WorldWideScience

Sample records for altered membrane structure

  1. Revealing alteration of membrane structures during ischema using impedance spectroscopy

    Directory of Open Access Journals (Sweden)

    Mihaela Gheorghiu

    2002-11-01

    Full Text Available Alterations of membrane structure and function are essential characteristics of cells undergoing ischemia. Noninvasive monitoring of tissue alterations during ischemia and the estimation of the reversibility domain (corresponding to organ capability to fully recover its functions after shifting back to normal blood perfusion are important for biomedical applications allowing better time management during surgical interventions, especially in organ transplantation. Due to it’s capability to reveal inhomogeneities, as well as it’s noninvasive character, impedance spectroscopy was used for continuous monitoring of the progression of excised tissue samples during ischemia. We have developed a fast, noninvasive, automated method for quantitative analysis of impedance spectra of tissue samples, capable of revealing, through characteristic parameters (dispersion amplitudes, time constants and distribution parameters membrane based microscopic processes like the closure ofgap-junctions (a characteristic of the early alterations of ischemic tissues in the reversibility phase. Microscopic and equivalent circuit modeling was used to probe the effect of closure of cell connections and of changes in electrical properties of cell constituents on impedance spectra. We have developed a normalizing procedure emphasizing the pattern of ischemic alterations and enabling the comparison of different data sets.

  2. Alterations of the Erythrocyte Membrane during Sepsis

    Directory of Open Access Journals (Sweden)

    Yasmina Serroukh

    2012-01-01

    Full Text Available Erythrocytes have been long considered as “dead” cells with transport of oxygen (O2 as their only function. However, the ability of red blood cells (RBCs to modulate the microcirculation is now recognized as an important additional function. This capacity is regulated by a key element in the rheologic process: the RBC membrane. This membrane is a complex unit with multiple interactions between the extracellular and intracellular compartments: blood stream, endothelium, and other blood cells on the one hand, and the intracytoplasmic compartment with possible rapid adaptation of erythrocyte metabolism on the other. In this paper, we review the alterations in the erythrocyte membrane observed in critically ill patients and the influence of these alterations on the microcirculatory abnormalities observed in such patients. An understanding of the mechanisms of RBC rheologic alterations in sepsis and their effects on blood flow and on oxygen transport may be important to help reduce morbidity and mortality from severe sepsis.

  3. Recombinant Dengue virus protein NS2B alters membrane permeability in different membrane models

    OpenAIRE

    León-Juárez, Moisés; Martínez-Castillo, Macario; Shrivastava, Gaurav; García-Cordero, Julio; Villegas-Sepulveda, Nicolás; Mondragón-Castelán, Mónica; Mondragón-Flores, Ricardo; Cedillo-Barrón, Leticia

    2016-01-01

    Background One of the main phenomena occurring in cellular membranes during virus infection is a change in membrane permeability. It has been observed that numerous viral proteins can oligomerize and form structures known as viroporins that alter the permeability of membranes. Previous findings have identified such proteins in cells infected with Japanese encephalitis virus (JEV), a member of the same family that Dengue virus (DENV) belongs to (Flaviviridae). In the present work, we investiga...

  4. Membrane alterations in irreversibly sickled cells: hemoglobin--membrane interaction.

    Science.gov (United States)

    Lessin, L S; Kurantsin-Mills, J; Wallas, C; Weems, H

    1978-01-01

    Irreversibly sickled cells (ISCs) are sickle erythrocytes which retain bipolar elongated shapes despite reoxygenation and owe their biophysical abnormalities to acquired membrane alterations. Freeze-etched membranes both of ISCs produced in vitro and ISCs isolated in vivo reveal microbodies fixed to the internal (PS) surface which obscure spectrin filaments. Intramembranous particles (IMPs) on the intramembrane (PF) surface aggregate over regions of subsurface microbodies. Electron microscopy of diaminobenzidine-treated of ISC ghosts show the microbodies to contain hemoglobin and/or hemoglobin derivatives. Scanning electron microscopy and freeze-etching demonstrate that membrane--hemoglobin S interaction in ISCs enhances the membrane loss by microspherulation. Membrane-bound hemoglobin is five times greater in in vivo ISCs than non-ISCs, and increases during ISC production, parallelling depletion of adenosine triphosphate. Polyacrylamide gel electrophoresis of ISC membranes shows the presence of high-molecular-weight heteropolymers in the pre--band 1 region, a decrease in band 4.1 and an increase in bands 7, 8, and globin. The role of cross-linked membrane protein polymers in the generation of ISCs is discussed and is synthesized in terms of a unified concept for the determinants of the genesis of ISCs.

  5. Amphotericin B nephrotoxicity: the adverse consequences of altered membrane properties.

    Science.gov (United States)

    Sawaya, B P; Briggs, J P; Schnermann, J

    1995-08-01

    Amphotericin B (AmB) has been in clinical use for more than 30 yr but has remained the most effective drug for treatment of serious fungal infections. Its use has increased in recent years, as the result of increases in aggressive intensive care support and increased numbers of immunocompromised patients. Nephrotoxic manifestations are common, and this is the major factor limiting the clinical use of the drug. A number of recent studies have contributed to a better understanding of the mechanism by which AmB exerts its nephrotoxic effect. AmB alters cell membrane permeability and probably as a consequence alters tubular and vascular smooth muscle cell function, leading to various tubular transport defects and vasoconstriction. Decreased RBF appears to play a major role in AmB-induced reduction GFR, and recurrent ischemia may be the basis of permanent structural nephrotoxic effects. Salt loading is the only measure proven by controlled prospective study to ameliorate AmB nephrotoxicity in humans. Liposomal AmB and the formulation of an emulsion of AmB in lipid may provide a protective effect based on altering the affinity of AmB for mammalian cell membranes, while preserving high efficacy against fungal cells. However, further studies are needed to evaluate the efficacy and safety of these new AmB formulations.

  6. Cardiolipin Deficiency in Rhodobacter sphaeroides Alters the Lipid Profile of Membranes and of Crystallized Cytochrome Oxidase, but Structure and Function Are Maintained

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xi; Tamot, Banita; Hiser, Carrie; Reid, Gavin E.; Benning, Christoph; Ferguson-Miller, Shelagh (MSU)

    2012-05-08

    Many recent studies highlight the importance of lipids in membrane proteins, including in the formation of well-ordered crystals. To examine the effect of changes in one lipid, cardiolipin, on the lipid profile and the production, function, and crystallization of an intrinsic membrane protein, cytochrome c oxidase, we mutated the cardiolipin synthase (cls) gene of Rhodobacter sphaeroides, causing a >90% reduction in cardiolipin content in vivo and selective changes in the abundances of other lipids. Under these conditions, a fully native cytochrome c oxidase (CcO) was produced, as indicated by its activity, spectral properties, and crystal characteristics. Analysis by MALDI tandem mass spectrometry (MS/MS) revealed that the cardiolipin level in CcO crystals, as in the membranes, was greatly decreased. Lipid species present in the crystals were directly analyzed for the first time using MS/MS, documenting their identities and fatty acid chain composition. The fatty acid content of cardiolipin in R. sphaeroides CcO (predominantly 18:1) differs from that in mammalian CcO (18:2). In contrast to the cardiolipin dependence of mammalian CcO activity, major depletion of cardiolipin in R. sphaeroides did not impact any aspect of CcO structure or behavior, suggesting a greater tolerance of interchange of cardiolipin with other lipids in this bacterial system.

  7. Self-Deployable Membrane Structures

    Science.gov (United States)

    Sokolowski, Witold M.; Willis, Paul B.; Tan, Seng C.

    2010-01-01

    Currently existing approaches for deployment of large, ultra-lightweight gossamer structures in space rely typically upon electromechanical mechanisms and mechanically expandable or inflatable booms for deployment and to maintain them in a fully deployed, operational configuration. These support structures, with the associated deployment mechanisms, launch restraints, inflation systems, and controls, can comprise more than 90 percent of the total mass budget. In addition, they significantly increase the stowage volume, cost, and complexity. A CHEM (cold hibernated elastic memory) membrane structure without any deployable mechanism and support booms/structure is deployed by using shape memory and elastic recovery. The use of CHEM micro-foams reinforced with carbon nanotubes is considered for thin-membrane structure applications. In this advanced structural concept, the CHEM membrane structure is warmed up to allow packaging and stowing prior to launch, and then cooled to induce hibernation of the internal restoring forces. In space, the membrane remembers its original shape and size when warmed up. After the internal restoring forces deploy the structure, it is then cooled to achieve rigidization. For this type of structure, the solar radiation could be utilized as the heat energy used for deployment and space ambient temperature for rigidization. The overall simplicity of the CHEM self-deployable membrane is one of its greatest assets. In present approaches to space-deployable structures, the stow age and deployment are difficult and challenging, and introduce a significant risk, heavy mass, and high cost. Simple procedures provided by CHEM membrane greatly simplify the overall end-to-end process for designing, fabricating, deploying, and rigidizing large structures. The CHEM membrane avoids the complexities associated with other methods for deploying and rigidizing structures by eliminating deployable booms, deployment mechanisms, and inflation and control systems

  8. Robust mixed conducting membrane structure

    DEFF Research Database (Denmark)

    2010-01-01

    The present invention provides a membrane structure, comprising in said order a first electronically conducting layer, an ionically conducting layer, and a second electronically conducting layer, characterized in that the first and second electronically conducting layers are internally short circ...

  9. Structure Prediction of Membrane Proteins

    Institute of Scientific and Technical Information of China (English)

    Chunlong Zhou; Yao Zheng; Yan Zhou

    2004-01-01

    There is a large gap between the number of membrane protein (MP) sequences and that of their decoded 3D structures, especially high-resolution structures, due to difficulties in crystal preparation of MPs. However, detailed knowledge of the 3D structure is required for the fundamental understanding of the function of an MP and the interactions between the protein and its inhibitors or activators. In this paper, some computational approaches that have been used to predict MP structures are discussed and compared.

  10. The adrenal specific toxicant mitotane directly interacts with lipid membranes and alters membrane properties depending on lipid composition.

    Science.gov (United States)

    Scheidt, Holger A; Haralampiev, Ivan; Theisgen, Stephan; Schirbel, Andreas; Sbiera, Silviu; Huster, Daniel; Kroiss, Matthias; Müller, Peter

    2016-06-15

    Mitotane (o,p'.-DDD) is an orphan drug approved for the treatment of adrenocortical carcinoma. The mechanisms, which are responsible for this activity of the drug, are not completely understood. It can be hypothesized that an impact of mitotane is mediated by the interaction with cellular membranes. However, an interaction of mitotane with (lipid) membranes has not yet been investigated in detail. Here, we characterized the interaction of mitotane and its main metabolite o,p'-dichlorodiphenyldichloroacetic acid (o,p'-DDA) with lipid membranes by applying a variety of biophysical approaches of nuclear magnetic resonance, electron spin resonance, and fluorescence spectroscopy. We found that mitotane and o,p'-DDA bind to lipid membranes by inserting into the lipid-water interface of the bilayer. Mitotane but not o,p'-DDA directly causes a disturbance of bilayer structure leading to an increased permeability of the membrane for polar molecules. Mitotane induced alterations of the membrane integrity required the presence of phosphatidylethanolamine and/or cholesterol. Collectively, our data for the first time characterize the impact of mitotane on the lipid membrane structure and dynamics, which may contribute to a better understanding of specific mitotane effects and side effects.

  11. Corrugated Membrane Fuel Cell Structures

    Energy Technology Data Exchange (ETDEWEB)

    Grot, Stephen [President, Ion Power Inc.

    2013-09-30

    One of the most challenging aspects of traditional PEM fuel cell stacks is the difficulty achieving the platinum catalyst utilization target of 0.2 gPt/kWe set forth by the DOE. Good catalyst utilization can be achieved with state-of-the-art catalyst coated membranes (CCM) when low catalyst loadings (<0.3 mg/cm2) are used at a low current. However, when low platinum loadings are used, the peak power density is lower than conventional loadings, requiring a larger total active area and a larger bipolar plate. This results in a lower overall stack power density not meeting the DOE target. By corrugating the fuel cell membrane electrode structure, Ion Power?s goal is to realize both the Pt utilization targets as well as the power density targets of the DOE. This will be achieved by demonstrating a fuel cell single cell (50 cm2) with a twofold increase in the membrane active area over the geometric area of the cell by corrugating the MEA structure. The corrugating structure must be able to demonstrate the target properties of < 10 mOhm-cm2 electrical resistance at > 20 psi compressive strength over the active area, in combination with offering at least 80% of power density that can be achieved by using the same MEA in a flat plate structure. Corrugated membrane fuel cell structures also have the potential to meet DOE power density targets by essentially packaging more membrane area into the same fuel cell volume as compared to conventional stack constructions.

  12. Molecular Structure of Membrane Tethers

    OpenAIRE

    Baoukina, Svetlana; Marrink, Siewert J.; Tieleman, D. Peter

    2012-01-01

    Membrane tethers are nanotubes formed by a lipid bilayer. They play important functional roles in cell biology and provide an experimental window on lipid properties. Tethers have been studied extensively in experiments and described by theoretical models, but their molecular structure remains unknown due to their small diameters and dynamic nature. We used molecular dynamics simulations to obtain molecular-level insight into tether formation. Tethers were pulled from single-component lipid b...

  13. Properties of Plasma Membrane from Pea Root Seedlings under Altered Gravity

    Science.gov (United States)

    Klymchuk, D.; Baranenko, V.; Vorobyova, T. V.; Kurylenko, I.; Chyzhykova, O.; Dubovoy, V.

    In this study, the properties of pea (Pisum sativum L.) plasma membrane were examined to determine how the membrane structure and functions are regulated in response to clinorotation (2 rev/min) conditions. Membrane preparations enriched by plasma membrane vesicles were obtained by aqueous two-phase partitioning from 6-day seedling roots. The specific characteristics of H^+-ATPase, lípid composition and peroxidation intensity as well as fluidity of lipid bilayer were analysed. ATP hydrolytic activity was inhibited by ortovanadate and was insensitive to aside and nitrate in sealed plasma membrane vesicles isolated from both clinorotated and control seedlings. Plasma membrane vesicles from clinorotated seedlings in comparison to controls were characterised by increase in the total lipid/protein ratio, ATP hydrolytic activity and intensifying of lipid peroxidation. Sitosterol and campesterol were the predominant free sterol species. Clinorotated seedlings contained a slightly higher level of unsaturated fatty acid than controls. Plasma membrane vesicles were labelled with pyrene and fluorescence originating from monomeric (I_M) molecules and excimeric (I_E) aggregates were measured. The calculated I_E/I_M values were higher in clinorotated seedlings compared with controls reflecting the reduction in membrane microviscosity. The involvement of the changes in plasma membrane lipid content and composition, fluidity and H^+-ATPase activity in response of pea seedlings to altered gravity is discussed.

  14. Visualizing structural dynamics of thylakoid membranes

    Science.gov (United States)

    Iwai, Masakazu; Yokono, Makio; Nakano, Akihiko

    2014-01-01

    To optimize photosynthesis, light-harvesting antenna proteins regulate light energy dissipation and redistribution in chloroplast thylakoid membranes, which involve dynamic protein reorganization of photosystems I and II. However, direct evidence for such protein reorganization has not been visualized in live cells. Here we demonstrate structural dynamics of thylakoid membranes by live cell imaging in combination with deconvolution. We observed chlorophyll fluorescence in the antibiotics-induced macrochloroplast in the moss Physcomitrella patens. The three-dimensional reconstruction uncovered the fine thylakoid membrane structure in live cells. The time-lapse imaging shows that the entire thylakoid membrane network is structurally stable, but the individual thylakoid membrane structure is flexible in vivo. Our observation indicates that grana serve as a framework to maintain structural integrity of the entire thylakoid membrane network. Both the structural stability and flexibility of thylakoid membranes would be essential for dynamic protein reorganization under fluctuating light environments. PMID:24442007

  15. Cholesterol depletion disorganizes oocyte membrane rafts altering mouse fertilization.

    Directory of Open Access Journals (Sweden)

    Jorgelina Buschiazzo

    Full Text Available Drastic membrane reorganization occurs when mammalian sperm binds to and fuses with the oocyte membrane. Two oocyte protein families are essential for fertilization, tetraspanins and glycosylphosphatidylinositol-anchored proteins. The firsts are associated to tetraspanin-enriched microdomains and the seconds to lipid rafts. Here we report membrane raft involvement in mouse fertilization assessed by cholesterol modulation using methyl-β-cyclodextrin. Cholesterol removal induced: (1 a decrease of the fertilization rate and index; and (2 a delay in the extrusion of the second polar body. Cholesterol repletion recovered the fertilization ability of cholesterol-depleted oocytes, indicating reversibility of these effects. In vivo time-lapse analyses using fluorescent cholesterol permitted to identify the time-point at which the probe is mainly located at the plasma membrane enabling the estimation of the extent of the cholesterol depletion. We confirmed that the mouse oocyte is rich in rafts according to the presence of the raft marker lipid, ganglioside GM1 on the membrane of living oocytes and we identified the coexistence of two types of microdomains, planar rafts and caveolae-like structures, by terms of two differential rafts markers, flotillin-2 and caveolin-1, respectively. Moreover, this is the first report that shows characteristic caveolae-like invaginations in the mouse oocyte identified by electron microscopy. Raft disruption by cholesterol depletion disturbed the subcellular localization of the signal molecule c-Src and the inhibition of Src kinase proteins prevented second polar body extrusion, consistent with a role of Src-related kinases in fertilization via signaling complexes. Our data highlight the functional importance of intact membrane rafts for mouse fertilization and its dependence on cholesterol.

  16. Cell membrane fluid-mosaic structure and cancer metastasis.

    Science.gov (United States)

    Nicolson, Garth L

    2015-04-01

    Cancer cells are surrounded by a fluid-mosaic membrane that provides a highly dynamic structural barrier with the microenvironment, communication filter and transport, receptor and enzyme platform. This structure forms because of the physical properties of its constituents, which can move laterally and selectively within the membrane plane and associate with similar or different constituents, forming specific, functional domains. Over the years, data have accumulated on the amounts, structures, and mobilities of membrane constituents after transformation and during progression and metastasis. More recent information has shown the importance of specialized membrane domains, such as lipid rafts, protein-lipid complexes, receptor complexes, invadopodia, and other cellular structures in the malignant process. In describing the macrostructure and dynamics of plasma membranes, membrane-associated cytoskeletal structures and extracellular matrix are also important, constraining the motion of membrane components and acting as traction points for cell motility. These associations may be altered in malignant cells, and probably also in surrounding normal cells, promoting invasion and metastatic colonization. In addition, components can be released from cells as secretory molecules, enzymes, receptors, large macromolecular complexes, membrane vesicles, and exosomes that can modify the microenvironment, provide specific cross-talk, and facilitate invasion, survival, and growth of malignant cells.

  17. Plant membranes a biophysical approach to structure, development and senescence

    CERN Document Server

    Leshem, Ya’Acov Y

    1992-01-01

    The plasma membrane is at once the window through which the cell senses the environment and the portal through which the environment influences the structure and activities of the cell. Its importance in cellular physiology can thus hardly be overestimated, since constant flow of materials between cell and environment is essential to the well-being of any biological system. The nature of the materials mov­ ing into the cell is also critical, since some substances are required for maintenance and growth, while others, because of their toxicity, must either be rigorously excluded or permitted to enter only after chemical alteration. Such alteration frequently permits the compounds to be sequestered in special cellular compartments having different types of membranes. This type of homogeneity, plus the fact that the wear and tear of transmembrane molecular traffic compels the system to be constantly monitored and repaired, means that the membrane system of any organism must be both structurally complex and dy­...

  18. Salt Concentration Differences Alter Membrane Resistance in Reverse Electrodialysis Stacks

    KAUST Repository

    Geise, Geoffrey M.

    2014-01-14

    Membrane ionic resistance is usually measured by immersing the membrane in a salt solution at a single, fixed concentration. While salt concentration is known to affect membrane resistance when the same concentration is used on both sides of the membrane, little is known about membrane resistance when the membrane is placed between solutions of different concentrations, such as in a reverse electrodialysis (RED) stack. Ionic resistance measurements obtained using Selemion CMV and AMV that separated sodium chloride and ammonium bicarbonate solutions of different concentrations were greater than those measured using only the high-concentration solution. Measured RED stack resistances showed good agreement with resistances calculated using an equivalent series resistance model, where the membranes accounted for 46% of the total stack resistance. The high area resistance of the membranes separating different salt concentration solutions has implications for modeling and optimizing membranes used in RED systems.

  19. Electrospun superhydrophobic membranes with unique structures for membrane distillation.

    Science.gov (United States)

    Liao, Yuan; Loh, Chun-Heng; Wang, Rong; Fane, Anthony G

    2014-09-24

    With modest temperature demand, low operating pressure, and high solute rejection, membrane distillation (MD) is an attractive option for desalination, waste treatment, and food and pharmaceutical processing. However, large-scale practical applications of MD are still hindered by the absence of effective membranes with high hydrophobicity, high porosity, and adequate mechanical strength, which are important properties for MD permeation fluxes, stable long-term performance, and effective packing in modules without damage. This study describes novel design strategies for highly robust superhydrophobic dual-layer membranes for MD via electrospinning. One of the newly developed membranes comprises a durable and ultrathin 3-dimensional (3D) superhydrophobic skin and porous nanofibrous support whereas another was fabricated by electrospinning 3D superhydrophobic layers on a nonwoven support. These membranes exhibit superhydrophobicity toward distilled water, salty water, oil-in-water emulsion, and beverages, which enables them to be used not only for desalination but also for other processes. The superhydrophobic dual-layer membrane #3S-N with nanofibrous support has a competitive permeation flux of 24.6 ± 1.2 kg m(-2) h(-1) in MD (feed and permeate temperate were set as 333 and 293 K, respectively) due to the higher porosity of the nanofibrous scaffold. Meanwhile, the membranes with the nonwoven support exhibit greater mechanical strength due to this support combined with better long-term performance because of the thicker 3D superhydrophobic layers. The morphology, pore size, porosity, mechanical properties, and liquid enter pressure of water of these superhydrophobic composite membranes with two different structures are reported and compared with commercial polyvinylidene fluoride membranes.

  20. Modeling branching pore structures in membrane filters

    Science.gov (United States)

    Sanaei, Pejman; Cummings, Linda J.

    2016-11-01

    Membrane filters are in widespread industrial use, and mathematical models to predict their efficacy are potentially very useful, as such models can suggest design modifications to improve filter performance and lifetime. Many models have been proposed to describe particle capture by membrane filters and the associated fluid dynamics, but most such models are based on a very simple structure in which the pores of the membrane are assumed to be simple circularly-cylindrical tubes spanning the depth of the membrane. Real membranes used in applications usually have much more complex geometry, with interconnected pores which may branch and bifurcate. Pores are also typically larger on the upstream side of the membrane than on the downstream side. We present an idealized mathematical model, in which a membrane consists of a series of bifurcating pores, which decrease in size as the membrane is traversed. Feed solution is forced through the membrane by applied pressure, and particles are removed from the feed either by sieving, or by particle adsorption within pores (which shrinks them). Thus the membrane's permeability decreases as the filtration progresses, ultimately falling to zero. We discuss how filtration efficiency depends on the characteristics of the branching structure. Partial support from NSF DMS 1261596 is gratefully acknowledged.

  1. Thermostabilisation of membrane proteins for structural studies

    Science.gov (United States)

    Magnani, Francesca; Serrano-Vega, Maria J.; Shibata, Yoko; Abdul-Hussein, Saba; Lebon, Guillaume; Miller-Gallacher, Jennifer; Singhal, Ankita; Strege, Annette; Thomas, Jennifer A.; Tate, Christopher G.

    2017-01-01

    The thermostability of an integral membrane protein in detergent solution is a key parameter that dictates the likelihood of obtaining well-diffracting crystals suitable for structure determination. However, many mammalian membrane proteins are too unstable for crystallisation. We developed a thermostabilisation strategy based on systematic mutagenesis coupled to a radioligand-binding thermostability assay that can be applied to receptors, ion channels and transporters. It takes approximately 6-12 months to thermostabilise a G protein-coupled receptor (GPCR) containing 300 amino acid residues. The resulting thermostabilised membrane proteins are more easily crystallised and result in high-quality structures. This methodology has facilitated structure-based drug design applied to GPCRs, because it is possible to determine multiple structures of the thermostabilised receptors bound to low affinity ligands. Protocols and advice are given on how to develop thermostability assays for membrane proteins and how to combine mutations to make an optimally stable mutant suitable for structural studies. PMID:27466713

  2. Ion induced changes in the structure of bordered pit membranes.

    Science.gov (United States)

    Lee, Jinkee; Holbrook, N Michele; Zwieniecki, Maciej A

    2012-01-01

    Ion-mediated changes in xylem hydraulic resistance are hypothesized to result from hydrogel like properties of pectins located in the bordered pit membranes separating adjacent xylem vessels. Although the kinetics of the ion-mediated changes in hydraulic resistance are consistent with the swelling/deswelling behavior of pectins, there is no direct evidence of this activity. In this report we use atomic force microscopy (AFM) to investigate structural changes in bordered pit membranes associated with changes in the ionic concentration of the surrounding solution. When submerged in de-ionized water, AFM revealed bordered pit membranes as relatively smooth, soft, and lacking any sharp edges surface, in contrast to pictures from scanning electron microscope (SEM) or AFM performed on air-dry material. Exposure of the bordered pit membranes to 50 mM KCl solution resulted in significant changes in both surface physical properties and elevation features. Specifically, bordered pit membranes became harder and the fiber edges were clearly visible. In addition, the membrane contracted and appeared much rougher due to exposed microfibers. In neither solution was there any evidence of discrete pores through the membrane whose dimensions were altered in response to the ionic composition of the surrounding solution. Instead the variable hydraulic resistance appears to involve changes in the both the permeability and the thickness of the pit membrane.

  3. D-myo-inositol derivatives alter liposomal membrane fluidity

    NARCIS (Netherlands)

    Brailoiu, E; Margineanu, A; Toma, CP; Filipeanu, CM; Rusu, [No Value; Branisteanu, DD

    1998-01-01

    We investigated the effect on membrane fluidity induced by D-myo-inositol derivatives (IP3, IP4, IP5, IP6). Fluidity was determined as the anisotropy of fluorescence polarisation fi om liposome model membranes labelled with DPH (1,6-diphenyl-1,3,5 hexatriene). IP3 (10(-10) to 10(-5) M) increased the

  4. Coarctation induces alterations in basement membranes in the cardiovascular system

    DEFF Research Database (Denmark)

    Lipke, D W; McCarthy, K J; Elton, T S;

    1993-01-01

    A coarctation hypertensive rat model was used to examine the effects of elevated blood pressure on basement membrane component synthesis by cardiac myocytes and aorta using immunohistochemistry and Northern blot analysis. Carotid arterial pressure increased immediately on coarctation, and left...

  5. Optimizing internal structure of membrane filters

    Science.gov (United States)

    Cummings, Linda; Sanaei, Pejman

    2016-11-01

    Membrane filters are in widespread use, and manufacturers have considerable interest in improving their performance, in terms of particle retention properties, and total throughput over the filter lifetime. In this regard, it has long been known that membrane properties should not be uniform over the membrane depth; rather, membrane permeability should decrease in the direction of flow. While much research effort has been focused on investigating favorable membrane permeability gradients, this work has been largely empirical in nature. We present a simple, first-principles model for flow through and fouling of a membrane filter, accounting for permeability gradients via variable pore size. Our model accounts for two fouling modes: sieving; and particle adsorption within pores. For filtration driven by a fixed pressure drop, flux through the membrane eventually goes to zero, as fouling occurs and pores close. We address issues of filter performance as the internal pore structure is varied, by comparing the total throughput obtained with equal-resistance membranes. Within certain classes of pore profiles we are able to find the optimum pore profile that maximizes total throughput over the filter lifetime, while maintaining acceptable particle removal from the feed. Partial support from NSF DMS 1261596 is gratefully acknowledged.

  6. Erythrocyte Shape Abnormalities, Membrane Oxidative Damage, and β -Actin Alterations: An Unrecognized Triad in Classical Autism

    OpenAIRE

    Lucia Ciccoli; Claudio De Felice; Eugenio Paccagnini; Silvia Leoncini; Alessandra Pecorelli; Cinzia Signorini; Giuseppe Belmonte; Roberto Guerranti; Alessio Cortelazzo; Mariangela Gentile; Gloria Zollo; Thierry Durand; Giuseppe Valacchi; Marcello Rossi; Joussef Hayek

    2013-01-01

    Autism spectrum disorders (ASDs) are a complex group of neurodevelopment disorders steadily rising in frequency and treatment refractory, where the search for biological markers is of paramount importance. Although red blood cells (RBCs) membrane lipidomics and rheological variables have been reported to be altered, with some suggestions indicating an increased lipid peroxidation in the erythrocyte membrane, to date no information exists on how the oxidative membrane damage may affect cytoske...

  7. Structure Biology of Membrane Bound Enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Dax [Johns Hopkins Univ., Baltimore, MD (United States). School of Medicine. Dept. of Physiology

    2016-11-30

    The overall goal of the proposed research is to understand the membrane-associated active processes catalyzed by an alkane $\\square$-hydroxylase (AlkB) from eubacterium Pseudomonase oleovorans. AlkB performs oxygenation of unactivated hydrocarbons found in crude oils. The enzymatic reaction involves energy-demanding steps in the membrane with the uses of structurally unknown metal active sites featuring a diiron [FeFe] center. At present, a critical barrier to understanding the membrane-associated reaction mechanism is the lack of structural information. The structural biology efforts have been challenged by technical difficulties commonly encountered in crystallization and structural determination of membrane proteins. The specific aims of the current budget cycle are to crystalize AlkB and initiate X-ray analysis to set the stage for structural determination. The long-term goals of our structural biology efforts are to provide an atomic description of AlkB structure, and to uncover the mechanisms of selective modification of hydrocarbons. The structural information will help elucidating how the unactivated C-H bonds of saturated hydrocarbons are oxidized to initiate biodegradation and biotransformation processes. The knowledge gained will be fundamental to biotechnological applications to biofuel transformation of non-edible oil feedstock. Renewable biodiesel is a promising energy carry that can be used to reduce fossil fuel dependency. The proposed research capitalizes on prior BES-supported efforts on over-expression and purification of AlkB to explore the inner workings of a bioenergy-relevant membrane-bound enzyme.

  8. Crz1p regulates pH homeostasis in Candida glabrata by altering membrane lipid composition.

    Science.gov (United States)

    Yan, Dongni; Lin, Xiaobao; Qi, Yanli; Liu, Hui; Chen, Xiulai; Liu, Liming; Chen, Jian

    2016-09-23

    The asexual facultative aerobic haploid yeast Candida glabrata is widely used in the industrial production of various organic acids. To elucidate the physiological function of the transcription factor CgCrz1p and its role in tolerance to acid stress we deleted or overexpressed the corresponding gene CgCRZ1 Deletion of CgCRZ1 resulted in a 60% decrease in dry cell weight (DCW) and a 50% drop in cell viability compared to the wild type at pH 2.0. Expression of lipid metabolism-associated genes was also significantly down-regulated. Consequently, the proportion of C18:1 fatty acids, ratio of unsaturated to saturated fatty acids, and ergosterol content decreased by 30%, 46%, and 30%, respectively. Additionally, membrane integrity, fluidity, and H(+)-ATPase activity were reduced by 45%, 9%, and 50%, respectively. In contrast, overexpression of CgCrz1p increased C18:1 and ergosterol content by 16% and 40%, respectively. Overexpression also enhanced membrane integrity, fluidity, and H(+)-ATPase activity by 31%, 6%, and 20%, respectively. Moreover, in the absence of pH buffering, DCW and pyruvate titer increased by 48% and 60%, respectively, compared to the wild type. Together, these results suggest that CgCrz1p regulates tolerance to acidic conditions by altering membrane lipid composition in C. glabrata IMPORTANCE: The present study provides an insight into the metabolism of Candida glabrata under acidic conditions, such as those encountered during industrial production of organic acids. We found that overexpression of the transcription factor CgCrz1p improved viability, biomass, and pyruvate yields at low pH. Analysis of plasma membrane lipid composition indicated that CgCrz1p might play an important role in its integrity and fluidity, and enhanced the pumping of protons in acidic environments. We propose that altering the structure of the cell membrane may provide a successful strategy for increasing C glabrata productivity at low pH.

  9. Phytochemicals Perturb Membranes and Promiscuously Alter Protein Function

    NARCIS (Netherlands)

    Ingólfsson, Helgi I; Thakur, Pratima; Herold, Karl F; Hobart, E Ashley; Ramsey, Nicole B; Periole, Xavier; de Jong, Djurre H; Zwama, Martijn; Yilmaz, Duygu; Hall, Katherine; Maretzky, Thorsten; Hemmings, Hugh C; Blobel, Carl; Marrink, Siewert J; Kocer, Armagan; Sack, Jon T; Andersen, Olaf S

    2014-01-01

    A wide variety of phytochemicals are consumed for their perceived health benefits. Many of these phytochemicals have been found to alter numerous cell functions, but the mechanisms underlying their biological activity tend to be poorly understood. Phenolic phytochemicals are particularly promiscuous

  10. Structural Transition in Myelin Membrane as Initiator of Multiple Sclerosis.

    Science.gov (United States)

    Shaharabani, Rona; Ram-On, Maor; Avinery, Ram; Aharoni, Rina; Arnon, Ruth; Talmon, Yeshayahu; Beck, Roy

    2016-09-21

    In demyelinating diseases such as multiple sclerosis, disrupted myelin structures impair the functional role of the sheath as an insulating layer for proper nerve conduction. Though the etiology and recovery pathways remain unclear, in vivo studies show alterations in the lipid and the adhesive protein (myelin basic protein, MBP) composition. We find that in vitro cytoplasmic myelin membranes with modified lipid composition and low MBP concentration, as in demyelinating disease, show structural instabilities and pathological phase transition from a lamellar to inverted hexagonal, which involve enhanced local curvature. Similar curvatures are also found in vivo in diseased myelin sheaths. In addition, MBP dimers form a correlated mesh-like network within the inner membrane space, only in the vicinity of native lipid composition. These findings delineate the distinct functional roles of dominant constituents in cytoplasmic myelin sheaths, and shed new light on mechanisms disrupting lipid-protein complexes in the diseased state.

  11. Primate cathelicidin orthologues display different structures and membrane interactions.

    Science.gov (United States)

    Morgera, Francesca; Vaccari, Lisa; Antcheva, Nikolinka; Scaini, Denis; Pacor, Sabrina; Tossi, Alessandro

    2009-02-01

    The human cathelicidin LL-37 displays both direct antibacterial activities and the capacity to modulate host-cell activities. These depend on structural characteristics that are subject to positive selection for variation, as observed in a previous analysis of the CAMP gene (encoding LL-37) in primates. The altered balance between cationic and anionic residues in different primate orthologues affects intramolecular salt-bridging and influences the stability of the helical conformation and tendency to aggregate in solution of the peptide. In the present study, we have analysed the effects of these structural variations on membrane interactions for human LL-37, rhesus RL-37 and orang-utan LL-37, using several complementary biophysical and biochemical methods. CD and ATR (attenuated total reflection)-FTIR (Fourier-transform IR) spectroscopy on model membranes indicate that RL-37, which is monomeric and unstructured in bulk solution [F-form (free form)], and human LL-37, which is partly structured and probably aggregated [A-form (aggregated form)], bind biological membranes in different manners. RL-37 may insert more deeply into the lipid bilayer than LL-37, which remains aggregated. AFM (atomic force microscopy) performed on the same supported bilayer as used for ATR-FTIR measurements suggests a carpet-like mode of permeabilization for RL37 and formation of more defined worm-holes for LL-37. Comparison of data from the biological activity on bacterial cells with permeabilization of model membranes indicates that the structure/aggregation state also affects the trajectory of the peptides from bulk solution through the outer cell-wall layers to the membrane. The results of the present study suggest that F-form cathelicidin orthologues may have evolved to have primarily a direct antimicrobial defensive capacity, whereas the A-forms have somewhat sacrificed this to gain host-cell modulating functions.

  12. Conformational Exchange in a Membrane Transport Protein Is Altered in Protein Crystals

    Energy Technology Data Exchange (ETDEWEB)

    D Freed; P Horanyi; M Wiener; D Cafiso

    2011-12-31

    Successful macromolecular crystallography requires solution conditions that may alter the conformational sampling of a macromolecule. Here, site-directed spin labeling is used to examine a conformational equilibrium within BtuB, the Escherichia coli outer membrane transporter for vitamin B{sub 12}. Electron paramagnetic resonance (EPR) spectra from a spin label placed within the N-terminal energy coupling motif (Ton box) of BtuB indicate that this segment is in equilibrium between folded and unfolded forms. In bilayers, substrate binding shifts this equilibrium toward the unfolded form; however, EPR spectra from this same spin-labeled mutant indicate that this unfolding transition is blocked in protein crystals. Moreover, crystal structures of this spin-labeled mutant are consistent with the EPR result. When the free energy difference between substates is estimated from the EPR spectra, the crystal environment is found to alter this energy by 3 kcal/mol when compared to the bilayer state. Approximately half of this energy change is due to solutes or osmolytes in the crystallization buffer, and the remainder is contributed by the crystal lattice. These data provide a quantitative measure of how a conformational equilibrium in BtuB is modified in the crystal environment, and suggest that more-compact, less-hydrated substates will be favored in protein crystals.

  13. Sphingolipid symmetry governs membrane lipid raft structure.

    Science.gov (United States)

    Quinn, Peter J

    2014-07-01

    Lipid domain formation in membranes underlies the concept of rafts but their structure is controversial because the key role of cholesterol has been challenged. The configuration of glycosphingolipid receptors for agonists, bacterial toxins and enveloped viruses in plasma membrane rafts appears to be an important factor governing ligand binding and infectivity but the details are as yet unresolved. I have used X-ray diffraction methods to examine how cholesterol affects the distribution of glycosphingolipid in aqueous dispersions of an equimolar mixture of cholesterol and egg-sphingomyelin containing different proportions of glucosylceramide from human extracts. Three coexisting liquid-ordered bilayer structures are observed at 37°C in mixtures containing up to 20mol% glycosphingolipid. All the cholesterol was sequestered in one bilayer with the minimum amount of sphingomyelin (33mol%) to prevent formation of cholesterol crystals. The other two bilayers consisted of sphingomyelin and glucosylceramide. Asymmetric molecular species of glucosylceramide with N-acyl chains longer than 20 carbons form an equimolar complex with sphingomyelin in which the glycosidic residues are arranged in hexagonal array. Symmetric molecular species mix with sphingomyelin in proportions less than equimolar to form quasicrystalline bilayers. When the glycosphingolipid exceeds equimolar proportions with sphingomyelin cholesterol is incorporated into the structure and formation of a gel phase of glucosylceramide is prevented. The demonstration of particular structural features of ceramide molecular species combined with the diversity of sugar residues of glycosphingolipid classes paves the way for a rational approach to understanding the functional specificity of lipid rafts and how they are coupled across cell membranes.

  14. [Function of surface membrane structures in Thiobacillus thiooxidans].

    Science.gov (United States)

    Pivovarova, T A; Karavaĭko, G I

    1975-01-01

    The function of the surface membrane structures was studied with cytochemical techniques on ultrathin sections of Thiobacillus thiooxidans. The transport of elementary sulphur inside the cell involves the surface membrane structures, while oxidation of the sulphur to sulphuric acid takes place on the outer surface of the cytoplasmic membrane. The surface membrane structures are supposed also to participate in the primary dissolution of elementary sulphur at the site of contact of the cells with the mineral.

  15. Impacts of operating conditions and solution chemistry on osmotic membrane structure and performance

    KAUST Repository

    Wong, Mavis C.Y.

    2012-02-01

    Herein, we report on changes in the performance of a commercial cellulose triacetate (CTA) membrane, imparted by varied operating conditions and solution chemistries. Changes to feed and draw solution flow rate did not significantly alter the CTA membrane\\'s water permeability, salt permeability, or membrane structural parameter when operated with the membrane skin layer facing the draw solution (PRO-mode). However, water and salt permeability increased with increasing feed or draw solution temperature, while the membrane structural parameter decreased with increasing draw solution, possibly due to changes in polymer intermolecular interactions. High ionic strength draw solutions may de-swell the CTA membrane via charge neutralization, which resulted in lower water permeability, higher salt permeability, and lower structural parameter. This observed trend was further exacerbated by the presence of divalent cations which tends to swell the polymer to a greater extent. Finally, the calculated CTA membrane\\'s structural parameter was lower and less sensitive to external factors when operated in PRO-mode, but highly sensitive to the same factors when the skin layer faced the feed solution (FO-mode), presumably due to swelling/de-swelling of the saturated porous substructure by the draw solution. This is a first attempt aimed at systematically evaluating the changes in performance of the CTA membrane due to operating conditions and solution chemistry, shedding new insight into the possible advantages and disadvantages of this material in certain applications. © 2011 Elsevier B.V.

  16. Basement membrane chondroitin sulfate proteoglycan alterations in a rat model of polycystic kidney disease

    DEFF Research Database (Denmark)

    Ehara, T; Carone, F A; McCarthy, K J;

    1994-01-01

    Alterations in basement membrane components, notably proteoglycans, in a rat model of polycystic kidney disease have been investigated. Rats were fed phenol II (2-amino-4-hydroxyphenyl-5-phenyl thiazole) for 4 days and then changed to normal diet for a 7-day recovery period. Marked dilation...... of distal tubules and collecting ducts was observed by 4 days with phenol II treatment, but the morphology returned to normal after 7 days of subsequent normal diet. Staining of tissue sections with two mouse monoclonal antibodies to a recently described basement membrane chondroitin sulfate proteoglycan...... membrane heparan sulfate proteoglycan core protein related to perlecan did not diminish but rather stained affected tubules intensely, whereas laminin, on the other hand, was apparently diminished in the basement membranes of the cystic tubules. Type IV collagen staining did not change through disease...

  17. Strong thin membrane structure. [solar sails

    Science.gov (United States)

    Frazer, R. E. (Inventor)

    1979-01-01

    A continuous process is described for producing strong lightweight structures for use as solar sails for spacecraft propulsion by radiation pressure. A thin reflective coating, such as aluminum, is applied to a rotating cylinder. A nylon mesh, applied over the aluminum coating, is then coated with a polymerizing material such as a para-xylylene monomer gas to polymerize as a film bound to the mesh and the aluminum. An emissivity increasing material such as chromium or silicon monoxide is applied to the polymer film to disperse such material colloidally into the growing polymer film, or to the final polymer film. The resulting membrane structure is then removed from the cylinder. Alternately, the membrane structure can be formed by etching a substrate in the form of an organic film such as a polymide, or a metal foil, to remove material from the substrate and reduce its thickness. A thin reflective coating (aluminum) is applied on one side of the substrate, and an emissivity increasing coating is applied on the reverse side of the substrate.

  18. Network community structure alterations in adult schizophrenia: identification and localization of alterations.

    Science.gov (United States)

    Lerman-Sinkoff, Dov B; Barch, Deanna M

    2016-01-01

    A growing body of literature suggests functional connectivity alterations in schizophrenia. While findings have been mixed, evidence points towards a complex pattern of hyper-connectivity and hypo-connectivity. This altered connectivity can be represented and analyzed using the mathematical frameworks provided by graph and information theory to represent functional connectivity data as graphs comprised of nodes and edges linking the nodes. One analytic technique in this framework is the determination and analysis of network community structure, which is the grouping of nodes into linked communities or modules. This data-driven technique finds a best-fit structure such that nodes in a given community have greater connectivity with nodes in their community than with nodes in other communities. These community structure representations have been found to recapitulate known neural-systems in healthy individuals, have been used to identify novel functional systems, and have identified and localized community structure alterations in a childhood onset schizophrenia cohort. In the present study, we sought to determine whether community structure alterations were present in an adult onset schizophrenia cohort while stringently controlling for sources of imaging artifacts. Group level average graphs in healthy controls and individuals with schizophrenia exhibited visually similar network community structures and high amounts of normalized mutual information (NMI). However, testing of individual subject community structures identified small but significant alterations in community structure with alterations being driven by changes in node community membership in the somatosensory, auditory, default mode, salience, and subcortical networks.

  19. pH Dependence of Chlorophyll States, Protein Structures and Function of the PSII Membranes

    Institute of Scientific and Technical Information of China (English)

    李冬海; 阮翔; 许强; 王可玢; 公衍道; 匡廷云; 张秀芳; 赵南明

    2003-01-01

    The effect of varying pH on the photosystem II (PSII) membrane was studied using absorption and steady-state fluorescence spectroscopy, and using a variable fluorescence technique.pH variations induced significant changes in the chlorophyll states of the PSII membrane, but no effect was seen on the chlorophyll fluorescence parameter F′v/F′m.For acidic pH conditions, protein structures of the PSII membrane were slightly altered, whilst at alkaline pH levels, large changes in the protein structure of the PSII membrane were detected.The results indicate that the microenvironment around Cys in the PSII membrane is very susceptible to alkaline pH conditions, and that in the acid (4≤pH7) regions, pH variation has no effect on the protein structures of the PSII reaction center (RC).

  20. Controlling Structure in Sulfonated Block Copolymer Membranes

    Science.gov (United States)

    Truong, Phuc; Stein, Gila; Strzalka, Joe

    2015-03-01

    In many ionic block copolymer systems, the strong incompatibility between ionic and non-ionic segments will trap non-equilibrium structures in the film, making it difficult to engineer the optimal domain sizes and transport pathways. The goal of this work is to establish a framework for controlling the solid-state structure of sulfonated pentablock copolymer membranes. They have ABCBA block sequence, where A is poly(t-butyl styrene), B is poly(hydrogenated isoprene), and C is poly(styrene sulfonate). To process into films, the polymer is dissolved in toluene/n-propanol solvent mixtures, where the solvent proportions and the polymer loading were both varied. Solution-state structure was measured with small angle X-ray scattering (SAXS). We detected micelles with radii that depend on the solvent composition and polymer loading. Film structure was measured with grazing-incidence SAXS, which shows (i) domain periodicity is constant throughout film thickness; (ii) domain periodicity depends on solvent composition and polymer loading, and approximately matches the micelle radii in solutions. The solid-state packing is consistent with a hard sphere structure factor. Results suggest that solid-state structure can be tuned by manipulating the solution-state self-assembly.

  1. Altering the thermal resistance of foodborne bacterial pathogens with an eggshell membrane waste by-product.

    Science.gov (United States)

    Poland, A L; Sheldon, B W

    2001-04-01

    Eggshells from egg-breaking operations are a significant waste disposal problem. Thus, the development of value-added by-products from this waste would be welcomed by the industry. The ability of extracted eggshell membranes containing, several bacteriolytic enzymes (i.e., lysozyme and beta-N-acetylglucosaminidase) or other membrane components to alter the thermal resistance of gram-positive and gram-negative bacterial pathogens was evaluated. Mid-log phase cells of Salmonella Enteritidis (SE), Salmonella Typhimurium (ST), Escherichia coli O157:H7 (EC), Listeria monocytogenes Scott A (LM), and Staphylococcus aureus (SA) were suspended in 100 ml of 0.1% peptone water (pH 6.9, 10(7-8) CFU/ml) containing either 0 (control) or 10 g of an eggshell membrane extract and incubated at 37 degrees C for 45 min. Following exposure, membrane-free samples (1.5 ml) were heated in a 56 degrees C (LM, SA), 54 degrees C (SE, ST), or 52 degrees C (EC) water bath from 0 to 14 min in sealed glass reaction vials (12 by 32 mm), and the survivors were recovered on brain heart infusion agar. Population reductions ranging from 27.6% (SA) to 99.8% (LM) (ST, 43.8%; SE, 47.5%; EC, 71.8%) were observed for cells treated for 45 min with extracted membrane, as compared to controls. D-value reductions ranging from 0 (LM) to 87.2% (SE) (SA, 36.7%; EC, 83.3%; ST, 86.3%) were observed when membrane-treated cells were subsequently heat inactivated. The effects of exposure pH, time, temperature, and organic load on membrane activity were also evaluated with Salmonella Typhimurium. Exposure pH (5.0 versus 6.9), time (15 versus 45 min), and temperature (4 degrees C versus 37 degrees C) did not significantly reduce the impact of eggshell membranes on D-values. However, the presence of organic matter (0.1% peptone water versus skim milk) significantly reduced the thermal resistance-reducing capacity of the membranes. These preliminary findings provide information on the potential use of extracted eggshell

  2. Oxidative Stress and Erythrocyte Membrane Alterations in Children with Autism: Correlation with Clinical Features.

    Directory of Open Access Journals (Sweden)

    Alessandro Ghezzo

    Full Text Available It has been suggested that oxidative stress may play a role in the pathogenesis of Autism Spectrum Disorders (ASD, but the literature reports somewhat contradictory results. To further investigate the issue, we evaluated a high number of peripheral oxidative stress parameters, and some related issues such as erythrocyte membrane functional features and lipid composition. Twenty-one autistic children (Au aged 5 to 12 years, were gender and age-matched with 20 typically developing children (TD. Erythrocyte thiobarbituric acid reactive substances, urinary isoprostane and hexanoyl-lysine adduct levels were elevated in Au, thus confirming the occurrence of an imbalance of the redox status of Au, whilst other oxidative stress markers or associated parameters (urinary 8-oxo-dG, plasma radical absorbance capacity and carbonyl groups, erythrocyte superoxide dismutase and catalase activities were unchanged. A very significant reduction of Na(+/K(+-ATPase activity (-66%, p<0.0001, a reduction of erythrocyte membrane fluidity and alteration in erythrocyte fatty acid membrane profile (increase in monounsaturated fatty acids, decrease in EPA and DHA-ω3 with a consequent increase in ω6/ω3 ratio were found in Au compared to TD, without change in membrane sialic acid content. Some Au clinical features appear to be correlated with these findings; in particular, hyperactivity score appears to be related with some parameters of the lipidomic profile and membrane fluidity. Oxidative stress and erythrocyte membrane alterations may play a role in the pathogenesis of ASD and prompt the development of palliative therapeutic protocols. Moreover, the marked decrease in NKA could be potentially utilized as a peripheral biomarker of ASD.

  3. RNS60, a charge-stabilized nanostructure saline alters Xenopus Laevis oocyte biophysical membrane properties by enhancing mitochondrial ATP production.

    Science.gov (United States)

    Choi, Soonwook; Yu, Eunah; Kim, Duk-Soo; Sugimori, Mutsuyuki; Llinás, Rodolfo R

    2015-03-01

    We have examined the effects of RNS60, a 0.9% saline containing charge-stabilized oxygen nanobubble-based structures. RNS60 is generated by subjecting normal saline to Taylor-Couette-Poiseuille (TCP) flow under elevated oxygen pressure. This study, implemented in Xenopus laevis oocytes, addresses both the electrophysiological membrane properties and parallel biological processes in the cytoplasm. Intracellular recordings from defolliculated X. laevis oocytes were implemented in: (1) air oxygenated standard Ringer's solution, (2) RNS60-based Ringer's solution, (3) RNS10.3 (TCP-modified saline without excess oxygen)-based Ringer's, and (4) ONS60 (saline containing high pressure oxygen without TCP modification)-based Ringer's. RNS60-based Ringer's solution induced membrane hyperpolarization from the resting membrane potential. This effect was prevented by: (1) ouabain (a blocker of the sodium/potassium ATPase), (2) rotenone (a mitochondrial electron transfer chain inhibitor preventing usable ATP synthesis), and (3) oligomycin A (an inhibitor of ATP synthase) indicating that RNS60 effects intracellular ATP levels. Increased intracellular ATP levels following RNS60 treatment were directly demonstrated using luciferin/luciferase photon emission. These results indicate that RNS60 alters intrinsic the electrophysiological properties of the X. laevis oocyte membrane by increasing mitochondrial-based ATP synthesis. Ultrastructural analysis of the oocyte cytoplasm demonstrated increased mitochondrial length in the presence of RNS60-based Ringer's solution. It is concluded that the biological properties of RNS60 relate to its ability to optimize ATP synthesis.

  4. Expression and structural analysis of membrane proteins

    OpenAIRE

    Eifler, Nora

    2006-01-01

    1.1 Membrane Proteins Between one quarter and one third of all genes in eukaryotic and prokaryotic organisms code for integral membrane proteins (IMPs) (Essen, 2002). These proteins are essential parts of biological membranes and confer various functions, such as energy conversion, transport, biosynthesis of lipids, signal transduction, or cell recognition. The enormous economical potential of membrane proteins is highlighted by the family of G-protein-coupled receptors (GPC...

  5. Analysis of tensioned membrane structures considering cable sliding

    Institute of Scientific and Technical Information of China (English)

    宋昌永

    2003-01-01

    In routine design of tensioned membrane structures, the membrane is generally modeled using space membrane elements and the cables by space cable elements, with no sliding allowed between the membrane and the cables. On the other hand, large deflections are expected and sliding between the membrane and the cables is inevitable. In the present paper, the general finite element code ABAQUS was employed to investigate the influence of cable sliding on membrane surface on the structural behavior. Three analysis models were devised to fulfill this purpose: (1) The membrane element shares nodes with the cable element; (2) The cable can slide on the membrane surface freely (without friction) and (3) The cable can slide on the membrane surface, but with friction between the cable and the membrane. The sliding problem is modeled using a surface - based contact algorithm. The results from three analysis models are compared, showing that cable sliding has only little influence on the structure shape and on the stress distributions in the membrane. The main influence of cable sliding may be its effect on the dynamic behavior of tensioned membrane structures.

  6. Guanidination of notexin alters its membrane-damaging activity in response to sphingomyelin and cholesterol

    Indian Academy of Sciences (India)

    Pei-Hsiu Kao; Yi-Ling Chiou; Shinne-Ren Lin; Long-Sen Chang

    2010-12-01

    To elucidate the contribution of phospholipase A2 (PLA2) activity of notexin to its ability to perturb membranes, comparative studies on the interaction of notexin and guanidinated notexin (Gu-notexin) with egg yolk phosphatidylcholine (EYPC), EYPC/egg yolk sphingomyelin (EYSM) and EYPC/EYSM/cholesterol vesicles were conducted. EYSM notably reduced the membrane-damaging activity of notexin against EYPC vesicles, but had an insignificant influence on that of Gu-notexin. Unlike the effects noted with notexin, inactivation of PLA2 activity by EDTA led to a reduction in the ability of Gu-notexin to induce EYPC/EYSM vesicle leakage and to increase Gu-notexin-induced membrane permeability of EYPC/EYSM/cholesterol vesicles. The geometrical arrangement of notexin and Gu-notexin in contact with either EYPC/EYSM vesicles or EYPC/EYSM/cholesterol vesicles differed. Moreover, global conformation of notexin and Gu-notexin differed in either Ca2+-bound or metal-free states. These results indicate that notexin and Gu-notexin could induce membrane permeability without the involvement of PLA2 activity, and suggest that guanidination alters the membrane-bound mode of notexin on damaging phospholipid vesicles containing sphingomyelin and cholesterol.

  7. Analysis of tensioned membrane structures considering cable sliding

    Institute of Scientific and Technical Information of China (English)

    宋昌永

    2003-01-01

    In routine design of tensioned membrane st ructures, the membrane is gen erally modeled using space membrane elements and the cables by space cable eleme nts, with no sliding allowed between the membrane and the cables. On the other h and, large deflections are expected and sliding between the membrane and the cab les is inevitable. In the present paper, the general finite element code ABAQUS was employed to investigate the influence of cable sliding on membrane surface o n the structural behavior. Three analysis models were devised to fulfill this pu rpose: (1) The membrane element shares nodes with the cable element; (2) The cab le can slide on the membrane surface freely (without friction) and (3) The cable can slide on the membrane surface, but with friction between the cable and the membrane. The sliding problem is modeled using a surface-based contact algorithm . The results from three analysis models are compared, showing that cable slidin g has only little influence on the structure shape and on the stress distributio ns in the membrane. The main influence of cable sliding may be its effect on the dynamic behavior of tensioned membrane structures.

  8. Nonlinear imaging of lipid membrane alterations elicited by nanosecond pulsed electric fields

    Science.gov (United States)

    Moen, Erick K.; Beier, Hope T.; Thompson, Gary L.; Armani, Andrea M.; Ibey, Bennett L.

    2015-03-01

    Second Harmonic Generation (SHG) imaging is a useful tool for examining the structure of interfaces between bulk materials. Recently, this technique was applied to detecting subtle perturbations in the structure of cellular membranes following nanosecond pulsed electric field (nsPEF) exposure. Monitoring the cell's outer membrane as it is exposed to nsPEF via SHG has demonstrated that nanoporation is likely the root cause for size-specific, increased cytoplasmic membrane permeabilization. It is theorized that the area of the membrane covered by these pores is tied to pulse intensity or duration. The extent of this effect along the cell's surface, however, has never been measured due to its temporal brevity and minute pore size. By enhancing the SHG technique developed and elucidated previously, we are able to obtain this information. Further, we vary the pulse width and amplitude of the applied stimulus to explore the mechanical changes of the membrane at various sites around the cell. By using this unique SHG imaging technique to directly visualize the change in order of phospholipids within the membrane, we are able to better understand the complex response of living cells to electric pulses.

  9. Identification of Novel Membrane Structures in Plasmodium falciparum Infected Erythrocytes

    Directory of Open Access Journals (Sweden)

    Clavijo Carlos A

    1998-01-01

    Full Text Available Little is known about the molecular mechanisms underlying the release of merozoites from malaria infected erythrocytes. In this study membranous structures present in the culture medium at the time of merozoite release have been characterized. Biochemical and ultrastructural evidence indicate that membranous structures consist of the infected erythrocyte membrane, the parasitophorous vacuolar membrane and a residual body containing electron dense material. These are subcellular compartments expected in a structure that arises as a consequence of merozoite release from the infected cell. Ultrastructural studies show that a novel structure extends from the former parasite compartment to the surface membrane. Since these membrane modifications are detected only after merozoites have been released from the infected erythrocyte, it is proposed that they might play a role in the release of merozoites from the host cell

  10. Altered permeability barrier structure in cholesteatoma matrix

    DEFF Research Database (Denmark)

    Svane-Knudsen, Viggo; Halkier-Sørensen, Lars; Rasmussen, Gurli

    2002-01-01

    The stratum corneum of the cholesteatoma epithelium comprises the greater part of the cholesteatoma matrix. The permeability barrier that militates against diffusion and penetration of infectious and toxic agents into and through the epithelium is situated here. The multiple long sheets of lamellar...... lipid structures filling the intercellular spaces mainly control the barrier function. The barrier in cholesteatoma epithelium is several times thicker than in unaffected skin but presents distinctive features of a defective barrier as seen in other scaling skin diseases. The intercellular spaces appear...

  11. Saturated fatty acids alter the late secretory pathway by modulating membrane properties.

    Science.gov (United States)

    Payet, Laurie-Anne; Pineau, Ludovic; Snyder, Ellen C R; Colas, Jenny; Moussa, Ahmed; Vannier, Brigitte; Bigay, Joelle; Clarhaut, Jonathan; Becq, Frédéric; Berjeaud, Jean-Marc; Vandebrouck, Clarisse; Ferreira, Thierry

    2013-12-01

    Saturated fatty acids (SFA) have been reported to alter organelle integrity and function in many cell types, including muscle and pancreatic β-cells, adipocytes, hepatocytes and cardiomyocytes. SFA accumulation results in increased amounts of ceramides/sphingolipids and saturated phospholipids (PL). In this study, using a yeast-based model that recapitulates most of the trademarks of SFA-induced lipotoxicity in mammalian cells, we demonstrate that these lipid species act at different levels of the secretory pathway. Ceramides mostly appear to modulate the induction of the unfolded protein response and the transcription of nutrient transporters destined to the cell surface. On the other hand, saturated PL, by altering membrane properties, directly impact vesicular budding at later steps in the secretory pathway, i.e. at the trans-Golgi Network level. They appear to do so by increasing lipid order within intracellular membranes which, in turn, alters the recruitment of loose lipid packing-sensing proteins, required for optimal budding, to nascent vesicles. We propose that this latter general mechanism could account for the well-documented deleterious impacts of fatty acids on the last steps of the secretory pathway in several cell types.

  12. ALTERATIONS OF PROPERTIES OF RED BLOOD CELLS MEMBRANES PROTEINS OF DIFFERENT AGE AND SEX VOLUNTEERS.

    Science.gov (United States)

    Pruidze, N; Khetsuriani, R; Sujashvili, R; Ioramashvili, I; Arabuli, M; Sanikidze, T

    2015-01-01

    disorders of protein-protein interaction mechanisms, their ubiquitinylation or oligomerisation and formation of high molecular weight complexes of inactivated proteins in aged RBCs. These processes play important role in regulation of the RBCs shape and stability. Identified sex- and age-related alterations in RBCs membranes proteins affect the rheological properties of blood and can be considered as the etiologic and pathogenic markers of various diseases.

  13. Energy transduction in Escherichia coli. Genetic alteration of a membrane polypeptide of the (Ca2+,Mg2+)-ATPase.

    Science.gov (United States)

    Simoni, R D; Shandell, A

    1975-12-25

    Recent genetic analyses of the membrane components involved in energy transduction in Escherichia coli have concentrated on the (Ca2+, Mg2+)-ATPase complex (EC 3.6.1.3). Many mutants have been described with altered biochemical properties and defects in energy-requiring processes such as oxidative phosphorylation, transhydrogenase activity, and active transport of several solutes. This report describes the isolation of a mutant strain of E. coli that is defective in several energy-requiring processes. The strain BG-31 was obtained by "localized mutagenesis" using phage P1c1. The mutation maps at approximately 73.5 min on the E. coli chromosome. Reversion and suppression analyses indicate that the defect is the result of a single amber mutation. This strain is unable to utilize succinate, D-lactate, or malate for growth. Mutant cells are unable to couple the energy derived from the hydrolysis of ATP to the active transport of proline, although coupling of energy derived from electron transport to solute transport appears normal when examined in both cells and isolated membrane vesicles. Isolated membranes of the mutant are unable to couple the energy derived from the hydrolysis of ATP to transhydrogenase activity while they can utilize the energy generated from electron transport to drive transhydrogenase activity. Extracts of strain BG-31 have normal levels of (Ca2+, Mg2+)-ATPase activity. The ATPase portion of the complex, bacterial F1 (BF1), is poorly attached to the membrane portion of the complex. In vitro reconstitution of transhydrogenase activity with stripped membrane fractions and crude preparations of BF1 localize the defect in strain BG-31 to the membrane portion of the complex. Analysis of membranes of the strain BG-31 by acrylamide gel electrophoresis in the presence of sodium dodecyl sulfate demonstrate the absence of a single polypeptide of molecular weight about 54,000 and the appearance of a new polypeptide of lower molecular weight, about 25

  14. Eugenol alters the integrity of cell membrane and acts against the nosocomial pathogen Proteus mirabilis.

    Science.gov (United States)

    Devi, K Pandima; Sakthivel, R; Nisha, S Arif; Suganthy, N; Pandian, S Karutha

    2013-03-01

    Eugenol, a member of the phenylpropanoids class of chemical compounds, is a clear to pale yellow oily liquid extracted from certain essential oils especially from clove oil, nutmeg, cinnamon, and bay leaf. The antibacterial activity of eugenol and its mechanism of bactericidal action against Proteus mirabilis were evaluated. Treatment with eugenol at their minimum inhibitory concentration [0.125 % (v/v)] and minimum bactericidal concentration [0.25 % (v/v)] reduced the viability and resulted in complete inhibition of P. mirabilis. A strong bactericidal effect on P. mirabilis was also evident, as eugenol inactivated the bacterial population within 30 min exposure. Chemo-attractant property and the observance of highest antibacterial activity at alkaline pH suggest that eugenol can work more effectively when given in vivo. Eugenol inhibits the virulence factors produced by P. mirabilis as observed by swimming motility, swarming behavior and urease activity. It interacts with cellular membrane of P. mirabilis and makes it highly permeable, forming nonspecific pores on plasma membrane, which in turn directs the release of 260 nm absorbing materials and uptake of more crystal violet from the medium into the cells. SDS-polyacrylamide gel, scanning electron microscopy and Fourier transform infrared analysis further proves the disruptive action of eugenol on the plasma membrane of P. mirabilis. The findings reveal that eugenol shows an excellent bactericidal activity against P. mirabilis by altering the integrity of cell membrane.

  15. Red blood cells in Rett syndrome: oxidative stress, morphological changes and altered membrane organization.

    Science.gov (United States)

    Ciccoli, Lucia; De Felice, Claudio; Leoncini, Silvia; Signorini, Cinzia; Cortelazzo, Alessio; Zollo, Gloria; Pecorelli, Alessandra; Rossi, Marcello; Hayek, Joussef

    2015-11-01

    In this review, we summarize the current evidence on the erythrocyte as a previously unrecognized target cell in Rett syndrome, a rare (1:10 000 females) and devastating neurodevelopmental disorder caused by loss-of-function mutations in a single gene (i.e. MeCP2, CDKL5, or rarely FOXG1). In particular, we focus on morphological changes, membrane oxidative damage, altered membrane fatty acid profile, and aberrant skeletal organization in erythrocytes from patients with typical Rett syndrome and MeCP2 gene mutations. The beneficial effects of ω-3 polyunsaturated fatty acids (PUFAs) are also summarized for this condition to be considered as a 'model' condition for autism spectrum disorders.

  16. Studying Membrane Protein Structure and Function Using Nanodiscs

    DEFF Research Database (Denmark)

    Huda, Pie

    The structure and dynamic of membrane proteins can provide valuable information about general functions, diseases and effects of various drugs. Studying membrane proteins are a challenge as an amphiphilic environment is necessary to stabilise the protein in a functionally and structurally relevan...

  17. Alterations in Lipid Levels of Mitochondrial Membranes Induced by Amyloid-ß: A Protective Role of Melatonin

    Directory of Open Access Journals (Sweden)

    Sergio A. Rosales-Corral

    2012-01-01

    Full Text Available Alzheimer pathogenesis involves mitochondrial dysfunction, which is closely related to amyloid-ß (Aß generation, abnormal tau phosphorylation, oxidative stress, and apoptosis. Alterations in membranal components, including cholesterol and fatty acids, their characteristics, disposition, and distribution along the membranes, have been studied as evidence of cell membrane alterations in AD brain. The majority of these studies have been focused on the cytoplasmic membrane; meanwhile the mitochondrial membranes have been less explored. In this work, we studied lipids and mitochondrial membranes in vivo, following intracerebral injection of fibrillar amyloid-ß (Aß. The purpose was to determine how Aß may be responsible for beginning of a vicious cycle where oxidative stress and alterations in cholesterol, lipids and fatty acids, feed back on each other to cause mitochondrial dysfunction. We observed changes in mitochondrial membrane lipids, and fatty acids, following intracerebral injection of fibrillar Aß in aged Wistar rats. Melatonin, a well-known antioxidant and neuroimmunomodulator indoleamine, reversed some of these alterations and protected mitochondrial membranes from obvious damage. Additionally, melatonin increased the levels of linolenic and n-3 eicosapentaenoic acid, in the same site where amyloid ß was injected, favoring an endogenous anti-inflammatory pathway.

  18. Alterations in Lipid Levels of Mitochondrial Membranes Induced by Amyloid-β: A Protective Role of Melatonin

    Science.gov (United States)

    Rosales-Corral, Sergio A.; Lopez-Armas, Gabriela; Cruz-Ramos, Jose; Melnikov, Valery G.; Tan, Dun-Xian; Manchester, Lucien C.; Munoz, Ruben; Reiter, Russel J.

    2012-01-01

    Alzheimer pathogenesis involves mitochondrial dysfunction, which is closely related to amyloid-β (Aβ) generation, abnormal tau phosphorylation, oxidative stress, and apoptosis. Alterations in membranal components, including cholesterol and fatty acids, their characteristics, disposition, and distribution along the membranes, have been studied as evidence of cell membrane alterations in AD brain. The majority of these studies have been focused on the cytoplasmic membrane; meanwhile the mitochondrial membranes have been less explored. In this work, we studied lipids and mitochondrial membranes in vivo, following intracerebral injection of fibrillar amyloid-β (Aβ). The purpose was to determine how Aβ may be responsible for beginning of a vicious cycle where oxidative stress and alterations in cholesterol, lipids and fatty acids, feed back on each other to cause mitochondrial dysfunction. We observed changes in mitochondrial membrane lipids, and fatty acids, following intracerebral injection of fibrillar Aβ in aged Wistar rats. Melatonin, a well-known antioxidant and neuroimmunomodulator indoleamine, reversed some of these alterations and protected mitochondrial membranes from obvious damage. Additionally, melatonin increased the levels of linolenic and n-3 eicosapentaenoic acid, in the same site where amyloid β was injected, favoring an endogenous anti-inflammatory pathway. PMID:22666620

  19. Are aortic endograft prostheses fully hemo-compatible? A dielectric spectroscopy investigation of the electrical alterations induced on erythrocyte cell membranes

    Energy Technology Data Exchange (ETDEWEB)

    Basoli, Antonio [Clinica Chirurgica II, Universita di Roma ' La Sapienza' , Rome (Italy); Bordi, Federico [Dipartimento di Fisica, Universita di Roma ' La Sapienza' , Rome (Italy); Cametti, Cesare [Dipartimento di Fisica, Universita di Roma ' La Sapienza' , Rome (Italy); Faraglia, Vittorio [Cattedra di Chirurgia Vascolare, Second School of Medicine, Universita di Roma ' La Sapienza' , Rome (Italy); Gili, Tommaso [Dipartimento di Fisica, Universita di Roma ' La Sapienza' , Rome (Italy); Rizzo, Luigi [Cattedra di Chirurgia Vascolare, Second School of Medicine, Universita di Roma ' La Sapienza' , Rome (Italy); Taurino, Maurizio [Cattedra di Chirurgia Vascolare, Second School of Medicine, Universita di Roma ' La Sapienza' , Rome (Italy)

    2007-03-01

    In this paper we present a new approach directed to ascertain the full hemo-compatibility of aortic endograft prostheses based on the measurement of the passive electrical parameters of the erythrocyte cell membrane. The red blood cell membrane, from an electric point of view, is characterized by an electrical permittivity, {epsilon}{sub s}, which takes into account the structural charged organization of the lipid double layer, and by the electrical conductivity, {sigma}{sub s}, which accounts for the ionic transport processes across the membrane. These parameters can be easily measured by means of a radiowave dielectric spectroscopy technique, analyzing the dependence of the electrical impedance of an erythrocyte suspension on the frequency of the applied electric field. In this preliminary report, we investigate the alterations induced, at a membrane level, by two different devices commonly employed for endovascular abdominal aortic aneurysm exclusion, i.e., Excluder (registered) and Zenith (registered) devices, implanted in ten patients. We observe, in all the cases investigated, a statistically significant increase of both the permittivity {epsilon}{sub s} and electrical conductivity {sigma}{sub s} of the erythrocyte membrane upon the prosthesis implant, this increase being higher than about 20% of the un-treated values. Moreover, these alterations remain roughly unaffected 30 days after surgery. These findings suggest that a complete hemo-compatibility of these prostheses is lacking, even if the observed alterations may not have a clinical relevance.

  20. Structural Requirements for Membrane Assembly of Proteins Spanning the Membrane Several Times

    OpenAIRE

    Lipp, Joachim; Flint, Nicholas; Haeuptle, Marie-Theres; Dobberstein, Bernhard

    1989-01-01

    We have investigated the structural requirements for the biogenesis of proteins spanning the membrane several times. Proteins containing various combinations of topological signals (signal anchor and stop transfer sequences) were synthesized in a cell-free translation system and their membrane topology was determined. Proteins spanning the membrane twice were obtained when a signal anchor sequence was followed by either a stop transfer sequence or a second signal anchor sequence. Thus, a sig...

  1. Hypoxia reduces the efficiency of elisidepsin by inhibiting hydroxylation and altering the structure of lipid rafts.

    Science.gov (United States)

    Király, Anna; Váradi, Tímea; Hajdu, Tímea; Rühl, Ralph; Galmarini, Carlos M; Szöllősi, János; Nagy, Peter

    2013-12-02

    The mechanism of action of elisidepsin (PM02734, Irvalec®) is assumed to involve membrane permeabilization via attacking lipid rafts and hydroxylated lipids. Here we investigate the role of hypoxia in the mechanism of action of elisidepsin. Culturing under hypoxic conditions increased the half-maximal inhibitory concentration and decreased the drug's binding to almost all cell lines which was reversed by incubation of cells with 2-hydroxy palmitic acid. The expression of fatty acid 2-hydroxylase was strongly correlated with the efficiency of the drug and inversely correlated with the effect of hypoxia. Number and brightness analysis and fluorescence anisotropy experiments showed that hypoxia decreased the clustering of lipid rafts and altered the structure of the plasma membrane. Although the binding of elisidepsin to the membrane is non-cooperative, its membrane permeabilizing effect is characterized by a Hill coefficient of ~3.3. The latter finding is in agreement with elisidepsin-induced clusters of lipid raft-anchored GFP visualized by confocal microscopy. We propose that the concentration of elisidepsin needs to reach a critical level in the membrane above which elisidepsin induces the disruption of the cell membrane. Testing for tumor hypoxia or the density of hydroxylated lipids could be an interesting strategy to increase the efficiency of elisidepsin.

