistochemistry were used to detect pathological changes in ectopic endometrial tissues and the expression of VEGF protein in a human-mouse chimeric endometriosis mouse model. Results PTEN overexpression significantly increased apoptosis and inhibited the cell cycle compared with the silenced and control groups. Furthermore, cells expressing low PTEN levels were better able to undergo vasculogenic mimicry, and exhibited significantly increased angiogenesis compared to cells overexpressing PTEN. We found that ectopic foci were more easily formed in the endometrial tissue of SCID mice with low PTEN expression, and the VEGF expression in this group was relatively high. Conclusions PTEN inhibits the occurrence and development of endometriosis by regulating angiogenesis and the apoptosis and cell cycle of endometrial cells; therefore, we propose that the PTEN gene can be used to treat endometriosis. PMID:27744455

  16. Alterations in cathepsin L expression in lung cancers.

    Science.gov (United States)

    Okudela, Koji; Mitsui, Hideaki; Woo, Tetsukan; Arai, Hiromasa; Suzuki, Takehisa; Matsumura, Mai; Kojima, Yoko; Umeda, Shigeaki; Tateishi, Yoko; Masuda, Munetaka; Ohashi, Kenichi

    2016-07-01

    We herein investigated the potential role of cathepsin L in lung carcinogenesis. Lung cancer cell lines and surgically resected tumors were examined for the expression of the cathepsin L protein and copy number alterations in its gene locus. Cathepsin L was stably expressed in bronchiolar epithelial cells. Neoplastic cells expressed cathepsin L at various levels, whereas its expression was completely lost in most of the lung cancer cell lines (63.6%, 7/11) examined. Furthermore, expression levels were lower in a large fraction of lung tumors (69.5%, 139/200) than in bronchiolar epithelia. The expression of cathepsin L was lost in some tumors (16.0%, 32/200). In adenocarcinomas, expression levels were significantly lower in high-grade tumors than in low-grade tumors (one-way ANOVA, P L protein expression levels and the copy number of its gene locus (Spearman's rank-order correlation, P = 0.3096). Collectively, these results suggest that the down-regulated expression of cathepsin L, which is caused by an undefined mechanism other than copy number alterations, is involved in the progression of lung adenocarcinomas.

  17. Truncating PREX2 mutations activate its GEF activity and alter gene expression regulation in NRAS-mutant melanoma

    KAUST Repository

    Lissanu Deribe, Yonathan

    2016-03-01

    PREX2 (phosphatidylinositol-3,4,5-triphosphate-dependent Rac-exchange factor 2) is a PTEN (phosphatase and tensin homolog deleted on chromosome 10) binding protein that is significantly mutated in cutaneous melanoma and pancreatic ductal adenocarcinoma. Here, genetic and biochemical analyses were conducted to elucidate the nature and mechanistic basis of PREX2 mutation in melanoma development. By generating an inducible transgenic mouse model we showed an oncogenic role for a truncating PREX2 mutation (PREX2E824*) in vivo in the context of mutant NRAS. Using integrative cross-species gene expression analysis, we identified deregulated cell cycle and cytoskeleton organization as significantly perturbed biological pathways in PREX2 mutant tumors. Mechanistically, truncation of PREX2 activated its Rac1 guanine nucleotide exchange factor activity, abolished binding to PTEN and activated the PI3K (phosphatidyl inositol 3 kinase)/Akt signaling pathway. We further showed that PREX2 truncating mutations or PTEN deletion induces down-regulation of the tumor suppressor and cell cycle regulator CDKN1C (also known as p57KIP2). This down-regulation occurs, at least partially, through DNA hypomethylation of a differentially methylated region in chromosome 11 that is a known regulatory region for expression of the CDKN1C gene. Together, these findings identify PREX2 as a mediator of NRAS-mutant melanoma development that acts through the PI3K/PTEN/Akt pathway to regulate gene expression of a cell cycle regulator.

  18. Expression and significance of tumor suppressor gene PTEN in colorectal cancer%抑癌基因PTEN在人大肠癌中的表达及其意义

    Institute of Scientific and Technical Information of China (English)

    郑国宝; 王元和; 高春芳; 王红阳; 万兴望

    2003-01-01

    目的阐明抑癌基因PTEN在大肠癌的发生发展及转移过程中的作用.方法应用Nothern blot和免疫组化的方法检测47例人大肠癌及癌旁组织中PTEN mRNA和蛋白的表达,分析其与大肠癌的临床病理学分期、分级及其与大肠癌肝转移的关系.结果 PTEN mRNA在大肠癌组织内的表达水平显著低于相应的癌旁组织,在癌组织内,PTEN mRNA表达水平与大肠癌的恶性程度分级、Dukes分期及血清中癌胚抗原(CEA)水平呈显著负相关,PTEN蛋白在大肠癌旁组织中表达阳性率为100%,在大肠癌组织中表达阳性率为76.6%,PTEN在大肠癌组织中表达的降低与大肠癌的Dukes分期、淋巴结转移及血清中CEA水平呈显著负相关.结论抑癌基因PTEN表达的降低在大肠癌的发生和转移过程中起重要作用.

  19. The role of PTEN in chronic growth hormone-induced hepatic insulin resistance.

    Directory of Open Access Journals (Sweden)

    Yuan Gao

    Full Text Available Chronic growth hormone (GH therapy has been shown to cause insulin resistance, but the mechanism remains unknown. PTEN, a tumor suppressor gene, is a major negative regulator of insulin signaling. In this study, we explored the effect of chronic GH on insulin signaling in the context of PTEN function. Balb/c healthy mice were given recombinant human or bovine GH intraperitoneally for 3 weeks. We found that phosphorylation of Akt was significantly decreased in chronic GH group and the expression of PTEN was significantly increased. We further examined this effect in the streptozotocin-induced Type I diabetic mouse model, in which endogenous insulin secretion was disrupted. Insulin/PI3K/Akt signaling was impaired. However, different from the observation in healthy mice, the expression of PTEN did not increase. Similarly, PTEN expression did not significantly increase in chronic GH-treated mice with hypoinsulinemia induced by prolonged fasting. We conducted in-vitro experiments in HepG2 cells to validate our in-vivo findings. Long-term exposure to GH caused similar resistance of insulin/PI3K/Akt signaling in HepG2 cells; and over-expression of PTEN enhanced the impairment of insulin signaling. On the other hand, disabling the PTEN gene by transfecting the mutant PTEN construct C124S or siPTEN, disrupted the chronic GH induced insulin resistance. Our data demonstrate that PTEN plays an important role in chronic-GH-induced insulin resistance. These findings may have implication in other pathological insulin resistance.

  20. Altering sensorimotor feedback disrupts visual discrimination of facial expressions.

    Science.gov (United States)

    Wood, Adrienne; Lupyan, Gary; Sherrin, Steven; Niedenthal, Paula

    2016-08-01

    Looking at another person's facial expression of emotion can trigger the same neural processes involved in producing the expression, and such responses play a functional role in emotion recognition. Disrupting individuals' facial action, for example, interferes with verbal emotion recognition tasks. We tested the hypothesis that facial responses also play a functional role in the perceptual processing of emotional expressions. We altered the facial action of participants with a gel facemask while they performed a task that involved distinguishing target expressions from highly similar distractors. Relative to control participants, participants in the facemask condition demonstrated inferior perceptual discrimination of facial expressions, but not of nonface stimuli. The findings suggest that somatosensory/motor processes involving the face contribute to the visual perceptual-and not just conceptual-processing of facial expressions. More broadly, our study contributes to growing evidence for the fundamentally interactive nature of the perceptual inputs from different sensory modalities. PMID:26542827

  1. Cell-type specific roles for PTEN in establishing a functional retinal architecture.

    Directory of Open Access Journals (Sweden)

    Robert Cantrup

    Full Text Available BACKGROUND: The retina has a unique three-dimensional architecture, the precise organization of which allows for complete sampling of the visual field. Along the radial or apicobasal axis, retinal neurons and their dendritic and axonal arbors are segregated into layers, while perpendicular to this axis, in the tangential plane, four of the six neuronal types form patterned cellular arrays, or mosaics. Currently, the molecular cues that control retinal cell positioning are not well-understood, especially those that operate in the tangential plane. Here we investigated the role of the PTEN phosphatase in establishing a functional retinal architecture. METHODOLOGY/PRINCIPAL FINDINGS: In the developing retina, PTEN was localized preferentially to ganglion, amacrine and horizontal cells, whose somata are distributed in mosaic patterns in the tangential plane. Generation of a retina-specific Pten knock-out resulted in retinal ganglion, amacrine and horizontal cell hypertrophy, and expansion of the inner plexiform layer. The spacing of Pten mutant mosaic populations was also aberrant, as were the arborization and fasciculation patterns of their processes, displaying cell type-specific defects in the radial and tangential dimensions. Irregular oscillatory potentials were also observed in Pten mutant electroretinograms, indicative of asynchronous amacrine cell firing. Furthermore, while Pten mutant RGC axons targeted appropriate brain regions, optokinetic spatial acuity was reduced in Pten mutant animals. Finally, while some features of the Pten mutant retina appeared similar to those reported in Dscam-mutant mice, PTEN expression and activity were normal in the absence of Dscam. CONCLUSIONS/SIGNIFICANCE: We conclude that Pten regulates somal positioning and neurite arborization patterns of a subset of retinal cells that form mosaics, likely functioning independently of Dscam, at least during the embryonic period. Our findings thus reveal an unexpected

  2. Fish oil suppresses cell growth and metastatic potential by regulating PTEN and NF-κB signaling in colorectal cancer.

    Directory of Open Access Journals (Sweden)

    Shevali Kansal

    Full Text Available Homeostasis in eukaryotic tissues is tightly regulated by an intricate balance of the prosurvival and antisurvival signals. The tumor suppressor PTEN (phosphatase and tensin homolog deleted on chromosome 10, a dual-specificity phosphatase, plays a functional role in cell cycle arrest and apoptosis. NF-κB and its downstream regulators (such as VEGF play a central role in prevention of apoptosis, promotion of inflammation and tumor growth. Therefore, we thought to estimate the expression of PTEN, Poly-ADP-ribose polymerase (PARP, NF-κBp50, NF-κBp65 and VEGF to evaluate the effect of supplementation of fish oil on apoptotic and inflammatory signaling in colon carcinoma. Male wistar rats in Group I received purified diet while Group II and III received modified diet supplemented with FO∶CO(1∶1&FO∶CO(2.5∶1 respectively. These were further subdivided into controls receiving ethylenediamine-tetra acetic-acid and treated groups received dimethylhydrazine-dihydrochloride (DMH/week for 4 weeks. Animals sacrificed 48 hours after last injection constituted initiation phase and that sacrificed after 16 weeks constituted post-initiation phase. We have analysed expression of PTEN, NF-κBp50, NF-κBp65 by flowcytometer and nuclear localization of NF-κB by immunofluorescence. PARP and VEGF were assessed by immunohistochemistry. In the initiation phase, animals receiving DMH have shown increased % of apoptotic cells, PTEN, PARP, NF-κBp50, NF-κBp65 and VEGF however in post-initiation phase no significant alteration in apoptosis with decreased PTEN and increased PARP, NF-κBp50, NF-κBp65 and VEGF were observed as compared to control animals. On treatment with both ratios of fish oil in both the phases, augmentation in % of apoptotic cells, decreased PTEN, PARP, NF-κBp50, NF-κBp65 and VEGF were documented with respect to DMH treated animals with effect being more exerted with higher ration in post-initiation phase. Hence, fish oil activates

  3. The Involvement of Phosphatase and Tensin Homolog Deleted on Chromosome Ten (PTEN in the Regulation of Inflammation Following Coronary Microembolization

    Directory of Open Access Journals (Sweden)

    Jiangyou Wang

    2014-06-01

    Full Text Available Background/Aims: Growing evidence shows that phosphatase and tensin homolog deleted on chromosome ten (PTEN is involved in regulating inflammation in different pathological conditions. Therefore, we hypothesized that the upregulation of PTEN correlates with the impairment of cardiac function in swine following coronary microembolization (CME. Methods: To possibly disclose an anti-inflammatory effect of PTEN, we induced swine CME by injecting inertia plastic microspheres (42 μm in diameter into the left anterior descending coronary artery and analyzed the myocardial tissue by immunochemistry, qRT-PCR and western blot analyses. In addition, we downregulated PTEN using siRNA. Results: Following CME, PTEN mRNA and protein levels were elevated as early as 3 h, peaked at 12 h, and then continuously decreased at 24 h and 48 h but remained elevated. Through linear correlation analysis, the PTEN protein level positively correlated with cTnI and TNF-α but was negatively correlated with LVEF. Furthermore, PTEN siRNA reduced the microinfarct volume, improved cardiac function (LVEF, reduced the release of cTnI, and suppressed PTEN and TNF-α protein expression. Conclusion: This study demonstrated, for the first time, that PTEN is involved in CME-induced inflammatory injury. The data generated from this study provide a rationale for the development of PTEN-based anti-inflammatory strategies.

  4. Planarian PTEN homologs regulate stem cells and regeneration through TOR signaling.

    Science.gov (United States)

    Oviedo, Néstor J; Pearson, Bret J; Levin, Michael; Sánchez Alvarado, Alejandro

    2008-01-01

    We have identified two genes, Smed-PTEN-1 and Smed-PTEN-2, capable of regulating stem cell function in the planarian Schmidtea mediterranea. Both genes encode proteins homologous to the mammalian tumor suppressor, phosphatase and tensin homolog deleted on chromosome 10 (PTEN). Inactivation of Smed-PTEN-1 and -2 by RNA interference (RNAi) in planarians disrupts regeneration, and leads to abnormal outgrowths in both cut and uncut animals followed soon after by death (lysis). The resulting phenotype is characterized by hyperproliferation of neoblasts (planarian stem cells), tissue disorganization and a significant accumulation of postmitotic cells with impaired differentiation capacity. Further analyses revealed that rapamycin selectively prevented such accumulation without affecting the normal neoblast proliferation associated with physiological turnover and regeneration. In animals in which PTEN function is abrogated, we also detected a significant increase in the number of cells expressing the planarian Akt gene homolog (Smed-Akt). However, functional abrogation of Smed-Akt in Smed-PTEN RNAi-treated animals does not prevent cell overproliferation and lethality, indicating that functional abrogation of Smed-PTEN is sufficient to induce abnormal outgrowths. Altogether, our data reveal roles for PTEN in the regulation of planarian stem cells that are strikingly conserved to mammalian models. In addition, our results implicate this protein in the control of stem cell maintenance during the regeneration of complex structures in planarians. PMID:19048075

  5. Systematic analysis of the PTEN 5' leader identifies a major AUU initiated proteoform.

    Science.gov (United States)

    Tzani, Ioanna; Ivanov, Ivaylo P; Andreev, Dmitri E; Dmitriev, Ruslan I; Dean, Kellie A; Baranov, Pavel V; Atkins, John F; Loughran, Gary

    2016-05-01

    Abundant evidence for translation within the 5' leaders of many human genes is rapidly emerging, especially, because of the advent of ribosome profiling. In most cases, it is believed that the act of translation rather than the encoded peptide is important. However, the wealth of available sequencing data in recent years allows phylogenetic detection of sequences within 5' leaders that have emerged under coding constraint and therefore allow for the prediction of functional 5' leader translation. Using this approach, we previously predicted a CUG-initiated, 173 amino acid N-terminal extension to the human tumour suppressor PTEN. Here, a systematic experimental analysis of translation events in the PTEN 5' leader identifies at least two additional non-AUG-initiated PTEN proteoforms that are expressed in most human cell lines tested. The most abundant extended PTEN proteoform initiates at a conserved AUU codon and extends the canonical AUG-initiated PTEN by 146 amino acids. All N-terminally extended PTEN proteoforms tested retain the ability to downregulate the PI3K pathway. We also provide evidence for the translation of two conserved AUG-initiated upstream open reading frames within the PTEN 5' leader that control the ratio of PTEN proteoforms.

  6. MUC1 positive, Kras and Pten driven mouse gynecologic tumors replicate human tumors and vary in survival and nuclear grade based on anatomical location.

    Directory of Open Access Journals (Sweden)

    Tejas S Tirodkar

    Full Text Available Activating mutations of Kras oncogene and deletions of Pten tumor suppressor gene play important roles in cancers of the female genital tract. We developed here new preclinical models for gynecologic cancers, using conditional (Cre-loxP mice with floxed genetic alterations in Kras and Pten. The triple transgenic mice, briefly called MUC1KrasPten, express human MUC1 antigen as self and carry a silent oncogenic KrasG12D and Pten deletion mutation. Injection of Cre-encoding adenovirus (AdCre in the ovarian bursa, oviduct or uterus activates the floxed mutations and initiates ovarian, oviductal, and endometrial cancer, respectively. Anatomical site-specific Cre-loxP recombination throughout the genital tract of MUC1KrasPten mice leads to MUC1 positive genital tract tumors, and the development of these tumors is influenced by the anatomical environment. Endometrioid histology was consistently displayed in all tumors of the murine genital tract (ovaries, oviducts, and uterus. Tumors showed increased expression of MUC1 glycoprotein and triggered de novo antibodies in tumor bearing hosts, mimicking the immunobiology seen in patients. In contrast to the ovarian and endometrial tumors, oviductal tumors showed higher nuclear grade. Survival for oviduct tumors was significantly lower than for endometrial tumors (p = 0.0015, yet similar to survival for ovarian cancer. Oviducts seem to favor the development of high grade tumors, providing preclinical evidence in support of the postulated role of fallopian tubes as the originating site for high grade human ovarian tumors.

  7. 参附注射液对糖尿病大鼠心肌缺血再灌注时PTEN和P13 K表达的影响%Effects of Shenfu injectio on expression of PTEN and PI3K during myocardial ischemia-reperfusion in diabetic rats

    Institute of Scientific and Technical Information of China (English)

    夏中元; 江梦; 肖业达; 孟庆涛

    2009-01-01

    Objective To investigate the effect of Shenfu injectio (SFI) on the expression of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) and phosphatidylinositol 3-kinase (PI3K) during myocardial ischemia-reperfusion (IR) in diabetic rats.Methods Thirty adult male diabetic SD rats weighing 220-280 g were used in this study. Diabetes mellitus was induced with intraperitoneal streptozotocin 60 mg/kg and confirmed by fasting blood glucose > 16.7 mmol/L. The animals were randomly divided into 3 groups ( n = 10 each): group I sham operation (group S); group II IR and group Ⅲ SFI. Myocardial IR was produced by occlusion of left anterior descending branch (LAD) of coronary artery for 30 min followed by 120 min reperfusion in group IR and SFI. LAD was exposed but not occluded in group S.SFI was infused iv at 10 ml·kg-1 ·h-1 before opening the thoracic cavity and at 3ml·kg-1·h-1 after opening the thoracic cavity in group SFI until the end of operation. Equal volume of Lactated Ringer's solution and hydroxyethyl starch was infused instead of SFI in group S and IR. The rats were killed and hearts removed at 120 min of reperfusion for microscopic examination and determination of cardiomyocyte apoptosis (by TUNEL)and expression of PTEN and PDK (by immunohistochemical method). PTEN/PI3K ratio, myocardial infarct size of left ventricle and apoptosis index were calculated.Correlation between apoptosis index and PTEN/PI3K ratio was analyzed. Results Myocardial infarct size and apoptosis index were significantly increased, while expression of PTEN and PI3K was up-regulated in group IR and SFI as compared with group S ( P < 0.05 or 0.01) . PTEN/PI3K ratio was significantly decreased in group SFI as compared with group S (P< 0.05). Myocardial infarct size and apoptosis index were significantly decreased, PTEN expression was down-regulated, PI3K expression was up-regulated and PTEN/PI3K ratio was significantly decreased in group SFI as compared with group IR( P < 0

  8. Tnactivation of PTEN is associated with increased angiogenesis and VEGF overexpression in gastric cancer

    Institute of Scientific and Technical Information of China (English)

    Ye-Jiang Zhou; Yu-Xia Xiong; Xiao-Ting Wu; De Shi; Wei Fan; Tong Zhou; Yue-Chun Li; Xiong Huang

    2004-01-01

    AIM: To investigate the expression of PTEN/MMAC1/TEP1and vascular endothelial growth factor (VEGF), their roles in biologic behavior and angiogenesis and their association in gastric cancer.METHODS: Immunohistochemical staining was used to evaluate the expression of PTEN, VEGF and microvascular density (MVD) on paraffin-embedded sections in 70 patients with primary gastric cancer and 24 patients with chronic superficial gastritis (CSG). Expression of PTEN, VEGF and MVD were compared with clinicopathological features of gastric cancer. The relationship between expression of PTEN, VEGF and MVD as well as the relationship between PTEN and VEGF expression in caner cells were investigated.RESULTS: PTEN expression significantly decreased (t= 3.98,P<0.01) whereas both VEGF expression and MVD significant increased (t = 4.29 and 4.41, respectively, both P<0.01)in gastric cancer group compared with CSG group. PTEN expression was significantly down-regulated (t = 1.95,P<0.05) whereas VEGF expression (t = 2.37, P<0.05) and MVD (t = 3.28, P<0.01) was significantly up-regulated in advanced gastric cancer compared with early-stage gastric cancer. PTEN expression in gastric cancer showed a negative association with lymph node metastasis (t= 3.91, P<0.01),invasion depth (t= 1.95, P<0.05) and age (t= 4.69, P<0.01).MVD in PTEN-negative gastric cancer was significantly higher than that in PTEN-positive gastric cancer (t = 3.69,P<0.01), and there was a negative correlation between PTEN expression and MVD (γ = -0.363, P<0.05). VEGF expression was positively associated with invasion depth (especially with serosa invasion, t = 4.69, P<0.01), lymph node metastasis (t= 2.31, P<0.05) and TNM stage (t= 3.04,P<0.01). MVD in VEGF-positive gastric cancer was significantly higher than that in VEGF-negative gastric cancer (t = 4.62,P<0.01), and there was a positive correlation between VEGF expression of and MVD (γ = 0.512, P<0.05). VEGF expression in PTEN

  9. Growth Suppression of Human Lung Cancer Cells and Implanted Tumors by Adenovirus-mediated Transfer of the PTEN Gene

    Institute of Scientific and Technical Information of China (English)

    陈志雄; 杨炯

    2010-01-01

    This study examined the effects of a recombinant adenovirus Ad-PTEN-EGFP on the proliferation of A549 cells,a human lung carcinoma cell line,in vitro and on the growth of the implanted tumors in the nude mice in vivo,explored the underlying mechanisms and evaluated the in vitro transfection efficiency of Ad-PTEN-EGFP into A549 cells.The expression of Ad-PTEN-EGFP in the A549 cells was determined.The proliferation and the apoptosis rates of the A549 cells with Ad-PTEN-EGFP transfection or not was detected by...

  10. Gene Expression Profiling of Biological Pathway Alterations by Radiation Exposure

    OpenAIRE

    Lee, Kuei-Fang; Weng, Julia Tzu-Ya; Hsu, Paul Wei-Che; Chi, Yu-Hsiang; Chen, Ching-Kai; Liu, Ingrid Y.; CHEN, YI-CHENG; Wu, Lawrence Shih-Hsin

    2014-01-01

    Though damage caused by radiation has been the focus of rigorous research, the mechanisms through which radiation exerts harmful effects on cells are complex and not well-understood. In particular, the influence of low dose radiation exposure on the regulation of genes and pathways remains unclear. In an attempt to investigate the molecular alterations induced by varying doses of radiation, a genome-wide expression analysis was conducted. Peripheral blood mononuclear cells were collected from...

  11. Regulation of the activity of the tumor suppressor PTEN by thioredoxin in Drosophila melanogaster

    International Nuclear Information System (INIS)

    Human Thioredoxin-1 (hTrx-1) is a small redox protein with a molecular weight of 12 kDa that contains two cysteine residues found in its catalytic site. HTrx-1 plays an important role in cell growth, apoptosis, and cancer patient prognosis. Recently, we have demonstrated that hTrx-1 binds to the C2 domain of the human tumor suppressor, PTEN, in a redox dependent manner. This binding leads to the inhibition of PTEN lipid phosphatase activity in mammalian tissue culture systems. In this study, we show that over-expression of hTrx-1 in Drosophila melanogaster promotes cell growth and proliferation during eye development as measured by eye size and ommatidia size. Furthermore, hTrx-1 rescues the small eye phenotype induced by the over-expression of PTEN. We demonstrate that this rescue of the PTEN-induced eye size phenotype requires cysteine-218 in the C2 domain of PTEN. We also show that hTrx-1 over-expression results in increased Akt phosphorylation in fly head extracts supporting our observations that the hTrx-1-induced eye size increase results from the inhibition of PTEN activity. Our study confirms the redox regulation of PTEN through disulfide bond formation with the hTrx-1 in Drosophila and suggests conserved mechanisms for thioredoxins and their interactions with the phosphatidylinositol-3-kinase signaling pathway in humans and fruit flies

  12. Metformin inhibits inflammatory response via AMPK-PTEN pathway in vascular smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sun Ae [Department of Pharmacology, Aging-Associated Vascular Disease Research Center, College of Medicine, Yeungnam University, Daegu 705-717 (Korea, Republic of); Choi, Hyoung Chul, E-mail: hcchoi@med.yu.ac.kr [Department of Pharmacology, Aging-Associated Vascular Disease Research Center, College of Medicine, Yeungnam University, Daegu 705-717 (Korea, Republic of)

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer PTEN was induced by metformin and inhibited by compound C and AMPK siRNA. Black-Right-Pointing-Pointer Metformin suppressed TNF-{alpha}-induced COX-2 and iNOS mRNA expression. Black-Right-Pointing-Pointer Compound C and bpv (pic) increased iNOS and COX-2 protein expression. Black-Right-Pointing-Pointer NF-{kappa}B activation was restored by inhibiting AMPK and PTEN. Black-Right-Pointing-Pointer AMPK and PTEN regulated TNF-{alpha}-induced ROS production in VSMCs. -- Abstract: Atherosclerosis is a chronic inflammation of the coronary arteries. Vascular smooth muscle cells (VSMCs) stimulated by cytokines and chemokines accelerate the inflammatory response and migrate to the injured endothelium during the progression of atherosclerosis. Activation of AMP activated protein kinase (AMPK), a key sensor maintaining metabolic homeostasis, suppresses the inflammatory response. However, how AMPK regulates the inflammatory response is poorly understood. To identify the mechanism of this response, we focused on phosphatase and tensin homolog (PTEN), which is a negative regulator of inflammation. We investigated that activation of AMPK-induced PTEN expression and suppression of the inflammatory response through the AMPK-PTEN pathway in VSMCs. We treated with the well-known AMPK activator metformin to induce PTEN expression. PTEN was induced by metformin (2 mM) and inhibited by compound C (10 {mu}M) and AMPK siRNA. Tumor necrosis factor-alpha (TNF-{alpha}) was used to induce inflammation. The inflammatory response was confirmed by cyclooxygenase (COX)-2, inducible nitric oxide synthase (iNOS) expression, and activation of nuclear factor (NF)-{kappa}B. Metformin suppressed COX-2 and iNOS mRNA and protein expression dose dependently. Treatment with compound C and bpv (pic) in the presence of metformin, iNOS and COX-2 protein expression increased. NF-{kappa}B activation decreased in response to metformin and was restored by inhibiting AMPK

  13. Upregulation of PTEN suppresses invasion in Tca8113 tongue cancer cells through repression of epithelial-mesenchymal transition (EMT).

    Science.gov (United States)

    Xie, Siming; Lu, Zhiyuan; Lin, Yanzhu; Shen, Lijia; Yin, Cao

    2016-05-01

    We previously discovered that the expression of the tumor suppressor phosphatase and tensin homolog (PTEN) was downregulated in the majority patients with tongue squamous cell carcinoma (TSCC). The aim of this study was to investigate the role of PTEN overexpression in the regulation of epithelial-mesenchymal transition (EMT) of the tongue squamous carcinoma cell line Tca8113 as well as explore the underlying mechanism. GV230 (containing the PTEN gene) and empty vectors were transfected into Tca8113 cells. After stable transfection, the messenger RNA (mRNA) and protein levels of PTEN were validated using quantitative real-time PCR (qPCR) and Western blot analysis. The growth and cell cycle were analyzed using Cell Counting Kit-8 (CCK-8) and flow cytometry, respectively. The invasion ability was measured with a transwell assay. The effects of PTEN overexpression on EMT and Hedgehog signaling were assessed by comparing Tca8113-PTEN cells with control and negative control cell groups. We found that PTEN expression was significantly upregulated after transfection. Meanwhile, upregulated PTEN inhibited the proliferation and invasion of Tca8113 cells. In addition, we observed changes in the EMT- and Hedgehog-associated proteins. These data demonstrated that PTEN upregulation could reduce invasion by inhibiting the process of EMT in Tca8113 cells, which might be related to the Hedgehog signaling pathway. PMID:26649861

  14. A Critical Role of the PTEN/PDGF Signaling Network for the Regulation of Radiosensitivity in Adenocarcinoma of the Prostate

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, Michael, E-mail: mechristense@uwalumni.com [Department of Radiation Oncology, Wayne State University School of Medicine, Barbara Ann Karmanos Cancer Center, Detroit, Michigan (United States); Najy, Abdo J. [Department of Pathology, Wayne State University School of Medicine, Barbara Ann Karmanos Cancer Center, Detroit, Michigan (United States); Snyder, Michael; Movilla, Lisa S. [Department of Radiation Oncology, Wayne State University School of Medicine, Barbara Ann Karmanos Cancer Center, Detroit, Michigan (United States); Kim, Hyeong-Reh Choi [Department of Pathology, Wayne State University School of Medicine, Barbara Ann Karmanos Cancer Center, Detroit, Michigan (United States)

    2014-01-01

    Purpose: Loss or mutation of the phosphate and tensin homologue (PTEN) is a common genetic abnormality in prostate cancer (PCa) and induces platelet-derived growth factor D (PDGF D) signaling. We examined the role of the PTEN/PDGF axis on radioresponse using a murine PTEN null prostate epithelial cell model. Methods and Materials: PTEN wild-type (PTEN{sup +/+}) and PTEN knockout (PTEN{sup −/−}) murine prostate epithelial cell lines were used to examine the relationship between the PTEN status and radiosensitivity and also to modulate the PDGF D expression levels. PTEN{sup −/−} cells were transduced with a small hairpin RNA (shRNA) lentiviral vector containing either scrambled nucleotides (SCRM) or sequences targeted to PDGF D (shPDGF D). Tumorigenesis and morphogenesis of these cell lines were evaluated in vivo via subcutaneous injection of male nude mice and in vitro using Matrigel 3-dimensional (3D) culture. Effects of irradiation on clonogenic survival, cell migration, and invasion were measured with respect to the PTEN status and the PDGF D expression level. In addition, apoptosis and cell cycle redistribution were examined as potential mechanisms for differences seen. Results: PTEN{sup −/−} cells were highly tumorigenic in animals and effectively formed foci in 3D culture. Importantly, loss of PDGF D in these cell lines drastically diminished these phenotypes. Furthermore, PTEN{sup −/−} cells demonstrated increased clonogenic survival in vitro compared to PTEN{sup +/+}, and attenuation of PDGF D significantly reversed this radioresistant phenotype. PTEN{sup −/−} cells displayed greater migratory and invasive potential at baseline as well as after irradiation. Both the basal and radiation-induced migratory and invasive phenotypes in PTEN{sup −/−} cells required PDGF D expression. Interestingly, these differences were independent of apoptosis and cell cycle redistribution, as they showed no significant difference. Conclusions: We propose

  15. Multi-determinants analysis of molecular alterations for predicting clinical benefit to EGFR-targeted monoclonal antibodies in colorectal cancer.

    Directory of Open Access Journals (Sweden)

    Andrea Sartore-Bianchi

    Full Text Available BACKGROUND: KRAS mutations occur in 35-45% of metastatic colorectal cancers (mCRC and preclude responsiveness to EGFR-targeted therapy with cetuximab or panitumumab. However, less than 20% patients displaying wild-type KRAS tumors achieve objective response. Alterations in other effectors downstream of the EGFR, such as BRAF, and deregulation of the PIK3CA/PTEN pathway have independently been found to give rise to resistance. We present a comprehensive analysis of KRAS, BRAF, PIK3CA mutations, and PTEN expression in mCRC patients treated with cetuximab or panitumumab, with the aim of clarifying the relative contribution of these molecular alterations to resistance. METHODOLOGY/PRINCIPAL FINDINGS: We retrospectively analyzed objective tumor response, progression-free (PFS and overall survival (OS together with the mutational status of KRAS, BRAF, PIK3CA and expression of PTEN in 132 tumors from cetuximab or panitumumab treated mCRC patients. Among the 106 non-responsive patients, 74 (70% had tumors with at least one molecular alteration in the four markers. The probability of response was 51% (22/43 among patients with no alterations, 4% (2/47 among patients with 1 alteration, and 0% (0/24 for patients with > or =2 alterations (p or =2 molecular alteration(s (p<0.001. CONCLUSIONS/SIGNIFICANCE: When expression of PTEN and mutations of KRAS, BRAF and PIK3CA are concomitantly ascertained, up to 70% of mCRC patients unlikely to respond to anti-EGFR therapies can be identified. We propose to define as 'quadruple negative', the CRCs lacking alterations in KRAS, BRAF, PTEN and PIK3CA. Comprehensive molecular dissection of the EGFR signaling pathways should be considered to select mCRC patients for cetuximab- or panitumumab-based therapies.

  16. Alteration of gene expression by alcohol exposure at early neurulation

    Directory of Open Access Journals (Sweden)

    McClintick Jeanette N

    2011-02-01

    Full Text Available Abstract Background We have previously demonstrated that alcohol exposure at early neurulation induces growth retardation, neural tube abnormalities, and alteration of DNA methylation. To explore the global gene expression changes which may underline these developmental defects, microarray analyses were performed in a whole embryo mouse culture model that allows control over alcohol and embryonic variables. Result Alcohol caused teratogenesis in brain, heart, forelimb, and optic vesicle; a subset of the embryos also showed cranial neural tube defects. In microarray analysis (accession number GSM9545, adopting hypothesis-driven Gene Set Enrichment Analysis (GSEA informatics and intersection analysis of two independent experiments, we found that there was a collective reduction in expression of neural specification genes (neurogenin, Sox5, Bhlhe22, neural growth factor genes [Igf1, Efemp1, Klf10 (Tieg, and Edil3], and alteration of genes involved in cell growth, apoptosis, histone variants, eye and heart development. There was also a reduction of retinol binding protein 1 (Rbp1, and de novo expression of aldehyde dehydrogenase 1B1 (Aldh1B1. Remarkably, four key hematopoiesis genes (glycophorin A, adducin 2, beta-2 microglobulin, and ceruloplasmin were absent after alcohol treatment, and histone variant genes were reduced. The down-regulation of the neurospecification and the neurotrophic genes were further confirmed by quantitative RT-PCR. Furthermore, the gene expression profile demonstrated distinct subgroups which corresponded with two distinct alcohol-related neural tube phenotypes: an open (ALC-NTO and a closed neural tube (ALC-NTC. Further, the epidermal growth factor signaling pathway and histone variants were specifically altered in ALC-NTO, and a greater number of neurotrophic/growth factor genes were down-regulated in the ALC-NTO than in the ALC-NTC embryos. Conclusion This study revealed a set of genes vulnerable to alcohol exposure and

  17. Altered choroid plexus gene expression in major depressive disorder

    Directory of Open Access Journals (Sweden)

    Cortney Ann Turner

    2014-04-01

    Full Text Available Given the emergent interest in biomarkers for mood disorders, we assessed gene expression in the choroid plexus, the region that produces cerebrospinal fluid (CSF, in individuals with major depressive disorder (MDD. Genes that are expressed in the choroid plexus (CP can be secreted into the CSF and may be potential biomarker candidates. Given that we have previously shown that fibroblast growth factor family members are differentially expressed in post-mortem brain of subjects with MDD and the CP is a known source of growth factors in the brain, we posed the question whether growth factor dysregulation would be found in the CP of subjects with MDD. We performed laser capture microscopy of the choroid plexus at the level of the hippocampus in subjects with MDD and psychiatrically normal controls. We then extracted, amplified, labeled and hybridized the cRNA to Illumina BeadChips to assess gene expression. In controls, the most highly abundant known transcript was transthyretin. Moreover, half of the 14 most highly expressed transcripts in controls encode ribosomal proteins. Using BeadStudio software, we identified 169 transcripts differentially expressed (p< 0.05 between control and MDD samples. Using pathway analysis we noted that the top network altered in subjects with MDD included multiple members of the transforming growth factor-beta (TGFβ pathway. Quantitative real-time PCR (qRT-PCR confirmed downregulation of several transcripts that interact with the extracellular matrix in subjects with MDD. These results suggest that there may be an altered cytoskeleton in the choroid plexus in MDD subjects that may lead to a disrupted blood-CSF-brain barrier.

  18. Gene Expression Profiling of Biological Pathway Alterations by Radiation Exposure

    Directory of Open Access Journals (Sweden)

    Kuei-Fang Lee

    2014-01-01

    Full Text Available Though damage caused by radiation has been the focus of rigorous research, the mechanisms through which radiation exerts harmful effects on cells are complex and not well-understood. In particular, the influence of low dose radiation exposure on the regulation of genes and pathways remains unclear. In an attempt to investigate the molecular alterations induced by varying doses of radiation, a genome-wide expression analysis was conducted. Peripheral blood mononuclear cells were collected from five participants and each sample was subjected to 0.5 Gy, 1 Gy, 2.5 Gy, and 5 Gy of cobalt 60 radiation, followed by array-based expression profiling. Gene set enrichment analysis indicated that the immune system and cancer development pathways appeared to be the major affected targets by radiation exposure. Therefore, 1 Gy radioactive exposure seemed to be a critical threshold dosage. In fact, after 1 Gy radiation exposure, expression levels of several genes including FADD, TNFRSF10B, TNFRSF8, TNFRSF10A, TNFSF10, TNFSF8, CASP1, and CASP4 that are associated with carcinogenesis and metabolic disorders showed significant alterations. Our results suggest that exposure to low-dose radiation may elicit changes in metabolic and immune pathways, potentially increasing the risk of immune dysfunctions and metabolic disorders.

  19. Glioma cell VEGFR-2 confers resistance to chemotherapeutic and antiangiogenic treatments in PTEN-deficient glioblastoma.

    Science.gov (United States)

    Kessler, Tobias; Sahm, Felix; Blaes, Jonas; Osswald, Matthias; Rübmann, Petra; Milford, David; Urban, Severino; Jestaedt, Leonie; Heiland, Sabine; Bendszus, Martin; Hertenstein, Anne; Pfenning, Philipp-Niclas; Ruiz de Almodóvar, Carmen; Wick, Antje; Winkler, Frank; von Deimling, Andreas; Platten, Michael; Wick, Wolfgang; Weiler, Markus

    2015-10-13

    Loss of the tumor suppressor phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a prerequisite for tumor cell-specific expression of vascular endothelial growth factor receptor (VEGFR)-2 in glioblastoma defining a subgroup prone to develop evasive resistance towards antiangiogenic treatments. Immunohistochemical analysis of human tumor tissues showed VEGFR-2 expression in glioma cells in 19% of specimens examined, mainly in the infiltration zone. Glioma cell VEGFR-2 positivity was restricted to PTEN-deficient tumor specimens. PTEN overexpression reduced VEGFR-2 expression in vitro, as well as knock-down of raptor or rictor. Genetic interference with VEGFR-2 revealed proproliferative, antiinvasive and chemoprotective functions for VEGFR-2 in glioma cells. VEGFR-2-dependent cellular effects were concomitant with activation of 'kappa-light-chain-enhancer' of activated B-cells, protein kinase B, and N-myc downstream regulated gene 1. Two-photon in vivo microscopy revealed that expression of VEGFR-2 in glioma cells hampers antiangiogenesis. Bevacizumab induces a proinvasive response in VEGFR-2-positive glioma cells. Patients with PTEN-negative glioblastomas had a shorter survival after initiation of bevacizumab therapy compared with PTEN-positive glioblastomas. Conclusively, expression of VEGFR-2 in glioma cells indicates an aggressive glioblastoma subgroup developing early resistance to temozolomide or bevacizumab. Loss of PTEN may serve as a biomarker identifying those tumors upfront by routine neuropathological methods.

  20. Interaction of IGF2 and PTEN in ( M alignant Breast T issues

    Directory of Open Access Journals (Sweden)

    Preetha J Shetty

    2012-07-01

    Full Text Available Background: Breast Cancer (BC is one of the leading malignancies affecting women worldwide. Epigenetic mechanisms regulate gene expression playing an important role in the pathophysiology of cancer. In the present study IGF2 and PTEN genes in AKT pathway were selected for evaluation. Objective: To investigate the role of methylation and interaction of IGF2 and PTEN and in the pathoetiology of BC. Methods: Paraffin embedded archival breast tumor and adjacent normal tissue samples were used for carrying out PCR based methylation assay, genomic PCR, immunohistochemistry and qRT PCR. Results: In-Silico study indicated the absence of hormone responsive elements in the promoters of the selected genes. Methylation results indicated significant loss of methylation in IGF2 exon 9 CpG cluster and significant gain of PTEN promoter methylation in tumors. Immunohistochemistry revealed enhanced cytoplasmic expression o f IGF2 protein (p< 0.0001 and decreased nuclear localization of PTEN protein (p=0.0069 in the breast tumors. RT-PCR results indicated an increased IGF2 (p=0.024 and decreased PTEN transcripts (p<0.0001 in the tumors. Conclusion: Increased IGF2 in normal tissues increases PTEN which acts as a negative regulator of AKT pathway in the cytoplasm controlling excessive proliferation while in tumors this regulation is lost. PTEN acts as a negative regulator of MAPK pathway in the nucleus, plays an important role in cell cycle arrest in normal breast tissue. Reduction of PTEN in tumor tissue affects this pathway leading to cell survival. IGF2 and PTEN have a role in breast cancer and these molecular factors can be used for targeting therapy in future.

  1. Mitochondria-related miR-141-3p contributes to mitochondrial dysfunction in HFD-induced obesity by inhibiting PTEN.

    Science.gov (United States)

    Ji, Juan; Qin, Yufeng; Ren, Jing; Lu, Chuncheng; Wang, Rong; Dai, Xiuliang; Zhou, Ran; Huang, Zhenyao; Xu, Miaofei; Chen, Minjian; Wu, Wei; Song, Ling; Shen, Hongbing; Hu, Zhibin; Miao, Dengshun; Xia, Yankai; Wang, Xinru

    2015-11-09

    Mitochondria-related microRNAs (miRNAs) have recently emerged as key regulators of cell metabolism and can modulate mitochondrial fusion and division. In order to investigate the roles of mitochondria-related miRNAs played in obesity, we conducted comprehensive molecular analysis in vitro and in vivo. Based on high-fat-diet (HFD) induced obese mice, we found that hepatic mitochondrial function was markedly altered. Subsequently, we evaluated the expression levels of selected mitochondria-related miRNAs and found that miR-141-3p was up-regulated strikingly in HFD mice. To further verify the role of miR-141-3p in obesity, we carried out gain-and-loss-of-function study in human HepG2 cells. We found that miR-141-3p could modulate ATP production and induce oxidative stress. Through luciferase report gene assay, we identified that phosphatase and tensin homolog (PTEN) was a target of miR-141-3p. Inhibiting PTEN could alter the mitochondrial function, too. Our study suggested that mitochondria-related miR-141-3p induced mitochondrial dysfunction by inhibiting PTEN.

  2. The effects of antisense PTEN gene transfection on the growth and invasion of glioma cells

    Institute of Scientific and Technical Information of China (English)

    CHEN Hong-jie; ZHENG Zhao-cong; WANG Ru-mi; WANG Shou-sen; YANG Wei-zhong

    2006-01-01

    Objective:To study the effects of antisense PTEN gene on the growth and invasion of glioma cells. Methods:A pcDNA3. 1/Hygro (-) recombinant plasmid containing antisense PTEN gene fragment was constructed. Glioma cells of primary culture were transfected with antisense PTEN gene vector and stably transfected clones were selected. Then, the different growth and invasion abilities and the different MMP9 mRNA expressions of three kinds of cells were observed, including the transfected cells, untransfected cells and the cells transfected with empty vector. Results :The abilities of growth and invasion of the transfected cells and the expressions of MMP9 mRNA were obviously enhanced. Conclusion: Antisense PTEN gene could have a negative impact on the growth and invasion of primary culture glioma cells.

  3. Exogenous PTEN Gene Induces Apoptosis in Breast Carcinoma Cell Line MDA468

    Institute of Scientific and Technical Information of China (English)

    CHEN Qingyong; WANG Chunyou; JIANG Chunfang; CHEN Daoda

    2007-01-01

    The effects and mechanisms of exogenous phosphatase and tensin homolog deleted from chromosome ten (PTEN) gene on phosphatase activity-dependent apoptosis of breast cancer cell line MDA468 were investigated. PTEN gene packaged with lipofectin was transferred into breast cancer cell line MDA468 and parental MDA468 cells served as controls. RT-PCR and Western blot were done to detect the expression of target genes. The expression of phosphospecific protein kinase B (PKB/Akt) and focal adhesion kinase (FAK) protein stimulated by epidermal growth factor (EGF) was also detected. Apoptosis was determined by flow cytometry with a double-staining method using FITC-conjugated annexin V and PI. MDA468 cells transfected with PTEN gene could express PTEN mRNA and protein. PTEN decreased the phosphorylation level of AKT protein and down-regulated FAK protein expression in MDA468 stimulated by EGF. The apoptosis rate was 21.68%. PTEN induced breast cancer apoptosis phosphatase activity-dependently. The mechanism is possibly relatedwith phosphoinositide 3-kinase (PI3K)/protein kinase B (PKB)/AKT signaling pathway. Those results may provide new clues on the gene therapy in breast cancer.

  4. Genomic rearrangements of PTEN in prostate cancer

    Directory of Open Access Journals (Sweden)

    Sopheap ePhin

    2013-09-01

    Full Text Available The phosphatase and tensin homolog gene on chromosome 10q23.3 (PTEN is a negative regulator of the PIK3/Akt survival pathway and is the most frequently deleted tumor suppressor gene in prostate cancer. Monoallelic loss of PTEN is present in up to 60% of localized prostate cancers and complete loss of PTEN in prostate cancer is linked to metastasis and androgen independent progression. Studies on the genomic status of PTEN in prostate cancer initially used a two-color fluorescence in-situ hybridization (FISH assay for PTEN copy number detection in formalin fixed paraffin embedded tissue preparations. More recently, a four-color FISH assay containing two additional control probes flanking the PTEN locus with a lower false-positive rate was reported. Combined with the detection of other critical genomic biomarkers for prostate cancer such as ERG, AR, and MYC, the evaluation of PTEN genomic status has proven to be invaluable for patient stratification and management. Although less frequent than allelic deletions, point mutations in the gene and epigenetic silencing are also known to contribute to loss of PTEN function, and ultimately to prostate cancer initiation. Overall, it is clear that PTEN is a powerful biomarker for prostate cancer. Used as a companion diagnostic for emerging therapeutic drugs, FISH analysis of PTEN is promisingly moving human prostate cancer closer to more effective cancer management and therapies.

  5. In vitro maturation alters gene expression in bovine oocytes.

    Science.gov (United States)

    Adona, Paulo R; Leal, Cláudia L V; Biase, Fernando H; De Bem, Tiago H; Mesquita, Lígia G; Meirelles, Flávio V; Ferraz, André L; Furlan, Luiz R; Monzani, Paulo S; Guemra, Samuel

    2016-08-01

    Gene expression profiling of in vivo- and in vitro-matured bovine oocytes can identify transcripts related to the developmental potential of oocytes. Nonetheless, the effects of in vitro culturing oocytes are yet to be fully understood. We tested the effects of in vitro maturation on the transcript profile of oocytes collected from Bos taurus indicus cows. We quantified the expression of 1488 genes in in vivo- and in vitro-matured oocytes. Of these, 51 genes were up-regulated, whereas 56 were down-regulated (≥2-fold) in in vivo-matured oocytes in comparison with in vitro-matured oocytes. Quantitative real-time polymerase chain reaction (PCR) of nine genes confirmed the microarray results of differential expression between in vivo- and in vitro-matured oocytes (EZR, EPN1, PSEN2, FST, IGFBP3, RBBP4, STAT3, FDPS and IRS1). We interrogated the results for enrichment of Gene Ontology categories and overlap with protein-protein interactions. The results revealed that the genes altered by in vitro maturation are mostly related to the regulation of oocyte metabolism. Additionally, analysis of protein-protein interactions uncovered two regulatory networks affected by the in vitro culture system. We propose that the differentially expressed genes are candidates for biomarkers of oocyte competence. In vitro oocyte maturation can affect the abundance of specific transcripts and are likely to deplete the developmental competence.

  6. MicroRNA-21 regulates hTERT via PTEN in hypertrophic scar fibroblasts.

    Directory of Open Access Journals (Sweden)

    Hua-Yu Zhu

    Full Text Available BACKGROUND: As an important oncogenic miRNA, microRNA-21 (miR-21 is associated with various malignant diseases. However, the precise biological function of miR-21 and its molecular mechanism in hypertrophic scar fibroblast cells has not been fully elucidated. METHODOLOGY/PRINCIPAL FINDINGS: Quantitative Real-Time PCR (qRT-PCR analysis revealed significant upregulation of miR-21 in hypertrophic scar fibroblast cells compared with that in normal skin fibroblast cells. The effects of miR-21 were then assessed in MTT and apoptosis assays through in vitro transfection with a miR-21 mimic or inhibitor. Next, PTEN (phosphatase and tensin homologue deleted on chromosome ten was identified as a target gene of miR-21 in hypertrophic scar fibroblast cells. Furthermore, Western-blot and qRT-PCR analyses revealed that miR-21 increased the expression of human telomerase reverse transcriptase (hTERT via the PTEN/PI3K/AKT pathway. Introduction of PTEN cDNA led to a remarkable depletion of hTERT and PI3K/AKT at the protein level as well as inhibition of miR-21-induced proliferation. In addition, Western-blot and qRT-PCR analyses confirmed that hTERT was the downstream target of PTEN. Finally, miR-21 and PTEN RNA expression levels in hypertrophic scar tissue samples were examined. Immunohistochemistry assays revealed an inverse correlation between PTEN and hTERT levels in high miR-21 RNA expressing-hypertrophic scar tissues. CONCLUSIONS/SIGNIFICANCE: These data indicate that miR-21 regulates hTERT expression via the PTEN/PI3K/AKT signaling pathway by directly targeting PTEN, therefore controlling hypertrophic scar fibroblast cell growth. MiR-21 may be a potential novel molecular target for the treatment of hypertrophic scarring.

  7. Suppression of Akt1 phosphorylation by adenoviral transfer of the PTEN gene inhibits hypoxia-induced proliferation of rat pulmonary arterial smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Chunxia [Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing 400038 (China); Yi, Bin, E-mail: yibin1974@163.com [Department of Anesthesia, Southwest Hospital, Third Military Medical University, Chongqing 400038 (China); Institute of Respiratory Disease, Xinqiao Hospital, Third Military Medical University, Chongqing 400037 (China); Bai, Li [Institute of Respiratory Disease, Xinqiao Hospital, Third Military Medical University, Chongqing 400037 (China); Xia, Yongzhi [Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing 400038 (China); Wang, Guansong; Qian, Guisheng [Institute of Respiratory Disease, Xinqiao Hospital, Third Military Medical University, Chongqing 400037 (China); Feng, Hua [Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing 400038 (China)

    2010-07-02

    Recent findings identify the role of proliferation of pulmonary artery smooth muscle cells (PASMCs) in pulmonary vascular remodeling. Phosphoinositide 3 kinase (PI3K) and serine/threonine kinase (Akt) proteins are expressed in vascular smooth muscle cells. In addition, phosphatase and tensin homolog deleted on chromosome 10 (PTEN) has been identified as a negative regulator of cytokine signaling that inhibits the PI3K-Akt pathway. However, little is known about the role of PTEN/Akt signaling in hypoxia-associated vascular remodeling. In this study, we found that hypoxia-induced the expression of Akt1 mRNA and phosphorylated protein by at least twofold in rat PASMCs. Phospho-PTEN significantly decreased in the nuclei of PASMCs after hypoxic stimulation. After forcing over-expression of PTEN by adenovirus-mediated PTEN (Ad-PTEN) transfection, the expression of phospho-Akt1 was significantly suppressed in PASMCs at all time-points measured. Additionally, we showed here that hypoxia increased proliferation of PASMCs by nearly twofold and over-expression of PTEN significantly inhibited hypoxia-induced PASMCs proliferation. These findings suggest that phospho-PTEN loss in the nuclei of PASMCs under hypoxic conditions may be the major cause of aberrant activation of Akt1 and may, therefore, play an important role in hypoxia-associated pulmonary arterial remodeling. Finally, the fact that transfection with Ad-PTEN inhibits the phosphorylation of Akt1 in PASMCs suggests a potential therapeutic effect on hypoxia-associated pulmonary arterial remodeling.

  8. Overexpression of LRIG1 regulates PTEN via MAPK/MEK signaling pathway in esophageal squamous cell carcinoma

    Science.gov (United States)

    Jiang, Xiaofang; Li, Huiwu

    2016-01-01

    The present study aimed to evaluate the role of leucine-rich repeats and immunoglobulin-like domain protein 1 (LRIG1) in the regulation of phosphatase and tensin homolog (PTEN) expression in esophageal carcinogenesis. LRIG1 was overexpressed in esophageal squamous cell carcinoma (ESCC) cell lines, and the effect of LRIG1 overexpression on the mRNA and protein expression levels of PTEN was evaluated by reverse transcription-quantitative polymerase chain reaction and western blotting. Furthermore, the effects of LRIG1 overexpression on the cell cycle distribution and apoptosis of ESCC cells were examined by flow cytometry. Various cell signaling pathway inhibitors were used to assess the effects of LRIG1 on downstream signaling in ESCC cell lines. In addition, the association between LRIG1 and PTEN expression was examined in 48 samples from patients with ESCC. LRIG1 overexpression was demonstrated to downregulate PTEN expression in ESCC cell lines, and promote their proliferation and inhibit apoptosis. In addition, LRIG1-mediated suppression of PTEN expression was inhibited by the U0126 inhibitor, which suggests that LRIG1 may inhibit the activation of PTEN signaling molecules by triggering the mitogen-activated protein kinase (MAPK)/MAPK kinase 1 (MEK) signaling pathway. In conclusion, the present study demonstrated that overexpression of LRIG1 significantly and adversely affected the survival of ESCC cells, and that the MAPK/MEK signaling pathway may be responsible for the repression of PTEN expression and function. PMID:27698691

  9. Interaction of E-cadherin and PTEN regulates morphogenesis and growth arrest in human mammary epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Fournier, Marcia V.; Fata, Jimmie E.; Martin, Katherine J.; Yaswen, Paul; Bissell, Mina J.

    2009-06-03

    PTEN is a dual function phosphatase with tumor suppressor function compromised in a wide spectrum of cancers. Because tissue polarity and architecture are crucial modulators of normal and malignant behavior, we postulated that PTEN may play a role in maintenance of tissue integrity. We used two non-malignant human mammary epithelial cell lines (HMECs) that form polarized, growth-arrested structures (acini) when cultured in 3-dimensional laminin-rich extracellular matrix gels (3D lrECM). As acini begin to form, PTEN accumulates in both the cytoplasm, and at cell-cell contacts where it colocalizes with E-cadherin/{beta}-catenin complex. Reduction of PTEN levels by shRNA in lrECM prevents formation of organized breast acini and disrupts growth arrest. Importantly, disruption of acinar polarity and cell-cell contact by E-cadherin function-blocking antibodies reduces endogenous PTEN protein levels and inhibits its accumulation at cell-cell contacts. Conversely, in SKBR3 breast cancer cells lacking endogenous E-cadherin expression, exogenous introduction of E-cadherin gene causes induction of PTEN expression and its accumulation at sites of cell interactions. These studies provide evidence that E-cadherin regulates both the PTEN protein levels and its recruitment to cell-cell junctions in 3D lrECM indicating a dynamic reciprocity between architectural integrity and the levels and localization of PTEN. This interaction thus appears to be a critical integrator of proliferative and morphogenetic signaling in breast epithelial cells.

  10. Vibrational force alters mRNA expression in osteoblasts

    Science.gov (United States)

    Tjandrawinata, R. R.; Vincent, V. L.; Hughes-Fulford, M.

    1997-01-01

    Serum-deprived mouse osteoblastic (MC3T3E1) cells were subjected to a vibrational force modeled by NASA to simulate a space shuttle launch (7.83 G rms). The mRNA levels for eight genes were investigated to determine the effect of vibrational force on mRNA expression. The mRNA levels of two growth-related protooncogenes, c-fos and c-myc, were up-regulated significantly within 30 min after vibration, whereas those of osteocalcin as well as transforming growth factor-beta1 were decreased significantly within 3 h after vibration. No changes were detected in the levels of beta-actin, histone H4, or cytoplasmic phospholipase A2 after vibration. No basal levels of cyclooxygenase-2 expression were detected. In addition, the extracellular concentrations of prostaglandin E2 (PGE2), a potent autocrine/paracrine growth factor in bone, were not significantly altered after vibration most likely due to the serum deprivation state of the osteoblasts. In comparison with the gravitational launch profile, vibrational-induced changes in gene expression were greater both in magnitude and number of genes activated. Taken together, these data suggest that the changes in mRNA expression are due to a direct mechanical effect of the vibrational force on the osteoblast cells and not to changes in the local PGE2 concentrations. The finding that launch forces induce gene expression is of utmost importance since many of the biological experiments do not dampen vibrational loads on experimental samples. This lack of dampening of vibrational forces may partially explain why 1-G onboard controls sometimes do not reflect 1-G ground controls. These data may also suggest that scientists use extra ground controls that are exposed to launch forces, have these forces dampened on launched samples, or use facilities such as Biorack that provide an onboard 1-G centrufuge in order to control for space shuttle launch forces.

  11. Alterations in integrin expression modulates invasion of pancreatic cancer cells.

    LENUS (Irish Health Repository)

    Walsh, Naomi

    2009-01-01

    BACKGROUND: Factors mediating the invasion of pancreatic cancer cells through the extracellular matrix (ECM) are not fully understood. METHODS: In this study, sub-populations of the human pancreatic cancer cell line, MiaPaCa-2 were established which displayed differences in invasion, adhesion, anoikis, anchorage-independent growth and integrin expression. RESULTS: Clone #3 displayed higher invasion with less adhesion, while Clone #8 was less invasive with increased adhesion to ECM proteins compared to MiaPaCa-2. Clone #8 was more sensitive to anoikis than Clone #3 and MiaPaCa-2, and displayed low colony-forming efficiency in an anchorage-independent growth assay. Integrins beta 1, alpha 5 and alpha 6 were over-expressed in Clone #8. Using small interfering RNA (siRNA), integrin beta1 knockdown in Clone #8 cells increased invasion through matrigel and fibronectin, increased motility, decreased adhesion and anoikis. Integrin alpha 5 and alpha 6 knockdown also resulted in increased motility, invasion through matrigel and decreased adhesion. CONCLUSION: Our results suggest that altered expression of integrins interacting with different extracellular matrixes may play a significant role in suppressing the aggressive invasive phenotype. Analysis of these clonal populations of MiaPaCa-2 provides a model for investigations into the invasive properties of pancreatic carcinoma.

