Sample records for alter three-dimensional collagen

  1. Entrapment of cultured pancreas islets in three-dimensional collagen matrices. (United States)

    Chao, S H; Peshwa, M V; Sutherland, D E; Hu, W S


    In vitro culture of islets of Langerhans decreases their immunogenicity, presumably by eliminating passenger leukocytes and other Ia+ presenting cells within the islets. Islets cultivated in petri dishes either at 37 degrees C or at 25 degrees C gradually disintegrate during culture in a time-dependent manner which is related to the free-floating condition of the islets. Also, a fraction of the islets disperse as single cells and beta-cell aggregates or adhere to the bottom of the culture dishes. Thus, the retrieval rate of transplantable islets is dampened due to their disintegration and spontaneous dispersion in conventional petri dish cultures. Entrapment of freshly harvested islets of Langerhans in a three-dimensional collagen matrix was studied as an alternative method for islet cultivation. The contraction of collagen fibrils during in vitro culture counteracts the dispersion of islets and helps in maintaining their integrity while in culture. It was observed that the entrapped islets maintain satisfactory morphology, viability, and capability of glucose-dependent insulin secretion for over 2 wk. The oxygen consumption rate and glucose metabolism of these islets was not deranged when entrapped in collagen. Also, the retrieval of islets is easier and more efficient than that observed in conventional culture systems. Our results indicate that culture of islets in three-dimensional collagen gels can potentially develop into an ideal system applicable to clinical transplantation of cultured islets or beta-cell aggregates.

  2. Production of ordered collagen matrices for three-dimensional cell culture. (United States)

    Bessea, Laurence; Coulomb, Bernard; Lebreton-Decoster, Corinne; Giraud-Guille, Marie-Madeleine


    The aim of this study was to produce collagen gels with controlled fibrillar order as matrices for cell culture. Their structural characterization and colonization by human dermal fibroblasts arc presently reported. Ordered matrices are obtained by using the property of type I collagen monomers to self-assemble in liquid crystalline arrays by slow evaporation of acidic solutions at high concentrations. Induction of fibrillogenesis concomittent with the stabilization of the supramolecular order is then obtained, within petri dishes, by gelation of the viscous preparations under ammoniac vapours. For comparison, dermal equivalents, in which collagen compaction depends on fibroblasts contraction, are made according to the method of Bell et al. (Proc. Natl. Acad. Sci. 76(3) (1979) 1274). The fibrillar arrangement of the collagen network in the samples is determined by polarizing optical microscopy and by transmission electron microscopy. Whereas dermal equivalents exhibit heterogeneous distributions of fibrils, two differents types of order are obtained in the stabilized liquid crystalline collagen samples, namely aligned, i.e. nematic, at 20 mg/ml, or crimped, i.e. precholesteric, at 40 mg/ml. The morphology and behaviour of fibroblasts seeded on the surface of the matrices are analysed from day 1 to day 21. The cells are viable, proliferate at the surface of ordered matrices and migrate up to 400 microm in depth. Production of concentrated and ordered collagen matrices provides new perspectives to study the behaviour of cells in a valorized three-dimensional context where the fibrillar organization becomes close to in vivo situations.

  3. Human Th17 Migration in Three-Dimensional Collagen Involves p38 MAPK. (United States)

    Kadiri, Maleck; El Azreq, Mohammed-Amine; Berrazouane, Sofiane; Boisvert, Marc; Aoudjit, Fawzi


    T cell migration across extracellular matrix (ECM) is an important step of the adaptive immune response but is also involved in the development of inflammatory autoimmune diseases. Currently, the molecular mechanisms regulating the motility of effector T cells in ECM are not fully understood. Activation of p38 MAPK has been implicated in T cell activation and is critical to the development of immune and inflammatory responses. In this study, we examined the implication of p38 MAPK in regulating the migration of human Th17 cells through collagen. Using specific inhibitor and siRNA, we found that p38 is necessary for human Th17 migration in three-dimensional (3D) collagen and that 3D collagen increases p38 phosphorylation. We also provide evidence that the collagen receptor, discoidin domain receptor 1 (DDR1), which promotes Th17 migration in 3D collagen, is involved in p38 activation. Together, our findings suggest that targeting DDR1/p38 MAPK pathway could be beneficial for the treatment of Th17-mediated inflammatory diseases. J. Cell. Biochem. 118: 2819-2827, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  4. Three-Dimensional Geometry of Collagenous Tissues by Second Harmonic Polarimetry. (United States)

    Reiser, Karen; Stoller, Patrick; Knoesen, André


    Collagen is a biological macromolecule capable of second harmonic generation, allowing label-free detection in tissues; in addition, molecular orientation can be determined from the polarization dependence of the second harmonic signal. Previously we reported that in-plane orientation of collagen fibrils could be determined by modulating the polarization angle of the laser during scanning. We have now extended this method so that out-of-plane orientation angles can be determined at the same time, allowing visualization of the 3-dimensional structure of collagenous tissues. This approach offers advantages compared with other methods for determining out-of-plane orientation. First, the orientation angles are directly calculated from the polarimetry data obtained in a single scan, while other reported methods require data from multiple scans, use of iterative optimization methods, application of fitting algorithms, or extensive post-optical processing. Second, our method does not require highly specialized instrumentation, and thus can be adapted for use in almost any nonlinear optical microscopy setup. It is suitable for both basic and clinical applications. We present three-dimensional images of structurally complex collagenous tissues that illustrate the power of such 3-dimensional analyses to reveal the architecture of biological structures.