  2. Characterization of ion-exchange membrane materials: properties vs structure.

    Science.gov (United States)

    Berezina, N P; Kononenko, N A; Dyomina, O A; Gnusin, N P

    2008-06-22

    This review focuses on the preparation, structure and applications of ion-exchange membranes formed from various materials and exhibiting various functions (electrodialytic, perfluorinated sulphocation-exchange and novel laboratory-tested membranes). A number of experimental techniques for measuring electrotransport properties as well as the general procedure for membrane testing are also described. The review emphasizes the relationships between membrane structures, physical and chemical properties and mechanisms of electrochemical processes that occur in charged membrane materials. The water content in membranes is considered to be a key factor in the ion and water transfer and in polarization processes in electromembrane systems. We suggest the theoretical approach, which makes it possible to model and characterize the electrochemical properties of heterogeneous membranes using several transport-structural parameters. These parameters are extracted from the experimental dependences of specific electroconductivity and diffusion permeability on concentration. The review covers the most significant experimental and theoretical research on ion-exchange membranes that have been carried out in the Membrane Materials Laboratory of the Kuban State University. These results have been discussed at the conferences "Membrane Electrochemistry", Krasnodar, Russia for many years and were published mainly in Russian scientific sources.

  3. Klebsiella pneumoniae O antigen loss alters the outer membrane protein composition and the selective packaging of proteins into secreted outer membrane vesicles.

    Science.gov (United States)

    Cahill, Bethaney K; Seeley, Kent W; Gutel, Dedra; Ellis, Terri N

    2015-11-01

    Klebsiella pneumoniae is a nosocomial pathogen which naturally secretes lipopolysaccharide (LPS) and cell envelope associated proteins into the environment through the production of outer membrane vesicles (OMVs). The loss of the LPS O antigen has been demonstrated in other bacterial species to significantly alter the composition of OMVs. Therefore, this study aimed to comprehensively analyze the impact of O antigen loss on the sub-proteomes of both the outer membrane and secreted OMVs from K. pneumoniae. As determined by LC-MS/MS, OMVs were highly enriched with outer membrane proteins involved in cell wall, membrane, and envelope biogenesis as compared to the source cellular outer membrane. Deletion of wbbO, the enzyme responsible for O antigen attachment to LPS, decreased but did not eliminate this enrichment effect. Additionally, loss of O antigen resulted in OMVs with increased numbers of proteins involved in post-translational modification, protein turnover, and chaperones as compared to secreted vesicles from the wild type. This alteration of OMV composition may be a compensatory mechanism to deal with envelope stress. This comprehensive analysis confirms the highly distinct protein composition of OMVs as compared to their source membrane, and provides evidence for a selective sorting mechanism that involves LPS polysaccharides. These data support the hypothesis that modifications to LPS alters both the mechanics of protein sorting and the contents of secreted OMVs and significantly impacts the protein composition of the outer membrane.

  4. Refsum disease diagnostic marker phytanic acid alters the physical state of membrane proteins of liver mitochondria.

    Science.gov (United States)

    Schönfeld, P; Struy, H

    1999-08-27

    Phytanic acid (3,7,11,15-tetramethylhexadecanoic acid), a branched chain fatty acid accumulating in Refsum disease to high levels throughout the body, induces uncoupling of rat liver mitochondria similar to non-branched fatty acids (e.g. palmitic acid), but the contribution of the ADP/ATP carrier or the aspartate/glutamate carrier in phytanic acid-induced uncoupling is of minor importance. Possible deleterious effects of phytanic acid on membrane-linked energy coupling processes were studied by ESR spectroscopy using rat liver mitochondria and a membrane preparation labeled with the lipid-specific spin probe 5-doxylstearic acid (5-DSA) or the protein-specific spin probe MAL-TEMPO (4-maleimido-2,2,6, 6-tetramethyl-piperidine-1-oxyl). The effects of phytanic acid on phospholipid molecular dynamics and on the physical state of membrane proteins were quantified by estimation of the order parameter or the ratio of the amplitudes of the weakly to strongly immobilized MAL-TEMPO binding sites (W/S ratio), respectively. It was found, that phytanic acid (1) increased the mobility of phospholipid molecules (indicated by a decrease in the order parameter) and (2) altered the conformational state and/or the segmental mobility of membrane proteins (indicated by a drastic decrease in the W/S ratio). Unsaturated fatty acids with multiple cis-double bonds (e.g. linolenic or arachidonic acid), but not non-branched FFA (ranging from chain length C10:0 to C18:0), also decrease the W/S ratio. It is hypothesized that the interaction of phytanic acid with transmembrane proteins might stimulate the proton permeability through the mitochondrial inner membrane according to a mechanism, different to a protein-supported fatty acid cycling.

  5. New membrane structures with proton conducting properties

    DEFF Research Database (Denmark)

    Nørgaard, Casper Frydendal

    Perfluorosulfonic acid membranes (e.g. Nafion®) are the most widely applied electrolytes in Polymer Electrolyte Membrane Fuel Cells (PEMFCs) because of their good chemical stability, mechanical properties and high proton conductivity, when well hydrated. The upper limit of operating temperature...... [1, 2, 3]. Improved fuel cell performance from incorporation of hygroscopic oxides or solid proton conductors (e.g. zirconium phosphates) has been reported. The poster exhibits upcoming work in the field of composite electrolyte membranes at the University of Southern Denmark, combining radiation...

  6. Electron crystallography for structural and functional studies of membrane proteins.

    Science.gov (United States)

    Fujiyoshi, Yoshinori

    2011-01-01

    Membrane proteins are important research targets for basic biological sciences and drug design, but studies of their structure and function are considered difficult to perform. Studies of membrane structures have been greatly facilitated by technological and instrumental advancements in electron microscopy together with methodological advancements in biology. Electron crystallography is especially useful in studying the structure and function of membrane proteins. Electron crystallography is now an established method of analyzing the structures of membrane proteins in lipid bilayers, which resembles their natural biological environment. To better understand the neural system function from a structural point of view, we developed the cryo-electron microscope with a helium-cooled specimen stage, which allows for analysis of the structures of membrane proteins at a resolution higher than 3 Å. This review introduces recent instrumental advances in cryo-electron microscopy and presents some examples of structure analyses of membrane proteins, such as bacteriorhodopsin, water channels and gap junction channels. This review has two objectives: first, to provide a personal historical background to describe how we came to develop the cryo-electron microscope and second, to discuss some of the technology required for the structural analysis of membrane proteins based on cryo-electron microscopy.

  7. Erythrocyte shape abnormalities, membrane oxidative damage, and β-actin alterations: an unrecognized triad in classical autism.

    Science.gov (United States)

    Ciccoli, Lucia; De Felice, Claudio; Paccagnini, Eugenio; Leoncini, Silvia; Pecorelli, Alessandra; Signorini, Cinzia; Belmonte, Giuseppe; Guerranti, Roberto; Cortelazzo, Alessio; Gentile, Mariangela; Zollo, Gloria; Durand, Thierry; Valacchi, Giuseppe; Rossi, Marcello; Hayek, Joussef

    2013-01-01

    Autism spectrum disorders (ASDs) are a complex group of neurodevelopment disorders steadily rising in frequency and treatment refractory, where the search for biological markers is of paramount importance. Although red blood cells (RBCs) membrane lipidomics and rheological variables have been reported to be altered, with some suggestions indicating an increased lipid peroxidation in the erythrocyte membrane, to date no information exists on how the oxidative membrane damage may affect cytoskeletal membrane proteins and, ultimately, RBCs shape in autism. Here, we investigated RBC morphology by scanning electron microscopy in patients with classical autism, that is, the predominant ASDs phenotype (age range: 6-26 years), nonautistic neurodevelopmental disorders (i.e., "positive controls"), and healthy controls (i.e., "negative controls"). A high percentage of altered RBCs shapes, predominantly elliptocytes, was observed in autistic patients, but not in both control groups. The RBCs altered morphology in autistic subjects was related to increased erythrocyte membrane F2-isoprostanes and 4-hydroxynonenal protein adducts. In addition, an oxidative damage of the erythrocyte membrane β-actin protein was evidenced. Therefore, the combination of erythrocyte shape abnormalities, erythrocyte membrane oxidative damage, and β-actin alterations constitutes a previously unrecognized triad in classical autism and provides new biological markers in the diagnostic workup of ASDs.

  8. Erythrocyte Shape Abnormalities, Membrane Oxidative Damage, and β-Actin Alterations: An Unrecognized Triad in Classical Autism

    Directory of Open Access Journals (Sweden)

    Lucia Ciccoli

    2013-01-01

    Full Text Available Autism spectrum disorders (ASDs are a complex group of neurodevelopment disorders steadily rising in frequency and treatment refractory, where the search for biological markers is of paramount importance. Although red blood cells (RBCs membrane lipidomics and rheological variables have been reported to be altered, with some suggestions indicating an increased lipid peroxidation in the erythrocyte membrane, to date no information exists on how the oxidative membrane damage may affect cytoskeletal membrane proteins and, ultimately, RBCs shape in autism. Here, we investigated RBC morphology by scanning electron microscopy in patients with classical autism, that is, the predominant ASDs phenotype (age range: 6–26 years, nonautistic neurodevelopmental disorders (i.e., “positive controls”, and healthy controls (i.e., “negative controls”. A high percentage of altered RBCs shapes, predominantly elliptocytes, was observed in autistic patients, but not in both control groups. The RBCs altered morphology in autistic subjects was related to increased erythrocyte membrane F2-isoprostanes and 4-hydroxynonenal protein adducts. In addition, an oxidative damage of the erythrocyte membrane β-actin protein was evidenced. Therefore, the combination of erythrocyte shape abnormalities, erythrocyte membrane oxidative damage, and β-actin alterations constitutes a previously unrecognized triad in classical autism and provides new biological markers in the diagnostic workup of ASDs.

  9. STRUCTURE AND PROPERTIES OF COMPOSITE POLYURETHANE HOLLOW FIBER MEMBRANES

    Institute of Scientific and Technical Information of China (English)

    Xian-feng Li; Chang-fa Xiao

    2005-01-01

    Composite polyurethane (PU)-SiO2 hollow fiber membranes were successfully prepared via optimizing the technique of dry-jet wet spinning, and their pressure-responsibilities were confirmed by the relationships of pure water fluxtransmembrane pressure (PWF-TP) for the first time. The origin for this phenomenon was analyzed on the basis of membrane structure and material characteristics. The effects of SiO2 content on the structure and properties of membrane were investigated. The experimental results indicated that SiO2 in membrane created a great many interfacial micro-voids and played an important role in pressure-responsibility, PWF and rejection of membrane: with the increase of SiO2 content, the ability of membrane recovery weakened, PWF increased, and rejection decreased slightly.

  10. The Structural Basis of Cholesterol Activity in Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, Brett N.; Bielska, Agata; Lee, Tiffany; Daily, Michael D.; Covey, Douglas F.; Schlesinger, Paul H.; Baker, Nathan A.; Ory, Daniel S.

    2013-10-15

    Although the majority of free cellular cholesterol is present in the plasma membrane, cholesterol homeostasis is principally regulated through sterol-sensing proteins that reside in the cholesterol-poor endoplasmic reticulum (ER). In response to acute cholesterol loading or depletion, there is rapid equilibration between the ER and plasma membrane cholesterol pools, suggesting a biophysical model in which the availability of plasma membrane cholesterol for trafficking to internal membranes modulates ER membrane behavior. Previous studies have predominantly examined cholesterol availability in terms of binding to extramembrane acceptors, but have provided limited insight into the structural changes underlying cholesterol activation. In this study, we use both molecular dynamics simulations and experimental membrane systems to examine the behavior of cholesterol in membrane bilayers. We find that cholesterol depth within the bilayer provides a reasonable structural metric for cholesterol availability and that this is correlated with cholesterol-acceptor binding. Further, the distribution of cholesterol availability in our simulations is continuous rather than divided into distinct available and unavailable pools. This data provide support for a revised cholesterol activation model in which activation is driven not by saturation of membrane-cholesterol interactions but rather by bulk membrane remodeling that reduces membrane-cholesterol affinity.

  11. Alterations in plasma membrane promote overexpression and increase of sodium influx through epithelial sodium channel in hypertensive platelets.

    Science.gov (United States)

    Cerecedo, D; Martínez-Vieyra, Ivette; Sosa-Peinado, Alejandro; Cornejo-Garrido, Jorge; Ordaz-Pichardo, Cynthia; Benítez-Cardoza, Claudia

    2016-08-01

    Platelets are small, anucleated cell fragments that activate in response to a wide variety of stimuli, triggering a complex series of intracellular pathways leading to a hemostatic thrombus formation at vascular injury sites. However, in essential hypertension, platelet activation contributes to causing myocardial infarction and ischemic stroke. Reported abnormalities in platelet functions, such as platelet hyperactivity and hyperaggregability to several agonists, contribute to the pathogenesis and complications of thrombotic events associated with hypertension. Platelet membrane lipid composition and fluidity are determining for protein site accessibility, structural arrangement of platelet surface, and response to appropriate stimuli. The present study aimed to demonstrate whether structural and biochemical abnormalities in lipid membrane composition and fluidity characteristic of platelets from hypertensive patients influence the expression of the Epithelial Sodium Channel (ENaC), fundamental for sodium influx during collagen activation. Wb, cytometry and quantitative Reverse Transcription-Polymerase Chain Reaction (qRT-PCR) assays demonstrated ENaC overexpression in platelets from hypertensive subjects and in relation to control subjects. Additionally, our results strongly suggest a key role of β-dystroglycan as a scaffold for the organization of ENaC and associated proteins. Understanding of the mechanisms of platelet alterations in hypertension should provide valuable information for the pathophysiology of hypertension.

  12. Study and prediction of secondary structure for membrane proteins

    NARCIS (Netherlands)

    Amirova, Svetlana R.; Milchevsky, Juri V.; Filatov, Ivan V.; Esipova, Natalia G.; Tumanyan, Vladimir G.

    2007-01-01

    In this paper we present a novel approach to membrane protein secondary structure prediction based on the statistical stepwise discriminant analysis method. A new aspect of our approach is the possibility to derive physical -chemical properties that may affect the formation of membrane protein secon

  13. Structure and Water Transport in Nafion Nanocomposite Membranes

    Science.gov (United States)

    Davis, Eric; Page, Kirt

    2014-03-01

    Perfluorinated ionomers, specifically Nafion, are the most widely used ion exchange membranes for vanadium redox flow battery applications, where an understanding of the relationship between membrane structure and transport of water/ions is critical to battery performance. In this study, the structure of Nafion/SiO2 nanocomposite membranes, synthesized using sol-gel chemistry, as well as cast directly from Nafion/SiO2 nanoparticle dispersions, was measured using both small-angle neutron scattering (SANS) and ultra-small-angle neutron scattering (USANS). Through contrast match studies of the SiO2 nanoparticles, direct information on the change in the structure of the Nafion membranes and the ion-transport channels within was obtained, where differences in membrane structure was observed between the solution-cast membranes and the membranes synthesized using sol-gel chemistry. Additionally, water sorption and diffusion in these Nafion/SiO2 nanocomposite membranes were measured using in situ time-resolved Fourier transform infrared-attenuated total reflectance (FTIR-ATR) spectroscopy and dynamic vapor sorption (DVS).

  14. Structural basis for lipopolysaccharide insertion in the bacterial outer membrane.

    Science.gov (United States)

    Qiao, Shuai; Luo, Qingshan; Zhao, Yan; Zhang, Xuejun Cai; Huang, Yihua

    2014-07-03

    One of the fundamental properties of biological membranes is the asymmetric distribution of membrane lipids. In Gram-negative bacteria, the outer leaflet of the outer membrane is composed predominantly of lipopolysaccharides (LPS). The export of LPS requires seven essential lipopolysaccharide transport (Lpt) proteins to move LPS from the inner membrane, through the periplasm to the surface. Of the seven Lpt proteins, the LptD-LptE complex is responsible for inserting LPS into the external leaflet of the outer membrane. Here we report the crystal structure of the ∼110-kilodalton membrane protein complex LptD-LptE from Shigella flexneri at 2.4 Å resolution. The structure reveals an unprecedented two-protein plug-and-barrel architecture with LptE embedded into a 26-stranded β-barrel formed by LptD. Importantly, the secondary structures of the first two β-strands are distorted by two proline residues, weakening their interactions with neighbouring β-strands and creating a potential portal on the barrel wall that could allow lateral diffusion of LPS into the outer membrane. The crystal structure of the LptD-LptE complex opens the door to new antibiotic strategies targeting the bacterial outer membrane.

  15. Charged anaesthetics alter LM-fibroblast plasma-membrane enzymes by selective fluidization of inner or outer membrane leaflets.

    Science.gov (United States)

    Sweet, W D; Schroeder, F

    1986-10-15

    The functional consequences of the differences in lipid composition and structure between the two leaflets of the plasma membrane were investigated. Fluorescence of 1,6-diphenylhexa-1,3,5-triene(DPH), quenching, and differential polarized phase fluorimetry demonstrated selective fluidization by local anaesthetics of individual leaflets in isolated LM-cell plasma membranes. As measured by decreased limiting anisotropy of DPH fluorescence, cationic (prilocaine) and anionic (phenobarbital and pentobarbital) amphipaths preferentially fluidized the cytofacial and exofacial leaflets respectively. Unlike prilocaine, procaine, also a cation, fluidized both leaflets of these membranes equally. Pentobarbital stimulated 5'-nucleotidase between 0.1 and 5 mM and inhibited at higher concentrations, whereas phenobarbital only inhibited, at higher concentrations. Cationic drugs were ineffective. Two maxima of (Na+ + K+)-ATPase activation were obtained with both anionic drugs. Only one activation maximum was obtained with both cationic drugs. The maximum in activity below 1 mM for all four drugs clustered about a single limiting anisotropy value in the cytofacial leaflet, whereas there was no correlation between activity and limiting anisotropy in the exofacial leaflets. Therefore, although phenobarbital and pentobarbital below 1 mM fluidized the exofacial leaflet more than the cytofacial leaflet, the smaller fluidization in the cytofacial leaflet was functionally significant for (Na+ + K+)-ATPase. Mg2+-ATPase was stimulated at 1 mM-phenobarbital, unaffected by pentobarbital and slightly stimulated by both cationic drugs at concentrations fluidizing both leaflets. Thus the activity of (Na+ + K+)-ATPase was highly sensitive to selective fluidization of the leaflet containing its active site, whereas the other enzymes examined were little affected by fluidization of either leaflet.

  16. Local Reasoning about Programs that Alter Data Structures

    DEFF Research Database (Denmark)

    O'Hearn, Peter W.; Reynolds, John Clifton; Yang, Hongseok

    2001-01-01

    We describe an extension of Hoare's logic for reasoning about programs that alter data structures. We consider a low-level storage model based on a heap with associated lookup, update, allocation and deallocation operations, and unrestricted address arithmetic. The assertion language is based...

  17. Discovery of novel membrane binding structures and functions.

    Science.gov (United States)

    Kufareva, Irina; Lenoir, Marc; Dancea, Felician; Sridhar, Pooja; Raush, Eugene; Bissig, Christin; Gruenberg, Jean; Abagyan, Ruben; Overduin, Michael

    2014-12-01

    The function of a protein is determined by its intrinsic activity in the context of its subcellular distribution. Membranes localize proteins within cellular compartments and govern their specific activities. Discovering such membrane-protein interactions is important for understanding biological mechanisms and could uncover novel sites for therapeutic intervention. We present a method for detecting membrane interactive proteins and their exposed residues that insert into lipid bilayers. Although the development process involved analysis of how C1b, C2, ENTH, FYVE, Gla, pleckstrin homology (PH), and PX domains bind membranes, the resulting membrane optimal docking area (MODA) method yields predictions for a given protein of known three-dimensional structures without referring to canonical membrane-targeting modules. This approach was tested on the Arf1 GTPase, ATF2 acetyltransferase, von Willebrand factor A3 domain, and Neisseria gonorrhoeae MsrB protein and further refined with membrane interactive and non-interactive FAPP1 and PKD1 pleckstrin homology domains, respectively. Furthermore we demonstrate how this tool can be used to discover unprecedented membrane binding functions as illustrated by the Bro1 domain of Alix, which was revealed to recognize lysobisphosphatidic acid (LBPA). Validation of novel membrane-protein interactions relies on other techniques such as nuclear magnetic resonance spectroscopy (NMR), which was used here to map the sites of micelle interaction. Together this indicates that genome-wide identification of known and novel membrane interactive proteins and sites is now feasible and provides a new tool for functional annotation of the proteome.

  18. Sandwich-structured hollow fiber membranes for osmotic power generation

    KAUST Repository

    Fu, Feng Jiang

    2015-11-01

    In this work, a novel sandwich-structured hollow fiber membrane has been developed via a specially designed spinneret and optimized spinning conditions. With this specially designed spinneret, the outer layer, which is the most crucial part of the sandwich-structured membrane, is maintained the same as the traditional dual-layer membrane. The inner substrate layer is separated into two layers: (1) an ultra-thin middle layer comprising a high molecular weight polyvinylpyrrolidone (PVP) additive to enhance integration with the outer polybenzimidazole (PBI) selective layer, and (2) an inner-layer to provide strong mechanical strength for the membrane. Experimental results show that a high water permeability and good mechanical strength could be achieved without the expensive post treatment process to remove PVP which was necessary for the dual-layer pressure retarded osmosis (PRO) membranes. By optimizing the composition, the membrane shows a maximum power density of 6.23W/m2 at a hydraulic pressure of 22.0bar when 1M NaCl and 10mM NaCl are used as the draw and feed solutions, respectively. To our best knowledge, this is the best phase inversion hollow fiber membrane with an outer selective PBI layer for osmotic power generation. In addition, this is the first work that shows how to fabricate sandwich-structured hollow fiber membranes for various applications. © 2015 Elsevier B.V.

  19. Nanodevices based on Membrane-Carbon Nanotube Hybrid Structures

    Science.gov (United States)

    Jin, Hye Jun; Kim, Tae Hyun; Namgung, Seon; Hong, Seunghun; Lee, Sang Hun; Park, Tai Hyun

    2010-03-01

    Proteins in cell membrane have been drawing attention due to their versatile functionalities such as ion transfer for neuronal activity and selective binding for sensory systems. However, it is still very difficult to manipulate and study those proteins because they easily lose their functionalities without lipid membranes. We developed a method to coat lipid membranes containing various functional membrane proteins on single-walled carbon nanotube (swCNT)-based field effect transistors (FETs). In this hybrid structure, the activity of membrane proteins can be monitored by underlying swCNT-FETs, allowing us to easily study the functionalities of membrane proteins. Furthermore, we built advanced devices based on these hybrid structures. For an example, we coated lipid membrane containing `olfactory receptors' on swCNT-FETs, resulting in `bioelectric nose' systems. The bioelectric nose system had high sensitivity and human nose-like selectivity to odorant molecules. This talk will also discuss about the future prospect of these membrane-CNT hybrid structures.

  20. Integral membrane protein structure determination using pseudocontact shifts

    Energy Technology Data Exchange (ETDEWEB)

    Crick, Duncan J.; Wang, Jue X. [University of Cambridge, Department of Biochemistry (United Kingdom); Graham, Bim; Swarbrick, James D. [Monash University, Monash Institute of Pharmaceutical Sciences (Australia); Mott, Helen R.; Nietlispach, Daniel, E-mail: dn206@cam.ac.uk [University of Cambridge, Department of Biochemistry (United Kingdom)

    2015-04-15

    Obtaining enough experimental restraints can be a limiting factor in the NMR structure determination of larger proteins. This is particularly the case for large assemblies such as membrane proteins that have been solubilized in a membrane-mimicking environment. Whilst in such cases extensive deuteration strategies are regularly utilised with the aim to improve the spectral quality, these schemes often limit the number of NOEs obtainable, making complementary strategies highly beneficial for successful structure elucidation. Recently, lanthanide-induced pseudocontact shifts (PCSs) have been established as a structural tool for globular proteins. Here, we demonstrate that a PCS-based approach can be successfully applied for the structure determination of integral membrane proteins. Using the 7TM α-helical microbial receptor pSRII, we show that PCS-derived restraints from lanthanide binding tags attached to four different positions of the protein facilitate the backbone structure determination when combined with a limited set of NOEs. In contrast, the same set of NOEs fails to determine the correct 3D fold. The latter situation is frequently encountered in polytopical α-helical membrane proteins and a PCS approach is thus suitable even for this particularly challenging class of membrane proteins. The ease of measuring PCSs makes this an attractive route for structure determination of large membrane proteins in general.

  1. Epithelial membrane protein 2 (EMP2) deficiency alters placental angiogenesis, mimicking features of human placental insufficiency.

    Science.gov (United States)

    Williams, Carmen J; Chu, Alison; Jefferson, Wendy N; Casero, David; Sudhakar, Deepthi; Khurana, Nevil; Hogue, Claire P; Aryasomayajula, Chinmayi; Patel, Priya; Sullivan, Peggy; Padilla-Banks, Elizabeth; Mohandessi, Shabnam; Janzen, Carla; Wadehra, Madhuri

    2017-03-14

    Epithelial membrane protein-2 (EMP2) is a tetraspan protein predicted to regulate placental development. Highly expressed in secretory endometrium and trophectoderm cells, previous studies suggest that it may regulate implantation by orchestrating the surface expression of integrins and other membrane proteins. In order to test the role of EMP2 in pregnancy, mice lacking EMP2 (Emp2(-/-) ) were generated. Emp2(-/-) females are fertile but have reduced litter sizes when carrying Emp2(-/-) but not Emp2(+/-) fetuses. Placentas of Emp2(-/-) fetuses exhibit dysregulation in pathways related to neoangiogenesis, coagulation, and oxidative stress, and have increased fibrin deposition and altered vasculature. Given that these findings often occur due to placental insufficiency resulting in an oxygen-poor environment, the expression of hypoxia-inducible factor-1 alpha (HIF-1α) was examined. Placentas from Emp2(-/-) fetuses had increased total HIF-1α expression in large part through an increase in uterine NK (uNK) cells, demonstrating a unique interplay between uNK cells and trophoblasts modulated through EMP2. To determine if these results translated to human pregnancy, placentas from normal, term deliveries or those complicated by placental insufficiency resulting in intrauterine growth restriction (IUGR) were stained for EMP2. EMP2 was significantly reduced in both villous and extravillous trophoblast populations in IUGR placentas. Experiments in vitro using human trophoblast cells lines indicate that EMP2 modulates angiogenesis by altering HIF-1α expression. Our results reveal a novel role for EMP2 in regulating trophoblast function and vascular development in mice and humans and suggest it may be a new biomarker for placental insufficiency.

  2. Solid-state NMR structures of integral membrane proteins.

    Science.gov (United States)

    Patching, Simon G

    2015-01-01

    Solid-state NMR is unique for its ability to obtain three-dimensional structures and to measure atomic-resolution structural and dynamic information for membrane proteins in native lipid bilayers. An increasing number and complexity of integral membrane protein structures have been determined by solid-state NMR using two main methods. Oriented sample solid-state NMR uses macroscopically aligned lipid bilayers to obtain orientational restraints that define secondary structure and global fold of embedded peptides and proteins and their orientation and topology in lipid bilayers. Magic angle spinning (MAS) solid-state NMR uses unoriented rapidly spinning samples to obtain distance and torsion angle restraints that define tertiary structure and helix packing arrangements. Details of all current protein structures are described, highlighting developments in experimental strategy and other technological advancements. Some structures originate from combining solid- and solution-state NMR information and some have used solid-state NMR to refine X-ray crystal structures. Solid-state NMR has also validated the structures of proteins determined in different membrane mimetics by solution-state NMR and X-ray crystallography and is therefore complementary to other structural biology techniques. By continuing efforts in identifying membrane protein targets and developing expression, isotope labelling and sample preparation strategies, probe technology, NMR experiments, calculation and modelling methods and combination with other techniques, it should be feasible to determine the structures of many more membrane proteins of biological and biomedical importance using solid-state NMR. This will provide three-dimensional structures and atomic-resolution structural information for characterising ligand and drug interactions, dynamics and molecular mechanisms of membrane proteins under physiological lipid bilayer conditions.

  3. Graphene-based structure, method of suspending graphene membrane, and method of depositing material onto graphene membrane

    Science.gov (United States)

    Zettl, Alexander K.; Meyer, Jannik Christian

    2013-04-02

    An embodiment of a method of suspending a graphene membrane across a gap in a support structure includes attaching graphene to a substrate. A pre-fabricated support structure having the gap is attached to the graphene. The graphene and the pre-fabricated support structure are then separated from the substrate which leaves the graphene membrane suspended across the gap in the pre-fabricated support structure. An embodiment of a method of depositing material includes placing a support structure having a graphene membrane suspended across a gap under vacuum. A precursor is adsorbed to a surface of the graphene membrane. A portion of the graphene membrane is exposed to a focused electron beam which deposits a material from the precursor onto the graphene membrane. An embodiment of a graphene-based structure includes a support structure having a gap, a graphene membrane suspended across the gap, and a material deposited in a pattern on the graphene membrane.

  4. Alteration in membrane protein, antioxidant status and hexokinase activity in erythrocytes of CCl4- induced cirrhotic rats.

    Directory of Open Access Journals (Sweden)

    Amir Hossein Doustimotlagh

    2014-11-01

    Full Text Available Several studies have shown that hepatocyte membrane composition changes in patients with cholestasis and cirrhosis. These alterations that are because of intracellular oxidative stress are supposed to be reflected in erythrocyte membrane. The aim of this study was to investigate the modification of erythrocyte membrane along with hexokinase and antioxidant enzymes during development of cirrhosis. Cirrhosis was induced by intraperitoneal injection of CCl4 in male Wistar rats. The test groups were: baseline, cholestatic, early cirrhotic and advanced cirrhotic along with an equal number of sham-control animals. The erythrocyte membrane modifications (protein sulfhydryl, protein carbonyl, and lipid peroxidation, as well as NO metabolites, were assessed. Activities of GPX, CAT, SOD and HK were also measured. Protein sulfhydryl content of the erythrocyte membrane (after 2, 6 and 10 weeks of injection had significant progressive decrease. In contrast, protein carbonyls were remarkably increased 2 weeks after injection but significantly decreased after 6 weeks and returned to normal levels after 10 weeks. No significant difference in erythrocyte HK activity or MDA content was observed. Test groups showed significantly lower erythrocyte GPx activity after six weeks and CAT and SOD activities along with NO metabolites content after two weeks (P<0.05. This study indicates that the progression of cirrhosis is accompanied by alterations in antioxidant enzyme and decreased NO metabolites. Protein carbonyl alteration occurs in the early stages of cirrhosis while protein sulfhydryl alterations have a progressive decrease in advanced cirrhosis.

  5. Quercetin modulates activities of Taiwan cobra phospholipase A2 via its effects on membrane structure and membrane-bound mode of phospholipase A2

    Indian Academy of Sciences (India)

    Yi-Ling Chiou; Shinne-Ren Lin; Wan-Ping Hu; Long-Sen Chang

    2012-06-01

    The goal of the present study is to elucidate the mechanism of quercetin on modulating Naja naja atra phospholipase A2 (PLA2) activities. Sphingomyelin inhibited PLA2 enzymatic activity and membrane-damaging activity against egg yolk phosphatidylcholine (EYPC), while cholesterol and quercetin abrogated the sphingomeyelin inhibitory effect. Quercetin incorporation led to a reduction in PLA2 enzymatic activity and membrane-damaging activity toward EYPC/sphingomyelin/cholesterol vesicles. Both cholesterol and quercetin increased detergent resistance and reduced membrane fluidity of EYPC/sphingomyelin vesicles. Quercetin reduced detergent insolubility but increased ordered lipid packing of EYPC/sphingomyelin/cholesterol vesicles. Acrylamide quenching studies and trinitrophenylation of Lys residues revealed that quercetin altered the membrane-bound mode of PLA2 differently upon absorption onto the membrane bilayers of different lipid compositions. However, 8-anilinonaphthalene sulphonate-binding assay revealed that quercetin marginally affected the interaction between active site of PLA2 with phospholipid vesicles. Collectively, our data indicate that membrane-inserted quercetin modulates PLA2 interfacial activity and membrane-damaging activity via its effects on membrane structure and membrane-bound mode of PLA2.

  6. The effects of taurine, hypotaurine, and taurine homologs on erythrocyte morphology, membrane fluidity and cytoskeletal spectrin alterations due to diabetes, alcoholism and diabetes-alcoholism in the rat.

    Science.gov (United States)

    Gossai, Davekanand; Lau-Cam, Cesar A

    2009-01-01

    Taurine (TAU) and compounds representing a TAU analog (hypotaurine = HYTAU) or homolog (aminomethanesulfonic acid = AMSA, homotaurine = HMTAU) were tested for their counteracting effects against alterations in erythrocyte (RBC) morphology, membrane fluidity and cytoskeletal spectrin distribution due to diabetes, alcoholism and diabetes-alcoholism in male Goto-Kakizaki rats (made diabetic with a high fat diet and alcoholic upon feeding on a flavored alcohol solution) and Wistar-Kyoto rats (serving as controls). Both diabetes and alcoholism changed the RBC discoidal biconcave shape to a spiculated one, lowered membrane fluidity, and caused spectrin to become marginalized. While AMSA and HYTAU returned the RBC shape to normal, HMTAU made it only discoidal, and TAU was without effect. All test compounds, but TAU, maintained the membrane fluidity normal; and HYTAU and AMSA, but not TAU or HMTAU, kept spectrin uniformly distributed. The noted effects were correlated with compound structure and RBC values for malondialdehyde and cholesterol/phospholipid ratio.

  7. Structure and membrane interactions of the homodimeric antibiotic peptide homotarsinin

    Science.gov (United States)

    Verly, Rodrigo M.; Resende, Jarbas M.; Junior, Eduardo F. C.; de Magalhães, Mariana T. Q.; Guimarães, Carlos F. C. R.; Munhoz, Victor H. O.; Bemquerer, Marcelo Porto; Almeida, Fábio C. L.; Santoro, Marcelo M.; Piló-Veloso, Dorila; Bechinger, Burkhard

    2017-01-01

    Antimicrobial peptides (AMPs) from amphibian skin are valuable template structures to find new treatments against bacterial infections. This work describes for the first time the structure and membrane interactions of a homodimeric AMP. Homotarsinin, which was found in Phyllomedusa tarsius anurans, consists of two identical cystine-linked polypeptide chains each of 24 amino acid residues. The high-resolution structures of the monomeric and dimeric peptides were determined in aqueous buffers. The dimer exhibits a tightly packed coiled coil three-dimensional structure, keeping the hydrophobic residues screened from the aqueous environment. An overall cationic surface of the dimer assures enhanced interactions with negatively charged membranes. An extensive set of biophysical data allowed us to establish structure-function correlations with antimicrobial assays against Gram-positive and Gram-negative bacteria. Although both peptides present considerable antimicrobial activity, the dimer is significantly more effective in both antibacterial and membrane biophysical assays.

  8. Structure and membrane interactions of the homodimeric antibiotic peptide homotarsinin

    Science.gov (United States)

    Verly, Rodrigo M.; Resende, Jarbas M.; Junior, Eduardo F. C.; de Magalhães, Mariana T. Q.; Guimarães, Carlos F. C. R.; Munhoz, Victor H. O.; Bemquerer, Marcelo Porto; Almeida, Fábio C. L.; Santoro, Marcelo M.; Piló-Veloso, Dorila; Bechinger, Burkhard

    2017-01-01

    Antimicrobial peptides (AMPs) from amphibian skin are valuable template structures to find new treatments against bacterial infections. This work describes for the first time the structure and membrane interactions of a homodimeric AMP. Homotarsinin, which was found in Phyllomedusa tarsius anurans, consists of two identical cystine-linked polypeptide chains each of 24 amino acid residues. The high-resolution structures of the monomeric and dimeric peptides were determined in aqueous buffers. The dimer exhibits a tightly packed coiled coil three-dimensional structure, keeping the hydrophobic residues screened from the aqueous environment. An overall cationic surface of the dimer assures enhanced interactions with negatively charged membranes. An extensive set of biophysical data allowed us to establish structure-function correlations with antimicrobial assays against Gram-positive and Gram-negative bacteria. Although both peptides present considerable antimicrobial activity, the dimer is significantly more effective in both antibacterial and membrane biophysical assays. PMID:28102305

  9. Magnetic apatite for structural insights on the plasma membrane

    Science.gov (United States)

    Stanca, Sarmiza E.; Müller, Robert; Dellith, Jan; Nietzsche, Sandor; Stöckel, Stephan; Biskup, Christoph; Deckert, Volker; Krafft, Christoph; Popp, Jürgen; Fritzsche, Wolfgang

    2015-01-01

    The iron oxide-hydroxyapatite (FeOxHA) nanoparticles reported here differ from those reported before by their advantage of homogeneity and simple preparation; moreover, the presence of carboxymethyldextran (CMD), together with hydroxyapatite (HA), allows access to the cellular membrane, which makes our magnetic apatite unique. These nanoparticles combine magnetic behavior, Raman label ability and the property of interaction with the cellular membrane; they therefore represent an interesting material for structural differentiation of the cell membrane. It was observed by Raman spectroscopy, scanning electron microscopy (SEM) and fluorescence microscopy that FeOxHA adheres to the plasma membrane and does not penetrate the membrane. These insights make the nanoparticles a promising material for magnetic cell sorting, e.g. in microfluidic device applications.

  10. Magnetic apatite for structural insights on the plasma membrane.

    Science.gov (United States)

    Stanca, Sarmiza E; Müller, Robert; Dellith, Jan; Nietzsche, Sandor; Stöckel, Stephan; Biskup, Christoph; Deckert, Volker; Krafft, Christoph; Popp, Jürgen; Fritzsche, Wolfgang

    2015-01-21

    The iron oxide-hydroxyapatite (FeOxHA) nanoparticles reported here differ from those reported before by their advantage of homogeneity and simple preparation; moreover, the presence of carboxymethyldextran (CMD), together with hydroxyapatite (HA), allows access to the cellular membrane, which makes our magnetic apatite unique. These nanoparticles combine magnetic behavior, Raman label ability and the property of interaction with the cellular membrane; they therefore represent an interesting material for structural differentiation of the cell membrane. It was observed by Raman spectroscopy, scanning electron microscopy (SEM) and fluorescence microscopy that FeOxHA adheres to the plasma membrane and does not penetrate the membrane. These insights make the nanoparticles a promising material for magnetic cell sorting, e.g. in microfluidic device applications.

  11. Effect of Dehydration on Leakage and Membrane Structure in Lotus corniculatus L. Seeds.

    Science.gov (United States)

    McKersie, B D; Stinson, R H

    1980-08-01

    Membrane damage as a result of dehydration was studied in Lotus corniculatus L. cv. Carroll seeds which had been pregerminated for 0, 12, and 24 hours prior to dehydration. During reimbibition, desiccation-tolerant (0- and 12-hour) seeds leaked relatively low quantities of all solutes (total electrolytes, potassium, phosphate, sugar, amino acid, and protein). Desiccation-sensitive (24-hour) seeds leaked higher levels, but evidence of selective permeability remained. Membrane damage was not manifested as a complete removal of the diffusion barrier, although its permeability properties were dramatically altered. Consequently, the plasmalemma was not ruptured or torn by the dehydration treatment, but a more subtle structural alteration occurred.The possibility that seed membranes form a hexagonal rather than a lamellar phase at moisture contents below 20% was investigated by x-ray diffraction. Phospholipids were extracted from desiccation-tolerant (0-hour) and desiccation-sensitive (24-hour) seeds and hydrated to 5, 10, 20, and 40% water. This phospholipid-water system was examined using low-and wide-angle x-ray diffraction and was found to be exclusively lamellar, even at 5% water. Consequently, membrane damage and the leakage of cytoplasmic solutes from seeds cannot be explained by the formation of a hexagonal phase by membrane phospholipids.

  12. Lipid nanotechnologies for structural studies of membrane-associated proteins.

    Science.gov (United States)

    Stoilova-McPhie, Svetla; Grushin, Kirill; Dalm, Daniela; Miller, Jaimy

    2014-11-01

    We present a methodology of lipid nanotubes (LNT) and nanodisks technologies optimized in our laboratory for structural studies of membrane-associated proteins at close to physiological conditions. The application of these lipid nanotechnologies for structure determination by cryo-electron microscopy (cryo-EM) is fundamental for understanding and modulating their function. The LNTs in our studies are single bilayer galactosylceramide based nanotubes of ∼20 nm inner diameter and a few microns in length, that self-assemble in aqueous solutions. The lipid nanodisks (NDs) are self-assembled discoid lipid bilayers of ∼10 nm diameter, which are stabilized in aqueous solutions by a belt of amphipathic helical scaffold proteins. By combining LNT and ND technologies, we can examine structurally how the membrane curvature and lipid composition modulates the function of the membrane-associated proteins. As proof of principle, we have engineered these lipid nanotechnologies to mimic the activated platelet's phosphtaidylserine rich membrane and have successfully assembled functional membrane-bound coagulation factor VIII in vitro for structure determination by cryo-EM. The macromolecular organization of the proteins bound to ND and LNT are further defined by fitting the known atomic structures within the calculated three-dimensional maps. The combination of LNT and ND technologies offers a means to control the design and assembly of a wide range of functional membrane-associated proteins and complexes for structural studies by cryo-EM. The presented results confirm the suitability of the developed methodology for studying the functional structure of membrane-associated proteins, such as the coagulation factors, at a close to physiological environment.

  13. The effect of natural and synthetic fatty acids on membrane structure, microdomain organization, cellular functions and human health.

    Science.gov (United States)

    Ibarguren, Maitane; López, David J; Escribá, Pablo V

    2014-06-01

    This review deals with the effects of synthetic and natural fatty acids on the biophysical properties of membranes, and on their implication on cell function. Natural fatty acids are constituents of more complex lipids, like triacylglycerides or phospholipids, which are used by cells to store and obtain energy, as well as for structural purposes. Accordingly, natural and synthetic fatty acids may modify the structure of the lipid membrane, altering its microdomain organization and other physical properties, and provoking changes in cell signaling. Therefore, by modulating fatty acids it is possible to regulate the structure of the membrane, influencing the cell processes that are reliant on this structure and potentially reverting pathological cell dysfunctions that may provoke cancer, diabetes, hypertension, Alzheimer's and Parkinson's disease. The so-called Membrane Lipid Therapy offers a strategy to regulate the membrane composition through drug administration, potentially reverting pathological processes by re-adapting cell membrane structure. Certain fatty acids and their synthetic derivatives are described here that may potentially be used in such therapies, where the cell membrane itself can be considered as a target to combat disease. This article is part of a Special Issue entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy.

  14. Ternary structure reveals mechanism of a membrane diacylglycerol kinase

    Science.gov (United States)

    Li, Dianfan; Stansfeld, Phillip J.; Sansom, Mark S. P.; Keogh, Aaron; Vogeley, Lutz; Howe, Nicole; Lyons, Joseph A.; Aragao, David; Fromme, Petra; Fromme, Raimund; Basu, Shibom; Grotjohann, Ingo; Kupitz, Christopher; Rendek, Kimberley; Weierstall, Uwe; Zatsepin, Nadia A.; Cherezov, Vadim; Liu, Wei; Bandaru, Sateesh; English, Niall J.; Gati, Cornelius; Barty, Anton; Yefanov, Oleksandr; Chapman, Henry N.; Diederichs, Kay; Messerschmidt, Marc; Boutet, Sébastien; Williams, Garth J.; Marvin Seibert, M.; Caffrey, Martin

    2015-12-01

    Diacylglycerol kinase catalyses the ATP-dependent conversion of diacylglycerol to phosphatidic acid in the plasma membrane of Escherichia coli. The small size of this integral membrane trimer, which has 121 residues per subunit, means that available protein must be used economically to craft three catalytic and substrate-binding sites centred about the membrane/cytosol interface. How nature has accomplished this extraordinary feat is revealed here in a crystal structure of the kinase captured as a ternary complex with bound lipid substrate and an ATP analogue. Residues, identified as essential for activity by mutagenesis, decorate the active site and are rationalized by the ternary structure. The γ-phosphate of the ATP analogue is positioned for direct transfer to the primary hydroxyl of the lipid whose acyl chain is in the membrane. A catalytic mechanism for this unique enzyme is proposed. The active site architecture shows clear evidence of having arisen by convergent evolution.

  15. Membrane transport mechanism 3D structure and beyond

    CERN Document Server

    Ziegler, Christine

    2014-01-01

    This book provides a molecular view of membrane transport by means of numerous biochemical and biophysical techniques. The rapidly growing number of atomic structures of transporters in different conformations and the constant progress in bioinformatics have recently added deeper insights.   The unifying mechanism of energized solute transport across membranes is assumed to consist of the conformational cycling of a carrier protein to provide access to substrate binding sites from either side of a cellular membrane. Due to the central role of active membrane transport there is considerable interest in deciphering the principles of one of the most fundamental processes in nature: the alternating access mechanism.   This book brings together particularly significant structure-function studies on a variety of carrier systems from different transporter families: Glutamate symporters, LeuT-like fold transporters, MFS transporters and SMR (RND) exporters, as well as ABC-type importers.   The selected examples im...

  16. Development of topologically structured membranes of aluminum oxide

    Science.gov (United States)

    Bankova, A.; Videkov, V.; Tzaneva, B.

    2014-05-01

    In recent years, nanomembranes have become one of the most widely used construction material for ultrasensitive and ultrathin applications in micro-electromechanical systems (MEMS) and other sensor structures due to their remarkable mechanical properties. Among these, the mechanical stability is of particular importance. We present an approach to the analysis of the stability of nanostructured anodic aluminum oxide free membranes subjected to mechanical bending. The membranes tested were with a thickness of 500 nm to 15 urn in various topological shapes; we describe the technological schemes of their preparation. Bends were applied to membranes prepared by using a selective process of etching and anodizing. The results of the preparation of the membranes are discussed, together with the influence of the angle of deflection, and the number of bendings. The results obtained can be used in designing MEMS structures and sensors which use nanostructured anodic aluminum oxide.

  17. Class I Cytokine Receptors: Structure and function in the Membrane

    DEFF Research Database (Denmark)

    Bugge, Katrine Østergaard

    Class I cytokine receptors are involved in important biological functions of both physiological and pathological nature in mammals. However, the molecular details of the cross-membrane signal transduction through these receptors remain obscure. One of the major reasons for this is the lack...... of structural knowledge on their membrane-embedded transmembrane domains (TMDs), which connect the extracellular ligand binding domains to the intracellular signaling platforms. The overall aim of this thesis work was to improve our understanding of the class I cytokine receptor signaling across the membrane...... ample material of high quality for structural studies with NMR spectroscopy of several class I cytokine receptor TMDs. Furthermore, the structure of a class I cytokine receptor TMD in DHPC micelles was solved with solution-state NMR spectroscopy. Additionally, since structural studies of intact proteins...

  18. Structure formation of surfactant membranes under shear flow

    Science.gov (United States)

    Shiba, Hayato; Noguchi, Hiroshi; Gompper, Gerhard

    2013-07-01

    Shear-flow-induced structure formation in surfactant-water mixtures is investigated numerically using a meshless-membrane model in combination with a particle-based hydrodynamics simulation approach for the solvent. At low shear rates, uni-lamellar vesicles and planar lamellae structures are formed at small and large membrane volume fractions, respectively. At high shear rates, lamellar states exhibit an undulation instability, leading to rolled or cylindrical membrane shapes oriented in the flow direction. The spatial symmetry and structure factor of this rolled state agree with those of intermediate states during lamellar-to-onion transition measured by time-resolved scatting experiments. Structural evolution in time exhibits a moderate dependence on the initial condition.

  19. Sphingomyelinase D activity in model membranes: structural effects of in situ generation of ceramide-1-phosphate.

    Directory of Open Access Journals (Sweden)

    Roberto P Stock

    Full Text Available The toxicity of Loxosceles spider venom has been attributed to a rare enzyme, sphingomyelinase D, which transforms sphingomyelin to ceramide-1-phosphate. The bases of its inflammatory and dermonecrotic activity, however, remain unclear. In this work the effects of ceramide-1-phosphate on model membranes were studied both by in situ generation of this lipid using a recombinant sphingomyelinase D from the spider Loxosceles laeta and by pre-mixing it with sphingomyelin and cholesterol. The systems of choice were large unilamellar vesicles for bulk studies (enzyme kinetics, fluorescence spectroscopy and dynamic light scattering and giant unilamellar vesicles for fluorescence microscopy examination using a variety of fluorescent probes. The influence of membrane lateral structure on the kinetics of enzyme activity and the consequences of enzyme activity on the structure of target membranes containing sphingomyelin were examined. The findings indicate that: 1 ceramide-1-phosphate (particularly lauroyl ceramide-1-phosphate can be incorporated into sphingomyelin bilayers in a concentration-dependent manner and generates coexistence of liquid disordered/solid ordered domains, 2 the activity of sphingomyelinase D is clearly influenced by the supramolecular organization of its substrate in membranes and, 3 in situ ceramide-1-phosphate generation by enzymatic activity profoundly alters the lateral structure and morphology of the target membranes.

  20. Structure and Dynamic Properties of Membrane Proteins using NMR

    DEFF Research Database (Denmark)

    Rösner, Heike; Kragelund, Birthe

    2012-01-01

    structure-function paradigm. The method has evolved dramatically during the last decade resulting in a plethora of new experiments leading to a significant increase in the scientific repertoire for studying membrane proteins. Besides solving the three-dimensional structures using state-of-the-art approaches......-populated states, this review seeks to introduce the vast possibilities solution NMR can offer to the study of membrane protein structure-function analyses with special focus on applicability. © 2012 American Physiological Society. Compr Physiol 2:1491-1539, 2012....

  1. Correct use of Membrane Elements in Structural Analysis

    Directory of Open Access Journals (Sweden)

    Rothman Timothy

    2016-01-01

    Full Text Available Structural analysis of consumer electronic devices such as phones and tablets involves Finite Element Analysis (FEA. Dynamic loading conditions such as device dropping and bending dictate accurate FEA models to reduce design risk in many areas. The solid elements typically used in structural analysis do not have integration points on the surface. The outer surface is of most interest because that is where the cracks start. Analysts employ a post processing trick through using membranes to bring accurate stress/strain results to the surface. This paper explains numerical issues with implementation of membranes and recommends a methodology for accurate structural analysis.

  2. A beam-membrane structure micromachined differential pressure flow sensor.

    Science.gov (United States)

    Chen, P; Zhao, Y L; Tian, B; Li, C; Li, Y Y

    2015-04-01

    A beam-membrane structure micromachined flow sensor is designed, depending on the principle of differential pressure caused by the mass flow, which is directly proportional to the square flow rate. The FSI (fluid structure interaction) characteristics of the differential pressure flow sensor are investigated via numerical analysis and analog simulation. The working mechanism of the flow sensor is analyzed depending on the FSI results. Then, the flow sensor is fabricated and calibrated. The calibration results show that the beam-membrane structure differential pressure flow sensor achieves ideal static characteristics and works well in the practical applications.

  3. Preterm birth and structural brain alterations in early adulthood

    Directory of Open Access Journals (Sweden)

    Chiara Nosarti

    2014-01-01

    Full Text Available Alterations in cortical development and impaired neurodevelopmental outcomes have been described following very preterm (VPT birth in childhood and adolescence, but only a few studies to date have investigated grey matter (GM and white matter (WM maturation in VPT samples in early adult life. Using voxel-based morphometry (VBM we studied regional GM and WM volumes in 68 VPT-born individuals (mean gestational age 30 weeks and 43 term-born controls aged 19–20 years, and their association with cognitive outcomes (Hayling Sentence Completion Test, Controlled Oral Word Association Test, Visual Reproduction test of the Wechsler Memory Scale-Revised and gestational age. Structural MRI data were obtained with a 1.5 Tesla system and analysed using the VBM8 toolbox in SPM8 with a customized study-specific template. Similarly to results obtained at adolescent assessment, VPT young adults compared to controls demonstrated reduced GM volume in temporal, frontal, insular and occipital areas, thalamus, caudate nucleus and putamen. Increases in GM volume were noted in medial/anterior frontal gyrus. Smaller subcortical WM volume in the VPT group was observed in temporal, parietal and frontal regions, and in a cluster centred on posterior corpus callosum/thalamus/fornix. Larger subcortical WM volume was found predominantly in posterior brain regions, in areas beneath the parahippocampal and occipital gyri and in cerebellum. Gestational age was associated with GM and WM volumes in areas where VPT individuals demonstrated GM and WM volumetric alterations, especially in temporal, parietal and occipital regions. VPT participants scored lower than controls on measures of IQ, executive function and non-verbal memory. When investigating GM and WM alterations and cognitive outcome scores, subcortical WM volume in an area beneath the left inferior frontal gyrus accounted for 14% of the variance of full-scale IQ (F = 12.9, p < 0.0001. WM volume in posterior corpus

  4. The C-terminal Cytosolic Region of Rim21 Senses Alterations in Plasma Membrane Lipid Composition: INSIGHTS INTO SENSING MECHANISMS FOR PLASMA MEMBRANE LIPID ASYMMETRY.

    Science.gov (United States)

    Nishino, Kanako; Obara, Keisuke; Kihara, Akio

    2015-12-25

    Yeast responds to alterations in plasma membrane lipid asymmetry and external alkalization via the sensor protein Rim21 in the Rim101 pathway. However, the sensing mechanism used by Rim21 remains unclear. Here, we found that the C-terminal cytosolic domain of Rim21 (Rim21C) fused with GFP was associated with the plasma membrane under normal conditions but dissociated upon alterations in lipid asymmetry or external alkalization. This indicates that Rim21C contains a sensor motif. Rim21C contains multiple clusters of charged residues. Among them, three consecutive Glu residues (EEE motif) were essential for Rim21 function and dissociation of Rim21C from the plasma membrane in response to changes in lipid asymmetry. In contrast, positively charged residues adjacent to the EEE motif were required for Rim21C to associate with the membrane. We therefore propose an "antenna hypothesis," in which Rim21C moves to or from the plasma membrane and functions as the sensing mechanism of Rim21.

  5. Membrane proteins structure and dynamics by nuclear magnetic resonance.

    Science.gov (United States)

    Maltsev, Sergey; Lorigan, Gary A

    2011-10-01

    Membrane proteins represent a challenging class of biological systems to study. They are extremely difficult to crystallize and in most cases they retain their structure and functions only in membrane environments. Therefore, commonly used diffraction methods fail to give detailed molecular structure and other approaches have to be utilized to obtain biologically relevant information. Nuclear magnetic resonance (NMR) spectroscopy, however, can provide powerful structural and dynamical constraints on these complicated systems. Solution- and solid-state NMR are powerful methods for investigating membrane proteins studies. In this work, we briefly review both solution and solid-state NMR techniques for membrane protein studies and illustrate the applications of these methods to elucidate proteins structure, conformation, topology, dynamics, and function. Recent advances in electronics, biological sample preparation, and spectral processing provided opportunities for complex biological systems, such as membrane proteins inside lipid vesicles, to be studied faster and with outstanding quality. New analysis methods therefore have emerged, that benefit from the combination of sample preparation and corresponding specific high-end NMR techniques, which give access to more structural and dynamic information.

  6. Finite Element Analysis of Wrinkled Membrane Structures for Sunshield Applications

    Science.gov (United States)

    Johnston, John D.; Brodeur, Stephen J. (Technical Monitor)

    2002-01-01

    The deployable sunshield is an example of a gossamer structure envisioned for use on future space telescopes. The basic structure consists of multiple layers of pretensioned, thin-film membranes supported by deployable booms. The prediction and verification of sunshield dynamics has been identified as an area in need of technology development due to the difficulties inherent in predicting nonlinear structural behavior of the membranes and because of the challenges involved. in ground testing of the full-scale structure. This paper describes a finite element analysis of a subscale sunshield that has been subjected to ground testing in support of the Next Generation Space Telescope (NGST) program. The analysis utilizes a nonlinear material model that accounts for wrinkling of the membranes. Results are presented from a nonlinear static preloading analysis and subsequent dynamics analyses to illustrate baseline sunshield structural characteristics. Studies are then described which provide further insight into the effect of membrane. preload on sunshield dynamics and the performance of different membrane modeling techniques. Lastly, a comparison of analytical predictions and ground test results is presented.

  7. Drug-induced hemolytic anemia and thrombocytopenia associated with alterations of cell membrane lipids and acanthocyte formation.

    Science.gov (United States)

    Poulet, Frederique M; Penraat, Kelley; Collins, Nathaniel; Evans, Ellen; Thackaberry, Evan; Manfra, Denise; Engstrom, Laura; Geissler, Richard; Geraci-Erck, Maria; Frugone, Carlos; Abutarif, Malaz; Fine, Jay S; Peterson, Brianna L; Cummings, Brian S; Johnson, Robert C

    2010-10-01

    CXCR3 is a chemokine receptor, upregulated upon activation of T cells and expressed on nearly 100% of T cells in sites of inflammation. SCH 900875 is a selective CXCR3 receptor antagonist. Thrombocytopenia and severe hemolytic anemia with acanthocytosis occurred in rats at doses of 75, 100, and 150 mg/kg/day. Massively enlarged spleens corresponded histologically to extramedullary hematopoiesis, macrophages, and hemosiderin pigment and sinus congestion. Phagocytosed erythrocytes and platelets were within splenic macrophages. IgG and/or IgM were not detected on erythrocyte and platelet membranes. Ex vivo increased osmotic fragility of RBCs was observed. Lipid analysis of the RBC membrane revealed modifications in phosphatidylcholine, overall cholesterol, and/or sphingomyelin. Platelets exhibited slender filiform processes on their plasma membranes, analogous to those of acanthocytes. The presence of similar morphological abnormalities in acanthocytes and platelets suggests that possibly similar alterations in the lipid composition of the plasma membrane have taken place in both cell types. This phenotype correlated with alterations in plasma lipids (hypercholesterolemia and low triglycerides) that occurred after SCH 900875 administration, although other factors cannot be excluded. The increased cell destruction was considered triggered by alterations in the lipid profile of the plasma membranes of erythrocytes and platelets, as reflected morphologically.

  8. Effect of Melatonin and Cholesterol on the Structure of DOPC and DPPC Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Drolle, E [University of Waterloo, Canada; Kucerka, Norbert [Canadian Neutron Beam Centre and Comelius University (Slovakia); Hoopes, M I [University of Waterloo, Canada; Choi, Y [University of Waterloo, Canada; Katsaras, John [ORNL; Karttunen, M [University of Waterloo, Canada; Leonenko, Z [University of Waterloo, Canada

    2013-01-01

    The cell membrane plays an important role in the molecular mechanism of amyloid toxicity associated with Alzheimer's disease. The membrane's chemical composition and the incorporation of small molecules, such as melatonin and cholesterol, can alter its structure and physical properties, thereby affecting its interaction with amyloid peptides. Both melatonin and cholesterol have been recently linked to amyloid toxicity. Melatonin has been shown to have a protective role against amyloid toxicity. However, the underlying molecular mechanism of this protection is still not well understood, and cholesterol's role remains controversial. We used small-angle neutron diffraction (SAND) from oriented lipid multi-layers, small-angle neutron scattering (SANS) from unilamellar vesicles experiments andMolecular Dynamics (MD) simulations to elucidate non-specific interactions of melatonin and cholesterol with 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1,2-dipalmitoyl-snglycero-3-phosphocholine (DPPC) model membranes. We conclude that melatonin decreases the thickness of both model membranes by disordering the lipid hydrocarbon chains, thus increasing membrane fluidity. This result is in stark contrast to the much accepted ordering effect induced by cholesterol, which causes membranes to thicken.

  9. DNA-Tile Structures Induce Ionic Currents through Lipid Membranes.

    Science.gov (United States)

    Göpfrich, Kerstin; Zettl, Thomas; Meijering, Anna E C; Hernández-Ainsa, Silvia; Kocabey, Samet; Liedl, Tim; Keyser, Ulrich F

    2015-05-13

    Self-assembled DNA nanostructures have been used to create man-made transmembrane channels in lipid bilayers. Here, we present a DNA-tile structure with a nominal subnanometer channel and cholesterol-tags for membrane anchoring. With an outer diameter of 5 nm and a molecular weight of 45 kDa, the dimensions of our synthetic nanostructure are comparable to biological ion channels. Because of its simple design, the structure self-assembles within a minute, making its creation scalable for applications in biology. Ionic current recordings demonstrate that the tile structures enable ion conduction through lipid bilayers and show gating and voltage-switching behavior. By demonstrating the design of DNA-based membrane channels with openings much smaller than that of the archetypical six-helix bundle, our work showcases their versatility inspired by the rich diversity of natural membrane components.

  10. Alteration of membrane lipid biophysical properties and resistance of human lung adenocarcinoma A549 cells to cisplatin

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Alterations of membrane lipid biophysical properties of sensitiveA549 and resistant A549/DDP cells to the Cis-dichlorodiammine platinum (Cisplatin) were performed by measurements of fluorescence and flow cytometry approaches using fluorescence dyes of DPH, N-AS and Merocyanine 540 (MC 540) respectively. Fatty acids of membrane lipid of the two cell lines were analyzed by gas chromatography. The results indicated clearly that fluorescence polarization (P) of the DPH probe is 0.169 for the sensitive A549 cell and 0.194 for the resistant A549/DDP cells. Statistical analysis showed significant difference between the two cell lines. The polarizations of 2-AS and 7-AS which reflect the fluidity of surface and middle of lipid bilayer are 0.134 and 0.144 for the sensitive A549 cells as well as 0.171 and 0.178 for the resistant A549/DDP cells respectively, but there is no significant difference of the polarization of 12-AS between the two cell lines. This shows that altera-tions of the membrane fluidity of both cells were mainly located on the surface and middle of the lipid bilayer. In addition, the packing density of phospholipid molecules in the membrane of the two cell lines detected by MC540 probe indicated that lipid packing of A549 cell membranes was looser than that of the A549/DDP cells. And unsaturation degree of plasma membrane fatty acids of the A549/DDP cells was also lower than that of A549 cells. Taken together, it was proposed that the al-teration of membrane lipid biophysical state may be involved in the resistance of A549/DDP cells to cisplatin.

  11. Low-dose X-ray radiation induces structural alterations in proteins.

    Science.gov (United States)

    Borshchevskiy, Valentin; Round, Ekaterina; Erofeev, Ivan; Weik, Martin; Ishchenko, Andrii; Gushchin, Ivan; Mishin, Alexey; Willbold, Dieter; Büldt, Georg; Gordeliy, Valentin

    2014-10-01

    X-ray-radiation-induced alterations to protein structures are still a severe problem in macromolecular crystallography. One way to avoid the influence of radiation damage is to reduce the X-ray dose absorbed by the crystal during data collection. However, here it is demonstrated using the example of the membrane protein bacteriorhodopsin (bR) that even a low dose of less than 0.06 MGy may induce structural alterations in proteins. This dose is about 500 times smaller than the experimental dose limit which should ideally not be exceeded per data set (i.e. 30 MGy) and 20 times smaller than previously detected specific radiation damage at the bR active site. To date, it is the lowest dose at which radiation modification of a protein structure has been described. Complementary use was made of high-resolution X-ray crystallography and online microspectrophotometry to quantitatively study low-dose X-ray-induced changes. It is shown that structural changes of the protein correlate with the spectroscopically observed formation of the so-called bR orange species. Evidence is provided for structural modifications taking place at the protein active site that should be taken into account in crystallographic studies which aim to elucidate the molecular mechanisms of bR function.

  12. Crystal structure of the plasma membrane proton pump

    DEFF Research Database (Denmark)

    Pedersen, Bjørn Panyella; Buch-Pedersen, Morten J; Morth, Jens Preben;

    2007-01-01

    A prerequisite for life is the ability to maintain electrochemical imbalances across biomembranes. In all eukaryotes the plasma membrane potential and secondary transport systems are energized by the activity of P-type ATPase membrane proteins: H+-ATPase (the proton pump) in plants and fungi 1, 2......, 3 , and Na+,K+-ATPase (the sodium–potassium pump) in animals 4 . The name P-type derives from the fact that these proteins exploit a phosphorylated reaction cycle intermediate of ATP hydrolysis 5 . The plasma membrane proton pumps belong to the type III P-type ATPase subfamily, whereas Na...... define the functional unit of ATP-coupled proton transport across the plasma membrane, and the structure is locked in a functional state not previously observed in P-type ATPases. The transmembrane domain reveals a large cavity, which is likely to be filled with water, located near the middle...

  13. Disease-associated mutations that alter the RNA structural ensemble.

    Directory of Open Access Journals (Sweden)

    Matthew Halvorsen

    2010-08-01

    Full Text Available Genome-wide association studies (GWAS often identify disease-associated mutations in intergenic and non-coding regions of the genome. Given the high percentage of the human genome that is transcribed, we postulate that for some observed associations the disease phenotype is caused by a structural rearrangement in a regulatory region of the RNA transcript. To identify such mutations, we have performed a genome-wide analysis of all known disease-associated Single Nucleotide Polymorphisms (SNPs from the Human Gene Mutation Database (HGMD that map to the untranslated regions (UTRs of a gene. Rather than using minimum free energy approaches (e.g. mFold, we use a partition function calculation that takes into consideration the ensemble of possible RNA conformations for a given sequence. We identified in the human genome disease-associated SNPs that significantly alter the global conformation of the UTR to which they map. For six disease-states (Hyperferritinemia Cataract Syndrome, beta-Thalassemia, Cartilage-Hair Hypoplasia, Retinoblastoma, Chronic Obstructive Pulmonary Disease (COPD, and Hypertension, we identified multiple SNPs in UTRs that alter the mRNA structural ensemble of the associated genes. Using a Boltzmann sampling procedure for sub-optimal RNA structures, we are able to characterize and visualize the nature of the conformational changes induced by the disease-associated mutations in the structural ensemble. We observe in several cases (specifically the 5' UTRs of FTL and RB1 SNP-induced conformational changes analogous to those observed in bacterial regulatory Riboswitches when specific ligands bind. We propose that the UTR and SNP combinations we identify constitute a "RiboSNitch," that is a regulatory RNA in which a specific SNP has a structural consequence that results in a disease phenotype. Our SNPfold algorithm can help identify RiboSNitches by leveraging GWAS data and an analysis of the mRNA structural ensemble.

  14. Deformation of wrinkled membrane inflatable structures under concentrated loads

    Institute of Scientific and Technical Information of China (English)

    WANG Chang-guo; DU Xing-wen; WAN Zhi-min; HE Xiao-dong

    2008-01-01

    The axisymmetric deformation of a paraboloidal membrane inflatable structure subjected to a concentrated load at its apex and a uniform intemal pressure was analyzed.The wrinkle angle was obtained according to the membrane theory when wrinkles appeared and determined the wrinkle region.The wrinkled deformation was obtained based on the relaxed energy function.The effects of inflation pressure and concentrated loads on the wrinkle ansle were analyzed and the deformation Was obtained at the apex of structure.According to the numerical analysis,the shape of deformed meridians with wrinkles Was obtained.

  15. Characterization of a structural intermediate of flavivirus membrane fusion.

    Directory of Open Access Journals (Sweden)

    Karin Stiasny

    2007-02-01

    Full Text Available Viral membrane fusion proceeds through a sequence of steps that are driven by triggered conformational changes of viral envelope glycoproteins, so-called fusion proteins. Although high-resolution structural snapshots of viral fusion proteins in their prefusion and postfusion conformations are available, it has been difficult to define intermediate structures of the fusion pathway because of their transient nature. Flaviviruses possess a class II viral fusion protein (E mediating fusion at acidic pH that is converted from a dimer to a trimer with a hairpin-like structure during the fusion process. Here we show for tick-borne encephalitis virus that exposure of virions to alkaline instead of acidic pH traps the particles in an intermediate conformation in which the E dimers dissociate and interact with target membranes via the fusion peptide without proceeding to the merger of the membranes. Further treatment to low pH, however, leads to fusion, suggesting that these monomers correspond to an as-yet-elusive intermediate required to convert the prefusion dimer into the postfusion trimer. Thus, the use of nonphysiological conditions allows a dissection of the flavivirus fusion process and the identification of two separate steps, in which membrane insertion of multiple copies of E monomers precedes the formation of hairpin-like trimers. This sequence of events provides important new insights for understanding the dynamic process of viral membrane fusion.

  16. Structuring detergents for extracting and stabilizing functional membrane proteins.

    Directory of Open Access Journals (Sweden)

    Rima Matar-Merheb

    Full Text Available BACKGROUND: Membrane proteins are privileged pharmaceutical targets for which the development of structure-based drug design is challenging. One underlying reason is the fact that detergents do not stabilize membrane domains as efficiently as natural lipids in membranes, often leading to a partial to complete loss of activity/stability during protein extraction and purification and preventing crystallization in an active conformation. METHODOLOGY/PRINCIPAL FINDINGS: Anionic calix[4]arene based detergents (C4Cn, n=1-12 were designed to structure the membrane domains through hydrophobic interactions and a network of salt bridges with the basic residues found at the cytosol-membrane interface of membrane proteins. These compounds behave as surfactants, forming micelles of 5-24 nm, with the critical micellar concentration (CMC being as expected sensitive to pH ranging from 0.05 to 1.5 mM. Both by 1H NMR titration and Surface Tension titration experiments, the interaction of these molecules with the basic amino acids was confirmed. They extract membrane proteins from different origins behaving as mild detergents, leading to partial extraction in some cases. They also retain protein functionality, as shown for BmrA (Bacillus multidrug resistance ATP protein, a membrane multidrug-transporting ATPase, which is particularly sensitive to detergent extraction. These new detergents allow BmrA to bind daunorubicin with a Kd of 12 µM, a value similar to that observed after purification using dodecyl maltoside (DDM. They preserve the ATPase activity of BmrA (which resets the protein to its initial state after drug efflux much more efficiently than SDS (sodium dodecyl sulphate, FC12 (Foscholine 12 or DDM. They also maintain in a functional state the C4Cn-extracted protein upon detergent exchange with FC12. Finally, they promote 3D-crystallization of the membrane protein. CONCLUSION/SIGNIFICANCE: These compounds seem promising to extract in a functional state

  17. MWIR optical modulation using structured silicon membranes

    Science.gov (United States)

    Zakar, A.; Park, S. J.; Zerova, V.; Kaplan, A.; Canham, Leigh T.; Lewis, K. L.; Burgess, C. D.

    2016-10-01

    We have used near IR pump - Mid IR probe techniques to compare the feasibility and potential of using free standing nano-porous and micro-porous silicon (ordered hole arrays) as optically controlled modulators operating in the Mid-Wave Infrared (MWIR) covering the range from 3.3-5 μm. We employed 800 nm pumping pulses with the duration of 60 fs to reduce 4 μm light transmission modulation to about 25% and 45% for both silicon structures, respectively, at excitation powers of 50mW (4 mJ=cm2). However, at 5 μm both structures shown similar contrast of about 60%. The time resolved measurements revealed a fast sub-picosecond rise time for both structures suggesting that the optically generated carriers are a dominant mechanism for the modulation. However, the measurements demonstrated a significant difference in the relaxation dynamics. The nanoporous silicon demonstrated recovery as fast as a few tens of picoseconds and a possibility to effectively work in the GHz regime, while hole arrays shown almost three orders of magnitude slower response making it suitable for the MHz regime.

  18. FATE OF REVERSE OSMOSIS (RO) MEMBRANES DURING OXIDATION BY DISINFECTANTS USED IN WATER TREATMENT: IMPACT ON MEMBRANE STRUCTURE AND PERFORMANCES

    KAUST Repository

    Maugin, Thomas

    2013-12-01

    Providing pretreatment prior RO filtration is essential to avoid biofouling and subsequent loss of membrane performances. Chlorine is known to degrade polymeric membrane, improving or reducing membrane efficiency depending on oxidation conditions. This study aimed to assess the impact of alternative disinfectant, NH2Cl, as well as secondary oxidants formed during chloramination of seawater, e.g. HOBr, HOI, or used in water treatment e.g. ClO2, O3, on membrane structure and performances. Permeability, total and specific rejection (Cl-, SO4 2-, Br-, Boron), FTIR profile, elemental composition were analyzed. Results showed that each oxidant seems to react differently with the membrane. HOCl, HOBr, ClO2 and O3 improved membrane permeability but decreased rejection in different extent. In comparison, chloramines resulted in identical trends but oxidized membrane very slowly. On the contrary, iodine improved membrane rejection e.g. boron, but decreased permeability. Reaction conducted with chlorine, bromine, iodine and chloramines resulted in the incorporation of halogen in the membrane structure. All oxidant except iodine were able to break amide bonds of the membrane structure in our condition. In addition, chloramine seemed to react with membrane differently, involving a potential addition of nitrogen. Chloramination of seawater amplified membrane performances evolutions due to generation of bromochloramine. Moreover, chloramines reacted both with NOM and membrane during oxidation in natural seawater, leading to additional rejection drop.

  19. Extinction order and altered community structure rapidly disrupt ecosystem functioning.

    Science.gov (United States)

    Larsen, Trond H; Williams, Neal M; Kremen, Claire

    2005-05-01

    By causing extinctions and altering community structure, anthropogenic disturbances can disrupt processes that maintain ecosystem integrity. However, the relationship between community structure and ecosystem functioning in natural systems is poorly understood. Here we show that habitat loss appeared to disrupt ecosystem functioning by affecting extinction order, species richness and abundance. We studied pollination by bees in a mosaic of agricultural and natural habitats in California and dung burial by dung beetles on recently created islands in Venezuela. We found that large-bodied bee and beetle species tended to be both most extinction-prone and most functionally efficient, contributing to rapid functional loss. Simulations confirmed that extinction order led to greater disruption of function than predicted by random species loss. Total abundance declined with richness and also appeared to contribute to loss of function. We demonstrate conceptually and empirically how the non-random response of communities to disturbance can have unexpectedly large functional consequences.

  20. Pantothenate kinase-associated neurodegeneration: altered mitochondria membrane potential and defective respiration in Pank2 knock-out mouse model.