  12. PTEN和COX-2在前列腺癌中的表达及其与肿瘤血管生成的关系%Relation between the expression of PTEN,COX-2 and angiogenesis in prostate cancer using tissue microarray

    Institute of Scientific and Technical Information of China (English)

    徐元成; 徐炜炜; 杨周亮

    2011-01-01

    目的 探讨PTEN和环氧化酶-2(COX-2)在前列腺癌(PCa)中的表达及其与肿瘤血管生成的关系.方法 应用免疫组化法在自制组织芯片上检测60例PCa(PCa组)及25例前列腺增生(对照组)组织中PTEN和COX-2的表达水平及其微血管密度(MVD).结果 PCa组PTEN阳性表达率明显低于对照组(P<0.05),而COX-2阳性表达率明显高于对照组(P<0.05);并且随着Gleason评分和临床分期的提高,PTEN的表达明显下降、COX-2的表达明显升高(均P<0.05).PCa组MVD值明显高于对照组(P<0.05);在PCa组中,高Gleason评分患者MVD值明显高于低Gleason评分患者(P<0.05),但在不同临床分期组差异无统计学意义(P >0.05).PTEN阴性者和COX-2阳性者MVD值均明显高于PTEN阳性者和COX-2阴性者(P<0.05);PTEN和COX-2间呈明显负相关(P<0.05).结论 PTEN基因的缺失和COX-2的高表达是PCa发生、发展的重要原因,且与肿瘤的Gleason评分和临床分期密切相关;它们之间可能存在协同作用,共同促进肿瘤血管生成.%Objective To investigate the expression of PTEN and COX- 2 in prostate cancer and their relationship with angiogenesis.Methods The expressions of PTEN,COX- 2 and CD34 in 60 PCa samples were analysed by tissue microarray technology and immunohistochemistry,and compared with those of 25 BPH samples.Results The expressions of PTEN were observed in 33.3%,50.0% and 100% of PCa,HPIN and BPH respectively (P<0.05),and those of COX- 2 were 66.7%,42.9% and 4.0% respectively (P<0.05).The expression of COX- 2 increased with the increases of Gleason degree and clinical staging (P <0.05), while more loss of PTEN with the increases of Gleason degree and clinical staging (P<0.05).The expression of PTEN was negatively related to COX- 2 in PCa.Of the PCa samples,MVD counting in PTEN negative group or COX- 2 positive group was higher than that in PTEN positive group or COX- 2 negative group (P<0.05).Conclusion PTEN and COX- 2

  13. Loss of PTEN is not associated with poor survival in newly diagnosed glioblastoma patients of the temozolomide era.

    Directory of Open Access Journals (Sweden)

    Christine Carico

    Full Text Available INTRODUCTION: Pre-temozolomide studies demonstrated that loss of the tumor suppressor gene PTEN held independent prognostic significance in GBM patients. We investigated whether loss of PTEN predicted shorter survival in the temozolomide era. The role of PTEN in the PI3K/Akt pathway is also reviewed. METHODS: Patients with histologically proven newly diagnosed GBM were identified from a retrospective database between 2007 and 2010. Cox proportional hazards analysis was used to calculate the independent effects of PTEN expression, age, extent of resection, Karnofsky performance scale (KPS, and treatment on overall survival. RESULTS: Sixty-five percent of patients were men with median age of 63 years, and 70% had KPS≥80. Most patients (81% received standard treatment (temozolomide with concurrent radiation. A total of 72 (47% patients had retained PTEN expression. Median overall survival (OS was 19.1 months (95% CI: 15.0-22.5. Median survival of 20.0 months (95% CI: 15.0-25.5 and 18.2 months (95% CI: 13.0-25.7 was observed in PTEN retained and PTEN loss patients, respectively (p = .71. PTEN loss patients were also found to have amplifications of EGFR gene more frequently than patients with retained PTEN (70.8% vs. 47.8%, p = .01. Multivariate analysis showed that older age (HR 1.64, CI: 1.02-2.63, p = .04, low KPS (HR 3.57, CI: 2.20-5.79, p<.0001, and lack of standard treatment (HR 3.98, CI: 2.38-6.65, p<.0001 yielded worse survival. PTEN loss was not prognostic of overall survival (HR 1.31, CI: 0.85-2.03, p = .22. CONCLUSIONS: Loss of expression of PTEN does not confer poor overall survival in the temozolomide era. These findings imply a complex and non-linear molecular relationship between PTEN, its regulators and effectors in the tumorigenesis of glioblastoma. Additionally, there is evidence that temozolomide may be more effective in eradicating GBM cancer cells with PTEN loss and hence, level the outcomes between the PTEN

  14. Pancreas-specific Pten deficiency causes partial resistance to diabetes and elevated hepatic AKT signaling

    Institute of Scientific and Technical Information of China (English)

    Zan Tong; Yan Fan; Weiqi Zhang; Jun Xu; Jing Cheng; Mingxiao Ding; Hongkui Deng

    2009-01-01

    PTEN, a negative regulator of the phosphatidylinositol-3-kinase/AKT pathway, is an important modulator of insu-lin signaling. To determine the metabolic function of pancreatic Pten, we generated pancreas-specific Pten knockout (PPKO) mice. PPKO mice had enlarged pancreas and elevated proliferation of acinar cells. They also exhibited hy-poglycemia, hypoinsulinemia, and altered amino metabolism. Notably, PPKO mice showed delayed onset of strepto-zotocin (STZ)-induced diabetes and sex-biased resistance to high-fat-diet (HFD)-induced diabetes. To investigate the mechanism for the resistance to HFD-induced hyperglycemia in PPKO mice, we evaluated AKT phosphorylation in major insulin-responsive tissues: the liver, muscle, and fat. We found that Pten loss in the pancreas causes the eleva-tion of AKT signaling in the liver. The phosphorylation of AKT and its downstream substrate GSK3β was increased in the liver of PPKO mice, while PTEN level was decreased without detectable excision of Pten allele in the liver of PPKO mice. Proteomics analysis revealed dramatically decreased level of 78-kDa glucose-regulated protein (GRP78) in the liver of PPKO mice, which may also contribute to the lower blood glucose level of PPKO mice fed with HFD. Together, our findings reveal a novel response in the liver to pancreatic defect in metabolic regulation, adding a new dimension to understanding diabetes resistance.

  15. Canine Mammary Carcinomas: A Comparative Analysis of Altered Gene Expression

    Directory of Open Access Journals (Sweden)

    Farruk M. Lutful Kabir

    2015-12-01

    Full Text Available Breast cancer represents the second most frequent neoplasm in humans and sexually intact female dogs after lung and skin cancers, respectively. Many similar features in human and dog cancers including, spontaneous development, clinical presentation, tumor heterogeneity, disease progression and response to conventional therapies have supported development of this comparative model as an alternative to mice. The highly conserved similarities between canine and human genomes are also key to this comparative analysis, especially when compared to the murine genome. Studies with canine mammary tumor (CMT models have shown a strong genetic correlation with their human counterparts, particularly in terms of altered expression profiles of cell cycle regulatory genes, tumor suppressor and oncogenes and also a large group of non-coding RNAs or microRNAs (miRNAs. Because CMTs are considered predictive intermediate models for human breast cancer, similarities in genetic alterations and cancer predisposition between humans and dogs have raised further interest. Many cancer-associated genetic defects critical to mammary tumor development and oncogenic determinants of metastasis have been reported and appear to be similar in both species. Comparative analysis of deregulated gene sets or cancer signaling pathways has shown that a significant proportion of orthologous genes are comparably up- or down-regulated in both human and dog breast tumors. Particularly, a group of cell cycle regulators called cyclin-dependent kinase inhibitors (CKIs acting as potent tumor suppressors are frequently defective in CMTs. Interestingly, comparative analysis of coding sequences has also shown that these genes are highly conserved in mammals in terms of their evolutionary divergence from a common ancestor. Moreover, co-deletion and/or homozygous loss of the INK4A/ARF/INK4B (CDKN2A/B locus, encoding three members of the CKI tumor suppressor gene families (p16/INK4A, p14ARF and p15

  16. 肝细胞癌中Parkin与PTEN蛋白的表达及意义%Expression and significance of Parkin and PTEN protein in Hepatocellular carcinoma

    Institute of Scientific and Technical Information of China (English)

    王怡; 陈钢; 沈文状; 刘峰

    2006-01-01

    目的 探讨Parkin基因蛋白和与张力蛋白同源、第10染色体丢失的磷酸酶(PTEN)基因蛋白在肝细胞癌中的表达规律及其临床意义.方法 应用免疫组织化学(S-P)法检测58例肝细胞癌中Parkin和PTEN基因蛋白的表达情况,结合患者的临床病理资料分析Parkin基因与PTEN基因在肝细胞癌中的作用及其相关性.结果 在58例肝癌组织中,Parkin和PTEN蛋白阳性表达率分别为25.9%(15/58)和36.2%(21/58),明显低于在相应的癌旁组织及正常肝组织中的表达率,其差异均有统计学意义(P<0.05).Parkin基因蛋白表达的缺失与患者的性别、肿瘤的大小、甲胎蛋白(AFP)、HBsAg以及有无肝硬化无关(P>0.05),而与肿瘤的分化程度、有无包膜及有无门静脉癌栓有关(P<0.05);PTEN基因蛋白表达的缺失则与甲胎蛋白(AFP)、肿瘤的分化程度有关(P<0.05).结论 Parkin和PTEN基因在肝细胞癌的发生过程中可能起重要的作用,其表达水平可能成为肝细胞癌诊断及判断其生物学特性的重要分子生物学指标.

  17. The study of expression and regulatory role of microRNA-21 (miR-21) on PTEN in prostate cancer%miRNA-21对其靶基因PTEN在前列腺癌中表达调控机制的研究

    Institute of Scientific and Technical Information of China (English)

    肖黎; 金艳阳; 佟明

    2013-01-01

    目的 观察前列腺癌组织和细胞中miRNA-21和PTEN的表达情况,探讨miRNA-21对PTEN的调控.方法 应用实时荧光定量PCR和Western blot检测正常前列腺组织、前列腺癌组织、非依赖性前列腺癌PC-3细胞中miRNA-21和PTEN的mRNA表和蛋白质表达水平.在前列腺癌PC-3细胞中通过转染miRNA-21 inhibitor成功抑制MiRNA-21表达后,实时荧光定量PCR和Western blot检测PC-3细胞中PTEN表达水平.结果 miRNA-21在前列腺癌组织中的相对表达量为(0.421±0.166),明显高于正常前列腺组织(0.033±0.018) (t=6.6,P<0.05).miRNA-21 inhibitor转染PC3细胞后miRNA-21在空白组、转染组和阴性对照组的相对表达量分别为(0.516±0.213)、(0.117±0.044)、(0.392±0.171),转染组与空白组及阴性对照组比较差异有统学意义(F=13.1,q=7.05、4.89,P<0.05).PTEN mRNA在正常前列腺组织、前列腺癌组织的相对表达量分别为(1.534±0.385)、(0.376±0.232),正常前列腺组织高于前列腺癌组织差异有统计学意义(t=5.8,P< 0.05); PTEN蛋白在正常前列腺组织、前列腺癌组织中的相对表达量分别为(2.010±0.386)和(0.571±0.143),差异有统计学意义(t=12.3,P< 0.05).miRNA-21 inhibitor转染PC-3细胞后,PTEN mRNA在空白组、转染组和阴性对照组组织中的表达差异不显著,但其蛋白的相对表达量分别为(0.399±0.185)、(0.826±0.197)、(0.442±0.149),转染组与空白组及阴性对照组比较差异有统学意义(F=13.9,q=4.79、4.2,P< 0.05).结论 前列腺癌组织中miRNA-21的表达上调,在转录后水平抑制PTEN表达,miRNA-21有可能成为前列腺癌治疗的新靶点.%OBJECTIVE To investigate the expression and regulatory role of microRNA-21 (miR-21) on PTEN and its role in prostate cancer. METHODS miR-21 and PTEN mRNA expression in normal tissue, prostate cancer tissue and prostate cancer cells (PC3) were tested by quantitative real-time PCR. PTEN protein expression was tested by western blot (WB

  18. Network-guided analysis of genes with altered somatic copy number and gene expression reveals pathways commonly perturbed in metastatic melanoma.

    Directory of Open Access Journals (Sweden)

    Armand Valsesia

    Full Text Available Cancer genomes frequently contain somatic copy number alterations (SCNA that can significantly perturb the expression level of affected genes and thus disrupt pathways controlling normal growth. In melanoma, many studies have focussed on the copy number and gene expression levels of the BRAF, PTEN and MITF genes, but little has been done to identify new genes using these parameters at the genome-wide scale. Using karyotyping, SNP and CGH arrays, and RNA-seq, we have identified SCNA affecting gene expression ('SCNA-genes' in seven human metastatic melanoma cell lines. We showed that the combination of these techniques is useful to identify candidate genes potentially involved in tumorigenesis. Since few of these alterations were recurrent across our samples, we used a protein network-guided approach to determine whether any pathways were enriched in SCNA-genes in one or more samples. From this unbiased genome-wide analysis, we identified 28 significantly enriched pathway modules. Comparison with two large, independent melanoma SCNA datasets showed less than 10% overlap at the individual gene level, but network-guided analysis revealed 66% shared pathways, including all but three of the pathways identified in our data. Frequently altered pathways included WNT, cadherin signalling, angiogenesis and melanogenesis. Additionally, our results emphasize the potential of the EPHA3 and FRS2 gene products, involved in angiogenesis and migration, as possible therapeutic targets in melanoma. Our study demonstrates the utility of network-guided approaches, for both large and small datasets, to identify pathways recurrently perturbed in cancer.

  19. Characterization of dual PTEN and p53-targeting microRNAs identifies microRNA-638/Dnm2 as a two-hit oncogenic locus

    OpenAIRE

    Yvonne Tay; Shen Mynn Tan; Florian A. Karreth; Judy Lieberman; Pier Paolo Pandolfi

    2014-01-01

    Tumor suppressor genes (TSGs) are often concomitantly lost or mutated in human cancers and have been shown to act synergistically to promote tumorigenesis. In addition to genomic alterations, posttranscriptional regulation by microRNAs (miRNAs) represents another mechanism by which TSG expression is dysregulated in cancers. Although miRNAs that target critical TSGs such as PTEN or p53 have been identified, little is known about miRNAs that concomitantly regulate both these key TSGs. In this s...

  20. Selective deletion of PTEN in dopamine neurons leads to trophic effects and adaptation of striatal medium spiny projecting neurons.

    Directory of Open Access Journals (Sweden)

    Oscar Diaz-Ruiz

    Full Text Available The widespread distribution of the tumor suppressor PTEN in the nervous system suggests a role in a broad range of brain functions. PTEN negatively regulates the signaling pathways initiated by protein kinase B (Akt thereby regulating signals for growth, proliferation and cell survival. Pten deletion in the mouse brain has revealed its role in controlling cell size and number. In this study, we used Cre-loxP technology to specifically inactivate Pten in dopamine (DA neurons (Pten KO mice. The resulting mutant mice showed neuronal hypertrophy, and an increased number of dopaminergic neurons and fibers in the ventral mesencephalon. Interestingly, quantitative microdialysis studies in Pten KO mice revealed no alterations in basal DA extracellular levels or evoked DA release in the dorsal striatum, despite a significant increase in total DA tissue levels. Striatal dopamine receptor D1 (DRD1 and prodynorphin (PDyn mRNA levels were significantly elevated in KO animals, suggesting an enhancement in neuronal activity associated with the striatonigral projection pathway, while dopamine receptor D2 (DRD2 and preproenkephalin (PPE mRNA levels remained unchanged. In addition, PTEN inactivation protected DA neurons and significantly enhanced DA-dependent behavioral functions in KO mice after a progressive 6OHDA lesion. These results provide further evidence about the role of PTEN in the brain and suggest that manipulation of the PTEN/Akt signaling pathway during development may alter the basal state of dopaminergic neurotransmission and could provide a therapeutic strategy for the treatment of Parkinson's disease, and other neurodegenerative disorders.

  1. Pten Regulates Epithelial Cytodifferentiation during Prostate Development

    DEFF Research Database (Denmark)

    Lokody, Isabel B; Francis, Jeffrey C; Gardiner, Jennifer R;

    2015-01-01

    that are shared with Pten mutant prostate cancer models, including a decrease in androgen receptor regulated genes. In depth analysis of the phenotype of these mice during development revealed that loss of Pten leads to the precocious differentiation of epithelial cells towards a luminal cell fate. This study...

  2. PLZF mediates the PTEN/AKT/FOXO3a signaling in suppression of prostate tumorigenesis.

    Directory of Open Access Journals (Sweden)

    JingPing Cao

    Full Text Available Promyelocytic leukemia zinc finger (PLZF protein expression is closely related to the progression of human cancers, including prostate cancer (PCa. However, the according context of a signaling pathway for PLZF to suppress prostate tumorigenesis remains greatly unknown. Here we report that PLZF is a downstream mediator of the PTEN signaling pathway in PCa. We found that PLZF expression is closely correlated with PTEN expression in a cohort of prostate cancer specimens. Interestingly, both PTEN rescue and phosphoinositide 3-kinase (PI3K inhibitor LY294002 treatment increase the PLZF expression in prostate cancer cell lines. Further, luciferase reporter assay and chromatin immunoprecipitation assay demonstrate that FOXO3a, a transcriptional factor phosphorylated by PI3K/AKT, could directly bind to the promoter of PLZF gene. These results indicate that PTEN regulates PLZF expression by AKT/FOXO3a. Moreover, our animal experiments also demonstrate that PLZF is capable of inhibiting prostate tumorigenesis in vivo. Taken together, our study defines a PTEN/PLZF pathway and would shed new lights for developing therapeutic strategy of prostate cancer.

  3. Inhibition of hypothalamic MCT1 expression increases food intake and alters orexigenic and anorexigenic neuropeptide expression

    Science.gov (United States)

    Elizondo-Vega, Roberto; Cortés-Campos, Christian; Barahona, María José; Carril, Claudio; Ordenes, Patricio; Salgado, Magdiel; Oyarce, Karina; García-Robles, María de los Angeles

    2016-01-01

    Hypothalamic glucosensing, which involves the detection of glucose concentration changes by brain cells and subsequent release of orexigenic or anorexigenic neuropeptides, is a crucial process that regulates feeding behavior. Arcuate nucleus (AN) neurons are classically thought to be responsible for hypothalamic glucosensing through a direct sensing mechanism; however, recent data has shown a metabolic interaction between tanycytes and AN neurons through lactate that may also be contributing to this process. Monocarboxylate transporter 1 (MCT1) is the main isoform expressed by tanycytes, which could facilitate lactate release to hypothalamic AN neurons. We hypothesize that MCT1 inhibition could alter the metabolic coupling between tanycytes and AN neurons, altering feeding behavior. To test this, we inhibited MCT1 expression using adenovirus-mediated transfection of a shRNA into the third ventricle, transducing ependymal wall cells and tanycytes. Neuropeptide expression and feeding behavior were measured in MCT1-inhibited animals after intracerebroventricular glucose administration following a fasting period. Results showed a loss in glucose regulation of orexigenic neuropeptides and an abnormal expression of anorexigenic neuropeptides in response to fasting. This was accompanied by an increase in food intake and in body weight gain. Taken together, these results indicate that MCT1 expression in tanycytes plays a role in feeding behavior regulation. PMID:27677351

  4. PTEN Phosphatase-Independent Maintenance of Glandular Morphology in a Predictive Colorectal Cancer Model System

    Directory of Open Access Journals (Sweden)

    Ishaan C. Jagan

    2013-11-01

    Full Text Available Organotypic models may provide mechanistic insight into colorectal cancer (CRC morphology. Three-dimensional (3D colorectal gland formation is regulated by phosphatase and tensin homologue deleted on chromosome 10 (PTEN coupling of cell division cycle 42 (cdc42 to atypical protein kinase C (aPKC. This study investigated PTEN phosphatase-dependent and phosphatase-independent morphogenic functions in 3D models and assessed translational relevance in human studies. Isogenic PTEN-expressing or PTEN-deficient 3D colorectal cultures were used. In translational studies, apical aPKC activity readout was assessed against apical membrane (AM orientation and gland morphology in 3D models and human CRC. We found that catalytically active or inactive PTEN constructs containing an intact C2 domain enhanced cdc42 activity, whereas mutants of the C2 domain calcium binding region 3 membrane-binding loop (M-CBR3 were ineffective. The isolated PTEN C2 domain (C2 accumulated in membrane fractions, but C2 M-CBR3 remained in cytosol. Transfection of C2 but not C2 M-CBR3 rescued defective AM orientation and 3D morphogenesis of PTEN-deficient Caco-2 cultures. The signal intensity of apical phospho-aPKC correlated with that of Na+/H+ exchanger regulatory factor-1 (NHERF-1 in the 3D model. Apical NHERF-1 intensity thus provided readout of apical aPKC activity and associated with glandular morphology in the model system and human colon. Low apical NHERF-1 intensity in CRC associated with disruption of glandular architecture, high cancer grade, and metastatic dissemination. We conclude that the membrane-binding function of the catalytically inert PTEN C2 domain influences cdc42/aPKC-dependent AM dynamics and gland formation in a highly relevant 3D CRC morphogenesis model system.

  5. PTEN, Longevity and Age-Related Diseases

    Directory of Open Access Journals (Sweden)

    Izak S. Tait

    2013-12-01

    Full Text Available Since the discovery of PTEN, this protein has been shown to be an effective suppressor of cancer and a contributor to longevity. This report will review, in depth, the associations between PTEN and other molecules, its mutations and regulations in order to present how PTEN can be used to increase longevity. This report will collect recent research of PTEN and use this to discuss PTEN’s role in caloric restriction, antioxidative defense of DNA-damage and the role it plays in suppressing tumors. The report will also discuss that variety of ways that PTEN can be compromised, through mutations, complete loss of alleles and its main antagonist, the PI3K/AKT pathway.

  6. Construction of Prokaryotic Expression Plasmid of the Human Tumor Suppressor Gene PTEN and Its Expression in E. coli%人抑癌基因PTEN的原核表达载体的构建及融合表达

    Institute of Scientific and Technical Information of China (English)

    侯鑫; 刘俊娥; 扈廷茂

    2005-01-01

    为研究抑癌因子PTEN蛋白的抑癌机理,构建了PTEN cDNA的原核表达载体并进行融合表达.将含有PTEN cDNA的质粒pMD-PTEN经EcoRI和Sal Ⅰ双酶切,回收PTEN基因片段与经相同酶切的高效原核表达载体pET-44a连接,经序列测定,证实融合型表达载体pET-Nus-PTEN构建成功.转化表达宿主BL21(DE3)后,IPTG诱导表达.经12%SDS-PAGE凝胶电泳,获得118kD的特异蛋白条带,目的蛋白占细菌总蛋白的17%.结果表明:PTEN基因和Nus基因融合表达成功,获得可溶性Nus-PTEN蛋白.该研究为PTEN蛋白的抑癌机理和基因工程药物的研究打下了基础,这是国内PTEN蛋白在原核细胞中成功表达的首次报道.

  7. Premalignant PTEN-deficient thymocytes activate microRNAs miR-146a and miR-146b as a cellular defense against malignant transformation

    OpenAIRE

    Burger, Megan L.; Xue, Ling; Sun, Yuefang; Kang, Chulho; Winoto, Astar

    2014-01-01

    miR-146a and miR-146b are upregulated during premalignancy in the thymus of T cell–specific PTEN-deficient mice.Transgenic expression of mir-146a/b delays PTEN-deficient lymphomagenesis through repression of TCR signals critical for c-myc activation.

  8. Reversal of Multidrug Resistance and Inhibition of Phosphorylation of AKT in Human Ovarian Cancer Cell Line by Wild-type PTEN Gene

    Institute of Scientific and Technical Information of China (English)

    WU Huijuan; WENG Danhui; XING Hui; LU Yunping; MA Ding

    2007-01-01

    The reversing effect of wild-type PTEN gene on resistance of CI3K cells to cisplatin and its inhibitory effect on the phosphorylation of protein kinase B (AKT) were studied. The expression of PTEN mRNA and protein in OV2008 cells and C13K cells were semi-quantitatively detected by using RT-PCR and Western blotting. Recombinant eukaryotic expression plasmid containing human wild-type PTEN gene was transfected into C13K cells by lipofectamine2000. The expression of PTEN mRNA was monitored by RT-PCR and the expression of PTEN, Akt, p-Akt protein were ana- lyzed by Western blotting in PTEN-transfected and non-transfected CI3K cells. Proliferation and chemosensitivity of cells to DDP were measured by MTT, and cell apoptosis was detected by flow cytometry after treatment with cisplatin. The expression of PTEN mRNA and protein in OV2008 cells were significantly higher than those in C13K cells. After transfection with PTEN gene for 48 h, the expression of PTEN mRNA and protein in C13K cells were 2.04±0.10, 0.94±0.04 respectively and the expression of p-Akt protein (0.94±0.07) was lower than those in control groups (1.68±0.14, 1.66±0.10) (P<0.05). The IC50 of DDP to C13K cells transfected with PTEN (7.2±0.3 μmol/L) was obviously lower than those of empty-vector transfected cells and non-transfected cells (12.7±0.4 μmol/l, 13.0±0.3 μmol/L) (P<0.05). The apopototis ratio of wild-type PTEN-transfected, empty vector transfected and non-transfected C13K cells were (41.65±0.87)%, (18.61±0.70)% and (15.28 ±0.80)% respectively, and the difference was statistically significant (P<0.05). PTEN gene plays an important role in ovarian cancer multidrug resistance. Transfection of PTEN could increase the ex- pression of PTEN and restore drug sensitivity to cisplatin in human ovarian cancer cell line C13K with multidrug-resistance by decreasing the expression of p-Akt.

  9. Prognostic Significance of mTOR and PTEN in Patients with Esophageal Squamous Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Jianjun Lu

    2015-01-01

    Full Text Available The prognostic value of mTOR in ESCC is much controversial; this study aimed to determine the prognostic importance of mTOR and PTEN in patients with ESCC. A total of 148 consecutive patients who underwent esophagectomy from 2010 to 2012 were included in this study, tested by western bolt and immunohistochemistry for mTOR and PTEN expression. Correlation coefficient was calculated using Pearson’s correlation test. The 3-year overall survival (OS and disease-free survival (DFS were calculated in relation to the two markers. 94 (63.5% of 148 were mTOR high expression, and PTEN high expression was detected in 46 (31.1% of the 148 patients with ESCC. The Pearson correlation coefficient revealed a significant negative correlation in two proteins (correlation coefficient = −0.189, P<0.005. The 3-year OS and DFS time in the mTOR-high group was 23.9 and 18.4 months, respectively, and the time in the mTOR-low group was 33.9 months and 31.4 months, respectively. The difference of survival rate between the two groups remained statistically significant. mTOR-low or PTEN-high patients had better 3-year rates of OS and DFS than mTOR-high or PTEN-low group (P<0.001 by the log-rank test. This study also found that mTOR was an independence prognostic factor by multivariate analysis.

  10. Roles of the RAF/MEK/ERK and PI3K/PTEN/AKT pathways in malignant transformation and drug resistance.

    Science.gov (United States)

    McCubrey, James A; Steelman, Linda S; Abrams, Steven L; Lee, John T; Chang, Fumin; Bertrand, Fred E; Navolanic, Patrick M; Terrian, David M; Franklin, Richard A; D'Assoro, Antonio B; Salisbury, Jeffrey L; Mazzarino, Maria Clorinda; Stivala, Franca; Libra, Massimo

    2006-01-01

    doxorubicin and paclitaxel. Raf induced the expression of the drug pump Mdr-1 (a.k.a., Pgp) and the Bcl-2 anti-apoptotic protein. Raf did not appear to induce drug resistance by altering p53/p21Cip-1 expression, whose expression is often linked to regulation of cell cycle progression and drug resistance. Deregulation of the PI3K/PTEN/Akt pathway was associated with resistance to doxorubicin and 4-hydroxyl tamoxifen, a chemotherapeutic drug and estrogen receptor antagonist used in breast cancer therapy. In contrast to the drug-resistant breast cancer cells obtained after overexpression of activated Raf, cells expressing activated Akt displayed altered (decreased) levels of p53/p21Cip-1. Deregulated expression of the central phosphatase in the PI3K/PTEN/Akt pathway led to breast cancer drug resistance. Introduction of mutated forms of PTEN, which lacked lipid phosphatase activity, increased the resistance of the MCF-7 cells to doxorubicin, suggesting that these lipid phosphatase deficient PTEN mutants acted as dominant negative mutants to suppress wild-type PTEN activity. Finally, the PI3K/PTEN/Akt pathway appears to be more prominently involved in prostate cancer drug resistance than the Raf/MEK/ERK pathway. Some advanced prostate cancer cells express elevated levels of activated Akt which may suppress Raf activation. Introduction of activated forms of Akt increased the drug resistance of advanced prostate cancer cells. In contrast, introduction of activated forms of Raf did not increase the drug resistance of the prostate cancer cells. In contrast to the results observed in hematopoietic cells, Raf may normally promote differentiation in prostate cells which is suppressed in advanced prostate cancer due to increased expression of activated Akt arising from PTEN mutation. Thus in advanced prostate cancer it may be advantageous to induce Raf expression to promote differentiation, while in hematopoietic cancers it may be beneficial to inhibit Raf/MEK/ERK-induced proliferation

  11. PTEN in liver diseases and cancer

    Institute of Scientific and Technical Information of China (English)

    Marion; Peyrou; Lucie; Bourgoin; Michelangelo; Foti

    2010-01-01

    The phosphoinositide 3-kinase (PI3K)/phosphatase and tensin homolog (PTEN)/Akt axis is a key signal transduction node that regulates crucial cellular functions, including insulin and other growth factors signaling, lipid and glucose metabolism, as well as cell survival and apoptosis. In this pathway, PTEN acts as a phosphoinositide phosphatase, which terminates PI3Kpropagated signaling by dephosphorylating PtdIns(3,4)P2 and PtdIns(3,4,5)P3. However, the role of PTEN does not appear to be restricted only to ...

  12. Characterization of Heterogeneous Prostate Tumors in Targeted Pten Knockout Mice.

    Directory of Open Access Journals (Sweden)

    Hanneke Korsten

    Full Text Available Previously, we generated a preclinical mouse prostate tumor model based on PSA-Cre driven inactivation of Pten. In this model homogeneous hyperplastic prostates (4-5m developed at older age (>10m into tumors. Here, we describe the molecular and histological characterization of the tumors in order to better understand the processes that are associated with prostate tumorigenesis in this targeted mouse Pten knockout model. The morphologies of the tumors that developed were very heterogeneous. Different histopathological growth patterns could be identified, including intraductal carcinoma (IDC, adenocarcinoma and undifferentiated carcinoma, all strongly positive for the epithelial cell marker Cytokeratin (CK, and carcinosarcomas, which were negative for CK. IDC pattern was already detected in prostates of 7-8 month old mice, indicating that it could be a precursor stage. At more than 10 months IDC and carcinosarcoma were most frequently observed. Gene expression profiling discriminated essentially two molecular subtypes, denoted tumor class 1 (TC1 and tumor class 2 (TC2. TC1 tumors were characterized by high expression of epithelial markers like Cytokeratin 8 and E-Cadherin whereas TC2 tumors showed high expression of mesenchyme/stroma markers such as Snail and Fibronectin. These molecular subtypes corresponded with histological growth patterns: where TC1 tumors mainly represented adenocarcinoma/intraductal carcinoma, in TC2 tumors carcinosarcoma was the dominant growth pattern. Further molecular characterization of the prostate tumors revealed an increased expression of genes associated with the inflammatory response. Moreover, functional markers for senescence, proliferation, angiogenesis and apoptosis were higher expressed in tumors compared to hyperplasia. The highest expression of proliferation and angiogenesis markers was detected in TC2 tumors. Our data clearly showed that in the genetically well-defined PSA-Cre;Pten-loxP/loxP prostate tumor

  13. 人胚胎干细胞Pten基因表达及PI3K/Akt/mTOR信号通路下游蛋白的磷酸化%Pten gene expression and phosphoproteomic analysis of the downstream of PI3K/Akt/mTOR signaling in human embryonic stem cells

    Institute of Scientific and Technical Information of China (English)

    周睿卿; 龚玉萍; 邢宏运; 杨曦

    2011-01-01

    BACKGROUND: Phosphoprteomic analyses of human embryonic stem cells (hESCs) in undifferentiated state and their differentiated derivatives have become a hotspot. The researchs suggest that phosphorylation events determine hESCs'fate. OBJECTIVE: To investigate the expression of Pten Mrna and the key proteins of PTEN/Akt/Mtor signaling in human embryonic stem cells in order to provide the basic research for stem cells expansion and differentiation. METHODS: The hESCs were cocultured with the murine fetal fibroblasts to maintain undifferentiation and digested by collagenase for detection. The growth morphology of hESCs mere observed. RT-PCR assay was used to determine Pten gene expression, and Western blot assay to detect the expression of p-PTEN, p-Mtor, p-P70S6K. P-4E-BP1 in hESCs. RESULTS AND CONCLUSION: The expression level of Pten was higher in hESCs and feeder cells than in K562. While the expression level of the key proteins in hESCs was lower than K562. Especially p-4E-BP1 in hESCs. Over-activation of the PI3K/Akt/Mtor signaling may accelerate the proliferation of hESCs and deduce the apoptosis, and provide more cells for differentiation and regeneration medicine.%背景:各种磷酸化蛋白质表达水平对人胚胎干细胞维持未分化状态或定向分化的影响逐渐成为人胚胎干细胞的研究热点,研究发现磷酸化蛋白质表达水平可能决定着人胚胎干细胞的命运.目的:对PI3K/Akt途径下游的关键蛋白磷酸化水平进行检测,寻找PI3K/Akt途径中能够维持人胚胎干细胞未分化状态的下游蛋白.方法:用胎鼠成纤维细胞作为饲养层,二维培养的方法培养人胚胎干细胞,胶原酶消化后待测;以饲养层细胞、K562细胞株为对照.观察人胚胎干细胞生长状态;RT-PCR检测Pten基因表达;Western Blot检测p-PTEN、p-mTOR、p-P70S6K、p-4E-BP1 4种蛋白的表达.结果与结论:人胚胎干细胞在未分化状态时Pten mRNA表达高于肿瘤细胞K562,而且Pten抑制

  14. Reciprocal positive regulation between TRPV6 and NUMB in PTEN-deficient prostate cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung-Young; Hong, Chansik; Wie, Jinhong [Department of Physiology, Seoul National University College of Medicine, Seoul 110-799 (Korea, Republic of); Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799 (Korea, Republic of); Kim, Euiyong [Department of Physiology, College of Medicine, Inje University, Busan 614-735 (Korea, Republic of); Kim, Byung Joo [Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan 626-870 (Korea, Republic of); Ha, Kotdaji [Department of Physiology, Seoul National University College of Medicine, Seoul 110-799 (Korea, Republic of); Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799 (Korea, Republic of); Cho, Nam-Hyuk; Kim, In-Gyu [Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799 (Korea, Republic of); Jeon, Ju-Hong [Department of Physiology, Seoul National University College of Medicine, Seoul 110-799 (Korea, Republic of); Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799 (Korea, Republic of); So, Insuk, E-mail: insuk@snu.ac.kr [Department of Physiology, Seoul National University College of Medicine, Seoul 110-799 (Korea, Republic of); Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799 (Korea, Republic of)

    2014-04-25

    Highlights: • TRPV6 interacts with tumor suppressor proteins. • Numb has a selective effect on TRPV6, depending on the prostate cancer cell line. • PTEN is a novel regulator of TRPV6–Numb complex. - Abstract: Calcium acts as a second messenger and plays a crucial role in signaling pathways involved in cell proliferation. Recently, calcium channels related to calcium influx into the cytosol of epithelial cells have attracted attention as a cancer therapy target. Of these calcium channels, TRPV6 is overexpressed in prostate cancer and is considered an important molecule in the process of metastasis. However, its exact role and mechanism is unclear. NUMB, well-known tumor suppressor gene, is a novel interacting partner of TRPV6. We show that NUMB and TRPV6 have a reciprocal positive regulatory relationship in PC-3 cells. We repeated this experiment in two other prostate cancer cell lines, DU145 and LNCaP. Interestingly, there were no significant changes in TRPV6 expression following NUMB knockdown in DU145. We revealed that the presence or absence of PTEN was the cause of NUMB–TRPV6 function. Loss of PTEN caused a positive correlation of TRPV6–NUMB expression. Collectively, we determined that PTEN is a novel interacting partner of TRPV6 and NUMB. These results demonstrated a novel relationship of NUMB–TRPV6 in prostate cancer cells, and show that PTEN is a novel regulator of this complex.

  15. Identification of novel PTEN-binding partners: PTEN interaction with fatty acid binding protein FABP4.

    Science.gov (United States)

    Gorbenko, O; Panayotou, G; Zhyvoloup, A; Volkova, D; Gout, I; Filonenko, V

    2010-04-01

    PTEN is a tumor suppressor with dual protein and lipid-phosphatase activity, which is frequently deleted or mutated in many human advanced cancers. Recent studies have also demonstrated that PTEN is a promising target in type II diabetes and obesity treatment. Using C-terminal PTEN sequence in pEG202-NLS as bait, yeast two-hybrid screening on Mouse Embryo, Colon Cancer, and HeLa cDNA libraries was carried out. Isolated positive clones were validated by mating assay and identified through automated DNA sequencing and BLAST database searches. Sequence analysis revealed a number of PTEN-binding proteins linking this phosphatase to a number of different signaling cascades, suggesting that PTEN may perform other functions besides tumor-suppressing activity in different cell types. In particular, the interplay between PTEN function and adipocyte-specific fatty-acid-binding protein FABP4 is of notable interest. The demonstrable tautology of PTEN to FABP4 suggested a role for this phosphatase in the regulation of lipid metabolism and adipocyte differentiation. This interaction was further studied using coimmunoprecipitation and gel-filtration assays. Finally, based on Biacore assay, we have calculated the K(D) of PTEN-FABP4 complex, which is around 2.8 microM.

  16. Role of PTEN in TNFα induced insulin resistance

    Energy Technology Data Exchange (ETDEWEB)

    Bulger, David A. [Departments of Medicine and Pharmacology, University of Tennessee Health Science Center, Memphis, TN 38163 (United States); Medicine and Research Services, Veterans Association Medical Center, Memphis, TN 38104 (United States); Wellcome Trust Medical Research Council Institute of Metabolic Science, Cambridge CB2 0QQ (United Kingdom); National Institute of Diabetes & Digestive & Kidney Disease, National Institutes of Health, Bethesda, MD 20892 (United States); Conley, Jermaine [Medicine and Research Services, Veterans Association Medical Center, Memphis, TN 38104 (United States); Conner, Spencer H.; Majumdar, Gipsy [Departments of Medicine and Pharmacology, University of Tennessee Health Science Center, Memphis, TN 38163 (United States); Medicine and Research Services, Veterans Association Medical Center, Memphis, TN 38104 (United States); Solomon, Solomon S., E-mail: ssolomon@uthsc.edu [Departments of Medicine and Pharmacology, University of Tennessee Health Science Center, Memphis, TN 38163 (United States); Medicine and Research Services, Veterans Association Medical Center, Memphis, TN 38104 (United States)

    2015-06-05

    Aims/hypothesis: PTEN may play a reversible role in TNFα induced insulin resistance, which has been linked to obesity-associated insulin resistance (IR). Methods: Western blots for PTEN and p-Akt were performed on H-411E liver cells incubated with insulin, TNFα, and in selected experiments VO-OHpic vanadium complex in the presence and absence of PTEN siRNA. Total PTEN was compared to β-actin loading control and p-Akt was compared to total Akt. Results: Western blot and Real Time RT-PCR experiments showed increased PTEN after TNFα treatment (p = 0.04); slightly decreased PTEN after insulin treatment; and slightly increased PTEN after insulin + TNFα treatment. PTEN siRNA markedly inhibited the TNFα-induced increase in PTEN (p < 0.01) without significantly changing the p-Akt levels. The vanadium complex, exhibiting insulin-like effects, also significantly prevented the TNFα-induced increase in PTEN. Combining insulin and VO-OHpic was additive, providing both proof of concept and insight into mechanism. Discussion: The PTEN increase due to TNFα treatment was reversible by both PTEN siRNA knockdown and VO-OHpic treatment. Thus, PTEN is identified as a potential new therapeutic target for reducing IR in Type 2 DM. - Highlights: • TNFα treatment induced a significant increase in PTEN in H-411E liver cells. • PTEN siRNA knockdown prevented this effect. • VO-OHpic (vanadium complex) treatment, like insulin, decreased PTEN protein levels. • Thus, PTEN is identified as a potential therapeutic target in DM Type 2.

  17. Role of PTEN in TNFα induced insulin resistance

    International Nuclear Information System (INIS)

    Aims/hypothesis: PTEN may play a reversible role in TNFα induced insulin resistance, which has been linked to obesity-associated insulin resistance (IR). Methods: Western blots for PTEN and p-Akt were performed on H-411E liver cells incubated with insulin, TNFα, and in selected experiments VO-OHpic vanadium complex in the presence and absence of PTEN siRNA. Total PTEN was compared to β-actin loading control and p-Akt was compared to total Akt. Results: Western blot and Real Time RT-PCR experiments showed increased PTEN after TNFα treatment (p = 0.04); slightly decreased PTEN after insulin treatment; and slightly increased PTEN after insulin + TNFα treatment. PTEN siRNA markedly inhibited the TNFα-induced increase in PTEN (p < 0.01) without significantly changing the p-Akt levels. The vanadium complex, exhibiting insulin-like effects, also significantly prevented the TNFα-induced increase in PTEN. Combining insulin and VO-OHpic was additive, providing both proof of concept and insight into mechanism. Discussion: The PTEN increase due to TNFα treatment was reversible by both PTEN siRNA knockdown and VO-OHpic treatment. Thus, PTEN is identified as a potential new therapeutic target for reducing IR in Type 2 DM. - Highlights: • TNFα treatment induced a significant increase in PTEN in H-411E liver cells. • PTEN siRNA knockdown prevented this effect. • VO-OHpic (vanadium complex) treatment, like insulin, decreased PTEN protein levels. • Thus, PTEN is identified as a potential therapeutic target in DM Type 2

  18. Phosphorylation of PTEN increase in pathological right ventricular hypertrophy in rats with chronic hypoxia induced pulmonary hypertension

    Institute of Scientific and Technical Information of China (English)

    Nie Xin; Shi Yiwei; Yu Wenyan; Xu Jianying; Hu Xiaoyun; Du Yongcheng

    2014-01-01

    Background Phosphatase and tensin homologue on chromosome ten (PTEN) acts as a convergent nodal signalling point for cardiomyocyte hypertrophy,growth and survival.However,the role of PTEN in cardiac conditions such as right ventricular hypertrophy caused by chronic hypoxic pulmonary,hypertension remains unclear.This study preliminarily discussed the role of PTEN in the cardiac response to increased pulmonary vascular resistance using the hypoxia-induced PH rats.Methods Male Sprague Dawley rats were exposed to 10% oxygen for 1,3,7,14 or 21 days to induce hypertension and right ventricular hypertrophy.Right ventricular systolic pressure was measured via catheterization.Hypertrophy index was calculated as the ratio of right ventricular mass to left ventricle plus septum mass.Tissue morphology and fibrosis were measured using hematoxylin,eosin and picrosirius red staining.The expression and phosphorylation levels of PTEN in ventricles were determined by real time PCR and Western blotting.Results Hypoxic exposure of rats resulted in pathological hypertrophy,interstitial fibrosis and remodelling of the right ventricle.The phosphorylation of PTEN increased significantly in the hypertrophic right ventricle compared to the normoxic control group.There were no changes in protein expression in either ventricle.Conclusion Hypoxia induced pulmonary hypertension developed pathological right ventricular hypertrophy and remodelling probablv related to an increased phosohorvlation of PTEN.

  19. Nuclear PTEN controls DNA repair and sensitivity to genotoxic stress

    Science.gov (United States)

    Bassi, C; Ho, J; Srikumar, T; Dowling, RJO; Gorrini, C; Miller, SJ; Mak, TW; Neel, BG; Raught, B; Stambolic, V

    2016-01-01

    Loss of function of the Phosphatase and tensin homologue deleted on chromosome 10 (PTEN) tumor suppressor gene is associated with many human cancers. In the cytoplasm, PTEN antagonizes the Phosphatidylinositol 3′ kinase (PI3K) signaling pathway. PTEN also accumulates in the nucleus, where its function remains poorly understood. We demonstrate that SUMOylation (SUMO) of PTEN controls its nuclear localization. In cells exposed to genotoxic stress, SUMO-PTEN was rapidly excluded from the nucleus dependent on the protein kinase Ataxia telangiectasia mutated (ATM). Cells lacking nuclear PTEN were hypersensitive to DNA damage, while PTEN-deficient cells were susceptible to killing by a combination of genotoxic stress and a small molecule PI3K inhibitor both in vitro and in vivo. Our findings may have implications for individualized therapy for patients with PTEN-deficient tumors. PMID:23888040

  20. Altered glutamyl-aminopeptidase activity and expression in renal neoplasms

    International Nuclear Information System (INIS)

    Advances in the knowledge of renal neoplasms have demonstrated the implication of several proteases in their genesis, growth and dissemination. Glutamyl-aminopeptidase (GAP) (EC. 3.4.11.7) is a zinc metallopeptidase with angiotensinase activity highly expressed in kidney tissues and its expression and activity have been associated wtih tumour development. In this prospective study, GAP spectrofluorometric activity and immunohistochemical expression were analysed in clear-cell (CCRCC), papillary (PRCC) and chromophobe (ChRCC) renal cell carcinomas, and in renal oncocytoma (RO). Data obtained in tumour tissue were compared with those from the surrounding uninvolved kidney tissue. In CCRCC, classic pathological parameters such as grade, stage and tumour size were stratified following GAP data and analyzed for 5-year survival. GAP activity in both the membrane-bound and soluble fractions was sharply decreased and its immunohistochemical expression showed mild staining in the four histological types of renal tumours. Soluble and membrane-bound GAP activities correlated with tumour grade and size in CCRCCs. This study suggests a role for GAP in the neoplastic development of renal tumours and provides additional data for considering the activity and expression of this enzyme of interest in the diagnosis and prognosis of renal neoplasms

  1. Locomotion in Lymphocytes is Altered by Differential PKC Isoform Expression

    Science.gov (United States)

    Sundaresan, A.; Risin, D.; Pellis, N. R.

    1999-01-01

    Lymphocyte locomotion is critical for proper elicitation of the immune response. Locomotion of immune cells via the interstitium is essential for optimal immune function during wound healing, inflammation and infection. There are conditions which alter lymphocyte locomotion and one of them is spaceflight. Lymphocyte locomotion is severely inhibited in true spaceflight (true microgravity) and in rotating wall vessel culture (modeled microgravity). When lymphocytes are activated prior to culture in modeled microgravity, locomotion is not inhibited and the levels are comparable to those of static cultured lymphocytes. When a phorbol ester (PMA) is used in modeled microgravity, lymphocyte locomotion is restored by 87%. This occurs regardless if PMA is added after culture in the rotating wall vessel or during culture. Inhibition of DNA synthesis also does not alter restoration of lymphocyte locomotion by PMA. PMA is a direct activator of (protein kinase C) PKC . When a calcium ionophore, ionomycin is used it does not possess any restorative properties towards locomotion either alone or collectively with PMA. Since PMA brings about restoration without help from calcium ionophores (ionomycin), it is infer-red that calcium independent PKC isoforms are involved. Changes were perceived in the protein levels of PKC 6 where levels of the protein were downregulated at 24,72 and 96 hours in untreated rotated cultures (modeled microgravity) compared to untreated static (1g) cultures. At 48 hours there is an increase in the levels of PKC & in the same experimental set up. Studies on transcriptional and translational patterns of calcium independent isoforms of PKC such as 8 and E are presented in this study.

  2. Knockdown of Leptin A Expression Dramatically Alters Zebrafish Development

    OpenAIRE

    Liu, Qin; Dalman, Mark; CHEN, YUN; Akhter, Mashal; Brahmandam, Sravya; Patel, Yesha; Lowe, Josef; Thakkar, Mitesh; Gregory, Akil-Vuai; Phelps, Daryllanae; Riley, Caitlin; Londraville, Richard L.

    2012-01-01

    Using morpholino antisense oligonucleotide (MO) technology, we blocked leptin A or leptin receptor expression in embryonic zebrafish, and analyzed consequences of leptin knock-down on fish development. Embryos injected with leptin A or leptin receptor MOs (leptin A or leptin receptor morphants) had smaller bodies and eyes, undeveloped inner ear, enlarged pericardial cavity, curved body and/or tail and larger yolk compared to control embryos of the same stages. The defects persisted in 6-9 day...

  3. Altered circadian clock gene expression in patients with schizophrenia.

    Science.gov (United States)

    Johansson, Anne-Sofie; Owe-Larsson, Björn; Hetta, Jerker; Lundkvist, Gabriella B

    2016-07-01

    Impaired circadian rhythmicity has been reported in several psychiatric disorders. Schizophrenia is commonly associated with aberrant sleep-wake cycles and insomnia. It is not known if schizophrenia is associated with disturbances in molecular rhythmicity. We cultured fibroblasts from skin samples obtained from patients with chronic schizophrenia and from healthy controls, respectively, and analyzed the circadian expression during 48h of the clock genes CLOCK, BMAL1, PER1, PER2, CRY1, CRY2, REV-ERBα and DBP. In fibroblasts obtained from patients with chronic schizophrenia, we found a loss of rhythmic expression of CRY1 and PER2 compared to cells from healthy controls. We also estimated the sleep quality in these patients and found that most of them suffered from poor sleep in comparison with the healthy controls. In another patient sample, we analyzed mononuclear blood cells from patients with schizophrenia experiencing their first episode of psychosis, and found decreased expression of CLOCK, PER2 and CRY1 compared to blood cells from healthy controls. These novel findings show disturbances in the molecular clock in schizophrenia and have important implications in our understanding of the aberrant rhythms reported in this disease. PMID:27132483

  4. PTEN and PDCD4 are Bona Fide Targets of microRNA-21 in Human Cholangiocarcinoma

    Institute of Scientific and Technical Information of China (English)

    Chang-zheng Liu; Wei Liu; Yi Zheng; Jin-mei Su; Jing-jing Li; Lan Yu; Xiao-dong He; Song-sen Chen

    2012-01-01

    Objective To investigate the expression profile of microRNA-21 in human cholangiocarcinoma tissues and to validate its bona fide targets in human cholangiocarcinoma cells.Methods The expression profile ofmicroRNA-21 in human cholangiocarcinoma tissues and cholangiocarcinoma cell line,QBC939,was evaluated by using real-time PCR analysis.The bona fide targets of microRNA-21 were analyzed and confirmed by dual luciferase reporter gene assay and western blot,respectively.The expressional correlation of microRNA-21 and its targets was probed in human cholangiocarcinoma tissues by using real-time PCR,locked nucleic acid in situ hybridization (LNA-ISH),and immunohistochemistry analysis.Results Real-time PCR analysis revealed that microRNA-21 expression depicted a significant up-regulation in human cholangiocarcinoma tissues about 5.6-fold as compared to the matched normal bile duct tissues (P<0.05).The dual luciferase reporter gene assay revealed endogenous microRNA-21 in cholangiocarcinoma cell line,QBC939,inhibited the luciferase reporter activities of wild-type PTEN (P<0.01) and PDCD4 (P<0.05) and had no this effect on mutated PTEN and PDCD4.Moreover,loss of microRNA-21 function led to a significant increase of PTEN and PDCD4 protein levels in QBC939 cells.Elevated microRNA-21 levels were accompanied by marked reductions of PTEN and PDCD4 expression in the same cholangiocarcinoma tissue.Conclusion microRNA-21 expression is up-regulated in human cholangiocarcinoma and PTEN,PDCD4 are direct effectors of microRNA-21.

  5. Expression of altered retinoblastoma protein inversely correlates with tumor invasion in gastric carcinoma

    Institute of Scientific and Technical Information of China (English)

    Nan-Hua Chou; Hui-Chun Chen; Nan-Song Chou; Ping-I Hsu; Hui-Hwa Tseng

    2006-01-01

    AIM: To investigate the clinical and pathological significance of altered retinoblastoma (Rb) encoding protein (pRb) in gastric carcinoma.METHODS: Expression of altered pRb was analyzed in 91 patients with gastric adenocarcinoma by immunohistochemistry.RESULTS: Sixty-five percent (59/91) of the tumors were positively stained and the staining in tumor nuclei of gastric carcinoma ranged 0%-90%. Moreover, strong expression of altered pRb was found in 35% (6/17),24% (5/21), 17% (8/46) and 0% (0/7) of T1, T2, T3 and T4 gastric carcinomas, respectively. Altered pRb expression was inversely correlated with the depth of tumor invasion (P = 0.047). Degree of immunoreactivity had no significant correlation with tumor grade, node metastasis and distant metastasis. In terms of prognostic significance, univariate analysis showed that poor differentiation [41 (66.1%) vs 34 (42.5%) P = 0.051],advanced tumor stage (P < 0.001) and weakly altered pRb expression [17 (80.5%) vs 58 (49.6%) P = 0.044]were associated with worse prognosis in these patients.However, multivariate analysis revealed that advanced tumor stage was the only independent poor prognostic factor (P < 0.001).CONCLUSION: The mutation of Rb gene is frequent in gastric carcinoma. The expression of altered pRb inversely correlates with tumor invasion and is not an independent prognostic marker in gastric adenocarcinoma

  6. Ecstasy-Induced Caspase Expression Alters Following Ginger Treatment

    OpenAIRE

    Asl, Sara Soleimani; Pourheydar, Bagher; Dabaghian, Fataneh; Nezhadi, Akram; ROOINTAN, AMIR; Mehdizadeh, Mehdi

    2013-01-01

    Introduction Exposure to 3-4, methylenedioxymethamphetamine (MDMA) leads to cell death. Herein, we studied the protective effects of ginger on MDMA- induced apoptosis. Methods 15 Sprague dawley male rats were administrated with 0, 10 mg/kg MDMA, or MDMA along with 100mg/kg ginger, IP for 7 days. Brains were removed to study the caspase 3, 8, and 9 expressions in the hippocampus by RT-PCR. Data was analyzed by SPSS 16 software using the one-way ANOVA test. Results MDMA treatment resulted in a ...

  7. Neurotoxocarosis alters myelin protein gene transcription and expression.

    Science.gov (United States)

    Heuer, Lea; Beyerbach, Martin; Lühder, Fred; Beineke, Andreas; Strube, Christina

    2015-06-01

    Neurotoxocarosis is an infection of the central nervous system caused by migrating larvae of the common dog and cat roundworms (Toxocara canis and Toxocara cati), which are zoonotic agents. As these parasites are prevalent worldwide and neuropathological and molecular investigations on neurotoxocarosis are scare, this study aims to characterise nerve fibre demyelination associated with neurotoxocarosis on a molecular level. Transcription of eight myelin-associated genes (Cnp, Mag, Mbp, Mog, Mrf-1, Nogo-A, Plp1, Olig2) was determined in the mouse model during six time points of the chronic phase of infection using qRT-PCR. Expression of selected proteins was analysed by Western blotting or immunohistochemistry. Additionally, demyelination and neuronal damage were investigated histologically. Significant differences (p ≤ 0.05) between transcription rates of T. canis-infected and uninfected control mice were detected for all analysed genes while T. cati affected five of eight investigated genes. Interestingly, 2', 3 ´-cyclic nucleotide 3'-phosphodiesterase (Cnp) and myelin oligodendrocyte glycoprotein (Mog) were upregulated in both T. canis- and T. cati-infected mice preceding demyelination. Later, CNPase expression was additionally enhanced. As expected, myelin basic protein (Mbp) was downregulated in cerebra and cerebella of T. canis-infected mice when severe demyelination was present 120 days post infectionem (dpi). The transcriptional pattern observed in the present study appears to reflect direct traumatic and hypoxic effects of larval migration as well as secondary processes including host immune reactions, demyelination and attempts to remyelinate damaged areas.

  8. Nursing frequency alters circadian patterns of mammary gene expression in lactating mice

    Science.gov (United States)

    Milking frequency impacts lactation in dairy cattle and in rodent models of lactation. The role of circadian gene expression in this process is unknown. The hypothesis tested was that changing nursing frequency alters the circadian patterns of mammary gene expression. Mid-lactation CD1 mice were stu...

  9. Fine-Tuning of PI3K/AKT Signalling by the Tumour Suppressor PTEN Is Required for Maintenance of Flight Muscle Function and Mitochondrial Integrity in Ageing Adult Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Lawrence B Mensah

    Full Text Available Insulin/insulin-like growth factor signalling (IIS, acting primarily through the PI3-kinase (PI3K/AKT kinase signalling cassette, plays key evolutionarily conserved regulatory roles in nutrient homeostasis, growth, ageing and longevity. The dysfunction of this pathway has been linked to several age-related human diseases including cancer, Type 2 diabetes and neurodegenerative disorders. However, it remains unclear whether minor defects in IIS can independently induce the age-dependent functional decline in cells that accompany some of these diseases or whether IIS alters the sensitivity to other aberrant signalling. We identified a novel hypomorphic allele of PI3K's direct antagonist, Phosphatase and tensin homologue on chromosome 10 (Pten, in the fruit fly, Drosophila melanogaster. Adults carrying combinations of this allele, Pten5, combined with strong loss-of-function Pten mutations exhibit subtle or no increase in mass, but are highly susceptible to a wide range of stresses. They also exhibit dramatic upregulation of the oxidative stress response gene, GstD1, and a progressive loss of motor function that ultimately leads to defects in climbing and flight ability. The latter phenotype is associated with mitochondrial disruption in indirect flight muscles, although overall muscle structure appears to be maintained. We show that the phenotype is partially rescued by muscle-specific expression of the Bcl-2 homologue Buffy, which in flies, maintains mitochondrial integrity, modulates energy homeostasis and suppresses cell death. The flightless phenotype is also suppressed by mutations in downstream IIS signalling components, including those in the mechanistic Target of Rapamycin Complex 1 (mTORC1 pathway, suggesting that elevated IIS is responsible for functional decline in flight muscle. Our data demonstrate that IIS levels must be precisely regulated by Pten in adults to maintain the function of the highly metabolically active indirect flight

  10. Systems biology reveals new strategies for personalizing cancer medicine and confirms the role of PTEN in resistance to trastuzumab.

    Science.gov (United States)

    Faratian, Dana; Goltsov, Alexey; Lebedeva, Galina; Sorokin, Anatoly; Moodie, Stuart; Mullen, Peter; Kay, Charlene; Um, In Hwa; Langdon, Simon; Goryanin, Igor; Harrison, David J

    2009-08-15

    Resistance to targeted cancer therapies such as trastuzumab is a frequent clinical problem not solely because of insufficient expression of HER2 receptor but also because of the overriding activation states of cell signaling pathways. Systems biology approaches lend themselves to rapid in silico testing of factors, which may confer resistance to targeted therapies. Inthis study, we aimed to develop a new kinetic model that could be interrogated to predict resistance to receptor tyrosine kinase (RTK) inhibitor therapies and directly test predictions in vitro and in clinical samples. The new mathematical model included RTK inhibitor antibody binding, HER2/HER3 dimerization and inhibition, AKT/mitogen-activated protein kinase cross-talk, and the regulatory properties of PTEN. The model was parameterized using quantitative phosphoprotein expression data from cancer cell lines using reverse-phase protein microarrays. Quantitative PTEN protein expression was found to be the key determinant of resistance to anti-HER2 therapy in silico, which was predictive of unseen experiments in vitro using the PTEN inhibitor bp(V). When measured in cancer cell lines, PTEN expression predicts sensitivity to anti-HER2 therapy; furthermore, this quantitative measurement is more predictive of response (relative risk, 3.0; 95% confidence interval, 1.6-5.5; P biology approach has successfully been used to stratify patients for personalized therapy in cancer and is further compelling evidence that PTEN, appropriately measured in the clinical setting, refines clinical decision making in patients treated with anti-HER2 therapies.

