WorldWideScience

Sample records for altered neuromuscular control

  1. Altered neuromuscular control mechanisms of the trapezius muscle in fibromyalgia

    Directory of Open Access Journals (Sweden)

    Karlsson Stefan J

    2010-03-01

    Full Text Available Abstract Background fibromyalgia is a relatively common condition with widespread pain and pressure allodynia, but unknown aetiology. For decades, the association between motor control strategies and chronic pain has been a topic for debate. One long held functional neuromuscular control mechanism is differential activation between regions within a single muscle. The aim of this study was to investigate differences in neuromuscular control, i.e. differential activation, between myalgic trapezius in fibromyalgia patients and healthy controls. Methods 27 fibromyalgia patients and 30 healthy controls performed 3 minutes bilateral shoulder elevations with different loads (0-4 Kg with a high-density surface electromyographical (EMG grid placed above the upper trapezius. Differential activation was quantified by the power spectral median frequency of the difference in EMG amplitude between the cranial and caudal parts of the upper trapezius. The average duration of the differential activation was described by the inverse of the median frequency of the differential activations. Results the median frequency of the differential activations was significantly lower, and the average duration of the differential activations significantly longer in fibromyalgia compared with controls at the two lowest load levels (0-1 Kg (p Conclusion these findings illustrate a different neuromuscular control between fibromyalgia patients and healthy controls during a low load functional task, either sustaining or resulting from the chronic painful condition. The findings may have clinical relevance for rehabilitation strategies for fibromyalgia.

  2. Aging and limb alter the neuromuscular control of goal-directed movements.

    Science.gov (United States)

    Kwon, MinHyuk; Chen, Yen-Ting; Fox, Emily J; Christou, Evangelos A

    2014-06-01

    The purpose of this study was to determine whether the neuromuscular control of goal-directed movements is different for young and older adults with the upper and lower limbs. Twenty young (25.1 ± 3.9 years) and twenty older adults (71.5 ± 4.8 years) attempted to accurately match the displacement of their limb to a spatiotemporal target during ankle dorsiflexion or elbow flexion movements. We quantified neuromuscular control by examining the movement endpoint accuracy and variability, and the antagonistic muscle activity using surface electromyography (EMG). Our results indicate that older adults exhibit impaired endpoint accuracy with both limbs due to greater time variability. In addition, older adults exhibit greater EMG burst and lower EMG burst variability as well as lower coactivation of the antagonistic muscles. The impaired accuracy of older adults during upper limb movements was related to lower coactivation of the antagonistic muscles, whereas their impaired accuracy during lower limb movements was related to the amplified EMG bursts. The upper limb exhibited greater movement control than the lower limb, and different neuromuscular parameters were related to the accuracy and consistency for each limb. Greater endpoint error during upper limb movements was related to lower coactivation of the antagonistic muscles, whereas greater endpoint error during lower limb movements was related to the amplified EMG bursts. These findings indicate that the age-associated impairments in movement control are associated with altered activation of the involved antagonistic muscles. In addition, independent of age, the neuromuscular control of goal-directed movements is different for the upper and lower limbs.

  3. Cause of exercise associated muscle cramps (EAMC)--altered neuromuscular control, dehydration or electrolyte depletion?

    Science.gov (United States)

    Schwellnus, M P

    2009-06-01

    Exercise Associated Muscle Cramps (EAMC) is one of the most common conditions that require medical attention during or immediately after sports events. Despite the high prevalence of this condition the aetiology of EAMC in athletes is still not well understood. The purpose of this review is to examine current scientific evidence in support of (1) the "electrolyte depletion" and "dehydration" hypotheses and (2) the "altered neuromuscular control" hypothesis in the aetiology of EAMC. In this review, scientific evidence will, as far as possible, be presented using evidence-based medicine criteria. This is particularly relevant in this field, as the quality of experimental methodology varies considerably among studies that are commonly cited in support of hypotheses to explain the aetiology of EAMC. Scientific evidence in support of the "electrolyte depletion" and "dehydration" hypotheses for the aetiology of EAMC comes mainly from anecdotal clinical observations, case series totalling 18 cases, and one small (n = 10) case-control study. Results from four prospective cohort studies do not support these hypotheses. In addition, the "electrolyte depletion" and "dehydration" hypotheses do not offer plausible pathophysiological mechanisms with supporting scientific evidence that could adequately explain the clinical presentation and management of EAMC. Scientific evidence for the "altered neuromuscular control" hypothesis is based on evidence from research studies in human models of muscle cramping, epidemiological studies in cramping athletes, and animal experimental data. Whilst it is clear that further evidence to support the "altered neuromuscular control" hypothesis is also required, research data are accumulating that support this as the principal pathophysiological mechanism for the aetiology of EAMC.

  4. Eccentric Exercise to Enhance Neuromuscular Control.

    Science.gov (United States)

    Lepley, Lindsey K; Lepley, Adam S; Onate, James A; Grooms, Dustin R

    Neuromuscular alterations are a major causal factor of primary and secondary injuries. Though injury prevention programs have experienced some success, rates of injuries have not declined, and after injury, individuals often return to activity with functionality below clinical recommendations. Considering alternative therapies to the conventional concentric exercise approach, such as one that can target neuromuscular injury risk and postinjury alterations, may provide for more effective injury prevention and rehabilitation protocols. Peer-reviewed sources available on the Web of Science and MEDLINE databases from 2000 through 2016 were gathered using searches associated with the keywords eccentric exercise, injury prevention, and neuromuscular control. Eccentric exercise will reduce injury risk by targeting specific neural and morphologic alterations that precipitate neuromuscular dysfunction. Clinical review. Level 4. Neuromuscular control is influenced by alterations in muscle morphology and neural activity. Eccentric exercise beneficially modifies several underlying factors of muscle morphology (fiber typing, cross-sectional area, working range, and pennation angle), and emerging evidence indicates that eccentric exercise is also beneficial to peripheral and central neural activity (alpha motorneuron recruitment/firing, sarcolemma activity, corticospinal excitability, and brain activation). There is mounting evidence that eccentric exercise is not only a therapeutic intervention influencing muscle morphology but also targets unique alterations in neuromuscular control, influencing injury risk.

  5. Trunk neuromuscular pattern alterations during a controlled functional task in a low back injured group deemed ready to resume regular activities.

    Science.gov (United States)

    Hubley-Kozey, Cheryl; Moreside, Janice M; Quirk, D Adam

    2014-01-01

    Trunk neuromuscular alterations have been found in those with chronic low back pain, but less well studied are whether responses are altered in those deemed recovered following an injury. Furthermore, coordinated trunk muscle responses are deemed important for normal spinal function, but there are no studies of temporal patterns early after a low back injury. Determining whether altered trunk muscle patterns exist early after injury could improve our understanding of recovery by providing an objective assessment of functional recovery and risk of re-injury. To determine if amplitude and temporal characteristics of trunk neuromuscular patterns differ during a dynamic functional task in a group of participants with recent (within 12 weeks) low back injury (LBI), but deemed ready to resume normal activities, when compared to those with no similar history of injury (ASYM). 35 participants in each group (17 females) were matched for age and body mass index (BMI); (ASYM 36 yrs, BMI 26, LBI 39 yrs, BMI 27). Participants performed a controlled lifting task (2.9 kg) in a standing maximum reach position, which altered frontal and sagittal plane moments of force. Electromyographic activity of 24 trunk muscle sites, as well as thoracic and pelvis position via an electromagnetic sensor was collected. Principal component analyses extracted the temporal and amplitude waveform patterns. Mixed model ANOVAs tested for effects (plow pain scores, the temporal and amplitude muscle activation patterns were altered in this LBI group indicating that differences exist compared to a non-low back injured group. The differences are not just relative amplitude differences among muscles but include differences in the temporal response to the flexion moment.

  6. Altered knee joint neuromuscular control during landing from a jump in 10-15 year old children with generalised joint hypermobility. A substudy of the CHAMPS-study Denmark

    DEFF Research Database (Denmark)

    Junge, Tina; Juul-Kristensen, B; Bloch Thorlund, Jonas

    Generalised Joint Hypermobility (GJH) is considered an intrinsic risk factor for knee injuries. Knee neuromuscular control during landing may be altered in GJH due to reduced passive stability. The aim was to identify differences in knee neuromuscular control during landing of the Single......-Leg-Hop-for-Distance test (SLHD) in 25 children with GJH compared to 29 children without GJH (controls), all 10-15 years. Inclusion criteria for GJH: Beighton score ≥5/9 and minimum one hypermobile knee. EMG was recorded from the quadriceps, the hamstring and the calf muscles, presented relative to Maximum Voluntary...... Electrical activity (MVE). There was no difference in jump length between groups. Before landing, GJH had 33% lower Semitendinosus, but 32% higher Gastrocnemius Medialis activity and 39% higher co-contraction of the lateral knee muscles, than controls. After landing, GJH had 36% lower Semitendinosus activity...

  7. Altered knee joint neuromuscular control during landing from a jump in 10-15year old children with Generalised Joint Hypermobility. A substudy of the CHAMPS-study Denmark

    DEFF Research Database (Denmark)

    Junge, Tina; Wedderkopp, Niels; Thorlund, Jonas Bloch

    2015-01-01

    Generalised Joint Hypermobility (GJH) is considered an intrinsic risk factor for knee injuries. Knee neuromuscular control during landing may be altered in GJH due to reduced passive stability. The aim was to identify differences in knee neuromuscular control during landing of the Single......-Leg-Hop-for-Distance test (SLHD) in 25 children with GJH compared to 29 children without GJH (controls), all 10-15years. Inclusion criteria for GJH: Beighton score⩾5/9 and minimum one hypermobile knee. EMG was recorded from the quadriceps, the hamstring and the calf muscles, presented relative to Maximum Voluntary...... Electrical activity (MVE). There was no difference in jump length between groups. Before landing, GJH had 33% lower Semitendinosus, but 32% higher Gastrocnemius Medialis activity and 39% higher co contraction of the lateral knee muscles, than controls. After landing, GJH had 36% lower Semitendinosus activity...

  8. Muscle mechanics and neuromuscular control

    NARCIS (Netherlands)

    Hof, AL

    The purpose of this paper is to demonstrate that the properties of the mechanical system, especially muscle elasticity and limb mass, to a large degree determine force output and movement. This makes the control demands of the central nervous system simpler and more robust. In human triceps surae, a

  9. Shoulder Taping and Neuromuscular Control.

    Science.gov (United States)

    Snodgrass, Suzanne J; Farrell, Scott F; Tsao, Henry; Osmotherly, Peter G; Rivett, Darren A; Chipchase, Lucy S; Schabrun, Siobhan M

    2018-03-23

    the scapular muscles among any time frames.   Scapular taping was associated with the earlier onset of UT and LT contractions during shoulder abduction and flexion, respectively. Altered corticomotor excitability did not underpin earlier EMG onsets of activity after taping in this sample. Our findings suggested that the optimal time to engage in rehabilitative exercises to facilitate onset of trapezius contractions during shoulder movements may be immediately after tape application.

  10. NEUROMUSCULAR CONTROL IN LUMBAR DISORDERS

    Directory of Open Access Journals (Sweden)

    Ville Leinonen

    2004-03-01

    Full Text Available Impaired motor and sensory functions have been associated with low back pain (LBP. This includes disturbances in a wide range of sensorimotor control e.g. sensory dysfunctions, impaired postural responses and psychomotor control. However, the physiological mechanisms, clinical relevance and characteristics of these findings in different spinal pathologies require further clarification. The purposes of this study were to investigate postural control, lumbar muscle function, movement perception and associations between these findings in healthy volunteers (n=35, patients with lumbar disc herniation (n=20 and lumbar spinal stenosis (LSS, n=26. Paraspinal muscle responses for sudden upper limb loading and muscle activation during flexion-extension movement and the lumbar endurance test were measured by surface electromyography (EMG. Postural stability was measured on a force platform during two- and one-footed standing. Lumbar movement perception was assessed in a motorised trunk rotation unit in the seated position. In addition, measurements of motor-(MEP and somatosensory evoked potentials (SEP and needle EMG examination of lumbar multifidus muscles were performed in the LSS patients. Clinical and questionnaire data were also recorded. A short latency paraspinal muscle response (~50 ms for sudden upper limb loading was observed. The latency of the response was shortened by expectation (p=0.017. The response latency for unexpected loading was similar in healthy persons and disc herniation patients but the latency was not shortened by expectation in the patients (p = 0.014. Also impaired postural control (p < 0.05 and lumbar movement perception (p = 0.012 were observed in disc herniation patients. The impaired lumbar movement perception (p=0.054 and anticipatory muscle activation (p = 0.043 tended to be restored after successful surgery but postural control had still not recovered after 3 months of follow-up. The majority of LSS patients were unable

  11. Alterations in neuromuscular function in girls with generalized joint hypermobility

    DEFF Research Database (Denmark)

    Jensen, Bente Rona; Melcher, Jesper Sandfeld; Melcher, Pia Grethe Sandfeld

    2016-01-01

    BACKGROUND: Generalized Joint Hypermobility (GJH) is associated with increased risk of musculoskeletal joint pain. We investigated neuromuscular performance and muscle activation strategy. METHODS: Girls with GJH and non-GJH (NGJH) performed isometric knee flexions (90°,110°,130°), and extensions...... (90°) at 20 % Maximum Voluntary Contraction, and explosive isometric knee flexions while sitting. EMG was recorded from knee flexor and extensor muscles. RESULTS: Early rate of torque development was 53 % faster for GJH. Reduced hamstring muscle activation in girls with GJH was found while knee...... extensor and calf muscle activation did not differ between groups. Flexion-extension and medial-lateral co-activation ratio during flexions were higher for girls with GJH than NGJH girls. CONCLUSIONS: Girls with GJH had higher capacity to rapidly generate force than NGJH girls which may reflect motor...

  12. Alterations of Neuromuscular Function after the World's Most Challenging Mountain Ultra-Marathon.

    Directory of Open Access Journals (Sweden)

    Jonas Saugy

    Full Text Available We investigated the physiological consequences of the most challenging mountain ultra-marathon (MUM in the world: a 330-km trail run with 24000 m of positive and negative elevation change. Neuromuscular fatigue (NMF was assessed before (Pre-, during (Mid- and after (Post- the MUM in experienced ultra-marathon runners (n = 15; finish time  = 122.43 hours ±17.21 hours and in Pre- and Post- in a control group with a similar level of sleep deprivation (n = 8. Blood markers of muscle inflammation and damage were analyzed at Pre- and Post-. Mean ± SD maximal voluntary contraction force declined significantly at Mid- (-13±17% and -10±16%, P<0.05 for knee extensor, KE, and plantar flexor muscles, PF, respectively, and further decreased at Post- (-24±13% and -26±19%, P<0.01 with alteration of the central activation ratio (-24±24% and -28±34% between Pre- and Post-, P<0.05 in runners whereas these parameters did not change in the control group. Peripheral NMF markers such as 100 Hz doublet (KE: -18±18% and PF: -20±15%, P<0.01 and peak twitch (KE: -33±12%, P<0.001 and PF: -19±14%, P<0.01 were also altered in runners but not in controls. Post-MUM blood concentrations of creatine kinase (3719±3045 Ul·(1, lactate dehydrogenase (1145±511 UI·L(-1, C-Reactive Protein (13.1±7.5 mg·L(-1 and myoglobin (449.3±338.2 µg·L(-1 were higher (P<0.001 than at Pre- in runners but not in controls. Our findings revealed less neuromuscular fatigue, muscle damage and inflammation than in shorter MUMs. In conclusion, paradoxically, such extreme exercise seems to induce a relative muscle preservation process due likely to a protective anticipatory pacing strategy during the first half of MUM and sleep deprivation in the second half.

  13. Neuromuscular Disorders

    Science.gov (United States)

    Neuromuscular disorders affect the nerves that control your voluntary muscles. Voluntary muscles are the ones you can ... function and your ability to breathe. Examples of neuromuscular disorders include Amyotrophic lateral sclerosis Multiple sclerosis Myasthenia ...

  14. Muscle synergies and complexity of neuromuscular control during gait in cerebral palsy.

    Science.gov (United States)

    Steele, Katherine M; Rozumalski, Adam; Schwartz, Michael H

    2015-12-01

    Individuals with cerebral palsy (CP) have impaired movement due to a brain injury near birth. Understanding how neuromuscular control is altered in CP can provide insight into pathological movement. We sought to determine if individuals with CP demonstrate reduced complexity of neuromuscular control during gait compared with unimpaired individuals and if changes in control are related to functional ability. Muscle synergies during gait were retrospectively analyzed for 633 individuals (age range 3.9-70y): 549 with CP (hemiplegia, n=122; diplegia, n=266; triplegia, n=73; quadriplegia, n=88) and 84 unimpaired individuals. Synergies were calculated using non-negative matrix factorization from surface electromyography collected during previous clinical gait analyses. Synergy complexity during gait was compared with diagnosis subtype, functional ability, and clinical examination measures. Fewer synergies were required to describe muscle activity during gait in individuals with CP compared with unimpaired individuals. Changes in synergies were related to functional impairment and clinical examination measures including selective motor control, strength, and spasticity. Individuals with CP use a simplified control strategy during gait compared with unimpaired individuals. These results were similar to synergies during walking among adult stroke survivors, suggesting similar neuromuscular control strategies between these clinical populations. © 2015 Mac Keith Press.

  15. Innervation and neuromuscular control in ageing skeletal muscle

    Science.gov (United States)

    Rice, Charles L.

    2015-01-01

    Abstract Changes in the neuromuscular system affecting the ageing motor unit manifest structurally as a reduction in motor unit number secondary to motor neuron loss; fibre type grouping due to repeating cycles of denervation‐reinnervation; and instability of the neuromuscular junction that may be due to either or both of a gradual perturbation in postsynaptic signalling mechanisms necessary for maintenance of the endplate acetylcholine receptor clusters or a sudden process involving motor neuron death or traumatic injury to the muscle fibre. Functionally, these changes manifest as a reduction in strength and coordination that precedes a loss in muscle mass and contributes to impairments in fatigue. Regular muscle activation in postural muscles or through habitual physical activity can attenuate some of these structural and functional changes up to a point along the ageing continuum. On the other hand, regular muscle activation in advanced age (>75 years) loses its efficacy, and at least in rodents may exacerbate age‐related motor neuron death. Transgenic mouse studies aimed at identifying potential mechanisms of motor unit disruptions in ageing muscle are not conclusive due to many different mechanisms converging on similar motor unit alterations, many of which phenocopy ageing muscle. Longitudinal studies of ageing models and humans will help clarify the cause and effect relationships and thus, identify relevant therapeutic targets to better preserve muscle function across the lifespan. PMID:26437581

  16. Neuromuscular Alterations After Ankle Sprains: An Animal Model to Establish Causal Links After Injury.

    Science.gov (United States)

    Lepley, Lindsey K; McKeon, Patrick O; Fitzpatrick, Shane G; Beckemeyer, Catherine L; Uhl, Timothy L; Butterfield, Timothy A

    2016-10-01

    The mechanisms that contribute to the development of chronic ankle instability are not understood. Investigators have developed a hypothetical model in which neuromuscular alterations that stem from damaged ankle ligaments are thought to affect periarticular and proximal muscle activity. However, the retrospective nature of these studies does not allow a causal link to be established. To assess temporal alterations in the activity of 2 periarticular muscles of the rat ankle and 2 proximal muscles of the rat hind limb after an ankle sprain. Controlled laboratory study. Laboratory. Five healthy adult male Long Evans rats (age = 16 weeks, mass = 400.0 ± 13.5 g). Indwelling fine-wire electromyography (EMG) electrodes were implanted surgically into the biceps femoris, medial gastrocnemius, vastus lateralis, and tibialis anterior muscles of the rats. We recorded baseline EMG measurements while the rats walked on a motor-driven treadmill and then induced a closed lateral ankle sprain by overextending the lateral ankle ligaments. After ankle sprain, the rats were placed on the treadmill every 24 hours for 7 days, and we recorded postsprain EMG data. Onset time of muscle activity, phase duration, sample entropy, and minimal detectable change (MDC) were assessed and compared with baseline using 2-tailed dependent t tests. Compared with baseline, delayed onset time of muscle activity was exhibited in the biceps femoris (baseline = -16.7 ± 54.0 milliseconds [ms]) on day 0 (5.2 ± 64.1 ms; t 4 = -4.655, P = .043) and tibialis anterior (baseline = 307.0 ± 64.2 ms) muscles on day 3 (362.5 ± 55.9 ms; t 4 = -5.427, P = .03) and day 6 (357.3 ± 39.6 ms; t 4 = -3.802, P = .02). Longer phase durations were observed for the vastus lateralis (baseline = 321.9 ± 92.6 ms) on day 3 (401.3 ± 101.2 ms; t 3 = -4.001, P = .03), day 4 (404.1 ± 93.0 ms; t 3 = -3.320, P = .048), and day 5 (364.6 ± 105.2 ms; t 3 = -3.963, P = .03) and for the tibialis anterior (baseline = 103.9 ± 16.4 ms

  17. Contralaterally Controlled Neuromuscular Electrical Stimulation for Recovery of Ankle Dorsiflexion

    Science.gov (United States)

    Knutson, Jayme S.; Hansen, Kristine; Nagy, Jennifer; Bailey, Stephanie N.; Gunzler, Douglas D.; Sheffler, Lynne R.; Chae, John

    2013-01-01

    Objective Compare the effects of contralaterally controlled neuromuscular electrical stimulation (CCNMES) versus cyclic neuromuscular electrical stimulation (NMES) on lower extremity impairment, functional ambulation, and gait characteristics. Design Twenty-six stroke survivors with chronic (≥6mo) footdrop during ambulation were randomly assigned to six weeks of CCNMES or cyclic NMES. Both groups had ten sessions per week of self-administered home application of either CCNMES or cyclic NMES plus two sessions per week of gait training with a physical therapist. Primary outcomes included lower extremity Fugl-Meyer score, modified Emory Functional Ambulation Profile, and gait velocity. Assessments were made at pretreatment, posttreatment, and at 1 and 3 months posttreatment. Results There were no significant differences between groups in the outcome trajectories for any of the measures. With data from both groups pooled, there were significant but modest and sustained improvements in the Fugl-Meyer score and the modified Emory Functional Ambulation Profile, but not in gait velocity. Conclusions The results support the hypothesis that gait training combined with either CCNMES or cyclic NMES reduces lower extremity impairment and functional ambulation, but do not support the hypothesis that CCNMES is more effective than cyclic NMES in chronic patients. PMID:23867888

  18. [Controlled dynamic weight training in patients with neuromuscular disorders].

    Science.gov (United States)

    Kelm, J; Ahlhelm, F; Regitz, T; Pape, D; Schmitt, E

    2001-08-01

    The question posed was whether individually adapted, controlled dynamic weight training, in accordance with training principles and methods from sports science, applied for a limited time, can lead to an improvement in the stimulation and release of muscular strength in patients with neuromuscular disorders. The muscles of the pelvic girdle and the lower extremity of 10 patients (5 with dystrophic muscle disease and 5 with neurogenic muscular atrophy) were exercised provisionally for a period of 6 weeks on various weight training machines. The training routine was 3 sessions (TS) per week at an intensity range of 40-60% of the respective best performance for the exercise (One Repetition Maximum; ORM), at 8-12 repetitions/set and 2-4 sets/exercise. Body weight and ORM were determined before, during and after the training period (TP), the different load criteria/TS were documented. It was possible to train the patients in accordance with principles of training known from sports science. Over the entire TP it was possible to increase the load criteria significantly (p rehabilitation, it represents a supplementary form of therapy in the symptomatic treatment of neuromuscular disorders.

  19. Opposite Synaptic Alterations at the Neuromuscular Junction in an ALS Mouse Model: When Motor Units Matter.

    Science.gov (United States)

    Tremblay, Elsa; Martineau, Éric; Robitaille, Richard

    2017-09-13

    Denervation of the neuromuscular junction (NMJ) precedes the loss of motor neurons (MNs) in amyotrophic lateral sclerosis (ALS). ALS is characterized by a motor unit (MU)-dependent vulnerability where MNs with fast-fatigable (FF) characteristics are lost first, followed by fast fatigue-resistant (FR) and slow (S) MNs. However, changes in NMJ properties as a function of MU types remain debated. We hypothesized that NMJ synaptic functions would be altered precociously in an MU-specific manner, before structural alterations of the NMJ. Synaptic transmission and morphological changes of NMJs have been explored in two nerve-muscle preparations of male SOD1 G37R mice and their wild-type (WT) littermates: the soleus (S and FR MU); and the extensor digitorum longus (FF MU). S, FR, and FF NMJs of WT mice showed distinct synaptic properties from which we build an MU synaptic profile (MUSP) that reports MU-dependent NMJ synaptic properties. At postnatal day 180 (P180), FF and S NMJs of SOD1 already showed, respectively, lower and higher quantal content compared with WT mice, before signs of MN death and before NMJ morphological alterations. Changes persisted in both muscles until preonset (P380), while denervation was frequent in the mutant mouse. MN death was evident at this stage. Additional changes occurred at clinical disease onset (P450) for S and FR MU. As a whole, our results reveal a reversed MUSP in SOD1 mutants and highlight MU-specific synaptic changes occurring in a precise temporal sequence. Importantly, changes in synaptic properties appear to be good predictors of vulnerability to neurodegeneration. SIGNIFICANCE STATEMENT The inadequate excitability of motor neurons and their output, the neuromuscular junctions (NMJs), has been considered a key factor in the detrimental outcome of the motor function in amyotrophic lateral sclerosis. However, a conundrum persists at the NMJ whereby persistent but incoherent opposite neurotransmission changes have been reported

  20. A Modified Dynamic Surface Controller for Delayed Neuromuscular Electrical Stimulation.

    Science.gov (United States)

    Alibeji, Naji; Kirsch, Nicholas; Dicianno, Brad E; Sharma, Nitin

    2017-08-01

    A widely accepted model of muscle force generation during neuromuscular electrical stimulation (NMES) is a second-order nonlinear musculoskeletal dynamics cascaded to a delayed first-order muscle activation dynamics. However, most nonlinear NMES control methods have either neglected the muscle activation dynamics or used an ad hoc strategies to tackle the muscle activation dynamics, which may not guarantee control stability. We hypothesized that a nonlinear control design that includes muscle activation dynamics can improve the control performance. In this paper, a dynamic surface control (DSC) approach was used to design a PID-based NMES controller that compensates for EMD in the activation dynamics. Because the muscle activation is unmeasurable, a model based estimator was used to estimate the muscle activation in realtime. The Lyapunov stability analysis confirmed that the newly developed controller achieves semi-global uniformly ultimately bounded (SGUUB) tracking for the musculoskeletal system. Experiments were performed on two able-bodied subjects and one spinal cord injury subject using a modified leg extension machine. These experiments illustrate the performance of the new controller and compare it to a previous PID-DC controller that did not consider muscle activation dynamics in the control design. These experiments support our hypothesis that a control design that includes muscle activation improves the NMES control performance.

  1. Functional decline at the aging neuromuscular junction is associated with altered laminin-α4 expression.

    Science.gov (United States)

    Lee, Kah Meng; Chand, Kirat K; Hammond, Luke A; Lavidis, Nickolas A; Noakes, Peter G

    2017-03-14

    Laminin-α4 is involved in the alignment of active zones to postjunctional folds at the neuromuscular junction (NMJ). Prior study has implicated laminin-α4 in NMJ maintenance, with altered NMJ morphology observed in adult laminin-α4 deficient mice ( lama 4 -/- ). The present study further investigated the role of laminin-α4 in NMJ maintenance by functional characterization of transmission properties, morphological investigation of synaptic proteins including synaptic laminin-α4, and neuromotor behavioral testing. Results showed maintained perturbed transmission properties at lama 4 -/- NMJs from adult (3 months) through to aged (18-22 months). Hind-limb grip force demonstrated similar trends as transmission properties, with maintained weaker grip force across age groups in lama 4 -/- . Interestingly, both transmission properties and hind-limb grip force in aged wild-types resembled those observed in adult lama 4 -/- . Most significantly, altered expression of laminin-α4 was noted at the wild-type NMJs prior to the observed decline in transmission properties, suggesting that altered laminin-α4 expression precedes the decline of neurotransmission in aging wild-types. These findings significantly support the role of laminin-α4 in maintenance of the NMJ during aging.

  2. Proprioceptive neuromuscular facilitation training induced alterations in muscle fibre type and cross sectional area.

    Science.gov (United States)

    Kofotolis, N; Vrabas, I S; Vamvakoudis, E; Papanikolaou, A; Mandroukas, K

    2005-03-01

    To compare the effects of proprioceptive neuromuscular facilitation (PNF) and isokinetic training on fibre type distribution and cross sectional area of the vastus lateralis muscle. Twenty four male university students were divided into two equal groups: PNF training and isokinetic training (ISO). The training regimen for the PNF group consisted of three sets of 30 repetitions against maximal resistance, alternating two patterns of sequential movements of the right lower extremity: (a) toe flexion and ankle plantar flexion and eversion; (b) knee extension and hip extension, abduction, and internal rotation. The ISO group performed three sets of 30 repetitions alternating knee extension and flexion of the right leg at angular velocities of 180 and 90 degrees /s in an isokinetic dynamometer (Cybex). Both groups trained three times a week for a total of eight weeks. Muscle biopsy specimens were obtained from the right vastus lateralis muscle before and after training. The mean percentage area of type IIB fibre was significantly decreased (p<0.01) after eight weeks of PNF training, whereas that of type IIA fibre was significantly (p<0.05) increased. The mean percentage area of ISO trained type IIAB fibres exhibited an augmentative pattern (p<0.01) with a parallel reduction (p<0.05) in type IIA. Percentage fibre type distribution exhibited a similar pattern. Both PNF and ISO training alter fibre type distribution and mean cross sectional area. These changes occur in the type II fibre subgroup.

  3. Effects of vision and lumbar posture on trunk neuromuscular control.

    Science.gov (United States)

    Maaswinkel, Erwin; van Drunen, Paul; Veeger, Dirk-Jan H E J; van Dieën, Jaap H

    2015-01-21

    The goal of this study was to determine the effects of vision and lumbar posture on trunk neuromuscular control. Torso perturbations were applied with a pushing device while the subjects were restrained at the pelvis in a kneeling-seated position. Torso kinematics and the muscle activity of the lumbar part of the M. Longissimus were recorded for 14 healthy subjects. Four conditions were included: a flexion, extension and neutral lumbar posture with eyes closed and the neutral posture with eyes open. Frequency response functions of the admittance and reflexes showed that there was no significant difference between the eyes open and eyes closed conditions, thereby confirming that vision does not play a role in the stabilization of the trunk during small-amplitude trunk perturbations. In contrast, manipulating posture did lead to significant differences. In particular, the flexed condition led to a lower admittance and lower reflex contribution compared to the neutral condition. Furthermore, the muscle pre-activation (prior to the onset of the perturbation) was significantly lower in the flexed posture compared to neutral. This confirms that flexing the lumbar spine increases the passive tissue stiffness and decreases the contribution of reflex activity to trunk control. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Neuromuscular function during stair descent in meniscectomized patients and controls

    DEFF Research Database (Denmark)

    Thorlund, Jonas Bloch; Roos, Ewa M; Aagaard, Per

    2011-01-01

    The aim of this study was to identify differences in knee range of motion (ROM), movement speed, ground reaction forces (GRF) profile, neuromuscular activity, and muscle coactivation during the transition between stair descent and level walking in meniscectomized patients at high risk of knee...

  5. Propiocepción y control neuromuscular en el fútblo infantil

    OpenAIRE

    Zarza, Cristían

    2014-01-01

    En el fútbol profesional la escasa utilización de la pierna no hábil hace que muchas situaciones de juego no se resuelvan eficazmente, además de predisponer a la aparición de lesiones. El presente estudio se concentró en determinar la influencia del entrenamiento propioceptivo y del control neuromuscular en las cualidades físicas y técnicas del miembro no hábil. Objetivo: Indagar el nivel propioceptivo y de control neuromuscular del miembro inferior no hábil en chicos que re...

  6. An acoustic startle alters knee joint stiffness and neuromuscular control.

    Science.gov (United States)

    DeAngelis, A I; Needle, A R; Kaminski, T W; Royer, T R; Knight, C A; Swanik, C B

    2015-08-01

    Growing evidence suggests that the nervous system contributes to non-contact knee ligament injury, but limited evidence has measured the effect of extrinsic events on joint stability. Following unanticipated events, the startle reflex leads to universal stiffening of the limbs, but no studies have investigated how an acoustic startle influences knee stiffness and muscle activation during a dynamic knee perturbation. Thirty-six individuals were tested for knee stiffness and muscle activation of the quadriceps and hamstrings. Subjects were seated and instructed to resist a 40-degree knee flexion perturbation from a relaxed state. During some trials, an acoustic startle (50 ms, 1000 Hz, 100 dB) was applied 100 ms prior to the perturbation. Knee stiffness, muscle amplitude, and timing were quantified across time, muscle, and startle conditions. The acoustic startle increased short-range (no startle: 0.044 ± 0.011 N·m/deg/kg; average startle: 0.047 ± 0.01 N·m/deg/kg) and total knee stiffness (no startle: 0.036 ± 0.01 N·m/deg/kg; first startle 0.027 ± 0.02 N·m/deg/kg). Additionally, the startle contributed to decreased [vastus medialis (VM): 13.76 ± 33.6%; vastus lateralis (VL): 6.72 ± 37.4%] but earlier (VM: 0.133 ± 0.17 s; VL: 0.124 ± 0.17 s) activation of the quadriceps muscles. The results of this study indicate that the startle response can significantly disrupt knee stiffness regulation required to maintain joint stability. Further studies should explore the role of unanticipated events on unintentional injury. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Simulating the effect of muscle weakness and contracture on neuromuscular control of normal gait in children.

    Science.gov (United States)

    Fox, Aaron S; Carty, Christopher P; Modenese, Luca; Barber, Lee A; Lichtwark, Glen A

    2018-03-01

    Altered neural control of movement and musculoskeletal deficiencies are common in children with spastic cerebral palsy (SCP), with muscle weakness and contracture commonly experienced. Both neural and musculoskeletal deficiencies are likely to contribute to abnormal gait, such as equinus gait (toe-walking), in children with SCP. However, it is not known whether the musculoskeletal deficiencies prevent normal gait or if neural control could be altered to achieve normal gait. This study examined the effect of simulated muscle weakness and contracture of the major plantarflexor/dorsiflexor muscles on the neuromuscular requirements for achieving normal walking gait in children. Initial muscle-driven simulations of walking with normal musculoskeletal properties by typically developing children were undertaken. Additional simulations with altered musculoskeletal properties were then undertaken; with muscle weakness and contracture simulated by reducing the maximum isometric force and tendon slack length, respectively, of selected muscles. Muscle activations and forces required across all simulations were then compared via waveform analysis. Maintenance of normal gait appeared robust to muscle weakness in isolation, with increased activation of weakened muscles the major compensatory strategy. With muscle contracture, reduced activation of the plantarflexors was required across the mid-portion of stance suggesting a greater contribution from passive forces. Increased activation and force during swing was also required from the tibialis anterior to counteract the increased passive forces from the simulated dorsiflexor muscle contracture. Improvements in plantarflexor and dorsiflexor motor function and muscle strength, concomitant with reductions in plantarflexor muscle stiffness may target the deficits associated with SCP that limit normal gait. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Functional Connectivity under Optogenetic Control Allows Modeling of Human Neuromuscular Disease.

    Science.gov (United States)

    Steinbeck, Julius A; Jaiswal, Manoj K; Calder, Elizabeth L; Kishinevsky, Sarah; Weishaupt, Andreas; Toyka, Klaus V; Goldstein, Peter A; Studer, Lorenz

    2016-01-07

    Capturing the full potential of human pluripotent stem cell (PSC)-derived neurons in disease modeling and regenerative medicine requires analysis in complex functional systems. Here we establish optogenetic control in human PSC-derived spinal motorneurons and show that co-culture of these cells with human myoblast-derived skeletal muscle builds a functional all-human neuromuscular junction that can be triggered to twitch upon light stimulation. To model neuromuscular disease we incubated these co-cultures with IgG from myasthenia gravis patients and active complement. Myasthenia gravis is an autoimmune disorder that selectively targets neuromuscular junctions. We saw a reversible reduction in the amplitude of muscle contractions, representing a surrogate marker for the characteristic loss of muscle strength seen in this disease. The ability to recapitulate key aspects of disease pathology and its symptomatic treatment suggests that this neuromuscular junction assay has significant potential for modeling of neuromuscular disease and regeneration. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Fatiguing exercise intensity influences the relationship between parameters reflecting neuromuscular function and postural control variables.

    Directory of Open Access Journals (Sweden)

    Sébastien Boyas

    Full Text Available The purpose of this study was to investigate the influence of fatiguing exercise intensity on the nature and extent of fatigue-induced changes in neuromuscular function and postural stability in quiet standing. We also explored the contribution of selected neuromuscular mechanisms involved in force production to postural stability impairment observed following fatigue using an approach based on multivariate regressions. Eighteen young subjects performed 30-s postural trials on one leg with their eyes closed. Postural trials were performed before and after fatiguing exercises of different intensities: 25, 50 and 75% of maximal isometric plantarflexor torque. Fatiguing exercises consisted of sustaining a plantarflexor isometric contraction at the target intensity until task failure. Maximal isometric plantarflexor torque, electromyographic activity of plantarflexor and dorsiflexor muscles, activation level (twitch interpolation technique and twitch contractile properties of plantarflexors were used to characterize neuromuscular function. The 25% exercise was associated with greater central fatigue whereas the 50 and 75% exercises involved mostly peripheral fatigue. However, all fatiguing exercises induced similar alterations in postural stability, which was unexpected considering previous literature. Stepwise multiple regression analyses showed that fatigue-related changes in selected parameters related to neuromuscular function could explain more than half (0.51≤R(2≤0.82 of the changes in postural variables for the 25% exercise. On the other hand, regression models were less predictive (0.17≤R(2≤0.73 for the 50 and 75% exercises. This study suggests that fatiguing exercise intensity does not influence the extent of postural stability impairment, but does influence the type of fatigue induced and the neuromuscular function predictors explaining changes in postural variables.

  10. Metabolic and morphometric alterations inherent to neuromuscular electric stimulation in the antagonist muscle submitted to ankle joint immobilization

    Directory of Open Access Journals (Sweden)

    João Luiz Quagliotti Durigan

    2009-02-01

    Full Text Available The aim of this work was to investigate the effect of the neuromuscular electrical stimulation (ES on the metabolic and morfometric profile of the tibialis anterior muscle, antagonist to the soleus muscle which was stimulate, under the joint immobilization condition of the ankle for 7 and 15 days. The immobilization promoted the reduction in the muscle mass (I7: 17.36%, I15: 20.83%, in the glycogen content (I7: 48%, I15: 48%, in the muscle fibers areas (I7: 27%, I15: 40% and increase in intramuscular connective tissue density (I7: 122%, I15: 206%. The EE didn't promote significant alterations in the mass of the immobilized groups, however, promoted increase in the glycogen (IEE7: 31.25%; IEE15: 56.25%, reduction in the muscle fibers areas (IEE7: 14%, IEE15: 24.69% and reduction in the connective tissue density (IEE7: 25.63%, IEE15: 49.09% when compared with the respective immobilized groups.O objetivo desse trabalho foi investigar o efeito da estimulação elétrica neuromuscular (EE sobre o perfil metabólico e morfométrico do músculo tibial anterior, antagonista ao músculo sóleo, o qual foi estimulado, sob a condição de imobilização articular de tornozelo durante 7 e 15 dias. A imobilização promoveu redução na massa muscular (I7: 17,36%, I15: 20,83%, no conteúdo de glicogênio (I7: 48%, I15: 48%, na área das fibras musculares (I7: 27%, I15: 40% e aumento na densidade do tecido conjuntivo intramuscular (I7: 122%, I15: 206%. A EE não promoveu alterações significativas na massa muscular dos grupos imobilizados, porém, promoveu aumento no glicogênio (IEE7: 31,25%; IEE15: 56,25%, redução na área das fibras musculares (IEE7: 14%, IEE15: 24,69% e redução na densidade do tecido conjuntivo de (IEE7: 25,63%, IEE15: 49,09% quando comparado aos respectivos grupos imobilizados.

  11. Neuromuscular Control of Rapid Linear Accelerations in Fish

    Science.gov (United States)

    2016-06-22

    findings suggest several avenues to continue and extend this work: • We are developing an open source toolbox, based on an Arduino microcontroller, to...on the development of IMUs for use on small animals. We are developing and testing a toolbox, using an Arduino microcontroller to control the IMU and

  12. Neuromuscular Control Deficits and the Risk of Subsequent Injury after a Concussion: A Scoping Review.

    Science.gov (United States)

    Howell, David R; Lynall, Robert C; Buckley, Thomas A; Herman, Daniel C

    2018-05-01

    An emerging area of research has identified that an increased risk of musculoskeletal injury may exist upon returning to sports after a sport-related concussion. The mechanisms underlying this recently discovered phenomenon, however, remain unknown. One theorized reason for this increased injury risk includes residual neuromuscular control deficits that remain impaired despite clinical recovery. Thus, the objectives of this review were: (1) to summarize the literature examining the relationship between concussion and risk of subsequent injury and (2) to summarize the literature for one mechanism with a theorized association with this increased injury risk, i.e., neuromuscular control deficits observed during gait after concussion under dual-task conditions. Two separate reviews were conducted consistent with both specified objectives. Studies published before 9 December, 2016 were identified using PubMed, Web of Science, and Academic Search Premier (EBSCOhost). Inclusion for the objective 1 search included dependent variables of quantitative measurements of musculoskeletal injury after concussion. Inclusion criteria for the objective 2 search included dependent variables pertaining to gait, dynamic balance control, and dual-task function. A total of 32 studies were included in the two reviews (objective 1 n = 10, objective 2 n = 22). According to a variety of study designs, athletes appear to have an increased risk of sustaining a musculoskeletal injury following a concussion. Furthermore, dual-task neuromuscular control deficits may continue to exist after patients report resolution of concussion symptoms, or perform normally on other clinical concussion tests. Therefore, musculoskeletal injury risk appears to increase following a concussion and persistent motor system and attentional deficits also seem to exist after a concussion. While not yet experimentally tested, these motor system and attentional deficits may contribute to the risk of sustaining a

  13. Static stretching alters neuromuscular function and pacing strategy, but not performance during a 3-km running time-trial.

    Directory of Open Access Journals (Sweden)

    Mayara V Damasceno

    Full Text Available Previous studies report that static stretching (SS impairs running economy. Assuming that pacing strategy relies on rate of energy use, this study aimed to determine whether SS would modify pacing strategy and performance in a 3-km running time-trial.Eleven recreational distance runners performed a a constant-speed running test without previous SS and a maximal incremental treadmill test; b an anthropometric assessment and a constant-speed running test with previous SS; c a 3-km time-trial familiarization on an outdoor 400-m track; d and e two 3-km time-trials, one with SS (experimental situation and another without (control situation previous static stretching. The order of the sessions d and e were randomized in a counterbalanced fashion. Sit-and-reach and drop jump tests were performed before the 3-km running time-trial in the control situation and before and after stretching exercises in the SS. Running economy, stride parameters, and electromyographic activity (EMG of vastus medialis (VM, biceps femoris (BF and gastrocnemius medialis (GA were measured during the constant-speed tests.The overall running time did not change with condition (SS 11:35±00:31 s; control 11:28±00:41 s, p = 0.304, but the first 100 m was completed at a significantly lower velocity after SS. Surprisingly, SS did not modify the running economy, but the iEMG for the BF (+22.6%, p = 0.031, stride duration (+2.1%, p = 0.053 and range of motion (+11.1%, p = 0.0001 were significantly modified. Drop jump height decreased following SS (-9.2%, p = 0.001.Static stretch impaired neuromuscular function, resulting in a slow start during a 3-km running time-trial, thus demonstrating the fundamental role of the neuromuscular system in the self-selected speed during the initial phase of the race.

  14. Neuromuscular control and running economy is preserved in elite international triathletes after cycling.

    Science.gov (United States)

    Bonacci, Jason; Saunders, Philo U; Alexander, Mark; Blanch, Peter; Vicenzino, Bill

    2011-03-01

    Running is the most important discipline for Olympic triathlon success. However, cycling impairs running muscle recruitment and performance in some highly trained triathletes; though it is not known if this occurs in elite international triathletes. The purpose of this study was to investigate the effect of cycling in two different protocols on running economy and neuromuscular control in elite international triathletes. Muscle recruitment and sagittal plane joint angles of the left lower extremity and running economy were compared between control (no preceding cycle) and transition (preceded by cycling) runs for two different cycle protocols (20-minute low-intensity and 50-minute high-intensity cycles) in seven elite international triathletes. Muscle recruitment and joint angles were not different between control and transition runs for either cycle protocols. Running economy was also not different between control and transition runs for the low-intensity (62.4 +/- 4.5 vs. 62.1 +/- 4.0 ml/min/kg, p > 0.05) and high-intensity (63.4 +/- 3.5 vs. 63.3 +/- 4.3 ml/min/kg, p > 0.05) cycle protocols. The results of this study demonstrate that both low- and high-intensity cycles do not adversely influence neuromuscular control and running economy in elite international triathletes.

  15. Single leg jumping neuromuscular control is improved following whole body, long-axis rotational training.

    Science.gov (United States)

    Nyland, John; Burden, Robert; Krupp, Ryan; Caborn, David N M

    2011-04-01

    Improved lower extremity neuromuscular control during sports may decrease injury risk. This prospective study evaluated progressive resistance, whole body, long-axis rotational training on the Ground Force 360 device. Our hypothesis was that device training would improve lower extremity neuromuscular control based on previous reports of kinematic, ground reaction force (GRF) or electromyographic (EMG) evidence of safer or more efficient dynamic knee stability during jumping. Thirty-six healthy subjects were randomly assigned to either training (Group 1) or control (Group 2) groups. Using a pre-test, post-test study design data were collected from three SLVJ trials. Unpaired t-tests with adjustments for multiple comparisons were used to evaluate group mean change differences (P≤0.05/25≤0.002). During propulsion Group 1 standardized EMG amplitude mean change differences for gluteus maximus (-21.8% vs. +17.4%), gluteus medius (-28.6% vs. +15.0%), rectus femoris (-27.1% vs. +11.2%), vastus medialis (-20.2% vs. +9.1%), and medial hamstrings (-38.3% vs. +30.3%) differed from Group 2. During landing Group 1 standardized EMG amplitude mean change differences for gluteus maximus (-32.9% vs. +11.1%) and rectus femoris (-33.3% vs. +29.0%) also differed from Group 2. Group 1 peak propulsion vertical GRF (+0.24N/kg vs. -0.46N/kg) and landing GRF stabilization timing (-0.68 vs. +0.05s) mean change differences differed from Group 2. Group 1 mean hip (-16.3 vs. +7.8°/s) and knee (-21.4 vs. +18.5°/s) flexion velocity mean change differences also differed from Group 2. Improved lower extremity neuromuscular efficiency, increased peak propulsive vertical GRF, decreased mean hip and knee flexion velocities during landing, and earlier landing stabilization timing in the training group suggests improved lower extremity neuromuscular control. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Could Slackline Training Complement the FIFA 11+ Programme Regarding Training of Neuromuscular Control?

    Science.gov (United States)

    Jäger, Tobias; Kiefer, Julian; Werner, Inge; Federolf, Peter A

    2017-09-01

    The current study compared changes in neuromuscular control between slackline training and the stabilization training elements of the FIFA 11+ programme. Twenty-five students in 2 groups performed a 12-unit training programme. The slackline training group (n = 13) exclusively trained with a slackline. The stabilization training group (n = 12) practised exercises as described in the second part of the FIFA 11+ programme. Improvements in balance were assessed using three tests for dynamic, quasi-static, and perturbed postural control: the star excursion balance test (SEBT), the closed-eye single-leg stance, and the MFT S3-Check. Both groups significantly improved the stability and sensorimotor index of the MFT S3-Check (p slackline training group showing a larger training effect than the stabilization training group. The results of the present study suggest that slackline training offers similar - or better - improvements in neuromuscular control as the FIFA 11+ warm-up programme. If compliance with the FIFA 11+ programme is declining, then slacklining might offer an alternative approach to reach the training goals of improved sensorimotor control.

  17. Short-duration fatigue alters neuromuscular coordination of trunk musculature: implications for injury.

    Science.gov (United States)

    Gorelick, M; Brown, J M M; Groeller, H

    2003-07-01

    The aim of this investigation was to determine the effect of muscle fatigue, produced by two different fatigue protocols, on the coordination of trunk and thigh muscles during the performance of a manual-handling task (e.g. a weighted stoop lift). The two fatigue protocols were designed to produce either (a) a non-specific widespread fatigue of trunk and limb muscles (e.g. rowing fatigue protocol), or (b) a specific fatigue of the trunk extensor musculature (e.g. back extension fatigue protocol). Specifically, we wished to determine whether the coordination of trunk muscles during a stoop lift was compromised more, or less, by either of these two fatigue protocols. Ten male subjects (20-24 years) were tested utilising an electromyographic technique which collected electromyograms from trunk flexor and extensor muscles, as well as the Hamstring muscle group, during a pre- and a post-fatigue performance of a weighted stoop lift. The results showed that the back extension fatigue protocol, but not the rowing fatigue protocol, produced significant (pstoop lift. The longer periods of muscle activation seen only after the back extension fatigue protocol, suggested that fatigue of these muscles had required the CNS to alter their periods of activation to a pattern similar to that previously seen in elderly populations. The results also suggested that intense short-duration motor tasks, which may differentially target the back and its musculature, could leave the spine susceptible to increased risk of injury even though worker perceptions of general fatigue are low. Risk assessment guidelines for manual handling should consider not only the weight and frequency of the lift, but lift duration as well to maintain worker safety.

  18. Negative effect of clenbuterol on physical capacities and neuromuscular control of muscle atrophy in adult rats.

    Science.gov (United States)

    Lang, Guillaume; Dernoncourt, Valerie; Bisson, Jean-François

    2015-12-01

    Clenbuterol has been used to alleviate chronic obstructive pulmonary disease and elicit an anabolic response in muscles. The aim of this study was to determine the influence of muscle mass variation on physical capacities in rats. The left hindlimbs of Wistar rats were immobilized for 20 days in plantarflexion with a splint and then remobilized for 16 days. The effect of a non-myotoxic dose of clenbuterol during the immobilization period was evaluated. Physical capacities were coordination, free locomotion, grip strength, and bilateral deficit. Immobilization induced a loss of muscle mass, coordination, and strength without any effect on free locomotion. The positive anabolic effect of clenbuterol did not prevent a loss of physical capacities resulting from immobilization. Muscle mass correlated strongly with coordination and isometric strength in untreated rats. Anabolic effect, fiber phenotype modification, and perturbation in neuromuscular communication with clenbuterol improved muscle mass, but it altered physical capacities. © 2014 Wiley Periodicals, Inc.

  19. Effects of regular Tai Chi practice and jogging on neuromuscular reaction during lateral postural control in older people.

    Science.gov (United States)

    Wang, Shao-Jun; Xu, Dong-Qing; Li, Jing-Xian

    2017-01-01

    This study examined the effects of regular Tai Chi practice and jogging on the neuromuscular activity of the trunk, hip, and ankle joint muscles of older people during lateral postural perturbation. A total of 42 older people participated in the study and formed the Tai Chi, jogging, and sedentary control groups. Electromyography signals were collected from the peroneus longus, anterior tibialis, gluteus medius, and erector spinae during unpredictable mediolateral perturbation. The Tai Chi group exhibited significantly faster latencies of the tibialis anterior and erector spinae than the control group. The jogging group showed a significantly shorter neuromuscular reaction time of the erector spinae than the control group. No significant difference was observed between the Tai Chi and jogging groups. Long-term regular Tai Chi practice enhanced the neuromuscular reaction of the erector spinae and tibialis anterior to lateral perturbation and will help timely posture correction when lateral postural distributions occur.

  20. Neuromuscular Scoliosis

    Science.gov (United States)

    ... Radiation Exposure in Scoliosis Kyphosis Adolescent Back Pain Spondylolysis For Adolescents For Adults Common Questions & Glossary Resources ... Radiation Exposure in Scoliosis Kyphosis Adolescent Back Pain Spondylolysis For Adolescents For Adults Neuromuscular Scoliosis Neuromuscular scoliosis ...

  1. Oscillations-free PID control of anesthetic drug delivery in neuromuscular blockade.

    Science.gov (United States)

    Medvedev, Alexander; Zhusubaliyev, Zhanybai T; Rosén, Olov; Silva, Margarida M

    2016-07-25

    The PID-control of drug delivery or the neuromuscular blockade (NMB) in closed-loop anesthesia is considered. The NMB system dynamics portrayed by a Wiener model can exhibit sustained nonlinear oscillations under realistic PID gains and for physiologically feasible values of the model parameters. Such oscillations, also repeatedly observed in clinical trials, lead to under- and over-dosing of the administered drug and undermine patient safety. This paper proposes a tuning policy for the proportional PID gain that via bifurcation analysis ensures oscillations-free performance of the control loop. Online estimates of the Wiener model parameters are needed for the controller implementation and monitoring of the closed-loop proximity to oscillation. The nonlinear dynamics of the PID-controlled NMB system are studied by bifurcation analysis. A database of patient models estimated under PID-controlled neuromuscular blockade during general anesthesia is utilized, along with the corresponding clinical measurements. The performance of three recursive algorithms is compared in the application at hand: an extended Kalman filter, a conventional particle filter (PF), and a PF making use of an orthonormal basis to estimate the probability density function from the particle set. It is shown that with a time-varying proportional PID gain, the type of equilibria of the closed-loop system remains the same as in the case of constant controller gains. The recovery time and frequency of oscillations are also evaluated in simulation over the database of patient models. Nonlinear identification techniques based on model linearization yield biased parameter estimates and thus introduce superfluous uncertainty. The bias and variance of the estimated models are related to the computational complexity of the identification algorithms, highlighting the superiority of the PFs in this safety-critical application. The study demonstrates feasibility of the proposed oscillation-free control

  2. Specific adaptations of neuromuscular control and knee joint stiffness following sensorimotor training.

    Science.gov (United States)

    Gruber, M; Bruhn, S; Gollhofer, A

    2006-08-01

    The aim of this study was to examine how fixations of the ankle joint during sensorimotor training (SMT) influence adaptations in mechanical stiffness and neuromuscular control of the knee joint. Sixty-three healthy subjects were randomly assigned to three training groups that differed in their degree of ankle joint fixation, which was either barefooted, with an ankle brace or with a ski boot. Mechanical knee joint stiffness and reflex control of m. vastus medialis, m. vastus lateralis, m. biceps femoris, and m. semitendinosus were tested during force controlled anterior tibial displacements. This force was applied as both a fast and a slow stimulus. After the training period the group that trained barefooted showed an increase in mechanical stiffness of the knee joint from 79 +/- 21 (Mean +/- SD) N/mm to 110 +/- 38 N/mm (p boots was able to improve knee joint stiffness from 67 +/- 26 N/mm to 96 +/- 47 N/mm (p knee joint injuries.

  3. Effects of noxious stimulation and pain expectations on neuromuscular control of the spine in patients with chronic low back pain.

    Science.gov (United States)

    Henchoz, Yves; Tétreau, Charles; Abboud, Jacques; Piché, Mathieu; Descarreaux, Martin

    2013-10-01

    Alterations of the neuromuscular control of the lumbar spine have been reported in patients with chronic low back pain (LBP). During trunk flexion and extension tasks, the reduced myoelectric activity of the low back extensor musculature observed during full trunk flexion is typically absent in patients with chronic LBP. To determine whether pain expectations could modulate neuromuscular responses to experimental LBP to a higher extent in patients with chronic LBP compared with controls. A cross-sectional, case-control study. Twenty-two patients with nonspecific chronic LBP and 22 age- and sex-matched control participants. Trunk flexion-extension tasks were performed under three experimental conditions: innocuous heat, noxious stimulation with low pain expectation, and noxious stimulation with high pain expectation. Noxious stimulations were delivered using a contact heat thermode applied on the skin of the lumbar region (L4-L5), whereas low or high pain expectations were induced by verbal and visual instructions. Surface electromyography of erector spinae at L2-L3 and L4-L5, as well as lumbopelvic kinematic variables were collected during the tasks. Pain was evaluated using a numerical rating scale. Pain catastrophizing, disability, anxiety, and fear-avoidance beliefs were measured using validated questionnaires. Two-way mixed analysis of variance revealed that pain was significantly different among the three experimental conditions (F2,84=317.5; plow back extensor musculature during full trunk flexion was observed in the high compared with low pain expectations condition at the L2-L3 level (F2,84=9.5; ppain catastrophizing in patients with chronic LBP (r=0.54; p=.012). Repeated exposure to pain appears to generate rigid and less variable patterns of muscle activation in patients with chronic LBP, which attenuate their response to pain expectations. Patients with high levels of pain catastrophizing show higher myoelectric activity of lumbar muscles in full flexion

  4. Neuromuscular Control Mechanisms During Single-Leg Jump Landing in Subacute Ankle Sprain Patients: A Case Control Study.

    Science.gov (United States)

    Allet, Lara; Zumstein, Franziska; Eichelberger, Patric; Armand, Stéphane; Punt, Ilona M

    2017-03-01

    Optimal neuromuscular control mechanisms are essential for preparing, maintaining, and restoring functional joint stability during jump landing and to prevent ankle injuries. In subacute ankle sprain patients, neither muscle activity nor kinematics during jump landing has previously been assessed. To compare neuromuscular control mechanisms and kinematics between subacute ankle sprain patients and healthy persons before and during the initial contact phase of a 25-cm single-leg jump. Case-control study. University hospital. Fifteen patients with grade I or II acute ankle sprains were followed up after 4 weeks of conservative management not involving physical therapy. Subjects performed alternately 3 single-leg forward jumps of 25 cm (toe-to-heel distance) barefoot. Their results were compared with the data of 15 healthy subjects. Electromyographic (EMG) activity of the musculus (m.) gastrocnemius lateralis, m. tibialis anterior, and m. peroneus longus as well as kinematics for ankle, knee, and hip joint were recorded for pre-initial contact (IC) phase, post-initial contact phase, and reflex-induced phase. The results showed that EMG activity of the 3 muscles did not differ between ankle sprain patients (n = 15) and healthy persons (n = 15) for any of the analyzed time intervals (all P > .05). However, during the pre-IC phase, ankle sprain patients presented less plantar flexion, as well as during the post-IC phase after jump landing, compared to healthy persons (P ankle joint can lead to neuromuscular control mechanism disturbances through which functional instability might arise. III. Copyright © 2017 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  5. Acceleromyography and mechanomyography for establishing potency of neuromuscular blocking agents: a randomized-controlled trial

    DEFF Research Database (Denmark)

    Claudius, C; Viby-Mogensen, J; Skovgaard, Lene Theil

    2009-01-01

    BACKGROUND: Acceleromyography (AMG) is increasingly being used in neuromuscular research, including in studies establishing the potency of neuromuscular blocking and reversal agents. However, AMG is insufficiently validated for use interchangeably with the gold standard, mechanomyography (MMG...... and opioid. Neuromuscular blockade was induced with rocuronium 100, 150, 200 or 250 microg/kg. Neuromuscular monitoring was performed with AMG (TOF-Watch SX) with pre-load (Hand Adapter) at one arm and MMG (modified TOF-Watch SX) on the other, using 0.1 Hz single twitch stimulation. Dose...... difference between AMG and MMG is so small that it justifies AMG to be used for establishing the potency of neuromuscular blocking agents. However, the wide CIs show that we cannot rule out a 13% higher ED(50) and a 26% higher ED(95) for AMG....

  6. Alterations in Spontaneous Transmitter Release by Divalent Cations after Treatment of the Neuromuscular Junction with Alpha-Bungarotoxin

    Science.gov (United States)

    1982-01-01

    to change the spontaneous release rate of quantal acetylcholine . The simplest interpretation of these results is that toxin treatment increases the...Gage. 1973; Kita et al.. 1981), Mn increases spontaneous relese . The potentiations of transmitte- release by cobalt and nickel after toxin treatment...and Van der Kkw.. W. (1976). Effects of the ionophore X-537A on acetylcholine release at the frog neuromuscular junction. J. PuIwOl. Loand. 29 177-4

  7. Acute effect of scapular proprioceptive neuromuscular facilitation (PNF) techniques and classic exercises in adhesive capsulitis: a randomized controlled trial

    Science.gov (United States)

    Balcı, Nilay Comuk; Yuruk, Zeliha Ozlem; Zeybek, Aslican; Gulsen, Mustafa; Tekindal, Mustafa Agah

    2016-01-01

    [Purpose] The aim of our study was to compare the initial effects of scapular proprioceptive neuromuscular facilitation techniques and classic exercise interventions with physiotherapy modalities on pain, scapular dyskinesis, range of motion, and function in adhesive capsulitis. [Subjects and Methods] Fifty-three subjects were allocated to 3 groups: scapular proprioceptive neuromuscular facilitation exercies and physiotherapy modalities, classic exercise and physiotherapy modalities, and only physiotherapy modalities. The intervention was applied in a single session. The Visual Analog Scale, Lateral Scapular Slide Test, range of motion and Simple Shoulder Test were evaluated before and just after the one-hour intervention in the same session (all in one session). [Results] All of the groups showed significant differences in shoulder flexion and abduction range of motion and Simple Shoulder Test scores. There were statistically significant differences in Visual Analog Scale scores in the proprioceptive neuromuscular facilitation and control groups, and no treatment method had significant effect on the Lateral Scapular Slide Test results. There were no statistically significant differences between the groups before and after the intervention. [Conclusion] Proprioceptive neuromuscular facilitation, classic exercise, and physiotherapy modalities had immediate effects on adhesive capsulitis in our study. However, there was no additional benefit of exercises in one session over physiotherapy modalities. Also, an effective treatment regimen for shoulder rehabilitation of adhesive capsulitis patients should include scapular exercises. PMID:27190456

  8. Acute effect of scapular proprioceptive neuromuscular facilitation (PNF) techniques and classic exercises in adhesive capsulitis: a randomized controlled trial.

    Science.gov (United States)

    Balcı, Nilay Comuk; Yuruk, Zeliha Ozlem; Zeybek, Aslican; Gulsen, Mustafa; Tekindal, Mustafa Agah

    2016-04-01

    [Purpose] The aim of our study was to compare the initial effects of scapular proprioceptive neuromuscular facilitation techniques and classic exercise interventions with physiotherapy modalities on pain, scapular dyskinesis, range of motion, and function in adhesive capsulitis. [Subjects and Methods] Fifty-three subjects were allocated to 3 groups: scapular proprioceptive neuromuscular facilitation exercies and physiotherapy modalities, classic exercise and physiotherapy modalities, and only physiotherapy modalities. The intervention was applied in a single session. The Visual Analog Scale, Lateral Scapular Slide Test, range of motion and Simple Shoulder Test were evaluated before and just after the one-hour intervention in the same session (all in one session). [Results] All of the groups showed significant differences in shoulder flexion and abduction range of motion and Simple Shoulder Test scores. There were statistically significant differences in Visual Analog Scale scores in the proprioceptive neuromuscular facilitation and control groups, and no treatment method had significant effect on the Lateral Scapular Slide Test results. There were no statistically significant differences between the groups before and after the intervention. [Conclusion] Proprioceptive neuromuscular facilitation, classic exercise, and physiotherapy modalities had immediate effects on adhesive capsulitis in our study. However, there was no additional benefit of exercises in one session over physiotherapy modalities. Also, an effective treatment regimen for shoulder rehabilitation of adhesive capsulitis patients should include scapular exercises.

  9. Center of Mass Acceleration Feedback Control for Standing by Functional Neuromuscular Stimulation – a Simulation Study

    Science.gov (United States)

    Audu, Musa L.; Kirsch, Robert F.; Triolo, Ronald J.

    2013-01-01

    The potential efficacy of total body center of mass (COM) acceleration for feedback control of standing balance by functional neuromuscular stimulation (FNS) following spinal cord injury (SCI) was investigated. COM acceleration may be a viable alternative to conventional joint kinematics due to its rapid responsiveness, focal representation of COM dynamics, and ease of measurement. A computational procedure was developed using an anatomically-realistic, three-dimensional, bipedal biomechanical model to determine optimal patterns of muscle excitations to produce targeted effects upon COM acceleration from erect stance. The procedure was verified with electromyographic data collected from standing able-bodied subjects undergoing systematic perturbations. Using 16 muscle groups targeted by existing implantable neuroprostheses, data were generated to train an artificial neural network (ANN)-based controller in simulation. During forward simulations, proportional feedback of COM acceleration drove the ANN to produce muscle excitation patterns countering the effects of applied perturbations. Feedback gains were optimized to minimize upper extremity (UE) loading required to stabilize against disturbances. Compared to the clinical case of maximum constant excitation, the controller reduced UE loading by 43% in resisting external perturbations and by 51% during simulated one-arm reaching. Future work includes performance assessment against expected measurement errors and developing user-specific control systems. PMID:22773529

  10. Effects of a 12-hour neuromuscular electrical stimulation treatment program on the recovery of upper extremity function in sub-acute stroke patients: a randomized controlled pilot trial.

    Science.gov (United States)

    Cui, Bao-Juan; Wang, Dao-Qing; Qiu, Jian-Qing; Huang, Lai-Gang; Zeng, Fan-Shuo; Zhang, Qi; Sun, Min; Liu, Ben-Ling; Sun, Qiang-San

    2015-07-01

    [Purpose] This study investigated the effects of a 12-hour neuromuscular electrical stimulation program in the evening hours on upper extremity function in sub-acute stroke patients. [Subjects and Methods] Forty-five subjects were randomized to one of three groups: 12-hour neuromuscular electrical stimulation group (n=15), which received 12 hours of neuromuscular electrical stimulation and conventional rehabilitation for the affected upper extremity; neuromuscular electrical stimulation group (n=15), which received 30 min of neuromuscular electrical stimulation and conventional rehabilitation; and control group (n=15), which received conventional rehabilitation only. The Fugl-Meyer assessment, Action Research Arm Test, and modified Ashworth scale were used to evaluate the effects before and after intervention, and 4 weeks later. [Results] The improvement in the distal (wrist-hand) components of the Fugl-Meyer assessment and Action Research Arm Test in the 12-hour neuromuscular electrical stimulation group was more significant than that in the neuromuscular electrical stimulation group. No significant difference was found between the two groups in the proximal component (shoulder-elbow) of the Fugl-Meyer assessment. [Conclusion] The 12-hour neuromuscular electrical stimulation group achieved better improvement in upper extremity motor function, especially in the wrist-hand function. This alternative therapeutic approach is easily applicable and can be used in stroke patients during rest or sleep.

  11. Neuromuscular training reduces lower limb injuries in elite female basketball players. A cluster randomized controlled trial.

    Science.gov (United States)

    Bonato, M; Benis, R; La Torre, A

    2018-04-01

    The study was a two-armed, parallel group, cluster randomized controlled trial in which 15 teams (160 players) were assigned to either an experimental group (EG, 8 teams n = 86), which warmed-up with bodyweight neuromuscular exercises, or a control group (CG, 7 teams, n = 74) that performed standard tactical-technical exercises before training. All injuries during the 2015-2016 regular season were counted. Epidemiologic incidence proportion and incidence rate were also calculated. Countermovement jump (CMJ) and composite Y-Excursion Balance test (YBT) were used to assess lower limb strength and postural control. A total of 111 injuries were recorded. Chi-square test detected statistically significant differences between EG and CG (32 vs 79, P = .006). Significant differences in the injuries sustained in the EG (21 vs 11, P = .024) and CG (52 vs 27, P = .0001) during training and matches, respectively, were observed. Significant differences in post-intervention injuries were observed between in EG and CG during training (21 vs 52, P training into warm-up routines reduced the incidence of serious lower limb injuries in elite female basketball players. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Neuromuscular blockade in children

    Directory of Open Access Journals (Sweden)

    Almeida João Fernando Lourenço de

    2000-01-01

    Full Text Available Neuromuscular blocking agents (NMBAs have been widely used to control patients who need to be immobilized for some kind of medical intervention, such as an invasive procedure or synchronism with mechanical ventilation. The purpose of this monograph is to review the pharmacology of the NMBAs, to compare the main differences between the neuromuscular junction in neonates, infants, toddlers and adults, and moreover to discuss their indications in critically ill pediatric patients. Continuous improvement of knowledge about NMBAs pharmacology, adverse effects, and the many other remaining unanswered questions about neuromuscular junction and neuromuscular blockade in children is essential for the correct use of these drugs. Therefore, the indication of these agents in pediatrics is determined with extreme judiciousness. Computorized (Medline 1990-2000 and active search of articles were the mechanisms used in this review.

  13. Whole body, long-axis rotational training improves lower extremity neuromuscular control during single leg lateral drop landing and stabilization.

    Science.gov (United States)

    Nyland, John; Burden, Robert; Krupp, Ryan; Caborn, David N M

    2011-05-01

    Poor neuromuscular control during sports activities is associated with non-contact lower extremity injuries. This study evaluated the efficacy of progressive resistance, whole body, long-axis rotational training to improve lower extremity neuromuscular control during a single leg lateral drop landing and stabilization. Thirty-six healthy subjects were randomly assigned to either Training or Control groups. Electromyographic, ground reaction force, and kinematic data were collected from three pre-test, post-test trials. Independent sample t-tests with Bonferroni corrections for multiple comparisons were used to compare group mean change differences (P≤0.05/21≤0.0023). Training group gluteus maximus and gluteus medius neuromuscular efficiency improved 35.7% and 31.7%, respectively. Training group composite vertical-anteroposterior-mediolateral ground reaction force stabilization timing occurred 1.35s earlier. Training group knee flexion angle at landing increased by 3.5°. Training group time period between the initial two peak frontal plane knee displacements following landing increased by 0.17s. Training group peak hip and knee flexion velocity were 21.2°/s and 20.1°/s slower, respectively. Time period between the initial two peak frontal plane knee displacements following landing and peak hip flexion velocity mean change differences displayed a strong relationship in the Training group (r(2)=0.77, P=0.0001) suggesting improved dynamic frontal plane knee control as peak hip flexion velocity decreased. This study identified electromyographic, kinematic, and ground reaction force evidence that device training improved lower extremity neuromuscular control during single leg lateral drop landing and stabilization. Further studies with other populations are indicated. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Integrating Brain and Biomechanical Models—A New Paradigm for Understanding Neuro-muscular Control

    Science.gov (United States)

    James, Sebastian S.; Papapavlou, Chris; Blenkinsop, Alexander; Cope, Alexander J.; Anderson, Sean R.; Moustakas, Konstantinos; Gurney, Kevin N.

    2018-01-01

    To date, realistic models of how the central nervous system governs behavior have been restricted in scope to the brain, brainstem or spinal column, as if these existed as disembodied organs. Further, the model is often exercised in relation to an in vivo physiological experiment with input comprising an impulse, a periodic signal or constant activation, and output as a pattern of neural activity in one or more neural populations. Any link to behavior is inferred only indirectly via these activity patterns. We argue that to discover the principles of operation of neural systems, it is necessary to express their behavior in terms of physical movements of a realistic motor system, and to supply inputs that mimic sensory experience. To do this with confidence, we must connect our brain models to neuro-muscular models and provide relevant visual and proprioceptive feedback signals, thereby closing the loop of the simulation. This paper describes an effort to develop just such an integrated brain and biomechanical system using a number of pre-existing models. It describes a model of the saccadic oculomotor system incorporating a neuromuscular model of the eye and its six extraocular muscles. The position of the eye determines how illumination of a retinotopic input population projects information about the location of a saccade target into the system. A pre-existing saccadic burst generator model was incorporated into the system, which generated motoneuron activity patterns suitable for driving the biomechanical eye. The model was demonstrated to make accurate saccades to a target luminance under a set of environmental constraints. Challenges encountered in the development of this model showed the importance of this integrated modeling approach. Thus, we exposed shortcomings in individual model components which were only apparent when these were supplied with the more plausible inputs available in a closed loop design. Consequently we were able to suggest missing

  15. Neuromuscular Scoliosis

    Science.gov (United States)

    ... irregular spinal curvature caused by disorders of the brain, spinal cord, and muscular system. Nerves and muscles are unable to maintain appropriate balance / alignment of the spine and trunk. Neuromuscular curves are often associated with pelvic obliquity, ...

  16. Slackline training and neuromuscular performance in seniors: A randomized controlled trial.

    Science.gov (United States)

    Donath, L; Roth, R; Zahner, L; Faude, O

    2016-03-01

    Slackline training (balancing on nylon ribbons) has been shown to improve neuromuscular performance in children and adults. Comparable studies in seniors are lacking. Thus, 32 seniors were randomly assigned [strata: age, gender, physical activity (PA)] to an intervention [INT; n = 16, age: 65 ± 4 years, PA: 9 ± 5 h/week] or control [CON, n = 16, age: 63 ± 4 years, PA: 8 ± 4 h/week] group. Slackline training was given for 6 weeks (3 times per week, attendance 97%). Static and slackline standing balance performance, force development, and maximal strength of the ankle muscles were assessed before and after slackline training. Muscle activity (lower limb and trunk) was recorded during balance testing. Moderate to large group × time interactions (0.02 slackline standing times (INT: left, +278%, P = 0.02; right, +328%, P = 0.03; tandem, +94%, P = 0.007) and muscle activity during single-limb slackline standing [INT: right: rectus abdominis (RA), P = 0.003, -15%; multifidus (MF), P = 0.01, -15%; left: tibialis anterior (TIB), P = 0.03, -12%; soleus (SOL), P = 0.006, -18%; RA, P = 0.04, -11%; MF, P = 0.01, -16%; gastrocnemius medialis (GM), P = 0.02, -19%]. Static balance performance, ankle strength, and power were not affected. Slackline training induced large task-specific improvements of slackline standing performance accompanied with reductions of lower limb and trunk muscle activity. Transfer effects to static balance and strength measures seem limited. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Neuromuscular control of scapula muscles during a voluntary task in subjects with Subacromial Impingement Syndrome

    DEFF Research Database (Denmark)

    Larsen, C M; Søgaard, Karen; Chreiteh, S S

    2013-01-01

    Imbalance of neuromuscular activity in the scapula stabilizers in subjects with Subacromial Impingement Syndrome (SIS) is described in restricted tasks and specific populations. Our aim was to compare the scapular muscle activity during a voluntary movement task in a general population...... to define the population of impingement patients, as well as the methodological procedure being used, and the shoulder movement investigated....

  18. Full-movement neuromuscular electrical stimulation improves plantar flexor spasticity and ankle active dorsiflexion in stroke patients: a randomized controlled study.

    Science.gov (United States)

    Wang, Yong-Hui; Meng, Fei; Zhang, Yang; Xu, Mao-Yu; Yue, Shou-Wei

    2016-06-01

    To investigate whether full-movement neuromuscular electrical stimulation, which can generate full range of movement, reduces spasticity and/or improves motor function more effectively than control, sensory threshold-neuromuscular electrical stimulation, and motor threshold-neuromuscular electrical stimulation in sub-acute stroke patients. A randomized, single-blind, controlled study. Physical therapy room and functional assessment room. A total of 72 adult patients with sub-acute post-stroke hemiplegia and plantar flexor spasticity. Patients received 30-minute sessions of neuromuscular electrical stimulation on the motor points of the extensor hallucis and digitorum longus twice a day, five days per week for four weeks. Composite Spasticity Scale, Ankle Active Dorsiflexion Score, and walking time in the Timed Up and Go Test were assessed at pretreatment, posttreatment, and at two-week follow-up. After four weeks of treatment, when comparing interclass pretreatment and posttreatment, only the full-movement neuromuscular electrical stimulation group had a significant reduction in the Composite Spasticity Scale (mean % reduction = 19.91(4.96)%, F = 3.878, p  0.05). Full-movement neuromuscular electrical stimulation with a stimulus intensity capable of generating full movement can significantly reduce plantar flexor spasticity and improve ankle active dorsiflexion, but cannot decrease walking time in the Timed Up and Go Test in sub-acute stroke patients. © The Author(s) 2015.

  19. Controlled pilot study of the effects of neuromuscular therapy in patients with Parkinson's disease.

    Science.gov (United States)

    Craig, Lauren H; Svircev, Anna; Haber, Michael; Juncos, Jorge L

    2006-12-01

    The objectives of this study is to examine the effects of neuromuscular therapy (NMT) on motor and nonmotor symptoms in Parkinson's disease (PD). Thirty-six subjects with PD were randomly assigned to NMT or music relaxation (MR, or active control). Subjects received treatment twice a week for 4 weeks. Testing was conducted at baseline, after final treatment, and 8 days after final treatment. Primary outcome measures were the Motor subscale of the United Parkinson Disease Rating Scale (UPDRS) and the Clinical Global Impression scale (CGI-Change). Secondary outcome measures included a PD-specific quality of life scale (PDQ-39), quantitative measures of motor function, and severity scales for anxiety and depression symptoms. NMT resulted in a significant and sustained improvement in the Motor subscale of the UPDRS (P < or = 0.0001), most notable in the tremor scores. Also improved 1 week after the last treatment were the CGI scores (P = 0.007) and the finger-tapping speed (P = 0.001). The MR active control group had a slight improvement in tremor but evidenced no other change in motor function. Both groups exhibited a modest improvement in quality of life immediately after the last treatment. This effect was sustained for 8 days only in the MR group. In the nonmotor domains, the MR group evidenced improvements in mood (P = 0.001) and anxiety (P = 0.002), whereas NMT had no effect on mood (P = 0.09), and its initial effect on anxiety (P = 0.0009) dissipated after 8 days (P = 0.40). Group differences for UPDRS motor score and patient CGI-Change were superior in the NMT compared to the MR group. There was no group difference in PDQ-39 scores or in nonmotor measures. The findings suggest that NMT can improve motor and selected nonmotor symptoms in PD and that this effect is more durable for the motor symptoms. The results of this pilot study warrant larger controlled studies to examine dose range, durability, and mechanisms of NMT in PD function. Copyright 2006 Movement

  20. Differences in neuromuscular control and quadriceps morphology between potential copers and noncopers following anterior cruciate ligament injury.