    Science.gov (United States)

    Brunetti, Dario; Dusi, Sabrina; Morbin, Michela; Uggetti, Andrea; Moda, Fabio; D'Amato, Ilaria; Giordano, Carla; d'Amati, Giulia; Cozzi, Anna; Levi, Sonia; Hayflick, Susan; Tiranti, Valeria

    2012-12-15

    Neurodegeneration with brain iron accumulation (NBIA) comprises a group of neurodegenerative disorders characterized by high brain content of iron and presence of axonal spheroids. Mutations in the PANK2 gene, which encodes pantothenate kinase 2, underlie an autosomal recessive inborn error of coenzyme A metabolism, called pantothenate kinase-associated neurodegeneration (PKAN). PKAN is characterized by dystonia, dysarthria, rigidity and pigmentary retinal degeneration. The pathogenesis of this disorder is poorly understood and, although PANK2 is a mitochondrial protein, perturbations in mitochondrial bioenergetics have not been reported. A knock-out (KO) mouse model of PKAN exhibits retinal degeneration and azoospermia, but lacks any neurological phenotype. The absence of a clinical phenotype has partially been explained by the different cellular localization of the human and murine PANK2 proteins. Here we demonstrate that the mouse Pank2 protein localizes to mitochondria, similar to its human orthologue. Moreover, we show that Pank2-defective neurons derived from KO mice have an altered mitochondrial membrane potential, a defect further corroborated by the observations of swollen mitochondria at the ultra-structural level and by the presence of defective respiration.

  1. Isolation of mitochondria with cubic membrane morphology reveals specific ionic requirements for the preservation of membrane structure.

    Science.gov (United States)

    Chong, Ketpin; Tan, Olivia Li Ling; Almsherqi, Zakaria A; Lin, Qingsong; Kohlwein, Sepp D; Deng, Yuru

    2015-03-01

    Biological membranes with cubic symmetry are a hallmark of virus-infected or diseased cells. The mechanisms of formation and specific cellular functions of cubic membranes, however, are unclear. The best-documented cubic membrane formation occurs in the free-living giant amoeba Chaos carolinense. In that system, mitochondrial inner membranes undergo a reversible structural change from tubular to cubic membrane organization upon starvation of the organism. As a prerequisite to further analyze the structural and functional features of cubic membranes, we adapted protocols for the isolation of mitochondria from starved amoeba and have identified buffer conditions that preserve cubic membrane morphology in vitro. The requirement for high concentration of ion-chelating agents in the isolation media supports the importance of a balanced ion milieu in establishing and maintaining cubic membranes in vivo.

  2. Different Structures of PVA Nanofibrous Membrane for Sound Absorption Application

    Directory of Open Access Journals (Sweden)

    Jana Mohrova

    2012-01-01

    Full Text Available The thin nanofibrous layer has different properties in the field of sound absorption in comparison with porous fibrous material which works on a principle of friction of air particles in contact with walls of pores. In case of the thin nanofibrous layer, which represents a sound absorber here, the energy of sonic waves is absorbed by the principle of membrane resonance. The structure of the membrane can play an important role in the process of converting the sonic energy to a different energy type. The vibration system acts differently depending on the presence of smooth fibers in the structure, amount of partly merged fibers, or structure of polymer foil as extreme. Polyvinyl alcohol (PVA was used as a polymer because of its good water solubility. It is possible to influence the structure of nanofibrous layer during the production process thanks to this property of polyvinyl alcohol.

  3. Designing CNC Knit for Hybrid Membrane And Bending Active Structures

    DEFF Research Database (Denmark)

    Tamke, Martin; Holden Deleuran, Anders; Gengnagel, Christoph

    2015-01-01

    Recent advances in computation allow for the integration of design and simulation of highly interrelated systems, such as hybrids of structural membranes and bending active elements. The engaged complexities of forces and logistics can be mediated through the development of materials with project...... means to design, specify, make and test CNC knit as material for hybrid structures in architectural scale. This paper shares the developed process, identifies challenges, potentials and future work...

  4. Membrane tubule formation by banana-shaped proteins with or without transient network structure

    Science.gov (United States)

    Noguchi, Hiroshi

    2016-02-01

    In living cells, membrane morphology is regulated by various proteins. Many membrane reshaping proteins contain a Bin/Amphiphysin/Rvs (BAR) domain, which consists of a banana-shaped rod. The BAR domain bends the biomembrane along the rod axis and the features of this anisotropic bending have recently been studied. Here, we report on the role of the BAR protein rods in inducing membrane tubulation, using large-scale coarse-grained simulations. We reveal that a small spontaneous side curvature perpendicular to the rod can drastically alter the tubulation dynamics at high protein density, whereas no significant difference is obtained at low density. A percolated network is intermediately formed depending on the side curvature. This network suppresses tubule protrusion, leading to the slow formation of fewer tubules. Thus, the side curvature, which is generated by protein-protein and membrane-protein interactions, plays a significant role in tubulation dynamics. We also find that positive surface tensions and the vesicle membrane curvature can stabilize this network structure by suppressing the tubulation.

  5. Tethered and Polymer Supported Bilayer Lipid Membranes: Structure and Function

    Directory of Open Access Journals (Sweden)

    Jakob Andersson

    2016-05-01

    Full Text Available Solid supported bilayer lipid membranes are model systems to mimic natural cell membranes in order to understand structural and functional properties of such systems. The use of a model system allows for the use of a wide variety of analytical tools including atomic force microscopy, impedance spectroscopy, neutron reflectometry, and surface plasmon resonance spectroscopy. Among the large number of different types of model membranes polymer-supported and tethered lipid bilayers have been shown to be versatile and useful systems. Both systems consist of a lipid bilayer, which is de-coupled from an underlying support by a spacer cushion. Both systems will be reviewed, with an emphasis on the effect that the spacer moiety has on the bilayer properties.

  6. Development of structured polymer electrolyte membranes for fuel cell applications

    Science.gov (United States)

    Gasa, Jeffrey

    The objective of this research was to explore structure-property relationships to develop the understanding needed for introduction of superior PEM materials. Polymer electrolyte membranes based on sulfonated poly(ether ketone ketone) (SPEKK) were fabricated using N-methyl pyrrolidone as casting solvent. The membranes were characterized in terms of properties that were relevant to fuel cell applications, such as proton conductivity, methanol permeability, and swelling properties, among others. It was found in this study that the proton conductivity of neat SPEKK membranes could reach the conductivity of commercial membranes such as NafionRTM. However, when the conductivity of SPEKK was comparable to NafionRTM, the swelling of SPEKK in water was quite excessive. The swelling problem was remedied by modifying the microstructure of SPEKK using different techniques. One of them involved blending of lightly sulfonated PEKK with highly acidic particles (sulfonated crosslinked polystyrene-SXLPS). Low sulfonation level of SPEKK was used to reduce the swelling of the membrane in water and the role of the highly acidic particles was to enhance the proton conductivity of the membrane. Because of the residual crystallinity in SPEKK with low sulfonation levels (IEC sulfone)) to act as mechanical reinforcement. It was found that miscibility behavior of the blends had a significant impact on the transport and swelling properties of these blends, which could be explained by the blend microstructure. The miscibility behavior was found to be strongly dependent on the sulfonation level of SPEKK. The conductivities of the blends were enhanced by as much as two orders of magnitude when the morphology was modified by electric field. The last approach was ionic crosslinking of the sulfonate groups in SPEKK using divalent cations, specifically barium ions. The crosslinking treatment has greatly improved the thermal stability of the membranes in both dry and wet conditions.

  7. Amelioration of altered antioxidant status and membrane linked functions by vanadium and Trigonella in alloxan diabetic rat brains

    Indian Academy of Sciences (India)

    Mohammad Rizwan Siddiqui; Asia Taha; K Moorthy; Mohd Ejaz Hussain; S F Basir; Najma Zaheer Baquer

    2005-09-01

    Trigonella foenum graecum seed powder (TSP) and sodium orthovanadate (SOV) have been reported to have antidiabetic effects. However, SOV exerts hypoglycemic effects at relatively high doses with several toxic effects. We used low doses of vanadate in combination with TSP and evaluated their antidiabetic effects on antioxidant enzymes and membrane-linked functions in diabetic rat brains. In rats, diabetes was induced by alloxan monohydrate (15 mg/100 g body wt.) and they were treated with 2 IU insulin, 0.6 mg/ml SOV, 5% TSP and a combination of 0.2 mg/ml SOV with 5% TSP for 21 days. Blood glucose levels, activity of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), Na+/K+ ATPase, membrane lipid peroxidation and fluidity were determined in different fractions of whole brain after 21 days of treatment. Diabetic rats showed high blood glucose ( < 0.001), decreased activities of SOD, catalase and Na+/K+ ATPase ( < 0.01, < 0.001 and < 0.01), increased levels of GPx and MDA ( < 0.01 and < 0.001) and decreased membrane fluidity ( < 0.01). Treatment with different antidiabetic compounds restored the above-altered parameters. Combined dose of Trigonella and vanadate was found to be the most effective treatment in normalizing these alterations. Lower doses of vanadate could be used in combination with TSP to effectively counter diabetic alterations without any toxic effects.

  8. Ion induced changes in the structure of bordered pit membranes

    Directory of Open Access Journals (Sweden)

    Jinkee eLee

    2012-03-01

    Full Text Available Xylem hydraulic resistance varies with ion concentration in sap solution. It is assumed that this variation in resistance results from hydrogel like properties of pectins located in bordered pit membranes separating adjacent vessels. Although kinetics of the resistance change suggests swelling/deswelling behavior of the pectins, there is no direct evidence of this activity. In this report we provide evidence of structural changes in bordered pit membranes responding to variation in ionic concentration of solute around it using atomic force microscopy (AFM. AFM revealed bordered pit membranes as relatively smooth, soft and lacking any sharp edges surface when submerged in de-ionized water, in contrast to pictures from scanning electron microscope (SEM or AFM performed on air dry material. Exposure of the bordered pit membranes to 50 mM KCl solution resulted in significant changes in both surface physical properties with and elevation features as bordered pit membrane became harder, with visible edges of fibers and collapsed, while no change in porosity was observed. Analysis suggests a need for a major shift in our understanding to the physical bases of variable xylem resistance from change in porosity to change in pathway length. Findings support the role of actuating properties of hybrid hydrogel-cellulose materials in water redistribution and embolism resistance.

  9. The structural factor of hypertension: large and small artery alterations.

    Science.gov (United States)

    Laurent, Stéphane; Boutouyrie, Pierre

    2015-03-13

    Pathophysiological studies have extensively investigated the structural factor in hypertension, including large and small artery remodeling and functional changes. Here, we review the recent literature on the alterations in small and large arteries in hypertension. We discuss the possible mechanisms underlying these abnormalities and we explain how they accompany and often precede hypertension. Finally, we propose an integrated pathophysiological approach to better understand how the cross-talk between large and small artery changes interacts in pressure wave transmission, exaggerates cardiac, brain and kidney damage, and lead to cardiovascular and renal complications. We focus on patients with essential hypertension because this is the most prevalent form of hypertension, and describe other forms of hypertension only for contrasting their characteristics with those of uncomplicated essential hypertension.

  10. Importance of Membrane Structural Integrity for RPE65 Retinoid Isomerization Activity

    Energy Technology Data Exchange (ETDEWEB)

    Golczak, Marcin; Kiser, Philip D.; Lodowski, David T.; Maeda, Akiko; Palczewski, Krzysztof (Case Western)

    2010-04-05

    Regeneration of visual chromophore in the vertebrate visual cycle involves the retinal pigment epithelium-specific protein RPE65, the key enzyme catalyzing the cleavage and isomerization of all-trans-retinyl fatty acid esters to 11-cis-retinol. Although RPE65 has no predicted membrane spanning domains, this protein predominantly associates with microsomal fractions isolated from bovine retinal pigment epithelium (RPE). We have re-examined the nature of RPE65 interactions with native microsomal membranes by using extraction and phase separation experiments. We observe that hydrophobic interactions are the dominant forces that promote RPE65 association with these membranes. These results are consistent with the crystallographic model of RPE65, which features a large lipophilic surface that surrounds the entrance to the catalytic site of this enzyme and likely interacts with the hydrophobic core of the endoplasmic reticulum membrane. Moreover, we report a critical role for phospholipid membranes in preserving the retinoid isomerization activity and physical properties of RPE65. Isomerase activity measured in bovine RPE was highly sensitive to phospholipase A{sup 2} treatment, but the observed decline in 11-cis-retinol production did not directly reflect inhibition by products of lipid hydrolysis. Instead, a direct correlation between the kinetics of phospholipid hydrolysis and retinoid isomerization suggests that the lipid membrane structure is critical for RPE65 enzymatic activity. We also provide evidence that RPE65 operates in a multiprotein complex with retinol dehydrogenase 5 and retinal G protein-coupled receptor in RPE microsomes. Modifications in the phospholipid environment affecting interactions with these protein components may be responsible for the alterations in retinoid metabolism observed in phospholipid-depleted RPE microsomes. Thus, our results indicate that the enzymatic activity of native RPE65 strongly depends on its membrane binding and

  11. The Fluid-Mosaic Model of Membrane Structure: still relevant to understanding the structure, function and dynamics of biological membranes after more than 40 years.

    Science.gov (United States)

    Nicolson, Garth L

    2014-06-01

    In 1972 the Fluid-Mosaic Membrane Model of membrane structure was proposed based on thermodynamic principals of organization of membrane lipids and proteins and available evidence of asymmetry and lateral mobility within the membrane matrix [S. J. Singer and G. L. Nicolson, Science 175 (1972) 720-731]. After over 40years, this basic model of the cell membrane remains relevant for describing the basic nano-structures of a variety of intracellular and cellular membranes of plant and animal cells and lower forms of life. In the intervening years, however, new information has documented the importance and roles of specialized membrane domains, such as lipid rafts and protein/glycoprotein complexes, in describing the macrostructure, dynamics and functions of cellular membranes as well as the roles of membrane-associated cytoskeletal fences and extracellular matrix structures in limiting the lateral diffusion and range of motion of membrane components. These newer data build on the foundation of the original model and add new layers of complexity and hierarchy, but the concepts described in the original model are still applicable today. In updated versions of the model more emphasis has been placed on the mosaic nature of the macrostructure of cellular membranes where many protein and lipid components are limited in their rotational and lateral motilities in the membrane plane, especially in their natural states where lipid-lipid, protein-protein and lipid-protein interactions as well as cell-matrix, cell-cell and intracellular membrane-associated protein and cytoskeletal interactions are important in restraining the lateral motility and range of motion of particular membrane components. The formation of specialized membrane domains and the presence of tightly packed integral membrane protein complexes due to membrane-associated fences, fenceposts and other structures are considered very important in describing membrane dynamics and architecture. These structures along

  12. The membrane-water interface region of membrane proteins: structural bias and the anti-snorkeling effect.

    Science.gov (United States)

    Liang, Jie; Adamian, Larisa; Jackups, Ronald

    2005-07-01

    Membrane proteins have important roles in many cellular processes. Computational analysis of their sequences and structures has provided much insight into the organizing principles of transmembrane helices. In a recent study, the membrane-water interface region was examined in detail for the first time. The results have revealed that this interface region has an important role in constraining protein secondary structure. This study raises new questions and opens up new directions for studying membrane proteins.

  13. Lipid membrane partitioning of lysolipids and fatty acids: Effects of membrane phase structure and detergent chain length

    DEFF Research Database (Denmark)

    Høyrup, Lise Pernille Kristine; Davidsen, Jesper; Jørgensen, Kent

    2001-01-01

    ) of the detergents. The calorimetric results reveal that the membrane partitioning of lysolipids depends strongly on the phase structure of the lipid membrane. This is manifested as a lysolipid partition coefficient, K, that is much larger for fluid-phase lipid membranes as compared to gel-phase lipid membranes....... Oppositely, the membrane partitioning of fatty acids depends only weakly on the phase structure of the phospholipid vesicles. In addition, the thermodynamic measurements show that the partition coefficients for both the lysolipids and fatty acids toward gel and fluid lipid membranes become almost an order...... of magnitude higher when the saturated acyl chain of the detergents increases by two carbon atoms. The obtained partition coefficients are of importance in relation to a deeper understanding of the interplay between global aqueous and local membrane concentrations of the detergents and the functional influence...

  14. PLASMA-MEMBRANE LIPID ALTERATIONS INDUCED BY NACL IN WINTER-WHEAT ROOTS

    NARCIS (Netherlands)

    MANSOUR, MMF; VANHASSELT, PR; KUIPER, PJC

    1994-01-01

    A highly enriched plasma membrane fraction was isolated by two phase partitioning from wheat roots (Triticum aestivum L. cv. Vivant) grown with and without 100 mM NaCl. The lipids of the plasma membrane fraction were extracted and characterized. Phosphatidylcholine and phosphatidylethanolamine were

  15. Structural effects of the Solanum steroids solasodine, diosgenin and solanine on human erythrocytes and molecular models of eukaryotic membranes.

    Science.gov (United States)

    Manrique-Moreno, Marcela; Londoño-Londoño, Julián; Jemioła-Rzemińska, Małgorzata; Strzałka, Kazimierz; Villena, Fernando; Avello, Marcia; Suwalsky, Mario

    2014-01-01

    This report presents evidence that the following Solanum steroids: solasodine, diosgenin and solanine interact with human erythrocytes and molecular models of their membranes as follows: a) X-ray diffraction studies showed that the compounds at low molar ratios (0.1-10.0mol%) induced increasing structural perturbation to dimyristoylphosphatidylcholine bilayers and to a considerable lower extent to those of dimyristoylphosphatidylethanolamine; b) differential scanning calorimetry data showed that the compounds were able to alter the cooperativity of dimyristoylphosphatidylcholine, dimyristoylphosphatidylethanolamine and dimyristoylphosphatidylserine phase transitions in a concentration-dependent manner; c) in the presence of steroids, the fluorescence of Merocyanine 540 incorporated to the membranes decreased suggesting a fluidization of the lipid system; d) scanning electron microscopy observations showed that all steroids altered the normal shape of human erythrocytes inducing mainly echinocytosis, characterized by the formation of blebs in their surfaces, an indication that their molecules are located into the outer monolayer of the erythrocyte membrane.

  16. Axon Membrane Skeleton Structure is Optimized for Coordinated Sodium Propagation

    CERN Document Server

    Zhang, Yihao; Li, He; Tzingounis, Anastasios V; Lykotrafitis, George

    2016-01-01

    Axons transmit action potentials with high fidelity and minimal jitter. This unique capability is likely the result of the spatiotemporal arrangement of sodium channels along the axon. Super-resolution microscopy recently revealed that the axon membrane skeleton is structured as a series of actin rings connected by spectrin filaments that are held under entropic tension. Sodium channels also exhibit a periodic distribution pattern, as they bind to ankyrin G, which associates with spectrin. Here, we elucidate the relationship between the axon membrane skeleton structure and the function of the axon. By combining cytoskeletal dynamics and continuum diffusion modeling, we show that spectrin filaments under tension minimize the thermal fluctuations of sodium channels and prevent overlap of neighboring channel trajectories. Importantly, this axon skeletal arrangement allows for a highly reproducible band-like activation of sodium channels leading to coordinated sodium propagation along the axon.

  17. Erythrocytes Membrane Alterations Reflecting Liver Damage in CCl₄-Induced Cirrhotic Rats: The Ameliorative Effect of Naltrexone

    Directory of Open Access Journals (Sweden)

    Fatemeh Sarhadi Kholari

    2016-11-01

    Full Text Available Cirrhosis is the consequence of chronic liver disease. Deleterious effects of oxidative stress on hepatocytes may be reflected in the erythrocyte membrane. Naltrexone (NTX has been shown to attenuate hepatocellular injury in fibrotic animal models. The aim of this study was to investigate the progressive effect of CCl4 on the liver and whether the improvement of liver cirrhosis can be monitored through alterations in the erythrocyte membrane. In this study, 84 male Wistar rats were divided into 4 groups and received reagents (i.p. as follows: 1- CCl₄, 2- NTX + CCl₄, 3- Mineral Oil (M, and 4- NTX + M. After 2, 6 and 8 weeks, the blood and liver tissue samples were collected. Plasma enzyme activities, the content of erythrocyte GSH and some membrane compositions, including protein carbonyl, protein sulfhydryl, and malondialdehyde were assessed. After 6 and 8 weeks, plasma enzyme activities and the content of protein carbonyl were higher in CCl4 group significantly, as compared to other groups (P<0.001. NTX significantly diminished protein carbonyl and plasma enzyme activities (P<0.001. GSH did not change until the 6th week. However, CCl4+NTX increased it significantly as compared to CCl₄ group (P<0.05. Protein sulfhydryl showed changes in NTX+CCl₄ group which indicated a significant increase in protein sulfhydryl content in a 6th week compared to CCl4 group (P<0.05. MDA did not show any significant alteration. CCl₄-induced cirrhosis is accompanied by increased content of oxidative stress markers, especially protein carbonyl of RBC membrane and plasma enzyme activities. This study shows that the progression of liver cirrhosis and the ameliorative effect of NTX can be followed through alterations of these markers.

  18. Lipid domain structure of the plasma membrane revealed by patching of membrane components.

    Science.gov (United States)

    Harder, T; Scheiffele, P; Verkade, P; Simons, K

    1998-05-18

    Lateral assemblies of glycolipids and cholesterol, "rafts," have been implicated to play a role in cellular processes like membrane sorting, signal transduction, and cell adhesion. We studied the structure of raft domains in the plasma membrane of non-polarized cells. Overexpressed plasma membrane markers were evenly distributed in the plasma membrane. We compared the patching behavior of pairs of raft markers (defined by insolubility in Triton X-100) with pairs of raft/non-raft markers. For this purpose we cross-linked glycosyl-phosphatidylinositol (GPI)-anchored proteins placental alkaline phosphatase (PLAP), Thy-1, influenza virus hemagglutinin (HA), and the raft lipid ganglioside GM1 using antibodies and/or cholera toxin. The patches of these raft markers overlapped extensively in BHK cells as well as in Jurkat T-lymphoma cells. Importantly, patches of GPI-anchored PLAP accumulated src-like protein tyrosine kinase fyn, which is thought to be anchored in the cytoplasmic leaflet of raft domains. In contrast patched raft components and patches of transferrin receptor as a non-raft marker were sharply separated. Taken together, our data strongly suggest that coalescence of cross-linked raft elements is mediated by their common lipid environments, whereas separation of raft and non-raft patches is caused by the immiscibility of different lipid phases. This view is supported by the finding that cholesterol depletion abrogated segregation. Our results are consistent with the view that raft domains in the plasma membrane of non-polarized cells are normally small and highly dispersed but that raft size can be modulated by oligomerization of raft components.

  19. Sphingomyelin induces structural alteration in canine parvovirus capsid.

    Science.gov (United States)

    Pakkanen, Kirsi; Karttunen, Jenni; Virtanen, Salla; Vuento, Matti

    2008-03-01

    One of the essential steps in canine parvovirus (CPV) infection, the release from endosomal vesicles, is dominated by interactions between the virus capsid and the endosomal membranes. In this study, the effect of sphingomyelin and phosphatidyl serine on canine parvovirus capsid and on the phospholipase A(2) (PLA(2)) activity of CPV VP1 unique N-terminus was analyzed. Accordingly, a significant (P< or =0.05) shift of tryptophan fluorescence emission peak was detected at pH 5.5 in the presence of sphingomyelin, whereas at pH 7.4 a similar but minor shift was observed. This effect may relate to the exposure of VP1 N-terminus in acidic pH as well as to interactions between sphingomyelin and CPV. When the phenomenon was further characterized using circular dichroism spectroscopy, differences in CPV capsid CD spectra with and without sphingomyelin and phosphatidyl serine were detected, corresponding to data obtained with tryptophan fluorescence. However, when the enzymatic activity of CPV PLA(2) was tested in the presence of sphingomyelin, no significant effect in the function of the enzyme was detected. Thus, the structural changes observed with spectroscopic techniques appear not to manipulate the activity of CPV PLA(2), and may therefore implicate alternative interactions between CPV capsid and sphingomyelin.

  20. Sound absorption by subwavelength membrane structures: A geometric perspective

    Science.gov (United States)

    Yang, Min; Li, Yong; Meng, Chong; Fu, Caixing; Mei, Jun; Yang, Zhiyu; Sheng, Ping

    2015-12-01

    Decorated membranes comprising a thin layer of elastic film with small rigid platelets fixed on top have been found to be efficient absorbers of low-frequency sound. In this work we consider the problem of sound absorption from a perspective aimed at deriving upper bounds under different scenarios, i.e., whether the sound is incident from one side only or from both sides, and whether there is a reflecting surface on the back side of the membrane. By considering the negligible thickness of the membrane, usually on the order of a fraction of one millimeter, we derive a relation showing that the sum of the incoming sound waves' (complex) pressure amplitudes, averaged over the area of the membrane, must be equal to that of the outgoing waves. By using this relation, and without going to any details of the wave solutions, it is shown that the maximum absorption achievable from one-sided incidence is 50%, while the maximum absorption with a back-reflecting surface can reach 100%. The latter was attained by the hybridized resonances. All the results are shown to be in excellent agreement with the experiments. This generalized perspective, when used together with the Green function's formalism, can be useful in gaining insights into the constraints on what are achievable in scatterings and absorption by thin film structures and delineating them.

  1. Structural basis for alginate secretion across the bacterial outer membrane

    Energy Technology Data Exchange (ETDEWEB)

    Whitney, J.C.; Robinson, H.; Hay, I. D.; Li, C.; Eckford, P. D. W.; Amaya, M. F.; Wood, L. F.; Ohman, D. E.; Bear, C. E.; Rehm, B. H.; Howell, P. L.

    2011-08-09

    Pseudomonas aeruginosa is the predominant pathogen associated with chronic lung infection among cystic fibrosis patients. During colonization of the lung, P. aeruginosa converts to a mucoid phenotype characterized by the overproduction of the exopolysaccharide alginate. Secretion of newly synthesized alginate across the outer membrane is believed to occur through the outer membrane protein AlgE. Here we report the 2.3 {angstrom} crystal structure of AlgE, which reveals a monomeric 18-stranded {beta}-barrel characterized by a highly electropositive pore constriction formed by an arginine-rich conduit that likely acts as a selectivity filter for the negatively charged alginate polymer. Interestingly, the pore constriction is occluded on either side by extracellular loop L2 and an unusually long periplasmic loop, T8. In halide efflux assays, deletion of loop T8 ({Delta}T8-AlgE) resulted in a threefold increase in anion flux compared to the wild-type or {Delta}L2-AlgE supporting the idea that AlgE forms a transport pathway through the membrane and suggesting that transport is regulated by T8. This model is further supported by in vivo experiments showing that complementation of an algE deletion mutant with {Delta}T8-AlgE impairs alginate production. Taken together, these studies support a mechanism for exopolysaccharide export across the outer membrane that is distinct from the Wza-mediated translocation observed in canonical capsular polysaccharide export systems.

  2. Structural Basis for Alginate Secretion Across the Bacterial Outer Membrane

    Energy Technology Data Exchange (ETDEWEB)

    J Whitney; I Hay; C Li; P Eckford; H Robinson; M Amaya; L Wood; D Ohman; C Bear; et al.

    2011-12-31

    Pseudomonas aeruginosa is the predominant pathogen associated with chronic lung infection among cystic fibrosis patients. During colonization of the lung, P. aeruginosa converts to a mucoid phenotype characterized by the overproduction of the exopolysaccharide alginate. Secretion of newly synthesized alginate across the outer membrane is believed to occur through the outer membrane protein AlgE. Here we report the 2.3 {angstrom} crystal structure of AlgE, which reveals a monomeric 18-stranded {beta}-barrel characterized by a highly electropositive pore constriction formed by an arginine-rich conduit that likely acts as a selectivity filter for the negatively charged alginate polymer. Interestingly, the pore constriction is occluded on either side by extracellular loop L2 and an unusually long periplasmic loop, T8. In halide efflux assays, deletion of loop T8 ({Delta}T8-AlgE) resulted in a threefold increase in anion flux compared to the wild-type or {Delta}L2-AlgE supporting the idea that AlgE forms a transport pathway through the membrane and suggesting that transport is regulated by T8. This model is further supported by in vivo experiments showing that complementation of an algE deletion mutant with {Delta}T8-AlgE impairs alginate production. Taken together, these studies support a mechanism for exopolysaccharide export across the outer membrane that is distinct from the Wza-mediated translocation observed in canonical capsular polysaccharide export systems.

  3. Membrane binding properties of EBV gp110 C-terminal domain; evidences for structural transition in the membrane environment.

    Science.gov (United States)

    Park, Sung Jean; Seo, Min-Duk; Lee, Suk Kyeong; Lee, Bong Jin

    2008-09-30

    Gp110 of Epstein-Barr virus (EBV) mainly localizes on nuclear/ER membranes and plays a role in the assembly of EBV nucleocapsid. The C-terminal tail domain (gp110 CTD) is essential for the function of gp110 and the nuclear/ER membranes localization of gp110 is ruled by its C-terminal unique nuclear localization signal (NLS), consecutive four arginines. In the present study, the structural properties of gp110 CTD in membrane mimics were investigated using CD, size-exclusion chromatography, and NMR, to elucidate the effect of membrane environment on the structural transition and to compare the structural feature of the protein in the solution state with that of the membrane-bound form. CD and NMR analysis showed that gp110 CTD in a buffer solution appears to adopt a stable folding intermediate which lacks compactness, and a highly helical structure is formed only in membrane environments. The helical content of gp110 CTD was significantly affected by the negative charge as well as the size of membrane mimics. Based on the elution profiles of the size-exclusion chromatography, we found that gp110 CTD intrinsically forms a trimer, revealing that a trimerization region may exist in the C-terminal domain of gp110 like the ectodomain of gp110. The mutation of NLS (RRRR) to RTTR does not affect the overall structure of gp110 CTD in membrane mimics, while the helical propensity in a buffer solution was slightly different between the wild-type and the mutant proteins. This result suggests that not only the helicity induced in membrane environment but also the local structure around NLS may be related to trafficking to the nuclear membrane. More detailed structural difference between the wild-type and the mutant in membrane environment was examined using synthetic two peptides including the wild-type NLS and the mutant NLS.

  4. The biological basis of autism spectrum disorders: evaluation of oxidative stress and erytrocyte membrane alterations

    OpenAIRE

    Ghezzo, Alessandro

    2015-01-01

    This case-control study involved a total of 29 autistic children (Au) aged 6 to 12 years, and 28 gender and age-matched typically developing children (TD). We evaluated a high number of peripheral oxidative stress parameters, erythrocyte and lymphocyte membrane functional features and membrane lipid composition of erythrocyte. Erythrocyte TBARS, Peroxiredoxin II, Protein Carbonyl Groups and urinary HEL and isoprostane levels were elevated in AU (confirming an imbalance of the redox status of...

  5. Structural, chemical surface and transport modifications of regenerated cellulose dense membranes due to low-dose {gamma}-radiation

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez, M.I. [Grupo de Caracterizacion Electrocinetica en Membranas e Interfases, Departamento de Fisica Aplicada I, Facultad de Ciencias, Universidad de Malaga, E-29071 Malaga (Spain); Heredia-Guerrero, J.A., E-mail: jose.alejandro@icmse.csic.es [Instituto de Ciencia de Materiales de Sevilla, Centro Mixto CSIC-Universidad de Sevilla, Avda, Americo Vespuccio 49, 41092 Sevilla (Spain); Galan, P. [Grupo de Caracterizacion Electrocinetica en Membranas e Interfases, Departamento de Fisica Aplicada I, Facultad de Ciencias, Universidad de Malaga, E-29071 Malaga (Spain); Benitez, J.J. [Instituto de Ciencia de Materiales de Sevilla, Centro Mixto CSIC-Universidad de Sevilla, Avda, Americo Vespuccio 49, 41092 Sevilla (Spain); Benavente, J. [Grupo de Caracterizacion Electrocinetica en Membranas e Interfases, Departamento de Fisica Aplicada I, Facultad de Ciencias, Universidad de Malaga, E-29071 Malaga (Spain)

    2011-04-15

    Research highlights: {yields} Low dose {gamma}-radiation causes slight structural, chemical and morphological changes on regenerated cellulose films. {yields} Induced structural changes increase the fragility of irradiated films. {yields} Structural modifications reduce ion permeability of films. - Abstract: Modifications caused in commercial dense regenerated cellulose (RC) flat membranes by low-dose {gamma}-irradiation (average photons energy of 1.23 MeV) are studied. Slight structural, chemical and morphological surface changes due to irradiation in three films with different RC content were determined by ATR-FTIR, XRD, XPS and AFM. Also, the alteration of their mechanical elasticity has been studied. Modification of membrane performance was determined from solute diffusion coefficient and effective membrane fixed charge concentration obtained from NaCl diffusion measurements. Induced structural changes defining new and effective fracture propagation directions are considered to be responsible for the increase of fragility of irradiated RC membranes. The same structural changes are proposed to explain the reduction of the membrane ion permeability through a mechanism involving either ion pathways elongation and/or blocking.

  6. Effect of membrane structure on the action of polyenes: I. Nystatin action in cholesterol- and ergosterol-containing membranes.

    Science.gov (United States)

    Récamier, K S; Hernández-Gómez, A; González-Damián, J; Ortega-Blake, I

    2010-09-01

    A detailed and thorough characterization of nystatin-induced permeability on lipid bilayers of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)-containing ergosterol or cholesterol is presented. The results show that the same collection of transmembrane pores appears in membranes containing either sterol. The concentration range for the appearance of these pores is sterol-dependent. Another mechanism of action, membrane disruption, is also observed in ergosterol-POPC membranes. The greater potency of nystatin present in ergosterol-containing membranes cannot be explained simply by the longer opening times of its pores, as has been suggested; it is also due to an increased number of events in these membranes. The present results and those of a companion paper lead us to propose that membrane structure is the determining factor for drug selectivity in membranes with different sterols.

  7. Modulating membrane composition alters free fatty acid tolerance in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Rebecca M Lennen

    Full Text Available Microbial synthesis of free fatty acids (FFA is a promising strategy for converting renewable sugars to advanced biofuels and oleochemicals. Unfortunately, FFA production negatively impacts membrane integrity and cell viability in Escherichia coli, the dominant host in which FFA production has been studied. These negative effects provide a selective pressure against FFA production that could lead to genetic instability at industrial scale. In prior work, an engineered E. coli strain harboring an expression plasmid for the Umbellularia californica acyl-acyl carrier protein (ACP thioesterase was shown to have highly elevated levels of unsaturated fatty acids in the cell membrane. The change in membrane content was hypothesized to be one underlying cause of the negative physiological effects associated with FFA production. In this work, a connection between the regulator of unsaturated fatty acid biosynthesis in E. coli, FabR, thioesterase expression, and unsaturated membrane content was established. A strategy for restoring normal membrane saturation levels and increasing tolerance towards endogenous production of FFAs was implemented by modulating acyl-ACP pools with a second thioesterase (from Geobacillus sp. Y412MC10 that primarily targets medium chain length, unsaturated acyl-ACPs. The strategy succeeded in restoring membrane content and improving viability in FFA producing E. coli while maintaining FFA titers. However, the restored fitness did not increase FFA productivity, indicating the existence of additional metabolic or regulatory barriers.

  8. Structural and dynamical insights into the membrane-bound α-synuclein.

    Directory of Open Access Journals (Sweden)

    Neha Jain

    Full Text Available Membrane-induced disorder-to-helix transition of α-synuclein, a presynaptic protein, has been implicated in a number of important neuronal functions as well as in the etiology of Parkinson's disease. In order to obtain structural insights of membrane-bound α-synuclein at the residue-specific resolution, we took advantage of the fact that the protein is devoid of tryptophan and incorporated single tryptophan at various residue positions along the sequence. These tryptophans were used as site-specific markers to characterize the structural and dynamical aspects of α-synuclein on the negatively charged small unilamellar lipid vesicles. An array of site-specific fluorescence readouts, such as the spectral-shift, quenching efficiency and anisotropy, allowed us to discern various features of the conformational rearrangements occurring at different locations of α-synuclein on the lipid membrane. In order to define the spatial localization of various regions of the protein near the membrane surface, we utilized a unique and sensitive indicator, namely, red-edge excitation shift (REES, which originates when a fluorophore is located in a highly ordered micro-environment. The extent of REES observed at different residue positions allowed us to directly identify the residues that are localized at the membrane-water interface comprising a thin (∼ 15 Å layer of motionally restrained water molecules and enabled us to construct a dynamic hydration map of the protein. The combination of site-specific fluorescence readouts allowed us to unravel the intriguing molecular details of α-synuclein on the lipid membrane in a direct model-free fashion. Additionally, the combination of methodologies described here are capable of distinguishing subtle but important structural alterations of α-synuclein bound to different negatively charged lipids with varied head-group chemistry. We believe that the structural modulations of α-synuclein on the membrane could

  9. Structure, composition, and strength of nitrifying membrane-aerated biofilms

    DEFF Research Database (Denmark)

    Pellicer i Nàcher, Carles; Smets, Barth F.

    2014-01-01

    Membrane-aerated biofilm reactors (MABRs) are a novel technology based on the growth of biofilms on oxygen-permeable membranes. Hereby, MABRs combine all the advantages of biofilm growth with a more flexible and efficient control of the oxygen load. In the present work, flow cell operation...... to achieve full nitrification revealed a significantly different structure of nitrifying MABR biofilms with respect to its co-diffusion counterparts reported in the literature (up to now assumed to have similar properties). Different levels of shear stress and oxygen loadings during MABR operation also...... affected these biofilm parameters. Furthermore, reactor operation at higher oxygen loads resulted in an increase of the biofilm cohesiveness, which depended on the EPS mass in the biofilms and the type of stress applied (more cohesive against normal than shear stresses). The EPS in the strongest biofilms...

  10. The Molecular Structure of Human Red Blood Cell Membranes from Highly Oriented, Solid Supported Multi-Lamellar Membranes

    Science.gov (United States)

    Himbert, Sebastian; Alsop, Richard J.; Rose, Markus; Hertz, Laura; Dhaliwal, Alexander; Moran-Mirabal, Jose M.; Verschoor, Chris P.; Bowdish, Dawn M. E.; Kaestner, Lars; Wagner, Christian; Rheinstädter, Maikel C.

    2017-01-01

    We prepared highly oriented, multi-lamellar stacks of human red blood cell (RBC) membranes applied on silicon wafers. RBC ghosts were prepared by hemolysis and applied onto functionalized silicon chips and annealed into multi-lamellar RBC membranes. High resolution X-ray diffraction was used to determine the molecular structure of the stacked membranes. We present direct experimental evidence that these RBC membranes consist of nanometer sized domains of integral coiled-coil peptides, as well as liquid ordered (lo) and liquid disordered (ld) lipids. Lamellar spacings, membrane and hydration water layer thicknesses, areas per lipid tail and domain sizes were determined. The common drug aspirin was added to the RBC membranes and found to interact with RBC membranes and preferably partition in the head group region of the lo domain leading to a fluidification of the membranes, i.e., a thinning of the bilayers and an increase in lipid tail spacing. Our results further support current models of RBC membranes as patchy structures and provide unprecedented structural details of the molecular organization in the different domains.

  11. NMR structure of the integral membrane protein OmpX.

    Science.gov (United States)

    Fernández, César; Hilty, Christian; Wider, Gerhard; Güntert, Peter; Wüthrich, Kurt

    2004-03-05

    The structure of the integral membrane protein OmpX from Escherichia coli reconstituted in 60 kDa DHPC micelles (OmpX/DHPC) was calculated from 526 NOE upper limit distance constraints. The structure determination was based on complete sequence-specific assignments for the amide protons and the Val, Leu, and Ile(delta1) methyl groups in OmpX, which were selectively protonated on a perdeuterated background. The solution structure of OmpX in the DHPC micelles consists of a well-defined, eight-stranded antiparallel beta-barrel, with successive pairs of beta-strands connected by mobile loops. Several long-range NOEs observed outside of the transmembrane barrel characterize an extension of a four-stranded beta-sheet beyond the height of the barrel. This protruding beta-sheet is believed to be involved in intermolecular interactions responsible for the biological functions of OmpX. The present approach for de novo structure determination should be quite widely applicable to membrane proteins reconstituted in mixed micelles with overall molecular masses up to about 100 kDa, and may also provide a platform for additional functional studies.

  12. Antimicrobial Peptide Structure and Mechanism of Action: A Focus on the Role of Membrane Structure.

    Science.gov (United States)

    Lee, Tzong-Hsien; Hall, Kristopher N; Aguilar, Marie-Isabel

    2016-01-01

    Antimicrobial peptides (AMPs) are showing increasing promise as potential candidate antibacterial drugs in the face of the rapidly emerging bacterial resistance to conventional antibiotics in recent years. The target of these peptides is the microbial membrane and there are numerous models to explain their mechanism of action ranging from pore formation to general membrane disruption. The interaction between the AMP and the target membrane is critical to the specificity and activity of these peptides. However, a precise understanding of the relationship between antimicrobial peptide structure and their cytolytic function in a range of organisms is still lacking. This is a result of the complex nature of the interactions of AMPs with the cell membrane, the mechanism of which can vary considerably between different classes of antimicrobia peptides. A wide range of biophysical techniques have been used to study the influence of a number of peptide and membrane properties on the cytolytic activity of these peptides in model membrane systems. Central to characterisation of this interaction is a quantitative analysis of the binding of peptide to the membrane and the coherent dynamic changes in membrane structure. Recently, dual polarization interferometry has been used to perform an in depth analysis of antimicrobial peptide induced membrane perturbation and with new mass-structure co-fitting kinetic analysis have allowed a real-time label free analysis of binding affinity and kinetics. We review these studies which describe multi-step mechanisms which are adopted by various AMPs in nature and may advance our approach to the development of a new generation of effective antimicrobial therapeutics.

  13. Chemical crosslinking and mass spectrometry studies of the structure and dynamics of membrane proteins and receptors.

    Energy Technology Data Exchange (ETDEWEB)

    Haskins, William E.; Leavell, Michael D.; Lane, Pamela; Jacobsen, Richard B.; Hong, Joohee; Ayson, Marites J.; Wood, Nichole L.; Schoeniger, Joseph S.; Kruppa, Gary Hermann; Sale, Kenneth L.; Young, Malin M.; Novak, Petr

    2005-03-01

    Membrane proteins make up a diverse and important subset of proteins for which structural information is limited. In this study, chemical cross-linking and mass spectrometry were used to explore the structure of the G-protein-coupled photoreceptor bovine rhodopsin in the dark-state conformation. All experiments were performed in rod outer segment membranes using amino acid 'handles' in the native protein sequence and thus minimizing perturbations to the native protein structure. Cysteine and lysine residues were covalently cross-linked using commercially available reagents with a range of linker arm lengths. Following chemical digestion of cross-linked protein, cross-linked peptides were identified by accurate mass measurement using liquid chromatography-fourier transform mass spectrometry and an automated data analysis pipeline. Assignments were confirmed and, if necessary, resolved, by tandem MS. The relative reactivity of lysine residues participating in cross-links was evaluated by labeling with NHS-esters. A distinct pattern of cross-link formation within the C-terminal domain, and between loop I and the C-terminal domain, emerged. Theoretical distances based on cross-linking were compared to inter-atomic distances determined from the energy-minimized X-ray crystal structure and Monte Carlo conformational search procedures. In general, the observed cross-links can be explained by re-positioning participating side-chains without significantly altering backbone structure. One exception, between C3 16 and K325, requires backbone motion to bring the reactive atoms into sufficient proximity for cross-linking. Evidence from other studies suggests that residues around K325 for a region of high backbone mobility. These findings show that cross-linking studies can provide insight into the structural dynamics of membrane proteins in their native environment.

  14. beta-Sitosterol inhibits HT-29 human colon cancer cell growth and alters membrane lipids.

    Science.gov (United States)

    Awad, A B; Chen, Y C; Fink, C S; Hennessey, T

    1996-01-01

    The purpose of the present study was to examine the effect of beta-sitosterol, the main dietary phytosterol on the growth of HT-29 cells, a human colon cancer cell line. In addition, the incorporation of this phytosterol into cellular membranes and how this might influence the lipid composition of the membranes were investigated. Tumor cells were grown in DMEM containing 10% FBS and supplemented with sterols (cholesterol or beta-sitosterol) at final concentrations up to 16 microM. The sterols were supplied to the media in the form of sterol cyclodextrin complexes. The cyclodextrin used was 2-hydroxypropyl-beta-cyclodextrin. The sterol to cyclodextrin molar ratio was maintained at 1:300. The study indicated that 8 and 16 microM beta-sitosterol were effective at cel growth inhibition as compared to cholesterol or to the control (no sterol supplementation). After supplementation with 16 microM beta-sitosterol for 9 days, cell growth was only one-third that of cells supplemented with equimolar concentration of cholesterol. No effect was observed on total membrane phospholipid concentration. At 16 microM beta-sitosterol supplementation, membrane cholesterol was reduced by 26%. Cholesterol supplementation resulted in a significant increase in the cholesterol/phospholipid ratio compared to either beta-sitosterol supplemented cells or controls. There was a 50% reduction in membrane sphingomyelin (SM) of cells grown in 16 microM beta-sitosterol. Additional changes were observed in the fatty acid composition of minor phospholipids of beta-sitosterol supplemented cells, such as SM, phosphatidylserine (PS), and phosphatidylinositol (PI). Only in the case of PI, was there an effect of these fatty acid changes on the unsaturation index, beta-sitosterol incorporation resulted in an increase in the U.I. It is possible that the observed growth inhibition by beta-sitosterol may be mediated through the influence of signal transduction pathways that involve membrane phospholipids.

  15. Vibrational and structural relaxation of hydrated protons in Nafion membranes

    Science.gov (United States)

    Liu, Liyuan; Lotze, Stephan; Bakker, Huib J.

    2017-02-01

    We study the vibrational dynamics of the bending mode at 1730 cm-1 of proton hydration structures in Nafion membranes with polarization-resolved infrared (IR) pump-probe spectroscopy. The bending mode relaxes to an intermediate state with a time constant T1 of 170 ± 30 fs. Subsequently, the dissipated energy equilibrates with Teq of 1.5 ± 0.2 ps. The transient absorption signals show a long-living anisotropy, which indicates that for part of the excited proton hydration clusters the vibrational energy dissipation results in a local structural change, e.g. the breaking of a local hydrogen bond. This structural relaxation relaxes with a time constant of 38 ± 4 ps.

  16. Beyond Membrane Protein Structure: Drug Discovery, Dynamics and Difficulties.

    Science.gov (United States)

    Biggin, Philip C; Aldeghi, Matteo; Bodkin, Michael J; Heifetz, Alexander

    2016-01-01

    Most of the previous content of this book has focused on obtaining the structures of membrane proteins. In this chapter we explore how those structures can be further used in two key ways. The first is their use in structure based drug design (SBDD) and the second is how they can be used to extend our understanding of their functional activity via the use of molecular dynamics. Both aspects now heavily rely on computations. This area is vast, and alas, too large to consider in depth in a single book chapter. Thus where appropriate we have referred the reader to recent reviews for deeper assessment of the field. We discuss progress via the use of examples from two main drug target areas; G-protein coupled receptors (GPCRs) and ion channels. We end with a discussion of some of the main challenges in the area.

  17. Electrical Dissipative Structures in Membrane-Coupled Compartment Systems

    Science.gov (United States)

    Feudel, U.; Feistel, R.; Ebeling, W.

    Reaction-diffusion systems with charged particles are studied. Conditions for the arising of electrical dissipative structures in a compartment system consisting of two boxes separated by a membrane are derived. The appearance of a polar dissipative structure is proved for a simple capacitor model in combination with a simple second order chemical kinetics which leads to an analytically solvable problem. Electrical dissipative structures can in principle be considered as non equilibrium electrical batteries. The theoretical efficiency of such batteries is estimated.Translated AbstractElektrische Dissipative Strukturen in Membrangekoppelten SystemenEs werden Reaktions-Diffusionssysteme mit geladenen Teilchen studiert. Bedingungen für die Entstehung elektrischer dissipativer Strukturen in einem Kompartment-System, bestehend aus zwei durch eine Membran getrennten Zellen werden abgeleitet. Die Entstehung einer polaren dissipativen Struktur wird für ein einfaches Kondensatorenmodell in Kombination mit einer einfachen chemischen Kinetik, das analytische Lösbarkeit gestattet, nachgewiesen. Elektrische dissipative Strukturen können im Prinzip als elektrische Batterien fern von Gleichgewicht betrachtet werden. Der theoretische Wirkungsgrad einer solchen Batterie wird berechnet.

  18. Zinc ions and alkaline pH alter the phosphorylation state of human erythrocyte membrane proteins

    Energy Technology Data Exchange (ETDEWEB)

    Fennell, R.L. Jr.

    1988-01-01

    Since the phosphorylation state of the red cell membrane proteins in vitro is likely to be regulated by phosphorylation and dephosphorylation, this research was carried out to investigate the possible role of membrane-bound phosphatase activities. These studies were conducted with red blood cell ghosts and IOVs from normal individuals and from an individual with hereditary spherocytosis. In vitro phosphorylation with ({gamma}-{sup 32}P) ATP was conducted in the presence and the absence of Zn{sup ++}, or erythrocyte ghosts and IOVs were pretreated for 30 minutes at 37{degree}C and pH 7-11 in the presence and the absence of calf intestine alkaline phosphatase. The resulting phosphoproteins were analyzed by SDS-polyacrylamide gel electrophoresis, stained with Coomassie blue, and fluorographed. In the presence of Zn{sup ++}, the red blood ghosts, with or without pretreatment, demonstrated enhanced phosphorylation of membrane proteins, including band 4.2. Preincubation at pH 10 in the presence of absence of exogenous phosphatase further stimulates phosphorylation of these proteins. Under similar conditions, the erythrocyte membranes also demonstrated the ability to hydrolyze p-nitrophenyl phosphate and to remove {sup 32}P from red blood cell phosphoproteins.

  19. Raft protein clustering alters N-Ras membrane interactions and activation pattern

    NARCIS (Netherlands)

    Eisenberg, Sharon; Beckett, Alison J; Prior, Ian A; Dekker, Frank J; Hedberg, Christian; Waldmann, Herbert; Ehrlich, Marcelo; Henis, Yoav I; Dekker, Frank

    2011-01-01

    The trafficking, membrane localization, and lipid raft association of Ras proteins, which are crucial oncogenic mediators, dictate their isoform-specific biological responses. Accordingly, their spatiotemporal dynamics are tightly regulated. While extensively studied for H- and K-Ras, such informati

  20. Plasma membrane lipid alterations associated with cold acclimation of winter rye seedlings (Secale cereale L. cv Puma)

    Energy Technology Data Exchange (ETDEWEB)

    Lynch, D.V.; Steponkus, P.L. (Cornell Univ., Ithaca, NY (USA))

    1987-01-01

    Highly enriched plasma membrane fractions were isolated from leaves of nonacclimated (NA) and acclimated (ACC) rye (Secale cereale L. cv Puma) seedlings. Collectively, free sterols, steryl glucosides, and acylated steryl glucosides constituted > 50 mole % of the total lipid in both NA and ACC plasma membrane fractions. Glucocerebrosides containing hydroxy fatty acids constituted the major glycolipid class of the plasma membrane, accounting for 16 mole % of the total lipid. Phospholipids, primarily phosphatidylcholine and phosphatidylethanolamine with lesser amounts of phosphatidylglycerol, phosphatidic acid, phosphatidylserine, and phosphatidylinositol, comprised only 32 mole% of the total lipid in NA samples. Following cold acclimation, free sterols increased from 33 to 44 mole %, while steryl glucosides and acylated steryl glucosides decreased from 15 to 6 mole % and 4 to 1 mole %, respectively. Sterol analyses of these lipid classes demonstrated that free {beta}-sitosterol increased from 21 to 32 mole % (accounting for the increase in free sterols as a class) at the expense of sterol derivatives containing {beta}-sitosterol. Glucocerebrosides decreased from 16 to 7 mole % of the total lipid following cold acclimation. In addition, the relative proportions of associated hydroxy fatty acids, including 22:0 (h), 24:0 (h), 22:1 (h), and 24:1 (h) were altered. The phospholipid content of the plasma membrane fraction increased to 42 mole % of the total lipid following cold acclimation. Although the relative proportions of the individual phospholipids did not change appreciably after cold acclimation, there were substantial differences in the molecular species. Di-unsaturated molecular species of phosphatidylcholine and phosphatidylethanolamine increased following acclimation. These results demonstrate that cold acclimation results in substantial changes in the lipid composition of the plasma membrane.

  1. Membraner

    DEFF Research Database (Denmark)

    Bach, Finn

    2009-01-01

    Notatet giver en kort introduktion til den statiske virkemåde af membraner og membrankonstruktioner......Notatet giver en kort introduktion til den statiske virkemåde af membraner og membrankonstruktioner...

  2. Electron microscopic evidence of Phosfon D-induced alterations in the membranes of the dermatophytic fungus Microsporum cookei.

    Science.gov (United States)

    Vannini, G L; Fasulo, M P; Dall'Olio, G

    1979-01-01

    The dermatophytic fungus Microsporum cookei was cultivated for 24 h in the presence of subinhibitory and inhibitory concentrations (50 and 100 micrograms/ml) of Phosfon D, a growth retardant for higher plants also affecting fungal development, and its toxic effects were examined at the ultrastructural level. In both treatments, Phosfon D attacked the membranes, whose structural integrity was clearly compromised with damage of particular severity to mitochondria, nuclei and endoplasmic reticulum. In the instance of fungal growth suppression, the compound also caused plasmolytic and autolytic phenomena, sometimes accompanied by plasma membrane breakages. The submicroscopic effects observed confirm that Prosfon D is an antifungal compound which displays its toxic effects in the area of lipid metabolism, probably preventing the synthesis of fundamental components of the cellular membranes, such as unsaturated fatty acids and sterols.

  3. Alterations in composition of sterols and in properties of erythrocyte membranes in rats with Shvetz experimental leukosis and after UV irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Palamarchyuk, V.I.; Trikash, I.O. (AN Ukrainskoj SSR, Kiev. Inst. Biokhimii)

    1983-05-01

    Sterol composition of erythrocyte membrane is studied in experimental Schwetz leukosis. Interconnections of alteration in sterol composition and membrane properties are investigated, as well as the effect of UV-radiation on the alteration of sterol composition of erythrocyte membrane and lifetime of animals With leukosis. The effect of UV-radiation on survival of the leukosis animals has been studied which showed that irradiation of rats in the dose of 8 mWt/min/cm/sup 2/ for 12 days increases the lifetime of animals by several days, i.e. increases resistance of animals to leukosis. In the case of short-time UV-radiation of rats the cholesterine amount in erythrocyte membranes increases by 9% as compared with the norm, simultaneously, other substances appear. Acidic resistance of erythrocytes of irradiated animals also increases. The supposition is made that alterations promote the increase of organism resistance to leukosis.

  4. The role of a conserved membrane proximal cysteine in altering αPS2CβPS integrin diffusion

    Science.gov (United States)

    Syed, Aleem; Arora, Neha; Bunch, Thomas A.; Smith, Emily A.

    2016-12-01

    Cysteine residues (Cys) in the membrane proximal region are common post-translational modification (PTM) sites in transmembrane proteins. Herein, the effects of a highly conserved membrane proximal α-subunit Cys1368 on the diffusion properties of αPS2CβPS integrins are reported. Sequence alignment shows that this cysteine is palmitoylated in human α3 and α6 integrin subunits. Replacing Cys1368 in wild-type integrins with valine (Val1368) putatively blocks a PTM site and alters integrins’ ligand binding and diffusion characteristics. Both fluorescence recovery after photobleaching (FRAP) and single particle tracking (SPT) diffusion measurements show Val1368 integrins are more mobile compared to wild-type integrins. Approximately 33% and 8% more Val1368 integrins are mobile as measured by FRAP and SPT, respectively. The mobile Val1368 integrins also exhibit less time-dependent diffusion, as measured by FRAP. Tandem mass spectrometry data suggest that Cys1368 contains a redox or palmitoylation PTM in αPS2CβPS integrins. This membrane proximal Cys may play an important role in the diffusion of other alpha subunits that contain this conserved residue.

  5. Low temperature alters plasma membrane lipid composition and ATPase activity of pineapple fruit during blackheart development.

    Science.gov (United States)

    Zhou, Yuchan; Pan, Xiaoping; Qu, Hongxia; Underhill, Steven J R

    2014-02-01

    Plasma membrane (PM) plays central role in triggering primary responses to chilling injury and sustaining cellular homeostasis. Characterising response of membrane lipids to low temperature can provide important information for identifying early causal factors contributing to chilling injury. To this end, PM lipid composition and ATPase activity were assessed in pineapple fruit (Ananas comosus) in relation to the effect of low temperature on the development of blackheart, a form of chilling injury. Chilling temperature at 10 °C induced blackheart development in concurrence with increase in electrolyte leakage. PM ATPase activity was decreased after 1 week at low temperature, followed by a further decrease after 2 weeks. The enzyme activity was not changed during 25 °C storage. Loss of total PM phospholipids was found during postharvest senescence, but more reduction was shown from storage at 10 °C. Phosphatidylcholine and phosphatidylethanolamine were the predominant PM phospholipid species. Low temperature increased the level of phosphatidic acid but decreased the level of phosphatidylinositol. Both phospholipid species were not changed during storage at 25 °C. Postharvest storage at both temperatures decreased the levels of C18:3 and C16:1, and increased level of C18:1. Low temperature decreased the level of C18:2 and increased the level of C14:0. Exogenous application of phosphatidic acid was found to inhibit the PM ATPase activity of pineapple fruit in vitro. Modification of membrane lipid composition and its effect on the functional property of plasma membrane at low temperature were discussed in correlation with their roles in blackheart development of pineapple fruit.

  6. Charged porous membrane structures for separation of biomolecules

    NARCIS (Netherlands)

    Kopec, Karina Katarzyna

    2011-01-01

    Thesis presents various membrane techniques for biomolecules separation. New charged membranes and new methods to introduce charge into the membranes are demonstrated. All chapters present characterization of the hollow fiber membranes produced via the immersion precipitation dry-wet spinning. Apart

  7. Modelling and Fabrication of Micro-SOFC Membrane Structure

    Directory of Open Access Journals (Sweden)

    Brigita ABAKEVIČIENĖ

    2014-06-01

    Full Text Available Fabrication process of micro-SOFC membrane structure using the bulk micromachining of silicon technique with SiO2 and Si3N4 sacrificial layers is presented in this study. The process involves back side photolithography, magnetron sputtering of platinum thin films, thermal evaporation of YSZ electrolyte, deep reactive ion etching of silicon, and, finally, release of free-standing membrane using CF4/O2 plasma etching.X-ray analysis shows the cubic phase of YSZ electrolyte and platinum electrodes. Modelling of normal stress distribution in the micro-SOFC structure with the Si3N4 sacrificial layer shows that at high temperatures the substrate expands less than the coating, causing tensile stresses in the substrate area next to the coating and compressive stresses in the coating, as the substrate material has a lower coefficient of thermal expansion than the layered Pt/YSZ/Pt coating. DOI: http://dx.doi.org/10.5755/j01.ms.20.2.5585

  8. Structural Alterations of the Glomerular Wall And Vessels in Early Stages of Diabetes Mellitus: Light and Transmission Electron Microscopic Study

    Directory of Open Access Journals (Sweden)

    Dkhil MA

    2007-01-01

    Full Text Available Objective: The capillary changes at the initial stage of diabetes may show an angioarchitecture clearly different from those of later stages and,/or very severe glomerular change. However, the onset of alterations in the early phases is unclear. This study attempts to determine the functional and structural alterations of the glomerular wall and vesicles in the early stage of diabetes.Material and Methods: Twenty-five adult rats were used in this study. They were divided into two groups: the first group of five was used as a control .The second group of 20 (the experimental group was injected intraperitoneally by a single dose of streptozotocin to induce hyperglycemia. Rats were sacrificed after ten days, two months, and four months.Five rats at two months of age with hyperglycemia were treated with insulin for eight weeks. Renal tissues were prepared by routine technique for light and transmission electron microscopic evaluation. Results: By light microscopy after ten days of induced hyperglycemia, there were no structural modifications detected either in renal glomerular fine vessels or in the glomerular basement membrane of the glomerular capillaries. After two months, there was a moderate glomerular enlargement and dilatation of glomerular capillaries, afferent, and efferent arterioles. After four months, glomerular basement membrane thickening was the only structural alteration observed. Recovery of the glomerular alterations was observed after two months of treatment with insulin. Conclusion: In early stages of diabetes mellitus in rats, there was an increase in the diameter of glomerular vessels. In later stages of the disease, the reverse was seen, but insulin treatment had a positive role in reversing these changes in the study subjects.

  9. Alterations in nuclear structure promote lupus autoimmunity in a mouse model

    Directory of Open Access Journals (Sweden)

    Namrata Singh

    2016-08-01

    Full Text Available Systemic lupus erythematosus (SLE is an autoimmune disorder characterized by the development of autoantibodies that recognize components of the cell nucleus. The vast majority of lupus research has focused on either the contributions of immune cell dysfunction or the genetics of the disease. Because granulocytes isolated from human SLE patients had alterations in neutrophil nuclear morphology that resembled the Pelger–Huet anomaly, and had prominent mis-splicing of mRNA encoding the nuclear membrane protein lamin B receptor (LBR, consistent with their Pelger–Huet-like nuclear morphology, we used a novel mouse model system to test the hypothesis that a disruption in the structure of the nucleus itself also contributes to the development of lupus autoimmunity. The lupus-prone mouse strain New Zealand White (NZW was crossed with c57Bl/6 mice harboring a heterozygous autosomal dominant mutation in Lbr (B6.Lbric/+, and the (NZW×B6.LbricF1 offspring were evaluated for induction of lupus autoimmunity. Only female (NZW×B6.LbricF1 mice developed lupus autoimmunity, which included splenomegaly, kidney damage and autoantibodies. Kidney damage was accompanied by immune complex deposition, and perivascular and tubule infiltration of mononuclear cells. The titers of anti-chromatin antibodies exceeded those of aged female MRL-Faslpr mice, and were predominantly of the IgG2 subclasses. The anti-nuclear antibody staining profile of female (NZW×B6.LbricF1 sera was complex, and consisted of an anti-nuclear membrane reactivity that colocalized with the A-type lamina, in combination with a homogeneous pattern that was related to the recognition of histones with covalent modifications that are associated with gene activation. An anti-neutrophil IgM recognizing calreticulin, but not myeloperoxidase (MPO or proteinase 3 (PR3, was also identified. Thus, alterations in nuclear structure contribute to lupus autoimmunity when expressed in the context of a lupus

  10. Alterations in nuclear structure promote lupus autoimmunity in a mouse model

    Science.gov (United States)

    Singh, Namrata; Johnstone, Duncan B.; Martin, Kayla A.; Tempera, Italo; Kaplan, Mariana J.

    2016-01-01

    ABSTRACT Systemic lupus erythematosus (SLE) is an autoimmune disorder characterized by the development of autoantibodies that recognize components of the cell nucleus. The vast majority of lupus research has focused on either the contributions of immune cell dysfunction or the genetics of the disease. Because granulocytes isolated from human SLE patients had alterations in neutrophil nuclear morphology that resembled the Pelger–Huet anomaly, and had prominent mis-splicing of mRNA encoding the nuclear membrane protein lamin B receptor (LBR), consistent with their Pelger–Huet-like nuclear morphology, we used a novel mouse model system to test the hypothesis that a disruption in the structure of the nucleus itself also contributes to the development of lupus autoimmunity. The lupus-prone mouse strain New Zealand White (NZW) was crossed with c57Bl/6 mice harboring a heterozygous autosomal dominant mutation in Lbr (B6.Lbric/+), and the (NZW×B6.Lbric)F1 offspring were evaluated for induction of lupus autoimmunity. Only female (NZW×B6.Lbric)F1 mice developed lupus autoimmunity, which included splenomegaly, kidney damage and autoantibodies. Kidney damage was accompanied by immune complex deposition, and perivascular and tubule infiltration of mononuclear cells. The titers of anti-chromatin antibodies exceeded those of aged female MRL-Faslpr mice, and were predominantly of the IgG2 subclasses. The anti-nuclear antibody staining profile of female (NZW×B6.Lbric)F1 sera was complex, and consisted of an anti-nuclear membrane reactivity that colocalized with the A-type lamina, in combination with a homogeneous pattern that was related to the recognition of histones with covalent modifications that are associated with gene activation. An anti-neutrophil IgM recognizing calreticulin, but not myeloperoxidase (MPO) or proteinase 3 (PR3), was also identified. Thus, alterations in nuclear structure contribute to lupus autoimmunity when expressed in the context of a lupus

  11. Alterations in T-tubule and dyad structure in heart disease: challenges and opportunities for computational analyses.

    Science.gov (United States)

    Poláková, Eva; Sobie, Eric A

    2013-05-01

    Compelling recent experimental results make clear that sub-cellular structures are altered in ventricular myocytes during the development of heart failure, in both human samples and diverse experimental models. These alterations can include, but are not limited to, changes in the clusters of sarcoplasmic reticulum (SR) Ca(2+)-release channels, ryanodine receptors, and changes in the average distance between the cell membrane and ryanodine receptor clusters. In this review, we discuss the potential consequences of these structural alterations on the triggering of SR Ca(2+) release during excitation-contraction coupling. In particular, we describe how mathematical models of local SR Ca(2+) release can be used to predict functional changes resulting from diverse modifications that occur in disease states. We review recent studies that have used simulations to understand the consequences of sub-cellular structural changes, and we discuss modifications that will allow for future modelling studies to address unresolved questions. We conclude with a discussion of improvements in both experimental and mathematical modelling techniques that will be required to provide a stronger quantitative understanding of the functional consequences of changes in sub-cellular structure in heart disease.

  12. Correlations of Flow Structure and Particle Deposition with Structural Alterations in Severe Asthmatic Lungs

    Science.gov (United States)

    Choi, Sanghun; Miyawaki, Shinjiro; Choi, Jiwoong; Hoffman, Eric A.; Wenzel, Sally; Lin, Ching-Long

    2014-11-01

    Severe asthmatics are characterized by alterations of bifurcation angle, hydraulic diameter, circularity of the airways, and local shift of air-volume functional change. The characteristics altered against healthy human subjects can affect flow structure and particle deposition. A large-eddy-simulation (LES) model for transitional and turbulent flows is utilized to study flow characteristics and particle deposition with representative healthy and severe asthmatic lungs. For the subject-specific boundary condition, local air-volume changes are derived with two computed tomography images at inspiration and expiration. Particle transport simulations are performed on LES-predicted flow fields. In severe asthmatics, the elevated air-volume changes of apical lung regions affect the increased particle distribution toward upper lobes, especially for small particles. The constricted airways are significantly correlated with high wall shear stress, leading to the increased pressure drop and particle deposition. The structural alterations of bifurcation angle, circularity and hydraulic diameter in severe asthmatics are associated with the increase of particle deposition, wall shear stress and wall thickness. NIH Grants: U01-HL114494, R01-HL094315 and S10-RR022421. Computer time: XSEDE.

  13. Alteration of membrane lipid biophysical properties and resistance of human lung adenocarcinoma A549 cells to cisplatin

    Institute of Scientific and Technical Information of China (English)

    LIANG; Xingjie; (

    2001-01-01

    [1]Simon, S. M., Schindler, M., Cell biological mechanisms of multidrug resistance in tumors, Proc. Natl. Acad. Sci. USA, 1994, 91: 3497.[2]Ambudkar, S. V., Dey, S., Hrycyna, C. A. et al., Biochemical, cellular, and pharmacological aspects of the multidrug trans-porter, Annu. Rev. Pharmacol. Toxicol., 1999, 39: 361.[3]Dudeja, P. K., Anderson, K. M., Harris, J. S. et al., Reversal of multidrug resistance phenotype by surfactants: Relationship to membrane lipid fluidity, Arch. Biochem. Biophys., 1995, 319 (1): 8309.[4]Collins, J. M., Scott, R. B., Grogan, W. M., Plasma membrane fluidity gradients of human peripheral blood leukocytes, J. Cell Physiol., 1990, 144: 42.[5]Collins, J. M., Dominey, R. N., Grogan, W. M., Shape of the fluidity gradient in the plasma membrane of living Hela cells, J. Lipid Res., 1990, 31: 261.[6]Ashman, R. F., Peckham, D., Alhasan, S. et al., Membrane unpacking and the rapid disposal of apoptotic cells, Immunol. Lett., 1995, 48(3): 159.[7]Sentjurc, M., Zorec, M., Cemazar, M. et al., Effect of vinblastine on cell membrane fluidity in vinblastine-sensitive and -resistant HeLa cells, Cancer Lett., 1998, 130(1-2):183.[8]Regev, R., Assaraf, Y. G., Eytan, G. D. et al., Membrane fluidization by ether, other anesthetics, and certain agents abolish-es P-glycoprotein ATPase activity and modulates efflux from multidrug-resistant cells, Eur. J. Biochem., 1999, 259(1-2): 18.[9]Robert, A. S., Mariamme, S., Katherine, L. S., Altered lipid packing identifies apoptotic thymocytes, Immunol. Lett., 1993, 36: 283.[10] Lagerberg, J. W., Kallen, K. J., Haest, C. W. et al., Factors affecting the amount and the mode of merocyanine 540 binding to the membrane of human erythrocytes, Biochim. Biophys. Acta, 1995, 1235(2): 428.[11] Stillwell, W., Wassall, S. R., Dumaual, A. C. et al., Use of merocyanine (MC540) in quantifying lipid domains and pack-ing in phospholipid vesicles and tumor cells, Biochem. Biophys. Acta, 1993

  14. Heat Denaturation of Protein Structures and Chlorophyll States in PSII Membranes

    Institute of Scientific and Technical Information of China (English)

    李冬海; 阮翔; 许强; 王可玢; 公衍道; 匡廷云; 赵南明

    2002-01-01

    Heat denaturation is an important technique in the study of the structure and function of photosynthetic proteins. Heat denaturation of photosystem II (PSII) membrane was studied using circular dichroism (CD) spectroscopy, differential scanning calorimetry (DSC) and oxygen electrode. Complete loss of oxygen-evolving activity of the PSII membrane was observed at temperatures below 45℃. The decrease of excitonic interaction between chlorophyll molecules occurred more rapidly than the change of the protein secondary structure of the PSII membrane at temperatures above 45℃. The results indicate that the protein secondary structure of the membrane proteins in PSII membranes is more stable than the excitonic interaction between chlorophyll molecules during heat denaturation.

  15. Mediterranean-style diet effect on the structural properties of the erythrocyte cell membrane of hypertensive patients: the Prevencion con Dieta Mediterranea Study.

    Science.gov (United States)

    Barceló, Francisca; Perona, Javier S; Prades, Jesús; Funari, Sérgio S; Gomez-Gracia, Enrique; Conde, Manuel; Estruch, Ramon; Ruiz-Gutiérrez, Valentina

    2009-11-01

    A currently ongoing randomized trial has revealed that the Mediterranean diet, rich in virgin olive oil or nuts, reduces systolic blood pressure in high-risk cardiovascular patients. Here, we present a structural substudy to assess the effect of a Mediterranean-style diet supplemented with nuts or virgin olive oil on erythrocyte membrane properties in 36 hypertensive participants after 1 year of intervention. Erythrocyte membrane lipid composition, structural properties of reconstituted erythrocyte membranes, and serum concentrations of inflammatory markers are reported. After the intervention, the membrane cholesterol content decreased, whereas that of phospholipids increased in all of the dietary groups; the diminishing cholesterol:phospholipid ratio could be associated with an increase in the membrane fluidity. Moreover, reconstituted membranes from the nuts and virgin olive oil groups showed a higher propensity to form a nonlamellar inverted hexagonal phase structure that was related to an increase in phosphatidylethanolamine lipid class. These data suggest that the Mediterranean-style diet affects the lipid metabolism that is altered in hypertensive patients, influencing the structural membrane properties. The erythrocyte membrane modulation described provides insight in the structural bases underlying the beneficial effect of a Mediterranean-style diet in hypertensive subjects.

  16. Mechanism of choline deficiency and membrane alteration in postural orthostatic tachycardia syndrome primary skin fibroblasts.

    Science.gov (United States)

    Schenkel, Laila C; Singh, Ratnesh K; Michel, Vera; Zeisel, Steven H; da Costa, Kerry-Ann; Johnson, Amy R; Mudd, Harvey S; Bakovic, Marica

    2015-05-01

    Fibroblasts from a patient with postural orthostatic tachycardia syndrome (POTS), who presented with low plasma choline and betaine, were studied to determine the metabolic characteristics of the choline deficiency. Choline is required for the synthesis of the phospholipid phosphatidylcholine (PC) and for betaine, an important osmoregulator. Here, choline transport, lipid homeostasis, and mitochondria function were analyzed in skin fibroblasts from POTS and compared with control cells. The choline transporter-like protein 1/solute carrier 44A1 (CTL1/SLC44A1) and mRNA expression were 2-3 times lower in POTS fibroblasts, and choline uptake was reduced 60% (P < 0.05). Disturbances of membrane homeostasis were observed by reduced ratios between PC:phosphatidylethanolamine and sphingomyelin:cholesterol, as well as by modified phospholipid fatty acid composition. Choline deficiency also impaired mitochondria function, which was observed by a reduction in oxygen consumption, mitochondrial potential, and glycolytic activity. When POTS cells were treated with choline, transporter was up-regulated, and uptake of choline increased, offering an option for patient treatment. The characteristics of the POTS fibroblasts described here represent a first model of choline and CTL1/SLC44A1 deficiency, in which choline transport, membrane homeostasis, and mitochondrial function are impaired.