  11. Atorvastatin Inhibits Myocardial Apoptosis in a Swine Model of Coronary Microembolization by Regulating PTEN/PI3K/Akt Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Jiangyou Wang

    2016-01-01

    Full Text Available Background/Aims: Phosphatase and tensin homolog deleted on chromosome ten (PTEN has been recognized as a promoter of apoptosis in various tissues, and revealed to be up-regulated in circumstances of coronary microembolization (CME. However, whether this functional protein could be modified by pretreatment of atorvastatin in models of CME has not been disclosed yet. Methods: Swine CME was induced by intra-coronary injection of inertia plastic microspheres (diameter 42 μm into left anterior descending coronary, with or without pretreatment of atorvastatin or PTEN siRNA. Echocardiologic measurements, pathologic examination, TUNEL staining and western blotting were applied to assess their functional, morphological and molecular effects in CME. Results: PTEN were aberrantly up-regulated in cardiomyocytes following CME, with both the mRNA and protein levels increased after CME modeling. Pretreatment with atorvastatin could attenuate the induction of PTEN. Furthermore, down-regulation of PTEN in vivo via siRNA was associated with an improved cardiac function, attenuated myocardial apoptosis, and concomitantly inhibited expressions of key proapoptotic proteins such as Bax, cleaved-caspase-3. Interestingly, atorvastatin could markedly attenuate PTEN expression and therefore partially reverse cardiac dysfunction and attenuate the apoptosis of the myocardium following CME. Conclusion: Modulation of PTEN was probably as a potential mechanism involved in the beneficial effects of pretreatment of atorvastatin to cardiac function and apoptosis in large animal models of CME.

  12. Altered expression pattern of clock genes in a rat model of depression

    DEFF Research Database (Denmark)

    Christiansen, Sofie; Bouzinova, Elena; Fahrenkrug, Jan;

    2016-01-01

    of clock gene expression in depressive patients many studies have reported single-nucleotide polymorphisms in clock genes in these patients. METHODS: In the present study we investigated whether a depression-like state in rats associates with alternations of the diurnal expression of clock genes......: The present results suggest that altered expression of investigated clock genes are likely to associate with the induction of a depression-like state in the CMS model...

  13. PTEN sequence analysis in endometrial hyperplasia and endometrial carcinoma in Slovak women.

    Science.gov (United States)

    Gbelcová, H; Bakeš, P; Priščáková, P; Šišovský, V; Hojsíková, I; Straka, Ľ; Konečný, M; Markus, J; D'Acunto, C W; Ruml, T; Böhmer, D; Danihel, Ľ; Repiská, V

    2015-01-01

    Phosphatase and tensin homolog (PTEN) is a protein that acts as a tumor suppressor by dephosphorylating the lipid second messenger phosphatidylinositol 3,4,5-trisphosphate. Loss of PTEN function has been implicated in the pathogenesis of a number of different tumors, particularly endometrial carcinoma (ECa). ECa is the most common neoplasia of the female genital tract. Our study evaluates an association between the morphological appearance of endometrial hyperplasia and endometrial carcinoma and the degree of PTEN alterations. A total of 45 endometrial biopsies from Slovak women were included in present study. Formalin-fixed and paraffin-embedded tissue samples with simple hyperplasia (3), complex hyperplasia (5), atypical complex hyperplasia (7), endometrioid carcinomas G1 (20) and G3 (5), and serous carcinoma (5) were evaluated for the presence of mutations in coding regions of PTEN gene, the most frequently mutated tumor suppressor gene in endometrial carcinoma. 75% of the detected mutations were clustered in exons 5 and 8. Out of the 39 mutations detected in 24 cases, 20 were frameshifts and 19 were nonsense, missense, or silent mutations. Some specimens harboured more than one mutation. The results of current study on Slovak women were compared to a previous study performed on Polish population. The two sets of results were similar. PMID:26114084

  14. PTEN Sequence Analysis in Endometrial Hyperplasia and Endometrial Carcinoma in Slovak Women

    Directory of Open Access Journals (Sweden)

    H. Gbelcová

    2015-01-01

    Full Text Available Phosphatase and tensin homolog (PTEN is a protein that acts as a tumor suppressor by dephosphorylating the lipid second messenger phosphatidylinositol 3,4,5-trisphosphate. Loss of PTEN function has been implicated in the pathogenesis of a number of different tumors, particularly endometrial carcinoma (ECa. ECa is the most common neoplasia of the female genital tract. Our study evaluates an association between the morphological appearance of endometrial hyperplasia and endometrial carcinoma and the degree of PTEN alterations. A total of 45 endometrial biopsies from Slovak women were included in present study. Formalin-fixed and paraffin-embedded tissue samples with simple hyperplasia (3, complex hyperplasia (5, atypical complex hyperplasia (7, endometrioid carcinomas G1 (20 and G3 (5, and serous carcinoma (5 were evaluated for the presence of mutations in coding regions of PTEN gene, the most frequently mutated tumor suppressor gene in endometrial carcinoma. 75% of the detected mutations were clustered in exons 5 and 8. Out of the 39 mutations detected in 24 cases, 20 were frameshifts and 19 were nonsense, missense, or silent mutations. Some specimens harboured more than one mutation. The results of current study on Slovak women were compared to a previous study performed on Polish population. The two sets of results were similar.

  15. PTEN Mediates the Antioxidant Effect of Resveratrol at Nutritionally Relevant Concentrations

    Directory of Open Access Journals (Sweden)

    Marta Inglés

    2014-01-01

    Full Text Available Introduction. Antioxidant properties of resveratrol have been intensively studied for the last years, both in vivo and in vitro. Its bioavailability after an oral dose is very low and therefore it is very important to make sure that plasma concentrations of free resveratrol are sufficient enough to be active as antioxidant. Aims. In the present study, using nutritionally relevant concentrations of resveratrol, we aim to confirm its antioxidant capacity on reducing peroxide levels and look for the molecular pathway involved in this antioxidant effect. Methods. We used mammary gland tumor cells (MCF-7, which were pretreated with different concentrations of resveratrol for 48 h, and/or a PTEN inhibitor (bpV: bipy. Hydrogen peroxide levels were determined by fluorimetry, PTEN levels and Akt phosphorylation by Western Blotting, and mRNA expression of antioxidant genes by real-time reverse transcriptase-polymerase chain reaction (RT-PCR. Results. Resveratrol treatment for 48 h lowered peroxide levels in MCF-7, even at low nutritional concentrations (1 nM. This effect was mediated by the activation of PTEN/Akt pathway, which resulted in an upregulation of catalase and MnSOD mRNA levels. Conclusion. Resveratrol acts as an antioxidant at nutritionally relevant concentrations by inducing the expression of antioxidant enzymes, through a mechanism involving PTEN/Akt signaling pathway.

  16. PTEN insufficiency modulates ER+ breast cancer cell cycle progression and increases cell growth in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Chiang KC

    2015-08-01

    Full Text Available Kun-Chun Chiang,1,4 Huang-Yang Chen,1 Shu-Yuan Hsu,2 Jong-Hwei S Pang,3 Shang-Yu Wang,4 Jun-Te Hsu,4 Ta-Sen Yeh,4 Li-Wei Chen,5 Sheng-Fong Kuo,6 Chi-Chin Sun,7 Jim-Ming Lee,1 Chun-Nan Yeh,4 Horng-Heng Juang21Department of General Surgery, Chang Gung Memorial Hospital, Chang Gung University, Keelung, 2Department of Anatomy, 3Graduate Institute of Clinical Medical Sciences, 4Department of General Surgery, 5Department of Gastroenterology, 6Department of Endocrinology and Metabolism, 7Department of Ophthalmology, Chang Gung Memorial Hospital, Chang Gung University, Keelung, Taiwan, Republic of China Abstract: Phosphatase and tensin homolog (PTEN, a well-known tumor suppressor gene and frequently mutated or lost in breast cancer, possesses the negative regulation function over the PI3K/Akt/mTOR pathway. PTEN insufficiency has been associated with advanced breast cancer and poor prognosis of breast cancer patients. Recently, target therapies aimed at PI3K/Akt/mTOR pathway to treat breast cancer have got popularity. However, the exact effect of PTEN on breast cancer cells is still not well understood. This study demonstrated that PTEN knockdown in MCF-7 cells strengthened the downstream gene expressions, including p-Akt, p-ERK1/2, p-mTOR, p-p70s6k, and p-GSK3ß. PTEN knockdown MCF-7 cells had increased cell growth and Ki-67 expression. Further Western blot demonstrated that p27 was repressed obviously with p21 slightly inhibited and CDK1, 2, 4, 6, cyclin A, and Cdc25C were upregulated in MCF-7 PTEN knockdown cells, leading to the higher growth rate. More importantly, PTEN knockdown MCF-7 cells had higher tumorigenesis and tumor growth in vivo. From our current work, we provided more detailed PTEN-mediated mechanisms to stimulate ER+ breast cancer cell growth. Our result may pave the way for further target therapy development used alone or in combination with other drugs for ER+ breast cancer with PTEN insufficiency.Keywords: PTEN, breast cancer, MCF-7

  17. Fractionated Ionizing Radiation Promotes Epithelial-Mesenchymal Transition in Human Esophageal Cancer Cells through PTEN Deficiency-Mediated Akt Activation.

    Directory of Open Access Journals (Sweden)

    Enhui He

    Full Text Available In some esophageal cancer patients, radiotherapy may not prevent distant metastasis thus resulting in poor survival. The underlying mechanism of metastasis in these patients is not well established. In this study, we have demonstrated that ionizing radiation may induce epithelial-mesenchymal transition (EMT accompanied with increased cell migration and invasion, through downregulation of phosphatase and tensin homolog (PTEN, and activation of Akt/GSK-3β/Snail signaling. We developed a radioresistant (RR esophageal squamous cancer cell line, KYSE-150/RR, by fractionated ionizing radiation (IR treatment, and confirmed its radioresistance using a clonogenic survival assay. We found that the KYSE-150/RR cell line displayed typical morphological and molecular characteristics of EMT. In comparison to the parental cells, KYSE-150/RR cells showed an increase in post-IR colony survival, migration, and invasiveness. Furthermore, a decrease in PTEN in KYSE-150/RR cells was observed. We postulated that over-expression of PTEN may induce mesenchymal-epithelial transition in KYSE-150/RR cells and restore IR-induced increase of cell migration. Mechanistically, fractionated IR inhibits expression of PTEN, which leads to activation of Akt/GSK-3β signaling and is associated with the elevated levels of Snail protein, a transcription factor involved in EMT. Correspondingly, treatment with LY294002, a phosphatidylinositol-3-kinase inhibitor, mimicked PTEN overexpression effect in KYSE-150/RR cells, further suggesting a role for the Akt/GSK-3β/Snail signaling in effects mediated through PTEN. Together, these results strongly suggest that fractionated IR-mediated EMT in KYSE-150/RR cells is through PTEN-dependent pathways, highlighting a direct proinvasive effect of radiation treatment on tumor cells.

  18. Antipsychotic pathway genes with expression altered in opposite direction by antipsychotics and amphetamine.

    Science.gov (United States)

    Ko, Françoise; Tallerico, Teresa; Seeman, Philip

    2006-08-01

    To develop a new strategy for identifying possible psychotic- or antipsychotic-related pathway genes, rats were treated with clinical doses of haloperidol and clozapine for 4 days, and the altered expression of genes was compared with the genes altered in expression after amphetamine sensitization. The objective was to identify genes with expression altered in the same direction by haloperidol and clozapine but in the opposite direction in the amphetamine-sensitized rat striatum. These criteria were met by 21 genes, consisting of 15 genes upregulated by amphetamine, and 6 genes downregulated by amphetamine. Of the 21 genes, 15 are not presently identified, and only 3 genes (cathepsin K, GRK6, and a gene with accession number AI177589) are located in chromosome regions known to be associated with schizophrenia.

  19. 结直肠癌组织中p53、PTEN和VHL对缺氧诱导因子-1α表达的影响%Effect of p53、PTEN and VHL on Expression of HIF-1α Expression in Colorectal Carcinoma

    Institute of Scientific and Technical Information of China (English)

    高家宝; 易沪萍; 刘勇; 江晓华

    2013-01-01

    Objective To investigate the effect of p53、PTEN、VHL on expression of HIF-1α and HIF-1αmRNA in colorectal carcinoma.Method The tissue chip technique,SP immunohistochemistry and in situ hybridization methods were used to determine the expression of p53 、PTEN、VHL、HIF-1αand HIF-1α mRNA in tissue specimens from 60 cases with colorectal carcinoma.Results The positive rates of p53、PTEN、VHL、HIF-1α and HIF-1α mRNA were 55%,48.3%,41.7%,58.3% and 71.7% respectively.The positive rates of p53 、HIF-1 α 和 HIF-1 α mRNA were significantly higher in the patients with lymph node metastasis than those without node metastasis (P < 0.01).Up-regulated expression of p53 and low-expression of PTEN and VHL were significantly correlated with up-regulated expression of HIF-1αand HIF-1αmRNA.Conclusions It is feasible to utilize tissue chip for rapid,economic and accurate screening of clinical tissue specimens on a large scale.Mutant type p53 is related to up-regulated expression of HIF-1 α,while PTEN and VHL are related to low expression of HIF-1α in colorectal carcinoma.%目的 研究结直肠癌组织中p53、PTEN和VHL对缺氧诱导因子-1α(hypoxia-inducible factor 1α)表达的影响及意义. 方法 采用组织芯片技术制作60例结直肠癌组织芯片,同时采用SP免疫组织化学法和原位分子杂交(cDNA-mRNA)方法检测结直肠癌组织芯片中p53、PTEN、VHL、HIF-1α和HIF-1αmRNA的表达. 结果 60例结直肠癌组织中,p53、PTEN、VHL、HIF-1 α和HIF-1 αmRNA的阳性率分别为55%、48.3%、41.7%、58.3%和71.7%.淋巴结转移组p53、HIF-1α和HIF-1 αmRNA阳性率显著高于无淋巴结转移组(P<0.01).p53高表达、PTEN和VHL低表达与HIF-1α和HIF-1αmRNA 高表达明显相关. 结论 p53、PTEN、VHL、HIF-1α和HIF-1αmRNA的表达水平可以作为评估结直肠癌预后的参考指标.

  20. Simultaneous inactivation of Par-4 and PTEN in vivo leads to synergistic NF-κB activation and invasive prostate carcinoma

    Science.gov (United States)

    Fernandez-Marcos, Pablo J.; Abu-Baker, Shadi; Joshi, Jayashree; Galvez, Anita; Castilla, Elias A.; Cañamero, Marta; Collado, Manuel; Saez, Carmen; Moreno-Bueno, Gema; Palacios, Jose; Leitges, Michael; Serrano, Manuel; Moscat, Jorge; Diaz-Meco, Maria T.

    2009-01-01

    Prostate cancer is one of the most common neoplasias in men. The tumor suppressor Par-4 is an important negative regulator of the canonical NF-κB pathway and is highly expressed in prostate. Here we show that Par-4 expression is lost in a high percentage of human prostate carcinomas, and this occurs in association with phosphatase and tensin homolog deleted from chromosome 10 (PTEN) loss. Par-4 null mice, similar to PTEN-heterozygous mice, only develop benign prostate lesions, but, importantly, concomitant Par-4 ablation and PTEN-heterozygosity lead to invasive prostate carcinoma in mice. This strong tumorigenic cooperation is anticipated in the preneoplastic prostate epithelium by an additive increase in Akt activation and a synergistic stimulation of NF-κB. These results establish the cooperation between Par-4 and PTEN as relevant for the development of prostate cancer and implicate the NF-κB pathway as a critical event in prostate tumorigenesis. PMID:19470463

  1. Odontogenic ameloblast-associated protein (ODAM) inhibits growth and migration of human melanoma cells and elicits PTEN elevation and inactivation of PI3K/AKT signaling

    International Nuclear Information System (INIS)

    The Odontogenic Ameloblast-associated Protein (ODAM) is expressed in a wide range of normal epithelial, and neoplastic tissues, and we have posited that ODAM serves as a novel prognostic biomarker for breast cancer and melanoma. Transfection of ODAM into breast cancer cells yields suppression of cellular growth, motility, and in vivo tumorigenicity. Herein we have extended these studies to the effects of ODAM on cultured melanoma cell lines. The A375 and C8161 melanoma cell lines were stably transfected with ODAM and assayed for properties associated with tumorigenicity including cell growth, motility, and extracellular matrix adhesion. In addition, ODAM–transfected cells were assayed for signal transduction via AKT which promotes cell proliferation and survival in many neoplasms. ODAM expression in A375 and C8161 cells strongly inhibited cell growth and motility in vitro, increased cell adhesion to extracellular matrix, and yielded significant cytoskeletal/morphologic rearrangement. Furthermore, AKT activity was downregulated by ODAM expression while an increase was noted in expression of the PTEN (phosphatase and tensin homolog on chromosome 10) tumor suppressor gene, an antagonist of AKT activation. Increased PTEN in ODAM-expressing cells was associated with increases in PTEN mRNA levels and de novo protein synthesis. Silencing of PTEN expression yielded recovery of AKT activity in ODAM-expressing melanoma cells. Similar PTEN elevation and inhibition of AKT by ODAM was observed in MDA-MB-231 breast cancer cells while ODAM expression had no effect in PTEN-deficient BT-549 breast cancer cells. The apparent anti-neoplastic effects of ODAM in cultured melanoma and breast cancer cells are associated with increased PTEN expression, and suppression of AKT activity. This association should serve to clarify the clinical import of ODAM expression and any role it may serve as an indicator of tumor behavior

  2. Pregnancy Complicated by Obesity Induces Global Transcript Expression Alterations in Visceral and Subcutaneous Fat

    Science.gov (United States)

    Bashiri, Asher; Heo, Hye J.; Ben-Avraham, Danny; Mazor, Moshe; Budagov, Temuri; Einstein, Francine H.; Atzmon, Gil

    2014-01-01

    Maternal obesity is a significant risk factor for development of both maternal and fetal metabolic complications. Increase in visceral fat and insulin resistance is a metabolic hallmark of pregnancy, yet little is known how obesity alters adipose cellular function and how this may contribute to pregnancy morbidities. We sought to identify alterations in genome-wide transcription expression in both visceral (omental) and abdominal subcutaneous fat deposits in pregnancy complicated by obesity. Visceral and abdominal subcutaneous fat deposits were collected from normal weight and obese pregnant women (n=4/group) at time of scheduled uncomplicated cesarean section. A genome-wide expression array (Affymetrix Human Exon 1.0 st platform), validated by quantitative real-time PCR, was utilized to establish the gene transcript expression profile in both visceral and abdominal subcutaneous fat in normal weight and obese pregnant women. Global alteration in gene expression was identified in pregnancy complicated by obesity. These regions of variations lead to identification of indolethylamine N-methyltransferase (INMT), tissue factor pathway inhibitor-2 (TFPI-2), and ephrin type-B receptor 6 (EPHB6), not previously associated with fat metabolism during pregnancy. In addition, subcutaneous fat of obese pregnant women demonstrated increased coding protein transcripts associated with apoptosis compared to lean counterparts. Global alteration of gene expression in adipose tissue may contribute to adverse pregnancy outcomes associated with obesity. PMID:24696292

  3. Pregnancy complicated by obesity induces global transcript expression alterations in visceral and subcutaneous fat.

    Science.gov (United States)

    Bashiri, Asher; Heo, Hye J; Ben-Avraham, Danny; Mazor, Moshe; Budagov, Temuri; Einstein, Francine H; Atzmon, Gil

    2014-08-01

    Maternal obesity is a significant risk factor for development of both maternal and fetal metabolic complications. Increase in visceral fat and insulin resistance is a metabolic hallmark of pregnancy, yet not much is known how obesity alters adipose cellular function and how this may contribute to pregnancy morbidities. We sought to identify alterations in genome-wide transcription expression in both visceral (omental) and abdominal subcutaneous fat deposits in pregnancy complicated by obesity. Visceral and abdominal subcutaneous fat deposits were collected from normal weight and obese pregnant women (n = 4/group) at the time of scheduled uncomplicated cesarean section. A genome-wide expression array (Affymetrix Human Exon 1.0 st platform), validated by quantitative real-time PCR, was utilized to establish the gene transcript expression profile in both visceral and abdominal subcutaneous fat in normal weight and obese pregnant women. Global alteration in gene expression was identified in pregnancy complicated by obesity. These regions of variations led to identification of indolethylamine N-methyltransferase, tissue factor pathway inhibitor-2, and ephrin type-B receptor 6, not previously associated with fat metabolism during pregnancy. In addition, subcutaneous fat of obese pregnant women demonstrated increased coding protein transcripts associated with apoptosis as compared to lean counterparts. Global alteration of gene expression in adipose tissue may contribute to adverse pregnancy outcomes associated with obesity.

  4. Analysis of PTEN, BRAF and PI3K status for determination of benefit from cetuximab therapy in metastatic colorectal cancer patients refractory to chemotherapy with wild-type KRAS.

    Science.gov (United States)

    Tural, Deniz; Batur, Sebnem; Erdamar, Sibel; Akar, Emre; Kepil, Nuray; Mandel, Nil Molinas; Serdengeçti, Süheyla

    2014-02-01

    We investigated predictive values of BRAF, PI3K and PTEN in cetuximab responses in KRAS wild-type (+) chemotherapy refractory, metastatic colorectal cancer (CRC) patients. Primary tumour tissues of 41 KRAS wild-type mCRC patients receiving cetuximab-based chemotherapy were investigated for PI3K, PTEN, KRAS and BRAF mutations. Progression-free survival (PFS) and overall survival (OS) periods were calculated with Kaplan-Meier method and the Cox proportional hazards model was used. PTEN and PI3K expressions were 63 and 42 %, respectively. BRAF mutation was observed as 9.8 % among patients. Tumours with BRAF mutation had statistically lower response rates (RR) for cetuximab-based treatment than tumours with BRAF wild type (0 vs. 58 %, p = 0.02). PTEN expressing tumours had statistically higher RR for cetuximab-based treatment than tumours with PTEN loss (42 vs. 12 %, p = 0.04). PI3K expression had worse significant effect on cetuximab RR than PI3K non-expressed tumours (15 vs. 44 %, p = 0.023). Median PFS was significantly longer in patients with PTEN expression (14 months) than in patients with PTEN loss (5 months) (HR, 0.4; p = 0.028). Median PFS was significantly longer in patients with PI3K non-expression (15.2 months) than in patients with PI3K expression (4.1 months) (HR, 0.31; p = 0.001). Significant difference in PFS and OS between patients with BRAF mutated and BRAF wild-type tumours was not detected. However, patients with PTEN expression had significantly longer OS (15.1 months) than patients with PTEN loss tumour (9.9 months) (HR, 0.34; p = 0.008). Patients without PI3K expression had significantly longer OS (18.2 months) than patients with PI3K expression (10.1 months) (HR, 0.27; p = 0.001). Multivariate analyses revealed that PTEN expression (HR, 0.48; p = 0.02) and absence of PI3K expression (HR, 0.2; p = 0.001) were independent prognostic factors for increased PFS. Similarly, PTEN overexpression (HR, 0.62; p = 0.03) and absence of PI3K expression (HR, 0

  5. Roles of PTEN with DNA Repair in Parkinson’s Disease

    Science.gov (United States)

    Ogino, Mako; Ichimura, Mayuko; Nakano, Noriko; Minami, Akari; Kitagishi, Yasuko; Matsuda, Satoru

    2016-01-01

    Oxidative stress is considered to play key roles in aging and pathogenesis of many neurodegenerative diseases such as Parkinson’s disease, which could bring DNA damage by cells. The DNA damage may lead to the cell apoptosis, which could contribute to the degeneration of neuronal tissues. Recent evidence suggests that PTEN (phosphatase and tensin homolog on chromosome 10) may be involved in the pathophysiology of the neurodegenerative disorders. Since PTEN expression appears to be one dominant determinant of the neuronal cell death, PTEN should be a potential molecular target of novel therapeutic strategies against Parkinson’s disease. In addition, defects in DNA damage response and DNA repair are often associated with modulation of hormone signaling pathways. Especially, many observations imply a role for estrogen in a regulation of the DNA repair action. In the present review, we have attempted to summarize the function of DNA repair molecules at a viewpoint of the PTEN signaling pathway and the hormone related functional modulation of cells, providing a broad interpretation on the molecular mechanisms for treatment of Parkinson’s disease. Particular attention will be paid to the mechanisms proposed to explain the health effects of food ingredients against Parkinson’s disease related to reduce oxidative stress for an efficient therapeutic intervention. PMID:27314344

  6. Altered microRNAs expression profiling in cumulus cells from patients with polycystic ovary syndrome

    OpenAIRE

    Liu, Suying; Zhang, Xuan; Shi, Changgen; Lin, Jimin; Chen, Guowu; Wu, Bin; Wu, Ligang; Shi, Huijuan; Yuan, Yao; Zhou, Weijin; Sun, Zhaogui; Dong, Xi; Wang, Jian

    2015-01-01

    Background Polycystic ovary syndrome (PCOS) is a common endocrine disorder in women of reproductive age, and oocyte developmental competence is altered in patients with PCOS. In recent years microRNAs (miRNAs) have emerged as important regulators of gene expression, the aim of the study was to study miRNAs expression patterns of cumulus cells from PCOS patients. Methods The study included 20 patients undergoing in vitro fertilization (IVF) and intra-cytoplasmic sperm injection (ICSI): 10 diag...

  7. Altered vesicular glutamate transporter expression in human temporal lobe epilepsy with hippocampal sclerosis

    OpenAIRE

    Van Liefferinge, J.; Jensen, C.J.; Albertini, G.; Bentea, E.; Demuyser, T.; Merckx, E.; Aronica, E.; Smolders, I; Massie, A.

    2015-01-01

    Vesicular glutamate transporters (VGLUTs) are responsible for loading glutamate into synaptic vesicles. Altered VGLUT protein expression has been suggested to affect quantal size and glutamate release under both physiological and pathological conditions. In this study, we investigated mRNA and protein expression levels of the three VGLUT subtypes in hippocampal tissue of patients suffering from temporal lobe epilepsy (TLE) with hippocampal sclerosis (HS), International League Against Epilepsy...

  8. Juvenile stress enhances anxiety and alters corticosteroid receptor expression in adulthood

    OpenAIRE

    Brydges, Nichola M.; Jin, Rowen; Seckl, Jonathan,; Holmes, Megan C; Drake, Amanda J.; Hall, Jeremy

    2013-01-01

    BackgroundExposure to stress in early life is correlated with the development of anxiety disorders in adulthood. The underlying mechanisms are not fully understood, but an imbalance in corticosteroid receptor (CR) expression in the limbic system, particularly the hippocampus, has been implicated in the etiology of anxiety disorders. However, little is known about how prepubertal stress in the so called “juvenile” period might alter the expression of these receptors.AimsTherefore, the aim of t...

  9. Prion disease induced alterations in gene expression in spleen and brain prior to clinical symptoms

    Directory of Open Access Journals (Sweden)

    Hyeon O Kim

    2008-09-01

    Full Text Available Hyeon O Kim1, Greg P Snyder1, Tyler M Blazey1, Richard E Race2, Bruce Chesebro2, Pamela J Skinner11Department of Veterinary and Biomedical Sciences, University of Minnesota, USA; 2NIH Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, Hamilton, Montana, USAAbstract: Prion diseases are fatal neurodegenerative disorders that affect animals and humans. There is a need to gain understanding of prion disease pathogenesis and to develop diagnostic assays to detect prion diseases prior to the onset of clinical symptoms. The goal of this study was to identify genes that show altered expression early in the disease process in the spleen and brain of prion disease-infected mice. Using Affymetrix microarrays, we identified 67 genes that showed increased expression in the brains of prion disease-infected mice prior to the onset of clinical symptoms. These genes function in many cellular processes including immunity, the endosome/lysosome system, hormone activity, and the cytoskeleton. We confirmed a subset of these gene expression alterations using other methods and determined the time course in which these changes occur. We also identified 14 genes showing altered expression prior to the onset of clinical symptoms in spleens of prion disease infected mice. Interestingly, four genes, Atp1b1, Gh, Anp32a, and Grn, were altered at the very early time of 46 days post-infection. These gene expression alterations provide insights into the molecular mechanisms underlying prion disease pathogenesis and may serve as surrogate markers for the early detection and diagnosis of prion disease.Keywords: prion disease, microarrays, gene expression

  10. PCR-SSCP-DNA sequencing method in detecting PTEN gene mutation and its significance in human gastric cancer

    Institute of Scientific and Technical Information of China (English)

    Chuan-Yong Guo; Xuan-Fu Xu; Jian-Ye Wu; Shu-Fang Liu

    2008-01-01

    AIM: To discuss the possible effect of PTEN gene mutations on occurrence and development of gastric cancer.METHODS: Fifty-three gastric cancer specimens were selected to probe PTEN gene mutations in genome of gastric cancer and paracancerous tissues using PCR-SSCP-DNA sequencing method based on microdissection and to observe the protein expression by immunohistochemistry technique.RESULTS: PCR-SSCP-DNA sequencing indicated that 4 kinds of mutation sites were found in 5 of 53 gastric cancer specimens.One kind of mutation was found in exons.AA-TCC mutation was located at 40bp upstream of 3' lateral exert 7 (115946 AA-TCC).Such mutations led to terminator formation in the 297th codon of the PTEN gene.The other 3 kinds of mutation were found in introns,including a G-C point mutation at 91 bp upstream of 5' lateral exon 5(90896 G-C),a T-G point mutation at 24 bp upstream of 5' lateral exon 5 (90963 T-G),and a single base A mutation at 7 bp upstream of 5' lateral exon 5 (90980 A del).The PTEN protein expression in gastric cancer and paracancerous tissues detected using immunohistochemistry technique indicated that the total positive rate of PTEN protein expression was 66% in gastric cancer tissue,which was significantly lower than that (100%) in paracancerous tissues (P<0.005).CONCLUSION: PTEN gene mutation and expression may play an important role in the occurrence and development of gastric cancer.(C)2008 The WJG Press.All rights reserved.

  11. Altered expression of epithelial cell surface glycoconjugates and intermediate filaments at the margins of mucosal wounds

    DEFF Research Database (Denmark)

    Dabelsteen, Erik; Grøn, B; Mandel, U;

    1998-01-01

    Alterations in cell to cell adhesion are necessary to enable the type of cell movements that are associated with epithelial wound healing and malignant invasion. Several studies of transformed cells have related epithelial cell movement to changes in the cell surface expression of the carbohydrat...

  12. The renal metallothionein expression profile is altered in human lupus nephritis

    DEFF Research Database (Denmark)

    Faurschou, Mikkel; Penkowa, Milena; Andersen, Claus Bøgelund;

    2008-01-01

    -I+II expression profile is altered during lupus nephritis. METHODS: Immunohistochemistry was performed on renal biopsies from 37 patients with lupus nephritis. Four specimens of healthy renal tissue served as controls. Clinicopathological correlation studies and renal survival analyses were performed by means...

  13. Gene expression alterations in brains of mice infected with three strains of scrapie

    Directory of Open Access Journals (Sweden)

    Race Richard E

    2006-05-01

    Full Text Available Abstract Background Transmissible spongiform encephalopathies (TSEs or prion diseases are fatal neurodegenerative disorders which occur in humans and various animal species. Examples include Creutzfeldt-Jakob disease (CJD in humans, bovine spongiform encephalopathy (BSE in cattle, chronic wasting disease (CWD in deer and elk, and scrapie in sheep, and experimental mice. To gain insights into TSE pathogenesis, we made and used cDNA microarrays to identify disease-associated alterations in gene expression. Brain gene expression in scrapie-infected mice was compared to mock-infected mice at pre-symptomatic and symptomatic time points. Three strains of mouse scrapie that show striking differences in neuropathology were studied: ME7, 22L, and Chandler/RML. Results In symptomatic mice, over 400 significant gene expression alterations were identified. In contrast, only 22 genes showed significant alteration in the pre-symptomatic animals. We also identified genes that showed significant differences in alterations in gene expression between strains. Genes identified in this study encode proteins that are involved in many cellular processes including protein folding, endosome/lysosome function, immunity, synapse function, metal ion binding, calcium regulation and cytoskeletal function. Conclusion These studies shed light on the complex molecular events that occur during prion disease, and identify genes whose further study may yield new insights into strain specific neuropathogenesis and ante-mortem tests for TSEs.

  14. Methyl-ß-cyclodextrin alters adipokine gene expression and glucose metabolism in swine adipose tissue

    Science.gov (United States)

    This study was designed to determine if metabolic stress as induced by methyl-ß-cyclodextrin (MCD) can alter cytokine expression in neonatal swine adipose tissue explants. Subcutaneous adipose tissue explants (100 ± 10 mg) were prepared from 21 day old pigs. Explants were incubated in medium 199 s...

  15. MicroRNA-22 promotes cell survival upon UV radiation by repressing PTEN

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Guangyun [Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN (United States); Center for Adult Cancer Research, University of Tennessee Health Science Center, Memphis, TN (United States); Jilin Province Key Laboratory of Animal Embryo Engineering, Jilin University, Changchun (China); Shi, Yuling [Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN (United States); Center for Adult Cancer Research, University of Tennessee Health Science Center, Memphis, TN (United States); Wu, Zhao-Hui, E-mail: zwu6@uthsc.edu [Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN (United States); Center for Adult Cancer Research, University of Tennessee Health Science Center, Memphis, TN (United States)

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer miR-22 is induced in cells treated with UV radiation. Black-Right-Pointing-Pointer ATM is required for miR-22 induction in response to UV. Black-Right-Pointing-Pointer miR-22 targets 3 Prime -UTR of PTEN to repress its expression in UV-treated cells. Black-Right-Pointing-Pointer Upregulated miR-22 inhibits apoptosis in cells exposed to UV. -- Abstract: DNA damage response upon UV radiation involves a complex network of cellular events required for maintaining the homeostasis and restoring genomic stability of the cells. As a new class of players involved in DNA damage response, the regulation and function of microRNAs in response to UV remain poorly understood. Here we show that UV radiation induces a significant increase of miR-22 expression, which appears to be dependent on the activation of DNA damage responding kinase ATM (ataxia telangiectasia mutated). Increased miR-22 expression may result from enhanced miR-22 maturation in cells exposed to UV. We further found that tumor suppressor gene phosphatase and tensin homolog (PTEN) expression was inversely correlated with miR-22 induction and UV-induced PTEN repression was attenuated by overexpression of a miR-22 inhibitor. Moreover, increased miR-22 expression significantly inhibited the activation of caspase signaling cascade, leading to enhanced cell survival upon UV radiation. Collectively, these results indicate that miR-22 is an important player in the cellular stress response upon UV radiation, which may promote cell survival via the repression of PTEN expression.

  16. β-catenin is required for prostate development and cooperates with Pten loss to drive invasive carcinoma.

    Directory of Open Access Journals (Sweden)

    Jeffrey C Francis

    Full Text Available Prostate cancer is a major cause of male death in the Western world, but few frequent genetic alterations that drive prostate cancer initiation and progression have been identified. β-Catenin is essential for many developmental processes and has been implicated in tumorigenesis in many tissues, including prostate cancer. However, expression studies on human prostate cancer samples are unclear on the role this protein plays in this disease. We have used in vivo genetic studies in the embryo and adult to extend our understanding of the role of β-Catenin in the normal and neoplastic prostate. Our gene deletion analysis revealed that prostate epithelial β-Catenin is required for embryonic prostate growth and branching but is dispensable in the normal adult organ. During development, β-Catenin controls the number of progenitors in the epithelial buds and regulates a discrete network of genes, including c-Myc and Nkx3.1. Deletion of β-Catenin in a Pten deleted model of castration-resistant prostate cancer demonstrated it is dispensable for disease progression in this setting. Complementary overexpression experiments, through in vivo protein stabilization, showed that β-Catenin promotes the formation of squamous epithelia during prostate development, even in the absence of androgens. β-Catenin overexpression in combination with Pten loss was able to drive progression to invasive carcinoma together with squamous metaplasia. These studies demonstrate that β-Catenin is essential for prostate development and that an inherent property of high levels of this protein in prostate epithelia is to drive squamous fate differentiation. In addition, they show that β-Catenin overexpression can promote invasive prostate cancer in a clinically relevant model of this disease. These data provide novel information on cancer progression pathways that give rise to lethal prostate disease in humans.

  17. Altered hypothalamic protein expression in a rat model of Huntington's disease.

    Directory of Open Access Journals (Sweden)

    Wei-na Cong

    Full Text Available Huntington's disease (HD is a neurodegenerative disorder, which is characterized by progressive motor impairment and cognitive alterations. Changes in energy metabolism, neuroendocrine function, body weight, euglycemia, appetite function, and circadian rhythm can also occur. It is likely that the locus of these alterations is the hypothalamus. We used the HD transgenic (tg rat model bearing 51 CAG repeats, which exhibits similar HD symptomology as HD patients to investigate hypothalamic function. We conducted detailed hypothalamic proteome analyses and also measured circulating levels of various metabolic hormones and lipids in pre-symptomatic and symptomatic animals. Our results demonstrate that there are significant alterations in HD rat hypothalamic protein expression such as glial fibrillary acidic protein (GFAP, heat shock protein-70, the oxidative damage protein glutathione peroxidase (Gpx4, glycogen synthase1 (Gys1 and the lipid synthesis enzyme acylglycerol-3-phosphate O-acyltransferase 1 (Agpat1. In addition, there are significant alterations in various circulating metabolic hormones and lipids in pre-symptomatic animals including, insulin, leptin, triglycerides and HDL, before any motor or cognitive alterations are apparent. These early metabolic and lipid alterations are likely prodromal signs of hypothalamic dysfunction. Gaining a greater understanding of the hypothalamic and metabolic alterations that occur in HD, could lead to the development of novel therapeutics for early interventional treatment of HD.

  18. AB202. Altered micro RNA expression in patients with non-obstructive azoospermia

    OpenAIRE

    Zhang, Xiansheng; Liang, Chaozhao

    2014-01-01

    Background MicroRNAs (miRNAs), a class of small non-coding RNA molecules, are indicated to play essential roles in spermatogenesis. However, little is known about the expression patterns or function of miRNAs in human testes involved in infertility. Methods In this study, the miRNA expression profiles of testes of patients with non-obstructive azoospermia (NOA) and normal controls were performed by using microarray technologies. Results Altered microRNA expression in NOA patients was found, w...

  19. Spontaneous loss and alteration of antigen receptor expression in mature CD4+ T cells

    International Nuclear Information System (INIS)

    The T-cell receptor CD3 (TCR/CD3) complex plays a central role in antigen recognition and activation of mature T cells, and therefore abnormalities in the expression of the complex should induce unresponsiveness of T cells to antigen stimulus. Using flow cytometry, we detected and enumerated variant cells with loss or alteration of surface TCR/CD3 expression among human mature CD4+ T cells. The presence of variant CD4+ T cells was demonstrated by isolating and cloning them from peripheral blood, and their abnormalities can be accounted for by alterations in TCR expression such as defects of protein expression and partial protein deletion. The variant frequency in peripheral blood increased with aging in normal donors and was highly elevated in patients with ataxia telangiectasia, an autosomal recessive inherited disease with defective DNA repair and variable T-cell immunodeficiency. These findings suggest that such alterations in TCR expression are induced by somatic mutagenesis of TCR genes and can be important factors related to age-dependent and genetic disease-associated T-cell dysfunction. (author)

  20. Correlation of genomic and expression alterations of AS3 with esophageal squamous cell carcinoma

    Institute of Scientific and Technical Information of China (English)

    Yu Zhang; Xiaoping Huang; Jun Qi; Cai Yan; Xin Xu; Yaling Han; Mingrong Wang

    2008-01-01

    Androgen-induced proliferation shutoff gene AS3, also known as APRIN, is a growth inhibitory gene that is in itially implicated inprostate cancer. This gene is required for androgen-dependent growth arrest and is a primary target for 1,25(OH)2D3 and androgens. Alle-lic loss at AS3 locus has been linked to a variety of cancers. However, the correlation of genomic and expression alterations of AS3 with esophageal squamous cell carcinoma (ESCC) is not well established. In this study, the genomic and expression alterations of AS3 in ESCC and their clinical significance are evaluated. Loss of beterozygosity (LOH) analysis using an AS3 intragenic mierosatellite marker D13S171 revealed 72% allelic loss at AS3 locus in ESCC, which is significantly correlated with higher pathological grade (P=0.042).RT-PCR examination showed that AS3 mRNA obviously decreased in 44% tumors and its down-regulation was correlated with the sex of patients (P=0.03). Furthermore, the correlation between genomic and expression alterations of AS3 gene was analyzed in 18 ESCC specimens, which indicated that the consistency between allelic loss and decreased mRNA expression of AS3 was relatively poor. The results of this study indicate that the aberrant expression of AS3 may be involved in the tumorigenesis of esophagus and is responsible for the male predominance of ESCC.

  1. The role of phosphoinositide-3 kinase and PTEN in cardiovascular physiology and disease.

    Science.gov (United States)

    Oudit, Gavin Y; Sun, Hui; Kerfant, Benoit-Gilles; Crackower, Michael A; Penninger, Josef M; Backx, Peter H

    2004-08-01

    Phosphoinositide-3 kinases (PI3Ks) are a family of evolutionary conserved lipid kinases that mediate many cellular responses in both physiologic and pathophysiologic states. Class I PI3K can be activated by either receptor tyrosine kinase (RTK)/cytokine receptor activation (class I(A)) or G-protein-coupled receptors (GPCR) (class I(B)). Once activated PI3Ks generate phosphatidylinositols (PtdIns) (3,4,5)P(3) leading to the recruitment and activation of Akt/protein kinase B (PKB), PDK1 and monomeric G-proteins (e.g. Rac-GTPases), which then activate a range of downstream targets including glycogen synthase kinase-3beta (GSK-3beta), mammalian target of rapamycin (mTOR), p70S6 kinase, endothelial nitric oxide synthase (eNOS) and several anti-apoptotic effectors. Class I(A) (PI3Kalpha, beta and delta) and class I(B) (PI3Kgamma) PI3Ks mediate distinct phenotypes in the heart and under negative control by the 3'-lipid phosphatase, phosphatase and tensin homolog on chromosome ten (PTEN) which dephosphorylate PtdIns(3,4,5)P(3) into PtdIns(4,5)P(2). PI3Kalpha, gamma and PTEN are expressed in cardiomyocytes, fibroblasts, endothelial cells and vascular smooth muscle cells where they modulate cell survival/apoptosis, hypertrophy, contractility, metabolism and mechanotransduction. Several transgenic and knockout models support a fundamental role of PI3K/PTEN signaling in the regulation of myocardial contractility and hypertrophy. Consequently the PI3K/PTEN signaling pathways are involved in a wide variety of diseases including cardiac hypertrophy, heart failure, preconditioning and hypertension. In this review, we discuss the biochemistry and molecular biology of PI3K (class I isoforms) and PTEN and their critical role in cardiovascular physiology and diseases.

  2. PTEN stabilizes TOP2A and regulates the DNA decatenation.

    Science.gov (United States)

    Kang, Xi; Song, Chang; Du, Xiao; Zhang, Cong; Liu, Yu; Liang, Ling; He, Jinxue; Lamb, Kristy; Shen, Wen H; Yin, Yuxin

    2015-12-10

    PTEN is a powerful tumor suppressor that antagonizes the cytoplasmic PI3K-AKT pathway and suppresses cellular proliferation. PTEN also plays a role in the maintenance of genomic stability in the nucleus. Here we report that PTEN facilitates DNA decatenation and controls a decatenation checkpoint. Catenations of DNA formed during replication are decatenated by DNA topoisomerase II (TOP2), and this process is actively monitored by a decatenation checkpoint in G2 phase. We found that PTEN deficient cells form ultra-fine bridges (UFBs) during anaphase and these bridges are generated as a result of insufficient decatenation. We show that PTEN is physically associated with a decatenation enzyme TOP2A and that PTEN influences its stability through OTUD3 deubiquitinase. In the presence of PTEN, ubiquitination of TOP2A is inhibited by OTUD3. Deletion or deficiency of PTEN leads to down regulation of TOP2A, dysfunction of the decatenation checkpoint and incomplete DNA decatenation in G2 and M phases. We propose that PTEN controls DNA decatenation to maintain genomic stability and integrity.

  3. Altered expression patterns of syndecan-1 and -2 predict biochemical recurrence in prostate cancer

    Institute of Scientific and Technical Information of China (English)

    Rodrigo Ledezma; Federico Cifuentes; Iván Gallegos; Juan Fullá; Enrique Ossandon; Enrique A Castellon; Héctor R Contreras

    2011-01-01

    The clinical features of prostate cancer do not provide an accurate determination of patients undergoing biochemical relapse and are therefore not suitable as indicators of prognosis for recurrence. New molecular markers are needed for proper pre-treatment risk stratification of patients. Our aim was to assess the value of altered expression of syndecan-1 and -2 as a marker for predicting biochemical relapse in patients with clinically localized prostate cancer treated by radical prostatectomy. The expression of syndecan-1 and -2 was examined by immunohistochemical staining in a series of 60 paraffin-embedded tissue samples from patients with localized prostate cancer. Ten specimens from patients with benign prostatic hyperplasia were used as non-malignant controls. Semiquantitative analysis was performed to evaluate the staining patterns. To investigate the prognostic value, Kaplan-Meier survival curves were performed and compared by a log-rank test. In benign samples, syndecan-1 was expressed in basal and secretory epithelial cells with basolateral membrane localisation, whereas syndecan-2 was expressed preferentially in basal cells. In prostate cancer samples, the expression patterns of both syndecans shifted to granular-cytoplasmic localisation. Survival analysis showed a significant difference (P<0.05) between normal and altered expression of syndecan-1 and -2 in free prostate-specific antigen recurrence survival curves. These data suggest that the expression of syndecan-1 and -2 can be used as a prognostic marker for patients with clinically localized prostate cancer, improving the prostate-specific antigen recurrence risk stratification.

  4. Influenza matrix protein 2 alters CFTR expression and function through its ion channel activity.

    Science.gov (United States)

    Londino, James D; Lazrak, Ahmed; Jurkuvenaite, Asta; Collawn, James F; Noah, James W; Matalon, Sadis

    2013-05-01

    The human cystic fibrosis transmembrane conductance regulator (CFTR) is a cyclic AMP-activated chloride (Cl(-)) channel in the lung epithelium that helps regulate the thickness and composition of the lung epithelial lining fluid. We investigated whether influenza M2 protein, a pH-activated proton (H(+)) channel that traffics to the plasma membrane of infected cells, altered CFTR expression and function. M2 decreased CFTR activity in 1) Xenopus oocytes injected with human CFTR, 2) epithelial cells (HEK-293) stably transfected with CFTR, and 3) human bronchial epithelial cells (16HBE14o-) expressing native CFTR. This inhibition was partially reversed by an inhibitor of the ubiquitin-activating enzyme E1. Next we investigated whether the M2 inhibition of CFTR activity was due to an increase of secretory organelle pH by M2. Incubation of Xenopus oocytes expressing CFTR with ammonium chloride or concanamycin A, two agents that alkalinize the secretory pathway, inhibited CFTR activity in a dose-dependent manner. Treatment of M2- and CFTR-expressing oocytes with the M2 ion channel inhibitor amantadine prevented the loss in CFTR expression and activity; in addition, M2 mutants, lacking the ability to transport H(+), did not alter CFTR activity in Xenopus oocytes and HEK cells. Expression of an M2 mutant retained in the endoplasmic reticulum also failed to alter CFTR activity. In summary, our data show that M2 decreases CFTR activity by increasing secretory organelle pH, which targets CFTR for destruction by the ubiquitin system. Alteration of CFTR activity has important consequences for fluid regulation and may potentially modify the immune response to viral infection.

  5. Broccoli, PTEN deletion and prostate cancer: where is the link?

    Directory of Open Access Journals (Sweden)

    Bardelli Alberto

    2010-12-01

    Full Text Available Abstract The concept that vegetables and fruits are relevant sources of cancer-preventive substances is strongly supported by population studies. Among others, cruciferous vegetables like broccoli, cabbage, cauliflower and Brussels sprouts are thought to affect the development of various types of cancers and especially prostate tumors. Yet, the identification of the molecular mechanisms by which the 'active' compounds contained in these vegetables mediate their anticancer activity has historically lagged behind. Accordingly, direct laboratory evidence of how individual nutrients affect cancer genes and the pathways they control remains the major obstacle to progress in this research field. Here we review a recent report investigating the interaction between sulforaphane, a dietary isothiocyanate derived from broccoli, and expression of the PTEN tumor suppressor gene in pre malignant prostate tissue.

  6. Inhibitory Effect of Isoflavones on Prostate Cancer Cells and PTEN Gene

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Objective To explore the mechanisms by which genistein and daidzein inhibit the growth of prostate cancer cells. Methods LNCaP and PC-3 cells were exposed to genistein and daidzein and cell viability was determined by MTT assay and cytotoxicity of the drugs by LDH test. Flow cytometry (FCM) was used to assess the cell cycle in LNCaP and PC-3 cells.Reverse transcription-polymerase chain reaction (RT-PCR) was applied to examine the expression of PTEN gene (a tumor suppressor gene), estrogen receptor alpha gene (Erα), estrogen receptor beta gene (Erβ), androgen receptor gene (AR) and vascular endothelial growth factor gene (VEGF). Results The viability of PC-3 and LNCaP cells decreased with increasing concentrations and exposure time of genistein and daidzein. Genistein increased G2/M phase cells in PC-3 cells while decreased S phase cells in LNCaP cells in a dose-dependent manner. Daidzein exerted no influence on the cell cycle of LNCaP and PC-3 cells, but the apoptosis percentage of LNCaP cells was elevated significantly by daidzein. Genistein induced the expression of PTEN gene in PC-3 and LNCaP cells. Daidzein induced the expression of PTEN gene in LNCaP but not in PC-3 cells. The expression of VEGF, Erα and Erβ genes decreased and AR gene was not expressed after incubation with genistein and daidzein in PC-3 cells. In LNCaP cells, the expression of VEGF and AR gene decreased but there was no change in the expression of Erα and Erβ gene after incubation with genistein and daidzein. Conclusion Genistein and daidzein exert a time- and dose-dependent inhibitory effect on PC-3 and LNCaP cells. The down-regulation of ER gene by daidzein influences the growth of PC-3 cells directly. The inhibition of PC-3 cells by genistein and that of LNCaP cells by genistein and daidzein may be via Akt pathway that is repressed by PTEN gene, which subsequently down-regulates the expression of AR and VEGF genes. Our results suggest that the expression of PTEN gene plays a key

  7. HC-Pro silencing suppressor significantly alters the gene expression profile in tobacco leaves and flowers

    Directory of Open Access Journals (Sweden)

    Lehto Kirsi

    2011-04-01

    Full Text Available Abstract Background RNA silencing is used in plants as a major defence mechanism against invasive nucleic acids, such as viruses. Accordingly, plant viruses have evolved to produce counter defensive RNA-silencing suppressors (RSSs. These factors interfere in various ways with the RNA silencing machinery in cells, and thereby disturb the microRNA (miRNA mediated endogene regulation and induce developmental and morphological changes in plants. In this study we have explored these effects using previously characterized transgenic tobacco plants which constitutively express (under CaMV 35S promoter the helper component-proteinase (HC-Pro derived from a potyviral genome. The transcript levels of leaves and flowers of these plants were analysed using microarray techniques (Tobacco 4 × 44 k, Agilent. Results Over expression of HC-Pro RSS induced clear phenotypic changes both in growth rate and in leaf and flower morphology of the tobacco plants. The expression of 748 and 332 genes was significantly changed in the leaves and flowers, respectively, in the HC-Pro expressing transgenic plants. Interestingly, these transcriptome alterations in the HC-Pro expressing tobacco plants were similar as those previously detected in plants infected with ssRNA-viruses. Particularly, many defense-related and hormone-responsive genes (e.g. ethylene responsive transcription factor 1, ERF1 were differentially regulated in these plants. Also the expression of several stress-related genes, and genes related to cell wall modifications, protein processing, transcriptional regulation and photosynthesis were strongly altered. Moreover, genes regulating circadian cycle and flowering time were significantly altered, which may have induced a late flowering phenotype in HC-Pro expressing plants. The results also suggest that photosynthetic oxygen evolution, sugar metabolism and energy levels were significantly changed in these transgenic plants. Transcript levels of S

  8. Mutation Analysis of PTEN Gene in Human Astrocytoma%人脑星形细胞瘤PTEN基因的突变

    Institute of Scientific and Technical Information of China (English)

    王锐; 杨卫忠; 石松生; 杨发端

    2001-01-01

    Objective To investigate the significance of phosphatase and tensin homolog deleted on chromosome ten(PTEN) gene mutations in carcinogenesis and progression of human astrocytoma. Methods The exon 5 of PTEN gene in human astrocytoma was amplified by polymerase chain reaction(PCR),and its mutations was detected by single-strand conformation polymorphism(SSCP) with silver staining. Results There was no PTEN gene mutations found in 10 cases of normal brain samples and 10 cases of benign meningioma,while it was found in 7 out of 62 astrocytomas(11.29%). In human astrocytoma,PTEN gene mutations was related to grade of pathology(P<0.05). The expression of PTEN gene mutations in high malignant(grade Ⅲ,Ⅳ) astrocytoma was significantly higher than those in low malignant(grade Ⅰ,Ⅱ) astrocytoma(P<0.05). Conclusion PTEN gene mutations detected in human astrocytoma indicates that the PTEN gene mutations is obviously correlated to histological grade in astrocytoma. PTEN gene mutations is a late event in astrocytoma carcinogenesis. It plays an important role in progression of astrocytoma.%目的探讨phosphatase and tensin homolog deleted on chromosome ten(PTEN)基因突变在人星形细胞瘤发生和恶性进展中的作用。方法应用聚合酶链反应-单链构象多态性结合银染技术检测星形细胞瘤PTEN基因第5外显子区域的突变情况。结果 10例正常脑组织和10例良性脑膜瘤均无点突变发生,62例星形细胞瘤中7例(11.29%)有点突变发生,并且点突变发生与星形细胞瘤病理分级明显相关(P<0.05),其中高恶性度星形细胞瘤(Ⅲ~Ⅳ级)突变率(18.91%)明显高于低恶性度(Ⅰ~Ⅱ级)星形细胞瘤(P<0.05)。结论 PTEN基因突变与星形细胞瘤病理分级关系密切,属于星形细胞瘤恶性进展的后期事件。

  9. Alteration of PHYA expression change circadian rhythms and timing of bud set in Populus.

    Science.gov (United States)

    Kozarewa, Iwanka; Ibáñez, Cristian; Johansson, Mikael; Ogren, Erling; Mozley, David; Nylander, Eva; Chono, Makiko; Moritz, Thomas; Eriksson, Maria E

    2010-05-01

    In many temperate woody species, dormancy is induced by short photoperiods. Earlier studies have shown that the photoreceptor phytochrome A (phyA) promotes growth. Specifically, Populus plants that over-express the oat PHYA gene (oatPHYAox) show daylength-independent growth and do not become dormant. However, we show that oatPHYAox plants could be induced to set bud and become cold hardy by exposure to a shorter, non-24 h diurnal cycle that significantly alters the relative position between endogenous rhythms and perceived light/dark cycles. Furthermore, we describe studies in which the expression of endogenous Populus tremula x P. tremuloides PHYTOCHROME A (PttPHYA) was reduced in Populus trees by antisense inhibition. The antisense plants showed altered photoperiodic requirements, resulting in earlier growth cessation and bud formation in response to daylength shortening, an effect that was explained by an altered innate period that leads to phase changes of clock-associated genes such as PttCO2. Moreover, gene expression studies following far-red light pulses show a phyA-mediated repression of PttLHY1 and an induction of PttFKF1 and PttFT. We conclude that the level of PttPHYA expression strongly influences seasonally regulated growth in Populus and is central to co-ordination between internal clock-regulated rhythms and external light/dark cycles through its dual effect on the pace of clock rhythms and in light signaling.

  10. Relationship between the expression of tumor suppressor gene PTEN and the metastasis of colorectal cancer%抑癌基因PTEN与人大肠癌转移的相关性研究

    Institute of Scientific and Technical Information of China (English)

    郑国宝; 王元和; 高春芳; 王红阳; 万兴旺

    2003-01-01

    目的探讨抑癌基因PTEN的表达在大肠癌转移侵袭过程中的作用.方法 (1)应用Nothern blot和免疫组织化学的方法检测47例大肠癌组织中PTEN mRNA和蛋白的表达,分析其与大肠癌转移的关系.(2)利用Western blot法检测不同转移潜能的大肠癌细胞系内PTEN蛋白的表达水平,说明PTEN蛋白的表达对大肠癌细胞转移潜能的影响.(3)用阳离子脂质体作载体,将PTEN基因转染大肠癌细胞株LOVO后,采用计数细胞悬液加到粘附底物后20和120min的细胞贴壁数用以测定细胞粘附能力,采用Costar的浸润小室检测PTEN基因转染前后细胞的浸润能力.结果 (1)在有淋巴结及远处转移的大肠癌组织中,PTEN mRNA和蛋白的表达显著低于无转移者;(2)转移潜能高的LOVO细胞PTEN的表达量通过显著低于转移潜能较低的HT-29、LS-174T;(3)LOVO、转染pcDNA3.0-PTEN的细胞(LOVO/pcDNA3.0-PTEN)在特异性粘附底物(Laminin)上20min时贴壁率分别为(18.6±1.4)%和(13.9±0.5)%(P<0.05),120min时贴壁率分别为(71.2±2.5)%和(56.0±1.6)%(P<0.05);(4)采用Costar的浸润小室对LOVO、LOVO/pcDNA3.0-PTEN细胞的浸润能力分析结果显示:细胞悬液静置培养6h后,对照细胞LOVO浸润穿透多聚碳膜的细胞数为(11.7±1.7)个,LOVO/pcDNA3.0-PTEN细胞穿透多聚碳膜的细胞数为(7.5±1.6)个(P<0.05).结论在肿瘤组织内抑癌基因PTEN的表达与大肠癌的转移侵袭行为密切相关.

  11. Pioglitazone administration alters ovarian gene expression in aging obese lethal yellow mice

    Directory of Open Access Journals (Sweden)

    Weber Mitch

    2008-03-01

    Full Text Available Abstract Background Women with polycystic ovary syndrome (PCOS are often treated with insulin-sensitizing agents, e.g. thiazolidinediones (TZD, which have been shown to reduce androgen levels and improved ovulatory function. Acting via peroxisome proliferator-activated receptor (PPAR gamma, TZD alter the expression of a large variety of genes. Lethal yellow (LY; C57BL/6J Ay/a mice, possessing a mutation (Ay in the agouti gene locus, exhibit progressive obesity, reproductive dysfunction, and altered metabolic regulation similar to women with PCOS. The current study was designed to test the hypothesis that prolonged treatment of aging LY mice with the TZD, pioglitazone, alters the ovarian expression of genes that may impact reproduction. Methods Female LY mice received daily oral doses of either 0.01 mg pioglitazone (n = 4 or an equal volume of vehicle (DMSO; n = 4 for 8 weeks. At the end of treatment, ovaries were removed and DNA microarrays were used to analyze differential gene expression. Results Twenty-seven genes showed at least a two-fold difference in ovarian expression with pioglitazone treatment. These included leptin, angiopoietin, angiopoietin-like 4, Foxa3, PGE1 receptor, resistin-like molecule-alpha (RELM, and actin-related protein 6 homolog (ARP6. For most altered genes, pioglitazone changed levels of expression to those seen in untreated C57BL/6J(a/a non-mutant lean mice. Conclusion TZD administration may influence ovarian function via numerous diverse mechanisms that may or may not be directly related to insulin/IGF signaling.