    Zhang, Renkun; Tu, Yue; Zhao, Mingliang; Chen, Chong; Liang Haiqian; Wang, Jingjing; Zhang, Sai; Li, Xiaohong


    To prepare bionic spinal cord scaffold of collagen-heparin sulfate by three-dimensional (3-D) printing, and provide a cell carrier for tissue engineering in the treatment of spinal cord injury. Collagen- heparin sulfate hydrogel was prepared firstly, and 3-D printer was used to make bionic spinal cord scaffold. The structure was observed to measure its porosity. The scaffold was immersed in simulated body fluid to observe the quality change. The neural stem cells (NSCs) were isolated from fetal rat brain cortex of 14 days pregnant Sprague-Dawley rats and cultured. The experiment was divided into 2 groups: in group A, the scaffold was co-cultured with rat NSCs for 7 days to observe cell adhesion and morphological changes; in group B, the NSCs were cultured in 24 wells culture plate precoating with poly lysine. MTT assay was used to detect the cell viability, and immunofluorescence staining was used to identify the differentiation of NSCs. Bionic spinal cord scaffold was fabricated by 3-D printer successfully. Scanning electron microscope (SEM) observation revealed the micro porous structure with parallel and longitudinal arrangements and with the porosity of 90.25% ± 2.15%. In vitro, the value of pH was not changed obviously. After 8 weeks, the scaffold was completely degraded, and it met the requirements of tissue engineering scaffolds. MTT results showed that there was no significant difference in absorbence (A) value between 2 groups at 1, 3, and 7 days after culture (P > 0.05). There were a lot of NSCs with reticular nerve fiber under light microscope in 2 groups; the cells adhered to the scaffold, and axons growth and neurosphere formation were observed in group A under SEM at 7 days after culture. The immunofluorescence staining observation showed that NSCs could differentiated into neurons and glial cells in 2 groups; the differentiation rate was 29.60% ± 2.68% in group A and was 10.90% ± 2.13% in group B, showing significant difference (t = 17.30, P = 0

  6. Towards Tuning the Mechanical Properties of Three-Dimensional Collagen Scaffolds Using a Coupled Fiber-Matrix Model

    Directory of Open Access Journals (Sweden)

    Shengmao Lin


    Full Text Available Scaffold mechanical properties are essential in regulating the microenvironment of three-dimensional cell culture. A coupled fiber-matrix numerical model was developed in this work for predicting the mechanical response of collagen scaffolds subjected to various levels of non-enzymatic glycation and collagen concentrations. The scaffold was simulated by a Voronoi network embedded in a matrix. The computational model was validated using published experimental data. Results indicate that both non-enzymatic glycation-induced matrix stiffening and fiber network density, as regulated by collagen concentration, influence scaffold behavior. The heterogeneous stress patterns of the scaffold were induced by the interfacial mechanics between the collagen fiber network and the matrix. The knowledge obtained in this work could help to fine-tune the mechanical properties of collagen scaffolds for improved tissue regeneration applications.

  7. Assessment of altered three-dimensional blood characteristics in aortic disease by velocity distribution analysis

    NARCIS (Netherlands)

    Garcia, Julio; Barker, Alex J.; van Ooij, Pim; Schnell, Susanne; Puthumana, Jyothy; Bonow, Robert O.; Collins, Jeremy D.; Carr, James C.; Markl, Michael


    PurposeTo test the feasibility of velocity distribution analysis for identifying altered three-dimensional (3D) flow characteristics in patients with aortic disease based on 4D flow MRI volumetric analysis. MethodsForty patients with aortic (Ao) dilation (mid ascending aortic diameter MAA=407 mm,

  8. Fibroblasts and monocyte macrophages contract and degrade three-dimensional collagen gels in extended co-culture

    Directory of Open Access Journals (Sweden)

    Ertl Ronald F


    Full Text Available Abstract Background Inflammatory cells are believed to play a prominent role during tissue repair and remodeling. Since repair processes develop and mature over extended time frames, the present study was designed to evaluate the effect of monocytes and fibroblasts in prolonged culture in three-dimensional collagen gels. Methods Blood monocytes from healthy donors and human fetal lung fibroblasts were cast into type I collagen gels and maintained in floating cultures for three weeks. Results Fibroblast-mediated gel contraction was initially inhibited by the presence of monocytes (P P P 2 production was significantly increased by co-culture and its presence attenuated collagen degradation. Conclusion The current study, therefore, demonstrates that interaction between monocytes and fibroblasts can contract and degrade extracellular matrix in extended culture.