  17. Altered Esophageal Mucosal Structure in Patients with Celiac Disease

    Science.gov (United States)

    Pinto-Sánchez, María Inés; Nachman, Fabio D.; Fuxman, Claudia; Iantorno, Guido; Hwang, Hui Jer; Ditaranto, Andrés; Costa, Florencia; Longarini, Gabriela; Wang, Xuan Yu; Huang, Xianxi; Vázquez, Horacio; Moreno, María L.; Niveloni, Sonia; Bercik, Premysl; Smecuol, Edgardo; Mazure, Roberto; Bilder, Claudio; Mauriño, Eduardo C.; Verdu, Elena F.; Bai, Julio C.

    2016-01-01

    Background/Aim. Reflux symptoms (RS) are common in patients with celiac disease (CD), a chronic enteropathy that affects primarily the small intestine. We evaluated mucosal integrity and motility of the lower esophagus as mechanisms contributing to RS generation in patients with CD. Methods. We enrolled newly diagnosed CD patients with and without RS, nonceliac patients with classical reflux disease (GERD), and controls (without RS). Endoscopic biopsies from the distal esophagus were assessed for dilated intercellular space (DIS) by light microscopy and electron microscopy. Tight junction (TJ) mRNA proteins expression for zonula occludens-1 (ZO-1) and claudin-2 and claudin-3 (CLDN-2; CLDN-3) was determined using qRT-PCR. Results. DIS scores were higher in patients with active CD than in controls, but similar to GERD patients. The altered DIS was found even in CD patients without RS and normalized after one year of a gluten-free diet. CD patients with and without RS had lower expression of ZO-1 than controls. The expression of CLDN-2 and CLDN-3 was similar in CD and GERD patients. Conclusions. Our study shows that patients with active CD have altered esophageal mucosal integrity, independently of the presence of RS. The altered expression of ZO-1 may underlie loss of TJ integrity in the esophageal mucosa and may contribute to RS generation. PMID:27446827

  18. Sphingomyelin induces structural alteration in canine parvovirus capsid

    OpenAIRE

    Pakkanen, Kirsi; Karttunen, Jenni; Virtanen, Salla; Vuento, Matti

    2008-01-01

    One of the essential steps in canine parvovirus (CPV) infection, the release from endosomal vesicles, is dominated by interactions between the virus capsid and the endosomal membranes. In this study, the effect of sphingomyelin and phosphatidyl serine on canine parvovirus capsid and on the phospholipase A2 (PLA2) activity of CPV VP1 unique N-terminus was analyzed. Accordingly, a significant (P ≤ 0.05) shift of tryptophan fluorescence emission peak was detected at pH 5.5 in the presen...

  19. Structural and Electrochemical Analysis of PMMA Based Gel Electrolyte Membranes

    Directory of Open Access Journals (Sweden)

    Chithra M. Mathew

    2015-01-01

    Full Text Available New gel polymer electrolytes containing poly(vinylidene chloride-co-acrylonitrile and poly(methyl methacrylate are prepared by solution casting method. With the addition of 60 wt.% of EC to PVdC-AN/PMMA blend, ionic conductivity value 0.398×10-6 S cm−1 has been achieved. XRD and FT-IR studies have been conducted to investigate the structure and complexation in the polymer gel electrolytes. The FT-IR spectra show that the functional groups C=O and C≡N play major role in ion conduction. Thermal stability of the prepared membranes is found to be about 180°C.

  20. Effect of Gold Nanoparticle on Structure and Fluidity of Lipid Membrane

    Science.gov (United States)

    Mhashal, Anil R.; Roy, Sudip

    2014-01-01

    This paper deals with the effect of different size gold nanoparticles on the fluidity of lipid membrane at different regions of the bilayer. To investigate this, we have considered significantly large bilayer leaflets and incorporated only one nanoparticle each time, which was subjected to all atomistic molecular dynamics simulations. We have observed that, lipid molecules located near to the gold nanoparticle interact directly with it, which results in deformation of lipid structure and slower dynamics of lipid molecules. However, lipid molecules far away from the interaction site of the nanoparticle get perturbed, which gives rise to increase in local ordering of the lipid domains and decrease in fluidity. The bilayer thickness and area per head group in this region also get altered. Similar trend, but with different magnitude is also observed when different size nanoparticle interact with the bilayer. PMID:25469786

  1. Proinflammatory cytokines and their membrane-bound receptors are altered in the lymphocytes of schizophrenia patients.

    Science.gov (United States)

    Pandey, Ghanshyam N; Ren, Xinguo; Rizavi, Hooriyah S; Zhang, Hui

    2015-05-01

    Abnormalities of protein levels of proinflammatory cytokines and their soluble receptors have been reported in the plasma/serum of schizophrenia (SZ) patients. To examine if SZ is also associated with the abnormal gene expression of cytokines and their membrane-bound receptors, we studied mRNA expression of proinflammatory cytokines and their receptors in lymphocytes of SZ patients and normal control (NC) subjects. We determined the protein and mRNA expression of proinflammatory cytokines and mRNA expression of their receptors in lymphocytes from 30 SZ patients and 30 drug-free NC subjects. The subjects were diagnosed according to DSM-IV criteria. Protein levels of cytokines were determined by ELISA, and mRNA levels in lymphocytes were determined by the qPCR method. We found that the mRNA levels of IL-6, TNF-α, IL-1R1, TNFR1, and TNFR2, but not IL-1β, IL-1R2, IL-1RA, IL-6R, or GP130 were significantly increased in lymphocytes of SZ patients compared with NC subjects. We also found that the protein expression of IL-6 and TNF-α, but not IL-1β, was also significantly increased in SZ patients compared with NC subjects. These studies suggest that in addition to the reported abnormalities of proinflammatory cytokines and their soluble receptors in the plasma of SZ patients, an abnormal gene expression of these cytokines and their membrane-bound receptors may be involved in the pathogenesis of SZ.

  2. Structural features of membrane-bound glucocerebrosidase and α-synuclein probed by neutron reflectometry and fluorescence spectroscopy.

    Science.gov (United States)

    Yap, Thai Leong; Jiang, Zhiping; Heinrich, Frank; Gruschus, James M; Pfefferkorn, Candace M; Barros, Marilia; Curtis, Joseph E; Sidransky, Ellen; Lee, Jennifer C

    2015-01-01

    Mutations in glucocerebrosidase (GCase), the enzyme deficient in Gaucher disease, are a common genetic risk factor for the development of Parkinson disease and related disorders, implicating the role of this lysosomal hydrolase in the disease etiology. A specific physical interaction exists between the Parkinson disease-related protein α-synuclein (α-syn) and GCase both in solution and on the lipid membrane, resulting in efficient enzyme inhibition. Here, neutron reflectometry was employed as a first direct structural characterization of GCase and α-syn·GCase complex on a sparsely-tethered lipid bilayer, revealing the orientation of the membrane-bound GCase. GCase binds to and partially inserts into the bilayer with its active site most likely lying just above the membrane-water interface. The interaction was further characterized by intrinsic Trp fluorescence, circular dichroism, and surface plasmon resonance spectroscopy. Both Trp fluorescence and neutron reflectometry results suggest a rearrangement of loops surrounding the catalytic site, where they extend into the hydrocarbon chain region of the outer leaflet. Taking advantage of contrasting neutron scattering length densities, the use of deuterated α-syn versus protiated GCase showed a large change in the membrane-bound structure of α-syn in the complex. We propose a model of α-syn·GCase on the membrane, providing structural insights into inhibition of GCase by α-syn. The interaction displaces GCase away from the membrane, possibly impeding substrate access and perturbing the active site. GCase greatly alters membrane-bound α-syn, moving helical residues away from the bilayer, which could impact the degradation of α-syn in the lysosome where these two proteins interact.

  3. Structural Features of Membrane-bound Glucocerebrosidase and α-Synuclein Probed by Neutron Reflectometry and Fluorescence Spectroscopy*

    Science.gov (United States)

    Yap, Thai Leong; Jiang, Zhiping; Heinrich, Frank; Gruschus, James M.; Pfefferkorn, Candace M.; Barros, Marilia; Curtis, Joseph E.; Sidransky, Ellen; Lee, Jennifer C.

    2015-01-01

    Mutations in glucocerebrosidase (GCase), the enzyme deficient in Gaucher disease, are a common genetic risk factor for the development of Parkinson disease and related disorders, implicating the role of this lysosomal hydrolase in the disease etiology. A specific physical interaction exists between the Parkinson disease-related protein α-synuclein (α-syn) and GCase both in solution and on the lipid membrane, resulting in efficient enzyme inhibition. Here, neutron reflectometry was employed as a first direct structural characterization of GCase and α-syn·GCase complex on a sparsely-tethered lipid bilayer, revealing the orientation of the membrane-bound GCase. GCase binds to and partially inserts into the bilayer with its active site most likely lying just above the membrane-water interface. The interaction was further characterized by intrinsic Trp fluorescence, circular dichroism, and surface plasmon resonance spectroscopy. Both Trp fluorescence and neutron reflectometry results suggest a rearrangement of loops surrounding the catalytic site, where they extend into the hydrocarbon chain region of the outer leaflet. Taking advantage of contrasting neutron scattering length densities, the use of deuterated α-syn versus protiated GCase showed a large change in the membrane-bound structure of α-syn in the complex. We propose a model of α-syn·GCase on the membrane, providing structural insights into inhibition of GCase by α-syn. The interaction displaces GCase away from the membrane, possibly impeding substrate access and perturbing the active site. GCase greatly alters membrane-bound α-syn, moving helical residues away from the bilayer, which could impact the degradation of α-syn in the lysosome where these two proteins interact. PMID:25429104

  4. Inflammation and the Peritoneal Membrane: Causes and Impact on Structure and Function during Peritoneal Dialysis

    Directory of Open Access Journals (Sweden)

    Gilberto Baroni

    2012-01-01

    Full Text Available Peritoneal dialysis therapy has increased in popularity since the end of the 1970s. This method provides a patient survival rate equivalent to hemodialysis and better preservation of residual renal function. However, technique failure by peritonitis, and ultrafiltration failure, which is a multifactorial complication that can affect up to 40% of patients after 3 years of therapy. Encapsulant peritoneal sclerosis is an extreme and potentially fatal manifestation. Causes of inflammation in peritoneal dialysis range from traditional factors to those related to chronic kidney disease per se, as well as from the peritoneal dialysis treatment, including the peritoneal dialysis catheter, dialysis solution, and infectious peritonitis. Peritoneal inflammation generated causes significant structural alterations including: thickening and cubic transformation of mesothelial cells, fibrin deposition, fibrous capsule formation, perivascular bleeding, and interstitial fibrosis. Structural alterations of the peritoneal membrane described above result in clinical and functional changes. One of these clinical manifestations is ultrafiltration failure and can occur in up to 30% of patients on PD after five years of treatment. An understanding of the mechanisms involved in peritoneal inflammation is fundamental to improve patient survival and provide a better quality of life.

  5. Morphological alteration, lysosomal membrane fragility and apoptosis of the cells of Indian freshwater sponge exposed to washing soda (sodium carbonate).

    Science.gov (United States)

    Mukherjee, Soumalya; Ray, Mitali; Dutta, Manab Kumar; Acharya, Avanti; Mukhopadhyay, Sandip Kumar; Ray, Sajal

    2015-12-01

    Washing soda is chemically known as sodium carbonate and is a component of laundry detergent. Domestic effluent, drain water and various anthropogenic activities have been identified as major routes of sodium carbonate contamination of the freshwater ecosystem. The freshwater sponge, Eunapius carteri, bears ecological and evolutionary significance and is considered as a bioresource in aquatic ecosystems. The present study involves estimation of morphological damage, lysosomal membrane integrity, activity of phosphatases and apoptosis in the cells of E. carteri under the environmentally realistic concentrations of washing soda. Exposure to washing soda resulted in severe morphological alterations and damages in cells of E. carteri. Fragility and destabilization of lysosomal membranes of E. carteri under the sublethal exposure was indicative to toxin induced physiological stress in sponge. Prolonged exposure to sodium carbonate resulted a reduction in the activity of acid and alkaline phosphatases in the cells of E. carteri. Experimental concentration of 8 mg/l of washing soda for 192 h yielded an increase in the physiological level of cellular apoptosis among the semigranulocytes and granulocytes of E. carteri, which was suggestive to possible shift in apoptosis mediated immunoprotection. The results were indicative of an undesirable shift in the immune status of sponge. Contamination of the freshwater aquifers by washing soda thus poses an alarming ecotoxicological threat to sponges.

  6. Altered erythrocyte membrane fatty acid profile in typical Rett syndrome: effects of omega-3 polyunsaturated fatty acid supplementation.

    Science.gov (United States)

    Signorini, Cinzia; De Felice, Claudio; Leoncini, Silvia; Durand, Thierry; Galano, Jean-Marie; Cortelazzo, Alessio; Zollo, Gloria; Guerranti, Roberto; Gonnelli, Stefano; Caffarelli, Carla; Rossi, Marcello; Pecorelli, Alessandra; Valacchi, Giuseppe; Ciccoli, Lucia; Hayek, Joussef

    2014-11-01

    This study mainly aims at examining the erythrocyte membrane fatty acid (FAs) profile in Rett syndrome (RTT), a genetically determined neurodevelopmental disease. Early reports suggest a beneficial effects of omega-3 polyunsaturated fatty acids (ω-3 PUFAs) on disease severity in RTT. A total of 24 RTT patients were assigned to ω-3 PUFAs-containing fish oil for 12 months in a randomized controlled study (average DHA and EPA doses of 72.9, and 117.1mg/kgb.w./day, respectively). A distinctly altered FAs profile was detectable in RTT, with deficient ω-6 PUFAs, increased saturated FAs and reduced trans 20:4 FAs. FAs changes were found to be related to redox imbalance, subclinical inflammation, and decreased bone density. Supplementation with ω-3 PUFAs led to improved ω-6/ω-3 ratio and serum plasma lipid profile, decreased PUFAs peroxidation end-products, normalization of biochemical markers of inflammation, and reduction of bone hypodensity as compared to the untreated RTT group. Our data indicate that a significant FAs abnormality is detectable in the RTT erythrocyte membranes and is partially rescued by ω-3 PUFAs.

  7. A Surface Biotinylation Strategy for Reproducible Plasma Membrane Protein Purification and Tracking of Genetic and Drug-Induced Alterations.

    Science.gov (United States)

    Hörmann, Katrin; Stukalov, Alexey; Müller, André C; Heinz, Leonhard X; Superti-Furga, Giulio; Colinge, Jacques; Bennett, Keiryn L

    2016-02-01

    Plasma membrane (PM) proteins contribute to the identity of a cell, mediate contact and communication, and account for more than two-thirds of known drug targets.1-8 In the past years, several protocols for the proteomic profiling of PM proteins have been described. Nevertheless, comparative analyses have mainly focused on different variations of one approach.9-11 We compared sulfo-NHS-SS-biotinylation, aminooxy-biotinylation, and surface coating with silica beads to isolate PM proteins for subsequent analysis by one-dimensional gel-free liquid chromatography mass spectrometry. Absolute and relative numbers of PM proteins and reproducibility parameters on a qualitative and quantitative level were assessed. Sulfo-NHS-SS-biotinylation outperformed aminooxy-biotinylation and surface coating using silica beads for most of the monitored criteria. We further simplified this procedure by a competitive biotin elution strategy achieving an average PM annotated protein fraction of 54% (347 proteins). Computational analysis using additional databases and prediction tools revealed that in total over 90% of the purified proteins were associated with the PM, mostly as interactors. The modified sulfo-NHS-SS-biotinylation protocol was validated by tracking changes in the plasma membrane proteome composition induced by genetic alteration and drug treatment. Glycosylphosphatidylinositol (GPI)-anchored proteins were depleted in PM purifications from cells deficient in the GPI transamidase component PIGS, and treatment of cells with tunicamycin significantly reduced the abundance of N-glycoproteins in surface purifications.

  8. High Temperature Membrane with Humidification-Independent Cluster Structure

    Energy Technology Data Exchange (ETDEWEB)

    Lipp, Ludwig [FuelCell Energy, Inc., Danbury, CT (United States)

    2015-07-10

    The objective of this project was to develop high temperature membranes to facilitate the wide-spread deployment of hydrogen fuel cells. High temperature membranes offer significant advantages in PEM system operation, overall capital and operating costs. State-of-the-art Nafion-based membranes are inadequate for the high temperature operation. These conventional membranes become unstable at higher temperatures (90-120°C) and lose their conductivity, particularly at low relative humidity. In this program, alternate materials were developed to enable fabrication of novel high performance composite membranes. FCE’s concept for the multi-component composite membrane, named mC2, has been used in the design of more conductive membranes.

  9. Altered cytoskeletal structures in transformed cells exhibiting obviously metastatic capabilities

    Institute of Scientific and Technical Information of China (English)

    LINZHONGXIANG; WUBINGQUAN; 等

    1990-01-01

    Cytoskeletal changes in transformed cells (LM-51) eshibiting obviously metastatic capabilities were investigated by utilization of double-fluorescent labelling through combinations of:(1) tubulin indirect immunofluorescence plus Rhodamine-phalloidin staining of F-actins;(2) indirect immunofluorescent staining with α-actinin polyclonal-and vinculin monoclonal antibodies.The LM-51 cells which showed metastatic index of >50% were derived from lung metastasis in nude mice after subcutaneous inoculation of human highly metastatic tumor DNA transfected NIH3T3 cell transformants.The parent NIH3T3 cells exhibited well-organized microtubules,prominent stress fibers and adhesion plaques while their transformants showed remarkable cytoskeletal alterations:(1)reduced microtubules but increased MTOC fluorescence;(2)disrupted stress fibers and fewer adhesion plaques with their protein components redistributed in the cytoplasm;(3)Factin-and α-actinin/vinculin aggregates appeared in the cytoplasm.These aggregates were dot-like,varied in size(0.1-0.4μm) and number,located near the ventral surface of the cells.TPA-induced actin/vinculin bodies were studied too.Indications that actin and α-actinin/vinculin redistribution might be important alterations involved in the expression of metastatic capabilities of LM-51 transformed cells were discussed.

  10. Myocardial Reloading after Extracorporeal Membrane Oxygenation Alters Substrate Metabolism While Promoting Protein Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Kajimoto, Masaki; Priddy, Colleen M.; Ledee, Dolena; Xu, Chun; Isern, Nancy G.; Olson, Aaron; Des Rosiers, Christine; Portman, Michael A.

    2013-08-19

    Extracorporeal membrane oxygenation (ECMO) unloads the heart providing a bridge to recovery in children after myocardial stunning. Mortality after ECMO remains high.Cardiac substrate and amino acid requirements upon weaning are unknown and may impact recovery. We assessed the hypothesis that ventricular reloading modulates both substrate entry into the citric acid cycle (CAC) and myocardial protein synthesis. Fourteen immature piglets (7.8-15.6 kg) were separated into 2 groups based on ventricular loading status: 8 hour-ECMO (UNLOAD) and post-wean from ECMO (RELOAD). We infused [2-13C]-pyruvate as an oxidative substrate and [13C6]-L-leucine, as a tracer of amino acid oxidation and protein synthesis into the coronary artery. RELOAD showed marked elevations in myocardial oxygen consumption above baseline and UNLOAD. Pyruvate uptake was markedly increased though RELOAD decreased pyruvate contribution to oxidative CAC metabolism.RELOAD also increased absolute concentrations of all CAC intermediates, while maintaining or increasing 13C-molar percent enrichment. RELOAD also significantly increased cardiac fractional protein synthesis rates by >70% over UNLOAD. Conclusions: RELOAD produced high energy metabolic requirement and rebound protein synthesis. Relative pyruvate decarboxylation decreased with RELOAD while promoting anaplerotic pyruvate carboxylation and amino acid incorporation into protein rather than to the CAC for oxidation. These perturbations may serve as therapeutic targets to improve contractile function after ECMO.

  11. Protein-induced surface structuring in myelin membrane monolayers.

    Science.gov (United States)

    Rosetti, Carla M; Maggio, Bruno

    2007-12-15

    Monolayers prepared from myelin conserve all the compositional complexity of the natural membrane when spread at the air-water interface. They show a complex pressure-dependent surface pattern that, on compression, changes from the coexistence of two liquid phases to a viscous fractal phase embedded in a liquid phase. We dissected the role of major myelin protein components, myelin basic protein (MBP), and Folch-Lees proteolipid protein (PLP) as crucial factors determining the structural dynamics of the interface. By analyzing mixtures of a single protein with the myelin lipids we found that MBP and PLP have different surface pressure-dependent behaviors. MBP stabilizes the segregation of two liquid phases at low pressures and becomes excluded from the film under compression, remaining adjacent to the interface. PLP, on the contrary, organizes a fractal-like pattern at all surface pressures when included in a monolayer of the protein-free myelin lipids but it remains mixed in the MBP-induced liquid phase. The resultant surface topography and dynamics is regulated by combined near to equilibrium and out-of-equilibrium effects. PLP appears to act as a surface skeleton for the whole components whereas MBP couples the structuring to surface pressure-dependent extrusion and adsorption processes.

  12. Stage structure alters how complexity affects stability of ecological networks

    Science.gov (United States)

    Rudolf, V.H.W.; Lafferty, Kevin D.

    2011-01-01

    Resolving how complexity affects stability of natural communities is of key importance for predicting the consequences of biodiversity loss. Central to previous stability analysis has been the assumption that the resources of a consumer are substitutable. However, during their development, most species change diets; for instance, adults often use different resources than larvae or juveniles. Here, we show that such ontogenetic niche shifts are common in real ecological networks and that consideration of these shifts can alter which species are predicted to be at risk of extinction. Furthermore, niche shifts reduce and can even reverse the otherwise stabilizing effect of complexity. This pattern arises because species with several specialized life stages appear to be generalists at the species level but act as sequential specialists that are hypersensitive to resource loss. These results suggest that natural communities are more vulnerable to biodiversity loss than indicated by previous analyses.

  13. Determining the effects of lipophilic drugs on membrane structure by solid-state NMR spectroscopy: the case of the antioxidant curcumin.

    Science.gov (United States)

    Barry, Jeffrey; Fritz, Michelle; Brender, Jeffrey R; Smith, Pieter E S; Lee, Dong-Kuk; Ramamoorthy, Ayyalusamy

    2009-04-01

    Curcumin is the active ingredient of turmeric powder, a natural spice used for generations in traditional medicines. Curcumin's broad spectrum of antioxidant, anticarcinogenic, antimutagenic, and anti-inflammatory properties makes it particularly interesting for the development of pharmaceutical compounds. Because of curcumin's various effects on the function of numerous unrelated membrane proteins, it has been suggested that it affects the properties of the bilayer itself. However, a detailed atomic-level study of the interaction of curcumin with membranes has not been attempted. A combination of solid-state NMR and differential scanning calorimetry experiments shows curcumin has a strong effect on membrane structure at low concentrations. Curcumin inserts deep into the membrane in a transbilayer orientation, anchored by hydrogen bonding to the phosphate group of lipids in a manner analogous to cholesterol. Like cholesterol, curcumin induces segmental ordering in the membrane. Analysis of the concentration dependence of the order parameter profile derived from NMR results suggests curcumin forms higher order oligomeric structures in the membrane that span and likely thin the bilayer. Curcumin promotes the formation of the highly curved inverted hexagonal phase, which may influence exocytotic and membrane fusion processes within the cell. The experiments outlined here show promise for understanding the action of other drugs such as capsaicin in which drug-induced alterations of membrane structure have strong pharmacological effects.

  14. Dynamical and structural properties of lipid membranes in relation to liposomal drug delivery systems

    DEFF Research Database (Denmark)

    Jørgensen, Kent; Høyrup, Lise Pernille Kristine; Pedersen, Tina B.

    2001-01-01

    The structural and dynamical properties of DPPC liposomes containing lipopolymers (PEG-lipids) and charged DPPS lipids have been,studied in relation to the lipid membrane interaction of enzymes and peptides. The results suggest that both the lipid membrane structure and dynamics and in particular...... the appearance of small-scale lipid structures might be of importance for the activity of membrane associated and liposome degrading enzymes as well as for the membrane interaction of acylated peptides. The combined experimental and simulation results are of relevance for a rational development of peptide loaded...

  15. Altered intrahemispheric structural connectivity in Gilles de la Tourette syndrome

    Directory of Open Access Journals (Sweden)

    Bastian Cheng

    2014-01-01

    Full Text Available Gilles de la Tourette syndrome (GTS is a common developmental neuropsychiatric disorder characterized by tics and frequent psychiatric comorbidities, often causing significant disability. Tic generation has been linked to disturbed networks of brain areas involved in planning, controlling and execution of actions, particularly structural and functional disorders in the striatum and cortico–striato–thalamo–cortical loops. We therefore applied structural diffusion tensor imaging (DTI to characterize changes in intrahemispheric white matter connectivity in cortico-subcortical circuits engaged in motor control in 15 GTS patients without psychiatric comorbidities. White matter connectivity was analyzed by probabilistic fiber tractography between 12 predefined cortical and subcortical regions of interest. Connectivity values were combined with measures of clinical severity rated by the Yale Global Tic Severity Scale (YGTSS. GTS patients showed widespread structural connectivity deficits. Lower connectivity values were found specifically in tracts connecting the supplementary motor areas (SMA with basal ganglia (pre-SMA–putamen, SMA–putamen and in frontal cortico-cortical circuits. There was an overall trend towards negative correlations between structural connectivity in these tracts and YGTSS scores. Structural connectivity of frontal brain networks involved in planning, controlling and executing actions is reduced in adult GTS patients which is associated with tic severity. These findings are in line with the concept of GTS as a neurodevelopmental disorder of brain immaturity.

  16. Altered intrahemispheric structural connectivity in Gilles de la Tourette syndrome.

    Science.gov (United States)

    Cheng, Bastian; Braass, Hanna; Ganos, Christos; Treszl, Andras; Biermann-Ruben, Katja; Hummel, Friedhelm C; Müller-Vahl, Kirsten; Schnitzler, Alfons; Gerloff, Christian; Münchau, Alexander; Thomalla, Götz

    2014-01-01

    Gilles de la Tourette syndrome (GTS) is a common developmental neuropsychiatric disorder characterized by tics and frequent psychiatric comorbidities, often causing significant disability. Tic generation has been linked to disturbed networks of brain areas involved in planning, controlling and execution of actions, particularly structural and functional disorders in the striatum and cortico-striato-thalamo-cortical loops. We therefore applied structural diffusion tensor imaging (DTI) to characterize changes in intrahemispheric white matter connectivity in cortico-subcortical circuits engaged in motor control in 15 GTS patients without psychiatric comorbidities. White matter connectivity was analyzed by probabilistic fiber tractography between 12 predefined cortical and subcortical regions of interest. Connectivity values were combined with measures of clinical severity rated by the Yale Global Tic Severity Scale (YGTSS). GTS patients showed widespread structural connectivity deficits. Lower connectivity values were found specifically in tracts connecting the supplementary motor areas (SMA) with basal ganglia (pre-SMA-putamen, SMA-putamen) and in frontal cortico-cortical circuits. There was an overall trend towards negative correlations between structural connectivity in these tracts and YGTSS scores. Structural connectivity of frontal brain networks involved in planning, controlling and executing actions is reduced in adult GTS patients which is associated with tic severity. These findings are in line with the concept of GTS as a neurodevelopmental disorder of brain immaturity.

  17. Molecular Dynamics Studies of Structure and Functions of Water-Membrane Interfaces

    Science.gov (United States)

    Pohorille, Andrew; Wilson, Michael A.; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    A large number of essential cellular processes occur at the interfaces between water and membranes. The selectivity and dynamics of these processes are largely determined by the structural and electrical properties of the water-membrane interface. We investigate these properties by the molecular dynamics method. Over the time scales of the simulations, the membrane undergoes fluctuations described by the capillary wave model. These fluctuations produce occasional thinning defects in the membrane which provide effective pathways for passive transport of ions and small molecules across the membrane. Ions moving through the membrane markedly disrupt its structure and allow for significant water penetration into the membrane interior. Selectivity of transport, with respect to ionic charge, is determined by the interfacial electrostatic potential. Many small molecules. of potential significance in catalysis, bioenergetics and pharmacology, are shown to bind to the interface. The energetics and dynamics of this process will be discussed.

  18. Nanoscale Distribution of Sulfonic Acid Groups Determines Structure and Binding of Water in Nafion Membranes

    Science.gov (United States)

    Ling, Xiao; Bonn, Mischa

    2016-01-01

    Abstract The connection between the nanoscale structure of two chemically equivalent, yet morphologically distinct Nafion fuel‐cell membranes and their macroscopic chemical properties is demonstrated. Quantification of the chemical interactions between water and Nafion reveals that extruded membranes have smaller water channels with a reduced sulfonic acid head group density compared to dispersion‐cast membranes. As a result, a disproportionally large amount of non‐bulk water molecules exists in extruded membranes, which also exhibit larger proton conductivity and larger water mobility compared to cast membranes. The differences in the physicochemical properties of the membranes, that is, the chemical constitution of the water channels and the local water structure, and the accompanying differences in macroscopic water and proton transport suggest that the chemistry of nanoscale channels is an important, yet largely overlooked parameter that influences the functionality of fuel‐cell membranes. PMID:26895211

  19. FREQUENT STRUCTURE ALTERATIONS OF p53 GENE IN NASOPHARYNGEAL CARCINOMA

    Institute of Scientific and Technical Information of China (English)

    龙江斌; 区宝祥; 梁启万; 李辉梅

    1998-01-01

    By southern hybridization with 1.8 kb cDNA probe,a high freqnency (40.5%) of structural abnormality of p 53 gene was observed in primary nasopharyngeal carcinoma (NPC) biopsies. The regioas of exons 1 to 4 of the gene were examined by poiymerase chain reaction-single strand conformation polymorphism, no point nmtation was found. Because very low rate of point mutation had been reported in exons 5 to 8,we considered that structural ahnormality in the region of exons 1 to 8 of the gene might be uncommon in NPC. The speetrophotometer scaaning analysis of outoradiograms and rehybridization investigation of nitrocellulose filter with exon 11 probe indicated that most of structure aberrations we observed might be rearrangement occurring in exon ll.

  20. Structural and Spectroscopic Characterization of A Nanosized Sulfated TiO2 Filler and of Nanocomposite Nafion Membranes

    Directory of Open Access Journals (Sweden)

    Valentina Allodi

    2016-03-01

    Full Text Available A large number of nano-sized oxides have been studied in the literature as fillers for polymeric membranes, such as Nafion®. Superacidic sulfated oxides have been proposed and characterized. Once incorporated into polymer matrices, their beneficial effect on peculiar membrane properties has been demonstrated. The alteration of physical-chemical properties of composite membranes has roots in the intermolecular interaction between the inorganic filler surface groups and the polymer chains. In the attempt to tackle this fundamental issue, here we discuss, by a multi-technique approach, the properties of a nanosized sulfated titania material as a candidate filler for Nafion membranes. The results of a systematic study carried out by synchrotron X-ray diffraction, transmission electron microscopy, thermogravimetry, Raman and infrared spectroscopies are presented and discussed to get novel insights about the structural features, molecular properties, and morphological characteristics of sulphated TiO2 nanopowders and composite Nafion membranes containing different amount of sulfated TiO2 nanoparticles (2%, 5%, 7% w/w.

  1. Structural properties of lipid reconstructs and lipid composition of normotensive and hypertensive rat vascular smooth muscle cell membranes

    Directory of Open Access Journals (Sweden)

    T.R. Oliveira

    2009-09-01

    Full Text Available Multiple cell membrane alterations have been reported to be the cause of various forms of hypertension. The present study focuses on the lipid portion of the membranes, characterizing the microviscosity of membranes reconstituted with lipids extracted from the aorta and mesenteric arteries of spontaneously hypertensive (SHR and normotensive control rat strains (WKY and NWR. Membrane-incorporated phospholipid spin labels were used to monitor the bilayer structure at different depths. The packing of lipids extracted from both aorta and mesenteric arteries of normotensive and hypertensive rats was similar. Lipid extract analysis showed similar phospholipid composition for all membranes. However, cholesterol content was lower in SHR arteries than in normotensive animal arteries. These findings contrast with the fact that the SHR aorta is hyporeactive while the SHR mesenteric artery is hyperreactive to vasopressor agents when compared to the vessels of normotensive animal strains. Hence, factors other than microviscosity of bulk lipids contribute to the vascular smooth muscle reactivity and hypertension of SHR. The excess cholesterol in the arteries of normotensive animal strains apparently is not dissolved in bulk lipids and is not directly related to vascular reactivity since it is present in both the aorta and mesenteric arteries. The lower cholesterol concentrations in SHR arteries may in fact result from metabolic differences due to the hypertensive state or to genes that co-segregate with those that determine hypertension during the process of strain selection.

  2. Structural protein alterations to resistance and endurance cycling exercise training.

    Science.gov (United States)

    Parcell, Allen C; Woolstenhulme, Mandy T; Sawyer, Robert D

    2009-03-01

    The muscle cytoskeleton is necessary for the effective transmission of forces generated by actin-myosin interactions. We have examined the impact of muscle force and exercise volume on the cytoskeleton by measuring desmin and dystrophin content in human skeletal muscle after 12 weeks of progressive resistance or endurance cycle training. Muscle biopsies of the vastus lateralis were obtained before and after training. Desmin and dystrophin content was determined using immunoblotting techniques. After resistance training, desmin content increased 82 +/- 18% (p < 0.05), whereas there was no change in desmin content with endurance cycling. Dystrophin content did not change in either group. One-repetition maximum and VO2max increased (p < 0.05) in the resistance and endurance groups, respectively. These data demonstrate that a high-tension stimulus impacts the cytoskeleton in contrast to high-volume concentric contractions. The tensile loading and eccentric components of resistance training are implicated in desmin alterations. Indeed, the functional improvements resulting from resistance training may be related in part to the mechanical integration provided by the desmin protein.

  3. Asymmetric block copolymer membranes with ultrahigh porosity and hierarchical pore structure by plain solvent evaporation

    KAUST Repository

    Yu, H.

    2016-09-14

    Membranes with a hierarchical porous structure could be manufactured from a block copolymer blend by pure solvent evaporation. Uniform pores in a 30 nm thin skin layer supported by a macroporous structure were formed. This new process is attractive for membrane production because of its simplicity and the lack of liquid waste.

  4. Kinetics of structural reorganizations in multilamellarphotosynthetic membranes monitored by small-angle neutronscattering

    DEFF Research Database (Denmark)

    Nagy, Gergely; Kovacs, Laszlo; Unnep, Renata;

    2013-01-01

    We demonstrate the power of time-resolved small-angle neutron scattering experiments for the investigation of the structure and structural reorganizations of multilamellar photosynthetic membranes. In addition to briefly summarizing our results on thylakoid membranes isolated from higher plants a...

  5. Effects of Irradiation on the Structure-activity Relationship of Konjac Glucomannan Molecular Chain Membrane

    Institute of Scientific and Technical Information of China (English)

    WU Chun-Hua; PENG Shu-Hui; WEN Cheng-Rong; WANG Li-Xia; XIONG Bo; LIU Ya-Nan; FAN Lin-Lin; YAO Min-Na; PANG Jie

    2012-01-01

    To know the effects of irradiation on the konjac glucomannan (KGM) molecular chain membrane, KGM membrane solution was treated with the irradiation dose of 0-20 kGy in this study, and the structure and properties of KGM membrane were analyzed with Infrared spectrum, Raman spectrum, X-ray, SEM scanning and so on. The results revealed that the effects of different irradiation doses on the KGM molecular chain structure were different. Higher irradiation dose (20 kGy) resulted in partial damage against KGM membrane crystal structure, and there was no obvious change for the amorphous structure; with membrane property test, the tensile strength of KGM membrane gradually increased with the increase of irradiation dose and its elongation at break reduced, but these changes were not significant, WVP value reduced; with SEM, the membrane surface treated with irradiation was smoother even than the membrane without treatment. In addition, when increasing the irradiation dose, membrane surface became more even, and arrangement was more orderly and compact. KGM membrane nrooerties, and it is an ideal Irradiation modification could effectively improve the modification method.

  6. [Radiation-induced changes in structural state of membranes of human blood cells].

    Science.gov (United States)

    Burlakova, E B; Atkarskaia, M V; Fatkullina, L D; Andreev, S G

    2014-01-01

    To evaluate radiation-induced changes in the structural state of the membranes, blood samples of healthy donors were subjected to gamma radiation in the range of small (1-10 cGy) and medium doses (50 cGy-2 Gy). After irradiation, the microviscosity of lipid membranes of red and white blood cells was measured by ESR spin probe method. At doses exceeding 1 cGy, statistically significant changes of the degree of spontaneous erythrocyte hemolysis and of the lymphocyte plasma membrane microviscosity were observed. Under identical irradiation conditions, the stability of lymphocyte membranes was less as compared to erythrocyte membranes.

  7. MUNI Ways and Structures Building Integrated Solar Membrane Project

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Randall

    2014-07-03

    The initial goal of the MUNI Ways and Structures Building Integrated Solar Membrane Installation Project was for the City and County of San Francisco (CCSF) to gain experience using the integrated higher efficiency solar photovoltaic (PV) single-ply membrane product, as it differs from the conventional, low efficiency, thin-film PV products, to determine the feasibility of success of larger deployment. As several of CCSF’s municipal rooftops are constrained with respect to weight restrictions, staff of the Energy Generation Group of the San Francisco Public Utilities Commission (SFPUC) proposed to install a solar PV system using single-ply membrane The installation of the 100 kW (DC-STC) lightweight photo voltaic (PV) system at the MUNI Ways and Structures Center (700 Pennsylvania Ave., San Francisco) is a continuation of the commitment of the City and County of San Francisco (CCSF) to increase the pace of municipal solar development, and serve its municipal facilities with clean renewable energy. The fourteen (14) solar photovoltaic systems that have already been installed at CCSF municipal facilities are assisting in the reduction of fossil-fuel use, and reduction of greenhouse gases from fossil combustion. The MUNI Ways & Structures Center roof has a relatively low weight-bearing capacity (3.25 pounds per square foot) and use of traditional crystalline panels was therefore rejected. Consequently it was decided to use the best available highest efficiency Building-Integrated PV (BIPV) technology, with consideration for reliability and experience of the manufacturer which can meet the low weight-bearing capacity criteria. The original goal of the project was to provide an opportunity to monitor the results of the BIPV technology and compare these results to other City and County of San Francisco installed PV systems. The MUNI Ways and Structures Center was acquired from the Cookson Doors Company, which had run the Center for many decades. The building was

  8. Alterations of CNS structure & function by charged particle radiation & resultant oxidative stress

    Science.gov (United States)

    Nelson, Gregory; Chang, Polly; Favre, Cecile; Fike, John; Komarova, Natalia; Limoli, Charles; Mao, Xiao-Wen; Obenaus, Andre; Raber, Jacob; Spigelman, Igor; Soltesz, Ivan; Song, Sheng-Kwei; Stampanoni, Marco; Vlkolinsky, Roman; Wodarz, Dominik

    The NSCOR program project is transitioning from establishing the existence of CNS responses to low doses of charged particles, to an investigation of mechanisms underlying these changes and extending the irradiation paradigm to more space-like exposures. In earlier experiments we examined radiation responses of the mouse brain (hippocampus) following exposure to 250 MeV protons and 600 MeV/n iron ions. Our key findings on structural changes were: 1) Significant dose and time dependent loss of en-dothelial cells and microvessel network remodeling occurs suggesting that vascular insufficiency is produced. 2) Significant dose dependent losses of neural precursor cells were observed in a lineage specific pattern which may be associated with cognitive impairment. 3) Evaluation of DNA damage showed dose and time dependent accumulation of mutations with region-specific mutation structures and gene expression profiling demonstrated activation of neurotrophic and adhesion factors as well as chemokine receptors associated with inflammation. Our key find-ings on functional changes were: 1) Time and dose dependent modifications to neural output expressed as enhanced excitability but reduced synaptic efficacy and plasticity (including long term potentiation). 2) Intrinsic membrane properties of neurons were not significantly modi-fied by radiation exposure but pharmacological treatments demonstrated changes in inhibitory synapses. 3) MRI imaging visualized brain structural changes based on altered water diffu-sion properties and patterns were consistent with demyelination or gliosis. Our key findings on neurodegeneration and fidelity of homeostasis were: 1) APP23 transgenic mice exhibited accelerated APP-type electrophysiological pathology over several months. 2) Microvessel net-work changes following irradiation were suggestive of poor tissue oxygenation. 3) The ability of the brain to respond a controlled septic shock was altered by irradiation; the septic shock reactions

  9. Altered functional and structural connectivity networks in psychogenic non-epileptic seizures.

    Directory of Open Access Journals (Sweden)

    Ju-Rong Ding

    Full Text Available Psychogenic non-epileptic seizures (PNES are paroxysmal behaviors that resemble epileptic seizures but lack abnormal electrical activity. Recent studies suggest aberrant functional connectivity involving specific brain regions in PNES. Little is known, however, about alterations of topological organization of whole-brain functional and structural connectivity networks in PNES. We constructed functional connectivity networks from resting-state functional MRI signal correlations and structural connectivity networks from diffusion tensor imaging tractography in 17 PNES patients and 20 healthy controls. Graph theoretical analysis was employed to compute network properties. Moreover, we investigated the relationship between functional and structural connectivity networks. We found that PNES patients exhibited altered small-worldness in both functional and structural networks and shifted towards a more regular (lattice-like organization, which could serve as a potential imaging biomarker for PNES. In addition, many regional characteristics were altered in structural connectivity network, involving attention, sensorimotor, subcortical and default-mode networks. These regions with altered nodal characteristics likely reflect disease-specific pathophysiology in PNES. Importantly, the coupling strength of functional-structural connectivity was decreased and exhibited high sensitivity and specificity to differentiate PNES patients from healthy controls, suggesting that the decoupling strength of functional-structural connectivity might be an important characteristic reflecting the mechanisms of PNES. This is the first study to explore the altered topological organization in PNES combining functional and structural connectivity networks, providing a new way to understand the pathophysiological mechanisms of PNES.

  10. Altered PLP1 splicing causes hypomyelination of early myelinating structures

    DEFF Research Database (Denmark)

    Kevelam, Sietske H; Taube, Jennifer R; van Spaendonk, Rosalina M L

    2015-01-01

    : All patients had unusual hemizygous mutations of PLP1 located in exon 3B (one deletion, one missense and two silent), which is spliced out in isoform DM20, or in intron 3 (five mutations). The deletion led to truncation of PLP1, but not DM20. Four mutations were predicted to affect PLP1/DM20...... for causal mutations. In silico analysis of effects of the mutations on splicing and RNA folding was performed. In vitro gene splicing was examined in RNA from patients' fibroblasts and an immortalized immature oligodendrocyte cell line after transfection with mutant minigene splicing constructs. RESULTS...... alternative splicing by creating exonic splicing silencer motifs or new splice donor sites or by affecting the local RNA structure of the PLP1 splice donor site. Four deep intronic mutations were predicted to destabilize a long-distance interaction structure in the secondary PLP1 RNA fragment involved...

  11. Repression and activation by multiprotein complexes that alter chromatin structure.

    Science.gov (United States)

    Kingston, R E; Bunker, C A; Imbalzano, A N

    1996-04-15

    Recent studies have provided strong evidence that macromolecular complexes are used in the cell to remodel chromatin structure during activation and to create an inaccessible structure during repression, Although there is not yet any rigorous demonstration that modification of chromatin structure plays a direct, causal role in either activation or repression, there is sufficient smoke to indicate the presence of a blazing inferno nearby. It is clear that complexes that remodel chromatin are tractable in vitro; hopefully this will allow the establishment of systems that provide a direct analysis of the role that remodeling might play in activation. These studies indicate that establishment of functional systems to corroborate the elegant genetic studies on repression might also be tractable. As the mechanistic effects of these complexes are sorted out, it will become important to understand how the complexes are regulated. In many of the instances discussed above, the genes whose products make up these complexes were identified in genetic screens for effects on developmental processes. This implies a regulation of the activity of these complexes in response to developmental cues and further implies that the work to fully understand these complexes will occupy a generation of scientists.

  12. Effect of Structure on the Interactions between Five Natural Antimicrobial Compounds and Phospholipids of Bacterial Cell Membrane on Model Monolayers

    Directory of Open Access Journals (Sweden)

    Stella W. Nowotarska

    2014-06-01

    Full Text Available Monolayers composed of bacterial phospholipids were used as model membranes to study interactions of the naturally occurring phenolic compounds 2,5-dihydroxybenzaldehyde and 2-hydroxy-5-methoxybenzaldehyde, and the plant essential oil compounds carvacrol, cinnamaldehyde, and geraniol, previously found to be active against both Gram-positive and Gram-negative pathogenic microorganisms. The lipid monolayers consist of 1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine (DPPE, 1,2-dihexa- decanoyl-sn-glycero-3-phospho-(1'-rac-glycerol (DPPG, and 1,1',2,2'-tetratetradecanoyl cardiolipin (cardiolipin. Surface pressure–area (π-A and surface potential–area (Δψ-A isotherms were measured to monitor changes in the thermodynamic and physical properties of the lipid monolayers. Results of the study indicated that the five compounds modified the three lipid monolayer structures by integrating into the monolayer, forming aggregates of antimicrobial –lipid complexes, reducing the packing effectiveness of the lipids, increasing the membrane fluidity, and altering the total dipole moment in the monolayer membrane model. The interactions of the five antimicrobial compounds with bacterial phospholipids depended on both the structure of the antimicrobials and the composition of the monolayers. The observed experimental results provide insight into the mechanism of the molecular interactions between naturally-occurring antimicrobial compounds and phospholipids of the bacterial cell membrane that govern activities.

  13. Decidual-secreted factors alter invasive trophoblast membrane and secreted proteins implying a role for decidual cell regulation of placentation.

    Directory of Open Access Journals (Sweden)

    Ellen Melaleuca Menkhorst

    Full Text Available Inadequate or inappropriate implantation and placentation during the establishment of human pregnancy is thought to lead to first trimester miscarriage, placental insufficiency and other obstetric complications. To create the placental blood supply, specialized cells, the 'extravillous trophoblast' (EVT invade through the differentiated uterine endometrium (the decidua to engraft and remodel uterine spiral arteries. We hypothesized that decidual factors would regulate EVT function by altering the production of EVT membrane and secreted factors. We used a proteomics approach to identify EVT membrane and secreted proteins regulated by decidual cell factors. Human endometrial stromal cells were decidualized in vitro by treatment with estradiol (10(-8 M, medroxyprogesterone acetate (10(-7 M and cAMP (0.5 mM for 14 days. Conditioned media (CM was collected on day 2 (non-decidualized CM and 14 (decidualized CM of treatment. Isolated primary EVT cultured on Matrigel™ were treated with media control, non-decidualized or decidualized CM for 16 h. EVT CM was fractionated for proteins <30 kDa using size-exclusion affinity nanoparticles (SEAN before trypsin digestion and HPLC-MS/MS. 43 proteins produced by EVT were identified; 14 not previously known to be expressed in the placenta and 12 which had previously been associated with diseases of pregnancy including preeclampsia. Profilin 1, lysosome associated membrane glycoprotein 1 (LAMP1, dipeptidyl peptidase 1 (DPP1/cathepsin C and annexin A2 expression by interstitial EVT in vivo was validated by immunhistochemistry. Decidual CM regulation in vitro was validated by western blotting: decidualized CM upregulated profilin 1 in EVT CM and non-decidualized CM upregulated annexin A2 in EVT CM and pro-DPP1 in EVT cell lysate. Here, non-decidualized factors induced protease expression by EVT suggesting that non-decidualized factors may induce a pro-inflammatory cascade. Preeclampsia is a pro

  14. Abdominal Pain, the Adolescent and Altered Brain Structure and Function.

    Directory of Open Access Journals (Sweden)

    Catherine S Hubbard

    Full Text Available Irritable bowel syndrome (IBS is a functional gastrointestinal (GI disorder of unknown etiology. Although relatively common in children, how this condition affects brain structure and function in a pediatric population remains unclear. Here, we investigate brain changes in adolescents with IBS and healthy controls. Imaging was performed with a Siemens 3 Tesla Trio Tim MRI scanner equipped with a 32-channel head coil. A high-resolution T1-weighted anatomical scan was acquired followed by a T2-weighted functional scan. We used a surface-based morphometric approach along with a seed-based resting-state functional connectivity (RS-FC analysis to determine if groups differed in cortical thickness and whether areas showing structural differences also showed abnormal RS-FC patterns. Patients completed the Abdominal Pain Index and the GI Module of the Pediatric Quality of Life Inventory to assess abdominal pain severity and impact of GI symptoms on health-related quality of life (HRQOL. Disease duration and pain intensity were also assessed. Pediatric IBS patients, relative to controls, showed cortical thickening in the posterior cingulate (PCC, whereas cortical thinning in posterior parietal and prefrontal areas were found, including the dorsolateral prefrontal cortex (DLPFC. In patients, abdominal pain severity was related to cortical thickening in the intra-abdominal area of the primary somatosensory cortex (SI, whereas HRQOL was associated with insular cortical thinning. Disease severity measures correlated with cortical thickness in bilateral DLPFC and orbitofrontal cortex. Patients also showed reduced anti-correlations between PCC and DLPFC compared to controls, a finding that may reflect aberrant connectivity between default mode and cognitive control networks. We are the first to demonstrate concomitant structural and functional brain changes associated with abdominal pain severity, HRQOL related to GI-specific symptoms, and disease

  15. Structural network alterations and neurological dysfunction in cerebral amyloid angiopathy

    Science.gov (United States)

    Reijmer, Yael D.; Fotiadis, Panagiotis; Martinez-Ramirez, Sergi; Salat, David H.; Schultz, Aaron; Shoamanesh, Ashkan; Ayres, Alison M.; Vashkevich, Anastasia; Rosas, Diana; Schwab, Kristin; Leemans, Alexander; Biessels, Geert-Jan; Rosand, Jonathan; Johnson, Keith A.; Viswanathan, Anand; Gurol, M. Edip

    2015-01-01

    Cerebral amyloid angiopathy is a common form of small-vessel disease and an important risk factor for cognitive impairment. The mechanisms linking small-vessel disease to cognitive impairment are not well understood. We hypothesized that in patients with cerebral amyloid angiopathy, multiple small spatially distributed lesions affect cognition through disruption of brain connectivity. We therefore compared the structural brain network in patients with cerebral amyloid angiopathy to healthy control subjects and examined the relationship between markers of cerebral amyloid angiopathy-related brain injury, network efficiency, and potential clinical consequences. Structural brain networks were reconstructed from diffusion-weighted magnetic resonance imaging in 38 non-demented patients with probable cerebral amyloid angiopathy (69 ± 10 years) and 29 similar aged control participants. The efficiency of the brain network was characterized using graph theory and brain amyloid deposition was quantified by Pittsburgh compound B retention on positron emission tomography imaging. Global efficiency of the brain network was reduced in patients compared to controls (0.187 ± 0.018 and 0.201 ± 0.015, respectively, P < 0.001). Network disturbances were most pronounced in the occipital, parietal, and posterior temporal lobes. Among patients, lower global network efficiency was related to higher cortical amyloid load (r = −0.52; P = 0.004), and to magnetic resonance imaging markers of small-vessel disease including increased white matter hyperintensity volume (P < 0.001), lower total brain volume (P = 0.02), and number of microbleeds (trend P = 0.06). Lower global network efficiency was also related to worse performance on tests of processing speed (r = 0.58, P < 0.001), executive functioning (r = 0.54, P = 0.001), gait velocity (r = 0.41, P = 0.02), but not memory. Correlations with cognition were independent of age, sex, education level, and other magnetic resonance imaging

  16. Probing Induced Structural Changes in Biomimetic Bacterial Cell Membrane Interactions with Divalent Cations

    Energy Technology Data Exchange (ETDEWEB)

    Holt, Allison M [ORNL; Standaert, Robert F [ORNL; Jubb, Aaron M [ORNL; Katsaras, John [ORNL; Johs, Alexander [ORNL

    2017-01-01

    Biological membranes, formed primarily by the self-assembly of complex mixtures of phospholipids, provide a structured scaffold for compartmentalization and structural processes in living cells. The specific physical properties of phospholipid species present in a given membrane play a key role in mediating these processes. Phosphatidylethanolamine (PE), a zwitterionic lipid present in bacterial, yeast, and mammalian cell membranes, is exceptional. In addition to undergoing the standard lipid polymorphic transition between the gel and liquid-crystalline phase, it can also assume an unusual polymorphic state, the inverse hexagonal phase (HII). Divalent cations are among the factors that drive the formation of the HII phase, wherein the lipid molecules form stacked tubular structures by burying the hydrophilic head groups and exposing the hydrophobic tails to the bulk solvent. Most biological membranes contain a lipid species capable of forming the HII state suggesting that such lipid polymorphic structural states play an important role in structural biological processes such as membrane fusion. In this study, the interactions between Mg2+ and biomimetic bacterial cell membranes composed of PE and phosphatidylglycerol (PG) were probed using differential scanning calorimetry (DSC), small-angle x-ray scattering (SAXS), and fluorescence spectroscopy. The lipid phase transitions were examined at varying ratios of PE to PG and upon exposure to physiologically relevant concentrations of Mg2+. An understanding of these basic interactions enhances our understanding of membrane dynamics and how membrane-mediated structural changes may occur in vivo.

  17. Structural models of the membrane anchors of envelope glycoproteins E1 and E2 from pestiviruses

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jimin, E-mail: jimin.wang@yale.edu; Li, Yue; Modis, Yorgo, E-mail: yorgo.modis@yale.edu

    2014-04-15

    The membrane anchors of viral envelope proteins play essential roles in cell entry. Recent crystal structures of the ectodomain of envelope protein E2 from a pestivirus suggest that E2 belongs to a novel structural class of membrane fusion machinery. Based on geometric constraints from the E2 structures, we generated atomic models of the E1 and E2 membrane anchors using computational approaches. The E1 anchor contains two amphipathic perimembrane helices and one transmembrane helix; the E2 anchor contains a short helical hairpin stabilized in the membrane by an arginine residue, similar to flaviviruses. A pair of histidine residues in the E2 ectodomain may participate in pH sensing. The proposed atomic models point to Cys987 in E2 as the site of disulfide bond linkage with E1 to form E1–E2 heterodimers. The membrane anchor models provide structural constraints for the disulfide bonding pattern and overall backbone conformation of the E1 ectodomain. - Highlights: • Structures of pestivirus E2 proteins impose constraints on E1, E2 membrane anchors. • Atomic models of the E1 and E2 membrane anchors were generated in silico. • A “snorkeling” arginine completes the short helical hairpin in the E2 membrane anchor. • Roles in pH sensing and E1–E2 disulfide bond formation are proposed for E1 residues. • Implications for E1 ectodomain structure and disulfide bonding pattern are discussed.

  18. Altered membrane dynamics of quantum dot-conjugated integrins during osteogenic differentiation of human bone marrow derived progenitor cells.

    Science.gov (United States)

    Chen, Hongfeng; Titushkin, Igor; Stroscio, Michael; Cho, Michael

    2007-02-15

    Functionalized quantum dots offer several advantages for tracking the motion of individual molecules on the cell surface, including selective binding, precise optical identification of cell surface molecules, and detailed examination of the molecular motion without photobleaching. We have used quantum dots conjugated with integrin antibodies and performed studies to quantitatively demonstrate changes in the integrin dynamics during osteogenic differentiation of human bone marrow derived progenitor cells (BMPCs). Consistent with the unusually strong BMPC adhesion previously observed, integrins on the surface of undifferentiated BMPC were found in clusters and the lateral diffusion was slow (e.g., approximately 10(-11) cm2/s). At times as early as those after a 3-day incubation in the osteogenic differentiation media, the integrin diffusion coefficients increased by an order of magnitude, and the integrin dynamics became indistinguishable from that measured on the surface of terminally differentiated human osteoblasts. Furthermore, microfilaments in BMPCs consisted of atypically thick bundles of stress fibers that were responsible for restricting the integrin lateral mobility. Studies using laser optical tweezers showed that, unlike fully differentiated osteoblasts, the BMPC cytoskeleton is weakly associated with its cell membrane. Based on these findings, it appears likely that the altered integrin dynamics is correlated with BMPC differentiation and that the integrin lateral mobility is restricted by direct links to microfilaments.

  19. BCL::MP-Fold: membrane protein structure prediction guided by EPR restraints

    CERN Document Server

    Fischer, Axel Walter; Woetzel, Nils; Karakas, Mert; Weiner, Brian; Meiler, Jens

    2015-01-01

    For many membrane proteins the determination of their topology remains a challenge for methods like X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy. Electron paramagnetic resonance (EPR) spectroscopy has evolved as an alternative technique to study structure and dynamics of membrane proteins. The present study demonstrates the feasibility of membrane protein topology determination using limited EPR distance and accessibility measurements. The BCL::MP-Fold (BioChemical Library membrane protein fold) algorithm assembles secondary structure elements (SSEs) in the membrane using a Monte Carlo Metropolis (MCM) approach. Sampled models are evaluated using knowledge-based potential functions and agreement with the EPR data and a knowledge-based energy function. Twenty-nine membrane proteins of up to 696 residues are used to test the algorithm. The RMSD100 value of the most accurate model is better than 8{\\AA} for twenty-seven, better than 6{\\AA} for twenty-two and better than 4{\\AA} for fifte...

  20. Present and future of membrane protein structure determination by electron crystallography.

    Science.gov (United States)

    Ubarretxena-Belandia, Iban; Stokes, David L

    2010-01-01

    Membrane proteins are critical to cell physiology, playing roles in signaling, trafficking, transport, adhesion, and recognition. Despite their relative abundance in the proteome and their prevalence as targets of therapeutic drugs, structural information about membrane proteins is in short supply. This chapter describes the use of electron crystallography as a tool for determining membrane protein structures. Electron crystallography offers distinct advantages relative to the alternatives of X-ray crystallography and NMR spectroscopy. Namely, membrane proteins are placed in their native membranous environment, which is likely to favor a native conformation and allow changes in conformation in response to physiological ligands. Nevertheless, there are significant logistical challenges in finding appropriate conditions for inducing membrane proteins to form two-dimensional arrays within the membrane and in using electron cryo-microscopy to collect the data required for structure determination. A number of developments are described for high-throughput screening of crystallization trials and for automated imaging of crystals with the electron microscope. These tools are critical for exploring the necessary range of factors governing the crystallization process. There have also been recent software developments to facilitate the process of structure determination. However, further innovations in the algorithms used for processing images and electron diffraction are necessary to improve throughput and to make electron crystallography truly viable as a method for determining atomic structures of membrane proteins.

  1. Solid state NMR: The essential technology for helical membrane protein structural characterization

    Science.gov (United States)

    Cross, Timothy A.; Ekanayake, Vindana; Paulino, Joana; Wright, Anna

    2014-02-01

    NMR spectroscopy of helical membrane proteins has been very challenging on multiple fronts. The expression and purification of these proteins while maintaining functionality has consumed countless graduate student hours. Sample preparations have depended on whether solution or solid-state NMR spectroscopy was to be performed - neither have been easy. In recent years it has become increasingly apparent that membrane mimic environments influence the structural result. Indeed, in these recent years we have rediscovered that Nobel laureate, Christian Anfinsen, did not say that protein structure was exclusively dictated by the amino acid sequence, but rather by the sequence in a given environment (Anfinsen, 1973) [106]. The environment matters, molecular interactions with the membrane environment are significant and many examples of distorted, non-native membrane protein structures have recently been documented in the literature. However, solid-state NMR structures of helical membrane proteins in proteoliposomes and bilayers are proving to be native structures that permit a high resolution characterization of their functional states. Indeed, solid-state NMR is uniquely able to characterize helical membrane protein structures in lipid environments without detergents. Recent progress in expression, purification, reconstitution, sample preparation and in the solid-state NMR spectroscopy of both oriented samples and magic angle spinning samples has demonstrated that helical membrane protein structures can be achieved in a timely fashion. Indeed, this is a spectacular opportunity for the NMR community to have a major impact on biomedical research through the solid-state NMR spectroscopy of these proteins.

  2. Regenerated Cellulose Capsules for Controlled Drug Delivery, Part 2: Modulating Membrane Permeability by Incorporation of Depolymerized Cellulose and Altering Membrane Thickness.

    Science.gov (United States)

    Bhatt, Bhavik; Kumar, Vijay

    2015-12-01

    For application of regenerated cellulose (RC) membranes in capsule dosage forms, the methods to modify drug release from these membranes are described. Membranes were fabricated by blending native and depolymerized celluloses dissolved in dimethyl sulfoxide and paraformaldehyde solvent system, prior to casting on molds, precipitation in water, and thermal annealing. The effect of laminating layers of RC to fabricate membranes with increasing thickness was also investigated. Solute diffusion studies using ionic and hydrophobic solutes, as well as large protein molecules, were conducted in side-by-side diffusion cells. Microscopic as well as physiological evaluation of these membranes indicated that pore size, porosity, and water uptake decreased as the fraction of depolymerized cellulose increased in the membranes. Permeability analysis of small ionic and hydrophobic solutes indicated that the solute transport across the hydrated membrane occurs through diffusion in the water-filled pores that are formed in situ. The apparent path for solute diffusion increases as the fraction of depolymerized cellulose increases. Permeability analysis of large protein molecules indicated that the pore sizes and distribution in these membranes is heterogeneous. Increasing the membrane thickness by lamination of RC does not influence porosity but causes formation of dead-end pores because of blocking by subsequent laminate layers.

  3. Structure and Properties of Polytetrafluorethylene and Polyurethane Layered Membrane for Protective Clothing

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    This paper presents a new idea for intensifying protective and stretch recovery properties of micro porous polytetrafluorethylene and hydrophilic polyurethane (PTFE/PU) layered membrane through a co-stretching process. The structure and properties of co-stretching PTFE/PU layered membrane and coated PTFE/PU layered membrane by means of directly coating the PU on the PTFE membrane were investigated using Electron Microscope, Universal Materials Testing Machine, and the water vapor permeability (WVP) was measured according to absorption method of water vapor of GB/T 12704 - 91. Contrasted to PU coating process, the PU membrane on the co-stretching PTFE/PU membrane is nonporous because of heat treatment process, which can prevent the SARS virus from permeating the Co-stretching PTFE/PU membrane. The stretch and recovery properties of the Co-stretching PTFE/PU membrane is at least 66% after being stretched to 50% of its original length in transverse directions and that of the coated PTFE/PU membrane is 52%. The WVP of the Coresults suggest that when Co-stretching PTFE/PU membrane is laminated to a stretchable fabric, the fabric would have excellent stretch and recovery properties while waterproof and being permeable to water vapor. So, the Costretching PTFE/PU membrane laminated fabric will be a comfortable protective clothing material.

  4. Polymer electrolyte membranes from fluorinated polyisoprene-block-sulfonated polystyrene: Membrane structure and transport properties

    Energy Technology Data Exchange (ETDEWEB)

    Sodeye, Akinbode [Department of Polymer Science and Engineering, University of Massachusetts; Huang, Tianzi [University of Tennessee, Knoxville (UTK); Gido, Samuel [University of Massachusetts, Amherst; Mays, Jimmy [ORNL

    2011-01-01

    With a view to optimizing morphology and ultimately properties, membranes have been cast from relatively inexpensive block copolymer ionomers of fluorinated polyisoprene-block-sulfonated polystyrene (FISS) with various sulfonation levels, in both the acid form and the cesium neutralized form. The morphology of these membranes was characterized by transmission electron microscopy and ultra-small angle X-ray scattering, as well as water uptake, proton conductivity and methanol permeability within the temperature range from 20 to 60 C. Random phase separated morphologies were obtained for all samples except the cesium sample with 50 mol% sulfonation. The transport properties increased with increasing degree of sulfonation and temperature for all samples. The acid form samples absorbed more water than the cesium samples with a maximum swelling of 595% recorded at 60 C for the acid sample having 50 mol% sulfonation. Methanol permeability for the latter sample was more than an order of magnitude less than for Nafion 112 but so was the proton conductivity within the plane of the membrane at 20 C. Across the plane of the membrane this sample had half the conductivity of Nafion 112 at 60 C.

  5. Practical aspects in expression and purification of membrane proteins for structural analysis.

    Science.gov (United States)

    Vinothkumar, Kutti R; Edwards, Patricia C; Standfuss, Joerg

    2013-01-01

    A surge of membrane protein structures in the last few years can be attributed to advances in technologies starting at the level of genomes, to highly efficient expression systems, stabilizing conformational flexibility, automation of crystallization and data collection for screening large numbers of crystals and the microfocus beam lines at synchrotrons. The substantial medical importance of many membrane proteins provides a strong incentive to understand them at the molecular level. It is becoming obvious that the major bottleneck in many of the membrane projects is obtaining sufficient amount of stable functional proteins in a detergent micelle for structural studies. Naturally, large effort has been spent on optimizing and advancing multiple expression systems and purification strategies that have started to yield sufficient protein and structures. We describe in this chapter protocols to refold membrane proteins from inclusion bodies, purification from inner membranes of Escherichia coli and from mammalian cell lines.

  6. Effect of counter- and co-ions on the structural transport parameters of sulfoacid cationite membranes

    Science.gov (United States)

    Demina, O. A.; Falina, I. V.; Kononenko, N. A.; Demin, A. V.

    2016-08-01

    The diffusion permeability and specific electroconductivity of MK-40 sulfoacid cationite and Nafion 425 membranes are studied experimentally in NaOH, NaCl, and HCl solutions with various concentrations. The resulting concentration dependences of the electrodiffusion characteristics and data on the nonexchange sorption of the electrolytes are used to calculate the structural transport parameters of the membranes in terms of a two-phase conduction model. Analysis of a set of parameters, including the electroconductivity and diffusion permeability of the membrane gel phase, the volume fractions of the conductive phases, and a parameter that reflects their relative positions, the Donnan constant, and the diffusion coefficients of counter and co-ions in the membrane gel phase reveals the effect the nature of counter- and co-ions has on the electrodiffusion, structural, and sorption characteristics of sulfoacid cationite membranes with different types of structure.

  7. Partially Fluorinated Sulfonated Poly(ether amide Fuel Cell Membranes: Influence of Chemical Structure on Membrane Properties

    Directory of Open Access Journals (Sweden)

    Chulsung Bae

    2011-01-01

    Full Text Available A series of fluorinated sulfonated poly (ether amides (SPAs were synthesized for proton exchange membrane fuel cell applications. A polycondensation reaction of 4,4’-oxydianiline, 2-sulfoterephthalic acid monosodium salt, and tetrafluorophenylene dicarboxylic acids (terephthalic and isophthalic or fluoroaliphatic dicarboxylic acids produced SPAs with sulfonation degrees of 80–90%. Controlling the feed ratio of the sulfonated and unsulfonated dicarboxylic acid monomers afforded random SPAs with ion exchange capacities between 1.7 and 2.2 meq/g and good solubility in polar aprotic solvents. Their structures were characterized using NMR and FT IR spectroscopies. Tough, flexible, and transparent films were obtained with dimethylsulfoxide using a solution casting method. Most SPA membranes with 90% sulfonation degree showed high proton conductivity (>100 mS/cm at 80 °C and 100% relative humidity. Among them, two outstanding ionomers (ODA-STA-TPA-90 and ODA-STA-IPA-90 showed proton conductivity comparable to that of Nafion 117 between 40 and 80 °C. The influence of chemical structure on the membrane properties was systematically investigated by comparing the fluorinated polymers to their hydrogenated counterparts. The results suggest that the incorporation of fluorinated moieties in the polymer backbone of the membrane reduces water absorption. High molecular weight and the resulting physical entanglement of the polymers chains played a more important role in improving stability in water, however.

  8. Investigation of structural change of purple membrane in storage by transmission electron microscope and atomic force microscope

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The structural change of purple membrane during storage has been investigated by means of transmission electron microscope and atomic force microscope. It is found that many liposomes have spontaneously evolved from the purple membrane sheets isolated three years ago. The membrane proteins on the liposomes, bacteriorhodopsin, are still presented as trimers in 2-D hexagonal structure, which is the same as that in natural cell membrane. However, the cytoplasmic surface of purple membrane faced outside on the liposomes.

  9. Relating performance of thin-film composite forward osmosis membranes to support layer formation and structure

    KAUST Repository

    Tiraferri, Alberto

    2011-02-01

    Osmotically driven membrane processes have the potential to treat impaired water sources, desalinate sea/brackish waters, and sustainably produce energy. The development of a membrane tailored for these processes is essential to advance the technology to the point that it is commercially viable. Here, a systematic investigation of the influence of thin-film composite membrane support layer structure on forward osmosis performance is conducted. The membranes consist of a selective polyamide active layer formed by interfacial polymerization on top of a polysulfone support layer fabricated by phase separation. By systematically varying the conditions used during the casting of the polysulfone layer, an array of support layers with differing structures was produced. The role that solvent quality, dope polymer concentration, fabric layer wetting, and casting blade gate height play in the support layer structure formation was investigated. Using a 1M NaCl draw solution and a deionized water feed, water fluxes ranging from 4 to 25Lm-2h-1 with consistently high salt rejection (>95.5%) were produced. The relationship between membrane structure and performance was analyzed. This study confirms the hypothesis that the optimal forward osmosis membrane consists of a mixed-structure support layer, where a thin sponge-like layer sits on top of highly porous macrovoids. Both the active layer transport properties and the support layer structural characteristics need to be optimized in order to fabricate a high performance forward osmosis membrane. © 2010 Elsevier B.V.

  10. Preparation of Ferrierite Zeolite Membranes in the Absence of Organic Structure-directing Agents

    Institute of Scientific and Technical Information of China (English)

    Xiao Hui SU; Gang LI; Rui Sen LIN; Eiichi KIKUCHI; Masahiko MATSUKATA

    2006-01-01

    Ferrierite zeolite membranes were prepared for the first time in the absence of organic structure-directing agents (SDA) on the surface of a porous α-alumina support. These membranes were characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM) and pervaporation tests.

  11. Crystal structure of HIV-1 gp41 including both fusion peptide and membrane proximal external regions.

    Directory of Open Access Journals (Sweden)

    Victor Buzon

    2010-05-01

    Full Text Available The HIV-1 envelope glycoprotein (Env composed of the receptor binding domain gp120 and the fusion protein subunit gp41 catalyzes virus entry and is a major target for therapeutic intervention and for neutralizing antibodies. Env interactions with cellular receptors trigger refolding of gp41, which induces close apposition of viral and cellular membranes leading to membrane fusion. The energy released during refolding is used to overcome the kinetic barrier and drives the fusion reaction. Here, we report the crystal structure at 2 A resolution of the complete extracellular domain of gp41 lacking the fusion peptide and the cystein-linked loop. Both the fusion peptide proximal region (FPPR and the membrane proximal external region (MPER form helical extensions from the gp41 six-helical bundle core structure. The lack of regular coiled-coil interactions within FPPR and MPER splay this end of the structure apart while positioning the fusion peptide towards the outside of the six-helical bundle and exposing conserved hydrophobic MPER residues. Unexpectedly, the section of the MPER, which is juxtaposed to the transmembrane region (TMR, bends in a 90 degrees-angle sideward positioning three aromatic side chains per monomer for membrane insertion. We calculate that this structural motif might facilitate the generation of membrane curvature on the viral membrane. The presence of FPPR and MPER increases the melting temperature of gp41 significantly in comparison to the core structure of gp41. Thus, our data indicate that the ordered assembly of FPPR and MPER beyond the core contributes energy to the membrane fusion reaction. Furthermore, we provide the first structural evidence that part of MPER will be membrane inserted within trimeric gp41. We propose that this framework has important implications for membrane bending on the viral membrane, which is required for fusion and could provide a platform for epitope and lipid bilayer recognition for broadly

  12. Effect of Sterol Structure on Chain Ordering of an Unsaturated Phospholipid: A 2H-NMR Study of POPC/Sterol Membranes

    Science.gov (United States)

    Shaghaghi, Mehran; Thewalt, Jenifer; Zuckermann, Martin

    2012-10-01

    The physical properties of biological membranes are considerably altered by the presence of sterols. In particular, sterols help to maintain the integrity of the cell by adjusting the fluidity of the plasma membrane. Cholesterol is in addition an important component of lipid rafts which are hypothesized to compartmentalize the cell membrane surface thereby making it possible for certain proteins to function. Using 2H-NMR spectroscopy, we studied the effect of a series of different sterols on the chain ordering of POPC, an unsaturated phospholipid present in eukaryotic cell membranes. We were able to assigned specific roles to the structural differences between the sterols by comparing the manner in which they affect the average lipid chain conformation of POPC.

  13. A new look at lipid-membrane structure in relation to drug research

    DEFF Research Database (Denmark)

    Mouritsen, Ole G.; Jørgensen, Kent

    1998-01-01

    Lipid-bilayer membranes are key objects in drug research in relation to (i) interaction of drugs with membrane-bound receptors, (ii) drug targeting, penetration, and permeation of cell membranes, and (iii) use of liposomes in micro-encapsulation technologies for drug delivery. Rational design...... of new drugs and drug-delivery systems therefore requries insight into the physical properties of lipid-bilayer membranes. This mini-review provides a perspective on the current view of lipid-bilayer structure and dynamics based on information obtained from a variety of recent experimental...

  14. Role of charged lipids in membrane structures — Insight given by simulations

    DEFF Research Database (Denmark)

    Pöyry, Sanja; Vattulainen, Ilpo

    2016-01-01

    such as phosphatidylinositols and phosphatidylserines are involved in several examples of such effects. Molecular dynamics simulations have proved an invaluable tool in exploring these aspects. This so-called computational microscope can provide both complementing explanations for the experimental results and guide experiments...... to fruitful directions. In this paper, we review studies that have utilized molecular dynamics simulations to unravel the roles of charged lipids in membrane structures. We focus on lipids as active constituents of the membranes, affecting both general membrane properties as well as non-lipid membrane...