    Science.gov (United States)

    Macleod, Toran D; Snyder-Mackler, Lynn; Buchanan, Thomas S

    2014-02-01

    Prospective cross-sectional study. To compare knee muscle morphology and voluntary neuromuscular control in individuals who sustained an anterior cruciate ligament (ACL) injury and were identified as being capable of avoiding surgery (potential copers) and those who were recommended for surgery (noncopers), within 6 months of injury. Quadriceps atrophy and poor neuromuscular control have been found in noncopers. However, the reasons why some noncopers may be able to avoid surgery remain elusive. Twenty participants (10 ACL-deficient noncopers and 10 ACL-deficient potential copers) were included in this study. Axial spin-echo, T1-weighted magnetic resonance imaging data of the lower extremities were captured. The volume and maximum cross-sectional area (CSA) of each muscle of the quadriceps and hamstrings were calculated following digital reconstruction. In addition, voluntary neuromuscular control was evaluated using an established target-matching task that required participants to produce static isometric loads across the knee joint. Electromyography was acquired from 5 muscles as participants performed the target-matching task. Circular statistics were used to calculate a specificity index to describe how well focused each muscle was activated toward its primary direction of muscle action. The ACL-deficient limb was then compared to the uninvolved limb of the noncopers and potential copers. The vasti (vastus medialis and vastus intermedius) of the involved limb of the noncopers were significantly smaller (Pquadriceps muscle volume (P = .020) and maximum CSA (P = .015), and quadriceps-hamstring ratio volume (P = .021) and maximum CSA (P = .007) demonstrated quadriceps atrophy. However, only the ACL-deficient limb of the older (mean ± SD age, 27.4 ± 11.4 versus 19.9 ± 3.3 years; P = .032) and lower-activity-level (3.3 ± 0.5 versus 3.6 ± 0.5; P = .098) noncoper group demonstrated reduced rectus femoris (P = .057) and lateral hamstring (P = .064) neuromuscular

  1. Trunk and hip control neuromuscular training for the prevention of knee joint injury.

    Science.gov (United States)

    Myer, Gregory D; Chu, Donald A; Brent, Jensen L; Hewett, Timothy E

    2008-07-01

    This article provide evidences to outline a novel theory used to define the mechanisms related to increased risk of ACL injury in female athletes. In addition, this discussion will include theoretical constructs for the description of the mechanisms that lead to increased risk. Finally, a clinical application section will outline novel neuromuscular training techniques designed to target deficits that underlie the proposed mechanism of increased risk of knee injury in female athletes.

  2. Neuromuscular Control During the Bench Press Movement in an Elite Disabled and Able-Bodied Athlete

    Science.gov (United States)

    Zwierzchowska, Anna; Maszczyk, Adam; Wilk, Michał; Stastny, Petr; Zając, Adam

    2017-01-01

    Abstract The disabled population varies significantly in regard to physical fitness, what is conditioned by the damage to the locomotor system. Recently there has been an increased emphasis on the role of competitive sport in enhancing health and the quality of life of individuals with disability. One of the sport disciplines of Paralympics is the flat bench press. The bench press is one of the most popular resistance exercises used for the upper body in healthy individuals. It is used not only by powerlifters, but also by athletes in most strength-speed oriented sport disciplines. The objective of the study was to compare neuromuscular control for various external loads (from 60 to 100% 1RM) during the flat bench press performed by an elite able-bodied athlete and an athlete with lower limb disability. The research project is a case study of two elite bench press athletes with similar sport results: an able-bodied athlete (M.W., age 34 years, body mass 103 kg, body height 1.72 m, 1RM in the flat bench press 200 kg) and a disabled athlete (M.T., age 31 years, body mass 92 kg, body height 1.70 m, 1RM in the flat bench press 190 kg). The activity was recorded for four muscles: pectoralis major (PM), anterior deltoid (AD), as well as for the lateral and long heads of the triceps brachii (TBlat and TBlong). The T-test revealed statistically significant differences between peak activity of all the considered muscles (AD with p = 0.001; PM with p = 0.001; TBlat with p = 0.0021 and TBlong with p = 0.002) between the 2 athletes. The analysis of peak activity differences of M.W and M.T. in relation to the load revealed statistically significant differences for load changes between: 60 to 100% 1RM (p = 0.007), 70 to 100% 1RM (p = 0.016) and 80 to 100% 1RM (p = 0.032). The flat bench press performed without legs resting firmly on the ground leads to the increased engagement of upper body muscles and to their greater activation. Isolated initial positions can be used to

  3. Neuromuscular Control During the Bench Press Movement in an Elite Disabled and Able-Bodied Athlete

    Directory of Open Access Journals (Sweden)

    Gołaś Artur

    2017-12-01

    Full Text Available The disabled population varies significantly in regard to physical fitness, what is conditioned by the damage to the locomotor system. Recently there has been an increased emphasis on the role of competitive sport in enhancing health and the quality of life of individuals with disability. One of the sport disciplines of Paralympics is the flat bench press. The bench press is one of the most popular resistance exercises used for the upper body in healthy individuals. It is used not only by powerlifters, but also by athletes in most strength-speed oriented sport disciplines. The objective of the study was to compare neuromuscular control for various external loads (from 60 to 100% 1RM during the flat bench press performed by an elite able-bodied athlete and an athlete with lower limb disability. The research project is a case study of two elite bench press athletes with similar sport results: an able-bodied athlete (M.W., age 34 years, body mass 103 kg, body height 1.72 m, 1RM in the flat bench press 200 kg and a disabled athlete (M.T., age 31 years, body mass 92 kg, body height 1.70 m, 1RM in the flat bench press 190 kg. The activity was recorded for four muscles: pectoralis major (PM, anterior deltoid (AD, as well as for the lateral and long heads of the triceps brachii (TBlat and TBlong. The T-test revealed statistically significant differences between peak activity of all the considered muscles (AD with p = 0.001; PM with p = 0.001; TBlat with p = 0.0021 and TBlong with p = 0.002 between the 2 athletes. The analysis of peak activity differences of M.W and M.T. in relation to the load revealed statistically significant differences for load changes between: 60 to 100% 1RM (p = 0.007, 70 to 100% 1RM (p = 0.016 and 80 to 100% 1RM (p = 0.032. The flat bench press performed without legs resting firmly on the ground leads to the increased engagement of upper body muscles and to their greater activation. Isolated initial positions can be used to

  4. Effects of proprioceptive neuromuscular facilitation neck pattern exercise on the ability to control the trunk and maintain balance in chronic stroke patients.

    Science.gov (United States)

    Hwangbo, Pil Neo; Don Kim, Kyoung

    2016-03-01

    [Purpose] The aim of this study was to investigate the effects of proprioceptive neuromuscular facilitation neck pattern exercise on the ability to control the trunk and balance in chronic stroke patients. [Subjects and Methods] A total of 30 study subjects were selected and randomly divided into an experimental group of 15 subjects, who received the proprioceptive neuromuscular facilitation neck pattern exercise, and a control group of 15 subjects, who received a traditional rehabilitation treatment. [Results] Statistically significant changes in all the items of the Trunk Impairment Scale, the Trunk Impairment Scale total score, and the Berg Balance Scale were observed in both the experimental group and the control group. significant between-group differences were found in all items among the subitems of the Trunk Impairment Scale except the static sitting balance. [Conclusion] Proprioceptive neuromuscular facilitation neck pattern exercise was shown to have a positive effect on increasing the ability to control the trunk and maintain balance in chronic stroke patients.

  5. Static balance and function in children with cerebral palsy submitted to neuromuscular block and neuromuscular electrical stimulation: Study protocol for prospective, randomized, controlled trial

    Directory of Open Access Journals (Sweden)

    Kazon Soráia

    2012-05-01

    Full Text Available Abstract Background The use of botulinum toxin A (BT-A for the treatment of lower limb spasticity is common in children with cerebral palsy (CP. Following the administration of BT-A, physical therapy plays a fundamental role in potentiating the functionality of the child. The balance deficit found in children with CP is mainly caused by muscle imbalance (spastic agonist and weak antagonist. Neuromuscular electrical stimulation (NMES is a promising therapeutic modality for muscle strengthening in this population. The aim of the present study is to describe a protocol for a study aimed at analyzing the effects of NMES on dorsiflexors combined with physical therapy on static and functional balance in children with CP submitted to BT- A. Methods/Design Protocol for a prospective, randomized, controlled trial with a blinded evaluator. Eligible participants will be children with cerebral palsy (Levels I, II and III of the Gross Motor Function Classification System between five and 12 years of age, with independent gait with or without a gait-assistance device. All participants will receive BT-A in the lower limbs (triceps surae. The children will then be randomly allocated for either treatment with motor physical therapy combined with NMES on the tibialis anterior or motor physical therapy alone. The participants will be evaluated on three occasions: 1 one week prior to the administration of BT-A; 2 one week after the administration of BT-A; and 3 four months after the administration of BT-A (end of intervention. Spasticity will be assessed by the Modified Ashworth Scale and Modified Tardieu Scale. Static balance will be assessed using the Medicapteurs Fusyo pressure platform and functional balance will be assessed using the Berg Balance Scale. Discussion The aim of this protocol study is to describe the methodology of a randomized, controlled, clinical trial comparing the effect of motor physical therapy combined with NMES on the tibialis anterior

  6. Effects of evidence-based prevention training on neuromuscular and biomechanical risk factors for ACL injury in adolescent female athletes: a randomised controlled trial.

    Science.gov (United States)

    Zebis, Mette K; Andersen, Lars L; Brandt, Mikkel; Myklebust, Grethe; Bencke, Jesper; Lauridsen, Hanne Bloch; Bandholm, Thomas; Thorborg, Kristian; Hölmich, Per; Aagaard, Per

    2016-05-01

    Adolescent female football and handball players are among the athletes with the highest risk of sustaining anterior cruciate ligament (ACL) injuries. This study evaluated the effects of evidence-based lower extremity injury prevention training on neuromuscular and biomechanical risk factors for non-contact ACL injury. 40 adolescent female football and handball players (15-16 years) were randomly allocated to a control group (CON, n=20) or neuromuscular training group (NMT, n=20). The NMT group performed an injury prevention programme as a warm-up before their usual training 3 times weekly for 12 weeks. The CON group completed their regular warm-up exercise programme before training. Players were tested while performing a side cutting movement at baseline and 12-week follow-up, using surface electromyography (EMG) and three-dimensional movement analysis. We calculated: (1) EMG amplitude from vastus lateralis (VL), semitendinosus (ST) and biceps femoris 10 ms prior to initial contact (IC) normalised to peak EMG amplitude recorded during maximal voluntary isometric contraction and (2) VL-ST EMG preactivity difference during the 10 ms prior to foot contact (primary outcome). We measured maximal knee joint valgus moment and knee valgus angle at IC. There was a difference between groups at follow-up in VL-ST preactivity (43% between-group difference; 95% CI 32% to 55%). No between-group differences were observed for kinematic and kinetic variables. A 12-week injury prevention programme in addition to training and match play in adolescent females altered the pattern of agonist-antagonist muscle preactivity during side cutting. This may represent a more ACL-protective motor strategy. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  7. An Adaptive Neuromuscular Controller for Assistive Lower-Limb Exoskeletons: A Preliminary Study on Subjects with Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Amy R. Wu

    2017-06-01

    Full Text Available Versatility is important for a wearable exoskeleton controller to be responsive to both the user and the environment. These characteristics are especially important for subjects with spinal cord injury (SCI, where active recruitment of their own neuromuscular system could promote motor recovery. Here we demonstrate the capability of a novel, biologically-inspired neuromuscular controller (NMC which uses dynamical models of lower limb muscles to assist the gait of SCI subjects. Advantages of this controller include robustness, modularity, and adaptability. The controller requires very few inputs (i.e., joint angles, stance, and swing detection, can be decomposed into relevant control modules (e.g., only knee or hip control, and can generate walking at different speeds and terrains in simulation. We performed a preliminary evaluation of this controller on a lower-limb knee and hip robotic gait trainer with seven subjects (N = 7, four with complete paraplegia, two incomplete, one healthy to determine if the NMC could enable normal-like walking. During the experiment, SCI subjects walked with body weight support on a treadmill and could use the handrails. With controller assistance, subjects were able to walk at fast walking speeds for ambulatory SCI subjects—from 0.6 to 1.4 m/s. Measured joint angles and NMC-provided joint torques agreed reasonably well with kinematics and biological joint torques of a healthy subject in shod walking. Some differences were found between the torques, such as the lack of knee flexion near mid-stance, but joint angle trajectories did not seem greatly affected. The NMC also adjusted its torque output to provide more joint work at faster speeds and thus greater joint angles and step length. We also found that the optimal speed-step length curve observed in healthy humans emerged for most of the subjects, albeit with relatively longer step length at faster speeds. Therefore, with very few sensors and no predefined

  8. An Adaptive Neuromuscular Controller for Assistive Lower-Limb Exoskeletons: A Preliminary Study on Subjects with Spinal Cord Injury.

    Science.gov (United States)

    Wu, Amy R; Dzeladini, Florin; Brug, Tycho J H; Tamburella, Federica; Tagliamonte, Nevio L; van Asseldonk, Edwin H F; van der Kooij, Herman; Ijspeert, Auke J

    2017-01-01

    Versatility is important for a wearable exoskeleton controller to be responsive to both the user and the environment. These characteristics are especially important for subjects with spinal cord injury (SCI), where active recruitment of their own neuromuscular system could promote motor recovery. Here we demonstrate the capability of a novel, biologically-inspired neuromuscular controller (NMC) which uses dynamical models of lower limb muscles to assist the gait of SCI subjects. Advantages of this controller include robustness, modularity, and adaptability. The controller requires very few inputs (i.e., joint angles, stance, and swing detection), can be decomposed into relevant control modules (e.g., only knee or hip control), and can generate walking at different speeds and terrains in simulation. We performed a preliminary evaluation of this controller on a lower-limb knee and hip robotic gait trainer with seven subjects ( N = 7, four with complete paraplegia, two incomplete, one healthy) to determine if the NMC could enable normal-like walking. During the experiment, SCI subjects walked with body weight support on a treadmill and could use the handrails. With controller assistance, subjects were able to walk at fast walking speeds for ambulatory SCI subjects-from 0.6 to 1.4 m/s. Measured joint angles and NMC-provided joint torques agreed reasonably well with kinematics and biological joint torques of a healthy subject in shod walking. Some differences were found between the torques, such as the lack of knee flexion near mid-stance, but joint angle trajectories did not seem greatly affected. The NMC also adjusted its torque output to provide more joint work at faster speeds and thus greater joint angles and step length. We also found that the optimal speed-step length curve observed in healthy humans emerged for most of the subjects, albeit with relatively longer step length at faster speeds. Therefore, with very few sensors and no predefined settings for

  9. Ankles back in randomized controlled trial (ABrCt): braces versus neuromuscular exercises for the secondary prevention of ankle sprains. Design of a randomised controlled trial.

    Science.gov (United States)

    Janssen, Kasper W; van Mechelen, Willem; Verhagen, Evert Alm

    2011-09-27

    Ankle sprains are the most common sports and physical activity related injury. There is extensive evidence that there is a twofold increased risk for injury recurrence for at least one year post injury. In up to 50% of all cases recurrences result in disability and lead to chronic pain or instability, requiring prolonged medical care. Therefore ankle sprain recurrence prevention in athletes is essential. This RCT evaluates the effect of the combined use of braces and neuromuscular training (e.g. proprioceptive training/sensorimotor training/balance training) against the individual use of either braces or neuromuscular training alone on ankle sprain recurrences, when applied to individual athletes after usual care. This study was designed as three way randomized controlled trial with one year follow-up. Healthy individuals between 12 and 70 years of age, who were actively participating in sports and who had sustained a lateral ankle sprain in the two months prior to inclusion, were eligible for inclusion. After subjects had finished ankle sprain treatment by means of usual care, they were randomised to any of the three study groups. Subjects in group 1 received an eight week neuromuscular training program, subjects in group 2 received a sports brace to be worn during all sports activities for the duration of one year, and group 3 received a combination of the neuromuscular training program and a sports brace to be worn during all sports activities for the duration of eight weeks. Outcomes were assessed at baseline and every month for 12 months therafter. The primary outcome measure was incidence of ankle sprain recurrences. Secondary outcome measures included the direct and indirect costs of recurrent injury, the severity of recurrent injury, and the residual complaints during and after the intervention. The ABrCt is the first randomized controlled trial to directly compare the secondary preventive effect of the combined use of braces and neuromuscular training

  10. Ankles back in randomized controlled trial (ABrCt: braces versus neuromuscular exercises for the secondary prevention of ankle sprains. Design of a randomised controlled trial

    Directory of Open Access Journals (Sweden)

    Verhagen Evert ALM

    2011-09-01

    Full Text Available Abstract Background Ankle sprains are the most common sports and physical activity related injury. There is extensive evidence that there is a twofold increased risk for injury recurrence for at least one year post injury. In up to 50% of all cases recurrences result in disability and lead to chronic pain or instability, requiring prolonged medical care. Therefore ankle sprain recurrence prevention in athletes is essential. This RCT evaluates the effect of the combined use of braces and neuromuscular training (e.g. proprioceptive training/sensorimotor training/balance training against the individual use of either braces or neuromuscular training alone on ankle sprain recurrences, when applied to individual athletes after usual care. Methods/Design This study was designed as three way randomized controlled trial with one year follow-up. Healthy individuals between 12 and 70 years of age, who were actively participating in sports and who had sustained a lateral ankle sprain in the two months prior to inclusion, were eligible for inclusion. After subjects had finished ankle sprain treatment by means of usual care, they were randomised to any of the three study groups. Subjects in group 1 received an eight week neuromuscular training program, subjects in group 2 received a sports brace to be worn during all sports activities for the duration of one year, and group 3 received a combination of the neuromuscular training program and a sports brace to be worn during all sports activities for the duration of eight weeks. Outcomes were assessed at baseline and every month for 12 months therafter. The primary outcome measure was incidence of ankle sprain recurrences. Secondary outcome measures included the direct and indirect costs of recurrent injury, the severity of recurrent injury, and the residual complaints during and after the intervention. Discussion The ABrCt is the first randomized controlled trial to directly compare the secondary preventive

  11. Neuromuscular electrical stimulation improves exercise tolerance in patients with advanced heart failure on continuous intravenous inotropic support use-randomized controlled trial.

    Science.gov (United States)

    Forestieri, Patrícia; Bolzan, Douglas W; Santos, Vinícius B; Moreira, Rita Simone Lopes; de Almeida, Dirceu Rodrigues; Trimer, Renata; de Souza Brito, Flávio; Borghi-Silva, Audrey; de Camargo Carvalho, Antonio Carlos; Arena, Ross; Gomes, Walter J; Guizilini, Solange

    2018-01-01

    To evaluate the impact of a short-term neuromuscular electrical stimulation program on exercise tolerance in hospitalized patients with advanced heart failure who have suffered an acute decompensation and are under continuous intravenous inotropic support. A randomized controlled study. Initially, 195 patients hospitalized for decompensated heart failure were recruited, but 70 were randomized. Patients were randomized into two groups: control group subject to the usual care ( n = 35); neuromuscular electrical stimulation group ( n = 35) received daily training sessions to both lower extremities for around two weeks. The baseline 6-minute walk test to determine functional capacity was performed 24 hours after hospital admission, and intravenous inotropic support dose was daily checked in all patients. The outcomes were measured in two weeks or at the discharge if the patients were sent back home earlier than two weeks. After losses of follow-up, a total of 49 patients were included and considered for final analysis (control group, n = 25 and neuromuscular electrical stimulation group, n = 24). The neuromuscular electrical stimulation group presented with a higher 6-minute walk test distance compared to the control group after the study protocol (293 ± 34.78 m vs. 265.8 ± 48.53 m, P Neuromuscular electrical stimulation group also demonstrated a significantly higher dose reduction of dobutamine compared to control group after the study protocol (2.72 ± 1.72 µg/kg/min vs. 3.86 ± 1.61 µg/kg/min, P = 0.001, respectively). A short-term inpatient neuromuscular electrical stimulation rehabilitation protocol improved exercise tolerance and reduced intravenous inotropic support necessity in patients with advanced heart failure suffering a decompensation episode.

  12. Acute Neuromuscular Adaptations in the Postural Control of Patients with Parkinson’s Disease after Perturbed Walking

    Directory of Open Access Journals (Sweden)

    Cristian F. Pasluosta

    2017-09-01

    Full Text Available Patients suffering from Parkinson’s disease (PD present motor impairments reflected in the dynamics of the center of pressure (CoP adjustments during quiet standing. One method to study the dynamics of CoP adjustments is the entropic half-life (EnHL, which measures the short-term correlations of a time series at different time scales. Changes in the EnHL of CoP time series suggest neuromuscular adaptations in the control of posture. In this study, we sought to investigate the immediate changes in the EnHL of CoP adjustments of patients with PD during one session of perturbed (experimental group and unperturbed treadmill walking (control group. A total of 39 patients with PD participated in this study. The experimental group (n = 19 walked on a treadmill providing small tilting of the treadmill platform. The control group (n = 20 walked without perturbations. Each participant performed 5-min practice followed by three 5-min training blocks of walking with or without perturbation (with 3-min resting in between. Quiet standing CoP data was collected for 30 s at pre-training, after each training block, immediately post-training, and after 10 min retention. The EnHL was computed on the original and surrogates (phase-randomized CoP signals in the medio-lateral (ML and anterior–posterior (AP directions. Data was analyzed using four-way mixed ANOVA. Increased EnHL values were observed for both groups (Time effect, p < 0.001 as the intervention progressed, suggesting neuromuscular adaptations in the control of posture. The EnHL of surrogate signals were significantly lower than for original signals (p < 0.001, confirming that these adaptations come from non-random control processes. There was no Group effect (p = 0.622, however by analyzing the significant Group by Direction by Time interaction (p < 0.05, a more pronounced effect in the ML direction of the perturbed group was observed. Altogether, our findings show that treadmill walking decreases

  13. Brain-controlled neuromuscular stimulation to drive neural plasticity and functional recovery.

    Science.gov (United States)

    Ethier, C; Gallego, J A; Miller, L E

    2015-08-01

    There is mounting evidence that appropriately timed neuromuscular stimulation can induce neural plasticity and generate functional recovery from motor disorders. This review addresses the idea that coordinating stimulation with a patient's voluntary effort might further enhance neurorehabilitation. Studies in cell cultures and behaving animals have delineated the rules underlying neural plasticity when single neurons are used as triggers. However, the rules governing more complex stimuli and larger networks are less well understood. We argue that functional recovery might be optimized if stimulation were modulated by a brain machine interface, to match the details of the patient's voluntary intent. The potential of this novel approach highlights the need for a better understanding of the complex rules underlying this form of plasticity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. The effects of neuromuscular exercise on medial knee joint load post-arthroscopic partial medial meniscectomy: 'SCOPEX', a randomised control trial protocol

    DEFF Research Database (Denmark)

    Hall, Michelle; Hinman, Rana S; Wrigley, Tim V

    2012-01-01

    to reduce the risk of developing or progressing osteoarthritis. The primary purpose of this randomised, assessor-blind controlled trial is to determine the effects of a home-based, physiotherapist-supervised neuromuscular exercise program on medial knee joint load during functional tasks in people who have...

  15. "Warming yang and invigorating qi" acupuncture alters acetylcholine receptor expression in the neuromuscular junction of rats with experimental autoimmune myasthenia gravis.

    Science.gov (United States)

    Huang, Hai-Peng; Pan, Hong; Wang, Hong-Feng

    2016-03-01

    Myasthenia gravis is an autoimmune disorder in which antibodies have been shown to form against the nicotinic acetylcholine nicotinic postsynaptic receptors located at the neuromuscular junction. "Warming yang and invigorating qi" acupuncture treatment has been shown to reduce serum inflammatory cytokine expression and increase transforming growth factor beta expression in rats with experimental autoimmune myasthenia gravis. However, few studies have addressed the effects of this type of acupuncture on the acetylcholine receptors at the neuromuscular junction. Here, we used confocal laser scanning microscopy to examine the area and density of immunoreactivity for an antibody to the nicotinic acetylcholine receptor at the neuromuscular junction in the phrenic nerve of rats with experimental autoimmune myasthenia gravis following "warming yang and invigorating qi" acupuncture therapy. Needles were inserted at acupressure points Shousanli (LI10), Zusanli (ST36), Pishu (BL20), and Shenshu (BL23) once daily for 7 consecutive days. The treatment was repeated after 1 day of rest. We found that area and the integrated optical density of the immunoreactivity for the acetylcholine receptor at the neuromuscular junction of the phrenic nerve was significantly increased following acupuncture treatment. This outcome of the acupuncture therapy was similar to that of the cholinesterase inhibitor pyridostigmine bromide. These findings suggest that "warming yang and invigorating qi" acupuncture treatment increases acetylcholine receptor expression at the neuromuscular junction in a rat model of autoimmune myasthenia gravis.

  16. "Warming yang and invigorating qi" acupuncture alters acetylcholine receptor expression in the neuromuscular junction of rats with experimental autoimmune myasthenia gravis

    Directory of Open Access Journals (Sweden)

    Hai-peng Huang

    2016-01-01

    Full Text Available Myasthenia gravis is an autoimmune disorder in which antibodies have been shown to form against the nicotinic acetylcholine nicotinic postsynaptic receptors located at the neuromuscular junction. "Warming yang and invigorating qi" acupuncture treatment has been shown to reduce serum inflammatory cytokine expression and increase transforming growth factor beta expression in rats with experimental autoimmune myasthenia gravis. However, few studies have addressed the effects of this type of acupuncture on the acetylcholine receptors at the neuromuscular junction. Here, we used confocal laser scanning microscopy to examine the area and density of immunoreactivity for an antibody to the nicotinic acetylcholine receptor at the neuromuscular junction in the phrenic nerve of rats with experimental autoimmune myasthenia gravis following "warming yang and invigorating qi" acupuncture therapy. Needles were inserted at acupressure points Shousanli (LI10, Zusanli (ST36, Pishu (BL20, and Shenshu (BL23 once daily for 7 consecutive days. The treatment was repeated after 1 day of rest. We found that area and the integrated optical density of the immunoreactivity for the acetylcholine receptor at the neuromuscular junction of the phrenic nerve was significantly increased following acupuncture treatment. This outcome of the acupuncture therapy was similar to that of the cholinesterase inhibitor pyridostigmine bromide. These findings suggest that "warming yang and invigorating qi" acupuncture treatment increases acetylcholine receptor expression at the neuromuscular junction in a rat model of autoimmune myasthenia gravis.

  17. Acute effect of scapular proprioceptive neuromuscular facilitation (PNF) techniques and classic exercises in adhesive capsulitis: a randomized controlled trial

    OpenAIRE

    Balc?, Nilay Comuk; Yuruk, Zeliha Ozlem; Zeybek, Aslican; Gulsen, Mustafa; Tekindal, Mustafa Agah

    2016-01-01

    [Purpose] The aim of our study was to compare the initial effects of scapular proprioceptive neuromuscular facilitation techniques and classic exercise interventions with physiotherapy modalities on pain, scapular dyskinesis, range of motion, and function in adhesive capsulitis. [Subjects and Methods] Fifty-three subjects were allocated to 3 groups: scapular proprioceptive neuromuscular facilitation exercies and physiotherapy modalities, classic exercise and physiotherapy modalities, and only...

  18. Effects of an 8-Week Body-Weight Neuromuscular Training on Dynamic Balance and Vertical Jump Performances in Elite Junior Skiing Athletes: A Randomized Controlled Trial.

    Science.gov (United States)

    Vitale, Jacopo A; La Torre, Antonio; Banfi, Giuseppe; Bonato, Matteo

    2018-04-01

    Vitale, JA, La Torre, A, Banfi, G, and Bonato, M. Effects of an 8-week body-weight neuromuscular training on dynamic balance and vertical jump performances in elite junior skiing athletes: a randomized controlled trial. J Strength Cond Res 32(4): 911-920, 2018-The aim of the present randomized controlled trial was to evaluate the effects of an 8-week neuromuscular training program focused on core stability, plyometric, and body-weight strengthening exercises on dynamic postural control and vertical jump performance in elite junior skiers. Twenty-four Italian elite junior male skiers were recruited and randomized to either an experimental group (EG), performing neuromuscular warm-up exercises, (EG; n = 12; age 18 ± 1 years; body mass 66 ± 21 kg; height 1.70 ± 0.1 m) or a control group (CG) involved in a standard warm-up (CG; n = 12; age 18 ± 1 years; body mass 62 ± 14 kg; height 1.73 ± 0.1 m). lower quarter Y-Balance Test (YBT), countermovement jump (CMJ), and drop jump (DJ) at baseline (PRE) and at the end (POST) of the experimental procedures were performed. No significant differences between EG and CG were observed at baseline. Results showed that EG achieved positive effects from PRE to POST measures in the anterior, posteromedial, posterolateral directions, and composite score of YBT for both lower limbs, whereas no significant differences were detected for CG. Furthermore, 2-way analysis of variance with Bonferroni's multiple comparisons test did not reveal any significant differences in CMJ and DJ for both EG and CG. The inclusion of an 8-week neuromuscular warm-up program led to positive effects in dynamic balance ability but not in vertical jump performance in elite junior skiers. Neuromuscular training may be an effective intervention to specifically increase lower limb joint awareness and postural control.

  19. Modulation of pain-induced neuromuscular trunk responses by pain expectations: a single group study.

    Science.gov (United States)

    Tétreau, Charles; Dubois, Jean-Daniel; Piché, Mathieu; Descarreaux, Martin

    2012-10-01

    The purpose of this study was to investigate the alteration of pain-induced neuromuscular trunk responses by expectations in healthy volunteers. Twenty-three asymptomatic participants performed series of flexion-extension movements in 3 different experimental conditions: innocuous heat stimulation (control) and noxious heat stimulation associated with expectations of low or high pain intensity. These stimuli were administered by a contact thermode placed over the lumbar region (L4 and L5) to assess the modulation of neuromuscular responses and kinematics during the flexion-extension task. Surface electromyography (EMG) of lumbar erector spinae at L2 and L3 and L4 and L5 as well as lumbopelvic kinematic variables were compared across conditions. Noxious stimulation significantly altered EMG responses but only in full trunk flexion. Interestingly, this alteration was significant only for muscles where noxious stimulation was applied (L4 and L5) and not for the other segment (L2 and L3). Conversely, expectations significantly altered EMG activity at L2 and L3 but not at the segment where noxious stimulation was applied. These results confirm previous findings and indicate that experimental pain can alter neuromuscular responses during a trunk flexion-extension task. Furthermore, this study suggests that expectations can alter some of these alterations. Future studies should determine whether neuromuscular changes induced by expectations may contribute to the transition from acute to chronic low-back pain. Copyright © 2012 National University of Health Sciences. Published by Mosby, Inc. All rights reserved.

  20. Effects of whole body vibration exercise on neuromuscular function for individuals with knee osteoarthritis: study protocol for a randomized controlled trial.

    Science.gov (United States)

    Lai, Zhangqi; Wang, Xueqiang; Lee, Seullee; Hou, Xihe; Wang, Lin

    2017-09-20

    Knee osteoarthritis (KOA) is a leading cause of public disability. Neuromuscular function contributes to the development and/or progression of KOA. Whole body vibration (WBV) exercise improve the neuromuscular function of patients with neurological disorders and even that of older patients with limited exercise options. Therefore, WBV exercise may offer an efficient and alternative treatment for individuals with KOA. However, the effects of WBV training on the neuromuscular function of individuals with KOA remain unclear. Therefore, this study attempts to investigate the effect of a 12-week WBV exercise on the neuromuscular function of individuals with KOA. We will conduct a prospective, single-blind randomized controlled trial on 180 KOA patients. Participants will be randomly assigned to the WBV exercise, lower extremity resistance training, and health education groups. The WBV exercise group will participate in a 12-week WBV training. The lower extremity resistance training group will undergo a 12-week lower extremity resistance training of both lower limbs. The control group will receive health education for 12 weeks. After the intervention, the participants will be followed up for 3 months with no active intervention. Primary outcome measures will include anthropometric measurements, gait analysis during walking and stair climbing, muscle strength test of the knee and ankle, proprioception test of the knee and ankle, and neuromuscular response of the leg muscles. Secondary outcome measures will include self-reported pain and physical functional capacity, and physical performance measures. Furthermore, adverse events will be recorded and analyzed. If any participant withdraws from the trial, intention-to-treat analysis will be performed. Important features of this trial mainly include intervention setting, outcome measure selection, and study duration. This study is intended for estimating the effect of WBV intervention on neuromuscular control outcomes

  1. Effects of neuromuscular electrical stimulation combined with effortful swallowing on post-stroke oropharyngeal dysphagia: a randomised controlled trial.

    Science.gov (United States)

    Park, J-S; Oh, D-H; Hwang, N-K; Lee, J-H

    2016-06-01

    Neuromuscular electrical stimulation (NMES) has been used as a therapeutic intervention for dysphagia. However, the therapeutic effects of NMES lack supporting evidence. In recent years, NMES combined with traditional swallowing therapy has been used to improve functional recovery in patients with post-stroke dysphagia. This study aimed to investigate the effects of effortful swallowing combined with neuromuscular electrical stimulation on hyoid bone movement and swallowing function in stroke patients. Fifty stroke patients with mild dysphagia who were able to swallow against the resistance applied by using NMES and cooperate actively in training were included. This study was designed as a 6-week single-blind, randomised, controlled study. In the experimental group, two pairs of electrodes were placed horizontally in the infrahyoid region to depress the hyoid bone. The NMES intensity was increased gradually until the participants felt a grabbing sensation in their neck and performed an effortful swallow during the stimulation. In the placebo group, the same procedure was followed except for the intensity, which was increased gradually until the participants felt an electrical sensation. All participants underwent this intervention for 30 min per session, 5 sessions per week, for 6 weeks. Videofluoroscopic swallowing studies (VFSS) were carried out before and after the intervention and kinematics of the hyoid bone and swallowing function were analysed based on the VFSS. The experimental group revealed a significant increase in anterior and superior hyoid bone movement and the pharyngeal phase of the swallowing function. This intervention can be used as a novel remedial approach in dysphagic stroke patients. © 2016 John Wiley & Sons Ltd.

  2. Differences in neuromuscular control between impact and no impact roundhouse kick in athletes of different skill levels.

    Science.gov (United States)

    Quinzi, Federico; Camomilla, Valentina; Felici, Francesco; Di Mario, Alberto; Sbriccoli, Paola

    2013-02-01

    This study aimed at investigating two aspects of neuromuscular control around the hip and knee joint while executing the roundhouse kick (RK) using two techniques: Impact RK (IRK) at trunk level and No-Impact RK at face level (NIRK). The influence of technical skill level was also investigated by comparing two groups: elite Karateka and Amateurs. Surface electromyographic (sEMG) signals have been recorded from the Vastus Lateralis (VL), Biceps Femoris (BF), Rectus Femoris (RF), Gluteus Maximum (GM) and Gastrocnemious (GA) muscles of the kicking leg in six Karateka and six Amateurs performing the RKs. Hip and knee kinematics were also assessed. EMG data were rectified, filtered and normalized to the maximal value obtained for each muscle over all trials; co-activation (CI) indexes of antagonist vs. overall (agonist and antagonist) activity were computed for hip and knee flexion and extension. Muscle Fiber Conduction Velocity (CV) obtained from VL and BF muscles was assessed as well. The effect of group and kick on angular velocity, CIs, and CVs was tested through a two-way ANOVA (p kicks. Karateka presented higher knee and hip angular velocity; higher BF-CV (IRK: 5.1 ± 1.0 vs. 3.5 ± 0.5 m/s; NIRK: 5.7 ± 1.3 vs. 4.1 ± 0.5 m/s), higher CIs for hip movements and knee flexion and lower CI for knee extension. The results obtained suggest the presence of a skill-dependent activation strategy in the execution of the two kicks. CV results are suggestive of an improved ability of elite Karateka to recruit fast MUs as a part of training induced neuromuscular adaptation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Center of Mass Acceleration Feedback Control of Standing Balance by Functional Neuromuscular Stimulation against External Postural Perturbations

    Science.gov (United States)

    Nataraj, Raviraj; Audu, Musa L.; Triolo, Ronald J.

    2013-01-01

    This study investigated the use of center of mass (COM) acceleration feedback for improving performance of a functional neuromuscular stimulation (FNS) control system to restore standing function to a subject with complete, thoracic-level spinal cord injury (SCI). The approach for linearly relating changes in muscle stimulation to changes in COM acceleration was verified experimentally and subsequently produced data to create an input-output map driven by sensor feedback. The feedback gains were systematically tuned to reduce upper extremity (UE) loads applied to an instrumented support device while resisting external postural disturbances. Total body COM acceleration was accurately estimated (> 89% variance explained) using three-dimensional (3-D) outputs of two accelerometers mounted on the pelvis and torso. Compared to constant muscle stimulation employed clinically, feedback control of stimulation reduced UE loading by 33%. COM acceleration feedback is advantageous in constructing a standing neuroprosthesis since it provides the basis for a comprehensive control synergy about a global, dynamic variable and requires minimal instrumentation. Future work should include tuning and testing the feedback control system during functional reaching activity that is more indicative of activities of daily living. PMID:22987499

  4. Center of Mass Acceleration Feedback Control of Functional Neuromuscular Stimulation for Standing in the Presence of Internal Postural Perturbations

    Science.gov (United States)

    Audu, Musa L.; Triolo, Ronald J.

    2013-01-01

    This study determined the feasibility and performance of center of mass (COM) acceleration feedback control of a neuroprosthesis utilizing functional neuromuscular stimulation (FNS) to restore standing balance to a single subject paralyzed by a motor and sensory complete, thoracic-level spinal cord injury (SCI). An artificial neural network (ANN) was created to map gain-modulated changes in total body COM acceleration estimated from body-mounted sensors to optimal changes in stimulation required to maintain standing. Feedback gains were systematically tuned to minimize the upper extremity (UE) loads applied by the subject to an instrumented support device during internally generated postural perturbations produced by volitional reaching and object manipulation. Total body COM acceleration was accurately estimated (> 90% variance explained) from two three-dimensional (3-D) accelerometers mounted on the pelvis and torso. Compared to constant muscle stimulation employed clinically, COM acceleration feedback control of stimulation improved standing performance by reducing the UE loading required to resist internal postural disturbances by 27%. This case study suggests that COM acceleration feedback could potentially be advantageous in a standing neuroprosthesis since it can be implemented with only a few feedback parameters and requires minimal instrumentation for comprehensive, 3-D control of dynamic standing function. PMID:23299260

  5. The effects of neuromuscular training on knee joint motor control during sidecutting in female elite soccer and handball players

    DEFF Research Database (Denmark)

    Zebis, Mette K; Bencke, Jesper; Andersen, Lars

    2008-01-01

    and 8 female elite team handball players aged 26 +/- 3 years at the start of the study. INTERVENTION: The subjects participated in a specific neuromuscular training program previously shown to reduce non-contact ACL injury. METHODS: Neuromuscular activity at the knee joint, joint angles at the hip......OBJECTIVE: The project aimed to implement neuromuscular training during a full soccer and handball league season and to experimentally analyze the neuromuscular adaptation mechanisms elicited by this training during a standardized sidecutting maneuver known to be associated with non......-contact anterior cruciate ligament (ACL) injury. DESIGN: The players were tested before and after 1 season without implementation of the prophylactic training and subsequently before and after a full season with the implementation of prophylactic training. PARTICIPANTS: A total of 12 female elite soccer players...

  6. Knee joint biomechanics and neuromuscular control during gait before and after total knee arthroplasty are sex-specific.

    Science.gov (United States)

    Astephen Wilson, Janie L; Dunbar, Michael J; Hubley-Kozey, Cheryl L

    2015-01-01

    The future of total knee arthroplasty (TKA) surgery will involve planning that incorporates more patient-specific characteristics. Despite known biological, morphological, and functional differences between men and women, there has been little investigation into knee joint biomechanical and neuromuscular differences between men and women with osteoarthritis, and none that have examined sex-specific biomechanical and neuromuscular responses to TKA surgery. The objective of this study was to examine sex-associated differences in knee kinematics, kinetics and neuromuscular patterns during gait before and after TKA. Fifty-two patients with end-stage knee OA (28 women, 24 men) underwent gait and neuromuscular analysis within the week prior to and one year after surgery. A number of sex-specific differences were identified which suggest a different manifestation of end-stage knee OA between the sexes. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Effect of exercise therapy on neuromuscular activity and knee strength in female adolescents with patellofemoral pain

    DEFF Research Database (Denmark)

    Rathleff, Michael S; Samani, Afshin; Olesen, Jens L

    2016-01-01

    BACKGROUND: Female adolescents with patellofemoral pain are characterized by altered neuromuscular knee control and reduced maximal quadriceps torque. The purpose of this study is to investigate whether exercise therapy and patient education are associated with larger improvements in neuromuscular...... knee control and maximal quadriceps torque compared with patient education alone. METHODS: This is an ancillary analysis of a cluster randomized controlled trial investigating the effect of patient education and exercise therapy on self-reported recovery in 121 adolescents with patellofemoral pain...... flexion/extension kinematics and maximal quadriceps torque. FINDINGS: There was an 8-15% greater decrease in the complexity of surface electromyography suggesting an improvement in neuromuscular knee control among those randomized to exercise therapy (0.08exercise...

  8. Muscular and neuromuscular control following soccer-specific exercise in male youth: Changes in injury risk mechanisms.

    Science.gov (United States)

    Lehnert, M; De Ste Croix, M; Zaatar, A; Hughes, J; Varekova, R; Lastovicka, O

    2017-09-01

    Poor neuromuscular control has been proposed as a risk factor for non-contact injuries, thus this study aimed to explore the effects of soccer-specific fatigue on leg muscle activation, reactive strength, leg stiffness, and functional hamstring/quadriceps ratio (H/Q FUNC ) in elite male youth soccer players. Outcome measures were determined in 18 youth players (age 14.4 ± 0.5 years; stature 169.4 ± 9.9 cm; mass 59.3 ± 8.9 kg; maturity offset 0.86 ± 0.88 years) pre and post simulated soccer match play (SAFT 90 ). There was no fatigue-related change in the H/Q FUNC ; however, reactive strength and leg stiffness were both compromised (P hamstring and quadriceps but not in the lateral muscles. Where statistically significant changes were observed, the effect sizes ranged from small to large (0.33-0.97). Compromised stiffness when fatigue is present suggests an increased yielding action, greater ground contact times, greater center of mass displacement, and less efficient movement when the limb comes into contact with the ground. This combined with a reduction in medial quadriceps muscle activation may reflect poor kinetic chain control at the hip and an increase in knee injury risk. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Comparing joint kinematics and center of mass acceleration as feedback for control of standing balance by functional neuromuscular stimulation

    Directory of Open Access Journals (Sweden)

    Nataraj Raviraj

    2012-05-01

    Full Text Available Abstract Background The purpose of this study was to determine the comparative effectiveness of feedback control systems for maintaining standing balance based on joint kinematics or total body center of mass (COM acceleration, and assess their clinical practicality for standing neuroprostheses after spinal cord injury (SCI. Methods In simulation, controller performance was measured according to the upper extremity effort required to stabilize a three-dimensional model of bipedal standing against a variety of postural disturbances. Three cases were investigated: proportional-derivative control based on joint kinematics alone, COM acceleration feedback alone, and combined joint kinematics and COM acceleration feedback. Additionally, pilot data was collected during external perturbations of an individual with SCI standing with functional neuromuscular stimulation (FNS, and the resulting joint kinematics and COM acceleration data was analyzed. Results Compared to the baseline case of maximal constant muscle excitations, the three control systems reduced the mean upper extremity loading by 51%, 43% and 56%, respectively against external force-pulse perturbations. Controller robustness was defined as the degradation in performance with increasing levels of input errors expected with clinical deployment of sensor-based feedback. At error levels typical for body-mounted inertial sensors, performance degradation due to sensor noise and placement were negligible. However, at typical tracking error levels, performance could degrade as much as 86% for joint kinematics feedback and 35% for COM acceleration feedback. Pilot data indicated that COM acceleration could be estimated with a few well-placed sensors and efficiently captures information related to movement synergies observed during perturbed bipedal standing following SCI. Conclusions Overall, COM acceleration feedback may be a more feasible solution for control of standing with FNS given its

  10. The effects of neuromuscular exercise on medial knee joint load post-arthroscopic partial medial meniscectomy: ‘SCOPEX’ a randomised control trial protocol

    Directory of Open Access Journals (Sweden)

    Hall Michelle

    2012-11-01

    Full Text Available Abstract Background Meniscectomy is a risk factor for knee osteoarthritis, with increased medial joint loading a likely contributor to the development and progression of knee osteoarthritis in this group. Therefore, post-surgical rehabilitation or interventions that reduce medial knee joint loading have the potential to reduce the risk of developing or progressing osteoarthritis. The primary purpose of this randomised, assessor-blind controlled trial is to determine the effects of a home-based, physiotherapist-supervised neuromuscular exercise program on medial knee joint load during functional tasks in people who have recently undergone a partial medial meniscectomy. Methods/design 62 people aged 30–50 years who have undergone an arthroscopic partial medial meniscectomy within the previous 3 to 12 months will be recruited and randomly assigned to a neuromuscular exercise or control group using concealed allocation. The neuromuscular exercise group will attend 8 supervised exercise sessions with a physiotherapist and will perform 6 exercises at home, at least 3 times per week for 12 weeks. The control group will not receive the neuromuscular training program. Blinded assessment will be performed at baseline and immediately following the 12-week intervention. The primary outcomes are change in the peak external knee adduction moment measured by 3-dimensional analysis during normal paced walking and one-leg rise. Secondary outcomes include the change in peak external knee adduction moment during fast pace walking and one-leg hop and change in the knee adduction moment impulse during walking, one-leg rise and one-leg hop, knee and hip muscle strength, electromyographic muscle activation patterns, objective measures of physical function, as well as self-reported measures of physical function and symptoms and additional biomechanical parameters. Discussion The findings from this trial will provide evidence regarding the effect of a home

  11. Effect of upper extremity proprioceptive neuromuscular facilitation combined with elastic resistance bands on respiratory muscle strength: a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Guilherme P. T. Areas

    2013-12-01

    Full Text Available BACKGROUND: Elastic resistance bands (ERB combined with proprioceptive neuromuscular facilitation (PNF are often used in resistance muscle training programs, which have potential effects on peripheral muscle strength. However, the effects of the combination of ERB and PNF on respiratory muscle strength warrant further investigation. OBJECTIVES: The assessment of the effects of PNF combined with ERB on respiratory muscle strength. METHOD: Twenty healthy, right-handed females were included. Subjects were randomized to either the resistance training program group (TG, n=10 or the control group (CG, n=10. Maximal expiratory pressure (MEP and inspiratory pressure (MIP were measured before and after four weeks of an upper extremity resistance training program. The training protocol consisted of upper extremity PNF combined with ERB, with resistance selected from 1 repetition maximum protocol. RESULTS: PNF combined with ERB showed significant increases in MIP and MEP (p<0.05. In addition, there were significant differences between the TG and CG regarding ∆MIP (p=0.01 and ∆MEP (p=0.04. CONCLUSIONS: PNF combined with ERB can have a positive impact on respiratory muscle strength. These results may be useful with respect to cardiopulmonary chronic diseases that are associated with reduced respiratory muscle strength.

  12. Effects of Neuromuscular Electrical Stimulation on the Frequency of Skeletal Muscle Cramps: A Prospective Controlled Clinical Trial.

    Science.gov (United States)

    Behringer, Michael; Harmsen, Jan-Frieder; Fasse, Alessandro; Mester, Joachim

    2017-11-22

    We investigated if neuromuscular electrical stimulation (NMES) of calf muscles prevents spontaneous calf cramps. In 19 individuals affected by more than or equal to one calf cramp per week the gastrocnemius of the predominantly affected leg was stimulated twice a week (intervention leg, IL) over six weeks (3 × 6 stimulation trains at 30 Hz above the individual cramp threshold frequency). The other leg served as control (CL). The participants were advised to record all spontaneous muscle cramps from two weeks before the intervention until two weeks after the last NMES session. The number of spontaneous calf cramps in the two weeks after the intervention was 78% lower (2.1 ± 6.8 cramps) in the stimulated (p cramps) in the unstimulated calves (p cramps; CL: 5.5 ± 12.7 cramps). Only in the IL, this improvement was accompanied by an increase in the cramp threshold frequency from 15.5 ± 8.5 Hz before the NMES intervention to 21.7 ± 12.4 Hz after the intervention. The severity of the remaining calf cramps tended to be lower in both legs after the intervention. The applied stimulation protocol seems to provide an effective prevention strategy in individuals affected by regular calf cramps. © 2017 International Neuromodulation Society.

  13. Effect of upper extremity proprioceptive neuromuscular facilitation combined with elastic resistance bands on respiratory muscle strength: a randomized controlled trial.

    Science.gov (United States)

    Areas, Guilherme P T; Borghi-Silva, Audrey; Lobato, Arianne N; Silva, Alessandra A; Freire, Renato C; Areas, Fernando Z S

    2013-01-01

    Elastic resistance bands (ERB) combined with proprioceptive neuromuscular facilitation (PNF) are often used in resistance muscle training programs, which have potential effects on peripheral muscle strength. However, the effects of the combination of ERB and PNF on respiratory muscle strength warrant further investigation. The assessment of the effects of PNF combined with ERB on respiratory muscle strength. Twenty healthy, right-handed females were included. Subjects were randomized to either the resistance training program group (TG, n=10) or the control group (CG, n=10). Maximal expiratory pressure (MEP) and inspiratory pressure (MIP) were measured before and after four weeks of an upper extremity resistance training program. The training protocol consisted of upper extremity PNF combined with ERB, with resistance selected from 1 repetition maximum protocol. PNF combined with ERB showed significant increases in MIP and MEP (p<0.05). In addition, there were significant differences between the TG and CG regarding ∆MIP (p=0.01) and ∆MEP (p=0.04). PNF combined with ERB can have a positive impact on respiratory muscle strength. These results may be useful with respect to cardiopulmonary chronic diseases that are associated with reduced respiratory muscle strength.

  14. A randomized controlled trial of surface neuromuscular electrical stimulation applied early after acute stroke: effects on wrist pain, spasticity and contractures.

    Science.gov (United States)

    Malhotra, Shweta; Rosewilliam, Sheeba; Hermens, Hermie; Roffe, Christine; Jones, Peter; Pandyan, Anand David

    2013-07-01

    To investigate effects of surface neuromuscular electrical stimulation applied early after stroke to the wrist and finger extensor muscles on upper limb pain, spasticity and contractures in patients with no functional arm movement. Secondary analysis from a Phase II, randomized, controlled, single-blind study. An acute hospital stroke unit. Patients with no useful arm function within six weeks of a first stroke. Patients were randomized to treatment (30-minute sessions of surface neuromuscular stimulation to wrist and finger extensors and 45 minutes of physiotherapy) or control (45 minutes of physiotherapy) groups. All patients had access to routine care. Treatment was given for six weeks from recruitment. Ninety patients (49% male, median age 74 years (range 32-98), median time since stroke onset three weeks (range one to six weeks)) were included. Treatment compliance was variable (mean 28%). The treatment prevented the development of pain (mean difference in rate of change 0.4 units/week, 95% confidence interval (CI) 0.09 to 0.6). Treatment may have prevented a deterioration in contractures (quantified by measuring passive range of movement) in severely disabled patients (mean rate of deterioration -0.5 deg/week; 95% CI -0.9 to -0.06). There were no significant changes in stiffness and spasticity. Surface neuromuscular electrical stimulation reduces pain in stroke patients with a non-functional arm. There was some evidence that treatment with electrical stimulation was beneficial in reducing contractures. Treatment had no effect on spasticity.

  15. Effects of Tai Chi versus Proprioception Exercise Program on Neuromuscular Function of the Ankle in Elderly People: A Randomized Controlled Trial

    Directory of Open Access Journals (Sweden)

    Jing Liu

    2012-01-01

    Full Text Available Background. Tai Chi is a traditional Chinese medicine exercise used for improving neuromuscular function. This study aimed to investigate the effects of Tai Chi versus proprioception exercise program on neuromuscular function of the ankle in elderly people. Methods. Sixty elderly subjects were randomly allocated into three groups of 20 subjects per group. For 16 consecutive weeks, subjects participated in Tai Chi, proprioception exercise, or no structured exercise. Primary outcome measures included joint position sense and muscle strength of ankle. Subjects completed a satisfaction questionnaire upon study completion in Tai Chi and proprioception groups. Results. (1 Both Tai Chi group and proprioception exercise group were significantly better than control group in joint position sense of ankle, and there were no significant differences in joint position sense of ankle between TC group and PE group. (2 There were no significant differences in muscle strength of ankle among groups. (3 Subjects expressed more satisfaction with Tai Chi than with proprioception exercise program. Conclusions. None of the outcome measures on neuromuscular function at the ankle showed significant change posttraining in the two structured exercise groups. However, the subjects expressed more interest in and satisfaction with Tai Chi than proprioception exercise.

  16. Effects of shared medical appointments on quality of life and cost-effectiveness for patients with a chronic neuromuscular disease. Study protocol of a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    van der Wilt Gert-Jan

    2011-08-01

    Full Text Available Abstract Background Shared medical appointments are a series of one-to-one doctor-patient contacts, in presence of a group of 6-10 fellow patients. This group visits substitute the annual control visits of patients with the neurologist. The same items attended to in a one-to- one appointment are addressed. The possible advantages of a shared medical appointment could be an added value to the present management of neuromuscular patients. The currently problem-focused one-to-one out-patient visits often leave little time for the patient's psychosocial needs, patient education, and patient empowerment. Methods/design A randomized, prospective controlled study (RCT with a follow up of 6 months will be conducted to evaluate the clinical and cost-effectiveness of shared medical appointments compared to usual care for 300 neuromuscular patients and their partners at the Radboud University Nijmegen Medical Center. Every included patient will be randomly allocated to one of the two study arms. This study has been reviewed and approved by the medical ethics committee of the region Arnhem-Nijmegen, the Netherlands. The primary outcome measure is quality of life as measured by the EQ-5D, SF-36 and the Individualized neuromuscular Quality of Life Questionnaire. The primary analysis will be an intention-to-treat analysis on the area under the curve of the quality of life scores. A linear mixed model will be used with random factor group and fixed factors treatment, baseline score and type of neuromuscular disease. For the economic evaluation an incremental cost-effectiveness analysis will be conducted from a societal perspective, relating differences in costs to difference in health outcome. Results are expected in 2012. Discussion This study will be the first randomized controlled trial which evaluates the effect of shared medical appointments versus usual care for neuromuscular patients. This will enable to determine if there is additional value of shared

  17. Embedded System for Prosthetic Control Using Implanted Neuromuscular Interfaces Accessed Via an Osseointegrated Implant.

    Science.gov (United States)

    Mastinu, Enzo; Doguet, Pascal; Botquin, Yohan; Hakansson, Bo; Ortiz-Catalan, Max

    2017-08-01

    Despite the technological progress in robotics achieved in the last decades, prosthetic limbs still lack functionality, reliability, and comfort. Recently, an implanted neuromusculoskeletal interface built upon osseointegration was developed and tested in humans, namely the Osseointegrated Human-Machine Gateway. Here, we present an embedded system to exploit the advantages of this technology. Our artificial limb controller allows for bioelectric signals acquisition, processing, decoding of motor intent, prosthetic control, and sensory feedback. It includes a neurostimulator to provide direct neural feedback based on sensory information. The system was validated using real-time tasks characterization, power consumption evaluation, and myoelectric pattern recognition performance. Functionality was proven in a first pilot patient from whom results of daily usage were obtained. The system was designed to be reliably used in activities of daily living, as well as a research platform to monitor prosthesis usage and training, machine-learning-based control algorithms, and neural stimulation paradigms.

  18. Enhancing trunk stability in acute poststroke subjects using physioball exercise and proprioceptive neuromuscular facilitation technique: A pilot randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Ravichandran Hariharasudhan

    2016-01-01

    Full Text Available Background: Stroke is one of the leading causes of death and disability worldwide. Poststroke, most survivors experience trunk control impairment and instability. Previous works on exercise on an unstable surface to improve trunk stability in nonstroke population had proven effective. Thus, physioball exercises (PBEs in poststroke subjects may be useful in the recovery of trunk stability and thereby reduce disability. We hypothesize that PBE is feasible and effective in enhancing trunk stability. Aims: To test the feasibility and successful implementation of conducting a randomized controlled study to assess the clinical effectiveness of PBE and proprioceptive neuromuscular facilitation (PNF technique to enhance trunk control in poststroke subjects. Methods: This study was conducted in a stroke unit of Global Hospitals and Health City, Chennai, India. Thirty patients with the first onset of stroke within 40 days of stroke duration, lesion to one side, and ability to sit independently with or without arm support for 15 days were recruited. All thirty poststroke subjects were randomized either into PBE group or PNF group, and outcome assessors involved in the trail were blinded to allocation. PBE group performed task-oriented activities on an unstable surface and PNF group were treated with PNF-specific trunk stability exercise program for 4 weeks (30 min/day, 5 times/week. Trunk impairment scale (TIS was used as a main outcome measure. Results: Data were analyzed using Wilcoxon signed rank sum test and Mann–Whitney U-test for intra- and inter-group comparison. The baseline characteristics between both groups were statistically nonsignificant. Within groups, there were significant improvements between baseline and at 4 weeks in the measure of TIS. In addition, PBE group showed a significant increase in trunk control (mean 2.33, 95% confidence interval 1.14-3.52, P = 0.002 than the PNF subject. Conclusion: This pilot randomized controlled trial

  19. Neuromuscular Adaptations to Multimodal Injury Prevention Programs in Youth Sports: A Systematic Review with Meta-Analysis of Randomized Controlled Trials.

    Science.gov (United States)

    Faude, Oliver; Rössler, Roland; Petushek, Erich J; Roth, Ralf; Zahner, Lukas; Donath, Lars

    2017-01-01

    Objective: Neuromuscular injury prevention programs (IPP) can reduce injury rate by about 40% in youth sport. Multimodal IPP include, for instance, balance, strength, power, and agility exercises. Our systematic review and meta-analysis aimed to evaluate the effects of multimodal IPP on neuromuscular performance in youth sports. Methods: We conducted a systematic literature search including selected search terms related to youth sports, injury prevention, and neuromuscular performance. Inclusion criteria were: (i) the study was a (cluster-)randomized controlled trial (RCT), and (ii) investigated healthy participants, up to 20 years of age and involved in organized sport, (iii) an intervention arm performing a multimodal IPP was compared to a control arm following a common training regime, and (iv) neuromuscular performance parameters (e.g., balance, power, strength, sprint) were assessed. Furthermore, we evaluated IPP effects on sport-specific skills. Results: Fourteen RCTs (comprising 704 participants) were analyzed. Eight studies included only males, and five only females. Seventy-one percent of all studies investigated soccer players with basketball, field hockey, futsal, Gaelic football, and hurling being the remaining sports. The average age of the participants ranged from 10 years up to 19 years and the level of play from recreational to professional. Intervention durations ranged from 4 weeks to 4.5 months with a total of 12 to 57 training sessions. We observed a small overall effect in favor of IPP for balance/stability (Hedges' g = 0.37; 95%CI 0.17, 0.58), leg power (g = 0.22; 95%CI 0.07, 0.38), and isokinetic hamstring and quadriceps strength as well as hamstrings-to-quadriceps ratio (g = 0.38; 95%CI 0.21, 0.55). We found a large overall effect for sprint abilities (g = 0.80; 95%CI 0.50, 1.09) and sport-specific skills (g = 0.83; 95%CI 0.34, 1.32). Subgroup analyses revealed larger effects in high-level (g = 0.34-1.18) compared to low-level athletes (g

  20. Functional Neuromuscular Stimulation Controlled by Surface Electromyographic Signals Produced by Volitional Activation of the Same Muscle

    DEFF Research Database (Denmark)

    Sennels, Søren; Biering-Sørensen, Fin; Andersen, Ole Trier

    1997-01-01

    In order to use the volitional electromyography (EMG) as a control signal for the stimulation of the same muscle, it is necessary to eliminate the stimulation artifacts and the muscle responses caused by the stimulation. The stimulation artifacts, caused by the electric field in skin and tissue....... For variations in shape of the muscle responses and for real data, an increased filter performance can be achieved by increasing the filter length. Using a filter length of up to seven stimulation periods, it is possible to reduce real muscle responses to a level comparable with the background noise. Using...... the shut-down circuit and the adaptive filter both the stimulation artifacts and the muscle responses can be effectively eliminated from the EMG signal from a stimulated muscle. It is therefore possible to extract the volitional EMG from a partly paralyzed muscle and use it for controlling the stimulation...

  1. The role of the neuromuscular control mechanism in motor output : do individuals share muscle activation features?

    OpenAIRE

    Huber, Cora

    2011-01-01

    Although walking is a constrained movement, there is variation in the muscle recruitment patterns. The processed wavelet-based electromyogram (EMG) [von Tscharner (2000)] signals indicated that the task structure contained in walking doesn’t prescribe one single muscle activation strategy, and that multiple configurations of muscle activation can result in functionally equivalent postural control. By applying a principal component analysis approach, the intra-muscular analysis ...

  2. Comparison of neuromuscular and quadriceps strengthening exercise in the treatment of varus malaligned knees with medial knee osteoarthritis: a randomised controlled trial protocol

    Directory of Open Access Journals (Sweden)

    Bennell Kim L

    2011-12-01

    Full Text Available Abstract Background Osteoarthritis of the knee involving predominantly the medial tibiofemoral compartment is common in older people, giving rise to pain and loss of function. Many people experience progressive worsening of the disease over time, particularly those with varus malalignment and increased medial knee joint load. Therefore, interventions that can reduce excessive medial knee loading may be beneficial in reducing the risk of structural progression. Traditional quadriceps strengthening can improve pain and function in people with knee osteoarthritis but does not appear to reduce medial knee load. A neuromuscular exercise program, emphasising optimal alignment of the trunk and lower limb joints relative to one another, as well as quality of movement performance, while dynamically and functionally strengthening the lower limb muscles, may be able to reduce medial knee load. Such a program may also be superior to traditional quadriceps strengthening with respect to improved pain and physical function because of the functional and dynamic nature. This randomised controlled trial will investigate the effect of a neuromuscular exercise program on medial knee joint loading, pain and function in individuals with medial knee joint osteoarthritis. We hypothesise that the neuromuscular program will reduce medial knee load as well as pain and functional limitations to a greater extent than a traditional quadriceps strengthening program. Methods/Design 100 people with medial knee pain, radiographic medial compartment osteoarthritis and varus malalignment will be recruited and randomly allocated to one of two 12-week exercise programs: quadriceps strengthening or neuromuscular exercise. Each program will involve 14 supervised exercise sessions with a physiotherapist plus four unsupervised sessions per week at home. The primary outcomes are medial knee load during walking (the peak external knee adduction moment from 3D gait analysis, pain, and self

  3. Training for improved neuro-muscular control of balance in middle aged females.

    Science.gov (United States)

    Anderson, Gregory S; Deluigi, Fabio; Belli, Guido; Tentoni, Claudio; Gaetz, Michael B

    2016-01-01

    This study examined improvements in static balance and muscle electromyographic (EMG) activity following a four week progressive training program in 16 middle aged females (mean age = 46.9 ± 8.7 yrs; height 161.1 ± 6.0 cm; weight 65.4 ± 11.2 kg). Participants trained 3 times per week for 4 weeks, for 50 min per session, progressing base of support, stability, vision, resistance and torque in each of six basic exercises. Pre and post training measures of balance included feet together standing, a tandem stance and a one-leg stand (unsupported leg in the saggital plane) performed with the eyes closed, and a Stork Stand (unsupported leg in the frontal plane) with both eyes open and closed. In each position postural deviations were tallied for each individual while muscle recruitment was determined using root mean squared (RMS) EMG activity for the soleus, biceps femoris, erector spinae, rectus abdominis and internal oblique muscles of the dominant foot side. Balance scores were significantly improved post training in both the Balance Error Score System (p < 0.05) and stork stand positions (p < 0.01). Muscle activity was reduced post-training in all muscles in each condition except the soleus in the tandem position, although not all significantly. Reduced biceps femoris activity suggest that improved core stability allowed participants to move from a hip to an ankle postural control strategy through improved coordination of muscles involved in balance and reduced body sway. The core muscles were able to control body position with less activity post training suggesting improved muscle coordination and efficiency. These results suggest that short term progressive floor to BOSU™ balance training can improve standing balance in middle aged women. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Neuromuscular junction disorders.

    Science.gov (United States)

    Verschuuren, Jan; Strijbos, Ellen; Vincent, Angela

    2016-01-01

    Diseases of the neuromuscular junction comprise a wide range of disorders. Antibodies, genetic mutations, specific drugs or toxins interfere with the number or function of one of the essential proteins that control signaling between the presynaptic nerve ending and the postsynaptic muscle membrane. Acquired autoimmune disorders of the neuromuscular junction are the most common and are described here. In myasthenia gravis, antibodies to acetylcholine receptors or to proteins involved in receptor clustering, particularly muscle-specific kinase, cause direct loss of acetylcholine receptors or interfere with the agrin-induced acetylcholine receptor clustering necessary for efficient neurotransmission. In the Lambert-Eaton myasthenic syndrome (LEMS), loss of the presynaptic voltage-gated calcium channels results in reduced release of the acetylcholine transmitter. The conditions are generally recognizable clinically and the diagnosis confirmed by serologic testing and electromyography. Screening for thymomas in myasthenia or small cell cancer in LEMS is important. Fortunately, a wide range of symptomatic treatments, immunosuppressive drugs, or other immunomodulating therapies is available. Future research is directed to understanding the pathogenesis, discovering new antigens, and trying to develop disease-specific treatments. © 2016 Elsevier B.V. All rights reserved.

  5. The Effects of Plyometric Type Neuromuscular Training on Postural Control Performance of Male Team Basketball Players.

    Science.gov (United States)

    Asadi, Abbas; Saez de Villarreal, Eduardo; Arazi, Hamid

    2015-07-01

    Anterior cruciate ligament injuries are common in basketball athletes; common preventive programs for decreasing these injures may be enhancing postural control (PC) or balance with plyometric training. This study investigated the efficiency of plyometric training program within basketball practice to improve PC performance in young basketball players. Sixteen players were recruited and assigned either to a plyometric + basketball training group (PT) or basketball training group (BT). All players trained twice per week, but the PT + BT followed a 6-week plyometric program implemented within basketball practice, whereas the BT followed regular practice. The star excursion balance test (SEBT) at 8 directions (anterior, A; anteromedial, AM; anterolateral, AL; medial, M; lateral, L; posterior, P; posteromedial, PM; and posterolateral, PL) was measured before and after the 6-week period. The PT group induced significant improvement (p ≤ 0.05) and small to moderate effect size in the SEBT (A = 0.95, AM = 0.62, AL = 0.61, M = 0.36, L = 0.47, P = 0.27, PM = 0.25, PL = 0.24). No significant improvements were found in the BT group. Also, there were significant differences between groups in all directions except PM and PL. An integrated plyometric program within the regular basketball practice can lead to significant improvements in SEBT and consequently PC. It can be recommended that strength and conditioning professionals use PT to enhance the athletes' joint awareness and PC to reduce possible future injuries in the lower extremity.

  6. Quality of Residual Neuromuscular Control and Functional Deficits in Patients with Spinal Cord Injury

    Science.gov (United States)

    Ovechkin, Alexander V.; Vitaz, Todd W.; Terson de Paleville, Daniela G. L.; McKay, William B.

    2013-01-01

    Study Design: Prospective cohort study. Objective: This study examined the relationship between motor control and clinical function outcomes after spinal cord injury (SCI). Setting: University of Louisville, Louisville, KY, USA. Materials: Eleven persons with SCI and 5 non-injured subjects were included in this study. Methods: The ASIA Impairment Scale (AIS) was used to categorize injury level and severity. Multi-muscle, surface EMG (sEMG) recording, was carried out using a protocol of reflex and volitional motor tasks and was analyzed using a vector-based tool that calculates index values that relate a distribution of multi-muscle activation pattern of each SCI subject to the prototype obtained from non-injured subject group and presents overall magnitude as a separate value. Functional Independence Measure motor sub-scale, Spinal Cord Injury Independence Measure (SCIM-III), and Walking Index for Spinal Cord Injury (WISCI) scale scores were compared to neurophysiological parameters. Results: AIS category and injury level correlated significantly with the WISCI and SCIM mobility sub-scales. sEMG-derived parameters were significantly correlated with SCIM and WISCI scores but only for examinations carried out 48 or more days post-injury. Conclusion: These results supported the hypothesis that clinically relevant function after SCI is related to the degree to which functional organization within the central nervous system is disrupted. Further, due likely to the constraints placed on the expression of functional ability by early post-injury immobilization and hospitalization, neurophysiological assessment of motor function may provide better sensitivity and reliability than can be obtained using the clinical function scales examined here within the early period after injury. PMID:24223568

  7. Quality of residual neuromuscular control and functional deficits in patients with spinal cord injury

    Directory of Open Access Journals (Sweden)

    Alexander eOvechkin

    2013-11-01

    Full Text Available Study Design: Prospective cohort studyObjective: This study examined the relationship between motor control and clinical function outcomes after spinal cord injury (SCI.Setting: University of Louisville, Louisville, Kentucky, USA.Material: Eleven persons with SCI and 5 non-injured subjects were included in this study.Methods: The American Spinal Injury Association Impairment Scale (AIS was used to categorize injury level and severity. Multi-muscle, surface EMG (sEMG recording, was carried out using a protocol of reflex and volitional motor tasks and was analyzed using a vector-based tool that calculates index values that relate a distribution of multi-muscle activation pattern of each SCI subject to the prototype obtained from non-injured subject group and presents overall magnitude as a separate value. Functional Independence Measure (FIM motor subscale, Spinal Cord Injury Independence Measure (SCIM-III, and Walking Index for Spinal Cord Injury (WISCI scale scores were compared to neurophysiological parameters.Results: AIS category and injury level correlated significantly with the WISCI and SCIM mobility subscales. sEMG-derived parameters were significantly correlated with SCIM and WISCI scores but only for examinations carried out 48 or more days post-injury. Conclusions: These results supported the hypothesis that clinically-relevant function after SCI is related to the degree to which functional organization within the central nervous system is disrupted. Further, due likely to the constraints placed on the expression of functional ability by early post-injury immobilization and hospitalization, neurophysiological assessment of motor function may provide better sensitivity and reliability than can be obtained using the clinical function scales examined here within the early period after injury.

  8. Neuromuscular strategies for lumbopelvic control during frontal and sagittal plane movement challenges differ between people with and without low back pain.

    Science.gov (United States)

    Nelson-Wong, E; Poupore, K; Ingvalson, S; Dehmer, K; Piatte, A; Alexander, S; Gallant, P; McClenahan, B; Davis, A M

    2013-12-01

    Observation-based assessments of movement are a standard component in clinical assessment of patients with non-specific low back pain. While aberrant motion patterns can be detected visually, clinicians are unable to assess underlying neuromuscular strategies during these tests. The purpose of this study was to compare coordination of the trunk and hip muscles during 2 commonly used assessments for lumbopelvic control in people with low back pain (LBP) and matched control subjects. Electromyography was recorded from hip and trunk muscles of 34 participants (17 with LBP) during performance of the Active Hip Abduction (AHAbd) and Active Straight Leg Raise (ASLR) tests. Relative muscle timing was calculated using cross-correlation. Participants with LBP demonstrated a variable strategy, while control subjects used a consistent proximal to distal activation strategy during both frontal and sagittal plane movements. Findings from this study provide insight into underlying neuromuscular control during commonly used assessment tests for patients with LBP that may help to guide targeted intervention approaches. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Sleep in Neuromuscular Diseases.

    Science.gov (United States)

    Fermin, Anna Monica; Afzal, Umair; Culebras, Antonio

    2016-03-01

    Sleep disorders in neuromuscular disorders are generally caused by respiratory dysfunction associated with these diseases. Hypoventilation in neuromuscular diseases results from both respiratory muscle weakness and reduced chemoreceptor sensitivity, which is required for ventilatory drive. This condition results in repeated arousals, sleep fragmentation, and nocturnal hypoxemia, manifesting most commonly as excessive daytime somnolence. Polysomnography can identify sleep disordered breathing in patients with neuromuscular disorders and treatment with noninvasive ventilation may improve quality of life. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Comparison between two different neuromuscular electrical stimulation protocols for the treatment of female stress urinary incontinence: a randomized controlled trial

    OpenAIRE

    Alves,Priscila G. J. M.; Nunes,Fabiana R.; Guirro,Elaine C. O.

    2011-01-01

    BACKGROUND: Neuromuscular electrical stimulation (NMES) is widely treatment for stress urinary incontinence (SUI) but there is no consensus in literature regarding the most effective treatment parameters. OBJECTIVE: To compare two NMESintra-vaginal protocols for the treatment of SUI in women. METHODS: The study included 20 volunteers with an average age of 55.55±6.51 years and with the clinical diagnosis of SUI. Volunteers were randomly divided into two groups: group 1 (G1) received NMES with...

  11. Neuromuscular adaptations to training, injury and passive interventions: implications for running economy.

    Science.gov (United States)

    Bonacci, Jason; Chapman, Andrew; Blanch, Peter; Vicenzino, Bill

    2009-01-01

    Performance in endurance sports such as running, cycling and triathlon has long been investigated from a physiological perspective. A strong relationship between running economy and distance running performance is well established in the literature. From this established base, improvements in running economy have traditionally been achieved through endurance training. More recently, research has demonstrated short-term resistance and plyometric training has resulted in enhanced running economy. This improvement in running economy has been hypothesized to be a result of enhanced neuromuscular characteristics such as improved muscle power development and more efficient use of stored elastic energy during running. Changes in indirect measures of neuromuscular control (i.e. stance phase contact times, maximal forward jumps) have been used to support this hypothesis. These results suggest that neuromuscular adaptations in response to training (i.e. neuromuscular learning effects) are an important contributor to enhancements in running economy. However, there is no direct evidence to suggest that these adaptations translate into more efficient muscle recruitment patterns during running. Optimization of training and run performance may be facilitated through direct investigation of muscle recruitment patterns before and after training interventions. There is emerging evidence that demonstrates neuromuscular adaptations during running and cycling vary with training status. Highly trained runners and cyclists display more refined patterns of muscle recruitment than their novice counterparts. In contrast, interference with motor learning and neuromuscular adaptation may occur as a result of ongoing multidiscipline training (e.g. triathlon). In the sport of triathlon, impairments in running economy are frequently observed after cycling. This impairment is related mainly to physiological stress, but an alteration in lower limb muscle coordination during running after cycling

  12. Neuromuscular NMDA Receptors Modulate Developmental Synapse Elimination.

    Science.gov (United States)

    Personius, Kirkwood E; Slusher, Barbara S; Udin, Susan B

    2016-08-24

    At birth, each mammalian skeletal muscle fiber is innervated by multiple motor neurons, but in a few weeks, all but one of those axons retracts (Redfern, 1970) and differential activity between inputs controls this phenomenon (Personius and Balice-Gordon, 2001; Sanes and Lichtman, 2001; Personius et al., 2007; Favero et al., 2012). Acetylcholine, the primary neuromuscular transmitter, has long been presumed to mediate this activity-dependent process (O'Brien et al., 1978), but glutamatergic transmission also occurs at the neuromuscular junction (Berger et al., 1995; Grozdanovic and Gossrau, 1998; Mays et al., 2009). To test the role of neuromuscular NMDA receptors, we assessed their contribution to muscle calcium fluxes in mice and tested whether they influence removal of excess innervation at the end plate. Developmental synapse pruning was slowed by reduction of NMDA receptor activation or expression and by reduction of glutamate production. Conversely, pruning is accelerated by application of exogenous NMDA. We also found that NMDA induced increased muscle calcium only during the first 2 postnatal weeks. Therefore, neuromuscular NMDA receptors play previously unsuspected roles in neuromuscular activity and synaptic pruning during development. In normal adult muscle, each muscle fiber is innervated by a single axon, but at birth, fibers are multiply innervated. Elimination of excess connections requires neural activity; because the neuromuscular junction (NMJ) is a cholinergic synapse, acetylcholine has been assumed to be the critical mediator of activity. However, glutamate receptors are also expressed at the NMJ. We found that axon removal in mice is slowed by pharmacological and molecular manipulations that decrease signaling through neuromuscular NMDA receptors, whereas application of exogenous NMDA at the NMJ accelerates synapse elimination and increases muscle calcium levels during the first 2 postnatal weeks. Therefore, neuromuscular NMDA receptors play

  13. Effects of mirror therapy combined with neuromuscular electrical stimulation on motor recovery of lower limbs and walking ability of patients with stroke: a randomized controlled study.