  9. Development of a three-dimensional unit cell to model the micromechanical response of a collagen-based extracellular matrix. (United States)

    Susilo, Monica E; Roeder, Blayne A; Voytik-Harbin, Sherry L; Kokini, Klod; Nauman, Eric A


    The three-dimensional microstructure and mechanical properties of the collagen fibrils within the extracellular matrix (ECM) is now being recognized as a primary factor in regulating cell proliferation and differentiation. Therefore, an appreciation of the mechanical aspects by which a cell interacts with its ECM is required for the development of engineered tissues. Ultimately, using these interactions to design tissue equivalents requires mathematical models with three-dimensional architecture. In this study, a three-dimensional model of a collagen fibril matrix undergoing uniaxial tensile stress was developed by making use of cellular solids. A structure consisting of thin struts was chosen to represent the arrangement of collagen fibrils within an engineered ECM. To account for the large deformation of tissues, the collagen fibrils were modeled as hyperelastic neo-Hookean or Mooney-Rivlin materials. The use of cellular solids allowed the fibril properties to be related to the ECM properties in closed form, which, in turn, allowed the estimation of fibril properties using ECM experimental data. A set of previously obtained experimental data consisting of simultaneous measures of the fibril microstructure and mechanical tests was used to evaluate the model's capability to estimate collagen fibril mechanical property when given tissue-scale data and to predict the tissue-scale mechanical properties when given estimated fibril stiffness. The fibril tangent modulus was found to be 1.26 + or - 0.70 and 1.62 + or - 0.88 MPa when the fibril was modeled as neo-Hookean and Mooney-Rivlin material, respectively. There was no statistical significance of the estimated fibril tangent modulus among the different groups. Sensitivity analysis showed that the fibril mechanical properties and volume fraction were the two input parameters which required accurate values. While the volume fraction was easily obtained from the initial image of the gel, the fibril mechanical properties

  10. Design and characterization of microcapsules-integrated collagen matrixes as multifunctional three-dimensional scaffolds for soft tissue engineering. (United States)

    Del Mercato, Loretta L; Passione, Laura Gioia; Izzo, Daniela; Rinaldi, Rosaria; Sannino, Alessandro; Gervaso, Francesca


    Three-dimensional (3D) porous scaffolds based on collagen are promising candidates for soft tissue engineering applications. The addition of stimuli-responsive carriers (nano- and microparticles) in the current approaches to tissue reconstruction and repair brings about novel challenges in the design and conception of carrier-integrated polymer scaffolds. In this study, a facile method was developed to functionalize 3D collagen porous scaffolds with biodegradable multilayer microcapsules. The effects of the capsule charge as well as the influence of the functionalization methods on the binding efficiency to the scaffolds were studied. It was found that the binding of cationic microcapsules was higher than that of anionic ones, and application of vacuum during scaffolds functionalization significantly hindered the attachment of the microcapsules to the collagen matrix. The physical properties of microcapsules-integrated scaffolds were compared to pristine scaffolds. The modified scaffolds showed swelling ratios, weight losses and mechanical properties similar to those of unmodified scaffolds. Finally, in vitro diffusional tests proved that the collagen scaffolds could stably retain the microcapsules over long incubation time in Tris-HCl buffer at 37°C without undergoing morphological changes, thus confirming their suitability for tissue engineering applications. The obtained results indicate that by tuning the charge of the microcapsules and by varying the fabrication conditions, collagen scaffolds patterned with high or low number of microcapsules can be obtained, and that the microcapsules-integrated scaffolds fully retain their original physical properties. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. The Application of Three-Dimensional Collagen-Scaffolds Seeded with Myoblasts to Repair Skeletal Muscle Defects


    Ma, Jianqun; Holden, Kyle; Zhu, Jinhong; Pan, Haiying; Li, Yong


    Three-dimensional (3D) engineered tissue constructs are a novel and promising approach to tissue repair and regeneration. 3D tissue constructs have the ability to restore form and function to damaged soft tissue unlike previous methods, such as plastic surgery, which are able to restore only form, leaving the function of the soft tissue often compromised. In this study, we seeded murine myoblasts (C2C12) into a collagen composite scaffold and cultured the scaffold in a roller bottle cell cult...

  12. Detection of the Hematopoietic Stem and Progenitor Cell Marker CD133 during Angiogenesis in Three-Dimensional Collagen Gel Culture

    Directory of Open Access Journals (Sweden)

    Masumi Akita


    Full Text Available We detected the hematopoietic stem and progenitor cell marker CD133 using immunogold labeling during angiogenesis in a three-dimensional collagen gel culture. CD133-positive cells were present in capillary tubes newly formed from aortic explants in vitro. The CD133-positive cell population had the capacity to form capillary tubes. Lovastatin strongly inhibited cell migration from aortic explants and caused the degradation of the capillary tubes. The present study provides insight into the function of CD133 during angiogenesis as well as an explanation for the antiangiogenic effect of statins.