  12. Alterations of Lymphoid Enhancer Factor-1 Isoform Expression in Solid Tumors and Acute Leukemias

    Institute of Scientific and Technical Information of China (English)

    Wenbing WANG; Carsten M(U)LLER-TIDOW; Ping JI; Bj(o)rn STEFFEN; Ralf METZGER; Paul M. SCHNEIDER; Hartmut HALFTER; Mark SCHRADER; Wolfgang E. BERDEL; Hubert SERVE

    2005-01-01

    Two major transcripts of lymphoid enhancer factor-1 (LEF-1) have been described. The long isoform with β-catenin binding domain functions as a transcriptional enhancer factor. The short isoform derives from an intronic promoter and exhibits dominant negative activity. Recently, alterations of LEF- 1isoforms distribution have been described in colon cancer. In the current study we employed a quantitative real-time reverse transcription PCR method (TaqMan) to analyze expression of LEF-1 isoforms in a large cohort of human tumor (n=304) and tumor-free control samples (n=56). The highest expression level of LEF-1 was found in carcinoma samples whereas brain cancer samples expressed little. Expression of LEF1 was different in distinct cancer types. For example, the mRNA level of LEF-1 was lower in testicular tumor samples compared with tumor-free control samples. Besides epithelial cancers, significant LEF-1expression was also found in hematopoietic cells. In hematological malignancies, overall LEF-1 level was higher in lymphocytic leukemias compared with myeloid leukemias and normal hematopoiesis. However,acute myeloid leukemia and acute lymphocytic leukemia showed a significantly increased fraction of the oncogenic LEF-1 compared with chronic lymphocytic leukemia and chronic myeloid leukemia. Taken together,these data suggest that LEF-1 is abundantly expressed in human tumors and the ratio of the oncogenic and the dominant negative short isoform altered not only in carcinomas but also in leukemia.

  13. IL-1β/NF-kb signaling promotes colorectal cancer cell growth through miR-181a/PTEN axis.

    Science.gov (United States)

    Hai Ping, Pei; Feng Bo, Tan; Li, Liu; Nan Hui, Yu; Hong, Zhu

    2016-08-15

    To date, the role of miRNA in tumorigenesis has been largely reported. It was found that miR-181a may be involved in the tumorigenesis of colon cancer. The purpose of this study was to investigate the mechanism of miR-181a in colon cancer carcinogenesis. The expression levels of IL-1β, NF-κB (RelA), and miR-181a in colon cancer tissue were higher than that in normal control tissue when assessed by real-timePCR. In addition, it was found that IL-1β induced the expression of miR-181a. The expression of PTEN was regulated by IL-1β-stimulated miR-181a expression. In a PTEN reporter plasmid, miR-181a binding site mutations were introduced. By using a luciferase reporter assay, it was found that wild type reported activity was lower than that of the mutant registration system activity. Furthermore, a siRNA strategy was used to find that IL-1B regulates miR-181a expression via NF-κB and then regulates PTEN expression. Consequently, repression of PTEN by miR-181a promotes colon cancer cell proliferation. Taken together, our data support a critical role for NF-κB-dependent upregulation of miR-181a; this represents a new pathway for the repression of PTEN and the promotion of cell proliferation upon IL-1β induction. PMID:27264420

  14. Ectopic ERK Expression Induces Phenotypic Conversion of C10 Cells and Alters DNA Methyltransferase Expression

    Energy Technology Data Exchange (ETDEWEB)

    Sontag, Ryan L.; Weber, Thomas J.

    2012-05-04

    In some model systems constitutive extracellular signal regulated kinase (ERK) activation is sufficient to promote an oncogenic phenotype. Here we investigate whether constitutive ERK expression influences phenotypic conversion in murine C10 type II alveolar epithelial cells. C10 cells were stably transduced with an ERK1-green fluorescent protein (ERK1-GFP) chimera or empty vector and ectopic ERK expression was associated with the acquisition of soft agar focus-forming potential in late passage, but not early passage cells. Late passage ERK1-GFP cells exhibited a significant increase in the expression of DNA methyl transferases (DNMT1 and 3b) and a marked increase in sensitivity to 5-azacytidine (5-azaC)-mediated toxicity, relative to early passage ERK1-GFP cells and vector controls. The expression of xeroderma pigmentosum complementation group A (XPA) and DNA-dependent protein kinase catalytic subunit (DNA-PKcs) were significantly increased in late passage cells, suggesting enhanced DNA damage recognition and repair activity which we interpret as a reflection of genomic instability. Phospho-ERK levels were dramatically decreased in late passage ERK1-GFP cells, relative to early passage and vector controls, and phospho-ERK levels were restored by treatment with sodium orthovanadate, indicating a role for phosphatase activity in this response. Collectively these observations suggest that ectopic ERK expression promotes phenotypic conversion of C10 cells that is associated with latent effects on epigenetic programming and phosphatase activities.

  15. HIV-1 Alters Intestinal Expression of Drug Transporters and Metabolic Enzymes: Implications for Antiretroviral Drug Disposition.

    Science.gov (United States)

    Kis, Olena; Sankaran-Walters, Sumathi; Hoque, M Tozammel; Walmsley, Sharon L; Dandekar, Satya; Bendayan, Reina

    2016-05-01

    This study investigated the effects of HIV-1 infection and antiretroviral therapy (ART) on the expression of intestinal drug efflux transporters, i.e., P-glycoprotein (Pgp), multidrug resistance-associated proteins (MRPs), and breast cancer resistance protein (BCRP), and metabolic enzymes, such as cytochrome P450s (CYPs), in the human upper intestinal tract. Intestinal biopsy specimens were obtained from HIV-negative healthy volunteers, ART-naive HIV-positive (HIV(+)) subjects, and HIV(+) subjects receiving ART (10 in each group). Intestinal tissue expression of drug transporters and metabolic enzymes was examined by microarray, real-time quantitative reverse transcription-PCR (qPCR), and immunohistochemistry analyses. Microarray analysis demonstrated significantly lower expression of CYP3A4 and ABCC2/MRP2 in the HIV(+) ART-naive group than in uninfected subjects. qPCR analysis confirmed significantly lower expression of ABCC2/MRP2 in ART-naive subjects than in the control group, while CYP3A4 and ABCG2/BCRP showed a trend toward decreased expression. Protein expression of MRP2 and BCRP was also significantly lower in the HIV(+) naive group than in the control group and was partially restored to baseline levels in HIV(+) subjects receiving ART. In contrast, gene and protein expression of ABCB1/Pgp was significantly increased in HIV(+) subjects on ART relative to HIV(+) ART-naive subjects. These data demonstrate that the expression of drug-metabolizing enzymes and efflux transporters is significantly altered in therapy-naive HIV(+) subjects and in those receiving ART. Since CYP3A4, Pgp, MRPs, and BCRP metabolize or transport many antiretroviral drugs, their altered expression with HIV infection may negatively impact drug pharmacokinetics in HIV(+) subjects. This has clinical implications when using data from healthy volunteers to guide ART. PMID:26902756

  16. Fibronectin induction abrogates the BRAF inhibitor response of BRAF V600E/PTEN-null melanoma cells.

    Science.gov (United States)

    Fedorenko, I V; Abel, E V; Koomen, J M; Fang, B; Wood, E R; Chen, Y A; Fisher, K J; Iyengar, S; Dahlman, K B; Wargo, J A; Flaherty, K T; Sosman, J A; Sondak, V K; Messina, J L; Gibney, G T; Smalley, K S M

    2016-03-10

    The mechanisms by which some melanoma cells adapt to Serine/threonine-protein kinase B-Raf (BRAF) inhibitor therapy are incompletely understood. In the present study, we used mass spectrometry-based phosphoproteomics to determine how BRAF inhibition remodeled the signaling network of melanoma cell lines that were BRAF mutant and PTEN null. Short-term BRAF inhibition was associated with marked changes in fibronectin-based adhesion signaling that were PTEN dependent. These effects were recapitulated through BRAF siRNA knockdown and following treatment with chemotherapeutic drugs. Increased fibronectin expression was also observed in mouse xenograft models as well as specimens from melanoma patients undergoing BRAF inhibitor treatment. Analysis of a melanoma tissue microarray showed loss of PTEN expression to predict for a lower overall survival, with a trend for even lower survival being seen when loss of fibronectin was included in the analysis. Mechanistically, the induction of fibronectin limited the responses of these PTEN-null melanoma cell lines to vemurafenib, with enhanced cytotoxicity observed following the knockdown of either fibronectin or its receptor α5β1 integrin. This in turn abrogated the cytotoxic response to BRAF inhibition via increased AKT signaling, which prevented the induction of cell death by maintaining the expression of the pro-survival protein Mcl-1. The protection conveyed by the induction of FN expression could be overcome through combined treatment with a BRAF and PI3K inhibitor. PMID:26073081

  17. Altering β-cell number through stable alteration of miR-21 and miR-34a expression

    DEFF Research Database (Denmark)

    Backe, Marie Balslev; Novotny, Guy Wayne; Christensen, Dan Ploug;

    2014-01-01

    RNAs, miR-21 and miR-34a, may be involved in mediating cytokine-induced β-cell dysfunction. Therefore, manipulation of miR-21 and miR-34a levels may potentially be beneficial to β cells. To study the effect of long-term alterations of miR-21 or miR-34a levels upon net β-cell number, we stably overexpressed...... miR-21 and knocked down miR-34a, and investigated essential cellular processes. Materials and Methods: miRNA expression was manipulated using Lentiviral transduction of the β-cell line INS-1. Stable cell lines were generated, and cell death, NO synthesis, proliferation, and total cell number were...... monitored in the absence or presence of cytokines. Results: Overexpression of miR-21 decreased net β-cell number in the absence of cytokines, and increased apoptosis and NO synthesis in the absence and presence of cytokines. Proliferation was increased upon miR-21 overexpression. Knockdown of miR-34a...

  18. Altered Gene Expression in Schizophrenia: Findings from Transcriptional Signatures in Fibroblasts and Blood

    Science.gov (United States)

    Cattane, Nadia; Minelli, Alessandra; Milanesi, Elena; Maj, Carlo; Bignotti, Stefano; Bortolomasi, Marco; Chiavetto, Luisella Bocchio; Gennarelli, Massimo

    2015-01-01

    Background Whole-genome expression studies in the peripheral tissues of patients affected by schizophrenia (SCZ) can provide new insight into the molecular basis of the disorder and innovative biomarkers that may be of great utility in clinical practice. Recent evidence suggests that skin fibroblasts could represent a non-neural peripheral model useful for investigating molecular alterations in psychiatric disorders. Methods A microarray expression study was conducted comparing skin fibroblast transcriptomic profiles from 20 SCZ patients and 20 controls. All genes strongly differentially expressed were validated by real-time quantitative PCR (RT-qPCR) in fibroblasts and analyzed in a sample of peripheral blood cell (PBC) RNA from patients (n = 25) and controls (n = 22). To evaluate the specificity for SCZ, alterations in gene expression were tested in additional samples of fibroblasts and PBCs RNA from Major Depressive Disorder (MDD) (n = 16; n = 21, respectively) and Bipolar Disorder (BD) patients (n = 15; n = 20, respectively). Results Six genes (JUN, HIST2H2BE, FOSB, FOS, EGR1, TCF4) were significantly upregulated in SCZ compared to control fibroblasts. In blood, an increase in expression levels was confirmed only for EGR1, whereas JUN was downregulated; no significant differences were observed for the other genes. EGR1 upregulation was specific for SCZ compared to MDD and BD. Conclusions Our study reports the upregulation of JUN, HIST2H2BE, FOSB, FOS, EGR1 and TCF4 in the fibroblasts of SCZ patients. A significant alteration in EGR1 expression is also present in SCZ PBCs compared to controls and to MDD and BD patients, suggesting that this gene could be a specific biomarker helpful in the differential diagnosis of major psychoses. PMID:25658856

  19. Altered gene expression in schizophrenia: findings from transcriptional signatures in fibroblasts and blood.

    Directory of Open Access Journals (Sweden)

    Nadia Cattane

    Full Text Available Whole-genome expression studies in the peripheral tissues of patients affected by schizophrenia (SCZ can provide new insight into the molecular basis of the disorder and innovative biomarkers that may be of great utility in clinical practice. Recent evidence suggests that skin fibroblasts could represent a non-neural peripheral model useful for investigating molecular alterations in psychiatric disorders.A microarray expression study was conducted comparing skin fibroblast transcriptomic profiles from 20 SCZ patients and 20 controls. All genes strongly differentially expressed were validated by real-time quantitative PCR (RT-qPCR in fibroblasts and analyzed in a sample of peripheral blood cell (PBC RNA from patients (n = 25 and controls (n = 22. To evaluate the specificity for SCZ, alterations in gene expression were tested in additional samples of fibroblasts and PBCs RNA from Major Depressive Disorder (MDD (n = 16; n = 21, respectively and Bipolar Disorder (BD patients (n = 15; n = 20, respectively.Six genes (JUN, HIST2H2BE, FOSB, FOS, EGR1, TCF4 were significantly upregulated in SCZ compared to control fibroblasts. In blood, an increase in expression levels was confirmed only for EGR1, whereas JUN was downregulated; no significant differences were observed for the other genes. EGR1 upregulation was specific for SCZ compared to MDD and BD.Our study reports the upregulation of JUN, HIST2H2BE, FOSB, FOS, EGR1 and TCF4 in the fibroblasts of SCZ patients. A significant alteration in EGR1 expression is also present in SCZ PBCs compared to controls and to MDD and BD patients, suggesting that this gene could be a specific biomarker helpful in the differential diagnosis of major psychoses.

  20. Alteration of human hepatic drug transporter activity and expression by cigarette smoke condensate.

    Science.gov (United States)

    Sayyed, Katia; Vee, Marc Le; Abdel-Razzak, Ziad; Jouan, Elodie; Stieger, Bruno; Denizot, Claire; Parmentier, Yannick; Fardel, Olivier

    2016-07-01

    Smoking is well-known to impair pharmacokinetics, through inducing expression of drug metabolizing enzymes. In the present study, we demonstrated that cigarette smoke condensate (CSC) also alters activity and expression of hepatic drug transporters, which are now recognized as major actors of hepatobiliary elimination of drugs. CSC thus directly inhibited activities of sinusoidal transporters such as OATP1B1, OATP1B3, OCT1 and NTCP as well as those of canalicular transporters like P-glycoprotein, MRP2, BCRP and MATE1, in hepatic transporters-overexpressing cells. CSC similarly counteracted constitutive OATP, NTCP and OCT1 activities in human highly-differentiated hepatic HepaRG cells. In parallel, CSC induced expression of BCRP at both mRNA and protein level in HepaRG cells, whereas it concomitantly repressed mRNA expression of various transporters, including OATP1B1, OATP2B1, OAT2, NTCP, OCT1 and BSEP, and enhanced that of MRP4. Such changes in transporter gene expression were found to be highly correlated to those caused by 2,3,7,8-tetrachlorodibenzo-p-dioxin, a reference activator of the aryl hydrocarbon receptor (AhR) pathway, and were counteracted, for some of them, by siRNA-mediated AhR silencing. This suggests that CSC alters hepatic drug transporter levels via activation of the AhR cascade. Importantly, drug transporter expression regulations as well as some transporter activity inhibitions occurred for a range of CSC concentrations similar to those required for inducing drug metabolizing enzymes and may therefore be hypothesized to be relevant for smokers. Taken together, these data established human hepatic transporters as targets of cigarette smoke, which could contribute to known alteration of pharmacokinetics and some liver adverse effects caused by smoking. PMID:27450509

  1. Chronic mild stress alters circadian expressions of molecular clock genes in the liver.

    Science.gov (United States)

    Takahashi, Kei; Yamada, Tetsuya; Tsukita, Sohei; Kaneko, Keizo; Shirai, Yuta; Munakata, Yuichiro; Ishigaki, Yasushi; Imai, Junta; Uno, Kenji; Hasegawa, Yutaka; Sawada, Shojiro; Oka, Yoshitomo; Katagiri, Hideki

    2013-02-01

    Chronic stress is well known to affect metabolic regulation. However, molecular mechanisms interconnecting stress response systems and metabolic regulations have yet to be elucidated. Various physiological processes, including glucose/lipid metabolism, are regulated by the circadian clock, and core clock gene dysregulation reportedly leads to metabolic disorders. Glucocorticoids, acting as end-effectors of the hypothalamus-pituitary-adrenal (HPA) axis, entrain the circadian rhythms of peripheral organs, including the liver, by phase-shifting core clock gene expressions. Therefore, we examined whether chronic stress affects circadian expressions of core clock genes and metabolism-related genes in the liver using the chronic mild stress (CMS) procedure. In BALB/c mice, CMS elevated and phase-shifted serum corticosterone levels, indicating overactivation of the HPA axis. The rhythmic expressions of core clock genes, e.g., Clock, Npas2, Bmal1, Per1, and Cry1, were altered in the liver while being completely preserved in the hypothalamic suprachiasmatic nuculeus (SCN), suggesting that the SCN is not involved in alterations in hepatic core clock gene expressions. In addition, circadian patterns of glucose and lipid metabolism-related genes, e.g., peroxisome proliferator activated receptor (Ppar) α, Pparγ-1, Pparγ-coactivator-1α, and phosphoenolepyruvate carboxykinase, were also disturbed by CMS. In contrast, in C57BL/6 mice, the same CMS procedure altered neither serum corticosterone levels nor rhythmic expressions of hepatic core clock genes and metabolism-related genes. Thus, chronic stress can interfere with the circadian expressions of both core clock genes and metabolism-related genes in the liver possibly involving HPA axis overactivation. This mechanism might contribute to metabolic disorders in stressful modern societies.

  2. Altered Gene Expression, Mitochondrial Damage and Oxidative Stress: Converging Routes in Motor Neuron Degeneration

    Directory of Open Access Journals (Sweden)

    Luisa Rossi

    2012-01-01

    Full Text Available Motor neuron diseases (MNDs are a rather heterogeneous group of diseases, with either sporadic or genetic origin or both, all characterized by the progressive degeneration of motor neurons. At the cellular level, MNDs share features such as protein misfolding and aggregation, mitochondrial damage and energy deficit, and excitotoxicity and calcium mishandling. This is particularly well demonstrated in ALS, where both sporadic and familial forms share the same symptoms and pathological phenotype, with a prominent role for mitochondrial damage and resulting oxidative stress. Based on recent data, however, altered control of gene expression seems to be a most relevant, and previously overlooked, player in MNDs. Here we discuss which may be the links that make pathways apparently as different as altered gene expression, mitochondrial damage, and oxidative stress converge to generate a similar motoneuron-toxic phenotype.

  3. Can alterations in integrin and laminin-5 expression be used as markers of malignancy?

    DEFF Research Database (Denmark)

    Thorup, A K; Reibel, J; Schiødt, M;

    1998-01-01

    Development of squamous cell carcinomas (SCCs) involves alterations in the adhesive interactions in the epithelium and invasion through the basement membrane. Therefore, changes in the expression of receptors and ligands involved in cell-cell and cell-matrix adhesion may be essential for the...... transformation of a premalignant into a malignant lesion. The aim of this study was to examine if expression of specific cell adhesion molecules can be used as markers of malignant development. By immunohistochemistry, we examined the expression pattern of integrins alpha2beta1, alpha3beta1, alpha6beta4 and...... laminin-5 in biopsies from SCCs (n=18), premalignant lesions (leukoplakias, n=21) and non-premalignant tissue with chronic inflammation (n=11). In poorly differentiated SCCs, patchy loss of alpha3beta1, alpha6beta4 and laminin-5 expression was pronounced at the invasion front, whereas there was a tendency...

  4. Oxidative Stress Alters miRNA and Gene Expression Profiles in Villous First Trimester Trophoblasts

    Directory of Open Access Journals (Sweden)

    Courtney E. Cross

    2015-01-01

    Full Text Available The relationship between oxidative stress and miRNA changes in placenta as a potential mechanism involved in preeclampsia (PE is not fully elucidated. We investigated the impact of oxidative stress on miRNAs and mRNA expression profiles of genes associated with PE in villous 3A first trimester trophoblast cells exposed to H2O2 at 12 different concentrations (0-1 mM for 0.5, 4, 24, and 48 h. Cytotoxicity, determined using the SRB assay, was used to calculate the IC50 of H2O2. RNA was extracted after 4 h exposure to H2O2 for miRNA and gene expression profiling. H2O2 exerted a concentration- and time-dependent cytotoxicity on 3A trophoblast cells. Short-term exposure of 3A cells to low concentration of H2O2 (5% of IC50 significantly altered miRNA profile as evidenced by significant changes in 195 out of 595 evaluable miRNAs. Tool for annotations of microRNAs (TAM analysis indicated that these altered miRNAs fall into 43 clusters and 34 families, with 41 functions identified. Exposure to H2O2 altered mRNA expression of 22 out of 84 key genes involved in dysregulation of placental development. In conclusion, short-term exposure of villous first trimester trophoblasts to low concentrations of H2O2 significantly alters miRNA profile and expression of genes implicated in placental development.

  5. Curcumin alters expression of glial fibrillary acidic protein and nestin following chronic cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    Peng Zhang; Tianping Yu; Xiong Zhang; Yu Li

    2011-01-01

    Astrocytes can alter their appearance and become reactive following chronic cerebral ischemia. In the present study, a rat model of chronic cerebral ischemia was treated with 50 and 100 mg/kg curcumin. Results showed that pathological changes of neuronal injury in hippocampal CA1 area of rats induced by chronic cerebral ischemia were attenuated, as well as upregulated expression of glial fibrillary acidic protein and nestin, in a dose-dependent manner.

  6. Pten function in zebrafish : Anything but a fish story

    NARCIS (Netherlands)

    Stumpf, Miriam; Choorapoikayil, Suma; den Hertog, J.

    2015-01-01

    Zebrafish is an excellent model system for the analysis of gene function. We and others use zebrafish to investigate the function of the tumor suppressor, Pten, in tumorigenesis and embryonic development. Zebrafish have two pten genes, ptena and ptenb. The recently identified N-terminal extension of

  7. Pten function in zebrafish : Anything but a fish story

    NARCIS (Netherlands)

    Stumpf, Miriam; Choorapoikayil, Suma; den Hertog, Jeroen

    2014-01-01

    Zebrafish is an excellent model system for the analysis of gene function. We and others use zebrafish to investigate the function of the tumor suppressor, Pten, in tumorigenesis and embryonic development. Zebrafish have two pten genes, ptena and ptenb. The recently identified N-terminal extension of

  8. A unified nomenclature and amino acid numbering for human PTEN

    NARCIS (Netherlands)

    Pulido, Rafael; Baker, Suzanne J; Barata, Joao T; Carracedo, Arkaitz; Cid, Victor J; Chin-Sang, Ian D; Davé, Vrushank; den Hertog, Jeroen; Devreotes, Peter; Eickholt, Britta J; Eng, Charis; Furnari, Frank B; Georgescu, Maria-Magdalena; Gericke, Arne; Hopkins, Benjamin; Jiang, Xeujun; Lee, Seung-Rock; Lösche, Mathias; Malaney, Prerna; Matias-Guiu, Xavier; Molina, María; Pandolfi, Pier Paolo; Parsons, Ramon; Pinton, Paolo; Rivas, Carmen; Rocha, Rafael M; Rodríguez, Manuel S; Ross, Alonzo H; Serrano, Manuel; Stambolic, Vuk; Stiles, Bangyan; Suzuki, Akira; Tan, Seong-Seng; Tonks, Nicholas K; Trotman, Lloyd C; Wolff, Nicolas; Woscholski, Rudiger; Wu, Hong; Leslie, Nicholas R

    2014-01-01

    The tumor suppressor PTEN is a major brake for cell transformation, mainly due to its phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P3] phosphatase activity that directly counteracts the oncogenicity of phosphoinositide 3-kinase (PI3K). PTEN mutations are frequent in tumors and in the germ line

  9. Altered expression of neuropeptides in FoxG1-null heterozygous mutant mice.

    Science.gov (United States)

    Frullanti, Elisa; Amabile, Sonia; Lolli, Maria Grazia; Bartolini, Anna; Livide, Gabriella; Landucci, Elisa; Mari, Francesca; Vaccarino, Flora M; Ariani, Francesca; Massimino, Luca; Renieri, Alessandra; Meloni, Ilaria

    2016-02-01

    Foxg1 gene encodes for a transcription factor essential for telencephalon development in the embryonic mammalian forebrain. Its complete absence is embryonic lethal while Foxg1 heterozygous mice are viable but display microcephaly, altered hippocampal neurogenesis and behavioral and cognitive deficiencies. In order to evaluate the effects of Foxg1 alteration in adult brain, we performed expression profiling in total brains from Foxg1+/- heterozygous mutants and wild-type littermates. We identified statistically significant differences in expression levels for 466 transcripts (Pneuropeptides have an important role in maternal and social behavior, and their alteration is associated with impaired social interaction and autistic behavior. In addition, Neuronatin (Nnat) levels appear significantly higher both in Foxg1+/- whole brain and in hippocampal neurons after silencing Foxg1, strongly suggesting that it is directly or indirectly repressed by Foxg1. During fetal and neonatal brain development, Nnat may regulate neuronal excitability, receptor trafficking and calcium-dependent signaling and, in the adult brain, it is predominantly expressed in parvalbumin-positive GABAergic interneurons. Overall, these results implicate the overexpression of a group of neuropeptides in the basal ganglia, hypothalamus, cortex and hippocampus in the pathogenesis FOXG1 behavioral impairments.

  10. The predictive value of KRAS, NRAS, BRAF, PIK3CA and PTEN for anti-EGFR treatment in metastatic colorectal cancer

    DEFF Research Database (Denmark)

    Therkildsen, Christina; Bergmann, Troels K; Henrichsen-Schnack, Tine;

    2014-01-01

    -RAF-MAPK and PI3K-AKT-mTOR pathways in colorectal cancer is uncertain, which led us to systematically review the impact of alterations in KRAS (outside of exon 2), NRAS, BRAF, PIK3CA and PTEN in relation to the clinical benefit from anti-EGFR treatment. METHODS: In total, 22 studies that include 2395 patients...... formed the basis for a meta-analysis on alterations in KRAS exons 3 and 4, NRAS, BRAF, and PIK3CA and PTEN and outcome of anti-EGFR treatment. Odds ratios for objective response rate (ORR) and hazard ratios (HR) for progression-free survival (PFS) and overall survival (OS) were calculated. RESULTS......, NRAS, BRAF and PIK3CA and non-functional PTEN predict resistance to anti-EGFR therapies and demonstrates that biomarker analysis beyond KRAS exon 2 should be implemented for prediction of clinical benefit from anti-EGFR antibodies in metastatic colorectal cancer....

  11. Early maternal alcohol consumption alters hippocampal DNA methylation, gene expression and volume in a mouse model.

    Directory of Open Access Journals (Sweden)

    Heidi Marjonen

    Full Text Available The adverse effects of alcohol consumption during pregnancy are known, but the molecular events that lead to the phenotypic characteristics are unclear. To unravel the molecular mechanisms, we have used a mouse model of gestational ethanol exposure, which is based on maternal ad libitum ingestion of 10% (v/v ethanol for the first 8 days of gestation (GD 0.5-8.5. Early neurulation takes place by the end of this period, which is equivalent to the developmental stage early in the fourth week post-fertilization in human. During this exposure period, dynamic epigenetic reprogramming takes place and the embryo is vulnerable to the effects of environmental factors. Thus, we hypothesize that early ethanol exposure disrupts the epigenetic reprogramming of the embryo, which leads to alterations in gene regulation and life-long changes in brain structure and function. Genome-wide analysis of gene expression in the mouse hippocampus revealed altered expression of 23 genes and three miRNAs in ethanol-exposed, adolescent offspring at postnatal day (P 28. We confirmed this result by using two other tissues, where three candidate genes are known to express actively. Interestingly, we found a similar trend of upregulated gene expression in bone marrow and main olfactory epithelium. In addition, we observed altered DNA methylation in the CpG islands upstream of the candidate genes in the hippocampus. Our MRI study revealed asymmetry of brain structures in ethanol-exposed adult offspring (P60: we detected ethanol-induced enlargement of the left hippocampus and decreased volume of the left olfactory bulb. Our study indicates that ethanol exposure in early gestation can cause changes in DNA methylation, gene expression, and brain structure of offspring. Furthermore, the results support our hypothesis of early epigenetic origin of alcohol-induced disorders: changes in gene regulation may have already taken place in embryonic stem cells and therefore can be seen in

  12. Quantitative analysis of a panel of gene expression in prostate cancer——with emphasis on NPY expression analysis

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Objective: To investigate molecular alterations associating with prostate carcinoma progression and potentially provide information toward more accurate prognosis/diagnosis. Methods: A set of laser captured microdissected (LCM) specimens from 300 prostate cancer (PCa) patients undergoing radical prostatectomy (RP) were defined. Ten patients representing "aggressive" PCa, and 10 representing "non-aggressive" PCa were selected based on prostate-specific antigen (PSA) recurrence,Gleason score, pathological stage and tumor cell differentiation, with matched patient age and race between the two groups.Normal and neoplastic prostate epithelial cells were collected with LCM from frozen tissue slides obtained from the RP specimens.The expressions of a panel of genes, including NPY, PTEN, AR,AMACR, DD3, and GSTP1, were measured by quantitative real-time RT-PCR (TaqMan), and correlation was analyzed with clinicopathological features. Results: The expressions of AMACR and DD3 were consistently up-regulated in cancer cells compared to benign prostate epithelial cells in all PCa patients, whereas GSTP1 expression was down regulated in each patient. NPY, PTEN and AR exhibited a striking difference in their expression patterns between aggressive and non-aggressive PCas (P=0.0203, 0.0284, and 0.0378, respectively, Wilcoxon rank sum test). The lower expression of NPY showed association with "aggressive" PCas based on a larger PCa patient cohort analysis (P=0.0037,univariate generalized linear model (GLM) analysis). Conclusion: Despite widely noted heterogeneous nature of PCa, gene expression alterations of AMACR, DD3, and GSTP1 in LCM-derived PCa epithelial cells suggest for common underlying mechanisms in the initiation of PCa. Lower NPY expression level is significantly associated with more aggressive clinical behavior of PCa; PTEN and AR may have potential in defining PCa with aggressive clinical behavior. Studies along these lines have potential to define PCa-associated gene

  13. Progressive obesity leads to altered ovarian gene expression in the Lethal Yellow mouse: a microarray study

    Directory of Open Access Journals (Sweden)

    Brannian John

    2009-08-01

    Full Text Available Abstract Background Lethal yellow (LY; C57BL/6J Ay/a mice exhibit adult-onset obesity, altered metabolic regulation, and early reproductive senescence. The present study was designed to test the hypothesis that obese LY mice possess differences in expression of ovarian genes relative to age-matched lean mice. Methods 90- and 180-day-old LY and lean black (C57BL/6J a/a mice were suppressed with GnRH antagonist (Antide®, then stimulated with 5 IU eCG. cRNA derived from RNA extracts of whole ovarian homogenates collected 36 h post-eCG were run individually on Codelink Mouse Whole Genome Bioarrays (GE Healthcare Life Sciences. Results Fifty-two genes showed ≥ 2-fold differential (p Cyp51, and steroidogenic acute regulatory protein (Star. Fewer genes showed lower expression in LY mice, e.g. angiotensinogen. In contrast, none of these genes showed differential expression in 90-day-old LY and black mice, which are of similar body weight. Interestingly, 180-day-old LY mice had a 2-fold greater expression of 11beta-hydroxysteroid dehydrogenase type 1 (Hsd11b1 and a 2-fold lesser expression of 11beta-hydroxysteroid dehydrogenase type 2 (Hsd11b2, differences not seen in 90-day-old mice. Consistent with altered Hsd11b gene expression, ovarian concentrations of corticosterone (C were elevated in aging LY mice relative to black mice, but C levels were similar in young LY and black mice. Conclusion The data suggest that reproductive dysfunction in aging obese mice is related to modified intraovarian gene expression that is directly related to acquired obesity.

  14. Age-related alterations in innate immune receptor expression and ability of macrophages to respond to pathogen challenge in vitro

    OpenAIRE

    Liang, Shuang; Domon, Hisanori; Hosur, Kavita B.; WANG Min; Hajishengallis, George

    2009-01-01

    The impact of ageing in innate immunity is poorly understood. Studies in the mouse model have described altered innate immune functions in aged macrophages, although these were not generally linked to altered expression of receptors or regulatory molecules. Moreover, the influence of ageing in the expression of these molecules has not been systematically examined. We investigated age-dependent expression differences in selected Toll-like and other pattern-recognition receptors, receptors invo...

  15. Ustilago maydis natural antisense transcript expression alters mRNA stability and pathogenesis.

    Science.gov (United States)

    Donaldson, Michael E; Saville, Barry J

    2013-07-01

    Ustilago maydis infection of Zea mays leads to the production of thick-walled diploid teliospores that are the dispersal agent for this pathogen. Transcriptome analyses of this model biotrophic basidiomycete fungus identified natural antisense transcripts (NATs) complementary to 247 open reading frames. The U. maydis NAT cDNAs were fully sequenced and annotated. Strand-specific RT-PCR screens confirmed expression and identified NATs preferentially expressed in the teliospore. Targeted screens revealed four U. maydis NATs that are conserved in a related fungus. Expression of NATs in haploid cells, where they are not naturally occurring, resulted in increased steady-state levels of some complementary mRNAs. The expression of one NAT, as-um02151, in haploid cells resulted in a twofold increase in complementary mRNA levels, the formation of sense-antisense double-stranded RNAs, and unchanged Um02151 protein levels. This led to a model for NAT function in the maintenance and expression of stored teliospore mRNAs. In testing this model by deletion of the regulatory region, it was determined that alteration in NAT expression resulted in decreased pathogenesis in both cob and seedling infections. This annotation and functional analysis supports multiple roles for U. maydis NATs in controlling gene expression and influencing pathogenesis.

  16. Altered expression of adipose differentiation-related protein gene in placental tissue of pre-eclampsia

    Institute of Scientific and Technical Information of China (English)

    ZHANG Chun-li; YAO Yuan-qing; LI Dong-hong; ZHANG Wei

    2006-01-01

    Objective: To investigate the altered expression of lipid metabolism-related gene adipose differentiation-related protein (ADRP) in pre-eclampsia. Methods: Semi-quantitative RT-PCR and Western blotting were used to validate the altered expression of ADRP gene between pre-eclamptic placentas (preeclampsia group) and normotensive placentas (control group) respectively. In situ hybridization (ISH)was used to localize ADRP mRNA in pre-eclamptic placentas. Results: There was a significant difference in the levels of placental ADRP mRNA between pre-eclampsia group and control group (1.98± 0. 50 vs 1. 09±0. 20, P<0.01). Western blotting showed that placentas both in pre-eclampsia group and control group expressed the special ADRP band at 48. 1 kD. The relative levels of ADRP protein in pre-eclampsia group were significantly higher than those of control group (0. 40 ±0. 19 vs 0. 19 ±0. 09, P< 0. 01).ADRP mRNA was diffusely distributed in pre-eclamptic placentas. Their positive staining existed in cytoplasm of trophoblast. Conclusion: Abnormal expression of ADRP gene in pre-eclamptic placenta may be associated with the pathogenesis of pre-eclampsia.

  17. Anal cancer in Chinese: human papillomavirus infection and altered expression of p53

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    AIM To detect the presence of HPV DNA and study the alteration of p53 expression in anal cancers in Chinese.METHODS HPV DNA was amplified by PCR. The amplified HPV DNA was classified by DBH. HPV antigen and p53 expression were respectively detected by immunohistochemistry.RESULTS HPV DNA was amplified only in one case of squamous cell carcinoma of the 72 Chinese anal cancers and further classified as HPV type 16. Others were all HPV negative. HPV antigen and p53 expression were also detected in this case. Positive stainings with anti-p53 antibody were seen in 61.2% anal cancers. There were no statistically significant differences between anal squamous cell carcinomas and adenocarcinomas and between anal adenocarcinomas and rectal adenocarcinomas. p53 protein expression was observed in the basal cells of squamous epithelium of condyloma acuminatum and morphologically normal squamous epithelium in 2 cases invaded by anal adenocarcinoma.CONCLUSION HPV infection was not associated with these cases of anal cancer. p53 alteration was a common event. Positive p53 immunostaining can not be regarded as a marker for differentiating benign from malignant lesions.

  18. Using a cDNA microarray to study cellular gene expression altered by Mycobacterium tuberculosis

    Institute of Scientific and Technical Information of China (English)

    徐永忠; 谢建平; 李瑶; 乐军; 陈建平; 淳于利娟; 王洪海

    2003-01-01

    Objective To examine the global effects of Mycobacterium tuberculosis (M.tuberculosis) infection on macrophages. Methods The gene expression profiling of macrophage U937, in response to infection with M.tuberculosis H37Ra, was monitored using a high-density cDNA microarray. Results M.tuberculosis infection caused 463 differentially expressed genes, of which 366 genes are known genes registered in the Gene Bank. These genes function in various cellular processes including intracellular signalling, cytoskeletal rearrangement, apoptosis, transcriptional regulation, cell surface receptors, cell-mediated immunity as well as a variety of cellular metabolic pathways, and may play key roles in M.tuberculosis infection and intracellular survival. Conclusions M.tuberculosis infection alters the expression of host-cell genes, and these genes will provide a foundation for understanding the infection process of M.tuberculosis. The cDNA microarray is a powerful tool for studying pathogen-host cell interaction.

  19. Altered gene expression pattern in peripheral blood mononuclear cells in patients with acute myocardial infarction.

    Directory of Open Access Journals (Sweden)

    Marek Kiliszek

    Full Text Available BACKGROUND: Despite a substantial progress in diagnosis and therapy, acute myocardial infarction (MI is a major cause of mortality in the general population. A novel insight into the pathophysiology of myocardial infarction obtained by studying gene expression should help to discover novel biomarkers of MI and to suggest novel strategies of therapy. The aim of our study was to establish gene expression patterns in leukocytes from acute myocardial infarction patients. METHODS AND RESULTS: Twenty-eight patients with ST-segment elevation myocardial infarction (STEMI were included. The blood was collected on the 1(st day of myocardial infarction, after 4-6 days, and after 6 months. Control group comprised 14 patients with stable coronary artery disease, without history of myocardial infarction. Gene expression analysis was performed with Affymetrix Human Gene 1.0 ST microarrays and GCS3000 TG system. Lists of genes showing altered expression levels (fold change >1.5, p<0.05 were submitted to Ingenuity Pathway Analysis. Gene lists from each group were examined for canonical pathways and molecular and cellular functions. Comparing acute phase of MI with the same patients after 6 months (stable phase and with control group we found 24 genes with changed expression. In canonical analysis three pathways were highlighted: signaling of PPAR (peroxisome proliferator-activated receptor, IL-10 and IL-6 (interleukin 10 and 6. CONCLUSIONS: In the acute phase of STEMI, dozens of genes from several pathways linked with lipid/glucose metabolism, platelet function and atherosclerotic plaque stability show altered expression. Up-regulation of SOCS3 and FAM20 genes in the first days of myocardial infarction is observed in the vast majority of patients.

  20. Altered Protein Composition and Gene Expression in Strabismic Human Extraocular Muscles and Tendons

    Science.gov (United States)

    Agarwal, Andrea B.; Feng, Cheng-Yuan; Altick, Amy L.; Quilici, David R.; Wen, Dan; Johnson, L. Alan; von Bartheld, Christopher S.

    2016-01-01

    Purpose To determine whether structural protein composition and expression of key regulatory genes are altered in strabismic human extraocular muscles. Methods Samples from strabismic horizontal extraocular muscles were obtained during strabismus surgery and compared with normal muscles from organ donors. We used proteomics, standard and customized PCR arrays, and microarrays to identify changes in major structural proteins and changes in gene expression. We focused on muscle and connective tissue and its control by enzymes, growth factors, and cytokines. Results Strabismic muscles showed downregulation of myosins, tropomyosins, troponins, and titin. Expression of collagens and regulators of collagen synthesis and degradation, the collagenase matrix metalloproteinase (MMP)2 and its inhibitors, tissue inhibitor of metalloproteinase (TIMP)1 and TIMP2, was upregulated, along with tumor necrosis factor (TNF), TNF receptors, and connective tissue growth factor (CTGF), as well as proteoglycans. Growth factors controlling extracellular matrix (ECM) were also upregulated. Among 410 signaling genes examined by PCR arrays, molecules with downregulation in the strabismic phenotype included GDNF, NRG1, and PAX7; CTGF, CXCR4, NPY1R, TNF, NTRK1, and NTRK2 were upregulated. Signaling molecules known to control extraocular muscle plasticity were predominantly expressed in the tendon rather than the muscle component. The two horizontal muscles, medial and lateral rectus, displayed similar changes in protein and gene expression, and no obvious effect of age. Conclusions Quantification of proteins and gene expression showed significant differences in the composition of extraocular muscles of strabismic patients with respect to important motor proteins, elements of the ECM, and connective tissue. Therefore, our study supports the emerging view that the molecular composition of strabismic muscles is substantially altered. PMID:27768799

  1. Simulated microgravity alters the expression of key genes involved in fracture healing

    Science.gov (United States)

    McCabe, N. Patrick; Androjna, Caroline; Hill, Esther; Globus, Ruth K.; Midura, Ronald J.

    2013-11-01

    Fracture healing in animal models has been shown to be altered in both ground based analogs of spaceflight and in those exposed to actual spaceflight. The molecular mechanisms behind altered fracture healing as a result of chronic exposure to microgravity remain to be elucidated. This study investigates temporal gene expression of multiple factors involved in secondary fracture healing, specifically those integral to the development of a soft tissue callus and the transition to that of hard tissue. Skeletally mature female rats were subjected to a 4 week period of simulated microgravity and then underwent a closed femoral fracture procedure. Thereafter, they were reintroduced to the microgravity and allowed to heal for a 1 or 2 week period. A synchronous group of weight bearing rats was used as a normal fracture healing control. Utilizing Real-Time quantitative PCR on mRNA from fracture callus tissue, we found significant reductions in the levels of transcripts associated with angiogenesis, chondrogenesis, and osteogenesis. These data suggest an altered fracture healing process in a simulated microgravity environment, and these alterations begin early in the healing process. These findings may provide mechanistic insight towards developing countermeasure protocols to mitigate these adaptations.

  2. Microarray-bioinformatics analysis of altered genomic expression profiles between human fetal and infant myocardium

    Institute of Scientific and Technical Information of China (English)

    KONG Bo; LIU Ying-long; L(U) Xiao-dong

    2008-01-01

    Background The physiological differences between fetal and postnatal heart have been well characterized at the cellular level. However, the genetic mechanisms governing and regulating these differences have only been partially elucidated. Elucidation of the differentially expressed genes profile before and after birth has never been systematically proposed and analyzed.Methods The human oligonuclectide microarray and bioinformatics analysis approaches were applied to isolate and classify the differentially expressed genes between fetal and infant cardiac tissue samples. Quantitative real-time PCR was used to confirm the results from the microarray.Results Two hundred and forty-two differentially expressed genes were discovered and classified into 13 categories, including genes related to energy metabolism, myocyte hyperplasia, development, muscle contraction, protein synthesis and degradation, extraceUular matrix components, transcription factors, apoptosis, signal pathway molecules, organelle organization and several other biological processes. Moreover, 95 genes were identified which had not previously been reported to be expressed in the heart.Conclusions The study systematically analyzed the alteration of the gene expression profile between the human fetal and infant myocardium. A number of genes were discovered which had not been reported to be expressed in the heart. The data provided insight into the physical development mechanisms of the heart before and after birth.KONG Bo and LU Xiao-dong contributed equally to this study.

  3. Preliminary evidence of phenytoin-induced alterations in embryonic gene expression in a mouse model.

    Science.gov (United States)

    Musselman, A C; Bennett, G D; Greer, K A; Eberwine, J H; Finnell, R H

    1994-01-01

    SWV mouse embryos collected on gestational days (GD) 9:12 and 10:00 following chronic in utero exposure to teratogenic concentrations of phenytoin were utilized for in situ transcription studies of gene expression. The substrate cDNA obtained from the frozen embryo sections was amplified into radiolabelled antisense RNA (RT/aRNA) and used as a probe to screen a panel of 20 cDNA clones representing genes that are important regulators of craniofacial and neural development. The magnitude of alteration in gene expression following phenytoin treatment was determined densitometrically by changes in the hybridization intensity of the aRNA probes to the cDNA clones immobilized to the slot blots. We found that both Wnt-1 and the calcium channel gene were developmentally regulated, as their level of expression decreased significantly between the two collection times. Phenytoin treatment produced a significant downregulation in the level of expression for 25% of the genes examined in the GD 9:12 embryos, including the growth factors TGF-beta and NT3, the proto-oncogene Wnt-1, the nicotinic receptor, and the voltage sensitive calcium channel gene. Additional changes in the coordinate expression of several of the growth and transcription factors were observed at both gestational timepoints. The application of RT/aRNA technology has extended our appreciation of the normal patterns of gene expression during craniofacial and neural development, and provided the first demonstration of multiple coordinate changes in transcription patterns following teratogenic insult.

  4. PTEN deficiency promotes macrophage infiltration and hypersensitivity of prostate cancer to IAP antagonist/radiation combination therapy.

    Science.gov (United States)

    Armstrong, Chris W D; Maxwell, Pamela J; Ong, Chee Wee; Redmond, Kelly M; McCann, Christopher; Neisen, Jessica; Ward, George A; Chessari, Gianni; Johnson, Christopher; Crawford, Nyree T; LaBonte, Melissa J; Prise, Kevin M; Robson, Tracy; Salto-Tellez, Manuel; Longley, Daniel B; Waugh, David J J

    2016-02-16

    PTEN loss is prognostic for patient relapse post-radiotherapy in prostate cancer (CaP). Infiltration of tumor-associated macrophages (TAMs) is associated with reduced disease-free survival following radical prostatectomy. However, the association between PTEN loss, TAM infiltration and radiotherapy response of CaP cells remains to be evaluated. Immunohistochemical and molecular analysis of surgically-resected Gleason 7 tumors confirmed that PTEN loss correlated with increased CXCL8 expression and macrophage infiltration. However PTEN status had no discernable correlation with expression of other inflammatory markers by CaP cells, including TNF-α. In vitro, exposure to conditioned media harvested from irradiated PTEN null CaP cells induced chemotaxis of macrophage-like THP-1 cells, a response partially attenuated by CXCL8 inhibition. Co-culture with THP-1 cells resulted in a modest reduction in the radio-sensitivity of DU145 cells. Cytokine profiling revealed constitutive secretion of TNF-α from CaP cells irrespective of PTEN status and IR-induced TNF-α secretion from THP-1 cells. THP-1-derived TNF-α increased NFκB pro-survival activity and elevated expression of anti-apoptotic proteins including cellular inhibitor of apoptosis protein-1 (cIAP-1) in CaP cells, which could be attenuated by pre-treatment with a TNF-α neutralizing antibody. Treatment with a novel IAP antagonist, AT-IAP, decreased basal and TNF-α-induced cIAP-1 expression in CaP cells, switched TNF-α signaling from pro-survival to pro-apoptotic and increased radiation sensitivity of CaP cells in co-culture with THP-1 cells. We conclude that targeting cIAP-1 can overcome apoptosis resistance of CaP cells and is an ideal approach to exploit high TNF-α signals within the TAM-rich microenvironment of PTEN-deficient CaP cells to enhance response to radiotherapy. PMID:26799286

  5. Tissue-specific alterations in expression and function of P-glycoprotein in streptozotocininduced diabetic rats

    Institute of Scientific and Technical Information of China (English)

    Lu-lu ZHANG; Guang-ji WANG; Lin XIE; Liang LU; Shi JIN; Xin-yue JING; Dan YAO; Nan HU; Li LIU; Ru DUAN; Xiao-dong LIU

    2011-01-01

    Aim: To investigate the changes of expression and function of P-glycoprotein (P-GP) in cerebral cortex, hippocampus, liver, intestinal mucosa and kidney of streptozocin-induced diabetic rats.Methods: Diabetic rats were prepared via a single dose of streptozocin (65 mg/kg, ip). Abcb1/P-GP mRNA and protein expression levels in tissues were evaluated using quantitative real time polymerase chain reaction (QRT-PCR) analysis and Western blot, respectively.P-GP function was investigated via measuring tissue-to-plasma concentration ratios and body fluid excretion percentages of rhodamine 123.Results: In 5- and 8-week diabetic rats, Abcb1a mRNA levels were significantly decreased in cerebral cortices and intestinal mucosa,but dramatically increased in hippocampus and kidney. In liver, the level was increased in 5-week diabetic rats, and decreased in 8-week diabetic rats. Abcb1b mRNA levels were increased in cerebral cortex, hippocampus and kidney, but reduced in liver and intestinal mucosa in the diabetic rats. Western blot results were in accordance with the alterations of Abcb1a mRNA levels in most tissues examined. P-GP activity was markedly decreased in most tissues of diabetic rats, except kidney tissues.Conclusion: Alterations in the expression and function of Abcb1/P-GP under diabetic conditions are tissue specific, Abcb1 specific and diabetic duration-dependent.

  6. Cerebrovascular expression of proteins related to inflammation, oxidative stress and neurotoxicity is altered with aging

    Directory of Open Access Journals (Sweden)

    Luo Jinhua

    2010-10-01

    Full Text Available Abstract Background Most neurodegenerative diseases are age-related disorders; however, how aging predisposes the brain to disease has not been adequately addressed. The objective of this study is to determine whether expression of proteins in the cerebromicrovasculature related to inflammation, oxidative stress and neurotoxicity is altered with aging. Methods Brain microvessels are isolated from Fischer 344 rats at 6, 12, 18 and 24 months of age. Levels of interleukin (IL-1β and IL-6 RNA are determined by RT-PCR and release of cytokines into the media by ELISA. Vessel conditioned media are also screened by ELISA for IL-1α, monocyte chemoattractant protein-1 (MCP-1, tumor necrosis factor-α, (TNFα, and interferon γ (IFNγ. Immunofluorescent analysis of brain sections for IL-1β and IL-6 is performed. Results Expression of IL-1β and IL-6, both at RNA and protein levels, significantly (p Conclusions These data demonstrate that cerebrovascular expression of proteins related to inflammation, oxidative stress and neurotoxicity is altered with aging and suggest that the microvasculature may contribute to functional changes in the aging brain.

  7. Decreased reelin expression and organophosphate pesticide exposure alters mouse behaviour and brain morphology

    Directory of Open Access Journals (Sweden)

    Cristina A. Ghiani

    2012-02-01

    Full Text Available Genetic and environmental factors are both likely to contribute to neurodevelopmental disorders, including ASDs (autism spectrum disorders. In this study, we examined the combinatorial effect of two factors thought to be involved in autism – reduction in the expression of the extracellular matrix protein reelin and prenatal exposure to an organophosphate pesticide, CPO (chlorpyrifos oxon. Mice with reduced reelin expression or prenatal exposure to CPO exhibited subtle changes in ultrasound vocalization, open field behaviour, social interaction and repetitive behaviour. Paradoxically, mice exposed to both variables often exhibited a mitigation of abnormal behaviours, rather than increased behavioural abnormalities as expected. We identified specific differences in males and females in response to both of these variables. In addition to behavioural abnormalities, we identified anatomical alterations in the olfactory bulb, piriform cortex, hippocampus and cerebellum. As with our behavioural studies, anatomical alterations appeared to be ameliorated in the presence of both variables. While these observations support an interaction between loss of reelin expression and CPO exposure, our results suggest a complexity to this interaction beyond an additive effect of individual phenotypes.

  8. MicroRNA-Offset RNA Alters Gene Expression and Cell Proliferation

    Science.gov (United States)

    Zhao, Jin; Schnitzler, Gavin R.; Iyer, Lakshmanan K.; Aronovitz, Mark J.; Baur, Wendy E.; Karas, Richard H.

    2016-01-01

    MicroRNA-offset RNAs (moRs) were first identified in simple chordates and subsequently in mouse and human cells by deep sequencing of short RNAs. MoRs are derived from sequences located immediately adjacent to microRNAs (miRs) in the primary miR (pri-miR). Currently moRs are considered to be simply a by-product of miR biosynthesis that lack biological activity. Here we show for the first time that a moR is biologically active. We demonstrate that endogenous or over-expressed moR-21 significantly alters gene expression and inhibits the proliferation of vascular smooth muscle cells (VSMC). In addition, we find that miR-21 and moR-21 may regulate different genes in a given pathway and can oppose each other in regulating certain genes. We report that there is a “seed region” of moR-21 as well as a “seed match region” in the target gene 3’UTR that are indispensable for moR-21-mediated gene down-regulation. We further demonstrate that moR-21-mediated gene repression is Argonaute 2 (Ago2) dependent. Taken together, these findings provide the first evidence that microRNA offset RNA alters gene expression and is biologically active. PMID:27276022

  9. Positional and expressive alteration of prohibitin during the induced differentiation of human hepatocarcinoma SMMC-7721 cells

    Institute of Scientific and Technical Information of China (English)

    Dong-Hui Xu; Jian Tang; Qi-Fu Li; Song-Lin Shi; Xiang-Feng Chen; Ying Liang

    2008-01-01

    AIM: To explore the existence and distribution of prohibitin (PHB) in nuclear matrix and its co-localization with products of some related genes during the differentiation of human hepatocarcinoma SMMC-7721cells.METHODS: The nuclear matrix of the SHHC-7721 cells cultured with or without 5 x 10-3 mmol/L hexamethylene bisacetamide (HMBA) was selectively extracted.Western blot was used to analyze the expression of PHB in nuclear matrix; imrnunofluorescence microscope observation was used to analyze the distribution of PHB in cell. LCSM was used to observe the co-localization of PHB with products of oncogenes and tumor suppressor genes.RESULTS: Western blot analysis showed that PHB existed in the composition of nuclear matrix proteins and was down-regulated by HMBA treatment.Immunofluorescence observation revealed that PHB existed in the nuclear matrix, and its distribution regions and expression levels were altered after HMBA treatment. Laser scanning confocal microscopy revealed the co-localization between PHB and the products of oncogenes or tumor repression genes including c-fos, c-myc, p53 and Rb and its alteration of distributive area in the cells treated by HMBA.CONCLUSION: These data confirm that PHB is a nuclear matrix protein, which is located in the nuclear matrix, and the distribution and expression of PHB and its relation with associated genes may play significant roles during the differentiation of SMHC-7721 cells.

  10. Altered gene expression in highly purified enterocytes from patients with active coeliac disease

    Directory of Open Access Journals (Sweden)

    Jackson John

    2008-08-01

    Full Text Available Abstract Background Coeliac disease is a multifactorial inflammatory disorder of the intestine caused by ingestion of gluten in genetically susceptible individuals. Genes within the HLA-DQ locus are considered to contribute some 40% of the genetic influence on this disease. However, information on other disease causing genes is sparse. Since enterocytes are considered to play a central role in coeliac pathology, the aim of this study was to examine gene expression in a highly purified isolate of these cells taken from patients with active disease. Epithelial cells were isolated from duodenal biopsies taken from five coeliac patients with active disease and five non-coeliac control subjects. Contaminating T cells were removed by magnetic sorting. The gene expression profile of the cells was examined using microarray analysis. Validation of significantly altered genes was performed by real-time RT-PCR and immunohistochemistry. Results Enterocyte suspensions of high purity (98–99% were isolated from intestinal biopsies. Of the 3,800 genes investigated, 102 genes were found to have significantly altered expression between coeliac disease patients and controls (p Conclusion This study provides a profile of the molecular changes that occur in the intestinal epithelium of coeliac patients with active disease. Novel candidate genes were revealed which highlight the contribution of the epithelial cell to the pathogenesis of coeliac disease.

  11. Altered organization of GABAA receptor mRNA expression in the depressed suicide brain

    Directory of Open Access Journals (Sweden)

    Michael O Poulter

    2010-03-01

    Full Text Available Inter-relationships ordinarily exist between mRNA expression of GABA-A subunits in the frontopolar cortex (FPC of individuals that had died suddenly from causes other than suicide. However, these correlations were largely absent in persons that had died by suicide. In the present investigation, these findings were extended by examining GABA-A receptor expression patterns (of controls and depressed individuals that died by suicide in the orbital frontal cortex (OFC, hippocampus, amygdala. locus coeruleus (LC,and paraventricular nucleus (PVN, all of which have been implicated in either depression, anxiety or stress responsivity. Results Using QPCR analysis, we found that in controls the inter-relations between GABA-A subunits varied across brain regions, being high in the hippocampus and amygdala, intermediate in the LC, and low in the OFC and PVN. The GABA-A subunit inter-relations were markedly different in persons that died by suicide, being reduced in hippocampus and amygdala, stable in the LC, but more coordinated in the OFC and to some extent in the PVN. Conclusions It seems that altered brain region-specific inhibitory signaling, stemming from altered GABA-A subunit coordination, are associated with depression/suicide. Although, it is unknown whether GABA-A subunit re-organization was specifically tied to depression, suicide, or the accompanying distress, these data show that the co-ordinate expression of this transcriptome does vary depending on brain region and is plastic.

  12. Altered microRNA expression following sciatic nerve resection in dorsal root ganglia of rats

    Institute of Scientific and Technical Information of China (English)

    Bin Yu; Songlin Zhou; Tianmei Qian; Yongjun Wang; Fei Ding; Xiaosong Gu

    2011-01-01

    MicroRNAs (miRNAs) are a class of small,non-coding RNAs (~22 nucleotides) that negatively regulate gene expression post-transcriptionally,either through translational inhibition or degradation of target mRNAs.We uncovered a previously unknown alteration in the expression of miRNAs in the dorsal root ganglia (DRG) at 1,4,7,and 14 days after resection of the sciatic nerve in rats using microarray analysis.Thirty-two significantly upregulated and 18 downregulated miRNAs were identified in the DRG at four time points following sciatic nerve injury.The expression of four consecutively deregulated miRNAs,analyzed by real-time Taqman polymerase chain reaction,was in agreement with the microarray data (upregulated: miR-21,miR-221; downregulated:miR-500,miR-551b),The potential targets for these miRNAs,altered after sciatic nerve resection,are involved mainly in nervous system development,multi-cellular organismal development,and the regulation of cellular processes.This study demonstrated a different involvement of miRNAs in the DRG after resection of the sciatic nerve in a rat model,and it may also contribute in illustrating the molecular mechanisms responsible for nerve regeneration.

  13. Combined PDGFR and HDAC Inhibition Overcomes PTEN Disruption in Chordoma

    Science.gov (United States)

    Kassam, Amin B.; Park, Myung-Jin; Gardner, Paul; Prevedello, Daniel; Henry, Stephanie; Horbinski, Craig; Beumer, Jan H.; Tawbi, Hussein; Williams, Brian J.; Shaffrey, Mark E.; Egorin, Merrill J.; Abounader, Roger; Park, Deric M.