    Science.gov (United States)

    Xu, Qun; Guo, Feng; Salem, Hassan M Abo; Chen, Hong; Huang, Xiaolin

    2017-12-01

    To investigate the effectiveness of mirror therapy combined with neuromuscular electrical stimulation in promoting motor recovery of the lower limbs and walking ability in patients suffering from foot drop after stroke. Randomized controlled study. Inpatient rehabilitation center of a teaching hospital. Sixty-nine patients with foot drop. Patients were randomly divided into three groups: control, mirror therapy, and mirror therapy + neuromuscular electrical stimulation. All groups received interventions for 0.5 hours/day and five days/week for four weeks. 10-Meter walk test, Brunnstrom stage of motor recovery of the lower limbs, Modified Ashworth Scale score of plantar flexor spasticity, and passive ankle joint dorsiflexion range of motion were assessed before and after the four-week period. After four weeks of intervention, Brunnstrom stage ( P = 0.04), 10-meter walk test ( P electrical stimulation group showed better results than those in the mirror therapy group in the 10-meter walk test ( P electrical stimulation group showed a significant decrease in spasticity ( P electrical stimulation may help improve walking ability and reduce spasticity in stroke patients with foot drop.

  14. Feedback Control of arm movements using Neuro-Muscular Electrical Stimulation (NMES combined with a lockable, passive exoskeleton for gravity compensation

    Directory of Open Access Journals (Sweden)

    Christian eKlauer

    2014-09-01

    Full Text Available Within the European project MUNDUS, an assistive framework was developed for the support of arm and hand functions during daily life activities in severely impaired people. Potential users of this system are patients with high-level spinal cord injury and neurodegenerative neuromuscular diseases, such as amyotrophic lateral sclerosis, Friedreich ataxia, and multiple sclerosis. This contribution aims at designing a feedback control system for Neuro-Muscular Electrical Stimulation (NMES to enable reaching functions in people with no residual voluntary control of the arm due to upper motor neuron lesions after spinal cord injury. NMES is applied to the deltoids and the biceps muscles and integrated with a three degrees of freedom (DoFs passive exoskeleton, which partially compensates gravitational forces and allows to lock each DOF. The user is able to choose the target hand position and to trigger actions using an eyetracker system. The target position is selected by using the eyetracker and determined by a marker-based tracking system using Microsoft Kinect. A central controller, i.e. a finite state machine, issues a sequence of basic movement commands to the real-time arm controller. The NMES control algorithm sequentially controls each joint angle while locking the other DoFs. Daily activities, such as drinking, brushing hair, pushing an alarm button, etc., can be supported by the system. The robust and easily tunable control approach was evaluated with five healthy subjects during a drinking task. Subjects were asked to remain passive and to allow NMES to induce the movements. In all of them, the controller was able to perform the task, and a mean hand positioning error of less than five centimeters was achieved. The average total time duration for moving the hand from a rest position to a drinking cup, for moving the cup to the mouth and back, and for finally returning the arm to the rest position was 71 seconds.

  15. Neuromuscular Adaptations to Multimodal Injury Prevention Programs in Youth Sports: A Systematic Review with Meta-Analysis of Randomized Controlled Trials

    Directory of Open Access Journals (Sweden)

    Oliver Faude

    2017-10-01

    Full Text Available Objective: Neuromuscular injury prevention programs (IPP can reduce injury rate by about 40% in youth sport. Multimodal IPP include, for instance, balance, strength, power, and agility exercises. Our systematic review and meta-analysis aimed to evaluate the effects of multimodal IPP on neuromuscular performance in youth sports.Methods: We conducted a systematic literature search including selected search terms related to youth sports, injury prevention, and neuromuscular performance. Inclusion criteria were: (i the study was a (cluster-randomized controlled trial (RCT, and (ii investigated healthy participants, up to 20 years of age and involved in organized sport, (iii an intervention arm performing a multimodal IPP was compared to a control arm following a common training regime, and (iv neuromuscular performance parameters (e.g., balance, power, strength, sprint were assessed. Furthermore, we evaluated IPP effects on sport-specific skills.Results: Fourteen RCTs (comprising 704 participants were analyzed. Eight studies included only males, and five only females. Seventy-one percent of all studies investigated soccer players with basketball, field hockey, futsal, Gaelic football, and hurling being the remaining sports. The average age of the participants ranged from 10 years up to 19 years and the level of play from recreational to professional. Intervention durations ranged from 4 weeks to 4.5 months with a total of 12 to 57 training sessions. We observed a small overall effect in favor of IPP for balance/stability (Hedges' g = 0.37; 95%CI 0.17, 0.58, leg power (g = 0.22; 95%CI 0.07, 0.38, and isokinetic hamstring and quadriceps strength as well as hamstrings-to-quadriceps ratio (g = 0.38; 95%CI 0.21, 0.55. We found a large overall effect for sprint abilities (g = 0.80; 95%CI 0.50, 1.09 and sport-specific skills (g = 0.83; 95%CI 0.34, 1.32. Subgroup analyses revealed larger effects in high-level (g = 0.34–1.18 compared to low-level athletes

  16. Age-related changes in trunk neuromuscular activation patterns during a controlled functional transfer task include amplitude and temporal synergies.

    Science.gov (United States)

    Quirk, D Adam; Hubley-Kozey, Cheryl L

    2014-12-01

    While healthy aging is associated with physiological changes that can impair control of trunk motion, few studies examine how spinal muscle responses change with increasing age. This study examined whether older (over 65 years) compared to younger (20-45 years) adults had higher overall amplitude and altered temporal recruitment patterns of trunk musculature when performing a functional transfer task. Surface electromyograms from twelve bilateral trunk muscle (24) sites were analyzed using principal component analysis, extracting amplitude and temporal features (PCs) from electromyographic waveforms. Two PCs explained 96% of the waveform variance. Three factor ANOVA models tested main effects (group, muscle and reach) and interactions for PC scores. Significant (pactivity, demonstrated continuous activation levels in specific muscle sites despite changing external moments, and had altered temporal synergies within abdominal and back musculature. In summary both older and younger adults recruit highly organized activation patterns in response to changing external moments. Differences in temporal trunk musculature recruitment patterns suggest that older adults experience different dynamic spinal stiffness and loading compared to younger adults during a functional lifting task. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Proximal Neuromuscular Control Protects Against Hamstring Injuries in Male Soccer Players: A Prospective Study With Electromyography Time-Series Analysis During Maximal Sprinting.

    Science.gov (United States)

    Schuermans, Joke; Danneels, Lieven; Van Tiggelen, Damien; Palmans, Tanneke; Witvrouw, Erik

    2017-05-01

    With their unremittingly high incidence rate and detrimental functional repercussions, hamstring injuries remain a substantial problem in male soccer. Proximal neuromuscular control ("core stability") is considered to be of key importance in primary and secondary hamstring injury prevention, although scientific evidence and insights on the exact nature of the core-hamstring association are nonexistent at present. The muscle activation pattern throughout the running cycle would not differ between participants based on injury occurrence during follow-up. Case-control study; Level of evidence, 3. Sixty amateur soccer players participated in a multimuscle surface electromyography (sEMG) assessment during maximal acceleration to full-speed sprinting. Subsequently, hamstring injury occurrence was registered during a 1.5-season follow-up period. Hamstring, gluteal, and trunk muscle activity time series during the airborne and stance phases of acceleration were evaluated and statistically explored for a possible causal association with injury occurrence and absence from sport during follow-up. Players who did not experience a hamstring injury during follow-up had significantly higher amounts of gluteal muscle activity during the front swing phase ( P = .027) and higher amounts of trunk muscle activity during the backswing phase of sprinting ( P = .042). In particular, the risk of sustaining a hamstring injury during follow-up lowered by 20% and 6%, with a 10% increment in normalized muscle activity of the gluteus maximus during the front swing and the trunk muscles during the backswing, respectively ( P hamstring injury occurrence in male soccer players. Higher amounts of gluteal and trunk muscle activity during the airborne phases of sprinting were associated with a lower risk of hamstring injuries during follow-up. Hence, the present results provide a basis for improved, evidence-based rehabilitation and prevention, particularly focusing on increasing neuromuscular

  18. Preventing Australian football injuries with a targeted neuromuscular control exercise programme: comparative injury rates from a training intervention delivered in a clustered randomised controlled trial.

    Science.gov (United States)

    Finch, Caroline F; Twomey, Dara M; Fortington, Lauren V; Doyle, Tim L A; Elliott, Bruce C; Akram, Muhammad; Lloyd, David G

    2016-04-01

    Exercise-based training programmes are commonly used to prevent sports injuries but programme effectiveness within community men's team sport is largely unknown. To present the intention-to-treat analysis of injury outcomes from a clustered randomised controlled trial in community Australian football. Players from 18 male, non-elite, community Australian football clubs across two states were randomly allocated to either a neuromuscular control (NMC) (intervention n=679 players) or standard-practice (control n=885 players) exercise training programme delivered as part of regular team training sessions (2× weekly for 8-week preseason and 18-week regular-season). All game-related injuries and hours of game participation were recorded. Generalised estimating equations, adjusted for clustering (club unit), were used to compute injury incidence rates (IIRs) for all injuries, lower limb injuries (LLIs) and knee injuries sustained during games. The IIRs were compared across groups with cluster-adjusted Injury Rate Ratios (IRRs). Overall, 773 game injuries were recorded. The lower limb was the most frequent body region injured, accounting for 50% of injuries overall, 96 (12%) of which were knee injuries. The NMC players had a reduced LLI rate compared with control players (IRR: 0.78 (95% CI 0.56 to 1.08), p=0.14.) The knee IIR was also reduced for NMC compared with control players (IRR: 0.50 (95% CI 0.24 to 1.05), p=0.07). These intention-to-treat results indicate that positive outcomes can be achieved from targeted training programmes for reducing knee and LLI injury rates in men's community sport. While not statistically significant, reducing the knee injury rate by 50% and the LLI rate by 22% is still a clinically important outcome. Further injury reductions could be achieved with improved training attendance and participation in the programme. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to

  19. ACL injury risk in elite female youth soccer: Changes in neuromuscular control of the knee following soccer-specific fatigue.

    Science.gov (United States)

    De Ste Croix, M B A; Priestley, A M; Lloyd, R S; Oliver, J L

    2015-10-01

    Fatigue is known to influence dynamic knee joint stability from a neuromuscular perspective, and electromechanical delay (EMD) plays an important role as the feedback activation mechanism that stabilizes the joint. The aim of this study was to investigate the influence of soccer-specific fatigue on EMD in U13-, U15-, and U17-year-old female soccer players. Thirty-six youth soccer players performed eccentric actions of the hamstrings in a prone position at 60, 120, and 180°/s before and after a soccer-specific fatigue trial. Surface electromyography was used to determine EMD from the semitendinosus, biceps femoris and gastrocnemius. A time × age × muscle × velocity repeated measures analysis of variance was used to explore the influence of fatigue on EMD. A significant main effect for time (P = 0.001) indicated that EMD was significantly longer post- compared with pre-fatigue (58.4% increase). A significant time × group interaction effect (P = 0.046) indicated EMD was significantly longer in the U13 age group compared with the U15 (P = 0.011) and U17 (P = 0.021) groups and greater post-fatigue. Soccer-specific fatigue compromised neuromuscular feedback mechanisms and the age-related effects may represent a more compliant muscle-tendon system in younger compared with older girls, increasing risk of injury. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Doenças neuromusculares Neuromuscular disorders

    Directory of Open Access Journals (Sweden)

    Umbertina C. Reed

    2002-08-01

    Full Text Available Objetivo: apresentar os dados essenciais para o diagnóstico diferencial entre as principais doenças neuromusculares, denominação genérica sob a qual agrupam-se diferentes afecções, decorrentes do acometimento primário da unidade motora (motoneurônio medular, raiz nervosa, nervo periférico, junção mioneural e músculo. Fontes dos dados: os aspectos clínicos fundamentais para estabelecer o diagnóstico diferencial entre as diferentes doenças neuromusculares, bem como entre estas e as causas de hipotonia muscular secundária ao comprometimento do sistema nervoso central ou a doenças sistêmicas não-neurológicas, são enfatizados, com base na experiência clínica vinda do atendimento a crianças com doenças neuromusculares durante os últimos 12 anos, no ambulatório de doenças neuromusculares do Hospital das Clínicas da Faculdade de Medicina, da Universidade de São Paulo. A revisão bibliográfica foi efetuada através do Medline e do periódico Neuromuscular Disorders, publicação oficial da World Muscle Society. Síntese dos dados: nas crianças, a maior parte destas afecções é geneticamente determinada, sendo as mais comuns a distrofia muscular progressiva ligada ao sexo, de Duchenne, a amiotrofia espinal infantil, a distrofia muscular congênita, a distrofia miotônica de Steinert, e as miopatias congênitas, estruturais e não estruturais. Polineuropatias hereditárias, síndrome miastênica congênita e miopatias metabólicas são menos comuns, porém mostram correlação geno-fenotípica cada vez mais precisa. Conclusões: na década passada, inúmeros avanços da genética molecular facilitaram imensamente o diagnóstico e o aconselhamento genético das doenças neuromusculares mais comuns das crianças, inclusive possibilitando diagnóstico fetal e, adicionalmente, vieram permitir melhor caracterização fenotípica e classificação mais objetiva.Objective: to discuss the most important aspects for performing a

  1. Neuromuscular Disorders - Multiple Languages

    Science.gov (United States)

    ... Health Information Translations Spanish (español) Expand Section Neuromuscular Disorders: MedlinePlus Health Topic - English ... Health Information Translations Characters not displaying correctly on this page? See language display issues . Return to the MedlinePlus Health Information ...

  2. [Residual neuromuscular blockade].

    Science.gov (United States)

    Fuchs-Buder, T; Schmartz, D

    2017-06-01

    Even small degrees of residual neuromuscular blockade, i. e. a train-of-four (TOF) ratio >0.6, may lead to clinically relevant consequences for the patient. Especially upper airway integrity and the ability to swallow may still be markedly impaired. Moreover, increasing evidence suggests that residual neuromuscular blockade may affect postoperative outcome of patients. The incidence of these small degrees of residual blockade is relatively high and may persist for more than 90 min after a single intubating dose of an intermediately acting neuromuscular blocking agent, such as rocuronium and atracurium. Both neuromuscular monitoring and pharmacological reversal are key elements for the prevention of postoperative residual blockade.

  3. Effect of a neuromuscular training program on the kinetics and kinematics of jumping tasks.

    Science.gov (United States)

    Chappell, Jonathan D; Limpisvasti, Orr

    2008-06-01

    Altered motor control strategies are a proposed cause of the female athlete's increased risk for noncontact anterior cruciate ligament injury. Injury prevention programs have shown promising results in decreasing the incidence of anterior cruciate ligament injury. To evaluate the effect of the Kerlan-Jobe Orthopaedic Clinic Modified Neuromuscular Training Program on the biomechanics of select jumping tasks in the female collegiate athlete. Controlled laboratory study. Thirty female National Collegiate Athletic Association Division I soccer and basketball players performed vertical jump, hopping tests, and 2 jumping tasks (drop jump and stop jump). All subjects completed a 6-week neuromuscular training program with core strengthening and plyometric training. Three-dimensional motion analysis and force plate data were used to compare the kinetics and kinematics of jumping tasks before and after training. Dynamic knee valgus moment during the stance phase of stop jump tasks decreased after completion of the neuromuscular training program (P = .04), but differences were not observed for the drop jump. Initial knee flexion (P = .003) and maximum knee flexion (P = .006) angles increased during the stance phase of drop jumps after training, but differences were not observed for the stop jump. The athletes showed improved performance in vertical jump (P training program improved select athletic performance measures and changed movement patterns during jumping tasks in the subject population. The use of this neuromuscular training program could potentially modify the collegiate athlete's motion strategies, improve performance, and lower the athlete's risk for injury.

  4. Bouncing on Mars and the Moon-the role of gravity on neuromuscular control: correlation of muscle activity and rate of force development.

    Science.gov (United States)

    Ritzmann, Ramona; Freyler, Kathrin; Krause, Anne; Gollhofer, Albert

    2016-11-01

    On our astronomical neighbors Mars and the Moon, bouncing movements are the preferred locomotor techniques. During bouncing, the stretch-shortening cycle describes the muscular activation pattern. This study aimed to identify gravity-dependent changes in kinematic and neuromuscular characteristics in the stretch-shortening cycle. Hence, neuromuscular control of limb muscles as well as correlations between the muscles' pre-activation, reflex components, and force output were assessed in lunar, Martian, and Earth gravity. During parabolic flights, peak force (F max ), ground-contact-time, rate of force development (RFD), height, and impulse were measured. Electromyographic (EMG) activities in the m. soleus (SOL) and gastrocnemius medialis (GM) were assessed before (PRE) and during bounces for the reflex phases short-, medium-, and long-latency response (SLR, MLR, LLR). With gradually decreasing gravitation, F max , RFD, and impulse were reduced, whereas ground-contact time and height increased. Concomitantly, EMG_GM decreased for PRE, SLR, MLR, and LLR, and in EMG_SOL in SLR, MLR, and LLR. For SLR and MLR, F max and RFD were positively correlated to EMG_SOL. For PRE and LLR, RFD and F max were positively correlated to EMG_GM. Findings emphasize that biomechanically relevant kinematic adaptations in response to gravity variation were accompanied by muscle- and phase-specific modulations in neural control. Gravitational variation is anticipated and compensated for by gravity-adjusted muscle activities. Importantly, the pre-activation and reflex phases were differently affected: in SLR and MLR, SOL is assumed to contribute to the decline in force output with a decreasing load, and, complementary in PRE and LLR, GM seems to be of major importance for force generation. Copyright © 2016 the American Physiological Society.

  5. Comparison between two different neuromuscular electrical stimulation protocols for the treatment of female stress urinary incontinence: a randomized controlled trial.

    Science.gov (United States)

    Alves, Priscila G J M; Nunes, Fabiana R; Guirro, Elaine C O

    2011-01-01

    Neuromuscular electrical stimulation (NMES) is widely treatment for stress urinary incontinence (SUI) but there is no consensus in literature regarding the most effective treatment parameters. To compare two NMESintra-vaginal protocols for the treatment of SUI in women. The study included 20 volunteers with an average age of 55.55±6.51 years and with the clinical diagnosis of SUI. Volunteers were randomly divided into two groups: group 1 (G1) received NMES with medium-frequency current and group 2 (G2) received NMES with low-frequency current. Functional assessments of pelvic floor muscles (PFM) were performed by perineometry. The severity of signs and symptoms were objectively evaluated using the 1 hour pad test and subjectively evaluated using a visual analog scale that measured the discomfort caused by the SUI. Shapiro-Wilk test was used to analyze data normality, and the Friedman test was used to analyze nonparametric data. For analysis of symptoms related to SUI the Fisher exact test and the Mann-Whitney test were used. Significance level of 5% was set for all data analysis. No significant differences (p>0.05) were found between groups for any of the variable assessed. The within group analysis of initial and final evaluations (after NMES) demonstrated significant differences (purinary incontinence and perineal pressure for both treatment groups. The two NMES protocols applied were equally effective in the treatment of SUI.

  6. Modified Newton-Raphson method to tune feedback gains of control system for standing by functional neuromuscular stimulation following spinal cord injury.

    Science.gov (United States)

    Nataraj, Raviraj; Audu, Musa L; Triolo, Ronald J

    2014-11-01

    Functional neuromuscular stimulation (FNS) can restore standing capabilities following spinal cord injury. Feedback control of these systems can optimize performance by reducing the required upper extremity support. However, tuning these control systems can be intensive and clinically inconvenient. This case study investigated a clinical method to efficiently tune feedback gains for a control system utilizing feedback of total body center of mass acceleration to modulate stimulation levels to targeted paralyzed musculature of the lower extremities and trunk. Gains for this control system were tuned to minimize the stabilization loading by one arm against internal postural perturbations volitionally-generated during manipulation of an object using the other arm. An algorithm based on a modified form of the Newton-Raphson method was employed to find the optimal feedback gains with lower subject effort than that to determine the original tuning curves. This method accurately (<6.2% error) approximated the optimal gains with 70% fewer manipulations by the subject. These results suggest that optimal feedback gains for the specific FNS control system can be determined systematically with considerably less effort than heuristic gain tuning. This demonstrates the potential for devising simple, convenient methods for effective system re-tuning during clinical usage.

  7. Alterations in cardiac autonomic control in spinal cord injury.

    Science.gov (United States)

    Biering-Sørensen, Fin; Biering-Sørensen, Tor; Liu, Nan; Malmqvist, Lasse; Wecht, Jill Maria; Krassioukov, Andrei

    2018-01-01

    A spinal cord injury (SCI) interferes with the autonomic nervous system (ANS). The effect on the cardiovascular system will depend on the extent of damage to the spinal/central component of ANS. The cardiac changes are caused by loss of supraspinal sympathetic control and relatively increased parasympathetic cardiac control. Decreases in sympathetic activity result in heart rate and the arterial blood pressure changes, and may cause arrhythmias, in particular bradycardia, with the risk of cardiac arrest in those with cervical or high thoracic injuries. The objective of this review is to give an update of the current knowledge related to the alterations in cardiac autonomic control following SCI. With this purpose the review includes the following subheadings: 2. Neuro-anatomical plasticity and cardiac control 2.1 Autonomic nervous system and the heart 2.2 Alteration in autonomic control of the heart following spinal cord injury 3. Spinal shock and neurogenic shock 3.1 Pathophysiology of spinal shock 3.2 Pathophysiology of neurogenic shock 4. Autonomic dysreflexia 4.1 Pathophysiology of autonomic dysreflexia 4.2 Diagnosis of autonomic dysreflexia 5. Heart rate/electrocardiography following spinal cord injury 5.1 Acute phase 5.2 Chronic phase 6. Heart rate variability 6.1 Time domain analysis 6.2 Frequency domain analysis 6.3 QT-variability index 6.4 Nonlinear (fractal) indexes 7. Echocardiography 7.1 Changes in cardiac structure following spinal cord injury 7.2 Changes in cardiac function following spinal cord injury 8. International spinal cord injury cardiovascular basic data set and international standards to document the remaining autonomic function in spinal cord injury. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. BIOLOGY OF SOME NEUROMUSCULAR DISORDERS

    Directory of Open Access Journals (Sweden)

    Gerta Vrbova

    2004-12-01

    Full Text Available In order to understand and possibly interfere/ treat neuromuscular disorders it is important to analyze the biological events that may be causing the disability. We illustrate such attempts on two examples of genetically determined neuromuscular diseases: 1 Duchenne muscular dystrophy (DMD, and 2 Spinal muscular atrophy (SMA.DMD is an x-linked hereditary muscle disease that leads to progressive muscle weakness. The altered gene in DMD affects dystrophin, a muscle membrane associated proteine. Attempts were made to replace the deficient or missing gene/ protein into muscles of Duchenne children. Two main strategies were explored: 1 Myoblast and stem cell transfer and 2 Gene delivery. The possible use of methods other than the introduction of the missing gene for dystrophin into muscle fibres are based on the knowledge about the adaptive potential of muscle to different functional demands and the ability of the muscle to express a new set of genes in response to such stimuli. Stretch or overload is now known to lead to changes of gene expression in normal muscle, and the success of muscle stretch in the management of Duchenne boys is most likely to be due to such adaptive changes. Electrical stimulation of muscles is also a powerful stimulus for inducing the expression of new genes and this method too has produced beneficial effects on the progress of the disease in mice and men.SMA is a heterogeneous group of hereditary neuromuscular disorders where the loss of lower motoneurones leads to progressive weakness and muscle atrophy. The disease subdivides into 3 forms according to the severity of the symptoms and age of onset. All three forms of SMA have been mapped to chromosome 5q11.2-13.2. Clinical features of all these forms of SMA include hypotonia shortly after birth, symmetrical muscle weakness and atrophy, finger tremor, areflexia or hyporeflexia and later contractures. In patients with SMA 1 and 2 the development of all parts of the motor

  9. Hereditary neuromuscular diseases

    Energy Technology Data Exchange (ETDEWEB)

    Oezsarlak, O. E-mail: ozkan.ozsarlak@uza.be; Schepens, E.; Parizel, P.M.; Goethem, J.W. van; Vanhoenacker, F.; Schepper, A.M. de; Martin, J.J

    2001-12-01

    This article presents the actual classification of neuromuscular diseases based on present expansion of our knowledge and understanding due to genetic developments. It summarizes the genetic and clinical presentations of each disorder together with CT findings, which we studied in a large group of patients with neuromuscular diseases. The muscular dystrophies as the largest and most common group of hereditary muscle diseases will be highlighted by giving detailed information about the role of CT and MRI in the differential diagnosis. The radiological features of neuromuscular diseases are atrophy, hypertrophy, pseudohypertrophy and fatty infiltration of muscles on a selective basis. Although the patterns and distribution of involvement are characteristic in some of the diseases, the definition of the type of disease based on CT scan only is not always possible.

  10. Hereditary neuromuscular diseases

    International Nuclear Information System (INIS)

    Oezsarlak, O.; Schepens, E.; Parizel, P.M.; Goethem, J.W. van; Vanhoenacker, F.; Schepper, A.M. de; Martin, J.J.

    2001-01-01

    This article presents the actual classification of neuromuscular diseases based on present expansion of our knowledge and understanding due to genetic developments. It summarizes the genetic and clinical presentations of each disorder together with CT findings, which we studied in a large group of patients with neuromuscular diseases. The muscular dystrophies as the largest and most common group of hereditary muscle diseases will be highlighted by giving detailed information about the role of CT and MRI in the differential diagnosis. The radiological features of neuromuscular diseases are atrophy, hypertrophy, pseudohypertrophy and fatty infiltration of muscles on a selective basis. Although the patterns and distribution of involvement are characteristic in some of the diseases, the definition of the type of disease based on CT scan only is not always possible

  11. Schwann cells sense and control acetylcholine spillover at the neuromuscular junction by α7 nicotinic receptors and butyrylcholinesterase.

    Science.gov (United States)

    Petrov, Konstantin A; Girard, Emmanuelle; Nikitashina, Alexandra D; Colasante, Cesare; Bernard, Véronique; Nurullin, Leniz; Leroy, Jacqueline; Samigullin, Dmitry; Colak, Omer; Nikolsky, Evgenii; Plaud, Benoit; Krejci, Eric

    2014-09-03

    Terminal Schwann cells (TSCs) are key components of the mammalian neuromuscular junction (NMJ). How the TSCs sense the synaptic activity in physiological conditions remains unclear. We have taken advantage of the distinct localization of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) at the NMJ to bring out the function of different ACh receptors (AChRs). AChE is clustered by the collagen Q in the synaptic cleft and prevents the repetitive activation of muscle nicotinic AChRs. We found that BChE is anchored at the TSC by a proline-rich membrane anchor, the small transmembrane protein anchor of brain AChE. When BChE was specifically inhibited, ACh release was significant depressed through the activation of α7 nAChRs localized on the TSC and activated by the spillover of ACh. When both AChE and BChE were inhibited, the spillover increased and induced a dramatic reduction of ACh release that compromised the muscle twitch triggered by the nerve stimulation. α7 nAChRs at the TSC may act as a sensor for spillover of ACh adjusted by BChE and may represent an extrasynaptic sensor for homeostasis at the NMJ. In myasthenic rats, selective inhibition of AChE is more effective in rescuing muscle function than the simultaneous inhibition of AChE and BChE because the concomitant inhibition of BChE counteracts the positive action of AChE inhibition. These results show that inhibition of BChE should be avoided during the treatment of myasthenia and the pharmacological reversal of residual curarization after anesthesia. Copyright © 2014 the authors 0270-6474/14/3411870-14$15.00/0.

  12. Neuromuscular electrical stimulation for thromboprophylaxis: A systematic review.

    Science.gov (United States)

    Hajibandeh, S; Hajibandeh, S; Antoniou, G A; Scurr, J R H; Torella, F

    2015-10-01

    To evaluate the effect of neuromuscular electrical stimulation on lower limb venous blood flow and its role in thromboprophylaxis. Systematic review of randomised and non-randomised studies evaluating neuromuscular electrical stimulation, and reporting one or more of the following outcomes: incidence of venous thromboembolism, venous blood flow and discomfort profile. Twenty-one articles were identified. Review of these articles showed that neuromuscular electrical stimulation increases venous blood flow and is generally associated with an acceptable tolerability, potentially leading to good patient compliance. Ten comparative studies reported DVT incidence, ranging from 2% to 50% with neuromuscular electrical stimulation and 6% to 47.1% in controls. There were significant differences, among included studies, in terms of patient population, neuromuscular electrical stimulation delivery, diagnosis of venous thromboembolism and blood flow measurements. Neuromuscular electrical stimulation increases venous blood flow and is well tolerated, but current evidence does not support a role for neuromuscular electrical stimulation in thromboprophylaxis. Randomised controlled trials are required to investigate the clinical utility of neuromuscular electrical stimulation in this setting. © The Author(s) 2015.

  13. Recovery of muscle function after deep neuromuscular block by means of diaphragm ultrasonography and adductor of pollicis acceleromyography with comparison of neostigmine vs. sugammadex as reversal drugs: study protocol for a randomized controlled trial.

    Science.gov (United States)

    Cappellini, Iacopo; Picciafuochi, Fabio; Ostento, Daniele; Danti, Ginevra; De Gaudio, Angelo Raffaele; Adembri, Chiara

    2018-02-21

    The extensive use of neuromuscular blocking agents (NMBAs) during surgical procedures still leads to potential residual paralyzing effects in the postoperative period. Indeed, neuromuscular monitoring in an intra-operative setting is strongly advocated. Acetylcholinesterase inhibitors can reverse muscle block, but their short half-life may lead to residual curarization in the ward, especially when intermediate or long-acting NMBAs have been administered. Sugammadex is the first selective reversal drug for steroidal NMBAs; it has been shown to give full and rapid recovery of muscle strength, thus minimizing the occurrence of residual curarization. Acceleromyography of the adductor pollicis is the gold standard for detecting residual curarization, but it cannot be carried out on conscious patients. Ultrasonography of diaphragm thickness may reveal residual effects of NMBAs in conscious patients. This prospective, double-blind, single-center randomized controlled study will enroll patients (of American Society of Anesthesiologists physical status I-II, aged 18-80 years) who will be scheduled to undergo deep neuromuscular block with rocuronium for ear, nose, or throat surgery. The study's primary objective will be to compare the effects of neostigmine and sugammadex on postoperative residual curarization using two different tools: diaphragm ultrasonography and acceleromyography of the adductor pollicis. Patients will be extubated when the train-of-four ratio is > 0.9. Diaphragm ultrasonography will be used to evaluate the thickening fraction, which is the difference between the end expiratory thickness and the end inspiratory thickness, normalized to the end expiratory thickness. Ultrasonography will be performed before the initiation of general anesthesia, before extubation, and 10 and 30 min after discharging patients from the operating room. The secondary objective will be to compare the incidence of postoperative complications due to residual neuromuscular

  14. Feedback control of arm movements using Neuro-Muscular Electrical Stimulation (NMES) combined with a lockable, passive exoskeleton for gravity compensation

    Science.gov (United States)

    Klauer, Christian; Schauer, Thomas; Reichenfelser, Werner; Karner, Jakob; Zwicker, Sven; Gandolla, Marta; Ambrosini, Emilia; Ferrante, Simona; Hack, Marco; Jedlitschka, Andreas; Duschau-Wicke, Alexander; Gföhler, Margit; Pedrocchi, Alessandra

    2014-01-01

    Within the European project MUNDUS, an assistive framework was developed for the support of arm and hand functions during daily life activities in severely impaired people. This contribution aims at designing a feedback control system for Neuro-Muscular Electrical Stimulation (NMES) to enable reaching functions in people with no residual voluntary control of the arm and shoulder due to high level spinal cord injury. NMES is applied to the deltoids and the biceps muscles and integrated with a three degrees of freedom (DoFs) passive exoskeleton, which partially compensates gravitational forces and allows to lock each DOF. The user is able to choose the target hand position and to trigger actions using an eyetracker system. The target position is selected by using the eyetracker and determined by a marker-based tracking system using Microsoft Kinect. A central controller, i.e., a finite state machine, issues a sequence of basic movement commands to the real-time arm controller. The NMES control algorithm sequentially controls each joint angle while locking the other DoFs. Daily activities, such as drinking, brushing hair, pushing an alarm button, etc., can be supported by the system. The robust and easily tunable control approach was evaluated with five healthy subjects during a drinking task. Subjects were asked to remain passive and to allow NMES to induce the movements. In all of them, the controller was able to perform the task, and a mean hand positioning error of less than five centimeters was achieved. The average total time duration for moving the hand from a rest position to a drinking cup, for moving the cup to the mouth and back, and for finally returning the arm to the rest position was 71 s. PMID:25228853

  15. Altered baroreflex control of forearm vascular resistance during simulated microgravity

    Science.gov (United States)

    Convertino, V. A.; Doerr, D. F.; Vernikos, J.

    1994-01-01

    Reflex peripheral vasoconstriction induced by activation of cardiopulmonary baroreceptors in response to reduced central venous pressure (CVP) is a basic mechanism for elevating systemic vascular resistance and defending arterial blood pressure during orthostatically-induced reductions in cardiac filling and output. The sensitivity of the cardiopulmonary baroreflex response [defined as the slope of the relationship between changes in forearm vascular resistance (FVR) and CVP] and the resultant vasoconstriction are closely and inversely associated with the amount of circulating blood volume. Thus, a high-gain FVR response will be elicited by a hypovolemic state. Exposure to microgravity during spaceflight results in reduced plasma volume. It is therefore reasonable to expect that the FVR response to cardiopulmonary baroreceptor unloading would be accentuated following adaptation to microgravity. Such data could provide better insight about the physiological mechanisms underlying alterations in blood pressure control following spaceflight. We therefore exposed eleven men to 6 degrees head-down bedrest for 7 days and measured specific hemodynamic responses to low levels of the lower body negative pressure to determine if there are alterations in cardiopulmonary baroreceptor stimulus-FVR reflex response relationship during prolonged exposure to an analog of microgravity.

  16. Neuromuscular Exercise Post Partial Medial Meniscectomy

    DEFF Research Database (Denmark)

    Hall, Michelle; Hinman, Rana S; Wrigley, Tim V

    2015-01-01

    : An assessor-blinded, randomised controlled trial including people aged 30-50 years with no to mild pain following medial arthroscopic partial meniscectomy was conducted. Participants were randomly allocated to either a 12-week neuromuscular exercise program that targeted neutral lower limb alignment......PURPOSE: To evaluate the effects of a 12-week, home-based, physiotherapist-guided neuromuscular exercise program on the knee adduction moment (an indicator of mediolateral knee load distribution) in people with a medial arthroscopic partial meniscectomy within the past 3-12 months. METHODS...

  17. Altered motor control patterns in whiplash and chronic neck pain

    Directory of Open Access Journals (Sweden)

    Vasseljen Ottar

    2008-06-01

    Full Text Available Abstract Background Persistent whiplash associated disorders (WAD have been associated with alterations in kinesthetic sense and motor control. The evidence is however inconclusive, particularly for differences between WAD patients and patients with chronic non-traumatic neck pain. The aim of this study was to investigate motor control deficits in WAD compared to chronic non-traumatic neck pain and healthy controls in relation to cervical range of motion (ROM, conjunct motion, joint position error and ROM-variability. Methods Participants (n = 173 were recruited to three groups: 59 patients with persistent WAD, 57 patients with chronic non-traumatic neck pain and 57 asymptomatic volunteers. A 3D motion tracking system (Fastrak was used to record maximal range of motion in the three cardinal planes of the cervical spine (sagittal, frontal and horizontal, and concurrent motion in the two associated cardinal planes relative to each primary plane were used to express conjunct motion. Joint position error was registered as the difference in head positions before and after cervical rotations. Results Reduced conjunct motion was found for WAD and chronic neck pain patients compared to asymptomatic subjects. This was most evident during cervical rotation. Reduced conjunct motion was not explained by current pain or by range of motion in the primary plane. Total conjunct motion during primary rotation was 13.9° (95% CI; 12.2–15.6 for the WAD group, 17.9° (95% CI; 16.1–19.6 for the chronic neck pain group and 25.9° (95% CI; 23.7–28.1 for the asymptomatic group. As expected, maximal cervical range of motion was significantly reduced among the WAD patients compared to both control groups. No group differences were found in maximal ROM-variability or joint position error. Conclusion Altered movement patterns in the cervical spine were found for both pain groups, indicating changes in motor control strategies. The changes were not related to a

  18. Neuromuscular complications in cancer.

    Science.gov (United States)

    Grisold, W; Grisold, A; Löscher, W N

    2016-08-15

    Cancer is becoming a treatable and even often curable disease. The neuromuscular system can be affected by direct tumor invasion or metastasis, neuroendocrine, metabolic, dysimmune/inflammatory, infections and toxic as well as paraneoplastic conditions. Due to the nature of cancer treatment, which frequently is based on a DNA damaging mechanism, treatment related toxic side effects are frequent and the correct identification of the causative mechanism is necessary to initiate the proper treatment. The peripheral nervous system is conventionally divided into nerve roots, the proximal nerves and plexus, the peripheral nerves (mono- and polyneuropathies), the site of neuromuscular transmission and muscle. This review is based on the anatomic distribution of the peripheral nervous system, divided into cranial nerves (CN), motor neuron (MND), nerve roots, plexus, peripheral nerve, the neuromuscular junction and muscle. The various etiologies of neuromuscular complications - neoplastic, surgical and mechanic, toxic, metabolic, endocrine, and paraneoplastic/immune - are discussed separately for each part of the peripheral nervous system. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Purinoceptors in neuromuscular transmission

    NARCIS (Netherlands)

    Henning, RH

    1997-01-01

    At the neuromuscular junction, P-2-purinoceptors mediate the actions of the co-transmitter ATP and P-1-purinoceptors, those of its degradation product adenosine. The classification of the subtypes of P-1- and P-2-purinoceptors and their signal transduction routes is presented. Purinoceptor mediated

  20. The effect of shoe design and lateral wedges on knee load and neuromuscular control in healthy subjects during walking

    DEFF Research Database (Denmark)

    Mølgaard, Carsten; Kersting, Uwe G.

    2014-01-01

    design/type on the effectiveness of lateral wedging has not been investigated so far. The Purpose of the present study was to explore alterations in knee loading due to lateral foot wedges in three different shoes. Methods: Thirteen healthy participants with no history of knee pain were tested using...

  1. Dynamic Flexibility and Proprioceptive Neuromuscular Facilitation.

    Science.gov (United States)

    Hardy, Lew; Jones, David

    1986-01-01

    Two experiments are described which investigated whether results obtained in studies of static flexibility tranfer to dynamic flexibility. In both experiments, subjects were assigned to a group receiving proprioceptive neuromuscular facilitation training, ballistic stretching technique training or a control group. Results are presented and…

  2. Rapid synthesis of acetylcholine receptors at neuromuscular junctions.

    Science.gov (United States)

    Ramsay, D A; Drachman, D B; Pestronk, A

    1988-10-11

    The rate of acetylcholine receptor (AChR) degradation in mature, innervated mammalian neuromuscular junctions has recently been shown to be biphasic; up to 20% are rapidly turned over (RTOs; half life less than 1 day) whereas the remainder are lost more slowly ('stable' AChRs; half life 10-12 days). In order to maintain normal junctional receptor density, synthesis and insertion of AChRs should presumably be sufficiently rapid to replace both the RTOs and the stable receptors. We have tested this prediction by blocking pre-existing AChRs in the mouse sternomastoid muscle with alpha-bungarotoxin (alpha-BuTx), and monitoring the subsequent appearance of 'new' junctional AChRs at intervals of 3 h to 20 days by labeling them with 125I-alpha-BuTx. The results show that new receptors were initially inserted rapidly (16% at 24 h and 28% at 48 h). The rate of increase of 'new' 125I-alpha-BuTx binding sites gradually slowed down during the remainder of the time period studied. Control observations excluded possible artifacts of the experimental procedure including incomplete blockade of AChRs, dissociation of toxin-receptor complexes, or experimentally induced alteration of receptor synthesis. The present demonstration of rapid synthesis and incorporation of AChRs at innervated neuromuscular junctions provides support for the concept of a subpopulation of rapidly turned over AChRs. The RTOs may serve as precursors for the larger population of stable receptors and have an important role in the metabolism of the neuromuscular synapse.

  3. Reversal of Vecuronium-induced Neuromuscular Blockade with Low-dose Sugammadex at Train-of-four Count of Four: A Randomized Controlled Trial.

    Science.gov (United States)

    Asztalos, László; Szabó-Maák, Zoltán; Gajdos, András; Nemes, Réka; Pongrácz, Adrienn; Lengyel, Szabolcs; Fülesdi, Béla; Tassonyi, Edömér

    2017-09-01

    Rocuronium-induced neuromuscular block that spontaneously recovered to a train-of-four count of four can be reversed with sugammadex 0.5 or 1.0 mg/kg. We investigated whether these doses of sugammadex can also reverse vecuronium at a similar level of block. Sixty-five patients were randomly assigned, and 64 were analyzed in this controlled, superiority study. Participants received general anesthesia with propofol, sevoflurane, fentanyl, and vecuronium. Measurement of neuromuscular function was performed with acceleromyography (TOF-Watch-SX, Organon Teknika B.V., The Netherlands ). Once the block recovered spontaneously to four twitches in response to train-of-four stimulation, patients were randomly assigned to receive sugammadex 0.5, 1.0, or 2.0 mg/kg; neostigmine 0.05 mg/kg; or placebo. Time from study drug injection to normalized train-of-four ratio 0.9 and the incidence of incomplete reversal within 30 min were the primary outcome variables. Secondary outcome was the incidence of reparalysis (normalized train-of-four ratio less than 0.9). Sugammadex, in doses of 1.0 and 2.0 mg/kg, reversed a threshold train-of-four count of four to normalized train-of-four ratio of 0.9 or higher in all patients in 4.4 ± 2.3 min (mean ± SD) and 2.6 ± 1.6 min, respectively. Sugammadex 0.5 mg/kg reversed the block in 6.8 ± 4.1 min in 70% of patients (P 0.05 vs. sugammadex 0.5 mg/kg). The overall frequency of reparalysis was 18.7%, but this incidence varied from group to group. Sugammadex 1.0 mg/kg, unlike 0.5 mg/kg, properly reversed a threshold train-of-four count of four vecuronium-induced block but did not prevent reparalysis.

  4. Comparing the effects of rehabilitation swallowing therapy vs. neuromuscular electrical stimulation therapy among stroke patients with persistent pharyngeal dysphagia: a randomized controlled study.

    Science.gov (United States)

    Permsirivanich, Wutichai; Tipchatyotin, Suttipong; Wongchai, Manit; Leelamanit, Vitoon; Setthawatcharawanich, Suwanna; Sathirapanya, Pornchai; Phabphal, Kanitpong; Juntawises, Uma; Boonmeeprakob, Achara

    2009-02-01

    Dysphagia after stroke is associated with increased mortality, higher dependence, and longer hospitalization. Different therapeutic strategies have been introduced to improve swallowing impairment. There are no current studies that compare rehabilitation swallowing therapy (RST) and neuromuscular electrical stimulation therapy (NMES). To compare treatment outcomes between RST and NMES intervention in stroke patients with pharyngeal dysphagia. A randomized controlled study. Twenty-three stroke patients with persistent pharyngeal dysphagia (RST 11, NMES 12) were enrolled in the present study. The subjects received 60 minutes of either RST or NMES treatment for five consecutive days, had two days off and then five more consecutive days of treatment for a four-week period or until they reached functional oral intake scale (FOIS) level 7. The outcome measures assessed were change in FOIS, complications related to the treatment and number of therapy sessions. There were no significant differences in the stroke characteristics and the VFSS results between the two groups. At the end of treatment, the average numbers of therapy sessions per subject in the RST and NMES groups were 18.36 +/- 3.23 and 17.25 +/- 5.64, respectively, a non-significant difference. Average changes in FOIS scores were 2.46 +/- 1.04 for the RST group and 3.17 +/- 1.27 for the NMES group, statistically significant at p stroke patients, NMES was significantly superior.

  5. The role of multisensor data fusion in neuromuscular control of a sagittal arm with a pair of muscles using actor-critic reinforcement learning method.

    Science.gov (United States)

    Golkhou, V; Parnianpour, M; Lucas, C

    2004-01-01

    In this study, we consider the role of multisensor data fusion in neuromuscular control using an actor-critic reinforcement learning method. The model we use is a single link system actuated by a pair of muscles that are excited with alpha and gamma signals. Various physiological sensor information such as proprioception, spindle sensors, and Golgi tendon organs have been integrated to achieve an oscillatory movement with variable amplitude and frequency, while achieving a stable movement with minimum metabolic cost and coactivation. The system is highly nonlinear in all its physical and physiological attributes. Transmission delays are included in the afferent and efferent neural paths to account for a more accurate representation of the reflex loops. This paper proposes a reinforcement learning method with an Actor-Critic architecture instead of middle and low level of central nervous system (CNS). The Actor in this structure is a two layer feedforward neural network and the Critic is a model of the cerebellum. The Critic is trained by the State-Action-Reward-State-Action (SARSA) method. The Critic will train the Actor by supervisory learning based on previous experiences. The reinforcement signal in SARSA is evaluated based on available alternatives concerning the concept of multisensor data fusion. The effectiveness and the biological plausibility of the present model are demonstrated by several simulations. The system showed excellent tracking capability when we integrated the available sensor information. Addition of a penalty for activation of muscles resulted in much lower muscle coactivation while keeping the movement stable.

  6. The role of proprioception and neuromuscular stability in carpal instabilities.

    Science.gov (United States)

    Hagert, E; Lluch, A; Rein, S

    2016-01-01

    Carpal stability has traditionally been defined as dependent on the articular congruity of joint surfaces, the static stability maintained by intact ligaments, and the dynamic stability caused by muscle contractions resulting in a compression of joint surfaces. In the past decade, a fourth factor in carpal stability has been proposed, involving the neuromuscular and proprioceptive control of joints. The proprioception of the wrist originates from afferent signals elicited by sensory end organs (mechanoreceptors) in ligaments and joint capsules that elicit spinal reflexes for immediate joint stability, as well as higher order neuromuscular influx to the cerebellum and sensorimotor cortices for planning and executing joint control. The aim of this review is to provide an understanding of the role of proprioception and neuromuscular control in carpal instabilities by delineating the sensory innervation and the neuromuscular control of the carpus, as well as descriptions of clinical applications of proprioception in carpal instabilities. © The Author(s) 2015.

  7. Effects of plyometric and pneumatic explosive strength training on neuromuscular function and dynamic balance control in 60-70year old males.

    Science.gov (United States)

    Piirainen, Jarmo M; Cronin, Neil J; Avela, Janne; Linnamo, Vesa

    2014-04-01

    The present study compared neuromuscular adaptations to 12weeks of plyometric (PLY) or pneumatic (PNE) power training and their effects on dynamic balance control. Twenty-two older adults aged 60-70 (PLY n=9, PNE n=11) participated in the study. Measurements were conducted at Pre, 4, 8 and 12weeks. Dynamic balance was assessed as anterior-posterior center of pressure (COP) displacement in response to sudden perturbations. Explosive isometric knee extension and plantar flexion maximal voluntary contractions (MVCs) were performed. Maximal drop jump performance from optimal dropping height was measured in a sledge ergometer. Increases in knee extensor and ankle plantar flexor torque and muscle activity were higher and occurred sooner in PNE, whereas in drop jumping, PLY showed a clearer increase in optimal drop height (24%, pmuscle activity after 12weeks of training. In spite of these training mode specific adaptations, both groups showed similar improvements in dynamic balance control after 4weeks of training (PLY 38%, p<0.001; PNE 31%, p<0.001) and no change thereafter. These results show that although power and plyometric training may involve different neural adaptation mechanisms, both training modes can produce similar improvements in dynamic balance control in older individuals. As COP displacement was negatively correlated with rapid knee extension torque in both groups (PLY r=-0.775, p<0.05; PNE r=-0.734, p<0.05) after training, the results also highlight the importance of targeting rapid force production when training older adults to improve dynamic balance. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Neuromuscular Training Improves Lower Extremity Biomechanics Associated with Knee Injury during Landing in 11–13 Year Old Female Netball Athletes: A Randomized Control Study

    Directory of Open Access Journals (Sweden)

    Amanda J. Hopper

    2017-11-01

    Full Text Available The purpose of this study was to examine the effects of a neuromuscular training (NMT program on lower-extremity biomechanics in youth female netball athletes. The hypothesis was that significant improvements would be found in landing biomechanics of the lower-extremities, commonly associated with anterior cruciate ligament (ACL injury, following NMT. Twenty-three athletes (age = 12.2 ± 0.9 years; height = 1.63 ± 0.08 m; mass = 51.8 ± 8.5 kg completed two testing sessions separated by 7-weeks and were randomly assigned to either a experimental or control group. Thirteen athletes underwent 6-weeks of NMT, while the remaining 10 served as controls and continued their regular netball training. Three-dimensional lower-extremity kinematics and vertical ground reaction force (VGRF were measured during two landing tasks, a drop vertical jump and a double leg broad jump with a single leg landing. The experimental group significantly increased bilateral knee marker distance during the bilateral landing task at maximum knee-flexion range of motion. Knee internal rotation angle during the unilateral landing task at maximum knee flexion-extension range of motion was significantly reduced (p ≤ 0.05, g > 1.00. The experimental group showed large, significant decreases in peak vertical ground reaction force in both landing tasks (p ≤ 0.05, g > −1.30. Control participants did not demonstrate any significant pre-to-post-test changes in response to the 6-week study period. Results of the study affirm the hypothesis that a 6-week NMT program can enhance landing biomechanics associated with ACL injury in 11–13 year old female netball athletes.

  9. Neuromuscular Training Improves Lower Extremity Biomechanics Associated with Knee Injury during Landing in 11–13 Year Old Female Netball Athletes: A Randomized Control Study

    Science.gov (United States)

    Hopper, Amanda J.; Haff, Erin E.; Joyce, Christopher; Lloyd, Rhodri S.; Haff, G. Gregory

    2017-01-01

    The purpose of this study was to examine the effects of a neuromuscular training (NMT) program on lower-extremity biomechanics in youth female netball athletes. The hypothesis was that significant improvements would be found in landing biomechanics of the lower-extremities, commonly associated with anterior cruciate ligament (ACL) injury, following NMT. Twenty-three athletes (age = 12.2 ± 0.9 years; height = 1.63 ± 0.08 m; mass = 51.8 ± 8.5 kg) completed two testing sessions separated by 7-weeks and were randomly assigned to either a experimental or control group. Thirteen athletes underwent 6-weeks of NMT, while the remaining 10 served as controls and continued their regular netball training. Three-dimensional lower-extremity kinematics and vertical ground reaction force (VGRF) were measured during two landing tasks, a drop vertical jump and a double leg broad jump with a single leg landing. The experimental group significantly increased bilateral knee marker distance during the bilateral landing task at maximum knee-flexion range of motion. Knee internal rotation angle during the unilateral landing task at maximum knee flexion-extension range of motion was significantly reduced (p ≤ 0.05, g > 1.00). The experimental group showed large, significant decreases in peak vertical ground reaction force in both landing tasks (p ≤ 0.05, g > −1.30). Control participants did not demonstrate any significant pre-to-post-test changes in response to the 6-week study period. Results of the study affirm the hypothesis that a 6-week NMT program can enhance landing biomechanics associated with ACL injury in 11–13 year old female netball athletes. PMID:29163219

  10. Neuromuscular electrical stimulation for the prevention of venous thromboembolism.

    Science.gov (United States)

    Ravikumar, Raveena; Williams, Katherine J; Babber, Adarsh; Moore, Hayley M; Lane, Tristan Ra; Shalhoub, Joseph; Davies, Alun H

    2017-01-01

    Objective Venous thromboembolism, encompassing deep vein thrombosis and pulmonary embolism, is a significant cause of morbidity and mortality, affecting one in 1000 adults per year. Neuromuscular electrical stimulation is the transcutaneous application of electrical impulses to elicit muscle contraction, preventing venous stasis. This review aims to investigate the evidence underlying the use of neuromuscular electrical stimulation in thromboprophylaxis. Methods The Medline and Embase databases were systematically searched, adhering to PRISMA guidelines, for articles relating to electrical stimulation and thromboprophylaxis. Articles were screened according to a priori inclusion and exclusion criteria. Results The search strategy identified 10 randomised controlled trials, which were used in three separate meta-analyses: five trials compared neuromuscular electrical stimulation to control, favouring neuromuscular electrical stimulation (odds ratio of deep vein thrombosis 0.29, 95% confidence interval 0.13-0.65; P = .003); three trials compared neuromuscular electrical stimulation to heparin, favouring heparin (odds ratio of deep vein thrombosis 2.00, 95% confidence interval 1.13-3.52; P = .02); three trials compared neuromuscular electrical stimulation as an adjunct to heparin versus heparin only, demonstrating no significant difference (odds ratio of deep vein thrombosis 0.33, 95% confidence interval 0.10-1.14; P = .08). Conclusion Neuromuscular electrical stimulation significantly reduces the risk of deep vein thrombosis compared to no prophylaxis. It is inferior to heparin in preventing deep vein thrombosis and there is no evidence for its use as an adjunct to heparin.

  11. Chronic Resistance Training Does Not Ameliorate Unloading-Induced Decrements in Neuromuscular Function.

    Science.gov (United States)

    Deschenes, Michael R; McCoy, Raymond W; Mangis, Katherine A

    2017-08-01

    The aim of this study was to assess the efficacy of long-term resistance training in preventing the detrimental effects of muscle unloading on neuromuscular function. Eleven untrained men and 11 men with extensive backgrounds in resistance training were tested for several parameters of neuromuscular function at various isokinetic contractile velocities before and after 7 days of muscle unloading. Measurements included muscle mass, strength, power, total work, electromyography, and neuromuscular transmission efficiency using superimposed electrical stimulation of maximally contracting muscles. Muscle performance was superior in resistance-trained subjects before and after unloading. In both groups of participants, unloading resulted in significantly (P neuromuscular transmission efficiency was significantly altered by unloading in trained or untrained participants. Chronic resistance training was found to be ineffective in neutralizing the deleterious effects of unloading on neuromuscular function. It appears that positive adaptations associated with long-term resistance training provide no prophylactic effect when neuromuscular systems are subjected to unloading.

  12. [Characteristics of neuromuscular scoliosis].

    Science.gov (United States)

    Putzier, M; Groß, C; Zahn, R K; Pumberger, M; Strube, P

    2016-06-01

    Usually, neuromuscular scolioses become clinically symptomatic relatively early and are rapidly progressive even after the end of growth. Without sufficient treatment they lead to a severe reduction of quality of life, to a loss of the ability of walking, standing or sitting as well as to an impairment of the cardiopulmonary system resulting in an increased mortality. Therefore, an intensive interdisciplinary treatment by physio- and ergotherapists, internists, pediatricians, orthotists, and orthopedists is indispensable. In contrast to idiopathic scoliosis the treatment of patients with neuromuscular scoliosis with orthosis is controversially discussed, whereas physiotherapy is established and essential to prevent contractures and to maintain the residual sensorimotor function.Frequently, the surgical treatment of the scoliosis is indicated. It should be noted that only long-segment posterior correction and fusion of the whole deformity leads to a significant improvement of the quality of life as well as to a prevention of a progression of the scoliosis and the development of junctional problems. The surgical intervention is usually performed before the end of growth. A prolonged delay of surgical intervention does not result in an increased height but only in a deformity progression and is therefore not justifiable. In early onset neuromuscular scolioses guided-growth implants are used to guarantee the adequat development. Because of the high complication rates, further optimization of these implant systems with regard to efficiency and safety have to be addressed in future research.

  13. Controlling a hurricane by altering its internal climate

    Science.gov (United States)

    Mardhekar, D.

    2010-09-01

    Atmospheric hazards, like the fury of a hurricane, can be controlled by altering its internal climate. The hurricane controlling technique suggested is eco-friendly, compatible with hurricane size, has a sound scientific base and is practically possible. The key factor is a large scale dilution of the hurricane fuel, vapour, in the eye wall and spiral rain bands where condensation causing vapor volume reduction (a new concept which can be explained by Avogadro's law) and latent heat release drive the storm. This can be achieved by installing multiple storage tanks containing dry liquefied air on the onshore and offshore coastal regions and islands, preferably underground, in the usual path of a hurricane. Each storage tank is designed to hold and release dry liquefied air of around 100,000 tons. Satellite tracking of hurricanes can locate the eye wall and the spiral rain bands. The installed storage tanks coming under these areas will rapidly inject dry air in huge quantities thereby diluting the vapour content of the vapour-rich air in the eye wall and in the spiral rain bands. This will result in reduced natural input of vapour-rich air, reduced release of latent heat, reduced formation of the low pressure zone due to condensation and volume reduction of the vapor, expansion of the artificially introduced dry air as it goes up occupying a larger space with the diluted fuel, absorption of energy from the system by low temperature of the artificially introduced air. It will effect considerable condensation of the vapor near the sea surface thus further starving the hurricane of its fuel in its engine. Seeding materials, or microscopic dust as suggested by Dr. Daniel Rosenfeld in large quantities may also be introduced via the flow of the injected dry air in order to enhance the hurricane controlling ability. All the above factors are in favour of retarding the hurricane's wind speed and power. The sudden weakening of hurricane Lili was found to be partially caused

  14. Neuromuscular complications of diabetes mellitus.

    Science.gov (United States)

    Bril, Vera

    2014-06-01

    Diabetes mellitus has become a modern global epidemic, with steadily increasing prevalence rates related to lifestyle such that 27% of individuals aged 65 years or older have diabetes mellitus, 95% of whom have type 2. This article reviews the effects of diabetes mellitus on the neuromuscular system. Diabetes mellitus leads to diverse forms of peripheral neuropathy as the major neuromuscular complication. Both focal and diffuse types of neuropathy can develop, with the most common form being diabetic sensorimotor polyneuropathy. Small fibers are damaged early in the development of diabetic sensorimotor polyneuropathy and are not assessed by nerve conduction studies. Small fiber damage occurs even in the prediabetes stage. No disease-modifying therapy for diabetic sensorimotor polyneuropathy is available at this time, but this complication can be limited in patients who have type 1 diabetes mellitus with strict glycemic control; the same outcome is not clearly observed in patients who have type 2 diabetes mellitus. Recently, the evidence base for symptomatic treatments of painful diabetic sensorimotor polyneuropathy underwent systematic review. Effective evidence-based treatments include some anticonvulsants (eg, pregabalin, gabapentin), antidepressants (eg, amitriptyline, duloxetine), opioids (eg, morphine sulfate, oxycodone), capsaicin cream, and transcutaneous electrical nerve stimulation. This article reviews the increasing prevalence of diabetes mellitus and diabetic sensorimotor polyneuropathy and discusses recent consensus opinion on the objective confirmation needed for the diagnosis in the clinical research setting. The evidence from clinical trials shows that intensive glycemic control reduces prevalence of diabetic sensorimotor polyneuropathy in patients with type 1 diabetes mellitus, but variable outcomes are observed in patients with type 2 diabetes mellitus. Finally, despite the lack of disease-modifying treatment, effective evidence-based therapy can

  15. Augmented effects of EMG biofeedback interfaced with virtual reality on neuromuscular control and movement coordination during reaching in children with cerebral palsy.

    Science.gov (United States)

    Yoo, Ji Won; Lee, Dong Ryul; Cha, Young Joo; You, Sung Hyun

    2017-01-01

    The purpose of the present study was to compare therapeutic effects of an electromyography (EMG) biofeedback augmented by virtual reality (VR) and EMG biofeedback alone on the triceps and biceps (T:B) muscle activity imbalance and elbow joint movement coordination during a reaching motor taskOBJECTIVE: To compare therapeutic effects of an electromyography (EMG) biofeedback augmented by virtual reality (VR) and EMG biofeedback alone on the triceps and biceps muscle activity imbalance and elbow joint movement coordination during a reaching motor task in normal children and children with spastic cerebral palsy (CP). 18 children with spastic CP (2 females; mean±standard deviation = 9.5 ± 1.96 years) and 8 normal children (3 females; mean ± standard deviation = 9.75 ± 2.55 years) were recruited from a local community center. All children with CP first underwent one intensive session of EMG feedback (30 minutes), followed by one session of the EMG-VR feedback (30 minutes) after a 1-week washout period. Clinical tests included elbow extension range of motion (ROM), biceps muscle strength, and box and block test. EMG triceps and biceps (T:B) muscle activity imbalance and reaching movement acceleration coordination were concurrently determined by EMG and 3-axis accelerometer measurements respectively. Independent t-test and one-way repeated analysis of variance (ANOVA) were performed at p peak triceps muscle activity (p = 0.01). However, one-way repeated ANOVA produced no statistical significance in the composite 3-dimensional movement acceleration coordination data (p = 0.12). The present study is a first clinical trial that demonstrated the superior benefits of the EMG biofeedback when augmented by virtual reality exercise games in children with spastic CP. The augmented EMG and VR feedback produced better neuromuscular balance control in the elbow joint than the EMG biofeedback alone.

  16. Functional Neuromuscular Stimulation Controlled by Surface Electromyographic Signals Produced by the Volitional Activation of the Same Muscle:

    DEFF Research Database (Denmark)

    Sennels, Søren; Fin, Biering-Sørensen; Andersen, Ole Trier

    1997-01-01

    Using the voluntary EMG as a control signal for the stimulation of the same muscle necessitates elimination of stimulus artifacts and the muscle response caused by the stimulation. The stimulus artifacts are easily eliminated by shutting down the amplifier during stimulation. The muscle response ...... comparable with the background noise. It is thus possible to extract the voluntary EMG from a partly paralysed muscle and use it for controlling the stimulation of the same muscle.......Using the voluntary EMG as a control signal for the stimulation of the same muscle necessitates elimination of stimulus artifacts and the muscle response caused by the stimulation. The stimulus artifacts are easily eliminated by shutting down the amplifier during stimulation. The muscle response...

  17. Bracing superior to neuromuscular training for the prevention of self-reported recurrent ankle sprains: a three-arm randomised controlled trial

    NARCIS (Netherlands)

    Janssen, K.W.; van Mechelen, W.; Verhagen, E.A.L.M.

    2014-01-01

    Background Ankle sprain is the most common sportsrelated injury with a high rate of recurrence and associated costs. Recent studies have emphasised the effectiveness of both neuromuscular training and bracing for the secondary prevention of ankle sprains. Aim To evaluate the effectiveness of

  18. Neuromuscular blocking agents in patients with acute respiratory distress syndrome: a summary of the current evidence from three randomized controlled trials

    NARCIS (Netherlands)

    Serpa Neto, Ary; Pereira, Victor Galvão Moura; Espósito, Daniel Crepaldi; Damasceno, Maria Cecília Toledo; Schultz, Marcus J.

    2012-01-01

    Background: Acute respiratory distress syndrome (ARDS) is a potentially fatal disease with high mortality. Our aim was to summarize the current evidence for use of neuromuscular blocking agents (NMBA) in the early phase of ARDS. Methods: Systematic review and meta-analysis of publications between

  19. Plyometric type neuromuscular exercise is a treatment to postural control deficits of volleyball players: A case study

    Directory of Open Access Journals (Sweden)

    A. Asadi

    2016-06-01

    Conclusions: It can be recommend that strength and conditioning professionals in the field of volleyball do not perform other type of landing exercise in plyometric training sessions because of postural control impaired and consequently the probability of lower extremity injuries will increase.

  20. Impaired voluntary neuromuscular activation limits muscle power in mobility-limited older adults

    Science.gov (United States)

    Background. Age-related alterations of neuromuscular activation may contribute to deficits in muscle power and mobility function. This study assesses whether impaired activation of the agonist quadriceps and antagonist hamstrings, including amplitude- and velocity-dependent characteristics of activa...

  1. Neuromuscular electrical stimulation and the treatment of lower urinary tract dysfunction in multiple sclerosis--a double blind, placebo controlled, randomised clinical trial.

    Science.gov (United States)

    McClurg, D; Ashe, R G; Lowe-Strong, A S

    2008-01-01

    Lower urinary tract dysfunction affects up to 75% of the multiple sclerosis population. Results from our recent Pilot Study (McClurg et al., 2006) indicated that a combined programme of pelvic floor muscle training, electromyography biofeedback and neuromuscular electrical stimulation modalities may alleviate some of the distressing symptoms within this population. This clinical trial aimed to evaluate further the efficacy of these interventions and to establish the benefit of neuromuscular electrical stimulation above and beyond that of EMG biofeedback and pelvic floor muscle training. 74 multiple sclerosis patients who presented with lower urinary tract dysfunction were randomly allocated to one of two groups - Group 1 received Pelvic Floor Muscle Training, Electromyography Biofeedback and Placebo Neuromuscular Electrical Stimulation (n=37), and Group 2 which received Pelvic Floor Muscle Training, Electromyography Biofeedback, and Active Neuromuscular Electrical Stimulation (n=37). Treatment was for nine weeks with outcome measures recorded at weeks 0, 9, 16 and 24. The Primary Outcome Measure was the number of leakage episodes. Within group analysis was by Paired Samples t-test. Group differences were analysed using Repeated Measures Analysis of Variance and Post-hoc tests were used to determine the significance of differences between Groups at each time point. The mean number of incontinence episodes were reduced in Group 2 by 85% (p=0.001) whereas in Group 1 a lesser reduction of 47% (p=0.001) was observed. However, there was a statistically superior benefit in Group 2 when compared to Group 1 (p=0.0028). This superior benefit was evident in all other outcome measures. The addition of Active Neuromuscular Electrical Stimulation to a programme of Pelvic Floor Muscle Training and Electromyography Biofeedback should be considered as a first-line option in alleviating some of the symptoms of lower urinary tract dysfunction associated with multiple sclerosis. (c

  2. Anesthetic consideration for neuromuscular diseases.

    Science.gov (United States)

    Katz, Jeffery A; Murphy, Glenn S

    2017-06-01

    The aim of this review is to examine data relating to perioperative management of the patient with neuromuscular disorders RECENT FINDINGS: Patients with pre-existing neuromuscular disorders are at risk for a number of postoperative complications that are related to anesthetic drugs that are administered intraoperatively. Careful preoperative assessment is necessary to reduce morbidity and mortality. In particular, the risk of postoperative respiratory failure and need for long-term ventilation should be reviewed with patients. The use of succinylcholine should be avoided in muscular dystrophies, motor neuron diseases, and intrinsic muscle disease due to a risk of malignant hyperthermia, hyperkalemia, rhabdomyolysis, and cardiac arrest. The use of quantitative neuromuscular monitoring should be strongly considered whenever nondepolarizing neuromuscular blocking agents are administered. A number of case series and reports have been recently published demonstrating that sugammadex can be safely used in patients with neuromuscular disease; the risk of residual neuromuscular is nearly eliminated when this agent is administered intraoperatively. Careful assessment and management of patients with underlying neuromuscular diseases is required to reduce postoperative complications. This article reviews the anesthetic implications of patients undergoing surgery with neuromuscular disorder.

  3. The Effect of Plyometric Training on Trunk Muscle Pre-activation in Active Females with Trunk Neuromuscular Control Deficit

    Directory of Open Access Journals (Sweden)

    M Hadadnezhad

    2014-02-01

    Results: the results of independent sample T-test indicated that there are significant differences between post-test of control and experimental groups in regard to Gluteus Medius (p=0.021, Quadratus Lumborum (p=0.011, Transverse Abdominis/Internal oblique (p=0.006, External Oblique (p=0.023 muscles activations which reveals effectiveness of plyometric training on pre-activation of muscles. Conclusion: Based on the study results, plyometric training affects the activation of muscles and thus improving the pre-activation can prevent mechanisms related to anterior cruciate ligament injury. Therefore, plyometric training can reduce incidence of anterior cruciate ligament injury.

  4. MRI in neuromuscular disorders

    International Nuclear Information System (INIS)

    Fischmann, Arne

    2014-01-01

    Neuromuscular disorders are caused by damage of the skeletal muscles or supplying nerves, in many cases due to a genetic defect, resulting in progressive disability, loss of ambulation and often a reduced life expectancy. Previously only supportive care and steroids were available as treatments, but several novel therapies are under development or in clinical trial phase. Muscle imaging can detect specific patterns of involvement and facilitate diagnosis and guide genetic testing. Quantitative MRT can be used to monitor disease progression either to monitor treatment or as a surrogate parameter for clinical trails. Novel imaging sequences can provide insights into disease pathology and muscle metabolism. (orig.)

  5. Neuromuscular Blocking Agents and Neuromuscular Dysfunction Acquired in Critical Illness: A Systematic Review and Meta-Analysis.

    Science.gov (United States)

    Price, David R; Mikkelsen, Mark E; Umscheid, Craig A; Armstrong, Ehrin J

    2016-11-01

    The relationship between neuromuscular blocking agents and neuromuscular dysfunction acquired in critical illness remains unclear. We examined the association between neuromuscular blocking agents and ICU-acquired weakness, critical illness polyneuropathy, and critical illness myopathy. PubMed, EMBASE, Web of Science, Cochrane Central Register of Controlled Trials, Cumulative Index of Nursing and Allied Health Literature, and bibliographies of included studies were searched from database inception until September 24, 2015. Randomized controlled trials and prospective observational studies examining the association between neuromuscular blocking agents and ICU-acquired weakness, critical illness polyneuropathy, or critical illness myopathy. One author screened titles/abstracts. Two authors independently reviewed full text and extracted data from included studies. Meta-analysis was performed using the DerSimonian-Laird random effects model (OpenMetaAnalyst 10.10 for OS.X). We assessed reporting bias with funnel plots and heterogeneity with the I statistic. Of 2,170 titles/abstracts screened, 99 full texts were selected for review, yielding one randomized controlled trial and 18 prospective observational studies, for a total of 2,254 patients. The randomized controlled trial did not show an association between neuromuscular blocking agents and neuromuscular dysfunction acquired in critical illness (odds ratio, 1.21; 95% CI, 0.67-2.19), but pooled data from all included studies suggested a modest association (odds ratio, 1.25; 95% CI, 1.06-1.48; I = 16%). Funnel plots suggested reporting bias, and sensitivity analyses showed a disproportionate contribution from critical illness polyneuropathy/critical illness myopathy and severe sepsis/septic shock studies. This meta-analysis suggests a modest association between neuromuscular blocking agents and neuromuscular dysfunction acquired in critical illness; limitations include studies with a high risk of bias and a

  6. Perineal neuromuscular fatigue.

    Science.gov (United States)

    Deffieux, X; Hubeaux, K; Damphousse, M; Raibaut, P; Sheikh Ismael, S; Thoumie, P; Amarenco, G; Lapeyre, E; Jousse, M

    2006-07-01

    The physiology of urinary continence during stress is complex and the role of passive and active mechanisms remains unclear. Coughing leads to a contraction of urethral rhabdomyosphincter and pelvic floor muscles leading to a positive urethro-vesical gradient and continence. Neuromuscular fatigue can involve all striated muscles, including rhabdomyosphincter, peri-urethral and pelvic floor muscles. This article reviews results of studies assessing perineal muscular fatigue in urinary incontinence. A systematic review of the literature (Medline, Pascal and Embase) with use of the MESH keywords fatigue, stress, urinary incontinence, pelvic floor, urethra, urethral pressure, and muscle. Animal models have shown that the pelvic muscles (iliococcygeus and pubococcygeous) exhibit more neuromuscular fatigue than classical skeletal striated muscles (i.e. soleus muscle). Although the human external urethral sphincter is considered to be a highly fatigue-resistant muscle with its high proportion of slow muscle fibers, repeated coughing seems to lead to decreased urethral pressure in numerous women affected with stress urinary incontinence. In this case, "urethral fatigue" might be a possibility. Although few studies have focused on perineal muscular fatigue, such increased fatigue in pelvic floor muscles may play a role in the pathophysiologic features of stress urinary incontinence in women.

  7. Effects of avoiding neuromuscular blocking agents during maintenance of anaesthesia on recovery characteristics in patients undergoing craniotomy for supratentorial lesions: A randomised controlled study

    Directory of Open Access Journals (Sweden)

    Ruchi A Jain

    2017-01-01

    Full Text Available Background and Aims: Neuromuscular blocking agents have been one of the cornerstones of anaesthesia. With the advent of newer surgical, anaesthetic and neurological monitoring techniques, their utility in neuroanaesthesia practice seems dispensable. The aim of this prospective, comparative, randomised study was to determine whether neuromuscular blocking agents are required in patients undergoing supratentorial surgery when balanced anaesthesia with desflurane, dexmedetomidine and scalp block is used. Methods: Sixty patients with the American Society of Anesthesiologists physical status I or II, aged between 18 and 60 years were included in the study. All patients received anaesthesia including desflurane, dexmedetomidine and scalp block. The patients were randomly allocated to receive no neuromuscular blocking agent (Group A or atracurium infusion to keep train-of-four count 2 (Group B. The two groups were compared with respect to haemodynamic stability, brain relaxation scores and recovery characteristics. Haemodynamic parameters and time taken to achieve Aldrete score >9 and other secondary outcomes were analysed using Student's t-test. Non-parametric data were analysed using the Mann–Whitney test. Results: The mean arterial pressure was comparable between the groups. The intraoperative heart rate was comparable; however, in the post-operative period, it remained higher in Group B for 30 min after extubation (P = 0.02. The brain relaxation scores were comparable among the two groups (P = 0.27. Tracheal extubation time, time taken for orientation and time required to reach Aldrete score ≥9 were comparable among the two groups. Conclusion: The present study suggests that balanced anaesthesia using desflurane, dexmedetomidine and scalp block can preclude the use of neuromuscular blocking agents in patients undergoing supratentorial surgery under intense haemodynamic monitoring.

  8. Short-term and long-term control of synaptic strength by light activatable glutamate receptors at the Drosophila neuromuscular junction

    OpenAIRE

    Kauwe, Grant

    2010-01-01

    Drosophila neuromuscular junctions (NMJs) exhibit structural and physiological homeostasis during larval development in which the number of boutons and the amount of neurotransmitter released increases in coordination with larval muscle size growth. The Bone Morphogenetic Protein (BMP) signaling pathway, including Glass bottom-boat (Gbb), a BMP ligand, and Wishful thinking (Wit), its presynaptic BMP receptor, are important for regulating this homeostatic growth in larvae. Genetic analysis o...

  9. Effect of EMG-triggered neuromuscular electrical stimulation with bilateral arm training on hemiplegic shoulder pain and arm function after stroke: a randomized controlled trial.