  15. Membrane dish analysis: A summary of structural and optical analysis capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Steele, C.R.; Balch, C.D.; Jorgensen, G.J.; Wendelin, T.; Lewandowski, A.

    1991-11-01

    Research at SERI within the Department of Energy's Solar Thermal Technology Program has focused on the development of membrane dish concentrators for space and terrestrial power applications. As potentially lightweight, inexpensive, high-performance structures, they are excellent candidates for space-deployable energy sources as well as cost-effective terrestrial energy concepts. A thorough engineering research treatment of these types of structures consists primarily of two parts: (1) structural mechanics of the membrane and ring support and (2) analysis and characterization of the concentrator optical performance. It is important to understand the effects of the membrane's structure and support system on the optical performance of the concentrator. This requires an interface between appropriate structural and optical models. Until recently, such models and the required interface have not existed. This report documents research that has been conducted at SERI in this area. It is a compilation of several papers describing structural models of membrane dish structures and optical models used to predict dish concentrator optical and thermal performance. The structural models were developed under SERI subcontract by Dr. Steele and Dr. Balch of Stanford University. The optical model was developed in-house by SERI staff. In addition, the interface between the models is described. It allows easy and thorough characterization of membrane dish systems from the mechanics to the resulting optical performance. The models described herein have been and continue to be extremely useful to SERI, industry, and universities involved with the modeling and analysis of lightweight membrane concentrators for solar thermal applications.

  16. A Subset of Membrane-Altering Agents and γ-Secretase Modulators Provoke Nonsubstrate Cleavage by Rhomboid Proteases

    Directory of Open Access Journals (Sweden)

    Siniša Urban

    2014-09-01

    Full Text Available Rhomboid proteases are integral membrane enzymes that regulate cell signaling, adhesion, and organelle homeostasis pathways, making substrate specificity a key feature of their function. Interestingly, we found that perturbing the membrane pharmacologically in living cells had little effect on substrate processing but induced inappropriate cleavage of nonsubstrates by rhomboid proteases. A subclass of drugs known to modulate γ-secretase activity acted on the membrane directly and induced nonsubstrate cleavage by rhomboid proteases but left true substrate cleavage sites unaltered. These observations highlight an active role for the membrane in guiding rhomboid selectivity and caution that membrane-targeted drugs should be evaluated for cross-activity against membrane-resident enzymes that are otherwise unrelated to the intended drug target. Furthermore, some γ-secretase-modulating activity or toxicity could partly result from global membrane effects.

  17. Pinkbar is an epithelial-specific BAR domain protein that generates planar membrane structures

    Energy Technology Data Exchange (ETDEWEB)

    Pykäläinen, Anette; Boczkowska, Malgorzata; Zhao, Hongxia; Saarikangas, Juha; Rebowski, Grzegorz; Jansen, Maurice; Hakanen, Janne; Koskela, Essi V.; Peränen, Johan; Vihinen, Helena; Jokitalo, Eija; Salminen, Marjo; Ikonen, Elina; Dominguez, Roberto; Lappalainen, Pekka (Helsinki); (Penn)

    2013-05-29

    Bin/amphipysin/Rvs (BAR)-domain proteins sculpt cellular membranes and have key roles in processes such as endocytosis, cell motility and morphogenesis. BAR domains are divided into three subfamilies: BAR- and F-BAR-domain proteins generate positive membrane curvature and stabilize cellular invaginations, whereas I-BAR-domain proteins induce negative curvature and stabilize protrusions. We show that a previously uncharacterized member of the I-BAR subfamily, Pinkbar, is specifically expressed in intestinal epithelial cells, where it localizes to Rab13-positive vesicles and to the plasma membrane at intercellular junctions. Notably, the BAR domain of Pinkbar does not induce membrane tubulation but promotes the formation of planar membrane sheets. Structural and mutagenesis analyses reveal that the BAR domain of Pinkbar has a relatively flat lipid-binding interface and that it assembles into sheet-like oligomers in crystals and in solution, which may explain its unique membrane-deforming activity.

  18. Influence of the surface structure on the filtration performance of UV-modified PES membranes

    DEFF Research Database (Denmark)

    Kæselev, Bozena Alicja; Kingshott, P.; Jonsson, Gunnar Eigil

    2002-01-01

    chemically characterised using X-ray photoelectron spectroscopy (XPS) and time of flight-static secondary ion mass spectrometry (TOF-static SIMS). The filtration performance of irradiated/non-modified and irradiated/modified membranes was examined in a crossflow cell, using a dextran solution. The filtration...... performance of the irradiated/non-modified membranes unambiguously indicates that cross linking and chain scission to the base membrane is occurring. The simultaneous decrease in volume flux and true retention demonstrates that the proceeding cross-linking increases the hydrodynamic resistance of the membrane...... in relation to dextran when compared to membranes modified by AAG and AAP. This work suggests that the structure of the presence of grafted chains seems to be responsible for the observed changes to filtration performance of the modified membrane. Surface analysis supports the claim that the specific surface...

  19. Damage detection in membrane structures using non-contact laser excitation and wavelet transformation

    Science.gov (United States)

    Huda, Feblil; Kajiwara, Itsuro; Hosoya, Naoki

    2014-08-01

    In this paper, a vibration testing and health monitoring system based on an impulse response excited by laser is proposed to detect damage in membrane structures. A high power Nd: YAG pulse laser is used to supply an ideal impulse to a membrane structure by generating shock waves via laser-induced breakdown in air. A health monitoring apparatus is developed with this vibration testing system and a damage detecting algorithm which only requires the vibration mode shape of the damaged membrane. Artificial damage is induced in membrane structure by cutting and tearing the membrane. The vibration mode shapes of the membrane structure extracted from vibration testing by using the laser-induced breakdown and laser Doppler vibrometer are then analyzed by 2-D continuous wavelet transformation. The location of damage is determined by the dominant peak of the wavelet coefficient which can be seen clearly by applying a boundary treatment and the concept of an iso-surface to the 2-D wavelet coefficient. The applicability of the present approach is verified by finite element analysis and experimental results, demonstrating the ability of the method to detect and identify the positions of damage induced on the membrane structure.

  20. Structural investigation of membrane proteins by electron microscopy

    NARCIS (Netherlands)

    Moscicka, Katarzyna Beata

    2009-01-01

    Biological membranes are vital components of all living systems, forming the boundaries of cells and their organelles. They consist of a lipid bilayer and embedded proteins, which are nanomachines that fulfill key functions such as energy conversion, solute transport, secretion, and signal transduct

  1. The Plasma Membrane of Saccharomyces cerevisiae : Structure, Function, and Biogenesis

    NARCIS (Netherlands)

    VANDERREST, ME; KAMMINGA, AH; NAKANO, A; ANRAKU, Y; POOLMAN, B; KONINGS, WN

    1995-01-01

    The composition of phospholipids, sphingolipids, and sterols in the plasma membrane has a strong influence on the activity of the proteins associated or embedded in the lipid bilayer. Since most lipid-synthesizing enzymes in Saccharomyces cerevisiae are located in intracellular organelles, an extens

  2. Structural basis for the membrane association of ankyrinG via palmitoylation

    Science.gov (United States)

    Fujiwara, Yuichiro; Kondo, Hiroko X.; Shirota, Matsuyuki; Kobayashi, Megumi; Takeshita, Kohei; Nakagawa, Atsushi; Okamura, Yasushi; Kinoshita, Kengo

    2016-04-01

    By clustering various ion channels and transporters, ankyrin-G (AnkG) configures the membrane-excitation platforms in neurons and cardiomyocytes. AnkG itself localizes to specific areas on the plasma membrane via s-palmitoylation of Cys. However, the structural mechanism by which AnkG anchors to the membrane is not understood. In this study, we solved the crystal structures of the reduced and oxidized forms of the AnkG s-palmitoylation domain and used multiple long-term coarse-grained molecular dynamics simulations to analyze their membrane association. Here we report that the membrane anchoring of AnkG was facilitated by s-palmitoylation, defining a stable binding interface on the lipid membrane, and that AnkG without s-palmitoylation also preferred to stay near the membrane but did not have a unique binding interface. This suggests that AnkG in the juxtamembrane region is primed to accept lipid modification at Cys, and once that happens AnkG constitutes a rigid structural base upon which a membrane-excitation platform can be assembled.

  3. Administration of flutamide alters sperm ultrastructure, sperm plasma membrane integrity and its stability, and sperm mitochondrial oxidative capability in the boar: in vivo and in vitro approach.

    Science.gov (United States)

    Lydka, M; Piasecka, M; Gaczarzewicz, D; Koziorowski, M; Bilinska, B

    2012-08-01

    Our previous work has shown that an anti-androgen flutamide administered pre- and post-natally induced adverse effects on the epididymal morphology and function of adult boars. The present investigation is aimed to understand the effect of flutamide and its metabolite on changes in sperm plasma membrane integrity and its stability, changes in mitochondrial oxidative capability and frequency of abnormal sperm. In vivo effects of flutamide (50 mg/kg b.w.) on sperm ultrastructure were examined by electron microscopic observations. In vitro effects of 5, 50 and 100 μg/ml hydroxyflutamide, administered for 2 and 24 h, on sperm plasma membrane integrity were measured by LIVE/DEAD Sperm Vitality kit, while those on sperm membrane stability and mitochondrial oxidoreductive activity were investigated using Merocyanine 540 and NADH tests, respectively. The incidence of abnormal spermatozoa increased significantly (p boars compared with controls. In an in vitro approach, low dose of hydroxyflutamide in 2-h incubations appeared less effective in altering the sperm plasma membrane integrity and its stability than two higher doses used (p sperm membrane destabilization and mitochondrial oxidoreductive activity was strengthened after 24 h of hydroxyflutamide administration (p sperm parameters with regard to oxidative capability of mitochondria, plasma membrane changes and sperm ultrastructure provides novel data on the boar sperm sensitivity to anti-androgen action. Results indicate high sensitivity of boar spermatozoa to androgen withdrawal.

  4. Spontaneous formation of structurally diverse membrane channel architectures from a single antimicrobial peptide

    Science.gov (United States)

    Wang, Yukun; Chen, Charles H.; Hu, Dan; Ulmschneider, Martin B.; Ulmschneider, Jakob P.

    2016-11-01

    Many antimicrobial peptides (AMPs) selectively target and form pores in microbial membranes. However, the mechanisms of membrane targeting, pore formation and function remain elusive. Here we report an experimentally guided unbiased simulation methodology that yields the mechanism of spontaneous pore assembly for the AMP maculatin at atomic resolution. Rather than a single pore, maculatin forms an ensemble of structurally diverse temporarily functional low-oligomeric pores, which mimic integral membrane protein channels in structure. These pores continuously form and dissociate in the membrane. Membrane permeabilization is dominated by hexa-, hepta- and octamers, which conduct water, ions and small dyes. Pores form by consecutive addition of individual helices to a transmembrane helix or helix bundle, in contrast to current poration models. The diversity of the pore architectures--formed by a single sequence--may be a key feature in preventing bacterial resistance and could explain why sequence-function relationships in AMPs remain elusive.

  5. Effect of Heat Treatment on Structures and Properties of Polyurethane Blend Ultrafiltration Membranes

    Institute of Scientific and Technical Information of China (English)

    封严; 肖长发

    2004-01-01

    The polyurethane/polyacrylonitrile ( PU/PAN ) and polyurethane/cellulose acetate (PU/CA) blend ultra filtration membranes were prepared based on LoebSourirajan phase transition method. The change of the structures and properties of the PU/PAN and PU/CA membranes with the heat treatment process was studied.The results showed: the water flux decreased and retention increased with the increase of heat treatment temperature of PU/PAN blend membrane, but the water flux of PU/CA blend membrane got the maximum with heat treatment temperature of 60℃ and decreased rapidly with the heat treatment temperature of 100 ℃. The interfacial microvoid structure and its influence on the properties of PU/PAN and PU/CA blend membranes were studied.

  6. Calcium binding promotes prion protein fragment 90-231 conformational change toward a membrane destabilizing and cytotoxic structure.

    Directory of Open Access Journals (Sweden)

    Sacha Sorrentino

    Full Text Available The pathological form of prion protein (PrP(Sc, as other amyloidogenic proteins, causes a marked increase of membrane permeability. PrP(Sc extracted from infected Syrian hamster brains induces a considerable change in membrane ionic conductance, although the contribution of this interaction to the molecular mechanism of neurodegeneration process is still controversial. We previously showed that the human PrP fragment 90-231 (hPrP₉₀₋₂₃₁ increases ionic conductance across artificial lipid bilayer, in a calcium-dependent manner, producing an alteration similar to that observed for PrP(Sc. In the present study we demonstrate that hPrP₉₀₋₂₃₁, pre-incubated with 10 mM Ca⁺⁺ and then re-suspended in physiological external solution increases not only membrane conductance but neurotoxicity as well. Furthermore we show the existence of a direct link between these two effects as demonstrated by a highly statistically significant correlation in several experimental conditions. A similar correlation between increased membrane conductance and cell degeneration has been observed assaying hPrP₉₀₋₂₃₁ bearing pathogenic mutations (D202N and E200K. We also report that Ca⁺⁺ binding to hPrP₉₀₋₂₃₁ induces a conformational change based on an alteration of secondary structure characterized by loss of alpha-helix content causing hydrophobic amino acid exposure and proteinase K resistance. These features, either acquired after controlled thermal denaturation or induced by D202N and E200K mutations were previously identified as responsible for hPrP₉₀₋₂₃₁ cytotoxicity. Finally, by in silico structural analysis, we propose that Ca⁺⁺ binding to hPrP₉₀₋₂₃₁ modifies amino acid orientation, in the same way induced by E200K mutation, thus suggesting a pathway for the structural alterations responsible of PrP neurotoxicity.

  7. Calcium binding promotes prion protein fragment 90-231 conformational change toward a membrane destabilizing and cytotoxic structure.

    Science.gov (United States)

    Sorrentino, Sacha; Bucciarelli, Tonino; Corsaro, Alessandro; Tosatto, Alessio; Thellung, Stefano; Villa, Valentina; Schininà, M Eugenia; Maras, Bruno; Galeno, Roberta; Scotti, Luca; Creati, Francesco; Marrone, Alessandro; Re, Nazzareno; Aceto, Antonio; Florio, Tullio; Mazzanti, Michele

    2012-01-01

    The pathological form of prion protein (PrP(Sc)), as other amyloidogenic proteins, causes a marked increase of membrane permeability. PrP(Sc) extracted from infected Syrian hamster brains induces a considerable change in membrane ionic conductance, although the contribution of this interaction to the molecular mechanism of neurodegeneration process is still controversial. We previously showed that the human PrP fragment 90-231 (hPrP₉₀₋₂₃₁) increases ionic conductance across artificial lipid bilayer, in a calcium-dependent manner, producing an alteration similar to that observed for PrP(Sc). In the present study we demonstrate that hPrP₉₀₋₂₃₁, pre-incubated with 10 mM Ca⁺⁺ and then re-suspended in physiological external solution increases not only membrane conductance but neurotoxicity as well. Furthermore we show the existence of a direct link between these two effects as demonstrated by a highly statistically significant correlation in several experimental conditions. A similar correlation between increased membrane conductance and cell degeneration has been observed assaying hPrP₉₀₋₂₃₁ bearing pathogenic mutations (D202N and E200K). We also report that Ca⁺⁺ binding to hPrP₉₀₋₂₃₁ induces a conformational change based on an alteration of secondary structure characterized by loss of alpha-helix content causing hydrophobic amino acid exposure and proteinase K resistance. These features, either acquired after controlled thermal denaturation or induced by D202N and E200K mutations were previously identified as responsible for hPrP₉₀₋₂₃₁ cytotoxicity. Finally, by in silico structural analysis, we propose that Ca⁺⁺ binding to hPrP₉₀₋₂₃₁ modifies amino acid orientation, in the same way induced by E200K mutation, thus suggesting a pathway for the structural alterations responsible of PrP neurotoxicity.

  8. On ripples and rafts: Curvature induced nanoscale structures in lipid membranes

    Science.gov (United States)

    Schmid, Friederike; Dolezel, Stefan; Lenz, Olaf; Meinhardt, Sebastian

    2014-03-01

    We develop an elastic theory that predicts the spontaneous formation of nanoscale structures in lipid bilayers which locally phase separate between two phases with different spontaneous monolayer curvature. The theory rationalizes in a unified manner the observation of a variety of nanoscale structures in lipid membranes: Rippled states in one-component membranes, lipid rafts in multicomponent membranes. Furthermore, we report on recent observations of rippled states and rafts in simulations of a simple coarse-grained model for lipid bilayers, which are compatible with experimental observations and with our elastic model.

  9. Biological Membrane Ion Channels Dynamics, Structure, and Applications

    CERN Document Server

    Chung, Shin-Ho; Krishnamurthy, Vikram

    2007-01-01

    Ion channels are biological nanotubes that are formed by membrane proteins. Because ion channels regulate all electrical activities in living cells, understanding their mechanisms at a molecular level is a fundamental problem in biology. This book deals with recent breakthroughs in ion-channel research that have been brought about by the combined effort of experimental biophysicists and computational physicists, who together are beginning to unravel the story of these exquisitely designed biomolecules. With chapters by leading experts, the book is aimed at researchers in nanodevices and biosensors, as well as advanced undergraduate and graduate students in biology and the physical sciences. Key Features Presents the latest information on the molecular mechanisms of ion permeation through membrane ion channels Uses schematic diagrams to illustrate important concepts in biophysics Written by leading researchers in the area of ion channel investigations

  10. NOVEL NANOCOMPOSITE MEMBRANE STRUCTURES FOR H2 SEPARATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Benny D. Freeman

    2005-03-31

    This report explores possible methods of improving CO{sub 2} selectivity in polymer based membranes. The first method investigated using basic nanoparticles to enhance the solubility of acid gases in nanocomposite membranes, thus enhancing the overall acid gas/light gas selectivity (e.g., CO{sub 2}/H{sub 2}, CO{sub 2}/CH{sub 4}, etc.). The influence of nanoparticle surface chemistry on nanocomposite morphology and transport properties will be determined experimentally in a series of poly(1-trimethylsilyl-1-propyne). Additional factors (e.g., chemical reaction of the particles with the polymers) have been considered, as necessary, during the course of the investigation. The second method investigated using polar polymers such as crosslinked poly(ethylene oxide) and poly(ether-b-amide) to improve CO{sub 2} sorption and thereby increase CO{sub 2} permeability and CO{sub 2}/light gas selectivity. For both types of materials, CO{sub 2} and light gas permeabilities have been characterized. The overall objective was to improve the understanding of materials design strategies to improve acid gas transport properties of membranes.

  11. Membrane Characterization by Microscopic and Scattering Methods: Multiscale Structure

    Directory of Open Access Journals (Sweden)

    Philippe Moulin

    2011-04-01

    Full Text Available Several microscopic and scattering techniques at different observation scales (from atomic to macroscopic were used to characterize both surface and bulk properties of four new flat-sheet polyethersulfone (PES membranes (10, 30, 100 and 300 kDa and new 100 kDa hollow fibers (PVDF. Scanning Electron Microscopy (SEM with “in lens” detection was used to obtain information on the pore sizes of the skin layers at the atomic scale. White Light Interferometry (WLI and Atomic Force Microscopy (AFM using different scales (for WLI: windows: 900 × 900 µm2 and 360 × 360 µm2; number of points: 1024; for AFM: windows: 50 × 50 µm2 and 5 × 5 µm2; number of points: 512 showed that the membrane roughness increases markedly with the observation scale and that there is a continuity between the different scan sizes for the determination of the RMS roughness. High angular resolution ellipsometric measurements were used to obtain the signature of each cut-off and the origin of the scattering was identified as coming from the membrane bulk.

  12. Membrane characterization by microscopic and scattering methods: multiscale structure.

    Science.gov (United States)

    Tamime, Rahma; Wyart, Yvan; Siozade, Laure; Baudin, Isabelle; Deumie, Carole; Glucina, Karl; Moulin, Philippe

    2011-04-13

    Several microscopic and scattering techniques at different observation scales (from atomic to macroscopic) were used to characterize both surface and bulk properties of four new flat-sheet polyethersulfone (PES) membranes (10, 30, 100 and 300 kDa) and new 100 kDa hollow fibers (PVDF). Scanning Electron Microscopy (SEM) with "in lens" detection was used to obtain information on the pore sizes of the skin layers at the atomic scale. White Light Interferometry (WLI) and Atomic Force Microscopy (AFM) using different scales (for WLI: windows: 900 × 900 µm2 and 360 × 360 µm2; number of points: 1024; for AFM: windows: 50 × 50 µm2 and 5 × 5 µm2; number of points: 512) showed that the membrane roughness increases markedly with the observation scale and that there is a continuity between the different scan sizes for the determination of the RMS roughness. High angular resolution ellipsometric measurements were used to obtain the signature of each cut-off and the origin of the scattering was identified as coming from the membrane bulk.

  13. Expression and structural-functional alterations of α-1-acid glycoprotein at the pathological state

    Directory of Open Access Journals (Sweden)

    Kulinich A. O.

    2010-07-01

    Full Text Available The review analyzes up-to-date knowledge on structure and biological functions of α-acid glycoprotein. The special attention is given to alterations of fucosylation, sialylation and branching of orosomucoid at the acute, chronic inflammation and oncotransformations.

  14. Label-free optical quantification of structural alterations in Alzheimer's disease

    CERN Document Server

    Lee, Moosung; Jung, JaeHwang; Yu, Hyeonseung; Kim, Kyoohyun; Lee, Shinhwa; Jeong, Yong; Park, YongKeun

    2016-01-01

    We present a quantitative label-free imaging of mouse whole brain tissue slices with sub-micrometre resolution, employing holographic microscopy and an automated scanning platform. From the measured light field images, scattering coefficients and anisotropies are quantitatively retrieved, which enables access to structural information about brain tissues. As a proof of principle, we demonstrate that these scattering parameters enable us to quantitatively address structural alteration in the brain tissues of mice with Alzheimer's disease.

  15. Experimental alteration of artificial and natural impact melt rock from the Chesapeake Bay impact structure

    Science.gov (United States)

    Declercq, J.; Dypvik, H.; Aagaard, P.; Jahren, J.; Ferrell, R.E.; Horton, J. Wright

    2009-01-01

    The alteration or transformation of impact melt rock to clay minerals, particularly smectite, has been recognized in several impact structures (e.g., Ries, Chicxulub, Mj??lnir). We studied the experimental alteration of two natural impact melt rocks from suevite clasts that were recovered from drill cores into the Chesapeake Bay impact structure and two synthetic glasses. These experiments were conducted at hydrothermal temperature (265 ??C) in order to reproduce conditions found in meltbearing deposits in the first thousand years after deposition. The experimental results were compared to geochemical modeling (PHREEQC) of the same alteration and to original mineral assemblages in the natural melt rock samples. In the alteration experiments, clay minerals formed on the surfaces of the melt particles and as fine-grained suspended material. Authigenic expanding clay minerals (saponite and Ca-smectite) and vermiculite/chlorite (clinochlore) were identified in addition to analcime. Ferripyrophyllite was formed in three of four experiments. Comparable minerals were predicted in the PHREEQC modeling. A comparison between the phases formed in our experiments and those in the cores suggests that the natural alteration occurred under hydrothermal conditions similar to those reproduced in the experiment. ?? 2009 The Geological Society of America.

  16. The structure and function of cell membranes examined by atomic force microscopy and single-molecule force spectroscopy.

    Science.gov (United States)

    Shan, Yuping; Wang, Hongda

    2015-06-07

    The cell membrane is one of the most complicated biological complexes, and long-term fierce debates regarding the cell membrane persist because of technical hurdles. With the rapid development of nanotechnology and single-molecule techniques, our understanding of cell membranes has substantially increased. Atomic force microscopy (AFM) has provided several unprecedented advances (e.g., high resolution, three-dimensional and in situ measurements) in the study of cell membranes and has been used to systematically dissect the membrane structure in situ from both sides of membranes; as a result, novel models of cell membranes have recently been proposed. This review summarizes the new progress regarding membrane structure using in situ AFM and single-molecule force spectroscopy (SMFS), which may shed light on the study of the structure and functions of cell membranes.

  17. Advances in structural and functional analysis of membrane proteins by electron crystallography.

    Science.gov (United States)

    Wisedchaisri, Goragot; Reichow, Steve L; Gonen, Tamir

    2011-10-12

    Electron crystallography is a powerful technique for the study of membrane protein structure and function in the lipid environment. When well-ordered two-dimensional crystals are obtained the structure of both protein and lipid can be determined and lipid-protein interactions analyzed. Protons and ionic charges can be visualized by electron crystallography and the protein of interest can be captured for structural analysis in a variety of physiologically distinct states. This review highlights the strengths of electron crystallography and the momentum that is building up in automation and the development of high throughput tools and methods for structural and functional analysis of membrane proteins by electron crystallography.

  18. Structure refinement and membrane positioning of selectively labeled OmpX in phospholipid nanodiscs

    Energy Technology Data Exchange (ETDEWEB)

    Hagn, Franz, E-mail: franz.hagn@tum.de; Wagner, Gerhard, E-mail: gerhard-wagner@hms.harvard.edu [Harvard Medical School, Department of Biological Chemistry and Molecular Pharmacology (United States)

    2015-04-15

    NMR structural studies on membrane proteins are often complicated by their large size, taking into account the contribution of the membrane mimetic. Therefore, classical resonance assignment approaches often fail. The large size of phospholipid nanodiscs, a detergent-free phospholipid bilayer mimetic, prevented their use in high-resolution solution-state NMR spectroscopy so far. We recently introduced smaller nanodiscs that are suitable for NMR structure determination. However, side-chain assignments of a membrane protein in nanodiscs still remain elusive. Here, we utilized a NOE-based approach to assign (stereo-) specifically labeled Ile, Leu, Val and Ala methyl labeled and uniformly {sup 15}N-Phe and {sup 15}N-Tyr labeled OmpX and calculated a refined high-resolution structure. In addition, we were able to obtain residual dipolar couplings (RDCs) of OmpX in nanodiscs using Pf1 phage medium for the induction of weak alignment. Back-calculated NOESY spectra of the obtained NMR structures were compared to experimental NOESYs in order to validate the quality of these structures. We further used NOE information between protonated lipid head groups and side-chain methyls to determine the position of OmpX in the phospholipid bilayer. These data were verified by paramagnetic relaxation enhancement (PRE) experiments obtained with Gd{sup 3+}-modified lipids. Taken together, this study emphasizes the need for the (stereo-) specific labeling of membrane proteins in a highly deuterated background for high-resolution structure determination, particularly in large membrane mimicking systems like phospholipid nanodiscs. Structure validation by NOESY back-calculation will be helpful for the structure determination and validation of membrane proteins where NOE assignment is often difficult. The use of protein to lipid NOEs will be beneficial for the positioning of a membrane protein in the lipid bilayer without the need for preparing multiple protein samples.

  19. Membrane dish analysis: A summary of structural and optical analysis capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Steele, C.R.; Balch, C.D.; Jorgensen, G.J.; Wendelin, T.; Lewandowski, A.

    1991-11-01

    Research at SERI within the Department of Energy`s Solar Thermal Technology Program has focused on the development of membrane dish concentrators for space and terrestrial power applications. As potentially lightweight, inexpensive, high-performance structures, they are excellent candidates for space-deployable energy sources as well as cost-effective terrestrial energy concepts. A thorough engineering research treatment of these types of structures consists primarily of two parts: (1) structural mechanics of the membrane and ring support and (2) analysis and characterization of the concentrator optical performance. It is important to understand the effects of the membrane`s structure and support system on the optical performance of the concentrator. This requires an interface between appropriate structural and optical models. Until recently, such models and the required interface have not existed. This report documents research that has been conducted at SERI in this area. It is a compilation of several papers describing structural models of membrane dish structures and optical models used to predict dish concentrator optical and thermal performance. The structural models were developed under SERI subcontract by Dr. Steele and Dr. Balch of Stanford University. The optical model was developed in-house by SERI staff. In addition, the interface between the models is described. It allows easy and thorough characterization of membrane dish systems from the mechanics to the resulting optical performance. The models described herein have been and continue to be extremely useful to SERI, industry, and universities involved with the modeling and analysis of lightweight membrane concentrators for solar thermal applications.

  20. Analysis of wrinkled membrane structures based on a wrinkle-wave model

    Directory of Open Access Journals (Sweden)

    Mingjun Liu

    2017-01-01

    Full Text Available As research on the applications of high-precision membrane structures develops, wrinkling has become a popular topic. Here, we present a new wrinkle-wave model to describe wrinkles more accurately. First, the characteristics of wrinkle-waves that result from radial tension stress applied at the vertex of a triangular structure were analyzed. However, for polygonal structures under more than two tensions, the influence of the other vertexes should also be considered. Therefore, by introducing a load ratio, we constructed a wrinkle-wave model of a square membrane structure subjected to corner forces. This model is applicable to various loading cases and polygonal membrane structures. Comparison among the results of the finite element analysis, and the experimental and analytical results showed that the proposed model more accurately described the wrinkling details and solved the problem of convergence that is encountered during finite element analysis.

  1. Static and Dynamic Analyses of Long-Span Spatial Steel-Cable-Membrane Hybrid Structures

    Institute of Scientific and Technical Information of China (English)

    丁阳; 彭翼; 李忠献

    2003-01-01

    With the increment of the complexity of structural systems and the span of spatial structures, the interactions between parts of the structures, especially between some flexible substructures, become too complex to be analyzed clearly. In this paper, taking an actual gymnasium of a long-span spatial steel-cable-membrane hybrid structure as the calculation model, the static and dynamic analyses of the hybrid structures are performed by employing the global analysis of the whole hybrid structure and the substructural analysis of the truss arch substructure, the cable-membrane substructure, etc. In addition, the comparison of stresses and displacements of structural members in the global and substructural analyses is made. The numerical results show that serious errors exist in the substructural analysis of the hybrid structure, and the global analysis is necessary for the hybrid structure under the excitation of static loads and seismic loads.

  2. Structure and transport properties of ethylcellulose membranes with different types and granulation of magnetic powder

    Science.gov (United States)

    Krasowska, Monika; Strzelewicz, Anna; Rybak, Aleksandra; Dudek, Gabriela; Cieśla, Michał

    2016-06-01

    Structure and transport properties of ethylcellulose membranes with dispersed magnetic powder were investigated. The study mainly focused on diffusion, which is one of the transport mechanisms. The transport properties depend on many parameters like: polymeric matrix used, type of powder, its amount and granulation. The structure of the pattern formed by magnetic particles in the membrane matrix was studied. Description of the system was based on the phenomenological and molecular (random walk on a fractal lattice) approaches. Two parameters were calculated: the fractal dimension of random walk dw, and the fractal dimension of membrane structure df. The knowledge of both parameters made it possible to use the generalized equation of diffusion on the fractal structure obtained by Metzler et al. The research was carried out to determine the influence of magnetic powder granulation on the transport properties. The results showed that the random walk within the membranes of the smallest magnetic powder granulation was of the most subdiffusive character. Detailed investigation and quantitative description of gas transport through the membranes enables designing the membranes to be used in air oxygen enrichment.

  3. Structural Diversity of Eukaryotic Membrane Cytochrome P450s*

    OpenAIRE

    Johnson, Eric F.; Stout, C. David

    2013-01-01

    X-ray crystal structures are available for 29 eukaryotic microsomal, chloroplast, or mitochondrial cytochrome P450s, including two non-monooxygenase P450s. These structures provide a basis for understanding structure-function relations that underlie their distinct catalytic activities. Moreover, structural plasticity has been characterized for individual P450s that aids in understanding substrate binding in P450s that mediate drug clearance.

  4. Structural Basis for Host Membrane Remodeling Induced by Protein 2B of Hepatitis A Virus

    Science.gov (United States)

    Vives-Adrián, Laia; Garriga, Damià; Buxaderas, Mònica; Fraga, Joana; Pereira, Pedro José Barbosa

    2015-01-01

    ABSTRACT The complexity of viral RNA synthesis and the numerous participating factors require a mechanism to topologically coordinate and concentrate these multiple viral and cellular components, ensuring a concerted function. Similarly to all other positive-strand RNA viruses, picornaviruses induce rearrangements of host intracellular membranes to create structures that act as functional scaffolds for genome replication. The membrane-targeting proteins 2B and 2C, their precursor 2BC, and protein 3A appear to be primarily involved in membrane remodeling. Little is known about the structure of these proteins and the mechanisms by which they induce massive membrane remodeling. Here we report the crystal structure of the soluble region of hepatitis A virus (HAV) protein 2B, consisting of two domains: a C-terminal helical bundle preceded by an N-terminally curved five-stranded antiparallel β-sheet that displays striking structural similarity to the β-barrel domain of enteroviral 2A proteins. Moreover, the helicoidal arrangement of the protein molecules in the crystal provides a model for 2B-induced host membrane remodeling during HAV infection. IMPORTANCE No structural information is currently available for the 2B protein of any picornavirus despite it being involved in a critical process in viral factory formation: the rearrangement of host intracellular membranes. Here we present the structure of the soluble domain of the 2B protein of hepatitis A virus (HAV). Its arrangement, both in crystals and in solution under physiological conditions, can help to understand its function and sheds some light on the membrane rearrangement process, a putative target of future antiviral drugs. Moreover, this first structure of a picornaviral 2B protein also unveils a closer evolutionary relationship between the hepatovirus and enterovirus genera within the Picornaviridae family. PMID:25589659

  5. Structures linking the myonemes, endoplasmic reticulum, and surface membranes in the contractile ciliate Vorticella.

    Science.gov (United States)

    Allen, R D

    1973-02-01

    An electron microscope investigation of the interface between the myonemes of Vorticella convallaria and their associated endoplasmic reticulum (ER) has revealed structures of a complex morphology linking these two organelles. These structures are named "linkage complexes". Each complex contains a spindle-shaped midpiece which lies in a groove of the ER membrane. Microfilaments splay out from the tips of the midpiece and may come in contact with the inner alveolar sac membrane. Three to six raillike structures lie on each side of the midpiece and parallel it. The ER membrane appears to pass through the sides of the rails. In the lumen of the ER these rails are associated with a meshwork of filaments. A cradle of five rods lies within the groove under the midpiece. The ER membrane also passes through these rods which contact the same meshwork. In the scopular region and in the stalk the microfilaments from the midpiece form a bundle which passes into the lumen of modified basal bodies. These basal bodies are connected to the alveolar sac which, in the stalk, passes as a flattened tube along its length. The parts of the dissociated linkage complex are scattered throughout the spasmoneme of the stalk along membranes of the intraspasmonemal tubules. Thus, both stalk and body contractile bundles have linkage complexes that link their associated membrane systems to the microfibrils and, in turn, connect this membrane-microfibrillar interface to the pellicular membranes. The arrangement of the linkage complex suggests an involvement in the control of the transport of calcium ions between ER and microfibrils, and possibly the transfer of a message from the surface membranes to the sites of calcium release to trigger myonemal contraction.

  6. Structural Transition of Actin Filament in a Cell-Sized Water Droplet with a Phospholipid Membrane

    CERN Document Server

    Hase, M

    2005-01-01

    Actin filament, F-actin, is a semiflexible polymer with a negative charge, and is one of the main constituents on cell membranes. To clarify the effect of cross-talk between a phospholipid membrane and actin filaments in cells, we conducted microscopic observations on the structural changes in actin filaments in a cell-sized (several tens of micrometers in diameter) water droplet coated with a phospholipid membrane such as phosphatidylserine (PS; negatively-charged head group) or phosphatidylethanolamine (PE; neutral head group) as a simple model of a living cell membrane. With PS, actin filaments are distributed uniformly in the water phase without adsorption onto the membrane surface between 2 and 6 mM Mg2+, while between 6 and 12 mM Mg2+, actin filaments are adsorbed onto the inner membrane surface. With PE, actin filaments are uniformly adsorbed onto the inner membrane surface between 2 and 12 mM Mg2+. With both PS and PE membranes, at Mg2+ concentrations higher than 12 mM, thick bundles are formed in the...

  7. An experimental study of perovskite-structured mixed ionic- electronic conducting oxides and membranes

    Science.gov (United States)

    Zeng, Pingying

    In recent decades, ceramic membranes based on mixed ionic and electronic conducting (MIEC) perovskite-structured oxides have received many attentions for their applications for air separation, or as a membrane reactor for methane oxidation. While numerous perovskite oxide materials have been explored over the past two decades; there are hardly any materials with sufficient practical economic value and performance for large scale applications, which justifies continuing the search for new materials. The main purposes of this thesis study are: (1) develop several novel SrCoO3-delta based MIEC oxides, SrCoCo1-xMxO3-delta, based on which membranes exhibit excellent oxygen permeability; (2) investigate the significant effects of the species and concentration of the dopants M (metal ions with fixed valences) on the various properties of these membranes; (3) investigate the significant effects of sintering temperature on the microstructures and performance of oxygen permeation membranes; and (4) study the performance of oxygen permeation membranes as a membrane reactor for methane combustion. To stabilize the cubic phase structure of the SrCoO3-delta oxide, various amounts of scandium was doped into the B-site of SrCoO 3-delta to form a series of new perovskite oxides, SrScxCoCo 1-xO3-delta (SSCx, x = 0-0.7). The significant effects of scandium-doping concentration on the phase structure, electrical conductivity, sintering performance, thermal and structural stability, cathode performance, and oxygen permeation performance of the SSCx membranes, were systematically studied. Also for a more in-depth understanding, the rate determination steps for the oxygen transport process through the membranes were clarified by theoretical and experimental investigation. It was found that only a minor amount of scandium (5 mol%) doping into the B-site of SrCoO3-delta can effectively stabilize the cubic phase structure, and thus significantly improve the electrical conductivity and

  8. Structure-dependent interactions of polyphenols with a biomimetic membrane system.

    Science.gov (United States)

    Phan, Huong T T; Yoda, Tsuyoshi; Chahal, Bindu; Morita, Masamune; Takagi, Masahiro; Vestergaard, Mun'delanji C

    2014-10-01

    Polyphenols are naturally-occurring compounds, reported to be biologically active, and through their interactions with cell membranes. Although association of the polyphenols with the bilayer has been reported, the detailed mechanism of interaction is not yet well elucidated. We report on spatio-temporal real-time membrane dynamics observed in the presence of polyphenols. Two distinct membrane dynamics, corresponding to the two classes of polyphenols used, were observed. Flavonoids (epi-gallocatechin-3-gallate, gallocatechin, theaflavin and theaflavin-3-gallate) caused lipid membrane aggregation and rigidification. As simple structural modification through opening of the aromatic C-ring into an olefin bond, present in trans-stilbenes (resveratrol and picead), completely changed the membrane properties, increasing fluidity and inducing fluctuation. There were differences in the membrane transformations within the same class of polyphenols. Structure-dependent classification of membrane dynamics may contribute to a better understanding of the physicochemical mechanism involved in the bioactivity of polyphenols. In general, an increase in the number of hydrophilic side chains (galloyl, hydroxyl, glucoside, gallate) increased the reactivity of the polyphenols. Most notable was the difference observed through a simple addition of the gallate group. Unraveling the importance of these polyphenols, at a functional group level further opens the key to tailored design of bioactive compounds as potential drug candidates.

  9. Structural Brain Alterations in Motor Subtypes of Parkinson's Disease: Evidence from Probabilistic Tractography and Shape Analysis.

    Directory of Open Access Journals (Sweden)

    Griet Vervoort

    Full Text Available The postural instability and gait disorder (PIGD and tremor dominant (TD subtypes of Parkinson's disease (PD show different patterns of alterations in functional connectivity (FC between specific brain regions. This study aimed to investigate the relation between symptomatic heterogeneity in PD and structural alterations underlying these FC changes.68 PD patients classified as PIGD (n = 41 or TD (n = 19 and 19 age-matched controls underwent Magnetic Resonance Imaging (MRI. Diffusion-weighted images were used to assess fractional anisotropy (FA and mean diffusivity (MD at the whole-brain level using tract-based spatial statistics (TBSS. In addition, structural connectivity was assessed between regions that previously showed altered FC using probabilistic tractography. Anatomical images were used to determine shape and volume of the putamen, caudate and pallidum.TBSS revealed widespread FA reductions in PIGD compared to controls involving the superior longitudinal fasciculi and corpus callosum. No such differences were found in TD. Both PD subgroups had increased MD compared to controls in tracts connecting the left caudate with the bilateral ventral putamen. TD patients additionally showed increased MD compared to PIGD and controls in tracts connecting the right inferior parietal lobule with the right premotor and primary motor cortex, which previously showed altered FC. We also found grey matter atrophy in the rostrodorsal head of the caudate in PIGD compared to controls.Microstructural changes in white matter tracts, particularly in those connecting striatal sub-areas, partly underlie FC alterations in PD subtypes. Caudate shape alterations further implicate the striatum in PIGD pathophysiology.

  10. Biophysical study of resin acid effects on phospholipid membrane structure and properties

    DEFF Research Database (Denmark)

    Jagalski, Vivien; Barker, Robert; Topgaard, Daniel

    2016-01-01

    Hydrophobic resin acids (RAs) are synthesized by conifer trees as part of their defense mechanisms. One of the functions of RAs in plant defense is suggested to be the perturbation of the cellular membrane. However, there is a vast diversity of chemical structures within this class of molecules...... membranes and the polar lipid extract of soybeans. The complementarity of the biophysical techniques used (NMR, DLS, NR, DSC, Cryo-TEM) allowed correlating changes at the vesicle level with changes at the molecular level and the co-localization of RAs within DPPC monolayer. Effects on DPPC membranes...... are correlated with the physical chemical properties of the RA and their toxicity....

  11. Structure-function insights of membrane and soluble proteins revealed by electron crystallography.

    Science.gov (United States)

    Dreaden, Tina M; Devarajan, Bharanidharan; Barry, Bridgette A; Schmidt-Krey, Ingeborg

    2013-01-01

    Electron crystallography is emerging as an important method in solving protein structures. While it has found extensive applications in the understanding of membrane protein structure and function at a wide range of resolutions, from revealing oligomeric arrangements to atomic models, electron crystallography has also provided invaluable information on the soluble α/β-tubulin which could not be obtained by any other method to date. Examples of critical insights from selected structures of membrane proteins as well as α/β-tubulin are described here, demonstrating the vast potential of electron crystallography that is first beginning to unfold.

  12. Firing membranes

    NARCIS (Netherlands)

    Kappert, Emiel Jan

    2015-01-01

    Thermal processing is commonly employed to alter the chemistry and microstructure of membrane layers. It can shape, strengthen, and give functionality to a membrane. A good understanding of the processes taking place during the thermal processing of a membrane material allows for optimization and tu

  13. Structure and properties of PVDF membrane with PES-C addition via thermally induced phase separation process

    Science.gov (United States)

    Wu, Lishun; Sun, Junfen

    2014-12-01

    Polyvinylidene fluoride (PVDF) membrane and PVDF membrane with phenolphthalein polyethersulfone (PES-C) addition were prepared via thermally induced phase separation (TIPS) method by using diphenyl carbonate (DPC) and dimethyl acetamide (DMAc) as mixed diluents. The effects of coagulation temperature and pre-evaporation time on structure and properties of membranes were studied. The changes of sewage flux in MBR and the attenuation coefficient of sewage flux were investigated. The resistance distributions of PVDF and PVDF/PES-C membranes were compared by resistance analysis. Membrane composition and structure were characterized by ATR-FTIR, TGA, SEM and AFM. The foulant on membranes was analyzed by FTIR. The contact angle of PVDF/PES-C membrane was lower than that of PVDF membrane. A thinner skin layer and a porous cellular support layer formed in PVDF/PES-C membrane and resulted in a higher porosity and pure water flux. The pure water flux and porosity of PVDF/PES-C membrane increased with rising coagulation temperature and decreased with extending pre-evaporation time. The flux attenuation coefficient, the cake layer resistance and internal fouling resistance of PVDF/PES-C membrane in MBR were smaller than those of PVDF membrane in MBR. The FTIR spectrum of foulant on membrane indicated that the foulant on PVDF/PES-C membrane was mostly composed of protein and polysaccharide, while the foulant on pure PVDF membrane included biopolymer clusters besides protein and polysaccharide.

  14. Structural hippocampal network alterations during healthy aging: A multi-modal MRI study

    Directory of Open Access Journals (Sweden)

    Amandine ePelletier

    2013-12-01

    Full Text Available While hippocampal atrophy has been described during healthy aging, few studies have examined its relationship with the integrity of White Matter (WM connecting tracts of the limbic system. This investigation examined WM structural damage specifically related to hippocampal atrophy in healthy aging subjects (n=129, using morphological MRI to assess hippocampal volume and Diffusion Tensor Imaging (DTI to assess WM integrity. Subjects with Mild Cognitive Impairment (MCI or dementia were excluded from the analysis. In our sample, increasing age was significantly associated with reduced hippocampal volume and reduced Fractional Anisotropy (FA at the level of the fornix and the cingulum bundle. The findings also demonstrate that hippocampal atrophy was specifically associated with reduced FA of the fornix bundle, but it was not related to alteration of the cingulum bundle. Our results indicate that the relationship between hippocampal atrophy and fornix FA values is not due to an independent effect of age on both structures. A recursive regression procedure was applied to evaluate sequential relationships between the alterations of these two brain structures. When both hippocampal atrophy and fornix FA values were included in the same model to predict age, fornix FA values remained significant whereas hippocampal atrophy was no longer significantly associated with age. According to this latter finding, hippocampal atrophy in healthy aging could be mediated by a loss of fornix connections. Structural alterations of this part of the limbic system, which have been associated with neurodegeneration in Alzheimer’s disease, result at least in part from the aging process.

  15. Fibromyalgia is characterized by altered frontal and cerebellar structural covariance brain networks

    Directory of Open Access Journals (Sweden)

    Hyungjun Kim

    2015-01-01

    Full Text Available Altered brain morphometry has been widely acknowledged in chronic pain, and recent studies have implicated altered network dynamics, as opposed to properties of individual brain regions, in supporting persistent pain. Structural covariance analysis determines the inter-regional association in morphological metrics, such as gray matter volume, and such structural associations may be altered in chronic pain. In this study, voxel-based morphometry structural covariance networks were compared between fibromyalgia patients (N = 42 and age- and sex-matched pain-free adults (N = 63. We investigated network topology using spectral partitioning, which can delineate local network submodules with consistent structural covariance. We also explored white matter connectivity between regions comprising these submodules and evaluated the association between probabilistic white matter tractography and pain-relevant clinical metrics. Our structural covariance network analysis noted more connections within the cerebellum for fibromyalgia patients, and more connections in the frontal lobe for healthy controls. For fibromyalgia patients, spectral partitioning identified a distinct submodule with cerebellar connections to medial prefrontal and temporal and right inferior parietal lobes, whose gray matter volume was associated with the severity of depression in these patients. Volume for a submodule encompassing lateral orbitofrontal, inferior frontal, postcentral, lateral temporal, and insular cortices was correlated with evoked pain sensitivity. Additionally, the number of white matter fibers between specific submodule regions was also associated with measures of evoked pain sensitivity and clinical pain interference. Hence, altered gray and white matter morphometry in cerebellar and frontal cortical regions may contribute to, or result from, pain-relevant dysfunction in chronic pain patients.

  16. Fibromyalgia is characterized by altered frontal and cerebellar structural covariance brain networks

    Science.gov (United States)

    Kim, Hyungjun; Kim, Jieun; Loggia, Marco L.; Cahalan, Christine; Garcia, Ronald G.; Vangel, Mark G.; Wasan, Ajay D.; Edwards, Robert R.; Napadow, Vitaly

    2015-01-01

    Altered brain morphometry has been widely acknowledged in chronic pain, and recent studies have implicated altered network dynamics, as opposed to properties of individual brain regions, in supporting persistent pain. Structural covariance analysis determines the inter-regional association in morphological metrics, such as gray matter volume, and such structural associations may be altered in chronic pain. In this study, voxel-based morphometry structural covariance networks were compared between fibromyalgia patients (N = 42) and age- and sex-matched pain-free adults (N = 63). We investigated network topology using spectral partitioning, which can delineate local network submodules with consistent structural covariance. We also explored white matter connectivity between regions comprising these submodules and evaluated the association between probabilistic white matter tractography and pain-relevant clinical metrics. Our structural covariance network analysis noted more connections within the cerebellum for fibromyalgia patients, and more connections in the frontal lobe for healthy controls. For fibromyalgia patients, spectral partitioning identified a distinct submodule with cerebellar connections to medial prefrontal and temporal and right inferior parietal lobes, whose gray matter volume was associated with the severity of depression in these patients. Volume for a submodule encompassing lateral orbitofrontal, inferior frontal, postcentral, lateral temporal, and insular cortices was correlated with evoked pain sensitivity. Additionally, the number of white matter fibers between specific submodule regions was also associated with measures of evoked pain sensitivity and clinical pain interference. Hence, altered gray and white matter morphometry in cerebellar and frontal cortical regions may contribute to, or result from, pain-relevant dysfunction in chronic pain patients. PMID:25844321

  17. Structural Study and Modification of Support Layer for Forward Osmosis Membranes

    KAUST Repository

    Shi, Meixia

    2016-06-01

    Water scarcity is a serious global issue, due to the increasing population and developing economy, and membrane technology is an essential way to address this problem. Forward osmosis (FO) is an emerging membrane process, due to its low energy consumption (not considering the draw solute regeneration). A bottleneck to advance this technology is the design of the support layer for FO membranes to minimize the internal concentration polarization. In this dissertation, we focus on the structural study and modification of the support layer for FO membranes. Firstly, we digitally reconstruct different membrane morphologies in 3D and propose a method for predicting performance in ultrafiltration operations. Membranes with analogous morphologies are later used as substrate for FO membranes. Secondly, we experimentally apply substrates with different potentially suitable morphologies as an FO support layer. We investigate their FO performance after generating a selective polyamide layer on the top, by interfacial polymerization. Among the different substrates we include standard asymmetric porous membranes prepared from homopolymers, such as polysulfone. Additionally block copolymer membrane and Anodisc alumina membrane are chosen based on their exceptional structures, with cylindrical pores at least in part. 3D digitally reconstructed porous substrates, analogous to those investigated for ultrafiltration, are then used to model the performance in FO operation. Finally, we analyze the effect of intermediate layers between the porous substrate and the interfacial polymerized layer. We investigate two materials including chitosan and hydrogel. The main results are the following. Pore-scale modeling for digital membrane generation effectively predicts the velocity profile in different layers of the membrane and the performance in UF experiments. Flow simulations confirm the advantage of finger-like substrates over sponge-like ones, when high water permeance is sought

  18. Structural determinants for the membrane insertion of the transmembrane peptide of hemagglutinin from influenza virus.

    Science.gov (United States)

    Victor, Bruno L; Baptista, António M; Soares, Cláudio M

    2012-11-26

    Membrane fusion is a process involved in a high range of biological functions, going from viral infections to neurotransmitter release. Fusogenic proteins increase the slow rate of fusion by coupling energetically downhill conformational changes of the protein to the kinetically unfavorable fusion of the membrane lipid bilayers. Hemagglutinin is an example of a fusogenic protein, which promotes the fusion of the membrane of the influenza virus with the membrane of the target cell. The N-terminus of the HA2 subunit of this protein contains a fusion domain described to act as a destabilizer of the target membrane bilayers, leading eventually to a full fusion of the two membranes. On the other hand, the C-terminus of the same subunit contains a helical transmembrane domain which was initially described to act as the anchor of the protein to the membrane of the virus. However, in recent years the study of this peptide segment has been gaining more attention since it has also been described to be involved in the membrane fusion process. Yet, the structural characterization of the interaction of such a protein domain with membrane lipids is still very limited. Therefore, in this work, we present a study of this transmembrane peptide domain in the presence of DMPC membrane bilayers, and we evaluate the effect of several mutations, and the effect of peptide oligomerization in this interaction process. Our results allowed us to identify and confirm amino acid residue motifs that seem to regulate the interaction between the segment peptide and membrane bilayers. Besides these sequence requirements, we have also identified length and tilt requirements that ultimately contribute to the hydrophobic matching between the peptide and the membrane. Additionally, we looked at the association of several transmembrane peptide segments and evaluated their direct interaction and stability inside a membrane bilayer. From our results we could conclude that three independent TM peptide

  19. High-resolution Structures of Protein-Membrane Complexes by Neutron Reflection and MD Simulation: Membrane Association of the PTEN Tumor Suppressor

    Science.gov (United States)

    Lösche, Matthias

    2012-02-01

    The lipid matrix of biomembranes is an in-plane fluid, thermally and compositionally disordered leaflet of 5 nm thickness and notoriously difficult to characterize in structural terms. Yet, biomembranes are ubiquitous in the cell, and membrane-bound proteins are implicated in a variety of signaling pathways and intra-cellular transport. We developed methodology to study proteins associated with model membranes using neutron reflection measurements and showed recently that this approach can resolve the penetration depth and orientation of membrane proteins with ångstrom resolution if their crystal or NMR structure is known. Here we apply this technology to determine the membrane bindung and unravel functional details of the PTEN phosphatase, a key player in the PI3K apoptosis pathway. PTEN is an important regulatory protein and tumor suppressor that performs its phosphatase activity as an interfacial enzyme at the plasma membrane-cytoplasm boundary. Acting as an antagonist to phosphoinositide-3-kinase (PI3K) in cell signaling, it is deleted in many human cancers. Despite its importance in regulating the levels of the phosphoinositoltriphosphate PI(3,4,5)P3, there is little understanding of how PTEN binds to membranes, is activated and then acts as a phosphatase. We investigated the structure and function of PTEN by studying its membrane affinity and localization on in-plane fluid, thermally disordered synthetic membrane models. The membrane association of the protein depends strongly on membrane composition, where phosphatidylserine (PS) and phosphatidylinositol diphosphate (PI(4,5)P2) act synergetically in attracting the enzyme to the membrane surface. Membrane affinities depend strongly on membrane fluidity, which suggests multiple binding sites on the protein for PI(4,5)P2. Neutron reflection measurements show that the PTEN phosphatase ``scoots'' along the membrane surface (penetration protein, ˜ 60 å away from the bilayer surface, in a rather compact

  20. Effects of GPI-anchored TNAP on the dynamic structure of model membranes

    Science.gov (United States)

    Garcia, A. F.; Simão, A. M. S.; Bolean, M; Hoylaerts, M. F.; Millán, J. L.; Ciancaglini, P; Costa-Filho, A. J.

    2017-01-01

    Tissue-nonspecific alkaline phosphatase (TNAP) plays a crucial role during skeletal mineralization, and TNAP deficiency leads to the soft bone disease hypophosphatasia. TNAP is anchored to the external surface of the plasma membranes by means of a GPI (glycosylphosphatidylinositol) anchor. Membrane-anchored and solubilized TNAP displays different kinetic properties against physiological substrates, indicating that membrane anchoring influences the enzyme function. Here, we used Electron Spin Resonance (ESR) measurements along with spin labeled phospholipids to probe the possible dynamic changes prompted by the interaction of GPI-anchored TNAP with model membranes. The goal was to systematically analyze the ESR data in terms of line shape changes and of alterations in parameters such as rotational diffusion rates and order parameters obtained from non-linear least-squares simulations of the ESR spectra of probes incorporated into DPPC liposomes and proteoliposomes. Overall, the presence of TNAP increased the dynamics and decreased the ordering in the three distinct regions probed by the spin labeled lipids DOPTC (headgroup), and 5- and 16-PCSL (acyl chains). The largest change was observed for 16-PCSL, thus suggesting that GPI-anchored TNAP can give rise to long reaching modifications that could influence membrane processes halfway through the bilayer. PMID:26389140

  1. Brucella ovis PA mutants for outer membrane proteins Omp10, Omp19, SP41, and BepC are not altered in their virulence and outer membrane properties.

    Science.gov (United States)

    Sidhu-Muñoz, Rebeca S; Sancho, Pilar; Vizcaíno, Nieves

    2016-04-15

    Mutants in several genes have been obtained on the genetic background of virulent rough (lacking O-polysaccharide) Brucella ovis PA. The target genes encode outer membrane proteins previously associated with the virulence of smooth (bearing O-polysaccharide chains in the lipopolysaccharide) Brucella strains. Multiple attempts to delete omp16, coding for a homologue to peptidoglycan-associated lipoproteins, were unsuccessful, which suggests that Omp16 is probably essential for in vitro survival of B. ovis PA. Single deletion of omp10 or omp19-that encode two other outer membrane lipoproteins--was achieved, but the simultaneous removal of both genes failed, suggesting an essential complementary function between both proteins. Two other deletion mutants, defective in the Tol-C-homologue BepC or in the SP41 adhesin, were also obtained. Surprisingly when compared to previous results obtained with smooth Brucella, none of the B. ovis mutants showed attenuation in the virulence, either in the mouse model or in cellular models of professional and non-professional phagocytes. Additionally, and in contrast to the observations reported with smooth Brucella strains, several properties related to the outer membrane remained almost unaltered. These results evidence new distinctive traits between naturally rough B. ovis and smooth brucellae.

  2. Crystal Structure of Mitochondrial Respiratory Membrane Protein Complex Ⅱ Determined

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ Scientists at the CAS Institute of Biophysics (IBP) and Tsinghua University have gained new insights into the mechanism of mitochondria, the subcellular structures which generate energy for living cells.

  3. Probing Site-Specific Structural Information of Peptides at Model Membrane Interface In Situ.

    Science.gov (United States)

    Ding, Bei; Panahi, Afra; Ho, Jia-Jung; Laaser, Jennifer E; Brooks, Charles L; Zanni, Martin T; Chen, Zhan

    2015-08-19

    Isotope labeling is a powerful technique to probe detailed structures of biological molecules with a variety of analytical methods such as NMR and vibrational spectroscopies. It is important to obtain molecular structural information on biological molecules at interfaces such as cell membranes, but it is challenging to use the isotope labeling method to study interfacial biomolecules. Here, by individually (13)C═(16)O labeling ten residues of a peptide, Ovispirin-1, we have demonstrated for the first time that a site-specific environment of membrane associated peptide can be probed by the submonolayer surface sensitive sum frequency generation (SFG) vibrational spectroscopy in situ. With the peptide associated with a single lipid bilayer, the sinusoidal trend of the SFG line width and peak-center frequency suggests that the peptide is located at the interface beneath the lipid headgroup region. The constructive interferences between the isotope labeled peaks and the main peptide amide I peak contributed by the unlabeled components were used to determine the membrane orientation of the peptide. From the SFG spectral peak-center frequency, line width, and polarization dependence of the isotope labeled units, we deduced structural information on individual units of the peptide associated with a model cell membrane. We also performed molecular dynamics (MD) simulations to understand peptide-membrane interactions. The physical pictures described by simulation agree well with the SFG experimental result. This research demonstrates the feasibility and power of using isotope labeling SFG to probe molecular structures of interfacial biological molecules in situ in real time.

  4. Stealth carriers for low-resolution structure determination of membrane proteins in solution

    DEFF Research Database (Denmark)

    Maric, Selma; Skar-Gislinge, Nicholas; Midtgaard, Søren;

    2014-01-01

    Structural studies of membrane proteins remain a great experimental challenge. Functional reconstitution into artificial nanoscale bilayer disc carriers that mimic the native bilayer environment allows the handling of membrane proteins in solution. This enables the use of small-angle scattering...... techniques for fast and reliable structural analysis. The difficulty with this approach is that the carrier discs contribute to the measured scattering intensity in a highly nontrivial fashion, making subsequent data analysis challenging. Here, an elegant solution to circumvent the intrinsic complexity......O at the length scales relevant to SANS. These 'stealth' carrier discs may be used as a general platform for low-resolution structural studies of membrane proteins using well established data-analysis tools originally developed for soluble proteins. © 2014 International Union of Crystallography....

  5. BCL::MP-fold: Membrane protein structure prediction guided by EPR restraints.

    Science.gov (United States)

    Fischer, Axel W; Alexander, Nathan S; Woetzel, Nils; Karakas, Mert; Weiner, Brian E; Meiler, Jens

    2015-11-01

    For many membrane proteins, the determination of their topology remains a challenge for methods like X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy. Electron paramagnetic resonance (EPR) spectroscopy has evolved as an alternative technique to study structure and dynamics of membrane proteins. The present study demonstrates the feasibility of membrane protein topology determination using limited EPR distance and accessibility measurements. The BCL::MP-Fold (BioChemical Library membrane protein fold) algorithm assembles secondary structure elements (SSEs) in the membrane using a Monte Carlo Metropolis (MCM) approach. Sampled models are evaluated using knowledge-based potential functions and agreement with the EPR data and a knowledge-based energy function. Twenty-nine membrane proteins of up to 696 residues are used to test the algorithm. The RMSD100 value of the most accurate model is better than 8 Å for 27, better than 6 Å for 22, and better than 4 Å for 15 of the 29 proteins, demonstrating the algorithms' ability to sample the native topology. The average enrichment could be improved from 1.3 to 2.5, showing the improved discrimination power by using EPR data.

  6. Structure, Function, Self-Assembly and Origin of Simple Membrane Proteins

    Science.gov (United States)

    Pohorille, Andrew

    2003-01-01

    Integral membrane proteins perform such essential cellular functions as transport of ions, nutrients and waste products across cell walls, transduction of environmental signals, regulation of cell fusion, recognition of other cells, energy capture and its conversion into high-energy compounds. In fact, 30-40% of genes in modem organisms codes for membrane proteins. Although contemporary membrane proteins or their functional assemblies can be quite complex, their transmembrane fragments are usually remarkably simple. The most common structural motif for these fragments is a bundle of alpha-helices, but occasionally it could be a beta-barrel. In a series of molecular dynamics computer simulations we investigated self-organizing properties of simple membrane proteins based on these structural motifs. Specifically, we studied folding and insertion into membranes of short, nonpolar or amphiphatic peptides. We also investigated glycophorin A, a peptide that forms sequence-specific dimers, and a transmembrane aggregate of four identical alpha-helices that forms an efficient and selective voltage-gated proton channel was investigated. Many peptides are attracted to water-membrane interfaces. Once at the interface, nonpolar peptides spontaneously fold to a-helices. Whenever the sequence permits, peptides that contain both polar and nonpolar amino also adopt helical structures, in which polar and nonpolar amino acid side chains are immersed in water and membrane, respectively. Specific identity of side chains is less important. Helical peptides at the interface could insert into the membrane and adopt a transmembrane conformation. However, insertion of a single helix is unfavorable because polar groups in the peptide become completely dehydrated upon insertion. The unfavorable free energy of insertion can be regained by spontaneous association of peptides in the membrane. The first step in this process is the formation of dimers, although the most common are aggregates of 4

  7. Label-free optical quantification of structural alterations in Alzheimer’s disease

    Science.gov (United States)

    Lee, Moosung; Lee, Eeksung; Jung, Jaehwang; Yu, Hyeonseung; Kim, Kyoohyun; Yoon, Jonghee; Lee, Shinhwa; Jeong, Yong; Park, Yongkeun

    2016-08-01

    We present a wide-field quantitative label-free imaging of mouse brain tissue slices with sub-micrometre resolution, employing holographic microscopy and an automated scanning platform. From the measured light field images, scattering coefficients and anisotropies are quantitatively retrieved by using the modified the scattering-phase theorem, which enables access to structural information about brain tissues. As a proof of principle, we demonstrate that these scattering parameters enable us to quantitatively address structural alteration in the brain tissues of mice with Alzheimer’s disease.

  8. Membrane-localized β-subunits alter the PIP2 regulation of high-voltage activated Ca2+ channels.

    Science.gov (United States)

    Suh, Byung-Chang; Kim, Dong-Il; Falkenburger, Björn H; Hille, Bertil

    2012-02-21

    The β-subunits of voltage-gated Ca(2+) (Ca(V)) channels regulate the functional expression and several biophysical properties of high-voltage-activated Ca(V) channels. We find that Ca(V) β-subunits also determine channel regulation by the membrane phospholipid phosphatidylinositol 4,5-bisphosphate (PIP(2)). When Ca(V)1.3, -2.1, or -2.2 channels are cotransfected with the β3-subunit, a cytosolic protein, they can be inhibited by activating a voltage-sensitive lipid phosphatase to deplete PIP(2). When these channels are coexpressed with a β2a-subunit, a palmitoylated peripheral membrane protein, the inhibition is much smaller. PIP(2) sensitivity could be increased by disabling the two palmitoylation sites in the β2a-subunit. To further test effects of membrane targeting of Ca(V) β-subunits on PIP(2) regulation, the N terminus of Lyn was ligated onto the cytosolic β3-subunit to confer lipidation. This chimera, like the Ca(V) β2a-subunit, displayed plasma membrane localization, slowed the inactivation of Ca(V)2.2 channels, and increased the current density. In addition, the Lyn-β3 subunit significantly decreased Ca(V) channel inhibition by PIP(2) depletion. Evidently lipidation and membrane anchoring of Ca(V) β-subunits compete with the PIP(2) regulation of high-voltage-activated Ca(V) channels. Compared with expression with Ca(V) β3-subunits alone, inhibition of Ca(V)2.2 channels by PIP(2) depletion could be significantly attenuated when β2a was coexpressed with β3. Our data suggest that the Ca(V) currents in neurons would be regulated by membrane PIP(2) to a degree that depends on their endogenous β-subunit combinations.

  9. Impact of the antimicrobial peptide Novicidin on membrane structure and integrity

    DEFF Research Database (Denmark)

    Nielsen, Søren B; Otzen, Daniel Erik

    2010-01-01

    We have studied the impact of an 18-residue cationic antimicrobial peptide Novicidin (Nc) on the structure and integrity of partially anionic lipid membranes using oriented circular dichroism (OCD), quartz crystal microbalance with dissipation (QCM-D), dual polarization interferometry (DPI...... fluorescence spectroscopy and by loss of lipid alignment in DPI analysis. Laurdan generalized polarity shows a decrease in water accessibility or mobility in the hydrophobic/hydrophilic interface of the lipid membrane, consistent with rearrangement of lipid packing. QCM-D studies on the interaction of Nc...... with lipid membranes emphasize the importance of including the dissipation factor in data analysis, revealing formation of a highly hydrated film after exposure to 3muMNc. Our findings suggest a carpet mechanism of membrane disruption in which peptide binding first induces leakage at a critical surface...

  10. Electrochemical properties of honeycomb-like structured HFBI self-organized membranes on HOPG electrodes.

    Science.gov (United States)

    Yamasaki, Ryota; Takatsuji, Yoshiyuki; Lienemann, Michael; Asakawa, Hitoshi; Fukuma, Takeshi; Linder, Markus; Haruyama, Tetsuya

    2014-11-01

    HFBI (derived from Trichoderma sp.) is a unique structural protein, which forms a self-organized monolayer at both air/water interface and water/solid interfaces in accurate two-dimensional ordered structures. We have taken advantage of the unique functionality of HFBI as a molecular carrier for preparation of ordered molecular phase on solid substrate surfaces. The HFBI molecular carrier can easily form ordered structures; however, the dense molecular layers form an electrochemical barrier between the electrode and solution phase. In this study, the electrochemical properties of HFBI self-organized membrane-covered electrodes were investigated. Wild-type HFBI has balanced positive and negative charges on its surface. Highly oriented pyrolytic graphite (HOPG) electrodes coated with HFBI molecules were investigated electrochemically. To improve the electrochemical properties of this HFBI-coated electrode, the two types of HFBI variants, with oppositely charged surfaces, were prepared genetically. All three types of HFBI-coated HOPG electrode perform electron transfer between the electrode and solution phase through the dense HFBI molecular layer. This is because the HFBI self-organized membrane has a honeycomb-like structure, with penetrating holes. In the cases of HFBI variants, the oppositely charged HFBI membrane phases shown opposite electrochemical behaviors in electrochemical impedance spectroscopy. HFBI is a molecule with a unique structure, and can easily form honeycomb-like structures on solid material surfaces such as electrodes. The molecular membrane phase can be used for electrochemical molecular interfaces.

  11. Structure and composition of altered riparian forests in an agricultural Amazonian landscape.

    Science.gov (United States)

    Nagy, R Chelsea; Porder, Stephen; Neill, Christopher; Brando, Paulo; Quintino, Raimundo Mota; do Nascimento, Sebastiâo Aviz

    2015-09-01

    Deforestation and fragmentation influence the microclimate, vegetation structure, and composition of remaining patches of tropical forest. In the southern Amazon, at the frontier of cropland expansion, forests are converted and fragmented in a pattern that leaves standing riparian forests whose dimensions are mandated by the Brazilian National Forest Code. These altered riparian forests share many characteristics of well-studied upland forest fragments, but differ because they remain connected to larger areas of forest downstream, and because they may experience wetter soil conditions because reduction of forest cover in the surrounding watershed raises groundwater levels and increases stream runoff. We compared forest regeneration, structure, composition, and diversity in four areas of intact riparian forest and four areas each of narrow, medium, and wide altered riparian forests that have been surrounded by agriculture since the early 1980s. We found that seedling abundance was reduced by as much as 64% and sapling abundance was reduced by as much as 67% in altered compared to intact riparian forests. The most pronounced differences between altered and intact forest occurred near forest edges and within the narrowest sections of altered riparian forests. Woody plant species composition differed and diversity was reduced in altered forests compared to intact riparian forests. However, despite being fragmented for several decades, large woody plant biomass and carbon storage, the number of live or dead large woody plants, mortality rates, and the size distribution of woody plants did not differ significantly between altered and intact riparian forests. Thus, even in these relatively narrow forests with high edge: area ratios, we saw no evidence of the increases in mortality and declines in biomass that have been found in other tropical forest fragment studies. However, because of the changes in both species community and reduced regeneration, it is unclear how long

  12. Structure alignment of membrane proteins: Accuracy of available tools and a consensus strategy.

    Science.gov (United States)

    Stamm, Marcus; Forrest, Lucy R

    2015-09-01

    Protein structure alignment methods are used for the detection of evolutionary and functionally related positions in proteins. A wide array of different methods are available, but the choice of the best method is often not apparent to the user. Several studies have assessed the alignment accuracy and consistency of structure alignment methods, but none of these explicitly considered membrane proteins, which are important targets for drug development and have distinct structural features. Here, we compared 13 widely used pairwise structural alignment methods on a test set of homologous membrane protein structures (called HOMEP3). Each pair of structures was aligned and the corresponding sequence alignment was used to construct homology models. The model accuracy compared to the known structures was assessed using scoring functions not incorporated in the tested structural alignment methods. The analysis shows that fragment-based approaches such as FR-TM-align are the most useful for aligning structures of membrane proteins. Moreover, fragment-based approaches are more suitable for comparison of protein structures that have undergone large conformational changes. Nevertheless, no method was clearly superior to all other methods. Additionally, all methods lack a measure to rate the reliability of a position within a structure alignment. To solve both of these problems, we propose a consensus-type approach, combining alignments from four different methods, namely FR-TM-align, DaliLite, MATT, and FATCAT. Agreement between the methods is used to assign confidence values to each position of the alignment. Overall, we conclude that there remains scope for the improvement of structural alignment methods for membrane proteins.

  13. 2D-ELDOR study of heterogeneity and domain structure changes in plasma membrane vesicles upon cross-linking of receptors.

    Science.gov (United States)

    Chiang, Yun-Wei; Costa-Filho, Antonio J; Baird, Barbara; Freed, Jack H

    2011-09-08

    2D electron-electron double resonance (2D-ELDOR) with the "full Sc-" method of analysis is applied to the study of plasma membrane vesicles. Membrane structural changes upon antigen cross-linking of IgE receptors (IgE-FcεRI) in plasma membrane vesicles (PMVs) isolated from RBL-2H3 mast cells are investigated, for the first time, by means of these 2D-ELDOR techniques. Spectra of 1-palmitoyl-2-(16-doxyl stearoyl) phosphatidylcholine (16-PC) from PMVs before and after this stimulation at several temperatures are reported. The results demonstrate a coexistence of liquid-ordered (L(o)) and liquid-disordered (L(d)) components. We find that upon cross-linking, the membrane environment is remodeled to become more disordered, as shown by a moderate increase in the population of the L(d) component. This change in the relative amount of the L(o) versus L(d) components upon cross-linking is consistent with a model wherein the IgE receptors, which when clustered by antigen to cause cell stimulation, lead to more disordered lipids, and their dynamic and structural properties are slightly altered. This study demonstrates that 2D-ELDOR, analyzed by the full Sc- method, is a powerful approach for capturing the molecular dynamics in biological membranes. This is a particular case showing how 2D-ELDOR can be applied to study physical processes in complex systems that yield subtle changes.

  14. Molecular structure, function, and dynamics of clathrin-mediated membrane traffic.

    Science.gov (United States)

    Kirchhausen, Tom; Owen, David; Harrison, Stephen C

    2014-05-01

    Clathrin is a molecular scaffold for vesicular uptake of cargo at the plasma membrane, where its assembly into cage-like lattices underlies the clathrin-coated pits of classical endocytosis. This review describes the structures of clathrin, major cargo adaptors, and other proteins that participate in forming a clathrin-coated pit, loading its contents, pinching off the membrane as a lattice-enclosed vesicle, and recycling the components. It integrates as much of the structural information as possible at the time of writing into a sketch of the principal steps in coated-pit and coated-vesicle formation.