  13. Noncontact three-dimensional evaluation of surface alterations and wear in NiTi endodontic instruments. (United States)

    Ferreira, Fabiano Guerra; Barbosa, Igor Bastos; Scelza, Pantaleo; Montagnana, Marcello Bulhões; Russano, Daniel; Neff, John; Scelza, Miriam Zaccaro


    The aim of this study was to undertake a qualitative and quantitative assessment of nanoscale alterations and wear on the surfaces of nickel-titanium (NiTi) endodontic instruments, before and after use, through a high-resolution, noncontact, three-dimensional optical profiler, and to verify the accuracy of the evaluation method. Cutting blade surfaces of two different brands of NiTi endodontic instruments, Reciproc R25 (n = 5) and WaveOne Primary (n = 5), were examined and compared before and after two uses in simulated root canals made in clear resin blocks. The analyses were performed on three-dimensional images which were obtained from surface areas measuring 211 × 211 µm, located 3 mm from their tips. The quantitative evaluation of the samples was conducted before and after the first and second usage, by the recordings of three amplitude parameters. The data were subjected to statistical analysis at a 5% level of significance. The results revealed statistically significant increases in the surface wear of both instruments groups after the second use. The presence of irregularities was found on the surface topography of all the instruments, before and after use. Regardless of the evaluation stage, most of the defects were observed in the WaveOne instruments. The three-dimensional technique was suitable and effective for the accurate investigation of the same surfaces of the instruments in different periods of time.

  14. Collagen density gradient on three-dimensional printed poly(ε-caprolactone) scaffolds for interface tissue engineering. (United States)

    D'Amora, Ugo; D'Este, Matteo; Eglin, David; Safari, Fatemeh; Sprecher, Christoph M; Gloria, Antonio; De Santis, Roberto; Alini, Mauro; Ambrosio, Luigi


    The ability to engineer scaffolds that resemble the transition between tissues would be beneficial to improve repair of complex organs, but has yet to be achieved. In order to mimic tissue organization, such constructs should present continuous gradients of geometry, stiffness and biochemical composition. Although the introduction of rapid prototyping or additive manufacturing techniques allows deposition of heterogeneous layers and shape control, the creation of surface chemical gradients has not been explored on three-dimensional (3D) scaffolds obtained through fused deposition modelling technique. Thus, the goal of this study was to introduce a gradient functionalization method in which a poly(ε-caprolactone) surface was first aminolysed and subsequently covered with collagen via carbodiimide reaction. The 2D constructs were characterized for their amine and collagen contents, wettability, surface topography and biofunctionality. Finally, chemical gradients were created in 3D printed scaffolds with controlled geometry and porosity. The combination of additive manufacturing and surface modification is a viable tool for the fabrication of 3D constructs with controlled structural and chemical gradients. These constructs can be employed for mimicking continuous tissue gradients for interface tissue engineering. Copyright © 2017 John Wiley & Sons, Ltd.

  15. Mineralization of collagen may occur on fibril surfaces: evidence from conventional and high-voltage electron microscopy and three-dimensional imaging (United States)

    Landis, W. J.; Hodgens, K. J.; Song, M. J.; Arena, J.; Kiyonaga, S.; Marko, M.; Owen, C.; McEwen, B. F.


    The interaction between collagen and mineral crystals in the normally calcifying leg tendons from the domestic turkey, Meleagris gallopavo, has been investigated at an ultrastructural level with conventional and high-voltage electron microscopy, computed tomography, and three-dimensional image reconstruction methods. Specimens treated by either aqueous or anhydrous techniques and resin-embedded were appropriately sectioned and regions of early tendon mineralization were photographed. On the basis of individual photomicrographs, stereoscopic pairs of images, and tomographic three-dimensional image reconstructions, platelet-shaped crystals may be demonstrated for the first time in association with the surface of collagen fibrils. Mineral is also observed in closely parallel arrays within collagen hole and overlap zones. The mineral deposition at these spatially distinct locations in the tendon provides insight into possible means by which calcification is mediated by collagen as a fundamental event in skeletal and dental formation among vertebrates.

  16. Three-dimensional collagen I promotes gemcitabine resistance in vitro in pancreatic cancer cells through HMGA2-dependent histone acetyltransferase expression.