    Science.gov (United States)

    Chuang, Li-Ling; Chen, You-Lin; Chen, Chih-Chung; Li, Yen-Chen; Wong, Alice May-Kuen; Hsu, An-Lun; Chang, Ya-Ju

    2017-11-28

    Hemiplegic shoulder pain is a frequent complication after stroke, leading to limited use of the affected arm. Neuromuscular electrical stimulation (NMES) and transcutaneous electrical nerve stimulation (TENS) are two widely used interventions to reduce pain, but the comparative efficacy of these two modalities remains uncertain. The purpose of this research was to compare the immediate and retained effects of EMG-triggered NMES and TENS, both in combination with bilateral arm training, on hemiplegic shoulder pain and arm function of stroke patients. A single-blind, randomized controlled trial was conducted at two medical centers. Thirty-eight patients (25 males and 13 females, 60.75 ± 10.84 years old, post stroke duration 32.68 ± 53.07 months) who had experienced a stroke more than 3 months ago at the time of recruitment and hemiplegic shoulder pain were randomized to EMG-triggered NMES or TENS. Both groups received electrical stimulation followed by bilateral arm training 3 times a week for 4 weeks. The primary outcome measures included a vertical Numerical Rating Scale supplemented with a Faces Rating Scale, and the short form of the Brief Pain Inventory. The secondary outcome measures were the upper-limb subscale of the Fugl-Meyer Assessment, and pain-free passive shoulder range of motion. All outcomes were measured pretreatment, post-treatment, and at 1-month after post-treatment. Two-way mixed repeated measures ANOVAs were used to examine treatment effects. Compared to TENS with bilateral arm training, the EMG-triggered NMES with bilateral arm training was associated with lower pain intensity during active and passive shoulder movement (P =0.007, P =0.008), lower worst pain intensity (P = 0.003), and greater pain-free passive shoulder abduction (P =0.001) and internal rotation (P =0.004) at follow-up. Both groups improved in pain at rest (P =0.02), pain interference with daily activities, the Fugl-Meyer Assessment, and pain-free passive

  10. Hexosamine Biosynthetic Pathway Mutations Cause Neuromuscular Transmission Defect

    Science.gov (United States)

    Senderek, Jan; Müller, Juliane S.; Dusl, Marina; Strom, Tim M.; Guergueltcheva, Velina; Diepolder, Irmgard; Laval, Steven H.; Maxwell, Susan; Cossins, Judy; Krause, Sabine; Muelas, Nuria; Vilchez, Juan J.; Colomer, Jaume; Mallebrera, Cecilia Jimenez; Nascimento, Andres; Nafissi, Shahriar; Kariminejad, Ariana; Nilipour, Yalda; Bozorgmehr, Bita; Najmabadi, Hossein; Rodolico, Carmelo; Sieb, Jörn P.; Steinlein, Ortrud K.; Schlotter, Beate; Schoser, Benedikt; Kirschner, Janbernd; Herrmann, Ralf; Voit, Thomas; Oldfors, Anders; Lindbergh, Christopher; Urtizberea, Andoni; von der Hagen, Maja; Hübner, Angela; Palace, Jacqueline; Bushby, Kate; Straub, Volker; Beeson, David; Abicht, Angela; Lochmüller, Hanns

    2011-01-01

    Neuromuscular junctions (NMJs) are synapses that transmit impulses from motor neurons to skeletal muscle fibers leading to muscle contraction. Study of hereditary disorders of neuromuscular transmission, termed congenital myasthenic syndromes (CMS), has helped elucidate fundamental processes influencing development and function of the nerve-muscle synapse. Using genetic linkage, we find 18 different biallelic mutations in the gene encoding glutamine-fructose-6-phosphate transaminase 1 (GFPT1) in 13 unrelated families with an autosomal recessive CMS. Consistent with these data, downregulation of the GFPT1 ortholog gfpt1 in zebrafish embryos altered muscle fiber morphology and impaired neuromuscular junction development. GFPT1 is the key enzyme of the hexosamine pathway yielding the amino sugar UDP-N-acetylglucosamine, an essential substrate for protein glycosylation. Our findings provide further impetus to study the glycobiology of NMJ and synapses in general. PMID:21310273

  11. Neuromuscular Electrical Stimulation and Anabolic Signaling in Patients with Stroke.

    Science.gov (United States)

    Mettler, Joni A; Bennett, Sydney M; Doucet, Barbara M; Magee, Dillon M

    2017-12-01

    Stroke results in limited ability to produce voluntary muscle contraction and movement on one side of the body, leading to further muscle wasting and weakness. Neuromuscular electrical stimulation is often used to facilitate involuntary muscle contraction; however, the effect of neuromuscular electrical stimulation on muscle growth and strengthening processes in hemiparetic muscle is not clear. This study examined the skeletal muscle anabolic response of an acute bout of neuromuscular electrical stimulation in individuals with chronic stroke and healthy older adults. Eleven individuals (59.8 ± 2.7 years old) were divided into a chronic stroke group (n = 5) and a healthy older adult control group (n = 6). Muscle biopsies were obtained before and after stimulation from the vastus lateralis of the hemiparetic leg for the stroke group and the right leg for the control group. The neuromuscular electrical stimulation protocol consisted of a 60-minute, intermittent stimulation train at 60 Hz. Phosphorylation of mammalian target of rapamycin and ribosomal protein S6 kinase beta-1 were analyzed by Western blot. An acute bout of neuromuscular electrical stimulation increased phosphorylation of mammalian target of rapamycin (stroke: 56.0%; control: 51.4%; P = .002) and ribosomal protein S6 kinase beta-1 (stroke: 131.2%; control: 156.3%; P = .002) from resting levels to post-neuromuscular electrical stimulation treatment, respectively. Phosphorylated protein content was similar between stroke and control groups at both time points. Findings suggest that paretic muscles of patients with chronic stroke may maintain ability to stimulate protein synthesis machinery in response to neuromuscular electrical stimulation. Copyright © 2017 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  12. Model to describe the degree of twitch potentiation during neuromuscular monitoring

    NARCIS (Netherlands)

    Eleveld, D.J.; Kopman, A.F.; Proost, Johannes H; Wierda, J.MKH

    Background Neuromuscular block is estimated by comparing the evoked peak twitch with a control value measured in the absence of neuromuscular block. In practice, this control value is often difficult to determine because repeated motor nerve stimulation enhances the evoked mechanical response of the

  13. Ageing and neurotrophic signalling effects on diaphragm neuromuscular function

    Science.gov (United States)

    Greising, Sarah M; Ermilov, Leonid G; Sieck, Gary C; Mantilla, Carlos B

    2015-01-01

    The age-related mechanisms underlying sarcopenia are largely unknown. We hypothesize that age-related neuromuscular changes depend on brain-derived neurotrophic factor (BDNF) acting through the tropomyosin-related kinase receptor B (TrkB). Maximal specific force and neuromuscular transmission failure were assessed at 6, 18 and 24 months following control, BDNF or phosphoprotein phosphatase 1 derivative (1NMPP1) treatment in male TrkBF616A mice. Phosphoprotein phosphatase-1 derivatives such as 1NMPP1 inhibit TrkB kinase activity as a result of this single amino acid mutation in the ATP binding domain. Maximal twitch and isometric tetanic force were reduced at 24 months compared to 6 and 18 months (P Neuromuscular transmission failure significantly increased at 18 and 24 months compared to 6 months (age × treatment interaction: P Neuromuscular transmission was improved following BDNF at 6 and 18 months and was impaired only at 6 months following 1NMPP1 treatment. Age and inhibition of TrkB kinase activity had similar effects on neuromuscular transmission failure, supporting a critical role for BDNF/TrkB signalling on neuromuscular changes in ageing. These results suggest that an age-related loss of endogenous BDNF precedes reductions in TrkB kinase activity in the diaphragm muscle. PMID:25630263

  14. The effects of a strength and neuromuscular exercise programme for the lower extremity on knee load, pain and function in obese children and adolescents: study protocol for a randomised controlled trial.

    Science.gov (United States)

    Horsak, Brian; Artner, David; Baca, Arnold; Pobatschnig, Barbara; Greber-Platzer, Susanne; Nehrer, Stefan; Wondrasch, Barbara

    2015-12-23

    Childhood obesity is one of the most critical and accelerating health challenges throughout the world. It is a major risk factor for developing varus/valgus misalignments of the knee joint. The combination of misalignment at the knee and excess body mass may result in increased joint stresses and damage to articular cartilage. A training programme, which aims at developing a more neutral alignment of the trunk and lower limbs during movement tasks may be able to reduce knee loading during locomotion. Despite the large number of guidelines for muscle strength training and neuromuscular exercises that exist, most are not specifically designed to target the obese children and adolescent demographic. Therefore, the aim of this study is to evaluate a training programme which combines strength and neuromuscular exercises specifically designed to the needs and limitations of obese children and adolescents and analyse the effects of the training programme from a biomechanical and clinical point of view. A single assessor-blinded, pre-test and post-test randomised controlled trial, with one control and one intervention group will be conducted with 48 boys and girls aged between 10 and 18 years. Intervention group participants will receive a 12-week neuromuscular and quadriceps/hip strength training programme. Three-dimensional (3D) gait analyses during level walking and stair climbing will be performed at baseline and follow-up sessions. The primary outcome parameters for this study will be the overall peak external frontal knee moment and impulse during walking. Secondary outcomes include the subscales of the Knee injury and Osteoarthritis Outcome Score (KOOS), frontal and sagittal kinematics and kinetics for the lower extremities during walking and stair climbing, ratings of change in knee-related well-being, pain and function and adherence to the training programme. In addition, the training programme will be evaulated from a clinical and health status perspective by

  15. Effects of carbohydrates-BCAAs-caffeine ingestion on performance and neuromuscular function during a 2-h treadmill run: a randomized, double-blind, cross-over placebo-controlled study

    Directory of Open Access Journals (Sweden)

    Peltier Sébastien L

    2011-12-01

    Full Text Available Abstract Background Carbohydrates (CHOs, branched-chain amino acids (BCAAs and caffeine are known to improve running performance. However, no information is available on the effects of a combination of these ingredients on performance and neuromuscular function during running. Methods The present study was designed as a randomized double-blind cross-over placebo-controlled trial. Thirteen trained adult males completed two protocols, each including two conditions: placebo (PLA and Sports Drink (SPD: CHOs 68.6 g.L-1, BCAAs 4 g.L-1, caffeine 75 mg.L-1. Protocol 1 consisted of an all-out 2 h treadmill run. Total distance run and glycemia were measured. In protocol 2, subjects exercised for 2 h at 95% of their lowest average speeds recorded during protocol 1 (whatever the condition. Glycemia, blood lactate concentration and neuromuscular function were determined immediately before and after exercise. Oxygen consumption (V˙O2, heart rate (HR and rate of perceived exertion (RPE were recorded during the exercise. Total fluids ingested were 2 L whatever the protocols and conditions. Results Compared to PLA, ingestion of SPD increased running performance (p = 0.01, maintained glycemia and attenuated central fatigue (p = 0.04, an index of peripheral fatigue (p = 0.04 and RPE (p = 0.006. Maximal voluntary contraction, V˙O2, and HR did not differ between the two conditions. Conclusions This study showed that ingestion of a combination of CHOs, BCAAs and caffeine increased performance by about 2% during a 2-h treadmill run. The results of neuromuscular function were contrasted: no clear cut effects of SPD were observed. Trial registration ClinicalTrials.gov, http://www.clinicaltrials.gov, NCT00799630

  16. Interpreting Pain Symptoms and How Pain Affects Neuromuscular Control in Dancers: If I'm in Pain, How Should I Train?

    Science.gov (United States)

    Claus, Andrew P; Macdonald, David A

    2017-03-01

    This review draws from leading research on pain neuroscience and control of posture and movement to help inform rehabilitation approaches and when it may or may not be prudent to "dance through" pain. Control of posture and movement is frequently distorted by pain perception, and that may not be altered even when the pain is resolved. It is important to exclude serious systemic disease or major tissue injury with severe, unremitting, or persistent symptoms before focusing on movement-based rehabilitation. Both specific exercises (contraction of specific muscles and use of movement techniques) and general exercises which promote strength, power, endurance, and flexibility) can help to manage individuals with persistent pain problems. Training control of posture and movement can improve motor skills and tissue integrity and also normalize perception of sensory stimuli from the peripheral nervous system. A framework for planning such training can be considered in terms of progression of load, complexity, and context.

  17. Tenoxicam controls pain without altering orthodontic movement of maxillary canines.

    Science.gov (United States)

    Arantes, G M; Arantes, V M N; Ashmawi, H A; Posso, I P

    2009-02-01

    To study the efficacy of tenoxicam for pain control, its potential for preemptive analgesia, and its influence on the orthodontic movement of upper canine teeth. This was a randomized controlled double-blind cross-over study. The patients were divided into three groups. Two groups received tenoxicam in daily doses of 20 mg orally for 3 days. Group A received the first dose of the drug before orthodontic activation and group B, just afterwards. Group C (control) received a placebo for 3 days. All groups had access to 750 mg of paracetamol up to four times a day. Three orthodontic activations were performed at 30-day intervals. Each patient belonged to two different groups. Pain intensity was assessed using a descriptive Pain Scale and a Visual Analog Scale. Private clinic; 36 patients undergoing bilateral canine tooth retraction. The statistical analysis did not show any difference in movement between the active groups and the control at any time. There was no statistical difference between the groups that received tenoxicam. Pain intensity in these groups was lower than in the placebo group. The difference in pain intensity between the active groups and the control was greatest at the assessment made 12 h after activation and it tended to zero, 72 h after activation. Tenoxicam did not influence orthodontic movement of the upper canines. It was effective for pain control and did not present any preemptive analgesic effect.

  18. Effects of sudden walking perturbations on neuromuscular reflex activity and three-dimensional motion of the trunk in healthy controls and back pain symptomatic subjects.

    Science.gov (United States)

    Mueller, Juliane; Engel, Tilman; Mueller, Steffen; Stoll, Josefine; Baur, Heiner; Mayer, Frank

    2017-01-01

    Back pain patients (BPP) show delayed muscle onset, increased co-contractions, and variability as response to quasi-static sudden trunk loading in comparison to healthy controls (H). However, it is unclear whether these results can validly be transferred to suddenly applied walking perturbations, an automated but more functional and complex movement pattern. There is an evident need to develop research-based strategies for the rehabilitation of back pain. Therefore, the investigation of differences in trunk stability between H and BPP in functional movements is of primary interest in order to define suitable intervention regimes. The purpose of this study was to analyse neuromuscular reflex activity as well as three-dimensional trunk kinematics between H and BPP during walking perturbations. Eighty H (31m/49f;29±9yrs;174±10cm;71±13kg) and 14 BPP (6m/8f;30±8yrs;171±10cm;67±14kg) walked (1m/s) on a split-belt treadmill while 15 right-sided perturbations (belt decelerating, 40m/s2, 50ms duration; 200ms after heel contact) were randomly applied. Trunk muscle activity was assessed using a 12-lead EMG set-up. Trunk kinematics were measured using a 3-segment-model consisting of 12 markers (upper thoracic (UTA), lower thoracic (LTA), lumbar area (LA)). EMG-RMS ([%],0-200ms after perturbation) was calculated and normalized to the RMS of unperturbed gait. Latency (TON;ms) and time to maximum activity (TMAX;ms) were analysed. Total motion amplitude (ROM;[°]) and mean angle (Amean;[°]) for extension-flexion, lateral flexion and rotation were calculated (whole stride cycle; 0-200ms after perturbation) for each of the three segments during unperturbed and perturbed gait. For ROM only, perturbed was normalized to unperturbed step [%] for the whole stride as well as the 200ms after perturbation. Data were analysed descriptively followed by a student´s t-test to account for group differences. Co-contraction was analyzed between ventral and dorsal muscles (V:R) as well as

  19. Alterations in cardiac autonomic control in spinal cord injury

    DEFF Research Database (Denmark)

    Biering-Sørensen, Fin; Biering-Sørensen, Tor; Liu, Nan

    2018-01-01

    parasympathetic cardiac control. Decreases in sympathetic activity result in heart rate and the arterial blood pressure changes, and may cause arrhythmias, in particular bradycardia, with the risk of cardiac arrest in those with cervical or high thoracic injuries. The objective of this review is to give an update...

  20. Neuromuscular Manifestations of West Nile Virus Infection

    Directory of Open Access Journals (Sweden)

    A. Arturo eLeis

    2012-03-01

    Full Text Available The most common neuromuscular manifestation of West Nile virus (WNV infection is a poliomyelitis syndrome with asymmetric paralysis variably involving one (monoparesis to four limbs (quadriparesis, with or without brainstem involvement and respiratory failure. This syndrome of acute flaccid paralysis may occur without overt fever or meningoencephalitis. Although involvement of anterior horn cells in the spinal cord and motor neurons in the brainstem are the major sites of pathology responsible for neuromuscular signs, inflammation also may involve skeletal or cardiac muscle (myositis, myocarditis, motor axons (polyradiculitis, peripheral nerve (Guillain-Barré syndrome, brachial plexopathy. In addition, involvement of spinal sympathetic neurons and ganglia provides a plausible explanation for autonomic instability seen in some patients. Many patients also experience prolonged subjective generalized weakness and disabling fatigue. Despite recent evidence that WNV may persist long term in the central nervous system or periphery in animals, the evidence in humans is controversial. WNV persistence would be of great concern in immunosuppressed patients or in those with prolonged or recurrent symptoms. Support for the contention that WNV can lead to autoimmune disease arises from reports of patients presenting with various neuromuscular diseases that presumably involve autoimmune mechanisms (GBS, other demyelinating neu¬ropathies, myasthenia gravis, brachial plexopathies, stiff-person syndrome, and delayed or recurrent symptoms. Although there is no specific treatment or vaccine currently approved in humans, and the standard remains supportive care, drugs that can alter the cascade of immunobiochemical events leading to neuronal death may be potentially useful (high-dose corticosteroids, interferon preparations, and intravenous immune globulin containing WNV-specific antibodies. Human experience with these agents seems promising based on anecdotal

  1. Direct and indirect measurement of neuromuscular fatigue in Canadian football players.

    Science.gov (United States)

    Clarke, Nick; Farthing, Jonathan P; Lanovaz, Joel L; Krentz, Joel R

    2015-05-01

    This study assessed the effects of a fatiguing game simulation (G-Sim) on the balance of collegiate Canadian football players. The purpose of the study was to evaluate postural control as a potential tool for monitoring neuromuscular fatigue (NMF) in collision-based team sports. Fifteen male Canadian football players were recruited (mean±SD: age 21.8±1.6 years, weight 97.6±14.7 kg). Indirect NMF measures (postural sway and countermovement jump (CMJ)) were performed 24 h before (TBase), immediately before (TPre) and after (TPost), and 24 h (T24) and 48 h after (T48) a Canadian football G-Sim. Peak isometric knee extensor torque of a maximal voluntary contraction (MVC) and electrically evoked tetani at 20 Hz (P20) and 80 Hz (P80) were also recorded as direct NMF measures at TBase, TPre, TPost, and T48. At TPost, we observed significant declines in MVC, P20, and the MVC/P80 ratio (-15.3%, -15.7%, and -12.1%, respectively; n=12) along with reductions in CMJ takeoff velocity and peak power (-6.9% and -6.5%, respectively; n=12) and larger area of the center of pressure trajectory (95.2%; n=10) during a 60-s postural sway task. All variables were no longer different than baseline by T48. Acute neuromuscular impairment in this cohort is likely attributable to alterations in excitation-contraction coupling due to structural damage and central activation failure. Congruency between the direct and indirect measures of NMF suggests monitoring postural sway has the potential to identify both neuromuscular and somatosensory alterations induced by acute game-induced fatigue in collision-based team sports players.

  2. Neuromuscular disease classification system

    Science.gov (United States)

    Sáez, Aurora; Acha, Begoña; Montero-Sánchez, Adoración; Rivas, Eloy; Escudero, Luis M.; Serrano, Carmen

    2013-06-01

    Diagnosis of neuromuscular diseases is based on subjective visual assessment of biopsies from patients by the pathologist specialist. A system for objective analysis and classification of muscular dystrophies and neurogenic atrophies through muscle biopsy images of fluorescence microscopy is presented. The procedure starts with an accurate segmentation of the muscle fibers using mathematical morphology and a watershed transform. A feature extraction step is carried out in two parts: 24 features that pathologists take into account to diagnose the diseases and 58 structural features that the human eye cannot see, based on the assumption that the biopsy is considered as a graph, where the nodes are represented by each fiber, and two nodes are connected if two fibers are adjacent. A feature selection using sequential forward selection and sequential backward selection methods, a classification using a Fuzzy ARTMAP neural network, and a study of grading the severity are performed on these two sets of features. A database consisting of 91 images was used: 71 images for the training step and 20 as the test. A classification error of 0% was obtained. It is concluded that the addition of features undetectable by the human visual inspection improves the categorization of atrophic patterns.

  3. Plantar flexor neuromuscular adjustments following match-play football in hot and cool conditions

    DEFF Research Database (Denmark)

    Girard, O; Nybo, Lars; Mohr, Magni

    2015-01-01

    explosive force production declined (P force development and soleus EMG activity rise values remained unchanged. In football, match-induced alterations in maximal and rapid......We assessed neuromuscular fatigue and recovery of the plantar flexors after playing football with or without severe heat stress. Neuromuscular characteristics of the plantar flexors were assessed in 17 male players at baseline and ∼30 min, 24, and 48 h after two 90-min football matches in temperate...

  4. Neuromuscular activity and knee kinematics in adolescents with patellofemoral pain

    DEFF Research Database (Denmark)

    Rathleff, Michael Skovdal; Samani, Afshin; Olesen, Jens Lykkegaard

    2013-01-01

    This study aimed to investigate the neuromuscular control of the knee during stair descent among female adolescents with patellofemoral pain (PFP) and to report its association with self-reported clinical status assessed by the Knee Injury and Osteoarthritis Outcome Score (KOOS).......This study aimed to investigate the neuromuscular control of the knee during stair descent among female adolescents with patellofemoral pain (PFP) and to report its association with self-reported clinical status assessed by the Knee Injury and Osteoarthritis Outcome Score (KOOS)....

  5. Does a mental training session induce neuromuscular fatigue?

    Science.gov (United States)

    Rozand, Vianney; Lebon, Florent; Papaxanthis, Charalambos; Lepers, Romuald

    2014-10-01

    Mental training, as physical training, enhances muscle strength. Whereas the repetition of maximal voluntary contractions (MVC) induces neuromuscular fatigue, the effect of maximal imagined contractions (MIC) on neuromuscular fatigue remains unknown. Here, we investigated neuromuscular alterations after a mental training session including MIC, a physical training session including MVC, and a combined training session including both MIC and MVC of the elbow flexor muscles. Ten participants performed 80 MIC (duty cycle, 5-s MIC and 10-s rest), 80 MVC (identical duty cycle), or 80 MVC and 80 MIC (5-s MVC, 2-s rest, 5-s MIC, and 3-s rest) in three separate sessions. MVC torque was assessed five times over the course of the training and 10 min after the end of the training in the three protocols. Central activation ratio (CARc), reflecting central fatigue, and corticospinal excitability, at rest and during MIC, were estimated using transcranial magnetic stimulation. Both the physical training and the combined training induced an approximately 40% drop of MVC torque, accompanied with an approximately 10% decrease of CARc without significant difference between the two sessions. On the contrary, the repetition of MIC did not reduce maximal force production capacity and did not alter CARc. Corticospinal excitability was always facilitated during MIC compared with that during rest, ensuring that the participants imagined the desired movement. These results suggested that one session of mental training alone or combined with physical training do not induce (additional) neuromuscular fatigue despite the repetitive activation of the corticospinal track. Motor imagery may be added to physical practice to increase the total workload without exacerbating neuromuscular fatigue.

  6. Neostigmine Administration after Spontaneous Recovery to a Train-of-Four Ratio of 0.9 to 1.0: A Randomized Controlled Trial of the Effect on Neuromuscular and Clinical Recovery.

    Science.gov (United States)

    Murphy, Glenn S; Szokol, Joseph W; Avram, Michael J; Greenberg, Steven B; Shear, Torin D; Deshur, Mark A; Benson, Jessica; Newmark, Rebecca L; Maher, Colleen E

    2018-01-01

    When a muscle relaxant is administered to facilitate intubation, the benefits of anticholinesterase reversal must be balanced with potential risks. The aim of this double-blinded, randomized noninferiority trial was to evaluate the effect of neostigmine administration on neuromuscular function when given to patients after spontaneous recovery to a train-of-four ratio of 0.9 or greater. A total of 120 patients presenting for surgery requiring intubation were given a small dose of rocuronium. At the conclusion of surgery, 90 patients achieving a train-of-four ratio of 0.9 or greater were randomized to receive either neostigmine 40 μg/kg or saline (control). Train-of-four ratios were measured from the time of reversal until postanesthesia care unit admission. Patients were monitored for postextubation adverse respiratory events and assessed for muscle strength. Ninety patients achieved a train-of-four ratio of 0.9 or greater at the time of reversal. Mean train-of-four ratios in the control and neostigmine groups before reversal (1.02 vs. 1.03), 5 min postreversal (1.05 vs. 1.07), and at postanesthesia care unit admission (1.06 vs. 1.08) did not differ. The mean difference and corresponding 95% CI of the latter were -0.018 and -0.046 to 0.010. The incidences of postoperative hypoxemic events and episodes of airway obstruction were similar for the groups. The number of patients with postoperative signs and symptoms of muscle weakness did not differ between groups (except for double vision: 13 in the control group and 2 in the neostigmine group; P = 0.001). Administration of neostigmine at neuromuscular recovery was not associated with clinical evidence of anticholinesterase-induced muscle weakness. An online visual overview is available for this article.(Figure is included in full-text article.).

  7. Neuromuscular Bandage: Neurophysiological Effects and the Role of Fascias

    Directory of Open Access Journals (Sweden)

    Ximena María Villota Chicaíza

    2014-05-01

    Full Text Available During the last years, neuromuscular bandage, a therapeutic application created in 1979 by doctor Kenzo Kase has been introduced in the management of many disorders of the musculo-skeletal system and even more so in the treatment of neurological disorders; This therapeutic tool which consists of a self adhesive elastic bandage allows recovery of the injured party without diminishing its bodily function. According to the existing literature on the physiological effects of this therapeutic application in the body, you could say that there is consensus. However in this article the author wants to highlight the significant although little highlighted role played by the fas¬cias on the therapeutic effects of neuromuscular bandage, analyzing from a reflective perspective the analgesic, neuromechanical and circulatory effects, as fundamental effects of neuromuscular bandage and fascias in the same function, trying to bring a global understanding on the way they relate to all connective tissues, aspects that are of great importance for the proper evaluation of alterations and prescription of neuromuscular bandage

  8. Neuromuscular hip biomechanics and pathology in the athlete.

    Science.gov (United States)

    Torry, Michael R; Schenker, Mara L; Martin, Hal D; Hogoboom, Doug; Philippon, Marc J

    2006-04-01

    Although hip arthroscopic techniques have been developed and evolved over the last 5 to 10 years to help active athletes, the mechanisms of athletic hip injuries across various sports are not well understood. The purpose of this article is to review the literature related to the osseous and ligamentous support as well as the neuromuscular control strategies associated with hip joint mechanics. The neuromuscular contributions to hip stability and mobility with respect to gait will be provided because this data represents the largest body of knowledge regarding hip function. Further, this article will present and describe probable mechanisms of injury in sporting activities most often associated with hip injury in the young athlete.

  9. Effect of variations in depth of neuromuscular blockade on rating of surgical conditions by surgeon and anesthesiologist in patients undergoing laparoscopic renal or prostatic surgery (BLISS trial): study protocol for a randomized controlled trial.

    Science.gov (United States)

    Boon, Martijn; Martini, Christian H; Aarts, Leon P H J; Bevers, Rob F M; Dahan, Albert

    2013-03-01

    Surgical conditions in laparoscopic surgery are largely determined by the depth of neuromuscular relaxation. Especially in procedures that are confined to a narrow working field, such as retroperitoneal laparoscopic surgery, deep neuromuscular relaxation may be beneficial. Until recently, though, deep neuromuscular block (NMB) came at the expense of a variety of issues that conflicted with its use. However, with the introduction of sugammadex, rapid reversal of a deep NMB is feasible. In the current protocol, the association between the depth of NMB and rating of surgical conditions by the surgeon and anesthesiologist is studied. This is a single-center, prospective, randomized, blinded, parallel group and controlled trial. Eligible patients are randomly assigned to one of two groups: (1) deep NMB (post-tetanic count, one or two twitches; n = 12) and (2) moderate NMB (train-of-four, 1 to 2 twitches, n = 12) by administration of high-dose rocuronium in Group 1 and a combination of atracurium and mivacurium in Group 2. The NMB in Group 1 is reversed by 4 mg/kg sugammadex; the NMB in Group 2 by 1 mg neostigmine and 0.5 mg atropine. Patients are eligible if they are over 18 years, willing to sign the informed consent form, and are scheduled to undergo an elective laparoscopic renal procedure or laparoscopic prostatectomy. A single surgeon performs the surgeries and rates the surgical conditions on a five-point surgical rating scale (SRS) ranging from 1 (poor surgical conditions) to 5 (excellent surgical conditions). The intra-abdominal part of the surgeries is captured on video and a group of five anesthesiologists and ten surgical experts will rate the videos using the same SRS. The primary analysis will be an intention-to-treat analysis. Evaluation will include the association between the level of NMB and SRS, as obtained by the surgeon performing the procedure and the agreement between the scoring of the images by anesthesiologists and surgeons. We aim to show that

  10. Muscle ultrasound in neuromuscular disorders.

    NARCIS (Netherlands)

    Pillen, S.; Arts, I.M.P.; Zwarts, M.J.

    2008-01-01

    Muscle ultrasound is a useful tool in the diagnosis of neuromuscular disorders, as these disorders result in muscle atrophy and intramuscular fibrosis and fatty infiltration, which can be visualized with ultrasound. Several prospective studies have reported high sensitivities and specificities in

  11. Palliative care in neuromuscular diseases

    NARCIS (Netherlands)

    de Visser, Marianne; Oliver, David J.

    2017-01-01

    Purpose of review Palliative care is an approach that improves the quality of life of patients and their families facing the problem associated with life-threatening illness. Neuromuscular disorders (NMDs) are characterized by progressive muscle weakness, leading to pronounced and incapacitating

  12. Vocational perspectives and neuromuscular disorders

    NARCIS (Netherlands)

    Andries, F; Wevers, CWJ; Wintzen, AR; Busch, HFM; Howeler, CJ; deJager, AEJ; Padberg, GW; deVisser, M; Wokke, JHJ

    The present study analyses the actual occupational situation, vocational handicaps and past labour career of a group of about 1000 Dutch patients suffering from a neuromuscular disorder (NMD). On the basis of the likelihood of a substantial employment history and sufficient numbers of patients, four

  13. Vocational perspectives and neuromuscular disorders

    NARCIS (Netherlands)

    Andries, F.; Wevers, C. W.; Wintzen, A. R.; Busch, H. F.; Höweler, C. J.; de Jager, A. E.; Padberg, G. W.; de Visser, M.; Wokke, J. H.

    1997-01-01

    The present study analyses the actual occupational situation, vocational handicaps and past labour career of a group of about 1000 Dutch patients suffering from a neuromuscular disorder (NMD). On the basis of the likelihood of a substantial employment history and sufficient numbers of patients, four

  14. Effects of electromyography-driven robot-aided hand training with neuromuscular electrical stimulation on hand control performance after chronic stroke.

    Science.gov (United States)

    Rong, Wei; Tong, Kai Yu; Hu, Xiao Ling; Ho, Sze Kit

    2015-03-01

    An electromyography-driven robot system integrated with neuromuscular electrical stimulation (NMES) was developed to investigate its effectiveness on post-stroke rehabilitation. The performance of this system in assisting finger flexion/extension with different assistance combinations was evaluated in five stroke subjects. Then, a pilot study with 20-sessions training was conducted to evaluate the training's effectiveness. The results showed that combined assistance from the NMES-robot could improve finger movement accuracy, encourage muscle activation of the finger muscles and suppress excessive muscular activities in the elbow joint. When assistances from both NMES and the robot were 50% of their maximum assistances, finger-tracking performance had the best results, with the lowest root mean square error, greater range of motion, higher voluntary muscle activations of the finger joints and lower muscle co-contraction in the finger and elbow joints. Upper limb function improved after the 20-session training, indicated by the increased clinical scores of Fugl-Meyer Assessment, Action Research Arm Test and Wolf Motor Function Test. Muscle co-contraction was reduced in the finger and elbow joints reflected by the Modified Ashworth Scale. The findings demonstrated that an electromyography-driven NMES-robot used for chronic stroke improved hand function and tracking performance. Further research is warranted to validate the method on a larger scale. Implications for Rehabilitation The hand robotics and neuromuscular electrical stimulation (NMES) techniques are still separate systems in current post-stroke hand rehabilitation. This is the first study to investigate the combined effects of the NMES and robot on hand rehabilitation. The finger tracking performance was improved with the combined assistance from the EMG-driven NMES-robot hand system. The assistance from the robot could improve the finger movement accuracy and the assistance from the NMES could reduce the

  15. Redox homeostasis and age-related deficits in neuromuscular integrity and function.

    Science.gov (United States)

    Sakellariou, Giorgos K; Lightfoot, Adam P; Earl, Kate E; Stofanko, Martin; McDonagh, Brian

    2017-12-01

    Skeletal muscle is a major site of metabolic activity and is the most abundant tissue in the human body. Age-related muscle atrophy (sarcopenia) and weakness, characterized by progressive loss of lean muscle mass and function, is a major contributor to morbidity and has a profound effect on the quality of life of older people. With a continuously growing older population (estimated 2 billion of people aged >60 by 2050), demand for medical and social care due to functional deficits, associated with neuromuscular ageing, will inevitably increase. Despite the importance of this 'epidemic' problem, the primary biochemical and molecular mechanisms underlying age-related deficits in neuromuscular integrity and function have not been fully determined. Skeletal muscle generates reactive oxygen and nitrogen species (RONS) from a variety of subcellular sources, and age-associated oxidative damage has been suggested to be a major factor contributing to the initiation and progression of muscle atrophy inherent with ageing. RONS can modulate a variety of intracellular signal transduction processes, and disruption of these events over time due to altered redox control has been proposed as an underlying mechanism of ageing. The role of oxidants in ageing has been extensively examined in different model organisms that have undergone genetic manipulations with inconsistent findings. Transgenic and knockout rodent studies have provided insight into the function of RONS regulatory systems in neuromuscular ageing. This review summarizes almost 30 years of research in the field of redox homeostasis and muscle ageing, providing a detailed discussion of the experimental approaches that have been undertaken in murine models to examine the role of redox regulation in age-related muscle atrophy and weakness. © 2017 The Authors. Journal of Cachexia, Sarcopenia and Muscle published by John Wiley & Sons Ltd on behalf of the Society on Sarcopenia, Cachexia and Wasting Disorders.

  16. Information Fusion-Based Optimal Attitude Control for an Alterable Thrust Direction Unmanned Aerial Vehicle

    Directory of Open Access Journals (Sweden)

    Ziyang Zhen

    2013-01-01

    Full Text Available Attitude control is the inner-loop and the most important part of the automatic flight control system of an unmanned aerial vehicle (UAV. The information fusion-based optimal control method is applied in a UAV flight control system in this work. Firstly, a nonlinear model of alterable thrust direction UAV (ATD-UAV is established and linearized for controller design. The longitudinal controller and lateral controller are respectively designed based on information fusion-based optimal control, and then the information fusion flight control system is built up. Finally, the simulation of a nonlinear model described as ATD-UAV is carried out, the results of which show the superiority of the information fusion-based control strategy when compared to the single-loop design method. We also show that the ATD technique improves the anti-disturbance capacity of the UAV.

  17. Neuromuscular Activity of Micrurus laticollaris (Squamata: Elapidae Venom in Vitro

    Directory of Open Access Journals (Sweden)

    Alejandro Carbajal-Saucedo

    2014-01-01

    Full Text Available In this work, we have examined the neuromuscular activity of Micrurus laticollaris (Mexican coral snake venom (MLV in vertebrate isolated nerve-muscle preparations. In chick biventer cervicis preparations, the MLV induced an irreversible concentration- and time-dependent (1–30 µg/mL neuromuscular blockade, with 50% blockade occurring between 8 and 30 min. Muscle contractures evoked by exogenous acetylcholine were completely abolished by MLV, whereas those of KCl were also significantly altered (86% ± 11%, 53% ± 11%, 89% ± 5% and 89% ± 7% for one, three, 10 and 30 µg of venom/mL, respectively; n = 4; p < 0.05. In mouse phrenic nerve-diaphragm preparations, MLV (1–10 µg/mL promoted a slight increase in the amplitude of twitch-tension (3 µg/mL, followed by neuromuscular blockade (n = 4; the highest concentration caused complete inhibition of the twitches (time for 50% blockade = 26 ± 3 min, without exhibiting a previous neuromuscular facilitation. The venom (3 µg/mL induced a biphasic modulation in the frequency of miniature end-plate potentials (MEPPs/min, causing a significant increase after 15 min, followed by a decrease after 60 min (from 17 ± 1.4 (basal to 28 ± 2.5 (t15 and 12 ± 2 (t60. The membrane resting potential of mouse diaphragm preparations pre-exposed or not to d-tubocurarine (5 µg/mL was also significantly less negative with MLV (10 µg/mL. Together, these results indicate that M. laticollaris venom induces neuromuscular blockade by a combination of pre- and post-synaptic activities.

  18. Reversal agents: do we need to administer with neuromuscular monitoring - an observational study.

    Science.gov (United States)

    Goyal, Shilpa; Kothari, Nikhil; Chaudhary, Deepak; Verma, Shilpi; Bihani, Pooja; Rodha, Mahaveer Singh

    2018-03-01

    In clinical practice, in the majority of patients, recovery from the effect of muscle relaxants is assessed using subjective methods such as head lift, eye-opening, or by sustained hand grip after giving anticholinesterases (neostigmine) at the end of surgery. We planned a prospective observational cohort study to test the hypothesis that objective neuromuscular monitoring can help us in avoiding the use of anticholinesterases for reversal. The patients posted for surgery of neuromuscular monitoring of recovery (train-of-four [TOF] ratio of 0.9 or more; exposed group) and the patients who were not exposed to objective neuromuscular monitoring (non-exposed group) acting as a control. Using objective neuromuscular monitoring, the time required for recovery from muscle relaxation when neostigmine was not given for reversal was noted and it was then compared with that of the control group. A total of 190 patients were enrolled over a period of 3 years. With the use of TOF ratio of 0.9 for extubation, patients safely recovered from neuromuscular blockade, without using neostigmine, with no difference in the mean recovery time (14.48 ± 1.138 min) as compared to the control group (12.14 ± 1.067 min, P = 0.139). There was no incidence of reintubation in post-operative period. With objective neuromuscular monitoring, we can ensure complete recovery from the neuromuscular blockade while avoiding the use of anticholinesterases.

  19. Evaluation of the Effectiveness of Neuromuscular Electrical Stimulation After Total Knee Arthroplasty: A Meta-Analysis.

    Science.gov (United States)

    Bistolfi, Alessandro; Zanovello, Jessica; Ferracini, Riccardo; Allisiardi, Fabrizio; Lioce, Elisa; Magistroni, Ernesta; Berchialla, Paola; Da Rold, Ilaria; Massazza, Giuseppe

    2018-02-01

    The aim of the study was to evaluate the efficacy of the use of the neuromuscular electrical stimulation after total knee arthroplasty. The study used a systematic review of randomized controlled trials (MEDLINE, PubMed, Cochrane Library, and PEDro) using Patient Population or Problem, Intervention, Comparison, Outcomes, Setting approach to formulate the research question, controlled terms, and Boolean operators. Inclusion and exclusion criteria were defined in advance. "Neuromuscular electrical stimulation" and "total knee arthroplasty" were used as keywords. The overall risk of bias was determined according to the following: random sequence generation, concealment, blinding mass of participants and staff, commissioning blind assessment results, incomplete data, and loans received. Of the 36 identified studies, six were included in the review (496 participants). In these studies, one group of patients followed a rehabilitation protocol (control group) and the other followed a rehabilitation program plus a session of neuromuscular electrical stimulation (neuromuscular electrical stimulation group). Patients of neuromuscular electrical stimulation groups got the best scores (timed up and go test, stair climbing test, and walk test). Neuromuscular electrical stimulation benefits were strong in the first postoperative weeks/months and gradually diminished. Neuromuscular electrical stimulation allows a slightly better functional recovery after total knee arthroplasty, especially in the first period, with more evident benefits in patients with a severe lack of muscular activation. Nevertheless, there is no difference at medium-long term.

  20. Exercise therapy and other types of physical therapy for patients with neuromuscular diseases: a systematic review.

    NARCIS (Netherlands)

    Cup, E.H.C.; Pieterse, A.J.; Broek-Pastoor, J.M.C. ten; Munneke, M.; Engelen, B.G.M. van; Hendricks, H.T.; Wilt, G.J. van der; Oostendorp, R.A.B.

    2007-01-01

    OBJECTIVE: To summarize and critically appraise the available evidence on exercise therapy and other types of physical therapies for patients with neuromuscular diseases (NMD). DATA SOURCES: Cochrane Central Register of Controlled Trials and Cochrane Database of Systematic Reviews, Medline, CINAHL,

  1. Neuromuscular Dysfunction in Experimental Sepsis and Glutamine.

    Science.gov (United States)

    Çankayalı, İlkin; Boyacılar, Özden; Demirağ, Kubilay; Uyar, Mehmet; Moral, Ali Reşat

    2016-05-01

    Electrophysiological studies show that critical illness polyneuromyopathy appears in the early stage of sepsis before the manifestation of clinical findings. The metabolic response observed during sepsis causes glutamine to become a relative essential amino acid. We aimed to assess the changes in neuromuscular transmission in the early stage of sepsis after glutamine supplementation. Animal experimentation. Twenty male Sprague-Dawley rats were randomized into two groups. Rats in both groups were given normal feeding for one week. In the study group, 1 g/kg/day glutamine was added to normal feeding by feeding tube for one week. Cecal ligation and perforation (CLP) surgery was performed at the end of one week. Before and 24 hours after CLP, compound muscle action potentials were recorded from the gastrocnemius muscle. Latency measurements before and 24 hours after CLP were 0.68±0.05 ms and 0.80±0.09 ms in the control group and 0.69±0.07 ms and 0.73±0.07 ms in the study group (p<0.05). Since enteral glutamine prevented compound muscle action potentials (CMAP) latency prolongation in the early phase of sepsis, it was concluded that enteral glutamine replacement might be promising in the prevention of neuromuscular dysfunction in sepsis; however, further studies are required.

  2. Neuromuscular Dysfunction in Experimental Sepsis and Glutamine

    Directory of Open Access Journals (Sweden)

    İlkin Çankayalı

    2016-06-01

    Full Text Available Background: Electrophysiological studies show that critical illness polyneuromyopathy appears in the early stage of sepsis before the manifestation of clinical findings. The metabolic response observed during sepsis causes glutamine to become a relative essential amino acid. Aims: We aimed to assess the changes in neuromuscular transmission in the early stage of sepsis after glutamine supplementation. Study Design: Animal experimentation. Methods: Twenty male Sprague-Dawley rats were randomized into two groups. Rats in both groups were given normal feeding for one week. In the study group, 1 g/kg/day glutamine was added to normal feeding by feeding tube for one week. Cecal ligation and perforation (CLP surgery was performed at the end of one week. Before and 24 hours after CLP, compound muscle action potentials were recorded from the gastrocnemius muscle. Results: Latency measurements before and 24 hours after CLP were 0.68±0.05 ms and 0.80±0.09 ms in the control group and 0.69±0.07 ms and 0.73±0.07 ms in the study group (p<0.05. Conclusion: Since enteral glutamine prevented compound muscle action potentials (CMAP latency prolongation in the early phase of sepsis, it was concluded that enteral glutamine replacement might be promising in the prevention of neuromuscular dysfunction in sepsis; however, further studies are required.

  3. Active, passive and proprioceptive neuromuscular facilitation stretching are comparable in improving the knee flexion range in people with total knee replacement: a randomized controlled trial.

    Science.gov (United States)

    Chow, Tiffany P Y; Ng, Gabriel Y F

    2010-10-01

    To compare the immediate and medium-term effects of three stretching methods on the knee flexion range in people with a total knee replacement. Randomized clinical trial. Rehabilitation hospital. 117 patients were recruited and 100 (mean age: 68.43 ± 7.95 years) of them completed the study. Patients receiving total knee replacement due to knee osteoarthritis were randomly assigned into 3 groups of: active stretching (group 1, n =32), passive stretching (group 2, n =35) and proprioceptive neuromuscular facilitation stretching (group 3, n =33). The immediate change in both active and passive knee flexion range after the first treatment session and the pattern of change in these ranges throughout the 2-week study period were compared among the three groups. All groups demonstrated significant improvement in knee ranges with time. The active range of group 1 improved by 19.9°, group 2 by 25.3° and group 3 by 22.5° throughout the 2-week period, whereas the improvements in the passive range were 18.8°, 24.5° and 22.7°, respectively. For between-group comparisons, no significant difference was found in both active (P = 0.647) and passive (P = 0.501) knee range immediately after stretching. For the changes at 2 weeks, there was also no significant difference among the groups in both active (P = 0.716) and passive (P = 0.959) knee ranges. This study revealed that all three modes of stretching were associated with an increase in the knee flexion range of patients after total knee replacement, with no statistically significant differences between the changes seen.

  4. Effects of treadmill training with partial body weight support and the proprioceptive neuromuscular facilitation method on hemiparetic gait: a randomized controlled study.

    Science.gov (United States)

    Ribeiro, T; Britto, H; Oliveira, D; Silva, E; Galvão, E; Lindquist, A

    2013-08-01

    Gait disturbance is common after stroke; however, there is no consensus regarding the optimal therapeutic rehabilitation of hemiparetic gait. To compare the effects of the treadmill training with partial body-weight support (TPBWS) and Proprioceptive Neuromuscular Facilitation (PNF) method on gait of subjects with chronic stroke. Randomized clinical trial, comparing two experimental groups (comparative study). Laboratory for Human Movement Analysis of UFRN. Twenty-three subjects, with a mean age of 56.7±8.0 years and a mean time since the onset of the stroke of 27.7±20.3 months, able to walk with personal assistance or assistive devices. Two experimental groups underwent gait training based on PNF method (N.=11) or using the TPBWS (N.=12), for twelve sessions. Evaluation of motor function (using the STREAM and motor FIM), and kinematic gait analysis were carried out before and after the interventions. Increases in the STREAM scores (F=49.189, P<0.001) and in motor FIM scores (F=7.093, P=0.016), as well as improvement in symmetry ratio-swing time of the paretic leg/swing time of non-paretic leg--(F=7.729, P=0.012), were observed for both groups. Speed, stride length and double-support time showed no change after training. Differences between groups were observed only for the maximum ankle dorsiflexion over the swing phase (F=6.046, P=0.024), which showed an increase for the PNF group. Other angular parameters remain unchanged. Improvement in motor function and in gait symmetry was observed for both groups, suggesting similarity of interventions. However, the sample size should be carefully considered in generalizing the results to other populations. The results showed some equivalence between these two approaches with regard to motor recovery, functionality and temporal symmetry of hemiparetic gait, suggesting that the cost-effectiveness of each treatment may have a important role in this choice.

  5. Comparison of effects of static, proprioceptive neuromuscular facilitation and Mulligan stretching on hip flexion range of motion: a randomized controlled trial.

    Science.gov (United States)

    Yıldırım, M S; Ozyurek, S; Tosun, Oç; Uzer, S; Gelecek, N

    2016-03-01

    The aim of this study was to compare the effects of static stretching, proprioceptive neuromuscular facilitation (PNF) stretching and Mulligan technique on hip flexion range of motion (ROM) in subjects with bilateral hamstring tightness. A total of 40 students (mean age: 21.5±1.3 years, mean body height: 172.8±8.2 cm, mean body mass index: 21.9±3.0 kg · m(-2)) with bilateral hamstring tightness were enrolled in this randomized trial, of whom 26 completed the study. Subjects were divided into 4 groups performing (I) typical static stretching, (II) PNF stretching, (III) Mulligan traction straight leg raise (TSLR) technique, (IV) no intervention. Hip flexion ROM was measured using a digital goniometer with the passive straight leg raise test before and after 4 weeks by two physiotherapists blinded to the groups. 52 extremities of 26 subjects were analyzed. Hip flexion ROM increased in all three intervention groups (p<0.05) but not in the no-intervention group after 4 weeks. A statistically significant change in initial-final assessment differences of hip flexion ROM was found between groups (p<0.001) in favour of PNF stretching and Mulligan TSLR technique in comparison to typical static stretching (p=0.016 and p=0.02, respectively). No significant difference was found between Mulligan TSLR technique and PNF stretching (p=0.920). The initial-final assessment difference of hip flexion ROM was similar in typical static stretching and no intervention (p=0.491). A 4-week stretching intervention is beneficial for increasing hip flexion ROM in bilateral hamstring tightness. However, PNF stretching and Mulligan TSLR technique are superior to typical static stretching. These two interventions can be alternatively used for stretching in hamstring tightness.

  6. Myths and facts in neuromuscular pharmacology - New developments in reversing neuromuscular blockade

    NARCIS (Netherlands)

    Fink, H.; Hollmann, M. W.

    2012-01-01

    Pharmacologic reversal of neuromuscular blockade is a topic nor very well acknowledged and controversially discussed. Reasons for this are numerous and include missing perception of the potential complications of residual neuromuscular paralysis including an increased morbidity and mortality, as

  7. Neuromuscular disorders and chronic ventilation.

    Science.gov (United States)

    Alexiou, Stamatia; Piccione, Joseph

    2017-08-01

    Morbidity and mortality have decreased in patients with neuromuscular disease due to implementation of therapies to augment cough and improve ventilation. Infants with progressive neuromuscular disease will eventually develop respiratory complications as a result of muscle weakness and their inability to compensate during periods of increased respiratory loads. The finding of nocturnal hypercapnia is often the trigger for initiating non-invasive ventilation and studies have shown that its use not only may improve sleep-disordered breathing, but also that it may have an effect on daytime function, symptoms related to hypercapnia, and partial pressure of CO 2 . It is important to understand the respiratory physiology of this population and to understand the benefits and limitations of assisted ventilation. Copyright © 2017. Published by Elsevier Ltd.

  8. [Respiratory treatments in neuromuscular disease].

    Science.gov (United States)

    Martínez Carrasco, C; Cols Roig, M; Salcedo Posadas, A; Sardon Prado, O; Asensio de la Cruz, O; Torrent Vernetta, A

    2014-10-01

    In a previous article, a review was presented of the respiratory pathophysiology of the patient with neuromuscular disease, as well as their clinical evaluation and the major complications causing pulmonary deterioration. This article presents the respiratory treatments required to preserve lung function in neuromuscular disease as long as possible, as well as in special situations (respiratory infections, spinal curvature surgery, etc.). Special emphasis is made on the use of non-invasive ventilation, which is changing the natural history of many of these diseases. The increase in survival and life expectancy of these children means that they can continue their clinical care in adult units. The transition from pediatric care must be an active, timely and progressive process. It may be slightly stressful for the patient before the adaptation to this new environment, with multidisciplinary care always being maintained. Copyright © 2013 Asociación Española de Pediatría. Published by Elsevier Espana. All rights reserved.

  9. Neuromuscular blockade in the elderly.

    Science.gov (United States)

    Stankiewicz-Rudnicki, Michał

    2016-01-01

    The aim of the presented review is to highlight the clinical problem of postoperative residual curarization (PORC) following general anaesthesia in the elderly. Possible complications of PORC are described along with age-induced changes in pharmacokinetics of long and intermediate-acting neuromuscular blocking agents. This is intended to facilitate the selection and to promote appropriate intraoperative use of muscle relaxants in patients over the age of 65 years.

  10. Dengue-associated neuromuscular complications

    OpenAIRE

    Ravindra Kumar Garg; Hardeep Singh Malhotra; Amita Jain; Kiran Preet Malhotra

    2015-01-01

    Dengue is associated with many neurological dysfunctions. Up to 4% of dengue patients may develop neuromuscular complications. Muscle involvement can manifest with myalgias, myositis, rhabdomyolysis and hypokalemic paralysis. Diffuse myalgia is the most characteristic neurological symptom of dengue fever. Dengue-associated myositis can be of varying severity ranging from self-limiting muscle involvement to severe dengue myositis. Dengue-associated hypokalemic paralysis often has a rapidly evo...

  11. The undesirable effects of neuromuscular blocking drugs

    DEFF Research Database (Denmark)

    Claudius, C; Garvey, L H; Viby-Mogensen, J

    2009-01-01

    Neuromuscular blocking drugs are designed to bind to the nicotinic receptor at the neuromuscular junction. However, they also interact with other acetylcholine receptors in the body. Binding to these receptors causes adverse effects that vary with the specificity for the cholinergic receptor...... in question. Moreover, all neuromuscular blocking drugs may cause hypersensitivity reactions. Often the symptoms are mild and self-limiting but massive histamine release can cause systematic reactions with circulatory and respiratory symptoms and signs. At the end of anaesthesia, no residual effect...... of a neuromuscular blocking drug should be present. However, the huge variability in response to neuromuscular blocking drugs makes it impossible to predict which patient will suffer postoperative residual curarization. This article discusses the undesirable effects of the currently available neuromuscular blocking...

  12. Recent advances in neuromuscular block during anesthesia.

    Science.gov (United States)

    Boon, Martijn; Martini, Christian; Dahan, Albert

    2018-01-01

    Muscle relaxation is a routine part of anesthesia and has important advantages. However, the lingering effects of muscle relaxants in the postoperative period have historically been associated with postoperative adverse events. Neuromuscular reversal, together with neuromuscular monitoring, is a recognized strategy to reduce the rate of postoperative residual relaxation but has only marginally improved outcome in the past few decades. Sugammadex, a novel reversal agent with unique encapsulating properties, has changed the landscape of neuromuscular reversal and opened up new opportunities to improve patient care. By quickly and completely reversing any depth of neuromuscular block, it may reduce the rate of residual relaxation and improve respiratory recovery. In addition, sugammadex has made the use of deep neuromuscular block possible during surgery. Deep neuromuscular block may improve surgical working conditions and allow for a reduction in insufflation pressures during selected laparoscopic procedures. However, whether and how this may impact outcomes is not well established.

  13. Neuromuscular Risk Factors for Knee and Ankle Ligament Injuries in Male Youth Soccer Players.

    Science.gov (United States)

    Read, Paul J; Oliver, Jon L; De Ste Croix, Mark B A; Myer, Gregory D; Lloyd, Rhodri S

    2016-08-01

    Injuries reported in male youth soccer players most commonly occur in the lower extremities, and include a high proportion of ligament sprains at the ankle and knee with a lower proportion of overuse injuries. There is currently a paucity of available literature that examines age- and sex-specific injury risk factors for such injuries within youth soccer players. Epidemiological data have reported movements that lead to non-contact ligament injury include running, twisting and turning, over-reaching and landing. Altered neuromuscular control during these actions has been suggested as a key mechanism in females and adult populations; however, data available in male soccer players is sparse. The focus of this article is to review the available literature and elucidate prevalent risk factors pertaining to male youth soccer players which may contribute to their relative risk of injury.

  14. Influence of patterned electrical neuromuscular stimulation on quadriceps activation in individuals with knee joint injury.

    Science.gov (United States)

    Glaviano, Neal R; Langston, William T; Hart, Joseph M; Saliba, Susan

    2014-12-01

    Neuromuscular Electrical Stimulation is a common intervention to address muscle weakness, however presents with many limitations such as fatigue, muscle damage, and patient discomfort that may influence its effectiveness. One novel form of electrical stimulation purported to improve neuromuscular re-education is Patterned Electrical Neuromuscular Stimulation (PENS), which is proposed to mimic muscle-firing patterns of healthy individuals. PENS provides patterned stimulating to the agonist muscle, antagonist muscle and then agonist muscle again in an effort to replicate firing patterns. The purpose of this study was to determine the effect of a single PENS treatment on knee extension torque and quadriceps activation in individuals with quadriceps inhibition. 18 subjects (10 males and 8 females: 24.2±3.4 years, 175.3±11.8cm, 81.8±12.4kg) with a history of knee injury/pain participated in this double-blinded randomized controlled laboratory trial. Participants demonstrated quadriceps inhibition with a central activation ratio of ≤90%. Maximal voluntary isometric contraction of the quadriceps and central activation ratio were measured before and after treatment. The treatment intervention was a 15-minute patterned electrical stimulation applied to the quadriceps and hamstring muscles with a strong motor contraction or a sham group, who received an identical set up as the PENS group, but received a 1mA subsensory stimulation. A 2×2 (group × time) ANCOVA was used to determine differences in maximal voluntary isometric contraction and central activation ratio between groups. The maximal voluntary isometric contraction was selected as a covariate due to baseline differences. There were no differences in change scores between pre- and post-intervention for maximal voluntary isometric contraction: (PENS: 0.09±0.32Nm/kg and Sham 0.15±0.18Nm/kg, p=0.713), or central activation ratio:(PENS: -1.22±6.06 and Sham: 1.48±3.7, p=0.270). A single Patterned Electrical

  15. Bilingualism alters brain functional connectivity between "control" regions and "language" regions: Evidence from bimodal bilinguals.

    Science.gov (United States)

    Li, Le; Abutalebi, Jubin; Zou, Lijuan; Yan, Xin; Liu, Lanfang; Feng, Xiaoxia; Wang, Ruiming; Guo, Taomei; Ding, Guosheng

    2015-05-01

    Previous neuroimaging studies have revealed that bilingualism induces both structural and functional neuroplasticity in the dorsal anterior cingulate cortex (dACC) and the left caudate nucleus (LCN), both of which are associated with cognitive control. Since these "control" regions should work together with other language regions during language processing, we hypothesized that bilingualism may also alter the functional interaction between the dACC/LCN and language regions. Here we tested this hypothesis by exploring the functional connectivity (FC) in bimodal bilinguals and monolinguals using functional MRI when they either performed a picture naming task with spoken language or were in resting state. We found that for bimodal bilinguals who use spoken and sign languages, the FC of the dACC with regions involved in spoken language (e.g. the left superior temporal gyrus) was stronger in performing the task, but weaker in the resting state as compared to monolinguals. For the LCN, its intrinsic FC with sign language regions including the left inferior temporo-occipital part and right inferior and superior parietal lobules was increased in the bilinguals. These results demonstrate that bilingual experience may alter the brain functional interaction between "control" regions and "language" regions. For different control regions, the FC alters in different ways. The findings also deepen our understanding of the functional roles of the dACC and LCN in language processing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Altered trunk movements during gait in children with spastic diplegia: compensatory or underlying trunk control deficit?

    Science.gov (United States)

    Heyrman, Lieve; Feys, Hilde; Molenaers, Guy; Jaspers, Ellen; Monari, Davide; Nieuwenhuys, Angela; Desloovere, Kaat

    2014-09-01

    Altered trunk movements during gait in children with CP are considered compensatory due to lower limb impairments, although scientific evidence for this assumption has not yet been provided. This study aimed to study the functional relation between trunk and lower limb movement deficits during gait in children with spastic diplegia. Therefore, the relationship between trunk control in sitting, and trunk and lower limb movements during gait was explored in 20 children with spastic diplegia (age 9.2 ± 3 yrs; GMFCS level I n=10, level II n=10). Trunk control in sitting was assessed with the Trunk Control Measurement Scale (TCMS), a clinical measure that reflects the presence of an underlying trunk control deficit. Trunk movements during gait were measured with a recently developed trunk model including the pelvis, thorax, head, shoulder line and spine. Lower limb movements were assessed with the Plug-in-Gait model (Vicon(®)). Range of motion (ROM) of the different trunk segments was calculated, as well as the Trunk Profile Score (TPS) and Trunk Variable Scores (TVSs). Similarly, the Gait Profile Score (GPS) and Gait Variable Scores (GVSs) were calculated to describe altered lower limb movements during gait. Correlation analyses were performed between the presence of impaired trunk control in sitting (TCMS) and altered trunk movements during gait (ROM, TPS/TVSs) and between these altered trunk movements and lower limb movements (GPS/GVSs) during gait. A poorer performance on the TCMS correlated with increased ROM and TPS/TVSs, particularly for the thorax, indicating the presence of an underlying trunk control deficit. No significant correlation was found between the TPS and GPS, suggesting that overall trunk and lower limb movement deficits were not strongly associated. Only few correlations between specific lower limb deficits (GVSs for hip ab/adduction, knee flexion/extension and ankle flexion/extension) and TVSs for thorax lateral bending and rotation were found

  17. Reactive Balance Control in Response to Perturbation in Unilateral Stance: Interaction Effects of Direction, Displacement and Velocity on Compensatory Neuromuscular and Kinematic Responses.

    Directory of Open Access Journals (Sweden)

    Kathrin Freyler

    Full Text Available Unexpected sudden perturbations challenge postural equilibrium and require reactive compensation. This study aimed to assess interaction effects of the direction, displacement and velocity of perturbations on electromyographic (EMG activity, centre of pressure (COP displacement and joint kinematics to detect neuromuscular characteristics (phasic and segmental and kinematic strategies of compensatory reactions in an unilateral balance paradigm. In 20 subjects, COP displacement and velocity, ankle, knee and hip joint excursions and EMG during short (SLR, medium (MLR and long latency response (LLR of four shank and five thigh muscles were analysed during random surface translations varying in direction (anterior-posterior (sagittal plane, medial-lateral (frontal plane, displacement (2 vs. 3 cm and velocity (0.11 vs. 0.18 m/s of perturbation when balancing on one leg on a movable platform. Phases: SLR and MLR were scaled to increased velocity (P<0.05; LLR was scaled to increased displacement (P<0.05. Segments: phasic interrelationships were accompanied by segmental distinctions: distal muscles were used for fast compensation in SLR (P<0.05 and proximal muscles to stabilise in LLR (P<0.05. Kinematics: ankle joints compensated for both increasing displacement and velocity in all directions (P<0.05, whereas knee joint deflections were particularly sensitive to increasing displacement in the sagittal (P<0.05 and hip joint deflections to increasing velocity in the frontal plane (P<0.05. COP measures increased with increasing perturbation velocity and displacement (P<0.05. Interaction effects indicate that compensatory responses are based on complex processes, including different postural strategies characterised by phasic and segmental specifications, precisely adjusted to the type of balance disturbance. To regain balance after surface translation, muscles of the distal segment govern the quick regain of equilibrium; the muscles of the proximal limb

  18. Rolling revisado: utilización del rolling para valorar y tratar la coordinación y control neuromuscular del core y extremidades en atletas

    Directory of Open Access Journals (Sweden)

    Barbara J. Hoogenboom

    2017-05-01

    Full Text Available Rolling es un patrón de movimiento raramente utilizado por los fisioterapeutas para la evaluación e intervención de pacientes con función neurológica normal. El Rolling, como destreza motriz adulta, combina el uso de las extremidades superiores, core y extremidades inferiores con el movimiento coordinado en el paso de una postura a otra. El Rolling se lleva a cabo partiendo de la posición prona a posición supina y viceversa, aunque el método utilizado varía entre adultos. Desde la perspectiva de la habilidad de completar tareas o la simetría bilateral, el Rolling puede ser beneficioso para el uso de atletas que realizan deportes de rotación parcial tales como el golf, el lanzamiento, el tenis, y los deportes con torsión como la danza, la gimnasia, y el patinaje artístico. Además, cuando es usado como técnica de intervención, los patrones del Rolling tienen la capacidad de influir en disfunciones de la parte superior del cuerpo, core y parte inferior. Aplicando los principios de la facilitación neuromuscular propioceptiva (FNP, el terapeuta puede asistir a pacientes y clientes que son incapaces de completar un patrón de Rolling. Algunos ejemplos citados en el artículo incluyen separación/elongación, compresión, y contacto manual para facilitar el propio Rolling. Los autores defienden que el uso terapéutico de los patrones de desarrollo del Rolling con las técnicas derivadas de FNP es un distintivo en la rehabilitación de pacientes con disfunciones neurológicas que pueden ser también utilizados en la rehabilitación músculo-esquelética de forma creativa y efectiva. Se han obtenido los resultados preliminares de una exploración del mecanismo por el que el Rolling puede influir en la estabilidad y existen evidencias recientes disponibles. El propósito de este comentario clínico es describir las técnicas de análisis, evaluación y tratamiento de disfunción, usando casos ejemplos que incorporan el Rolling.

  19. The alteration of gray matter volume and cognitive control in adolescents with internet gaming disorder

    Directory of Open Access Journals (Sweden)

    Hongmei eWang

    2015-03-01

    Full Text Available Objective: Internet gaming disorder (IGD has been investigated by many behavioral and neuroimaging studies, for it has became one of the main behavior disorders among adolescents. However, few studies focused on the relationship between alteration of gray matter volume (GMV and cognitive control feature in IGD adolescents. Methods: Twenty-eight participants with IAD and twenty-eight healthy age and gender matched controls participated in the study. Brain morphology of adolescents with IGD and healthy controls was investigated using an optimized voxel-based morphometry (VBM technique. Cognitive control performances were measured by Stroop task, and correlation analysis was performed between brain structural change and behavioral performance in IGD group. Results: The results showed that GMV of the bilateral anterior cingulate cortex (ACC, precuneus, supplementary motor area (SMA, superior parietal cortex, left dorsal lateral prefrontal cortex (DLPFC, left insula, and bilateral cerebellum decreased in the IGD participants compared with healthy controls. Moreover, GMV of the ACC was negatively correlated with the incongruent response errors of Stroop task in IGD group. Conclusion: Our results suggest that the alteration of GMV is associated with the performance change of cognitive control in adolescents with IGD, which indicating substantial brain image effects induced by IGD.

  20. Computed tomography of muscles in neuromuscular disease

    International Nuclear Information System (INIS)

    Serratrice, G.

    1986-01-01

    137 patients with neuromuscular diseases were studied by CT scan. Four levels were chosen: mid-calf, mid-thigh, pelvic girdle, and spinal muscles. The scans were compared with normal control scans taken from the same sites. The patients were divided into those with myogenic diseases and those with neurogenic diseases. Of the 102 patients with myogenic changes, 17 had X-linked dystrophy, 13 had facio-scapulo-humeral dystrophy, 22 had limb girdle dystrophy, 19 had myotonic dystrophy, 14 had inflammatory muscle diseases, and 17 had miscellaneous muscular diseases. Of the 35 patients with neurogenic changes, 8 had amyotrophic lateral sclerosis (ALS), 16 had chronic spinal amyotrophies, 9 had peripheral neuropathies, and 2 had Friedreich's disease. The analysis of muscles changes (volume, outline, density) was established on the following muscles: tibialis anterior, peroneus, soleus, gastrocnemius mediale, gastrocnemius laterale, quadriceps, semitendinosus, semimembranosus, sartorius, adductor, gracilis, gluteus, spine extensors, and psoas

  1. Neuromuscular interactions around the knee in children, adults and elderly

    Science.gov (United States)

    Kellis, Eleftherios; Mademli, Lida; Patikas, Dimitrios; Kofotolis, Nikolaos

    2014-01-01

    Although injury and neuromuscular activation patterns may be common for all individuals, there are certain factors which differentiate neuromuscular activity responses between children, adults and elderly. The purpose of this study is to review recent evidence on age differences in neural activation and muscle balances around the knee when performing single joint movements. Particularly, current evidence indicates that there are some interesting similarities in the neuromuscular mechanisms by which children or the elderly differ compared with adults. Both children and elderly display a lower absolute muscle strength capacity than adults which cannot fully be explained by differences in muscle mass. Quadriceps activation failure is a common symptom of all knee injuries, irrespective of age but it is likely that its effect is more evident in children or adults. While one might expect that antagonist co-activation would differ between age categories, it appears that this is not the case. Although hamstring: quadriceps ratio levels are altered after knee injury, it is not clear whether this is an age specific response. Finally, evidence suggests that both children and the elderly display less stiffness of the quadriceps muscle-tendon unit than adults which affects their knee joint function. PMID:25232523

  2. Proprioceptive Neuromuscular Facilitation (PNF): Its Mechanisms and Effects on Range of Motion and Muscular Function

    OpenAIRE

    Hindle, Kayla B.; Whitcomb, Tyler J.; Briggs, Wyatt O.; Hong, Junggi

    2012-01-01

    Proprioceptive neuromuscular facilitation (PNF) is common practice for increasing range of motion, though little research has been done to evaluate theories behind it. The purpose of this study was to review possible mechanisms, proposed theories, and physiological changes that occur due to proprioceptive neuromuscular facilitation techniques. Four theoretical mechanisms were identified: autogenic inhibition, reciprocal inhibition, stress relaxation, and the gate control theory. The studies s...

  3. Kinship and interaction in neuromuscular pharmacology

    NARCIS (Netherlands)

    Schiere, Sjouke

    2006-01-01

    The background of this thesis is presented in the introductory chapters and stafts with a brief history of neuromuscular relaxants. It is followed by a short description of the neuromuscular physiology and pharmacology in chapters 2 and 3, respectively. In chapter 4 the aim of the thesis is

  4. Anaesthesia in children with inherited neuromuscular diseases

    OpenAIRE

    Simić Dušica; Bogićević Dragana; Milojević Irina; Budić Ivana; Marković Marija

    2010-01-01

    Children with inherited neuromuscular diseases often require anaesthesia for diagnostic or therapy procedures. These patients have an increased risk of perioperative complications due to the nature of the disease and medications administered during anaesthesia. Many anaesthetics and muscle relaxants can aggravate the underlying disease and trigger life-threatening reactions (cardiorespiratory complications, malignant hyperthermia). Besides, the neuromuscular disorders are associated wit...

  5. Neuromuscular blockade during laparoscopic ventral herniotomy

    DEFF Research Database (Denmark)

    Medici, Roar; Madsen, Matias V; Asadzadeh, Sami

    2015-01-01

    INTRODUCTION: Laparoscopic herniotomy is the preferred technique for some ventral hernias. Several factors may influence the surgical conditions, one being the depth of neuromuscular blockade (NMB) applied. We hypothesised that deep neuromuscular blockade defined as a post-tetanic count below eight...

  6. Sugammadex Improves Neuromuscular Function in Patients ...

    African Journals Online (AJOL)

    2018-02-23

    Feb 23, 2018 ... with a modified gamma-cyclodextrin structure offers a viable alternative to the traditional decurarization by cholinesterase inhibitors in the context of the use of steroidal neuromuscular blocking agents. Sugammadex shows its effects through encapsulation of the steroidal neuromuscular blockers, its effects ...

  7. Neuromuscular blockade during laparoscopic ventral herniotomy

    DEFF Research Database (Denmark)

    Medici, Roar; Madsen, Matias V; Asadzadeh, Sami

    2015-01-01

    INTRODUCTION: Laparoscopic herniotomy is the preferred technique for some ventral hernias. Several factors may influence the surgical conditions, one being the depth of neuromuscular blockade (NMB) applied. We hypothesised that deep neuromuscular blockade defined as a post-tetanic count below eig...

  8. The main factors controlling petrophysical alteration in hydrothermal systems of the Kuril-Kamchatka island arch

    Science.gov (United States)

    Frolova, J.; Ladygin, V.; Rychagov, S.; Shanina, V.; Blyumkina, M.

    2009-04-01

    This report is based on the results of petrophysical studies obtained on a number of hydrothermal systems in the Kuril-Kamchatka island arc (Pauzhetsky, Mutnovsky, Koshelevsky, Essovsky, a volcano of Ebeko, Oceansky). Mineral composition and pore-space structure of primary rocks change intensively during hydrothermal process, results in alteration of petrophysical properties - porosity, density, permeability, hygroscopy, sonic velocity, elastic modulus, mechanical properties, thermal and magnetic characteristics. Petrophysical alterations gradually lead to the change of the structure of hydrothermal system, and its hydrodynamic and temperature regime. The tendency of petrophysical alteration can be different. In some cases rocks "improvement" is observed i.e. consolidation, hardening, decrease of porosity and permeability, removal of hygroscopy. In other cases rocks "deterioration" occurs, i.e. formation of secondary porosity and permeability, a decrease of density, strength, and elastic modulus, and occurrence of hygroscopic moisture. The classical example of cardinal petrophysical alteration is the transformation of hard basalts to plastic clays. The opposite example is the transformation of only slightly consolidates porous tuffs to hard and dense secondary quartzite. The character of petrophysical alteration depends on a number of factors including peculiarities of primary rocks, temperature, pressure and composition of thermal fluids, duration of fluid-rock interaction, and condition of fluid (steam, water, boiling water). The contribution of each factor to change of volcanic rocks properties is considered and analyzed in details. In particular, primary rocks controls speed, intensity and character of petrophysical alterations. Factors favorable for alteration are high porosity and permeability, micro crakes, weak cementation, glassy structure, basaltic composition. Kuril-Kamchatka region represents the volcanic island arch so host rocks in hydrothermal

  9. Altered coupling of default-mode, executive-control and salience networks in Internet gaming disorder.

    Science.gov (United States)

    Zhang, J T; Ma, S-S; Yan, C-G; Zhang, S; Liu, L; Wang, L-J; Liu, B; Yao, Y-W; Yang, Y-H; Fang, X-Y

    2017-09-01

    Recently, a triple-network model suggested the abnormal interactions between the executive-control network (ECN), default-mode network (DMN) and salience network (SN) are important characteristics of addiction, in which the SN plays a critical role in allocating attentional resources toward the ECN and DMN. Although increasing studies have reported dysfunctions in these brain networks in Internet gaming disorder (IGD), interactions between these networks, particularly in the context of the triple-network model, have not been investigated in IGD. Thus, we aimed to assess alterations in the inter-network interactions of these large-scale networks in IGD, and to associate the alterations with IGD-related behaviors. DMN, ECN and SN were identified using group-level independent component analysis (gICA) in 39 individuals with IGD and 34 age and gender matched healthy controls (HCs). Then alterations in the SN-ECN and SN-DMN connectivity, as well as in the modulation of ECN versus DMN by SN, using a resource allocation index (RAI) developed and validated previously in nicotine addiction, were assessed. Further, associations between these altered network coupling and clinical assessments were also examined. Compared with HCs, IGD had significantly increased SN-DMN connectivity and decreased RAI in right hemisphere (rRAI), and the rRAI in IGD was negatively associated with their scores of craving. These findings suggest that the deficient modulation of ECN versus DMN by SN might provide a mechanistic framework to better understand the neural basis of IGD and might provide novel evidence for the triple-network model in IGD. Copyright © 2017. Published by Elsevier Masson SAS.

  10. Neuromuscular Monitoring in the Perioperative Period.

    Science.gov (United States)

    Murphy, Glenn S

    2018-02-01

    Neuromuscular monitoring devices were introduced into clinical practice in the 1970s. Qualitative neuromuscular monitors, or peripheral nerve stimulators, provide an electrical stimulus to a motor nerve and the response of corresponding muscle subjectively evaluated. A standard peripheral nerve stimulator provides several patterns of nerve stimulation, including train-of-four (TOF), double-burst, tetanic, and post-tetanic count. Qualitative (and quantitative) monitors are needed to determine onset of neuromuscular blockade, maintain the required depth of muscle relaxation during the surgical procedure, and assess an appropriate dose of reversal agent. However, absence of fade measured with a peripheral nerve stimulator does not exclude residual neuromuscular block; TOF ratios as low as 0.4-0.6 may be present when fade is no longer observed. In addition, the risk of incomplete neuromuscular recovery may be influenced by monitoring site. The adductor pollicis is more sensitive to the effects of neuromuscular blocking agents (compared to the muscles surrounding the eye), and monitoring at this site may more accurately reflect recovery of pharyngeal muscles (the last muscles to recover from the effects of neuromuscular blocking agents, in which dysfunction may persist even at a TOF ratio of 1.0). Quantitative monitors are devices that measure and quantify the degree of muscle weakness and display the results numerically. Several different technologies have been developed, including mechanomyography, electromyography, acceleromyography, kineograph, and phonomyography. Lower doses of anticholinesterases may be used to effectively reverse neuromuscular blockade at TOF ratios of 0.4-0.6; quantitative monitoring is required to determine that this level of neuromuscular recovery has occurred. As clinical tests of muscle strength, peripheral nerve stimulators are unable to determine whether full recovery of neuromuscular function is present at the end of the surgical

  11. A randomized controlled trial on the long-term effects of proprioceptive neuromuscular facilitation training, on pain-related outcomes and back muscle activity, in patients with chronic low back pain.

    Science.gov (United States)

    Areeudomwong, Pattanasin; Wongrat, Witchayut; Neammesri, Nertnapa; Thongsakul, Thanaporn

    2017-09-01

    The role of exercise therapy in improving pain-related clinical outcomes and trunk muscle activity in patients with chronic low back pain (CLBP) has been widely reported. There is little information on the effect of proprioceptive neuromuscular facilitation (PNF) training in patients with CLBP. The purpose of the present study was therefore to investigate the persistence of the effects of PNF training on pain intensity, functional disability, patient satisfaction, health-related quality of life (HRQOL) and lower back muscle activity in patients with CLBP. Forty-two participants with CLBP were randomly assigned either to 4-week PNF training or to a control group receiving a Low back pain educational booklet. Pain-related outcomes, including pain intensity, functional disability, patient satisfaction, HRQOL and lumbar erector spinae (LES) muscle activity, were measured before and after the intervention, and at a follow-up session 12 weeks after the last intervention session. Compared with the control group, after undergoing a 4-week PNF training intervention, participants showed a significant reduction in pain intensity and functional disability, and improved patient satisfaction and HRQOL (p < 0.01). These effects were still significant at the 12-week follow-up assessment (p < 0.01). LES muscle activity in the PNF training group was significantly increased throughout the measurement periods compared with controls (p < 0.01). The study found that 4-week PNF training has positive long-term effects on pain-related outcomes, and increases lower back muscle activity in patients with CLBP. Copyright © 2016 John Wiley & Sons, Ltd.

  12. 21 CFR 882.5860 - Implanted neuromuscular stimulator.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Implanted neuromuscular stimulator. 882.5860... neuromuscular stimulator. (a) Identification. An implanted neuromuscular stimulator is a device that provides... Administration on or before July 13, 1999 for any implanted neuromuscular stimulator that was in commercial...

  13. Irrigation and weed control alter soil microbiology and nutrient availability in North Carolina Sandhill peach orchards.

    Science.gov (United States)

    Zhang, Yi; Wang, Liangju; Yuan, Yongge; Xu, Jing; Tu, Cong; Fisk, Connie; Zhang, Weijian; Chen, Xin; Ritchie, David; Hu, Shuijin

    2018-02-15

    Orchard management practices such as weed control and irrigation are primarily aimed at maximizing fruit yields and economic profits. However, the impact of these practices on soil fertility and soil microbiology is often overlooked. We conducted a two-factor experimental manipulation of weed control by herbicide and trickle irrigation in a nutrient-poor peach (Prunus persica L. cv. Contender) orchard near Jackson Springs, North Carolina. After three and eight years of treatments, an array of soil fertility parameters were examined, including soil pH, soil N, P and cation nutrients, microbial biomass and respiration, N mineralization, and presence of arbuscular mycorrhizal fungi (AMF). Three general trends emerged: 1) irrigation significantly increased soil microbial biomass and activity, 2) infection rate of mycorrhizal fungi within roots were significantly higher under irrigation than non-irrigation treatments, but no significant difference in the AMF community composition was detected among treatments, 3) weed control through herbicides reduced soil organic matter, microbial biomass and activity, and mineral nutrients, but had no significant impacts on root mycorrhizal infection and AMF communities. Weed-control treatments directly decreased availability of soil nutrients in year 8, especially soil extractable inorganic N. Weed control also appears to have altered the soil nutrients via changes in soil microbes and altered net N mineralization via changes in soil microbial biomass and activity. These results indicate that long-term weed control using herbicides reduces soil fertility through reducing organic C inputs, nutrient retention and soil microbes. Together, these findings highlight the need for alternative practices such as winter legume cover cropping that maintain and/or enhance organic inputs to sustain the soil fertility. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Prominent pancreatic endocrinopathy and altered control of food intake disrupt energy homeostasis in prion diseases

    Science.gov (United States)

    Bailey, J. D.; Berardinelli, J.G.; Rocke, T.E.; Bessen, R.A.