  15. Altered modular organization of structural cortical networks in children with autism.

    Directory of Open Access Journals (Sweden)

    Feng Shi

    Full Text Available Autism is a complex developmental disability that characterized by deficits in social interaction, language skills, repetitive stereotyped behaviors and restricted interests. Although great heterogeneity exists, previous findings suggest that autism has atypical brain connectivity patterns and disrupted small-world network properties. However, the organizational alterations in the autistic brain network are still poorly understood. We explored possible organizational alterations of 49 autistic children and 51 typically developing controls, by investigating their brain network metrics that are constructed upon cortical thickness correlations. Three modules were identified in controls, including cortical regions associated with brain functions of executive strategic, spatial/auditory/visual, and self-reference/episodic memory. There are also three modules found in autistic children with similar patterns. Compared with controls, autism demonstrates significantly reduced gross network modularity, and a larger number of inter-module connections. However, the autistic brain network demonstrates increased intra- and inter-module connectivity in brain regions including middle frontal gyrus, inferior parietal gyrus, and cingulate, suggesting one underlying compensatory mechanism associated with brain functions of self-reference and episodic memory. Results also show that there is increased correlation strength between regions inside frontal lobe, as well as impaired correlation strength between frontotemporal and frontoparietal regions. This alteration of correlation strength may contribute to the organization alteration of network structures in autistic brains.

  16. Structurally Altered Hard Coal in the Areas of Tectonic Disturbances - An Initial Attempt at Classification

    Science.gov (United States)

    Godyń, Katarzyna

    2016-09-01

    As regards the exploitation of hard coal seams, the near-fault zones and faults themselves are considered to be particularly dangerous areas, which is due to a high probability of the occurrence of gasogeodynamic phenomena. Tectonic dislocations running across a seam have a destructive impact on coal. Degradation of the coal structure, particularly visible in the microscale, is reflected in the coal's strength or gas properties. Such "structurally altered" coal is characterized by the presence of numerous fracturings, crushed areas, or dislocations of some of its fragments, and sometimes even the total destruction of the original structure. The present paper provides a detailed analysis and description of near-fault coal obtained from selected seams of the Upper Silesian Coal Basin, completed due to the application of optical methods. Both the type and the degree of changes in the structure of such coal were identified. On this basis, the author attempted to systematize the nomenclature used in relation to selected Upper Silesian hard coal seams, which, in turn, resulted in a proposed classification of the "altered structures" of the near-fault coal.

  17. Neurodevelopmental alterations of large-scale structural networks in children with new-onset epilepsy.

    Science.gov (United States)

    Bonilha, Leonardo; Tabesh, Ali; Dabbs, Kevin; Hsu, David A; Stafstrom, Carl E; Hermann, Bruce P; Lin, Jack J

    2014-08-01

    Recent neuroimaging and behavioral studies have revealed that children with new onset epilepsy already exhibit brain structural abnormalities and cognitive impairment. How the organization of large-scale brain structural networks is altered near the time of seizure onset and whether network changes are related to cognitive performances remain unclear. Recent studies also suggest that regional brain volume covariance reflects synchronized brain developmental changes. Here, we test the hypothesis that epilepsy during early-life is associated with abnormalities in brain network organization and cognition. We used graph theory to study structural brain networks based on regional volume covariance in 39 children with new-onset seizures and 28 healthy controls. Children with new-onset epilepsy showed a suboptimal topological structural organization with enhanced network segregation and reduced global integration compared with controls. At the regional level, structural reorganization was evident with redistributed nodes from the posterior to more anterior head regions. The epileptic brain network was more vulnerable to targeted but not random attacks. Finally, a subgroup of children with epilepsy, namely those with lower IQ and poorer executive function, had a reduced balance between network segregation and integration. Taken together, the findings suggest that the neurodevelopmental impact of new onset childhood epilepsies alters large-scale brain networks, resulting in greater vulnerability to network failure and cognitive impairment.

  18. Altered Regional Gray Matter Volume in Obese Men: A Structural MRI Study

    Science.gov (United States)

    Zhang, Bin; Tian, Xiao; Tian, Derun; Wang, Jinhong; Wang, Qiming; Yu, Chunshui; Li, Chunbo; Wang, Jijun

    2017-01-01

    Obesity is associated with a number of health problems, especial insulin resistance and Type 2 diabetes. Our previous study showed that obese males had decreased neural activity in the orbital frontal cortex (OFC) and increased activity in the left putamen (Zhang et al., 2015b), which could indicate altered eating behaviors in obesity related to a hyper-functioning striatum and hypo-functioning inhibitory control. Accordingly, our goal of the current study was to determine whether there are alterations in the brain structures within these two neural systems in obese individuals. Twenty obese men (age: 20–28 years) and 20 age-matched lean male subjects were involved in the current study. Plasma glucose and insulin were tested during hunger state, and homeostasis model assessment of insulin resistance (HOMA-IR) was based on the blood samples. In the study, we used structural MRI and a voxel-based morphometry (VBM) method to investigate regional structures in obese subjects and find out whether there are correlations between the insulin and the brain structures. We found that obese men only showed a significantly increased gray matter volume (GMV) in the left putamen and that the GMV of the left putamen was positively correlated with body mass index, plasma insulin and HOMA-IR. The putamen is a core region participating in insulin signal regulation, and our results showed an abnormal GMV of the putamen is a core alternation in aberrant insulin. Furthermore, the GMV of the OFC was negatively correlated with hunger rating, despite there being no significant difference between the two groups in the OFC. In conclusion, the altered structure and function of the putamen could play important roles in obesity and aberrant insulin. PMID:28197123

  19. Structural insights into the organization of the cavin membrane coat complex.

    Science.gov (United States)

    Kovtun, Oleksiy; Tillu, Vikas A; Jung, WooRam; Leneva, Natalya; Ariotti, Nicholas; Chaudhary, Natasha; Mandyam, Ramya A; Ferguson, Charles; Morgan, Garry P; Johnston, Wayne A; Harrop, Stephen J; Alexandrov, Kirill; Parton, Robert G; Collins, Brett M

    2014-11-24

    Caveolae are cell-surface membrane invaginations that play critical roles in cellular processes including signaling and membrane homeostasis. The cavin proteins, in cooperation with caveolins, are essential for caveola formation. Here we show that a minimal N-terminal domain of the cavins, termed HR1, is required and sufficient for their homo- and hetero-oligomerization. Crystal structures of the mouse cavin1 and zebrafish cavin4a HR1 domains reveal highly conserved trimeric coiled-coil architectures, with intersubunit interactions that determine the specificity of cavin-cavin interactions. The HR1 domain contains a basic surface patch that interacts with polyphosphoinositides and coordinates with additional membrane-binding sites within the cavin C terminus to facilitate membrane association and remodeling. Electron microscopy of purified cavins reveals the existence of large assemblies, composed of a repeating rod-like structural element, and we propose that these structures polymerize through membrane-coupled interactions to form the unique striations observed on the surface of caveolae in vivo.

  20. Effect of Receptor Structure and Length on the Wrapping of a Nanoparticle by a Lipid Membrane

    Directory of Open Access Journals (Sweden)

    Haizhen Zhang

    2014-05-01

    Full Text Available Nanoparticles have been considered as a type of powerful tool to deliver drugs and genes into cells for disease diagnosis and therapies. It has been generally accepted that the internalization of nanoparticles into cells is mostly realized by receptor-mediated endocytosis. However, for the influence of structural factors of receptors on endocytosis, this is still largely unknown. In this paper, computer simulations are applied to investigate the effects of structure (i.e., the number of constituent chains of the receptor and the length of the receptor on the wrapping behavior of nanoparticles by the lipid membrane, which is a key step of receptor-medicated endocytosis. It is found that these structural factors of receptors have strong effects on the nanoparticle’s final interaction configuration with the membrane in the simulations, such as adhering on the membrane surface or being partly or fully wrapped by the membrane. Furthermore, in some cases, the rupture of the lipid membrane occurs. These results are helpful for the understanding of endocytosis and the preparation of advanced nanoscale drug-delivery vectors.

  1. The inner nuclear membrane protein Src1 associates with subtelomeric genes and alters their regulated gene expression.

    Science.gov (United States)

    Grund, Stefanie E; Fischer, Tamás; Cabal, Ghislain G; Antúnez, Oreto; Pérez-Ortín, José E; Hurt, Ed

    2008-09-08

    Inner nuclear membrane proteins containing a LEM (LAP2, emerin, and MAN1) domain participate in different processes, including chromatin organization, gene expression, and nuclear envelope biogenesis. In this study, we identify a robust genetic interaction between transcription export (TREX) factors and yeast Src1, an integral inner nuclear membrane protein that is homologous to vertebrate LEM2. DNA macroarray analysis revealed that the expression of the phosphate-regulated genes PHO11, PHO12, and PHO84 is up-regulated in src1Delta cells. Notably, these PHO genes are located in subtelomeric regions of chromatin and exhibit a perinuclear location in vivo. Src1 spans the nuclear membrane twice and exposes its N and C domains with putative DNA-binding motifs to the nucleoplasm. Genome-wide chromatin immunoprecipitation-on-chip analyses indicated that Src1 is highly enriched at telomeres and subtelomeric regions of the yeast chromosomes. Our data show that the inner nuclear membrane protein Src1 functions at the interface between subtelomeric gene expression and TREX-dependent messenger RNA export through the nuclear pore complexes.

  2. Hierarchically structured polysulfone/titania fibrous membranes with enhanced air filtration performance.

    Science.gov (United States)

    Wan, Huigao; Wang, Na; Yang, Jianmao; Si, Yinsong; Chen, Kun; Ding, Bin; Sun, Gang; El-Newehy, Mohamed; Al-Deyab, Salem S; Yu, Jianyong

    2014-03-01

    Hierarchically structured, superhydrophobic filter medium exhibiting robust filtration performance to airborne particulate were prepared by a facile deposition of electrospun polysulfone/titania nanoparticles (PSU/TiO2 NPs) on a conventional nonwoven substrate. The air permeability, tensile strength and abrasion resistance of pristine PSU fibrous membranes could be finely controlled by regulating the solvent composition and number ratios of jets. By employing the TiO2 NPs incorporation, the pristine PSU fibers were endowed with promising superhydrophobicity with a water contact angle of up to 152°. The quantitative hierarchical roughness analysis using N2 adsorption method has confirmed the major contribution of TiO2 NPs on enhancing the porous structure and surface fractal features with irregular rough structure. Filtration performance studies have revealed that the filtration efficiency and pressure drop of resultant hybrid membranes could be manipulated by tuning the surface composition as well as the hierarchical structures. Furthermore, the as-prepared PSU/TiO2-5 membrane exhibited improved filtration efficiency (99.997%) and pressure drop (45.3 Pa) compared with pristine PSU membrane, which would make them a promising media for fine particle filtration, and a new insight was also provided into the design and development of high performance filter medium based on hierarchical structured fibers.

  3. Validation of an immersed thick boundary method for simulating fluid-structure interactions of deformable membranes

    Science.gov (United States)

    Sigüenza, J.; Mendez, S.; Ambard, D.; Dubois, F.; Jourdan, F.; Mozul, R.; Nicoud, F.

    2016-10-01

    This paper constitutes an extension of the work of Mendez et al. (2014) [36], for three-dimensional simulations of deformable membranes under flow. An immersed thick boundary method is used, combining the immersed boundary method with a three-dimensional modeling of the structural part. The immersed boundary method is adapted to unstructured grids for the fluid resolution, using the reproducing kernel particle method. An unstructured finite-volume flow solver for the incompressible Navier-Stokes equations is coupled with a finite-element solver for the structure. The validation process relying on a number of test cases proves the efficiency of the method, and its robustness is illustrated when computing the dynamics of a tri-leaflet aortic valve. The proposed immersed thick boundary method is able to tackle applications involving both thin and thick membranes/closed and open membranes, in significantly high Reynolds number flows and highly complex geometries.

  4. Hemin/G-quadruplex structure and activity alteration induced by magnesium cations.

    Science.gov (United States)

    Kosman, J; Juskowiak, B

    2016-04-01

    The influence of metal cations on G-quadruplex structure and peroxidase-mimicking DNAzyme activity was investigated. Experiments revealed a significant role of magnesium ion, which in the presence of potassium cation influenced DNAzyme activity. This ability has been associated with alteration of G-quadruplex topology and consequently affinity to bind hemin molecule. It has been demonstrated that G-quadruplex based on PS2.M sequence under these conditions formed parallel topology, which exhibited lower activity than that observed in standard potassium-containing solution. On the other hand DNAzyme/magnesium ion system based on telomeric sequence, which did not undergo significant structural changes, exhibited higher peroxidase activity upon magnesium ion addition. In both cases, the stabilization effect of magnesium cations on G-quadruplex structure was observed. The mechanism of DNAzyme activity alteration by magnesium ion can be explained by its influence on the pKa value of DNAzyme. Magnesium ion decreased pKa for PS2.M based system but increased it for telomeric DNAzyme. Magnesium cation effect on G-quadruplex structure as well as DNAzyme activity is particularly important since this ion is one of the most common metal cations in biological samples.

  5. Human skeletal muscle plasmalemma alters its structure to change its Ca2+-handling following heavy-load resistance exercise

    Science.gov (United States)

    Cully, Tanya R.; Murphy, Robyn M.; Roberts, Llion; Raastad, Truls; Fassett, Robert G.; Coombes, Jeff S.; Jayasinghe, Isuru D.; Launikonis, Bradley S.

    2017-01-01

    High-force eccentric exercise results in sustained increases in cytoplasmic Ca2+ levels ([Ca2+]cyto), which can cause damage to the muscle. Here we report that a heavy-load strength training bout greatly alters the structure of the membrane network inside the fibres, the tubular (t-) system, causing the loss of its predominantly transverse organization and an increase in vacuolation of its longitudinal tubules across adjacent sarcomeres. The transverse tubules and vacuoles displayed distinct Ca2+-handling properties. Both t-system components could take up Ca2+ from the cytoplasm but only transverse tubules supported store-operated Ca2+ entry. The retention of significant amounts of Ca2+ within vacuoles provides an effective mechanism to reduce the total content of Ca2+ within the fibre cytoplasm. We propose this ability can reduce or limit resistance exercise-induced, Ca2+-dependent damage to the fibre by the reduction of [Ca2+]cyto to help maintain fibre viability during the period associated with delayed onset muscle soreness. PMID:28193999

  6. Effect of non-solvent additives on the morphology, pore structure, and direct contact membrane distillation performance of PVDF-CTFE hydrophobic membranes.

    Science.gov (United States)

    Zheng, Libing; Wu, Zhenjun; Zhang, Yong; Wei, Yuansong; Wang, Jun

    2016-07-01

    Four common types of additives for polymer membrane preparation including organic macromolecule and micromolecule additives, inorganic salts and acids, and the strong non-solvent H2O were used to prepare poly (vinylidene fluoride-co-chlorotrifluoroethylene) (PVDF-CTFE) hydrophobic flat-sheet membranes. Membrane properties including morphology, porosity, hydrophobicity, pore size and pore distribution were investigated, and the permeability was evaluated via direct contact membrane distillation (DCMD) of 3.5g/L NaCl solution in a DCMD configuration. Both inorganic and organic micromolecule additives were found to slightly influence membrane hydrophobicity. Polyethylene glycol (PEG), organic acids, LiCl, MgCl2, and LiCl/H2O mixtures were proved to be effective additives to PVDF-CTFE membranes due to their pore-controlling effects and the capacity to improve the properties and performance of the resultant membranes. The occurrence of a pre-gelation process showed that when organic and inorganic micromolecules were added to PVDF-CTFE solution, the resultant membranes presented a high interconnectivity structure. The membrane prepared with dibutyl phthalate (DBP) showed a nonporous surface and symmetrical cross-section. When H2O and LiCl/H2O mixtures were also used as additives, they were beneficial for solid-liquid demixing, especially when LiCl/H2O mixed additives were used. The membrane prepared with 5% LiCl+2% H2O achieved a flux of 24.53kg/(m(2)·hr) with 99.98% salt rejection. This study is expected to offer a reference not only for PVDF-CTFE membrane preparation but also for other polymer membranes.

  7. Large-scale natural disturbance alters genetic population structure of the sailfin molly, Poecilia latipinna.

    Science.gov (United States)

    Apodaca, Joseph J; Trexler, Joel C; Jue, Nathaniel K; Schrader, Matthew; Travis, Joseph

    2013-02-01

    Many inferences about contemporary rates of gene flow are based on the assumption that the observed genetic structure among populations is stable. Recent studies have uncovered several cases in which this assumption is tenuous. Most of those studies have focused on the effects that regular environmental fluctuations can have on genetic structure and gene flow patterns. Occasional catastrophic disturbances could also alter either the distribution of habitat or the spatial distribution of organisms in a way that affects population structure. However, evidence of such effects is sparse in the literature because it is difficult to obtain. Hurricanes, in particular, have the potential to exert dramatic effects on population structure of organisms found on islands or coral reefs or in near shore and coastal habitats. Here we draw on a historic genetic data set and new data to suggest that the genetic structure of sailfin molly (Poecilia latipinna) populations in north Florida was altered dramatically by an unusually large and uncommon type of storm surge associated with Hurricane Dennis in 2005. We compare the spatial pattern of genetic variation in these populations after Hurricane Dennis to the patterns described in an earlier study in this same area. We use comparable genetic data from another region of Florida, collected in the same two periods, to estimate the amount of change expected from typical temporal variation in population structure. The comparative natural history of sailfin mollies in these two regions indicates that the change in population structure produced by the storm surge is not the result of many local extinctions with recolonization from a few refugia but emerged from a pattern of mixing and redistribution.

  8. Crosslinked copolyazoles with a zwitterionic structure for organic solvent resistant membranes

    KAUST Repository

    Chisca, Stefan

    2015-01-01

    The preparation of crosslinked membranes with a zwitterionic structure based on a facile reaction between a newly synthesized copolyazole with free OH groups and (3-glycidyloxypropyl)trimethoxysilane (GPTMS) is reported. The new OH-functionalized copolyazole is soluble in common organic solvents, such as tetrahydrofuran (THF), dimethylsulfoxide (DMSO), N,N′-dimethylformamide (DMF) and N-methyl-2-pyrrolidone (NMP) and can be easily processed by phase inversion. After crosslinking with GPTMS, the membranes acquire high solvent resistance. We show the membrane performance and the influence of the crosslinking reaction conditions on the thermal stability, surface polarity, pore morphology, and solvent resistance. By using UV-spectroscopy we monitored the solvent resistance of the membranes in four aggressive solvents (THF, DMSO, DMF and NMP) for 30 days. After this time, only minor changes (less than 2%) were detected for membranes subjected to a crosslinking reaction for 6 hours or longer. Our data suggest that the novel crosslinked membranes can be used for industrial applications in wide harsh environments in the presence of organic solvents.

  9. Nano-Structured Proton Exchange Membrane for Fuel Cell

    Institute of Scientific and Technical Information of China (English)

    Wu Chien-Suen; Lin Fan-Yen; Chu Peter P

    2005-01-01

    @@ 1Introduction Nano-structured materials are characterized by long range ordering of the nano-dimensioned quantum dot units. They have been found to deliver substantially different (electric, optical, magnetic and physical) properties from that of the bulk. The differences are mainly due to the increases of surface charge with large fraction of grain boundaries, and the periodical potential field created by the ordered nano-domains. Specifically,the issues considered in "nano ionics" are the degree of interaction, the charge distribution on the interfaces where they become obvious in ionic properties and thermodynamics such as mobility of charge carriers. Major efforts in this direction are focused on:

  10. Nanoclay-Directed Structure and Morphology in PVDF Electrospun Membranes

    Directory of Open Access Journals (Sweden)

    Kyunghwan Yoon

    2014-01-01

    Full Text Available The incorporation of organically modified Lucentite nanoclay dramatically modifies the structure and morphology of the PVDF electrospun fibers. In a molecular level, the nanoclay preferentially stabilizes the all-trans conformation of the polymer chain, promoting an α to β transformation of the crystalline phase. The piezoelectric properties of the β-phase carry great promise for energy harvest applications. At a larger scale, the nanoclay facilitates the formation of highly uniform, bead-free fibers. Such an effect can be attributed to the enhanced conductivity and viscoelasticity of the PVDF-clay suspension. The homogenous distribution of the directionally aligned nanoclays imparts advanced mechanical properties to the nanofibers.

  11. Small changes in environmental parameters lead to alterations in antibiotic resistance, cell morphology and membrane fatty acid composition in Staphylococcus lugdunensis.

    Directory of Open Access Journals (Sweden)

    Marcus J Crompton

    Full Text Available Staphylococcus lugdunensis has emerged as a major cause of community-acquired and nosocomial infections. This bacterium can rapidly adapt to changing environmental conditions to survive and capitalize on opportunities to colonize and infect through wound surfaces. It was proposed that S. lugdunensis would have underlying alterations in metabolic homeostasis to provide the necessary levels of adaptive protection. The aims of this project were to examine the impacts of subtle variations in environmental conditions on growth characteristics, cell size and membrane fatty acid composition in S. lugdunensis. Liquid broth cultures of S. lugdunensis were grown under varying combinations of pH (6-8, temperature (35-39°C and osmotic pressure (0-5% sodium chloride w/w to reflect potential ranges of conditions encountered during transition from skin surfaces to invasion of wound sites. The cells were harvested at the mid-exponential phase of growth and assessed for antibiotic minimal inhibitory concentration (MIC, generation time, formation of small colony variants, cell size (by scanning electron microscopy and membrane fatty acid composition. Stress regimes with elevated NaCl concentrations resulted in significantly higher antibiotic resistance (MIC and three of the combinations with 5% NaCl had increased generation times (P<0.05. It was found that all ten experimental growth regimes, including the control and centroid cultures, yielded significantly different profiles of plasma membrane fatty acid composition (P<0.0001. Alterations in cell size (P<0.01 were also observed under the range of conditions with the most substantial reduction occurring when cells were grown at 39°C, pH 8 (514±52 nm, mean ± Standard Deviation compared with cells grown under control conditions at 37°C with pH 7 (702±76 nm, P<0.01. It was concluded that S. lugdunensis responded to slight changes in environmental conditions by altering plasma membrane fatty acid composition

  12. Taxonomic identification, phenanthrene uptake activity, and membrane lipid alterations of the PAH degrading Arthrobacter sp. strain Sphe3

    Energy Technology Data Exchange (ETDEWEB)

    Kallimanis, A.; Drainas, C.; Koukkou, A.I. [Ioannina Univ. (Greece). Sector of Organic Chemistry and Biochemistry; Frillingos, S. [Ioannina Univ. (Greece). Lab. of Biological Chemistry

    2007-09-15

    This report describes phenanthrene uptake as well as the effect of phenanthrene on the membrane phospholipid and fatty acid composition in a newly isolated bacterial strain, Sphe3, that we taxonomically identified as Arthrobacter sp. Strain Sphe3 is able to utilize phenanthrene as a carbon source at high rates and appears to internalize phenanthrene with two mechanisms: a passive diffusion when cells are grown on glucose, and an inducible active transport system when cells are grown on phenanthrene as a sole carbon source. Active transport followed Michaelis-Menten kinetics, and it was amenable to inhibition by 2,4-dinitrophenol and sodium azide. Evidence provided here indicates that apart from inducing an active PAH uptake, the presence of phenanthrene elicits significant changes in membrane fluidity.

  13. Protective effect of Lagenaria siceraria (Mol) against membrane-bound enzyme alterations in isoproterenol-induced cardiac damage in rats.

    Science.gov (United States)

    Vijayakumar, M; Selvi, V; Krishnakumari, S

    2012-01-01

    This study was aimed at evaluating the preventive role of the ethanolic extract of Lagenaria siceraria (Mol) fruit on membrane-bound enzymes, such as sodium potassium-dependent adenosine triphosphatase (Na(+)/K(+) ATPase), calcium-dependent adenosine triphosphatase (Ca(2+) ATPase) and magnesium-dependent adenosine triphosphatase (Mg(2+) ATPase) on isoproterenol (ISO)-induced myocardial infarction (MI) in rats. Male albino Wistar rats were pretreated with the ethanolic extract of L. siceraria (Mol) fruit (125, 250 and 500 mg kg(-1) body weight) for a period of 30 days. After the treatment period, ISO (85mg kg(-1) body weight) was subcutaneously injected into rats at 24-h intervals for 2 days. ISO-induced rats showed a significant (p siceraria (Mol) fruit for a period of 30 days exhibited a significant (p siceraria (Mol) fruit has membrane-stabilising role in ISO-induced MI in rats.

  14. The asymmetrical structure of Golgi apparatus membranes revealed by in situ atomic force microscope.

    Science.gov (United States)

    Xu, Haijiao; Su, Weiheng; Cai, Mingjun; Jiang, Junguang; Zeng, Xianlu; Wang, Hongda

    2013-01-01

    The Golgi apparatus has attracted intense attentions due to its fascinating morphology and vital role as the pivot of cellular secretory pathway since its discovery. However, its complex structure at the molecular level remains elusive due to limited approaches. In this study, the structure of Golgi apparatus, including the Golgi stack, cisternal structure, relevant tubules and vesicles, were directly visualized by high-resolution atomic force microscope. We imaged both sides of Golgi apparatus membranes and revealed that the outer leaflet of Golgi membranes is relatively smooth while the inner membrane leaflet is rough and covered by dense proteins. With the treatment of methyl-β-cyclodextrin and Triton X-100, we confirmed the existence of lipid rafts in Golgi apparatus membrane, which are mostly in the size of 20 nm -200 nm and appear irregular in shape. Our results may be of significance to reveal the structure-function relationship of the Golgi complex and pave the way for visualizing the endomembrane system in mammalian cells at the molecular level.

  15. The asymmetrical structure of Golgi apparatus membranes revealed by in situ atomic force microscope.

    Directory of Open Access Journals (Sweden)

    Haijiao Xu

    Full Text Available The Golgi apparatus has attracted intense attentions due to its fascinating morphology and vital role as the pivot of cellular secretory pathway since its discovery. However, its complex structure at the molecular level remains elusive due to limited approaches. In this study, the structure of Golgi apparatus, including the Golgi stack, cisternal structure, relevant tubules and vesicles, were directly visualized by high-resolution atomic force microscope. We imaged both sides of Golgi apparatus membranes and revealed that the outer leaflet of Golgi membranes is relatively smooth while the inner membrane leaflet is rough and covered by dense proteins. With the treatment of methyl-β-cyclodextrin and Triton X-100, we confirmed the existence of lipid rafts in Golgi apparatus membrane, which are mostly in the size of 20 nm -200 nm and appear irregular in shape. Our results may be of significance to reveal the structure-function relationship of the Golgi complex and pave the way for visualizing the endomembrane system in mammalian cells at the molecular level.

  16. Development of a stealth carrier system for structural studies of membrane proteins in solution

    DEFF Research Database (Denmark)

    Maric, Selma

    Structural studies of membrane proteins remain a great experimental challenge. Functional reconstitution into artificial carriers that mimic the native bilayer environment allows for the handling of membrane proteins in solution and enables the use of small-angle scattering techniques for fast an......-resolution structural studes of many membrane proteins and their complexes in solution as the analysis of SANS data for this platform is greatly simplified and allows for the application of existing data analysis tools already available for soluble proteins...... and reliable structural analysis. The difficulty with this approach is that the carrier discs contribute to the measured scattering intensity in a highly non-trivial fashion, making subsequent data analysis challenging. This thesis presents the development of a specifically deuterated, stealth nanodisc system...... which can be used for SANS structural analysis of membrane proteins in solution. In combination with the D2O/H2O-based contrast variation method it is demonstrated that it is possible to prepare specifically deuterated analogues of the nanodisc, which give minimal contribution to the neutron scattering...

  17. Structure of hybrid organic-inorganic sols for the preparation of hydrothermally stable membranes

    NARCIS (Netherlands)

    Castricum, H.L.; Sah, A.; Geenevasen, J.A.J.; Kreiter, R.; Blank, D.H.A.; Vente, J.F.; ten Elshof, J.E.

    2008-01-01

    A procedure for the preparation of hybrid sols for the synthesis of organic-inorganic microporous materials and thin film membranes is reported. We describe silane reactivity and sol structure for acid-catalysed colloidal sols from mixtures of either tetraethylorthosilicate (TEOS) and methyltriethox

  18. The Asymmetrical Structure of Golgi Apparatus Membranes Revealed by In situ Atomic Force Microscope

    Science.gov (United States)

    Xu, Haijiao; Su, Weiheng; Cai, Mingjun; Jiang, Junguang; Zeng, Xianlu; Wang, Hongda

    2013-01-01

    The Golgi apparatus has attracted intense attentions due to its fascinating morphology and vital role as the pivot of cellular secretory pathway since its discovery. However, its complex structure at the molecular level remains elusive due to limited approaches. In this study, the structure of Golgi apparatus, including the Golgi stack, cisternal structure, relevant tubules and vesicles, were directly visualized by high-resolution atomic force microscope. We imaged both sides of Golgi apparatus membranes and revealed that the outer leaflet of Golgi membranes is relatively smooth while the inner membrane leaflet is rough and covered by dense proteins. With the treatment of methyl-β-cyclodextrin and Triton X-100, we confirmed the existence of lipid rafts in Golgi apparatus membrane, which are mostly in the size of 20 nm –200 nm and appear irregular in shape. Our results may be of significance to reveal the structure-function relationship of the Golgi complex and pave the way for visualizing the endomembrane system in mammalian cells at the molecular level. PMID:23613878

  19. Peroxynitrous acid induces structural and functional modifications to basement membranes and its key component, laminin

    DEFF Research Database (Denmark)

    Degendorfer, Georg; Chuang, Christine Y.; Hammer, Astrid;

    2015-01-01

    Basement membranes (BM) are specialized extracellular matrices underlying endothelial cells in the artery wall. Laminin, the most abundant BM glycoprotein, is a structural and biologically active component. Peroxynitrous acid (ONOOH), a potent oxidizing and nitrating agent, is formed in vivo at s...

  20. Simulations of a Membrane-Anchored Peptide: Structure, Dynamics, and Influence on Bilayer Properties

    DEFF Research Database (Denmark)

    Jensen, Morten Østergaard; Mouritsen, O.G.; Peters, Günther H.J.

    2004-01-01

    A three-dimensional structure of a model decapeptide is obtained by performing molecular dynamics simulations of the peptide in explicit water. Interactions between an N-myristoylated form of the folded peptide anchored to dipalmitoylphosphatidylcholine fluid phase lipid membranes are studied at ...

  1. Membrane protein structural biology using X-ray free electron lasers.

    Science.gov (United States)

    Neutze, Richard; Brändén, Gisela; Schertler, Gebhard F X

    2015-08-01

    Membrane protein structural biology has benefitted tremendously from access to micro-focus crystallography at synchrotron radiation sources. X-ray free electron lasers (XFELs) are linear accelerator driven X-ray sources that deliver a jump in peak X-ray brilliance of nine orders of magnitude and represent a disruptive technology with potential to dramatically change the field. Membrane proteins were amongst the first macromolecules to be studied with XFEL radiation and include proof-of-principle demonstrations of serial femtosecond crystallography (SFX), the observation that XFEL data can deliver damage free crystallographic structures, initial experiments towards recording structural information from 2D arrays of membrane proteins, and time-resolved SFX, time-resolved wide angle X-ray scattering and time-resolved X-ray emission spectroscopy studies. Conversely, serial crystallography methods are now being applied using synchrotron radiation. We believe that a context dependent choice of synchrotron or XFEL radiation will accelerate progress towards novel insights in understanding membrane protein structure and dynamics.

  2. Hydropathy profile alignment : a tool to search for structural homologues of membrane proteins

    NARCIS (Netherlands)

    Lolkema, JS; Slotboom, DJ

    1998-01-01

    Hydropathy profile alignment is introduced as a tool in functional genomics. The architecture of membrane proteins is reflected in the hydropathy profile of the amino acid sequence. Both secondary and tertiary structural elements determine the profile which provides enough sensitivity to detect evol

  3. Structure and formation of egg membranes in Aedes aegypti. (L. ) (Diptera:Culicidae)

    Energy Technology Data Exchange (ETDEWEB)

    Mathew, G.; Rai, K.S.

    1975-01-01

    An ultrastructural study of mosquito ovarioles reveals that both the vitelline membrane and the endochorion are secreted by the follicular epithelium. The presecretory phase is characterized by the hypertrophy of endoplasmic reticulum and Golgi complex in the follicle cells. Synthesis of vitelline membrane precursors begins immediately after yolk protein uptake by micropinocytosis. Secretory droplets are budded off Golgi cisternae and released into the follicle cell--oocyte interface by exocytosis. The vitelline membrane first appears as dense plaques which eventually fuse to form a single homogeneous layer. Two types of secretory material are identified in the follicle cells prior to the formation of the endochorion. Golgi cisternae bud off small droplets similar in size and appearance to the precursors of the vitelline membrane. These migrate to the apical surface and accumulate between surface folds in the plasma membrane. The second type is a fibrous material formed in endoplasmic reticulum. When fully secreted, the endochorion is a 2-layered structure. The lower layer is comprised of pillar-like structures alternating with fibrous mesh-like areas. The pillars are formed by the coalescence of droplets released from Golgi, while the mesh-like areas presumably arise from the fibrous material. The outer layer is also fibrous. The follicle cells degenerate once the endochorion is laid down. endochorion is laid down.

  4. Understanding the structure and performance of self-assembled triblock terpolymer membranes

    KAUST Repository

    Pendergast, MaryTheresa M.

    2013-10-01

    Nanoporous membranes represent a possible route towards more precise particle and macromolecular separations, which are of interest across many industries. Here, we explored membranes with vertically-aligned nanopores formed from a poly(isoprene-. b-styrene-. b-4 vinyl pyridine) (ISV) triblock terpolymer via a hybrid self-assembly/nonsolvent induced phase separation process (S-NIPS). ISV concentration, solvent composition, and evaporation time in the S-NIPS process were varied to tailor ordering of the selective layer and produce enhanced water permeability. Here, water permeability was doubled over previous versions of ISV membranes. This was achieved by increasing volatile solvent concentration, thereby decreasing the evaporation period required for self-assembly. Fine-tuning was required, however, since overly-rapid evaporation did not yield the desired pore structure. Transport models, used to relate the in-. situ structure to the performance of these materials, revealed narrowing of pores and blocking by the dense region below. It was shown that these vertically aligned nanoporous membranes compare favorably with commercial ultrafiltration membranes formed by NIPS and track-etching processes, which suggests that there is practical value in further developing and optimizing these materials for specific industrial separations. © 2013 Elsevier B.V.

  5. Crystal structure and biochemical analyses reveal Beclin 1 as a novel membrane binding protein

    Institute of Scientific and Technical Information of China (English)

    Weijiao Huang; Feng-Liang Wang; Haiteng Deng; Lei Liu; Ning Gao; Li Yu; Yigong Shi; Wooyoung Choi; Wanqiu Hu; Na Mi; Qiang Guo; Meisheng Ma; Mei Liu; Yuan Tian; Peilong Lu

    2012-01-01

    The Beclin 1 gene is a haplo-insufficient tumor suppressor and plays an essential role in autophagy.However,the molecular mechanism by which Beclin 1 functions remains largely unknown.Here we report the crystal structure of the evolutionarily conserved domain(ECD)of Beclin 1 at 1.6(A)resolution.Beclin 1 ECD exhibits a previously unreported fold,with three structural repeats arranged symmetrically around a central axis.Beclin 1 ECD defines a novel class of membrane-binding domain,with a strong preference for lipid membrane enriched with cardiolipin.The tip of a surface loop in Beclin 1 ECD,comprising three aromatic amino acids,acts as a hydrophobic finger to associate with lipid membrane,consequently resulting in the deformation of membrane and liposomes.Mutation of these aromatic residues rendered Beclin 1 unable to stably associate with lipid membrane in vitro and unable to fully rescue autophagy in Beclin 1-knockdown cells in vivo.These observations form an important framework for deciphering the biological functions of Beclin 1.

  6. [Phospholipids and structural modification of tissues and cell membranes for adaptation in high altitude mountains].

    Science.gov (United States)

    Iakovlev, V M; Vishnevskiĭ, A A; Shanazarov, A S

    2012-01-01

    The nature of the impact of physical factors of high altitudes (3200 m) on the lipids of tissues and membranes of animals was researched. It was established that the adaptation process in Wistar rats was followed by peroxide degradation and subsequent modification of the phospholipids' structure of tissues and microsomal membranes. Adaptive phospholipids reconstruction takes place in microsomal membranes in the tissues of the lungs, brain, liver and skeletal muscles. Together with this, the amount of phosphatidylinositol and phosphatidic acid accumulates, indicating that the hydrolysis of phosphatidylinositol-4, 5 biphosphate to diacylglycerol and secondary messenger--inositol triphosphate, occurs. A decrease in temperature adaptation (+10 degrees C) leads to a more noticeable shift in peroxide oxidation of lipids, phospholipid structure in the tissues and membranes rather than adaptation in thermoneutral conditions (+30 degrees C). Modification of lipid composition of tissues and cell membranes in the highlands obviously increases the adaptive capabilities of cells of the whole body: physical performance and resistance to hypoxia increases in animals.

  7. Polycyclic aromatic hydrocarbons alter the structure of oceanic and oligotrophic microbial food webs

    KAUST Repository

    Cerezo, Maria Isabel

    2015-11-01

    One way organic pollutants reach remote oceanic regions is by atmospheric transport. During the Malaspina-2010 expedition, across the Atlantic, Indian, and Pacific Oceans, we analyzed the polycyclic aromatic hydrocarbon (PAH) effects on oceanic microbial food webs. We performed perturbation experiments adding PAHs to classic dilution experiments. The phytoplankton growth rates were reduced by more than 5 times, being Prochlorococcus spp. the most affected. 62% of the experiments showed a reduction in the grazing rates due to the presence of PAHs. For the remaining experiments, grazing usually increased likely due to cascading effects. We identified changes in the slope of the relation between the growth rate and the dilution fraction induced by the pollutants, moving from no grazing to V-shape, or to negative slope, indicative of grazing increase by cascade effects and alterations of the grazers\\' activity structure. Our perturbation experiments indicate that PAHs could influence the structure oceanic food-webs structure.

  8. Experimental study on alteration of adrenergic receptors activity in neuronal membranes protein of cerebral cortex following brain trauma in rats

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xin-wei; XU Ru-xiang; QI Yi-long; CHEN Chang-cai

    2001-01-01

    Objective: To define the course of changes taken by α1 and β adrenergic receptors (AR) activity after traumatic brain injury (TBI) and explore the approach for secondary brain injury (SBI) management. Methods: The neuronal membrane protein of cortex were extracted from the rats subject to traumatic brain injury, and the changes of α1- and β-AR activities in the neuronal membranes were examined by radio ligand binding assay (RLBA). Results: α1- and β-AR activities underwent obvious changes, reaching their peak values at 24 h after TBI. α1-AR binding density (Bmax) reduced by 22.6%while the ligand affinity increased by 66.7%, and for β-AR, however, Bmax increased by 116.9% and the ligand affinity reduced by 50.7%. Their antagonists could counteract the changes ofα1- and β-AR activity. Conclusion: The patterns of changes varies between α1- and β-AR activity after TBI, suggesting their different roles in the neuronal membranes after brain trauma, and timely administration of AR antagonists is potentially beneficial in TBI management.

  9. The Flavivirus Precursor Membrane-Envelope Protein Complex: Structure and Maturation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Long; Lok, Shee-Mei; Yu, I-Mei; Zhang, Ying; Kuhn, Richard J.; Chen, Jue; Rossmann, Michael G. (Purdue)

    2008-09-17

    Many viruses go through a maturation step in the final stages of assembly before being transmitted to another host. The maturation process of flaviviruses is directed by the proteolytic cleavage of the precursor membrane protein (prM), turning inert virus into infectious particles. We have determined the 2.2 angstrom resolution crystal structure of a recombinant protein in which the dengue virus prM is linked to the envelope glycoprotein E. The structure represents the prM-E heterodimer and fits well into the cryo-electron microscopy density of immature virus at neutral pH. The pr peptide {beta}-barrel structure covers the fusion loop in E, preventing fusion with host cell membranes. The structure provides a basis for identifying the stages of its pH-directed conformational metamorphosis during maturation, ending with release of pr when budding from the host.

  10. Hierarchical alteration of brain structural and functional networks in female migraine sufferers.

    Directory of Open Access Journals (Sweden)

    Jixin Liu

    Full Text Available BACKGROUND: Little is known about the changes of brain structural and functional connectivity networks underlying the pathophysiology in migraine. We aimed to investigate how the cortical network reorganization is altered by frequent cortical overstimulation associated with migraine. METHODOLOGY/PRINCIPAL FINDINGS: Gray matter volumes and resting-state functional magnetic resonance imaging signal correlations were employed to construct structural and functional networks between brain regions in 43 female patients with migraine (PM and 43 gender-matched healthy controls (HC by using graph theory-based approaches. Compared with the HC group, the patients showed abnormal global topology in both structural and functional networks, characterized by higher mean clustering coefficients without significant change in the shortest absolute path length, which indicated that the PM lost optimal topological organization in their cortical networks. Brain hubs related to pain-processing revealed abnormal nodal centrality in both structural and functional networks, including the precentral gyrus, orbital part of the inferior frontal gyrus, parahippocampal gyrus, anterior cingulate gyrus, thalamus, temporal pole of the middle temporal gyrus and the inferior parietal gyrus. Negative correlations were found between migraine duration and regions with abnormal centrality. Furthermore, the dysfunctional connections in patients' cortical networks formed into a connected component and three dysregulated modules were identified involving pain-related information processing and motion-processing visual networks. CONCLUSIONS: Our results may reflect brain alteration dynamics resulting from migraine and suggest that long-term and high-frequency headache attacks may cause both structural and functional connectivity network reorganization. The disrupted information exchange between brain areas in migraine may be reshaped into a hierarchical modular structure progressively.

  11. Altered Brain Network Segregation in Fragile X Syndrome Revealed by Structural Connectomics.

    Science.gov (United States)

    Bruno, Jennifer Lynn; Hosseini, S M Hadi; Saggar, Manish; Quintin, Eve-Marie; Raman, Mira Michelle; Reiss, Allan L

    2016-03-22

    Fragile X syndrome (FXS), the most common inherited cause of intellectual disability and autism spectrum disorder, is associated with significant behavioral, social, and neurocognitive deficits. Understanding structural brain network topology in FXS provides an important link between neurobiological and behavioral/cognitive symptoms of this disorder. We investigated the connectome via whole-brain structural networks created from group-level morphological correlations. Participants included 100 individuals: 50 with FXS and 50 with typical development, age 11-23 years. Results indicated alterations in topological properties of structural brain networks in individuals with FXS. Significantly reduced small-world index indicates a shift in the balance between network segregation and integration and significantly reduced clustering coefficient suggests that reduced local segregation shifted this balance. Caudate and amygdala were less interactive in the FXS network further highlighting the importance of subcortical region alterations in the neurobiological signature of FXS. Modularity analysis indicates that FXS and typically developing groups' networks decompose into different sets of interconnected sub networks, potentially indicative of aberrant local interconnectivity in individuals with FXS. These findings advance our understanding of the effects of fragile X mental retardation protein on large-scale brain networks and could be used to develop a connectome-level biological signature for FXS.

  12. Photoresponsive nanostructured membranes

    KAUST Repository

    Madhavan, P.

    2016-07-26

    The perspective of adding stimuli-response to isoporous membranes stimulates the development of separation devices with pores, which would open or close under control of environment chemical composition, temperature or exposure to light. Changes in pH and temperature have been previously investigated. In this work, we demonstrate for the first time the preparation of photoresponsive isoporous membranes, applying self-assembly non-solvent induced phase separation to a new light responsive block copolymer. First, we optimized the membrane formation by using poly(styrene-b-anthracene methyl methacrylate-b-methylmethacrylate) (PS-b-PAnMMA-b-PMMA) copolymer, identifying the most suitable solvent, copolymer block length, and other parameters. The obtained final triblock copolymer membrane morphologies were characterized using atomic force and electron microscopy. The microscopic analysis reveals that the PS-b-PAnMMA-b-PMMA copolymer can form both lamellar and ordered hexagonal nanoporous structures on the membrane top layer in appropriate solvent compositions. The nanostructured membrane emits fluorescence due to the presence of the anthracene mid-block. On irradiation of light the PS-b-PAnMMA-b-PMMA copolymer membranes has an additional stimuli response. The anthracene group undergoes conformational changes by forming [4 + 4] cycloadducts and this alters the membrane\\'s water flux and solute retention. © 2016 The Royal Society of Chemistry.

  13. Reverse osmosis membrane composition, structure and performance modification by bisulphite, iron(III), bromide and chlorite exposure.

    Science.gov (United States)

    Ferrer, O; Gibert, O; Cortina, J L

    2016-10-15

    Reverse osmosis (RO) membrane exposure to bisulphite, chlorite, bromide and iron(III) was assessed in terms of membrane composition, structure and performance. Membrane composition was determined by Rutherford backscattering spectrometry (RBS) and membrane performance was assessed by water and chloride permeation, using a modified version of the solution-diffusion model. Iron(III) dosage in presence of bisulphite led to an autooxidation of the latter, probably generating free radicals which damaged the membrane. It comprised a significant raise in chloride passage (chloride permeation coefficient increased 5.3-5.1 fold compared to the virgin membrane under the conditions studied) rapidly. No major differences in terms of water permeability and membrane composition were observed. Nevertheless, an increase in the size of the network pores, and a raise in the fraction of aggregate pores of the polyamide (PA) layer were identified, but no amide bond cleavage was observed. These structural changes were therefore, in accordance with the transport properties observed.

  14. Rim Structure, Stratigraphy, and Aqueous Alteration Exposures Along Opportunity Rover's Traverse of the Noachian Endeavour Crater

    Science.gov (United States)

    Crumpler, L.S.; Arvidson, R. E.; Golombek, M.; Grant, J. A.; Jolliff, B. L.; Mittlefehldt, D. W.

    2017-01-01

    The Mars Exploration Rover Opportunity has traversed 10.2 kilometers along segments of the west rim of the 22-kilometer-diameter Noachian Endeavour impact crater as of sol 4608 (01/09/17). The stratigraphy, attitude of units, lithology, and degradation state of bedrock outcrops exposed on the crater rim have been examined in situ and placed in geologic context. Structures within the rim and differences in physical properties of the identified lithologies have played important roles in localizing outcrops bearing evidence of aqueous alteration.

  15. Study of structural model of biological membranes by synchrotron radiation

    CERN Document Server

    Cavalcanti, L P

    2001-01-01

    The objective of this work has been to study, from the structural point of view, the process of incorporation of various types of hydrophobic compounds into the lamellar phase of liposomes and multilayers of the zwitterionic phospholipid DPPC. X-ray diffraction and scattering techniques using synchrotron radiation, have been used to monitor changes of several bilayer systems. Thermotropic phase transitions as well as the order of the lamellar packing were studied in situ experiments. The behavior of the L beta' and L alpha phases was followed as a function of the water content in dispersions of DPPC multi lamellar vesicles with the addition of the alkaloid Ellipticine in several concentrations. The results showed a decrease in the temperature of the pre-transition as well as that of the main transition (P beta' ->L alpha). The decrease of the lamellar spacing as a function of temperature in the liquid crystalline phase leads to the description of the thermal compression coefficient in the L alpha phase. It wa...

  16. Hyperspectral mapping of alteration assemblages within a hydrothermal vug at the Haughton impact structure, Canada

    Science.gov (United States)

    Greenberger, Rebecca N.; Mustard, John F.; Osinski, Gordon R.; Tornabene, Livio L.; Pontefract, Alexandra J.; Marion, Cassandra L.; Flemming, Roberta L.; Wilson, Janette H.; Cloutis, Edward A.

    2016-12-01

    Meteorite impacts on Earth and Mars can generate hydrothermal systems that alter the primary mineralogies of rocks and provide suitable environments for microbial colonization. We investigate a calcite-marcasite-bearing vug at the 23 km diameter Haughton impact structure, Devon Island, Nunavut, Canada, using imaging spectroscopy of the outcrop in the field (0.65-1.1 μm) and samples in the laboratory (0.4-2.5 μm), point spectroscopy (0.35-2.5 μm), major element chemistry, and X-ray diffraction analyses. The mineral assemblages mapped at the outcrop include marcasite; marcasite with minor gypsum and jarosite; fibroferrite and copiapite with minor gypsum and melanterite; gypsum, Fe3+ oxides, and jarosite; and calcite, gypsum, clay, microcline, and quartz. Hyperspectral mapping of alteration phases shows spatial patterns that illuminate changes in alteration conditions and formation of specific mineral phases. Marcasite formed from the postimpact hydrothermal system under reducing conditions, while subsequent weathering oxidized the marcasite at low temperatures and water/rock ratios. The acidic fluids resulting from the oxidation collected on flat-lying portions of the outcrop, precipitating fibroferrite + copiapite. That assemblage then likely dissolved, and the changing chemistry and pH resulting from interaction with the calcite-rich host rock formed gypsum-bearing red coatings. These results have implications for understanding water-rock interactions and habitabilities at this site and on Mars.

  17. The Tower: Modelling, Analysis and Construction of Bending Active Tensile Membrane Hybrid Structures

    DEFF Research Database (Denmark)

    Holden Deleuran, Anders; Schmeck, Michel; Charles Quinn, Gregory

    2015-01-01

    as combining two or more structural concepts and materials together to create a stronger whole. The paper presents the methods used and developed for design, simulation, evaluation and production, as well as the challenges and obstacles to overcome to build a complex hybrid tower structure in an outside......The project is the result of an interdisciplinary research collaboration between CITA, KET and Fibrenamics exploring the design of integrated hybrid structures employing bending active elements and tensile membranes with bespoke material properties and detailing. Hybrid structures are defined here...

  18. Structural brain alterations in patients with lumbar disc herniation: a preliminary study.

    Directory of Open Access Journals (Sweden)

    Michael Luchtmann

    Full Text Available Chronic pain is one of the most common health complaints in industrial nations. For example, chronic low back pain (cLBP disables millions of people across the world and generates a tremendous economic burden. While previous studies provided evidence of widespread functional as well as structural brain alterations in chronic pain, little is known about cortical changes in patients suffering from lumbar disc herniation. We investigated morphometric alterations of the gray and white matter of the brain in patients suffering from LDH. The volumes of the gray and white matter of 12 LDH patients were determined in a prospective study and compared to the volumes of healthy controls to distinguish local differences. High-resolution MRI brain images of all participants were performed using a 3 Tesla MRI scanner. Voxel-based morphometry was used to investigate local differences in gray and white matter volume between patients suffering from LDH and healthy controls. LDH patients showed significantly reduced gray matter volume in the right anterolateral prefrontal cortex, the right temporal lobe, the left premotor cortex, the right caudate nucleus, and the right cerebellum as compared to healthy controls. Increased gray matter volume, however, was found in the right dorsal anterior cingulate cortex, the left precuneal cortex, the left fusiform gyrus, and the right brainstem. Additionally, small subcortical decreases of the white matter were found adjacent to the left prefrontal cortex, the right premotor cortex and in the anterior limb of the left internal capsule. We conclude that the lumbar disk herniation can lead to specific local alterations of the gray and white matter in the human brain. The investigation of LDH-induced brain alterations could provide further insight into the underlying nature of the chronification processes and could possibly identify prognostic factors that may improve the conservative as well as the operative treatment of the

  19. Organization into Higher Ordered Ring Structures Counteracts Membrane Binding of IM30, a Protein Associated with Inner Membranes in Chloroplasts and Cyanobacteria.

    Science.gov (United States)

    Heidrich, Jennifer; Wulf, Verena; Hennig, Raoul; Saur, Michael; Markl, Jürgen; Sönnichsen, Carsten; Schneider, Dirk

    2016-07-15

    The IM30 (inner membrane-associated protein of 30 kDa), also known as the Vipp1 (vesicle-inducing protein in plastids 1), has a crucial role in thylakoid membrane biogenesis and maintenance. Recent results suggest that the protein binds peripherally to membranes containing negatively charged lipids. However, although IM30 monomers interact and assemble into large oligomeric ring complexes with different numbers of monomers, it is still an open question whether ring formation is crucial for membrane interaction. Here we show that binding of IM30 rings to negatively charged phosphatidylglycerol membrane surfaces results in a higher ordered membrane state, both in the head group and in the inner core region of the lipid bilayer. Furthermore, by using gold nanorods covered with phosphatidylglycerol layers and single particle spectroscopy, we show that not only IM30 rings but also lower oligomeric IM30 structures interact with membranes, although with higher affinity. Thus, ring formation is not crucial for, and even counteracts, membrane interaction of IM30.

  20. Structural insight into the biogenesis of β-barrel membrane proteins.

    Science.gov (United States)

    Noinaj, Nicholas; Kuszak, Adam J; Gumbart, James C; Lukacik, Petra; Chang, Hoshing; Easley, Nicole C; Lithgow, Trevor; Buchanan, Susan K

    2013-09-19

    β-barrel membrane proteins are essential for nutrient import, signalling, motility and survival. In Gram-negative bacteria, the β-barrel assembly machinery (BAM) complex is responsible for the biogenesis of β-barrel membrane proteins, with homologous complexes found in mitochondria and chloroplasts. Here we describe the structure of BamA, the central and essential component of the BAM complex, from two species of bacteria: Neisseria gonorrhoeae and Haemophilus ducreyi. BamA consists of a large periplasmic domain attached to a 16-strand transmembrane β-barrel domain. Three structural features shed light on the mechanism by which BamA catalyses β-barrel assembly. First, the interior cavity is accessible in one BamA structure and conformationally closed in the other. Second, an exterior rim of the β-barrel has a distinctly narrowed hydrophobic surface, locally destabilizing the outer membrane. And third, the β-barrel can undergo lateral opening, suggesting a route from the interior cavity in BamA into the outer membrane.

  1. Structural and functional properties of hydration and confined water in membrane interfaces.

    Science.gov (United States)

    Disalvo, E A; Lairion, F; Martini, F; Tymczyszyn, E; Frías, M; Almaleck, H; Gordillo, G J

    2008-12-01

    The scope of the present review focuses on the interfacial properties of cell membranes that may establish a link between the membrane and the cytosolic components. We present evidences that the current view of the membrane as a barrier of permeability that contains an aqueous solution of macromolecules may be replaced by one in which the membrane plays a structural and functional role. Although this idea has been previously suggested, the present is the first systematic work that puts into relevance the relation water-membrane in terms of thermodynamic and structural properties of the interphases that cannot be ignored in the understanding of cell function. To pursue this aim, we introduce a new definition of interphase, in which the water is organized in different levels on the surface with different binding energies. Altogether determines the surface free energy necessary for the structural response to changes in the surrounding media. The physical chemical properties of this region are interpreted in terms of hydration water and confined water, which explain the interaction with proteins and could affect the modulation of enzyme activity. Information provided by several methodologies indicates that the organization of the hydration states is not restricted to the membrane plane albeit to a region extending into the cytoplasm, in which polar head groups play a relevant role. In addition, dynamic properties studied by cyclic voltammetry allow one to deduce the energetics of the conformational changes of the lipid head group in relation to the head-head interactions due to the presence of carbonyls and phosphates at the interphase. These groups are, apparently, surrounded by more than one layer of water molecules: a tightly bound shell, that mostly contributes to the dipole potential, and a second one that may be displaced by proteins and osmotic stress. Hydration water around carbonyl and phosphate groups may change by the presence of polyhydroxylated compounds

  2. Psoralen and Ultraviolet A Light Treatment Directly Affects Phosphatidylinositol 3-Kinase Signal Transduction by Altering Plasma Membrane Packing.

    Science.gov (United States)

    Van Aelst, Britt; Devloo, Rosalie; Zachée, Pierre; t'Kindt, Ruben; Sandra, Koen; Vandekerckhove, Philippe; Compernolle, Veerle; Feys, Hendrik B

    2016-11-18

    Psoralen and ultraviolet A light (PUVA) are used to kill pathogens in blood products and as a treatment of aberrant cell proliferation in dermatitis, cutaneous T-cell lymphoma, and graft-versus-host disease. DNA damage is well described, but the direct effects of PUVA on cell signal transduction are poorly understood. Because platelets are anucleate and contain archetypal signal transduction machinery, they are ideally suited to address this. Lipidomics on platelet membrane extracts showed that psoralen forms adducts with unsaturated carbon bonds of fatty acyls in all major phospholipid classes after PUVA. Such adducts increased lipid packing as measured by a blue shift of an environment-sensitive fluorescent probe in model liposomes. Furthermore, the interaction of these liposomes with lipid order-sensitive proteins like amphipathic lipid-packing sensor and α-synuclein was inhibited by PUVA. In platelets, PUVA caused poor membrane binding of Akt and Bruton's tyrosine kinase effectors following activation of the collagen glycoprotein VI and thrombin protease-activated receptor (PAR) 1. This resulted in defective Akt phosphorylation despite unaltered phosphatidylinositol 3,4,5-trisphosphate levels. Downstream integrin activation was furthermore affected similarly by PUVA following PAR1 (effective half-maximal concentration (EC50), 8.4 ± 1.1 versus 4.3 ± 1.1 μm) and glycoprotein VI (EC50, 1.61 ± 0.85 versus 0.26 ± 0.21 μg/ml) but not PAR4 (EC50, 50 ± 1 versus 58 ± 1 μm) signal transduction. Our findings were confirmed in T-cells from graft-versus-host disease patients treated with extracorporeal photopheresis, a form of systemic PUVA. In conclusion, PUVA increases the order of lipid phases by covalent modification of phospholipids, thereby inhibiting membrane recruitment of effector kinases.

  3. Unsteady fluid-structure interactions with a heaving compliant membrane wing

    Science.gov (United States)

    Alon Tzezana, Gali; Breuer, Kenneth

    2016-11-01

    Membrane wings have been shown to provide some benefits over rigid wings at the low Reynolds number regime (Re 103 to 105), specifically improved thrust in flapping flight. Here we present results from a theoretical framework used to characterize the unsteady aeroelastic behavior of compliant membrane wings executing a heaving motion. An analytical model is developed using 2D unsteady thin airfoil theory, coupled with an unsteady membrane equation. Chebyshev collocation methods are used to solve the coupled system efficiently. The model is used to explore the effects of wing compliance, inertia (including added mass effect) and flapping kinematics on the aerodynamic performance, identifying optimal conditions for maximum thrust and propulsive efficiency. A resonant frequency of the coupled system is identified and characterized for different fluid-structure interaction regimes. Extensions to pitching kinematics are also discussed.

  4. Design Optimization of Deflection Caused After Release of Multilayer Structural Membrane of Symmetric Toggle Switch

    Directory of Open Access Journals (Sweden)

    K. Maninder

    2011-01-01

    Full Text Available This paper presents the optimization in deflection caused by the inbuilt stress generated in mechanical or movable membrane of Symmetric Toggle RF MEMS Switch (STS. The movable membrane of STS was initially fabricated with two different materials, i.e. Chrome and Gold. The simulated deflection at 70 °C was 11.9 µm, and experimental deflection was 11-12 µm. We present a study of inbuilt deflection reduction in multimetal movable layers without change in actuation voltage of the switch. The design study was initially carried out on cantilevers and then on structural membrane of STS. STS with proposed multilayer of Cr-Au-Au-Ti-Au has a simulated deflection of 0.56 µm at 70 °C.

  5. Research on Several Prediction Methods of Membrane Protein Structure and Topology

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Since present prediction methods of membrane protein structureand topology made use of mixed data sets both from experiments and prediction as training and test sets, the reliability and accuracy of their prediction is still under debate. To benchmark the performance of these methods, this commentary uses a test set of membrane proteins created by European Bioinformatics Institute with either available 3-D structure or experimentally confirmed transmembrane regions. Then the prediction results are compared and the problems existing in these methods and important features for successful prediction are pointed out, which may help users to choose a more reliable prediction from different results. Based upon recent advances in membrane protein, possible means to improve topology prediction accuracy are discussed.

  6. Development of Pd Alloy Hydrogen Separation Membranes with Dense/Porous Hybrid Structure for High Hydrogen Perm-Selectivity

    Directory of Open Access Journals (Sweden)

    Jae-Yun Han

    2014-01-01

    Full Text Available For the commercial applications of hydrogen separation membranes, both high hydrogen selectivity and permeability (i.e., perm-selectivity are required. However, it has been difficult to fabricate thin, dense Pd alloy composite membranes on porous metal support that have a pore-free surface and an open structure at the interface between the Pd alloy films and the metal support in order to obtain the required properties simultaneously. In this study, we fabricated Pd alloy hydrogen separation membranes with dense/porous hybrid structure for high hydrogen perm-selectivity. The hydrogen selectivity of this membrane increased owing to the dense and pore-free microstructure of the membrane surface. The hydrogen permeation flux also was remarkably improved by the formation of an open microstructure with numerous open voids at the interface and by an effective reduction in the membrane thickness as a result of the porous structure formed within the Pd alloy films.

  7. Dynamical clustering and a mechanism for raft-like structures in a model lipid membrane.

    Science.gov (United States)

    Starr, Francis W; Hartmann, Benedikt; Douglas, Jack F

    2014-05-01

    We use molecular dynamics simulations to examine the dynamical heterogeneity of a model single-component lipid membrane using a coarse-grained representation of lipid molecules. This model qualitatively reproduces the known phase transitions between disordered, ordered, and gel membrane phases, and the phase transitions are accompanied by significant changes in the nature of the lipid dynamics. In particular, lipid diffusion in the liquid-ordered phase is hindered by the transient trapping of molecules by their neighbors, similar to the dynamics of a liquid approaching its glass transition. This transient molecular caging gives rise to two distinct mobility groups within a single-component membrane: lipids that are transiently trapped, and lipids with displacements on the scale of the intermolecular spacing. Most significantly, lipids within these distinct mobility states spatially segregate, creating transient "islands" of enhanced mobility having a size and time scale compatible with lipid "rafts," dynamical structures thought to be important for cell membrane function. Although the dynamic lipid clusters that we observe do not themselves correspond to rafts (which are more complex, multicomponent structures), we hypothesize that such rafts may develop from the same universal mechanism, explaining why raft-like regions should arise, regardless of lipid structural or compositional details. These clusters are strikingly similar to the dynamical clusters found in glass-forming fluids, and distinct from phase-separation clusters. We also show that mobile lipid clusters can be dissected into smaller clusters of cooperatively rearranging molecules. The geometry of these clusters can be understood in the context of branched equilibrium polymers, related to percolation theory. We discuss how these dynamical structures relate to a range observations on the dynamics of lipid membranes.

  8. The structural dynamics of the flavivirus fusion peptide-membrane interaction.

    Directory of Open Access Journals (Sweden)

    Ygara S Mendes

    Full Text Available Membrane fusion is a crucial step in flavivirus infections and a potential target for antiviral strategies. Lipids and proteins play cooperative roles in the fusion process, which is triggered by the acidic pH inside the endosome. This acidic environment induces many changes in glycoprotein conformation and allows the action of a highly conserved hydrophobic sequence, the fusion peptide (FP. Despite the large volume of information available on the virus-triggered fusion process, little is known regarding the mechanisms behind flavivirus-cell membrane fusion. Here, we evaluated the contribution of a natural single amino acid difference on two flavivirus FPs, FLA(G ((98DRGWGNGCGLFGK(110 and FLA(H ((98DRGWGNHCGLFGK(110, and investigated the role of the charge of the target membrane on the fusion process. We used an in silico approach to simulate the interaction of the FPs with a lipid bilayer in a complementary way and used spectroscopic approaches to collect conformation information. We found that both peptides interact with neutral and anionic micelles, and molecular dynamics (MD simulations showed the interaction of the FPs with the lipid bilayer. The participation of the indole ring of Trp appeared to be important for the anchoring of both peptides in the membrane model, as indicated by MD simulations and spectroscopic analyses. Mild differences between FLA(G and FLA(H were observed according to the pH and the charge of the target membrane model. The MD simulations of the membrane showed that both peptides adopted a bend structure, and an interaction between the aromatic residues was strongly suggested, which was also observed by circular dichroism in the presence of micelles. As the FPs of viral fusion proteins play a key role in the mechanism of viral fusion, understanding the interactions between peptides and membranes is crucial for medical science and biology and may contribute to the design of new antiviral drugs.

  9. Membrane biofouling characterization: effects of sample preparation procedures on biofilm structure and the microbial community

    KAUST Repository

    Xue, Zheng

    2014-07-15

    Ensuring the quality and reproducibility of results from biofilm structure and microbial community analysis is essential to membrane biofouling studies. This study evaluated the impacts of three sample preparation factors (ie number of buffer rinses, storage time at 4°C, and DNA extraction method) on the downstream analysis of nitrifying biofilms grown on ultrafiltration membranes. Both rinse and storage affected biofilm structure, as suggested by their strong correlation with total biovolume, biofilm thickness, roughness and the spatial distribution of EPS. Significant variations in DNA yields and microbial community diversity were also observed among samples treated by different rinses, storage and DNA extraction methods. For the tested biofilms, two rinses, no storage and DNA extraction with both mechanical and chemical cell lysis from attached biofilm were the optimal sample preparation procedures for obtaining accurate information about biofilm structure, EPS distribution and the microbial community. © 2014 © 2014 Taylor & Francis.

  10. Structure and distribution of the Bacillus thuringiensis Cry4Ba toxin in lipid membranes

    Energy Technology Data Exchange (ETDEWEB)

    Puntheeranurak, Theeraporn [Institute for Biophysics, Johannes Kepler University of Linz, Altenbergerstr. 69, A-4040 Linz (Austria); Laboratory of Molecular Biophysics, Institute of Molecular Biology and Genetics, Mahidol University, Salaya Campus, Nakornpathom 73170 (Thailand); Stroh, Cordula [Institute for Biophysics, Johannes Kepler University of Linz, Altenbergerstr. 69, A-4040 Linz (Austria); Zhu Rong [Institute for Biophysics, Johannes Kepler University of Linz, Altenbergerstr. 69, A-4040 Linz (Austria); Angsuthanasombat, Chanan [Laboratory of Molecular Biophysics, Institute of Molecular Biology and Genetics, Mahidol University, Salaya Campus, Nakornpathom 73170 (Thailand); Hinterdorfer, Peter [Institute for Biophysics, Johannes Kepler University of Linz, Altenbergerstr. 69, A-4040 Linz (Austria)]. E-mail: peter.hinterdorfer@jku.at

    2005-11-15

    Bacillus thuringiensis Cry {delta}-endotoxins cause death of susceptible insect larvae by forming lytic pores in the midgut epithelial cell membranes. The 65 kDa trypsin activated Cry4Ba toxin was previously shown to be capable of permeabilizing liposomes and forming ionic channels in receptor-free planar lipid bilayers. Here, magnetic ACmode (MACmode) atomic force microscopy (AFM) was used to characterize the lateral distribution and the native molecular structure of the Cry4Ba toxin in the membrane. Liposome fusion and the Langmuir-Blodgett technique were employed for supported lipid bilayer preparations. The toxin preferentially inserted in a self-assembled structure, rather than as a single monomeric molecule. In addition, the spontaneous insertion into receptor-free lipid bilayers lead to formation of characteristic pore-like structures with four-fold symmetry, suggesting that tetramers are the preferred oligomerization state of this toxin.

  11. Membrane biofouling characterization: effects of sample preparation procedures on biofilm structure and the microbial community.

    Science.gov (United States)

    Xue, Zheng; Lu, Huijie; Liu, Wen-Tso

    2014-01-01

    Ensuring the quality and reproducibility of results from biofilm structure and microbial community analysis is essential to membrane biofouling studies. This study evaluated the impacts of three sample preparation factors (ie number of buffer rinses, storage time at 4°C, and DNA extraction method) on the downstream analysis of nitrifying biofilms grown on ultrafiltration membranes. Both rinse and storage affected biofilm structure, as suggested by their strong correlation with total biovolume, biofilm thickness, roughness and the spatial distribution of EPS. Significant variations in DNA yields and microbial community diversity were also observed among samples treated by different rinses, storage and DNA extraction methods. For the tested biofilms, two rinses, no storage and DNA extraction with both mechanical and chemical cell lysis from attached biofilm were the optimal sample preparation procedures for obtaining accurate information about biofilm structure, EPS distribution and the microbial community.

  12. Requirements on paramagnetic relaxation enhancement data for membrane protein structure determination by NMR.

    Science.gov (United States)

    Gottstein, Daniel; Reckel, Sina; Dötsch, Volker; Güntert, Peter

    2012-06-06

    Nuclear magnetic resonance (NMR) structure calculations of the α-helical integral membrane proteins DsbB, GlpG, and halorhodopsin show that distance restraints from paramagnetic relaxation enhancement (PRE) can provide sufficient structural information to determine their structure with an accuracy of about 1.5 Å in the absence of other long-range conformational restraints. Our systematic study with simulated NMR data shows that about one spin label per transmembrane helix is necessary for obtaining enough PRE distance restraints to exclude wrong topologies, such as pseudo mirror images, if only limited other NMR restraints are available. Consequently, an experimentally realistic amount of PRE data enables α-helical membrane protein structure determinations that would not be feasible with the very limited amount of conventional NOESY data normally available for these systems. These findings are in line with our recent first de novo NMR structure determination of a heptahelical integral membrane protein, proteorhodopsin, that relied extensively on PRE data.

  13. Structure determination of an integral membrane protein at room temperature from crystals in situ

    Energy Technology Data Exchange (ETDEWEB)

    Axford, Danny [Diamond Light Source, Harwell Science and Innovation Campus, Oxfordshire OX11 0DE (United Kingdom); Foadi, James [Diamond Light Source, Harwell Science and Innovation Campus, Oxfordshire OX11 0DE (United Kingdom); Imperial College London, London SW7 2AZ (United Kingdom); Hu, Nien-Jen; Choudhury, Hassanul Ghani [Diamond Light Source, Harwell Science and Innovation Campus, Oxfordshire OX11 0DE (United Kingdom); Imperial College London, London SW7 2AZ (United Kingdom); Rutherford Appleton Laboratory, Oxfordshire OX11 0FA (United Kingdom); Iwata, So [Diamond Light Source, Harwell Science and Innovation Campus, Oxfordshire OX11 0DE (United Kingdom); Diamond Light Source, Harwell Science and Innovation Campus, Oxfordshire OX11 0DE (United Kingdom); Imperial College London, London SW7 2AZ (United Kingdom); Rutherford Appleton Laboratory, Oxfordshire OX11 0FA (United Kingdom); Kyoto University, Kyoto 606-8501 (Japan); Beis, Konstantinos [Diamond Light Source, Harwell Science and Innovation Campus, Oxfordshire OX11 0DE (United Kingdom); Imperial College London, London SW7 2AZ (United Kingdom); Rutherford Appleton Laboratory, Oxfordshire OX11 0FA (United Kingdom); Evans, Gwyndaf, E-mail: gwyndaf.evans@diamond.ac.uk [Diamond Light Source, Harwell Science and Innovation Campus, Oxfordshire OX11 0DE (United Kingdom); Alguel, Yilmaz, E-mail: gwyndaf.evans@diamond.ac.uk [Diamond Light Source, Harwell Science and Innovation Campus, Oxfordshire OX11 0DE (United Kingdom); Imperial College London, London SW7 2AZ (United Kingdom); Rutherford Appleton Laboratory, Oxfordshire OX11 0FA (United Kingdom)

    2015-05-14

    The X-ray structure determination of an integral membrane protein using synchrotron diffraction data measured in situ at room temperature is demonstrated. The structure determination of an integral membrane protein using synchrotron X-ray diffraction data collected at room temperature directly in vapour-diffusion crystallization plates (in situ) is demonstrated. Exposing the crystals in situ eliminates manual sample handling and, since it is performed at room temperature, removes the complication of cryoprotection and potential structural anomalies induced by sample cryocooling. Essential to the method is the ability to limit radiation damage by recording a small amount of data per sample from many samples and subsequently assembling the resulting data sets using specialized software. The validity of this procedure is established by the structure determination of Haemophilus influenza TehA at 2.3 Å resolution. The method presented offers an effective protocol for the fast and efficient determination of membrane-protein structures at room temperature using third-generation synchrotron beamlines.

  14. Plasma lipid pattern and red cell membrane structure in β-thalassemia patients in Jakarta

    Directory of Open Access Journals (Sweden)

    Seruni K.U. Freisleben

    2011-08-01

    Full Text Available Background: Over the last 10 years, we have investigated thalassemia patients in Jakarta to obtain a comprehensive picture of iron overload, oxidative stress, and cell damage.Methods: In blood samples from 15 transfusion-dependent patients (group T, 5 non-transfused patients (group N and 10 controls (group C, plasma lipids and lipoproteins, lipid-soluble vitamin E, malondialdehyde (MDA and thiol status were measured. Isolated eryhtrocyte membranes were investigated with electron paramagnetic resonance (EPR spectroscopy using doxyl-stearic acid and maleimido-proxyl spin lables. Data were analyzed statistically with ANOVA.Results: Plasma triglycerides were higher and cholesterol levels were lower in thalassemic patients compared to controls. Vitamin E, group C: 21.8 vs T: 6.2 μmol/L and reactive thiols (C: 144 vs. T: 61 μmol/L were considerably lower in transfused patients, who exert clear signs of oxidative stress (MDA, C: 1.96 vs T: 9.2 μmol/L and of tissue cell damage, i.e., high transaminases plasma levels. Non-transfused thalassemia patients have slight signs of oxidative stress, but no significant indication of cell damage. Erythrocyte membrane parameters from EPR spectroscopy differ considerably between all groups. In transfusion-dependent patients the structure of the erythrocyte membrane and the gradients of polarity and fluidity are destroyed in lipid domains; binding capacity of protein thiols in the membrane is lower and immobilized.Conclusion: In tranfusion-dependent thalassemic patients, plasma lipid pattern and oxidative stress are associated with structural damage of isolated erythrocyte membranes as measured by EPR spectroscopy with lipid and proteinthiol spin labels. (Med J Indones 2011; 20:178-84Keywords: electron paramagnetic resonance spectroscopy, erythrocyte membrane, lipoproteins, oxidative stress, thalassemia, plasma lipids.