    Directory of Open Access Journals (Sweden)

    Surabhi Dangi-Garimella

    Full Text Available Pancreatic ductal adenocarcinoma (PDAC is associated with a pronounced collagen-rich stromal reaction that has been shown to contribute to chemo-resistance. We have previously shown that PDAC cells are resistant to gemcitabine chemotherapy in the collagen microenvironment because of increased expression of the chromatin remodeling protein high mobility group A2 (HMGA2. We have now found that human PDAC tumors display higher levels of histone H3K9 and H3K27 acetylation in fibrotic regions. We show that relative to cells grown on tissue culture plastic, PDAC cells grown in three-dimensional collagen gels demonstrate increased histone H3K9 and H3K27 acetylation, along with increased expression of p300, PCAF and GCN5 histone acetyltransferases (HATs. Knocking down HMGA2 attenuates the effect of collagen on histone H3K9 and H3K27 acetylation and on collagen-induced p300, PCAF and GCN5 expression. We also show that human PDAC tumors with HMGA2 demonstrate increased histone H3K9 and H3K27 acetylation. Additionally, we show that cells in three-dimensional collagen gels demonstrate increased protection against gemcitabine. Significantly, down-regulation of HMGA2 or p300, PCAF and GCN5 HATs sensitizes the cells to gemcitabine in three-dimensional collagen. Overall, our results increase our understanding of how the collagen microenvironment contributes to chemo-resistance in vitro and identify HATs as potential therapeutic targets against this deadly cancer.

  17. Alignment of Astrocytes Increases Neuronal Growth in Three-Dimensional Collagen Gels and Is Maintained Following Plastic Compression to Form a Spinal Cord Repair Conduit


    East, Emma; de Oliveira, Daniela Blum; Golding, Jon P.; Phillips, James B.


    After injury to the spinal cord, reactive astrocytes form a glial scar consisting of highly ramified cell processes that constitute a major impediment to repair, partly due to their lack of orientation and guidance for regenerating axons. In some nonmammalian vertebrates, successful central nervous system regeneration is attributed to the alignment of reactive glia, which guide axons across the lesion site. Here, a three-dimensional mammalian cell-seeded collagen gel culture system was used t...

  18. Three-dimensional collagen represses cyclin E1 via β1 integrin in invasive breast cancer cells. (United States)

    Wu, Yuehan; Guo, Xun; Brandt, Yekaterina; Hathaway, Helen J; Hartley, Rebecca S


    The behavior of breast epithelial cells is influenced by their microenvironment which includes stromal cells and extracellular matrix (ECM). During cancer progression, the tissue microenvironment fails to control proliferation and differentiation, resulting in uncontrolled growth and invasion. Upon invasion, the ECM encountered by breast cancer cells changes from primarily laminin and collagen IV to primarily collagen I. We show here that culturing invasive breast cancer cells in 3-dimensional (3D) collagen I inhibits proliferation through direct regulation of cyclin E1, a G(1)/S regulator that is overexpressed in breast cancer. When the breast cancer cell line MDA-MB-231 was cultured within 3D collagen I gels, the G(1)/S transition was inhibited as compared to cells cultured on conventional 2D collagen or plastic dishes. Cells in 3D collagen downregulated cyclin E1 protein and mRNA, with no change in cyclin D1 level. Cyclin D1 was primarily cytoplasmic in 3D cultures, and this was accompanied by decreased phosphorylation of Rb, a nuclear target for both cyclin E1- and cyclin D1-associated kinases. Positive regulators of cyclin E1 expression, the transcription factor c-Myc and cold-inducible RNA binding protein (CIRP), were decreased in 3D collagen cultures, while the collagen I receptor β1 integrin was greatly increased. Inhibition of β1 integrin function rescued proliferation and cyclin E1 expression as well as c-Myc expression and Rb phosphorylation, but cyclin D1 remained cytoplasmic. We conclude that cyclin E1 is repressed independent of effects on cyclin D1 in a 3D collagen environment and dependent on β1 integrin interaction with collagen I, reducing proliferation of invasive breast cancer cells.

  19. Osteoinduction and proliferation of bone-marrow stromal cells in three-dimensional poly (ε-caprolactone)/ hydroxyapatite/collagen scaffolds. (United States)

    Wang, Ting; Yang, Xiaoyan; Qi, Xin; Jiang, Chaoyin


    Osteoinduction and proliferation of bone-marrow stromal cells (BMSCs) in three-dimensional (3D) poly(ε-caprolactone) (PCL) scaffolds have not been studied throughly and are technically challenging. This study aimed to optimize nanocomposites of 3D PCL scaffolds to provide superior adhesion, proliferation and differentiation environment for BMSCs in this scenario. BMSCs were isolated and cultured in a novel 3D tissue culture poly(ε-caprolactone) (PCL) scaffold coated with poly-lysine, hydroxyapatite (HAp), collagen and HAp/collagen. Cell morphology was observed and BMSC biomarkers for osteogenesis, osteoblast differentiation and activation were analyzed. Scanning Electron Microscope (SEM) micrographs showed that coating materials were uniformly deposited on the surface of PCL scaffolds and BMSCs grew and aggregated to form clusters during 3D culture. Both mRNA and protein levels of the key players of osteogenesis and osteoblast differentiation and activation, including runt-related transcription factor 2 (Runx2), alkaline phosphates (ALP), osterix, osteocalcin, and RANKL, were significantly higher in BMSCs seeded in PCL scaffolds coated with HAp or HAp/collagen than those seeded in uncoated PCL scaffolds, whereas the expression levels were not significantly different in collagen or poly-lysine coated PCL scaffolds. In addition, poly-lysine, collagen, HAp/collagen, and HAp coated PCL scaffolds had significantly more viable cells than uncoated PCL scaffolds, especially scaffolds with HAp/collagen and collagen-alone coatings. That BMSCs in HAp or HAp/collagen PCL scaffolds had remarkably higher ALP activities than those in collagen-coated alone or uncoated PCL scaffolds indicating higher osteogenic differentiation levels of BMSCs in HAp or HAp/collagen PCL scaffolds. Moreover, morphological changes of BMSCs after four-week of 3D culture confirmed that BMSCs successfully differentiated into osteoblast with spread-out phenotype in HAp/collagen coated PCL scaffolds