    2008-01-01

    Prion diseases are fatal neurodegenerative diseases that can induce endocrinopathies. The basis of altered endocrine function in prion diseases is not well understood, and the purpose of this study was to investigate the spatiotemporal relationship between energy homeostasis and prion infection in hamsters inoculated with either the 139H strain of scrapie agent, which induces preclinical weight gain, or the HY strain of transmissible mink encephalopathy (TME), which induces clinical weight loss. Temporal changes in body weight, feed, and water intake were measured as well as both non-fasted and fasted concentrations of serum glucose, insulin, glucagon, ??-ketones, and leptin. In 139H scrapie-infected hamsters, polydipsia, hyperphagia, non-fasted hyperinsulinemia with hyperglycemia, and fasted hyperleptinemia were found at preclinical stages and are consistent with an anabolic syndrome that has similarities to type II diabetes mellitus and/or metabolic syndrome X. In HY TME-infected hamsters, hypodipsia, hypersecretion of glucagon (in both non-fasted and fasted states), increased fasted ??-ketones, fasted hypoglycemia, and suppressed non-fasted leptin concentrations were found while feed intake was normal. These findings suggest a severe catabolic syndrome in HY TME infection mediated by chronic increases in glucagon secretion. In both models, alterations of pancreatic endocrine function were not associated with PrPSc deposition in the pancreas. The results indicate that prominent endocrinopathy underlies alterations in body weight, pancreatic endocrine function, and intake of food. The prion-induced alterations of energy homeostasis in 139H scrapie- or HY TME-infected hamsters could occur within areas of the hypothalamus that control food satiety and/or within autonomic centers that provide neural outflow to the pancreas. ?? 2008 Society for Endocrinology.

  15. FRECUENCIA DE ANTICUERPOS CONTRA Neospora caninum Y Toxoplasma gondii EN CANES CON SIGNOS CLÍNICOS DE AFECCIÓN NEUROMUSCULAR.

    OpenAIRE

    Ruíz R., Nelson; Laboratorio de Microbiología y Parasitología Veterinaria, Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Lima-Perú.; Casas A., Eva; Laboratorio de Microbiología y Parasitología Veterinaria; Suárez A., Francisco; Laboratorio de Medicina Veterinaria Preventiva, Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Lima-Perú.; Díaz C., Diego; Clínica de Animales Menores, Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Lima; Fernández P., Viviana; Clínica de Animales Menores, Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Lima

    2012-01-01

    Toxoplasma gondii and Neospora caninum can cause neuromuscular disorders in dogs. The aim of the Case-Control study was to determine the association between antibodies anti N. caninum and anti-T. gondii in dogs with neuromuscular disorders. Blood samples were collected in 96 and 120 dogs with and without clinical signs of neuromuscular disorders respectively. Serum samples were analyzed by the indirect immunofluorescence test (IFI) for the detection of IgG antibodies, considering positive the...

  16. Improvement of Upper Extremity Deficit after Constraint-Induced Movement Therapy Combined with and without Preconditioning Stimulation Using Dual-hemisphere Transcranial Direct Current Stimulation and Peripheral Neuromuscular Stimulation in Chronic Stroke Patients: A Pilot Randomized Controlled Trial

    Directory of Open Access Journals (Sweden)

    Takashi Takebayashi

    2017-10-01

    Full Text Available In this study, we investigated the effects of dual-hemisphere transcranial direct current stimulation (dual-tDCS of both the affected (anodal tDCS and non-affected (cathodal tDCS primary motor cortex, combined with peripheral neuromuscular electrical stimulation (PNMES, on the effectiveness of constraint-induced movement therapy (CIMT as a neurorehabilitation intervention in chronic stroke. We conducted a randomized controlled trial of feasibility, with a single blind assessor, with patients recruited from three outpatient clinics. Twenty chronic stroke patients were randomly allocated to the control group, receiving conventional CIMT, or the intervention group receiving dual-tDCS combined with PNMES before CIMT. Patients in the treatment group first underwent a 20-min period of dual-tDCS, followed immediately by PNMES, and subsequent CIMT for 2 h. Patients in the control group only received CIMT (with no pretreatment stimulation. All patients underwent two CIMT sessions, one in the morning and one in the afternoon, each lasting 2 h, for a total of 4 h of CIMT per day. Upper extremity function was assessed using the Fugl-Meyer Assessment (primary outcome, as well as the amount of use (AOU and quality of movement (QOM scores, obtained via the Motor Activity Log (secondary outcome. Nineteen patients completed the study, with one patient withdrawing after allocation. Compared to the control group, the treatment improvement in upper extremity function and AOU was significantly greater in the treatment than control group (change in upper extremity score, 9.20 ± 4.64 versus 4.56 ± 2.60, respectively, P < 0.01, η2 = 0.43; change in AOU score, 1.10 ± 0.65 versus 0.62 ± 0.85, respectively, P = 0.02, η2 = 0.52. There was no significant effect of the intervention on the QOM between the intervention and control groups (change in QOM score, 1.00 ± 0.62 versus 0.71 ± 0.72, respectively, P = 0.07, η2

  17. Critical components of neuromuscular training to reduce ACL injury risk in female athletes: meta-regression analysis.

    Science.gov (United States)

    Sugimoto, Dai; Myer, Gregory D; Barber Foss, Kim D; Pepin, Michael J; Micheli, Lyle J; Hewett, Timothy E

    2016-10-01

    The aim of this study was to determine key components in neuromuscular training that optimise ACL injury reduction in female athletes using meta-regression analyses. Systematic review and meta-regression. The literature search was performed in PubMed and EBSCO. Inclusion criteria for the current analysis were: (1) documented the number of ACL injuries, (2) employed a neuromuscular training intervention that aimed to reduce ACL injuries, (3) had a comparison group, (4) used a prospective control study design and (5) recruited female athletes as participants. Two independent reviewers extracted studies which met the inclusion criteria. Methodological quality of included study and strength of recommendation were evaluated. Number of ACL injuries and participants in control and intervention groups, age of participants, dosage of neuromuscular training, exercise variations within neuromuscular training and status of verbal feedback were extracted. The meta-regression analyses identified age of participants, dosage of neuromuscular training, exercise variations within neuromuscular training and utilisation of verbal feedback as significant predictors of ACL injury reduction (p=0.01 in fixed-effects model, p=0.03 in random-effects model). Inclusion of 1 of the 4 components in neuromuscular training could reduce ACL injury risk by 17.2-17.7% in female athletes. No significant heterogeneity and publication bias effects were detected. Strength of recommendation was rated as A (recommendation based on consistent and good-quality patient-oriented study evidence). Age of participants, dosage of neuromuscular training, exercise variations within neuromuscular training and utilisation of verbal feedback are predictors that influence the optimisation of prophylactic effects of neuromuscular training and the resultant ACL injury reduction in female athletes. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to

  18. Critical components of neuromuscular training to reduce ACL injury risk in female athletes: meta-regression analysis

    Science.gov (United States)

    Sugimoto, Dai; Myer, Gregory D; Barber Foss, Kim D; Pepin, Michael J; Micheli, Lyle J; Hewett, Timothy E

    2017-01-01

    Objective The aim of this study was to determine key components in neuromuscular training that optimise ACL injury reduction in female athletes using meta-regression analyses. Design Systematic review and meta-regression. Data sources The literature search was performed in PubMed and EBSCO. Eligibility criteria Inclusion criteria for the current analysis were: (1) documented the number of ACL injuries, (2) employed a neuromuscular training intervention that aimed to reduce ACL injuries, (3) had a comparison group, (4) used a prospective control study design and (5) recruited female athletes as participants. Two independent reviewers extracted studies which met the inclusion criteria. Methodological quality of included study and strength of recommendation were evaluated. Number of ACL injuries and participants in control and intervention groups, age of participants, dosage of neuromuscular training, exercise variations within neuromuscular training and status of verbal feedback were extracted. Results The meta-regression analyses identified age of participants, dosage of neuromuscular training, exercise variations within neuromuscular training and utilisation of verbal feedback as significant predictors of ACL injury reduction (p=0.01 in fixed-effects model, p=0.03 in random-effects model). Inclusion of 1 of the 4 components in neuromuscular training could reduce ACL injury risk by 17.2–17.7% in female athletes. No significant heterogeneity and publication bias effects were detected. Strength of recommendation was rated as A (recommendation based on consistent and good-quality patient-oriented study evidence). Conclusions Age of participants, dosage of neuromuscular training, exercise variations within neuromuscular training and utilisation of verbal feedback are predictors that influence the optimisation of prophylactic effects of neuromuscular training and the resultant ACL injury reduction in female athletes. PMID:27251898

  19. The effects of surface neuromuscular electrical stimulation on post-stroke dysphagia: a systemic review and meta-analysis.

    Science.gov (United States)

    Chen, Yi-Wen; Chang, Kwang-Hwa; Chen, Hung-Chou; Liang, Wen-Miin; Wang, Ya-Hui; Lin, Yen-Nung

    2016-01-01

    In this study, we intended to evaluate whether swallow treatment with neuromuscular electrical stimulation is superior to that without neuromuscular electrical stimulation, and whether neuromuscular electrical stimulation alone is superior to swallow therapy. We searched the PubMed and Scopus databases from their earliest record to 31 December 2014 for randomized and quasi-randomized controlled trials that used neuromuscular electrical stimulation to treat post-stroke dysphagia. The Jadad scale was used to assess the quality of the included studies. We extracted the mean differences and standard deviation (SD) between baseline and posttreatment or posttreatment mean and SD for selected outcomes measured in the experimental and control groups for subsequent meta-analyses. Eight studies were identified. For the comparison "swallow treatment with neuromuscular electrical stimulation vs. swallow treatment without neuromuscular electrical stimulation," we found a significant standardized mean difference (SMD) of 1.27 (95% confidence interval (CI) = 0.51-2.02, P = 0.001) with significant heterogeneity (I(2) = 85%). The meta-analysis for the comparison of neuromuscular electrical stimulation alone and swallow therapy demonstrated a non-significant SMD of 0.25 (95% CI = -0.16-0.65, P = 0.23) without significant heterogeneity (I(2) = 16%). Swallow treatment with neuromuscular electrical stimulation seems to be more effective than that without neuromuscular electrical stimulation for post-stroke dysphagia in the short term considering the limited number of studies available. Evidence was insufficient to indicate that neuromuscular electrical stimulation alone was superior to swallow therapy. © The Author(s) 2015.

  20. Moderate Hyperbilirubinemia Alters Neonatal Cardiorespiratory Control and Induces Inflammation in the Nucleus Tractus Solitarius

    Directory of Open Access Journals (Sweden)

    Marie-Laure Specq

    2016-09-01

    Full Text Available Hyperbilirubinemia (HB occurs in 90% of preterm newborns. Moderate HB can induce acute neurological disorders while severe HB has been linked to a higher incidence of apneas of prematurity. The present study aimed to test the hypothesis that even moderate HB disrupts cardiorespiratory control in preterm lambs. Two groups of preterm lambs (born 14 days prior to term, namely control (n = 6 and HB (n = 5, were studied. At day 5 of life, moderate HB (150-250 µmol/L was induced during 17h in the HB group after which cardiorespiratory control as well as laryngeal and pulmonary chemoreflexes were assessed during baseline recordings and during hypoxia. Recordings were repeated 72 hours after HB induction, just before euthanasia. In addition, neuropathological studies were performed to investigate for cerebral bilirubin deposition as well as for signs of glial reactivity in brainstem structures involved in cardiorespiratory control. Results revealed that sustained and moderate HB: i decreased baseline respiratory rate and increased the time spent in apnea; ii blunted the cardiorespiratory inhibition normally observed during both laryngeal and pulmonary chemoreflexes and iii increased heart rate in response to acute hypoxia. These acute physiological changes were concurrent with an activation of Alzheimer type II astrocytes throughout the brain, including the brainstem. Concomitantly, bilirubin deposits were observed in the leptomeninges, but not in brain parenchyma. While most cardiorespiratory alterations returned to normal 72 hours after HB normalization, the expression of glial fibrillary acid protein (GFAP and Ionized calcium binding adaptor molecule 1 (Iba1 was still increased within the nucleus tractus solitarius. In conclusion, moderate and sustained HB in preterm lambs induced cardiorespiratory alterations, the latter of which were associated with neurohistopathological changes. These changes are indicative of an inflammatory response in the

  1. Oral Drug Delivery Systems Comprising Altered Geometric Configurations for Controlled Drug Delivery

    Directory of Open Access Journals (Sweden)

    Priya Bawa

    2011-12-01

    Full Text Available Recent pharmaceutical research has focused on controlled drug delivery having an advantage over conventional methods. Adequate controlled plasma drug levels, reduced side effects as well as improved patient compliance are some of the benefits that these systems may offer. Controlled delivery systems that can provide zero-order drug delivery have the potential for maximizing efficacy while minimizing dose frequency and toxicity. Thus, zero-order drug release is ideal in a large area of drug delivery which has therefore led to the development of various technologies with such drug release patterns. Systems such as multilayered tablets and other geometrically altered devices have been created to perform this function. One of the principles of multilayered tablets involves creating a constant surface area for release. Polymeric materials play an important role in the functioning of these systems. Technologies developed to date include among others: Geomatrix® multilayered tablets, which utilizes specific polymers that may act as barriers to control drug release; Procise®, which has a core with an aperture that can be modified to achieve various types of drug release; core-in-cup tablets, where the core matrix is coated on one surface while the circumference forms a cup around it; donut-shaped devices, which possess a centrally-placed aperture hole and Dome Matrix® as well as “release modules assemblage”, which can offer alternating drug release patterns. This review discusses the novel altered geometric system technologies that have been developed to provide controlled drug release, also focusing on polymers that have been employed in such developments.

  2. Subgenual anterior cingulate cortex activity covariation with cardiac vagal control is altered in depression.

    Science.gov (United States)

    Lane, Richard D; Weidenbacher, Hollis; Smith, Ryan; Fort, Carolyn; Thayer, Julian F; Allen, John J B

    2013-09-05

    We tested the hypothesis that subgenual anterior cingulate cortex (sgACC) participates in concurrently regulating shifts in both affective state and cardiac vagal control. Eleven healthy adults and 8 depressed subjects performed the Emotional Counting Stroop task in alternating 15-second blocks of emotion words and neutral words while undergoing functional magnetic resonance imaging (fMRI) and electrocardiography (ECG). We measured the absolute value of change between adjacent 15-second blocks in both cardiac vagal control and the BOLD signal in specific regions of interest. Strong positive correlations were observed in healthy control participants between changes in cardiac vagal control and changes in BOLD signal intensity in sgACC (BA25) (right: r=.67, pemotion blocks to neutral blocks, the correlation between BOLD signal change in BA25 and cardiac vagal control change was significantly greater in controls than in depressed subjects (paffective state shifting. The latter function appears to be altered in depressed individuals, and may have implications for the unvarying mood and vagal dysfunction associated with depression. Limitations include a small sample size, an inability to disentangle afferent versus efferent contributions to the results, and the lack of a whole-brain analysis. Published by Elsevier B.V.

  3. Theory of multichannel magnetic stimulation: toward functional neuromuscular rehabilitation.

    Science.gov (United States)

    Ruohonen, J; Ravazzani, P; Grandori, F; Ilmoniemi, R J

    1999-06-01

    Human excitable cells can be stimulated noninvasively with externally applied time-varying electromagnetic fields. The stimulation can be achieved either by directly driving current into the tissue (electrical stimulation) or by means of electro-magnetic induction (magnetic stimulation). While the electrical stimulation of the peripheral neuromuscular system has many beneficial applications, peripheral magnetic stimulation has so far only a few. This paper analyzes theoretically the use of multiple magnetic stimulation coils to better control the excitation and also to eventually mimic electrical stimulation. Multiple coils allow electronic spatial adjustment of the shape and location of the stimulus without moving the coils. The new properties may enable unforeseen uses for peripheral magnetic stimulation, e.g., in rehabilitation of patients with neuromuscular impairment.

  4. Proprioceptive Neuromuscular Facilitation (PNF): Its Mechanisms and Effects on Range of Motion and Muscular Function

    Science.gov (United States)

    Hindle, Kayla B.; Whitcomb, Tyler J.; Briggs, Wyatt O.; Hong, Junggi

    2012-01-01

    Proprioceptive neuromuscular facilitation (PNF) is common practice for increasing range of motion, though little research has been done to evaluate theories behind it. The purpose of this study was to review possible mechanisms, proposed theories, and physiological changes that occur due to proprioceptive neuromuscular facilitation techniques. Four theoretical mechanisms were identified: autogenic inhibition, reciprocal inhibition, stress relaxation, and the gate control theory. The studies suggest that a combination of these four mechanisms enhance range of motion. When completed prior to exercise, proprioceptive neuromuscular facilitation decreases performance in maximal effort exercises. When this stretching technique is performed consistently and post exercise, it increases athletic performance, along with range of motion. Little investigation has been done regarding the theoretical mechanisms of proprioceptive neuromuscular facilitation, though four mechanisms were identified from the literature. As stated, the main goal of proprioceptive neuromuscular facilitation is to increase range of motion and performance. Studies found both of these to be true when completed under the correct conditions. These mechanisms were found to be plausible; however, further investigation needs to be conducted. All four mechanisms behind the stretching technique explain the reasoning behind the increase in range of motion, as well as in strength and athletic performance. Proprioceptive neuromuscular facilitation shows potential benefits if performed correctly and consistently. PMID:23487249

  5. Proprioceptive Neuromuscular Facilitation (PNF): Its Mechanisms and Effects on Range of Motion and Muscular Function.

    Science.gov (United States)

    Hindle, Kayla B; Whitcomb, Tyler J; Briggs, Wyatt O; Hong, Junggi

    2012-03-01

    Proprioceptive neuromuscular facilitation (PNF) is common practice for increasing range of motion, though little research has been done to evaluate theories behind it. The purpose of this study was to review possible mechanisms, proposed theories, and physiological changes that occur due to proprioceptive neuromuscular facilitation techniques. Four theoretical mechanisms were identified: autogenic inhibition, reciprocal inhibition, stress relaxation, and the gate control theory. The studies suggest that a combination of these four mechanisms enhance range of motion. When completed prior to exercise, proprioceptive neuromuscular facilitation decreases performance in maximal effort exercises. When this stretching technique is performed consistently and post exercise, it increases athletic performance, along with range of motion. Little investigation has been done regarding the theoretical mechanisms of proprioceptive neuromuscular facilitation, though four mechanisms were identified from the literature. As stated, the main goal of proprioceptive neuromuscular facilitation is to increase range of motion and performance. Studies found both of these to be true when completed under the correct conditions. These mechanisms were found to be plausible; however, further investigation needs to be conducted. All four mechanisms behind the stretching technique explain the reasoning behind the increase in range of motion, as well as in strength and athletic performance. Proprioceptive neuromuscular facilitation shows potential benefits if performed correctly and consistently.

  6. A case-controlled study of altered visual art production in Alzheimer's and FTLD.

    Science.gov (United States)

    Rankin, Katherine P; Liu, Anli A; Howard, Sara; Slama, Hilary; Hou, Craig E; Shuster, Karen; Miller, Bruce L

    2007-03-01

    To characterize dementia-induced changes in visual art production. Although case studies show altered visual artistic production in some patients with neurodegenerative disease, no case-controlled studies have quantified this phenomenon across groups of patients. Forty-nine subjects [18 Alzheimer disease, 9 frontotemporal dementia (FTD), 9 semantic dementia (SD), 15 healthy older controls (NC)] underwent formal neuropsychologic testing of visuospatial, perceptual, and creative functioning, and produced 4 drawings. Subjective elements of drawings were rated by an expert panel that was blind to diagnosis. Despite equal performance on standard visuospatial tests, dementia groups produced distinct patterns of artistic features that were significantly different from NCs. FTDs used more disordered composition and less active mark-making (Pvisual art.

  7. FUNCTIONS OF A NEUROMUSCULAR CENTRE

    Directory of Open Access Journals (Sweden)

    Janez Zidar

    2004-12-01

    Full Text Available Main functions of a neuromuscular (NM centre are making diagnosis, treatment and counselling. Some other functions, e. g. forming a register and epidemiological endeavours, could be added. All these activities are expected to be achieved by multidisciplinary approach with the idea that members use the same guidelines and share the same knowledge.NM diseases affect lower levels of the nervous system that is motor units (motor cells in the brainstem and spinal cord, nerve roots, cranial and peripheral nerves, neuromuscular junction, and muscles. There are many such diseases; a few are more common others are rare.Rational approach in making a diagnosis can be divided into several steps. The process begins with a person with clinical symptoms and signs which raise the suspicion of NM disease. The first step is the description of the predominant pattern of muscular wasting and weakness (e. g. limb-girdle, distal, ocular, facio-scapulo-humeral. Each of these syndromes require a differential diagnosis within the motor unit territory what is achieved by means of EMG and muscle biopsy. The latter is even more important to define the nature of the abnormality. Disease nature can also be determined biochemically and, as NM disorders are commonly genetically determined, at the molecular genetic level. Treatment modalities include drugs (causative and symptomatic and other measures such as promoting and maintaining good general health, preventing skeletal deformities, physiotherapy, orthoses, surgery, and prevention of respiratory and cardiac functions. Counselling is mainly by social workers that focus on the practical aspects of coping with illness and disability and by genetic counsellors who gave advise on family planning.

  8. Altered resting-state frontoparietal control network in children with attention-deficit/hyperactivity disorder.

    Science.gov (United States)

    Lin, Hsiang-Yuan; Tseng, Wen-Yih Isaac; Lai, Meng-Chuan; Matsuo, Kayako; Gau, Susan Shur-Fen

    2015-04-01

    The frontoparietal control network, anatomically and functionally interposed between the dorsal attention network and default mode network, underpins executive control functions. Individuals with attention-deficit/hyperactivity disorder (ADHD) commonly exhibit deficits in executive functions, which are mainly mediated by the frontoparietal control network. Involvement of the frontoparietal control network based on the anterior prefrontal cortex in neurobiological mechanisms of ADHD has yet to be tested. We used resting-state functional MRI and seed-based correlation analyses to investigate functional connectivity of the frontoparietal control network in a sample of 25 children with ADHD (7-14 years; mean 9.94 ± 1.77 years; 20 males), and 25 age-, sex-, and performance IQ-matched typically developing (TD) children. All participants had limited in-scanner head motion. Spearman's rank correlations were used to test the associations between altered patterns of functional connectivity with clinical symptoms and executive functions, measured by the Conners' Continuous Performance Test and Spatial Span in the Cambridge Neuropsychological Test Automated Battery. Compared with TD children, children with ADHD demonstrated weaker connectivity between the right anterior prefrontal cortex (PFC) and the right ventrolateral PFC, and between the left anterior PFC and the right inferior parietal lobule. Furthermore, this aberrant connectivity of the frontoparietal control network in ADHD was associated with symptoms of impulsivity and opposition-defiance, as well as impaired response inhibition and attentional control. The findings support potential integration of the disconnection model and the executive dysfunction model for ADHD. Atypical frontoparietal control network may play a pivotal role in the pathophysiology of ADHD.

  9. Deep Neuromuscular Blockade Improves Laparoscopic Surgical Conditions

    DEFF Research Database (Denmark)

    Rosenberg, Jacob; Herring, W Joseph; Blobner, Manfred

    2017-01-01

    INTRODUCTION: Sustained deep neuromuscular blockade (NMB) during laparoscopic surgery may facilitate optimal surgical conditions. This exploratory study assessed whether deep NMB improves surgical conditions and, in doing so, allows use of lower insufflation pressures during laparoscopic cholecys...

  10. Neuromuscular complications of immune checkpoint inhibitor therapy.

    Science.gov (United States)

    Kolb, Noah A; Trevino, Christopher R; Waheed, Waqar; Sobhani, Fatemeh; Landry, Kara K; Thomas, Alissa A; Hehir, Mike

    2018-01-17

    Immune checkpoint inhibitor (ICPI) therapy unleashes the body's natural immune system to fight cancer. ICPIs improve overall cancer survival, however, the unbridling of the immune system may induce a variety of immune-related adverse events. Neuromuscular immune complications are rare but they can be severe. Myasthenia gravis and inflammatory neuropathy are the most common neuromuscular adverse events but a variety of others including inflammatory myopathy are reported. The pathophysiologic mechanism of these autoimmune disorders may differ from that of non-ICPI-related immune diseases. Accordingly, while the optimal treatment for ICPI-related neuromuscular disorders generally follows a traditional paradigm, there are important novel considerations in selecting appropriate immunosuppressive therapy. This review presents 2 new cases, a summary of neuromuscular ICPI complications, and an approach to the diagnosis and treatment of these disorders. Muscle Nerve, 2018. © 2018 Wiley Periodicals, Inc.

  11. Lidocaine Administration Controls MicroRNAs Alterations Observed After Lung Ischemia-Reperfusion Injury.

    Science.gov (United States)

    Rancan, Lisa; Simón, Carlos; Marchal-Duval, Emmeline; Casanova, Javier; Paredes, Sergio Damian; Calvo, Alberto; García, Cruz; Rincón, David; Turrero, Agustín; Garutti, Ignacio; Vara, Elena

    2016-12-01

    Ischemia-reperfusion injury (IRI) is associated with morbidity and mortality. MicroRNAs (miRNAs) have emerged as regulators of IRI, and they are involved in the pathogenesis of organ rejection. Lidocaine has proven anti-inflammatory activity in several tissues but its modulation of miRNAs has not been investigated. This work aims to investigate the involvement of miRNAs in lung IRI in a lung auto-transplantation model and to investigate the effect of lidocaine. Three groups (sham, control, and Lidocaine), each comprising 6 pigs, underwent a lung autotransplantation. All groups received the same anesthesia. In addition, animals of lidocaine group received a continuous intravenous administration of lidocaine (1.5 mg/kg/h) during surgery. Lung biopsies were taken before pulmonary artery clamp, before reperfusion, 30 minutes postreperfusion (Rp-30), and 60 minutes postreperfusion (Rp-60). Samples were analyzed for different miRNAs (miR-122, miR-145, miR-146a, miR-182, miR-107, miR-192, miR-16, miR-21, miR-126, miR-127, miR142-5p, miR152, miR155, miR-223, and let7) via the use of reverse-transcription quantitative polymerase chain reaction. Results were normalized with miR-103. The expression of miR-127 and miR-16 did not increase after IRI. Let-7d, miR-21, miR-107, miR-126, miR-145, miR-146a, miR-182, and miR-192 significantly increased at the Rp-60 (control versus sham P lidocaine was able to attenuate these alterations in a significant way (control versus Lidocaine P lidocaine reduced significantly miRNAs alterations.

  12. An endogenous pain control system is altered in subjects with interstitial cystitis.

    Science.gov (United States)

    Ness, Timothy J; Lloyd, L Keith; Fillingim, Roger B

    2014-02-01

    Multiple studies have demonstrated that in healthy subjects, painful stimuli applied to one part of the body inhibit pain sensation in other parts of the body, a phenomenon referred to as conditioned pain modulation. Conditioned pain modulation is related to the presence of endogenous pain control systems. Studies have demonstrated deficits in conditioned pain modulation associated inhibition in many but not all chronic pain disorders. In this study we determine whether conditioned pain modulation is altered in subjects with interstitial cystitis/bladder pain syndrome. Female subjects with and without the diagnosis of interstitial cystitis/bladder pain syndrome were studied psychophysically using quantitative cutaneous thermal, forearm ischemia and ice water immersion tests. Conditioned pain modulation was assessed by quantifying the effects of immersion of the hand in ice water (conditioning stimulus) on threshold and tolerance of cutaneous heat pain (test stimulus) applied to the contralateral lower extremity. The conditioned pain modulation responses of the subjects with interstitial cystitis/bladder pain syndrome were statistically different from those of healthy control subjects for cutaneous thermal threshold and tolerance measures. Healthy control subjects demonstrated statistically significant increases in thermal pain tolerance whereas subjects with the diagnosis of interstitial cystitis/bladder pain syndrome demonstrated statistically significant reductions in thermal pain tolerance. An endogenous pain inhibitory system normally observed with conditioned pain modulation was altered in subjects with interstitial cystitis/bladder pain syndrome. This finding identifies interstitial cystitis/bladder pain syndrome as similar to several other chronic pain disorders such as fibromyalgia and irritable bowel syndrome, and suggests that a deficit in endogenous pain inhibitory systems may contribute to such chronic pain disorders. Copyright © 2014 American

  13. Relative contribution of different altered motor unit control to muscle weakness in stroke: a simulation study

    Science.gov (United States)

    Shin, Henry; Suresh, Nina L.; Zev Rymer, William; Hu, Xiaogang

    2018-02-01

    Objective. Chronic muscle weakness impacts the majority of individuals after a stroke. The origins of this hemiparesis is multifaceted, and an altered spinal control of the motor unit (MU) pool can lead to muscle weakness. However, the relative contribution of different MU recruitment and discharge organization is not well understood. In this study, we sought to examine these different effects by utilizing a MU simulation with variations set to mimic the changes of MU control in stroke. Approach. Using a well-established model of the MU pool, this study quantified the changes in force output caused by changes in MU recruitment range and recruitment order, as well as MU firing rate organization at the population level. We additionally expanded the original model to include a fatigue component, which variably decreased the output force with increasing length of contraction. Differences in the force output at both the peak and fatigued time points across different excitation levels were quantified and compared across different sets of MU parameters. Main results. Across the different simulation parameters, we found that the main driving factor of the reduced force output was due to the compressed range of MU recruitment. Recruitment compression caused a decrease in total force across all excitation levels. Additionally, a compression of the range of MU firing rates also demonstrated a decrease in the force output mainly at the higher excitation levels. Lastly, changes to the recruitment order of MUs appeared to minimally impact the force output. Significance. We found that altered control of MUs alone, as simulated in this study, can lead to a substantial reduction in muscle force generation in stroke survivors. These findings may provide valuable insight for both clinicians and researchers in prescribing and developing different types of therapies for the rehabilitation and restoration of lost strength after stroke.

  14. Cambios en el control neuromuscular de seis músculos de miembro inferior durante CMJ máximos realizados con fatiga

    Directory of Open Access Journals (Sweden)

    Gabriel Fábrica

    2013-06-01

    Full Text Available Hay diferentes opiniones respecto a si existen cambios en el control muscular cuando saltos con contramovimiento (CMJ son realizados en condición de fatiga. Este trabajo evalúa si la actividad y la secuencia temporal de activación de seis músculos de miembro inferior durante CMJ cambian por causa de la fatiga. El nivel de actividad varió principalmente en los músculos biarticulares. Los tiempos de los picos de actividad eléctrica sugieren la existencia de grupos de acción muscular, si bien ocurren cambios en la secuencia de activación dentro de cada grupo. Fue posible establecer que existe un patrón general de control muscular durante el apoyo en los CMJ, con ajustes del nivel y tiempo de activación que dependen del periodo temporal analizado y el músculo considerado.

  15. Deep Neuromuscular Blockade Improves Laparoscopic Surgical Conditions

    DEFF Research Database (Denmark)

    Rosenberg, Jacob; Herring, W Joseph; Blobner, Manfred

    2017-01-01

    INTRODUCTION: Sustained deep neuromuscular blockade (NMB) during laparoscopic surgery may facilitate optimal surgical conditions. This exploratory study assessed whether deep NMB improves surgical conditions and, in doing so, allows use of lower insufflation pressures during laparoscopic cholecys......INTRODUCTION: Sustained deep neuromuscular blockade (NMB) during laparoscopic surgery may facilitate optimal surgical conditions. This exploratory study assessed whether deep NMB improves surgical conditions and, in doing so, allows use of lower insufflation pressures during laparoscopic...

  16. Altitude training induced alterations in erythrocyte rheological properties: a controlled comparison study in rats.

    Science.gov (United States)

    Bor-Kucukatay, Melek; Colak, Ridvan; Erken, Gülten; Kilic-Toprak, Emine; Kucukatay, Vural

    2014-01-01

    Altitude training is frequently used by athletes to improve sea-level performance. However, the objective benefits of altitude training are controversial. This study aimed to investigate the possible alterations in hemorheological parameters in response to altitude training. Sprague Dawley rats, were divided into 6 groups: live low-train low (LLTL), live high-train high (LHTH), live high-train low (LHTL) and their controls live high and low (LHALC), live high (LHC), live low (LLC). LHC and LHTH groups were exposed to hypoxia (15% O2, altitudes of 3000 m), 4 weeks. LHALC and LHTL were exposed to 12 hours hypoxia/normoxia per day, 4 weeks. Hypoxia was maintained by a hypoxic tent. The training protocol corresponded to 60-70% of maximal exercise capacity. Rats of training groups ran on treadmill for 20-30 min/day, 4 days/week, 4 weeks. Erythrocyte deformability of LHC group was increased compared to LHALC and LLC. Deformability of LHTH group was higher than LHALC and LLTL groups. No statistically significant alteration in erythrocyte aggregation parameters was observed. There were no significant relationships between RBC deformability and exercise performance. The results of this study show that, living (LHC) and training at altitude (LHTH) seems more advantageous in hemorheological point of view.

  17. Cambios en el control neuromuscular de seis músculos de miembro inferior durante CMJ máximos realizados con fatiga

    OpenAIRE

    Fábrica,Gabriel; González Rodríguez,Paula; Loss,Jefferson Fagundes

    2013-01-01

    Hay diferentes opiniones respecto a si existen cambios en el control muscular cuando saltos con contramovimiento (CMJ) son realizados en condición de fatiga. Este trabajo evalúa si la actividad y la secuencia temporal de activación de seis músculos de miembro inferior durante CMJ cambian por causa de la fatiga. El nivel de actividad varió principalmente en los músculos biarticulares. Los tiempos de los picos de actividad eléctrica sugieren la existencia de grupos de acción muscular, si bien o...

  18. Depressed Synaptic Transmission and Reduced Vesicle Release Sites in Huntington's Disease Neuromuscular Junctions.

    Science.gov (United States)

    Khedraki, Ahmad; Reed, Eric J; Romer, Shannon H; Wang, Qingbo; Romine, William; Rich, Mark M; Talmadge, Robert J; Voss, Andrew A

    2017-08-23

    Huntington's disease (HD) is a progressive and fatal degenerative disorder that results in debilitating cognitive and motor dysfunction. Most HD studies have focused on degeneration of the CNS. We previously discovered that skeletal muscle from transgenic R6/2 HD mice is hyperexcitable due to decreased chloride and potassium conductances. The progressive and early onset of these defects suggest a primary myopathy in HD. In this study, we examined the relationship between neuromuscular transmission and skeletal muscle hyperexcitability. We used an ex vivo preparation of the levator auris longus muscle from male and female late-stage R6/2 mice and age-matched wild-type controls. Immunostaining of the synapses and molecular analyses revealed no evidence of denervation. Physiologically, we recorded spontaneous miniature endplate currents (mEPCs) and nerve-evoked EPCs (eEPCs) under voltage-clamp, which, unlike current-clamp records, were independent of the changes in muscle membrane properties. We found a reduction in the number of vesicles released per action potential (quantal content) in R6/2 muscle, which analysis of eEPC variance and morphology indicate is caused by a reduction in the number of vesicle release sites ( n ) rather than a change in the probability of release ( p rel ). Furthermore, analysis of high-frequency stimulation trains suggests an impairment in vesicle mobilization. The depressed neuromuscular transmission in R6/2 muscle may help compensate for the muscle hyperexcitability and contribute to motor impersistence. SIGNIFICANCE STATEMENT Recent evidence indicates that Huntington's disease (HD) is a multisystem disorder. Our examination of neuromuscular transmission in this study reveals defects in the motor nerve terminal that may compensate for the muscle hyperexcitability in HD. The technique we used eliminates the effects of the altered muscle membrane properties on synaptic currents and thus provides hitherto the most detailed analysis of

  19. Neuromuscular paralysis for newborn infants receiving mechanical ventilation.

    Science.gov (United States)

    Cools, F; Offringa, M

    2005-04-18

    Ventilated newborn infants breathing in asynchrony with the ventilator are at risk for complications during mechanical ventilation, such as pneumothorax or intraventricular hemorrhage, and are exposed to more severe barotrauma, which consequently could impair their clinical outcome. Neuromuscular paralysis, which eliminates spontaneous breathing efforts of the infant, has potential advantages in this respect. However, a number of complications have been reported with muscle relaxation in infants, so that concerns exist regarding the safety of prolonged neuromuscular paralysis in newborn infants. To determine whether routine neuromuscular paralysis of newborn infants receiving mechanical ventilation compared with no routine paralysis results in clinically important benefits or harms. The Cochrane Central Register of Controlled Trials (CENTRAL, The Cochrane Library, Issue 1, 2004), MEDLINE (from 1966 to April 2004) and EMBASE (from 1988 to April 2004) were searched. References of review articles were hand searched. Language restriction was not imposed. All trials using random or quasi-random patient allocation, in which the routine use of neuromuscular blocking agents during mechanical ventilation was compared to no paralysis or selective paralysis in newborn infants. Methodological quality was assessed blindly and independently by the two authors. Data were abstracted using standard methods of the Cochrane Collaboration and its Neonatal Review Group, with independent evaluation of trial quality, and abstraction and synthesis of data by both authors. Treatment effect was analysed using relative risk, risk difference and weighted mean difference. Ten possibly eligible trials were identified, of which six were included in the review. All the included trials studied preterm infants ventilated for respiratory distress syndrome, and used pancuronium as the neuromuscular blocking agent. In the analysis of the results of all trials, no significant difference was found in

  20. Alterations of postawakening cortisol parameters during a prolonged stress period: Results of a prospective controlled study.

    Science.gov (United States)

    Weik, Ulrike; Deinzer, Renate

    2010-08-01

    Though postawakening cortisol is considered to be altered under chronic stress prospective studies proving this assumption is missing, so far. Furthermore, there is some uncertainty which aspects of postawakening cortisol alterations are strongest related to stress. The present study thus analyzed the cortisol concentration at awakening itself (0 min), the cortisol awakening response (CAR; i.e. the increase within 30 min after awakening), the area under the curve of the first hour after awakening (AUC(G)60) and the mean of samples taken 0 min and 30 min after awakening (AUC(G)30) in 12 exam students, participating in a major exam and 12 matched control students not participating in any exam. Saliva samples were taken on two consecutive days at 0, 15, 30, 45, and 60 min after awakening, respectively, at four time points (T1-T4): on the verge of exams, when students anticipated and prepared the exam (T1), in the middle of exams (T2), and shortly after (T3). T4 (weeks after exams) represents a reference measure. Repeated measures analyses of covariance revealed a significantly higher AUC(G)30 (p=0.007) and AUC(G)60 (p=0.011) and higher cortisol concentrations at awakening (p=0.016) in exam students and a significant time by group interaction for concentration at awakening (p=0.031). No effects were found for the CAR. The results of this prospective controlled study support notions that chronic stress induces increases of overall postawakening cortisol. They further indicate that the CAR is not affected by chronic stress and that the awakening concentration responds later than the AUC(G) to conditions of chronic stress as analyzed here. Copyright 2010 Elsevier Inc. All rights reserved.

  1. Effects of Muscle Fatigue, Creep, and Musculoskeletal Pain on Neuromuscular Responses to Unexpected Perturbation of the Trunk: A Systematic Review.

    Science.gov (United States)

    Abboud, Jacques; Lardon, Arnaud; Boivin, Frédéric; Dugas, Claude; Descarreaux, Martin

    2016-01-01

    Introduction: Trunk neuromuscular responses have been shown to adapt under the influence of muscle fatigue, as well as spinal tissue creep or even with the presence of low back pain (LBP). Despite a large number of studies exploring how these external perturbations affect the spinal stability, characteristics of such adaptations remains unclear. Aim: The purpose of this systematic review was to assess the quality of evidence of studies investigating trunk neuromuscular responses to unexpected trunk perturbation. More specifically, the targeted neuromuscular responses were trunk muscle activity reflex and trunk kinematics under the influence of muscle fatigue, spinal creep, and musculoskeletal pain. Methods: A research of the literature was conducted in Pubmed, Embase, and Sport-Discus databases using terms related to trunk neuromuscular reflex responses, measured by electromyography (baseline activity, reflex latency, and reflex amplitude) and/or trunk kinematic, in context of unexpected external perturbation. Moreover, independent variables must be either trunk muscle fatigue or spinal tissue creep or LBP. All included articles were scored for their electromyography methodology based on the "Surface Electromyography for the Non-Invasive Assessment of Muscles (SENIAM)" and the "International Society of Electrophysiology and Kinesiology (ISEK)" recommendations whereas overall quality of articles was scored using a specific quality checklist modified from the Quality Index. Meta-analysis was performed on reflex latency variable. Results: A final set of 29 articles underwent quality assessments. The mean quality score was 79%. No effect of muscle fatigue on erector spinae reflex latency following an unexpected perturbation, nor any other distinctive effects was found for back muscle fatigue and reflex parameters. As for spinal tissue creep effects, no alteration was found for any of the trunk reflex variables. Finally, the meta-analysis revealed an increased erector

  2. Visual feedback alters force control and functional activity in the visuomotor network after stroke

    Directory of Open Access Journals (Sweden)

    Derek B. Archer

    2018-01-01

    Full Text Available Modulating visual feedback may be a viable option to improve motor function after stroke, but the neurophysiological basis for this improvement is not clear. Visual gain can be manipulated by increasing or decreasing the spatial amplitude of an error signal. Here, we combined a unilateral visually guided grip force task with functional MRI to understand how changes in the gain of visual feedback alter brain activity in the chronic phase after stroke. Analyses focused on brain activation when force was produced by the most impaired hand of the stroke group as compared to the non-dominant hand of the control group. Our experiment produced three novel results. First, gain-related improvements in force control were associated with an increase in activity in many regions within the visuomotor network in both the stroke and control groups. These regions include the extrastriate visual cortex, inferior parietal lobule, ventral premotor cortex, cerebellum, and supplementary motor area. Second, the stroke group showed gain-related increases in activity in additional regions of lobules VI and VIIb of the ipsilateral cerebellum. Third, relative to the control group, the stroke group showed increased activity in the ipsilateral primary motor cortex, and activity in this region did not vary as a function of visual feedback gain. The visuomotor network, cerebellum, and ipsilateral primary motor cortex have each been targeted in rehabilitation interventions after stroke. Our observations provide new insight into the role these regions play in processing visual gain during a precisely controlled visuomotor task in the chronic phase after stroke.

  3. Neurovascular alterations in chronic hepatitis C: a case-control study

    Directory of Open Access Journals (Sweden)

    Valentina Vedovetto

    2013-03-01

    Full Text Available Introduction: Hepatitis C is a major health problem: approximately 170 million people are infected with the hepatitis C virus worldwide. It is unclear whether chronic hepatitis C affects atherosclerosis and whether it can cause endothelial and/or autonomic nervous system (ANS dysfunction. Materials and methods: From April 2008 through April 2009, we studied 76 patients with biopsyconfirmed chronic hepatitis C and no evidence of cirrhosis, ascites, portal hypertension, encephalopathy, or hepatocellular carcinoma. The age-, sex-, BMI- and cardiovascular risk factor- matched control group comprised 76 healthy, HCV-negative individuals with no evidence of liver, autoimmune, or immunoproliferative diseases and no history of cardiovascular events. Twenty five of the hepatitis C patients were treatment-naive; the other 51 had been treated with interferon (but only 25 had persistent virological responses. Color Doppler sonography was used to measure the intima-media-thickness (IMT of the common and internal carotid arteries. Endothelial function was assessed in the brachial artery with the flow-mediated-dilatation (FMD test. The ANS was assessed with the tilt, laying to standing, Valsalva, hand grip, deep breath, and stroop tests. Results: The case group (mean age 52 + 13 years had a significantly higher internal carotid IMT (0.86 + 0.3 vs 0.67 + 0.1 mmfor controls; p = 0.002. Chronic hepatitis C was also associated with an odds ratio for carotid plaque formation (reflected by an IMT > 1.3 mm of 2.15. Cases also had significantly reduced FMD in the brachial artery (0.46 + 0.9 vs 0.76 + 0.7 for controls; p = 0.005 and significantly altered sympathetic and parasympathetic function (p = 0.001 vs controls in the Valsalva, hand grip, deep breath, and stroop tests. Within the case group, all alterations were more severe in patients with significant viremia. Discussion: Our findings suggest that chronic hepatitis C may be a nonclassic cardiovascular risk

  4. Neuromuscular activity of Bothrops fonsecai snake venom in vertebrate preparations

    Science.gov (United States)

    Fernandes, Carla T; Giaretta, Vânia MA; Prudêncio, Luiz S; Toledo, Edvana O; da Silva, Igor RF; Collaço, Rita CO; Barbosa, Ana M; Hyslop, Stephen; Rodrigues-Simioni, Léa; Cogo, José C

    2014-01-01

    The neuromuscular activity of venom from Bothrops fonsecai, a lancehead endemic to southeastern Brazil, was investigated. Chick biventer cervicis (CBC) and mouse phrenic nerve-diaphragm (PND) preparations were used for myographic recordings and mouse diaphragm muscle was used for membrane resting potential (RP) and miniature end-plate potential (MEPP) recordings. Creatine kinase release and muscle damage were also assessed. In CBC, venom (40, 80 and 160μg/ml) produced concentration- and time-dependent neuromuscular blockade (50% blockade in 85±9 min and 73±8 min with 80 and 160μg/ml, respectively) and attenuated the contractures to 110μM ACh (78–100% inhibition) and 40mM KCl (45–90% inhibition). The venom-induced decrease in twitch-tension in curarized, directly-stimulated preparations was similar to that in indirectly stimulated preparations. Venom (100 and 200μg/ml) also caused blockade in PND preparations (50% blockade in 94±13 min and 49±8 min with 100 and 200μg/ml, respectively) but did not alter the RP or MEPP amplitude. In CBC, venom caused creatine kinase release and myonecrosis. The venom-induced decrease in twitch-tension and in the contractures to ACh and K+ were abolished by preincubating venom with commercial antivenom. These findings indicate that Bothrops fonsecai venom interferes with neuromuscular transmission essentially through postsynaptic muscle damage that affects responses to ACh and KCl. These actions are effectively prevented by commercial antivenom. PMID:25028603

  5. Improving Neuromuscular Monitoring and Reducing Residual Neuromuscular Blockade With E-Learning

    DEFF Research Database (Denmark)

    Thomsen, Jakob Louis Demant; Mathiesen, Ole; Hägi-Pedersen, Daniel

    2017-01-01

    and an increased risk of respiratory complications. Use of an objective neuromuscular monitoring device may prevent residual block. Despite this, many anesthetists refrain from using the device. Efforts to increase the use of objective monitoring are time consuming and require the presence of expert personnel....... A neuromuscular monitoring e-learning module might support consistent use of neuromuscular monitoring devices. OBJECTIVE: The aim of the study is to assess the effect of a neuromuscular monitoring e-learning module on anesthesia staff's use of objective neuromuscular monitoring and the incidence of residual...... departments in the Zealand Region of Denmark are included, and data from all patients receiving a muscle relaxant are collected from the anesthesia information management system MetaVision. We will assess the effect of the module on all levels of potential effect: staff's knowledge and skills, patient care...

  6. Neuromuscular Adaptations to Reduced Use

    Science.gov (United States)

    Ploutz-Snyder, Lori

    2009-01-01

    This viewgraph presentation reviews the studies done to reduce neuromuscular strength loss during unilateral lower limb suspension (ULLS). Since there are animals that undergo fairly long periods of muscular disuse without any or minimal muscular atrophy, there is an answer to that might be applicable to human in situations that require no muscular use to diminish the effects of muscular atrophy. Three sets of ULLS studies were reviewed indicated that muscle strength decreased more than the muscle mass. The study reviewed exercise countermeasures to combat the atrophy, including: ischemia maintained during Compound muscle action potential (CMAP), ischemia and low load exercise, Japanese kaatsu, and the potential for rehabilitation or situations where heavy loading is undesirable. Two forms of countermeasures to unloading have been successful, (1) high-load resistance training has maintained muscle mass and strength, and low load resistance training with blood flow restriction (LL(sub BFR)). The LL(sub BFR) has been shown to increase muscle mass and strength. There has been significant interest in Tourniquet training. An increase in Growth Hormone(GH) has been noted for LL(sub BFR) exercise. An experimental study with 16 subjects 8 of whom performed ULLS, and 8 of whom performed ULLS and LL(sub BFR) exercise three times per week during the ULLS. Charts show the results of the two groups, showing that performing LL(sub BFR) exercise during 30 days of ULLS can maintain muscle size and strength and even improve muscular endurance.

  7. Controlled meal frequency without caloric restriction alters peripheral blood mononuclear cell cytokine production

    Directory of Open Access Journals (Sweden)

    Longo Dan L

    2011-03-01

    Full Text Available Abstract Background Intermittent fasting (IF improves healthy lifespan in animals by a mechanism involving reduced oxidative damage and increased resistance to stress. However, no studies have evaluated the impact of controlled meal frequency on immune responses in human subjects. Objective A study was conducted to establish the effects of controlled diets with different meal frequencies, but similar daily energy intakes, on cytokine production in healthy male and female subjects. Design In a crossover study design with an intervening washout period, healthy normal weight middle-age male and female subjects (n = 15 were maintained for 2 months on controlled on-site one meal per day (OMD or three meals per day (TMD isocaloric diets. Serum samples and peripheral blood mononuclear cells (PBMCs culture supernatants from subjects were analyzed for the presence of inflammatory markers using a multiplex assay. Results There were no significant differences in the inflammatory markers in the serum of subjects on the OMD or TMD diets. There was an increase in the capacity of PBMCs to produce cytokines in subjects during the first month on the OMD or TMD diets. Lower levels of TNF-α, IL-17, MCP-1 and MIP-1β were produced by PBMCs from subjects on the OMD versus TMD diet. Conclusions PBMCs of subjects on controlled diets exhibit hypersensitivities to cellular stimulation suggesting that stress associated with altered eating behavior might affect cytokine production by immune cells upon stimulation. Moreover, stimulated PBMCs derived from healthy individuals on a reduced meal frequency diet respond with a reduced capability to produce cytokines.

  8. Physiological and Functional Alterations after Spaceflight and Bed Rest.

    Science.gov (United States)

    Mulavara, Ajitkumar P; Peters, Brian T; Miller, Chris A; Kofman, Igor S; Reschke, Millard F; Taylor, Laura C; Lawrence, Emily L; Wood, Scott J; Laurie, Steven S; Lee, Stuart M C; Buxton, Roxanne E; May-Phillips, Tiffany R; Stenger, Michael B; Ploutz-Snyder, Lori L; Ryder, Jeffrey W; Feiveson, Alan H; Bloomberg, Jacob J

    2018-04-03

    Exposure to microgravity causes alterations in multiple physiological systems, potentially impacting the ability of astronauts to perform critical mission tasks. The goal of this study was to determine the effects of spaceflight on functional task performance and to identify the key physiological factors contributing to their deficits. A test battery comprised of 7 functional tests and 15 physiological measures was used to investigate the sensorimotor, cardiovascular and neuromuscular adaptations to spaceflight. Astronauts were tested before and after 6-month spaceflights. Subjects were also tested before and after 70 days of 6° head-down bed rest, a spaceflight analog, to examine the role of axial body unloading on the spaceflight results. These subjects included Control and Exercise groups to examine the effects of exercise during bed rest. Spaceflight subjects showed the greatest decrement in performance during functional tasks that required the greatest demand for dynamic control of postural equilibrium which was paralleled by similar decrements in sensorimotor tests that assessed postural and dynamic gait control. Other changes included reduced lower limb muscle performance and increased heart rate to maintain blood pressure. Exercise performed during bed rest prevented detrimental change in neuromuscular and cardiovascular function, however, both bed rest groups experienced functional and balance deficits similar to spaceflight subjects. Bed rest data indicates that body support unloading experienced during spaceflight contributes to postflight postural control dysfunction. Further, the bed rest results in the Exercise group of subjects confirm that resistance and aerobic exercises performed during spaceflight can play an integral role in maintaining neuromuscular and cardiovascular function, which can help in reducing decrements in functional performance. These results indicate that a countermeasure to mitigate postflight postural control dysfunction is

  9. Judicial Control over Althingi: Altered Balance of Powers in the Constitutional System

    Directory of Open Access Journals (Sweden)

    Björg Thorarensen

    2016-06-01

    Full Text Available The article focuses on how the control of the judiciary over the legislature has increased in the last decades and the reasons for altered balance of powers in the Icelandic constitutional system are explored. Earlier theories of parliamentary precedence over other branches of state power are in transition. There is a growing trend towards the balancing of powers, in which the courts monitor that legislation complies with the constitution. A comparison is made with the developments in the constitutional systems of Denmark and Norway which points at the same direction. The European Convention on Human Rights and constitutional amendments in 1995 have affected the interpretation methods of the Icelandic courts and strengthened their supervisory role. Ideas underlying constitutional democracy, rule of law and effective remedies for individuals are prevailing over the idea of preferred position of the legislative power vis-à-vis the judiciary. The courts see it as a constitutional duty to adjudicate whether a legislative act conforms with constitutional human rights. The Supreme Court of Iceland has referred to the wide discretion of the legislature in the field of fiscal powers, such as regarding taxation and the social security system. However, even where legislation aims at the implementation of important political policies, the discretion of Althingi is subject to certain limits. The effective judicial control requires that Althingi must assess carefully whether legislation which limits constitutionally protected human rights conforms with the principles of equality and proportionality.

  10. Neuromuscular transmission in the athymic nude mouse.

    Science.gov (United States)

    Schofield, G G; Marshall, I G

    1980-10-01

    No major differences were observed in the mechanical properties of diaphragm, extensor digitorum longus and soleus muscles from athymic nude and control mice. Denervated soleus muscles from nudes and controls showed no significant differences in their sensitivities to the cholinoceptor agonists acetylcholine and carbachol, either in the absence or presence of the anticholinesterase, physostigmine, suggesting that postjunctional receptor function is essentially normal. Phrenic nerve-diaphragm preparations from nudes were less sensitive to the twitch-augmenting effects of neostigmine. No difference in the time course of endplate potentials (epps) between nudes and controls was seen either in the absence or presence of neostigmine. Hence the observed differences in twitch augmentation are unlikely to be due to differences in acetylcholinesterase activity in the two muscles. In normal mice miniature endplate potential (mepp) amplitude decreased and mepp frequency increased with age. These changes were associated with an increase in muscle fibre diameter and a concomitant decrease in membrane resistance. Such changes did not occur in nude mice; thus mepp amplitude remained, high as in young normal muscle. It is suggested that the thymus may play a role in muscle development and that the effects on neuromuscular transmission are secondary to changes in development. In cut diaphragm muscles transmitter reversal potentials in nudes and controls were not different. Although there was no difference in the amplitude of the first epp of a train, or in the immediately releasable acetylcholine store, the quantal content of the first epp, the probability of transmitter release, the total nerve terminal acetylcholine store and the transmitter mobilization rate were all reduced. It is considered probable that all the measurable differences in transmitter release can be explained in terms of the nude muscle fibre diameter being small and being associated with a small nerve terminal

  11. Neuromuscular adaptations to sprint interval training and the effect of mammalian omega-3 fatty acid supplementation.

    Science.gov (United States)

    Lewis, Evan J H; Stucky, Frédéric; Radonic, Peter W; Metherel, Adam H; Wolever, Thomas M S; Wells, Greg D

    2017-03-01

    Sprint interval training (SIT) stimulates rapid metabolic adaptations within skeletal muscle but the nature of neuromuscular adaptions is unknown. Omega-3 polyunsaturated fatty acids (N-3 PUFA) are suggested to enhance neuromuscular adaptations to exercise. We measured the neuromuscular adaptations to SIT (Study-1) and conducted a placebo-controlled randomized double blinded study to determine the effect of N-3 PUFA supplementation on neuromuscular adaptations to SIT (Study-2). In Study-1, seven active men (24.4 ± 2.6 years, VO 2 peak 43.8 ± 8.7 ml kg min -1 ) completed 2-weeks of SIT with pre- and post-training 10 km cycling time trials (TT). In Study-2, 30 active men (24.5 ± 4.2 years, VO 2 peak 41.0 ± 5.1 ml kg min -1 ) were randomly assigned to receive N-3 PUFA (2330 mg day -1 ) (n = 14) or olive oil (n = 16) during 2-weeks of SIT with pre- and post-training TTs. Four week post-training, a SIT session and TT were also performed. Change in neuromuscular function was assessed from resting twitches, quadriceps maximal voluntary contraction (MVC) force, and potentiated twitch force (Q tw ). Study-1 showed that SIT did not elicit significant neuromuscular adaptations. Study-2 showed that N-3 PUFA supplementation had no significant effect on neuromuscular adaptations. Training caused lower MVC force [mean ± SD; N-3 PUFA -9 ± 11%, placebo -9 ± 13% (p training in all groups [Study-1 -10%, Study-2 N-3 PUFA -8%, placebo -12% (p training adaptations.

  12. Factors that affect the onset of action of non-depolarizing neuromuscular blocking agents.

    Science.gov (United States)

    Kim, Yong Byum; Sung, Tae-Yun; Yang, Hong Seuk

    2017-10-01

    Neuromuscular blockade plays an important role in the safe management of patient airways, surgical field improvement, and respiratory care. Rapid-sequence induction of anesthesia is indispensable to emergency surgery and obstetric anesthesia, and its purpose is to obtain a stable airway, adequate depth of anesthesia, and appropriate respiration within a short period of time without causing irritation or damage to the patient. There has been a continued search for new neuromuscular blocking drugs (NMBDs) with a rapid onset of action. Factors that affect the onset time include the potency of the NMBDs, the rate of NMBDs reaching the effect site, the onset time by dose control, metabolism and elimination of NMBDs, buffered diffusion to the effect site, nicotinic acetylcholine receptor subunit affinity, drugs that affect acetylcholine (ACh) production and release at the neuromuscular junction, drugs that inhibit plasma cholinesterase, presynaptic receptors responsible for ACh release at the neuromuscular junction, anesthetics or drugs that affect muscle contractility, site and methods for monitoring neuromuscular function, individual variability, and coexisting disease. NMBDs with rapid onset without major adverse events are expected in the next few years, and the development of lower potency NMBDs will continue. Anesthesiologists should be aware of the use of NMBDs in the management of anesthesia. The choice of NMBD and determination of the appropriate dosage to modulate neuromuscular blockade characteristics such as onset time and duration of neuromuscular blockade should be considered along with factors that affect the effects of the NMBDs. In this review, we discuss the factors that affect the onset time of NMBDs.

  13. Genome Editing of Monogenic Neuromuscular Diseases

    Science.gov (United States)

    Long, Chengzu; Amoasii, Leonela; Bassel-Duby, Rhonda; Olson, Eric N.

    2017-01-01

    IMPORTANCE Muscle weakness, the most common symptom of neuromuscular disease, may result from muscle dysfunction or may be caused indirectly by neuronal and neuromuscular junction abnormalities. To date, more than 780 monogenic neuromuscular diseases, linked to 417 different genes, have been identified in humans. Genome-editing methods, especially the CRISPR (clustered regularly interspaced short palindromic repeats)–Cas9 (CRISPR-associated protein 9) system, hold clinical potential for curing many monogenic disorders, including neuromuscular diseases such as Duchenne muscular dystrophy, spinal muscular atrophy, amyotrophic lateral sclerosis, and myotonic dystrophy type 1. OBJECTIVES To provide an overview of genome-editing approaches; to summarize published reports on the feasibility, efficacy, and safety of current genome-editing methods as they relate to the potential correction of monogenic neuromuscular diseases; and to highlight scientific and clinical opportunities and obstacles toward permanent correction of disease-causing mutations responsible for monogenic neuromuscular diseases by genome editing. EVIDENCE REVIEW PubMed and Google Scholar were searched for articles published from June 30, 1989, through June 9, 2016, using the following keywords: genome editing, CRISPR-Cas9, neuromuscular disease, Duchenne muscular dystrophy, spinal muscular atrophy, amyotrophic lateral sclerosis, andmyotonic dystrophy type 1. The following sources were reviewed: 341 articles describing different approaches to edit mammalian genomes; 330 articles describing CRISPR-Cas9–mediated genome editing in cell culture lines (in vitro) and animal models (in vivo); 16 websites used to generate single-guide RNA; 4 websites for off-target effects; and 382 articles describing viral and nonviral delivery systems. Articles describing neuromuscular diseases, including Duchenne muscular dystrophy, spinal muscular atrophy, amyotrophic lateral sclerosis, and myotonic dystrophy type 1

  14. Pregnancy and lactation alter biomarkers of biotin metabolism in women consuming a controlled diet.

    Science.gov (United States)

    Perry, Cydne A; West, Allyson A; Gayle, Antoinette; Lucas, Lauren K; Yan, Jian; Jiang, Xinyin; Malysheva, Olga; Caudill, Marie A

    2014-12-01

    Biotin functions as a cofactor for several carboxylase enzymes with key roles in metabolism. At present, the dietary requirement for biotin is unknown and intake recommendations are provided as Adequate Intakes (AIs). The biotin AI for adults and pregnant women is 30 μg/d, whereas 35 μg/d is recommended for lactating women. However, pregnant and lactating women may require more biotin to meet the demands of these reproductive states. The current study sought to quantify the impact of reproductive state on biotin status response to a known dietary intake of biotin. To achieve this aim, we measured a panel of biotin biomarkers among pregnant (gestational week 27 at study entry; n = 26), lactating (postnatal week 5 at study entry; n = 28), and control (n = 21) women who participated in a 10- to 12-wk feeding study providing 57 μg of dietary biotin/d as part of a mixed diet. Over the course of the study, pregnant women excreted 69% more (vs. control; P biotin-dependent methylcrotonyl-coenzyme A carboxylase is impaired. Interestingly, urinary excretion of 3-hydroxyisovaleryl-carnitine (3-HIA-carnitine), a downstream metabolite of 3-HIA, was 27% lower (P = 0.05) among pregnant (vs. control) women, a finding that may arise from carnitine inadequacy during gestation. No differences (P > 0.05) were detected in plasma biotin, urinary biotin, or urinary bisnorbiotin between pregnant and control women. Lactating women excreted 76% more (vs. control; P = 0.001) of the biotin catabolite bisnorbiotin, indicating that lactation accelerates biotin turnover and loss. Notably, with respect to control women, lactating women excreted 23% less (P = 0.04) urinary 3-HIA and 26% less (P = 0.05) urinary 3-HIA-carnitine, suggesting that lactation reduces leucine catabolism and that these metabolites may not be useful indicators of biotin status during lactation. Overall, these data demonstrate significant alterations in markers of biotin metabolism during pregnancy and lactation and

  15. Pregnancy and Lactation Alter Biomarkers of Biotin Metabolism in Women Consuming a Controlled Diet123

    Science.gov (United States)

    Perry, Cydne A; West, Allyson A; Gayle, Antoinette; Lucas, Lauren K; Yan, Jian; Jiang, Xinyin; Malysheva, Olga; Caudill, Marie A

    2014-01-01

    Background: Biotin functions as a cofactor for several carboxylase enzymes with key roles in metabolism. At present, the dietary requirement for biotin is unknown and intake recommendations are provided as Adequate Intakes (AIs). The biotin AI for adults and pregnant women is 30 μg/d, whereas 35 μg/d is recommended for lactating women. However, pregnant and lactating women may require more biotin to meet the demands of these reproductive states. Objective: The current study sought to quantify the impact of reproductive state on biotin status response to a known dietary intake of biotin. Methods: To achieve this aim, we measured a panel of biotin biomarkers among pregnant (gestational week 27 at study entry; n = 26), lactating (postnatal week 5 at study entry; n = 28), and control (n = 21) women who participated in a 10- to 12-wk feeding study providing 57 μg of dietary biotin/d as part of a mixed diet. Results: Over the course of the study, pregnant women excreted 69% more (vs. control; P biotin-dependent methylcrotonyl–coenzyme A carboxylase is impaired. Interestingly, urinary excretion of 3-hydroxyisovaleryl-carnitine (3-HIA-carnitine), a downstream metabolite of 3-HIA, was 27% lower (P = 0.05) among pregnant (vs. control) women, a finding that may arise from carnitine inadequacy during gestation. No differences (P > 0.05) were detected in plasma biotin, urinary biotin, or urinary bisnorbiotin between pregnant and control women. Lactating women excreted 76% more (vs. control; P = 0.001) of the biotin catabolite bisnorbiotin, indicating that lactation accelerates biotin turnover and loss. Notably, with respect to control women, lactating women excreted 23% less (P = 0.04) urinary 3-HIA and 26% less (P = 0.05) urinary 3-HIA-carnitine, suggesting that lactation reduces leucine catabolism and that these metabolites may not be useful indicators of biotin status during lactation. Conclusions: Overall, these data demonstrate significant alterations in markers of

  16. [Contribution of histochemistry to the classification of neuromuscular diseases].

    Science.gov (United States)

    Scarlato, G

    1975-01-01

    For a long time after the first muscle biopsy performed on man by Bilroth in 1965, histological study of the muscle has been linked to out of date patterns of interpretation most of them without any importance for clinical diagnosis. The use of histochemical techniques in the study of muscle was introduced quite recently and consequently in the last 15 years it has been possible to collect an enormous amount of very important data for the clinical diagnosis of many neuromuscular disorders. The classification of muscle fibers into different types which was possible first of all using the myofibrillar ATPase reaction by Padykula and Hermann permitted pathological interpretation leading to specific correlations between histological and EMG results. Furthermore the use of different histoenzymological methods in the study of mitochondrial enzymes activity and of the enzymes for the glycogen breakdown and synthesis, promoted a more elaborate fibre typing system. Thank to the development of cryostatic microtomy, the above mentioned methods became easy to be performed in the laboratory routine work. The use of the cryostat, which allows a better preservation of muscular tissue, led to a more accurate diagnostic interpretation particularly in relation to morphology. The study of fiber typing revealed many alterations: single fiber type atrophy, type one or type two predominance, type grouping, hypertrophy of a single fiber type and so on, giving to the clinicians the possibility not only of a more elaborate pathogenetic interpretation, but also of a much more precise diagnosis than in the past. Important results have been achieved using the above mentioned histoenzymological methods in the study of the single muscle fibers. Anglo-Saxon Authors provided us with many significant terms, in order to point out alterations of the enzymes distribution within the single muscle fiber: moth eaten, target fiber, rods, central core, subsarcolemmal blebs. Some of these alterations, seen

  17. Survey of the functional priorities in patients with disability due to neuromuscular disorders.

    Science.gov (United States)

    Jerath, Nivedita U; Simoens, Kevin; Mann, Dylan; Kollasch, Steph; Grosland, Nicole; Malik, Karim A; Reddy, Chandan G

    2017-12-08

    Survey of the functional priorities in patients with disability due to neuromuscular disorders. This study attempts to determine the functional priorities for patients with neuromuscular disorders. A survey asking about functional priorities with respect to activities of daily living, ankle foot orthotic design, and assistive device design, was distributed to patients with neuromuscular disorders to assess the needs of patients from their perspectives. Descriptive statistics were used to analyse answers. A total of 171 subjects with neuromuscular disorders responded to the questionnaire. Of the respondents with weakness in both the upper and lower extremities, 45% stated that if they had to choose between correction of one or the other, they would prefer that of their lower extremities. Activities that patients most frequently wanted to gain independence with were mobility and transfers (46%), followed by toilet use and hygiene (32%). The most popular control mechanism of an assistive device was voice activation (35%). This study assessed the functional priorities of those with neuromuscular disorders. Although such individuals can experience a range of weakness in the upper and/or lower extremities, common functional priorities were reported: independence with mobility, transfers, toilet use and hygiene. Knowledge of these priorities will help guide development of assistive devices that will restore function in the future. Implications for Rehabilitation     Neuromuscular Disorders  • Neuromuscular disorders result in disabling weakness; there are few cures and many are unable to carry out activities of daily living.  • Information that would be helpful in determining functional priorities is limited.  • In a survey of 171 patients with neuromuscular disorders, functional priorities included mobility and transfers (46%), followed by toilet use and hygiene (32%).  • Of the respondents with weakness in both the upper and lower

  18. Vocational perspectives and neuromuscular disorders.

    Science.gov (United States)

    Andries, F; Wevers, C W; Wintzen, A R; Busch, H F; Höweler, C J; de Jager, A E; Padberg, G W; de Visser, M; Wokke, J H

    1997-09-01

    The present study analyses the actual occupational situation, vocational handicaps and past labour career of a group of about 1000 Dutch patients suffering from a neuromuscular disorder (NMD). On the basis of the likelihood of a substantial employment history and sufficient numbers of patients, four types of NMD were selected: dystrophia myotonica (DM), hereditary motor and sensory neuropathy, (HMSN), spinal muscular atrophy (SMA) and myasthenia gravis (MG). Results show that a labour career is in reach of most NMD patients, even for those with severe limitations. It is concluded that physical limitations seem not to be decisive in that respect. The loss of the quality of communication, the loss of mental abilities and the effect of the diseases on the facial expression, as with some DM patients, are also important for chances on the labour market. Though the labour participation of NMD patients tends to decrease after the age of 34, the availability of work adaptations makes it possible to prolong the labour career. Analysis of the actual work situation of NMD patients shows that both disorder-related limitations and work characteristics play an important role in the amount of physical work problems encountered. It is argued that physical labour has to be regarded as generally unsuitable for NMD patients. This has implications for the sort and level of education to be attained by NMD patients. Career counselling as a focus point for the choice of an educational programme may improve labour market opportunities as well as quality of employment of NMD patients. Allowing for and accepting the possible effects of the disorder in the work situation are considered to be important in respect to labour participation and work satisfaction of workers with NMD. Reducing time pressure demands and increasing the freedom to organize one's work, are measures to be given especial consideration.

  19. Intrauterine neuromuscular blockade in fetus.

    Science.gov (United States)

    Fan, S Z; Huang, F Y; Lin, S Y; Wang, Y P; Hsieh, F J

    1990-03-01

    Antenatal intrauterine fetal therapy has now become the target of numerous invasive diagnostic and therapeutic maneuvers. Fetal motion during intrauterine fetal therapy not only makes these procedures technically more difficult but also increases the likelihood of trauma to the umbilical vessels and the fetus. Combination of high doses of sedatives, tranquilizers, and narcotics rarely results in adequate suppression of fetal movement. Such medication puts the mother at risk of respiratory depression, regurgitation and aspiration. The use of pancuronium or atracurium to temporarily arrest fetal movement in ten fetus is reported. After an initial ultrasound assessment of fetal lie, placental location, and umbilical cord insertion site, the fetal weight was calculated by the ultrasound parameters of biparietal diameter and abdominal circumference. Under ultrasound guidance, we injected pancuronium 0.15 mg/kg or atracurium 1.0 mg/kg using a 23-gauge spinal needle into the fetal gluteal muscle. Short-term paralysis of the fetus was induced in all cases. Fetal movement stopped by sonographic observation within 5.8 +/- 2.3 min in the pancuronium group and 4.7 +/- 1.8 min in the atracurium group. Fetal movements returned both to maternal sensation or ultrasonic observation by 92 +/- 23 min in the first group and 36 +/- 11 min in the second group. No adverse effect of the relaxant has been observed in any of the mothers. There was no evidence of local soft tissue, nerve or muscle damage at the site of injection on initial examination of the neonates after delivery. The use of neuromuscular relaxant in fetus was a safe and useful method.

  20. Protein defects in neuromuscular diseases

    Directory of Open Access Journals (Sweden)

    Vainzof M.

    2003-01-01

    Full Text Available Muscular dystrophies are a heterogeneous group of genetically determined progressive disorders of the muscle with a primary or predominant involvement of the pelvic or shoulder girdle musculature. The clinical course is highly variable, ranging from severe congenital forms with rapid progression to milder forms with later onset and a slower course. In recent years, several proteins from the sarcolemmal muscle membrane (dystrophin, sarcoglycans, dysferlin, caveolin-3, from the extracellular matrix (alpha2-laminin, collagen VI, from the sarcomere (telethonin, myotilin, titin, nebulin, from the muscle cytosol (calpain 3, TRIM32, from the nucleus (emerin, lamin A/C, survival motor neuron protein, and from the glycosylation pathway (fukutin, fukutin-related protein have been identified. Mutations in their respective genes are responsible for different forms of neuromuscular diseases. Protein analysis using Western blotting or immunohistochemistry with specific antibodies is of the utmost importance for the differential diagnosis and elucidation of the physiopathology of each genetic disorder involved. Recent molecular studies have shown clinical inter- and intra-familial variability in several genetic disorders highlighting the importance of other factors in determining phenotypic expression and the role of possible modifying genes and protein interactions. Developmental studies can help elucidate the mechanism of normal muscle formation and thus muscle regeneration. In the last fifteen years, our research has focused on muscle protein expression, localization and possible interactions in patients affected by different forms of muscular dystrophies. The main objective of this review is to summarize the most recent findings in the field and our own contribution.

  1. Mindfulness meditation training alters stress-related amygdala resting state functional connectivity: a randomized controlled trial.

    Science.gov (United States)

    Taren, Adrienne A; Gianaros, Peter J; Greco, Carol M; Lindsay, Emily K; Fairgrieve, April; Brown, Kirk Warren; Rosen, Rhonda K; Ferris, Jennifer L; Julson, Erica; Marsland, Anna L; Bursley, James K; Ramsburg, Jared; Creswell, J David

    2015-12-01

    Recent studies indicate that mindfulness meditation training interventions reduce stress and improve stress-related health outcomes, but the neural pathways for these effects are unknown. The present research evaluates whether mindfulness meditation training alters resting state functional connectivity (rsFC) of the amygdala, a region known to coordinate stress processing and physiological stress responses. We show in an initial discovery study that higher perceived stress over the past month is associated with greater bilateral amygdala-subgenual anterior cingulate cortex (sgACC) rsFC in a sample of community adults (n = 130). A follow-up, single-blind randomized controlled trial shows that a 3-day intensive mindfulness meditation training intervention (relative to a well-matched 3-day relaxation training intervention without a mindfulness component) reduced right amygdala-sgACC rsFC in a sample of stressed unemployed community adults (n = 35). Although stress may increase amygdala-sgACC rsFC, brief training in mindfulness meditation could reverse these effects. This work provides an initial indication that mindfulness meditation training promotes functional neuroplastic changes, suggesting an amygdala-sgACC pathway for stress reduction effects. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  2. [Deep versus moderate neuromuscular block during one-lung ventilation in lung resection surgery].

    Science.gov (United States)

    Casanova, Javier; Piñeiro, Patricia; De La Gala, Francisco; Olmedilla, Luis; Cruz, Patricia; Duque, Patricia; Garutti, Ignacio

    Neuromuscular relaxants are essential during general anesthesia for several procedures. Classical anesthesiology literature indicates that the use of neuromuscular blockade in thoracic surgery may be deleterious in patients in lateral decubitus position in one-lung ventilation. The primary objective of our study was to compare respiratory function according to the degree of patient neuromuscular relaxation. Secondary, we wanted to check that neuromuscular blockade during one-lung ventilation is not deleterious. A prospective, longitudinal observational study was made in which each patient served as both treated subject and control. 76 consecutive patients programmed for lung resection surgery in Gregorio Marañon Hospital along the year of 2013 who required one-lung ventilation in lateral decubitus were included. Ventilator data, hemodynamic parameters were registered in different moments according to train-of-four response (intense, deep and moderate blockade) during one-lung ventilation. Peak, plateau and mean pressures were significantly lower during the intense and deep blockade. Besides, compliance and peripheral oxygen saturation were significantly higher in those moments. Heart rate was significantly higher during deep blockade. No mechanical ventilation parameters were modified during measurements. Deep neuromuscular blockade attenuates the poor lung mechanics observed during one-lung ventilation. Copyright © 2016 Sociedade Brasileira de Anestesiologia. Publicado por Elsevier Editora Ltda. All rights reserved.

  3. 21 CFR 882.5810 - External functional neuromuscular stimulator.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false External functional neuromuscular stimulator. 882.5810 Section 882.5810 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... External functional neuromuscular stimulator. (a) Identification. An external functional neuromuscular...

  4. Fractal analysis of heart rate variability reveals alterations of the integrative autonomic control of circulation in paraplegic individuals.