  15. Structure/property relationships in polymer membranes for water purification and energy applications

    Science.gov (United States)

    Geise, Geoffrey

    Providing sustainable supplies of purified water and energy is a critical global challenge for the future, and polymer membranes will play a key role in addressing these clear and pressing global needs for water and energy. Polymer membrane-based processes dominate the desalination market, and polymer membranes are crucial components in several rapidly developing power generation and storage applications that rely on membranes to control rates of water and/or ion transport. Much remains unknown about the influence of polymer structure on intrinsic water and ion transport properties, and these relationships must be developed to design next generation polymer membrane materials. For desalination applications, polymers with simultaneously high water permeability and low salt permeability are desirable in order to prepare selective membranes that can efficiently desalinate water, and a tradeoff relationship between water/salt selectivity and water permeability suggests that attempts to prepare such materials should rely on approaches that do more than simply vary polymer free volume. One strategy is to functionalize hydrocarbon polymers with fixed charge groups that can ionize upon exposure to water, and the presence of charged groups in the polymer influences transport properties. Additionally, in many emerging energy applications, charged polymers are exposed to ions that are very different from sodium and chloride. Specific ion effects have been observed in charged polymers, and these effects must be understood to prepare charged polymers that will enable emerging energy technologies. This presentation discusses research aimed at further understanding fundamental structure/property relationships that govern water and ion transport in charged polymer films considered for desalination and electric potential field-driven applications that can help address global needs for clean water and energy.

  16. Protozoan indicators and extracellular polymeric substances alterations in an intermittently aerated membrane bioreactor treating mature landfill leachate.

    Science.gov (United States)

    Remmas, Nikolaos; Melidis, Paraschos; Paschos, Georgios; Statiris, Evangelos; Ntougias, Spyridon

    2017-01-01

    A membrane bioreactor was operated under intermittent aeration and various organic loading rates (OLR: 0.070, 0.159 and 0.291 g COD L(-1) d(-1)) to remove carbon and nitrogen from mature landfill leachate, where external carbon source (glycerol) addition resulted in effective nitrate removal. A relative increase in soluble microbial product (SMP) over extracellular polymeric substances (EPS) was observed at the highest OLR and glycerol addition, whereas no membrane biofouling occurred. SMP (proteins and carbohydrates) and carbohydrate EPS correlated positively and negatively, respectively, with suspended solids and transmembrane pressure (TMP). Moreover, proteinous SMP significantly correlated with carbon and nitrogen load. Principal component analysis also revealed the influence of leachate organic and nitrogen content on biomass production, TMP and sessile ciliate densities. Although filamentous index (FI) was sustained at high levels (3-4), with Haliscomenobacter hydrossis being the main filamentous bacterium identified, no bulking phenomena occurred. High glycerol addition resulted in a rapid increase in sessile ciliate population. Increased Epistylis and Vorticella microstoma population was detected by microscopic examination during high glycerol addition, while a remarkable Rhogostoma population (supergroup Rhizaria) was identified by molecular techniques. The contribution of Rhizaria in nitrogen processes may lead to the dominance of Rhogostoma during landfill leachate treatment.

  17. Altering strength and plastic deformation behavior via alloying and laminated structure in nanocrystalline metals

    Energy Technology Data Exchange (ETDEWEB)

    Gu, C. [State Key Laboratory for Mechanical Behavior of Material, Xi' an Jiaotong University, Xi' an 710049 (China); Wang, F., E-mail: wangfei@mail.xjtu.edu.cn [State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi' an Jiaotong University, Xi' an 710049 (China); Huang, P., E-mail: huangping@mail.xjtu.edu.cn [State Key Laboratory for Mechanical Behavior of Material, Xi' an Jiaotong University, Xi' an 710049 (China); Lu, T.J. [State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi' an Jiaotong University, Xi' an 710049 (China); MOE Key Laboratory for Multifunctional Materials and Structures, Xi' an Jiaotong University, Xi' an 710049 (China); Xu, K.W. [State Key Laboratory for Mechanical Behavior of Material, Xi' an Jiaotong University, Xi' an 710049 (China)

    2015-07-29

    Nanoindentation and electron microscope techniques have been performed on sputtering deposited monolayered nanocrystalline CuNb and multilayered CuNb/Cu thin films. Microstructural features, hardness and surface morphologies of residual indentation have been evaluated to identify the effects of alloying and laminated structure on strength and plastic deformation behavior of nanocrystalline metals. By altering the content of Nb in CuNb alloy and adding crystalline Cu layers into CuNb alloy, the volume fraction of amorphous phase in CuNb alloy and interface structures changed dramatically, resulting in various trends that are related to hardness, indentation induced pileup and shear banding deformation. Based on the experimental results, the dominant deformation mechanisms of the CuNb and CuNb/Cu thin films with various Nb contents were proposed and extended to be discussed.

  18. Altered brain structural networks in attention deficit/hyperactivity disorder children revealed by cortical thickness.

    Science.gov (United States)

    Liu, Tian; Chen, Yanni; Li, Chenxi; Li, Youjun; Wang, Jue

    2017-01-18

    This study investigated the cortical thickness and topological features of human brain anatomical networks related to attention deficit/hyperactivity disorder. Data were collected from 40 attention deficit/hyperactivity disorder children and 40 normal control children. Interregional correlation matrices were established by calculating the correlations of cortical thickness between all pairs of cortical regions (68 regions) of the whole brain. Further thresholds were applied to create binary matrices to construct a series of undirected and unweighted graphs, and global, local, and nodal efficiencies were computed as a function of the network cost. These experimental results revealed abnormal cortical thickness and correlations in attention deficit/hyperactivity disorder, and showed that the brain structural networks of attention deficit/hyperactivity disorder subjects had inefficient small-world topological features. Furthermore, their topological properties were altered abnormally. In particular, decreased global efficiency combined with increased local efficiency in attention deficit/hyperactivity disorder children led to a disorder-related shift of the network topological structure toward regular networks. In addition, nodal efficiency, cortical thickness, and correlation analyses revealed that several brain regions were altered in attention deficit/hyperactivity disorder patients. These findings are in accordance with a hypothesis of dysfunctional integration and segregation of the brain in patients with attention deficit/hyperactivity disorder and provide further evidence of brain dysfunction in attention deficit/hyperactivity disorder patients by observing cortical thickness on magnetic resonance imaging.

  19. Structural alterations of the retinal microcirculation in the "prehypertensive" high- normal blood pressure state.

    Science.gov (United States)

    Grassi, Guido; Buzzi, Silvia; Dell'Oro, Raffaella; Mineo, Claudia; Dimitriadis, Kyriakos; Seravalle, Gino; Lonati, Laura; Cuspidi, Cesare

    2013-01-01

    The high-normal blood pressure (also known as prehypertension) is a clinical condition characterized by an increased cardiovascular risk as well as by the presence of target organ damage. This include an increased left ventricular mass, an endothelial dysfunction and an early renal functional and structural damage. Whether this is the case also for alterations of retinal vessels network, which are frequently detectable in established hypertension, is still largey undefined. The present paper, after discussing the main characteristics of the high-normal blood pressure state, will review the different approaches used throughout the years for assessing retinal microcirculatory network. Data collected by our group in subjects with high normal blood pressure will be also discussed, showing that arterial venular ratio values are reduced in this individuals with high-normal blood pressure and more so in established hypertension. These data indicate that retinal microvascular alterations 1) are of early appearance in the clinical course of hypertension and 2) are of frequent detection in the high-normal blood pressure state. The possible hemodynamic and non-hemodynamic mechanisms resposible for these structural alteations of the retinal microcirculation will be also discussed.

  20. Myocardial structural alteration and systolic dysfunction in preclinical hypertrophic cardiomyopathy mutation carriers.

    Directory of Open Access Journals (Sweden)

    Kai Hang Yiu

    Full Text Available BACKGROUND: To evaluate the presence of myocardial structural alterations and subtle myocardial dysfunction during familial screening in asymptomatic mutation carriers without hypertrophic cardiomyopathy (HCM phenotype. METHODS AND FINDINGS: Sixteen HCM families with pathogenic mutation were studied and 46 patients with phenotype expression (Mut+/Phen+ and 47 patients without phenotype expression (Mut+/Phen- were observed. Twenty-five control subjects, matched with the Mut+/Phen- group, were recruited for comparison. Echocardiography was performed to evaluate conventional parameters, myocardial structural alteration by calibrated integrated backscatter (cIBS and global and segmental longitudinal strain by speckle tracking analysis. All 3 groups had similar left ventricular dimensions and ejection fraction. Basal anteroseptal cIBS was the highest in Mut+/Phen+ patients (-14.0±4.6 dB, p-19.0 dB basal anteroseptal cIBS or >-18.0% basal anteroseptal longitudinal strain had a sensitivity of 98% and a specificity of 72% in differentiating Mut+/Phen- group from controls. CONCLUSION: The use of cIBS and segmental longitudinal strain can differentiate HCM Mut+/Phen- patients from controls with important clinical implications for the family screening and follow-up of these patients.

  1. Structural plasticity in the topology of the membrane-interacting domain of HIV-1 gp41.

    Science.gov (United States)

    Kyrychenko, Alexander; Freites, J Alfredo; He, Jing; Tobias, Douglas J; Wimley, William C; Ladokhin, Alexey S

    2014-02-04

    We use a number of computational and experimental approaches to investigate the membrane topology of the membrane-interacting C-terminal domain of the HIV-1 gp41 fusion protein. Several putative transmembrane regions are identified using hydrophobicity analysis based on the Wimley-White scales, including the membrane-proximal external region (MPER). The MPER region is an important target for neutralizing anti-HIV monoclonal antibodies and is believed to have an interfacial topology in the membrane. To assess the possibility of a transmembrane topology of MPER, we examined the membrane interactions of a peptide corresponding to a 22-residue stretch of the MPER sequence (residues 662-683) using fluorescence spectroscopy and oriented circular dichroism. In addition to the previously reported interfacial location, we identify a stable transmembrane conformation of the peptide in synthetic lipid bilayers. All-atom molecular dynamics simulations of the MPER-derived peptide in a lipid bilayer demonstrate a stable helical structure with an average tilt of 24 degrees, with the five tryptophan residues sampling different environments inside the hydrocarbon core of the lipid bilayer, consistent with the observed spectral properties of intrinsic fluorescence. The degree of lipid bilayer penetration obtained by computer simulation was verified using depth-dependent fluorescence quenching of a selectively attached fluorescence probe. Overall, our data indicate that the MPER sequence can have at least two stable conformations in the lipid bilayer, interfacial and transmembrane, and suggest a possibility that external perturbations can switch the topology during physiological functioning.

  2. The effects of heat exposure on the membranous structure of rat's intestinalepithelium and the biochemical indexes

    Institute of Scientific and Technical Information of China (English)

    Guo Biao Zhu; Ji Hong Li

    2000-01-01

    AIM To study the effects of heat exposure and swimming on membranous structure of the small intestinalepithelium and the biochemical indexes.METHODS The distribution of the intra-membranous particles (IMPs) in enteric epithelium of SD rats andthe number of IMPs were analyzed with freeze-etching technique and TxB2, PGFIa, PRL, CORT and totalSA (TSA) were measured with the techniques of biochemistry and radio-immunity.RESULTS Heat exposure markedly affected the distributive pattern of IMPs in intestinal epithelium andmade the numbers of IMPs on the PF and EF faces of cell membrane and nuclear membrane decreased.Swimming exacerbated the above changes. And in the meantime heat exposure resulted in the massivereleasing of the body-hurting substance as TxB2 and reducing of the body-protecting substance as PGFIa.TSA increased obviously. These changes recovered partly after heat exposure, but the number of IMPs onboth PF and EF faces and certain biochemical indexes were still not restored to the levels as in the controlgroup.CONCLUSION Heat exposure and swimming can make the cellular catabolism accelerated and anabolismreduced, then bring about the numbers of IMPs of intestinal epithelium membrane and nuclear membranedecreased, and the distribution was abnormal. TxB2, PGFIa, PRL, CORT and TSA were changedabnormally during heat exposure. And above indexes showed no notable evidence of recovery after stoppingheat exposure 4 hours-24 hours; the delayed injury was obviously presented.

  3. Characterizing structural association alterations within brain networks in normal aging using Gaussian Bayesian networks.

    Science.gov (United States)

    Guo, Xiaojuan; Wang, Yan; Chen, Kewei; Wu, Xia; Zhang, Jiacai; Li, Ke; Jin, Zhen; Yao, Li

    2014-01-01

    Recent multivariate neuroimaging studies have revealed aging-related alterations in brain structural networks. However, the sensory/motor networks such as the auditory, visual and motor networks, have obtained much less attention in normal aging research. In this study, we used Gaussian Bayesian networks (BN), an approach investigating possible inter-regional directed relationship, to characterize aging effects on structural associations between core brain regions within each of these structural sensory/motor networks using volumetric MRI data. We then further examined the discriminability of BN models for the young (N = 109; mean age =22.73 years, range 20-28) and old (N = 82; mean age =74.37 years, range 60-90) groups. The results of the BN modeling demonstrated that structural associations exist between two homotopic brain regions from the left and right hemispheres in each of the three networks. In particular, compared with the young group, the old group had significant connection reductions in each of the three networks and lesser connection numbers in the visual network. Moreover, it was found that the aging-related BN models could distinguish the young and old individuals with 90.05, 73.82, and 88.48% accuracy for the auditory, visual, and motor networks, respectively. Our findings suggest that BN models can be used to investigate the normal aging process with reliable statistical power. Moreover, these differences in structural inter-regional interactions may help elucidate the neuronal mechanism of anatomical changes in normal aging.

  4. Quantitative analysis of nanoscale intranuclear structural alterations in hippocampal cells in chronic alcoholism via transmission electron microscopy imaging

    Science.gov (United States)

    Sahay, Peeyush; Shukla, Pradeep K.; Ghimire, Hemendra M.; Almabadi, Huda M.; Tripathi, Vibha; Mohanty, Samarendra K.; Rao, Radhakrishna; Pradhan, Prabhakar

    2017-04-01

    Chronic alcoholism is known to alter the morphology of the hippocampus, an important region of cognitive function in the brain. Therefore, to understand the effect of chronic alcoholism on hippocampal neural cells, we employed a mouse model of chronic alcoholism and quantified intranuclear nanoscale structural alterations in these cells. Transmission electron microscopy (TEM) images of hippocampal neurons were obtained, and the degree of structural alteration in terms of mass density fluctuation was determined using the light-localization properties of optical media generated from TEM imaging. The results, which were obtained at length scales ranging from ~30 to 200 nm, show that 10–12 week-old mice fed a Lieber–DeCarli liquid (alcoholic) diet had a higher degree of structural alteration than control mice fed a normal diet without alcohol. The degree of structural alteration became significantly distinguishable at a sample length of ~100 nm, which is the typical length scale of the building blocks of cells, such as DNA, RNA, proteins and lipids. Interestingly, different degrees of structural alteration at such length scales suggest possible structural rearrangement of chromatin inside the nuclei in chronic alcoholism.

  5. Structural and alteration controls on gold mineralization the of the amphibolite facies Detour Lake Deposit, Canada

    Science.gov (United States)

    Dubosq, Renelle; Schneider, David

    2016-04-01

    The 15M oz Detour Lake deposit is a Neoarchean orogenic gold ore body located in the northern most region of the Abitibi district within the Superior Province. The mine is an open pit design in the high strain zone of the Sunday Lake Deformation Zone (SLDZ). The ductile-brittle SLDZ parallels the broadly E-W Abitibi greenstone belt and the deposit is situated in a dilation zone between volcanoclastic rocks of the Caopatina Assemblage and Lower Detour Lake Formation, consisting of ultramafic talc-chlorite-sericite schist. The Upper Detour Lake Formation consists of pillowed and massive flows and hyloclastic units crosscut by minor felsic to intermediate dykes. All of the formations are sub-vertical, north-dipping units with stretching lineations indicating dip-slip motion. The Detour deposit differs from other classic ore deposits in the dominantly greenschist facies Abitibi Subprovince by possessing an amphibolite facies metamorphic assemblage of actinolite-biotite-plagioclase-almandine. Consequently, the typical indicator minerals used to identify alteration and mineralization, such as secondary biotite, may not be useful. Petrological and geochemical analyses have revealed at least four populations of biotite: 1) large euhedral crystals located within quartz-carbonate veins, 2) small, euhedral zoned crystals present as alteration haloes, 3) very small, anhedral to subhedral indistinct crystal present in mafic volcanic host rock, and 4) large euhedral crystals defining the main metamorphic foliation in the metasediments. Extensive examination of mineral assemblages, alteration products, and vein structure in rock core across barren and mineralized zones has documented over a dozen vein types which can be grouped into two main categories: 1) sulfidized quartz-carbonate veins associated with biotite alteration and 2) late carbonate veins. Gold grades do not prove to be dependent on vein type but rather on the host rock composition: the highest ore grades are present

  6. Atomic-level structural and functional model of a bacterial photosynthetic membrane vesicle.

    Science.gov (United States)

    Sener, Melih K; Olsen, John D; Hunter, C Neil; Schulten, Klaus

    2007-10-02

    The photosynthetic unit (PSU) of purple photosynthetic bacteria consists of a network of bacteriochlorophyll-protein complexes that absorb solar energy for eventual conversion to ATP. Because of its remarkable simplicity, the PSU can serve as a prototype for studies of cellular organelles. In the purple bacterium Rhodobacter sphaeroides the PSU forms spherical invaginations of the inner membrane, approximately 70 nm in diameter, composed mostly of light-harvesting complexes, LH1 and LH2, and reaction centers (RCs). Atomic force microscopy studies of the intracytoplasmic membrane have revealed the overall spatial organization of the PSU. In the present study these atomic force microscopy data were used to construct three-dimensional models of an entire membrane vesicle at the atomic level by using the known structure of the LH2 complex and a structural model of the dimeric RC-LH1 complex. Two models depict vesicles consisting of 9 or 18 dimeric RC-LH1 complexes and 144 or 101 LH2 complexes, representing a total of 3,879 or 4,464 bacteriochlorophylls, respectively. The in silico reconstructions permit a detailed description of light absorption and electronic excitation migration, including computation of a 50-ps excitation lifetime and a 95% quantum efficiency for one of the model membranes, and demonstration of excitation sharing within the closely packed RC-LH1 dimer arrays.

  7. Structure of the Membrane Anchor of Pestivirus Glycoprotein Erns, a Long Tilted Amphipathic Helix

    Science.gov (United States)

    Aberle, Daniel; Muhle-Goll, Claudia; Bürck, Jochen; Wolf, Moritz; Reißer, Sabine; Luy, Burkhard; Wenzel, Wolfgang; Ulrich, Anne S.; Meyers, Gregor

    2014-01-01

    Erns is an essential virion glycoprotein with RNase activity that suppresses host cellular innate immune responses upon being partially secreted from the infected cells. Its unusual C-terminus plays multiple roles, as the amphiphilic helix acts as a membrane anchor, as a signal peptidase cleavage site, and as a retention/secretion signal. We analyzed the structure and membrane binding properties of this sequence to gain a better understanding of the underlying mechanisms. CD spectroscopy in different setups, as well as Monte Carlo and molecular dynamics simulations confirmed the helical folding and showed that the helix is accommodated in the amphiphilic region of the lipid bilayer with a slight tilt rather than lying parallel to the surface. This model was confirmed by NMR analyses that also identified a central stretch of 15 residues within the helix that is fully shielded from the aqueous layer, which is C-terminally followed by a putative hairpin structure. These findings explain the strong membrane binding of the protein and provide clues to establishing the Erns membrane contact, processing and secretion. PMID:24586172

  8. Crystallizing membrane proteins for structure-function studies using lipidic mesophases.

    Science.gov (United States)

    Caffrey, Martin

    2011-06-01

    The lipidic cubic phase method for crystallizing membrane proteins has posted some high-profile successes recently. This is especially true in the area of G-protein-coupled receptors, with six new crystallographic structures emerging in the last 3½ years. Slowly, it is becoming an accepted method with a proven record and convincing generality. However, it is not a method that is used in every membrane structural biology laboratory and that is unfortunate. The reluctance in adopting it is attributable, in part, to the anticipated difficulties associated with handling the sticky viscous cubic mesophase in which crystals grow. Harvesting and collecting diffraction data with the mesophase-grown crystals is also viewed with some trepidation. It is acknowledged that there are challenges associated with the method. However, over the years, we have worked to make the method user-friendly. To this end, tools for handling the mesophase in the pico- to nano-litre volume range have been developed for efficient crystallization screening in manual and robotic modes. Glass crystallization plates have been built that provide unparalleled optical quality and sensitivity to nascent crystals. Lipid and precipitant screens have been implemented for a more rational approach to crystallogenesis, such that the method can now be applied to a wide variety of membrane protein types and sizes. In the present article, these assorted advances are outlined, along with a summary of the membrane proteins that have yielded to the method. The challenges that must be overcome to develop the method further are described.

  9. Post-directed-self-assembly membrane fabrication for in situ analysis of block copolymer structures

    Science.gov (United States)

    Ren, J.; Ocola, L. E.; Divan, R.; Czaplewski, D. A.; Segal-Peretz, T.; Xiong, S.; Kline, R. J.; Arges, C. G.; Nealey, P. F.

    2016-10-01

    Full characterization of the three-dimensional structures resulting from the directed self-assembly (DSA) of block copolymers (BCP) remains a difficult challenge. Transmission electron microscope (TEM) tomography and resonant soft x-ray scattering have emerged as powerful and complementary methods for through-film characterization; both techniques require samples to be prepared on specialized membrane substrates. Here we report a generalizable process to implement BCP DSA with density multiplication on silicon nitride membranes. A key feature of the process developed here is that it does not introduce any artefacts or damage to the polymer assemblies as DSA is performed prior to back-etched membrane formation. Because most research and applications of BCP lithography are based on silicon substrates, process variations introduced by implementing DSA on a silicon nitride/silicon stack versus silicon were identified and mitigated. Using full-wafers, membranes were fabricated with different sizes and layouts to enable both TEM and x-ray characterization. Finally, both techniques were used to characterize structures resulting from the DSA of lamella-forming BCP with density multiplication.

  10. Structure of an asymmetric ternary protein complex provides insight for membrane interaction.

    Science.gov (United States)

    Dempsey, Brian R; Rezvanpour, Atoosa; Lee, Ting-Wai; Barber, Kathryn R; Junop, Murray S; Shaw, Gary S

    2012-10-10

    Plasma membrane repair involves the coordinated effort of proteins and the inner phospholipid surface to mend the rupture and return the cell back to homeostasis. Here, we present the three-dimensional structure of a multiprotein complex that includes S100A10, annexin A2, and AHNAK, which along with dysferlin, functions in muscle and cardiac tissue repair. The 3.5 Å resolution X-ray structure shows that a single region from the AHNAK C terminus is recruited by an S100A10-annexin A2 heterotetramer, forming an asymmetric ternary complex. The AHNAK peptide adopts a coil conformation that arches across the heterotetramer contacting both annexin A2 and S100A10 protomers with tight affinity (∼30 nM) and establishing a structural rationale whereby both S100A10 and annexin proteins are needed in AHNAK recruitment. The structure evokes a model whereby AHNAK is targeted to the membrane surface through sandwiching of the binding region between the S100A10/annexin A2 complex and the phospholipid membrane.

  11. Structure Prediction of Outer Membrane Protease Protein of Salmonella typhimurium Using Computational Techniques

    Directory of Open Access Journals (Sweden)

    Rozina Tabassum

    2016-03-01

    Full Text Available Salmonella typhimurium, a facultative gram-negative intracellular pathogen belonging to family Enterobacteriaceae, is the most frequent cause of human gastroenteritis worldwide. PgtE gene product, outer membrane protease emerges important in the intracellular phases of salmonellosis. The pgtE gene product of S. typhimurium was predicted to be capable of proteolyzing T7 RNA polymerase and localize in the outer membrane of these gram negative bacteria. PgtE product of S. enterica and OmpT of E. coli, having high sequence similarity have been revealed to degrade macrophages, causing salmonellosis and other diseases. The three-dimensional structure of the protein was not available through Protein Data Bank (PDB creating lack of structural information about E protein. In our study, by performing Comparative model building, the three dimensional structure of outer membrane protease protein was generated using the backbone of the crystal structure of Pla of Yersinia pestis, retrieved from PDB, with MODELLER (9v8. Quality of the model was assessed by validation tool PROCHECK, web servers like ERRAT and ProSA are used to certify the reliability of the predicted model. This information might offer clues for better understanding of E protein and consequently for developmet of better therapeutic treatment against pathogenic role of this protein in salmonellosis and other diseases.

  12. Electrostatics of cell membrane recognition: structure and activity of neutral and cationic rigid push-pull rods in isoelectric, anionic, and polarized lipid bilayer membranes.

    Science.gov (United States)

    Sakai, N; Gerard, D; Matile, S

    2001-03-21

    Design, synthesis, and structural and functional studies of rigid-rod ionophores of different axial electrostatic asymmetry are reported. The employed design strategy emphasized presence of (a) a rigid scaffold to minimize the conformational complexity, (b) a unimolecular ion-conducting pathway to minimize the suprastructural complexity and monitor the function, (c) an extended fluorophore to monitor structure, (d) variable axial rod dipole, and (e) variable terminal charges to create axial asymmetry. Studies in isoelectric, anionic, and polarized bilayer membranes confirmed a general increase in activity of uncharged rigid push-pull rods in polarized bilayers. The similarly increased activity of cationic rigid push-pull rods with an electrostatic asymmetry comparable to that of alpha-helical bee toxin melittin (positive charge near negative axial dipole terminus) is shown by fluorescence-depth quenching experiments to originate from the stabilization of transmembrane rod orientation by the membrane potential. The reduced activity of rigid push-pull rods having an electrostatic asymmetry comparable to that in alpha-helical natural antibiotics (a positive charge near the positive axial dipole terminus) is shown by structural studies to originate from rod "ejection" by membrane potentials comparable to that found in mammalian plasma membranes. This structural evidence for cell membrane recognition by asymmetric rods is unprecedented and of possible practical importance with regard to antibiotic resistance.

  13. Problematic internet use is associated with structural alterations in the brain reward system in females.

    Science.gov (United States)

    Altbäcker, Anna; Plózer, Enikő; Darnai, Gergely; Perlaki, Gábor; Horváth, Réka; Orsi, Gergely; Nagy, Szilvia Anett; Bogner, Péter; Schwarcz, Attila; Kovács, Norbert; Komoly, Sámuel; Clemens, Zsófia; Janszky, József

    2016-12-01

    Neuroimaging findings suggest that excessive Internet use shows functional and structural brain changes similar to substance addiction. Even though it is still under debate whether there are gender differences in case of problematic use, previous studies by-passed this question by focusing on males only or by using gender matched approach without controlling for potential gender effects. We designed our study to find out whether there are structural correlates in the brain reward system of problematic Internet use in habitual Internet user females. T1-weighted Magnetic Resonance (MR) images were collected in 82 healthy habitual Internet user females. Structural brain measures were investigated using both automated MR volumetry and voxel based morphometry (VBM). Self-reported measures of problematic Internet use and hours spent online were also assessed. According to MR volumetry, problematic Internet use was associated with increased grey matter volume of bilateral putamen and right nucleus accumbens while decreased grey matter volume of orbitofrontal cortex (OFC). Similarly, VBM analysis revealed a significant negative association between the absolute amount of grey matter OFC and problematic Internet use. Our findings suggest structural brain alterations in the reward system usually related to addictions are present in problematic Internet use.

  14. Chronic fluoxetine treatment alters the structure, connectivity and plasticity of cortical interneurons.

    Science.gov (United States)

    Guirado, Ramon; Perez-Rando, Marta; Sanchez-Matarredona, David; Castrén, Eero; Nacher, Juan

    2014-10-01

    Novel hypotheses suggest that antidepressants, such as the selective serotonin reuptake inhibitor fluoxetine, induce neuronal structural plasticity, resembling that of the juvenile brain, although the underlying mechanisms of this reopening of the critical periods still remain unclear. However, recent studies suggest that inhibitory networks play an important role in this structural plasticity induced by fluoxetine. For this reason we have analysed the effects of a chronic fluoxetine treatment in the hippocampus and medial prefrontal cortex (mPFC) of transgenic mice displaying eGFP labelled interneurons. We have found an increase in the expression of molecules related to critical period plasticity, such as the polysialylated form of the neural cell adhesion molecule (PSA-NCAM), GAD67/65 and synaptophysin, as well as a reduction in the number of parvalbumin expressing interneurons surrounded by perineuronal nets. We have also described a trend towards decrease in the perisomatic inhibitory puncta on pyramidal neurons in the mPFC and an increase in the density of inhibitory puncta on eGFP interneurons. Finally, we have found that chronic fluoxetine treatment affects the structure of interneurons in the mPFC, increasing their dendritic spine density. The present study provides evidence indicating that fluoxetine promotes structural changes in the inhibitory neurons of the adult cerebral cortex, probably through alterations in plasticity-related molecules of neurons or the extracellular matrix surrounding them, which are present in interneurons and are known to be crucial for the development of the critical periods of plasticity in the juvenile brain.

  15. Effects of the Membrane Action of Tetralin on the Functional and Structural Properties of Artificial and Bacterial Membranes

    NARCIS (Netherlands)

    SIKKEMA, J; POOLMAN, B; KONINGS, WN; DEBONT, JAM

    1992-01-01

    Tetralin is toxic to bacterial cells at concentrations below 100-mu-mol/liter. To assess the inhibitory action of tetralin on bacterial membranes, a membrane model system, consisting of proteoliposomes in which beef heart cytochrome c oxidase was reconstituted as the proton motive force-generating m

  16. Microcystin-LR acute exposure does not alter in vitro and in vivo ATP, ADP and AMP hydrolysis in adult zebrafish (Danio rerio brain membranes

    Directory of Open Access Journals (Sweden)

    Luiza Wilges Kist

    2012-10-01

    Full Text Available Microcystins (MCs are toxins produced by cyanobacteria during the blooms that could accumulate in aquatic animals and be relocated to higher trophic levels. Adenosine triphosphate (ATP acts as an excitatory neurotransmitter and/or a neuromodulator in the extracellular space playing important roles in physiological and pathological conditions. The aim of this study was, therefore, to evaluate the acute effects of different concentrations of MC-LR on nucleoside triphosphate diphosphohydrolases and 5’-nucleotidade in adult zebrafish (Danio rerio brain membranes. The results have shown no significant changes in ATP, adenosine diphosphate (ADP and adenosine monophosphate (AMP hydrolysis in zebrafish brain membranes. MC-LR in vitro also did not alter ATP, ADP and AMP hydrolysis in the concentrations tested. These findings show that acute exposure to MC-LR did not modulate ectonucleotidase activity in the conditions tested. However, additional studies including chronic exposure should be performed in order to achieve a better understanding about MC-LR toxicity mechanisms in the central nervous system.

  17. Pantethine Alters Lipid Composition and Cholesterol Content of Membrane Rafts, With Down-Regulation of CXCL12-Induced T Cell Migration.

    Science.gov (United States)

    van Gijsel-Bonnello, Manuel; Acar, Niyazi; Molino, Yves; Bretillon, Lionel; Khrestchatisky, Michel; de Reggi, Max; Gharib, Bouchra

    2015-10-01

    Pantethine, a natural low-molecular-weight thiol, shows a broad activity in a large range of essential cellular pathways. It has been long known as a hypolipidemic and hypocholesterolemic agent. We have recently shown that it exerts a neuroprotective action in mouse models of cerebral malaria and Parkinson's disease through multiple mechanisms. In the present study, we looked at its effects on membrane lipid rafts that serve as platforms for molecules engaged in cell activity, therefore providing a target against inappropriate cell response leading to a chronic inflammation. We found that pantethine-treated cells showed a significant change in raft fatty acid composition and cholesterol content, with ultimate downregulation of cell adhesion, CXCL12-driven chemotaxis, and transendothelial migration of various T cell types, including human Jurkat cell line and circulating effector T cells. The mechanisms involved include the alteration of the following: (i) CXCL12 binding to its target cells; (ii) membrane dynamics of CXCR4 and CXCR7, the two CXCL12 receptors; and (iii) cell redox status, a crucial determinant in the regulation of the chemokine system. In addition, we considered the linker for activation of T cells molecule to show that pantethine effects were associated with the displacement from the rafts of the acylated signaling molecules which had their palmitoylation level reduced.. In conclusion, the results presented here, together with previously published findings, indicate that due to its pleiotropic action, pantethine can downregulate the multifaceted process leading to pathogenic T cell activation and migration.

  18. alpha-Globin genes: thalassemic and structural alterations in a Brazilian population

    Directory of Open Access Journals (Sweden)

    M.R.S.C. Wenning

    2000-09-01

    Full Text Available Seven unrelated patients with hemoglobin (Hb H disease and 27 individuals with alpha-chain structural alterations were studied to identify the alpha-globin gene mutations present in the population of Southeast Brazil. The -alpha3.7, --MED and -(alpha20.5 deletions were investigated by PCR, whereas non-deletional alpha-thalassemia (alphaHphalpha, alphaNcoIalpha, aaNcoI, alphaIcalpha and alphaTSaudialpha was screened with restriction enzymes and by nested PCR. Structural alterations were identified by direct DNA sequencing. Of the seven patients with Hb H disease, all of Italian descent, two had the -(alpha20.5/-alpha3.7 genotype, one had the --MED/-alpha3.7 genotype, one had the --MED/alphaHphalpha genotype and three showed interaction of the -alpha3.7 deletion with an unusual, unidentified form of non-deletional alpha-thalassemia [-alpha3.7/(aaT]. Among the 27 patients with structural alterations, 15 (of Italian descent had Hb Hasharon (alpha47Asp->His associated with the -alpha3.7 deletion, 4 (of Italian descent were heterozygous for Hb J-Rovigo (alpha53Ala->Asp, 4 (3 Blacks and 1 Caucasian were heterozygous for Hb Stanleyville-II (alpha78Asn->Lys associated with the alpha+-thalassemia, 1 (Black was heterozygous for Hb G-Pest (alpha74Asp->Asn, 1 (Caucasian was heterozygous for Hb Kurosaki (alpha7Lys->Glu, 1 (Caucasian was heterozygous for Hb Westmead (alpha122His->Gln, and 1 (Caucasian was the carrier of a novel silent variant (Hb Campinas, alpha26Ala->Val. Most of the mutations found reflected the Mediterranean and African origins of the population. Hbs G-Pest and Kurosaki, very rare, and Hb Westmead, common in southern China, were initially described in individuals of ethnic origin differing from those of the carriers reported in the present study and are the first cases to be reported in the Brazilian population.

  19. Nano-scale structure in membranes in relation to enzyme action - computer simulation vs. experiment

    DEFF Research Database (Denmark)

    Høyrup, P.; Jørgensen, Kent; Mouritsen, O.G.

    2002-01-01

    There is increasing theoretical and experimental evidence indicating that small-scale domain structure and dynamical heterogeneity develop in lipid membranes as a consequence of the the underlying phase transitions and the associated density and composition fluctuations. The relevant coherence...... lengths are in the nano-meter range. The nano-scale structure is believed to be important for controlling the activity of enzymes, specifically phospholipases, which act at bilayer membranes. We propose here a lattice-gas statistical mechanical model with appropriate dynamics to account for the non...... mixtures show that the enzyme activity is modulated by nano-scale lipid-domain formation in the lipid bilayer and lead to a characteristic lag-burst behavior. The simulations are found to be in semi-quantitative agreement with experimental data....

  20. Crystal structure of the Neisseria gonorrhoeae MtrD inner membrane multidrug efflux pump.

    Directory of Open Access Journals (Sweden)

    Jani Reddy Bolla

    Full Text Available Neisseria gonorrhoeae is an obligate human pathogen and the causative agent of the sexually-transmitted disease gonorrhea. The control of this disease has been compromised by the increasing proportion of infections due to antibiotic-resistant strains, which are growing at an alarming rate. The MtrCDE tripartite multidrug efflux pump, belonging to the hydrophobic and amphiphilic efflux resistance-nodulation-cell division (HAE-RND family, spans both the inner and outer membranes of N. gonorrhoeae and confers resistance to a variety of antibiotics and toxic compounds. We here report the crystal structure of the inner membrane MtrD multidrug efflux pump, which reveals a novel structural feature that is not found in other RND efflux pumps.

  1. Crystal structure of a membrane-bound metalloenzyme that catalyses the biological oxidation of methane

    Energy Technology Data Exchange (ETDEWEB)

    Lieberman, R.L.; Rosenzweig, A.C. (NWU)

    2010-03-08

    Particulate methane monooxygenase (pMMO) is an integral membrane metalloenzyme that catalyses the conversion of methane to methanol. Knowledge of how pMMO performs this extremely challenging chemistry may have an impact on the use of methane as an alternative energy source by facilitating the development of new synthetic catalysts. We have determined the structure of pMMO from the methanotroph Methylococcus capsulatus (Bath) to a resolution of 2.8 {angstrom}. The enzyme is a trimer with an {alpha}{sub 3}{beta}{sub 3}{gamma}{sub 3} polypeptide arrangement. Two metal centres, modelled as mononuclear copper and dinuclear copper, are located in soluble regions of each pmoB subunit, which resembles cytochrome c oxidase subunit II. A third metal centre, occupied by zinc in the crystal, is located within the membrane. The structure provides new insight into the molecular details of biological methane oxidation.

  2. Levetiracetam differentially alters CD95 expression of neuronal cells and the mitochondrial membrane potential of immune and neuronal cells in vitro

    Directory of Open Access Journals (Sweden)

    Susannah K Rogers

    2014-02-01

    Full Text Available Epilepsy is a neurological seizure disorder that affects over 100 million people worldwide. Levetiracetam, either alone, as monotherapy, or as adjunctive treatment, is widely used to control certain types of seizures. Despite its increasing popularity as a relatively safe and effective anti-convulsive treatment option, its mechanism(s of action are poorly understood. Studies have suggested neuronal, glial, and immune mechanisms of action. Understanding the precise mechanisms of action of Levetiracetam would be extremely beneficial in helping to understand the processes involved in seizure generation and epilepsy. Moreover, a full understanding of these mechanisms would help to create more efficacious treatments while minimizing side effects. The current study examined the effects of Levetiracetam on the mitochondrial membrane potential of neuronal and non-neuronal cells, in vitro, in order to determine if Levetiracetam influences metabolic processes in these cell types. In addition, this study sought to address possible immune-mediated mechanisms by determining if Levetiracetam alters the expression of immune receptor-ligand pairs. The results show that Levetiracetam induces expression of CD95 and CD178 on NGF-treated C17.2 neuronal cells. The results also show that Levetiracetam increases mitochondrial membrane potential on C17.2 neuronal cells in the presence of nerve growth factor. In contrast, Levetiracetam decreases the mitochondrial membrane potential of splenocytes and this effect was dependent on intact invariant chain, thus implicating immune cell interactions. These results suggest that both neuronal and non-neuronal anti-epileptic activities of Levetiracetam involve control over energy metabolism, more specifically, mΔΨ. Future studies are needed to further investigate this potential mechanism of action.

  3. Experience-dependent plasticity in white matter microstructure: Reasoning training alters structural connectivity

    Directory of Open Access Journals (Sweden)

    Allyson P Mackey

    2012-08-01

    Full Text Available Diffusion tensor imaging (DTI techniques have made it possible to investigate white matter plasticity in humans. Changes in DTI measures, principally increases in fractional anisotropy (FA, have been observed following training programs as diverse as juggling, meditation, and working memory. Here, we sought to test whether three months of reasoning training could alter white matter microstructure. We recruited participants (n=23 who were enrolled in a course to prepare for the Law School Admission Test (LSAT, a test that places strong demands on reasoning skills, as well as age- and IQ-matched controls planning to take the LSAT in the future (n=22. DTI data were collected at two scan sessions scheduled three months apart. In trained participants but not controls, we observed decreases in radial diffusivity (RD in white matter connecting frontal cortices, and in mean diffusivity (MD within frontal and parietal lobe white matter. Further, participants exhibiting larger gains on the LSAT exhibited greater decreases in MD in the right internal capsule. In summary, reasoning training altered multiple measures of white matter structure in young adults. While the cellular underpinnings are unknown, these results provide evidence of experience-dependent white matter changes that may not be limited to myelination.

  4. Maternal Hyperleptinemia Is Associated with Male Offspring's Altered Vascular Function and Structure in Mice.

    Directory of Open Access Journals (Sweden)

    Kathleen A Pennington

    Full Text Available Children of mothers with gestational diabetes have greater risk of developing hypertension but little is known about the mechanisms by which this occurs. The objective of this study was to test the hypothesis that high maternal concentrations of leptin during pregnancy, which are present in mothers with gestational diabetes and/or obesity, alter blood pressure, vascular structure and vascular function in offspring. Wildtype (WT offspring of hyperleptinemic, normoglycemic, Leprdb/+ dams were compared to genotype matched offspring of WT-control dams. Vascular function was assessed in male offspring at 6, and at 31 weeks of age after half the offspring had been fed a high fat, high sucrose diet (HFD for 6 weeks. Blood pressure was increased by HFD but not affected by maternal hyperleptinemia. On a standard diet, offspring of hyperleptinemic dams had outwardly remodeled mesenteric arteries and an enhanced vasodilatory response to insulin. In offspring of WT but not Leprdb/+ dams, HFD induced vessel hypertrophy and enhanced vasodilatory responses to acetylcholine, while HFD reduced insulin responsiveness in offspring of hyperleptinemic dams. Offspring of hyperleptinemic dams had stiffer arteries regardless of diet. Therefore, while maternal hyperleptinemia was largely beneficial to offspring vascular health under a standard diet, it had detrimental effects in offspring fed HFD. These results suggest that circulating maternal leptin concentrations may interact with other factors in the pre- and post -natal environments to contribute to altered vascular function in offspring of diabetic pregnancies.

  5. Determining the Secondary Structure of Membrane Proteins and Peptides Via Electron Spin Echo Envelope Modulation (ESEEM) Spectroscopy

    Science.gov (United States)

    Liu, Lishan; Mayo, Daniel J.; Sahu, Indra D.; Zhou, Andy; Zhang, Rongfu; McCarrick, Robert M.; Lorigan, Gary A.

    2016-01-01

    Revealing detailed structural and dynamic information of membrane embedded or associated proteins is challenging due to their hydrophobic nature which makes NMR and X-ray crystallographic studies challenging or impossible. Electron paramagnetic resonance (EPR) has emerged as a powerful technique to provide essential structural and dynamic information for membrane proteins with no size limitations in membrane systems which mimic their natural lipid bilayer environment. Therefore, tremendous efforts have been devoted toward the development and application of EPR spectroscopic techniques to study the structure of biological systems such as membrane proteins and peptides. This chapter introduces a novel approach established and developed in the Lorigan lab to investigate membrane protein and peptide local secondary structures utilizing the pulsed EPR technique electron spin echo envelope modulation (ESEEM) spectroscopy. Detailed sample preparation strategies in model membrane protein systems and the experimental setup are described. Also, the ability of this approach to identify local secondary structure of membrane proteins and peptides with unprecedented efficiency is demonstrated in model systems. Finally, applications and further developments of this ESEEM approach for probing larger size membrane proteins produced by over-expression systems are discussed. PMID:26477255

  6. Alteration of hepatic structure and oxidative stress induced by intravenous nanoceria

    Energy Technology Data Exchange (ETDEWEB)

    Tseng, Michael T., E-mail: mttsen01@louisville.edu [Dept of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky (United States); Lu, Xiaoqin, E-mail: x0lu0003@louisville.edu [Dept of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky (United States); Duan, Xiaoxian, E-mail: x0duan02@louisville.edu [Dept of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky (United States); Hardas, Sarita S., E-mail: sarita.hardas@uky.edu [Dept. of Chemistry, University of Kentucky, Lexington, Kentucky (United States); Sultana, Rukhsana, E-mail: rsult2@uky.edu [Dept. of Chemistry, University of Kentucky, Lexington, Kentucky (United States); Wu, Peng, E-mail: peng.wu@uky.edu [Dept of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky (United States); Unrine, Jason M., E-mail: jason.unrine@uky.edu [Dept of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky (United States); Graham, Uschi, E-mail: graham@caer.uky.edu [Center for Applied Energy Research, University of Kentucky, Lexington, Kentucky (United States); Butterfield, D. Allan, E-mail: dabcns@uky.edu [Dept. of Chemistry, University of Kentucky, Lexington, Kentucky (United States); Grulke, Eric A., E-mail: eric.grulke@uky.edu [Dept of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky (United States); Yokel, Robert A., E-mail: ryokel@email.uky.edu [Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky (United States)

    2012-04-15

    Beyond the traditional use of ceria as an abrasive, the scope of nanoceria applications now extends into fuel cell manufacturing, diesel fuel additives, and for therapeutic intervention as a putative antioxidant. However, the biological effects of nanoceria exposure have yet to be fully defined, which gave us the impetus to examine its systemic biodistribution and biological responses. An extensively characterized nanoceria (5 nm) dispersion was vascularly infused into rats, which were terminated 1 h, 20 h or 30 days later. Light and electron microscopic tissue characterization was conducted and hepatic oxidative stress parameters determined. We observed acute ceria nanoparticle sequestration by Kupffer cells with subsequent bioretention in parenchymal cells as well. The internalized ceria nanoparticles appeared as spherical agglomerates of varying dimension without specific organelle penetration. In hepatocytes, the agglomerated nanoceria frequently localized to the plasma membrane facing bile canaliculi. Hepatic stellate cells also sequestered nanoceria. Within the sinusoids, sustained nanoceria bioretention was associated with granuloma formations comprised of Kupffer cells and intermingling CD3{sup +} T cells. A statistically significant elevation of serum aspartate aminotransferase (AST) level was seen at 1 and 20 h, but subsided by 30 days after ceria administration. Further, elevated apoptosis was observed on day 30. These findings, together with increased hepatic protein carbonyl levels on day 30, indicate ceria-induced hepatic injury and oxidative stress, respectively. Such observations suggest a single vascular infusion of nanoceria can lead to persistent hepatic retention of particles with possible implications for occupational and therapeutic exposures. -- Highlights: ► Time course study on nanoceria induced hepatic alterations in rats. ► Serum AST elevation indicated acute hepatotoxicity. ► Ceria is retained for up to 30 days in Kupffer cells

  7. From a single molecule to a membrane of structured ionic polymers: A molecular dynamic simulation study

    Science.gov (United States)

    Aryal, Dipak; Perahia, Dvora; Grest, Gary S.

    2012-02-01

    The association of an A-B-C-B-A co-polymer with an ionizable center and a bulky end block has been investigated using molecular dynamic simulations. The center block consists of a randomly sulfonated polystyrene connected to a flexible poly (ethylene-r-propylene) bridge and end caped with poly (t-butyl styrene). Tailoring the nature of individual segments within a block co-polymer is a potential design tool to form membranes with desired properties. The association mode and the dynamics of the segments control the overall characteristics. The membranes with three sulfonation level for the center block were made by evaporating a common solvent for all blocks. The local structure including size and distribution of the ionic blocks and the continuity of the styrene phase as well as long range correlations were identified at 300 and 500K. The initial membrane structure is affected by the structure in solution. Studies on changes that take place above the glass transition temperature for each of the blocks will also be presented.

  8. 3D wind-induced response analysis of a cable-membrane structure

    Institute of Scientific and Technical Information of China (English)

    Jun-jie LUO; Da-jian HAN

    2009-01-01

    Wind loading is a dominant factor for design of a cable-membrane structure. Three orthogonal turbulent components, including the longitudinal, lateral and vertical wind velocities, should be taken into account for the wind loads. In this study, a stochastic 3D coupling wind field model is derived by the spectral representation theory, The coherence functions of the three orthognnal turbulent components are considered in this model. Then the model is applied to generate the three correlated wind turbulent components. After that, formulae are proposed to transform the velocities into wind loads, and to introduce the modified wind pressure force. Finally, a wind-induced time-history response analysis is conducted for a 3D cable-membrane structure. Analytical results indicate that responses induced by the proposed wind load model are 10%--25% larger than those by the con-ventionai uncorrelated model, and that the responses are not quite influenced by the modified wind pressure force. Therefore, we concluded that, in the time-history response analysis, the coherences of the three orthogonal turbulent components are necessary for a 3D cable-membrane structure, but the modified wind pressure force can be ignored.

  9. Cryo-EM structure of lysenin pore elucidates membrane insertion by an aerolysin family protein

    Science.gov (United States)

    Bokori-Brown, Monika; Martin, Thomas G.; Naylor, Claire E.; Basak, Ajit K.; Titball, Richard W.; Savva, Christos G.

    2016-04-01

    Lysenin from the coelomic fluid of the earthworm Eisenia fetida belongs to the aerolysin family of small β-pore-forming toxins (β-PFTs), some members of which are pathogenic to humans and animals. Despite efforts, a high-resolution structure of a channel for this family of proteins has been elusive and therefore the mechanism of activation and membrane insertion remains unclear. Here we determine the pore structure of lysenin by single particle cryo-EM, to 3.1 Å resolution. The nonameric assembly reveals a long β-barrel channel spanning the length of the complex that, unexpectedly, includes the two pre-insertion strands flanking the hypothetical membrane-insertion loop. Examination of other members of the aerolysin family reveals high structural preservation in this region, indicating that the membrane-insertion pathway in this family is conserved. For some toxins, proteolytic activation and pro-peptide removal will facilitate unfolding of the pre-insertion strands, allowing them to form the β-barrel of the channel.

  10. Efficient and reusable polyamide-56 nanofiber/nets membrane with bimodal structures for air filtration.

    Science.gov (United States)

    Liu, Bowen; Zhang, Shichao; Wang, Xueli; Yu, Jianyong; Ding, Bin

    2015-11-01

    Nanofibrous media that both possess high airborne particle interception efficiency and robust air permeability would have broad technological implications for areas ranging from individual protection and industrial security to environmental governance; however, creating such filtration media has proved extremely challenging. Here we report a strategy to construct the bio-based polyamide-56 nanofiber/nets (PA-56 NFN) membranes with bimodal structures for effective air filtration via one-step electrospinning/netting. The PA-56 membranes are composed of completely covered two-dimensional (2D) ultrathin (∼20 nm) nanonets which are optimized by facilely regulating the solution concentration, and the bonded scaffold fibers constructed cavity structures which are synchronously created by using the CH3COOH inspiration. With integrated properties of small aperture, high porosity, and bonded scaffold, the resulting PA-56 NFN membranes exhibit high filtration efficiency of 99.995%, low pressure drop of 111 Pa, combined with large dust holding capacity of 49 g/m(2) and dust-cleaning regeneration ability, for filtrating ultrafine airborne particles in the most safe manner involving sieving principle and surface filtration. The successful synthesis of PA-56 NFN medium would not only make it a promising candidate for air filtration, but also provide new insights into the design and development of nanonet-based bimodal structures for various applications.

  11. Crystal Structure of the Herpesvirus Nuclear Egress Complex Provides Insights into Inner Nuclear Membrane Remodeling

    Directory of Open Access Journals (Sweden)

    Tzviya Zeev-Ben-Mordehai

    2015-12-01

    Full Text Available Although nucleo-cytoplasmic transport is typically mediated through nuclear pore complexes, herpesvirus capsids exit the nucleus via a unique vesicular pathway. Together, the conserved herpesvirus proteins pUL31 and pUL34 form the heterodimeric nuclear egress complex (NEC, which, in turn, mediates the formation of tight-fitting membrane vesicles around capsids at the inner nuclear membrane. Here, we present the crystal structure of the pseudorabies virus NEC. The structure revealed that a zinc finger motif in pUL31 and an extensive interaction network between the two proteins stabilize the complex. Comprehensive mutational analyses, characterized both in situ and in vitro, indicated that the interaction network is not redundant but rather complementary. Fitting of the NEC crystal structure into the recently determined cryoEM-derived hexagonal lattice, formed in situ by pUL31 and pUL34, provided details on the molecular basis of NEC coat formation and inner nuclear membrane remodeling.

  12. Caspase-8 Activation Precedes Alterations of Mitochondrial Membrane Potential during Monocyte Apoptosis Induced by Phagocytosis and Killing of Staphylococcus aureus

    Science.gov (United States)

    Węglarczyk, Kazimierz; Baran, Jarosław; Zembala, Marek; Pryjma, Juliusz

    2004-01-01

    Human peripheral blood monocytes become apoptotic following phagocytosis and killing of Staphylococcus aureus. Although this type of monocyte apoptosis is known to be initiated by Fas-Fas ligand (FasL) interactions, the downstream signaling pathway has not been determined. In this work the involvement of mitochondria and the kinetics of caspase-8 and caspase-3 activation after phagocytosis of S. aureus were studied. Caspase-8 activity was measured in cell lysates by using the fluorogenic substrate Ac-IETD-AFC. Active caspase-3 levels and mitochondrial membrane potential (Δψm) were measured in whole cells by flow cytometry using monoclonal antibodies reacting with activated caspase-3 and chloromethyl-X-rosamine, respectively. The results show that caspase-8 was activated shortly after phagocytosis of bacteria. Caspase-8 activation was followed by progressive disruption of Δψm, which is associated with the production of reactive oxygen intermediates. The irreversible caspase-8 inhibitor zIETD-FMK prevented the disruption of Δψm and the release of cytochrome c from S. aureus-exposed monocytes. Caspase-3 activation occurred following disruption of Δψm. These results strongly suggest that apoptosis of monocytes that have phagocytosed and killed S. aureus is driven by the Fas-FasL-initiated pathway, which is typical for type II cells. PMID:15102767

  13. Brain structural alterations in obsessive-compulsive disorder patients with autogenous and reactive obsessions.

    Directory of Open Access Journals (Sweden)

    Marta Subirà

    Full Text Available Obsessive-compulsive disorder (OCD is a clinically heterogeneous condition. Although structural brain alterations have been consistently reported in OCD, their interaction with particular clinical subtypes deserves further examination. Among other approaches, a two-group classification in patients with autogenous and reactive obsessions has been proposed. The purpose of the present study was to assess, by means of a voxel-based morphometry analysis, the putative brain structural correlates of this classification scheme in OCD patients. Ninety-five OCD patients and 95 healthy controls were recruited. Patients were divided into autogenous (n = 30 and reactive (n = 65 sub-groups. A structural magnetic resonance image was acquired for each participant and pre-processed with SPM8 software to obtain a volume-modulated gray matter map. Whole-brain and voxel-wise comparisons between the study groups were then performed. In comparison to the autogenous group, reactive patients showed larger gray matter volumes in the right Rolandic operculum. When compared to healthy controls, reactive patients showed larger volumes in the putamen (bilaterally, while autogenous patients showed a smaller left anterior temporal lobe. Also in comparison to healthy controls, the right middle temporal gyrus was smaller in both patient subgroups. Our results suggest that autogenous and reactive obsessions depend on partially dissimilar neural substrates. Our findings provide some neurobiological support for this classification scheme and contribute to unraveling the neurobiological basis of clinical heterogeneity in OCD.

  14. The constant region affects antigen binding of antibodies to DNA by altering secondary structure.

    Science.gov (United States)

    Xia, Yumin; Janda, Alena; Eryilmaz, Ertan; Casadevall, Arturo; Putterman, Chaim

    2013-11-01

    We previously demonstrated an important role of the constant region in the pathogenicity of anti-DNA antibodies. To determine the mechanisms by which the constant region affects autoantibody binding, a panel of isotype-switch variants (IgG1, IgG2a, IgG2b) was generated from the murine PL9-11 IgG3 autoantibody. The affinity of the PL9-11 antibody panel for histone was measured by surface plasmon resonance (SPR). Tryptophan fluorescence was used to determine wavelength shifts of the antibody panel upon binding to DNA and histone. Finally, circular dichroism spectroscopy was used to measure changes in secondary structure. SPR analysis revealed significant differences in histone binding affinity between members of the PL9-11 panel. The wavelength shifts of tryptophan fluorescence emission were found to be dependent on the antibody isotype, while circular dichroism analysis determined that changes in antibody secondary structure content differed between isotypes upon antigen binding. Thus, the antigen binding affinity is dependent on the particular constant region expressed. Moreover, the effects of antibody binding to antigen were also constant region dependent. Alteration of secondary structures influenced by constant regions may explain differences in fine specificity of anti-DNA antibodies between antibodies with similar variable regions, as well as cross-reactivity of anti-DNA antibodies with non-DNA antigens.

  15. Altered topological organization of white matter structural networks in patients with neuromyelitis optica.

    Directory of Open Access Journals (Sweden)

    Yaou Liu

    Full Text Available OBJECTIVE: To investigate the topological alterations of the whole-brain white-matter (WM structural networks in patients with neuromyelitis optica (NMO. METHODS: The present study involved 26 NMO patients and 26 age- and sex-matched healthy controls. WM structural connectivity in each participant was imaged with diffusion-weighted MRI and represented in terms of a connectivity matrix using deterministic tractography method. Graph theory-based analyses were then performed for the characterization of brain network properties. A multiple linear regression analysis was performed on each network metric between the NMO and control groups. RESULTS: The NMO patients exhibited abnormal small-world network properties, as indicated by increased normalized characteristic path length, increased normalized clustering and increased small-worldness. Furthermore, largely similar hub distributions of the WM structural networks were observed between NMO patients and healthy controls. However, regional efficiency in several brain areas of NMO patients was significantly reduced, which were mainly distributed in the default-mode, sensorimotor and visual systems. Furthermore, we have observed increased regional efficiency in a few brain regions such as the orbital parts of the superior and middle frontal and fusiform gyri. CONCLUSION: Although the NMO patients in this study had no discernible white matter T2 lesions in the brain, we hypothesize that the disrupted topological organization of WM networks provides additional evidence for subtle, widespread cerebral WM pathology in NMO.

  16. Lipid membrane: inelastic deformation of surface structure by an atomic force microscope

    Institute of Scientific and Technical Information of China (English)

    张静; 孙润广

    2002-01-01

    The stability of the 1,2-Dioleoyl-sn-Glycero-3-[phospho-rac-1-Glycerol-Na] liposome in the liquid crystalline statehave been investigated using an atomic force microscope (AFM). We have observed the inelastic deformation of thesample surface. The AFM tip causes persistent deformation of the surface of the lipid membrane, in which some of thelipid molecules are eventually pushed or dragged by the AFM tip. The experiment shows how the surface structure ofthe lipid membrane can be created by the interaction between the AFM tip and lipid membrane. When the operatingforce exceeds 10-8 N, it leads to large deformations of the surface. A square region of about 1×1μm2 is created by thescanning probe on the surface. When the operating force is between 10-11N and 10-8N, it can image the topographyof the surface of the lipid membrane. The stability of the sample is related to the concentration of the medium in whichthe sample is prepared.

  17. Biophysical significance of the inner mitochondrial membrane structure on the electrochemical potential of mitochondria

    Science.gov (United States)

    Song, Dong Hoon; Park, Jonghyun; Maurer, Laura L.; Lu, Wei; Philbert, Martin A.; Sastry, Ann Marie

    2013-12-01

    The available literature supports the hypothesis that the morphology of the inner mitochondrial membrane is regulated by different energy states, that the three-dimensional morphology of cristae is dynamic, and that both are related to biochemical function. Examination of the correlation between the inner mitochondrial membrane (IMM) structure and mitochondrial energetic function is critical to an understanding of the links between mesoscale morphology and function in progressive mitochondrial dysfunction such as aging, neurodegeneration, and disease. To investigate this relationship, we develop a model to examine the effects of three-dimensional IMM morphology on the electrochemical potential of mitochondria. The two-dimensional axisymmetric finite element method is used to simulate mitochondrial electric potential and proton concentration distribution. This simulation model demonstrates that the proton motive force (Δp) produced on the membranes of cristae can be higher than that on the inner boundary membrane. The model also shows that high proton concentration in cristae can be induced by the morphology-dependent electric potential gradient along the outer side of the IMM. Furthermore, simulation results show that a high Δp is induced by the large surface-to-volume ratio of an individual crista, whereas a high capacity for ATP synthesis can primarily be achieved by increasing the surface area of an individual crista. The mathematical model presented here provides compelling support for the idea that morphology at the mesoscale is a significant driver of mitochondrial function.

  18. Have NEC Coat, Will Travel: Structural Basis of Membrane Budding During Nuclear Egress in Herpesviruses.

    Science.gov (United States)

    Bigalke, J M; Heldwein, E E

    2017-01-01

    Herpesviruses are unusual among enveloped viruses because they bud twice yet acquire a single envelope. Furthermore, unlike other DNA viruses that replicate in the nucleus, herpesviruses do not exit it by passing through the nuclear pores or by rupturing the nuclear envelope. Instead, herpesviruses have a complex mechanism of nuclear escape whereby nascent capsids bud at the inner nuclear membrane to form perinuclear virions that subsequently fuse with the outer nuclear membrane, releasing capsids into the cytosol. This makes them some of the very few known viruses that bud into the nuclear envelope. The envelope acquired during nuclear budding does not end up in the mature viral particle but instead allows the capsid to translocate from the nucleus into the cytosol. The viral nuclear egress complex (NEC) is a critical player in the nuclear egress, yet its function and mechanism have remained enigmatic. Recent studies have demonstrated that the NEC buds membranes without the help of other proteins by forming a honeycomb coat, which established the NEC as the first virally encoded budding machine that operates at the nuclear, as opposed to cytoplasmic, membrane. This review discusses our current understanding of the NEC budding mechanism, with the emphasis on studies that illuminated the structure of the NEC coat and its role in capsid budding during herpesvirus nuclear escape.

  19. Structure of the poly-C9 component of the complement membrane attack complex.

    Science.gov (United States)

    Dudkina, Natalya V; Spicer, Bradley A; Reboul, Cyril F; Conroy, Paul J; Lukoyanova, Natalya; Elmlund, Hans; Law, Ruby H P; Ekkel, Susan M; Kondos, Stephanie C; Goode, Robert J A; Ramm, Georg; Whisstock, James C; Saibil, Helen R; Dunstone, Michelle A

    2016-02-04

    The membrane attack complex (MAC)/perforin-like protein complement component 9 (C9) is the major component of the MAC, a multi-protein complex that forms pores in the membrane of target pathogens. In contrast to homologous proteins such as perforin and the cholesterol-dependent cytolysins (CDCs), all of which require the membrane for oligomerisation, C9 assembles directly onto the nascent MAC from solution. However, the molecular mechanism of MAC assembly remains to be understood. Here we present the 8 Å cryo-EM structure of a soluble form of the poly-C9 component of the MAC. These data reveal a 22-fold symmetrical arrangement of C9 molecules that yield an 88-strand pore-forming β-barrel. The N-terminal thrombospondin-1 (TSP1) domain forms an unexpectedly extensive part of the oligomerisation interface, thus likely facilitating solution-based assembly. These TSP1 interactions may also explain how additional C9 subunits can be recruited to the growing MAC subsequent to membrane insertion.

  20. Structure of porous electrodes in polymer electrolyte membrane fuel cells: An optical reconstruction technique

    Science.gov (United States)

    Berejnov, Viatcheslav; Sinton, David; Djilali, Ned

    Computing flows and phase transport in porous media requires a physically representative geometric model. We present a simple method of digitizing the structure of fibrous porous media commonly used in polymer electrolyte membrane (PEM) fuel cells, the so-called gas diffusion layer (GDL). Employing an inverted microscope and image recognition software we process images of the GDL surface collected manually at different focal lengths with micrometer accuracy. Processing the series of images allows retrieval of local depths of the salient in-focus structural elements in each of the different images. These elements are then recombined into a depth-map representing the three-dimensional structure of the GDL surface. Superimposition of the in-focus portions of the structural elements distributed throughout the stack of images yields digitized data describing the geometry and structural attributes of the 3D surface of the GDL fibrous material.

  1. Growth temperature alters Salmonella Enteritidis heat/acid resistance, membrane lipid composition and stress/virulence related gene expression.

    Science.gov (United States)

    Yang, Yishan; Khoo, Wei Jie; Zheng, Qianwang; Chung, Hyun-Jung; Yuk, Hyun-Gyun

    2014-02-17

    The influence of growth temperature (10, 25, 37, and 42 °C) on the survival of Salmonella Enteritidis in simulated gastric fluid (SGF; pH=2.0) and during heat treatment (54, 56, 58, and 60 °C), on the membrane fatty acid composition, as well as on stress-/virulence-related gene expression was studied. Cells incubated at temperatures lower or higher than 37 °C did not increase their acid resistance, with the maximum D-value of 3.07 min in cells grown at 37 °C; while those incubated at higher temperature increased their heat resistance, with the maximum D60 °C-values of 1.4 min in cells grown at 42 °C. A decrease in the ratio of unsaturated to saturated fatty acids was observed as the growth temperature increased. Compared to the control cells grown at 37 °C, the expression of rpoS was 16.5- and 14.4-fold higher in cells cultivated at 10 and 25 °C, respectively; while the expression of rpoH was 2.9-fold higher in those cultivated at 42 °C. The increased expression of stress response gene rpoH and the decreased ratio of unsaturated to saturated fatty acids correlated with the greater heat resistance of bacteria grown at 42 °C; while the decreased expression of stress response gene rpoS at 42 °C might contribute to the decrease in acid resistance. Virulence related genes-spvR, hilA, avrA-were induced in cells cultivated at 42 °C, except sefA which was induced in the control cells. This study indicates that environmental temperature may affect the virulence potential of S. Enteritidis, thus temperature should be well controlled during food storage.

  2. The Alteration of the Epidermal Basement Membrane Complex of Human Nevus Tissue and Keratinocyte Attachment after High Hydrostatic Pressurization

    Directory of Open Access Journals (Sweden)

    Naoki Morimoto

    2016-01-01

    Full Text Available We previously reported that human nevus tissue was inactivated after high hydrostatic pressure (HHP higher than 200 MPa and that human cultured epidermis (hCE engrafted on the pressurized nevus at 200 MPa but not at 1000 MPa. In this study, we explore the changes to the epidermal basement membrane in detail and elucidate the cause of the difference in hCE engraftment. Nevus specimens of 8 mm in diameter were divided into five groups (control and 100, 200, 500, and 1000 MPa. Immediately after HHP, immunohistochemical staining was performed to detect the presence of laminin-332 and type VII collagen, and the specimens were observed by transmission electron microscopy (TEM. hCE was placed on the pressurized nevus specimens in the 200, 500, and 1000 MPa groups and implanted into the subcutis of nude mice; the specimens were harvested at 14 days after implantation. Then, human keratinocytes were seeded on the pressurized nevus and the attachment was evaluated. The immunohistochemical staining results revealed that the control and 100 MPa, 200 MPa, and 500 MPa groups were positive for type VII collagen and laminin-332 immediately after HHP. TEM showed that, in all of the groups, the lamina densa existed; however, anchoring fibrils were not clearly observed in the 500 or 1000 MPa groups. Although the hCE took in the 200 and 500 MPa groups, keratinocyte attachment was only confirmed in the 200 MPa group. This result indicates that HHP at 200 MPa is preferable for inactivating nevus tissue to allow its reuse for skin reconstruction in the clinical setting.

  3. Formation of domain structure of erythrocyte membrane in Wistar rat fed with CeCl3 per os

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    To explore the possibility of absorption of lanthanides via digestive duct and their effects on the membrane structure and permeability of erythrocytes,the fine structure of erythrocyte membrane from Wistar rats,fed for 70 days of daily administration per os with 20 mg CeCl3/kg weight,was imaged by means of atomic force microscopy and FT-IR deconvolution spectra.The results show that,although the erythrocytes maintain the intact shape,the change of secondary structure,aggregation and crosslinking of the protein particles of membrane surface and the enlarged lipid regions lead to the domain structure formation.This structure might be responsible for the increasing permeability of erythrocyte membrane.

  4. Deuterium Labeling Strategies for Creating Contrast in Structure-Function Studies of Model Bacterial Outer Membranes Using Neutron Reflectometry.

    Science.gov (United States)

    Le Brun, Anton P; Clifton, Luke A; Holt, Stephen A; Holden, Peter J; Lakey, Jeremy H

    2016-01-01

    Studying the outer membrane of Gram-negative bacteria is challenging due to the complex nature of its structure. Therefore, simplified models are required to undertake structure-function studies of processes that occur at the outer membrane/fluid interface. Model membranes can be created by immobilizing bilayers to solid supports such as gold or silicon surfaces, or as monolayers on a liquid support where the surface pressure and fluidity of the lipids can be controlled. Both model systems are amenable to having their structure probed by neutron reflectometry, a technique that provides a one-dimensional depth profile through a membrane detailing its thickness and composition. One of the strengths of neutron scattering is the ability to use contrast matching, allowing molecules containing hydrogen and those enriched with deuterium to be highlighted or matched out against the bulk isotopic composition of the solvent. Lipopolysaccharides, a major component of the outer membrane, can be isolated for incorporation into model membranes. Here, we describe the deuteration of lipopolysaccharides from rough strains of Escherichia coli for incorporation into model outer membranes, and how the use of deuterated materials enhances structural analysis of model membranes by neutron reflectometry.

  5. Permeability Changes of Manduca sexta Midgut Brush Border Membranes Induced by Oligomeric Structures of Different Cry Toxins

    NARCIS (Netherlands)

    Muñoz-Garay, C.; Sánchez, J.; Darszon, A.; Maagd, de R.A.; Bakker, P.; Soberón, M.; Bravo, A.

    2006-01-01

    The pore-formation activity of monomeric and oligomeric forms of different Cry1 toxins (from Cry1A to Cry1G) was analyzed by monitoring ionic permeability across Manduca sexta brush border membrane vesicles. The membrane vesicles were isolated from microvilli structures, showing a high enrichment of

  6. Topological Structures and Membrane Nanostructures of Erythrocytes after Splenectomy in Hereditary Spherocytosis Patients via Atomic Force Microscopy

    OpenAIRE

    Li, Ying; Lu, Liyuan; Li, Juan

    2016-01-01

    Hereditary spherocytosis is an inherited red blood cell membrane disorder resulting from mutations of genes encoding erythrocyte membrane and cytoskeletal proteins. Few equipments can observe the structural characteristics of hereditary spherocytosis directly expect for atomic force microscopy In our study, we proved atomic force microscopy is a powerful and sensitive instrument to describe the characteristics of hereditary spherocytosis. Erythrocytes from hereditary spherocytosis patients we...

  7. Altered white matter and cortical structure in neonates with antenatally diagnosed isolated ventriculomegaly

    Directory of Open Access Journals (Sweden)

    G. Lockwood Estrin

    2016-01-01

    WM alterations in isolated VM cases may be consistent with abnormal development of WM tracts involved in language and cognition. Alterations in WM FA and MD may represent neural correlates for later neurodevelopmental deficits.

  8. Ion beam evaluation of silicon carbide membrane structures intended for particle detectors

    Energy Technology Data Exchange (ETDEWEB)

    Pallon, J., E-mail: jan.pallon@nuclear.lu.se [Division of Nuclear Physics, Physics Department, Lund University, Box 118, SE-221 00 Lund (Sweden); Syväjärvi, M. [Linköping University, Department of Physics, Chemistry and Biology, SE-58183 Linköping (Sweden); Graphensic AB, Teknikringen 1F, SE-58330 Linköping (Sweden); Wang, Q. [Sensor System, ACREO Swedish ICT AB, Box 1070, SE-164 25 Kista (Sweden); Yakimova, R.; Iakimov, T. [Linköping University, Department of Physics, Chemistry and Biology, SE-58183 Linköping (Sweden); Graphensic AB, Teknikringen 1F, SE-58330 Linköping (Sweden); Elfman, M.; Kristiansson, P.; Nilsson, E.J.C.; Ros, L. [Division of Nuclear Physics, Physics Department, Lund University, Box 118, SE-221 00 Lund (Sweden)

    2016-03-15

    Thin ion transmission detectors can be used as a part of a telescope detector for mass and energy identification but also as a pre-cell detector in a microbeam system for studies of biological effects from single ion hits on individual living cells. We investigated a structure of graphene on silicon carbide (SiC) with the purpose to explore a thin transmission detector with a very low noise level and having mechanical strength to act as a vacuum window. In order to reach very deep cavities in the SiC wafers for the preparation of the membrane in the detector, we have studied the Inductive Coupled Plasma technique to etch deep circular cavities in 325 μm prototype samples. By a special high temperature process the outermost layers of the etched SiC wafers were converted into a highly conductive graphitic layer. The produced cavities were characterized by electron microscopy, optical microscopy and proton energy loss measurements. The average membrane thickness was found to be less than 40 μm, however, with a slightly curved profile. Small spots representing much thinner membrane were also observed and might have an origin in crystal defects or impurities. Proton energy loss measurement (also called Scanning Transmission Ion Microscopy, STIM) is a well suited technique for this thickness range. This work presents the first steps of fabricating a membrane structure of SiC and graphene which may be an attractive approach as a detector due to the combined properties of SiC and graphene in a monolithic materials structure.

  9. Oxidation of Membrane Curvature-Regulating Phosphatidylethanolamine Lipid Results in Formation of Bilayer and Cubic Structures.

    Science.gov (United States)

    Sankhagowit, Shalene; Lee, Ernest Y; Wong, Gerard C L; Malmstadt, Noah

    2016-03-15

    Oxidation is associated with conditions related to chronic inflammations and aging. Cubic structures have been observed in the smooth endoplasmic reticulum and mitochondrial membranes of cells under oxidative stress (e.g., tumor cells and virus-infected cells). It has been previously suspected that oxidation can result in the rearrangement of lipids from a fluid lamellar phase to a cubic structure in organelles containing membranes enriched with amphiphiles that have nonzero intrinsic curvature, such as phosphatidylethanolamine (PE) and cardiolipin. This study focuses on the oxidation of 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), a lipid that natively forms an inverted hexagonal phase at physiological conditions. The oxidized samples contain an approximately 3:2 molar ratio of nonoxidized to oxidized DOPE. Optical microscopy images collected during the hydration of this mixture from a dried film suggest that the system evolves into a coexistence of a stable fluid lamellar phase and transient square lattice structures with unit cell sizes of 500-600 nm. Small-angle X-ray scattering of the same lipid mixture yielded a body-centered Im3m cubic phase with the lattice parameter of 14.04 nm. On average, the effective packing parameter of the oxidized DOPE species was estimated to be 0.657 ± 0.069 (standard deviation). This suggests that the oxidation of PE leads to a group of species with inverted molecular intrinsic curvature. Oxidation can create amphiphilic subpopulations that potently impact the integrity of the membrane, since negative Gaussian curvature intrinsic to cubic phases can enable membrane destabilization processes.