  20. Reconstitution of bone-like matrix in osteogenically differentiated mesenchymal stem cell–collagen constructs: A three-dimensional in vitro model to study hematopoietic stem cell niche

    Directory of Open Access Journals (Sweden)

    WY Lai


    Full Text Available Mesenchymal stem/stromal cells (MSCs and osteoblasts are important niche cells for hematopoietic stem cells (HSCs in bone marrow osteoblastic niche. Here, we aim to partially reconstitute the bone marrow HSC niche in vitro using collagen microencapsulation for investigation of the interactions between HSCs and MSCs. Mouse MSCs (mMSCs microencapsulated in collagen were osteogenically differentiated to derive a bone-like matrix consisting of osteocalcin, osteopontin, and calcium deposits and secreted bone morphogenic protein 2 (BMP2. Decellularized bone-like matrix was seeded with fluorescence-labeled human MSCs and HSCs. Comparing with pure collagen scaffold, significantly more HSCs and HSC–MSC pairs per unit area were found in the decellularized bone-like matrix. Moreover, incubation with excess neutralizing antibody of BMP2 resulted in a significantly higher number of HSC per unit area than that without in the decellularized matrix. This work suggests that the osteogenic differentiated MSC–collagen microsphere is a valuable three-dimensional in vitro model to elucidate cell–cell and cell–matrix interactions in HSC niche.

  1. Characterization of three-dimensional cancer cell migration in mixed collagen-Matrigel scaffolds using microfluidics and image analysis.

    Directory of Open Access Journals (Sweden)

    María Anguiano

    Full Text Available Microfluidic devices are becoming mainstream tools to recapitulate in vitro the behavior of cells and tissues. In this study, we use microfluidic devices filled with hydrogels of mixed collagen-Matrigel composition to study the migration of lung cancer cells under different cancer invasion microenvironments. We present the design of the microfluidic device, characterize the hydrogels morphologically and mechanically and use quantitative image analysis to measure the migration of H1299 lung adenocarcinoma cancer cells in different experimental conditions. Our results show the plasticity of lung cancer cell migration, which turns from mesenchymal in collagen only matrices, to lobopodial in collagen-Matrigel matrices that approximate the interface between a disrupted basement membrane and the underlying connective tissue. Our quantification of migration speed confirms a biphasic role of Matrigel. At low concentration, Matrigel facilitates migration, most probably by providing a supportive and growth factor retaining environment. At high concentration, Matrigel slows down migration, possibly due excessive attachment. Finally, we show that antibody-based integrin blockade promotes a change in migration phenotype from mesenchymal or lobopodial to amoeboid and analyze the effect of this change in migration dynamics, in regards to the structure of the matrix. In summary, we describe and characterize a robust microfluidic platform and a set of software tools that can be used to study lung cancer cell migration under different microenvironments and experimental conditions. This platform could be used in future studies, thus benefitting from the advantages introduced by microfluidic devices: precise control of the environment, excellent optical properties, parallelization for high throughput studies and efficient use of therapeutic drugs.

  2. Using Second Harmonic Generation Microscopy to Study the Three-Dimensional Structure of Collagen and its Degradation Mechanism (United States)

    Mega, Yair

    Collagen is one of the most abundant proteins found in the human body. Its crystalline structure possesses no centrosymmetry, allowing it to emit second-harmonic waves. Second harmonic generation (SHG) microscopy utilizes the latter quality to produce high-resolution images of collagen rich tissues and therefore become a key research tool in the biomedical field. We developed a new model, intended to be used together with second harmonic generation (SHG) microscopy, to thoroughly investigate collagen-based tissues. We use our SHG model to reveal information in real time from enzymatic biochemical processes. We also present a novel method used to measure quantitatively the direction of the fibers within the tissue, from SHG images. Using this method, we were able to reconstruct an angular map of the orientation of collagen fibers from multiple sections across the entire area of a human cornea. The structure we obtained demonstrates the criss-crossing structure of the human cornea, previously suggested in the literature. In addition, we also report work on a unique step-wise three-photon fluorescence excitation discovered in melanin. This unique fluorescence mechanism was exploited to discriminate melanin on a small-size, low-cost and low laser power setup which was used as a prototype for a handheld device. The latter study is a part of a larger on-going effort in our group to explore new diagnosis methods to be used for early skin cancer screening. Finally, this work demonstrates a spectroscopy-based method to correct for blood vessel thickness effect. The method analyzes spectral shift from a molecular imaging agent and correlate the shifts to the length of the optical path in blood. The correction method described in this work is intended to be implemented on a guided catheter near infrared fluorescence (NIRF) intra-vascular imaging system. In this imaging system, this study's results will used to correct for the radial distance between the imaging tip of the