    Science.gov (United States)

    Castiglioni, Paolo; Merati, Giampiero

    2017-05-01

    The autonomic nervous system plays a major role in the integrative control of circulation, possibly contributing to the 'complex' dynamics responsible for fractal components in heart rate variability. Aim of this study is to evaluate whether an altered autonomic integrative control is identified by fractal analysis of heart rate variability. We enrolled 14 spinal cord injured individuals with complete lesion between the 5th and 11th thoracic vertebra (SCI H ), 14 with complete lesion between 12th thoracic and 5th lumbar vertebra (SCI L ), and 34 able-bodied controls (AB). These paraplegic subjects have an altered autonomic integrative regulation, but intact autonomic cardiac control and, as to SCI L individuals, intact autonomic splanchnic control. Power spectral and fractal analysis (temporal spectrum of scale coefficients) were performed on 10 min tachograms. AB and SCI L power spectra were similar, while the SCI L fractal spectrum had higher coefficients between 12 and 48 s. SCI H individuals had lower power than controls at 0.1 Hz; their fractal spectrum was morphologically different, diverging from that of controls at the largest scales (120 s). Therefore, when the lesion compromises the autonomic control of lower districts, fractal analysis reveals alterations undetected by power spectral analysis of heart rate variability.

  5. Research highlights of partial neuromuscular disorders

    Directory of Open Access Journals (Sweden)

    Cheng ZHANG

    2014-05-01

    Full Text Available In order to understand the latest progression on neuromuscular disorders for clinicians, this review screened and systemized the papers on neuromuscular disorders which were collected by PubMed from January 2013 to February 2014. This review also introduced the clinical diagnosis and treatment hightlights on glycogen storage disease type Ⅱ (GSD Ⅱ, Duchenne muscular dystrophy (DMD, amyotrophic lateral sclerosis (ALS and spinal muscular atrophy (SMA. The important references will be useful for clinicians. doi: 10.3969/j.issn.1672-6731.2014.05.004

  6. Computed tomography (CT) in neuromuscular disorders

    International Nuclear Information System (INIS)

    Novak, M.; Ambler, Z.

    1997-01-01

    For 24 patients with confirmed neuromuscular disorders, the clinical picture of the disease was complemented with CT examination. It is concluded, in accordance with the literature, that CT has a supplementary value as regards the extent and degree of disorder of the affected muscle groups. The basic pathological picture includes muscular atrophies, dystrophies, hypertrophies, and their combinations. The CT images are non-specific for the individual neuromuscular disorders and are of minor importance in the diagnostic process. 1 tab., 7 figs., 6 refs

  7. Antivenom for Neuromuscular Paralysis Resulting From Snake Envenoming.

    Science.gov (United States)

    Silva, Anjana; Hodgson, Wayne C; Isbister, Geoffrey K

    2017-04-19

    Antivenom therapy is currently the standard practice for treating neuromuscular dysfunction in snake envenoming. We reviewed the clinical and experimental evidence-base for the efficacy and effectiveness of antivenom in snakebite neurotoxicity. The main site of snake neurotoxins is the neuromuscular junction, and the majority are either: (1) pre-synaptic neurotoxins irreversibly damaging the presynaptic terminal; or (2) post-synaptic neurotoxins that bind to the nicotinic acetylcholine receptor. Pre-clinical tests of antivenom efficacy for neurotoxicity include rodent lethality tests, which are problematic, and in vitro pharmacological tests such as nerve-muscle preparation studies, that appear to provide more clinically meaningful information. We searched MEDLINE (from 1946) and EMBASE (from 1947) until March 2017 for clinical studies. The search yielded no randomised placebo-controlled trials of antivenom for neuromuscular dysfunction. There were several randomised and non-randomised comparative trials that compared two or more doses of the same or different antivenom, and numerous cohort studies and case reports. The majority of studies available had deficiencies including poor case definition, poor study design, small sample size or no objective measures of paralysis. A number of studies demonstrated the efficacy of antivenom in human envenoming by clearing circulating venom. Studies of snakes with primarily pre-synaptic neurotoxins, such as kraits ( Bungarus spp.) and taipans ( Oxyuranus spp.) suggest that antivenom does not reverse established neurotoxicity, but early administration may be associated with decreased severity or prevent neurotoxicity. Small studies of snakes with mainly post-synaptic neurotoxins, including some cobra species ( Naja spp.), provide preliminary evidence that neurotoxicity may be reversed with antivenom, but placebo controlled studies with objective outcome measures are required to confirm this.

  8. Effectiveness of electric toothbrushing in patients with neuromuscular disability: A randomized observer-blind crossover trial.

    Science.gov (United States)

    Ikeda, Tokuhei; Yoshizawa, Kunio; Takahashi, Kazuya; Ishida, Chiho; Komai, Kiyonobu; Kobayashi, Kazuhiko; Sugiura, Shirou

    2016-01-01

    To evaluate the effectiveness of an electric toothbrush for oral care in patients with neuromuscular disability. In this randomized observer-blind crossover trial, 30 patients with neuromuscular disease performed either electric or manual toothbrushing each for 4 weeks. Plaque status (plaque control record), periodontal pocket depth, oral status (oral assessment guide), salivary bacterial count, and toothbrushing time were assessed after each period and compared between the two groups by Wilcoxon signed-rank test. Twenty-eight patients completed the study, including 18 communicative patients. Periodontal pockets were significantly shallower and toothbrushing time was significantly shorter with electric toothbrush use than with manual toothbrush use. No significant differences in oral status and salivary bacterial counts were noted between the approaches, but plaque status significantly improved after electric toothbrushing in communicative patients. Electric toothbrushing is beneficial for maintaining oral health in patients with neuromuscular disability and reducing the caregivers' oral care burden. © 2015 Special Care Dentistry Association and Wiley Periodicals, Inc.

  9. Postoperative effects of neuromuscular exercise prior to hip or knee arthroplasty

    DEFF Research Database (Denmark)

    Villadsen, Allan; Overgaard, Søren; Holsgaard-Larsen, Anders

    2014-01-01

    neuromuscular exercise prior to total joint arthroplasty (TJA) of the hip or knee did not confer additional benefits 3 months postoperatively compared with TJA alone. However, the intervention group experienced a statistically significant short-term benefit in ADL and pain, suggesting an earlier onset......OBJECTIVE: To investigate the postoperative efficacy of a supervised programme of neuromuscular exercise prior to hip or knee arthroplasty. METHODS: In this assessor-blinded randomised controlled trial, we included 165 patients scheduled for hip or knee arthroplasty due to severe osteoarthritis (OA......). An 8-week preoperative neuromuscular supervised exercise programme was delivered twice a week for 1 h as adjunct treatment to the standard arthroplasty procedure and compared with the standard arthroplasty procedure alone. The primary outcome was self-reported physical function measured...

  10. Altered flexion-relaxation responses exist during asymmetric trunk flexion movements among persons with unilateral lower-limb amputation.

    Science.gov (United States)

    Hendershot, Brad D; Nussbaum, Maury A

    2014-02-01

    Repetitive exposures to altered gait and movement following lower-limb amputation (LLA) have been suggested to contribute to observed alterations in passive tissue properties and neuromuscular control in/surrounding the lumbar spine. These alterations, in turn, may affect the synergy between passive and active tissues during trunk movements. Eight males with unilateral LLA and eight non-amputation controls completed quasi-static trunk flexion-extension movements in seven distinct conditions of rotation in the transverse plane: 0° (sagittally-symmetric), ±15°, ±30°, and ±45° (sagittally-asymmetric). Electromyographic (EMG) activity of the bilateral lumbar erector spinae and lumbar kinematics were simultaneously recorded. Peak lumbar flexion and EMG-off angles were determined, along with the difference ("DIFF") between these two angles and the magnitude of peak normalized EMG activities. Persons with unilateral LLA exhibited altered and asymmetric synergies between active and passive trunk tissues during both sagittally-symmetric and -asymmetric trunk flexion movements. Specifically, decreased and asymmetric passive contributions to trunk movements were compensated with increases in the magnitude and duration of active trunk muscle responses. Such alterations in trunk passive and active neuromuscular responses may result from repetitive exposures to abnormal gait and movement subsequent to LLA, and may increase the risk for LBP in this population. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Influence of a twelve-month conditioning program on physical growth, serum hormones, and neuromuscular performance of peripubertal male fencers.

    Science.gov (United States)

    Tsolakis, Charilaos K; Bogdanis, Gregory C; Vagenas, George K; Dessypris, Athanasios G

    2006-11-01

    This study examined the effects of a typical fencing training program on selected hormones, neuromuscular performance, and anthropometric parameters in peripubertal boys. Two sets of measurements, before training and after 12 months of training, were performed on 2 groups of 11- to 13-year-old boys. One group consisted of fencers (n = 8), who trained regularly for the 12-month period, and the other group (n = 8) consisted of inactive children of the same age. There was no difference in Tanner's maturation stage of the 2 groups before (controls, 2.5 +/- 0.3; fencers, 2.1 +/- 0.3) and after the 12 months (controls, 3.0 +/- 0.3; fencers, 3.0 +/- 0.3). Serum testosterone, growth hormone, sex hormone binding globulin, free androgen index, and leptin changed significantly over time, reaching similar values in the 2 groups at the end of the study. Significantly greater increases in body mass (16 +/- 3%) and leg cross-sectional area (CSA) (32 +/- 7%) were observed only in the fencers' group, and these differences disappeared when height was set as a changing covariate. Although there was a greater increase in height for the fencers compared to the control group (8.6 +/- 1.2 vs. 3.6 +/- 0.9 cm, p hormones and did not influence the normal growth process, as this was reflected by changes in selected anthropometric and neuromuscular performance parameters. This may be because of the characteristics of the present fencing training program, which may not be adequate to alter children's hormonal functions in such a way as to override the rapid changes occurring during puberty.

  12. Change in running kinematics after cycling are related to alterations in running economy in triathletes.

    Science.gov (United States)

    Bonacci, Jason; Green, Daniel; Saunders, Philo U; Blanch, Peter; Franettovich, Melinda; Chapman, Andrew R; Vicenzino, Bill

    2010-07-01

    Emerging evidence suggests that cycling may influence neuromuscular control during subsequent running but the relationship between altered neuromuscular control and run performance in triathletes is not well understood. The aim of this study was to determine if a 45 min high-intensity cycle influences lower limb movement and muscle recruitment during running and whether changes in limb movement or muscle recruitment are associated with changes in running economy (RE) after cycling. RE, muscle activity (surface electromyography) and limb movement (sagittal plane kinematics) were compared between a control run (no preceding cycle) and a run performed after a 45 min high-intensity cycle in 15 moderately trained triathletes. Muscle recruitment and kinematics during running after cycling were altered in 7 of 15 (46%) triathletes. Changes in kinematics at the knee and ankle were significantly associated with the change in VO(2) after cycling (precruitment in some triathletes and that changes in kinematics, especially at the ankle, are closely related to alterations in running economy after cycling. Copyright 2010 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  13. A neuromuscular monitoring system based on a personal computer.

    Science.gov (United States)

    White, D A; Hull, M

    1992-07-01

    We have developed a computerized neuromuscular monitoring system (NMMS) using commercially available subsystems, i.e., computer equipment, clinical nerve stimulator, force transducer, and strip-chart recorder. This NMMS was developed for acquisition and analysis of data for research and teaching purposes. Computer analysis of the muscle response to stimulation allows graphic and numeric presentation of the twitch response and calculated ratios. Since the system can store and recall data, research data can be accessed for analysis and graphic presentation. An IBM PC/AT computer is used as the central controller and data processor. The computer controls timing of the nerve stimulator output, initiates data acquisition, and adjusts the paper speed of the strip chart recorder. The data processing functions include establishing control response values (when no neuromuscular blockade is present), displaying force versus time and calculated data graphically and numerically, and storing these data for further analysis. The general purpose nature of the computer and strip chart recording equipment allow modification of the system primarily by changes in software. For example, new patterns of nerve stimulation, such as the posttetanic count, can be programmed into the computer system along with appropriate data display and analysis routines. The NMMS has functioned well in the operating room environment. We have had no episodes of electrocautery interference with the computer functions. The automated features have enhanced the utility of the NMMS.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Neuromuscular rate of force development deficit in Parkinson disease.

    Science.gov (United States)

    Hammond, Kelley G; Pfeiffer, Ronald F; LeDoux, Mark S; Schilling, Brian K

    2017-06-01

    Bradykinesia and reduced neuromuscular force exist in Parkinson disease. The interpolated twitch technique has been used to evaluate central versus peripheral manifestations of neuromuscular strength in healthy, aging, and athletic populations, as well as moderate to advanced Parkinson disease, but this method has not been used in mild Parkinson disease. This study aimed to evaluate quadriceps femoris rate of force development and quantify potential central and peripheral activation deficits in individuals with Parkinson disease. Nine persons with mild Parkinson Disease (Hoehn & Yahr≤2, Unified Parkinson Disease Rating Scale total score=mean 19.1 (SD 5.0)) and eight age-matched controls were recruited in a cross-sectional investigation. Quadriceps femoris voluntary and stimulated maximal force and rate of force development were evaluated using the interpolated twitch technique. Thirteen participants satisfactorily completed the protocol. Individuals with early Parkinson disease (n=7) had significantly slower voluntary rate of force development (p=0.008; d=1.97) and rate of force development ratio (p=0.004; d=2.18) than controls (n=6). No significant differences were found between groups for all other variables. Persons with mild-to-moderate Parkinson disease display disparities in rate of force development, even without deficits in maximal force. The inability to produce force at a rate comparable to controls is likely a downstream effect of central dysfunction of the motor pathway in Parkinson disease. Copyright © 2017. Published by Elsevier Ltd.

  15. Intrinsic Noise Profoundly Alters the Dynamics and Steady State of Morphogen-Controlled Bistable Genetic Switches

    Science.gov (United States)

    Page, Karen M.

    2016-01-01

    During tissue development, patterns of gene expression determine the spatial arrangement of cell types. In many cases, gradients of secreted signalling molecules—morphogens—guide this process by controlling downstream transcriptional networks. A mechanism commonly used in these networks to convert the continuous information provided by the gradient into discrete transitions between adjacent cell types is the genetic toggle switch, composed of cross-repressing transcriptional determinants. Previous analyses have emphasised the steady state output of these mechanisms. Here, we explore the dynamics of the toggle switch and use exact numerical simulations of the kinetic reactions, the corresponding Chemical Langevin Equation, and Minimum Action Path theory to establish a framework for studying the effect of gene expression noise on patterning time and boundary position. This provides insight into the time scale, gene expression trajectories and directionality of stochastic switching events between cell states. Taking gene expression noise into account predicts that the final boundary position of a morphogen-induced toggle switch, although robust to changes in the details of the noise, is distinct from that of the deterministic system. Moreover, the dramatic increase in patterning time close to the boundary predicted from the deterministic case is substantially reduced. The resulting stochastic switching introduces differences in patterning time along the morphogen gradient that result in a patterning wave propagating away from the morphogen source with a velocity determined by the intrinsic noise. The wave sharpens and slows as it advances and may never reach steady state in a biologically relevant time. This could explain experimentally observed dynamics of pattern formation. Together the analysis reveals the importance of dynamical transients for understanding morphogen-driven transcriptional networks and indicates that gene expression noise can qualitatively

  16. Intrinsic Noise Profoundly Alters the Dynamics and Steady State of Morphogen-Controlled Bistable Genetic Switches.

    Directory of Open Access Journals (Sweden)

    Ruben Perez-Carrasco

    2016-10-01

    Full Text Available During tissue development, patterns of gene expression determine the spatial arrangement of cell types. In many cases, gradients of secreted signalling molecules-morphogens-guide this process by controlling downstream transcriptional networks. A mechanism commonly used in these networks to convert the continuous information provided by the gradient into discrete transitions between adjacent cell types is the genetic toggle switch, composed of cross-repressing transcriptional determinants. Previous analyses have emphasised the steady state output of these mechanisms. Here, we explore the dynamics of the toggle switch and use exact numerical simulations of the kinetic reactions, the corresponding Chemical Langevin Equation, and Minimum Action Path theory to establish a framework for studying the effect of gene expression noise on patterning time and boundary position. This provides insight into the time scale, gene expression trajectories and directionality of stochastic switching events between cell states. Taking gene expression noise into account predicts that the final boundary position of a morphogen-induced toggle switch, although robust to changes in the details of the noise, is distinct from that of the deterministic system. Moreover, the dramatic increase in patterning time close to the boundary predicted from the deterministic case is substantially reduced. The resulting stochastic switching introduces differences in patterning time along the morphogen gradient that result in a patterning wave propagating away from the morphogen source with a velocity determined by the intrinsic noise. The wave sharpens and slows as it advances and may never reach steady state in a biologically relevant time. This could explain experimentally observed dynamics of pattern formation. Together the analysis reveals the importance of dynamical transients for understanding morphogen-driven transcriptional networks and indicates that gene expression noise can

  17. Aging alters muscle reflex control of autonomic cardiovascular responses to rhythmic contractions in humans.

    Science.gov (United States)

    Sidhu, Simranjit K; Weavil, Joshua C; Venturelli, Massimo; Rossman, Matthew J; Gmelch, Benjamin S; Bledsoe, Amber D; Richardson, Russell S; Amann, Markus

    2015-11-01

    We investigated the influence of aging on the group III/IV muscle afferents in the exercise pressor reflex-mediated cardiovascular response to rhythmic exercise. Nine old (OLD; 68 ± 2 yr) and nine young (YNG; 24 ± 2 yr) males performed single-leg knee extensor exercise (15 W, 30 W, 80% max) under control conditions and with lumbar intrathecal fentanyl impairing feedback from group III/IV leg muscle afferents. Mean arterial pressure (MAP), cardiac output, leg blood flow (QL), systemic (SVC) and leg vascular conductance (LVC) were continuously determined. With no hemodynamic effect at rest, fentanyl blockade during exercise attenuated both cardiac output and QL ∼17% in YNG, while the decrease in cardiac output in OLD (∼5%) was significantly smaller with no impact on QL (P = 0.8). Therefore, in the face of similar significant ∼7% reduction in MAP during exercise with fentanyl blockade in both groups, LVC significantly increased ∼11% in OLD, but decreased ∼8% in YNG. The opposing direction of change was reflected in SVC with a significant ∼5% increase in OLD and a ∼12% decrease in YNG. Thus while cardiac output seems to account for the majority of group III/IV-mediated MAP responses in YNG, the impact of neural feedback on the heart may decrease with age and alterations in SVC become more prominent in mediating the similar exercise pressor reflex in OLD. Interestingly, in terms of peripheral hemodynamics, while group III/IV-mediated feedback plays a clear role in increasing LVC during exercise in the YNG, these afferents seem to actually reduce LVC in OLD. These peripheral findings may help explain the limited exercise-induced peripheral vasodilation often associated with aging. Copyright © 2015 the American Physiological Society.

  18. Effects of a short proprioceptive neuromuscular facilitation stretching bout on quadriceps neuromuscular function, flexibility, and vertical jump performance.

    Science.gov (United States)

    Place, Nicolas; Blum, Yannick; Armand, Stéphane; Maffiuletti, Nicola A; Behm, David G

    2013-02-01

    The inclusion of relatively long bouts of stretching (repeated static stretches of ∼30 seconds) in the warm-up is usually associated with a drop in muscle performance. The purpose of this study was to assess the effect of a novel self-administered proprioceptive neuromuscular facilitation (PNF) paradigm with short periods of stretching and contraction on quadriceps neuromuscular function, vertical jump performance, and articular range of motion (ROM). Twelve healthy men (age: 27.7 ± 7.3 years, height: 178.4 ± 10.4 cm, weight: 73.8 ± 16.9 kg) volunteered to participate in a PNF session and a control session separated by 2-7 days. The PNF stretching lasted 2 minutes and consisted of 4 sets of 5-second isometric hamstring contraction immediately followed by 5 seconds of passive static stretch of the quadriceps immediately followed by 5 seconds isometric quadriceps contraction for each leg. For the control session, the participants were asked to walk at a comfortable speed for 2 minutes. Active ROM of knee flexion, vertical jump performance, and quadriceps neuromuscular function were tested before, immediately after, and 15 minutes after the intervention. The PNF stretching procedure did not affect ROM, squat jump, and countermovement jump performances. Accordingly, we did not observe any change in maximal voluntary contraction force, voluntary activation level, M-wave and twitch contractile properties that could be attributed to PNF stretching. The present self-administered PNF stretching of the quadriceps with short (5-second) stretches is not recommended before sports where flexibility is mandatory for performance.

  19. Neuromuscular hamartoma arising in the brachial plexus

    International Nuclear Information System (INIS)

    Lai, P.H.; Chen, C.; Yeh, L.R.; Pan, H.B.; Ho, J.T.; Hsu, S.S.; Lin, S.L.

    2004-01-01

    We report a case brachial plexus neuromuscular hamartoma (choristoma) in a 28-year-old man who complained of numbness of the left hand and forearm for several years. MRI revealed a circumscribed, rounded mass in the left brachial plexus. The patient is well 2 years after surgery, with no neurological deficit. (orig.)

  20. Neuromuscular contributions to age-related weakness

    Science.gov (United States)

    Age-related physiological change of neuromuscular function is not a linear process and is likely influenced by various biological and behavioral factors (e.g., genetics, nutrition, physical activity level, comorbidities, etc.). These factors contribute to heterogeneity among older adults, which chal...

  1. Sugammadex Improves Neuromuscular Function in Patients ...

    African Journals Online (AJOL)

    2018-02-23

    Feb 23, 2018 ... aminoglycosides), history of allergy to neuromuscular blocking agents, opioids or other drugs, and alcohol and drug dependence. Patients were divided into two ... titration microcalorimetry investigated the likelihood of the formation of complexes between sugammadex and other steroidal and nonsteroidal ...

  2. MRC Centre Neuromuscular Biobank (Newcastle and London): Supporting and facilitating rare and neuromuscular disease research worldwide.

    Science.gov (United States)

    Reza, Mojgan; Cox, Daniel; Phillips, Lauren; Johnson, Diana; Manoharan, Vaishnavi; Grieves, Michael; Davis, Becky; Roos, Andreas; Morgan, Jennifer; Hanna, Michael G; Muntoni, Francesco; Lochmüller, Hanns

    2017-11-01

    Neuromuscular diseases are both genetic and acquired conditions resulting in progressive muscle weakness and wasting which lead to disability and reduced survival. The availability of high-quality human biomaterial is crucial to support biomedical research with potential applications at all stages of development, from molecular pathophysiology to drug discovery, clinical trials and evaluation of biomarkers. Although significant progress has been made over the last few years in the diagnosis of these rare conditions, the genetic defect and underlying pathological abnormality remain unknown in approximately 1/3 of cases. Moreover, to date no definitive cure is available for most neuromuscular disorders, nor are there sufficiently reliable and specific biomarkers to monitor disease progression and response to treatment. This is in part due to the rarity and genetic heterogeneity of neuromuscular diseases and the lack of access to patient samples. The availability of the national MRC Centre Biobank for Neuromuscular Diseases in Newcastle and London has addressed this bottleneck and supported neuromuscular research. Nine years after the establishment of the MRC Centre Biobank, many high profile research publications have highlighted the positive impact of neuromuscular biobanking for translational research and proven this facility to be a unique repository source for diagnostics, basic science research, industry, drug development, and therapy. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Clinical use of creatine in neuromuscular and neurometabolic disorders.

    Science.gov (United States)

    Tarnopolsky, Mark A

    2007-01-01

    Many of the neuromuscular (e.g., muscular dystrophy) and neurometabolic (e.g., mitochondrial cytopathies) disorders share similar final common pathways of cellular dysfunction that may be favorably influenced by creatine monohydrate (CrM) supplementation. Studies using the mdx model of Duchenne muscular dystrophy have found evidence of enhanced mitochondrial function, reduced intra-cellular calcium and improved performance with CrM supplementation. Clinical trials in patients with Duchenne and Becker's muscular dystrophy have shown improved function, fat-free mass, and some evidence of improved bone health with CrM supplementation. In contrast, the improvements in function in myotonic dystrophy and inherited neuropathies (e.g., Charcot-Marie-Tooth) have not been significant. Some studies in patients with mitochondrial cytopathies have shown improved muscle endurance and body composition, yet other studies did not find significant improvements in patients with mitochondrial cytopathy. Lower-dose CrM supplementation in patients with McArdle's disease (myophosphorylase deficiency) improved exercise capacity, yet higher doses actually showed some indication of worsened function. Based upon known cellular pathologies, there are potential benefits from CrM supplementation in patients with steroid myopathy, inflammatory myopathy, myoadenylate deaminase deficiency, and fatty acid oxidation defects. Larger randomized control trials (RCT) using homogeneous patient groups and objective and clinically relevant outcome variables are needed to determine whether creatine supplementation will be of therapeutic benefit to patients with neuromuscular or neurometabolic disorders. Given the relatively low prevalence of some of the neuromuscular and neurometabolic disorders, it will be necessary to use surrogate markers of potential clinical efficacy including markers of oxidative stress, cellular energy charge, and gene expression patterns.

  4. Mirror Visual Feedback Induces Lower Neuromuscular Activity in Children with Spastic Hemiparetic Cerebral Palsy

    Science.gov (United States)

    Feltham, Max G.; Ledebt, Annick; Deconinck, Frederik J. A.; Savelsbergh, Geert J. P.

    2010-01-01

    The study examined the effects of mirror feedback information on neuromuscular activation during bimanual coordination in eight children with spastic hemiparetic cerebral palsy (SHCP) and a matched control group. The "mirror box" creates a visual illusion, which gives rise to a visual perception of a zero lag, symmetric movement between the two…

  5. Neuromuscular Adaptations to Eccentric Strength Training in Children and Adolescents with Cerebral Palsy

    Science.gov (United States)

    Reid, Siobhan; Hamer, Peter; Alderson, Jacqueline; Lloyd, David

    2010-01-01

    Aim: To determine the neuromuscular outcomes of an eccentric strength-training programme for children and adolescents with cerebral palsy (CP). Method: In this randomised, parallel-group trial with waiting control, 14 participants with CP (six males, eight females; mean age 11y, SD 2y range 9-15y), diagnosed with upper-limb spasticity were…

  6. DNA methylation changes separate allergic patients from healthy controls and may reflect altered CD4+ T-cell population structure.

    Directory of Open Access Journals (Sweden)

    Colm E Nestor

    2014-01-01

    Full Text Available Altered DNA methylation patterns in CD4(+ T-cells indicate the importance of epigenetic mechanisms in inflammatory diseases. However, the identification of these alterations is complicated by the heterogeneity of most inflammatory diseases. Seasonal allergic rhinitis (SAR is an optimal disease model for the study of DNA methylation because of its well-defined phenotype and etiology. We generated genome-wide DNA methylation (N(patients = 8, N(controls = 8 and gene expression (N(patients = 9, Ncontrols = 10 profiles of CD4(+ T-cells from SAR patients and healthy controls using Illumina's HumanMethylation450 and HT-12 microarrays, respectively. DNA methylation profiles clearly and robustly distinguished SAR patients from controls, during and outside the pollen season. In agreement with previously published studies, gene expression profiles of the same samples failed to separate patients and controls. Separation by methylation (N(patients = 12, N(controls = 12, but not by gene expression (N(patients = 21, N(controls = 21 was also observed in an in vitro model system in which purified PBMCs from patients and healthy controls were challenged with allergen. We observed changes in the proportions of memory T-cell populations between patients (N(patients = 35 and controls (N(controls = 12, which could explain the observed difference in DNA methylation. Our data highlight the potential of epigenomics in the stratification of immune disease and represents the first successful molecular classification of SAR using CD4(+ T cells.

  7. O uso de bloqueadores neuromusculares no Brasil El uso de bloqueadores neuromusculares en Brasil Neuromuscular blockers in Brazil

    Directory of Open Access Journals (Sweden)

    Maria Cristina Simões de Almeida

    2004-12-01

    Full Text Available JUSTIFICATIVA E OBJETIVOS: Dados estatísticos referentes ao uso de bloqueadores neuromusculares no Brasil são desconhecidos. Este trabalho se propõe a análise estatística desse tópico. MÉTODO: Foram compiladas 831 respostas de um questionário preenchido em parte por anestesiologistas presentes ao 48º Congresso Brasileiro de Anestesiologia em Recife, 2001 e em parte via Internet, por anestesiologistas cujos endereços eletrônicos constam na página da Sociedade Brasileira de Anestesiologia (www.sba.com.br. Foram analisados os seguintes dados: tempo de contato com a especialidade, região onde atuam os anestesiologistas, uso de bloqueadores neuromusculares (BNM em ordem de preferência, indicações do uso de succinilcolina, uso do monitor da transmissão neuromuscular, critérios para se considerar o paciente descurarizado, uso de neostigmina, forma de administração dos BNM e descrição de complicações observadas. RESULTADOS: A maioria dos anestesiologistas em questão exerce a profissão há mais de 11 anos e o maior número de respostas foi proveniente da região sudeste do Brasil. O BNM mais empregado é o atracúrio, seguido de pancurônio e succinilcolina. A succinilcolina é mais empregada na indução rápida e em crianças (80% e 25% respectivamente. Monitores da transmissão neuromuscular, 53% dos anestesiologistas nunca usam, e como critério de recuperação, 92% consideram o paciente descurarizado mediante sinais clínicos. Em 45% das vezes os profissionais empregam a neostigmina de forma rotineira, e 94% administra os BNM sob forma de bolus. Cerca de 30% registra ter havido complicação decorrente do uso de BNM. As complicações mais apontadas foram o bloqueio prolongado, o broncoespasmo grave e a curarização residual. CONCLUSÕES: O atracúrio é o bloqueador neuromuscular mais empregado no Brasil, há percentual alto de uso da succinilcolina em situações não emergenciais, o uso de monitores da transmiss

  8. Effect of a 6-week dynamic neuromuscular training programme on ankle joint function: A Case report

    Directory of Open Access Journals (Sweden)

    O'Driscoll Jeremiah

    2011-06-01

    Full Text Available Abstract Background Ankle joint sprain and the subsequent development of chronic ankle instability (CAI are commonly encountered by clinicians involved in the treatment and rehabilitation of musculoskeletal injuries. It has recently been advocated that ankle joint post-sprain rehabilitation protocols should incorporate dynamic neuromuscular training to enhance ankle joint sensorimotor capabilities. To date no studies have reported on the effects of dynamic neuromuscular training on ankle joint positioning during landing from a jump, which has been reported as one of the primary injury mechanisms for ankle joint sprain. This case report details the effects of a 6-week dynamic neuromuscular training programme on ankle joint function in an athlete with CAI. Methods The athlete took part in a progressive 6-week dynamic neuromuscular training programme which incorporated postural stability, strengthening, plyometric, and speed/agility drills. The outcome measures chosen to assess for interventional efficacy were: 1 Cumberland Ankle Instability Tool (CAIT scores, 2 Star Excursion Balance Test (SEBT reach distances, 3 ankle joint plantar flexion during drop landing and drop vertical jumping, and 4 ground reaction forces (GRFs during walking. Results CAIT and SEBT scores improved following participation in the programme. The angle of ankle joint plantar flexion decreased at the point of initial contact during the drop landing and drop vertical jumping tasks, indicating that the ankle joint was in a less vulnerable position upon landing following participation in the programme. Furthermore, GRFs were reduced whilst walking post-intervention. Conclusions The 6-week dynamic neuromuscular training programme improved parameters of ankle joint sensorimotor control in an athlete with CAI. Further research is now required in a larger cohort of subjects to determine the effects of neuromuscular training on ankle joint injury risk factors.

  9. Effect of a 6-week dynamic neuromuscular training programme on ankle joint function: A Case report

    LENUS (Irish Health Repository)

    O'Driscoll, Jeremiah

    2011-06-09

    Abstract Background Ankle joint sprain and the subsequent development of chronic ankle instability (CAI) are commonly encountered by clinicians involved in the treatment and rehabilitation of musculoskeletal injuries. It has recently been advocated that ankle joint post-sprain rehabilitation protocols should incorporate dynamic neuromuscular training to enhance ankle joint sensorimotor capabilities. To date no studies have reported on the effects of dynamic neuromuscular training on ankle joint positioning during landing from a jump, which has been reported as one of the primary injury mechanisms for ankle joint sprain. This case report details the effects of a 6-week dynamic neuromuscular training programme on ankle joint function in an athlete with CAI. Methods The athlete took part in a progressive 6-week dynamic neuromuscular training programme which incorporated postural stability, strengthening, plyometric, and speed\\/agility drills. The outcome measures chosen to assess for interventional efficacy were: 1 Cumberland Ankle Instability Tool (CAIT) scores, 2 Star Excursion Balance Test (SEBT) reach distances, 3 ankle joint plantar flexion during drop landing and drop vertical jumping, and 4 ground reaction forces (GRFs) during walking. Results CAIT and SEBT scores improved following participation in the programme. The angle of ankle joint plantar flexion decreased at the point of initial contact during the drop landing and drop vertical jumping tasks, indicating that the ankle joint was in a less vulnerable position upon landing following participation in the programme. Furthermore, GRFs were reduced whilst walking post-intervention. Conclusions The 6-week dynamic neuromuscular training programme improved parameters of ankle joint sensorimotor control in an athlete with CAI. Further research is now required in a larger cohort of subjects to determine the effects of neuromuscular training on ankle joint injury risk factors.

  10. Comparison between two different neuromuscular electrical stimulation protocols for the treatment of female stress urinary incontinence: a randomized controlled trial Comparação de diferentes procedimentos de estimulação elétrica neuromuscular utilizados no tratamento da incontinência urinária de esforço feminina: ensaio clínico randomizado

    Directory of Open Access Journals (Sweden)

    Priscila G. J. M. Alves

    2011-10-01

    Full Text Available BACKGROUND: Neuromuscular electrical stimulation (NMES is widely treatment for stress urinary incontinence (SUI but there is no consensus in literature regarding the most effective treatment parameters. OBJECTIVE: To compare two NMESintra-vaginal protocols for the treatment of SUI in women. METHODS: The study included 20 volunteers with an average age of 55.55±6.51 years and with the clinical diagnosis of SUI. Volunteers were randomly divided into two groups: group 1 (G1 received NMES with medium-frequency current and group 2 (G2 received NMES with low-frequency current. Functional assessments of pelvic floor muscles (PFM were performed by perineometry. The severity of signs and symptoms were objectively evaluated using the 1 hour pad test and subjectively evaluated using a visual analog scale that measured the discomfort caused by the SUI. Shapiro-Wilk test was used to analyze data normality, and the Friedman test was used to analyze nonparametric data. For analysis of symptoms related to SUI the Fisher exact test and the Mann-Whitney test were used. Significance level of 5% was set for all data analysis. RESULTS: No significant differences (p>0.05 were found between groups for any of the variable assessed. The within group analysis of initial and final evaluations (after NMES demonstrated significant differences (pCONTEXTUALIZAÇÃO: A estimulação elétrica neuromuscular (EENM é amplamente utilizada no tratamento da incontinência urinária de esforço (IUE, no entanto não há consenso na literatura sobre os parâmetros de tratamento mais eficazes. OBJETIVO: Avaliar os procedimentos de EENM intravaginal no tratamento de mulheres com IUE. MÉTODOS: Participaram do estudo 20 voluntárias com idade média de 55,55±6,51 anos, com diagnóstico clínico de IUE. As voluntárias foram divididas aleatoriamente em dois grupos: grupo 1 (G1, que recebeu EENM com corrente de média frequência, e grupo 2 (G2, com corrente de baixa frequência. A

  11. Man-Machine Interface System for Neuromuscular Training and Evaluation Based on EMG and MMG Signals

    Directory of Open Access Journals (Sweden)

    Patricia Fernández

    2010-12-01

    Full Text Available This paper presents the UVa-NTS (University of Valladolid Neuromuscular Training System, a multifunction and portable Neuromuscular Training System. The UVa-NTS is designed to analyze the voluntary control of severe neuromotor handicapped patients, their interactive response, and their adaptation to neuromuscular interface systems, such as neural prostheses or domotic applications. Thus, it is an excellent tool to evaluate the residual muscle capabilities in the handicapped. The UVa-NTS is composed of a custom signal conditioning front-end and a computer. The front-end electronics is described thoroughly as well as the overall features of the custom software implementation. The software system is composed of a set of graphical training tools and a processing core. The UVa-NTS works with two classes of neuromuscular signals: the classic myoelectric signals (MES and, as a novelty, the myomechanic signals (MMS. In order to evaluate the performance of the processing core, a complete analysis has been done to classify its efficiency and to check that it fulfils with the real-time constraints. Tests were performed both with healthy and selected impaired subjects. The adaptation was achieved rapidly, applying a predefined protocol for the UVa-NTS set of training tools. Fine voluntary control was demonstrated to be reached with the myoelectric signals. And the UVa-NTS demonstrated to provide a satisfactory voluntary control when applying the myomechanic signals.

  12. Man-machine interface system for neuromuscular training and evaluation based on EMG and MMG signals.

    Science.gov (United States)

    de la Rosa, Ramon; Alonso, Alonso; Carrera, Albano; Durán, Ramon; Fernández, Patricia

    2010-01-01

    This paper presents the UVa-NTS (University of Valladolid Neuromuscular Training System), a multifunction and portable Neuromuscular Training System. The UVa-NTS is designed to analyze the voluntary control of severe neuromotor handicapped patients, their interactive response, and their adaptation to neuromuscular interface systems, such as neural prostheses or domotic applications. Thus, it is an excellent tool to evaluate the residual muscle capabilities in the handicapped. The UVa-NTS is composed of a custom signal conditioning front-end and a computer. The front-end electronics is described thoroughly as well as the overall features of the custom software implementation. The software system is composed of a set of graphical training tools and a processing core. The UVa-NTS works with two classes of neuromuscular signals: the classic myoelectric signals (MES) and, as a novelty, the myomechanic signals (MMS). In order to evaluate the performance of the processing core, a complete analysis has been done to classify its efficiency and to check that it fulfils with the real-time constraints. Tests were performed both with healthy and selected impaired subjects. The adaptation was achieved rapidly, applying a predefined protocol for the UVa-NTS set of training tools. Fine voluntary control was demonstrated to be reached with the myoelectric signals. And the UVa-NTS demonstrated to provide a satisfactory voluntary control when applying the myomechanic signals.

  13. Man-Machine Interface System for Neuromuscular Training and Evaluation Based on EMG and MMG Signals

    Science.gov (United States)

    de la Rosa, Ramon; Alonso, Alonso; Carrera, Albano; Durán, Ramon; Fernández, Patricia

    2010-01-01

    This paper presents the UVa-NTS (University of Valladolid Neuromuscular Training System), a multifunction and portable Neuromuscular Training System. The UVa-NTS is designed to analyze the voluntary control of severe neuromotor handicapped patients, their interactive response, and their adaptation to neuromuscular interface systems, such as neural prostheses or domotic applications. Thus, it is an excellent tool to evaluate the residual muscle capabilities in the handicapped. The UVa-NTS is composed of a custom signal conditioning front-end and a computer. The front-end electronics is described thoroughly as well as the overall features of the custom software implementation. The software system is composed of a set of graphical training tools and a processing core. The UVa-NTS works with two classes of neuromuscular signals: the classic myoelectric signals (MES) and, as a novelty, the myomechanic signals (MMS). In order to evaluate the performance of the processing core, a complete analysis has been done to classify its efficiency and to check that it fulfils with the real-time constraints. Tests were performed both with healthy and selected impaired subjects. The adaptation was achieved rapidly, applying a predefined protocol for the UVa-NTS set of training tools. Fine voluntary control was demonstrated to be reached with the myoelectric signals. And the UVa-NTS demonstrated to provide a satisfactory voluntary control when applying the myomechanic signals. PMID:22163515

  14. The Influence of Robotic Assistance on Reducing Neuromuscular Effort and Fatigue during Extravehicular Activity Glove Use

    Science.gov (United States)

    Madden, Kaci E.; Deshpande, Ashish D.; Peters, Benjamin J.; Rogers, Jonathan M.; Laske, Evan A.; McBryan, Emily R.

    2017-01-01

    The three-layered, pressurized space suit glove worn by Extravehicular Activity (EVA) crew members during missions commonly causes hand and forearm fatigue. The Spacesuit RoboGlove (SSRG), a Phase VI EVA space suit glove modified with robotic grasp-assist capabilities, has been developed to augment grip strength in order to improve endurance and reduce the risk of injury in astronauts. The overall goals of this study were to i) quantify the neuromuscular modulations that occur in response to wearing a conventional Phase VI space suit glove (SSG) during a fatiguing task, and ii) determine the efficacy of Spacesuit RoboGlove (SSRG) in reversing the adverse neuromuscular modulations and restoring altered muscular activity to barehanded levels. Six subjects performed a fatigue sequence consisting of repetitive dynamic-gripping interspersed with isometric grip-holds under three conditions: barehanded, wearing pressurized SSG, and wearing pressurized SSRG. Surface electromyography (sEMG) from six forearm muscles (flexor digitorum superficialis (FDS), flexor carpi radialis (FCR), flexor carpi ulnaris (FCU), extensor digitorum (ED), extensor carpi radialis longus (ECRL), and extensor carpi ulnaris (ECU)) and subjective fatigue ratings were collected during each condition. Trends in amplitude and spectral distributions of the sEMG signals were used to derive metrics quantifying neuromuscular effort and fatigue that were compared across the glove conditions. Results showed that by augmenting finger flexion, the SSRG successfully reduced the neuromuscular effort needed to close the fingers of the space suit glove in more than half of subjects during two types of tasks. However, the SSRG required more neuromuscular effort to extend the fingers compared to a conventional SSG in many subjects. Psychologically, the SSRG aided subjects in feeling less fatigued during short periods of intense work compared to the SSG. The results of this study reveal the promise of the SSRG as a

  15. Controls on thallium uptake during hydrothermal alteration of the upper ocean crust

    Science.gov (United States)

    Coggon, Rosalind M.; Rehkämper, Mark; Atteck, Charlotte; Teagle, Damon A. H.; Alt, Jeffrey C.; Cooper, Matthew J.

    2014-11-01

    Hydrothermal circulation is a fundamental component of global biogeochemical cycles. However, the magnitude of the high temperature axial hydrothermal fluid flux remains disputed, and the lower temperature ridge flank fluid flux is difficult to quantify. Thallium (Tl) isotopes behave differently in axial compared to ridge flank systems, with Tl near-quantitatively stripped from the intrusive crust by high temperature hydrothermal reactions, but added to the lavas during low temperature reaction with seawater. This contrasting behavior provides a unique approach to determine the fluid fluxes associated with axial and ridge flank environments. Unfortunately, our understanding of the Tl isotopic mass balance is hindered by poor knowledge of the mineralogical, physical and chemical controls on Tl-uptake by the ocean crust. Here we use analyses of basaltic volcanic upper crust from Integrated Ocean Drilling Program Hole U1301B on the Juan de Fuca Ridge flank, combined with published analyses of dredged seafloor basalts and upper crustal basalts from Holes 504B and 896A, to investigate the controls on Tl-uptake by mid-ocean ridge basalts and evaluate when in the evolution of the ridge flank hydrothermal system Tl-uptake occurs. Seafloor basalts indicate an association between basaltic uptake of Tl from cold seawater and uptake of Cs and Rb, which are known to partition into K-rich phases. Although there is no clear relationship between Tl and K contents of seafloor basalts, the data do not rule out the incorporation of at least some Tl into the same minerals as the alkali elements. In contrast, we find no relationship between the Tl content and either the abundance of secondary phyllosilicate minerals, or the K, Cs or Rb contents in upper crustal basalts. We conclude that the uptake of Tl and alkali elements during hydrothermal alteration of the upper crust involves different processes and/or mineral phases compared to those that govern seafloor weathering. Furthermore

  16. Corticosteroids and neuromuscular blockers in development of critical illness neuromuscular abnormalities: A historical review.

    Science.gov (United States)

    Wilcox, Susan R

    2017-02-01

    Weakness is common in critically ill patients, associated with prolonged mechanical ventilation and increased mortality. Corticosteroids and neuromuscular blockade (NMB) administration have been implicated as etiologies of acquired weakness in the intensive care unit. Medical literature since the 1970s is replete with case reports and small case series of patients with weakness after receiving high-dose corticosteroids, prolonged NMB, or both. Several risk factors for weakness appear in the early literature, including large doses of steroids, the dose and duration of NMB, hyperglycemia, and the duration of mechanical ventilation. With improved quality of data, however, the association between weakness and steroids or NMB wanes. This may reflect changes in clinical practice, such as a reduction in steroid dosing, use of cisatracurium besylate instead of aminosteroid NMBs, improved glycemic control, or trends in minimizing mechanical ventilatory support. Thus, based on the most recent and high-quality literature, neither corticosteroids in commonly used doses nor NMB is associated with increased duration of mechanical ventilation, the greatest morbidity of weakness. Minimizing ventilator support as soon as the patient's condition allows may be associated with a reduction in weakness-related morbidity. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Immunoglobulins from Animal Models of Motor Neuron Disease and from Human Amyotrophic Lateral Sclerosis Patients Passively Transfer Physiological Abnormalities to the Neuromuscular Junction

    Science.gov (United States)

    Apel, Stanley H.; Engelhardt, Jozsef I.; Garcia, Jesus; Stefani, Enrico

    1991-01-01

    Amyotrophic lateral sclerosis (ALS) is a devastating human disease of upper and lower motoneurons of unknown etiology. In support of the potential role of autoimmunity in ALS, two immune-mediated animal models of motoneuron disease have been developed that resemble ALS with respect to the loss of motoneurons, the presence of IgG within motoneurons and at the neuromuscular junction, and with respect to altered physiology of the motor nerve terminal. To provide direct evidence for the primary role of humoral immunity, passive transfer with immunoglobulins from the two animal models and human ALS was carried out. Mice injected with serum or immunoglobulins from the animal disease models and human ALS but not controls demonstrated IgG in motoneurons and at the neuromuscular junction. The mice also demonstrated an increase in miniature end-plate potential (mepp) frequency, with normal amplitude and time course and normal resting membrane potential, indicating an increased resting quantal release of acetylcholine from the nerve terminal. The ability to transfer motoneuron dysfunction with serum immunoglobulins provides evidence for autoimmune mechanisms in the pathogenesis of both the animal models and human ALS.

  18. Altered pharyngeal muscles in Parkinson disease.

    Science.gov (United States)

    Mu, Liancai; Sobotka, Stanislaw; Chen, Jingming; Su, Hungxi; Sanders, Ira; Adler, Charles H; Shill, Holly A; Caviness, John N; Samanta, Johan E; Beach, Thomas G

    2012-06-01

    Dysphagia (impaired swallowing) is common in patients with Parkinson disease (PD) and is related to aspiration pneumonia, the primary cause of death in PD. Therapies that ameliorate the limb motor symptoms of PD are ineffective for dysphagia. This suggests that the pathophysiology of PD dysphagia may differ from that affecting limb muscles, but little is known about potential neuromuscular abnormalities in the swallowing muscles in PD. This study examined the fiber histochemistry of pharyngeal constrictor and cricopharyngeal sphincter muscles in postmortem specimens from 8 subjects with PD and 4 age-matched control subjects. Pharyngeal muscles in subjects with PD exhibited many atrophic fibers, fiber type grouping, and fast-to-slow myosin heavy chain transformation. These alterations indicate that the pharyngeal muscles experienced neural degeneration and regeneration over the course of PD. Notably, subjects with PD with dysphagia had a higher percentage of atrophic myofibers versus with those without dysphagia and controls. The fast-to-slow fiber-type transition is consistent with abnormalities in swallowing, slow movement of food, and increased tone in the cricopharyngeal sphincter in subjects with PD. The alterations in the pharyngeal muscles may play a pathogenic role in the development of dysphagia in subjects with PD.

  19. [Six-minute walk test in children with neuromuscular disease.

    Science.gov (United States)

    Cruz-Anleu, Israel Didier; Baños-Mejía, Benjamín Omar; Galicia-Amor, Susana

    2013-01-01

    Background: neuromuscular diseases affect the motor unit. When they evolve, respiratory complications are common; the six-minute walk test plays an important role in the assessment of functional capacity. Methods: prospective, transversal, descriptive and observational study. We studied seven children with a variety of neuromuscular diseases and spontaneous ambulation. We tested their lung function, and administered a six-minute walk test and a test of respiratory muscle strength to these children. Results: the age was 9.8 ± 2.4 years. All patients were males. Forced vital capacity decreased in three patients (42.8 %), forced expiratory volume during the first second (2.04 ± 1.4 L) and peak expiratory flow (4.33 ± 3.3 L/s) were normal. The maximum strength of respiratory muscles was less than 60 % of predicted values. The distance covered in the six-minute walk test was lower when compared with healthy controls (29.9 %). Conclusions: the six-minute walk test can be a useful tool in early stages of this disease, since it is easy to perform and well tolerated by the patients.

  20. Fundamental Molecules and Mechanisms for Forming and Maintaining Neuromuscular Synapses

    Science.gov (United States)

    Huijbers, Maartje G.; Remedio, Leonor

    2018-01-01

    The neuromuscular synapse is a relatively large synapse with hundreds of active zones in presynaptic motor nerve terminals and more than ten million acetylcholine receptors (AChRs) in the postsynaptic membrane. The enrichment of proteins in presynaptic and postsynaptic membranes ensures a rapid, robust, and reliable synaptic transmission. Over fifty years ago, classic studies of the neuromuscular synapse led to a comprehensive understanding of how a synapse looks and works, but these landmark studies did not reveal the molecular mechanisms responsible for building and maintaining a synapse. During the past two-dozen years, the critical molecular players, responsible for assembling the specialized postsynaptic membrane and regulating nerve terminal differentiation, have begun to be identified and their mechanism of action better understood. Here, we describe and discuss five of these key molecular players, paying heed to their discovery as well as describing their currently understood mechanisms of action. In addition, we discuss the important gaps that remain to better understand how these proteins act to control synaptic differentiation and maintenance. PMID:29415504

  1. Adaptation of neuromuscular activation patterns during treadmill walking after long-duration space flight

    Science.gov (United States)

    Layne, C. S.; Lange, G. W.; Pruett, C. J.; McDonald, P. V.; Merkle, L. A.; Mulavara, A. P.; Smith, S. L.; Kozlovskaya, I. B.; Bloomberg, J. J.

    The precise neuromuscular control needed for optimal locomotion, particularly around heel strike and toe off, is known to be compromised after short duration (8- to 15-day) space flight. We hypothesized here that longer exposure to weightlessness would result in maladaptive neuromuscular activation during postflight treadmill walking. We also hypothesized that space flight would affect the ability of the sensory-motor control system to generate adaptive neuromuscular activation patterns in response to changes in visual target distance during postflight treadmill walking. Seven crewmembers, who completed 3- to 6-month missions, walked on a motorized treadmill while visually fixating on a target placed 30 cm (NEAR) or 2 m (FAR) from the subject's eyes. Electronic foot switch data and surface electromyography were collected from selected muscles of the right lower limb. Results indicate that the phasic features of neuromuscular activation were moderately affected and the relative amplitude of activity in the tibialis anterior and rectus femoris around toe off changed after space flight. Changes also were evident after space flight in how these muscles adapted to the shift in visual target distance.

  2. The Effect of Proprioceptive Neuromuscular Facilitation on Learning Fine Motor Skills: A Preliminary Study

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Shahabi Kaseb

    2016-09-01

    Full Text Available Introduction: Preparation of neuromuscular system prior to performing motor skills affects the learning of motor skills. The present study was conducted to investigate the effects of Proprioceptive Neuromuscular Facilitation (PNF on limb coordination and accuracy in dart throwing skill. Methods: Thirty two male students were randomly selected as study sample. Based on the pretest scores, the participants were divided into three groups: experimental (proprioceptive neuromuscular facilitation, first control (without warm-up, and second control (specific warm-up. During the acquisition phase, the participants first performed the preparation training related to their own group, then all groups performed the exercise program of dart throwing consisting of 6 blocks of 9 trials in 4 training sessions. Finally, 20 days following the last exercise session, the subjects took the retention and transfer tests. Results: The results of one-way ANOVA test for coordination variable in acquisition test showed no significant difference between the groups, while there was a statistically significant difference between groups regarding coordination variable in retention and transfer tests. Furthermore, the results of one-way ANOVA for the accuracy variable in acquisition and retention tests showed no statistically significant difference between the three groups, while there was a statistically significant difference between groups for accuracy variable in transfer test. Conclusion: It seems that proprioceptive neuromuscular facilitation, as a preparation method before performance, can enhance the efficacy of training to better learn the coordination pattern of fine motor skills.

  3. Mindfulness meditation training alters stress-related amygdala resting state functional connectivity: a randomized controlled trial

    OpenAIRE

    Taren, Adrienne A.; Gianaros, Peter J.; Greco, Carol M.; Lindsay, Emily K.; Fairgrieve, April; Brown, Kirk Warren; Rosen, Rhonda K.; Ferris, Jennifer L.; Julson, Erica; Marsland, Anna L.; Bursley, James K.; Ramsburg, Jared; Creswell, J. David

    2015-01-01

    Recent studies indicate that mindfulness meditation training interventions reduce stress and improve stress-related health outcomes, but the neural pathways for these effects are unknown. The present research evaluates whether mindfulness meditation training alters resting state functional connectivity (rsFC) of the amygdala, a region known to coordinate stress processing and physiological stress responses. We show in an initial discovery study that higher perceived stress over the past month...

  4. Controlled Environments Enable Adaptive Management in Aquatic Ecosystems Under Altered Environments

    Science.gov (United States)

    Bubenheim, David L.

    2016-01-01

    Ecosystems worldwide are impacted by altered environment conditions resulting from climate, drought, and land use changes. Gaps in the science knowledge base regarding plant community response to these novel and rapid changes limit both science understanding and management of ecosystems. We describe how CE Technologies have enabled the rapid supply of gap-filling science, development of ecosystem simulation models, and remote sensing assessment tools to provide science-informed, adaptive management methods in the impacted aquatic ecosystem of the California Sacramento-San Joaquin River Delta. The Delta is the hub for California's water, supplying Southern California agriculture and urban communities as well as the San Francisco Bay area. The changes in environmental conditions including temperature, light, and water quality and associated expansion of invasive aquatic plants negatively impact water distribution and ecology of the San Francisco Bay/Delta complex. CE technologies define changes in resource use efficiencies, photosynthetic productivity, evapotranspiration, phenology, reproductive strategies, and spectral reflectance modifications in native and invasive species in response to altered conditions. We will discuss how the CE technologies play an enabling role in filling knowledge gaps regarding plant response to altered environments, parameterization and validation of ecosystem models, development of satellite-based, remote sensing tools, and operational management strategies.

  5. Residual Neuromuscular Blockade in the Critical Care Setting.

    Science.gov (United States)

    Stawicki, Nicole; Gessner, Patty

    2018-01-01

    Residual neuromuscular blockade is a widespread challenge for providers in the acute care setting that, if left unrecognized or untreated, places patients at higher risk for morbidity and mortality. The condition is estimated to occur in 26% to 88% of patients undergoing general anesthesia. The role of the advanced practice nurse in the acute care setting is to facilitate a safe recovery process by identifying early signs of deterioration and supporting the patient until full muscular strength has returned. This article discusses the prevalence of residual neuromuscular blockade and associated complications and patient risk factors. A review is included of the current uses for neuromuscular blockade, pathophysiology of the neuromuscular junction, pharmacologic characteristics of neuromuscular blocking agents (including drug-drug interactions), monitoring modalities, and effectiveness of reversal agents. Treatment recommendations pertinent to residual neuromuscular blockade are outlined. ©2018 American Association of Critical-Care Nurses.

  6. Neck muscle fatigue differentially alters scapular and humeral kinematics during humeral elevation in subclinical neck pain participants versus healthy controls.

    Science.gov (United States)

    Zabihhosseinian, Mahboobeh; Holmes, Michael W R; Howarth, Samuel; Ferguson, Brad; Murphy, Bernadette

    2017-04-01

    Scapular orientation is highly dependent on axioscapular muscle function. This study examined the impact of neck muscle fatigue on scapular and humeral kinematics in participants with and without subclinical neck pain (SCNP) during humeral elevation. Ten SCNP and 10 control participants performed three unconstrained trials of dominant arm humeral elevation in the scapular plane to approximately 120 degrees before and after neck extensor muscle fatigue. Three-dimensional scapular and humeral kinematics were measured during the humeral elevation trials. Humeral elevation plane angle showed a significant interaction between groups (SCNP vs controls) and trial (pre- vs post-fatigue) (p=0.001). Controls began the unconstrained humeral elevation task after fatigue in a more abducted position, (p=0.002). Significant baseline differences in scapular rotation existed between the two groups (Posterior/Anterior tilt, p=0.04; Internal/External Rotation, p=0.001). SCNP contributed to altered scapular kinematics. Neck muscle fatigue influenced humeral kinematics in controls but not the SCNP group; suggesting that altered scapular motor control in the SCNP group resulted in an impaired adaption further to the neck muscle fatigue. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Altered top-down cognitive control and auditory processing in tinnitus: evidences from auditory and visual spatial stroop.

    Science.gov (United States)

    Araneda, Rodrigo; De Volder, Anne G; Deggouj, Naïma; Philippot, Pierre; Heeren, Alexandre; Lacroix, Emilie; Decat, Monique; Rombaux, Philippe; Renier, Laurent

    2015-01-01

    Tinnitus is the perception of a sound in the absence of external stimulus. Currently, the pathophysiology of tinnitus is not fully understood, but recent studies indicate that alterations in the brain involve non-auditory areas, including the prefrontal cortex. Here, we hypothesize that these brain alterations affect top-down cognitive control mechanisms that play a role in the regulation of sensations, emotions and attention resources. The efficiency of the executive control as well as simple reaction speed and processing speed were evaluated in tinnitus participants (TP) and matched control subjects (CS) in both the auditory and the visual modalities using a spatial Stroop paradigm. TP were slower and less accurate than CS during both the auditory and the visual spatial Stroop tasks, while simple reaction speed and stimulus processing speed were affected in TP in the auditory modality only. Tinnitus is associated both with modality-specific deficits along the auditory processing system and an impairment of cognitive control mechanisms that are involved both in vision and audition (i.e. that are supra-modal). We postulate that this deficit in the top-down cognitive control is a key-factor in the development and maintenance of tinnitus and may also explain some of the cognitive difficulties reported by tinnitus sufferers.

  8. VAChT overexpression increases acetylcholine at the synaptic cleft and accelerates aging of neuromuscular junctions.

    Science.gov (United States)

    Sugita, Satoshi; Fleming, Leland L; Wood, Caleb; Vaughan, Sydney K; Gomes, Matheus P S M; Camargo, Wallace; Naves, Ligia A; Prado, Vania F; Prado, Marco A M; Guatimosim, Cristina; Valdez, Gregorio

    2016-01-01

    Cholinergic dysfunction occurs during aging and in a variety of diseases, including amyotrophic lateral sclerosis (ALS). However, it remains unknown whether changes in cholinergic transmission contributes to age- and disease-related degeneration of the motor system. Here we investigated the effect of moderately increasing levels of synaptic acetylcholine (ACh) on the neuromuscular junction (NMJ), muscle fibers, and motor neurons during development and aging and in a mouse model for amyotrophic lateral sclerosis (ALS). Chat-ChR2-EYFP (VAChT Hyp ) mice containing multiple copies of the vesicular acetylcholine transporter (VAChT), mutant superoxide dismutase 1 (SOD1 G93A ), and Chat-IRES-Cre and tdTomato transgenic mice were used in this study. NMJs, muscle fibers, and α-motor neurons' somata and their axons were examined using a light microscope. Transcripts for select genes in muscles and spinal cords were assessed using real-time quantitative PCR. Motor function tests were carried out using an inverted wire mesh and a rotarod. Electrophysiological recordings were collected to examine miniature endplate potentials (MEPP) in muscles. We show that VAChT is elevated in the spinal cord and at NMJs of VAChT Hyp mice. We also show that the amplitude of MEPPs is significantly higher in VAChT Hyp muscles, indicating that more ACh is loaded into synaptic vesicles and released into the synaptic cleft at NMJs of VAChT Hyp mice compared to control mice. While the development of NMJs was not affected in VAChT Hyp mice, NMJs prematurely acquired age-related structural alterations in adult VAChT Hyp mice. These structural changes at NMJs were accompanied by motor deficits in VAChT Hyp mice. However, cellular features of muscle fibers and levels of molecules with critical functions at the NMJ and in muscle fibers were largely unchanged in VAChT Hyp mice. In the SOD1 G93A mouse model for ALS, increasing synaptic ACh accelerated degeneration of NMJs caused motor deficits and

  9. Influence of intense neuromuscular blockade on surgical conditions during laparotomy

    DEFF Research Database (Denmark)

    Madsen, Matias Vested; Donatsky, Anders Meller; Jensen, Bente Rona

    2015-01-01

    neuromuscular block on surgical conditions with a subjective rating scale, force needed to close the fascia, incidences of abdominal contractions while suctioning the lungs, width of the wound diastase and operating time as outcome parameters. RESULTS: In all six pigs no abdominal contractions occurred while...... neuromuscular block suctioning the lungs elicited brief periods of abdominal EMG activity. No difference was found in the force needed to close the fascia when comparing no neuromuscular block with intense neuromuscular block. Furthermore, no significant differences were found in the width of the diastase...... not influence the force needed to close the fascia....

  10. [Effect of ropivacaine combined with pancuronium on neuromuscular transmission and effectiveness of neostigmine and 4-aminopyridine for blockade reversal: experimental study].

    Science.gov (United States)

    Braga, Angélica de Fátima; Carvalho, Vanessa Henriques; Braga, Franklin Sarmento; Potério, Gloria Maria Braga; Santos, Filipe Nadir Caparica

    2015-01-01

    The local anesthetic effects on neuromuscular junction and its influence on blockade produced by nondepolarizing neuromuscular blockers are still under-investigated; however, this interaction has been described in experimental studies and in humans. The aim of this study was to evaluate in vitro the interaction between ropivacaine and pancuronium, the influence on transmission and neuromuscular blockade, and the effectiveness of neostigmine and 4-aminopyridine to reverse the blockade. Rats were divided into groups (n=5) according to the study drug: ropivacaine (5μgmL(-1)); pancuronium (2μg.mL(-1)); ropivacaine+pancuronium. Neostigmine and 4-aminopyridine were used at concentrations of 2μgmL(-1) and 20μgmL(-1), respectively. The effects of ropivacaine on membrane potential and miniature end-plate potential, the amplitude of diaphragm responses before and 60minutes after the addition of ropivacaine (degree of neuromuscular blockade with pancuronium and with the association of pancuronium-ropivacaine), and the effectiveness of neostigmine and 4-aminopyridine on neuromuscular block reversal were evaluated. Ropivacaine did not alter the amplitude of muscle response (the membrane potential), but decreased the frequency and amplitude of the miniature end-plate potential. Pancuronium blockade was potentiated by ropivacaine, and partially and fully reversed by neostigmine and 4-aminopyridine, respectively. Ropivacaine increased the neuromuscular block produced by pancuronium. The complete antagonism with 4-aminopyridine suggests presynaptic action of ropivacaine. Copyright © 2014 Sociedade Brasileira de Anestesiologia. Publicado por Elsevier Editora Ltda. All rights reserved.

  11. Abdominal Binding Improves Neuromuscular Efficiency of the Human Diaphragm during Exercise

    Directory of Open Access Journals (Sweden)

    Sara J. Abdallah

    2017-05-01

    Full Text Available We tested the hypothesis that elastic binding of the abdomen (AB would enhance neuromuscular efficiency of the human diaphragm during exercise. Twelve healthy non-obese men aged 24.8 ± 1.7 years (mean ± SE completed a symptom-limited constant-load cycle endurance exercise test at 85% of their peak incremental power output with diaphragmatic electromyography (EMGdi and respiratory pressure measurements under two randomly assigned conditions: unbound control (CTRL and AB sufficient to increase end-expiratory gastric pressure (Pga,ee by 5–8 cmH2O at rest. By design, AB increased Pga,ee by 6.6 ± 0.6 cmH2O at rest. Compared to CTRL, AB significantly increased the transdiaphragmatic pressure swing-to-EMGdi ratio by 85–95% during exercise, reflecting enhanced neuromuscular efficiency of the diaphragm. By contrast, AB had no effect on spirometric parameters at rest, exercise endurance time or an effect on cardiac, metabolic, ventilatory, breathing pattern, dynamic operating lung volume, and perceptual responses during exercise. In conclusion, AB was associated with isolated and acute improvements in neuromuscular efficiency of the diaphragm during exercise in healthy men. The implications of our results are that AB may be an effective means of enhancing neuromuscular efficiency of the diaphragm in clinical populations with diaphragmatic weakness/dysfunction.

  12. Altered Dynamic Postural Control during Step Turning in Persons with Early-Stage Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Jooeun Song

    2012-01-01

    Full Text Available Persons with early-stage Parkinson’s disease (EPD do not typically experience marked functional deficits but may have difficulty with turning tasks. Studies evaluating turning have focused on individuals in advanced stages of the disease. The purpose of this study was to compare postural control strategies adopted during turning in persons with EPD to those used by healthy control (HC subjects. Fifteen persons with EPD, diagnosed within 3 years, and 10 HC participated. Participants walked 4 meters and then turned 90°. Dynamic postural control was quantified as the distance between the center of pressure (COP and the extrapolated center of mass (eCOM. Individuals with EPD demonstrated significantly shorter COP-eCOM distances compared to HC. These findings suggest that dynamic postural control during turning is altered even in the early stages of PD.

  13. Improving Neuromuscular Monitoring and Reducing Residual Neuromuscular Blockade With E-Learning

    DEFF Research Database (Denmark)

    Thomsen, Jakob Louis Demant; Mathiesen, Ole; Hägi-Pedersen, Daniel

    2017-01-01

    BACKGROUND: Muscle relaxants facilitate endotracheal intubation under general anesthesia and improve surgical conditions. Residual neuromuscular blockade occurs when the patient is still partially paralyzed when awakened after surgery. The condition is associated with subjective discomfort and an......-learning module can increase anesthetists' use of neuromuscular monitoring. TRIAL REGISTRATION: Clinicaltrials.gov NCT02925143; https://clinicaltrials.gov/ct2/show/NCT02925143 (Archived by WebCite® at http://www.webcitation.org/6s50iTV2x)....

  14. Urgencias en patología neuromuscular Emergencies in neuromuscular pathology

    OpenAIRE

    T. Ayuso; I. Jericó

    2008-01-01

    La debilidad muscular aguda (DMA) es el síntoma predominante de las urgencias neuromusculares, especialmente si afecta a la musculatura respiratoria u orofaríngea. La DMA es un síndrome plurietiológico y con distintos niveles lesionales en la unidad motora. Dentro del amplio grupo de enfermedades neuromusculares, las que con mayor frecuencia provocan DMA e insuficiencia respiratoria son el síndrome de Guillain-Barré (SGB) y la miastenia gravis (MG). El SGB constituye la causa más frecuente de...

  15. Switching adolescent high-fat diet to adult control diet restores neurocognitive alterations

    Directory of Open Access Journals (Sweden)

    Chloe Boitard

    2016-11-01

    Full Text Available In addition to metabolic and cardiovascular disorders, obesity is associated with adverse cognitive and emotional outcomes. Its growing prevalence in adolescents is particularly alarming since this is a period of ongoing maturation for brain structures (including the hippocampus and amygdala and for the hypothalamic-pituitary-adrenal (HPA stress axis, which is required for cognitive and emotional processing. We recently demonstrated that adolescent, but not adult, high-fat diet (HF exposure leads to impaired hippocampal function and enhanced amygdala function through HPA axis alteration (Boitard et al., 2014; Boitard et al., 2012; Boitard et al., 2015. Here, we assessed whether the effects of adolescent HF consumption on brain function are permanent or reversible. After adolescent exposure to HF, switching to a standard chow diet restored levels of hippocampal neurogenesis and normalized enhanced HPA axis reactivity, amygdala activity and avoidance memory. Therefore, while the adolescent period is highly vulnerable to the deleterious effects of diet-induced obesity, adult exposure to a standard diet appears sufficient to reverse alterations of brain function.

  16. Afferent control mechanisms involved in the development of soleus fiber alterations in simulated hypogravity

    Science.gov (United States)

    Shenkman, B. S.; Nemirovskaya, T. L.; Shapovalova, K. B.; Podlubnaya, Z. A.; Vikhliantsev, I. M.; Moukhina, A. M.; Kozlovskaya, I. B.

    2007-02-01

    It was recently established that support withdrawal (withdrawal of support reaction force) in microgravity provokes a sequence of functional shifts in the activity of motor units (inactivation of slow ones) and peripheral muscle apparatus which lead to the decline of postural muscle contractility and alterations in fiber characteristics. However, mechanisms involved in inactivation of the slow motor units and appropriate slow-twitch muscle fiber disuse under the supportless conditions remained unknown. We show here that artificial inactivation of muscles-antagonists (which are known to be hyperactive during unloading) counteracts some of the unloading-induced events in the rat soleus (fiber size reduction, slow-to-fast fiber-type transition and decline of titin and nebulin content). It was also demonstrated that direct activation of the muscarinic receptors of the neostriatum neurons prevented slow-to-fast fiber-type transformation in soleus of hindlimb suspended rats.

  17. Research to support sterile-male-release and genetic alteration techniques for sea lamprey control

    Science.gov (United States)

    Bergstedt, Roger A.; Twohey, Michael B.

    2007-01-01

    Integrated pest management of sea lampreys in the Laurentian Great Lakes has recently been enhanced by addition of a sterile-male-release program, and future developments in genetic approaches may lead to additional methods for reducing sea lamprey reproduction. We review the development, implementation, and evaluation of the sterile-male-release technique (SMRT) as it is being applied against sea lampreys in the Great Lakes, review the current understanding of SMRT efficacy, and identify additional research areas and topics that would increase either the efficacy of the SMRT or expand its geographic potential for application. Key areas for additional research are in the sterilization process, effects of skewed sex ratios on mating behavior, enhancing attractiveness of sterilized males, techniques for genetic alteration of sea lampreys, and sources of animals to enhance or expand the use of sterile lampreys.

  18. Cross‐disease comparison of amyotrophic lateral sclerosis and spinal muscular atrophy reveals conservation of selective vulnerability but differential neuromuscular junction pathology

    Science.gov (United States)

    Nijssen, Jik; Frost‐Nylen, Johanna

    2015-01-01

    Neuromuscular junctions are primary pathological targets in the lethal motor neuron diseases spinal muscular atrophy (SMA) and amyotrophic lateral sclerosis (ALS). Synaptic pathology and denervation of target muscle fibers has been reported prior to the appearance of clinical symptoms in mouse models of both diseases, suggesting that neuromuscular junctions are highly vulnerable from the very early stages, and are a key target for therapeutic intervention. Here we examined neuromuscular pathology longitudinally in three clinically relevant muscle groups in mouse models of ALS and SMA in order to assess their relative vulnerabilities. We show for the first time that neuromuscular junctions of the extraocular muscles (responsible for the control of eye movement) were resistant to degeneration in endstage SMA mice, as well as in late symptomatic ALS mice. Tongue muscle neuromuscular junctions were also spared in both animal models. Conversely, neuromuscular junctions of the lumbrical muscles of the hind‐paw were vulnerable in both SMA and ALS, with a loss of neuronal innervation and shrinkage of motor endplates in both diseases. Thus, the pattern of selective vulnerability was conserved across these two models of motor neuron disease. However, the first evidence of neuromuscular pathology occurred at different timepoints of disease progression, with much earlier evidence of presynaptic involvement in ALS, progressing to changes on the postsynaptic side. Conversely, in SMA changes appeared concomitantly at the neuromuscular junction, suggesting that mechanisms of neuromuscular disruption are distinct in these diseases. J. Comp. Neurol. 524:1424–1442, 2016. © 2015 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc. PMID:26502195

  19. Alterations in Resting-State Functional Connectivity Link Mindfulness Meditation With Reduced Interleukin-6: A Randomized Controlled Trial.

    Science.gov (United States)

    Creswell, J David; Taren, Adrienne A; Lindsay, Emily K; Greco, Carol M; Gianaros, Peter J; Fairgrieve, April; Marsland, Anna L; Brown, Kirk Warren; Way, Baldwin M; Rosen, Rhonda K; Ferris, Jennifer L

    2016-07-01

    Mindfulness meditation training interventions have been shown to improve markers of health, but the underlying neurobiological mechanisms are not known. Building on initial cross-sectional research showing that mindfulness meditation may increase default mode network (DMN) resting-state functional connectivity (rsFC) with regions important in top-down executive control (dorsolateral prefrontal cortex [dlPFC]), here we test whether mindfulness meditation training increases DMN-dlPFC rsFC and whether these rsFC alterations prospectively explain improvements in interleukin (IL)-6 in a randomized controlled trial. Stressed job-seeking unemployed community adults (n = 35) were randomized to either a 3-day intensive residential mindfulness meditation or relaxation training program. Participants completed a 5-minute resting-state scan before and after the intervention program. Participants also provided blood samples at preintervention and at 4-month follow-up, which were assayed for circulating IL-6, a biomarker of systemic inflammation. We tested for alterations in DMN rsFC using a posterior cingulate cortex seed-based analysis and found that mindfulness meditation training, and not relaxation training, increased posterior cingulate cortex rsFC with left dlPFC (p mindfulness meditation training improvements in IL-6 at 4-month follow-up. Specifically, these alterations in rsFC statistically explained 30% of the overall mindfulness meditation training effects on IL-6 at follow-up. These findings provide the first evidence that mindfulness meditation training functionally couples the DMN with a region known to be important in top-down executive control at rest (left dlPFC), which, in turn, is associated with improvements in a marker of inflammatory disease risk. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  20. Classification of neuromuscular blocking agents in a new neuromuscular preparation of the chick in vitro

    NARCIS (Netherlands)

    Riezen, H. van

    1968-01-01

    A neuromuscular preparation of the chick is described: 1. 1. The sciatic nerve-tibilis anterior muscle preparation of the 2–10 days old chick fulfils all criteria of an assay preparation and differentiates between curare-like and decamethonium-like agents. 2. 2. The preparation responds to

  1. Altered G{sub 1} checkpoint control determines adaptive survival responses to ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Boothman, David A.; Meyers, Mark; Odegaard, Eric; Wang, Meizhi [Department of Human Oncology, University of Wisconsin-Madison, Madison, WI (United States)

    1996-11-04

    Adaptive survival responses (ASRs) are observed when cells become more resistant to a high dose of a cytotoxic agent after repeated low dose exposures to that agent or another genotoxic agent. Confluent (G{sub 0}/G{sub 1}) human normal (GM2936B, GM2937A, AG2603, IMR-90), cancer-prone (XPV2359), and neoplastic (U1-Mel, HEp-2, HTB-152) cells were primed with repeated low doses of X-rays (ranging from 0.05-10 cGy/day for 4 days), then challenged with a high dose (290-450 cGy) on day 5. U1-Mel and HEp-2 cells showed greater than 2-fold transient survival enhancement when primed with 1-10 cGy. ASRs in U1-Mel or HEp-2 cells were blocked by cycloheximide or actinomycin D. Increases in cyclins A and D1 mRNAs were noted in primed compared to unirradiated U1-Mel and HEp-2 cells; however, only cyclin A protein levels increased. Cyclin D1 and proliferating cell nuclear antigen (PCNA) protein levels were constitutively elevated in HEp-2 and U1-Mel cells, compared to the other human normal and neoplastic cells examined, and were not altered by low or high doses of radiation. Low dose primed U1-Mel cells entered S-phase 4-6 h faster than unprimed U1-Mel cells upon low-density replating. Similar responses in terms of survival recovery, transcript and protein induction, and altered cell cycle regulation were not observed in the other human normal, cancer-prone or neoplastic cells examined. We hypothesize that only certain human cells can adapt to ionizing radiation by progressing to a point later in G{sub 1} (the A point) where DNA repair processes and radioresistance can be induced. ASRs in human cells correlated well with constitutively elevated levels of PCNA and cyclin D1, as well as inducibility of cyclin A. We propose that a protein complex composed of cyclin D1, PCNA, and possibly cyclin A may play a role in cell cycle regulation and DNA repair, which determine ASRs in human cells.

  2. Altered G1 checkpoint control determines adaptive survival responses to ionizing radiation

    International Nuclear Information System (INIS)

    Boothman, David A.; Meyers, Mark; Odegaard, Eric; Wang, Meizhi

    1996-01-01

    Adaptive survival responses (ASRs) are observed when cells become more resistant to a high dose of a cytotoxic agent after repeated low dose exposures to that agent or another genotoxic agent. Confluent (G 0 /G 1 ) human normal (GM2936B, GM2937A, AG2603, IMR-90), cancer-prone (XPV2359), and neoplastic (U1-Mel, HEp-2, HTB-152) cells were primed with repeated low doses of X-rays (ranging from 0.05-10 cGy/day for 4 days), then challenged with a high dose (290-450 cGy) on day 5. U1-Mel and HEp-2 cells showed greater than 2-fold transient survival enhancement when primed with 1-10 cGy. ASRs in U1-Mel or HEp-2 cells were blocked by cycloheximide or actinomycin D. Increases in cyclins A and D1 mRNAs were noted in primed compared to unirradiated U1-Mel and HEp-2 cells; however, only cyclin A protein levels increased. Cyclin D1 and proliferating cell nuclear antigen (PCNA) protein levels were constitutively elevated in HEp-2 and U1-Mel cells, compared to the other human normal and neoplastic cells examined, and were not altered by low or high doses of radiation. Low dose primed U1-Mel cells entered S-phase 4-6 h faster than unprimed U1-Mel cells upon low-density replating. Similar responses in terms of survival recovery, transcript and protein induction, and altered cell cycle regulation were not observed in the other human normal, cancer-prone or neoplastic cells examined. We hypothesize that only certain human cells can adapt to ionizing radiation by progressing to a point later in G 1 (the A point) where DNA repair processes and radioresistance can be induced. ASRs in human cells correlated well with constitutively elevated levels of PCNA and cyclin D1, as well as inducibility of cyclin A. We propose that a protein complex composed of cyclin D1, PCNA, and possibly cyclin A may play a role in cell cycle regulation and DNA repair, which determine ASRs in human cells

  3. Alteration of renal function in a control animal. Finding by 99mTc - DTPA renogram

    International Nuclear Information System (INIS)

    Portillo, M.G.; Tesán, F.C.; Zubillaga, M.B.; Salgueiro, M.J.