  10. [The value of double contrast arthrotomography combined with cinematography in the diagnosis of functional and structural TMJ alterations].

    Science.gov (United States)

    Engelke, W; Grossniklaus, B; Sailer, H F

    1991-01-01

    Double contrast arthrotomography combined with cinematography as a diagnostic instrument establishing functional and structural TMJ alterations is evaluated for its diagnostic value and reliability within the chain of diagnostic measures applied. In 131 patients double-contrast arthrotomography was followed by a comprehensive history of joint problems, and verification of the clinical findings as well as the arthrographic diagnosis and the post-arthrographic TMJ alterations. Our interest was focussed, among others, on the question whether arthrography alone would have any therapeutic effect or produce an alteration in TMJ function.

  11. Structural determinants of protein partitioning into ordered membrane domains and lipid rafts.

    Science.gov (United States)

    Lorent, Joseph Helmuth; Levental, Ilya

    2015-11-01

    Increasing evidence supports the existence of lateral nanoscopic lipid domains in plasma membranes, known as lipid rafts. These domains preferentially recruit membrane proteins and lipids to facilitate their interactions and thereby regulate transmembrane signaling and cellular homeostasis. The functionality of raft domains is intrinsically dependent on their selectivity for specific membrane components; however, while the physicochemical determinants of raft association for lipids are known, very few systematic studies have focused on the structural aspects that guide raft partitioning of proteins. In this review, we describe biophysical and thermodynamic aspects of raft-mimetic liquid ordered phases, focusing on those most relevant for protein partitioning. Further, we detail the variety of experimental models used to study protein-raft interactions. Finally, we review the existing literature on mechanisms for raft targeting, including lipid post-translational modifications, lipid binding, and transmembrane domain features. We conclude that while protein palmitoylation is a clear raft-targeting signal, few other general structural determinants for raft partitioning have been revealed, suggesting that many discoveries lie ahead in this burgeoning field.

  12. Characterization of cake layer structure on the microfiltration membrane permeability by iron pre-coagulation

    Institute of Scientific and Technical Information of China (English)

    Jin Wang; Siru Pan; Dongping Luo

    2013-01-01

    A cake layer is formed by coagulation aggregates under certain transmembrane pressure in the coagulation-microfiltration (MF) process.The characteristics of humic acid aggregates coagulated by different iron-based coagulants,such as charge,size,fractal dimension and compressibility,have an effect on the cake layer structure.At the optimum iron dose of 0.6 to 0.8 mmol/L for ferric chloride (FC) and polymer ferric sulfate (PFS) pre-coagulation,at the point of charge neutralization for near zero zeta potential,the aggregate particles produced possess the greatest size and highest fractal dimension,which contributes to the cake layer being most loose with high porosity and low compressibility.Thus the membrane filterability is better.At a low or high iron dose of FC and PFS,a high negative or positive zeta potential with high charge repulsion results in so many small aggregate particles and low fractal dimension that the cake layer is compact with low porosity and high compressibility.Therefore the membrane fouling is accelerated and MF permeability becomes worse.The variation of cake layer structure as measured by scanning electric microscopy corresponds with the fact that the smaller the coagulation flocs size and fractal dimension are,the lower the porosity and the tighter the cake layer conformation.This also explains the MF membrane flux variation visually and accurately.

  13. Fabrication variables affecting the structure and properties of supported carbon molecular sieve membranes for hydrogen separation

    KAUST Repository

    Briceño, Kelly

    2012-10-01

    A high molecular weight polyimide (Matrimid) was used as a precursor for fabricating supported carbon molecular sieve membranes without crack formation at 550-700°C pyrolysis temperature. A one-step polymer (polyimide) coating method as precursor of carbon layer was used without needing a prior modification of a TiO 2 macroporous support. The following fabrication variables were optimized and studied to determine their effect on the carbon structure: polymeric solution concentration, solvent extraction, heating rate and pyrolysis temperature. Two techniques (Thermogravimetric analysis and Raman spectroscopy) were used to determine these effects on final carbon structure. Likewise, the effect of the support was also reported as an additional and important variable in the design of supported carbon membranes. Atomic force microscopy and differential scanning calorimetry quantified the degree of influence. Pure gas permeation tests were performed using CH 4, CO, CO 2 and H 2. The presence of a molecular sieving mechanism was confirmed after defects were plugged with PDMS solution at 12wt%. Gas selectivities higher than Knudsen theoretical values were reached with membranes obtained over 650°C, showing as best values 4.46, 4.70 and 10.62 for H 2/N 2, H 2/CO and H 2/CH 4 ratio, respectively. Permeance values were over 9.82×10 -9mol/(m 2Pas)during pure hydrogen permeation tests. © 2012 Elsevier B.V.

  14. Structure and dynamics of nano-sized raft-like domains on the plasma membrane

    Science.gov (United States)

    Herrera, Fernando E.; Pantano, Sergio

    2012-01-01

    Cell membranes are constitutively composed of thousands of different lipidic species, whose specific organization leads to functional heterogeneities. In particular, sphingolipids, cholesterol and some proteins associate among them to form stable nanoscale domains involved in recognition, signaling, membrane trafficking, etc. Atomic-detail information in the nanometer/second scale is still elusive to experimental techniques. In this context, molecular simulations on membrane systems have provided useful insights contributing to bridge this gap. Here we present the results of a series of simulations of biomembranes representing non-raft and raft-like nano-sized domains in order to analyze the particular structural and dynamical properties of these domains. Our results indicate that the smallest (5 nm) raft domains are able to preserve their distinctive structural and dynamical features, such as an increased thickness, higher ordering, lower lateral diffusion, and specific lipid-ion interactions. The insertion of a transmembrane protein helix into non-raft, extended raft-like, and raft-like nanodomain environments result in markedly different protein orientations, highlighting the interplay between the lipid-lipid and lipid-protein interactions.

  15. Characterization of cake layer structure on the microfiltration membrane permeability by iron pre-coagulation.

    Science.gov (United States)

    Wang, Jin; Pan, Siru; Luo, Dongping

    2013-02-01

    A cake layer is formed by coagulation aggregates under certain transmembrane pressure in the coagulation-microfiltration (MF) process. The characteristics of humic acid aggregates coagulated by different iron-based coagulants, such as charge, size, fractal dimension and compressibility, have an effect on the cake layer structure. At the optimum iron dose of 0.6 to 0.8 mmol/L for ferric chloride (FC) and polymer ferric sulfate (PFS) pre-coagulation, at the point of charge neutralization for near zero zeta potential, the aggregate particles produced possess the greatest size and highest fractal dimension, which contributes to the cake layer being most loose with high porosity and low compressibility. Thus the membrane filterability is better. At a low or high iron dose of FC and PFS, a high negative or positive zeta potential with high charge repulsion results in so many small aggregate particles and low fractal dimension that the cake layer is compact with low porosity and high compressibility. Therefore the membrane fouling is accelerated and MF permeability becomes worse. The variation of cake layer structure as measured by scanning electric microscopy corresponds with the fact that the smaller the coagulation flocs size and fractal dimension are, the lower the porosity and the tighter the cake layer conformation. This also explains the MF membrane flux variation visually and accurately.

  16. Structural Origins of Nitroxide Side Chain Dynamics on Membrane Protein [alpha]-Helical Sites

    Energy Technology Data Exchange (ETDEWEB)

    Kroncke, Brett M.; Horanyi, Peter S.; Columbus, Linda (UV)

    2010-12-07

    Understanding the structure and dynamics of membrane proteins in their native, hydrophobic environment is important to understanding how these proteins function. EPR spectroscopy in combination with site-directed spin labeling (SDSL) can measure dynamics and structure of membrane proteins in their native lipid environment; however, until now the dynamics measured have been qualitative due to limited knowledge of the nitroxide spin label's intramolecular motion in the hydrophobic environment. Although several studies have elucidated the structural origins of EPR line shapes of water-soluble proteins, EPR spectra of nitroxide spin-labeled proteins in detergents or lipids have characteristic differences from their water-soluble counterparts, suggesting significant differences in the underlying molecular motion of the spin label between the two environments. To elucidate these differences, membrane-exposed {alpha}-helical sites of the leucine transporter, LeuT, from Aquifex aeolicus, were investigated using X-ray crystallography, mutational analysis, nitroxide side chain derivatives, and spectral simulations in order to obtain a motional model of the nitroxide. For each crystal structure, the nitroxide ring of a disulfide-linked spin label side chain (R1) is resolved and makes contacts with hydrophobic residues on the protein surface. The spin label at site I204 on LeuT makes a nontraditional hydrogen bond with the ortho-hydrogen on its nearest neighbor F208, whereas the spin label at site F177 makes multiple van der Waals contacts with a hydrophobic pocket formed with an adjacent helix. These results coupled with the spectral effect of mutating the i {+-} 3, 4 residues suggest that the spin label has a greater affinity for its local protein environment in the low dielectric than on a water-soluble protein surface. The simulations of the EPR spectra presented here suggest the spin label oscillates about the terminal bond nearest the ring while maintaining weak

  17. Multifaceted plasma membrane Ca(2+) pumps: From structure to intracellular Ca(2+) handling and cancer.

    Science.gov (United States)

    Padányi, Rita; Pászty, Katalin; Hegedűs, Luca; Varga, Karolina; Papp, Béla; Penniston, John T; Enyedi, Ágnes

    2016-06-01

    Plasma membrane Ca(2+) ATPases (PMCAs) are intimately involved in the control of intracellular Ca(2+) concentration. They reduce Ca(2+) in the cytosol not only by direct ejection, but also by controlling the formation of inositol-1,4,5-trisphosphate and decreasing Ca(2+) release from the endoplasmic reticulum Ca(2+) pool. In mammals four genes (PMCA1-4) are expressed, and alternative RNA splicing generates more than twenty variants. The variants differ in their regulatory characteristics. They localize into highly specialized membrane compartments and respond to the incoming Ca(2+) with distinct temporal resolution. The expression pattern of variants depends on cell type; a change in this pattern can result in perturbed Ca(2+) homeostasis and thus altered cell function. Indeed, PMCAs undergo remarkable changes in their expression pattern during tumorigenesis that might significantly contribute to the unbalanced Ca(2+) homeostasis of cancer cells. This article is part of a Special Issue entitled: Calcium and Cell Fate. Guest Editors: Jacques Haiech, Claus Heizmann, Joachim Krebs, Thierry Capiod and Olivier Mignen.

  18. Mathematical Model of Gas Permeation Through PTFE Porous Membrane and the Effect of Membrane Pore Structure%PTFE多孔膜气体渗透数学模型和膜孔结构的影响

    Institute of Scientific and Technical Information of China (English)

    张秀莉; 张卫东; 郝新敏; 张慧峰; 张泽廷; 张建春

    2003-01-01

    Membrane-based separation processes are new technology combined membrane separation with conven-tional separation. Hydrophobic porous membranes are often used in these processes. The structure of hydrophobicporous membrane has significant effect on mass transfer process. The permeabilities of five kinds of gas, He, N2,O2, CO2 and water vapor, across six polytetrafiuoroethylene(PTFE) flat membranes were tested experimentally.Results indicated that the greater the membrane mean pore size and the wider the pore size distribution are, thehigher the gas permeability. A gas permeation model, including the effects of membrane structure parameter and gasproperties, was established. A comprehensive characteristic parameter (including porosity, thickness and tortuosity)was found more effective to express the influence of membrane structure in gas permeation process. The predictedpermeation coefficients were in good agreement with experimental data.

  19. Different methods to alter surface morphology of high aspect ratio structures

    Science.gov (United States)

    Leber, M.; Shandhi, M. M. H.; Hogan, A.; Solzbacher, F.; Bhandari, R.; Negi, S.

    2016-03-01

    In various applications such as neural prostheses or solar cells, there is a need to alter the surface morphology of high aspect ratio structures so that the real surface area is greater than geometrical area. The change in surface morphology enhances the devices functionality. One of the applications of altering the surface morphology is of neural implants such as the Utah electrode array (UEA) that communicate with single neurons by charge injection induced stimulation or by recording electrical neural signals. For high selectivity between single cells of the nervous system, the electrode surface area is required to be as small as possible, while the impedance is required to be as low as possible for good signal to noise ratios (SNR) during neural recording. For stimulation, high charge injection and charge transfer capacities of the electrodes are required, which increase with the electrode surface. Traditionally, researchers have worked with either increasing the roughness of the existing metallization (platinum grey, black) or other materials such as Iridium Oxide and PEDOT. All of these previously investigated methods lead to more complicated metal deposition processes that are difficult to control and often have a critical impact on the mechanical properties of the metal films. Therefore, a modification of the surface underneath the electrode's coating will increase its surface area while maintaining the standard and well controlled metal deposition process. In this work, the surfaces of the silicon micro-needles were engineered by creating a defined microstructure on the electrodes surface using several methods such as laser ablation, focused ion beam, sputter etching, reactive ion etching (RIE) and deep reactive ion etching (DRIE). The surface modification processes were optimized for the high aspect ratio silicon structures of the UEA. The increase in real surface area while maintaining the geometrical surface area was verified using scanning electron

  20. Diabetic polyneuropathy, sensory neurons, nuclear structure and spliceosome alterations: a role for CWC22

    Directory of Open Access Journals (Sweden)

    Masaki Kobayashi

    2017-03-01

    Full Text Available Unique deficits in the function of adult sensory neurons as part of their early neurodegeneration might account for progressive polyneuropathy during chronic diabetes mellitus. Here, we provide structural and functional evidence for aberrant pre-mRNA splicing in a chronic type 1 model of experimental diabetic polyneuropathy (DPN. Cajal bodies (CBs, unique nuclear substructures involved in RNA splicing, increased in number in diabetic sensory neurons, but their expected colocalization with survival motor neuron (SMN proteins was reduced – a mislocalization described in motor neurons of spinal muscular atrophy. Small nuclear ribonucleoprotein particles (snRNPs, also participants in the spliceosome, had abnormal multiple nuclear foci unassociated with CBs, and their associated snRNAs were reduced. CWC22, a key spliceosome protein, was aberrantly upregulated in diabetic dorsal root ganglia (DRG, and impaired neuronal function. CWC22 attenuated sensory neuron plasticity, with knockdown in vitro enhancing their neurite outgrowth. Further, axonal delivery of CWC22 siRNA unilaterally to locally knock down the aberrant protein in diabetic nerves improved aspects of sensory function in diabetic mice. Collectively, our findings identify subtle but significant alterations in spliceosome structure and function, including dysregulated CBs and CWC22 overexpression, in diabetic sensory neurons that offer new ideas regarding diabetic sensory neurodegeneration in polyneuropathy.

  1. Diabetic polyneuropathy, sensory neurons, nuclear structure and spliceosome alterations: a role for CWC22

    Science.gov (United States)

    Kobayashi, Masaki; Chandrasekhar, Ambika; Cheng, Chu; Martinez, Jose A.; Ng, Hilarie; de la Hoz, Cristiane

    2017-01-01

    ABSTRACT Unique deficits in the function of adult sensory neurons as part of their early neurodegeneration might account for progressive polyneuropathy during chronic diabetes mellitus. Here, we provide structural and functional evidence for aberrant pre-mRNA splicing in a chronic type 1 model of experimental diabetic polyneuropathy (DPN). Cajal bodies (CBs), unique nuclear substructures involved in RNA splicing, increased in number in diabetic sensory neurons, but their expected colocalization with survival motor neuron (SMN) proteins was reduced – a mislocalization described in motor neurons of spinal muscular atrophy. Small nuclear ribonucleoprotein particles (snRNPs), also participants in the spliceosome, had abnormal multiple nuclear foci unassociated with CBs, and their associated snRNAs were reduced. CWC22, a key spliceosome protein, was aberrantly upregulated in diabetic dorsal root ganglia (DRG), and impaired neuronal function. CWC22 attenuated sensory neuron plasticity, with knockdown in vitro enhancing their neurite outgrowth. Further, axonal delivery of CWC22 siRNA unilaterally to locally knock down the aberrant protein in diabetic nerves improved aspects of sensory function in diabetic mice. Collectively, our findings identify subtle but significant alterations in spliceosome structure and function, including dysregulated CBs and CWC22 overexpression, in diabetic sensory neurons that offer new ideas regarding diabetic sensory neurodegeneration in polyneuropathy. PMID:28250049

  2. Diabetic polyneuropathy, sensory neurons, nuclear structure and spliceosome alterations: a role for CWC22.

    Science.gov (United States)

    Kobayashi, Masaki; Chandrasekhar, Ambika; Cheng, Chu; Martinez, Jose A; Ng, Hilarie; de la Hoz, Cristiane; Zochodne, Douglas W

    2017-03-01

    Unique deficits in the function of adult sensory neurons as part of their early neurodegeneration might account for progressive polyneuropathy during chronic diabetes mellitus. Here, we provide structural and functional evidence for aberrant pre-mRNA splicing in a chronic type 1 model of experimental diabetic polyneuropathy (DPN). Cajal bodies (CBs), unique nuclear substructures involved in RNA splicing, increased in number in diabetic sensory neurons, but their expected colocalization with survival motor neuron (SMN) proteins was reduced - a mislocalization described in motor neurons of spinal muscular atrophy. Small nuclear ribonucleoprotein particles (snRNPs), also participants in the spliceosome, had abnormal multiple nuclear foci unassociated with CBs, and their associated snRNAs were reduced. CWC22, a key spliceosome protein, was aberrantly upregulated in diabetic dorsal root ganglia (DRG), and impaired neuronal function. CWC22 attenuated sensory neuron plasticity, with knockdown in vitro enhancing their neurite outgrowth. Further, axonal delivery of CWC22 siRNA unilaterally to locally knock down the aberrant protein in diabetic nerves improved aspects of sensory function in diabetic mice. Collectively, our findings identify subtle but significant alterations in spliceosome structure and function, including dysregulated CBs and CWC22 overexpression, in diabetic sensory neurons that offer new ideas regarding diabetic sensory neurodegeneration in polyneuropathy.

  3. Ultraviolet Light Catalyzed Gelation of 3-Methacryloxypropyltrimethoxysilane via Altered Silicate Spatial Structure.

    Science.gov (United States)

    Wei, Li; Yonggang, Wu; Shukun, Shen; Shaofei, Song; Daodao, Hu

    2016-09-08

    The gelation of 3-methacryloxypropyltrimethoxysilane (MAPTMS) is much more difficult to achieve in conventional conditions. This article describes a novel and concise approach to acquire transparent and firm hybrid gel material by one step promptly without photoinitiator or other tetraalkoxysilane. MAPTMS was hydrolyzed in acidified aqueous solution, which became homogeneous sol in 3 min, and then the sol was irradiated with UV light for a few minutes to form gel. The experimental results indicated that MAPTMS sol gelled in the presence of UV-irradiation was mainly attributed to altering Si-O-Si skeleton structure through hydroxyl radicals, and the gelation originated from the hydrolytic polycondensation of MAPTMS rather than the polymerization of methacryloxy substituent groups. The hydroxyl radicals could break the Si-O-Si ring structure to form cross-linker like species, and these cross-linkers chemically joined linear chains together to form the gel network. This investigation offers not only the photoinduced gelation strategy for MAPTMS sol but also the new insight into the effect of UV-irradiation on the sol-gel process of organotrialkoxysilanes.

  4. Exposure of soil microbial communities to chromium and arsenic alters their diversity and structure.

    Science.gov (United States)

    Sheik, Cody S; Mitchell, Tyler W; Rizvi, Fariha Z; Rehman, Yasir; Faisal, Muhammad; Hasnain, Shahida; McInerney, Michael J; Krumholz, Lee R

    2012-01-01

    Extensive use of chromium (Cr) and arsenic (As) based preservatives from the leather tanning industry in Pakistan has had a deleterious effect on the soils surrounding production facilities. Bacteria have been shown to be an active component in the geochemical cycling of both Cr and As, but it is unknown how these compounds affect microbial community composition or the prevalence and form of metal resistance. Therefore, we sought to understand the effects that long-term exposure to As and Cr had on the diversity and structure of soil microbial communities. Soils from three spatially isolated tanning facilities in the Punjab province of Pakistan were analyzed. The structure, diversity and abundance of microbial 16S rRNA genes were highly influenced by the concentration and presence of hexavalent chromium (Cr (VI)) and arsenic. When compared to control soils, contaminated soils were dominated by Proteobacteria while Actinobacteria and Acidobacteria (which are generally abundant in pristine soils) were minor components of the bacterial community. Shifts in community composition were significant and revealed that Cr (VI)-containing soils were more similar to each other than to As contaminated soils lacking Cr (VI). Diversity of the arsenic resistance genes, arsB and ACR3 were also determined. Results showed that ACR3 becomes less diverse as arsenic concentrations increase with a single OTU dominating at the highest concentration. Chronic exposure to either Cr or As not only alters the composition of the soil bacterial community in general, but affects the arsenic resistant individuals in different ways.

  5. In vitro study on the alterations of brain tubulin structure and assembly affected by magnetite nanoparticles.

    Science.gov (United States)

    Dadras, Ali; Riazi, Gholam Hossein; Afrasiabi, Ali; Naghshineh, Ali; Ghalandari, Behafarid; Mokhtari, Farzad

    2013-03-01

    In recent decades, considerable efforts have been made to understand the mechanism of memory, cognition, and relevant neurodegenerative diseases in the human brain. Several studies have shown the importance of microtubule proteins in the memory mechanism and memory dysfunction. Microtubules possess dynamicity, which is essential for functions of neuronal networks. Microtubule-associated proteins, i.e., tau, play vital roles in microtubule stability. On the other hand, the ferromagnetic mineral magnetite (Fe(3)O(4)) has been detected in the normal human brain, and elevated levels of magnetite are also observed in the brains of Alzheimer's disease patients. Therefore, we propose that a relationship between microtubule organization in axons and brain magnetite nanoparticles is possible. In this study we found alterations of microtubule polymerization in the presence of increasing concentrations of magnetite through transmission electron microscopy images and a turbidimetry method. Structural changes of microtubule and tau protein, as an essential microtubule-associated protein for tubulin assembly, were detected via circular dichroism spectroscopy, intrinsic fluorescence, and 8-anilino-1-naphthalenesulfonic acid fluorometry. We predicted three possible binding sites on tau protein and one possible binding site on tubulin dimer for magnetite nanoparticles. Magnetite also causes the morphology of PC12 cells to change abnormally and cell viability to decrease. Finally, we suggest that magnetite changes microtubule dynamics and polymerization through two paths: (1) changing the secondary and tertiary structure of tubulin and (2) binding to either tubulin dimer or tau protein and preventing tau-tubulin interaction.

  6. Structural alterations of hemoglobin and myoglobin by glyoxal: a comparative study.

    Science.gov (United States)

    Banerjee, Sauradipta; Chakraborti, Abhay Sankar

    2014-05-01

    Glyoxal, a highly reactive oxoaldehyde, increases in diabetic condition. It reacts with different proteins to form advanced glycation end products (AGEs). Here we have studied the structural alterations as well as the sites and nature of amino acid modifications of two heme proteins, hemoglobin and myoglobin on incubation with glyoxal for seven days at 25°C. In comparison with normal hemoglobin (HbA0), glyoxal-treated hemoglobin (GHbA0) exhibits decreased absorbance around 280 nm, reduced intrinsic fluorescence and lower surface hydrophobicity. However, glyoxal-treated myoglobin (GMb) exhibits the opposite effects in these respects when compared to normal myoglobin (Mb). Glyoxal increases the thermal stability of hemoglobin, while it decreases the stability of myoglobin. Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF)-mass spectrometry reveals modifications of Arg-31α, Arg-40β and Arg-104β of hemoglobin by glyoxal to hydroimidazolone adducts. On the other hand, glyoxal modifies Lys-133 and Lys-145 to carboxymethyllysine and Arg-31 to hydroimidazolone adducts in myoglobin. Thus the same oxoaldehyde exerts different effects on hemoglobin and myoglobin and may be associated with different structural properties of the proteins.

  7. Structural alterations, pore generation, and deacetylation of α- and β-chitin submitted to steam explosion.

    Science.gov (United States)

    Tan, Too Shen; Chin, Hui Yen; Tsai, Min-Lang; Liu, Chao-Lin

    2015-05-20

    The purpose of this study was to use an environmentally friendly steam explosion method to achieve α- and β-chitin structural alterations, pore generation, and deacetylation, enhancing the degree of deacetylation (DD) in chitin and extending its applications. The samples of α- and β-chitin possessing various moisture contents that were exploded at 9 kg/cm(2) exhibited higher DDs, lower densities, lower crystallinity and more porous structures compared to unexploded chitin. After explosion, β-chitin exhibited a larger expansion ratio, lower crystallinity and contained a larger proportion of small-sized particles compared to α-chitin. The highest DD values of exploded α- and β-chitin with 75% moisture content were 42.9% and 43.7%, respectively. The exploded chitin samples with lower moisture content exhibited lower DDs, densities, crystallinity indices, smaller particle sizes, and higher expansion ratios than the chitin samples with higher moisture content. The chitin samples with lower moisture content also contained larger and more numerous pores.

  8. The effects of 7-dehydrocholesterol on the structural properties of membranes

    Science.gov (United States)

    Liu, Yingzhe; Chipot, Christophe; Shao, Xueguang; Cai, Wensheng

    2011-10-01

    Smith-Lemli-Opitz syndrome, a congenital and developmental malformation disease, is typified by abnormal accumulation of 7-dehydrocholesterol (7DHC), the immediate precursor of cholesterol (CHOL), and depletion thereof. Knowledge of the effect of 7DHC on the biological membrane is, however, still fragmentary. In this study, large-scale atomistic molecular dynamics simulations, employing two distinct force fields, have been conducted to elucidate differences in the structural properties of a hydrated dimyristoylphosphatidylcholine bilayer due to CHOL and 7DHC. The present series of results indicate that CHOL and 7DHC possess virtually the same ability to condense and order membranes. Furthermore, the condensing and ordering effects are shown to be strengthened at increasing sterol concentrations.

  9. pH control structure design for a periodically operated membrane separation process

    DEFF Research Database (Denmark)

    Prado Rubio, Oscar Andres; Jørgensen, Sten Bay; Jonsson, Gunnar Eigil

    2012-01-01

    structure is selected. The system controls pH using the imposed current density and resets the current density manipulating the hydroxide inlet concentration to the dialysate channel. The control structure is satisfactorily achieving a desired pH at the outlet of the feed channel in REED from period......A bioreactor integrated with an electrically driven membrane separation process (Reverse Electro-Enhanced Dialysis – REED) is under investigation as potential technology for intensifying lactic acid bioproduction. In this contribution the pH regulation issue in the periodically operated REED module...... is studied. A methodology for control structure design is proposed to handle the dynamic system. A sensitivity analysis is used for the conceptual design of the control structure. Dynamic simulations are employed to evaluate the sensitivity index. From the analysis a periodic input-resetting control...

  10. Camps 2.0: exploring the sequence and structure space of prokaryotic, eukaryotic, and viral membrane proteins.

    Science.gov (United States)

    Neumann, Sindy; Hartmann, Holger; Martin-Galiano, Antonio J; Fuchs, Angelika; Frishman, Dmitrij

    2012-03-01

    Structural bioinformatics of membrane proteins is still in its infancy, and the picture of their fold space is only beginning to emerge. Because only a handful of three-dimensional structures are available, sequence comparison and structure prediction remain the main tools for investigating sequence-structure relationships in membrane protein families. Here we present a comprehensive analysis of the structural families corresponding to α-helical membrane proteins with at least three transmembrane helices. The new version of our CAMPS database (CAMPS 2.0) covers nearly 1300 eukaryotic, prokaryotic, and viral genomes. Using an advanced classification procedure, which is based on high-order hidden Markov models and considers both sequence similarity as well as the number of transmembrane helices and loop lengths, we identified 1353 structurally homogeneous clusters roughly corresponding to membrane protein folds. Only 53 clusters are associated with experimentally determined three-dimensional structures, and for these clusters CAMPS is in reasonable agreement with structure-based classification approaches such as SCOP and CATH. We therefore estimate that ∼1300 structures would need to be determined to provide a sufficient structural coverage of polytopic membrane proteins. CAMPS 2.0 is available at http://webclu.bio.wzw.tum.de/CAMPS2.0/.

  11. [Structural modifications of the surface of Escherichia coli bacteria and copper-induced permeability of plasma membrane].

    Science.gov (United States)

    Lebedev, V S; Volodina, L A; Deĭnega, E Iu; Fedorov, Iu I

    2005-01-01

    The effect of Cu2+ on the structural organization of the cell surface of Escherichia coli bacteria during the induction of conductivity of a plasma membrane was studied. A fluorescent study did not reveal any substantial changes in the microviscosity of lipids by the action of copper ions. At the same time, a substantial reorganization of membrane proteins during plasmolysis was observed. A model of the copper-induced structural reorganization of membrane lipids was constructed, according to which the reorganization leads to the opening in the membrane of channels of nonspecific conductivity for cations. The opening of conductivity channels results from the break of disulfide bonds in critical membrane proteins during the interaction with Cu+, which form either due to the reduction of Cu2+ on specific sites of cell surface or by means of external reducing agents.

  12. Dorsal raphe nucleus of brain in the rats flown in space inflight and postflight alteration of structure

    Science.gov (United States)

    Krasnov, I.

    The structure of brain dorsal raphe nucleus (DRN) was studied in the rats flown in space aboard Space Shuttle "Columbia" (STS-58, SLS-2 program) and dissected on day 13 of the mission ("inflight" rats) and in 5-6 hours after finishing 14-day flight ("postflight" rats). The brain of "inflight" rats were excised after decapitation, sectioned sagitally halves of brain were fixed by immersion in 2,5 % glutaraldehyde in 0.1 M cacodylate buffer pH 7.3 at 4°C and kept in the flight at 4°C. After landing the brain frontal 0.5 mm sections from DRN area were osmificated and embedded in araldite at NASA ARC. The brains of "postflight": and control rats were underwent to the same procedure. Electronmicroscopical analysis, computer morphometry and glial cell count were performed at Moscow. In DRN neuropil of "inflight" rats the most part of axo-dendritic synapses were surrounded by glia cell processes and had decreased electron density of pre- and postsynaptic membrane and pronounced diminution of synaptic vesicle amount while dendrites were characterized by decrease in matrix electron density and microtubule quantity that in total indicates the decline of afferent flow reaching DRN neurons in microgravity. In DRN neurons of "inflight" rats all mitochondria were characterized by evenly increased dimensions, decreased matrix electron density, small amount of short and far- between located cristae and enlarged intermembrane and intercristae spaces, that in total points out low level of coupling of oxidation to phosphorilation, decrease in energy supply of neuron. Amount of ribosome in cytoplasm was significantly decreased indicating lower lever of biosynthetic processes. The last is supported by diminished dimensions of neuronal body, nucleus and nucleolus (place of r RNA synthesis), cross section area of that were reduced in DRN neurons of "inflight" rats by 18.8 % (p < 0.01), 11.1 % and 26.6 % (p <0,005) correspondingly. Ultrastructure and dimensions of intracellular

  13. Membrane interaction and secondary structure of de novo designed arginine-and tryptophan peptides with dual function

    KAUST Repository

    Rydberg, Hanna A.

    2012-10-01

    Cell-penetrating peptides and antimicrobial peptides are two classes of positively charged membrane active peptides with several properties in common. The challenge is to combine knowledge about the membrane interaction mechanisms and structural properties of the two classes to design peptides with membrane-specific actions, useful either as transporters of cargo or as antibacterial substances. Membrane active peptides are commonly rich in arginine and tryptophan. We have previously designed a series of arg/trp peptides and investigated how the position and number of tryptophans affect cellular uptake. Here we explore the antimicrobial properties and the interaction with lipid model membranes of these peptides, using minimal inhibitory concentrations assay (MIC), circular dichroism (CD) and linear dichroism (LD). The results show that the arg/trp peptides inhibit the growth of the two gram positive strains Staphylococcus aureus and Staphylococcus pyogenes, with some individual variations depending on the position of the tryptophans. No inhibition of the gram negative strains Proteus mirabilis or Pseudomonas aeruginosa was noticed. CD indicated that when bound to lipid vesicles one of the peptides forms an α-helical like structure, whereas the other five exhibited rather random coiled structures. LD indicated that all six peptides were somehow aligned parallel with the membrane surface. Our results do not reveal any obvious connection between membrane interaction and antimicrobial effect for the studied peptides. By contrast cell-penetrating properties can be coupled to both the secondary structure and the degree of order of the peptides. © 2012 Elsevier Inc.

  14. Investigation of lipid membrane macro- and micro-structure using calorimetry and computer simulation: structural and functional relationships

    DEFF Research Database (Denmark)

    Jørgensen, Kent; Mouritsen, Ole G.

    1999-01-01

    The lipid bilayer part of biological membranes is a complex lipid mixture displaying cooperative phenomena. By means of differential scanning calorimetry and computer simulation techniques, the equilibrium and non-equilibrium properties of the large assembly of mutually interacting amphiphilic...... lipid molecules constituting the lipid bilayer have been investigated. The cooperative many-particle lipid bilayer behavior is manifested in terms of phase transitions and large-scale macroscopic phase equilibria. On a smaller nanometer length-scale, equilibrium structural and compositional fluctuations...... and proteins. (C) 1999 Published by Elsevier Science B.V. All rights reserved....

  15. Structure formation of lipid membranes: Membrane self-assembly and vesicle opening-up to octopus-like micelles

    Science.gov (United States)

    Noguchi, Hiroshi

    2013-02-01

    We briefly review our recent studies on self-assembly and vesicle rupture of lipid membranes using coarse-grained molecular simulations. For single component membranes, lipid molecules self-assemble from random gas states to vesicles via disk-shaped clusters. Clusters aggregate into larger clusters, and subsequently the large disks close into vesicles. The size of vesicles are determined by kinetics than by thermodynamics. When a vesicle composed of lipid and detergent types of molecules is ruptured, a disk-shaped micelle called bicelle can be formed. When both surfactants have negligibly low critical micelle concentration, it is found that bicelles connected with worm-like micelles are also formed depending on the surfactant ratio and spontaneous curvature of the membrane monolayer.

  16. Effect of membrane structure on the action of polyenes II: nystatin activity along the phase diagram of ergosterol- and cholesterol-containing POPC membranes.

    Science.gov (United States)

    González-Damián, J; Ortega-Blake, I

    2010-09-01

    Pores formed by the polyene antibiotic nystatin were studied in solvent-free lipid membranes. The membranes were formed by the tip-dip technique using 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) with different mol fractions (0-50%) of cholesterol or ergosterol. The effects of the mol fraction of sterol and of temperature variation (15-35°C) on the activity of the pores, their unitary conductances, lifetimes and time average conductances were studied. The results were used to analyze the behavior of nystatin channels along the phase diagrams previously reported for these lipid mixtures and to propose that membrane structure is the determinant factor for the known ergosterol/cholesterol selectivity.

  17. Nanofiber-net-binary structured membranes for highly sensitive detection of trace HCl gas.

    Science.gov (United States)

    Wang, Xianfeng; Wang, Jialin; Si, Yang; Ding, Bin; Yu, Jianyong; Sun, Gang; Luo, Wenjing; Zheng, Gang

    2012-12-01

    This work describes the detection of trace hydrogen chloride (HCl) gas through analyses of the resonance frequency signal from quartz crystal microbalance (QCM) sensors coated with polyaniline (PANI) functionalized polyamide 6 (PA 6) (PANI-PA 6) nanofiber-net-binary (NNB) structured membranes. The PA 6 NNB substrate comprising nanofibers and spider-web-like nano-nets fabricated by a versatile electro-spinning/netting (ESN) process offered an ideal interface for the uniform PANI functionalization and enhanced sensing performance. Benefiting from the large specific surface area, high porosity, and strong adhesive force to the QCM electrode of the PANI-PA 6 NNB membranes, the developed HCl-selective sensors exhibited a rapid response, good reproducibility and stability, and low detection limit (7 ppb) at room temperature. Additionally, the PANI-PA 6 NNB sensing membranes presented visible color changes upon cycled exposure to HCl and ammonia, suggesting their potential application in the development of colorimetric sensors. The PANI-PA 6 NNB coated QCM sensors are considered to be a promising candidate for trace HCl gas detection in practical applications.

  18. S-layers as patterning structures and supporting layers for biomimetic membranes

    Science.gov (United States)

    Pum, Dietmar; Wetzer, Barbara; Schuster, Bernhard; Sleytr, Uwe B.

    1997-03-01

    A new approach in nanostructure technology particularly in the functionalization of surfaces has been developed on the basis of crystalline bacterial cell surface layers (S- layers). S-layers are composed of monomolecular arrays of identical (glyco)proteins showing high molecular order, defined mass distribution and isoporosity, and a high binding capacity for functional macromolecules. The possibility for recrystallizing isolated S-layer subunits into large isoporous, coherent lattices at solid supports, at the air/water interface or on lipid films and for handling such layers by standard Langmuir-Blodgett techniques opens a broad spectrum of applications in basic and applied membrane research. S-layer supported functional phospholipid bilayers or tetraether lipid films mimic the molecular architecture of those archaebacterial cell envelopes that are exclusively composed of an S-layer and a plasma membrane. This novel concept could lead to new techniques for exploiting large scale structural and functional principles of membrane associated and integrated molecules (e.g. ion channels, proton pumps, receptors).

  19. A novel Cryptosporidium parvum antigen, CP2, preferentially associates with membranous structures.

    Science.gov (United States)

    O'Hara, Steven P; Yu, Jae-Ran; Lin, Jim Jung-Ching

    2004-03-01

    The present study addresses the cloning and characterization of a Cryptosporidium parvum antigen, CP2. Sequencing of cDNA and genomic clones revealed a novel gene capable of coding a message of 2,136 nucleotides flanked by 28 and 140 nucleotides of the 5'- and 3'-noncoding regions, respectively. The deduced amino acid sequence suggests that CP2 is a secreted and/or membrane protein. Immunofluorescence microscopy detected CP2 enrichment in sporozoites that subsequently appeared to encase type I meronts in infected HCT-8 cells. Immunogold electron microscopy revealed that CP2 consistently localized to membranous structures throughout development. In addition, progression from macrogametocyte to sporulated oocyst revealed CP2 initially at the periphery of amylopectin-like granules, in the cytoplasm and discrete vesicles, the parasitophorous vacuole, on the surface of sporozoites, and finally on the parasitophorous vacuole membrane (PVM). The observed expression pattern suggests that CP2 may be involved in the invasion process and/or PVM integrity.

  20. Myelin-specific proteins: a structurally diverse group of membrane-interacting molecules.

    Science.gov (United States)

    Han, Huijong; Myllykoski, Matti; Ruskamo, Salla; Wang, Chaozhan; Kursula, Petri

    2013-01-01

    The myelin sheath is a multilayered membrane in the nervous system, which has unique biochemical properties. Myelin carries a set of specific high-abundance proteins, the structure and function of which are still poorly understood. The proteins of the myelin sheath are involved in a number of neurological diseases, including autoimmune diseases and inherited neuropathies. In this review, we briefly discuss the structural properties and functions of selected myelin-specific proteins (P0, myelin oligodendrocyte glycoprotein, myelin-associated glycoprotein, myelin basic protein, myelin-associated oligodendrocytic basic protein, P2, proteolipid protein, peripheral myelin protein of 22 kDa, 2',3'-cyclic nucleotide 3'-phosphodiesterase, and periaxin); such properties include, for example, interactions with lipid bilayers and the presence of large intrinsically disordered regions in some myelin proteins. A detailed understanding of myelin protein structure and function at the molecular level will be required to fully grasp their physiological roles in the myelin sheath.

  1. Reconstitution of the membrane protein OmpF into biomimetic block copolymer–phospholipid hybrid membranes

    Science.gov (United States)

    Bieligmeyer, Matthias; Artukovic, Franjo; Hirth, Thomas; Schiestel, Thomas

    2016-01-01

    Summary Structure and function of many transmembrane proteins are affected by their environment. In this respect, reconstitution of a membrane protein into a biomimetic polymer membrane can alter its function. To overcome this problem we used membranes formed by poly(1,4-isoprene-block-ethylene oxide) block copolymers blended with 1,2-diphytanoyl-sn-glycero-3-phosphocholine. By reconstituting the outer membrane protein OmpF from Escherichia coli into these membranes, we demonstrate functionality of this protein in biomimetic lipopolymer membranes, independent of the molecular weight of the block copolymers. At low voltages, the channel conductance of OmpF in 1 M KCl was around 2.3 nS. In line with these experiments, integration of OmpF was also revealed by impedance spectroscopy. Our results indicate that blending synthetic polymer membranes with phospholipids allows for the reconstitution of transmembrane proteins under preservation of protein function, independent of the membrane thickness. PMID:27547605

  2. The structural role of cholesterol in cell membranes: from condensed bilayers to lipid rafts.

    Science.gov (United States)

    Krause, Martin R; Regen, Steven L

    2014-12-16

    CONSPECTUS: Defining the two-dimensional structure of cell membranes represents one of the most daunting challenges currently facing chemists, biochemists, and biophysicists. In particular, the time-averaged lateral organization of the lipids and proteins that make up these natural enclosures has yet to be established. As the classic Singer-Nicolson model of cell membranes has evolved over the past 40 years, special attention has focused on the structural role played by cholesterol, a key component that represents ca. 30% of the total lipids that are present. Despite extensive studies with model membranes, two fundamental issues have remained a mystery: (i) the mechanism by which cholesterol condenses low-melting lipids by uncoiling their acyl chains and (ii) the thermodynamics of the interaction between cholesterol and high- and low-melting lipids. The latter bears directly on one of the most popular notions in modern cell biology, that is, the lipid raft hypothesis, whereby cholesterol is thought to combine with high-melting lipids to form "lipid rafts" that float in a "sea" of low-melting lipids. In this Account, we first describe a chemical approach that we have developed in our laboratories that has allowed us to quantify the interactions between exchangeable mimics of cholesterol and low- and high-melting lipids in model membranes. In essence, this "nearest-neighbor recognition" (NNR) method involves the synthesis of dimeric forms of these lipids that contain a disulfide moiety as a linker. By means of thiolate-disulfide interchange reactions, equilibrium mixtures of dimers are then formed. These exchange reactions are initiated either by adding dithiothreitol to a liposomal dispersion to generate a small amount of thiol monomer or by including a small amount of thiol monomer in the liposomes at pH 5.0 and then raising the pH to 7.4. We then show how such NNR measurements have allowed us to distinguish between two very different mechanisms that have been

  3. Structure-activity relationships of ω-Agatoxin IVA in lipid membranes.

    Science.gov (United States)

    Ryu, Jae Ha; Jung, Hoi Jong; Konishi, Shiro; Kim, Ha Hyung; Park, Zee-Yong; Kim, Jae Il

    2017-01-01

    To analyze structural features of ω-Aga IVA, a gating modifier toxin from spider venom, we here investigated the NMR solution structure of ω-Aga IVA within DPC micelles. Under those conditions, the Cys-rich central region of ω-Aga IVA still retains the inhibitor Cys knot motif with three short antiparallel β-strands seen in water. However, (15)N HSQC spectra of ω-Aga IVA within micelles revealed that there are radical changes to the toxin's C-terminal tail and several loops upon binding to micelles. The C-terminal tail of ω-Aga IVA appears to assume a β-turn like conformation within micelles, though it is disordered in water. Whole-cell patch clamp studies with several ω-Aga IVA analogs indicate that both the hydrophobic C-terminal tail and an Arg patch in the core region of ω-Aga IVA are critical for Cav2.1 blockade. These results suggest that the membrane environment stabilizes the structure of the toxin, enabling it to act in a manner similar to other gating modifier toxins, though its mode of interaction with the membrane and the channel is unique.

  4. Interfacial Structure, Dynamics, and Transport of Polyelectrolyte Membrane Materials for Fuel Cells

    Science.gov (United States)

    Soles, Christopher; Page, K.; Eastman, S.; Kim, S.; Kang, S.; Dura, J.; National Institute of Standards; Technology; Polymers Divison Team; NIST Collaboration

    2011-03-01

    Polymer electrolyte membranes (PEM) fuel cells show promise for a wide range of applications both in the transportation sector and for stationary power production due to their high charge density and low operating temperatures. While the structure and transport of bulk PEMs have been studied extensively, little is known about these materials at interfaces and under confinement, as they exist within the membrane electrode assembly (MEA). Using neutron/ x-ray reflectivity and polarization-modulation infrared reflection-absorption spectroscopy, we have studied the polymer-substrate interfacial structure, swelling, and water transport as function of humidity, surface chemistry, and film thickness. The interfacial structure is highly dependent upon the substrate surface chemistry and the swelling/water diffusivity are suppressed when the PEM is confined to a thin film. This new information will enable researchers to more accurately model the performance of the MEA as current simulations typically rely on bulk property values to predict water and proton transport under these conditions.

  5. On the vein-stiffening membrane structure of a dragonfly hind wing

    Institute of Scientific and Technical Information of China (English)

    Zhong-xue LI; Wei SHEN; Gen-shu TONG; Jia-meng TIAN; Loc VU-QUOC

    2009-01-01

    Aiming at exploring the excellent structural performance of the vein-stiffening membrane structure of dragonfly hind wings, we analyzed two planar computational models and three 3D computational models with cambered corrugation based on the finite element method. It is shown that the vein size in different zones is proportional to the magnitude of the vein internal force when the wing structure is subjected to uniform out-of-plane transverse loading. The membrane contributes little to the flexural stiffness of the planar wing models, while exerting an immense impact upon the stiffness of the 3D wing models with cambered corrugation. If a lumped mass of 10% of the wing is fixed on the leading edge close to the wing tip, the wing fundamental fre-quency decreases by 10.7%~13.2%; ifa lumped mass is connected to the wing via multiple springs, the wing fundamental fre-quency decreases by 16.0%~18.0%. Such decrease in fundamental frequency explains the special function of the wing pterostigma in alleviating the wing quivering effect. These particular features of dragonfly wings can be mimicked in the design of new-style reticulately stiffening thin-walled roof systems and flapping wings in novel intelligent aerial vehicles.

  6. The influence of oscillating electromagnetic fields on membrane structure and function: Synthetic liposome and natural membrane bilayer systems with direct application to the controlled delivery of chemical agents

    Energy Technology Data Exchange (ETDEWEB)

    Liburdy, R.P.; de Manincor, D.; Fingado, B.

    1989-09-01

    Investigations have been conducted to determine if an imposed electromagnetic field can influence membrane transport, and ion and drug permeability in both synthetic and natural cell membrane systems. Microwave fields enhance accumulation of sodium in the lymphocyte and induce protein shedding at Tc. Microwaves also trigger membrane permeability of liposome systems under specific field exposure conditions. Sensitivity varies in a defined way in bilayers displaying a membrane structural phase transition temperature, Tc; maximal release was observed at or near Tc. Significantly, liposome systems without a membrane phase transition were also found to experience permeability increases but, in contrast, this response was temperature independent. The above results indicate that field-enhanced drug release occurs in liposome vesicles that possess a Tc as well as non-Tc liposomes. Additional studies extend non-Tc liposome responses to the in vivo case in which microwaves trigger Gentamicin release from a liposome depot'' placed subcutaneously in the rat hind leg. In addition, evidence is provided that cell surface sequestered liposomes can be triggered by microwave fields to release drugs directly into target cells. 24 refs., 6 figs.

  7. Computation of wind-induced vibrations of flexible shells and membranous structures

    Science.gov (United States)

    Glück, M.; Breuer, M.; Durst, F.; Halfmann, A.; Rank, E.

    2003-04-01

    A partitioned coupling approach for time-dependent fluid-structure interactions is applied to thin shells and membranous structures with large displacements. The frame algorithm connects a three-dimensional, finite volume-based multi-block flow solver for incompressible fluids with a finite element code for geometrically nonlinear structural problems using a commercial coupling interface. Thus a high modularity is achieved and the whole range of opportunities with these two powerful codes - each of them highly adapted to its specific field of application - can be used also for coupled simulations. Two completely different configurations were investigated. First, the coupling algorithm was applied to an academic test configuration consisting of one, two, and three flexible L-shaped plates being loaded by a steady far-field flow. Various investigations were carried out at different Reynolds numbers /(Re=50,200, and 500) in order to study phenomena such as vortex shedding, resonance, influence of the interaction between several flexible plates, whereas the second and third plates were placed in the wake of the first. The second part of the paper shows that in principle the coupling procedure can also deal with real-life structures as they occur in civil engineering. A membranous roof of glass-fiber synthetics with a complex shape was exposed to a time-dependent wind gust from diagonally above which was superimposed on a constant basic wind flow parallel to the ground. The structural model contains the pre-stressed textile roof including the taut cables at its circumference which are fastened at the pylons. As a structural response, the wind gust led to a displacement of the textile roof which disappeared again when the gust subsided. With the coupled algorithm proposed in the paper it is possible to study dynamic interactions for engineering applications.

  8. Concept-Development of a Structure Supported Membrane for Deployable Space Applications - From Nature to Manufacture and Testing

    Science.gov (United States)

    Zander, Martin; Belvin, W. K.

    2012-01-01

    Current space applications of membrane structures include large area solar power arrays, solar sails, antennas, and numerous other large aperture devices like the solar shades of the new James Webb Space Telescope. These expandable structural systems, deployed in-orbit to achieve the desired geometry, are used to collect, reflect and/or transmit electromagnetic radiation. This work, a feasibility study supporting a diploma thesis, describes the systematic process for developing a biologically inspired concept for a structure supported (integrated) membrane, that features a rip stop principle, makes self-deployment possible and is part of an ultra-light weight space application. Novel manufacturing of membrane prototypes and test results are presented for the rip-stop concepts. Test data showed that the new membrane concept has a higher tear resistance than neat film of equivalent mass.

  9. Structural Chromosomal Alterations Induced by Dietary Bioflavonoids in Fanconi Anemia Lymphocytes

    Directory of Open Access Journals (Sweden)

    Gonzalo Guevara

    2007-06-01

    Full Text Available IntroductionFanconi anemia is an autosomal recessive diseasecharacterized by a variety of congenital abnormalities,progressive bone marrow failure,increased chromosomal instability and higherrisk to acute myeloid leukemia, solid tumors. Thisentity can be considered an appropriate biologicalmodel to analyze natural substances with possiblegenotoxic effect. The aims of this study wereto describe and quantify structural chromosomalaberrations induced by 5 flavones, 2 isoflavonesand a topoisomerase II chemotherapeutic inhibitorin Fanconi anemia lymphocytes in order todetermine chromosomal numbers changes and/or type of chromosomal damage.Materials and methodsChromosomes stimulated by phytohaemagglutininM, from Fanconi anemia lymphocytes,were analysed by conventional cytogenetic culture.For each chemical substance and controls,one hundred metaphases were evaluated. Chromosomalalterations were documented by photographyand imaging analyzer. To statisticalanalysis was used chi square test to identify significantdifferences between frequencies of chromosomaldamage of basal and exposed cellcultured a P value less than 0.05.ResultsThere were 431 chromosomal alterations in1000 metaphases analysed; genistein was themore genotoxic bioflavonoid, followed in descendentorder by genistin, fisetin, kaempferol,quercetin, baicalein and miricetin. Chromosomalaberrations observed were: chromatidbreaks, chromosomal breaks, cromatid andchromosomal gaps, quadriratials exchanges,dicentrics chromosome and complex rearrangements.ConclusionBioflavonoids as genistein, genistin and fisetin,which are commonly present in the human diet,showed statistical significance in the number ofchromosomal aberrations in Fanconi anemialymphocytes, regarding the basal damage.

  10. Exercise challenge in Gulf War Illness reveals two subgroups with altered brain structure and function.

    Directory of Open Access Journals (Sweden)

    Rakib U Rayhan

    Full Text Available Nearly 30% of the approximately 700,000 military personnel who served in Operation Desert Storm (1990-1991 have developed Gulf War Illness, a condition that presents with symptoms such as cognitive impairment, autonomic dysfunction, debilitating fatigue and chronic widespread pain that implicate the central nervous system. A hallmark complaint of subjects with Gulf War Illness is post-exertional malaise; defined as an exacerbation of symptoms following physical and/or mental effort. To study the causal relationship between exercise, the brain, and changes in symptoms, 28 Gulf War veterans and 10 controls completed an fMRI scan before and after two exercise stress tests to investigate serial changes in pain, autonomic function, and working memory. Exercise induced two clinical Gulf War Illness subgroups. One subgroup presented with orthostatic tachycardia (n = 10. This phenotype correlated with brainstem atrophy, baseline working memory compensation in the cerebellar vermis, and subsequent loss of compensation after exercise. The other subgroup developed exercise induced hyperalgesia (n = 18 that was associated with cortical atrophy and baseline working memory compensation in the basal ganglia. Alterations in cognition, brain structure, and symptoms were absent in controls. Our novel findings may provide an understanding of the relationship between the brain and post-exertional malaise in Gulf War Illness.

  11. Exercise challenge in Gulf War Illness reveals two subgroups with altered brain structure and function.

    Science.gov (United States)

    Rayhan, Rakib U; Stevens, Benson W; Raksit, Megna P; Ripple, Joshua A; Timbol, Christian R; Adewuyi, Oluwatoyin; VanMeter, John W; Baraniuk, James N

    2013-01-01

    Nearly 30% of the approximately 700,000 military personnel who served in Operation Desert Storm (1990-1991) have developed Gulf War Illness, a condition that presents with symptoms such as cognitive impairment, autonomic dysfunction, debilitating fatigue and chronic widespread pain that implicate the central nervous system. A hallmark complaint of subjects with Gulf War Illness is post-exertional malaise; defined as an exacerbation of symptoms following physical and/or mental effort. To study the causal relationship between exercise, the brain, and changes in symptoms, 28 Gulf War veterans and 10 controls completed an fMRI scan before and after two exercise stress tests to investigate serial changes in pain, autonomic function, and working memory. Exercise induced two clinical Gulf War Illness subgroups. One subgroup presented with orthostatic tachycardia (n = 10). This phenotype correlated with brainstem atrophy, baseline working memory compensation in the cerebellar vermis, and subsequent loss of compensation after exercise. The other subgroup developed exercise induced hyperalgesia (n = 18) that was associated with cortical atrophy and baseline working memory compensation in the basal ganglia. Alterations in cognition, brain structure, and symptoms were absent in controls. Our novel findings may provide an understanding of the relationship between the brain and post-exertional malaise in Gulf War Illness.

  12. Structural alterations of the social brain: a comparison between schizophrenia and autism.

    Directory of Open Access Journals (Sweden)

    Daniel Radeloff

    Full Text Available Autism spectrum disorder and schizophrenia share a substantial number of etiologic and phenotypic characteristics. Still, no direct comparison of both disorders has been performed to identify differences and commonalities in brain structure. In this voxel based morphometry study, 34 patients with autism spectrum disorder, 21 patients with schizophrenia and 26 typically developed control subjects were included to identify global and regional brain volume alterations. No global gray matter or white matter differences were found between groups. In regional data, patients with autism spectrum disorder compared to typically developed control subjects showed smaller gray matter volume in the amygdala, insula, and anterior medial prefrontal cortex. Compared to patients with schizophrenia, patients with autism spectrum disorder displayed smaller gray matter volume in the left insula. Disorder specific positive correlations were found between mentalizing ability and left amygdala volume in autism spectrum disorder, and hallucinatory behavior and insula volume in schizophrenia. Results suggest the involvement of social brain areas in both disorders. Further studies are needed to replicate these findings and to quantify the amount of distinct and overlapping neural correlates in autism spectrum disorder and schizophrenia.

  13. Leptin alters the structural and functional characteristics of adipose tissue before birth.

    Science.gov (United States)

    Yuen, B S J; Owens, P C; Muhlhausler, B S; Roberts, C T; Symonds, M E; Keisler, D H; McFarlane, J R; Kauter, K G; Evens, Y; McMillen, I C

    2003-06-01

    This study aimed to determine for the first time whether leptin can act to alter the structural and functional characteristics of adipose tissue before birth. Leptin (0.48 mg/kg/day) or saline was infused intravenously into fetal sheep for 4 days from either 136 or 137 days of gestation (term=147+/-3 days). Circulating leptin concentrations were increased approximately four- to fivefold by leptin infusion. Leptin infusion resulted in a significant increase in the proportion of smaller lipid locules present within fetal perirenal adipose tissue (PAT), and this was associated with a significant increase in the proportion of multilocular tissue and a significant decrease in the proportion and relative mass of unilocular tissue in fetal PAT. The relative abundance of leptin mRNA in fetal PAT was significantly lower in the leptin-infused group, and there was a positive correlation between the relative abundance of leptin mRNA and the proportion of unilocular adipose tissue in fetal PAT. The amount of uncoupling protein 1 tended to be higher (P=0.06) in leptin-infused compared with saline-infused fetuses. This is the first demonstration that leptin can act to regulate the lipid storage characteristics, leptin synthetic capacity, and potential thermogenic functions of fat before birth.

  14. Impact of ischemia-reperfusion on extracellular matrix processing and structure of the basement membrane of the heart.

    Directory of Open Access Journals (Sweden)

    Alexander Lauten

    Full Text Available PURPOSE: Acute ischemic injury is a strong inductor of cardiac remodelling, resulting in structural changes of the extracellular matrix (ECM and basement membrane (BM. In a large animal model of ischemia-reperfusion (I/R we investigated the post-ischemic liberation of the collagen-IV-fragments Tumstatin (TUM; 28 kDa-fragment of collagen-IV-alpha-3, Arresten (ARR; 26 kDa-fragment of collagen-IV-alpha-1 and Endorepellin (LG3, 85 kDa-fragment of perlecan which are biologically active in angiogenesis and vascularization in the post-ischemic myocardium. METHODS AND RESULTS: In this blinded study, 30 pigs were randomized to 60 min of global I/R at either 4°C or 32°C or served as control. Three transmyocardial tissue samples were collected prior to ischemia and within 30 min and 150 min of reperfusion. Tissue content of TUM, ARR and LG3 was analyzed by western blotting and immunostaining. Within 150 min of mild hypothermic I/R a significantly increased tissue content of ARR (0.17±0.14 vs. 0.56±0.56; p = 0.001 and LG3 (1.13±0.34 vs. 2.51±1.71, p11fold elevation of creatine kinase (2075±2595 U/l vs. 23248±6551 U/l; p<0.001 in the coronary sinus plasma samples. Immunostaining demonstrated no changes for ARR and LG3 presentation irrespective of temperature. In contrast, TUM significantly decreased in the BM surrounding cardiomyocytes and capillaries after mild and deep hypothermic I/R, thus representing structural alterations of the BM in these groups. CONCLUSION: The study demonstrates an early temperature-dependent processing of Col-IV as major component of the BM of cardiomyocytes and vascular endothelium. These observations support the protective effects of deep hypothermia during I/R. Furthermore, the results suggest an increased structural remodelling of the myocardial basement membrane with potential functional impairment during mild hypothermic I/R which may contribute to the progression to post-ischemic heart failure.

  15. The Z Mutation Alters the Global Structural Dynamics of α1-Antitrypsin

    Science.gov (United States)

    Hughes, Victoria A.; Meklemburg, Robert; Bottomley, Stephen P.; Wintrode, Patrick L.

    2014-01-01

    α1-Antitrypsin (α1AT) deficiency, the most common serpinopathy, results in both emphysema and liver disease. Over 90% of all clinical cases of α1AT deficiency are caused by the Z variant in which Glu342, located at the top of s5A, is replaced by a Lys which results in polymerization both in vivo and in vitro. The Glu342Lys mutation removes a salt bridge and a hydrogen bond but does not effect the thermodynamic stability of Z α1AT compared to the wild type protein, M α1AT, and so it is unclear why Z α1AT has an increased polymerization propensity. We speculated that the loss of these interactions would make the native state of Z α1AT more dynamic than M α1AT and that this change renders the protein more polymerization prone. We have used hydrogen/deuterium exchange combined with mass spectrometry (HXMS) to determine the structural and dynamic differences between native Z and M α1AT to reveal the molecular basis of Z α1AT polymerization. Our HXMS data shows that the Z mutation significantly perturbs the region around the site of mutation. Strikingly the Z mutation also alters the dynamics of regions distant to the mutation such as the B, D and I helices and specific regions of each β-sheet. These changes in global dynamics may lead to an increase in the likelihood of Z α1AT sampling a polymerogenic structure thereby causing disease. PMID:25181470

  16. The Z mutation alters the global structural dynamics of α1-antitrypsin.

    Directory of Open Access Journals (Sweden)

    Victoria A Hughes

    Full Text Available α1-Antitrypsin (α1AT deficiency, the most common serpinopathy, results in both emphysema and liver disease. Over 90% of all clinical cases of α1AT deficiency are caused by the Z variant in which Glu342, located at the top of s5A, is replaced by a Lys which results in polymerization both in vivo and in vitro. The Glu342Lys mutation removes a salt bridge and a hydrogen bond but does not effect the thermodynamic stability of Z α1AT compared to the wild type protein, M α1AT, and so it is unclear why Z α1AT has an increased polymerization propensity. We speculated that the loss of these interactions would make the native state of Z α1AT more dynamic than M α1AT and that this change renders the protein more polymerization prone. We have used hydrogen/deuterium exchange combined with mass spectrometry (HXMS to determine the structural and dynamic differences between native Z and M α1AT to reveal the molecular basis of Z α1AT polymerization. Our HXMS data shows that the Z mutation significantly perturbs the region around the site of mutation. Strikingly the Z mutation also alters the dynamics of regions distant to the mutation such as the B, D and I helices and specific regions of each β-sheet. These changes in global dynamics may lead to an increase in the likelihood of Z α1AT sampling a polymerogenic structure thereby causing disease.

  17. Characterization of 4-HNE modified L-FABP reveals alterations in structural and functional dynamics.

    Science.gov (United States)

    Smathers, Rebecca L; Fritz, Kristofer S; Galligan, James J; Shearn, Colin T; Reigan, Philip; Marks, Michael J; Petersen, Dennis R

    2012-01-01

    4-Hydroxynonenal (4-HNE) is a reactive α,β-unsaturated aldehyde produced during oxidative stress and subsequent lipid peroxidation of polyunsaturated fatty acids. The reactivity of 4-HNE towards DNA and nucleophilic amino acids has been well established. In this report, using proteomic approaches, liver fatty acid-binding protein (L-FABP) is identified as a target for modification by 4-HNE. This lipid binding protein mediates the uptake and trafficking of hydrophobic ligands throughout cellular compartments. Ethanol caused a significant decrease in L-FABP protein (PL-FABP (PL-FABP were mapped using MALDI-TOF/TOF mass spectrometry on apo (Lys57 and Cys69) and holo (Lys6, Lys31, His43, Lys46, Lys57 and Cys69) L-FABP. The impact of 4-HNE adduction was found to occur in a concentration-dependent manner; affinity for the fluorescent ligand, anilinonaphthalene-8-sulfonic acid, was reduced from 0.347 µM to Kd(1) = 0.395 µM and Kd(2) = 34.20 µM. Saturation analyses revealed that capacity for ligand is reduced by approximately 50% when adducted by 4-HNE. Thermal stability curves of apo L-FABP was also found to be significantly affected by 4-HNE adduction (ΔTm = 5.44°C, PL-FABP while more apparent differences were observed within the internal binding pocket, revealing reduced area and structural integrity. New solvent accessible portals on the periphery of the protein were observed following 4-HNE modification in both the apo and holo state, suggesting an adaptive response to carbonylation. The results from this study detail the dynamic process associated with L-FABP modification by 4-HNE and provide insight as to how alterations in structural integrity and ligand binding may a contributing factor in the pathogenesis of ALD.

  18. Exposure of soil microbial communities to chromium and arsenic alters their diversity and structure.

    Directory of Open Access Journals (Sweden)

    Cody S Sheik

    Full Text Available Extensive use of chromium (Cr and arsenic (As based preservatives from the leather tanning industry in Pakistan has had a deleterious effect on the soils surrounding production facilities. Bacteria have been shown to be an active component in the geochemical cycling of both Cr and As, but it is unknown how these compounds affect microbial community composition or the prevalence and form of metal resistance. Therefore, we sought to understand the effects that long-term exposure to As and Cr had on the diversity and structure of soil microbial communities. Soils from three spatially isolated tanning facilities in the Punjab province of Pakistan were analyzed. The structure, diversity and abundance of microbial 16S rRNA genes were highly influenced by the concentration and presence of hexavalent chromium (Cr (VI and arsenic. When compared to control soils, contaminated soils were dominated by Proteobacteria while Actinobacteria and Acidobacteria (which are generally abundant in pristine soils were minor components of the bacterial community. Shifts in community composition were significant and revealed that Cr (VI-containing soils were more similar to each other than to As contaminated soils lacking Cr (VI. Diversity of the arsenic resistance genes, arsB and ACR3 were also determined. Results showed that ACR3 becomes less diverse as arsenic concentrations increase with a single OTU dominating at the highest concentration. Chronic exposure to either Cr or As not only alters the composition of the soil bacterial community in general, but affects the arsenic resistant individuals in different ways.

  19. Polyphosphate kinases modulate Campylobacter jejuni outer membrane constituents and alter its capacity to invade and survive in intestinal epithelial cells in vitro.

    Science.gov (United States)

    Pina-Mimbela, Ruby; Madrid, Jesús Arcos; Kumar, Anand; Torrelles, Jordi B; Rajashekara, Gireesh

    2015-12-30

    Campylobacter jejuni is the most prevalent cause of bacterial gastroenteritis worldwide. Polyphosphate kinases 1 and 2 (PPK1 and PPK2) regulate several cellular processes, including the biosynthesis of the bacterial cell wall. Despite their importance, whether PPK1 and PPK2 modulate the composition of C. jejuni outer membrane constituents (OMCs) and consequently impact its interaction with host cells remains unknown. Our comparative analysis between C. jejuni wild type, Δppk1, and Δppk2 strains showed qualitative and quantitative differences in the total OMC composition among these strains. Importantly, these OMC variations observed on the C. jejuni polyphosphate kinase mutants are directly related to their capacity to invade, survive, and alter the immune response of intestinal epithelial cells in vitro. Specifically, sub-fractionation of the C. jejuni OMC indicated that OMC proteins are uniquely associated with bacterial invasion, whereas C. jejuni OMC proteins, lipids, and lipoglycans are all associated with C. jejuni intracellular survival. This study provides new insights regarding the function of polyphosphate kinases and their role in C. jejuni infection.

  20. Magnetically controlled permeability membranes

    KAUST Repository

    Kosel, Jurgen

    2013-10-31

    A bioactive material delivery system can include a thermoresponsive polymer membrane and nanowires distributed within the thermoresponsive polymer membrane. Magnetic activation of a thermoresponsive polymer membrane can take place via altering the magnetization or dimensions of nanowires dispersed or ordered within the membrane matrix.

  1. Influence of myelin proteins on the structure and dynamics of a model membrane with emphasis on the low temperature regime

    Science.gov (United States)

    Knoll, W.; Peters, J.; Kursula, P.; Gerelli, Y.; Natali, F.

    2014-11-01

    Myelin is an insulating, multi-lamellar membrane structure wrapped around selected nerve axons. Increasing the speed of nerve impulses, it is crucial for the proper functioning of the vertebrate nervous system. Human neurodegenerative diseases, such as multiple sclerosis, are linked to damage to the myelin sheath through demyelination. Myelin exhibits a well defined subset of myelin-specific proteins, whose influence on membrane dynamics, i.e., myelin flexibility and stability, has not yet been explored in detail. In a first paper [W. Knoll, J. Peters, P. Kursula, Y. Gerelli, J. Ollivier, B. Demé, M. Telling, E. Kemner, and F. Natali, Soft Matter 10, 519 (2014)] we were able to spotlight, through neutron scattering experiments, the role of peripheral nervous system myelin proteins on membrane stability at room temperature. In particular, the myelin basic protein and peripheral myelin protein 2 were found to synergistically influence the membrane structure while keeping almost unchanged the membrane mobility. Further insight is provided by this work, in which we particularly address the investigation of the membrane flexibility in the low temperature regime. We evidence a different behavior suggesting that the proton dynamics is reduced by the addition of the myelin basic protein accompanied by negligible membrane structural changes. Moreover, we address the importance of correct sample preparation and characterization for the success of the experiment and for the reliability of the obtained results.

  2. Influence of myelin proteins on the structure and dynamics of a model membrane with emphasis on the low temperature regime

    Energy Technology Data Exchange (ETDEWEB)

    Knoll, W. [University Joseph Fourier, UFR PhiTEM, Grenoble (France); Institut Laue–Langevin, Grenoble (France); Peters, J. [University Joseph Fourier, UFR PhiTEM, Grenoble (France); Institut Laue–Langevin, Grenoble (France); Institut de Biologie Structurale, Grenoble (France); Kursula, P. [University of Oulu, Oulu (Finland); CSSB–HZI, DESY, Hamburg (Germany); Gerelli, Y. [Institut Laue–Langevin, Grenoble (France); Natali, F., E-mail: natali@ill.fr [Institut Laue–Langevin, Grenoble (France); CNR–IOM–OGG, c/o Institut Laue–Langevin, Grenoble (France)

    2014-11-28

    Myelin is an insulating, multi-lamellar membrane structure wrapped around selected nerve axons. Increasing the speed of nerve impulses, it is crucial for the proper functioning of the vertebrate nervous system. Human neurodegenerative diseases, such as multiple sclerosis, are linked to damage to the myelin sheath through demyelination. Myelin exhibits a well defined subset of myelin-specific proteins, whose influence on membrane dynamics, i.e., myelin flexibility and stability, has not yet been explored in detail. In a first paper [W. Knoll, J. Peters, P. Kursula, Y. Gerelli, J. Ollivier, B. Demé, M. Telling, E. Kemner, and F. Natali, Soft Matter 10, 519 (2014)] we were able to spotlight, through neutron scattering experiments, the role of peripheral nervous system myelin proteins on membrane stability at room temperature. In particular, the myelin basic protein and peripheral myelin protein 2 were found to synergistically influence the membrane structure while keeping almost unchanged the membrane mobility. Further insight is provided by this work, in which we particularly address the investigation of the membrane flexibility in the low temperature regime. We evidence a different behavior suggesting that the proton dynamics is reduced by the addition of the myelin basic protein accompanied by negligible membrane structural changes. Moreover, we address the importance of correct sample preparation and characterization for the success of the experiment and for the reliability of the obtained results.

  3. Thinking in Terms of Structure-Activity-Relationships (T-SAR: A Tool to Better Understand Nanofiltration Membranes

    Directory of Open Access Journals (Sweden)

    Stefan Stolte

    2011-07-01

    Full Text Available A frontier to be conquered in the field of membrane technology is related to the very limited scientific base for the rational and task-specific design of membranes. This is especially true for nanofiltration membranes with properties that are based on several solute-membrane interaction mechanisms. “Thinking in terms of Structure-Activity-Relationships” (T-SAR is a methodology which applies a systematic analysis of a chemical entity based on its structural formula. However, the analysis become more complex with increasing size of the molecules considered. In this study, T-SAR was combined with classical membrane characterization methods, resulting in a new methodology which allowed us not only to explain membrane characteristics, but also provides evidence for the importance of the chemical structure for separation performance. We demonstrate an application of the combined approach and its potential to discover stereochemistry, molecular interaction potentials, and reactivity of two FilmTec nanofiltration membranes (NF-90 and NF-270. Based on these results, it was possible to predict both properties and performance in the recovery of hydrophobic ionic liquids from aqueous solution.

  4. The NMR Structure of Human Obestatin in Membrane-Like Environments: Insights into the Structure-Bioactivity Relationship of Obestatin

    Science.gov (United States)

    Gurriarán-Rodríguez, Uxía; Mosteiro, Carlos S.; Álvarez-Pérez, Juan C.; Otero-Alén, María; Camiña, Jesús P.; Gallego, Rosalía; García-Caballero, Tomás; Martín-Pastor, Manuel; Casanueva, Felipe F.; Jiménez-Barbero, Jesús; Pazos, Yolanda

    2012-01-01

    The quest for therapeutic applications of obestatin involves, as a first step, the determination of its 3D solution structure and the relationship between this structure and the biological activity of obestatin. On this basis, we have employed a combination of circular dichroism (CD), nuclear magnetic resonance (NMR) spectroscopy, and modeling techniques to determine the solution structure of human obestatin (1). Other analogues, including human non-amidated obestatin (2) and the fragment peptides (6–23)-obestatin (3), (11–23)-obestatin (4), and (16–23)-obestatin (5) have also been scrutinized. These studies have been performed in a micellar environment to mimic the cell membrane (sodium dodecyl sulfate, SDS). Furthermore, structural-activity relationship studies have been performed by assessing the in vitro proliferative capabilities of these peptides in the human retinal pigmented epithelial cell line ARPE-19 (ERK1/2 and Akt phosphorylation, Ki67 expression, and cellular proliferation). Our findings emphasize the importance of both the primary structure (composition and size) and particular segments of the obestatin molecule that posses significant α-helical characteristics. Additionally, details of a species-specific role for obestatin have also been hypothesized by comparing human and mouse obestatins (1 and 6, respectively) at both the structural and bioactivity levels. PMID:23056203