    2015-01-01

    Background The majority of chordomas show activation of the platelet-derived growth factor receptor (PDGFR). Based on in vitro intertumoral variation in response to recombinant PDGF protein and PDGFR inhibition, and variable tumor response to imatinib, we hypothesized that chordomas resistant to PDGFR inhibition may possess downstream activation of the pathway. Methods Molecular profiling was performed on 23 consecutive chordoma primary tissue specimens. Primary cultures established from 20 of the 23 specimens, and chordoma cell lines, UCH-1 and UCH-2, were used for in vitro experiments. Results Loss of heterozygosity (LOH) at the phosphatase and tensin homolog (PTEN) locus was observed in 6 specimens (26%). PTEN disruption statistically correlated with increased Ki-67 proliferation index, an established marker of poor outcome for chordoma. Compared to wild type, PTEN deficient chordomas displayed increased proliferative rate, and responded less favorably to PDGFR inhibition. PTEN gene restoration abrogated this growth advantage. Chordomas are characterized by intratumoral hypoxia and local invasion, and histone deacetylase (HDAC) inhibitors are capable of attenuating both hypoxic signaling and cell migration. The combination of PDGFR and HDAC inhibition effectively disrupted growth and invasion of PTEN deficient chordoma cells. Conclusions Loss of heterozygosity of the PTEN gene seen in a subset of chordomas is associated with aggressive in vitro behavior and strongly correlates with increased Ki-67 proliferative index. Combined inhibition of PDGFR and HDAC attenuates proliferation and invasion in chordoma cells deficient for PTEN. PMID:26247786

  14. Combined PDGFR and HDAC Inhibition Overcomes PTEN Disruption in Chordoma.

    Directory of Open Access Journals (Sweden)

    Dae-Hee Lee

    Full Text Available The majority of chordomas show activation of the platelet-derived growth factor receptor (PDGFR. Based on in vitro intertumoral variation in response to recombinant PDGF protein and PDGFR inhibition, and variable tumor response to imatinib, we hypothesized that chordomas resistant to PDGFR inhibition may possess downstream activation of the pathway.Molecular profiling was performed on 23 consecutive chordoma primary tissue specimens. Primary cultures established from 20 of the 23 specimens, and chordoma cell lines, UCH-1 and UCH-2, were used for in vitro experiments.Loss of heterozygosity (LOH at the phosphatase and tensin homolog (PTEN locus was observed in 6 specimens (26%. PTEN disruption statistically correlated with increased Ki-67 proliferation index, an established marker of poor outcome for chordoma. Compared to wild type, PTEN deficient chordomas displayed increased proliferative rate, and responded less favorably to PDGFR inhibition. PTEN gene restoration abrogated this growth advantage. Chordomas are characterized by intratumoral hypoxia and local invasion, and histone deacetylase (HDAC inhibitors are capable of attenuating both hypoxic signaling and cell migration. The combination of PDGFR and HDAC inhibition effectively disrupted growth and invasion of PTEN deficient chordoma cells.Loss of heterozygosity of the PTEN gene seen in a subset of chordomas is associated with aggressive in vitro behavior and strongly correlates with increased Ki-67 proliferative index. Combined inhibition of PDGFR and HDAC attenuates proliferation and invasion in chordoma cells deficient for PTEN.

  15. Transgenic poplar expressing the pine GS1a show alterations in nitrogen homeostasis during drought.

    Science.gov (United States)

    Molina-Rueda, Juan Jesús; Kirby, Edward G

    2015-09-01

    Transgenic hybrid poplars engineered to express ectopically the heterologous pine cytosolic GS1a display a number of significant pleiotropic phenotypes including enhanced growth, enhanced nitrogen use efficiency, and resistance to drought stress. The present study was undertaken in order to assess mechanisms whereby ectopic expression of pine GS1a in transgenic poplars results in enhanced agronomic phenotypes. Microarray analysis using the Agilent Populus whole genome array has allowed identification of genes differentially expressed between wild type (WT) and GS transgenics in four tissues (sink leaves, source leaves, stems, and roots) under three growth conditions (well-watered, drought, and recovery). Analysis revealed that differentially expressed genes in functional categories related to nitrogen metabolism show a trend of significant down-regulation in GS poplars compared to the WT, including genes encoding nitrate and nitrite reductases. The down-regulation of these genes was verified using qPCR, and downstream effects were further tested using NR activity assays. Results suggest that higher glutamine levels in GS transgenics regulate nitrate uptake and reduction. Transcript levels of nitrogen-related genes in leaves, including GS/GOGAT cycle enzymes, aspartate aminotransferase, GABA shunt enzymes, photorespiration enzymes, asparagine synthetase, phenylalanine ammonia lyase, isocitrate dehydrogenase, and PII, were also assessed using qPCR revealing significant differences between GS poplars and the WT. Moreover, metabolites related to these differentially expressed genes showed alterations in levels, including higher levels of GABA, hydroxyproline, and putrescine in the GS transgenic. These alterations in nitrogen homeostasis offer insights into mechanisms accounting for drought tolerance observed in GS poplars. PMID:26113157

  16. RAS/RAF/MEK/ERK and PI3K/PTEN/AKT Signaling in Malignant Melanoma Progression and Therapy

    Directory of Open Access Journals (Sweden)

    Ichiro Yajima

    2012-01-01

    Full Text Available Cutaneous malignant melanoma is one of the most serious skin cancers and is highly invasive and markedly resistant to conventional therapy. Melanomagenesis is initially triggered by environmental agents including ultraviolet (UV, which induces genetic/epigenetic alterations in the chromosomes of melanocytes. In human melanomas, the RAS/RAF/MEK/ERK (MAPK and the PI3K/PTEN/AKT (AKT signaling pathways are two major signaling pathways and are constitutively activated through genetic alterations. Mutations of RAF, RAS, and PTEN contribute to antiapoptosis, abnormal proliferation, angiogenesis, and invasion for melanoma development and progression. To find better approaches to therapies for patients, understanding these MAPK and AKT signaling mechanisms of melanoma development and progression is important. Here, we review MAPK and AKT signaling networks associated with melanoma development and progression.

  17. Systemic Sclerosis Patients Present Alterations in the Expression of Molecules Involved in B-Cell Regulation

    Science.gov (United States)

    Soto, Lilian; Ferrier, Ashley; Aravena, Octavio; Fonseca, Elianet; Berendsen, Jorge; Biere, Andrea; Bueno, Daniel; Ramos, Verónica; Aguillón, Juan Carlos; Catalán, Diego

    2015-01-01

    The activation threshold of B cells is tightly regulated by an array of inhibitory and activator receptors in such a way that disturbances in their expression can lead to the appearance of autoimmunity. The aim of this study was to evaluate the expression of activating and inhibitory molecules involved in the modulation of B cell functions in transitional, naive, and memory B-cell subpopulations from systemic sclerosis patients. To achieve this, blood samples were drawn from 31 systemic sclerosis patients and 53 healthy individuals. Surface expression of CD86, MHC II, CD19, CD21, CD40, CD22, Siglec 10, CD35, and FcγRIIB was determined by flow cytometry. IL-10 production was evaluated by intracellular flow cytometry from isolated B cells. Soluble IL-6 and IL-10 levels were measured by ELISA from supernatants of stimulated B cells. Systemic sclerosis patients exhibit an increased frequency of transitional and naive B cells related to memory B cells compared with healthy controls. Transitional and naive B cells from patients express higher levels of CD86 and FcγRIIB than healthy donors. Also, B cells from patients show high expression of CD19 and CD40, whereas memory cells from systemic sclerosis patients show reduced expression of CD35. CD19 and CD35 expression levels associate with different autoantibody profiles. IL-10+ B cells and secreted levels of IL-10 were markedly reduced in patients. In conclusion, systemic sclerosis patients show alterations in the expression of molecules involved in B-cell regulation. These abnormalities may be determinant in the B-cell hyperactivation observed in systemic sclerosis. PMID:26483788

  18. Microenvironment alters epigenetic and gene expression profiles in Swarm rat chondrosarcoma tumors

    Directory of Open Access Journals (Sweden)

    Hamm Christopher A

    2010-09-01

    Full Text Available Abstract Background Chondrosarcomas are malignant cartilage tumors that do not respond to traditional chemotherapy or radiation. The 5-year survival rate of histologic grade III chondrosarcoma is less than 30%. An animal model of chondrosarcoma has been established - namely, the Swarm Rat Chondrosarcoma (SRC - and shown to resemble the human disease. Previous studies with this model revealed that tumor microenvironment could significantly influence chondrosarcoma malignancy. Methods To examine the effect of the microenvironment, SRC tumors were initiated at different transplantation sites. Pyrosequencing assays were utilized to assess the DNA methylation of the tumors, and SAGE libraries were constructed and sequenced to determine the gene expression profiles of the tumors. Based on the gene expression analysis, subsequent functional assays were designed to determine the relevancy of the specific genes in the development and progression of the SRC. Results The site of transplantation had a significant impact on the epigenetic and gene expression profiles of SRC tumors. Our analyses revealed that SRC tumors were hypomethylated compared to control tissue, and that tumors at each transplantation site had a unique expression profile. Subsequent functional analysis of differentially expressed genes, albeit preliminary, provided some insight into the role that thymosin-β4, c-fos, and CTGF may play in chondrosarcoma development and progression. Conclusion This report describes the first global molecular characterization of the SRC model, and it demonstrates that the tumor microenvironment can induce epigenetic alterations and changes in gene expression in the SRC tumors. We documented changes in gene expression that accompany changes in tumor phenotype, and these gene expression changes provide insight into the pathways that may play a role in the development and progression of chondrosarcoma. Furthermore, specific functional analysis indicates that

  19. Highly sensitivity adhesion molecules detection in hereditary haemochromatosis patients reveals altered expression.

    LENUS (Irish Health Repository)

    Norris, S

    2012-02-01

    Several abnormalities in the immune status of patients with hereditary haemochromatosis (HH) have been reported, suggesting an imbalance in their immune function. This may include persistent production of, or exposure to, altered immune signalling contributing to the pathogenesis of this disorder. Adhesion molecules L-, E- and P-Selectin, intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) are some of the major regulators of the immune processes and altered levels of these proteins have been found in pathological states including cardiovascular diseases, arthritis and liver cancer. The aim of this study was to assess L-, E- and P-Selectin, ICAM-1 and VCAM-1 expression in patients with HH and correlate these results with HFE mutation status and iron indexes. A total of 139 subjects were diagnosed with HH (C282Y homozygotes = 87, C282Y\\/H63D = 26 heterozygotes, H63D homozygotes = 26), 27 healthy control subjects with no HFE mutation (N\\/N), 18 normal subjects heterozygous for the H63D mutation served as age-sex-matched controls. We observed a significant decrease in L-selectin (P = 0.0002) and increased E-selectin and ICAM-1 (P = 0.0006 and P = 0.0059) expression in HH patients compared with healthy controls. This study observes for the first time that an altered adhesion molecules profile occurs in patients with HH that is associated with specific HFE genetic component for iron overload, suggesting that differential expression of adhesion molecules may play a role in the pathogenesis of HH.

  20. Crosstalk between Meg3 and miR-1297 regulates growth of testicular germ cell tumor through PTEN/PI3K/AKT pathway.

    Science.gov (United States)

    Yang, Nian-Qin; Luo, Xiao-Jin; Zhang, Jian; Wang, Guo-Min; Guo, Jian-Ming

    2016-01-01

    Maternally Expressed Gene 3 (Meg3) encodes a long non-coding RNA that has been recently shown to regulate tumorigenesis through its interaction with microRNA (miR). We have recently reported that miR-1297 might play a role in the regulation of PTEN/PI3k/Akt signaling pathway in testicular germ cell tumor (TGCT). However, a crosstalk between Meg3 and miR-1297 in TGCT has not been appreciated. Here, we analyzed the levels of Meg3, miR-1297 and PTEN in TGCT specimens, compared to paired adjacent non-tumor tissue (NT), and found that Meg3 levels were significantly decreased and miR-1297 levels were unchanged in TGCT. PTEN protein but not mRNA levels significantly decreased in TGCT. Bioinformatics analyses showed that miR-1297 bound to 3'-UTR of PTEN mRNA, while miR-1297 also bound to Meg3. Luciferase report assay showed that Meg3 overexpression abolished the effects of miR-1297 on 3'-UTR of PTEN mRNA, possibly through competitive binding, which was supported by double fluorescent in situ hybridization showing co-localization of intracellular Meg3 and miR-1297 signals in TGCT cells. Moreover, Meg3 overexpression abolished the inhibitory effects of miR-1297 on PTEN, resulting in deactivation of Akt and decreases in cell growth. Together, these data demonstrate a previous unappreciated pathway in which Crosstalk between Meg3 and miR-1297 regulates growth of TFCT through PTEN/PI3K/AKT signaling. Re-expression of Meg3 may be an attractive strategy for TGCT therapy. PMID:27158395

  1. Matrine alters microRNA expression profiles in SGC-7901 human gastric cancer cells.

    Science.gov (United States)

    Li, Hailong; Xie, Shoupin; Liu, Xiaojun; Wu, Hongyan; Lin, Xingyao; Gu, Jing; Wang, Huping; Duan, Yongqiang

    2014-11-01

    Matrine, a major alkaloid extracted from Sophora flavescens, has been reported to possess antitumor properties in several types of cancers, including gastric cancer. However, its mechanisms of action on gastric cancer remain poorly understood. Dysregulation of microRNAs, a class of small, non-coding, regulatory RNA molecules involved in gene expression, is strongly correlated with cancer. The aim of the present study was to demonstrate that matrine treatment altered miRNA expression in SGC7901 cells. Using miRCURY™ microarray analysis, we identified 128 miRNAs substantially exhibiting >2-fold expression changes in matrine-treated cells relative to their expression levels in untreated cells. RT-qPCR was used to show that the levels of 8 miRNAs whose target genes were clustered in the cell cycle pathway increased, while levels of 14 miRNAs whose target genes were clustered in the MAPK signaling pathway decreased. These results were consistent with those from the miRNA microarray experiment. Bioinformatical analysis revealed that the majority of 57 identified enrichment pathways were highly involved in tumorigenesis. In conclusion, the results demonstrated that matrine induces considerable changes in the miRNA expression profiles of SGC7901 cells, suggesting miRNA microarray combined with RT-qPCR validation and bioinformatical analysis provide a novel and promising approach to identify anticancer targets and the mechanisms of matrine involved.

  2. Multiple insulin degrading enzyme variants alter in vitro reporter gene expression.

    Directory of Open Access Journals (Sweden)

    Olivia Belbin

    Full Text Available The insulin degrading enzyme (IDE variant, v311 (rs6583817, is associated with increased post-mortem cerebellar IDE mRNA, decreased plasma β-amyloid (Aβ, decreased risk for Alzheimer's disease (AD and increased reporter gene expression, suggesting that it is a functional variant driving increased IDE expression. To identify other functional IDE variants, we have tested v685, rs11187061 (associated with decreased cerebellar IDE mRNA and variants on H6, the haplotype tagged by v311 (v10; rs4646958, v315; rs7895832, v687; rs17107734 and v154; rs4646957, for altered in vitro reporter gene expression. The reporter gene expression levels associated with the second most common haplotype (H2 successfully replicated the post-mortem findings in hepatocytoma (0.89 fold-change, p = 0.04 but not neuroblastoma cells. Successful in vitro replication was achieved for H6 in neuroblastoma cells when the sequence was cloned 5' to the promoter (1.18 fold-change, p = 0.006 and 3' to the reporter gene (1.29 fold change, p = 0.003, an effect contributed to by four variants (v10, v315, v154 and v311. Since IDE mediates Aβ degradation, variants that regulate IDE expression could represent good therapeutic targets for AD.

  3. Tumor transcriptome sequencing reveals allelic expression imbalances associated with copy number alterations.

    Science.gov (United States)

    Tuch, Brian B; Laborde, Rebecca R; Xu, Xing; Gu, Jian; Chung, Christina B; Monighetti, Cinna K; Stanley, Sarah J; Olsen, Kerry D; Kasperbauer, Jan L; Moore, Eric J; Broomer, Adam J; Tan, Ruoying; Brzoska, Pius M; Muller, Matthew W; Siddiqui, Asim S; Asmann, Yan W; Sun, Yongming; Kuersten, Scott; Barker, Melissa A; De La Vega, Francisco M; Smith, David I

    2010-02-19

    Due to growing throughput and shrinking cost, massively parallel sequencing is rapidly becoming an attractive alternative to microarrays for the genome-wide study of gene expression and copy number alterations in primary tumors. The sequencing of transcripts (RNA-Seq) should offer several advantages over microarray-based methods, including the ability to detect somatic mutations and accurately measure allele-specific expression. To investigate these advantages we have applied a novel, strand-specific RNA-Seq method to tumors and matched normal tissue from three patients with oral squamous cell carcinomas. Additionally, to better understand the genomic determinants of the gene expression changes observed, we have sequenced the tumor and normal genomes of one of these patients. We demonstrate here that our RNA-Seq method accurately measures allelic imbalance and that measurement on the genome-wide scale yields novel insights into cancer etiology. As expected, the set of genes differentially expressed in the tumors is enriched for cell adhesion and differentiation functions, but, unexpectedly, the set of allelically imbalanced genes is also enriched for these same cancer-related functions. By comparing the transcriptomic perturbations observed in one patient to his underlying normal and tumor genomes, we find that allelic imbalance in the tumor is associated with copy number mutations and that copy number mutations are, in turn, strongly associated with changes in transcript abundance. These results support a model in which allele-specific deletions and duplications drive allele-specific changes in gene expression in the developing tumor.

  4. Verticillium dahliae alters Pseudomonas spp. populations and HCN gene expression in the rhizosphere of strawberry.

    Science.gov (United States)

    DeCoste, Nadine J; Gadkar, Vijay J; Filion, Martin

    2010-11-01

    The production of hydrogen cyanide (HCN) by beneficial root-associated bacteria is an important mechanism for the biological control of plant pathogens. However, little is known about the biotic factors affecting HCN gene expression in the rhizosphere of plants. In this study, real-time reverse transcription PCR (qRT-PCR) assays were developed to investigate the effect of the plant pathogen Verticillium dahliae on hcnC (encoding for HCN biosynthesis) gene expression in Pseudomonas sp. LBUM300. Strawberry plants were inoculated with Pseudomonas sp. LBUM300 and (or) V. dahliae and grown in pots filled with nonsterilized field soil. RNA was extracted from rhizosphere soil sampled at 0, 15, 30, and 45 days following inoculation with V. dahliae and used for qRT-PCR analyses. Populations of V. dahliae and Pseudomonas sp. LBUM300 were also monitored using a culture-independent qPCR approach. hcnC expression was detected at all sampling dates. The presence of V. dahliae had a significant stimulation effect on hcnC gene expression and also increased the population of Pseudomonas sp. LBUM300. However, the V. dahliae population was not altered by the presence of Pseudomonas sp. LBUM300. To our knowledge, this study is the first to evaluate the effect of a plant pathogen on HCN gene expression in the rhizosphere soil. PMID:21076481

  5. Experimental obstructive jaundice alters claudin-4 expression in intestinal mucosa: Effect of bombesin and neurotensin

    Institute of Scientific and Technical Information of China (English)

    Stelios F Assimakopoulos; Constantine E Vagianos; Aristides S Charonis; Ilias H Alexandris; Iris Spiliopoulou; Konstantinos C Thomopoulos; Vassiliki N Nikolopoulou; Chrisoula D Scopa

    2006-01-01

    AIM: To investigate the influence of experimental obstructive jaundice and exogenous bombesin (BBS) and neurotensin (NT) administration on the expression of the tight junction (TJ)-protein claudin-4 in intestinal epithelium of rats.METHODS: Forty male Wistar rats were randomly divided into five groups: Ⅰ = controls, Ⅱ = sham operated, Ⅲ = bile duct ligation (BDL), Ⅳ = BDL+BBS (30 μg/kg per d), V = BDL+NT (300 μg/kg per d). At the end of the experiment on d 10, endotoxin was measured in portal and aortic blood. Tissue sections of the terminal ileum were examined histologically and immunohistochemically for evaluation of claudin-4 expression in intestinal epithelium.RESULTS: Obstructive jaundice led to intestinal barrier failure demonstrated by significant portal and aortic endotoxemia. Claudin-4 expression was significantly increased in the upper third of the villi in jaundiced rats and an upregulation of its lateral distribution was noted.Administration of BBS or NT restored claudin-4 expression to the control state and significantly reduced portal and aortic endotoxemia.CONCLUSION: Experimental obstructive jaundice increases claudin-4 expression in intestinal epithelium,which may be a key factor contributing to the disruption of the mucosal barrier. Gut regulatory peptides BBS and NT can prevent this alteration and reduce portal and sysremic endotoxemia.

  6. Cytotoxic effects and specific gene expression alterations induced by I-125-labeled triplex-forming oligonucleotides

    OpenAIRE

    Dahmen, Volker; Kriehuber, Ralf

    2012-01-01

    Purpose: Triplex-forming oligonucleotides (TFO) bind to the DNA double helix in a sequence-specific manner. Therefore, TFO seem to be a suitable carrier for Auger electron emitters to damage exclusively targeted DNA sequences, e.g., in tumor cells. We studied the influence of I-125 labeled TFO with regard to cell survival and induction of DNA double-strand breaks (DSB) using TFO with different genomic targets and target numbers. Furthermore, the ability of TFO to alter the gene expression of ...

  7. Di-(2 ethylhexyl phthalate and flutamide alter gene expression in the testis of immature male rats

    Directory of Open Access Journals (Sweden)

    Yu Frank H

    2009-09-01

    Full Text Available Abstract We previously demonstrated that the androgenic and anti-androgenic effects of endocrine disruptors (EDs alter reproductive function and exert distinct effects on developing male reproductive organs. To further investigate these effects, we used an immature rat model to examine the effects of di-(2 ethylhexyl phthalate (DEHP and flutamide (Flu on the male reproductive system. Immature male SD rats were treated daily with DEHP and Flu on postnatal days (PNDs 21 to 35, in a dose-dependent manner. As results, the weights of the testes, prostate, and seminal vesicle and anogenital distances (AGD decreased significantly in response to high doses of DEHP or Flu. Testosterone (T levels significantly decreased in all DEHP- treated groups, whereas luteinizing hormone (LH plasma levels were not altered by any of the two treatments at PND 36. However, treatment with DEHP or Flu induced histopathological changes in the testes, wherein degeneration and disorders of Leydig cells, germ cells and dilatation of tubular lumen were observed in a dose-dependent manner. Conversely, hyperplasia and denseness of Leydig, Sertoli and germ cells were observed in rats given with high doses of Flu. The results by cDNA microarray analysis indicated that 1,272 genes were up-regulated by more than two-fold, and 1,969 genes were down-regulated in response to DEHP, Flu or both EDs. These genes were selected based on their markedly increased or decreased expression levels. These genes have been also classified on the basis of gene ontology (e.g., steroid hormone biosynthetic process, regulation of transcription, signal transduction, metabolic process, biosynthetic process.... Significant decreases in gene expression were observed in steroidogenic genes (i.e., Star, Cyp11a1 and Hsd3b. In addition, the expression of a common set of target genes, including CaBP1, Vav2, Plcd1, Lhx1 and Isoc1, was altered following exposure to EDs, suggesting that they may be marker genes to

  8. Altered placental expression of PAPPA2 does not affect birth weight in mice

    Directory of Open Access Journals (Sweden)

    Christians Julian K

    2010-07-01

    Full Text Available Abstract Background Pregnancy-associated plasma protein A2 (PAPPA2 is an insulin-like growth factor binding protein (IGFBP protease expressed in the placenta and upregulated in pregnancies complicated by pre-eclampsia. The mechanism linking PAPPA2 expression and pre-eclampsia and the consequences of altered PAPPA2 expression remain unknown. We previously identified PAPPA2 as a candidate gene for a quantitative trait locus (QTL affecting growth in mice and in the present study examined whether this QTL affects placental PAPPA2 expression and, in turn, placental or embryonic growth. Methods Using a line of mice that are genetically homogenous apart from a 1 megabase QTL region containing the PAPPA2 gene, we bred mice homozygous for alternate QTL genotypes and collected and weighed placentae and embryos at E12.5. We used quantitative RT-PCR to measure the mRNA levels of PAPPA2, as well as mRNA levels of IGFBP-5 (PAPPA2's substrate, and PAPPA (a closely related IGFBP protease to examine potential feedback and compensation effects. Western blotting was used to quantify PAPPA2 protein. Birth weight was measured in pregnancies allowed to proceed to parturition. Results PAPPA2 mRNA and protein expression levels in the placenta differed by a factor of 2.5 between genotypes, but we did not find a significant difference between genotypes in embryonic PAPPA2 mRNA levels. Placental IGFBP-5 and PAPPA mRNA expression levels were not altered in response to PAPPA2 levels, and we could not detect IGFBP-5 protein in the placenta by Western blotting. The observed difference in placental PAPPA2 expression had no significant effect on placental or embryonic mass at mid-gestation, birth weight or litter size. Conclusions Despite a significant difference between genotypes in placental PAPPA2 expression similar in magnitude to the difference between pre-eclamptic and normal placentae previously reported, we observed no difference in embryonic, placental or birth weight

  9. Critical role of PTEN for development and progression of nerve sheath tumors in neurofibromatosis type 1.

    Science.gov (United States)

    Mawrin, Christian

    2010-04-01

    Evaluation of: Gregorian C, Nakashima J, Dry SM et al.: PTEN dosage is essential for neurofibroma development and malignant transformation. Proc. Natl Acad. Sci. USA 106(46), 19479-19484 (2009). Neurofibromatosis type 1 (NF1) is among the most common inherited tumor-predisposing syndromes in humans. Development of malignant peripheral nerve sheath tumors (MPNSTs) from neurofibroma significantly affects the morbidity and mortality of NF1 patients. The authors demonstrate, using different genetically engineered mouse models, that loss of the tumor suppressor Pten in combination with overexpression of the K-ras oncogene is an important step in MPNST development. In both mouse and human tumors, the transition from low-grade neurofibromas to MPNST is associated with reduced Pten expression, deregulated mTOR signaling activity and increased proliferation. This tumor transition can be monitored by (18)F-fluoro-D-glucose-PET, offering close clinical monitoring of NF1 patients and thus early detection of MPNST development in the future.

  10. Matrine Activates PTEN to Induce Growth Inhibition and Apoptosis in V600EBRAF Harboring Melanoma Cells

    Directory of Open Access Journals (Sweden)

    Shuiying Wang

    2013-07-01

    Full Text Available Here, we report a natural chemical Matrine, which exhibits anti-melanoma potential with its PTEN activation mechanism. Matrine effectively inhibited proliferation of several carcinoma cell lines, including melanoma V600EBRAF harboring M21 cells. Flow cytometry analysis showed Matrine induced G0/G1 cell cycle arrest in M21 cells dose-dependently. Apoptosis in M21 cells induced by Matrine was identified by Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL analysis and Annexin-V/FITC staining. Molecular mechanistic study suggested that Matrine upregulated both mRNA level and protein expression level of phosphatase and tensin homolog deleted on chromosome ten (PTEN, leading to inhibition of the PI3K/Akt pathway. Downregulation of phosphor-Aktser473 by Matrine activated p21 and Bax, which contributed to G0/G1 cell cycle and apoptosis. Besides, Matrine enhanced the PI3K/Akt inhibition effects to inhibit the cell proliferation with PI3K inhibitor, LY2940002. In summary, our findings suggest Matrine is a promising antitumor drug candidate with its possible PTEN activation mechanisms for treating cancer diseases, such as melanomas.

  11. Critical role of PTEN for development and progression of nerve sheath tumors in neurofibromatosis type 1.

    Science.gov (United States)

    Mawrin, Christian

    2010-04-01

    Evaluation of: Gregorian C, Nakashima J, Dry SM et al.: PTEN dosage is essential for neurofibroma development and malignant transformation. Proc. Natl Acad. Sci. USA 106(46), 19479-19484 (2009). Neurofibromatosis type 1 (NF1) is among the most common inherited tumor-predisposing syndromes in humans. Development of malignant peripheral nerve sheath tumors (MPNSTs) from neurofibroma significantly affects the morbidity and mortality of NF1 patients. The authors demonstrate, using different genetically engineered mouse models, that loss of the tumor suppressor Pten in combination with overexpression of the K-ras oncogene is an important step in MPNST development. In both mouse and human tumors, the transition from low-grade neurofibromas to MPNST is associated with reduced Pten expression, deregulated mTOR signaling activity and increased proliferation. This tumor transition can be monitored by (18)F-fluoro-D-glucose-PET, offering close clinical monitoring of NF1 patients and thus early detection of MPNST development in the future. PMID:20373864

  12. Altered Gene Expressions and Cytogenetic Repair Efficiency in Cells with Suppressed Expression of XPA after Proton Exposure

    Science.gov (United States)

    Zhang, Ye; Rohde, Larry H.; Gridley, Daila S.; Mehta, Satish K.; Pierson, Duane L.; Wu, Honglu

    2009-01-01

    Cellular responses to damages from ionizing radiation (IR) exposure are influenced not only by the genes involved in DNA double strand break (DSB) repair, but also by non- DSB repair genes. We demonstrated previously that suppressed expression of several non-DSB repair genes, such as XPA, elevated IR-induced cytogenetic damages. In the present study, we exposed human fibroblasts that were treated with control or XPA targeting siRNA to 250 MeV protons (0 to 4 Gy), and analyzed chromosome aberrations and expressions of genes involved in DNA repair. As expected, after proton irradiation, cells with suppressed expression of XPA showed a significantly elevated frequency of chromosome aberrations compared with control siRNA treated (CS) cells. Protons caused more severe DNA damages in XPA knock-down cells, as 36% cells contained multiple aberrations compared to 25% in CS cells after 4Gy proton irradiation. Comparison of gene expressions using the real-time PCR array technique revealed that expressions of p53 and its regulated genes in irradiated XPA suppressed cells were altered similarly as in CS cells, suggesting that the impairment of IR induced DNA repair in XPA suppressed cells is p53-independent. Except for XPA, which was more than 2 fold down regulated in XPA suppressed cells, several other DNA damage sensing and repair genes (GTSE1, RBBP8, RAD51, UNG and XRCC2) were shown a more than 1.5 fold difference between XPA knock-down cells and CS cells after proton exposure. The possible involvement of these genes in the impairment of DNA repair in XPA suppressed cells will be further investigated.

  13. Altered expression pattern of clock genes in a rat model of depression

    DEFF Research Database (Denmark)

    Christiansen, Sofie; Wiborg, Ove; Bouzinova, Elena

    2016-01-01

    . The validated chronic mild stress (CMS) animal model of depression was used to investigate rhythmic expression of three clock genes; Per1, Per2 and Bmal1. Brain and liver tissue was collected from 96 animals after 3.5 weeks of CMS (48 control and 48 depression-like rats) at 4 h sampling interval within 24 h. We......: The present results suggest that altered expression of investigated clock genes are likely to associate with the induction of a depression-like state in the CMS model.......Background: Abnormalities in circadian rhythms may be causal factors in development of major depressive disorder. The biology underlying a causal relationship between circadian rhythm disturbances and depression is slowly being unraveled. Although there is no direct evidence of dysregulation...

  14. Genome wide transcriptome analysis of dendritic cells identifies genes with altered expression in psoriasis.

    Directory of Open Access Journals (Sweden)

    Kata Filkor

    Full Text Available Activation of dendritic cells by different pathogens induces the secretion of proinflammatory mediators resulting in local inflammation. Importantly, innate immunity must be properly controlled, as its continuous activation leads to the development of chronic inflammatory diseases such as psoriasis. Lipopolysaccharide (LPS or peptidoglycan (PGN induced tolerance, a phenomenon of transient unresponsiveness of cells to repeated or prolonged stimulation, proved valuable model for the study of chronic inflammation. Thus, the aim of this study was the identification of the transcriptional diversity of primary human immature dendritic cells (iDCs upon PGN induced tolerance. Using SAGE-Seq approach, a tag-based transcriptome sequencing method, we investigated gene expression changes of primary human iDCs upon stimulation or restimulation with Staphylococcus aureus derived PGN, a widely used TLR2 ligand. Based on the expression pattern of the altered genes, we identified non-tolerizeable and tolerizeable genes. Gene Ontology (GO and Kyoto Encyclopedia of Genes and Genomes (Kegg analysis showed marked enrichment of immune-, cell cycle- and apoptosis related genes. In parallel to the marked induction of proinflammatory mediators, negative feedback regulators of innate immunity, such as TNFAIP3, TNFAIP8, Tyro3 and Mer are markedly downregulated in tolerant cells. We also demonstrate, that the expression pattern of TNFAIP3 and TNFAIP8 is altered in both lesional, and non-lesional skin of psoriatic patients. Finally, we show that pretreatment of immature dendritic cells with anti-TNF-α inhibits the expression of IL-6 and CCL1 in tolerant iDCs and partially releases the suppression of TNFAIP8. Our findings suggest that after PGN stimulation/restimulation the host cell utilizes different mechanisms in order to maintain critical balance between inflammation and tolerance. Importantly, the transcriptome sequencing of stimulated/restimulated iDCs identified

  15. An acute dose of gamma-hydroxybutyric acid alters gene expression in multiple mouse brain regions.

    Science.gov (United States)

    Schnackenberg, B J; Saini, U T; Robinson, B L; Ali, S F; Patterson, T A

    2010-10-13

    Gamma-hydroxybutyric acid (GHB) is normally found in the brain in low concentrations and may function as a neurotransmitter, although the mechanism of action has not been completely elucidated. GHB has been used as a general anesthetic and is currently used to treat narcolepsy and alcoholism. Recreational use of GHB is primarily as a "club drug" and a "date rape drug," due to its amnesic effects. For this study, the hypothesis was that behavioral and neurochemical alterations may parallel gene expression changes in the brain after GHB administration. Adult male C57/B6N mice (n=5/group) were administered a single dose of 500 mg/kg GHB (i.p.) and were sacrificed 1, 2 and 4 h after treatment. Control mice were administered saline. Brains were removed and regionally dissected on ice. Total RNA from the hippocampus, cortex and striatum was extracted, amplified and labeled. Gene expression was evaluated using Agilent whole mouse genome 4x44K oligonucleotide microarrays. Microarray data were analyzed by ArrayTrack and differentially expressed genes (DEGs) were identified using P or = 1.7 as the criteria for significance. Principal component analysis (PCA) and Hierarchical Cluster Analysis (HCA) showed that samples from each time point clustered into distinct treatment groups with respect to sacrifice time. Ingenuity pathways analysis (IPA) was used to identify involved pathways. The results show that GHB induces gene expression alterations in hundreds of genes in the hippocampus, cortex and striatum, and the number of affected genes increases throughout a 4-h time course. Many of these DEGs are involved in neurological disease, apoptosis, and oxidative stress.

  16. Aged mice have increased inflammatory monocyte concentration and altered expression of cell-surface functional receptors

    Indian Academy of Sciences (India)

    Kelley Strohacker; Whitney L Breslin; Katie C Carpenter; Brian K McFarlin

    2012-03-01

    The expression of monocyte cell-surface receptors represents one index of immune dysfunction, which is common with aging. Although mouse models of aging are prevalent, monocyte subset assessment is rare. Our purpose was to compare cell receptor expression on classic (CD115+/Gr-1high) and non-classic (CD115+/Gr-1low) monocytes from 80- or 20-week-old CD-1 mice. Three-colour flow cytometry was used to determine the concentration of monocyte subsets and their respective cell-surface expression of TLR2, TLR4, CD80, CD86, MHC II and CD54. These receptors were selected because they have been previously associated with altered monocyte function. Data were analysed with independent -tests; significance was set at < 0.05. Old mice had a greater concentration of both classic (258%, =0.003) and non-classic (70%, =0.026) monocytes. The classic : non-classic monocyte ratio doubled in old as compared with that in young mice (=0.006), indicating a pro-inflammatory shift. TLR4 ($\\downarrow$27%, =0.001) and CD80 ($\\downarrow$37%, =0.004) were decreased on classic monocytes from old as compared with those from young mice. TLR2 ($\\uparrow$24%, =0.002) and MHCII ($\\downarrow$21%, =0.026) were altered on non-classic monocytes from old as compared with those from young mice. The increased classic : non-classic monocyte ratio combined with changes in the cell-surface receptor expression on both monocyte subsets is indicative of immune dysfunction, which may increase age-associated disease risk.

  17. Apoptosis induced by Fas signaling does not alter hepatic hepcidin expression

    Institute of Scientific and Technical Information of China (English)

    Sizhao; Lu; Emily; Zmijewski; John; Gollan; Duygu; Dee; Harrison-Findik

    2014-01-01

    AIM: To determine the regulation of human hepcidin(HAMP) and mouse hepcidin(hepcidin-1 and hepcidin-2) gene expression in the liver by apoptosis using in vivo and in vitro experimental models. METHODS: For the induction of the extrinsic apoptotic pathway, HepG2 cells were treated with various concentrations of CH11, an activating antibody for human Fas receptor, for 12 h. Male C57BL/6NCR and C57BL/6J strains of mice were injected intraperitoneally with sublethal doses of an activating antibody for mouse Fas receptor, Jo2. The mice were anesthetized and sacrificed 1 or 6 h after the injection. The level of apoptosis was quantified by caspase-3 activity assay. Liver injury was assessed by measuring the levels of ALT/AST enzymes in the serum. The acute phase reaction in the liver was examined by determining the expression levels of IL-6 and SAA3 genes by SYBR green quantitative real-time PCR(qPCR). The phosphorylation of transcription factors, Stat3, Smad4 and NF-κB was determined by western blotting. Hepcidin gene expression was determined by Taqman qPCR. The binding of transcription factors to hepcidin-1 promoter was studied using chromatin immunoprecipitation(ChIP) assays.RESULTS: The treatment of HepG2 cells with CH11 induced apoptosis, as shown by the significant activation of caspase-3(P < 0.001), but did not cause any significant changes in HAMP expression. Short-term(1 h) Jo2 treatment(0.2 μg/g b.w.) neither induced apoptosis and acute phase reaction nor altered mRNA expression of mouse hepcidin-1 in the livers of C57BL/6NCR mice. In contrast, 6 h after Jo2 injection, the livers of C57BL/6NCR mice exhibited a significant level of apoptosis(P < 0.001) and an increase in SAA3(P < 0.023) and IL-6(P < 0.005) expression in the liver. However, mRNA expression of hepcidin-1 in the liver was not significantly altered. Despite the Jo2-induced phosphorylation of Stat3, no occupancy of hepcidin-1 promoter by Stat3 was observed, as shown by ChIP assays. Compared to C57

  18. Niacin in pharmacological doses alters microRNA expression in skeletal muscle of obese Zucker rats.

    Directory of Open Access Journals (Sweden)

    Aline Couturier

    Full Text Available Administration of pharmacological niacin doses was recently reported to have pronounced effects on skeletal muscle gene expression and phenotype in obese Zucker rats, with the molecular mechanisms underlying the alteration of gene expression being completely unknown. Since miRNAs have been shown to play a critical role for gene expression through inducing miRNA-mRNA interactions which results in the degradation of specific mRNAs or the repression of protein translation, we herein aimed to investigate the influence of niacin at pharmacological doses on the miRNA expression profile in skeletal muscle of obese Zucker rats fed either a control diet with 30 mg supplemented niacin/kg diet or a high-niacin diet with 780 mg supplemented niacin/kg diet for 4 wk. miRNA microarray analysis revealed that 42 out of a total of 259 miRNAs were differentially expressed (adjusted P-value <0.05, 20 being down-regulated and 22 being up-regulated, between the niacin group and the control group. Using a biostatistics approach, we could demonstrate that the most strongly up-regulated (log2 ratio ≥0.5 and down-regulated (log2 ratio ≤-0.5 miRNAs target approximately 1,800 mRNAs. Gene-term enrichment analysis showed that many of the predicted target mRNAs from the most strongly regulated miRNAs were involved in molecular processes dealing with gene transcription such as DNA binding, transcription regulator activity, transcription factor binding and in important regulatory pathways such as Wnt signaling and MAPK signaling. In conclusion, the present study shows for the first time that pharmacological niacin doses alter the expression of miRNAs in skeletal muscle of obese Zucker rats and that the niacin-regulated miRNAs target a large set of genes and pathways which are involved in gene regulatory activity indicating that at least some of the recently reported effects of niacin on skeletal muscle gene expression and phenotype in obese Zucker rats are mediated through

  19. Upregulation of PTEN in glioma cells by cord blood mesenchymal stem cells inhibits migration via downregulation of the PI3K/Akt pathway.

    Directory of Open Access Journals (Sweden)

    Venkata Ramesh Dasari

    Full Text Available BACKGROUND: PTEN (phosphatase and tensin homologue deleted on chromosome ten is a tumor suppressor gene implicated in a wide variety of human cancers, including glioblastoma. PTEN is a major negative regulator of the PI3K/Akt signaling pathway. Most human gliomas show high levels of activated Akt, whereas less than half of these tumors carry PTEN mutations or homozygous deletions. The unique ability of mesenchymal stem cells to track down tumor cells makes them as potential therapeutic agents. Based on this capability, new therapeutic approaches have been developed using mesenchymal stem cells to cure glioblastoma. However, molecular mechanisms of interactions between glioma cells and stem cells are still unknown. METHODOLOGY/PRINCIPAL FINDINGS: In order to study the mechanisms by which migration of glioma cells can be inhibited by the upregulation of the PTEN gene, we studied two glioma cell lines (SNB19 and U251 and two glioma xenograft cell lines (4910 and 5310 alone and in co-culture with human umbilical cord blood-derived mesenchymal stem cells (hUCBSC. Co-cultures of glioma cells showed increased expression of PTEN as evaluated by immunofluorescence and immunoblotting assays. Upregulation of PTEN gene is correlated with the downregulation of many genes including Akt, JUN, MAPK14, PDK2, PI3K, PTK2, RAS and RAF1 as revealed by cDNA microarray analysis. These results have been confirmed by reverse-transcription based PCR analysis of PTEN and Akt genes. Upregulation of PTEN resulted in the inhibition of migration capability of glioma cells under in vitro conditions. Also, wound healing capability of glioma cells was significantly inhibited in co-culture with hUCBSC. Under in vivo conditions, intracranial tumor growth was inhibited by hUCBSC in nude mice. Further, hUCBSC upregulated PTEN and decreased the levels of XIAP and Akt, which are responsible for the inhibition of tumor growth in the mouse brain. CONCLUSIONS/SIGNIFICANCE: Our studies

  20. Loss of pdr-1/parkin influences Mn homeostasis through altered ferroportin expression in C. elegans

    Science.gov (United States)

    Chakraborty, Sudipta; Chen, Pan; Bornhorst, Julia; Schwerdtle, Tanja; Schumacher, Fabian; Kleuser, Burkhard; Bowman, Aaron B.; Aschner, Michael

    2015-01-01

    Overexposure to the essential metal manganese (Mn) can result in an irreversible condition known as manganism that shares similar pathophysiology with Parkinson’s disease (PD), including dopaminergic (DAergic) cell loss that leads to motor and cognitive impairments. However, the mechanisms behind this neurotoxicity and its relationship with PD remain unclear. Many genes confer risk for autosomal recessive, early-onset PD, including the parkin/PARK2 gene that encodes for the E3 ubiquitin ligase Parkin. Using Caenorhabditis elegans (C. elegans) as an invertebrate model that conserves the DAergic system, we previously reported significantly increased Mn accumulation in pdr-1/parkin mutants compared to wildtype (WT) animals. For the current study, we hypothesize that this enhanced accumulation is due to alterations in Mn transport in the pdr-1 mutants. While no change in mRNA expression of the major Mn importer proteins (smf-1-3) was found in pdr-1 mutants, significant downregulation in mRNA levels of the putative Mn exporter ferroportin (fpn-1.1) was observed. Using a strain overexpressing fpn-1.1 in worms lacking pdr-1, we show evidence for attenuation of several endpoints of Mn-induced toxicity, including survival, metal accumulation, mitochondrial copy number and DAergic integrity, compared to pdr-1 mutants alone. These changes suggest a novel role of pdr-1 in modulating Mn export through altered transporter expression, and provides further support of metal dyshomeostasis as a component of Parkinsonism pathophysiology. PMID:25769119

  1. PTEN deficiency and mutant p53 confer glucose-addiction to thyroid cancer cells: impact of glucose depletion on cell proliferation, cell survival, autophagy and cell migration.

    Science.gov (United States)

    Morani, Federica; Phadngam, Suratchanee; Follo, Carlo; Titone, Rossella; Thongrakard, Visa; Galetto, Alessandra; Alabiso, Oscar; Isidoro, Ciro

    2014-07-01

    Proliferating cancer cells oxidize glucose through the glycolytic pathway. Since this metabolism is less profitable in terms of ATP production, cancer cells consume large quantity of glucose, and those that experience insufficient blood supply become glucose-addicted. We have analyzed the response to glucose depletion in WRO and FTC133 follicular thyroid cancer cells, which differ in the expression of two key regulators of the glucose metabolism. WRO cells, which express wild type p53 and PTEN, showed a higher rate of cell proliferation and were much less sensitive to glucose-depletion than FTC133 cells, which are PTEN null and express mutant p53. Glucose depletion slowed-down the autophagy flux in FTC133 cells, not in WRO cells. In a wound-healing assay, WRO cells were shown to migrate faster than FTC133 cells. Glucose depletion slowed down the cell migration rate, and these effects were more evident in FTC133 cells. Genetic silencing of either wild-type PTEN or p53 in WRO cells resulted in increased uptake of glucose, whereas the ectopic expression of PTEN in FTC133 cells resulted in diminished glucose uptake. In conclusion, compared to WRO, FTC133 cells were higher glucose up-taker and consumer. These data do not support the general contention that cancer cells lacking PTEN or expressing the mutant p53R273H are more aggressive and prone to better face glucose depletion. We propose that concurrent PTEN deficiency and mutant p53 leads to a glucose-addiction state that renders the cancer cell more sensitive to glucose restriction. The present observation substantiates the view that glucose-restriction may be an adjuvant strategy to combat these tumours. PMID:25221641

  2. Alteration of cadherin isoform expression and inhibition of gap junctions in stomach carcinoma cells

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    To explore cell malignant phenotype correlated changes of cell surface adhesion molecules and cell-cell communication in carcinogenesis, human stomach transformed and cancer cell lines were investigated. Expressions of E-cadherin, N-cadherin, ?-catenin, ?-catenin as well as gap junction (GJ) protein Cx32 were studied by utilization of immunoblotting, immunocytochemical and fluorescent dye transfer methods. Mammalian normal stomach mucosal cells expressed E-cadherin but not N-cadherin. E-cadherin immunofluorescence was detected at cell membranous adherens junctions (AJ) where colocalization with immunofluorescent staining of inner surface adhesion plaque proteins ?- and ?-catenins was observed. The existence of E-cadherin/ catenin (?-, ?-) protein complexes as AJ was suggested. In transformed and stomach cancer cells E-cadherin was inhibited, instead, N-cadherin was expressed and localized at membranous AJ where co-staining with ?- and ?-catenin fluorescence was observed. Formation of N-cadherin/catenin (?-, ?-) protein complex at AJs of transformed and cancer cells was suggested. The above observations were further supported by immunoblotting results. Normal stomach muscosal and transformed cells expressed Cx32 at membranous GJ and were competent of gap junction communication (GJIC). In stomach cancer cells, Cx32 was inhibited and GJIC was defective. The results suggested that changes of signal pathways mediated by both cell adhesion and cell communication systems are associated intracellular events of stomach carcinogenesis. The alteration of cadherin isoform from E- to N-cadherin in transformed and stomach cancer cells is the first report.

  3. Spaceflight alters expression of microRNA during T-cell activation.

    Science.gov (United States)

    Hughes-Fulford, Millie; Chang, Tammy T; Martinez, Emily M; Li, Chai-Fei

    2015-12-01

    Altered immune function has been demonstrated in astronauts during spaceflights dating back to Apollo and Skylab; this could be a major barrier to long-term space exploration. We tested the hypothesis that spaceflight causes changes in microRNA (miRNA) expression. Human leukocytes were stimulated with mitogens on board the International Space Station using an onboard normal gravity control. Bioinformatics showed that miR-21 was significantly up-regulated 2-fold during early T-cell activation in normal gravity, and gene expression was suppressed under microgravity. This was confirmed using quantitative real-time PCR (n = 4). This is the first report that spaceflight regulates miRNA expression. Global microarray analysis showed significant (P < 0.05) suppression of 85 genes under microgravity conditions compared to normal gravity samples. EGR3, FASLG, BTG2, SPRY2, and TAGAP are biologically confirmed targets and are co-up-regulated with miR-21. These genes share common promoter regions with pre-mir-21; as the miR-21 matures and accumulates, it most likely will inhibit translation of its target genes and limit the immune response. These data suggest that gravity regulates T-cell activation not only by transcription promotion but also by blocking translation via noncoding RNA mechanisms. Moreover, this study suggests that T-cell activation itself may induce a sequence of gene expressions that is self-limited by miR-21. PMID:26276131

  4. Expression of functions by normal sheep alveolar macrophages and their alteration by interaction with Mycoplasma ovipneumoniae.

    Science.gov (United States)

    Niang, M; Rosenbusch, R F; Lopez-Virella, J; Kaeberle, M L

    1997-10-31

    Normal sheep alveolar macrophages collected by bronchial lavage were exposed to live or heat-killed Mycoplasma ovipneumoniae organisms, and their capability to ingest Staphylococcus aureus and to elicit antibody-dependent cellular cytotoxicity against sensitized chicken red blood cells was tested. Controls consisted of non-infected macrophages in M199 medium. In addition, the effect of M. ovipneumoniae on expression of surface molecules on these sheep alveolar macrophages was determined. The percentage of S. aureus ingested by nontreated sheep alveolar macrophages was significantly higher than that of infected macrophages. Live mycoplasmas were more effective in suppressing the ingestion of S. aureus by these macrophages than killed mycoplasmas. Both live and killed mycoplasmas suppressed the cytolytic effect of the sheep alveolar macrophages to a similar degree. About 78% and 45% of the normal sheep alveolar macrophages had IgG and complement receptors, respectively. Infection of these macrophages with M. ovipneumoniae decreased significantly the expression of IgG receptors but had no effects on complement receptors. There were substantial increases in the expression of both MHC class I and class II by the mycoplasma-induced macrophages as compared with unstimulated macrophages. Live mycoplasmas were more effective in inducing expression of both classes than killed mycoplasmas. The results, taken together, suggest that M. ovipneumoniae induced alterations in macrophage activities and this may be a contributing factor in the pathogenesis of respiratory disease induced by the organism.

  5. Ectopic KNOX Expression Affects Plant Development by Altering Tissue Cell Polarity and Identity[OPEN

    Science.gov (United States)

    Rebocho, Alexandra B.

    2016-01-01

    Plant development involves two polarity types: tissue cell (asymmetries within cells are coordinated across tissues) and regional (identities vary spatially across tissues) polarity. Both appear altered in the barley (Hordeum vulgare) Hooded mutant, in which ectopic expression of the KNOTTED1-like Homeobox (KNOX) gene, BKn3, causes inverted polarity of differentiated hairs and ectopic flowers, in addition to wing-shaped outgrowths. These lemma-specific effects allow the spatiotemporal analysis of events following ectopic BKn3 expression, determining the relationship between KNOXs, polarity, and shape. We show that tissue cell polarity, based on localization of the auxin transporter SISTER OF PINFORMED1 (SoPIN1), dynamically reorients as ectopic BKn3 expression increases. Concurrently, ectopic expression of the auxin importer LIKE AUX1 and boundary gene NO APICAL MERISTEM is activated. The polarity of hairs reflects SoPIN1 patterns, suggesting that tissue cell polarity underpins oriented cell differentiation. Wing cell files reveal an anisotropic growth pattern, and computational modeling shows how polarity guiding growth can account for this pattern and wing emergence. The inverted ectopic flower orientation does not correlate with SoPIN1, suggesting that this form of regional polarity is not controlled by tissue cell polarity. Overall, the results suggest that KNOXs trigger different morphogenetic effects through interplay between tissue cell polarity, identity, and growth. PMID:27553356

  6. Altered gene expression in blood and sputum in COPD frequent exacerbators in the ECLIPSE cohort.

    Directory of Open Access Journals (Sweden)

    Dave Singh

    Full Text Available Patients with chronic obstructive pulmonary disease (COPD who are defined as frequent exacerbators suffer with 2 or more exacerbations every year. The molecular mechanisms responsible for this phenotype are poorly understood. We investigated gene expression profile patterns associated with frequent exacerbations in sputum and blood cells in a well-characterised cohort. Samples from subjects from the ECLIPSE COPD cohort were used; sputum and blood samples from 138 subjects were used for microarray gene expression analysis, while blood samples from 438 subjects were used for polymerase chain reaction (PCR testing. Using microarray, 150 genes were differentially expressed in blood (>±1.5 fold change, p≤0.01 between frequent compared to non-exacerbators. In sputum cells, only 6 genes were differentially expressed. The differentially regulated genes in blood included downregulation of those involved in lymphocyte signalling and upregulation of pro-apoptotic signalling genes. Multivariate analysis of the microarray data followed by confirmatory PCR analysis identified 3 genes that predicted frequent exacerbations; B3GNT, LAF4 and ARHGEF10. The sensitivity and specificity of these 3 genes to predict the frequent exacerbator phenotype was 88% and 33% respectively. There are alterations in systemic immune function associated with frequent exacerbations; down-regulation of lymphocyte function and a shift towards pro-apoptosis mechanisms are apparent in patients with frequent exacerbations.

  7. Spaceflight induces both transient and heritable alterations in DNA methylation and gene expression in rice (Oryza sativa L.)

    International Nuclear Information System (INIS)

    Spaceflight represents a complex environmental condition in which several interacting factors such as cosmic radiation, microgravity and space magnetic fields are involved, which may provoke stress responses and jeopardize genome integrity. Given the inherent property of epigenetic modifications to respond to intrinsic as well as external perturbations, it is conceivable that epigenetic markers like DNA methylation may undergo alterations in response to spaceflight. We report here that extensive alteration in both DNA methylation and gene expression occurred in rice plants subjected to a spaceflight, as revealed by a set of characterized sequences including 6 transposable elements (TEs) and 11 cellular genes. We found that several features characterize the alterations: (1) All detected alterations are hypermethylation events; (2) whereas alteration in both CG and CNG methylation occurred in the TEs, only alteration in CNG methylation occurred in the cellular genes; (3) alteration in expression includes both up- and down-regulations, which did not show a general correlation with alteration in methylation; (4) altered methylation patterns in both TEs and cellular genes are heritable to progenies at variable frequencies; however, stochastic reversion to wild-type patterns and further de novo changes in progenies are also apparent; and (5) the altered expression states in both TEs and cellular genes are also heritable to selfed progenies but with markedly lower transmission frequencies than altered DNA methylation states. Furthermore, we found that a set of genes encoding for the various putative DNA methyltransferases, 5-methylcytosine DNA glycosylases, the SWI/SNF chromatin remodeller (DDM1) and siRNA-related proteins are extremely sensitive to perturbation by spaceflight, which might be an underlying cause for the altered methylation patterns in the space-flown plants. We discuss implications of spaceflight-induced epigenetic variations with regard to health safety

  8. Characteristics of nobiletin-mediated alteration of gene expression in cultured cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Nemoto, Kiyomitsu, E-mail: nemoto@u-shizuoka-ken.ac.jp [Department of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526 (Japan); Ikeda, Ayaka; Yoshida, Chiaki; Kimura, Junko; Mori, Junki [Department of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526 (Japan); Fujiwara, Hironori [Department of Anti-Dementia Functional Food Development, Research Center of Supercritical Fluid Technology, Graduate School of Engineering, Tohoku University, 6-6-7 Aoba, Aramaki, Aoba-ku, Sendai 980-8579 (Japan); Yokosuka, Akihito; Mimaki, Yoshihiro [Department of Medicinal Pharmacognosy, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji 192-0392 (Japan); Ohizumi, Yasushi [Department of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526 (Japan); Department of Anti-Dementia Functional Food Development, Research Center of Supercritical Fluid Technology, Graduate School of Engineering, Tohoku University, 6-6-7 Aoba, Aramaki, Aoba-ku, Sendai 980-8579 (Japan); Laboratory of Kampo Medicines, Yokohama College of Pharmacy, 601 Matano-cho, Totsuka-ku, Yokohama 245-0066 (Japan); Degawa, Masakuni [Department of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526 (Japan)

    2013-02-15

    Highlights: ► Nobiletin-mediated alterations of gene expression were examined with DNA microarrays. ► Three organ-derived cell lines were treated with 100 μM nobiletin for 24 h. ► In all cell lines, 3 endoplasmic reticulum stress-responsive genes were up-regulated. ► Some cell cycle-regulating and oxidative stress-promoting genes were down-regulated. ► These alterations may contribute to nobiletin-mediated biological effects. -- Abstract: Nobiletin, a polymethoxylated flavonoid that is highly contained in the peels of citrus fruits, exerts a wide variety of beneficial effects, including anti-proliferative effects in cancer cells, repressive effects in hyperlipidemia and hyperglycemia, and ameliorative effects in dementia at in vitro and in vivo levels. In the present study, to further understand the mechanisms of these actions of nobiletin, the nobiletin-mediated alterations of gene expression in three organ-derived cell lines – 3Y1 rat fibroblasts, HuH-7 human hepatocarcinoma cells, and SK-N-SH human neuroblastoma cells – were first examined with DNA microarrays. In all three cell lines, treatments with nobiletin (100 μM) for 24 h resulted in more than 200% increases in the expression levels of five genes, including the endoplasmic reticulum stress-responsive genes Ddit3, Trib3, and Asns, and in less than 50% decreases in the expression levels of seven genes, including the cell cycle-regulating genes Ccna2, Ccne2, and E2f8 and the oxidative stress-promoting gene Txnip. It was also confirmed that in each nobiletin-treated cell line, the levels of the DDIT3 (DNA-damage-inducible transcript 3, also known as CHOP and GADD153) and ASNS (asparagine synthetase) proteins were increased, while the level of the TXNIP (thioredoxin-interacting protein, also known as VDUP1 and TBP-2) protein was decreased. All these findings suggest that nobiletin exerts a wide variety of biological effects, at least partly, through induction of endoplasmic reticulum stress and

  9. MYC protein expression and genetic alterations have prognostic impact in diffuse large B-cell lymphoma treated with immunochemotherapy

    OpenAIRE

    Valera Barros, Alexandra; López Guillermo, Armando; Cardesa Salzmann, Antonio; Climent, Fina; González Barca, Eva; Mercadal, Santiago; Espinosa, Iñigo; Novelli, Silvana; Briones, Javier; Mate, José L.; Salamero, Olga; Sancho, Juan M.; Arenillas, Leonor; Serrano, Sergi; Erill, Nadina

    2013-01-01

    MYC alterations influence the survival of patients with diffuse large B-cell lymphoma. Most studies have focused on MYC translocations but there is little information regarding the impact of numerical alterations and protein expression. We analyzed the genetic alterations and protein expression of MYC, BCL2, BCL6, and MALT1 in 219 cases of diffuse large B-cell lymphoma. MYC rearrangement occurred as the sole abnormality (MYC single-hit) in 3% of cases, MYC and concurrent BCL2 and/or BCL6 rear...