    2015-01-01

    The use of small animal imaging in research protocols allowed the identification of an outlier animal. The renogram with 99m Tc-DTPA showed renal pathology in an animal from the control group. (authors) [es

  4. Altered activation and functional connectivity of neural systems supporting cognitive control of emotion in psychosis proneness

    NARCIS (Netherlands)

    Modinos, Gemma; Ormel, Johan; Aleman, Andre

    Emotion regulation processes, such as reappraisal, are thought to operate through interactions between prefrontal emotion-control regions and subcortical emotion-generation regions such as the amygdala. Impairments in emotional processing and regulation have been reported in schizophrenia and

  5. Medical back belt with integrated neuromuscular electrical stimulation

    NARCIS (Netherlands)

    Bottenberg, E. (Eliza); Brinks, G.J. (Ger); Hesse, J. (Jenny)

    2014-01-01

    The medical back belt with integrated neuromuscular electrical stimulation is anorthopedic device, which has two main functions. The first function is to stimulate the backmuscles by using a neuromuscular electrical stimulation device that releases regular,electrical impulses. The second function of

  6. ATRACURIUM-INDUCED NEUROMUSCULAR BLOCK IN THE ISOLATED ARM

    NARCIS (Netherlands)

    ERIKSSON, LI; VANDENBROM, RHG; LENNMARKEN, C; AGOSTON, S

    1992-01-01

    A modification of the isolated arm technique was applied in 10 females under opioid-based i.v. anaesthesia for comparison of the offset of an atracurium-induced neuromuscular block in an isolated arm to an arm with maintained circulation. The neuromuscular blocking effect of a bolus dose of

  7. Recent achievements in restorative neurology: Progressive neuromuscular diseases

    International Nuclear Information System (INIS)

    Dimitrijevic, M.R.; Kakulas, B.A.; Vrbova, G.

    1986-01-01

    This book contains 27 chapters. Some of the chapter titles are: Computed Tomography of Muscles in Neuromuscular Disease; Mapping the Genes for Muscular Dystrophy; Trophic Factors and Motor Neuron Development; Size of Motor Units and Firing Rate in Muscular Dystrophy; Restorative Possibilities in Relation to the Pathology of Progressive Neuromuscular Disease; and An Approach to the Pathogenesis of some Congenital Myopathies

  8. Acute neuromuscular weakness associated with dengue infection

    Directory of Open Access Journals (Sweden)

    Harmanjit Singh Hira

    2012-01-01

    Full Text Available Background: Dengue infections may present with neurological complications. Whether these are due to neuromuscular disease or electrolyte imbalance is unclear. Materials and Methods: Eighty-eight patients of dengue fever required hospitalization during epidemic in year 2010. Twelve of them presented with acute neuromuscular weakness. We enrolled them for study. Diagnosis of dengue infection based on clinical profile of patients, positive serum IgM ELISA, NS1 antigen, and sero-typing. Complete hemogram, kidney and liver functions, serum electrolytes, and creatine phosphokinase (CPK were tested. In addition, two patients underwent nerve conduction velocity (NCV test and electromyography. Results: Twelve patients were included in the present study. Their age was between 18 and 34 years. Fever, myalgia, and motor weakness of limbs were most common presenting symptoms. Motor weakness developed on 2 nd to 4 th day of illness in 11 of 12 patients. In one patient, it developed on 10 th day of illness. Ten of 12 showed hypokalemia. One was of Guillain-Barré syndrome and other suffered from myositis; they underwent NCV and electromyography. Serum CPK and SGOT raised in 8 out of 12 patients. CPK of patient of myositis was 5098 IU. All of 12 patients had thrombocytopenia. WBC was in normal range. Dengue virus was isolated in three patients, and it was of serotype 1. CSF was normal in all. Within 24 hours, those with hypokalemia recovered by potassium correction. Conclusions: It was concluded that the dengue virus infection led to acute neuromuscular weakness because of hypokalemia, myositis, and Guillain-Barré syndrome. It was suggested to look for presence of hypokalemia in such patients.

  9. Does desflurane alter left ventricular function when used to control surgical stimulation during aortic surgery?

    Science.gov (United States)

    Eyraud, D; Benmalek, F; Teugels, K; Bertrand, M; Mouren, S; Coriat, P

    1999-08-01

    Although desflurane is commonly used to control surgically induced hypertension, its effects on left ventricular (LV) function have not been investigated in this clinical situation. The purpose of the present study was to evaluate the LV function response to desflurane, when used to control intraoperative hypertension. In 50 patients, scheduled for vascular surgery, anesthesia was induced with sufentanil 0.5 microg/kg, midazolam 0.3 mg/kg and atracurium 0.5 mg/kg. After tracheal intubation, anesthesia was maintained with increments of drugs with controlled ventilation (N2O/O2=60/40%) until the start of surgery. A 5 Mhz transesophageal echocardiography (TEE) probe was inserted after intubation. Pulmonary artery catheter and TEE measurements were obtained after induction (to)(control value), at surgical incision (t1) if it was associated with an increase in systolic arterial pressure (SAP) greater than 140 mmHg (hypertension) and after control of hemodynamic parameters by administration of desflurane (return of systolic arterial pressure to within 20% of the control value) (t2) in a fresh gas flow of 31/ min. Sixteen patients developed hypertension at surgical incision. SAP was controlled by desflurane in all 16 patients. Afterload assessed by systemic vascular resistance index (SVRI), end-systolic wall-stress (ESWS) and left-ventricular stroke work index (LVSWI) increased with incision until the hypertension returned to post-induction values with mean end-tidal concentration of 5.1+/-0.7% desflurane. No change in heart rate, cardiac index, mean pulmonary arterial pressure, stroke volume, end-diastolic and end-systolic cross-sectional areas, fractional area change and left ventricular circumferential fiber shortening was noted when desflurane was added to restore blood pressure. This study demonstrates that in patients at risk for cardiac morbidity undergoing vascular surgery, desflurane is effective to control intraoperative hypertension without fear of major

  10. Neuromuscular and biomechanical characteristics do not vary across the menstrual cycle.

    Science.gov (United States)

    Abt, John P; Sell, Timothy C; Laudner, Kevin G; McCrory, Jean L; Loucks, Tammy L; Berga, Sarah L; Lephart, Scott M

    2007-07-01

    Research examining the menstrual cycle and its relationship to ACL injury has focused on determining the incidence of ACL injury during the different phases of the menstrual cycle and assessing the changes in neuromuscular and biomechanical characteristics between these phases. Conflicting results warrant further investigation to determine if neuromuscular and biomechanical characteristics respond in a similar pattern to the fluctuating estradiol and progesterone. The purpose of this study was to determine if changes in the levels of estradiol and progesterone significantly altered fine motor coordination, postural stability, knee strength, and knee joint kinematics and kinetics between the menses, post-ovulatory, and mid-luteal phases of the menstrual cycle. Ten healthy and physically active females (Age: 21.4 +/- 1.4 years, Height: 1.67 +/- 0.06 m, Mass: 59.9 +/- 7.4 kg), who did not use oral contraceptives, were recruited from the local university population. Single-leg postural stability, fine motor coordination, knee strength, knee biomechanics, and serum estradiol and progesterone were assessed at the menses, post-ovulatory, and mid-luteal phases of the menstrual cycle. Levels of estradiol were significantly higher during the post-ovulatory (P = 0.016) and mid-luteal phases (P hamstring - quadriceps strength ratio at 60 degrees s(-1) (P = 0.748) or 180 degrees s(-1) (P = 0.789), knee flexion excursion (P = 0.6), knee valgus excursion (P = 0.899), peak proximal tibial anterior shear force (P = 0.797), flexion moment at peak proximal tibial anterior shear force (P = 0.698), or valgus moment at peak proximal tibial anterior shear force (P = 0.924). The results of the current study suggest neuromuscular and biomechanical characteristics are not influenced by estradiol and progesterone fluctuations. All neuromuscular and biomechanical characteristics remained invariable between testing sessions despite concentration changes in estradiol and progesterone.

  11. Desarrollo neuromuscular en la atrofia muscular espinal

    OpenAIRE

    Martínez Hernàndez, Rebeca

    2012-01-01

    INTRODUCCIÓN: La atrofia muscular espinal (AME) es una enfermedad neuromuscular infantil caracterizada por la muerte de las neuronas motoras del asta anterior de la médula espinal. Como consecuencia de ello hay una degeneración y atrofia muscular, por lo que los pacientes mueren a menudo de insuficiencias respiratorias graves. La AME se clasifica en tres tipos principales según el grado de gravedad, la edad de aparición y las pautas motoras. Se trata de una enfermedad con patrón de herencia a...

  12. Association between the pattern of IGFBP-1 alteration and the glucose/insulin metabolic control.

    Science.gov (United States)

    Nedić, O; Masnikosa, R; Lagundžin, D

    2011-05-01

    Little is known on the possible association between impaired glucose/insulin metabolism, the pattern of IGFBP-1 phosphorylation and the complex formation with other serum proteins. In this study, the concentration, isoform, multimer and complex pattern of IGFBP-1 was compared in healthy persons and patients with type 2 diabetes mellitus or with hypoglycemia. Concentrations of insulin and IGFBP-1 were determined by radioimmunoassay. Metal affinity and immunoaffinity chromatography were used for the separation of molecular forms of IGFBP-1, which were detected by immunoblotting and SELDI. The counter directional change in insulin and IGFBP-1 concentrations, expressed as a factor that takes into consideration the rate of insulin increase and IGFBP-1 decrease after glucose intake was approximately twice more pronounced in patients with diabetes than in healthy and hypoglycemic persons. The alteration in the phosphorylation pattern of IGFBP-1 due to diabetes or hypoglycemia was not observed. IGFBP-1 multimers found in the circulation of patients with diabetes type 2 differed from those detected in the circulation of others: there were 3 molecular forms between 90 and 100 kDa (compared to one in patients with hypoglycemia or 2 in healthy persons), 2 of which were α (2)M-reactive and one not. These results suggest a possible greater involvement of IGF system in glucose regulation in patients with diabetes type 2. © J. A. Barth Verlag in Georg Thieme Verlag KG Stuttgart · New York.

  13. Effectiveness of neuromuscular electrical stimulation for management of shoulder subluxation post-stroke: a systematic review with meta-analysis.

    Science.gov (United States)

    Lee, Jae-Hyoung; Baker, Lucinda L; Johnson, Robert E; Tilson, Julie K

    2017-11-01

    To examine the effectiveness of neuromuscular electrical stimulation (NMES) for the management of shoulder subluxation after stroke including assessment of short (1 hour or less) and long (more than one hour) daily treatment duration. MEDLINE, CENTRAL, CINAHL, WOS, KoreaMed, RISS and reference lists from inception to January 2017 Review methods: We considered randomized controlled trials that reported neuromuscular electrical stimulation for the treatment of shoulder subluxation post-stroke. Two reviewers independently selected trials for inclusion, assessed trial quality, and extracted data. Eleven studies were included (432 participants); seven studies were good quality, four were fair. There was a significant treatment effect of neuromuscular electrical stimulation for reduction of subluxation for persons with acute and subacute stroke (SMD:-1.11; 95% CI:-1.53, -0.68) with either short (SMD:-0.91; 95% CI:-1.43, -0.40) or long (SMD:-1.49; 95% CI:-2.31, -0.67) daily treatment duration. The effect for patients with chronic stroke was not significant (SMD:-1.25; 95% CI:-2.60, 0.11). There was no significant effect of neuromuscular electrical stimulation on arm function or shoulder pain. This meta-analysis suggests a beneficial effect of neuromuscular electrical stimulation, with either short or long daily treatment duration, for reducing shoulder subluxation in persons with acute and subacute stroke. No significant benefits were observed for persons with chronic stroke or for improving arm function or reducing shoulder pain.

  14. Altered center of mass control during sit-to-walk in elderly adults with and without history of falling.

    Science.gov (United States)

    Chen, Tzurei; Chou, Li-Shan

    2013-09-01

    Sit-to-walk (STW) is a commonly performed activity of daily living that requires a precise coordination between momentum generation and balance control. However, there is a lack of biomechanical data demonstrating how the center of mass (COM) momentum and balance control interact. This study examines COM kinetic energy distribution in three movement directions and COM-Ankle inclination angles during STW among 15 healthy young adults, 15 elderly non-fallers, and 15 elderly fallers. We found that elderly adults, especially elderly fallers, chose a COM control strategy that provided more stability than mobility to perform STW. A smaller forward COM velocity, a more upward COM momentum distribution, and a smaller anterior-posterior COM-Ankle angle characterize this strategy. Healthy elderly adults modified their STW movement around seat-off so that they achieved a more upright position before walking. Elderly fallers not only altered COM control around seat-off but also showed limitation in COM control during gait initiation. Furthermore, their COM control in the medial-lateral direction might be perturbed at swing-off due to an increased distribution of kinetic energy. Examining COM momentum distribution in different movement directions and the relationship between positions of the COM and supporting foot during STW could enhance our ability to identify elderly adults who are at risk of falling. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Intrapartum electrocardiogram alteration in fetuses with congenital heart disease: a case-control study.

    Science.gov (United States)

    Gay, Estelle; Bornallet, Géraldine; Gaucherand, Pascal; Doret, Muriel

    2015-11-01

    To assess if the fetal electrocardiogram especially ST segment is modified by congenital heart diseases: modifications in frequencies of the different ST events and modifications in signal quality. A retrospective case-control study, comparing frequencies of the different ST events and the quality of the signal between fetuses with congenital heart diseases and fetuses without congenital heart disease. From 2000 to 2011, fifty-eight fetuses with congenital heart disease had their heart rate recording using a STAN device during labor. Control group was fetuses who were born just before a case and had a STAN as a second line for intrapartum surveillance. Cases and controls were matched on parity, gestational age at birth, presence of growth restriction and umbilical artery pH. Frequencies of the different ST event and quality of the signal were first analyzed for the global labor recording, and then separately for the first and the second phase of labor. No statistically significant difference in ST event frequencies between fetuses with congenital heart disease and the control group was found. Regarding the quality of the signal, 11.49% (±18.82) of recording time is a signal loss for fetus with congenital heart disease whereas only 5.18% (±10.67) for the control group (p=0.028). This is the first study investigating for intrapartum electrocardiogram modification in fetus with congenital heart disease. Congenital heart diseases do not modify frequencies of ST events. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. Computerized tomography, magnetic resonance tomography, and magnetic resonance spectroscopy in neuromuscular disease

    International Nuclear Information System (INIS)

    Rodiek, S.O.

    1987-01-01

    This book is about imaging and the tissue characterization of skeletal muscles in vivo. It tries to answer the following questions: 1. Which examination techniques yield the highest quality of imaging results? 2. Which are the typical characteristics of a healthy skeletal muscle? 3. What alterations can be verified in skeletal muscles suffering neuromuscular disease - and are these specific of the disease? 4. What are the common traits of imaging techniques and what are the differences between them - and how can one make aimed use of these techniques?. With 56 figs., 21 tabs [de

  17. Technique of the computed tomography examination of skeletal muscle in neuromuscular diseases

    International Nuclear Information System (INIS)

    Rodiek, S.O.; Kuether, G.; Technische Univ. Muenchen

    1985-01-01

    Computed tomography provides a complete view of morphological alterations in skeletal muscle caused by neuromuscular diseases. A good image quality of the lower as well as of the upper limbs is obtained by choosing a small scanning-field and an appropriate scanning-position. The arms are best examined one by one. In follow-up studies muscular atrophy can be documented by planimetric and densimetric measurements. Furthermore CT-scanning is a convenient method for selecting suitable muscles for muscle biopsy. (orig.) [de

  18. Correcting oral contraceptive pharmacokinetic alterations due to obesity. A randomized controlled trial

    Science.gov (United States)

    Edelman, Alison B; Cherala, Ganesh; Munar, Myrna Y.; McInnis, Martha; Stanczyk, Frank Z.; Jensen, Jeffrey T

    2014-01-01

    Objective To determine if increasing the hormone dose or eliminating the hormone-free interval improves key pharmacokinetic (PK) alterations caused by obesity during oral contraceptive (OC) use. Study design Obese (BMI ≥ 30 kg/m2), ovulatory, otherwise healthy, women received an OC containing 20 mcg ethinyl estradiol (EE)/100 mcg levonorgestrel (LNG) dosed cyclically (21 days active pills with 7-day placebo week) for two cycles and then were randomized for two additional cycles to: Continuous Cycling [CC, a dose neutral arm using the same OC with no hormone-free interval] or Increased Dose [ID, a dose escalation arm using an OC containing 30 mcg EE/150 mcg LNG cyclically]. During Cycle 2, 3, and 4, outpatient visits were performed to assess maximum serum concentration (Cmax), area under the curve (AUC0-∞), and time to steady state as well as pharmacodynamics. These key PK parameters were calculated and compared within groups between baseline and treatment cycles. Results A total of 31 women enrolled and completed the study (CC group n = 16; ID group n = 15). Demographics were similar between groups [mean BMI: CC 38kg/m2 (SD 5.1), ID 41kg/m2 (SD 7.6)]. At baseline, the key LNG PK parameters were no different between groups; average time to reach steady-state was 12 days in both groups; Cmax were CC: 3.82 ± 1.28 ng/mL and ID: 3.13 ± 0.87 ng/mL; and AUC0-∞ were CC: 267 ± 115 hr*ng/mL and ID: 199±75 hr*ng/mL. Following randomization, the CC group maintained steady-state serum levels whereas the ID group had a significantly higher Cmax (pdose and continuous dosing appear to counteract the impact of obesity on key OC PK parameters. PMID:25070547

  19. Effects of uncontrolled periodontitis on marginal bone alterations around implants: A case-control study.

    Science.gov (United States)

    Wang, Xin; Qin, Lei; Lei, Chi; Li, Yu; Li, Dehua

    2017-08-01

    The hypothesis of bacterial infection initiating marginal bone loss around dental implant in analogy with natural tooth is still in debate. The aim of this retrospective study was to investigate the effects of uncontrolled periodontitis on marginal bone alterations around implants compared with the periodontal health group at a mean follow-up of at least 6 years. Thirty consecutive uncontrolled periodontally compromised patients (PCP) and 30 periodontally healthy patients (PHP), with a total of 96 Straumann implants (PCP = 55, PHP = 41) were matched for age, gender, smoking, and implant characteristics. The inclusion criteria for PCPs were continuing tooth loss due to uncontrolled periodontal disease and no supportive periodontal maintenance after implant therapy. Peri-implant conditions were examined and the number of teeth lost during the follow-up periods was recorded in both groups. Radiographic marginal bone loss of implants and adjacent teeth was calculated having the restoration time point as baseline. No implant loss occurred in both groups. The mean number of teeth lost during the follow-up periods was 0.67 ± 0.80 in the PHP group, 3.93 ± 2.36 in the PCP group with statistical significance. The average overall bone loss was significantly greater at teeth than that around implants in the PCP group (0.54 ± 0.27 versus 0.22 ± 0.25 mm, P implant marginal bone loss. No significant correlations were found between teeth loss and crestal bone loss at implants sites in both groups. This study indicated that the marginal bone level around implants seemed more stable in comparison to that around the natural teeth when exposed to uncontrolled periodontal disease. © 2017 Wiley Periodicals, Inc.

  20. NEUROMUSCULAR AND CARDIOVASCULAR EFFECTS OF NEOSTIGMINE AND METHYL-ATROPINE ADMINISTERED AT DIFFERENT DEGREES OF ROCURONIUM-INDUCED NEUROMUSCULAR BLOCK

    NARCIS (Netherlands)

    VANDENBROEK, L; PROOST, JH; WIERDA, JMKH; NJOO, MD; HENNIS, PJ

    1994-01-01

    The neuromuscular and cardiovascular effects of neostigmine, 40 mug kg-1, and methyl-atropine, 7 mug kg-1, administered at different degrees of rocuronium-induced (600 mug kg-1) neuromuscular block were evaluated. In one group of patients spontaneous recovery was awaited (Group A; n = 20).

  1. The immediate effect of neuromuscular joint facilitation (NJF) treatment on the standing balance in younger persons.

    Science.gov (United States)

    Onoda, Ko; Huo, Ming; Maruyama, Hitoshi

    2015-05-01

    [Purpose] The aim of this study was to investigate the change in standing balance of younger persons after neuromuscular joint facilitation (NJF) treatment. [Subjects] The subjects were 57 healthy young people, who were divided into three groups: The NJF group, and the Proprioceptive Neuromuscular Facilitation (PNF) group and the control group. [Methods] Functional reach test and body sway were measured before and after intervention in three groups. Four hip patterns of NJF or PNF were used. Two-way ANOVA and multiple comparisons were performed. [Results] The rate of change of FRT in the NJF group increased than the PNF group. The root mean square area at NJF and PNF group increased than control group. [Conclusion] The results suggest that caput femoris rotation function can be improved by NJF treatment, and that improvement of caput femoris rotation contributes to improve dynamic balance.

  2. Control of Differentiation of Human Mesenchymal Stem Cells by Altering the Geometry of Nanofibers

    Directory of Open Access Journals (Sweden)

    Satoshi Fujita

    2012-01-01

    Full Text Available Effective differentiation of mesenchymal stem cells (MSCs is required for clinical applications. To control MSC differentiation, induction media containing different types of soluble factors have been used to date; however, it remains challenging to obtain a uniformly differentiated population of an appropriate quality for clinical application by this approach. We attempted to develop nanofiber scaffolds for effective MSC differentiation by mimicking anisotropy of the extracellular matrix structure, to assess whether differentiation of these cells can be controlled by using geometrically different scaffolds. We evaluated MSC differentiation on aligned and random nanofibers, fabricated by electrospinning. We found that induction of MSCs into adipocytes was markedly more inhibited on random nanofibers than on aligned nanofibers. In addition, adipoinduction on aligned nanofibers was also inhibited in the presence of mixed adipoinduction and osteoinduction medium, although osteoinduction was not affected by a change in scaffold geometry. Thus, we have achieved localized control over the direction of differentiation through changes in the alignment of the scaffold even in the presence of a mixed medium. These findings indicate that precise control of MSC differentiation can be attained by using scaffolds with different geometry, rather than by the conventional use of soluble factors in the medium.

  3. Brain oscillatory correlates of altered executive functioning in positive and negative symptomatic schizophrenia patients and healthy controls

    Directory of Open Access Journals (Sweden)

    Barbara eBerger

    2016-05-01

    Full Text Available Working Memory and executive functioning deficits are core characteristics of patients suffering from schizophrenia. Electrophysiological research indicates that altered patterns of neural oscillatory mechanisms underpinning executive functioning are associated with the psychiatric disorder. Such brain oscillatory changes have been found in local amplitude differences at gamma and theta frequencies in task-specific cortical areas. Moreover, interregional interactions are also disrupted as signified by decreased phase coherence of fronto-posterior theta activity in schizophrenia patients. However, schizophrenia is not a one-dimensional psychiatric disorder but has various forms and expressions. A common distinction is between positive and negative symptomatology but most patients have both negative and positive symptoms to some extent. Here, we examined three groups – healthy controls, predominantly negative and predominantly positive symptomatic schizophrenia patients – when performing a working memory task with increasing cognitive demand and increasing need for executive control. We analysed brain oscillatory activity in the three groups separately and investigated how predominant symptomatology might explain differences in brain oscillatory patterns. Our results indicate that differences in task specific fronto-posterior network activity (i.e. executive control network expressed by interregional phase synchronisation are able to account for working memory dysfunctions between groups. Local changes in the theta and gamma frequency range also show differences between patients and healthy controls, and more importantly, between the two patient groups. We conclude that differences in oscillatory brain activation patterns related to executive processing can be an indicator for positive and negative symptomatology in schizophrenia. Furthermore, changes in cognitive and especially executive functioning in patients are expressed by alterations in

  4. Combined application of neuromuscular electrical stimulation and voluntary muscular contractions.

    Science.gov (United States)

    Paillard, Thierry

    2008-01-01

    Electromyostimulation (EMS) and voluntary muscle contraction (VC) constitute different modes of muscle activation and induce different acute physiological effects on the neuromuscular system. Long-term application of each mode of muscle activation can produce different muscle adaptations. It seems theoretically possible to completely or partially cumulate the muscle adaptations induced by each mode of muscle activation applied separately. This work consisted of examining the literature concerning the muscle adaptations induced by long-term application of the combined technique (CT) [i.e. EMS is combined with VC - non-simultaneously] compared with VC and/or EMS alone in healthy subjects and/or athletes and in post-operative knee-injured subjects. In general, CT induced greater muscular adaptations than VC whether in sports training or rehabilitation. This efficiency would be due to the fact that CT can facilitate cumulative effects of training completely or partially induced by VC and EMS practiced alone. CT also provides a greater improvement of the performance of complex dynamic movements than VC. However, EMS cannot improve coordination between different agonistic and antagonistic muscles and thus does not facilitate learning the specific coordination of complex movements. Hence, EMS should be combined with specific sport training to generate neuromuscular adaptations, but also allow the adjustment of motor control during a voluntary movement. Likewise, in a therapeutic context, CT was particularly efficient to accelerate recovery of muscle contractility during a rehabilitation programme. Strength loss and atrophy inherent in a traumatism and/or a surgical operation would be more efficiently compensated with CT than with VC. Furthermore, CT also restored more functional abilities than VC. Finally, in a rehabilitation context, EMS is complementary to voluntary exercise because in the early phase of rehabilitation it elicits a strength increase, which is necessary

  5. Does perioperative tactile evaluation of the train-of-four response influence the frequency of postoperative residual neuromuscular blockade?

    DEFF Research Database (Denmark)

    Pedersen, T; Viby-Mogensen, J; Bang, U

    1990-01-01

    The authors conducted a randomized controlled clinical trial to evaluate the usefulness of perioperative manual evaluation of the response to train-of-four (TOF) nerve stimulation. A total of 80 patients were divided into four groups of 20 each. For two groups (one given vecuronium and one...... pancuronium), the anesthetists assessed the degree of neuromuscular blockade during operation and during recovery from neuromuscular blockade by manual evaluation of the response to TOF nerve stimulation. In the other two groups, one of which received vecuronium and the other pancuronium, the anesthetists...

  6. Controlling the Photophysical Properties of Semiconductor Quantum Dot Arrays by Strategically Altering Their Surface Chemistry

    Science.gov (United States)

    Marshall, Ashley R.

    Semiconductor quantum dots (QDs) are interesting materials that, after less than 40 years of research, are used in commercial products. QDs are now found in displays, such as Samsung televisions and the Kindle Fire, and have applications in lighting, bio-imaging, quantum computing, and photovoltaics. They offer a large range of desirable properties: a controllable band gap, solution processability, controlled energy levels, and are currently the best materials for multiple exciton generation. The tunable optoelectronic properties of QDs can be controlled using size, shape, composition, and surface treatments--as shown here. Due to the quasi-spherical shape of QDs the surface to volume ratio is high, i.e. many of the constituent atoms are found on the QD surface. This makes QDs highly sensitive to surface chemistry modifications. This thesis encompasses the effects of surface treatments for QDs of two semiconducting materials: lead chalcogenides and CsPbI3. Our group developed a new synthetic technique for lead chalcogenide QDs via the cation exchange of cadmium chalcogenides. An in-depth chemical analysis is paired with optical and electrical studies and we find that metal halide residue contributes to the oxidative stability and decreased trap state density in cation-exchanged PbS QDs. We exploit these properties to make air-stable QD photovoltaic devices from both PbS and PbSe QD materials. Beyond the effects of residual atoms left from the synthetic technique, I investigated how to controllably add atoms onto the surface of QDs. I found that by introducing metal halides as a post-treatment in an electronically coupled array I am able to control the performance parameters in QD photovoltaic devices. These treatments fully infiltrate the assembled film, even under short exposure times and allow me to add controlled quantities of surface atoms to study their effects on film properties and photovoltaic device performance. Finally, I sought to apply the knowledge of

  7. Prevalence of complications in neuromuscular scoliosis surgery

    DEFF Research Database (Denmark)

    Sharma, Shallu; Wu, Chunsen; Andersen, Thomas

    2013-01-01

    PURPOSE: Our objectives were primarily to review the published literature on complications in neuromuscular scoliosis (NMS) surgery and secondarily, by means of a meta-analysis, to determine the overall pooled rates (PR) of various complications associated with NMS surgery. METHODS: PubMed and Em......PURPOSE: Our objectives were primarily to review the published literature on complications in neuromuscular scoliosis (NMS) surgery and secondarily, by means of a meta-analysis, to determine the overall pooled rates (PR) of various complications associated with NMS surgery. METHODS: Pub.......71 %) followed by implant complications (PR = 12.51 %), infections (PR = 10.91 %), neurological complications (PR = 3.01 %) and pseudoarthrosis (PR = 1.88 %). Revision, removal and extension of implant had highest PR (7.87 %) followed by malplacement of the pedicle screws (4.81 %). Rates of individual studies....... In regard to surgical complications affiliated with various surgical techniques in NMS, the level of evidence of published literature ranges between 2+ to 2-; the subsequent recommendations are level C. CONCLUSION: NMS patients have diverse and high complication rates after scoliosis surgery. High PRs...

  8. Neuromuscular imaging in inherited muscle diseases

    International Nuclear Information System (INIS)

    Wattjes, Mike P.; Kley, Rudolf A.; Fischer, Dirk

    2010-01-01

    Driven by increasing numbers of newly identified genetic defects and new insights into the field of inherited muscle diseases, neuromuscular imaging in general and magnetic resonance imaging (MRI) in particular are increasingly being used to characterise the severity and pattern of muscle involvement. Although muscle biopsy is still the gold standard for the establishment of the definitive diagnosis, muscular imaging is an important diagnostic tool for the detection and quantification of dystrophic changes during the clinical workup of patients with hereditary muscle diseases. MRI is frequently used to describe muscle involvement patterns, which aids in narrowing of the differential diagnosis and distinguishing between dystrophic and non-dystrophic diseases. Recent work has demonstrated the usefulness of muscle imaging for the detection of specific congenital myopathies, mainly for the identification of the underlying genetic defect in core and centronuclear myopathies. Muscle imaging demonstrates characteristic patterns, which can be helpful for the differentiation of individual limb girdle muscular dystrophies. The aim of this review is to give a comprehensive overview of current methods and applications as well as future perspectives in the field of neuromuscular imaging in inherited muscle diseases. We also provide diagnostic algorithms that might guide us through the differential diagnosis in hereditary myopathies. (orig.)

  9. Next generation sequencing in neuromuscular diseases

    Science.gov (United States)

    Efthymiou, S; Manole, A; Houlden, H

    2016-01-01

    Purpose of review Neuromuscular diseases are clinically and genetically heterogeneous and probably contains the greatest proportion of causative Mendelian defects than any other group of conditions. These disorders affect muscle and/or nerves with neonatal, childhood or adulthood onset, with significant disability and early mortality. Along with heterogeneity, unidentified and often very large genes, require complementary and comprehensive methods in routine molecular diagnosis. Inevitably this leads to increased diagnostic delays and challenges in the interpretation of genetic variants. Recent findings The application of next-generation sequencing, as a research and diagnostic strategy has made significant progress into solving many of these problems. The analysis of these data is by no means simple and the clinical input is essential to interpret results. Summary In this review, we describe using examples the recent advances in the genetic diagnosis of neuromuscular disorders, in research and clinical practice and the latest developments that are underway in NGS. We also discuss the latest collaborative initiatives such as the Genomics England genome sequencing project that combine rare disease clinical phenotyping with genomics, with the aim of defining the vast majority of rare disease genes in patients as well as modifying risks and pharmacogenomics factors. PMID:27588584

  10. Neuromuscular imaging in inherited muscle diseases

    Energy Technology Data Exchange (ETDEWEB)

    Wattjes, Mike P. [VU University Medical Center, Department of Radiology, De Boelelaan 1117, HV, Amsterdam (Netherlands); Kley, Rudolf A. [Klinken Bergmannsheil, Ruhr-University, Department of Neurology, Neuromuscular Centre Ruhrgebiet, Bochum (Germany); Fischer, Dirk [University Hospital of Basel, Department of Neurology, Basel (Switzerland); University Children' s Hospital Basel, Department of Neuropaediatrics, Basel (Switzerland)

    2010-10-15

    Driven by increasing numbers of newly identified genetic defects and new insights into the field of inherited muscle diseases, neuromuscular imaging in general and magnetic resonance imaging (MRI) in particular are increasingly being used to characterise the severity and pattern of muscle involvement. Although muscle biopsy is still the gold standard for the establishment of the definitive diagnosis, muscular imaging is an important diagnostic tool for the detection and quantification of dystrophic changes during the clinical workup of patients with hereditary muscle diseases. MRI is frequently used to describe muscle involvement patterns, which aids in narrowing of the differential diagnosis and distinguishing between dystrophic and non-dystrophic diseases. Recent work has demonstrated the usefulness of muscle imaging for the detection of specific congenital myopathies, mainly for the identification of the underlying genetic defect in core and centronuclear myopathies. Muscle imaging demonstrates characteristic patterns, which can be helpful for the differentiation of individual limb girdle muscular dystrophies. The aim of this review is to give a comprehensive overview of current methods and applications as well as future perspectives in the field of neuromuscular imaging in inherited muscle diseases. We also provide diagnostic algorithms that might guide us through the differential diagnosis in hereditary myopathies. (orig.)

  11. Electrophysiological study in neuromuscular junction disorders

    Directory of Open Access Journals (Sweden)

    Ajith Cherian

    2013-01-01

    Full Text Available This review is on ultrastructure and subcellular physiology at normal and abnormal neuromuscular junctions. The clinical and electrophysiological findings in myasthenia gravis, Lambert-Eaton myasthenic syndrome (LEMS, congenital myasthenic syndromes, and botulinum intoxication are discussed. Single fiber electromyography (SFEMG helps to explain the basis of testing neuromuscular junction function by repetitive nerve stimulation (RNS. SFEMG requires skill and patience and its availability is limited to a few centers. For RNS supramaximal stimulation is essential and so is display of the whole waveform of each muscle response at maximum amplitude. The amplitudes of the negative phase of the first and fourth responses are measured from baseline to negative peak, and the percent change of the fourth response compared with the first represents the decrement or increment. A decrement greater than 10% is accepted as abnormal and smooth progression of response amplitude train and reproducibility form the crux. In suspected LEMS the effect of fast rates of stimulation should be determined after RNS response to slow rates of stimulation. Caution is required to avoid misinterpretation of potentiation and pseudofacilitation.

  12. Age-Related Modifications to the Magnitude and Periodicity of Neuromuscular Noise

    OpenAIRE

    Singh, Navrag B.; K?nig, Niklas; Arampatzis, Adamantios; Taylor, William R.

    2013-01-01

    BACKGROUND: Evaluation of task related outcomes within geriatric and fall-prone populations is essential not only for identification of neuromuscular deficits, but also for effective implementation of fall prevention strategies. As most tasks and activities of daily living are performed at submaximal force levels, restoration of muscle strength often does not produce the expected benefit in functional capacity. However, it is known that muscular control plays a key role in the performance of ...

  13. Correcting oral contraceptive pharmacokinetic alterations due to obesity: a randomized controlled trial.

    Science.gov (United States)

    Edelman, Alison B; Cherala, Ganesh; Munar, Myrna Y; McInnis, Martha; Stanczyk, Frank Z; Jensen, Jeffrey T

    2014-11-01

    To determine if increasing the hormone dose or eliminating the hormone-free interval improves key pharmacokinetic (PK) alterations caused by obesity during oral contraceptive (OC) use. Obese [body mass index (BMI)≥30 kg/m(2)], ovulatory, otherwise healthy, women received an OC containing 20 mcg ethinyl estradiol (EE)/100 mcg levonorgestrel (LNG) dosed cyclically (21 days active pills with 7-day placebo week) for two cycles and then were randomized for two additional cycles to the following: continuous cycling (CC, a dose neutral arm using the same OC with no hormone-free interval) or increased dose (ID, a dose escalation arm using an OC containing 30 mcg EE/150 mcg LNG cyclically). During Cycles 2, 3 and 4, outpatient visits were performed to assess maximum serum concentration (Cmax), area under the curve (AUC0-∞) and time to steady state as well as pharmacodynamics. These key PK parameters were calculated and compared within groups between baseline and treatment cycles. A total of 31 women enrolled and completed the study (CC group, n=16; ID group, n=15). Demographics were similar between groups [mean BMI: CC, 38 kg/m(2) (S.D. 5.1); ID, 41 kg/m(2) (S.D. 7.6)]. At baseline, the key LNG PK parameters were no different between groups; average time to reach steady state was 12 days in both groups; Cmax were CC: 3.82±1.28 ng/mL and ID: 3.13±0.87 ng/mL; and AUC0-∞ were CC: 267±115 h ng/mL and ID: 199±75 h ng/mL. Following randomization, the CC group maintained steady-state serum levels whereas the ID group had a significantly higher Cmax (pdose and continuous dosing appear to counteract the impact of obesity on key OC PK parameters. Obesity adversely affects the pharmacokinetics of very low dose OC pills. Although the impact of these changes on OC efficacy is still under debate, PK parameters can be normalized in obese users by continuous dosing or increasing to a low-dose pill. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Early life trauma is associated with altered white matter integrity and affective control.

    Science.gov (United States)

    Corbo, Vincent; Amick, Melissa A; Milberg, William P; McGlinchey, Regina E; Salat, David H

    2016-08-01

    Early life trauma (ELT) has been shown to impair affective control and attention well into adulthood. Neuroimaging studies have further shown that ELT was associated with decreased white matter integrity in the prefrontal areas in children and adults. However, no study to date has looked at the relationship between white matter integrity and affective control in individuals with and without a history of ELT. To examine this, we tested 240 Veterans with (ELT N = 80) and without (NoELT N = 160) a history of childhood sexual abuse, physical abuse or family violence. Affective control was measured with the Affective Go/No-Go (AGN) and attention was indexed with the Test of Variable Attention (TOVA). White matter integrity was measured using fractional anisotropy (FA). Results showed greater number of errors on the AGN in ELT compared to NoELT. There was no difference on the TOVA. While there were no mean differences in FA, there was an interaction between FA and reaction time to positive stimuli on the AGN where the ELT group showed a positive relationship between FA and reaction time in right frontal and prefrontal areas, whereas the NoELT group showed a negative or no association between FA and reaction time. This suggests that ELT may be associated with a distinct brain-behavior relationship that could be related to other determinants of FA than those present in healthy adults. Published by Elsevier Ltd.

  15. Altered Innate Immune Responses in Neutrophils from Patients with Well- and Suboptimally Controlled Asthma

    Directory of Open Access Journals (Sweden)

    Francesca S. M. Tang

    2015-01-01

    Full Text Available Background. Respiratory infections are a major cause of asthma exacerbations where neutrophilic inflammation dominates and is associated with steroid refractory asthma. Structural airway cells in asthma differ from nonasthmatics; however it is unknown if neutrophils differ. We investigated neutrophil immune responses in patients who have good (AGood and suboptimal (ASubopt asthma symptom control. Methods. Peripheral blood neutrophils from AGood (ACQ 0.75, n=7, and healthy controls (HC (n=9 were stimulated with bacterial (LPS (1 μg/mL, fMLF (100 nM, and viral (imiquimod (3 μg/mL, R848 (1.5 μg/mL, and poly I:C (10 μg/mL surrogates or live rhinovirus (RV 16 (MOI1. Cell-free supernatant was collected after 1 h for neutrophil elastase (NE and matrix metalloproteinase- (MMP- 9 measurements or after 24 h for CXCL8 release. Results. Constitutive NE was enhanced in AGood neutrophils compared to HC. fMLF stimulated neutrophils from ASubopt but not AGood produced 50% of HC levels. fMLF induced MMP-9 was impaired in ASubopt and AGood compared to HC. fMLF stimulated CXCL8 but not MMP-9 was positively correlated with FEV1 and FEV1/FVC. ASubopt and AGood responded similarly to other stimuli. Conclusions. Circulating neutrophils are different in asthma; however, this is likely to be related to airflow limitation rather than asthma control.

  16. Evaluation of skeletal muscular involvement in neuromuscular disorders with thallium-201 whole body scintigraphy

    International Nuclear Information System (INIS)

    Yamamoto, Shuhei; Sotobata, Iwao; Indo, Toshikatsu; Matsuoka, Yukihiko; Matsushima, Hideo; Suzuki, Akio; Abe, Tetsutaro; Sakuma, Sadayuki

    1986-01-01

    The extent as well as severity of pathologic changes of skeletal muscles were analyzed with thallium-201 whole body scintigraphy (WBS) in 29 cases of various types of neuromuscular diseases (18 cases of myogenic and 11 cases of neurogenic muscular diseases) and 14 cases of normal controls. After intravenous injection of 2 mCi of thallium-201 chloride, WBS was performed for 15 minutes using a gamma camera with twin-opposed large rectangular detectors. Counts at brachia, forearms, thighs, and calves were assessed after reconstruction of the scintigram of the whole body by taking the geometric mean of the anterior and posterior data. WBS showed uniform tracer activities in the 4 extremities in 12 cases among 14 controls. Laterality in distribution of counts of both legs and arms was noted in the remaining 2 controls. WBS revealed decrease of perfusion in the extremities with muscular atrophy and/or weakness in neuromuscular diseases. The overall diagnostic accuracy of WBS for evaluation of skeletal muscle involvement was 75 to 80 % except for the bilateral brachia for which it decreased to 65 %. All of the three cases of muscular dystrophy with pseudohypertrophy of the calves or thighs showed unequivocal decrease of perfusion of those regions in WBS. In conclusion, thallium-201 WBS was considered to be a useful clinical means in evaluating the extent and severity of muscular involvement of various types of neuromuscular disorders. (author)

  17. Effects of calcium chloride coadministered with neostigmine on neuromuscular blockade recovery: A double-blind randomised study.

    Science.gov (United States)

    Ju, Jae-Woo; Kim, Hyun-Chang; Yoon, Sehee; Hong, Deok Man; Park, Hee-Pyoung

    2017-09-01

    Ionised calcium plays an important role in neuromuscular transmission, but its effects on the reversal of nondepolarising neuromuscular blockade have not been fully evaluated. We examined whether calcium chloride coadministered with neostigmine could enhance the rate of neuromuscular recovery. Randomised double-blind trial. A tertiary teaching hospital. In total, 53 patients undergoing elective surgery under general anaesthesia with neuromuscular monitoring by acceleromyography using a TOF-Watch SX monitor. Patients were randomly allocated to receive either 5 mg kg of calcium chloride (calcium group, n = 26) or the same volume of normal saline (control group, n = 27) coadministered with 25 μg kg of neostigmine and 15 μg kg of atropine at the end of surgery. The primary end point was the neuromuscular recovery time [time from neostigmine administration to recovery of the TOF ratio (TOFr) to 0.9]. Secondary end points included the TOFr at 5, 10 and 20 min after neostigmine administration and the incidence of postoperative residual curarisation (PORC), defined as a TOFr less than 0.9 at each time point. The neuromuscular recovery time was significantly faster in the calcium group than in the control group (median [Q1 to Q3]; 5.0 [3.0 to 7.0] vs. 6.7 [5.7 to 10.0] min, respectively; P = 0.007). At 5 min after neostigmine administration, the TOFr was higher [87 (74 to 100) vs. 68 (51 to 81)%, respectively; P = 0.002] and the incidence of PORC was lower (50.0 vs. 81.5%, respectively; P = 0.016) in the calcium group than in the control group. There were no differences between the two groups with respect to the TOFr or incidence of PORC at 10 and 20 min after neostigmine administration. Calcium chloride coadministered with neostigmine enhanced neuromuscular recovery in the early period of nondepolarising neuromuscular blockade reversal.

  18. Negative stereotype activation alters interaction between neural correlates of arousal, inhibition and cognitive control.

    Science.gov (United States)

    Forbes, Chad E; Cox, Christine L; Schmader, Toni; Ryan, Lee

    2012-10-01

    Priming negative stereotypes of African Americans can bias perceptions toward novel Black targets, but less is known about how these perceptions ultimately arise. Examining how neural regions involved in arousal, inhibition and control covary when negative stereotypes are activated can provide insight into whether individuals attempt to downregulate biases. Using fMRI, White egalitarian-motivated participants were shown Black and White faces at fast (32 ms) or slow (525 ms) presentation speeds. To create a racially negative stereotypic context, participants listened to violent and misogynistic rap (VMR) in the background. No music (NM) and death metal (DM) were used as control conditions in separate blocks. Fast exposure of Black faces elicited amygdala activation in the NM and VMR conditions (but not DM), that also negatively covaried with activation in prefrontal regions. Only in VMR, however, did amygdala activation for Black faces persist during slow exposure and positively covary with activation in dorsolateral prefrontal cortex while negatively covarying with activation in orbitofrontal cortex. Findings suggest that contexts that prime negative racial stereotypes seem to hinder the downregulation of amygdala activation that typically occurs when egalitarian perceivers are exposed to Black faces.

  19. Altered monocyte activation markers in Tourette’s syndrome: a case–control study

    Directory of Open Access Journals (Sweden)

    Matz Judith

    2012-05-01

    Full Text Available Abstract Background Infections and immunological processes are likely to be involved in the pathogenesis of Tourette’s syndrome (TS. To determine possible common underlying immunological mechanisms, we focused on innate immunity and studied markers of inflammation, monocytes, and monocyte-derived cytokines. Methods In a cross-sectional study, we used current methods to determine the number of monocytes and levels of C-reactive protein (CRP in 46 children, adolescents, and adult patients suffering from TS and in 43 healthy controls matched for age and sex. Tumor necrosis factor alpha (TNF-alpha, interleukin 6 (IL-6, soluble CD14 (sCD14, IL1-receptor antagonist (IL1-ra, and serum neopterin were detected by immunoassays. Results We found that CRP and neopterin levels and the number of monocytes were significantly higher in TS patients than in healthy controls. Serum concentrations of TNF-alpha, sIL1-ra, and sCD14 were significantly lower in TS patients. All measured values were within normal ranges and often close to detection limits. Conclusions The present results point to a monocyte dysregulation in TS. This possible dysbalance in innate immunity could predispose to infections or autoimmune reactions.

  20. Neuromuscular and biomechanical factors codetermine the solution to motor redundancy in rhythmic multijoint arm movement.

    Science.gov (United States)

    de Rugy, Aymar; Riek, Stephan; Oytam, Yalchin; Carroll, Timothy J; Davoodi, Rahman; Carson, Richard G

    2008-08-01

    How the CNS deals with the issue of motor redundancy remains a central question for motor control research. Here we investigate the means by which neuromuscular and biomechanical factors interact to resolve motor redundancy in rhythmic multijoint arm movements. We used a two-df motorized robot arm to manipulate the dynamics of rhythmic flexion-extension (FE) and supination-pronation (SP) movements at the elbow-joint complex. Participants were required to produce rhythmic FE and SP movements, either in isolation, or in combination (at the phase relationship of their choice), while we recorded the activity of key bi-functional muscles. When performed in combination, most participants spontaneously produced an in-phase pattern of coordination in which flexion is synchronised with supination. The activity of the Biceps Brachii (BB), the strongest arm muscle which also has the largest moment arms in both flexion and supination was significantly higher for FE and SP performed in combination than in isolation, suggesting optimal exploitation of the mechanical advantage of this muscle. In a separate condition, participants were required to produce a rhythmic SP movement while a rhythmic FE movement was imposed by the motorized robot. Simulations based upon a musculoskeletal model of the arm demonstrated that in this context, the most efficient use of the force-velocity relationship of BB requires that an anti-phase pattern of coordination (flexion synchronized with pronation) be produced. In practice, the participants maintained the in-phase behavior, and BB activity was higher than for SP performed in isolation. This finding suggests that the neural organisation underlying the exploitation of bifunctional muscle properties, in the natural context, constrains the system to maintain the "natural" coordination pattern in an altered dynamic environment, even at the cost of reduced biomechanical efficiency. We suggest an important role for afference from the imposed movement

  1. Mutant p53 transfection of astrocytic cells results in altered cell cycle control, radiation sensitivity, and tumorigenicity

    International Nuclear Information System (INIS)

    Kanady, Kirk E.; Mei Su; Proulx, Gary; Malkin, David M.; Pardo, Francisco S.

    1995-01-01

    Introduction: Alterations in the p53 tumor suppressor gene are one of the most frequent genetic alterations in malignant gliomas. An understanding of the molecular genetic events leading to glial tumor progression would aid in designing therapeutic vectors for controlling these challenging tumor types. We investigated whether mutations in coding exons of the p53 gene result in functional changes altering cell cycle 'checkpoint' control and the intrinsic radiation sensitivity of glial cells. Methods: An astrocytic cell line was derived from a low grade astrocytoma and characterized to be of human karyotype and GFAP positivity. Additionally, the cellular population has never formed tumors in immune-deficient mice. At early passage ( 2 as parameters. Cell kinetic analyses after 2, 5, and 10 Gy of ionizing radiation were conducted using propidium iodide FACS analyses. Results: Overall levels of p53 expression were increased 5-10 fold in the transfected cellular populations. Astrocytic cellular populations transfected with mutant p53 revealed a statistically significant increase in levels of resistance to ionizing radiation in vitro (2-tailed test, SF2, MID). Astrocytic cellular populations transfected with mutant p53, unlike the parental cells, were tumorigenic in SCID mice. Cell kinetic analyses indicated that the untransfected cell line demonstrated dose dependent G1 and G2 arrests. Following transfection, however, the resultant cellular population demonstrated a predominant G2 arrest. Conclusions: Astrocytic cellular populations derived from low grade astrocytomas, are relatively radiation sensitive, non-tumorigenic, and have intact cell cycle ''checkpoints.'' Cellular populations resulting upon transfection of parental cells with a dominant negative p53 mutation, are relatively radiation resistant, when compared to both parental and mock-transfected cells. Transfected cells demonstrate abnormalities of cell cycle control at the G1/S checkpoint, increases in levels

  2. Altered Cortico-Striatal Connectivity in Offspring of Schizophrenia Patients Relative to Offspring of Bipolar Patients and Controls.

    Directory of Open Access Journals (Sweden)

    Cristina Solé-Padullés

    Full Text Available Schizophrenia (SZ and bipolar disorder (BD share clinical features, genetic risk factors and neuroimaging abnormalities. There is evidence of disrupted connectivity in resting state networks in patients with SZ and BD and their unaffected relatives. Resting state networks are known to undergo reorganization during youth coinciding with the period of increased incidence for both disorders. We therefore focused on characterizing resting state network connectivity in youth at familial risk for SZ or BD to identify alterations arising during this period. We measured resting-state functional connectivity in a sample of 106 youth, aged 7-19 years, comprising offspring of patients with SZ (N = 27, offspring of patients with BD (N = 39 and offspring of community control parents (N = 40. We used Independent Component Analysis to assess functional connectivity within the default mode, executive control, salience and basal ganglia networks and define their relationship to grey matter volume, clinical and cognitive measures. There was no difference in connectivity within any of the networks examined between offspring of patients with BD and offspring of community controls. In contrast, offspring of patients with SZ showed reduced connectivity within the left basal ganglia network compared to control offspring, and they showed a positive correlation between connectivity in this network and grey matter volume in the left caudate. Our findings suggest that dysconnectivity in the basal ganglia network is a robust correlate of familial risk for SZ and can be detected during childhood and adolescence.

  3. Surgical advances in the treatment of neuromuscular scoliosis.

    Science.gov (United States)

    Canavese, Federico; Rousset, Marie; Le Gledic, Benoit; Samba, Antoine; Dimeglio, Alain

    2014-04-18

    Neuromuscular disorders are a group of diseases affecting the neuro-musculo-skeletal system. Children with neuromuscular disorders frequently develop progressive spinal deformities with cardio-respiratory compromise in the most severe cases. The incidence of neuromuscular scoliosis is variable, inversely correlated with ambulatory abilities and with a reported risk ranging from 80% to 100% in non-ambulatory patients. As surgical and peri-operative techniques have improved, more severely affected children with complex neuromuscular deformities and considerable co-morbidities are now believed to be candidates for extensive surgery for spinal deformity. This article aimed to provide a comprehensive review of how neuromuscular spinal deformities can affect normal spine balance and how these deformities can be treated with segmental instrumentation and sub-laminar devices. Older concepts have been integrated with newer scientific data to provide the reader with a basis for better understanding of how treatment of neuromuscular scoliosis has evolved over the past few decades. Recent advances, as well as challenges that remain to be overcome, in the surgical treatment of neuromuscular curves with sub-laminar devices and in the management of post-operative infections are outlined.

  4. Neuromuscular fatigue following isometric contractions with similar torque time integral.

    Science.gov (United States)

    Rozand, V; Cattagni, T; Theurel, J; Martin, A; Lepers, R

    2015-01-01

    Torque time integral (TTI) is the combination of intensity and duration of a contraction. The aim of this study was to compare neuromuscular alterations following different isometric sub-maximal contractions of the knee extensor muscles but with similar TTI. Sixteen participants performed 3 sustained contractions at different intensities (25%, 50%, and 75% of Maximal Voluntary Contraction (MVC) torque) with different durations (68.5±33.4 s, 35.1±16.8 s and 24.8±12.9 s, respectively) but similar TTI value. MVC torque, maximal voluntary activation level (VAL), M-wave characteristics and potentiated doublet amplitude were assessed before and immediately after the sustained contractions. EMG activity of the vastus lateralis (VL) and -rectus femoris (RF) muscles was recorded during the sustained contractions. MVC torque reduction was similar in the 3 conditions after the exercise (-23.4±2.7%). VAL decreased significantly in a similar extent (-3.1±1.3%) after the 3 sustained contractions. Potentiated doublet amplitude was similarly reduced in the 3 conditions (-19.7±1.5%), but VL and RF M-wave amplitudes remained unchanged. EMG activity of VL and RF muscles increased in the same extent during the 3 contractions (VL: 54.5±40.4%; RF: 53.1±48.7%). These results suggest that central and peripheral alterations accounting for muscle fatigue are similar following isometric contractions with similar TTI. TTI should be considered in the exploration of muscle fatigue during sustained isometric contractions. © Georg Thieme Verlag KG Stuttgart · New York.

  5. Methylglyoxal alters the function and stability of critical components of the protein quality control.

    Directory of Open Access Journals (Sweden)

    Carla Figueira Bento

    Full Text Available BACKGROUND: Increased production and accumulation of methylglyoxal (MGO, as well as increased modification of proteins by glycoxidation, are hallmarks of aging and diabetes. MGO was shown to modify proteins and to contribute to the accumulation of damaged proteins that can be toxic to cells. However, the effect of MGO on the cell systems responsible for repairing or degrading damaged proteins is still unclear. In this study, the effect of MGO on the function of the ubiquitin-proteasome system (UPS and on molecular chaperones, two cooperative mechanisms associated with protein quality control, was investigated. PRINCIPAL FINDINGS: In this work it is shown that treatment of cells with MGO leads to accumulation of ubiquitin conjugates and depletion of free ubiquitin. Moreover, MGO significantly decreases the proteolytic activity of the 20S proteasome. Data further shows that MGO decreases the levels of the molecular chaperones Hsc70 and Hsp90 and leads to accumulation of CHIP-, Hsp40- and ubiquitin-containing aggregates. The formation of large aggregates containing CHIP is a consequence of its binding to misfolded proteins and to molecular chaperones. Moreover, dysfunction of the chaperones/CHIP/UPS axis is associated with accumulation of oxidized and argpyrimidine-modified proteins, which is likely to be associated with decreased cell viability. Interestingly, data further shows that MGO-induced stress induces the activation of heat shock factor-1 (Hsf-1, the main transcription factor involved in the regulation of the expression of heat shock proteins (HSPs and cell response to stress. CONCLUSIONS: The data obtained in this work suggests that MGO impairs both the UPS and the protein quality control dependent on CHIP and molecular chaperones, leading to accumulation of toxic aggregates and increased cell death. However, these MGO-induced changes appear to elicit a response from the Hsf-1 system, which is crucial to help cells to cope with cellular

  6. Methylglyoxal alters the function and stability of critical components of the protein quality control.

    Science.gov (United States)

    Bento, Carla Figueira; Marques, Filipa; Fernandes, Rosa; Pereira, Paulo

    2010-09-24

    Increased production and accumulation of methylglyoxal (MGO), as well as increased modification of proteins by glycoxidation, are hallmarks of aging and diabetes. MGO was shown to modify proteins and to contribute to the accumulation of damaged proteins that can be toxic to cells. However, the effect of MGO on the cell systems responsible for repairing or degrading damaged proteins is still unclear. In this study, the effect of MGO on the function of the ubiquitin-proteasome system (UPS) and on molecular chaperones, two cooperative mechanisms associated with protein quality control, was investigated. In this work it is shown that treatment of cells with MGO leads to accumulation of ubiquitin conjugates and depletion of free ubiquitin. Moreover, MGO significantly decreases the proteolytic activity of the 20S proteasome. Data further shows that MGO decreases the levels of the molecular chaperones Hsc70 and Hsp90 and leads to accumulation of CHIP-, Hsp40- and ubiquitin-containing aggregates. The formation of large aggregates containing CHIP is a consequence of its binding to misfolded proteins and to molecular chaperones. Moreover, dysfunction of the chaperones/CHIP/UPS axis is associated with accumulation of oxidized and argpyrimidine-modified proteins, which is likely to be associated with decreased cell viability. Interestingly, data further shows that MGO-induced stress induces the activation of heat shock factor-1 (Hsf-1), the main transcription factor involved in the regulation of the expression of heat shock proteins (HSPs) and cell response to stress. The data obtained in this work suggests that MGO impairs both the UPS and the protein quality control dependent on CHIP and molecular chaperones, leading to accumulation of toxic aggregates and increased cell death. However, these MGO-induced changes appear to elicit a response from the Hsf-1 system, which is crucial to help cells to cope with cellular stress and to re-establish homeostasis.

  7. Increased Force Variability Is Associated with Altered Modulation of the Motorneuron Pool Activity in Autism Spectrum Disorder (ASD).

    Science.gov (United States)

    Wang, Zheng; Kwon, Minhyuk; Mohanty, Suman; Schmitt, Lauren M; White, Stormi P; Christou, Evangelos A; Mosconi, Matthew W

    2017-03-25

    Force control deficits have been repeatedly documented in autism spectrum disorder (ASD). They are associated with worse social and daily living skill impairments in patients suggesting that developing a more mechanistic understanding of the central and peripheral processes that cause them may help guide the development of treatments that improve multiple outcomes in ASD. The neuromuscular mechanisms underlying force control deficits are not yet understood. Seventeen individuals with ASD and 14 matched healthy controls completed an isometric index finger abduction test at 60% of their maximum voluntary contraction (MVC) during recording of the first dorsal interosseous (FDI) muscle to determine the neuromuscular processes associated with sustained force variability. Central modulation of the motorneuron pool activation of the FDI muscle was evaluated at delta (0-4 Hz), alpha (4-10 Hz), beta (10-35 Hz) and gamma (35-60 Hz) frequency bands. ASD patients showed greater force variability than controls when attempting to maintain a constant force. Relative to controls, patients also showed increased central modulation of the motorneuron pool at beta and gamma bands. For controls, reduced force variability was associated with reduced delta frequency modulation of the motorneuron pool activity of the FDI muscle and increased modulation at beta and gamma bands. In contrast, delta, beta, and gamma frequency oscillations were not associated with force variability in ASD. These findings suggest that alterations of central mechanisms that control motorneuron pool firing may underlie the common and often impairing symptoms of ASD.

  8. Alterations in postural control during the world's most challenging mountain ultra-marathon.

    Directory of Open Access Journals (Sweden)

    Francis Degache

    Full Text Available We investigated postural control (PC effects of a mountain ultra-marathon (MUM: a 330-km trail run with 24000 m of positive and negative change in elevation. PC was assessed prior to (PRE, during (MID and after (POST the MUM in experienced ultra-marathon runners (n = 18; finish time = 126 ± 16 h and in a control group (n = 8 with a similar level of sleep deprivation. Subjects were instructed to stand upright on a posturographic platform over a period of 51.2 seconds using a double-leg stance under two test conditions: eyes open (EO and eyes closed (EC. Traditional measures of postural stability (center of pressure trajectory analysis and stabilogram-diffusion analysis (SDA parameters were analysed. For the SDA, a significantly greater short-term effective diffusion was found at POST compared with PRE in the medio-lateral (ML; Dxs and antero-posterior (AP directions (Dys in runners (p<0.05 The critical time interval (Ctx in the ML direction was significantly higher at MID (p<0.001 and POST (p<0.05 than at PRE in runners. At MID (p<0.001 and POST (p<0.05, there was a significant difference between the two groups. The critical displacement (Cdx in the ML was significantly higher at MID and at POST (p<0.001 compared with PRE for runners. A significant difference in Cdx was observed between groups in EO at MID (p<0.05 and POST (p<0.005 in the ML direction and in EC at POST in the ML and AP directions (p<0.05. Our findings revealed significant effects of fatigue on PC in runners, including, a significant increase in Ctx (critical time in ML plan in EO and EC conditions. Thus, runners take longer to stabilise their body at POST than at MID. It is likely that the mountainous characteristics of MUM (unstable ground, primarily uphill/downhill running, and altitude increase this fatigue, leading to difficulty in maintaining balance.

  9. Drug-lactose binding aspects in adhesive mixtures: controlling performance in dry powder inhaler formulations by altering lactose carrier surfaces.

    Science.gov (United States)

    Zhou, Qi Tony; Morton, David A V

    2012-03-15

    For dry powder inhaler formulations, micronized drug powders are commonly mixed with coarse lactose carriers to facilitate powder handling during the manufacturing and powder aerosol delivery during patient use. The performance of such dry powder inhaler formulations strongly depends on the balance of cohesive and adhesive forces experienced by the drug particles under stresses induced in the flow environment during aerosolization. Surface modification with appropriate additives has been proposed as a practical and efficient way to alter the inter-particulate forces, thus potentially controlling the formulation performance, and this strategy has been employed in a number of different ways with varying degrees of success. This paper reviews the main strategies and methodologies published on surface coating of lactose carriers, and considers their effectiveness and impact on the performance of dry powder inhaler formulations. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Feasibility of neuromuscular training in patients with severe hip or knee OA

    DEFF Research Database (Denmark)

    Ageberg, Eva; Link, Anne; Roos, Ewa M

    2010-01-01

    to training, and 4) achieved progression of training level during the training period. METHODS: Seventy-six patients, between 60 and 77 years, with severe hip (n = 38, 55% women) or knee OA (n = 38, 61% women) underwent an individualized, goal-based neuromuscular training program (NEMEX-TJR) in groups......BACKGROUND: Although improvements are achieved by general exercise, training to improve sensorimotor control may be needed for people with osteoarthritis (OA). The aim was to apply the principles of neuromuscular training, which have been successfully used in younger and middle-aged patients......%) reported adverse events in terms of self-reported pain > 5 after one or more training sessions. Progression of training level was achieved over time (p

  11. Neuromuscular fatigue during high-intensity intermittent exercise in individuals with intellectual disability.

    Science.gov (United States)

    Borji, Rihab; Sahli, Sonia; Zarrouk, Nidhal; Zghal, Firas; Rebai, Haithem

    2013-12-01

    This study examined neuromuscular fatigue after high-intensity intermittent exercise in 10 men with mild intellectual disability (ID) in comparison with 10 controls. Both groups performed three maximal voluntary contractions (MVC) of knee extension with 5 min in-between. The highest level achieved was selected as reference MVC. The fatiguing exercise consists of five sets with a maximal number of flexion-extension cycles at 80% of the one maximal repetition (1RM) for the right leg at 90° with 90 s rest interval between sets. The MVC was tested again after the last set. Peak force and electromyography (EMG) signals were measured during the MVC tests. Root Mean Square (RMS) and Median Frequency (MF) were calculated. Neuromuscular efficiency (NME) was calculated as the ratio of peak force to the RMS. Before exercise, individuals with ID had a lower MVC (psport train ID individuals, they should consider this nervous system weakness. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Redox Control of Aphid Resistance through Altered Cell Wall Composition and Nutritional Quality1[OPEN

    Science.gov (United States)

    Rasool, Brwa; Marcus, Sue E.

    2017-01-01

    The mechanisms underpinning plant perception of phloem-feeding insects, particularly aphids, remain poorly characterized. Therefore, the role of apoplastic redox state in controlling aphid infestation was explored using transgenic tobacco (Nicotiana tabacum) plants that have either high (PAO) or low (TAO) ascorbate oxidase (AO) activities relative to the wild type. Only a small number of leaf transcripts and metabolites were changed in response to genotype, and cell wall composition was largely unaffected. Aphid fecundity was decreased significantly in TAO plants compared with other lines. Leaf sugar levels were increased and maximum extractable AO activities were decreased in response to aphids in all genotypes. Transcripts encoding the Respiratory Burst Oxidase Homolog F, signaling components involved in ethylene and other hormone-mediated pathways, photosynthetic electron transport components, sugar, amino acid, and cell wall metabolism, were increased significantly in the TAO plants in response to aphid perception relative to other lines. The levels of galactosylated xyloglucan were decreased significantly in response to aphid feeding in all the lines, the effect being the least in the TAO plants. Similarly, all lines exhibited increases in tightly bound (1→4)-β-galactan. Taken together, these findings identify AO-dependent mechanisms that limit aphid infestation. PMID:28743764

  13. Altered Nocturnal Cardiovascular Control in Children With Sleep-Disordered Breathing.

    Science.gov (United States)

    El-Hamad, Fatima; Immanuel, Sarah; Liu, Xiao; Pamula, Yvonne; Kontos, Anna; Martin, James; Kennedy, Declan; Kohler, Mark; Porta, Alberto; Baumert, Mathias

    2017-10-01

    To assess cardiovascular control during sleep in children with sleep-disordered breathing (SDB) and the effect of adenotonsillectomy in comparison to healthy nonsnoring children. Cardiorespiratory signals obtained from overnight polysomnographic recordings of 28 children with SDB and 34 healthy nonsnoring children were analyzed. We employed an autoregressive closed-loop model with heart period (RR) and pulse transit time (PTT) as outputs and respiration as an external input to obtain estimates of respiratory gain and baroreflex gain. Mean and variability of PTT were increased in children with SDB across all stages of sleep. Low frequency power of RR and PTT were attenuated during non-rapid eye movement (REM) sleep. Baroreflex sensitivity was reduced in children with SDB in stage 2 sleep, while respiratory gain was increased in slow wave sleep. After adenotonsillectomy, these indices normalized in the SDB group attaining values comparable to those of healthy children. In children with mild-to-moderate SDB, vasomotor activity is increased and baroreflex sensitivity decreased during quiet, event-free non-REM sleep. Adenotonsillectomy appears to reverse this effect. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  14. Redox Control of Aphid Resistance through Altered Cell Wall Composition and Nutritional Quality.

    Science.gov (United States)

    Rasool, Brwa; McGowan, Jack; Pastok, Daria; Marcus, Sue E; Morris, Jenny A; Verrall, Susan R; Hedley, Peter E; Hancock, Robert D; Foyer, Christine H

    2017-09-01

    The mechanisms underpinning plant perception of phloem-feeding insects, particularly aphids, remain poorly characterized. Therefore, the role of apoplastic redox state in controlling aphid infestation was explored using transgenic tobacco ( Nicotiana tabacum ) plants that have either high (PAO) or low (TAO) ascorbate oxidase (AO) activities relative to the wild type. Only a small number of leaf transcripts and metabolites were changed in response to genotype, and cell wall composition was largely unaffected. Aphid fecundity was decreased significantly in TAO plants compared with other lines. Leaf sugar levels were increased and maximum extractable AO activities were decreased in response to aphids in all genotypes. Transcripts encoding the Respiratory Burst Oxidase Homolog F, signaling components involved in ethylene and other hormone-mediated pathways, photosynthetic electron transport components, sugar, amino acid, and cell wall metabolism, were increased significantly in the TAO plants in response to aphid perception relative to other lines. The levels of galactosylated xyloglucan were decreased significantly in response to aphid feeding in all the lines, the effect being the least in the TAO plants. Similarly, all lines exhibited increases in tightly bound (1→4)-β-galactan. Taken together, these findings identify AO-dependent mechanisms that limit aphid infestation. © 2017 American Society of Plant Biologists. All Rights Reserved.

  15. Can stormwater control measures restore altered urban flow regimes at the catchment scale?

    Science.gov (United States)

    Li, Congying; Fletcher, Tim D.; Duncan, Hugh P.; Burns, Matthew J.

    2017-06-01

    Over the last 20-30 years, there has been an evolution in urban stormwater management towards the use of stormwater control measures (SCMs) at or near the source of the runoff. These approaches aim to protect or restore natural elements of the flow regime. However, evidence of the success of such approaches is to date limited. We reviewed attempts to both model and monitor the catchment-scale hydrological consequences of SCMs. While many catchment-scale studies on the hydrologic effects of SCMs are based on computer simulation, these modeling approaches are limited by many uncertainties. The few existing monitoring studies provide early indications of the potential of SCMs to deliver more natural flow regimes, but many questions remain. There is an urgent need for properly monitored studies that aim to assess the hydrologic effects of SCMs at the catchment scale. In future monitoring studies, these hydrologic effects need to be characterized using appropriate flow metrics at a range of scales (from site scale to catchment scale), and changes to flow metrics by SCMs need to be assessed using robust statistical methods. Such studies will give confidence to stormwater and river managers of the feasibility and benefits of "low impact" approaches to stormwater management.

  16. Prenatal nicotine alters maturation of breathing and neural circuits regulating respiratory control.

    Science.gov (United States)

    Mahlière, Sophie; Perrin, David; Peyronnet, Julie; Boussouar, Aurélien; Annat, Guy; Viale, Jean-Paul; Pequignot, Jacqueline; Pequignot, Jean-Marc; Dalmaz, Yvette

    2008-06-30

    While perinatal nicotine effects on ventilation have been widely investigated, the prenatal impact of nicotine treatment during gestation on both breathing and neural circuits involved in respiratory control remains unknown. We examined the effects of nicotine, from embryonic day 5 (E5) to E20, on baseline ventilation, the two hypoxic ventilatory response components and in vivo tyrosine hydroxylase (TH) activity in carotid bodies and brainstem areas, assessed at postnatal day 7 (P7), P11 and P21. In pups prenatally exposed to nicotine, baseline ventilation and hypoxic ventilatory response were increased at P7 (+48%) and P11 (+46%), with increased tidal volume (p<0.05). Hypoxia blunted frequency response at P7 and revealed unstable ventilation at P11. In carotid bodies, TH activity increased by 20% at P7 and decreased by 48% at P11 (p<0.05). In most brainstem areas it was reduced by 20-33% until P11. Changes were resolved by P21. Prenatal nicotine led to postnatal ventilatory sequelae, partly resulting from impaired maturation of peripheral chemoreceptors and brainstem integrative sites.

  17. Effects of sugammadex on incidence of postoperative residual neuromuscular blockade

    DEFF Research Database (Denmark)

    Brueckmann, B; Sasaki, N; Grobara, P

    2015-01-01

    BACKGROUND: This study aimed to investigate whether reversal of rocuronium-induced neuromuscular blockade with sugammadex reduced the incidence of residual blockade and facilitated operating room discharge readiness. METHODS: Adult patients undergoing abdominal surgery received rocuronium, followed...... by randomized allocation to sugammadex (2 or 4 mg kg(-1)) or usual care (neostigmine/glycopyrrolate, dosing per usual care practice) for reversal of neuromuscular blockade. Timing of reversal agent administration was based on the providers' clinical judgement. Primary endpoint was the presence of residual...... neuromuscular blockade at PACU admission, defined as a train-of-four (TOF) ratio

  18. Neuromuscular hamartoma: imaging features of a rare paediatric craniofacial tumour

    International Nuclear Information System (INIS)

    Oeppen, Rachel S.; Harden, Stephen P.; Argent, Julie D.

    2003-01-01

    Neuromuscular hamartoma (also referred to as neuromuscular choristoma or benign triton tumour) has not previously been described in the radiological literature. It is a rare benign lesion composed of mature elements of striated muscle and neural tissue. We report a case of neuromuscular hamartoma involving the skull base, nasopharynx, orbit and maxilla in a 2.5-year-old child who presented with facial swelling. The CT and MRI appearances of this unusual soft-tissue tumour are emphasized, together with a discussion of the pathological findings, differential diagnosis and review of the literature. (orig.)

  19. Relationship between neuromuscular body functions and upper extremity activity in children with cerebral palsy.

    Science.gov (United States)

    Braendvik, Siri M; Elvrum, Ann-Kristin G; Vereijken, Beatrix; Roeleveld, Karin

    2010-02-01

    Our aim was to investigate the relationship between the dimensions of neuromuscular body function and elbow, forearm, and hand activity in the upper extremities in children/adolescents with spastic cerebral palsy (CP), within the framework of the World Health Organization International Classification of Functioning, Disability and Health. Twenty-three participants (10 males, 13 females, mean age 13y, SD 3y, range 8-18y) with spastic CP (21 with hemiplegia, two with diplegia) at Manual Ability Classification System levels I to III participated in the study. Neuromuscular body function measures were (1) muscle strength in the elbow, forearm, and grip, (2) muscle tone in elbow flexors and forearm supinators, (3) active supination range and elbow extension range, and (4) force control at submaximal level in elbow flexion. Activity measures were actual use of the affected hand in bimanual activities (Assisting Hand Assessment) and instructed use of the affected hand (Melbourne Assessment of Unilateral Upper Limb Function). Nearly all the neuromuscular body function variables were significantly correlated with activity. The combination of active supination range and strength explained 74% of the variance in actual use, and the combination of active supination range and force control explained 74% of the variance in instructed use. In high-functioning children and adolescents with CP, limited active supination range and difficulties in generating and modulating force are strongly related to limitations in hand activity. Further studies are needed to establish cause and effect in this relationship.

  20. Therapeutic efficacy of neuromuscular electrical stimulation and electromyographic biofeedback on Alzheimer's disease patients with dysphagia.

    Science.gov (United States)

    Tang, Yi; Lin, Xiang; Lin, Xiao-Juan; Zheng, Wei; Zheng, Zhi-Kai; Lin, Zhao-Min; Chen, Jian-Hao

    2017-09-01

    To study the therapeutic effect of neuromuscular electrical stimulation and electromyographic biofeedback (EMG-biofeedback) therapy in improving swallowing function of Alzheimer's disease patients with dysphagia.A series of 103 Alzheimer's disease patients with dysphagia were divided into 2 groups, among which the control group (n = 50) received swallowing function training and the treatment group (n = 53) received neuromuscular electrical stimulation plus EMG-biofeedback therapy. The mini-mental state scale score was performed in all patients along the treatment period. Twelve weeks after the treatment, the swallowing function was assessed by the water swallow test. The nutritional status was evaluated by Mini Nutritional Assessment (MNA) as well as the levels of hemoglobin and serum albumin. The frequency and course of aspiration pneumonia were also recorded.No significant difference on mini-mental state scale score was noted between 2 groups. More improvement of swallowing function, better nutritional status, and less frequency and shorter course of aspiration pneumonia were presented in treatment group when compared with the control group.Neuromuscular electrical stimulation and EMG-biofeedback treatment can improve swallowing function in patients with Alzheimer's disease and significantly reduce the incidence of adverse outcomes. Thus, they should be promoted in clinical practice.

  1. Two- and 6-minute walk tests assess walking capability equally in neuromuscular diseases.

    Science.gov (United States)

    Andersen, Linda Kahr; Knak, Kirsten Lykke; Witting, Nanna; Vissing, John

    2016-02-02

    This methodologic study investigates if the 2-minute walk test (2MWT) can be a valid alternative to the 6-minute walk test (6MWT) to describe walking capability in patients with neuromuscular diseases. Patients (n = 115) with different neuromuscular diseases were invited to participate on 2 test days, each consisting of 1 2MWT and 1 6MWT separated by a minimum 30-minute period of rest. The order of the walk tests was randomly assigned via sealed envelopes. A group of 38 healthy controls completed 1 6MWT. The mean walking distance for the 2MWT was 142.8 meters and for the 6MWT 405.3 meters. The distance walked in the 2MWT was highly correlated to the distance walked in the 6MWT (r = 0.99, p walking speed from the first to last minute in the 6MWT, both among patients and healthy controls, which was not evident in the 2MWT. Results were consistent across diagnoses and levels of disease severity. The 2MWT is a potential alternative to the 6MWT to describe walking capability among patients with neuromuscular diseases during clinical trials. © 2016 American Academy of Neurology.

  2. Butler's neuromobilizations combined with proprioceptive neuromuscular facilitation are effective in reducing of upper limb sensory in late-stage stroke subjects: a three-group randomized trial.