  3. Three-Dimensional Collagen Type I Matrix Up-Regulates Nuclear Isoforms of the Microtubule Associated Protein Tau Implicated in Resistance to Paclitaxel Therapy in Ovarian Carcinoma (United States)

    Gurler, Hilal; Yu, Yi; Choi, Jacqueline; Kajdacsy-Balla, Andre A.; Barbolina, Maria V.


    Epithelial ovarian carcinoma is the deadliest gynecologic malignancy. One reason underlying treatment failure is resistance to paclitaxel. Expression of the microtubule associated protein tau has recently been proposed as a predictor of response to paclitaxel in ovarian carcinoma patients. Expression of tau was probed using immunohistochemistry in 312 specimens of primary, and 40 specimens of metastatic, ovarian carcinoma. Serous epithelial ovarian carcinoma cell line models were used to determine the expression of tau by Western blot and immunofluorescence staining. Subcellular fractionation and Western blot were employed to examine nuclear and cytoplasmic localization of tau. Gene silencing and clonogenic assays were used to evaluate paclitaxel response. Tau was expressed in 44% of all tested cases. Among the primary serous epithelial ovarian carcinoma cases, 46% were tau-positive. Among the metastatic serous epithelial ovarian carcinomas, 63% were tau-positive. Cell culture experiments demonstrated that tau was expressed in multiple isoforms. Three-dimensional collagen I matrix culture conditions resulted in up-regulation of tau protein. Silencing of tau with specific siRNAs in a combination with three-dimensional culture conditions led to a significant decrease of the clonogenic ability of cells treated with paclitaxel. The data suggest that reduction of tau expression may sensitize ovarian carcinoma to the paclitaxel treatment. PMID:25658796

  4. Effectiveness of hybridized nano- and microstructure biodegradable, biocompatible, collagen-based, three-dimensional bioimplants in repair of a large tendon-defect model in rabbits. (United States)

    Moshiri, Ali; Oryan, Ahmad; Meimandi-Parizi, Abdulhamid; Silver, Ian A; Tanideh, Nader; Golestani, Navid


    This study was designed to investigate the effectiveness of hybridized, three-dimensional (3D) collagen implants in repair of experimentally-induced tendon defects in rabbits. Seventy-five mature New Zealand albino rabbits were divided into treated (n = 50) and control (n = 20) groups. The left Achilles tendon was completely transected and 2 cm excised. In treated animals defects were filled with hybridized collagen implants and repaired with sutures. In control rabbits tendon defects were sutured similarly but the gap was left untreated. Changes in injured and normal contralateral tendons were assessed weekly by ultrasonography. Among the treated animals, small pilot groups were euthanized at 5, 10, 15, 20, 30, 40 (n = 5 at each time interval) and the remainder (n = 20) at 60 days post-injury. All control animals were euthanized at 60 days. Tendon lesions of all animals were examined morphologically and histologically immediately after death. Those of the experimental groups (n = 20 for each) were examined for gross pathological, histopathological and ultrastructural changes together with dry matter content at 60 days post-injury, as were the normal, contralateral tendons of both groups. In comparison with healing lesions of control animals, the treated tendons showed greater numbers of mature tenoblasts and tenocytes, minimal peritendinous adhesions and oedema, together with greater echogenicity, homogeneity and fibril alignment. Fewer chronic inflammatory cells were present in treated than control tendons. Hybridized collagen implants acted as scaffolds for tenoblasts and longitudinally-orientated newly-formed collagen fibrils, which encouraged tendon repair with homogeneous, well-organized highly aligned scar tissue that was histologically and ultrastructurally more mature than in untreated controls. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  5. Collagen-alginate as bioink for three-dimensional (3D) cell printing based cartilage tissue engineering. (United States)