  10. Changes in mitochondrial DNA alter expression of nuclear encoded genes associated with tumorigenesis

    Energy Technology Data Exchange (ETDEWEB)

    Jandova, Jana; Janda, Jaroslav [Southern Arizona VA Healthcare System, Department of Medicine, Dermatology Division and Arizona Cancer Center, University of Arizona, 1515 N Campbell Avenue, Tucson, AZ 857 24 (United States); Sligh, James E, E-mail: jsligh@azcc.arizona.edu [Southern Arizona VA Healthcare System, Department of Medicine, Dermatology Division and Arizona Cancer Center, University of Arizona, 1515 N Campbell Avenue, Tucson, AZ 857 24 (United States)

    2012-10-15

    We previously reported the presence of a mtDNA mutation hotspot in UV-induced premalignant and malignant skin tumors in hairless mice. We have modeled this change (9821insA) in murine cybrid cells and demonstrated that this alteration in mtDNA associated with mtBALB haplotype can alter the biochemical characteristics of cybrids and subsequently can contribute to significant changes in their behavioral capabilities. This study shows that changes in mtDNA can produce differences in expression levels of specific nuclear-encoded genes, which are capable of triggering the phenotypes such as seen in malignant cells. From a potential list of differentially expressed genes discovered by microarray analysis, we selected MMP-9 and Col1a1 for further studies. Real-time PCR confirmed up-regulation of MMP-9 and down-regulation of Col1a1 in cybrids harboring the mtDNA associated with the skin tumors. These cybrids also showed significantly increased migration and invasion abilities compared to wild type. The non-specific MMP inhibitor, GM6001, was able to inhibit migratory and invasive abilities of the 9821insA cybrids confirming a critical role of MMPs in cellular motility. Nuclear factor-{kappa}B (NF-{kappa}B) is a key transcription factor for production of MMPs. An inhibitor of NF-{kappa}B activation, Bay 11-7082, was able to inhibit the expression of MMP-9 and ultimately decrease migration and invasion of mutant cybrids containing 9821insA. These studies confirm a role of NF-{kappa}B in the regulation of MMP-9 expression and through this regulation modulates the migratory and invasive capabilities of cybrids with mutant mtDNA. Enhanced migration and invasion abilities caused by up-regulated MMP-9 may contribute to the tumorigenic phenotypic characteristics of mutant cybrids. -- Highlights: Black-Right-Pointing-Pointer Cybrids are useful models to study the role of mtDNA changes in cancer development. Black-Right-Pointing-Pointer mtDNA changes affect the expression of nuclear

  11. MiR-20a Induces Cell Radioresistance by Activating the PTEN/PI3K/Akt Signaling Pathway in Hepatocellular Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuqin [Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province (China); Zheng, Lin [Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province (China); Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province (China); Ding, Yi [Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province (China); Li, Qi [Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province (China); Wang, Rong [Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province (China); Liu, Tongxin; Sun, Quanquan [Department of Radiation Oncology, Cancer Hospital, Hangzhou, Zhejiang Province (China); Yang, Hua [Department of Radiation Oncology, Nanhai Hospital, Southern Medical University, Guangzhou, Guangdong Province (China); Peng, Shunli [Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province (China); Wang, Wei, E-mail: wangwei9500@hotmail.com [Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province (China); Chen, Longhua, E-mail: chenlhsmu@126.com [Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province (China)

    2015-08-01

    Purpose: To investigate the role of miR-20a in hepatocellular carcinoma (HCC) cell radioresistance, which may reveal potential strategies to improve treatment. Methods and Materials: The expression of miR-20a and PTEN were detected in HCC cell lines and paired primary tissues by quantitative real-time polymerase chain reaction. Cell radiation combined with colony formation assays was administrated to discover the effect of miR-20a on radiosensitivity. Bioinformatics prediction and luciferase assay were used to identify the target of miR-20a. The phosphatidylinositol 3-kinase inhibitor LY294002 was used to inhibit phosphorylation of Akt, to verify whether miR-20a affects HCC cell radioresistance through activating the PTEN/PI3K/Akt pathway. Results: MiR-20a levels were increased in HCC cell lines and tissues, whereas PTEN was inversely correlated with it. Overexpression of miR-20a in Bel-7402 and SMMC-7721 cells enhances their resistance to the effect of ionizing radiation, and the inhibition of miR-20a in HCCLM3 and QGY-7701 cells sensitizes them to it. PTEN was identified as a direct functional target of miR-20a for the induction of radioresistance. Overexpression of miR-20a activated the PTEN/PI3K/Akt signaling pathway. Additionally, the kinase inhibitor LY294002 could reverse the effect of miR-20a–induced radioresistance. Conclusion: MiR-20a induces HCC cell radioresistance by activating the PTEN/PI3K/Akt pathway, which suggests that miR-20a/PTEN/PI3K/Akt might represent a target of investigation for developing effective therapeutic strategies against HCC.

  12. Identification of genes whose expression is altered by obesity throughout the arterial tree

    Science.gov (United States)

    Jenkins, Nathan T.; Thorne, Pamela K.; Martin, Jeffrey S.; Rector, R. Scott; Davis, J. Wade; Laughlin, M. Harold

    2014-01-01

    We used next-generation RNA sequencing (RNA-Seq) technology on the whole transcriptome to identify genes whose expression is consistently affected by obesity across multiple arteries. Specifically, we examined transcriptional profiles of the iliac artery as well as the feed artery, first, second, and third branch order arterioles in the soleus, gastrocnemius, and diaphragm muscles from obese Otsuka Long-Evans Tokushima Fatty (OLETF) and lean Long-Evans Tokushima Otsuka (LETO) rats. Within the gastrocnemius and soleus muscles, the number of genes differentially expressed with obesity tended to increase with increasing branch order arteriole number (i.e., decreasing size of the artery). This trend was opposite in the diaphragm. We found a total of 15 genes that were consistently upregulated with obesity (MIS18A, CTRB1, FAM151B, FOLR2, PXMP4, OAS1B, SREBF2, KLRA17, SLC25A44, SNX10, SLFN3, MEF2BNB, IRF7, RAD23A, LGALS3BP) and five genes that were consistently downregulated with obesity (C2, GOLGA7, RIN3, PCP4, CYP2E1). A small fraction (∼9%) of the genes affected by obesity was modulated across all arteries examined. In conclusion, the present study identifies a select number of genes (i.e., 20 genes) whose expression is consistently altered throughout the arterial network in response to obesity and provides further insight into the heterogeneous vascular effects of obesity. Although there is no known direct function of the majority of 20 genes related to vascular health, the obesity-associated upregulation of SREBF2, LGALS3BP, IRF7, and FOLR2 across all arteries is suggestive of an unfavorable vascular phenotypic alteration with obesity. These data may serve as an important resource for identifying novel therapeutic targets against obesity-related vascular complications. PMID:25271210

  13. Identification of genes whose expression is altered by obesity throughout the arterial tree.

    Science.gov (United States)

    Padilla, Jaume; Jenkins, Nathan T; Thorne, Pamela K; Martin, Jeffrey S; Rector, R Scott; Davis, J Wade; Laughlin, M Harold

    2014-11-15

    We used next-generation RNA sequencing (RNA-Seq) technology on the whole transcriptome to identify genes whose expression is consistently affected by obesity across multiple arteries. Specifically, we examined transcriptional profiles of the iliac artery as well as the feed artery, first, second, and third branch order arterioles in the soleus, gastrocnemius, and diaphragm muscles from obese Otsuka Long-Evans Tokushima Fatty (OLETF) and lean Long-Evans Tokushima Otsuka (LETO) rats. Within the gastrocnemius and soleus muscles, the number of genes differentially expressed with obesity tended to increase with increasing branch order arteriole number (i.e., decreasing size of the artery). This trend was opposite in the diaphragm. We found a total of 15 genes that were consistently upregulated with obesity (MIS18A, CTRB1, FAM151B, FOLR2, PXMP4, OAS1B, SREBF2, KLRA17, SLC25A44, SNX10, SLFN3, MEF2BNB, IRF7, RAD23A, LGALS3BP) and five genes that were consistently downregulated with obesity (C2, GOLGA7, RIN3, PCP4, CYP2E1). A small fraction (∼9%) of the genes affected by obesity was modulated across all arteries examined. In conclusion, the present study identifies a select number of genes (i.e., 20 genes) whose expression is consistently altered throughout the arterial network in response to obesity and provides further insight into the heterogeneous vascular effects of obesity. Although there is no known direct function of the majority of 20 genes related to vascular health, the obesity-associated upregulation of SREBF2, LGALS3BP, IRF7, and FOLR2 across all arteries is suggestive of an unfavorable vascular phenotypic alteration with obesity. These data may serve as an important resource for identifying novel therapeutic targets against obesity-related vascular complications.

  14. What controls PTEN and what it controls (in prostate cancer)

    Institute of Scientific and Technical Information of China (English)

    Paramita M Ghosh

    2012-01-01

    The standard of care for metastatic prostate cancer (PCa) is androgen deprivation therapy since almost all PCa growth is initially reliant on the androgen receptor (AR).However,almost all patients develop resistance to this therapy within 18-24months,and current treatment for castration-resistant prostate cancer (CRPC) is extremely limited,despite the advent of new drugs that target the AR,such as ahiraterone and MDV3100.1 Multiple studies have associated the loss of phosphatase and tensin homolog deleted on chromosome 10(PTEN),a dual lipid and protein phosphatase that is frequently lost in prostate cancer,with the development of CRPC.2,3 Yet,multiple studies have shown that at least 20%-40%of primary PCa,which are almost always androgen sensitive,experience a loss of PTEN,4,5 while as many as 30% of CRPC tumors are PTEN-positive.6 The broad questions then facing researchers are:(i) How does PTEN loss cause CRPC?;(ii) What is the mechanism of CRPC development in PTEN+/+ tumors?;and (iii) How can CRPC tumors be inhibited in PTEN-null cells?Three new publications in recent times have come up with mechanisms that answer these questions.7-9 Two of these,both in Cancer Cell eadier this year,from the laboratories of Dr Charles Sawyers and Dr Hong Wu,address a novel negative feedback regulation between AR and PTEN,and all three,including the one from Dr Damu Tang,show that the loss of PTEN function is likely the first step towards the development of CRPC.

  15. BCR-ABL Promotes PTEN Downregulation in Chronic Myeloid Leukemia

    OpenAIRE

    Cristina Panuzzo; Sabrina Crivellaro; Giovanna Carrà; Angelo Guerrasio; Giuseppe Saglio; Alessandro Morotti

    2014-01-01

    Chronic myeloid leukemia (CML) is a myeloproliferative disorder characterized by the t(9;22) translocation coding for the chimeric protein p210 BCR-ABL. The tumor suppressor PTEN plays a critical role in the pathogenesis of CML chronic phase, through non genomic loss of function mechanisms, such as protein down-regulation and impaired nuclear/cytoplasmic shuttling. Here we demonstrate that BCR-ABL promotes PTEN downregulation through a MEK dependent pathway. Furthermore, we describe a novel n...

  16. Polychlorinated biphenyl exposure alters the expression profile of microRNAs associated with vascular diseases.

    Science.gov (United States)

    Wahlang, Banrida; Petriello, Michael C; Perkins, Jordan T; Shen, Shu; Hennig, Bernhard

    2016-09-01

    Exposure to persistent organic pollutants, including polychlorinated biphenyls (PCBs) is correlated with multiple vascular complications including endothelial cell dysfunction and atherosclerosis. PCB-induced activation of the vasculature subsequently leads to oxidative stress and induction of pro-inflammatory cytokines and adhesion proteins. Gene expression of these cytokines/proteins is known to be regulated by small, endogenous oligonucleotides known as microRNAs that interact with messenger RNA. MicroRNAs are an acknowledged component of the epigenome, but the role of environmentally-driven epigenetic changes such as toxicant-induced changes in microRNA profiles is currently understudied. The objective of this study was to determine the effects of PCB exposure on microRNA expression profile in primary human endothelial cells using the commercial PCB mixture Aroclor 1260. Samples were analyzed using Affymetrix GeneChip® miRNA 4.0 arrays for high throughput detection and selected microRNA gene expression was validated (RT-PCR). Microarray analysis identified 557 out of 6658 microRNAs that were changed with PCB exposure (p<0.05). In-silico analysis using MetaCore database identified 21 of these microRNAs to be associated with vascular diseases. Further validation showed that Aroclor 1260 increased miR-21, miR-31, miR-126, miR-221 and miR-222 expression levels. Upregulated miR-21 has been reported in cardiac injury while miR-126 and miR-31 modulate inflammation. Our results demonstrated evidence of altered microRNA expression with PCB exposure, thus providing novel insights into mechanisms of PCB toxicity. PMID:27288564

  17. Tumor transcriptome sequencing reveals allelic expression imbalances associated with copy number alterations.

    Directory of Open Access Journals (Sweden)

    Brian B Tuch

    Full Text Available Due to growing throughput and shrinking cost, massively parallel sequencing is rapidly becoming an attractive alternative to microarrays for the genome-wide study of gene expression and copy number alterations in primary tumors. The sequencing of transcripts (RNA-Seq should offer several advantages over microarray-based methods, including the ability to detect somatic mutations and accurately measure allele-specific expression. To investigate these advantages we have applied a novel, strand-specific RNA-Seq method to tumors and matched normal tissue from three patients with oral squamous cell carcinomas. Additionally, to better understand the genomic determinants of the gene expression changes observed, we have sequenced the tumor and normal genomes of one of these patients. We demonstrate here that our RNA-Seq method accurately measures allelic imbalance and that measurement on the genome-wide scale yields novel insights into cancer etiology. As expected, the set of genes differentially expressed in the tumors is enriched for cell adhesion and differentiation functions, but, unexpectedly, the set of allelically imbalanced genes is also enriched for these same cancer-related functions. By comparing the transcriptomic perturbations observed in one patient to his underlying normal and tumor genomes, we find that allelic imbalance in the tumor is associated with copy number mutations and that copy number mutations are, in turn, strongly associated with changes in transcript abundance. These results support a model in which allele-specific deletions and duplications drive allele-specific changes in gene expression in the developing tumor.

  18. MUC5AC/β-catenin expression and KRAS gene alteration in laterally spreading colorectal tumors

    Institute of Scientific and Technical Information of China (English)

    Kosaburo Nakae; Hiroyuki Mitomi; Tsuyoshi Saito; Michiko Takahashi; Takashi Morimoto; Yasuhiro Hidaka; Naoto Sakamoto

    2012-01-01

    To clarify differences in mucin phenotype,proliferative activity and oncogenetic alteration among subtypes of colorectal laterally spreading tumor (LST).METHODS:LSTs,defined as superficial elevated lesions greater than 10 mm in diameter with a low vertical axis,were macroscopically classified into two subtypes:(1) a granular type (Gr-LST) composed of superficially spreading aggregates of nodules forming a flat-based lesion with a granulonodular and uneven surface; and (2) a non-granular type (NGr-LST) with a flat smooth surface and an absence of granulonodular formation.A total of 69 LSTs,comprising 36 Gr-LSTs and 33 NGr-LSTs,were immunohistochemically stained with MUC2,MUC5AC,MUC6,CD10 (markers of gastrointestinal cell lineage),p53,β-catenin and Ki-67 antibodies,and examined for alteration in exon 1 of v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS) and exon 15 of v-raf murine sarcoma viral oncogene homologue B1 (BRAF) by polymerase chain reaction followed by direct sequencing.RESULTS:Histologically,15 Gr-LST samples were adenomas with low-grade dysplasia (LGD),12 were highgrade dysplasia (HGD) and 9 were adenocarcinomas invading the submucosa (INV),while 12 NGr-LSTs demonstrated LGD,14 HGD and 7 INV.In the proximal colon,MUC5AC expression was significantly higher in the Gr-type than the NGr-type.MUC6 was expressed only in NGr-LST.MUC2 or CD10 did not differ,P53 expression demonstrated a significant stepwise increment in progression through LGD-HGD-INV with both types of LST.Nuclear β-catenin expression was significantly higher in the NGr-type.Ki-67 expression was significantly higher in the Gr-type in the lower one third zone of the tumor.In proximal,but not distal colon tumors,the incidence of KRAS provided mutation was significantly higher in the Gr-type harboring a specific mutational pattern (G12V).BRAF mutations (V600E) were detected only in two Gr-LSTs.CONCLUSION:The two subtypes of LST,especially in the proximal colon,have differing

  19. 健脾解毒复方中药对裸鼠肝癌模型PTEN/ERK1的影响%Effect of Jianpi Jiedu decoction to PTEN/ERK1 of athymic mice with hepatocellular carcinoma

    Institute of Scientific and Technical Information of China (English)

    孙保国; 周厚明; 邓宜材; 黄红中; 陈泽雄; 张诗军

    2009-01-01

    reagent). Result: The expression intensity of PTEN: The result showed that the intensity of PTEN in the normal hepatic tissue was the highest, and then latero-cancer tissue, the lowest was cancer tis-sue. In the normal hepatic tissue, the intensity of PTEN in Group B, D, E was higher than the Group NS, Group FT, Group DZ (P < 0. 05). In the latero-cancer tissue, the intensity of PTEN in Group D was higher than the Group NS (P < 0. 05 ). In the cancer tissue, the intensity of PTEN in Group JPJDT was higher than the Group NS and Group FT (P < 0. 05 ). The expression intensity of ERK1 : The result showed that the intensity of FTEN in the cancer tissue was the highest, and then latero-cancer tissue, the lowest was normal hepatic tissue. In the latero-cancer tissue, the intensity of ERK1 in Group FT was higher than the Group NS and Group JPJDT (P < 0. 05). In the cancer tissue, the intensity of PTEN in Group NS and Group FT was higher than the Group C, D, E, G, F (P <0. 05 ). The correlation between PTEN and ERK1 : The result showed that there was inverse correlation between the expression intensity of PTEN and ERK1 in the cancer tissue ( P < 0. 01 ). Conclusion: One of mechanism of antitumous effect of JPJDT maybe up-regulate anti-oncogene PTEN, restrain the signal way of ERK1, Suppress the proliferation of hepatoma carcinoma cell. The carcinogenesis of primary hepatic carcinoma may exist the deletion of PTEN. Owing to low expression or deletion of PTEN in the cancer tissue,ERK1 signal transduction pathway cannot be actively suppressed which was activated by carcinogenic factor. So hepatoma carcinoma cell multiplicated.

  20. Altered Chromosomal Positioning, Compaction, and Gene Expression with a Lamin A/C Gene Mutation

    Science.gov (United States)

    Abuisneineh, Fida; Fahrenbach, John P.; Zhang, Yuan; MacLeod, Heather; Dellefave, Lisa; Pytel, Peter; Selig, Sara; Labno, Christine M.; Reddy, Karen; Singh, Harinder; McNally, Elizabeth

    2010-01-01

    Background Lamins A and C, encoded by the LMNA gene, are filamentous proteins that form the core scaffold of the nuclear lamina. Dominant LMNA gene mutations cause multiple human diseases including cardiac and skeletal myopathies. The nuclear lamina is thought to regulate gene expression by its direct interaction with chromatin. LMNA gene mutations may mediate disease by disrupting normal gene expression. Methods/Findings To investigate the hypothesis that mutant lamin A/C changes the lamina's ability to interact with chromatin, we studied gene misexpression resulting from the cardiomyopathic LMNA E161K mutation and correlated this with changes in chromosome positioning. We identified clusters of misexpressed genes and examined the nuclear positioning of two such genomic clusters, each harboring genes relevant to striated muscle disease including LMO7 and MBNL2. Both gene clusters were found to be more centrally positioned in LMNA-mutant nuclei. Additionally, these loci were less compacted. In LMNA mutant heart and fibroblasts, we found that chromosome 13 had a disproportionately high fraction of misexpressed genes. Using three-dimensional fluorescence in situ hybridization we found that the entire territory of chromosome 13 was displaced towards the center of the nucleus in LMNA mutant fibroblasts. Additional cardiomyopathic LMNA gene mutations were also shown to have abnormal positioning of chromosome 13, although in the opposite direction. Conclusions These data support a model in which LMNA mutations perturb the intranuclear positioning and compaction of chromosomal domains and provide a mechanism by which gene expression may be altered. PMID:21179469

  1. Altered chromosomal positioning, compaction, and gene expression with a lamin A/C gene mutation.

    Directory of Open Access Journals (Sweden)

    Stephanie K Mewborn

    Full Text Available BACKGROUND: Lamins A and C, encoded by the LMNA gene, are filamentous proteins that form the core scaffold of the nuclear lamina. Dominant LMNA gene mutations cause multiple human diseases including cardiac and skeletal myopathies. The nuclear lamina is thought to regulate gene expression by its direct interaction with chromatin. LMNA gene mutations may mediate disease by disrupting normal gene expression. METHODS/FINDINGS: To investigate the hypothesis that mutant lamin A/C changes the lamina's ability to interact with chromatin, we studied gene misexpression resulting from the cardiomyopathic LMNA E161K mutation and correlated this with changes in chromosome positioning. We identified clusters of misexpressed genes and examined the nuclear positioning of two such genomic clusters, each harboring genes relevant to striated muscle disease including LMO7 and MBNL2. Both gene clusters were found to be more centrally positioned in LMNA-mutant nuclei. Additionally, these loci were less compacted. In LMNA mutant heart and fibroblasts, we found that chromosome 13 had a disproportionately high fraction of misexpressed genes. Using three-dimensional fluorescence in situ hybridization we found that the entire territory of chromosome 13 was displaced towards the center of the nucleus in LMNA mutant fibroblasts. Additional cardiomyopathic LMNA gene mutations were also shown to have abnormal positioning of chromosome 13, although in the opposite direction. CONCLUSIONS: These data support a model in which LMNA mutations perturb the intranuclear positioning and compaction of chromosomal domains and provide a mechanism by which gene expression may be altered.

  2. Altered expression of cyclin A 1 in muscle of patients with facioscapulohumeral muscle dystrophy (FSHD-1.

    Directory of Open Access Journals (Sweden)

    Anna Pakula

    Full Text Available OBJECTIVES: Cyclin A1 regulates cell cycle activity and proliferation in somatic and germ-line cells. Its expression increases in G1/S phase and reaches a maximum in G2 and M phases. Altered cyclin A1 expression might contribute to clinical symptoms in facioscapulohumeral muscular dystrophy (FSHD. METHODS: Muscle biopsies were taken from the Vastus lateralis muscle for cDNA microarray, RT-PCR, immunohistochemistry and Western blot analyses to assess RNA and protein expression of cyclin A1 in human muscle cell lines and muscle tissue. Muscle fibers diameter was calculated on cryosections to test for hypertrophy. RESULTS: cDNA microarray data showed specifically elevated cyclin A1 levels in FSHD vs. other muscular disorders such as caveolinopathy, dysferlinopathy, four and a half LIM domains protein 1 deficiency and healthy controls. Data could be confirmed with RT-PCR and Western blot analysis showing up-regulated cyclin A1 levels also at protein level. We found also clear signs of hypertrophy within the Vastus lateralis muscle in FSHD-1 patients. CONCLUSIONS: In most somatic human cell lines, cyclin A1 levels are low. Overexpression of cyclin A1 in FSHD indicates cell cycle dysregulation in FSHD and might contribute to clinical symptoms of this disease.

  3. The combined effects of temperature and CO2 lead to altered gene expression in Acropora aspera

    Science.gov (United States)

    Ogawa, D.; Bobeszko, T.; Ainsworth, T.; Leggat, W.

    2013-12-01

    This study explored the interactive effects of near-term CO2 increases (40-90 ppm above current ambient) during a simulated bleaching event (34 °C for 5 d) of Acropora aspera by linking physiology to expression patterns of genes involved in carbon metabolism. Symbiodinium photosynthetic efficiency ( F v / F m ) was significantly depressed by the bleaching event, while elevated pressure of CO2 (pCO2) slightly mitigated the effects of increased temperature on F v / F m during the final 4 d of the recovery period, however, did not affect the loss of symbionts. Elevated pCO2 alone had no effect on F v / F m or symbiont density. Expression of targeted Symbiodinium genes involved in carbon metabolism and heat stress response was not significantly altered by either increased temperature and/or CO2. Of the selected host genes, two carbonic anhydrase isoforms (coCA2 and coCA3) exhibited the largest changes, most notably in crossed bleaching and elevated pCO2 treatments. CA2 was significantly down-regulated on day 14 in all treatments, with the greatest decrease in the crossed treatment (relative expression compared to control = 0.16; p bleaching were evident during this study and demonstrate that increased pCO2 in surface waters will impact corals much sooner than many studies utilising end-of-century pCO2 concentrations would indicate.

  4. Alteration of gene expression profiles in skeletal muscle of rats exposed to microgravity during a spaceflight

    Science.gov (United States)

    Taylor, Wayne E.; Bhasin, Shalender; Lalani, Rukhsana; Datta, Anuj; Gonzalez-Cadavid, Nestor F.

    2002-01-01

    To clarify the mechanism of skeletal muscle wasting during spaceflights, we investigated whether intramuscular gene expression profiles are affected, by using DNA microarray methods. Male rats sent on the 17-day NASA STS-90 Neurolab spaceflight were sacrificed 24 hours after return to earth (MG group). Ground control rats were maintained for 17 days in flight-simulated cages (CS group). Spaceflight induced a 19% and 23% loss of tibialis anterior and gastrocnemius muscle mass, respectively, as compared to ground controls. Muscle RNA was analyzed by the Clontech Atlas DNA expression array in four rats, with two MG/ CS pairs for the tibialis anterior, and one pair for the gastrocnemius. Alterations in gene expression were verified for selected genes by reverse-transcription PCR. In both muscles of MG rats, mRNAs for 12 genes were up-regulated by over 2-fold, and 38 were down-regulated compared to controls. There was inhibition of genes for cell proliferation and growth factor cascades, including cell cycle genes and signal transduction proteins, such as p21 Cip1, retinoblastoma (Rb), cyclins G1/S, -E and -D3, MAP kinase 3, MAD3, and ras related protein RAB2. These data indicate that following exposure to microgravity, there is downregulation of genes involved in regulation of muscle satellite cell replication.

  5. Terazosin-induced alterations in catalase expression and lipid peroxidation in the rat seminal vesicles.

    Science.gov (United States)

    Mitropoulos, D; Patris, E; Deliconstantinos, G; Kyroudi-Voulgari, A; Anastasiou, I; Perea, D

    2013-04-01

    Previous studies have shown that alpha1-adrenergic receptor antagonists may alter seminal vesicle contractility and impair fertility in male rats. This study was designed to investigate the effects of terazosin on the catalase expression in the seminal vesicles and the lipid peroxidation of the seminal fluid in normal adult rats. Wistar rats were treated with terazosin (1.2 mg kg(-1) body weight, given orally every second day) for 120 days. Catalase expression was assessed immunohistochemically in tissue sections of the seminal vesicles, and lipid peroxidation was estimated by measuring the malondialdehyde (MDA) levels in the seminal vesicles' fluid. The seminal vesicles in terazosin-treated rats were particularly distended in comparison with those of controls, and their secreting epithelium was suppressed. Cytoplasmic catalase expression in the secreting epithelial cells (% of cells) was increased in terazosin-treated specimens in comparison with controls (76.1 ± 17.1 versus 51.3 ± 25.1, P = 0.005). MDA levels (μm) were also higher in samples from treated subjects in comparison with controls (2.67 ± 1.19 versus 1.39 ± 0.19, P = 0.01). Although the direct effect of terazosin treatment on the seminal vesicles is that of impaired contractility, an indirect effect is that on fertility by increasing lipid peroxidation in the seminal fluid and/or through degrading of hydrogen peroxide that is essential for sperm capacitation.

  6. Effect of Hemin on Brain Alterations and Neuroglobin Expression in Water Immersion Restraint Stressed Rats

    Directory of Open Access Journals (Sweden)

    Merhan Ragy

    2016-01-01

    Full Text Available In the brain, the heme oxygenase (HO system has been reported to be very active and its modulation seems to play a crucial role in the pathophysiology of neurodegenerative disorders. Hemin as HO-1 inducer has been shown to attenuate neuronal injury so the goal of this study was to assess the effect of hemin therapy on the acute stress and how it would modulate neurological outcome. Thirty male albino rats were divided into three groups: control group and stressed group with six-hour water immersion restraint stress (WIRS and stressed group, treated with hemin, in which each rat received a single intraperitoneal injection of hemin at a dose level of 50 mg/kg body weight at 12 hours before exposure to WIRS. Stress hormones, oxidative stress markers, malondialdehyde (MDA, and total antioxidant capacity (TAC were measured and expressions of neuroglobin and S100B mRNA in brain tissue were assayed. Our results revealed that hemin significantly affects brain alterations induced by acute stress and this may be through increased expression of neuroglobin and through antioxidant effect. Hemin decreased blood-brain barrier damage as it significantly decreased the expression of S100B. These results suggest that hemin may be an effective therapy for being neuroprotective against acute stress.

  7. LDLR expression and localization are altered in mouse and human cell culture models of Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Jose F Abisambra

    Full Text Available BACKGROUND: Alzheimer's disease (AD is a chronic neurodegenerative disorder and the most common form of dementia. The major molecular risk factor for late-onset AD is expression of the epsilon-4 allele of apolipoprotein E (apoE, the major cholesterol transporter in the brain. The low-density lipoprotein receptor (LDLR has the highest affinity for apoE and plays an important role in brain cholesterol metabolism. METHODOLOGY/PRINCIPAL FINDINGS: Using RT-PCR and western blotting techniques we found that over-expression of APP caused increases in both LDLR mRNA and protein levels in APP transfected H4 neuroglioma cells compared to H4 controls. Furthermore, immunohistochemical experiments showed aberrant localization of LDLR in H4-APP neuroglioma cells, Abeta-treated primary neurons, and in the PSAPP transgenic mouse model of AD. Finally, immunofluorescent staining of LDLR and of gamma- and alpha-tubulin showed a change in LDLR localization preferentially away from the plasma membrane that was paralleled by and likely the result of a disruption of the microtubule-organizing center and associated microtubule network. CONCLUSIONS/SIGNIFICANCE: These data suggest that increased APP expression and Abeta exposure alters microtubule function, leading to reduced transport of LDLR to the plasma membrane. Consequent deleterious effects on apoE uptake and function will have implications for AD pathogenesis and/or progression.

  8. RNA-Seq identifies key reproductive gene expression alterations in response to cadmium exposure.

    Science.gov (United States)

    Hu, Hanyang; Lu, Xing; Cen, Xiang; Chen, Xiaohua; Li, Feng; Zhong, Shan

    2014-01-01

    Cadmium is a common toxicant that is detrimental to many tissues. Although a number of transcriptional signatures have been revealed in different tissues after cadmium treatment, the genes involved in the cadmium caused male reproductive toxicity, and the underlying molecular mechanism remains unclear. Here we observed that the mice treated with different amount of cadmium in their rodent chow for six months exhibited reduced serum testosterone. We then performed RNA-seq to comprehensively investigate the mice testicular transcriptome to further elucidate the mechanism. Our results showed that hundreds of genes expression altered significantly in response to cadmium treatment. In particular, we found several transcriptional signatures closely related to the biological processes of regulation of hormone, gamete generation, and sexual reproduction, respectively. The expression of several testosterone synthetic key enzyme genes, such as Star, Cyp11a1, and Cyp17a1, were inhibited by the cadmium exposure. For better understanding of the cadmium-mediated transcriptional regulatory mechanism of the genes, we computationally analyzed the transcription factors binding sites and the mircoRNAs targets of the differentially expressed genes. Our findings suggest that the reproductive toxicity by cadmium exposure is implicated in multiple layers of deregulation of several biological processes and transcriptional regulation in mice. PMID:24982889

  9. RNA-Seq Identifies Key Reproductive Gene Expression Alterations in Response to Cadmium Exposure

    Directory of Open Access Journals (Sweden)

    Hanyang Hu

    2014-01-01

    Full Text Available Cadmium is a common toxicant that is detrimental to many tissues. Although a number of transcriptional signatures have been revealed in different tissues after cadmium treatment, the genes involved in the cadmium caused male reproductive toxicity, and the underlying molecular mechanism remains unclear. Here we observed that the mice treated with different amount of cadmium in their rodent chow for six months exhibited reduced serum testosterone. We then performed RNA-seq to comprehensively investigate the mice testicular transcriptome to further elucidate the mechanism. Our results showed that hundreds of genes expression altered significantly in response to cadmium treatment. In particular, we found several transcriptional signatures closely related to the biological processes of regulation of hormone, gamete generation, and sexual reproduction, respectively. The expression of several testosterone synthetic key enzyme genes, such as Star, Cyp11a1, and Cyp17a1, were inhibited by the cadmium exposure. For better understanding of the cadmium-mediated transcriptional regulatory mechanism of the genes, we computationally analyzed the transcription factors binding sites and the mircoRNAs targets of the differentially expressed genes. Our findings suggest that the reproductive toxicity by cadmium exposure is implicated in multiple layers of deregulation of several biological processes and transcriptional regulation in mice.

  10. Early repeated maternal separation induces alterations of hippocampus reelin expression in rats

    Indian Academy of Sciences (India)

    Jianlong Zhang; Lina Qin; Hu Zhao

    2013-03-01

    The long-term effects of repeated maternal separation (MS) during early postnatal life on reelin expression in the hippocampus of developing rats were investigated in the present study. MS was carried out by separating Wistar rat pups singly from their mothers for 3 h a day during postnatal days (PND) 2–14. Reelin mRNA and protein levels in the hippocampus were determined using qRT-PCR and Western blotting, at PND 22, PND 60 and PND 90. MS resulted in the loss of body weight in the developing rats, and reelin mRNA and protein levels in the hippocampus generally were down-regulated over the developing period, but the reelin mRNA and protein levels in the hippocampus of 90-day-old male rats were up-regulated. These findings suggest that the long-term effects of MS on the expression levels of hippocampal reelin mRNA and protein depends on the age at which the stressed rats’ brains were collected; reelin had important implications for the maternal-neonate interaction needed for normal brain development. In conclusion, repeated MS occurring during early postnatal life may cause the alterations of hippocampal reelin expression with the increasing age of developing rats.

  11. Mechanical Unloading of Mouse Bone in Microgravity Significantly Alters Cell Cycle Gene Set Expression

    Science.gov (United States)

    Blaber, Elizabeth; Dvorochkin, Natalya; Almeida, Eduardo; Kaplan, Warren; Burns, Brnedan

    2012-07-01

    unloading in spaceflight, we conducted genome wide microarray analysis of total RNA isolated from the mouse pelvis. Specifically, 16 week old mice were subjected to 15 days spaceflight onboard NASA's STS-131 space shuttle mission. The pelvis of the mice was dissected, the bone marrow was flushed and the bones were briefly stored in RNAlater. The pelvii were then homogenized, and RNA was isolated using TRIzol. RNA concentration and quality was measured using a Nanodrop spectrometer, and 0.8% agarose gel electrophoresis. Samples of cDNA were analyzed using an Affymetrix GeneChip\\S Gene 1.0 ST (Sense Target) Array System for Mouse and GenePattern Software. We normalized the ST gene arrays using Robust Multichip Average (RMA) normalization, which summarizes perfectly matched spots on the array through the median polish algorithm, rather than normalizing according to mismatched spots. We also used Limma for statistical analysis, using the BioConductor Limma Library by Gordon Smyth, and differential expression analysis to identify genes with significant changes in expression between the two experimental conditions. Finally we used GSEApreRanked for Gene Set Enrichment Analysis (GSEA), with Kolmogorov-Smirnov style statistics to identify groups of genes that are regulated together using the t-statistics derived from Limma. Preliminary results show that 6,603 genes expressed in pelvic bone had statistically significant alterations in spaceflight compared to ground controls. These prominently included cell cycle arrest molecules p21, and p18, cell survival molecule Crbp1, and cell cycle molecules cyclin D1, and Cdk1. Additionally, GSEA results indicated alterations in molecular targets of cyclin D1 and Cdk4, senescence pathways resulting from abnormal laminin maturation, cell-cell contacts via E-cadherin, and several pathways relating to protein translation and metabolism. In total 111 gene sets out of 2,488, about 4%, showed statistically significant set alterations. These

  12. Altered endothelin receptor expression and affinity in spontaneously hypertensive rat cerebral and coronary arteries

    DEFF Research Database (Denmark)

    Cao, Lei; Cao, Yong-Xiao; Xu, Cang-Bao;

    2013-01-01

    BACKGROUND: Hypertension is associated with arterial hyperreactivity, and endothelin (ET) receptors are involved in vascular pathogenesis. The present study was performed to examine the hypothesis that ET receptors were altered in cerebral and coronary arteries of spontaneously hypertensive rats...... (SHR). METHODOLOGY/PRINCIPAL FINDINGS: Cerebral and coronary arteries were removed from SHR. Vascular contraction was recorded using a sensitive myograph system. Real-time PCR and Western blotting were used to quantify mRNA and protein expression of receptors and essential MAPK pathway molecules. The...... results demonstrated that both ETA and ETB receptor-mediated contractile responses in SHR cerebral arteries were shifted to the left in a nonparallel manner with increased maximum contraction compared with Wistar-Kyoto (WKY) rats. In SHR coronary arteries, the ETA receptor-mediated contraction curve was...

  13. Sustained alterations in neuroimmune gene expression after daily, but not intermittent, alcohol exposure.

    Science.gov (United States)

    Gano, Anny; Doremus-Fitzwater, Tamara L; Deak, Terrence

    2016-09-01

    Acute ethanol intoxication is associated with Rapid Alterations in Neuroimmune Gene Expression (RANGE), including increased Interleukin (IL)-6 and Nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IκBα), and suppressed IL-1β and Tumor necrosis factor (TNF) α, yet little is known about adaptations in cytokines across the first few ethanol exposures. Thus, the present studies examined central cytokines during intoxication (3h post-ethanol) following 2, 4 or 6 intragastric ethanol challenges (4g/kg) delivered either daily or every-other-day (EOD). Subsequent analyses of blood ethanol concentrations (BECs) and corticosterone were performed to determine whether the schedule of ethanol delivery would alter the pharmacokinetics of, or general sensitivity to, subacute ethanol exposure. As expected, ethanol led to robust increases in IL-6 and IκBα gene expression in hippocampus, amygdala and bed nucleus of the stria terminalis (BNST), whereas IL-1β and TNFα were suppressed, thereby replicating our prior work. Ethanol-dependent increases in IL-6 and IκBα remained significant in all structures - even after 6 days of ethanol. When these doses were administered EOD, modest IL-6 increases in BNST were observed, with TNFα and IL-1β suppressed exclusively in the hippocampus. Analysis of BECs revealed a small but significant reduction in ethanol after 4 EOD exposures - an effect which was not observed when ethanol was delivered after 6 daily intubations. These findings suggest that ethanol-induced RANGE effects are not simply a function of ethanol load per se, and underscore the critical role that ethanol dosing interval plays in determining the neuroimmune consequences of alcohol. PMID:27208497

  14. Neonatal hyper- and hypothyroidism alter the myoglobin gene expression program in adulthood

    Energy Technology Data Exchange (ETDEWEB)

    Picoli Souza, K. de [Faculdade de Ciências Biológicas e Ambientais, Universidade Federal da Grande Dourados, Dourados, MS (Brazil); Nunes, M.T. [Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade de São Paulo, São Paulo, SP (Brazil)

    2014-06-24

    Myoglobin acts as an oxygen store and a reactive oxygen species acceptor in muscles. We examined myoglobin mRNA in rat cardiac ventricle and skeletal muscles during the first 42 days of life and the impact of transient neonatal hypo- and hyperthyroidism on the myoglobin gene expression pattern. Cardiac ventricle and skeletal muscles of Wistar rats at 7-42 days of life were quickly removed, and myoglobin mRNA was determined by Northern blot analysis. Rats were treated with propylthiouracil (5-10 mg/100 g) and triiodothyronine (0.5-50 µg/100 g) for 5, 15, or 30 days after birth to induce hypo- and hyperthyroidism and euthanized either just after treatment or at 90 days. During postnatal (P) days 7-28, the ventricle myoglobin mRNA remained unchanged, but it gradually increased in skeletal muscle (12-fold). Triiodothyronine treatment, from days P0-P5, increased the skeletal muscle myoglobin mRNA 1.5- to 4.5-fold; a 2.5-fold increase was observed in ventricle muscle, but only when triiodothyronine treatment was extended to day P15. Conversely, hypothyroidism at P5 markedly decreased (60%) ventricular myoglobin mRNA. Moreover, transient hyperthyroidism in the neonatal period increased ventricle myoglobin mRNA (2-fold), and decreased heart rate (5%), fast muscle myoglobin mRNA (30%) and body weight (20%) in adulthood. Transient hypothyroidism in the neonatal period also permanently decreased fast muscle myoglobin mRNA (30%) and body weight (14%). These results indicated that changes in triiodothyronine supply in the neonatal period alter the myoglobin expression program in ventricle and skeletal muscle, leading to specific physiological repercussions and alterations in other parameters in adulthood.

  15. The expression of petunia strigolactone pathway genes is altered as part of the endogenous developmental program

    Directory of Open Access Journals (Sweden)

    Revel S M Drummond

    2012-01-01

    Full Text Available Analysis of mutants with increased branching has revealed the strigolactone synthesis/perception pathway which regulates branching in plants. However, whether variation in this well conserved developmental signalling system contributes to the unique plant architectures of different species is yet to be determined. We examined petunia orthologues of the Arabidopsis MAX1 and MAX2 genes to characterise their role in petunia architecture. A single orthologue of MAX1, PhMAX1 which encodes a cytochrome P450, was identified and was able to complement the max1 mutant of Arabidopsis. Petunia has two copies of the MAX2 gene, PhMAX2A and PhMAX2B which encode F-Box proteins. Differences in the transcript levels of these two MAX2-like genes suggest diverging functions. Unlike PhMAX2B, PhMAX2A mRNA levels increase as leaves age. Nonetheless, this gene functionally complements the Arabidopsis max2 mutant indicating that the biochemical activity of the PhMAX2A protein is not significantly different from MAX2. The expression of the petunia strigolactone pathway genes (PhCCD7, PhCCD8, PhMAX1, PhMAX2A, and PhMAX2B was then further investigated throughout the development of wild-type petunia plants. Three of these genes showed changes in mRNA levels over the development series. Alterations to the expression of these genes over time, or in different regions of the plant, may influence the branching growth habit of the plant. Alterations to strigolactone production and/or sensitivity could allow both subtle and dramatic changes to branching within and between species.

  16. Prolonged high fat diet reduces dopamine reuptake without altering DAT gene expression.

    Directory of Open Access Journals (Sweden)

    Jackson J Cone

    Full Text Available The development of diet-induced obesity (DIO can potently alter multiple aspects of dopamine signaling, including dopamine transporter (DAT expression and dopamine reuptake. However, the time-course of diet-induced changes in DAT expression and function and whether such changes are dependent upon the development of DIO remains unresolved. Here, we fed rats a high (HFD or low (LFD fat diet for 2 or 6 weeks. Following diet exposure, rats were anesthetized with urethane and striatal DAT function was assessed by electrically stimulating the dopamine cell bodies in the ventral tegmental area (VTA and recording resultant changes in dopamine concentration in the ventral striatum using fast-scan cyclic voltammetry. We also quantified the effect of HFD on membrane associated DAT in striatal cell fractions from a separate group of rats following exposure to the same diet protocol. Notably, none of our treatment groups differed in body weight. We found a deficit in the rate of dopamine reuptake in HFD rats relative to LFD rats after 6 but not 2 weeks of diet exposure. Additionally, the increase in evoked dopamine following a pharmacological challenge of cocaine was significantly attenuated in HFD relative to LFD rats. Western blot analysis revealed that there was no effect of diet on total DAT protein. However, 6 weeks of HFD exposure significantly reduced the 50 kDa DAT isoform in a synaptosomal membrane-associated fraction, but not in a fraction associated with recycling endosomes. Our data provide further evidence for diet-induced alterations in dopamine reuptake independent of changes in DAT production and demonstrates that such changes can manifest without the development of DIO.

  17. Neonatal hyper- and hypothyroidism alter the myoglobin gene expression program in adulthood

    Directory of Open Access Journals (Sweden)

    K. de Picoli Souza

    2014-08-01

    Full Text Available Myoglobin acts as an oxygen store and a reactive oxygen species acceptor in muscles. We examined myoglobin mRNA in rat cardiac ventricle and skeletal muscles during the first 42 days of life and the impact of transient neonatal hypo- and hyperthyroidism on the myoglobin gene expression pattern. Cardiac ventricle and skeletal muscles of Wistar rats at 7-42 days of life were quickly removed, and myoglobin mRNA was determined by Northern blot analysis. Rats were treated with propylthiouracil (5-10 mg/100 g and triiodothyronine (0.5-50 µg/100 g for 5, 15, or 30 days after birth to induce hypo- and hyperthyroidism and euthanized either just after treatment or at 90 days. During postnatal (P days 7-28, the ventricle myoglobin mRNA remained unchanged, but it gradually increased in skeletal muscle (12-fold. Triiodothyronine treatment, from days P0-P5, increased the skeletal muscle myoglobin mRNA 1.5- to 4.5-fold; a 2.5-fold increase was observed in ventricle muscle, but only when triiodothyronine treatment was extended to day P15. Conversely, hypothyroidism at P5 markedly decreased (60% ventricular myoglobin mRNA. Moreover, transient hyperthyroidism in the neonatal period increased ventricle myoglobin mRNA (2-fold, and decreased heart rate (5%, fast muscle myoglobin mRNA (30% and body weight (20% in adulthood. Transient hypothyroidism in the neonatal period also permanently decreased fast muscle myoglobin mRNA (30% and body weight (14%. These results indicated that changes in triiodothyronine supply in the neonatal period alter the myoglobin expression program in ventricle and skeletal muscle, leading to specific physiological repercussions and alterations in other parameters in adulthood.

  18. Identification of nucleolus-localized PTEN and its function in regulating ribosome biogenesis.

    Science.gov (United States)

    Li, Pingdong; Wang, Danni; Li, Haiyang; Yu, Zhenkun; Chen, Xiaohong; Fang, Jugao

    2014-10-01

    The tumor suppressor PTEN is a lipid phosphatase that is found mutated in different types of human cancers. PTEN suppresses cell proliferation by inhibiting the PI3K-Akt signaling pathway at the cell membrane. However, PTEN is also demonstrated to localize in the cell nucleus where it exhibits tumor suppressive activity via a different, unknown mechanism. In this study we report that PTEN also localizes to the nucleolus and that nucleolar PTEN plays an important role in regulating nucleolar homeostasis and maintaining nucleolar morphology. Overexpression of nuclear PTEN in PTEN null cells inhibits Akt phosphorylation and reduces cell size. Knockdown of PTEN in PTEN positive cells leads to nucleolar morphologic changes and an increase in the proportion of cells with a greater number of nucleoli. In addition, knockdown of PTEN in PTEN positive cells increased ribosome biogenesis. These findings expand current understanding of function and relevance of nuclear localized PTEN and provide a foundation for the development of novel therapies targeting PTEN.

  19. Does Parkinson's disease lead to alterations in the facial expression of pain?

    Science.gov (United States)

    Priebe, Janosch A; Kunz, Miriam; Morcinek, Christian; Rieckmann, Peter; Lautenbacher, Stefan

    2015-12-15

    Hypomimia which refers to a reduced degree in facial expressiveness is a common sign in Parkinson's disease (PD). The objective of our study was to investigate how hypomimia affects PD patients' facial expression of pain. The facial expressions of 23 idiopathic PD patients in the Off-phase (without dopaminergic medication) and On-phase (after dopaminergic medication intake) and 23 matched controls in response to phasic heat-pain and a temporal summation procedure were recorded and analyzed for overall and specific alterations using the Facial Action Coding System (FACS). We found reduced overall facial activity in response to pain in PD patients in the Off which was less pronounced in the On. Especially the highly pain-relevant eye-narrowing occurred less frequently in PD patients than in controls in both phases while frequencies of other pain-relevant movements, like upper lip raise (in the On) and contraction of the eyebrows (in both phases), did not differ between groups. Moreover, opening of the mouth (which is often not considered as pain-relevant) was the most frequently displayed movement in PD patients, whereas eye-narrowing was the most frequent movement in controls. Not only overall quantitative changes in the degree of facial pain expressiveness occurred in PD patients but also qualitative changes were found. The latter refer to a strongly affected encoding of the sensory dimension of pain (eye-narrowing) while the encoding of the affective dimension of pain (contradiction of the eyebrows) was preserved. This imbalanced pain signal might affect pain communication and pain assessment.

  20. Cysteamine treatment ameliorates alterations in GAD67 expression and spatial memory in heterozygous reeler mice.

    Science.gov (United States)

    Kutiyanawalla, Ammar; Promsote, Wanwisa; Terry, Alvin; Pillai, Anilkumar

    2012-09-01

    Brain-derived neurotrophic factor (BDNF) signalling through its receptor, TrkB is known to regulate GABAergic function and glutamic acid decarboxylase (GAD) 67 expression in neurons. Alterations in BDNF signalling have been implicated in the pathophysiology of schizophrenia and as a result, they are a potential therapeutic target. Interestingly, heterozygous reeler mice (HRM) have decreased GAD67 expression in the frontal cortex and hippocampus and they exhibit many behavioural and neurochemical abnormalities similar to schizophrenia. In this study, we evaluated the potential of cysteamine, a neuroprotective compound to improve the deficits in GAD67 expression and cognitive function in HRM. We found that cysteamine administration (150 mg/kg.d, through drinking water) for 30 d significantly ameliorated the decreases in GAD67, mature BDNF and full-length TrkB protein levels found in frontal cortex and hippocampus of HRM. A significant attenuation of the increased levels of truncated BDNF in frontal cortex and hippocampus, as well as truncated TrkB in frontal cortex of HRM was also observed following cysteamine treatment. In behavioural studies, HRM were impaired in a Y-maze spatial recognition memory task, but not in a spontaneous alternation task or a sensorimotor, prepulse inhibition (PPI) procedure. Cysteamine improved Y-maze spatial recognition in HRM to the level of wide-type controls and it improved PPI in both wild-type and HRM. Finally, mice deficient in TrkB, showed a reduced response to cysteamine in GAD67 expression suggesting that TrkB signalling plays an important role in GAD67 regulation by cysteamine.

  1. Addiction and Reward-related Genes Show Altered Expression in the Postpartum Nucleus Accumbens

    Directory of Open Access Journals (Sweden)

    Changjiu eZhao

    2014-11-01

    Full Text Available Motherhood involves a switch in natural rewards, whereby offspring become highly rewarding. Nucleus accumbens (NAC is a key CNS region for natural rewards and addictions, but to date no study has evaluated on a large scale the events in NAC that underlie the maternal change in natural rewards. In this study we utilized microarray and bioinformatics approaches to evaluate postpartum NAC gene expression changes in mice. Modular Single-set Enrichment Test (MSET indicated that postpartum (relative to virgin NAC gene expression profile was significantly enriched for genes related to addiction and reward in 5 of 5 independently curated databases (e.g., Malacards, Phenopedia. Over 100 addiction/reward related genes were identified and these included: Per1, Per2, Arc, Homer2, Creb1, Grm3, Fosb, Gabrb3, Adra2a, Ntrk2, Cry1, Penk, Cartpt, Adcy1, Npy1r, Htr1a, Drd1a, Gria1, and Pdyn. ToppCluster analysis found maternal NAC expression profile to be significantly enriched for genes related to the drug action of nicotine, ketamine, and dronabinol. Pathway analysis indicated postpartum NAC as enriched for RNA processing, CNS development/differentiation, and transcriptional regulation. Weighted Gene Coexpression Network Analysis identified possible networks for transcription factors, including Nr1d1, Per2, Fosb, Egr1, and Nr4a1. The postpartum state involves increased risk for mental health disorders and MSET analysis indicated postpartum NAC to be enriched for genes related to depression, bipolar disorder, and schizophrenia. Mental health related genes included: Fabp7, Grm3, Penk, and Nr1d1. We confirmed via quantitative PCR Nr1d1, Per2, Grm3, Penk, Drd1a, and Pdyn. This study indicates for the first time that postpartum NAC involves large scale gene expression alterations linked to addiction and reward. Because the postpartum state also involves decreased response to drugs, the findings could provide insights into how to mitigate addictions.

  2. Altered Gene Expression Profile in Mouse Bladder Cancers Induced by Hydroxybutyl(butylnitrosamine

    Directory of Open Access Journals (Sweden)

    Ruisheng Yao

    2004-09-01

    Full Text Available A variety of genetic alterations and gene expression changes are involved in the pathogenesis of bladder tumor. To explore these changes, oligonucleotide array analysis was performed on RNA obtained from carcinogen-induced mouse bladder tumors and normal mouse bladder epithelia using Affymetrix (Santa Clara, CA MGU74Av2 GeneChips. Analysis yielded 1164 known genes that were changed in the tumors. Certain of the upregulated genes included EGFR-Ras signaling genes, transcription factors, cell cycle-related genes, and intracellular signaling cascade genes. However, downregulated genes include mitogen-activated protein kinases, cell cycle checkpoint genes, Rab subfamily genes, Rho subfamily genes, and SH2 and SH3 domains-related genes. These genes are involved in a broad range of different pathways including control of cell proliferation, differentiation, cell cycle, signal transduction, and apoptosis. Using the pathway visualization tool GenMAPP, we found that several genes, including TbR-l, STAT1, Smad1, Smad2, Jun, NFκB, and so on, in the TGF-β signaling pathway and p115 RhoGEF, RhoGDl3, MEKK4A/MEKK4B, P13KA, and JNK in the G13 signaling pathway were differentially expressed in the tumors. In summary, we have determined the expression profiles of genes differentially expressed during mouse bladder tumorigenesis. Our results suggest that activation of the EGFR-Ras pathway, uncontrolled cell cycle, aberrant transcription factors, and G13 and TGF-β pathways are involved, and the cross-talk between these pathways seems to play important roles in mouse bladder tumorigenesis.

  3. The calpain, caspase 12, caspase 3 cascade leading to apoptosis is altered in F508del-CFTR expressing cells.

    Directory of Open Access Journals (Sweden)

    Mathieu Kerbiriou

    Full Text Available In cystic fibrosis (CF, the most frequent mutant variant of the cystic fibrosis transmembrane conductance regulator (CFTR, F508del-CFTR protein, is misfolded and retained in the endoplasmic reticulum (ER. We previously showed that the unfolded protein response (UPR may be triggered in CF. Since prolonged UPR activation leads to apoptosis via the calcium-calpain-caspase-12-caspase-3 cascade and because apoptosis is altered in CF, our aim was to compare the ER stress-induced apoptosis pathway between wild type (Wt and F508del-CFTR expressing cells. Here we show that the calcium-calpain-caspase-12-caspase-3 cascade is altered in F508del-CFTR expressing cells. We propose that this alteration is involved in the altered apoptosis triggering observed in CF.

  4. Targeting notch pathway enhances rapamycin antitumor activity in pancreas cancers through PTEN phosphorylation

    Directory of Open Access Journals (Sweden)

    Vo Kevin

    2011-11-01

    Full Text Available Abstract Background Pancreas cancer is one of most aggressive human cancers with the survival rate for patients with metastatic pancreas cancer at 5-6 months. The poor survival demonstrates a clear need for better target identification, drug development and new therapeutic strategies. Recent discoveries have shown that the role for Notch pathway is important in both development and cancer. Its contribution to oncogenesis also involves crosstalks with other growth factor pathways, such as Akt and its modulator, PTEN. The mounting evidence supporting a role for Notch in cancer promotion and survival suggests that targeting this pathway alone or in combination with other therapeutics represents a promising therapeutic strategy. Results Using a pancreas cancer tissue microarray, we noted that Jagged1, Notch3 and Notch4 are overexpressed in pancreas tumors (26%, 84% and 31% respectively, whereas Notch1 is expressed in blood vessels. While there was no correlation between Notch receptor expression and survival, stage or tumor grade, Notch3 was associated with Jagged1 and EGFR expression, suggesting a unique relationship between Notch3 and Jagged1. Inhibition of the Notch pathway genetically and with gamma-secretase inhibitor (GSI resulted in tumor suppression and enhanced cell death. The observed anti-tumor activity appeared to be through Akt and modulation of PTEN phosphorylation. We discovered that transcriptional regulation of RhoA by Notch is important for PTEN phosphorylation. Finally, the mTOR inhibitor Rapamycin enhanced the effect of GSI on RhoA expression, resulting in down regulation of phospho-Akt and increased in vitro tumor cytotoxity. Conclusions Notch pathway plays an important role in maintaining pancreas tumor phenotype. Targeting this pathway represents a reasonable strategy for the treatment of pancreas cancers. Notch modulates the Akt pathway through regulation of PTEN phosphorylation, an observation that has not been made

  5. Operator Sequence Alters Gene Expression Independently of Transcription Factor Occupancy in Bacteria

    Directory of Open Access Journals (Sweden)

    Hernan G. Garcia

    2012-07-01

    Full Text Available A canonical quantitative view of transcriptional regulation holds that the only role of operator sequence is to set the probability of transcription factor binding, with operator occupancy determining the level of gene expression. In this work, we test this idea by characterizing repression in vivo and the binding of RNA polymerase in vitro in experiments where operators of various sequences were placed either upstream or downstream from the promoter in Escherichia coli. Surprisingly, we find that operators with a weaker binding affinity can yield higher repression levels than stronger operators. Repressor bound to upstream operators modulates promoter escape, and the magnitude of this modulation is not correlated with the repressor-operator binding affinity. This suggests that operator sequences may modulate transcription by altering the nature of the interaction of the bound transcription factor with the transcriptional machinery, implying a new layer of sequence dependence that must be confronted in the quantitative understanding of gene expression.

  6. Ethanol Exposure Alters Protein Expression in a Mouse Model of Fetal Alcohol Spectrum Disorders

    Directory of Open Access Journals (Sweden)

    Stephen Mason

    2012-01-01

    Full Text Available Alcohol exposure during development can result in variable growth retardation and facial dysmorphology known as fetal alcohol spectrum disorders. Although the mechanisms underlying the disorder are not fully understood, recent progress has been made that alcohol induces aberrant changes in gene expression and in the epigenome of embryos. To inform the gene and epigenetic changes in alcohol-induced teratology, we used whole-embryo culture to identify the alcohol-signature protein profile of neurulating C6 mice. Alcohol-treated and control cultures were homogenized, isoelectrically focused, and loaded for 2D gel electrophoresis. Stained gels were cross matched with analytical software. We identified 40 differentially expressed protein spots (P<0.01, and 9 spots were selected for LC/MS-MS identification. Misregulated proteins include serotransferrin, triosephosphate isomerase and ubiquitin-conjugating enzyme E2 N. Misregulation of serotransferrin and triosephosphate isomerase was confirmed with immunologic analysis. Alteration of proteins with roles in cellular function, cell cycle, and the ubiquitin-proteasome pathway was induced by alcohol. Several misregulated proteins interact with effectors of the NF-κB and Myc transcription factor cascades. Using a whole-embryo culture, we have identified misregulated proteins known to be involved in nervous system development and function.

  7. MicroRNA Expression Profiling Altered by Variant Dosage of Radiation Exposure

    Directory of Open Access Journals (Sweden)

    Kuei-Fang Lee

    2014-01-01

    Full Text Available Various biological effects are associated with radiation exposure. Irradiated cells may elevate the risk for genetic instability, mutation, and cancer under low levels of radiation exposure, in addition to being able to extend the postradiation side effects in normal tissues. Radiation-induced bystander effect (RIBE is the focus of rigorous research as it may promote the development of cancer even at low radiation doses. Alterations in the DNA sequence could not explain these biological effects of radiation and it is thought that epigenetics factors may be involved. Indeed, some microRNAs (or miRNAs have been found to correlate radiation-induced damages and may be potential biomarkers for the various biological effects caused by different levels of radiation exposure. However, the regulatory role that miRNA plays in this aspect remains elusive. In this study, we profiled the expression changes in miRNA under fractionated radiation exposure in human peripheral blood mononuclear cells. By utilizing publicly available microRNA knowledge bases and performing cross validations with our previous gene expression profiling under the same radiation condition, we identified various miRNA-gene interactions specific to different doses of radiation treatment, providing new insights for the molecular underpinnings of radiation injury.

  8. Expression of human dopamine receptor in potato (Solanum tuberosum results in altered tuber carbon metabolism

    Directory of Open Access Journals (Sweden)

    Świędrych Anna

    2005-02-01

    Full Text Available Abstract Background Even though the catecholamines (dopamine, norepinephrine and epinephrine have been detected in plants their role is poorly documented. Correlations between norepinephrine, soluble sugars and starch concentration have been recently reported for potato plants over-expressing tyrosine decarboxylase, the enzyme mediating the first step of catecholamine synthesis. More recently norepinephrine level was shown to significantly increase after osmotic stress, abscisic acid treatment and wounding. Therefore, it is possible that catecholamines might play a role in plant stress responses by modulating primary carbon metabolism, possibly by a mechanism similar to that in animal cells. Since to date no catecholamine receptor has been identified in plants we transformed potato plants with a cDNA encoding human dopamine receptor (HD1. Results Tuber analysis of transgenic plants revealed changes in the activities of key enzymes mediating sucrose to starch conversion (ADP-glucose phosphorylase and sucrose synthase and sucrose synthesis (sucrose phosphate synthase leading to altered content of both soluble sugars and starch. Surprisingly the catecholamine level measured in transgenic plants was significantly increased; the reason for this is as yet unknown. However the presence of the receptor affected a broader range of enzyme activities than those affected by the massive accumulation of norepinephrine reported for plants over-expressing tyrosine decarboxylase. Therefore, it is suggested that the presence of the exogenous receptor activates catecholamine cAMP signalling in plants. Conclusions Our data support the possible involvement of catecholamines in regulating plant carbon metabolism via cAMP signalling pathway.