    Science.gov (United States)

    Wolny, Tomasz; Saulicz, Edward; Gnat, Rafal; Kokosz, Mirosław

    2010-09-01

    Are Butler's neuromobilizations combined with proprioceptive neuromuscular facilitation and traditional post-stroke therapy more effective in reducing affected upper extremity sensory deficits in late-stage stroke subjects than proprioceptive neuromuscular facilitation combined with traditional therapy or traditional therapy alone? Pretest-posttest three-group randomized clinical experimental design. A total of 96 late-stage stroke subjects were randomly assigned to three groups. The therapeutic programme in the control group was based on traditional post-stroke methods. The second group (experimental 1) received in addition individual therapy based on the proprioceptive neuromuscular facilitation method. The third group (experimental 2) received a combination: traditional therapeutic programme plus individual proprioceptive neuromuscular facilitation exercises plus neuromobilization of the affected upper extremity. All groups received 18 training sessions lasting about 45 minutes each. Assessment of the two-point discriminatory sense (distance between the tips of the compass when the subject indicated two-point sensation), stereognosia (identification up to 10 objects by touch) and thermaesthesia (using hot and cold cylinders on dermatomes C6-C8) were performed. Analysis of change scores showed that two-point discriminatory sense for experimental group 2 was significantly better than that in the two other groups (Pproprioceptive neuromuscular facilitation showed greater effectiveness in reducing sensory deficits than proprioceptive neuromuscular facilitation or traditional therapy alone.

  3. Twist1 controls lung vascular permeability and endotoxin-induced pulmonary edema by altering Tie2 expression.

    Science.gov (United States)

    Mammoto, Tadanori; Jiang, Elisabeth; Jiang, Amanda; Lu, Yongbo; Juan, Aimee M; Chen, Jing; Mammoto, Akiko

    2013-01-01

    Tight regulation of vascular permeability is necessary for normal development and deregulated vascular barrier function contributes to the pathogenesis of various diseases, including acute respiratory distress syndrome, cancer and inflammation. The angiopoietin (Ang)-Tie2 pathway is known to control vascular permeability. However, the mechanism by which the expression of Tie2 is regulated to control vascular permeability has not been fully elucidated. Here we show that transcription factor Twist1 modulates pulmonary vascular leakage by altering the expression of Tie2 in a context-dependent way. Twist1 knockdown in cultured human lung microvascular endothelial cells decreases Tie2 expression and phosphorylation and increases RhoA activity, which disrupts cell-cell junctional integrity and increases vascular permeability in vitro. In physiological conditions, where Ang1 is dominant, pulmonary vascular permeability is elevated in the Tie2-specific Twist1 knockout mice. However, depletion of Twist1 and resultant suppression of Tie2 expression prevent increase in vascular permeability in an endotoxin-induced lung injury model, where the balance of Angs shifts toward Ang2. These results suggest that Twist1-Tie2-Angs signaling is important for controlling vascular permeability and modulation of this mechanism may lead to the development of new therapeutic approaches for pulmonary edema and other diseases caused by abnormal vascular permeability.

  4. TrkB kinase activity maintains synaptic function and structural integrity at adult neuromuscular junctions

    Science.gov (United States)

    Stowe, Jessica M.; Sieck, Dylan C.; Ermilov, Leonid G.; Greising, Sarah M.; Zhang, Chao; Shokat, Kevan M.; Sieck, Gary C.

    2014-01-01

    Activation of the tropomyosin-related kinase receptor B (TrkB) by brain-derived neurotrophic factor acutely regulates synaptic transmission at adult neuromuscular junctions (NMJs). The role of TrkB kinase activity in the maintenance of NMJ function and structure at diaphragm muscle NMJs was explored using a chemical-genetic approach that permits reversible inactivation of TrkB kinase activity in TrkBF616A mice by 1NMPP1. Inhibiting TrkB kinase activity for 7 days resulted in significant, yet reversible, impairments in neuromuscular transmission at diaphragm NMJs. Neuromuscular transmission failure following 2 min of repetitive phrenic nerve stimulation increased from 42% in control to 59% in 1NMPP1-treated TrkBF616A mice (P = 0.010). Recovery of TrkB kinase activity following withdrawal of 1NMPP1 treatment improved neuromuscular transmission (P = 0.006). Electrophysiological measurements at individual diaphragm NMJs documented lack of differences in quantal content in control and 1NMPP1-treated mice (P = 0.845). Morphological changes at diaphragm NMJs were modest following inhibition and recovery of TrkB kinase activity. Three-dimensional reconstructions of diaphragm NMJs revealed no differences in volume at motor end plates (labeled by α-bungarotoxin; P = 0.982) or presynaptic terminals (labeled by synaptophysin; P = 0.515). Inhibition of TrkB kinase activity by 1NMPP1 resulted in more compact NMJs, with increased apposition of presynaptic terminals and motor end plates (P = 0.017) and reduced fragmentation of motor end plates (P = 0.005). Recovery of TrkB kinase activity following withdrawal of 1NMPP1 treatment resulted in postsynaptic remodeling likely reflecting increased gutter depth (P = 0.007), without significant presynaptic changes. These results support an essential role for TrkB kinase activity in maintaining synaptic function and structural integrity at NMJs in the adult mouse diaphragm muscle. PMID:25170066

  5. Effectiveness of neuromuscular taping on painful hemiplegic shoulder: a randomised clinical trial.

    Science.gov (United States)

    Pillastrini, Paolo; Rocchi, Giulia; Deserri, Deborah; Foschi, Paola; Mardegan, Michele; Naldi, Maria Teresa; Villafañe, Jorge Hugo; Bertozzi, Lucia

    2016-08-01

    The purpose of this trial was to investigate changes in pain, the range of motion (ROM) and spasticity in people with painful hemiplegic shoulder (PHS) after the application of an upper limb neuromuscular taping (NMT). We conducted a randomised clinical trial. The study included 32 people, 31% female (mean ± SD age: 66 ± 9 years), with PHS after stroke with pain at rest and during functional movements. The experimental group received the application of NMT and a standard physical therapy programme (SPTP), whereas the control group received SPTP. The groups received four 45-minute long sessions over four weeks. The VAS, ROM and spasticity were assessed before and after the intervention with follow-up at four weeks. The experimental group had a greater reduction in pain compared to the control group at the end of the intervention, as well as at one month after the intervention (p shoulder flexion (95% CI: 37.3-22.7) at 4 weeks and by 24.8° (95% CI: 32.1-17.6) at 8 weeks as well as in abduction by 30.6° (95% CI: 37.5-23.7) at 4 weeks and 25.1° (95% CI: 33.8-16.3) at 8 weeks. Our study demonstrates that NMT decreases pain and increases the ROM in subjects with shoulder pain after a stroke. Implications for Rehabilitation Painful hemiplegic shoulder is a frequent complication after stroke with negative impacts on functional activities and on quality of life of people, moreover restricts rehabilitation intervention. Neuromuscular taping is a technique introduced by David Blow for the treatment of neuromuscoloskeletal problems. This study shows the reduction of pain and the improvement of range of motion after the application of an upper limb neuromuscular taping. Rehabilitation professionals who are involved in the management of painful hemiplegic shoulder may like to consider the benefits that neuromuscular taping can produce on upper limb.

  6. Cardiorespiratory and neuromuscular deconditioning in fatigued and non-fatigued breast cancer survivors.

    Science.gov (United States)

    Neil, Sarah E; Klika, Riggs J; Garland, S Jayne; McKenzie, Donald C; Campbell, Kristin L

    2013-03-01

    Fatigue is one of the most commonly reported side effects during treatment for breast cancer and can persist following treatment completion. Cancer-related fatigue after treatment is multifactorial in nature, and one hypothesized mechanism is cardiorespiratory and neuromuscular deconditioning. The purpose of this study was to compare cardiorespiratory and neuromuscular function in breast cancer survivors who had completed treatment and met the specified criteria for cancer-related fatigue and a control group of breast cancer survivors without fatigue. Participants in the fatigue (n = 16) and control group (n = 11) performed a maximal exercise test on a cycle ergometer for determination of peak power, power at lactate threshold, and VO(2) peak. Neuromuscular fatigue was induced with a sustained submaximal contraction of the right quadriceps. Central fatigue (failure of voluntary activation) was evaluated using twitch interpolation, and peripheral fatigue was measured with an electrically evoked twitch. Power at lactate threshold was lower in the fatigue group (p = 0.05). There were no differences between groups for power at lactate threshold as percentage of peak power (p = 0.10) or absolute or relative VO(2) peak (p = 0.08 and 0.33, respectively). When adjusted for age, the fatigue group had a lower power at lactate threshold (p = 0.02) and absolute VO(2) peak (p = 0.03). There were no differences between groups in change in any neuromuscular parameters after the muscle-fatiguing protocol. Findings support the hypothesis that cardiorespiratory deconditioning may play a role in the development and persistence of cancer-related fatigue following treatment. Future research into the use of exercise training to reduce cardiorespiratory deconditioning as a treatment for cancer-related fatigue is warranted to confirm these preliminary findings.

  7. Mindfulness training alters emotional memory recall compared to active controls: support for an emotional information processing model of mindfulness

    Directory of Open Access Journals (Sweden)

    Doug eRoberts-Wolfe

    2012-02-01

    Full Text Available Objectives: While mindfulness-based interventions have received widespread application in both clinical and non-clinical populations, the mechanism by which mindfulness meditation improves well-being remains elusive. One possibility is that mindfulness training alters the processing of emotional information, similar to prevailing cognitive models of depression and anxiety. The aim of this study was to investigating the effects of mindfulness training on emotional information processing (i.e. memory biases in relation to both clinical symptomatology and well-being in comparison to active control conditions.Methods: Fifty-eight university students (28 female, age = 20.1 ± 2.7 years participated in either a 12-week course containing a "meditation laboratory" or an active control course with similar content or experiential practice laboratory format (music. Participants completed an emotional word recall task and self-report questionnaires of well-being and clinical symptoms before and after the 12-week course.Results: Meditators showed greater increases in positive word recall compared to controls F(1, 56 = 6.6, p = .02. The meditation group increased significantly more on measures of well-being [F(1, 56 = 6.6, p = .01], with a marginal decrease in depression and anxiety [(F(1, 56 = 3.0, p = .09] compared to controls. Increased positive word recall was associated with increased psychological well-being [r = 0.31, p = .02] and decreased clinical symptoms [r = -0.29, p = .03].Conclusion: Mindfulness training was associated with greater improvements in processing efficiency for positively valenced stimuli than active control conditions. This change in emotional information processing was associated with improvements in psychological well-being and less depression and anxiety. These data suggest that mindfulness training may improve well-being via changes in emotional information processing.

  8. Spatial orientation and balance control changes induced by altered gravitoinertial force vectors

    Science.gov (United States)

    Kaufman, G. D.; Wood, S. J.; Gianna, C. C.; Black, F. O.; Paloski, W. H.

    2001-01-01

    were short-lived, however, with a recovery time of several postural test trials (minutes). There were also asymmetries in the direction of postcentrifugation COP and head tilt which depended on the subject's orientation during the centrifugation adaptation period (left ear or right ear out). The amount of total head movements during centrifugation correlated poorly or inversely with postcentrifugation postural stability, and the most unstable subject made no head movements. There was no decrease in postural stability after static tilt, although these subjects also reported a perceived tilt briefly after return to upright, and they also had COP asymmetries. Abnormal subjects underestimated roll-tilt during centrifugation, and their directed saccades revealed permanent spatial distortions. Bilateral abnormal subjects started out with poor postural control, but showed no postural decrements after centrifugation, while unilateral abnormal subjects had varying degrees of postural decrement, both in their everyday function and as a result of experiencing the centrifugation. In addition, three unilateral, abnormal subjects, who rode twice in opposite orientations, revealed a consistent orthogonal pattern of COP offsets after centrifugation. These results suggest that both orientation and magnitude of the gravitoinertial vector are used by the central nervous system for calibration of multiple orientation systems. A change in the background gravitoinertial force (otolith input) can rapidly initiate postural and perceptual adaptation in several sensorimotor systems, independent of a structured visual surround.

  9. Deep neuromuscular blockade and low insufflation pressure during laparoscopic hysterectomy

    DEFF Research Database (Denmark)

    Madsen, Matias Vested; Istre, Olav; Springborg, Henrik Halvor

    2017-01-01

    INTRODUCTION: Establishment of sufficient muscle relaxation is essential in laparoscopic surgery. During laparoscopy, surgeons can experience abdominal contractions in their patients. Deep neuromuscular block (NMB) has the potential to prevent such episodes. In this study, we explored if deep NMB...

  10. The Role of AMPK in Neuromuscular Biology and Disease.

    Science.gov (United States)

    Dial, Athan G; Ng, Sean Y; Manta, Alexander; Ljubicic, Vladimir

    2018-03-20

    AMP-activated protein kinase (AMPK) is a primary regulator of cellular metabolism. Recent studies have revealed that AMPK also mediates the maintenance and plasticity of α-motoneurons, the neuromuscular junction, and skeletal muscle. Furthermore, AMPK stimulation by either genetic, pharmacological, or physiological approaches elicits beneficial phenotypic remodeling in neuromuscular disorders (NMDs). Here, we review the role of AMPK as a governor of neuromuscular biology, and present evidence for AMPK as an effective molecular target for therapeutic pursuit in the context of the most prevalent NMDs, including Duchenne muscular dystrophy, spinal muscular atrophy, and myotonic dystrophy type 1. This information may be useful for engineering AMPK-targeted pharmacological- or lifestyle-based strategies to treat disorders of the neuromuscular system. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Genetics of Pediatric-Onset Motor Neuron and Neuromuscular Diseases

    Science.gov (United States)

    2015-08-24

    Spinal Muscular Atrophy; Charcot-Marie-Tooth Disease; Muscular Dystrophy; Spinal Muscular Atrophy With Respiratory Distress 1; Amyotrophic Lateral Sclerosis; Motor Neuron Disease; Neuromuscular Disease; Peroneal Muscular Atrophy; Fragile X Syndrome

  12. Neuromuscular function during a forward lunge in meniscectomized patients

    DEFF Research Database (Denmark)

    Thorlund, Jonas Bloch; Damgaard, Jacob; Roos, Ewa M.

    2012-01-01

    This study aimed to investigate differences in knee joint kinematics, ground reaction force kinetics and neuromuscular activity including muscle coactivation, and medial versus lateral muscle activity during a forward lunge between the operated and contralateral legs of meniscectomized patients...

  13. Exploring employment in consultation reports of patients with neuromuscular diseases

    NARCIS (Netherlands)

    Minis, M.A.H; Cup, E.H.C.; Heerkens, Y.H.; Engels, J.A.; Engelen, B.G.M. van; Oostendorp, R.A.B.

    2012-01-01

    Minis MA, Cup EH, Heerkens YF, Engels JA, van Engelen BG, Oostendorp RA. Exploring employment in consultation reports of patients with neuromuscular diseases. OBJECTIVES: To explore consultation reports for patient and employment characteristics and recommendations on employment regarding patients

  14. [Neuromuscular relaxation and CCMDP. The Zilgrei and Feldenkrais methods 2].

    Science.gov (United States)

    Santoro, F; Maiorana, C; Faccin, C

    1989-10-31

    The Authors show two neuromuscular release methods employed in the treatment of cranio-cervico-mandibular syndrome; these methods work at the place of origin of the pathology resolving the symptoms in different districts of the body.

  15. Altered inhibitory control and increased sensitivity to cross-modal interference in tinnitus during auditory and visual tasks.

    Directory of Open Access Journals (Sweden)

    Rodrigo Araneda

    Full Text Available Tinnitus is the perception of sound in the absence of external stimulus. Currently, the pathophysiology of tinnitus is not fully understood, but recent studies indicate that alterations in the brain involve non-auditory areas, including the prefrontal cortex. In experiment 1, we used a go/no-go paradigm to evaluate the target detection speed and the inhibitory control in tinnitus participants (TP and control subjects (CS, both in unimodal and bimodal conditions in the auditory and visual modalities. We also tested whether the sound frequency used for target and distractors affected the performance. We observed that TP were slower and made more false alarms than CS in all unimodal auditory conditions. TP were also slower than CS in the bimodal conditions. In addition, when comparing the response times in bimodal and auditory unimodal conditions, the expected gain in bimodal conditions was present in CS, but not in TP when tinnitus-matched frequency sounds were used as targets. In experiment 2, we tested the sensitivity to cross-modal interference in TP during auditory and visual go/no-go tasks where each stimulus was preceded by an irrelevant pre-stimulus in the untested modality (e.g. high frequency auditory pre-stimulus in visual no/no-go condition. We observed that TP had longer response times than CS and made more false alarms in all conditions. In addition, the highest false alarm rate occurred in TP when tinnitus-matched/high frequency sounds were used as pre-stimulus. We conclude that the inhibitory control is altered in TP and that TP are abnormally sensitive to cross-modal interference, reflecting difficulties to ignore irrelevant stimuli. The fact that the strongest interference effect was caused by tinnitus-like auditory stimulation is consistent with the hypothesis according to which such stimulations generate emotional responses that affect cognitive processing in TP. We postulate that executive functions deficits play a key-role in

  16. Water table controlled syndepositional alteration textures and fabrics in salt pan halite: Modern analogues and ancient examples

    International Nuclear Information System (INIS)

    Holt, R.M.; Powers, D.W.

    1991-01-01

    At the Devil's Golf Course, Death Valley, CA, vadose zone and phreatic zone alteration of subaqueously accumulated halite produces characteristic textures and fabrics that are recognizable in ancient salt pan halite (Late Permian Salado Formation) exposed in a shaft at the Waste Isolation Pilot Plant. Water table depth and duration control fabric type. The crystal size of surficial halite is reduced by hygroscopic alteration. Efflorescent crusts extend the capillary fringe to the surface along vertical permeability pathways. When the water table is shallow, planar dissolution in the vadose zone removes all or most halite from successive thin depositional sequences and progressively disrupts strata consisting of clay or sulfate into irregular strata, stringers, isolated blebs, and, ultimately, 'blebby' laminae. With a deeper water table, point dissolution occurs along vertically oriented permeability pathways (e.g., polygonal margins) producing characteristic textures. Vertical pits, pipes, and macropores form first. Then the surface becomes slightly hummocky as point solution pathways to the water table widen and coalesce. A complex terrain of spires, hummocks, and columns develops and exhibits characteristic pods and lenses of fine halite surrounded by and containing solution lags of insoluble material. Relief is reduced by solution, and lenses and pods of fine halite become smaller and less common. Ultimately, halite is entirely removed leaving only insoluble material. Halite cements grow in the phreatic zone. Halite passively fills voids in more mechanically competent halite. Displacive halite cements dilate fabrics within less competent bedded halite. These textures can be integrated into an idealized lithologic sequence for ancient salt pan halite

  17. Magnetic resonance imaging arterial-spin-labelling perfusion alterations in childhood migraine with atypical aura: a case-control study.

    Science.gov (United States)

    Boulouis, Grégoire; Shotar, Eimad; Dangouloff-Ros, Volodia; Grévent, David; Calmon, Raphaël; Brunelle, Francis; Naggara, Olivier; Kossorotoff, Manoelle; Boddaert, Nathalie

    2016-09-01

    Atypical migraine with aura can be challenging to diagnose. Arterial-spin-labelling (ASL) is able to non-invasively quantify brain perfusion. Our aim was to report cerebral blood flow (CBF) alterations using ASL, at the acute phase of atypical migraine with aura in children. Paediatric patients were retrospectively included if (1) referred for acute neurological deficit(s), (2) underwent brain magnetic resonance imaging (MRI) at presentation with ASL sequence, and (3) had subsequent diagnosis of migraine with aura. Neurological symptom-free controls were matched for age. Twenty-eight regions of interest (ROIs) were drawn on CBF maps for each participant/control. Ten patients were included (median age 13y, range 8-16y). Eight of 10 had multiple aura symptoms during the episode. For every patient, CBF was decreased in a brain region consistent with symptoms when MRI was performed less than 14 hours after onset (n=7 patients) and increased if the MRI was performed 17 hours or more after (n=4 MRIs). MRI-ASL appears to be a promising tool for the diagnostic workup and differentials exclusion in paediatric migraine with aura. Constant and time-consistent non-territorial CBF modifications were found in our sample providing additional insight to migraine with aura pathophysiology. The authors encourage implementing this sequence at the acute phase of unexplained paediatric neurological deficits, with or without accompanying headache. © 2016 Mac Keith Press.

  18. Neuromuscular fatigue and recovery profiles in individuals with intellectual disability

    OpenAIRE

    Borji , Rihab; Zghal , Firas; Zarrouk , Nidhal; Martin , Vincent; Sahli , Sonia; Rebai , Haithem

    2017-01-01

    International audience; Purpose: This study aimed to explore neuromuscular fatigue and recovery profiles in individuals with intellectual disability (ID) after exhausting submaximal contraction.Methods: Ten men with ID were compared to 10 men without ID. The evaluation of neuromuscular function consisted in brief (3 s) isometric maximal voluntary contraction (IMVC) of the knee extension superimposed with electrical nerve stimulation before, immediately after, and during 33 min after an exhaus...

  19. Practical approach to the patient with acute neuromuscular weakness.

    Science.gov (United States)

    Nayak, Rajeev

    2017-07-16

    Acute neuromuscular paralysis (ANMP) is a clinical syndrome characterized by rapid onset muscle weakness progressing to maximum severity within several days to weeks (less than 4 wk). Bulbar and respiratory muscle weakness may or may not be present. It is a common neurological emergency which requires immediate and careful investigations to determine the etiology because accurate diagnosis has significant impact on therapy and prognosis. Respiratory failure caused by neuromuscular weakness is considered as more critical than lung disease because its development may be insidious or subtle until sudden decompensation leads to life threatening hypoxia. Also, the arterial blood gas finding of severe hypoxemia, hypercapnia, and acidosis may not be apparent until respiratory failure is profound. Hence, the requirement for respiratory assistance should also be intensively and promptly investigated in all patients with neuromuscular disease. The disorder is classified based on the site of defect in motor unit pathway, i.e ., anterior horn cells, nerve root, peripheral nerve, neuromuscular junction or muscle. Identification of the cause is primarily based on a good medical history and detailed clinical examination supplemented with neurophysiologic investigations and sometimes few specific laboratory tests. Medical history and neurological examination should be focused on the onset, progression, pattern and severity of muscle weakness as well as cranial nerves testing and tests for autonomic dysfunction. Associated non neurological features like fever, rash or other skin lesions etc. should also be noted. Globally, Guillain-Barré syndrome is the most frequent cause of ANMP and accounts for the majority of cases of respiratory muscles weakness associated with neuromuscular disorders. Newly acquired neuromuscular weakness in intensive care unit patients consist of critical illness polyneuropathy, critical illness myopathy and drug induced neuromuscular weakness which may

  20. Formation of neuromuscular junctions in rat embryo cell cultures

    International Nuclear Information System (INIS)

    Koenig, Jeanine

    1978-01-01

    The morphological evidence of the primary nerve muscle contacts are described. They consist of areas of cholinesterase activity (detected histochemically) localized on the myotube membranes and of multiple clusters of ACh receptors whose 125 I-α-bungarotoxin binding sites are revealed by radioautography. After the stage of the primary nerve muscle contacts, some of which seem transient, characteristic neuromuscular junctions appear. These neuromuscular junctions which possess subneural infoldings are similar to the end-plates of the rat in vivo [fr

  1. Management of Cardiac Involvement in NeuroMuscular Diseases: Review

    OpenAIRE

    Bouhouch, Rachida; Elhouari, Tarik; Oukerraj, Latifa; Fellat, Ibtissam; Zarzur, Jamila; Bennani, Rajaa; Arharbi, Mhamed

    2008-01-01

    Neuromuscular Diseases are a heterogeneous molecular, clinical and prognosis group. Progress has been achieved in the understanding and classification of these diseases. Cardiac involvement in neuromuscular diseases namely conduction disorders, ventricular dilatation and dilated cardiomyopathy with its impact on prognosis, is often dissociated from the peripheral myopathy. Therefore, close surveillance is mandatory in the affected patients. In this context, preventive therapy (beta-blockers a...

  2. Noninvasive Mechanical Ventilation Improves Breathing-Swallowing Interaction of Ventilator Dependent Neuromuscular Patients: A Prospective Crossover Study.

    Science.gov (United States)

    Garguilo, Marine; Lejaille, Michèle; Vaugier, Isabelle; Orlikowski, David; Terzi, Nicolas; Lofaso, Frédéric; Prigent, Hélène

    2016-01-01

    Respiratory involvement in neuromuscular disorders may contribute to impaired breathing-swallowing interactions, swallowing disorders and malnutrition. We investigated whether the use of non-invasive ventilation (NIV) controlled by the patient could improve swallowing performances in a population of neuromuscular patients requiring daytime NIV. Ten neuromuscular patients with severe respiratory failure requiring extensive NIV use were studied while swallowing without and with NIV (while ventilated with a modified ventilator allowing the patient to withhold ventilation as desired). Breathing-swallowing interactions were investigated by chin electromyography, cervical piezoelectric sensor, nasal flow recording and inductive plethysmography. Two water-bolus sizes (5 and 10ml) and a textured yogurt bolus were tested in a random order. NIV use significantly improved swallowing fragmentation (defined as the number of respiratory interruption of the swallowing of a single bolus) (p = 0.003) and breathing-swallowing synchronization (with a significant increase of swallows followed by an expiration) (p <0.0001). Patient exhibited piecemeal swallowing which was not influenced by NIV use (p = 0.07). NIV use also significantly reduced dyspnea during swallowing (p = 0.04) while preserving swallowing comfort, regardless of bolus type. The use of patient controlled NIV improves swallowing parameters in patients with severe neuromuscular respiratory failure requiring daytime NIV, without impairing swallowing comfort. ClinicalTrials.gov NCT01519388.

  3. C-terminal agrin fragment is inversely related to neuromuscular fatigue in older men.

    Science.gov (United States)

    Stout, Jeffrey R; Fragala, Maren S; Hoffman, Jay R; Robinson, Edward H; Mccormack, William P; Townsend, Jeremy R; Jatjner, Adam R; Emerson, Nadia S; Oliveira, Leonardo P; Fukuda, David H

    2015-01-01

    The aim of this study was to examine the relationship between serum C-terminal agrin fragment (CAF) concentrations and neuromuscular fatigue in older adults. Twenty-two healthy older men and women volunteered for this study. Resting fasted blood samples were collected and prepared for measurement of serum CAF concentration by a commercially available ELISA kit. The onset of neuromuscular fatigue was measured by monitoring electromyographic fatigue curves from the vastus lateralis muscle using the physical working capacity at fatigue threshold (PWCFT ) test. A significant inverse correlation for men was observed between CAF and PWCFT (r = -0.602; P = 0.05), but not for women (r = 0.208; P = 0.54). After controlling for age and body mass index, significant correlations (r = -0.69; P = 0.042) remained for men, but not for women (r = 0.12; P = 0.76). These data suggest that serum CAF concentrations were significantly related to the onset of neuromuscular fatigue independent of age and BMI in men only. © 2014 Wiley Periodicals, Inc.

  4. Interspeaker variation in habitual speaking rate: evidence for a neuromuscular component.

    Science.gov (United States)

    Tsao, Y C; Weismer, G

    1997-08-01

    Neuromuscular and sociolinguistic hypotheses were proposed to explore and account for the nature of individuals' idiosyncratic speech rates. One hundred subjects (50 males and 50 females) read the Farm Script passage at both habitual and maximum rates. FAST and SLOW subgroups of subjects were selected for both genders based on their overall speaking rates. The articulation rate data derived from 30 selected subjects (SLOW and FAST) revealed the following findings: (a) a significant linear regression function existed between the habitual and maximum rates, (b) significantly different maximum rates were found for the SLOW and the FAST groups, (c) roughly equivalent relative changes from habitual to maximum rate for both SLOW and FAST groups. No significant gender differences were found across different speech tasks and measures of speech rates. The weight of the evidence seems to suggest that neuromuscular constraints play a role in the determination of an individual's habitual speaking rate. Nevertheless, the study did not suggest that either neuromuscular hypotheses or sociolinguistic hypotheses alone can account for the control of individuals' speaking rates due to the unusual ability demonstrated by a few subjects in the SLOW group, to speak at very fast maximum rates.

  5. The effects of dynamic exercise using the proprioceptive neuromuscular facilitation pattern on posture in healthy adults.

    Science.gov (United States)

    Cho, Misuk; Gong, Wontae

    2017-06-01

    [Purpose] The purpose of this study is to examine the effects of dynamic exercise utilizing the proprioceptor neuromuscular facilitation pattern accompanied by abdominal drawing-in exercises on posture in healthy adults. [Subjects and Methods] The total number of subjects were 32; 16 were randomly placed in the training group, and the remaining 16 made up the control group. The subjects in the training group conducted 5 sets of dynamic exercises utilizing the proprioceptor neuromuscular facilitation patterns each day, 3 times a week for 6 weeks. Using BackMapper, their trunk inclination, trunk imbalance, pelvic position, pelvic torsion, pelvic rotation and the position of their scapula were evaluated. [Results] When the training group's posture pre-test and post-test were compared in this study, there was a statistical significance in trunk inclination, pelvic position, pelvic torsion, pelvic rotation and the position of their scapula. [Conclusion] Dynamic exercise utilizing the proprioceptor neuromuscular facilitation patterns increased the posture that are the basis of trunk stabilization.

  6. Outcome of paediatric domiciliary mask ventilation in neuromuscular and skeletal disease.

    Science.gov (United States)

    Simonds, A K; Ward, S; Heather, S; Bush, A; Muntoni, F

    2000-09-01

    Noninvasive positive pressure ventilation delivered by nasal mask or facemask has been used widely in the last decade to manage chronic ventilatory failure in adults with neuromuscular and chest wall disease. However, it has been thought that paediatric patients would not be able to tolerate masks, and previous anecdotal reports on the paediatric application of mask ventilation have not assessed the effects on nocturnal and arterial blood gas control. Domiciliary mask ventilation has been used in 40 children with ventilatory insufficiency due to congenital neuromuscular and skeletal disease aged 9 months-16 yrs. Eighteen patients had symptomatic nocturnal hypoventilation, 17 had diurnal ventilatory failure, three were referred for weaning and two had frequent chest infections associated with sleep-disordered breathing. Thirty eight of the 40 patients tolerated mask ventilatory support long-term. Diurnal mean+/-SD oxygen tension in arterial blood (Pa,O2) increased from 8.5+/-1.8-10.9+/-1.7 kPa (pO2 and peak transcutaneous carbon dioxide tension (Ptc,CO2) (n=21) improved significantly. Mask ventilation can be used successfully in young children and reverses ventilatory insufficiency due to congenital neuromuscular and skeletal disease.

  7. Treatment of postoperative infection after posterior spinal fusion and instrumentation in a patient with neuromuscular scoliosis.

    Science.gov (United States)

    Ghattas, Paul J; Mehlman, Charles T; Eichten, David

    2014-02-01

    According to the literature, patients with neuromuscular scoliosis have a higher rate of infection after spinal fusion. No randomized controlled trials have been completed to assess the optimal treatment and related outcomes for patients with infections after posterior spinal fusion. In this article, we examine the data and report a case in which a vacuum-assisted closure (VAC) device was used as definitive treatment for a deep wound infection after posterior spinal fusion and instrumentation in a patient with neuromuscular scoliosis. Our patient, a 17-year-old adolescent girl with progressive neuromuscular scoliosis, underwent posterior spinal fusion with instrumentation and bone graft from T2 to sacrum without complication. One month after surgery, she presented with a draining wound. She underwent repeat surgical irrigation and debridement with subsequent use of a wound VAC. The wound VAC was used for more than 2 months, until skin closure was complete. The deep polymicrobial wound infection was treated successfully and definitively with a wound VAC. This case report suggests that good long-term outcomes can be achieved with use of a wound VAC for definitive closure, with possible avoidance of other secondary surgeries requiring skin grafts or flaps for wound closure.

  8. Neuromuscular training injury prevention strategies in youth sport: a systematic review and meta-analysis.

    Science.gov (United States)

    Emery, Carolyn A; Roy, Thierry-Olivier; Whittaker, Jackie L; Nettel-Aguirre, Alberto; van Mechelen, Willem

    2015-07-01

    Youth have very high participation and injury rates in sport. Sport is the leading cause of injury in youth. Sport injury reduces future participation in physical activity which adversely affects future health. Sport injury may lead to overweight/obesity and post-traumatic osteoarthritis. The objective of the systematic review and meta-analysis was to evaluate the efficacy of injury prevention neuromuscular training strategies in youth sport. Three electronic databases were systematically searched up to September 2014. Studies selected met the following criteria: original data; analytic prospective design; investigated a neuromuscular training prevention strategy intervention(s) and included outcomes for injury sustained during sport participation. Two authors assessed the quality of evidence using Downs and Black (DB) criteria. Meta-analyses including randomised controlled trials only (RCTs) to ensure study design homogeneity were completed for lower extremity and knee injury outcomes. Of 2504 potentially relevant studies, 25 were included. Meta-analysis revealed a combined preventative effect of neuromuscular training in reducing the risk of lower extremity injury (incidence rate ratio: IRR=0.64 (95% CI 0.49 to 0.84)). Though not statistically significant, the point estimate suggests a protective effect of such programmes in reducing the risk of knee injury (IRR=0.74 (95% CI 0.51 to 1.07)). There is evidence for the effectiveness of neuromuscular training strategies in the reduction of injury in numerous team sports. Lack of uptake and ongoing maintenance of such programmes is an ongoing concern. A focus on implementation is critical to influence knowledge, behaviour change and sustainability of evidence informed injury prevention practice. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  9. Recovery from mivacurium-induced neuromuscular blockade is not affected by anticonvulsant therapy.

    Science.gov (United States)

    Jellish, W S; Thalji, Z; Brundidge, P K; Tempelhoff, R

    1996-01-01

    Long-term chronic anticonvulsant therapy produces a resistance to the effects of all nondepolarizing neuromuscular blocking agents studied to date. Since the metabolism of mivacurium is unique among the nondepolarizing neuromuscular blocking agents, the effect of anticonvulsants on its recovery parameters was examined. Forty-five patients were separated into three groups based on the number of chronic anticonvulsant medications the subjects were taking: subjects in group 1, the control group, took no anticonvulsant medication; group 2 subjects took one medication; and group 3 subjects took two medications. Mivacurium, 0.15 mg/kg i.v., was administered after induction of general anesthesia with thiopental sodium, 4-6 mg/kg, and fentanyl 2-4 micrograms/kg i.v. Maintenance anesthesia consisted of N2O in O2. 0.2-0.3% end-tidal isoflurane, and a fentanyl infusion. The evoked compound electromyograph (ECEMG) of the adductor pollicis-brevis muscle was measured for time of onset, T-1 (time at which ECEMG signal reaches 5, 25, 50, and 75% of baseline), TR (TOF ratio), and recovery index. T-1 at 25% was 18.2 +/- 1.8, 20.7 +/- 1.9, and 21.5 +/- 1.4 min for groups 1, 2, and 3, respectively, with TR at 25% being 23.7 +/- 2.3, 26.9 +/- 2.4, and 27.3 +/- 2.3 min. No significant differences were noted in neuromuscular recovery between groups at any time point. These results fail to demonstrate the resistance to the nondepolarizing neuromuscular blockade of mivacurium that has been observed with other nondepolarizing agents.

  10. Balance improvements in female high school basketball players after a 6-week neuromuscular-training program.

    Science.gov (United States)

    McLeod, Tamara C Valovich; Armstrong, Travis; Miller, Mathew; Sauers, Jamie L

    2009-11-01

    Poor balance has been associated with increased injury risk among athletes. Neuromuscular-training programs have been advocated as a means of injury prevention, but little is known about the benefits of these programs on balance in high school athletes. To determine whether there are balance gains after participation in a neuromuscular-training program in high school athletes. Nonrandomized controlled trial. All data were collected at each participating high school before and after a 6-wk intervention or control period. 62 female high school basketball players recruited from the local high school community and assigned to a training (n = 37) or control (n = 25) group. Training-group subjects participated in a 6-wk neuromuscular-training program that included plyometric, functional-strengthening, balance, and stability-ball exercises. Data were collected for the Balance Error Scoring System (BESS) and Star Excursion Balance Test (SEBT) before and after the 6-wk intervention or control period. The authors found a significant decrease in total BESS errors in the trained group at the posttest compared with their pretest and the control group (P = .003). Trained subjects also scored significantly fewer BESS errors on the single-foam and tandem-foam conditions at the posttest than the control group and demonstrated improvements on the single-foam compared with their pretest (P = .033). The authors found improvements in reach in the lateral, anteromedial, medial, and posterior directions in the trained group at the posttest compared with the control group (P training program can increase the balance and proprioceptive capabilities of female high school basketball players and that clinical balance measures are sensitive to detect these differences.

  11. Neural correlates of free T3 alteration after catecholamine depletion in subjects with remitted major depressive disorder and in controls.

    Science.gov (United States)

    Homan, Philipp; Drevets, Wayne C; Hasler, Gregor

    2014-01-01

    Thyroid hormones and their interactions with catecholamines play a potentially important role in alterations of mood and cognition. This study aimed to examine the neurobiological effects of catecholamine depletion on thyroid hormones by measuring endocrine and cerebral metabolic function in unmedicated subjects with remitted major depressive disorder (RMDD) and in healthy controls. This was a randomized, placebo-controlled, and double-blind crossover trial that included 15 unmedicated RMDD subjects and 13 healthy control subjects. The participants underwent two 3-day-long sessions at 1-week intervals; each participant was randomly administered oral α-methyl-para-tyrosine in one session (catecholamine depletion) and an identical capsule containing hydrous lactose (sham depletion) in the other session prior to a [(18)F]-fluorodeoxyglucose positron emission tomography scan. Serum concentrations of free T3 (FT3), free T4 (FT4), and TSH were obtained and assessed with respect to their relationship to regional cerebral glucose metabolism. Both serum FT3 (P = 0.002) and FT4 (P = 0.0009) levels were less suppressed after catecholamine depletion compared with placebo treatment in the entire study sample. There was a positive association between both FT3 (P = 0.0005) and FT4 (P = 0.002) and depressive symptoms measured using the Montgomery-Åsberg Depression Rating Scale. The relative elevation in FT3 level was correlated with a decrease in regional glucose metabolism in the right dorsolateral prefrontal cortex (rDLPFC; P < 0.05, corrected). This study provided evidence of an association between a thyroid-catecholamine interaction and mood regulation in the rDLPFC.

  12. Alterations in the steroid hormone receptor co-chaperone FKBPL are associated with male infertility: a case-control study

    LENUS (Irish Health Repository)

    Sunnotel, Olaf

    2010-03-08

    Abstract Background Male infertility is a common cause of reproductive failure in humans. In mice, targeted deletions of the genes coding for FKBP6 or FKBP52, members of the FK506 binding protein family, can result in male infertility. In the case of FKBP52, this reflects an important role in potentiating Androgen Receptor (AR) signalling in the prostate and accessory glands, but not the testis. In infertile men, no mutations of FKBP52 or FKBP6 have been found so far, but the gene for FKBP-like (FKBPL) maps to chromosome 6p21.3, an area linked to azoospermia in a group of Japanese patients. Methods To determine whether mutations in FKBPL could contribute to the azoospermic phenotype, we examined expression in mouse and human tissues by RNA array blot, RT-PCR and immunohistochemistry and sequenced the complete gene from two azoospermic patient cohorts and matching control groups. FKBPL-AR interaction was assayed using reporter constructs in vitro. Results FKBPL is strongly expressed in mouse testis, with expression upregulated at puberty. The protein is expressed in human testis in a pattern similar to FKBP52 and also enhanced AR transcriptional activity in reporter assays. We examined sixty patients from the Japanese patient group and found one inactivating mutation and one coding change, as well as a number of non-coding changes, all absent in fifty-six controls. A second, Irish patient cohort of thirty showed another two coding changes not present in thirty proven fertile controls. Conclusions Our results describe the first alterations in the gene for FKBPL in azoospermic patients and indicate a potential role in AR-mediated signalling in the testis.

  13. Magmatic-vapor expansion and the formation of high-sulfidation gold deposits: Chemical controls on alteration and mineralization

    Science.gov (United States)

    Henley, R.W.; Berger, B.R.

    2011-01-01

    Large bulk-tonnage high-sulfidation gold deposits, such as Yanacocha, Peru, are the surface expression of structurally-controlled lode gold deposits, such as El Indio, Chile. Both formed in active andesite-dacite volcanic terranes. Fluid inclusion, stable isotope and geologic data show that lode deposits formed within 1500. m of the paleo-surface as a consequence of the expansion of low-salinity, low-density magmatic vapor with very limited, if any, groundwater mixing. They are characterized by an initial 'Sulfate' Stage of advanced argillic wallrock alteration ?? alunite commonly with intense silicification followed by a 'Sulfide' Stage - a succession of discrete sulfide-sulfosalt veins that may be ore grade in gold and silver. Fluid inclusions in quartz formed during wallrock alteration have homogenization temperatures between 100 and over 500 ??C and preserve a record of a vapor-rich environment. Recent data for El Indio and similar deposits show that at the commencement of the Sulfide Stage, 'condensation' of Cu-As-S sulfosalt melts with trace concentrations of Sb, Te, Bi, Ag and Au occurred at > 600 ??C following pyrite deposition. Euhedral quartz crystals were simultaneously deposited from the vapor phase during crystallization of the vapor-saturated melt occurs to Fe-tennantite with progressive non-equilibrium fractionation of heavy metals between melt-vapor and solid. Vugs containing a range of sulfides, sulfosalts and gold record the changing composition of the vapor. Published fluid inclusion and mineralogical data are reviewed in the context of geological relationships to establish boundary conditions through which to trace the expansion of magmatic vapor from source to surface and consequent alteration and mineralization. Initially heat loss from the vapor is high resulting in the formation of acid condensate permeating through the wallrock. This Sulfate Stage alteration effectively isolates the expansion of magmatic vapor in subsurface fracture arrays

  14. Objective neuromuscular monitoring of neuromuscular blockade in Denmark: an online-based survey of current practice.

    Science.gov (United States)

    Söderström, C M; Eskildsen, K Z; Gätke, M R; Staehr-Rye, A K

    2017-07-01

    Neuromuscular blocking agents are commonly used during general anaesthesia but can lead to postoperative residual neuromuscular blockade and associated morbidity. With appropriate objective neuromuscular monitoring (objNMM) residual blockade can be avoided. In this survey, we investigated the use of objNMM in Denmark. We conducted an anonymous Internet-based survey distributed through e-mails to Danish public anaesthesia departments. The survey consisted of 15-17 short questions regarding the use of objNMM. A total of 653 (27%) anaesthetists from 90% of the hospitals answered the questionnaire. ObjNMM was always used by 58% of the anaesthetists and 86% used objNMM at least 75% of the times. Despite the frequent use, 75% of the anaesthetists experienced difficulties with objNMM in at least 25% of the cases. The likelihood of using objNMM was higher among nurse anaesthetists vs. anaesthesiologists (odds ratio (OR) 2.24 [95% confidence interval (CI): 1.62-3.08]), if the department had an employee with special interest in objNMM (OR 1.66 [95% CI: 1.12-2.47]), if the anaesthetist had < 5 years of experience (OR 1.88 [95% CI: 1.29-2.73]), or if experiencing difficulties with objNMM < 25% of the cases (OR 1.60 [95% CI: 1.00-2.57]). In this survey, Danish anaesthetists frequently, in an international perspective, use objNMM, but the use is often associated with technical difficulties. © 2017 The Acta Anaesthesiologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  15. Mindfulness training alters emotional memory recall compared to active controls: support for an emotional information processing model of mindfulness.

    Science.gov (United States)

    Roberts-Wolfe, Douglas; Sacchet, Matthew D; Hastings, Elizabeth; Roth, Harold; Britton, Willoughby

    2012-01-01

    While mindfulness-based interventions have received widespread application in both clinical and non-clinical populations, the mechanism by which mindfulness meditation improves well-being remains elusive. One possibility is that mindfulness training alters the processing of emotional information, similar to prevailing cognitive models of depression and anxiety. The aim of this study was to investigate the effects of mindfulness training on emotional information processing (i.e., memory) biases in relation to both clinical symptomatology and well-being in comparison to active control conditions. Fifty-eight university students (28 female, age = 20.1 ± 2.7 years) participated in either a 12-week course containing a "meditation laboratory" or an active control course with similar content or experiential practice laboratory format (music). Participants completed an emotional word recall task and self-report questionnaires of well-being and clinical symptoms before and after the 12-week course. Meditators showed greater increases in positive word recall compared to controls [F(1, 56) = 6.6, p = 0.02]. The meditation group increased significantly more on measures of well-being [F(1, 56) = 6.6, p = 0.01], with a marginal decrease in depression and anxiety [F(1, 56) = 3.0, p = 0.09] compared to controls. Increased positive word recall was associated with increased psychological well-being (r = 0.31, p = 0.02) and decreased clinical symptoms (r = -0.29, p = 0.03). Mindfulness training was associated with greater improvements in processing efficiency for positively valenced stimuli than active control conditions. This change in emotional information processing was associated with improvements in psychological well-being and less depression and anxiety. These data suggest that mindfulness training may improve well-being via changes in emotional information processing. Future research with a fully randomized design will be

  16. Mindfulness Training Alters Emotional Memory Recall Compared to Active Controls: Support for an Emotional Information Processing Model of Mindfulness

    Science.gov (United States)

    Roberts-Wolfe, Douglas; Sacchet, Matthew D.; Hastings, Elizabeth; Roth, Harold; Britton, Willoughby

    2012-01-01

    Objectives: While mindfulness-based interventions have received widespread application in both clinical and non-clinical populations, the mechanism by which mindfulness meditation improves well-being remains elusive. One possibility is that mindfulness training alters the processing of emotional information, similar to prevailing cognitive models of depression and anxiety. The aim of this study was to investigate the effects of mindfulness training on emotional information processing (i.e., memory) biases in relation to both clinical symptomatology and well-being in comparison to active control conditions. Methods: Fifty-eight university students (28 female, age = 20.1 ± 2.7 years) participated in either a 12-week course containing a “meditation laboratory” or an active control course with similar content or experiential practice laboratory format (music). Participants completed an emotional word recall task and self-report questionnaires of well-being and clinical symptoms before and after the 12-week course. Results: Meditators showed greater increases in positive word recall compared to controls [F(1, 56) = 6.6, p = 0.02]. The meditation group increased significantly more on measures of well-being [F(1, 56) = 6.6, p = 0.01], with a marginal decrease in depression and anxiety [F(1, 56) = 3.0, p = 0.09] compared to controls. Increased positive word recall was associated with increased psychological well-being (r = 0.31, p = 0.02) and decreased clinical symptoms (r = −0.29, p = 0.03). Conclusion: Mindfulness training was associated with greater improvements in processing efficiency for positively valenced stimuli than active control conditions. This change in emotional information processing was associated with improvements in psychological well-being and less depression and anxiety. These data suggest that mindfulness training may improve well-being via changes in emotional information processing. Future

  17. Movement-Related Cortical Potential Amplitude Reduction after Cycling Exercise Relates to the Extent of Neuromuscular Fatigue.

    Science.gov (United States)

    Spring, Jérôme Nicolas; Place, Nicolas; Borrani, Fabio; Kayser, Bengt; Barral, Jérôme

    2016-01-01

    Exercise-induced fatigue affects the motor control and the ability to generate a given force or power. Surface electroencephalography allows researchers to investigate movement-related cortical potentials (MRCP), which reflect preparatory brain activity 1.5 s before movement onset. Although the MRCP amplitude appears to increase after repetitive single-joint contractions, the effects of large-muscle group dynamic exercise on such pre-motor potential remain to be described. Sixteen volunteers exercised 30 min at 60% of the maximal aerobic power on a cycle ergometer, followed by a 10-km all-out time trial. Before and after each of these tasks, knee extensor neuromuscular function was investigated using maximal voluntary contractions (MVC) combined with electrical stimulations of the femoral nerve. MRCP was recorded during 60 knee extensions after each neuromuscular sequence. The exercise resulted in a significant decrease in the knee extensor MVC force after the 30-min exercise (-10 ± 8%) and the time trial (-21 ± 9%). The voluntary activation level (VAL; -6 ± 8 and -12 ± 10%), peak twitch (Pt; -21 ± 16 and -32 ± 17%), and paired stimuli (P100 Hz; -7 ± 11 and -12 ± 13%) were also significantly reduced after the 30-min exercise and the time trial. The first exercise was followed by a decrease in the MRCP, mainly above the mean activity measured at electrodes FC1-FC2, whereas the reduction observed after the time trial was related to the FC1-FC2 and C2 electrodes. After both exercises, the reduction in the late MRCP component above FC1-FC2 was significantly correlated with the reduction in P100 Hz (r = 0.61), and the reduction in the same component above C2 was significantly correlated with the reduction in VAL (r = 0.64). In conclusion, large-muscle group exercise induced a reduction in pre-motor potential, which was related to muscle alterations and resulted in the inability to produce a maximal voluntary contraction.

  18. Movement-related cortical potential amplitude reduction after cycling exercise relates to the extent of neuromuscular fatigue

    Directory of Open Access Journals (Sweden)

    Jérôme eSpring

    2016-06-01

    Full Text Available Exercise-induced fatigue affects the motor control and the ability to generate a given force or power. Surface electroencephalography allows researchers to investigate movement-related cortical potentials (MRCP, which reflect preparatory brain activity 1.5 seconds before movement onset. Although the MRCP amplitude appears to increase after repetitive single-joint contractions, the effects of large-muscle group dynamic exercise on such pre-motor potential remain to be described. Sixteen volunteers exercised 30 minutes at 60% of the maximal aerobic power on a cycle ergometer, followed by a 10-km all-out time trial. Before and after each of these tasks, knee extensor neuromuscular function was investigated using maximal voluntary contractions (MVC combined with electrical stimulations of the femoral nerve. MRCP was recorded during 60 knee extensions after each neuromuscular sequence.The exercise resulted in a significant decrease in the knee extensor MVC force after the 30-min exercise (-10±8% and the time trial (-21±9%. The voluntary activation level (VAL (-6±8% and -12±10%, peak twitch (Pt (-21±16% and -32±17% and paired stimuli (P100Hz (-7±11% and -12±13% were also significantly reduced after the 30-min exercise and the time trial. The first exercise was followed by a decrease in the MRCP, mainly above the mean activity measured at electrodes FC1-FC2, whereas the reduction observed after the time trial was related to the FC1-FC2 and C2 electrodes. After both exercises, the reduction in the late MRCP component above FC1-FC2 was significantly correlated with the reduction in P100Hz (r=0.61, and the reduction in the same component above C2 was significantly correlated with the reduction in VAL (r=0.64.In conclusion, large-muscle group exercise induced a reduction in pre-motor potential, which was related to muscle alterations and resulted in the inability to produce a maximal voluntary contraction.

  19. Caffeine ingestion reverses the circadian rhythm effects on neuromuscular performance in highly resistance-trained men.

    Directory of Open Access Journals (Sweden)

    Ricardo Mora-Rodríguez

    Full Text Available PURPOSE: To investigate whether caffeine ingestion counteracts the morning reduction in neuromuscular performance associated with the circadian rhythm pattern. METHODS: Twelve highly resistance-trained men underwent a battery of neuromuscular tests under three different conditions; i morning (10:00 a.m. with caffeine ingestion (i.e., 3 mg kg(-1; AM(CAFF trial; ii morning (10:00 a.m. with placebo ingestion (AM(PLAC trial; and iii afternoon (18:00 p.m. with placebo ingestion (PM(PLAC trial. A randomized, double-blind, crossover, placebo controlled experimental design was used, with all subjects serving as their own controls. The neuromuscular test battery consisted in the measurement of bar displacement velocity during free-weight full-squat (SQ and bench press (BP exercises against loads that elicit maximum strength (75% 1RM load and muscle power adaptations (1 m s(-1 load. Isometric maximum voluntary contraction (MVC(LEG and isometric electrically evoked strength of the right knee (EVOK(LEG were measured to identify caffeine's action mechanisms. Steroid hormone levels (serum testosterone, cortisol and growth hormone were evaluated at the beginning of each trial (PRE. In addition, plasma norepinephrine (NE and epinephrine were measured PRE and at the end of each trial following a standardized intense (85% 1RM 6 repetitions bout of SQ (POST. RESULTS: In the PM(PLAC trial, dynamic muscle strength and power output were significantly enhanced compared with AM(PLAC treatment (3.0%-7.5%; p≤0.05. During AM(CAFF trial, muscle strength and power output increased above AM(PLAC levels (4.6%-5.7%; p≤0.05 except for BP velocity with 1 m s(-1 load (p = 0.06. During AM(CAFF, EVOK(LEG and NE (a surrogate of maximal muscle sympathetic nerve activation were increased above AM(PLAC trial (14.6% and 96.8% respectively; p≤0.05. CONCLUSIONS: These results indicate that caffeine ingestion reverses the morning neuromuscular declines in highly resistance

  20. Tai Chi and vestibular rehabilitation improve vestibulopathic gait via different neuromuscular mechanisms: Preliminary report

    Directory of Open Access Journals (Sweden)

    Parker Stephen W

    2005-02-01

    Full Text Available Abstract Background Vestibular rehabilitation (VR is a well-accepted exercise program intended to remedy balance impairment caused by damage to the peripheral vestibular system. Alternative therapies, such as Tai Chi (TC, have recently gained popularity as a treatment for balance impairment. Although VR and TC can benefit people with vestibulopathy, the degree to which gait improvements may be related to neuromuscular adaptations of the lower extremities for the two different therapies are unknown. Methods We examined the relationship between lower extremity neuromuscular function and trunk control in 36 older adults with vestibulopathy, randomized to 10 weeks of either VR or TC exercise. Time-distance measures (gait speed, step length, stance duration and step width, lower extremity sagittal plane mechanical energy expenditures (MEE, and trunk sagittal and frontal plane kinematics (peak and range of linear and angular velocity, were measured. Results Although gait time-distance measures were improved in both groups following treatment, no significant between-groups differences were observed for the MEE and trunk kinematic measures. Significant within groups changes, however, were observed. The TC group significantly increased ankle MEE contribution and decreased hip MEE contribution to total leg MEE, while no significant changes were found within the VR group. The TC group exhibited a positive relationship between change in leg MEE and change in trunk velocity peak and range, while the VR group exhibited a negative relationship. Conclusion Gait function improved in both groups consistent with expectations of the interventions. Differences in each group's response to therapy appear to suggest that improved gait function may be due to different neuromuscular adaptations resulting from the different interventions. The TC group's improvements were associated with reorganized lower extremity neuromuscular patterns, which appear to promote a faster

  1. Pilates and Proprioceptive Neuromuscular Facilitation Methods Induce Similar Strength Gains but Different Neuromuscular Adaptations in Elderly Women.

    Science.gov (United States)

    Teixeira de Carvalho, Fabiana; de Andrade Mesquita, Laiana Sepúlveda; Pereira, Rafael; Neto, Osmar Pinto; Amaro Zangaro, Renato

    2017-01-01

    Background/Study Context: The aging process is associated with a decline in muscle mass, strength, and conditioning. Two training methods that may be useful to improve muscle function are Pilates and proprioceptive neuromuscular facilitation (PNF). Thus, the present study aimed to compare the influence of training programs using Pilates and PNF methods with elderly women. Sixty healthy elderly women were randomly divided into three groups: Pilates group, PNF group, and control group. Pilates and PNF groups underwent 1-month training programs with Pilates and PNF methods, respectively. The control group received no intervention during the 1 month. The maximal isometric force levels from knee extension and flexion, as well as the electromyography (EMG) signals from quadriceps and biceps femoris, were recorded before and after the 1-month intervention period. A two-way analysis of variance revealed that the Pilates and PNF methods induced similar strength gains from knee flexors and extensors, but Pilates exhibited greater low-gamma drive (i.e., oscillations in 30-60 Hz) in the EMG power spectrum after the training period. These results support use of both Pilates and PNF methods to enhance lower limb muscle strength in older groups, which is very important for gait, postural stability, and performance of daily life activities.

  2. Developing maximal neuromuscular power: Part 1--biological basis of maximal power production.

    Science.gov (United States)

    Cormie, Prue; McGuigan, Michael R; Newton, Robert U

    2011-01-01

    This series of reviews focuses on the most important neuromuscular function in many sport performances, the ability to generate maximal muscular power. Part 1 focuses on the factors that affect maximal power production, while part 2, which will follow in a forthcoming edition of Sports Medicine, explores the practical application of these findings by reviewing the scientific literature relevant to the development of training programmes that most effectively enhance maximal power production. The ability of the neuromuscular system to generate maximal power is affected by a range of interrelated factors. Maximal muscular power is defined and limited by the force-velocity relationship and affected by the length-tension relationship. The ability to generate maximal power is influenced by the type of muscle action involved and, in particular, the time available to develop force, storage and utilization of elastic energy, interactions of contractile and elastic elements, potentiation of contractile and elastic filaments as well as stretch reflexes. Furthermore, maximal power production is influenced by morphological factors including fibre type contribution to whole muscle area, muscle architectural features and tendon properties as well as neural factors including motor unit recruitment, firing frequency, synchronization and inter-muscular coordination. In addition, acute changes in the muscle environment (i.e. alterations resulting from fatigue, changes in hormone milieu and muscle temperature) impact the ability to generate maximal power. Resistance training has been shown to impact each of these neuromuscular factors in quite specific ways. Therefore, an understanding of the biological basis of maximal power production is essential for developing training programmes that effectively enhance maximal power production in the human.

  3. Cholinergic alterations by exposure to pesticides used in control vector: Guppies fish (Poecilia reticulta) as biological model.

    Science.gov (United States)

    Toledo-Ibarra, G A; Rodríguez-Sánchez, E J; Ventura-Ramón, H G; Díaz-Resendiz, K J G; Girón-Pérez, M I

    2018-02-01

    Spinosad and temephos are two of the most used pesticides in Mexico for the control of vector causing disease such as dengue, chikungunya and Zika. The aim of this study was to compare the neurotoxic effects of these two pesticides using guppy fish (Poecilia reticulata) as a model organism. Guppies were exposed for 7 and 21 days to technical grade temephos and spinosad at 1.0 and 0.07 g/L, respectively, (10 and 0.5 mg/L of active substance; concentrations recommended by the Ministery of Health of the State (Secretaría de Salud de Nayarit (SSN) Mexico)). Subsequently, acetylcholinesterase activity (AChE) and acetylcholine concentrations (ACh) in muscle tissue were determined. Temephos exposure decreased AChE activity and increased ACh concentration, whereas exposure to spinosad only increased ACh concentration. Though cholinergic alterations were more severe in fish exposed to temephos, both pesticides were equally lethal during the first seven days after exposure. Nonetheless, temephos was more lethal after 21 days.

  4. The Effect of Whole Body Vibration Training and Detraining Periods on Neuromuscular Performance in Male Older People

    Directory of Open Access Journals (Sweden)

    Ali Abbasi

    2011-07-01

    Full Text Available Objectives: This study aimed to evaluatethe the effect of eight weeks whole body vibration training (WBVT and detraining periods on neuromuscular performance male healthy older people. Methods & Materials: Thirty male subjects (70±9.6 years old were randomly allocated into two groups of WBVT and control (n=15 per group. Timed Up & Go and 5-Chair stand tests, as indicators of neuromuscular performance in older subjects, were taken as pretest and posttest and also after four, six, and eight weeks of detraining. Results: Results of Repeated-measure ANOVA and one-way ANOVA showed that neuromuscular performance improved significantly in WBVT group (P<0.05. There were also significant differences between posttest and six and eight weeks of detraining periods in WBVTgroup (P<0.05. Conclusion: WBVT could affect neuromuscular performance in healthy subjects and reduce the probability of falling among them. However, the effects of this training are not persistent, goes back to the early levels after six weeks of detraining. Hence, it is possible that WBVT can be recommended as a safe balance training to older people.

  5. Stem cell route to neuromuscular therapies.

    Science.gov (United States)

    Partridge, Terence A

    2003-02-01

    As applied to skeletal muscle, stem cell therapy is a reincarnation of myoblast transfer therapy that has resulted from recent advances in the cell biology of skeletal muscle. Both strategies envisage the reconstruction of damaged muscle from its precursors, but stem cell therapy employs precursors that are earlier in the developmental hierarchy. It is founded on demonstrations of apparently multipotential cells in a wide variety of tissues that can assume, among others, a myogenic phenotype. The main demonstrated advantage of such cells is that they are capable of colonizing many tissues, including skeletal and cardiac muscle via the blood vascular system, thereby providing the potential for a body-wide distribution of myogenic progenitors. From a practical viewpoint, the chief disadvantage is that such colonization has been many orders of magnitude too inefficient to be useful. Proposals for overcoming this drawback are the subject of much speculation but, so far, relatively little experimentation. This review attempts to give some perspective to the status of the stem cell as a therapeutic instrument for neuromuscular disease and to identify issues that need to be addressed for application of this technology.

  6. Neuromuscular Fatigue During 200 M Breaststroke

    Directory of Open Access Journals (Sweden)

    Ana Conceição

    2014-03-01

    Full Text Available The aims of this study were: i to analyze activation patterns of four upper limb muscles (duration of the active and non-active phase in each lap of 200m breaststroke, ii quantify neuromuscular fatigue, with kinematics and physiologic assessment. Surface electromyogram was collected for the biceps brachii, deltoid anterior, pectoralis major and triceps brachii of nine male swimmers performing a maximal 200m breaststroke trial. Swimming speed, SL, SR, SI decreased from the 1st to the 3rd lap. SR increased on the 4th lap (35.91 ± 2.99 stroke·min-1. Peak blood lactate was 13.02 ± 1.72 mmol·l-1 three minutes after the maximal trial. The EMG average rectified value (ARV increased at the end of the race for all selected muscles, but the deltoid anterior and pectoralis major in the 1st lap and for biceps brachii, deltoid anterior and triceps brachii in the 4th lap. The mean frequency of the power spectral density (MNF decreased at the 4th lap for all muscles. These findings suggest the occurrence of fatigue at the beginning of the 2nd lap in the 200m breaststroke trial, characterized by changes in kinematic parameters and selective changes in upper limb muscle action. There was a trend towards a non-linear fatigue state.

  7. Neuromuscular transmission and muscle fatigue changes by nanostructured oxygen.

    Science.gov (United States)

    Ivannikov, Maxim V; Sugimori, Mutsuyuki; Llinás, Rodolfo R

    2017-04-01

    Oxygen (O 2 ) nanobubbles offer a new method for tissue oxygenation. The effects of O 2 nanobubbles on transmission at neuromuscular junctions (NMJs) and muscle function were explored in murine diaphragm. Electrophysiological parameters, NMJ ultrastructure, muscle force, and muscle fatigue were studied during superfusion with solutions with different oxygen levels or oxygen nanobubbles. High frequency nerve stimulation of muscles superfused with O 2 nanobubble solution slowed neurotransmission decline over those with either control or hyperoxic solution. O 2 nanobubble solution increased the amplitude of evoked end plate potentials and quantal content but did not affect spontaneous activity. Electron microscopy of stimulated O 2 nanobubble treated NMJs showed accumulation of large synaptic vesicles and endosome-like structures. O 2 nanobubble solution had no effects on isometric muscle force, but it significantly decreased fatigability and maximum force recovery time in nerve stimulated muscles. O 2 nanobubbles increase neurotransmission and reduce the probability of neurotransmission failure in muscle fatigue. Muscle Nerve 55: 555-563, 2017. © 2016 Wiley Periodicals, Inc.

  8. Neuromuscular diversity in archosaur deep dorsal thigh muscles.

    Science.gov (United States)

    Gatesy, S M

    1994-01-01

    The living members of the clade Archosauria, crocodilians and birds, differ markedly in the morphology of their deep dorsal thigh muscles. To investigate whether this diversity is accompanied by differences in motor pattern and muscle function, the hindlimbs of representative archosaurs were studied by electromyography and cineradiography during terrestrial locomotion. In a crocodilian, Alligator, the iliofemoralis and pubo-ischio-femoralis internus part 2 are both active during the swing phase of the stride cycle. This appears to be the primitive motor pattern for archosaurs. There are four avian homologues of these muscles in the helmeted guineafowl, Numida. These are primarily active in the propulsive phase (iliotrochantericus caudalis and iliotrochantericus medius), the swing phase (iliotrochantericus cranialis) and a speed-dependent combination of the propulsive and/or swing phases (iliofemoralis externus). Differences between Alligator and Numida in the number and attachment of deep dorsal muscles are associated with dissimilar motor patterns and functions. Evolutionary modifications of neuromuscular control must be recognized when evaluating avian locomotor history, but are rarely considered by paleontologists. Even within the deep dorsal thigh muscles of Numida, developmentally and anatomically similar muscles are active out-of-phase. Therefore, although the actions of two adjacent muscles appear equivalent, their functions may differ dramatically. The diversity of deep dorsal thigh muscles in modern birds may be a good model for studying the relationship between activity pattern and peripheral morphology.

  9. Neuromuscular function and fatigue resistance of the plantar flexors following short-term cycling endurance training

    Directory of Open Access Journals (Sweden)

    Martin eBehrens

    2015-05-01

    Full Text Available Previously published studies on the effect of short-term endurance training on the neuromuscular function of the plantar flexors have shown that the H-reflex elicited at rest and during weak voluntary contractions was increased following the training regime. However, these studies did not test H-reflex modulation during isometric maximum voluntary contraction (iMVC and did not incorporate a control group in their study design to compare the results of the endurance training group to individuals without the endurance training stimulus. Therefore, this randomized controlled study was directed to investigate the neuromuscular function of the plantar flexors at rest and during iMVC before and after eight weeks of cycling endurance training. Twenty-two young adults were randomly assigned to an intervention group and a control group. During neuromuscular testing, rate of torque development, isometric maximum voluntary torque and muscle activation were measured. Triceps surae muscle activation and tibialis anterior muscle co-activation were assessed by normalized root mean square of the EMG signal during the initial phase of contraction (0-100, 100-200 ms and isometric maximum voluntary contraction of the plantar flexors. Furthermore, evoked spinal reflex responses of the soleus muscle (H-reflex evoked at rest and during iMVC, V-wave, peak twitch torques induced by electrical stimulation of the posterior tibial nerve at rest and fatigue resistance were evaluated. The results indicate that the endurance training did not lead to a significant change in any variable of interest. Data of the present study conflict with the outcome of previously published studies that have found an increase in H-reflex excitability after endurance training. However, these studies had not included a control group in their study design as was the case here. It is concluded that short-term cycling endurance training does not necessarily enhance H-reflex responses and fatigue

  10. Genome Editing of Monogenic Neuromuscular Diseases: A Systematic Review.

    Science.gov (United States)

    Long, Chengzu; Amoasii, Leonela; Bassel-Duby, Rhonda; Olson, Eric N

    2016-11-01

    Muscle weakness, the most common symptom of neuromuscular disease, may result from muscle dysfunction or may be caused indirectly by neuronal and neuromuscular junction abnormalities. To date, more than 780 monogenic neuromuscular diseases, linked to 417 different genes, have been identified in humans. Genome-editing methods, especially the CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9 (CRISPR-associated protein 9) system, hold clinical potential for curing many monogenic disorders, including neuromuscular diseases such as Duchenne muscular dystrophy, spinal muscular atrophy, amyotrophic lateral sclerosis, and myotonic dystrophy type 1. To provide an overview of genome-editing approaches; to summarize published reports on the feasibility, efficacy, and safety of current genome-editing methods as they relate to the potential correction of monogenic neuromuscular diseases; and to highlight scientific and clinical opportunities and obstacles toward permanent correction of disease-causing mutations responsible for monogenic neuromuscular diseases by genome editing. PubMed and Google Scholar were searched for articles published from June 30, 1989, through June 9, 2016, using the following keywords: genome editing, CRISPR-Cas9, neuromuscular disease, Duchenne muscular dystrophy, spinal muscular atrophy, amyotrophic lateral sclerosis, and myotonic dystrophy type 1. The following sources were reviewed: 341 articles describing different approaches to edit mammalian genomes; 330 articles describing CRISPR-Cas9-mediated genome editing in cell culture lines (in vitro) and animal models (in vivo); 16 websites used to generate single-guide RNA; 4 websites for off-target effects; and 382 articles describing viral and nonviral delivery systems. Articles describing neuromuscular diseases, including Duchenne muscular dystrophy, spinal muscular atrophy, amyotrophic lateral sclerosis, and myotonic dystrophy type 1, were also reviewed. Multiple proof

  11. Plantar flexor neuromuscular adjustments following match-play football in hot and cool conditions.

    Science.gov (United States)

    Girard, O; Nybo, L; Mohr, M; Racinais, S

    2015-06-01

    We assessed neuromuscular fatigue and recovery of the plantar flexors after playing football with or without severe heat stress. Neuromuscular characteristics of the plantar flexors were assessed in 17 male players at baseline and ∼30 min, 24, and 48 h after two 90-min football matches in temperate (∼20 °C and 55% rH) and hot (∼43 °C and 20% rH) environments. Measurements included maximal voluntary strength, muscle activation, twitch contractile properties, and rate of torque development and soleus EMG (i.e., root mean square activity) rise from 0 to 30, -50, -100, and -200 ms during maximal isometric contractions for plantar flexors. Voluntary activation and peak twitch torque were equally reduced (-1.5% and -16.5%, respectively; P force production declined (P force development and soleus EMG activity rise values remained unchanged. In football, match-induced alterations in maximal and rapid torque production capacities of the plantar flexors are moderate and do not differ after competing in temperate and hot environments. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Snake and Spider Toxins Induce a Rapid Recovery of Function of Botulinum Neurotoxin Paralysed Neuromuscular Junction

    Directory of Open Access Journals (Sweden)

    Elisa Duregotti

    2015-12-01

    Full Text Available Botulinum neurotoxins (BoNTs and some animal neurotoxins (β-Bungarotoxin, β-Btx, from elapid snakes and α-Latrotoxin, α-Ltx, from black widow spiders are pre-synaptic neurotoxins that paralyse motor axon terminals with similar clinical outcomes in patients. However, their mechanism of action is different, leading to a largely-different duration of neuromuscular junction (NMJ blockade. BoNTs induce a long-lasting paralysis without nerve terminal degeneration acting via proteolytic cleavage of SNARE proteins, whereas animal neurotoxins cause an acute and complete degeneration of motor axon terminals, followed by a rapid recovery. In this study, the injection of animal neurotoxins in mice muscles previously paralyzed by BoNT/A or /B accelerates the recovery of neurotransmission, as assessed by electrophysiology and morphological analysis. This result provides a proof of principle that, by causing the complete degeneration, reabsorption, and regeneration of a paralysed nerve terminal, one could favour the recovery of function of a biochemically- or genetically-altered motor axon terminal. These observations might be relevant to dying-back neuropathies, where pathological changes first occur at the neuromuscular junction and then progress proximally toward the cell body.

  13. Snake and Spider Toxins Induce a Rapid Recovery of Function of Botulinum Neurotoxin Paralysed Neuromuscular Junction.

    Science.gov (United States)

    Duregotti, Elisa; Zanetti, Giulia; Scorzeto, Michele; Megighian, Aram; Montecucco, Cesare; Pirazzini, Marco; Rigoni, Michela

    2015-12-08

    Botulinum neurotoxins (BoNTs) and some animal neurotoxins (β-Bungarotoxin, β-Btx, from elapid snakes and α-Latrotoxin, α-Ltx, from black widow spiders) are pre-synaptic neurotoxins that paralyse motor axon terminals with similar clinical outcomes in patients. However, their mechanism of action is different, leading to a largely-different duration of neuromuscular junction (NMJ) blockade. BoNTs induce a long-lasting paralysis without nerve terminal degeneration acting via proteolytic cleavage of SNARE proteins, whereas animal neurotoxins cause an acute and complete degeneration of motor axon terminals, followed by a rapid recovery. In this study, the injection of animal neurotoxins in mice muscles previously paralyzed by BoNT/A or /B accelerates the recovery of neurotransmission, as assessed by electrophysiology and morphological analysis. This result provides a proof of principle that, by causing the complete degeneration, reabsorption, and regeneration of a paralysed nerve terminal, one could favour the recovery of function of a biochemically- or genetically-altered motor axon terminal. These observations might be relevant to dying-back neuropathies, where pathological changes first occur at the neuromuscular junction and then progress proximally toward the cell body.

  14. Spatial distribution and molecular dynamics of dystrophin glycoprotein components at the neuromuscular junctionin vivo.

    Science.gov (United States)

    Aittaleb, Mohamed; Martinez-Pena Y Valenzuela, Isabel; Akaaboune, Mohammed

    2017-05-15

    A bimolecular fluorescence complementation (BiFC) approach was used to study the molecular interactions between different components of the postsynaptic protein complex at the neuromuscular junction of living mice. We show that rapsyn forms complex with both α-dystrobrevin and α-syntrophin at the crests of junctional folds. The linkage of rapsyn to α-syntrophin and/or α-dystrobrevin is mediated by utrophin, a protein localized at acetylcholine receptor (AChR)-rich domains. In mice deficient in α-syntrophin, in which utrophin is no longer present at the synapse, rapsyn interaction with α-dystrobrevin was completely abolished. This interaction was completely restored when either utrophin or α-syntrophin was introduced into muscles deficient in α-syntrophin. However, in neuromuscular junctions deficient in α-dystrobrevin, in which utrophin is retained, complex formation between rapsyn and α-syntrophin was unaffected. Using fluorescence recovery after photobleaching, we found that α-syntrophin turnover is 5-7 times faster than that of AChRs, and loss of α-dystrobrevin has no effect on rapsyn and α-syntrophin half-life, whereas the half-life of AChR was significantly altered. Altogether, these results provide new insights into the spatial distribution of dystrophin glycoprotein components and their dynamics in living mice. © 2017. Published by The Company of Biologists Ltd.

  15. Lumbopelvic flexibility modulates neuromuscular responses during trunk flexion-extension.

    Science.gov (United States)

    Sánchez-Zuriaga, Daniel; Artacho-Pérez, Carla; Biviá-Roig, Gemma

    2016-06-01

    Various stimuli such as the flexibility of lumbopelvic structures influence the neuromuscular responses of the trunk musculature, leading to different load sharing strategies and reflex muscle responses from the afferents of lumbopelvic mechanoreceptors. This link between flexibility and neuromuscular response has been poorly studied. The aim of this study was to investigate the relationship between lumbopelvic flexibility and neuromuscular responses of the erector spinae, hamstring and abdominal muscles during trunk flexion-extension. Lumbopelvic movement patterns were measured in 29 healthy women, who were separated into two groups according to their flexibility during trunk flexion-extension. The electromyographic responses of erector spinae, rectus abdominis and biceps femoris were also recorded. Subjects with greater lumbar flexibility had significantly less pelvic flexibility and vice versa. Subjects with greater pelvic flexibility had a higher rate of relaxation and lower levels of hamstring activation during maximal trunk flexion. The neuromuscular response patterns of the hamstrings seem partially modulated by pelvic flexibility. Not so with the lumbar erector spinae and lumbar flexibility, despite the assertions of some previous studies. The results of this study improve our knowledge of the relationships between trunk joint flexibility and neuromuscular responses, a relationship which may play a role in low back pain. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Alterations in diurnal rhythmicity in patients treated for nonfunctioning pituitary macroadenoma : a controlled study and literature review

    NARCIS (Netherlands)

    Joustra, S D; Thijs, R D; van den Berg, R; van Dijk, M; Pereira, A M; Lammers, G J; van Someren, E J W; Romijn, J A; Biermasz, N R

    OBJECTIVE: Patients treated for nonfunctioning pituitary macroadenomas (NFMAs) have fatigue and alterations in sleep characteristics and sleep-wake rhythmicity frequently. As NFMAs often compress the optic chiasm, these complaints might be related to dysfunction of the adjacent suprachiasmatic

  17. Mechanisms of Altered Control of Proliferation by Cyclic Amp/Protein Kinase A During Mammary Tumor Progression

    National Research Council Canada - National Science Library

    Imagawa, Walter

    1999-01-01

    We hypothesize that alterations in the regulation of growth by growth factors and cAMP during mammary tumor progression are related to MAP kinase signaling pathways known to be affected by cAMP and pertussis toxin (PT...

  18. Pharmacokinetic studies of neuromuscular blocking agents: Good Clinical Research Practice (GCRP)

    DEFF Research Database (Denmark)

    Viby-Mogensen, J.; Østergaard, D.; Donati, F.

    2000-01-01

    Good Clinical Research Practice (GCRP), neuromuscular blocking agents, pharmacokinetics, pharmacokinetic/pharmacodynamic modeling, population pharmacokinetics, statistics, study design......Good Clinical Research Practice (GCRP), neuromuscular blocking agents, pharmacokinetics, pharmacokinetic/pharmacodynamic modeling, population pharmacokinetics, statistics, study design...

  19. Loss of adult skeletal muscle stem cells drives age-related neuromuscular junction degeneration.

    Science.gov (United States)

    Liu, Wenxuan; Klose, Alanna; Forman, Sophie; Paris, Nicole D; Wei-LaPierre, Lan; Cortés-Lopéz, Mariela; Tan, Aidi; Flaherty, Morgan; Miura, Pedro; Dirksen, Robert T; Chakkalakal, Joe V

    2017-06-06

    Neuromuscular junction degeneration is a prominent aspect of sarcopenia, the age-associated loss of skeletal muscle integrity. Previously, we showed that muscle stem cells activate and contribute to mouse neuromuscular junction regeneration in response to denervation (Liu et al., 2015). Here, we examined gene expression profi