  9. Ectopic expression of a WRKY homolog from Glycine soja alters flowering time in Arabidopsis.

    Science.gov (United States)

    Luo, Xiao; Sun, Xiaoli; Liu, Baohui; Zhu, Dan; Bai, Xi; Cai, Hua; Ji, Wei; Cao, Lei; Wu, Jing; Wang, Mingchao; Ding, Xiaodong; Zhu, Yanming

    2013-01-01

    Flowering is a critical event in the life cycle of plants; the WRKY-type transcription factors are reported to be involved in many developmental processes sunch as trichome development and epicuticular wax loading, but whether they are involved in flowering time regulation is still unknown. Within this study, we provide clear evidence that GsWRKY20, a member of WRKY gene family from wild soybean, is involved in controlling plant flowering time. Expression of GsWRKY20 was abundant in the shoot tips and inflorescence meristems of wild soybean. Phenotypic analysis showed that GsWRKY20 over-expression lines flowered earlier than the wild-type plants under all conditions: long-day and short-day photoperiods, vernalization, or exogenous GA3 application, indicating that GsWRKY20 may mainly be involved in an autonomous flowering pathway. Further analyses by qRT-PCR and microarray suggests that GsWRKY20 accelerating plant flowering might primarily be through the regulation of flowering-related genes (i.e., FLC, FT, SOC1 and CO) and floral meristem identity genes (i.e., AP1, SEP3, AP3, PI and AG). Our results provide the evidence demonstrating the effectiveness of manipulating GsWRKY20 for altering plant flowering time.

  10. Ketamine influences CLOCK:BMAL1 function leading to altered circadian gene expression.

    Directory of Open Access Journals (Sweden)

    Marina M Bellet

    Full Text Available Major mood disorders have been linked to abnormalities in circadian rhythms, leading to disturbances in sleep, mood, temperature, and hormonal levels. We provide evidence that ketamine, a drug with rapid antidepressant effects, influences the function of the circadian molecular machinery. Ketamine modulates CLOCK:BMAL1-mediated transcriptional activation when these regulators are ectopically expressed in NG108-15 neuronal cells. Inhibition occurs in a dose-dependent manner and is attenuated after treatment with the GSK3β antagonist SB21673. We analyzed the effect of ketamine on circadian gene expression and observed a dose-dependent reduction in the amplitude of circadian transcription of the Bmal1, Per2, and Cry1 genes. Finally, chromatin-immunoprecipitation analyses revealed that ketamine altered the recruitment of the CLOCK:BMAL1 complex on circadian promoters in a time-dependent manner. Our results reveal a yet unsuspected molecular mode of action of ketamine and thereby may suggest possible pharmacological antidepressant strategies.

  11. Obesity and age-related alterations in the gene expression of zinc-transporter proteins in the human brain

    DEFF Research Database (Denmark)

    Olesen, R H; Hyde, T M; Kleinman, J E;

    2016-01-01

    The incidence of Alzheimer's disease (AD) is increasing. Major risk factors for AD are advancing age and diabetes. Lately, obesity has been associated with an increased risk of dementia. Obese and diabetic individuals are prone to decreased circulating levels of zinc, reducing the amount of zinc...... participate in intracellular zinc homeostasis. Altered expression of zinc-regulatory proteins has been described in AD patients. Using microarray data from human frontal cortex (BrainCloud), this study investigates expression of the SCLA30A (ZNT) and SCLA39A (ZIP) families of genes in a Caucasian and African...... expression similar to what is seen in the early stages of AD. Increasing BMI also correlated with reduced expression of ZNT6. In conclusion, we found that the expression of genes that regulate intracellular zinc homeostasis in the human frontal cortex is altered with increasing age and affected by increasing...

  12. Increasing Maternal or Post-Weaning Folic Acid Alters Gene Expression and Moderately Changes Behavior in the Offspring

    OpenAIRE

    Subit Barua; Chadman, Kathryn K.; Salomon Kuizon; Diego Buenaventura; Stapley, Nathan W.; Felicia Ruocco; Umme Begum; Sara R Guariglia; W. Ted Brown; Mohammed A. Junaid

    2014-01-01

    BACKGROUND: Studies have indicated that altered maternal micronutrients and vitamins influence the development of newborns and altered nutrient exposure throughout the lifetime may have potential health effects and increased susceptibility to chronic diseases. In recent years, folic acid (FA) exposure has significantly increased as a result of mandatory FA fortification and supplementation during pregnancy. Since FA modulates DNA methylation and affects gene expression, we investigated whethe...

  13. PTEN regulates EG5 to control spindle architecture and chromosome congression during mitosis.

    Science.gov (United States)

    He, Jinxue; Zhang, Zhong; Ouyang, Meng; Yang, Fan; Hao, Hongbo; Lamb, Kristy L; Yang, Jingyi; Yin, Yuxin; Shen, Wen H

    2016-01-01

    Architectural integrity of the mitotic spindle is required for efficient chromosome congression and accurate chromosome segregation to ensure mitotic fidelity. Tumour suppressor PTEN has multiple functions in maintaining genome stability. Here we report an essential role of PTEN in mitosis through regulation of the mitotic kinesin motor EG5 for proper spindle architecture and chromosome congression. PTEN depletion results in chromosome misalignment in metaphase, often leading to catastrophic mitotic failure. In addition, metaphase cells lacking PTEN exhibit defects of spindle geometry, manifested prominently by shorter spindles. PTEN is associated and co-localized with EG5 during mitosis. PTEN deficiency induces aberrant EG5 phosphorylation and abrogates EG5 recruitment to the mitotic spindle apparatus, leading to spindle disorganization. These data demonstrate the functional interplay between PTEN and EG5 in controlling mitotic spindle structure and chromosome behaviour during mitosis. We propose that PTEN functions to equilibrate mitotic phosphorylation for proper spindle formation and faithful genomic transmission. PMID:27492783

  14. PTEN: a default gate-keeping tumor suppressor with a versatile tail

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The tumor suppressor PTEN controls a variety of biological processes including cell proliferation, growth, migration, and death. As a master cellular regulator, PTEN itself is also subjected to deliberated regulation to ensure its proper function. Defects in PTEN regulation have a profound impact on carcinogenesis. In this review, we briefly discuss recent advances concerning PTEN regulation and how such knowledge facilitates our understanding and further exploration of PTEN biology. The carboxyl-tail of PTEN, which appears to be associated with multiple types of posttranslational regulation, will be under detailed scrutiny. Further, a comparative analysis of PTEN and p53 suggests while p53 needs to be activated to suppress tumorigenesis (a dormant gatekeeper), PTEN is probably a constitutive surveillant against cancer development, thus a default gatekeeper.

  15. Germline mutations in the breast cancer susceptibility gene PTEN are rare in high-risk non-BRCA1/2 French Canadian breast cancer families.

    Science.gov (United States)

    Guénard, Frédéric; Labrie, Yvan; Ouellette, Geneviève; Beauparlant, Charles Joly; Bessette, Paul; Chiquette, Jocelyne; Laframboise, Rachel; Lépine, Jean; Lespérance, Bernard; Pichette, Roxane; Plante, Marie; Durocher, Francine

    2007-01-01

    Cowden syndrome is a disease associated with an increase in breast cancer susceptibility. Alleles in PTEN and other breast cancer susceptibility genes would be responsible for approximately 25% of the familial component of breast cancer risk, BRCA1 and BRCA2 being the two major genes responsible for this inherited risk. In order to evaluate the proportion of high-risk French Canadian non-BRCA1/BRCA2 breast/ovarian cancer families potentially harboring a PTEN germline mutation, the whole coding and flanking intronic sequences were analyzed in a series of 98 breast cancer cases. Although no germline mutation has been identified in the coding region, our study led to the identification of four intronic variants. Further investigations were performed to analyze the effect of these variants, alone and/or in combination, on splicing and PTEN protein levels. Despite suggestive evidence emerging from in silico analyses, the presence of these intronic variants do not seem to alter RNA splicing or PTEN protein levels. In addition, as loss of PTEN or part of it has been reported, Western blot analysis has also been performed. No major deletion could be identified in our cohort. Therefore, assuming a Poisson distribution for the frequency of deleterious mutation in our cohort, if the frequency of such deleterious mutation was 2%, we would have had a 90% or greater chance of observing at least one such mutation. These results suggest that PTEN germline mutations are rare and are unlikely to account for a significant proportion of familial breast cancer cases in the French Canadian population.

  16. Altered intracellular pH regulation in cells with high levels of P-glycoprotein expression.

    Science.gov (United States)

    Young, Gregory; Reuss, Luis; Altenberg, Guillermo A

    2011-01-01

    P-glycoprotein is an ATP-binding-cassette transporter that pumps many structurally unrelated drugs out of cells through an ATP-dependent mechanism. As a result, multidrug-resistant cells that overexpress P-glycoprotein have reduced intracellular steady-state levels of a variety of chemotherapeutic agents. In addition, increased cytosolic pH has been a frequent finding in multidrug-resistant cells that express P-glycoprotein, and it has been proposed that this consequence of P-glycoprotein expression may contribute to the lower intracellular levels of chemotherapeutic agents. In these studies, we measured intracellular pH and the rate of acid extrusion in response to an acid load in two cells with very different levels of P-glycoprotein expression: V79 parental cells and LZ-8 multidrug resistant cells. Compared to the wild-type V79 cells, LZ-8 cells have a lower intracellular pH and a slower recovery of intracellular pH after an acid load. The data also show that LZ-8 cells have reduced ability to extrude acid, probably due to a decrease in Na(+)/H(+) exchanger activity. The alterations in intracellular pH and acid extrusion in LZ-8 cells are reversed by 24-h exposure to the multidrug-resistance modulator verapamil. The lower intracellular pH in LZ-8 indicates that intracellular alkalinization is not necessary for multidrug resistance. The reversal by verapamil of the decreased acid-extrusion suggests that P-glycoprotein can affect other membrane transport mechanism. PMID:22003434

  17. Rotating wall vessel exposure alters protein secretion and global gene expression in Staphylococcus aureus

    Science.gov (United States)

    Rosado, Helena; O'Neill, Alex J.; Blake, Katy L.; Walther, Meik; Long, Paul F.; Hinds, Jason; Taylor, Peter W.

    2012-04-01

    Staphylococcus aureus is routinely recovered from air and surface samples taken aboard the International Space Station (ISS) and poses a health threat to crew. As bacteria respond to the low shear forces engendered by continuous rotation conditions in a Rotating Wall Vessel (RWV) and the reduced gravitational field of near-Earth flight by altering gene expression, we examined the effect of low-shear RWV growth on protein secretion and gene expression by three S. aureus isolates. When cultured under 1 g, the total amount of protein secreted by these strains varied up to fourfold; under continuous rotation conditions, protein secretion by all three strains was significantly reduced. Concentrations of individual proteins were differentially reduced and no evidence was found for increased lysis. These data suggest that growth under continuous rotation conditions reduces synthesis or secretion of proteins. A limited number of changes in gene expression under continuous rotation conditions were noted: in all isolates vraX, a gene encoding a polypeptide associated with cell wall stress, was down-regulated. A vraX deletion mutant of S. aureus SH1000 was constructed: no differences were found between SH1000 and ΔvraX with respect to colony phenotype, viability, protein export, antibiotic susceptibility, vancomycin kill kinetics, susceptibility to cold or heat and gene modulation. An ab initio protein-ligand docking simulation suggests a major binding site for β-lactam drugs such as imipenem. If such changes to the bacterial phenotype occur during spaceflight, they will compromise the capacity of staphylococci to cause systemic infection and to circumvent antibacterial chemotherapy.

  18. Planarian PTEN homologs regulate stem cells and regeneration through TOR signaling

    OpenAIRE

    Oviedo, Néstor J.; Pearson, Bret J.; Levin, Michael; Sánchez Alvarado, Alejandro

    2008-01-01

    We have identified two genes, Smed-PTEN-1 and Smed-PTEN-2, capable of regulating stem cell function in the planarian Schmidtea mediterranea. Both genes encode proteins homologous to the mammalian tumor suppressor, phosphatase and tensin homolog deleted on chromosome 10 (PTEN). Inactivation of Smed-PTEN-1 and -2 by RNA interference (RNAi) in planarians disrupts regeneration, and leads to abnormal outgrowths in both cut and uncut animals followed soon after by death (lysis). The resulting pheno...

  19. Csf2 Null Mutation Alters Placental Gene Expression and Trophoblast Glycogen Cell and Giant Cell Abundance in Mice1

    OpenAIRE

    Sferruzzi-Perri, Amanda N.; Macpherson, Anne M.; Roberts, Claire T.; Robertson, Sarah A.

    2009-01-01

    Genetic deficiency in granulocyte-macrophage colony-stimulating factor (CSF2, GM-CSF) results in altered placental structure in mice. To investigate the mechanism of action of CSF2 in placental morphogenesis, the placental gene expression and cell composition were examined in Csf2 null mutant and wild-type mice. Microarray and quantitative RT-PCR analyses on Embryonic Day (E) 13 placentae revealed that the Csf2 null mutation caused altered expression of 17 genes not previously known to be ass...

  20. Nonalcoholic fatty liver disease progression in rats is accelerated by splenic regulation of liver PTEN/AKT

    Directory of Open Access Journals (Sweden)

    Ziming Wang

    2015-01-01

    Full Text Available Background/Aim: The spleen has been reported to participate in the development of nonalcoholic fatty liver disease (NAFLD, but the mechanism has not been fully characterized. This study aims to elucidate how the spleen affects the development of NAFLD in a rat model. Materials and Methods: Following either splenectomy or sham operation, male Sprague–Dawley (SD rats were fed a high-fat diet to drive the development of NAFLD; animals fed a normal diet were used as controls. Two months after surgery, livers and blood samples were collected. Serum lipids were measured; liver histology, phosphatase and tensin homologue deleted on chromosome 10 (PTEN gene expression, and the ratio of pAkt/Akt were determined. Results: Splenectomy increased serum lipids, except triglyceride (TG and high-density lipoprotein (HDL, in animals fed either a high-fat or normal diet. Furthermore, splenectomy significantly accelerated hepatic steatosis. Western blot analysis and real-time polymerase chain reaction showed splenectomy induced significant downregulation of PTEN expression and a high ratio of pAkt/Akt in the livers. Conclusions: The spleen appears to play a role in the development of NAFLD, via a mechanism involving downregulation of hepatic PTEN expression.

  1. A miR-335/COX-2/PTEN axis regulates the secretory phenotype of senescent cancer-associated fibroblasts

    Science.gov (United States)

    Kabir, Tasnuva D.; Leigh, Ross J.; Tasena, Hataitip; Mellone, Massimiliano; Coletta, Ricardo D.; Parkinson, Eric K.; Prime, Stephen S.; Thomas, Gareth J.; Paterson, Ian C.; Zhou, Donghui; McCall, John; Speight, Paul M.; Lambert, Daniel W.

    2016-01-01

    Senescent cancer-associated fibroblasts (CAF) develop a senescence-associated secretory phenotype (SASP) that is believed to contribute to cancer progression. The mechanisms underlying SASP development are, however, poorly understood. Here we examined the functional role of microRNA in the development of the SASP in normal fibroblasts and CAF. We identified a microRNA, miR-335, up-regulated in the senescent normal fibroblasts and CAF and able to modulate the secretion of SASP factors and induce cancer cell motility in co-cultures, at least in part by suppressing the expression of phosphatase and tensin homologue (PTEN). Additionally, elevated levels of cyclo-oxygenase 2 (PTGS2; COX-2) and prostaglandin E2 (PGE2) secretion were observed in senescent fibroblasts, and inhibition of COX-2 by celecoxib reduced the expression of miR-335, restored PTEN expression and decreased the pro-tumourigenic effects of the SASP. Collectively these data demonstrate the existence of a novel miRNA/PTEN-regulated pathway modulating the inflammasome in senescent fibroblasts. PMID:27385366

  2. Gamma-interferon alters globin gene expression in neonatal and adult erythroid cells

    Energy Technology Data Exchange (ETDEWEB)

    Miller, B.A.; Perrine, S.P.; Antognetti, G.; Perlmutter, D.H.; Emerson, S.G.; Sieff, C.; Faller, D.V.

    1987-06-01

    The effect of gamma-interferon on fetal hemoglobin synthesis by purified cord blood, fetal liver, and adult bone marrow erythroid progenitors was studied with a radioligand assay to measure hemoglobin production by BFU-E-derived erythroblasts. Coculture with recombinant gamma-interferon resulted in a significant and dose-dependent decrease in fetal hemoglobin production by neonatal and adult, but not fetal, BFU-E-derived erythroblasts. Accumulation of fetal hemoglobin by cord blood BFU-E-derived erythroblasts decreased up to 38.1% of control cultures (erythropoietin only). Synthesis of both G gamma/A gamma globin was decreased, since the G gamma/A gamma ratio was unchanged. Picograms fetal hemoglobin per cell was decreased by gamma-interferon addition, but picograms total hemoglobin was unchanged, demonstrating that a reciprocal increase in beta-globin production occurred in cultures treated with gamma-interferon. No toxic effect of gamma-interferon on colony growth was noted. The addition of gamma-interferon to cultures resulted in a decrease in the percentage of HbF produced by adult BFU-E-derived cells to 45.6% of control. Fetal hemoglobin production by cord blood, fetal liver, and adult bone marrow erythroid progenitors, was not significantly affected by the addition of recombinant GM-CSF, recombinant interleukin 1 (IL-1), recombinant IL-2, or recombinant alpha-interferon. Although fetal progenitor cells appear unable to alter their fetal hemoglobin program in response to any of the growth factors added here, the interaction of neonatal and adult erythroid progenitors with gamma-interferon results in an altered expression of globin genes.

  3. Prenatal alcohol exposure alters methyl metabolism and programs serotonin transporter and glucocorticoid receptor expression in brain

    Science.gov (United States)

    Ngai, Ying Fai; Sulistyoningrum, Dian C.; O'Neill, Ryan; Innis, Sheila M.; Weinberg, Joanne

    2015-01-01

    Prenatal alcohol exposure (PAE) programs the fetal hypothalamic-pituitary-adrenal (HPA) axis, resulting in HPA dysregulation and hyperresponsiveness to stressors in adulthood. Molecular mechanisms mediating these alterations are not fully understood. Disturbances in one-carbon metabolism, a source of methyl donors for epigenetic processes, contributes to alcoholic liver disease. We assessed whether PAE affects one-carbon metabolism (including Mtr, Mat2a, Mthfr, and Cbs mRNA) and programming of HPA function genes (Nr3c1, Nr3c2, and Slc6a4) in offspring from ethanol-fed (E), pair-fed (PF), and ad libitum-fed control (C) dams. At gestation day 21, plasma total homocysteine and methionine concentrations were higher in E compared with C dams, and E fetuses had higher plasma methionine concentrations and lower whole brain Mtr and Mat2a mRNA compared with C fetuses. In adulthood (55 days), hippocampal Mtr and Cbs mRNA was lower in E compared with C males, whereas Mtr, Mat2a, Mthfr, and Cbs mRNA were higher in E compared with C females. We found lower Nr3c1 mRNA and lower nerve growth factor inducible protein A (NGFI-A) protein in the hippocampus of E compared with PF females, whereas hippocampal Slc6a4 mRNA was higher in E than C males. By contrast, hypothalamic Slc6a4 mRNA was lower in E males and females compared with C offspring. This was accompanied by higher hypothalamic Slc6a4 mean promoter methylation in E compared with PF females. These findings demonstrate that PAE is associated with alterations in one-carbon metabolism and has long-term and region-specific effects on gene expression in the brain. These findings advance our understanding of mechanisms of HPA dysregulation associated with PAE. PMID:26180184

  4. PTEN inhibition and axon regeneration and neural repair

    Institute of Scientific and Technical Information of China (English)

    Yosuke Ohtake; Umar Hayat; Shuxin Li

    2015-01-01

    The intrinsic growth ability of all the neurons declines during development although some may grow better than others. Numerous intracellular signaling proteins and transcription factors have been shown to regulate the intrinsic growth capacity in mature neurons. Among them, PI3 kinase/Akt pathway is important for controlling axon elongation. As a negative regulator of this pathway, the tumor suppressor phosphatase and tensin homolog (PTEN) appears critical to con-trol the regenerative ability of young and adult neurons. This review will focus on recent research progress in axon regeneration and neural repair by PTEN inhibition and therapeutic potential of blocking this phosphatase for neurological disorders. Inhibition of PTEN by deletion in con-ditional knockout mice, knockdown by short-hairpin RNA, or blockade by pharmacological approaches, including administration of selective PTEN antagonist peptides, stimulates various degrees of axon regrowth in juvenile or adult rodents with central nervous system injuries. Im-portantly, post-injury PTEN suppression could enhance axonal growth and functional recovery in adult central nervous system after injury.

  5. Differential Requirement for Pten Lipid and Protein Phosphatase Activity during Zebrafish Embryonic Development

    Science.gov (United States)

    Stumpf, Miriam; den Hertog, Jeroen

    2016-01-01

    The lipid- and protein phosphatase PTEN is one of the most frequently mutated tumor suppressor genes in human cancers and many mutations found in tumor samples directly affect PTEN phosphatase activity. In order to understand the functional consequences of these mutations in vivo, the aim of our study was to dissect the role of Pten phosphatase activities during zebrafish embryonic development. As in other model organisms, zebrafish mutants lacking functional Pten are embryonically lethal. Zebrafish have two pten genes and pten double homozygous zebrafish embryos develop a severe pleiotropic phenotype around 4 days post fertilization, which can be largely rescued by re-introduction of pten mRNA at the one-cell stage. We used this assay to characterize the rescue-capacity of Pten and variants with mutations that disrupt lipid, protein or both phosphatase activities. The pleiotropic phenotype at 4dpf could only be rescued by wild type Pten, indicating that both phosphatase activities are required for normal zebrafish embryonic development. An earlier aspect of the phenotype, hyperbranching of intersegmental vessels, however, was rescued by Pten that retained lipid phosphatase activity, independent of protein phosphatase activity. Lipid phosphatase activity was also required for moderating pAkt levels at 4 dpf. We propose that the role of Pten during angiogenesis mainly consists of suppressing PI3K signaling via its lipid phosphatase activity, whereas the complex process of embryonic development requires lipid and protein phosphatase of Pten. PMID:26848951

  6. Alterations in Lipoxygenase and Cyclooxygenase-2 Catalytic Activity and mRNA Expression in Prostate Carcinoma

    Directory of Open Access Journals (Sweden)

    Scott B. Shappell

    2001-01-01

    Full Text Available Recent studies in prostate tissues and especially cell lines have suggested roles for arachidonic acid (AA metabolizing enzymes in prostate adenocarcinoma (Pca development or progression. The goal of this study was to more fully characterize lipoxygenase (LOX and cyclooxygenase-2 (COX-2 gene expression and AA metabolism in benign and malignant prostate using snap-frozen tissues obtained intraoperatively and mRNA analyses and enzyme assays. Formation of 15-hydroxyeicosatetraenoic acid (15-HETE was detected in 23/29 benign samples and 15-LOX-2 mRNA was detected in 21/25 benign samples. In pairs of pure benign and Pca from the same patients, 15-HETE production and 15-LOX-2 mRNA were reduced in Pca versus benign in 9/14 (P=.04 and 14/17 (P=.002, respectively. Under the same conditions, neither 5HETE nor 12-HETE formation was detectable in 29 benign and 24 tumor samples; with a more sensitive assay, traces were detected in some samples, but there was no clear association with tumor tissue. COX-2 mRNA was detected by nuclease protection assay in 7/16 benign samples and 5/16 tumors. In benign and tumor pairs from 10 patients, COX-2 was higher in tumor versus benign in only 2, with similar results by in situ hybridization. Paraffin immunoperoxidase for COX2 was performed in whole mount sections from 87 additional radical prostatectomy specimens, with strong expression in ejaculatory duct as a positive control and corroboration with in situ hybridization. No immunostaining was detected in benign prostate or tumor in 45% of cases. Greater immunostaining in tumor versus benign was present in only 17% of cases, and correlated with high tumor grade (Gleason score 8 and 9 vs. 5 to 7. In conclusion, reduced 15-LOX-2 expression and 15-HETE formation is the most characteristic alteration of AA metabolism in Pca. Increased 12-HETE and 5-HETE formation in Pca were not discernible. Increased COX-2 expression is not a typical abnormality in Pca in general, but

  7. Alterations in hypothalamic gene expression following Roux-en-Y gastric bypass

    Science.gov (United States)

    Barkholt, Pernille; Pedersen, Philip J.; Hay-Schmidt, Anders; Jelsing, Jacob; Hansen, Henrik H.; Vrang, Niels

    2016-01-01

    Objective The role of the central nervous system in mediating metabolic effects of Roux-en-Y gastric bypass (RYGB) surgery is poorly understood. Using a rat model of RYGB, we aimed to identify changes in gene expression of key hypothalamic neuropeptides known to be involved in the regulation of energy balance. Methods Lean male Sprague-Dawley rats underwent either RYGB or sham surgery. Body weight and food intake were monitored bi-weekly for 60 days post-surgery. In situ hybridization mRNA analysis of hypothalamic AgRP, NPY, CART, POMC and MCH was applied to RYGB and sham animals and compared with ad libitum fed and food-restricted rats. Furthermore, in situ hybridization mRNA analysis of dopaminergic transmission markers (TH and DAT) was applied in the midbrain. Results RYGB surgery significantly reduced body weight and intake of a highly palatable diet but increased chow consumption compared with sham operated controls. In the arcuate nucleus, RYGB surgery increased mRNA levels of orexigenic AgRP and NPY, whereas no change was observed in anorexigenic CART and POMC mRNA levels. A similar pattern was seen in food-restricted versus ad libitum fed rats. In contrast to a significant increase of orexigenic MCH mRNA levels in food-restricted animals, RYGB did not change MCH expression in the lateral hypothalamus. In the VTA, RYGB surgery induced a reduction in mRNA levels of TH and DAT, whereas no changes were observed in the substantia nigra relative to sham surgery. Conclusion RYGB surgery increases the mRNA levels of hunger-associated signaling markers in the rat arcuate nucleus without concomitantly increasing downstream MCH expression in the lateral hypothalamus, suggesting that RYGB surgery puts a brake on orexigenic hypothalamic output signals. In addition, down-regulation of midbrain TH and DAT expression suggests that altered dopaminergic activity also contributes to the reduced intake of palatable food in RYGB rats. PMID:27069869

  8. Altered patterns of gene expression underlying the enhanced immunogenicity of radiation-attenuated schistosomes.

    Directory of Open Access Journals (Sweden)

    Gary P Dillon

    Full Text Available BACKGROUND: Schistosome cercariae only elicit high levels of protective immunity against a challenge infection if they are optimally attenuated by exposure to ionising radiation that truncates their migration in the lungs. However, the underlying molecular mechanisms responsible for the altered phenotype of the irradiated parasite that primes for protection have yet to be identified. METHODOLOGY/PRINCIPAL FINDINGS: We have used a custom microarray comprising probes derived from lung-stage parasites to compare patterns of gene expression in schistosomula derived from normal and irradiated cercariae. These were transformed in vitro and cultured for four, seven, and ten days to correspond in development to the priming parasites, before RNA extraction. At these late times after the radiation insult, transcript suppression was the principal feature of the irradiated larvae. Individual gene analysis revealed that only seven were significantly down-regulated in the irradiated versus normal larvae at the three time-points; notably, four of the protein products are present in the tegument or associated with its membranes, perhaps indicating a perturbed function. Grouping of transcripts using Gene Ontology (GO and subsequent Gene Set Enrichment Analysis (GSEA proved more informative in teasing out subtle differences. Deficiencies in signalling pathways involving G-protein-coupled receptors suggest the parasite is less able to sense its environment. Reduction of cytoskeleton transcripts could indicate compromised structure which, coupled with a paucity of neuroreceptor transcripts, may mean the parasite is also unable to respond correctly to external stimuli. CONCLUSIONS/SIGNIFICANCE: The transcriptional differences observed are concordant with the known extended transit of attenuated parasites through skin-draining lymph nodes and the lungs: prolonged priming of the immune system by the parasite, rather than over-expression of novel antigens, could thus

  9. Chronic LSD alters gene expression profiles in the mPFC relevant to schizophrenia.

    Science.gov (United States)

    Martin, David A; Marona-Lewicka, Danuta; Nichols, David E; Nichols, Charles D

    2014-08-01

    Chronic administration of lysergic acid diethylamide (LSD) every other day to rats results in a variety of abnormal behaviors. These build over the 90 day course of treatment and can persist at full strength for at least several months after cessation of treatment. The behaviors are consistent with those observed in animal models of schizophrenia and include hyperactivity, reduced sucrose-preference, and decreased social interaction. In order to elucidate molecular changes that underlie these aberrant behaviors, we chronically treated rats with LSD and performed RNA-sequencing on the medial prefrontal cortex (mPFC), an area highly associated with both the actions of LSD and the pathophysiology of schizophrenia and other psychiatric illnesses. We observed widespread changes in the neurogenetic state of treated animals four weeks after cessation of LSD treatment. QPCR was used to validate a subset of gene expression changes observed with RNA-Seq, and confirmed a significant correlation between the two methods. Functional clustering analysis indicates differentially expressed genes are enriched in pathways involving neurotransmission (Drd2, Gabrb1), synaptic plasticity (Nr2a, Krox20), energy metabolism (Atp5d, Ndufa1) and neuropeptide signaling (Npy, Bdnf), among others. Many processes identified as altered by chronic LSD are also implicated in the pathogenesis of schizophrenia, and genes affected by LSD are enriched with putative schizophrenia genes. Our results provide a relatively comprehensive analysis of mPFC transcriptional regulation in response to chronic LSD, and indicate that the long-term effects of LSD may bear relevance to psychiatric illnesses, including schizophrenia.

  10. Genetic Association and Altered Gene Expression of Mir-155 in Multiple Sclerosis Patients

    Directory of Open Access Journals (Sweden)

    Rosanna Asselta

    2011-12-01

    Full Text Available Multiple sclerosis (MS is a complex autoimmune disease of the central nervous system characterized by chronic inflammation, demyelination, and axonal damage. As microRNA (miRNA-dependent alterations in gene expression in hematopoietic cells are critical for mounting an appropriate immune response, miRNA deregulation may result in defects in immune tolerance. In this frame, we sought to explore the possible involvement of miRNAs in MS pathogenesis by monitoring the differential expression of 22 immunity-related miRNAs in peripheral blood mononuclear cells of MS patients and healthy controls, by using a microbead-based technology. Three miRNAs resulted >2 folds up-regulated in MS vs controls, whereas none resulted down-regulated. Interestingly, the most up-regulated miRNA (mir-155; fold change = 3.30; P = 0.013 was previously reported to be up-regulated also in MS brain lesions. Mir-155 up-regulation was confirmed by qPCR experiments. The role of mir-155 in MS susceptibility was also investigated by genotyping four single nucleotide polymorphisms (SNPs mapping in the mir-155 genomic region. A haplotype of three SNPs, corresponding to a 12-kb region encompassing the last exon of BIC (the B-cell Integration Cluster non-coding RNA, from which mir-155 is processed, resulted associated with the disease status (P = 0.035; OR = 1.36, 95% CI = 1.05–1.77, suggesting that this locus strongly deserves further investigations.

  11. Maternal hypoxia alters matrix metalloproteinase expression patterns and causes cardiac remodeling in fetal and neonatal rats.

    Science.gov (United States)

    Tong, Wenni; Xue, Qin; Li, Yong; Zhang, Lubo

    2011-11-01

    Fetal hypoxia leads to progressive cardiac remodeling in rat offspring. The present study tested the hypothesis that maternal hypoxia results in reprogramming of matrix metalloproteinase (MMP) expression patterns and fibrillar collagen matrix in the developing heart. Pregnant rats were treated with normoxia or hypoxia (10.5% O(2)) from day 15 to 21 of gestation. Hearts were isolated from 21-day fetuses (E21) and postnatal day 7 pups (PD7). Maternal hypoxia caused a decrease in the body weight of both E21 and PD7. The heart-to-body weight ratio was increased in E21 but not in PD7. Left ventricular myocardium wall thickness and cardiomyocyte proliferation were significantly decreased in both fetal and neonatal hearts. Hypoxia had no effect on fibrillar collagen content in the fetal heart, but significantly increased the collagen content in the neonatal heart. Western blotting revealed that maternal hypoxia significantly increased collagen I, but not collagen III, levels in the neonatal heart. Maternal hypoxia decreased MMP-1 but increased MMP-13 and membrane type (MT)1-MMP in the fetal heart. In the neonatal heart, MMP-1 and MMP-13 were significantly increased. Active MMP-2 and MMP-9 levels and activities were not altered in either fetal or neonatal hearts. Hypoxia significantly increased tissue inhibitors of metalloproteinase (TIMP)-3 and TIMP-4 in both fetal and neonatal hearts. In contrast, TIMP-1 and TIMP-2 were not affected. The results demonstrate that in utero hypoxia reprograms the expression patterns of MMPs and TIMPs and causes cardiac tissue remodeling with the increased collagen deposition in the developing heart.

  12. Epigenetic changes of Arabidopsis genome associated with altered DNA methyltransferase and demethylase expressions after gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji Eun; Cho, Eun Ju; Kim, Ji Hong; Chung, Byung Yeoup; Kim, Jin Hong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    DNA methylation at carbon 5 of cytosines is a hall mark of epigenetic inactivation and heterochromatin in both plants and mammals. In Arabidopsis, DNA methylation has two roles that protect the genome from selfish DNA elements and regulate gene expression. Plant genome has three types of DNA methyltransferase, METHYLTRANSFERASE 1 (MET1), DOMAINREARRANGED METHYLASE (DRM) and CHROMOMETHYLASE 3 (CMT3) that are capable of methylating CG, CHG (where H is A, T, or C) and CHH sites, respectively. MET1 is a maintenance DNA methyltransferase that controls CG methylation. Two members of the DRM family, DRM1 and DRM2, are responsible for de novo methylation of CG, CHG, and CHH sites but show a preference for CHH sites. Finally, CMT3 principally carries out CHG methylation and is involved in both de novo methylation and maintenance. Alternatively, active DNA demethylation may occur through the glycosylase activity by removing the methylcytosines from DNA. It may have essential roles in preventing transcriptional silencing of transgenes and endogenous genes and in activating the expression of imprinted genes. DNA demetylation in Arabidopsis is mediated by the DEMETER (DME) family of bifunctional DNA glycosylase. Three targets of DME are MEA (MEDEA), FWA (FLOWERING WAGENINGEN), and FIS2 (FERTILIZATION INDEPENDENT SEED 2). The DME family contains DEMETER-LIKE 2 (DML2), DML3, and REPRESSOR OF SILENING 1 (ROS1). DNA demetylation by ROS1, DML2, and DML3 protect the hypermethylation of specific genome loci. ROS1 is necessary to suppress the promoter methylation and the silencing of endogenous genes. In contrast, the function of DML2 and DML3 has not been reported. Several recent studies have suggested that epigenetic alterations such as change in DNA methylation and histone modification should be caused in plant genomes upon exposure to ionizing radiation. However, there is a lack of data exploring the underlying mechanisms. Therefore, the present study aims to characterize and

  13. Aminoaciduria and altered renal expression of luminal amino acid transporters in mice lacking novel gene collectrin.

    Science.gov (United States)

    Malakauskas, Sandra M; Quan, Hui; Fields, Timothy A; McCall, Shannon J; Yu, Ming-Jiun; Kourany, Wissam M; Frey, Campbell W; Le, Thu H

    2007-02-01

    Defects in renal proximal tubule transport manifest in a number of human diseases. Although variable in clinical presentation, disorders such as Hartnup disease, Dent's disease, and Fanconi syndrome are characterized by wasting of solutes commonly recovered by the proximal tubule. One common feature of these disorders is aminoaciduria. There are distinct classes of amino acid transporters located in the apical and basal membranes of the proximal tubules that reabsorb >95% of filtered amino acids, yet few details are known about their regulation. We present our physiological characterization of a mouse line with targeted deletion of the gene collectrin that is highly expressed in the kidney. Collectrin-deficient mice display a reduced urinary concentrating capacity due to enhanced solute clearance resulting from profound aminoaciduria. The aminoaciduria is generalized, characterized by loss of nearly every amino acid, and results in marked crystalluria. Furthermore, in the kidney, collectrin-deficient mice have decreased plasma membrane populations of amino acid transporter subtypes B(0)AT1, rBAT, and b(0,+)AT, as well as altered cellular distribution of EAAC1. Our data suggest that collectrin is a novel mediator of renal amino acid transport and may provide further insight into the pathogenesis of a number of human disease correlates. PMID:16985211

  14. Genome wide expression analysis in HPV16 Cervical Cancer: identification of altered metabolic pathways

    Directory of Open Access Journals (Sweden)

    Salcedo Mauricio

    2007-09-01

    Full Text Available Abstract Background Cervical carcinoma (CC is a leading cause of death among women worldwide. Human papilloma virus (HPV is a major etiological factor in CC and HPV 16 is the more frequent viral type present. Our aim was to characterize metabolic pathways altered in HPV 16 tumor samples by means of transcriptome wide analysis and bioinformatics tools for visualizing expression data in the context of KEGG biological pathways. Results We found 2,067 genes significantly up or down-modulated (at least 2-fold in tumor clinical samples compared to normal tissues, representing ~3.7% of analyzed genes. Cervical carcinoma was associated with an important up-regulation of Wnt signaling pathway, which was validated by in situ hybridization in clinical samples. Other up-regulated pathways were those of calcium signaling and MAPK signaling, as well as cell cycle-related genes. There was down-regulation of focal adhesion, TGF-β signaling, among other metabolic pathways. Conclusion This analysis of HPV 16 tumors transcriptome could be useful for the identification of genes and molecular pathways involved in the pathogenesis of cervical carcinoma. Understanding the possible role of these proteins in the pathogenesis of CC deserves further studies.

  15. Autophagy Limits Endotoxemic Acute Kidney Injury and Alters Renal Tubular Epithelial Cell Cytokine Expression.

    Science.gov (United States)

    Leventhal, Jeremy S; Ni, Jie; Osmond, Morgan; Lee, Kyung; Gusella, G Luca; Salem, Fadi; Ross, Michael J

    2016-01-01

    Sepsis related acute kidney injury (AKI) is a common in-hospital complication with a dismal prognosis. Our incomplete understanding of disease pathogenesis has prevented the identification of hypothesis-driven preventive or therapeutic interventions. Increasing evidence in ischemia-reperfusion and nephrotoxic mouse models of AKI support the theory that autophagy protects renal tubular epithelial cells (RTEC) from injury. However, the role of RTEC autophagy in septic AKI remains unclear. We observed that lipopolysaccharide (LPS), a mediator of gram-negative bacterial sepsis, induces RTEC autophagy in vivo and in vitro through TLR4-initiated signaling. We modeled septic AKI through intraperitoneal LPS injection in mice in which autophagy-related protein 7 was specifically knocked out in the renal proximal tubules (ATG7KO). Compared to control littermates, ATG7KO mice developed more severe renal dysfunction (24hr BUN 100.1mg/dl +/- 14.8 vs 54.6mg/dl +/- 11.3) and parenchymal injury. After injection with LPS, analysis of kidney lysates identified higher IL-6 expression and increased STAT3 activation in kidney lysates from ATG7KO mice compared to controls. In vitro experiments confirmed an altered response to LPS in RTEC with genetic or pharmacological impairment of autophagy. In conclusion, RTEC autophagy protects against endotoxin induced injury and regulates downstream effects of RTEC TLR4 signaling.

  16. Autophagy Limits Endotoxemic Acute Kidney Injury and Alters Renal Tubular Epithelial Cell Cytokine Expression.

    Directory of Open Access Journals (Sweden)

    Jeremy S Leventhal

    Full Text Available Sepsis related acute kidney injury (AKI is a common in-hospital complication with a dismal prognosis. Our incomplete understanding of disease pathogenesis has prevented the identification of hypothesis-driven preventive or therapeutic interventions. Increasing evidence in ischemia-reperfusion and nephrotoxic mouse models of AKI support the theory that autophagy protects renal tubular epithelial cells (RTEC from injury. However, the role of RTEC autophagy in septic AKI remains unclear. We observed that lipopolysaccharide (LPS, a mediator of gram-negative bacterial sepsis, induces RTEC autophagy in vivo and in vitro through TLR4-initiated signaling. We modeled septic AKI through intraperitoneal LPS injection in mice in which autophagy-related protein 7 was specifically knocked out in the renal proximal tubules (ATG7KO. Compared to control littermates, ATG7KO mice developed more severe renal dysfunction (24hr BUN 100.1mg/dl +/- 14.8 vs 54.6mg/dl +/- 11.3 and parenchymal injury. After injection with LPS, analysis of kidney lysates identified higher IL-6 expression and increased STAT3 activation in kidney lysates from ATG7KO mice compared to controls. In vitro experiments confirmed an altered response to LPS in RTEC with genetic or pharmacological impairment of autophagy. In conclusion, RTEC autophagy protects against endotoxin induced injury and regulates downstream effects of RTEC TLR4 signaling.

  17. Pathogenic LRRK2 mutations do not alter gene expression in cell model systems or human brain tissue.

    Directory of Open Access Journals (Sweden)

    Michael J Devine

    Full Text Available Point mutations in LRRK2 cause autosomal dominant Parkinson's disease. Despite extensive efforts to determine the mechanism of cell death in patients with LRRK2 mutations, the aetiology of LRRK2 PD is not well understood. To examine possible alterations in gene expression linked to the presence of LRRK2 mutations, we carried out a case versus control analysis of global gene expression in three systems: fibroblasts isolated from LRRK2 mutation carriers and healthy, non-mutation carrying controls; brain tissue from G2019S mutation carriers and controls; and HEK293 inducible LRRK2 wild type and mutant cell lines. No significant alteration in gene expression was found in these systems following correction for multiple testing. These data suggest that any alterations in basal gene expression in fibroblasts or cell lines containing mutations in LRRK2 are likely to be quantitatively small. This work suggests that LRRK2 is unlikely to play a direct role in modulation of gene expression, although it remains possible that this protein can influence mRNA expression under pathogenic cicumstances.

  18. Circadian rhythm-dependent alterations of gene expression in Drosophila brain lacking fragile X mental retardation protein.

    Directory of Open Access Journals (Sweden)

    Shunliang Xu

    Full Text Available Fragile X syndrome is caused by the loss of the FMR1 gene product, fragile X mental retardation protein (FMRP. The loss of FMRP leads to altered circadian rhythm behaviors in both mouse and Drosophila; however, the molecular mechanism behind this phenomenon remains elusive. Here we performed a series of gene expression analyses, including of both mRNAs and microRNAs (miRNAs, and identified a number of mRNAs and miRNAs (miRNA-1 and miRNA-281 with circadian rhythm-dependent altered expression in dfmr1 mutant flies. Identification of these RNAs lays the foundation for future investigations of the molecular pathway(s underlying the altered circadian rhythms associated with loss of dFmr1.

  19. Cisplatin Induces Overactivation of the Dormant Primordial Follicle through PTEN/AKT/FOXO3a Pathway which Leads to Loss of Ovarian Reserve in Mice.

    Directory of Open Access Journals (Sweden)

    Eun Mi Chang

    Full Text Available Cisplatin is a first-line chemotherapeutic agent for ovarian cancer that acts by promoting DNA cross links and adduct. However drug resistance and considerable side effects including reproductive toxicity remain a significant challenge. PTEN is well known as a tumor suppressor function which plays a fundamental role in the regulation of the cell cycle, apoptosis and development of cancer. At the same time PTEN has been revealed to be critically important for the maintenance of the primordial follicle pool. In this study, we investigated the role of PTEN/Akt/FOXO3 pathway in cisplatin-induced primordial follicle depletion. Cisplatin induced ovarian failure mouse model was used to evaluate how this pathway involves. In vitro maturation was used for oocyte rescue after cisplatin damage. We found that cisplatin treatment decreased PTEN levels, leading to a subsequent increase in the phosphorylation of key molecules in the pathway. The activation of the PTEN/Akt/FOXO3 pathway cascade increased cytoplasmic translocation of FOXO3a in cisplatin-treated follicles, which in turn increased the pool size of growing follicles, and rapidly depleted the number of dormant follicles. Once activated, the follicles were more prone to apoptosis, and their cumulus cells showed a loss of luteinizing hormone (LH receptor expression, which leads to failure during final maturation and ovulation. In vitro maturation to rescue oocytes in a cisplatin-treated mouse model resulted in successful maturation and fertilization. This study is the first to show the involvement of the PTEN/Akt/FOXO3 pathway in premature ovarian failure after cisplatin treatment and the possibility of rescue through in vitro maturation.

  20. PTEN与女性生殖%PTEN and Female Reproduction

    Institute of Scientific and Technical Information of China (English)

    覃茜(综述); 刘冬娥(审校)

    2013-01-01

    近年来研究发现,抑癌基因Pten及其编码的PTEN蛋白可能通过磷脂酰肌醇3激酶(PI3K)等通路调控细胞的生长、分化及凋亡。在女性生殖系统中,PTEN通过PTEN-PI3K-3-磷酸肌醇依赖性蛋白激酶-1(PDK1)信号网络,不但控制原始卵泡的生存和激活、颗粒细胞的增殖和分化,影响卵泡的发育、生殖衰老的过程和生殖时间的长短,而且调控子宫内膜的增殖及早期胚胎的着床和发育。%Recent studies found that Pten, a tumor suppressor gene, and PTEN protein played an important role in regulating cell growth, differentiation and apoptosis through the PI3K pathway. In the female reproductive system, PTEN plays an important role in regulating follicular development, reproductive aging and years by controlling the survival and activation of primordial follicles , the proliferation and differentiation of granulosa cells though the PTEN-PI3K-PDK1 signaling networks. By the same networks, PTEN regulates the endometrial proliferation, and the implantation and development of early embryo.

  1. Fluorescence-based codetection with protein markers reveals distinct cellular compartments for altered MicroRNA expression in solid tumors

    DEFF Research Database (Denmark)

    Sempere, Lorenzo F; Preis, Meir; Yezefski, Todd;

    2010-01-01

    High-throughput profiling experiments have linked altered expression of microRNAs (miRNA) to different types of cancer. Tumor tissues are a heterogeneous mixture of not only cancer cells, but also supportive and reactive tumor microenvironment elements. To clarify the clinical significance of alt...

  2. TIME-DEPENDENT EFFECTS ON GENE EXPRESSION IN RAT SEMINAL VESICLE DEVELOPMENTALLY ALTERED BY IN UTERO EXPOSURE TO TCDD

    Science.gov (United States)

    TIME-DEPENDENT EFFECTS ON GENE EXPRESSION IN RAT SEMINAL VESICLE DEVELOPMENTALLY ALTERED BY IN UTERO EXPOSURE TO TCDD. V M Richardson', J T Hamm2, and L S Birnbaum1. 'USEPA, ORD/NHEERL/ETD, Research Triangle Park, NC, USA, 'Curriculum in Toxicology, University of North Carolina, ...

  3. Alteration in contractile G-protein coupled receptor expression by moist snuff and nicotine in rat cerebral arteries

    DEFF Research Database (Denmark)

    Sandhu, Hardip; Xu, Cang-Bao; Edvinsson, Lars

    2011-01-01

    was kept at plasma level of snus users (25ng nicotine/ml). A high dose (250ng nicotine/ml) was also included due to the previous results showing alteration in the GPCR expression by nicotine at this concentration. Contractile responses to the ET(B) receptor agonist sarafotoxin 6c, 5-HT(1B) receptor agonist...

  4. Matrine derivative WM130 inhibits hepatocellular carcinoma by suppressing EGFR/ERK/MMP-2 and PTEN/AKT signaling pathways.

    Science.gov (United States)

    Qian, Liqiang; Liu, Yan; Xu, Yang; Ji, Weidan; Wu, Qiuye; Liu, Yongjing; Gao, Quangen; Su, Changqing

    2015-11-01

    Matrine, a sophora alkaloid, has been demonstrated to exert antitumor effects on many types of cancer. However, its bioactivity is weak and its potential druggability is low. We modified the structure of matrine and obtained a new matrine derivative, WM130 (C30N4H40SO5F), which exhibited better pharmacological activities than matrine. In this study, we investigated the antitumor activity and the underlying mechanisms of WM130 on hepatocellular carcinoma (HCC) cells in vitro and in vivo, and found that WM130 inhibited the proliferation, invasion, migration and induced apoptosis of HCC cells in a dose-dependent manner. Furthermore, after treatment with WM130, the expressions of p-EGFR, p-ERK, p-AKT, MMP-2 and the ratio of Bcl-2/Bax were significantly down-regulated, whereas the expression of PTEN was increased in HCC cells. Moreover, WM130 inhibited Huh-7 xenograft tumor growth in a dose-dependent manner after intravenous administration. Immunohistochemistry results demonstrated that WM130 treatment resulted in down-regulation of p-EGFR, MMP-2, and Ki67 and up-regulation of PTEN. The findings indicated that WM130 could inhibit cell proliferation, invasion, migration and induced apoptosis in HCC cells by suppressing EGFR/ERK/MMP-2 and PTEN/AKT signaling pathways and may be a novel effective candidate for HCC treatment.

  5. Altering adsorbed proteins or cellular gene expression in bone-metastatic cancer cells affects PTHrP and Gli2 without altering cell growth

    Directory of Open Access Journals (Sweden)

    Jonathan M. Page

    2015-09-01

    Full Text Available The contents of this data in brief are related to the article titled “Matrix Rigidity Regulates the Transition of Tumor Cells to a Bone-Destructive Phenotype through Integrin β3 and TGF-β Receptor Type II”. In this DIB we will present our supplemental data investigating Integrin expression, attachment of cells to various adhesion molecules, and changes in gene expression in multiple cancer cell lines. Since the interactions of Integrins with adsorbed matrix proteins are thought to affect the ability of cancer cells to interact with their underlying substrates, we examined the expression of Integrin β1, β3, and β5 in response to matrix rigidity. We found that only Iβ3 increased with increasing substrate modulus. While it was shown that fibronectin greatly affects the expression of tumor-produced factors associated with bone destruction (parathyroid hormone-related protein, PTHrP, and Gli2, poly-l-lysine, vitronectin and type I collagen were also analyzed as potential matrix proteins. Each of the proteins was independently adsorbed on both rigid and compliant polyurethane films which were subsequently used to culture cancer cells. Poly-l-lysine, vitronectin and type I collagen all had negligible effects on PTHrP or Gli2 expression, but fibronectin was shown to have a dose dependent effect. Finally, altering the expression of Iβ3 demonstrated that it is required for tumor cells to respond to the rigidity of the matrix, but does not affect other cell growth or viability. Together these data support the data presented in our manuscript to show that the rigidity of bone drives Integrinβ3/TGF-β crosstalk, leading to increased expression of Gli2 and PTHrP.

  6. Cancer cell-oriented migration of mesenchymal stem cells engineered with an anticancer gene (PTEN: an imaging demonstration

    Directory of Open Access Journals (Sweden)

    Yang ZS

    2014-03-01

    Full Text Available Zhuo-Shun Yang,1,* Xiang-Jun Tang,2,* Xing-Rong Guo,1 Dan-Dan Zou,1 Xu-Yong Sun,3 Jing-Bo Feng,1 Jie Luo,1 Long-Jun Dai,1,4 Garth L Warnock4 1Hubei Key Laboratory of Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, People’s Republic of China; 2Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, People’s Republic of China; 3Guangxi Key Laboratory for Transplant Medicine, 303 Hospital of PLA, Nanning, People’s Republic of China; 4Department of Surgery, University of British Columbia, Vancouver, BC, Canada *These authors contributed equally to this work Background: Mesenchymal stem cells (MSCs have been considered to hold great potential as ideal carriers for the delivery of anticancer agents since the discovery of their tumor tropism. This study was performed to demonstrate the effects of phosphatase and tensin homolog (PTEN engineering on MSCs’ capacity for cancer cell-oriented migration. Methods: MSCs were engineered with a PTEN-bearing plasmid and the expression was confirmed with Western blotting. A human glioma cell line (DBTRG was used as the target cell; DBTRG cell-oriented migration of MSCs was monitored with a micro speed photographic system. Results: The expression of transfected PTEN in MSCs was identified by immunoblotting analysis and confirmed with cell viability assessment of target cells. The DBTRG cell-oriented migration of PTEN-engineered MSCs was demonstrated by a real-time dynamic monitoring system, and a phagocytosis-like action of MSCs was also observed. Conclusion: MSCs maintained their capacity for cancer cell-directed migration after they were engineered with anticancer genes. This study provides the first direct evidence of MSCs’ tropism post-anticancer gene engineering. Keywords: gene therapy, mesenchymal stem cells, phosphatase and tensin homolog, cancer

  7. Altered expression of cytochrome P450 and possible correlation with preneoplastic changes in early stage of rat hepatocarcinogenesis

    Institute of Scientific and Technical Information of China (English)

    Lin-lin LIU; Li-kun GONG; Xin-ming QI; Yan CAI; Hui WANG; Xiong-fei WU; Ying XIAO; Jin REN

    2005-01-01

    Aim: Correlation of cytochrome P450 (CYPs) with preneoplastic changes in the early stage of hepatocarcinogenesis is still unclear. To detect the expression of carcinogen-metabolizing related microsomal P450 enzymes, namely the CYP1A1,CYP1A2, CYP2B 1/2, CYP2E1, and CYP3A, we performed the medium-term bioassay of Ito's model in Sprague-Dawley rats. Methods: The amount and activity of CYP were assessed by biochemical and immunohistochemical methods in week 8.The correlation between CYP expression and microsomal oxidative stress was investigated by comparing the generation of microsomal lipid peroxidation in the presence or absence of specific CYP inhibitor. Results: In the DEN-2-AAF and 2-AAF alone groups, the expression of CYP1A1 and CYP2E1 were up-regulated and the expression of CYP2B 1/2 and CYP1A2 were quite the contrary. Strong staining of CYP2E1 and CYP2B1/2 was found around the centrolobular vein and weak staining in the altered hepatic foci revealed by immunohistochemical procedure.There was no significant change in the activity of CYP3A among the 4 groups.Altered hepatic tissue bore more microsomal NADPH (nicotinamide adenine dimucleotide phosphate,reduced form)-dependent lipid peroxidation than normal tissue. And the difference among the 4 groups disappeared when CYP2E1 was inhibited. More microsomal lipid peroxidation was generated when incubated with CYP1A inhibitor α-naphthoflavone. Conclusion: CYP altered their expression levels and these alterations can play important roles in the alteration of cell redox status of preneoplastic tissue in the early stage of hepatocarcinogenesis.

  8. Increasing maternal or post-weaning folic acid alters gene expression and moderately changes behavior in the offspring.

    Directory of Open Access Journals (Sweden)

    Subit Barua

    Full Text Available BACKGROUND: Studies have indicated that altered maternal micronutrients and vitamins influence the development of newborns and altered nutrient exposure throughout the lifetime may have potential health effects and increased susceptibility to chronic diseases. In recent years, folic acid (FA exposure has significantly increased as a result of mandatory FA fortification and supplementation during pregnancy. Since FA modulates DNA methylation and affects gene expression, we investigated whether the amount of FA ingested during gestation alters gene expression in the newborn cerebral hemisphere, and if the increased exposure to FA during gestation and throughout the lifetime alters behavior in C57BL/6J mice. METHODS: Dams were fed FA either at 0.4 mg or 4 mg/kg diet throughout the pregnancy and the resulting pups were maintained on the diet throughout experimentation. Newborn pups brain cerebral hemispheres were used for microarray analysis. To confirm alteration of several genes, quantitative RT-PCR (qRT-PCR and Western blot analyses were performed. In addition, various behavior assessments were conducted on neonatal and adult offspring. RESULTS: Results from microarray analysis suggest that the higher dose of FA supplementation during gestation alters the expression of a number of genes in the newborns' cerebral hemispheres, including many involved in development. QRT-PCR confirmed alterations of nine genes including down-regulation of Cpn2, Htr4, Zfp353, Vgll2 and up-regulation of Xist, Nkx6-3, Leprel1, Nfix, Slc17a7. The alterations in the expression of Slc17a7 and Vgll2 were confirmed at the protein level. Pups exposed to the higher dose of FA exhibited increased ultrasonic vocalizations, greater anxiety-like behavior and hyperactivity. These findings suggest that although FA plays a significant role in mammalian cellular machinery, there may be a loss of benefit from higher amounts of FA. Unregulated high FA supplementation during pregnancy

  9. AKT activation promotes PTEN hamartoma tumor syndrome-associated cataract development.

    Science.gov (United States)

    Sellitto, Caterina; Li, Leping; Gao, Junyuan; Robinson, Michael L; Lin, Richard Z; Mathias, Richard T; White, Thomas W

    2013-12-01

    Mutations in the human phosphatase and tensin homolog (PTEN) gene cause PTEN hamartoma tumor syndrome (PHTS), which includes cataract development among its diverse clinical pathologies. Currently, it is not known whether cataract formation in PHTS patients is secondary to other systemic problems, or the result of the loss of a critical function of PTEN within the lens. We generated a mouse line with a lens-specific deletion of Pten (PTEN KO) and identified a regulatory function for PTEN in lens ion transport. Specific loss of PTEN in the lens resulted in cataract. PTEN KO lenses exhibited a progressive age-related increase in intracellular hydrostatic pressure, along with, increased intracellular sodium concentrations, and reduced Na+/K+-ATPase activity. Collectively, these defects lead to lens swelling, opacities and ultimately organ rupture. Activation of AKT was highly elevated in PTEN KO lenses compared to WT mice. Additionally, pharmacological inhibition of AKT restored normal Na+/K+-ATPase activity in primary cultured lens cells and reduced lens pressure in intact lenses from PTEN KO animals. These findings identify a direct role for PTEN in the regulation of lens ion transport through an AKT-dependent modulation of Na+/K+-ATPase activity, and provide a new animal model to investigate cataract development in PHTS patients. PMID:24270425

  10. Anomalous altered expressions of downstream gene-targets in TP53-miRNA pathways in head and neck cancer.

    Science.gov (United States)

    Mitra, Sanga; Mukherjee, Nupur; Das, Smarajit; Das, Pijush; Panda, Chinmay Kumar; Chakrabarti, Jayprokas

    2014-01-01

    The prevalence of head and neck squamous cell carcinoma, HNSCC, continues to grow. Change in the expression of TP53 in HNSCC affects its downstream miRNAs and their gene targets, anomalously altering the expressions of the five genes, MEIS1, AGTR1, DTL, TYMS and BAK1. These expression alterations follow the repression of TP53 that upregulates miRNA-107, miRNA- 215, miRNA-34 b/c and miRNA-125b, but downregulates miRNA-155. The above five so far unreported genes are the targets of these miRNAs. Meta-analyses of microarray and RNA-Seq data followed by qRT-PCR validation unravel these new ones in HNSCC. The regulatory roles of TP53 on miRNA-155 and miRNA-125b differentiate the expressions of AGTR1 and BAK1in HNSCC vis-à-vis other carcinogenesis. Expression changes alter cell cycle regulation, angiogenic and blood cell formation, and apoptotic modes in affliction. Pathway analyses establish the resulting systems-level functional and mechanistic insights into the etiology of HNSCC.

  11. Gene expression alterations associated with outcome in aromatase inhibitor-treated ER+ early-stage breast cancer patients

    DEFF Research Database (Denmark)

    Gravgaard Thomsen, Karina Hedelund; Lyng, Maria Bibi; Elias, Daniel;

    2015-01-01

    Aromatase inhibitors (AI), either alone or together with chemotherapy, have become the standard adjuvant treatment for postmenopausal, estrogen receptor-positive (ER+) breast cancer. Although AIs improve overall survival, resistance is still a major clinical problem, thus additional biomarkers...... predictive of outcome of ER+ breast cancer patients treated with AIs are needed. Global gene expression analysis was performed on ER+ primary breast cancers from patients treated with adjuvant AI monotherapy; half experienced recurrence (median follow-up 6.7 years). Gene expression alterations were validated...... by qRT-PCR, and functional studies evaluating the effect of siRNA-mediated gene knockdown on cell growth were performed. Twenty-six genes, including TFF3, DACH1, RGS5, and GHR, were shown to exhibit altered expression in tumors from patients with recurrence versus non-recurrent (fold change ≥1.5, p

  12. Selective Deletion of PTEN in Dopamine Neurons Leads to Trophic Effects and Adaptation of Striatal Medium Spiny Projecting Neurons

    OpenAIRE

    Oscar Diaz-Ruiz; Agustin Zapata; Lufei Shan; YaJun Zhang; Tomac, Andreas C.; Nasir Malik; Fidel de la Cruz; Bäckman, Cristina M

    2009-01-01

    The widespread distribution of the tumor suppressor PTEN in the nervous system suggests a role in a broad range of brain functions. PTEN negatively regulates the signaling pathways initiated by protein kinase B (Akt) thereby regulating signals for growth, proliferation and cell survival. Pten deletion in the mouse brain has revealed its role in controlling cell size and number. In this study, we used Cre-loxP technology to specifically inactivate Pten in dopamine (DA) neurons (Pten KO mice). ...

  13. Short-Term PTEN Inhibition Improves In Vitro Activation of Primordial Follicles, Preserves Follicular Viability, and Restores AMH Levels in Cryopreserved Ovarian Tissue From Cancer Patients.

    Directory of Open Access Journals (Sweden)

    Edurne Novella-Maestre

    Full Text Available In vitro activation and growth of primordial dormant follicles to produce fertilizable oocytes would provide a useful instrument for fertility preservation. The employment of Phosphatase and TENsin homolog (PTEN inhibitors, in combination with Protein kinase B (Akt stimulating molecules, has been previously employed to increase follicular activation through the stimulation of the PTEN-Akt pathway.We aim to establish improved in vitro activation also for cancer patients whose ovarian tissue has already been cryopreserved. Fresh and previously cryopreserved human ovarian cortex were exposed to short-term, low-concentration and ovary-specific treatment with only a PTEN inhibitor.Our in vitro activation protocol enhances the activation mechanisms of primordial follicles in both fresh and cryopreserved samples, and enlarges growing populations without inducing apoptosis in either follicles or the surrounding stroma. Treatment augments estradiol secretion and restores the expression levels of the previously diminished Anti-Müllerian hormone by means of cryopreservation procedures. Genomic modulation of the relative expression of PTEN pathway genes was found in treated samples.The in vitro activation protocol offers new alternatives for patients with cryopreserved tissue as it increases the pool of viable activated follicles available for in vitro growth procedures. The combination of ovarian tissue cryopreservation and in vitro activation of primordial follicles, the main ovarian reserve component, will be a major advancement in fertility preservation.

  14. Repeated intrauterine infusions of lipopolysaccharide alter gene expression and lifespan of the bovine corpus luteum.

    Science.gov (United States)

    Lüttgenau, J; Lingemann, B; Wellnitz, O; Hankele, A K; Schmicke, M; Ulbrich, S E; Bruckmaier, R M; Bollwein, H

    2016-08-01

    Inflammation of the uterus is associated with disturbed ovarian function and reduced reproductive performance in dairy cows. To investigate the influence of endometritis on the bovine corpus luteum, 8 heifers received intrauterine infusions with either phosphate-buffered saline (PBS; 9mL) or Escherichia coli lipopolysaccharide (LPS; 3µg/kg of body weight diluted in 9mL of PBS) at 6-h intervals from 12h before and until 9d after ovulation during 2 cycles in a random order (ovulation=d 1). An untreated cycle was examined before and after PBS and LPS cycles, and the mean values from both untreated cycles were used as control. In all cycles, blood sampling and ultrasonography of the ovaries were performed on d 0, 1, 2, 4, 6, 8, 9, 10, 12, 15, 18, and then every 2d until ovulation. Endometrial cells were collected for cytology and quantitative real-time reverse transcriptase PCR on d 0, 6, and 9, and on d 0 and 6, respectively, and luteal tissue was collected for quantitative real-time reverse transcriptase PCR on d 6 and 9. Both, PBS and LPS infusions induced subclinical endometritis, which was accompanied by increased endometrial mRNA abundance of proinflammatory cytokines IL1β, IL8, and tumor necrosis factor α. Additionally, LPS challenge induced premature luteolysis, which was characterized by increased plasma concentrations of PGF2α metabolite, decreased plasma progesterone concentrations, and reduced luteal size and blood flow compared with the control. The luteal mRNA expression of the LPS receptor TLR4, PGE synthase, and the apoptosis-related factor CASP3 were higher, and those of steroidogenic factors STAR and HSD3B, the PGF receptor, and the angiogenic factor VEGFA121 were lower after LPS challenge compared with the control. In conclusion, repeated intrauterine LPS infusions during the first 9d of the estrous cycle alter gene expression and shorten the lifespan of the bovine corpus luteum. PMID:27179870

  15. Lipid alterations in experimental murine colitis: role of ceramide and imipramine for matrix metalloproteinase-1 expression.

    Directory of Open Access Journals (Sweden)

    Jessica Bauer

    Full Text Available BACKGROUND: Dietary lipids or pharmacologic modulation of lipid metabolism are potential therapeutic strategies in inflammatory bowel disease (IBD. Therefore, we analysed alterations of bioactive lipids in experimental models of colitis and examined the functional consequence of the second messenger ceramide in inflammatory pathways leading to tissue destruction. METHODOLOGY/PRINCIPAL FINDINGS: Chronic colitis was induced by dextran-sulphate-sodium (DSS or transfer of CD4(+CD62L(+ cells into RAG1(-/--mice. Lipid content of isolated murine intestinal epithelial cells (IEC was analysed by tandem mass spectrometry. Concentrations of MMP-1 in supernatants of Caco-2-IEC and human intestinal fibroblasts from patients with ulcerative colitis were determined by ELISA. Imipramine was used for pharmacologic inhibition of acid sphingomyelinase (ASM. Ceramide increased by 71% in chronic DSS-induced colitis and by 159% in the transfer model of colitis. Lysophosphatidylcholine (LPC decreased by 22% in both models. No changes were detected for phosphatidylcholine. Generation of ceramide by exogenous SMase increased MMP-1-protein production of Caco-2-IEC up to 7-fold. Inhibition of ASM completely abolished the induction of MMP-1 by TNF or IL-1beta in Caco-2-IEC and human intestinal fibroblasts. CONCLUSIONS/SIGNIFICANCE: Mucosal inflammation leads to accumulation of ceramide and decrease of LPC in the intestinal epithelium. One aspect of ceramide generation is an increase of MMP-1. Induction of MMP-1 by TNF or IL-1beta is completely blocked by inhibition of ASM with imipramine. Therefore, inhibition of ASM may offer a treatment strategy to reduce MMP-1 expression and tissue destruction in inflammatory conditions.

  16. PEX11β induces peroxisomal gene expression and alters peroxisome number during early Xenopus laevis development

    Directory of Open Access Journals (Sweden)

    Damjanovski Sashko

    2011-04-01

    Full Text Available Abstract Background Peroxisomes are organelles whose roles in fatty acid metabolism and reactive oxygen species elimination have contributed much attention in understanding their origin and biogenesis. Many studies have shown that de novo peroxisome biogenesis is an important regulatory process, while yeast studies suggest that total peroxisome numbers are in part regulated by proteins such as Pex11, which can facilitate the division of existing peroxisomes. Although de novo biogenesis and divisions are likely important mechanisms, the regulation of peroxisome numbers during embryonic development is poorly understood. Peroxisome number and function are particularly crucial in oviparous animals such as frogs where large embryonic yolk and fatty acid stores must be quickly metabolized, and resulting reactive oxygen species eliminated. Here we elucidate the role of Pex11β in regulating peroxisomal gene expression and number in Xenopus laevis embryogenesis. Results Microinjecting haemagglutinin (HA tagged Pex11β in early embryos resulted in increased RNA levels for peroxisome related genes PMP70 and catalase at developmental stages 10 and 20, versus uninjected embryos. Catalase and PMP70 proteins were found in punctate structures at stage 20 in control embryos, whereas the injection of ectopic HA-Pex11β induced their earlier localization in punctate structures at stage 10. Furthermore, the peroxisomal marker GFP-SKL, which was found localized as peroxisome-like structures at stage 20, was similarly found at stage 10 when co-microinjected with HA-Pex11β. Conclusions Overexpressed Pex11β altered peroxisomal gene levels and induced the early formation of peroxisomes-like structures during development, both of which demonstrate that Pex11β may be a key regulator of peroxisome number in early Xenopus embryos.

  17. Sodium arsenite represses the expression of myogenin in C2C12 mouse myoblast cells through histone modifications and altered expression of Ezh2, Glp, and Igf-1

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Gia-Ming [Environmental Toxicology Graduate Program, Clemson University, 132 Long Hall, Clemson, SC 29634 (United States); Present address: The University of Chicago, Section of Hematology/Oncology, 900 E. 57th Street, Room 7134, Chicago, IL 60637 (United States); Bain, Lisa J., E-mail: lbain@clemson.edu [Environmental Toxicology Graduate Program, Clemson University, 132 Long Hall, Clemson, SC 29634 (United States); Department of Biological Sciences, Clemson University, 132 Long Hall, Clemson, SC 29634 (United States)

    2012-05-01

    Arsenic is a toxicant commonly found in water systems and chronic exposure can result in adverse developmental effects including increased neonatal death, stillbirths, and miscarriages, low birth weight, and altered locomotor activity. Previous studies indicate that 20 nM sodium arsenite exposure to C2C12 mouse myocyte cells delayed myoblast differentiation due to reduced myogenin expression, the transcription factor that differentiates myoblasts into myotubes. In this study, several mechanisms by which arsenic could alter myogenin expression were examined. Exposing differentiating C2C12 cells to 20 nM arsenic increased H3K9 dimethylation (H3K9me2) and H3K9 trimethylation (H3K9me3) by 3-fold near the transcription start site of myogenin, which is indicative of increased repressive marks, and reduced H3K9 acetylation (H3K9Ac) by 0.5-fold, indicative of reduced permissive marks. Protein expression of Glp or Ehmt1, a H3-K9 methyltransferase, was also increased by 1.6-fold in arsenic-exposed cells. In addition to the altered histone remodeling status on the myogenin promoter, protein and mRNA levels of Igf-1, a myogenic growth factor, were significantly repressed by arsenic exposure. Moreover, a 2-fold induction of Ezh2 expression, and an increased recruitment of Ezh2 (3.3-fold) and Dnmt3a (∼ 2-fold) to the myogenin promoter at the transcription start site (− 40 to + 42), were detected in the arsenic-treated cells. Together, we conclude that the repressed myogenin expression in arsenic-exposed C2C12 cells was likely due to a combination of reduced expression of Igf-1, enhanced nuclear expression and promoter recruitment of Ezh2, and altered histone remodeling status on myogenin promoter (− 40 to + 42). -- Highlights: ► Igf-1 expression is decreased in C2C12 cells after 20 nM arsenite exposure. ► Arsenic exposure alters histone remodeling on the myogenin promoter. ► Glp expression, a H3–K9 methyltransferase, was increased in arsenic-exposed cells. ► Ezh2

  18. The PTEN/NRF2 Axis Promotes Human Carcinogenesis

    DEFF Research Database (Denmark)

    Rojo, Ana I; Rada, Patricia; Mendiola, Marta;

    2014-01-01

    UNLABELLED: Abstract Aims: A recent study conducted in mice reported that liver-specific knockout of tumor suppressor Pten augments nuclear factor (erythroid-derived 2)-like 2 (NRF2) transcriptional activity. Here, we further investigated how phosphatase and tensin homolog deleted on chromosome 1...

  19. Neuroprotection induced by post-conditioning following ischemia/reperfusion in mice is associated with altered microRNA expression.

    Science.gov (United States)

    Miao, Wei; Bao, Tian-Hao; Han, Jian-Hong; Yin, Mei; Zhang, Jie; Yan, Yong; Zhu, Yu-Hong

    2016-09-01

    Ischemic preconditioning and ischemic postconditioning (IPostC) represent promising strategies to reduce ischemia-reperfusion (I/R) injury and attenuate the lethal ischemic damage following stroke. However, the mechanism underlying this attenuation remains to be elucidated. It was hypothesized that alterations in microRNA (miRNA) expression in the cerebral cortex and hippocampus of mice following I/R is associated with the functional improvement induced by IPostC. Behavioral changes were assessed in a mouse model of I/R in the absence or presence of IPostC, followed by microarray analyses to investigate the expressional alterations of miRNAs in the cerebral cortex and hippocampus of mice. The results of the present study revealed that IPostC abrogated the neurological impairment and hippocampus‑associated cognitive deficits induced by I/R, and upregulated or downregulated the expression levels of numerous miRNAs. Furthermore, the upregulation of miR‑19a, and the downregulation of miR‑1, let‑7f and miR‑124 expression levels following IPostC was confirmed utilizing reverse transcription‑quantitative polymerase chain reaction. The results of the present study demonstrated that alterations in miRNA expression in the cerebral cortex and hippocampus of mice following I/R was associated with the neuroprotection induced by IPostC. PMID:27485299

  20. Altered expression of mitochondrial related genes in the native Tibetan placents by mitochondrial cDNA array analysis

    Institute of Scientific and Technical Information of China (English)

    Luo Yongjun; Gao Wenxiang; Zhao Xiuxin; Suo Lang; Chen Li; Liu Fuyu; Song Tonglin; Chen Jian; Gao Yuqi

    2009-01-01

    Objective: To explore the mechanism of native Tibetan fetuses adaptation to hypoxia, we tried to find the different expression genes about mitochondrial function in the native Tibetan placents. Methods: In this study, the placents of native Tibetan and the high-altitude Han (ha-Han) were collected. After the total RNA extraction, the finally synthesized cDNAs were hybridized to mitochondrial array to find the altered expression genes between them. Then, the cytochrome c oxidase 17 (Coxl7), dynactin 2 (DCTN2, also known as p50), and vascular endothelial growth factor receptor (VEGFR, also known as KDR) were chosen from the altered expression genes to further verify the array results using the SYBR Green real-time PCR. Because the altered expression genes (such as Cybb and Coxl 7) in the array results related to the activities of COXI and COXIV, the placental mitochondria activities of COXI and COXIV were measured to find their changes in the hypoxia. Results: By a standard of >1.5 or <0.67, there were 24 different expressed genes between the native Tibetan and the ha-Han placents, including 3 up-regulated genes and 21 down-regulated genes. These genes were related to energy metabolism, signal transduction, cell proliferation, electron transport, cell adhesion, nucleotide-excision repair. The array results of Coxl7, DCTN2 and KDR were further verified by the real-time RT-PCR. Through the mitochondria respiration measurements, the activity of COXI in the native Tibetan placents were higher than that of ha-Han, there was no difference in COXIV activity between them. Conclusion: The altered mitochondrial related genes in the native Tibetan placents may have a role in the high altitude adaptation for fetuses through changing the activity of mitochondrial COX.

  1. Altered CSMD1 Expression Alters Cocaine-Conditioned Place Preference: Mutual Support for a Complex Locus from Human and Mouse Models.

    Directory of Open Access Journals (Sweden)

    Jana Drgonova

    Full Text Available The CUB and sushi multiple domains 1 (CSMD1 gene harbors signals provided by clusters of nearby SNPs with 10-2 > p > 10-8 associations in genome wide association (GWAS studies of addiction-related phenotypes. A CSMD1 intron 3 SNP displays p < 10-8 association with schizophrenia and more modest associations with individual differences in performance on tests of cognitive abilities. CSDM1 encodes a cell adhesion molecule likely to influence development, connections and plasticity of brain circuits in which it is expressed. We tested association between CSMD1 genotypes and expression of its mRNA in postmortem human brains (n = 181. Expression of CSMD1 mRNA in human postmortem cerebral cortical samples differs 15-25%, in individuals with different alleles of simple sequence length and SNP polymorphisms located in the gene's third/fifth introns, providing nominal though not Bonferroni-corrected significance. These data support mice with altered CSMD1 expression as models for common human CSMD1 allelic variation. We tested baseline and/or cocaine-evoked addiction, emotion, motor and memory-related behaviors in +/- and -/- csmd1 knockout mice on mixed and on C57-backcrossed genetic backgrounds. Initial csmd1 knockout mice on mixed genetic backgrounds displayed a variety of coat colors and sizable individual differences in responses during behavioral testing. Backcrossed mice displayed uniform black coat colors. Cocaine conditioned place preference testing revealed significant influences of genotype (p = 0.02. Homozygote knockouts displayed poorer performance on aspects of the Morris water maze task. They displayed increased locomotion in some, though not all, environments. The combined data thus support roles for common level-of-expression CSMD1 variation in a drug reward phenotype relevant to addiction and in cognitive differences that might be relevant to schizophrenia. Mouse model results can complement data from human association findings of modest

  2. The adipokine leptin increases skeletal muscle mass and significantly alters skeletal muscle miRNA expression profile in aged mice

    International Nuclear Information System (INIS)

    Research highlights: → Aging is associated with muscle atrophy and loss of muscle mass, known as the sarcopenia of aging. → We demonstrate that age-related muscle atrophy is associated with marked changes in miRNA expression in muscle. → Treating aged mice with the adipokine leptin significantly increased muscle mass and the expression of miRNAs involved in muscle repair. → Recombinant leptin therapy may therefore be a novel approach for treating age-related muscle atrophy. -- Abstract: Age-associated loss of muscle mass, or sarcopenia, contributes directly to frailty and an increased risk of falls and fractures among the elderly. Aged mice and elderly adults both show decreased muscle mass as well as relatively low levels of the fat-derived hormone leptin. Here we demonstrate that loss of muscle mass and myofiber size with aging in mice is associated with significant changes in the expression of specific miRNAs. Aging altered the expression of 57 miRNAs in mouse skeletal muscle, and many of these miRNAs are now reported to be associated specifically with age-related muscle atrophy. These include miR-221, previously identified in studies of myogenesis and muscle development as playing a role in the proliferation and terminal differentiation of myogenic precursors. We also treated aged mice with recombinant leptin, to determine whether leptin therapy could improve muscle mass and alter the miRNA expression profile of aging skeletal muscle. Leptin treatment significantly increased hindlimb muscle mass and extensor digitorum longus fiber size in aged mice. Furthermore, the expression of 37 miRNAs was altered in muscles of leptin-treated mice. In particular, leptin treatment increased the expression of miR-31 and miR-223, miRNAs known to be elevated during muscle regeneration and repair. These findings suggest that aging in skeletal muscle is associated with marked changes in the expression of specific miRNAs, and that nutrient-related hormones such as leptin

  3. The adipokine leptin increases skeletal muscle mass and significantly alters skeletal muscle miRNA expression profile in aged mice

    Energy Technology Data Exchange (ETDEWEB)

    Hamrick, Mark W., E-mail: mhamrick@mail.mcg.edu [Department of Cellular Biology and Anatomy, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA (United States); Department of Orthopaedic Surgery, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA (United States); Herberg, Samuel; Arounleut, Phonepasong [Department of Cellular Biology and Anatomy, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA (United States); Department of Orthopaedic Surgery, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA (United States); He, Hong-Zhi [Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI (United States); Department of Dermatology, Henry Ford Health System, Detroit, MI (United States); Shiver, Austin [Department of Cellular Biology and Anatomy, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA (United States); Department of Orthopaedic Surgery, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA (United States); Qi, Rui-Qun [Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI (United States); Department of Dermatology, Henry Ford Health System, Detroit, MI (United States); Zhou, Li [Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI (United States); Department of Dermatology, Henry Ford Health System, Detroit, MI (United States); Department of Internal Medicine, Henry Ford Health System, Detroit, MI (United States); Isales, Carlos M. [Department of Cellular Biology and Anatomy, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA (United States); Department of Orthopaedic Surgery, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA (United States); and others

    2010-09-24

    Research highlights: {yields} Aging is associated with muscle atrophy and loss of muscle mass, known as the sarcopenia of aging. {yields} We demonstrate that age-related muscle atrophy is associated with marked changes in miRNA expression in muscle. {yields} Treating aged mice with the adipokine leptin significantly increased muscle mass and the expression of miRNAs involved in muscle repair. {yields} Recombinant leptin therapy may therefore be a novel approach for treating age-related muscle atrophy. -- Abstract: Age-associated loss of muscle mass, or sarcopenia, contributes directly to frailty and an increased risk of falls and fractures among the elderly. Aged mice and elderly adults both show decreased muscle mass as well as relatively low levels of the fat-derived hormone leptin. Here we demonstrate that loss of muscle mass and myofiber size with aging in mice is associated with significant changes in the expression of specific miRNAs. Aging altered the expression of 57 miRNAs in mouse skeletal muscle, and many of these miRNAs are now reported to be associated specifically with age-related muscle atrophy. These include miR-221, previously identified in studies of myogenesis and muscle development as playing a role in the proliferation and terminal differentiation of myogenic precursors. We also treated aged mice with recombinant leptin, to determine whether leptin therapy could improve muscle mass and alter the miRNA expression profile of aging skeletal muscle. Leptin treatment significantly increased hindlimb muscle mass and extensor digitorum longus fiber size in aged mice. Furthermore, the expression of 37 miRNAs was altered in muscles of leptin-treated mice. In particular, leptin treatment increased the expression of miR-31 and miR-223, miRNAs known to be elevated during muscle regeneration and repair. These findings suggest that aging in skeletal muscle is associated with marked changes in the expression of specific miRNAs, and that nutrient

  4. Feline immunodeficiency virus OrfA alters gene expression of splicing factors and proteasome-ubiquitination proteins

    International Nuclear Information System (INIS)

    Expression of the feline immunodeficiency virus (FIV) accessory protein OrfA (or Orf2) is critical for efficient viral replication in lymphocytes, both in vitro and in vivo. OrfA has been reported to exhibit functions in common with the human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) accessory proteins Vpr and Tat, although the function of OrfA has not been fully explained. Here, we use microarray analysis to characterize how OrfA modulates the gene expression profile of T-lymphocytes. The primary IL-2-dependent T-cell line 104-C1 was transduced to express OrfA. Functional expression of OrfA was demonstrated by trans complementation of the OrfA-defective clone, FIV-34TF10. OrfA-expressing cells had a slightly reduced cell proliferation rate but did not exhibit any significant alteration in cell cycle distribution. Reverse-transcribed RNA from cells expressing green fluorescent protein (GFP) or GFP + OrfA were hybridized to Affymetrix HU133 Plus 2.0 microarray chips representing more than 47,000 genome-wide transcripts. By using two statistical approaches, 461 (Rank Products) and 277 (ANOVA) genes were identified as modulated by OrfA expression. The functional relevance of the differentially expressed genes was explored by Ingenuity Pathway Analysis. The analyses revealed alterations in genes critical for RNA post-transcriptional modifications and protein ubiquitination as the two most significant functional outcomes of OrfA expression. In these two groups, several subunits of the spliceosome, cellular splicing factors and family members of the proteasome-ubiquitination system were identified. These findings provide novel information on the versatile function of OrfA during FIV infection and indicate a fine-tuning mechanism of the cellular environment by OrfA to facilitate efficient FIV replication

  5. Cysteine- rich secretory protein 3 (CRISP3), ERG and PTEN define a molecular subtype of prostate cancer with implication to patients’ prognosis

    OpenAIRE

    Al Bashir, Samir; Alshalalfa, Mohammed; Hegazy, Samar A.; Dolph, Michael; Donnelly, Bryan; Bismar, Tarek A.

    2014-01-01

    Cysteine- rich secretory protein 3 (CRISP3) prognostic significance in prostate cancer (PCA) has generated mixed result. Herein, we investigated and independently validated CRISP3 expression in relation to ERG and PTEN genomic aberrations and clinical outcome. CRISP3 protein expression was examined by immunohistochemistry using a cohort of patients with localized PCA (n = 215) and castration resistant PCA (CRPC) (n = 46). The Memorial Sloan Kettering (MSKCC) and Swedish cohorts were used for ...

  6. Levonorgestrel exposure to fathead minnows (Pimephales promelas) alters survival, growth, steroidogenic gene expression and hormone production.

    Science.gov (United States)

    Overturf, Matthew D; Overturf, Carmen L; Carty, Dennis R; Hala, David; Huggett, Duane B

    2014-03-01

    Human pharmaceuticals are commonly detected in the environment. Concern over these compounds in the environment center around the potential for pharmaceuticals to interfere with the endocrine system of aquatic organisms. The main focus of endocrine disruption research has centered on how estrogenic and androgenic compounds interact with the endocrine system to elicit reproductive effects. Other classes of compounds, such as progestins, have been overlooked. Recently, studies have investigated the potential for synthetic progestins to impair reproduction and growth in aquatic organisms. The present study utilizes the OECD 210 Early-life Stage (ELS) study to investigate the impacts levonorgestrel (LNG), a synthetic progestin, on fathead minnow (FHM) survival and growth. After 28 days post-hatch, survival of larval FHM was impacted at 462 ng/L, while growth was significantly reduced at 86.9 ng/L. Further analysis was conducted by measuring specific endocrine related mRNA transcript profiles in FHM larvae following the 28 day ELS exposure to LNG. Transcripts of 3β-HSD, 20β-HSD, CYP17, AR, ERα, and FSH were significantly down-regulated following 28d exposure to 16.3 ng/L LNG, while exposure to 86.9 ng/L significantly down-regulated 3β-HSD, 20β-HSD, CYP19A, and FSH. At 2,392 ng/L of LNG, a significant down-regulation occurred with CYP19A and ERβ transcripts, while mPRα and mPRβ profiles were significantly induced. No significant changes occurred in 11β-HSD, CYP11A, StAR, LHβ, and VTG mRNA expression following LNG exposure. An ex vivo steroidogenesis assay was conducted with sexually mature female FHM following a 7 day exposure 100 ng/L LNG with significant reductions observed in pregnenolone, 17α,20β-dihydroxy-4-pregnen-3-one (17,20-DHP), testosterone, and 11-ketotestosterone. Together these data suggest LNG can negatively impact FHM larval survival and growth, with significant alterations in endocrine related responses. PMID:24503577

  7. Diaphragm Unloading via Controlled Mechanical Ventilation Alters the Gene Expression Profile

    OpenAIRE

    DeRuisseau, Keith C.; Shanely, R Andrew; Akunuri, Nagabhavani; Hamilton, Marc T.; Van Gammeren, Darin; Zergeroglu, A. Murat; McKenzie, Michael; Powers, Scott K.

    2005-01-01

    Rationale: Prolonged controlled mechanical ventilation results in diaphragmatic inactivity and promotes oxidative injury, atrophy, and contractile dysfunction in this important inspiratory muscle. However, the impact of controlled mechanical ventilation on global mRNA alterations in the diaphragm remains unknown.

  8. Developmental Hypothyroidism Alters Brain-Derived Neurotrophic Factor (BDNF) Expression in Adulthood.

    Science.gov (United States)

    Severe developmental thyroid hormone (TH) insufficiency results in alterations in brain structure/function and lasting behavioral impairments. Environmental toxicants reduce circulating levels of TH, but the disruption is modest and the doseresponse relationships of TH and neuro...

  9. Altered expression of apoptotic genes in response to OCT4B1 suppression in human tumor cell lines.

    Science.gov (United States)

    Mirzaei, Mohammad Reza; Najafi, Ali; Arababadi, Mohammad Kazemi; Asadi, Malek Hosein; Mowla, Seyed Javad

    2014-10-01

    OCT4B1 is a newly discovered spliced variant of OCT4 which is primarily expressed in pluripotent and tumor cells. Based on our previous studies, OCT4B1 is significantly overexpressed in tumors, where it endows an anti-apoptotic property to tumor cells. However, the mechanism by which OCT4B1 regulates the apoptotic pathway is not yet elucidated. Here, we investigated the effects of OCT4B1 suppression on the expression alteration of 84 genes involved in apoptotic pathway. The AGS (gastric adenocarcinoma), 5637 (bladder tumor), and U-87MG (brain tumor) cell lines were transfected with OCT4B1 or irrelevant siRNAs. The expression level of apoptotic genes was then quantified using a human apoptosis panel-PCR kit. Our data revealed an almost similar pattern of alteration in the expression profile of apoptotic genes in all three studied cell lines, following OCT4B1 suppression. In general, the expression of more than 54 apoptotic genes (64 % of arrayed genes) showed significant changes. Among these, some up-regulated (CIDEA, CIDEB, TNFRSF1A, TNFRSF21, TNFRSF11B, TNFRSF10B, and CASP7) and down-regulated (BCL2, BCL2L11, TP73, TP53, BAD, TRAF3, TRAF2, BRAF, BNIP3L, BFAR, and BAX) genes had on average more than tenfold gene expression alteration in all three examined cell lines. With some minor exceptions, suppression of OCT4B1 caused upregulation of pro-apoptotic and down-regulation of anti-apoptotic genes in transfected tumor cells. Uncovering OCT4B1 down-stream targets could further elucidate its part in tumorigenesis, and could lead to finding a new approach to combat cancer, based on targeting OCT4B1. PMID:25008565

  10. Neither bovine somatotropin nor growth hormone-releasing factor alters expression of thyroid hormone receptors in liver and mammary tissues.

    Science.gov (United States)

    Capuco, A V; Binelli, M; Tucker, H A

    2011-10-01

    Physiological effects of thyroid hormones are mediated primarily by binding of triiodothyronine to specific nuclear receptors. Organ-specific changes in production of triiodothyronine from its prohormone, thyroxine, have been hypothesized to target the action of thyroid hormones on the mammary gland and play a role in mediating or augmenting a galactopoietic response to bovine somatotropin (bST). Additionally, tissue responsiveness to thyroid hormones may be altered by changes in the number or affinity of nuclear receptors for thyroid hormones. In the present study, effects of bST and bovine growth hormone-releasing factor (bGRF) on thyroid hormone receptors in liver and mammary gland were studied. Lactating Holstein cows received continuous infusions of bST or bGRF for 63 d or served as uninfused controls. Nuclei were isolated from harvested mammary and liver tissues and incubated with [(125)I]-triiodothyronine. Treatments did not alter the capacity or affinity of specific binding sites for triiodothyronine in liver or mammary nuclei. Evaluation of transcript abundance for thyroid hormone receptors showed that isoforms of thyroid hormone receptor or retinoid receptor (which may influence thyroid receptor action) expressed in the mammary gland were not altered by bST or bGRF treatment. Data do not support the hypothesis that administration of bST or bGRF alters sensitivity of mammary tissue by changing expression of thyroid hormone receptors.

  11. Parasitic castration by the digenian trematode Allopodocotyle sp. alters gene expression in the brain of the host mollusc Haliotis asinina.

    Science.gov (United States)

    Rice, Tamika; McGraw, Elizabeth; O'Brien, Elizabeth K; Reverter, Antonio; Jackson, Daniel J; Degnan, Bernard M

    2006-06-26

    Infection of molluscs by digenean trematode parasites typically results in the repression of reproduction -- the so-called parasitic castration. This is known to occur by altering the expression of a range of host neuropeptide genes. Here we analyse the expression levels of 10 members of POU, Pax, Sox and Hox transcription factor gene families, along with genes encoding FMRFamide, prohormone convertase and beta-tubulin, in the brain ganglia of actively reproducing (summer), non-reproducing (winter) and infected Haliotis asinina (a vetigastropod mollusc). A number of the regulatory genes are differentially expressed in parasitised H. asinina, but in only a few cases do expression patterns in infected animals match those occurring in animals where reproduction is normally repressed.

  12. Yersinia enterocolitica serotype O:3 alters the expression of serologic HLA-B27 epitopes on human monocytes.

    OpenAIRE

    Wuorela, M; Jalkanen, S; Kirveskari, J; Laitio, P; Granfors, K

    1997-01-01

    The expression of serologic HLA-B27 epitopes on leukocytes of patients with reactive arthritis or ankylosing spondylitis has been shown to be modified in the course of the disease. The purpose of this work was to study whether phagocytosis of arthritis-triggering microbes in vitro alters the expression of HLA-B27 molecules on human antigen-presenting cells and to characterize the underlying mechanisms. Human monocytes and HLA-B27- or HLA-A2-transfected human U-937 cells were exposed to Yersin...

  13. Platelets alter gene expression profile in human brain endothelial cells in an in vitro model of cerebral malaria.

    Directory of Open Access Journals (Sweden)

    Mathieu Barbier

    Full Text Available Platelet adhesion to the brain microvasculature has been associated with cerebral malaria (CM in humans, suggesting that platelets play a role in the pathogenesis of this syndrome. In vitro co-cultures have shown that platelets can act as a bridge between Plasmodium falciparum-infected red blood cells (pRBC and human brain microvascular endothelial cells (HBEC and potentiate HBEC apoptosis. Using cDNA microarray technology, we analyzed transcriptional changes of HBEC in response to platelets in the presence or the absence of tumor necrosis factor (TNF and pRBC, which have been reported to alter gene expression in endothelial cells. Using a rigorous statistical approach with multiple test corrections, we showed a significant effect of platelets on gene expression in HBEC. We also detected a strong effect of TNF, whereas there was no transcriptional change induced specifically by pRBC. Nevertheless, a global ANOVA and a two-way ANOVA suggested that pRBC acted in interaction with platelets and TNF to alter gene expression in HBEC. The expression of selected genes was validated by RT-qPCR. The analysis of gene functional annotation indicated that platelets induce the expression of genes involved in inflammation and apoptosis, such as genes involved in chemokine-, TREM1-, cytokine-, IL10-, TGFβ-, death-receptor-, and apoptosis-signaling. Overall, our results support the hypothesis that platelets play a pathogenic role in CM.

  14. Feeding period restriction alters the expression of peripheral circadian rhythm genes without changing body weight in mice.

    Directory of Open Access Journals (Sweden)

    Hagoon Jang

    Full Text Available Accumulating evidence suggests that the circadian clock is closely associated with metabolic regulation. However, whether an impaired circadian clock is a direct cause of metabolic dysregulation such as body weight gain is not clearly understood. In this study, we demonstrate that body weight gain in mice is not significantly changed by restricting feeding period to daytime or nighttime. The expression of peripheral circadian clock genes was altered by feeding period restriction, while the expression of light-regulated hypothalamic circadian clock genes was unaffected by either a normal chow diet (NCD or a high-fat diet (HFD. In the liver, the expression pattern of circadian clock genes, including Bmal1, Clock, and Per2, was changed by different feeding period restrictions. Moreover, the expression of lipogenic genes, gluconeogenic genes, and fatty acid oxidation-related genes in the liver was also altered by feeding period restriction. Given that feeding period restriction does not affect body weight gain with a NCD or HFD, it is likely that the amount of food consumed might be a crucial factor in determining body weight. Collectively, these data suggest that feeding period restriction modulates the expression of peripheral circadian clock genes, which is uncoupled from light-sensitive hypothalamic circadian clock genes.

  15. Genetic aberration of PTEN in peripheral T cell lymphoma, not otherwise specified%非特指外周T细胞淋巴瘤中PTEN的改变

    Institute of Scientific and Technical Information of China (English)

    朱文娟; 张建中

    2012-01-01

    目的 观察非特指外周T细胞淋巴瘤(peripheral T cell lymphoma,not otherwise specified,PTCL-NOS)中抑癌基因(phosphatase and tensin homolog deleted on chromosome ten,PTEN)的改变情况,探讨其与肿瘤生物学行为的关系,为阐明PTCL-NOS的发生、发展机制提供科学依据.方法应用间期双色荧光原位杂交(fluorescence in situ hybridization,FISH)技术检测36例PTCL-NOS石蜡包埋组织中PTEN基因的改变情况,分析其改变与各临床参数的关系.结果 36例PTCL-NOS中8例出现PTEN杂合性缺失(loss of heterozygosity,LOH);Kaplan-Meier生存分析显示该基因异常组较正常组生存期明显缩短(P0.05).结论 PTCL-NOS存在的抑癌基因PTEN杂合性缺失,在PTCL-NOS发生、发展中可能起重要作用,是评估该肿瘤预后的重要指标.%Purpose To investigate the genetic changes of tumor suppressor gene PTEN in PTCL-NOS, and to explore its relationship with the development of PTCL-NOS and other clinicopathological parameters. Methods Thirty-six cases of PTCL-NOS were studied by fluorescence in-situ hybridization ( FISH ) using interphase dual-colour probes. The probes were generated from BAC clones RP11 - 380G5 corresponding to PTEN gene. Correlation of the genetic changes with patients prognosis and other clinical parameters was analyzed. Results Loss of heterozygosity ( LOH ) of PTEN presented in 8/36 cases; Kaplan-Meier survival analysis indicated there was a trend that the group with PTEN gene change had a poorer prognosis than the group without PTEN gene change ( P 0. 05 ). Conclusion A significant percentage of PTCL-NOS carry the genetic alteration of PTEN that may play an important role in the pathogenesis of PTCL-NOS and the e-valuation of the patient' s prognosis.

  16. Altered expression of neuropeptides in the primary somatosensory cortex of the Down syndrome model Ts65Dn.

    Science.gov (United States)

    Hernández, Samuel; Gilabert-Juan, Javier; Blasco-Ibáñez, José Miguel; Crespo, Carlos; Nácher, Juan; Varea, Emilio

    2012-02-01

    Down syndrome is the most common genetic disorder associated with mental retardation. Subjects and mice models for Down syndrome (such as Ts65Dn) show defects in the formation of neuronal networks in both the hippocampus and the cerebral cortex. The principal neurons display alterations in the morphology, density and distribution of dendritic spines in the cortex as well as in the hippocampus. Several evidences point to the possibility that the atrophy observed in principal neurons could be mediated by changes in their inhibitory inputs and, in fact, an imbalance between excitation and inhibition has been observed in Ts65Dn mice in these regions, which are crucial for learning and information processing. These animals have an increased density of interneurons in the primary somatosensory cortex, especially of those expressing calretinin and calbindin D-28k. Here, we have analysed the expression and distribution of several neuropeptides in the primary somatosensory cortex of Ts65Dn mice in order to investigate whether these subpopulations of interneurons are affected. We have observed an increase in the total density of somatostatin expressing interneurons and of those expressing VIP in layer IV in Ts65Dn mice. The typology of the somatostatin and VIP interneurons was unaltered as attested by the pattern of co-expression with other markers. Somatostatin immunoreactive neurons co-express mainly D-28k calbindin and VIP expressing interneurons maintain its pattern of co-expression with calcium binding proteins. These alterations, in case they were also present in subjects with Down syndrome, could be related to their impairment in cognitive profile and could be involved in the neurological defects observed in this disorder.

  17. Actin cytoskeleton organization, cell surface modification and invasion rate of 5 glioblastoma cell lines differing in PTEN and p53 status

    Energy Technology Data Exchange (ETDEWEB)

    Djuzenova, Cholpon S., E-mail: djuzenova_t@ukw.de [Department of Radiation Oncology, University Hospital, Josef-Schneider-Strasse 11, D-97080 Würzburg (Germany); Fiedler, Vanessa [Department of Radiation Oncology, University Hospital, Josef-Schneider-Strasse 11, D-97080 Würzburg (Germany); Memmel, Simon [Lehrstuhl für Biotechnologie und Biophysik, Universität Würzburg, Biozentrum Am Hubland, 97070 Würzburg (Germany); Katzer, Astrid; Hartmann, Susanne [Department of Radiation Oncology, University Hospital, Josef-Schneider-Strasse 11, D-97080 Würzburg (Germany); Krohne, Georg [Elektronenmikroskopie, Biozentrum, Universität Würzburg, Am Hubland, 97070 Würzburg (Germany); Zimmermann, Heiko [Hauptabteilung Biophysik and Kryotechnologie, Fraunhofer-Institut für Biomedizinische Technik, Lehrstuhl für Molekulare und Zelluläre Biotechnologie/Nanotechnologie, Universität des Saarlandes, Ensheimer Strasse 48, 66386 St. Ingbert (Germany); Scholz, Claus-Jürgen [Interdisciplinary Center for Clinical Research, University Hospital, Versbacher Strasse 7, 97078 Würzburg (Germany); Polat, Bülent; Flentje, Michael [Department of Radiation Oncology, University Hospital, Josef-Schneider-Strasse 11, D-97080 Würzburg (Germany); and others

    2015-01-15

    Glioblastoma cells exhibit highly invasive behavior whose mechanisms are not yet fully understood. The present study explores the relationship between the invasion capacity of 5 glioblastoma cell lines differing in p53 and PTEN status, expression of mTOR and several other marker proteins involved in cell invasion, actin cytoskeleton organization and cell morphology. We found that two glioblastoma lines mutated in both p53 and PTEN genes (U373-MG and SNB19) exhibited the highest invasion rates through the Matrigel or collagen matrix. In DK-MG (p53wt/PTENwt) and GaMG (p53mut/PTENwt) cells, F-actin mainly occurred in the numerous stress fibers spanning the cytoplasm, whereas U87-MG (p53wt/PTENmut), U373-MG and SNB19 (both p53mut/PTENmut) cells preferentially expressed F-actin in filopodia and lamellipodia. Scanning electron microscopy confirmed the abundant filopodia and lamellipodia in the PTEN mutated cell lines. Interestingly, the gene profiling analysis revealed two clusters of cell lines, corresponding to the most (U373-MG and SNB19, i.e. p53 and PTEN mutated cells) and less invasive phenotypes. The results of this study might shed new light on the mechanisms of glioblastoma invasion. - Highlights: • We examine 5 glioblastoma lines on the invasion capacity and actin cytoskeleton. • Glioblastoma cell lines mutated in both p53 and PTEN were the most invasive. • Less invasive cells showed much less lamellipodia, but more actin stress fibers. • A mechanism for the differences in tumor cell invasion is proposed.

  18. Antroquinonol inhibits NSCLC proliferation by altering PI3K/mTOR proteins and miRNA expression profiles

    International Nuclear Information System (INIS)

    Antroquinonol a derivative of Antrodia camphorata has been reported to have antitumor effects against various cancer cells. However, the effect of antroquinonol on cell signalling and survival pathways in non-small cell lung cancer (NSCLC) cells has not been fully demarcated. Here we report that antroquinonol treatment significantly reduced the proliferation of three NSCLC cells. Treatment of A549 cells with antroquinonol increased cell shrinkage, apoptotic vacuoles, pore formation, TUNEL positive cells and increased Sub-G1 cell population with respect to time and dose dependent manner. Antroquinonol treatment not only increased the Sub-G1 accumulation but also reduced the protein levels of cdc2 without altering the expression of cyclin B1, cdc25C, pcdc2, and pcdc25C. Antroquinonol induced apoptosis was associated with disrupted mitochondrial membrane potential and activation of Caspase 3 and PARP cleavage in A549 cells. Moreover, antroquinonol treatment down regulated the expression of Bcl2 proteins, which was correlated with the decreased PI3K and mTOR protein levels without altering pro apoptotic and anti apoptotic proteins. Results from the microarray analysis demonstrated that antroquinonol altered the expression level of miRNAs compared with untreated control in A549 cells. The data collectively suggested the antiproliferative effect of antroquinonol on NSCLC A549 cells, which provides useful information for understanding the anticancer mechanism influenced by antroquinonol and is the first report to suggest that antroquinonol may be a promising chemotherapeutic agent for lung cancer.

  19. Does Parkinson's disease lead to alterations in the facial expression of pain?

    NARCIS (Netherlands)

    Priebe, Janosch A; Kunz, Miriam; Morcinek, Christian; Rieckmann, Peter; Lautenbacher, Stefan

    2015-01-01

    Hypomimia which refers to a reduced degree in facial expressiveness is a common sign in Parkinson's disease (PD). The objective of our study was to investigate how hypomimia affects PD patients' facial expression of pain. The facial expressions of 23 idiopathic PD patients in the Off-phase (without

  20. GRP78 as a regulator of liver steatosis and cancer progression mediated by loss of the tumor suppressor PTEN.

    Science.gov (United States)

    Chen, W-T; Zhu, G; Pfaffenbach, K; Kanel, G; Stiles, B; Lee, A S

    2014-10-16

    Glucose-regulated protein 78 (GRP78), a molecular chaperone widely elevated in human cancers, is critical for endoplasmic reticulum (ER) protein folding, stress signaling and PI3K/AKT activation. Genetic knockout models of GRP78 revealed that GRP78 maintains homeostasis of metabolic organs, including liver, pancreas and adipose tissues. Hepatocellular carcinoma (HCC) and cholangiocarcinoma (CC) are the most common liver cancers. There is a lack of effective therapeutics for HCC and CC, highlighting the need to further understand liver tumorigenic mechanisms. PTEN (phosphatase and tenson homolog deleted on chromosome 10), a tumor suppressor that antagonizes the PI3K/AKT pathway, is inactivated in a wide range of tumors, including 40-50% of human liver cancers. To elucidate the role of GRP78 in liver cancer, we created a mouse model with biallelic liver-specific deletion of Pten and Grp78 mediated by Albumin-Cre-recombinase (cP(f/f)78(f/f)). Interestingly, in contrast to PTEN, deletion of GRP78 was progressive but incomplete. At 3 months, cP(f/f)78(f/f) livers showed hepatomegaly, activation of lipogenic genes, exacerbated steatosis and liver injury, implying that GRP78 protects the liver against PTEN-null-mediated pathogenesis. Furthermore, in response to liver injury, we observed increased proliferation and expansion of bile duct and liver progenitor cells in cP(f/f)78(f/f) livers. Strikingly, bile duct cells in cP(f/f)78(f/f) livers maintained wild-type (WT) GRP78 level, whereas adjacent areas showed GRP78 reduction. Analysis of signaling pathways revealed selective JNK activation, β-catenin downregulation, along with PDGFRα upregulation, which was unique to cP(f/f)78(f/f) livers at 6 months. Development of both HCC and CC was accelerated and was evident in cP(f/f)78(f/f) livers at 8-9 months, coinciding with intense GRP78 expression in the cancer lesions, and GRP78 expression in adjacent normal areas reverted back to the WT level. In contrast, c78(f/f) livers

  1. Ursolic acid attenuates diabetic mesangial cell injury through the up-regulation of autophagy via miRNA-21/PTEN/Akt/mTOR suppression.

    Directory of Open Access Journals (Sweden)

    Xinxing Lu

    Full Text Available To investigate the effect of ursolic acid on autophagy mediated through the miRNA-21-targeted phosphoinositide 3 kinase (PI3K/protein kinase B (Akt/mammalian target of rapamycin (mTOR pathway in rat mesangial cells cultured under high glucose (HG conditions.Rat glomerular mesangial cells were cultured under normal glucose, HG, HG with the PI3K inhibitor LY294002 or HG with ursolic acid conditions. Cell proliferation and hypertrophy were assayed using an MTT assay and the ratio of total protein to cell number, respectively. The miRNA-21 expression was detected using RT-qPCR. The expression of phosphatase and tensin homolog (PTEN/AKT/mTOR signaling signatures, autophagy-associated protein and collagen I was detected by western blotting and RT-qPCR. Autophagosomes were observed using electron microscopy.Compared with mesangial cells cultured under normal glucose conditions, the cells exposed to HG showed up-regulated miRNA-21 expression, down-regulated PTEN protein and mRNA expression, up-regulated p85PI3K, pAkt, pmTOR, p62/SQSTMI, and collagen I expression and down-regulated LC3II expression. Ursolic acid and LY294002 inhibited HG-induced mesangial cell hypertrophy and proliferation, down-regulated p85PI3K, pAkt, pmTOR, p62/SQSTMI, and collagen I expression and up-regulated LC3II expression. However, LY294002 did not affect the expression of miRNA-21 and PTEN. Ursolic acid down-regulated miRNA-21 expression and up-regulated PTEN protein and mRNA expression.Ursolic acid inhibits the glucose-induced up-regulation of mesangial cell miRNA-21 expression, up-regulates PTEN expression, inhibits the activation of PI3K/Akt/mTOR signaling pathway, and enhances autophagy to reduce the accumulation of the extracellular matrix and ameliorate cell hypertrophy and proliferation.

  2. Gene expression profile and genomic alterations in colonic tumours induced by 1,2-dimethylhydrazine (DMH in rats

    Directory of Open Access Journals (Sweden)

    Giannini Augusto

    2010-05-01

    Full Text Available Abstract Background Azoxymethane (AOM or 1,2-dimethylhydrazine (DMH-induced colon carcinogenesis in rats shares many phenotypical similarities with human sporadic colon cancer and is a reliable model for identifying chemopreventive agents. Genetic mutations relevant to human colon cancer have been described in this model, but comprehensive gene expression and genomic analysis have not been reported so far. Therefore, we applied genome-wide technologies to study variations in gene expression and genomic alterations in DMH-induced colon cancer in F344 rats. Methods For gene expression analysis, 9 tumours (TUM and their paired normal mucosa (NM were hybridized on 4 × 44K Whole rat arrays (Agilent and selected genes were validated by semi-quantitative RT-PCR. Functional analysis on microarray data was performed by GenMAPP/MappFinder analysis. Array-comparative genomic hybridization (a-CGH was performed on 10 paired TUM-NM samples hybridized on Rat genome arrays 2 × 105K (Agilent and the results were analyzed by CGH Analytics (Agilent. Results Microarray gene expression analysis showed that Defcr4, Igfbp5, Mmp7, Nos2, S100A8 and S100A9 were among the most up-regulated genes in tumours (Fold Change (FC compared with NM: 183, 48, 39, 38, 36 and 32, respectively, while Slc26a3, Mptx, Retlna and Muc2 were strongly down-regulated (FC: -500; -376, -167, -79, respectively. Functional analysis showed that pathways controlling cell cycle, protein synthesis, matrix metalloproteinases, TNFα/NFkB, and inflammatory responses were up-regulated in tumours, while Krebs cycle, the electron transport chain, and fatty acid beta oxidation were down-regulated. a-CGH analysis showed that four TUM out of ten had one or two chromosomal aberrations. Importantly, one sample showed a deletion on chromosome 18 including Apc. Conclusion The results showed complex gene expression alterations in adenocarcinomas encompassing many altered pathways. While a-CGH analysis showed a

  3. Redox Modulation of PTEN Phosphatase Activity by Hydrogen Peroxide and Bisperoxidovanadium Complexes.

    Science.gov (United States)

    Lee, Chang-Uk; Hahne, Gernot; Hanske, Jonas; Bange, Tanja; Bier, David; Rademacher, Christoph; Hennig, Sven; Grossmann, Tom N

    2015-11-01

    PTEN is a dual-specificity protein tyrosine phosphatase. As one of the central tumor suppressors, a thorough regulation of its activity is essential for proper cellular homeostasis. The precise implications of PTEN inhibition by reactive oxygen species (e.g. H2 O2 ) and the subsequent structural consequences remain elusive. To study the effects of PTEN inhibition, bisperoxidovanadium (bpV) complexes serve as important tools with the potential for the treatment of nerve injury or cardiac ischemia. However, their mode of action is unknown, hampering further optimization and preventing therapeutic applications. Based on protein crystallography, mass spectrometry, and NMR spectroscopy, we elucidate the molecular basis of PTEN inhibition by H2O2 and bpV complexes. We show that both molecules inhibit PTEN via oxidative mechanisms resulting in the formation of the same intramolecular disulfide, therefore enabling the reactivation of PTEN under reductive conditions. PMID:26418532

  4. A recurrent regulatory change underlying altered expression and Wnt response of the stickleback armor plates gene EDA.

    Science.gov (United States)

    O'Brown, Natasha M; Summers, Brian R; Jones, Felicity C; Brady, Shannon D; Kingsley, David M

    2015-01-01

    Armor plate changes in sticklebacks are a classic example of repeated adaptive evolution. Previous studies identified ectodysplasin (EDA) gene as the major locus controlling recurrent plate loss in freshwater fish, though the causative DNA alterations were not known. Here we show that freshwater EDA alleles have cis-acting regulatory changes that reduce expression in developing plates and spines. An identical T → G base pair change is found in EDA enhancers of divergent low-plated fish. Recreation of the T → G change in a marine enhancer strongly reduces expression in posterior armor plates. Bead implantation and cell culture experiments show that Wnt signaling strongly activates the marine EDA enhancer, and the freshwater T → G change reduces Wnt responsiveness. Thus parallel evolution of low-plated sticklebacks has occurred through a shared DNA regulatory change, which reduces the sensitivity of an EDA enhancer to Wnt signaling, and alters expression in developing armor plates while preserving expression in other tissues. PMID:25629660

  5. Differential alterations in gene expression profiles contribute to time-dependent effects of nandrolone to prevent denervation atrophy

    Directory of Open Access Journals (Sweden)

    Bauman William A

    2010-10-01

    Full Text Available Abstract Background Anabolic steroids, such as nandrolone, slow muscle atrophy, but the mechanisms responsible for this effect are largely unknown. Their effects on muscle size and gene expression depend upon time, and the cause of muscle atrophy. Administration of nandrolone for 7 days beginning either concomitantly with sciatic nerve transection (7 days or 29 days later (35 days attenuated denervation atrophy at 35 but not 7 days. We reasoned that this model could be used to identify genes that are regulated by nandrolone and slow denervation atrophy, as well as genes that might explain the time-dependence of nandrolone effects on such atrophy. Affymetrix microarrays were used to profile gene expression changes due to nandrolone at 7 and 35 days and to identify major gene expression changes in denervated muscle between 7 and 35 days. Results Nandrolone selectively altered expression of 124 genes at 7 days and 122 genes at 35 days, with only 20 genes being regulated at both time points. Marked differences in biological function of genes regulated by nandrolone at 7 and 35 days were observed. At 35, but not 7 days, nandrolone reduced mRNA and protein levels for FOXO1, the mTOR inhibitor REDD2, and the calcineurin inhibitor RCAN2 and increased those for ApoD. At 35 days, correlations between mRNA levels and the size of denervated muscle were negative for RCAN2, and positive for ApoD. Nandrolone also regulated genes for Wnt signaling molecules. Comparison of gene expression at 7 and 35 days after denervation revealed marked alterations in the expression of 9 transcriptional coregulators, including Ankrd1 and 2, and many transcription factors and kinases. Conclusions Genes regulated in denervated muscle after 7 days administration of nandrolone are almost entirely different at 7 versus 35 days. Alterations in levels of FOXO1, and of genes involved in signaling through calcineurin, mTOR and Wnt may be linked to the favorable action of nandrolone on

  6. Heat shock gene expression and cytoskeletal alterations in mouse neuroblastoma cells

    NARCIS (Netherlands)

    Bergen en Henegouwen, P.M.P. van; Linnemans, W.A.M.

    1987-01-01

    The cytoskeleton of neuroblastoma cells, clone Neuro 2A, is altered by two stress conditions: heat shock and arsenite treatment. Microtubules are reorganized, intermediate filaments are aggregated around the nucleus, and the number of stress fibers is reduced. Since both stress modalities induce sim

  7. Expression and structural-functional alterations of α-1-acid glycoprotein at the pathological state

    Directory of Open Access Journals (Sweden)

    Kulinich A. O.

    2010-07-01

    Full Text Available The review analyzes up-to-date knowledge on structure and biological functions of α-acid glycoprotein. The special attention is given to alterations of fucosylation, sialylation and branching of orosomucoid at the acute, chronic inflammation and oncotransformations.

  8. Alterations of organ histopathology and metallolhionein mRNA expression in silver barb, Puntius gonionotus during subchronic cadmium exposure

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Common silver barb, Puntius gonionotus exposed to the nominal concentration of 0.06 mg/L Cd for 60 d, were assessed for histopathological alterations (gills, liver and kidney), metal accumulation, and metallothionein (MT) mRNA expression. Fish exhibited pathological symptoms such as hypertrophy and hyperplasia of primary and secondary gill lamellae, vacuolization in hepatocytes, and prominent tubular and glomerular damage in the kidney. In addition, kidney accumulated the highest content of cadmium, more than gills and liver. Expression of MT mRNA was increased in both liver and kidney of treated fish. Hepatic MT levels remained high after fish were removed to Cd-free water. In contrast, MT expression in kidney was peaked after 28 d of treatment and drastically dropped when fish were removed to Cd-free water. The high concentrations of Cd in hepatic tissues indicated an accumulation site or permanent damage on this tissue.

  9. Medullary Endocannabinoids Contribute to the Differential Resting Baroreflex Sensitivity in Rats with Altered Brain Renin-Angiotensin System Expression.

    Science.gov (United States)

    Schaich, Chris L; Grabenauer, Megan; Thomas, Brian F; Shaltout, Hossam A; Gallagher, Patricia E; Howlett, Allyn C; Diz, Debra I

    2016-01-01

    CB1 cannabinoid receptors are expressed on vagal afferent fibers and neurons within the solitary tract nucleus (NTS), providing anatomical evidence for their role in arterial baroreflex modulation. To better understand the relationship between the brain renin-angiotensin system (RAS) and endocannabinoid expression within the NTS, we measured dorsal medullary endocannabinoid tissue content and the effects of CB1 receptor blockade at this brain site on cardiac baroreflex sensitivity (BRS) in ASrAOGEN rats with low glial angiotensinogen, normal Sprague-Dawley rats and (mRen2)27 rats with upregulated brain RAS expression. Mass spectrometry revealed higher levels of the endocannabinoid 2-arachidonoylglycerol in (mRen2)27 compared to ASrAOGEN rats (2.70 ± 0.28 vs. 1.17 ± 0.09 ng/mg tissue; P system that influence cardiovagal BRS in animals with genetic alterations in the brain RAS.

  10. Alteration of somatostatin receptor subtype 2 gene expression in pancreatic tumor angiogenesis

    Institute of Scientific and Technical Information of China (English)

    Ren-Yi Qin; Ru-Liang Fang; Manoj Kumar Gupta; Zheng-Ren Liu; Da-Yu Wang; Qing Chang; Yi-Bei Chen

    2004-01-01

    AIM: To explore the difference of somatostatin receptorsubtype 2 (SST2R) gene expression in pancreatic canceroustissue and its adjacent tissue, and the relationship betweenthe change of SST2R gene expression and pancreatic tumorangiogenesis related genes.METHODS: The expressions of SST2R, DPC4, p53 and ras genes in cancer tissues of 40 patients with primary pancreatic cancer, and the expression of SST2R gene in its adjacent tissue were determined by immunohistochemiscal LSAB method and EnVisionTM method. Chi-square test was used to analyze the difference in expression of SST2R in pancreatic cancer tissue and its adjacent tissue, and the correlation of SST2R gene expression with the expression of p53, ras and DPC4 genes.RESULTS: Of the tissue specimens from 40 patients with primary pancreatic cancer, 35 (87.5%) cancer tissues showed a negative expression of SST2R gene, whereas 34 (85%) a positive expression of SST2R gene in its adjacent tissues.Five (12.5%) cancer tissues and its adjacent tissues simultaneously expressed SST2R. The expression of SST2R gene was markedly higher in pancreatic tissues adjacent to cancer than in pancreatic cancer tissues (P<0.05). The expression rates of p53, ras and DPC4 genes were 50%,60% and 72.5%, respectively. There was a significant negative correlation of SST2R with p53 and ras genes (X12=9.33,X22=15.43, P<0.01), but no significant correlation with DPC4 gene (X2=2.08, P >0.05).CONCLUSIO