    Yang, Xingchen; Lu, Zhenhui; Wu, Huayu; Li, Wei; Zheng, Li; Zhao, Jinmin


    Articular cartilage repair is still a huge challenge for researchers and clinicians. 3D bioprinting could be an innovative technology for cartilage tissue engineering. In this study, we used collagen type I (COL) or agarose (AG) mixed with sodium alginate (SA) to serve as 3D bioprinting bioinks and incorporated chondrocytes to construct in vitro 3D printed cartilage tissue. Swelling ratio, mechanical properties, scanning electron microscopy (SEM), cell viability and cytoskeleton, biochemistry analysis and quantitative real-time polymerase chain reaction (qRT-PCR) were performed to investigate the function of different bioinks in 3D printing cartilage tissue engineering applications. The results showed that the mechanical strength was improved in both SA/COL and SA/AG groups compared to SA alone. Besides, the addition of COL or AG has little impact on gelling behavior, demonstrating the advantage as bioinks for 3D printing. Among the three scaffolds, SA/COL could distinctly facilitated cell adhesion, accelerated cell proliferation and enhanced the expression of cartilage specific genes such as Acan, Col2al and Sox9 than the other two groups. Lower expression of Col1a1, the fibrocartilage marker, was present in SA/COL group than that in both of SA and SA/AG groups. The results indicated that SA/COL effectively suppressed dedifferentiation of chondrocytes and preserved the phenotype. In summary, 3D bioprinted SA/COL with favorable mechanical strength and biological functionality is promising in cartilage tissue engineering. Copyright © 2017. Published by Elsevier B.V.

  6. Cultivation of Keratinocytes and Fibroblasts in a Three-Dimensional Bovine Collagen-Elastin Matrix (Matriderm® and Application for Full Thickness Wound Coverage in Vivo

    Directory of Open Access Journals (Sweden)

    Jasper Killat


    Full Text Available New skin substitutes for burn medicine or reconstructive surgery pose an important issue in plastic surgery. Matriderm® is a clinically approved three-dimensional bovine collagen-elastin matrix which is already used as a dermal substitute of full thickness burn wounds. The drawback of an avital matrix is the limited integration in full thickness skin defects, depending on the defect size. To further optimize this process, Matriderm® has also been studied as a matrix for tissue engineering of skin albeit long-term cultivation of the matrix with cells has been difficult. Cells have generally been seeded onto the matrix with high cell loss and minimal time-consuming migration. Here we developed a cell seeded skin equivalent after microtransfer of cells directly into the matrix. First, cells were cultured, and microinjected into Matriderm®. Then, cell viability in the matrix was determined by histology in vitro. As a next step, the skin substitute was applied in vivo into a full thickness rodent wound model. The wound coverage and healing was observed over a period of two weeks followed by histological examination assessing cell viability, proliferation and integration into the host. Viable and proliferating cells could be found throughout the entire matrix. The presented skin substitute resembles healthy skin in morphology and integrity. Based on this study, future investigations are planned to examine behaviour of epidermal stem cells injected into a collagen-elastin matrix under the aspects of establishment of stem cell niches and differentiation.

  7. Differentiation of human endometrial stem cells into urothelial cells on a three-dimensional nanofibrous silk-collagen scaffold: an autologous cell resource for reconstruction of the urinary bladder wall. (United States)

    Shoae-Hassani, Alireza; Mortazavi-Tabatabaei, Seyed Abdolreza; Sharif, Shiva; Seifalian, Alexander Marcus; Azimi, Alireza; Samadikuchaksaraei, Ali; Verdi, Javad


    Reconstruction of the bladder wall via in vitro differentiated stem cells on an appropriate scaffold could be used in such conditions as cancer and neurogenic urinary bladder. This study aimed to examine the potential of human endometrial stem cells (EnSCs) to form urinary bladder epithelial cells (urothelium) on nanofibrous silk-collagen scaffolds, for construction of the urinary bladder wall. After passage 4, EnSCs were induced by keratinocyte growth factor (KGF) and epidermal growth factor (EGF) and seeded on electrospun collagen-V, silk and silk-collagen nanofibres. Later we tested urothelium-specific genes and proteins (uroplakin-Ia, uroplakin-Ib, uroplakin-II, uroplakin-III and cytokeratin 20) by immunocytochemistry, RT-PCR and western blot analyses. Scanning electron microscopy (SEM) and histology were used to detect cell-matrix interactions. DMEM/F12 supplemented by KGF and EGF induced EnSCs to express urothelial cell-specific genes and proteins. Either collagen, silk or silk-collagen scaffolds promoted cell proliferation. The nanofibrous silk-collagen scaffolds provided a three-dimensional (3D) structure to maximize cell-matrix penetration and increase differentiation of the EnSCs. Human EnSCs seeded on 3D nanofibrous silk-collagen scaffolds and differentiated to urothelial cells provide a suitable source for potential use in bladder wall reconstruction in women. Copyright © 2013 John Wiley & Sons, Ltd.

  8. Expansion of the peri-implant attached gingiva with a three-dimensional collagen matrix in head and neck cancer patients-results from a prospective clinical and histological study. (United States)

    Lorenz, Jonas; Blume, Maximilian; Barbeck, Mike; Teiler, Anna; Kirkpatrick, C James; Sader, Robert A; Ghanaati, Shahram


    Attached peri-implant gingiva has proven to have an influence on the long-term stability of dental implants. In patients with head and neck cancer, a functional peri-implant gingiva is even more of critical importance. The aim of the presented prospective study was to investigate a three-dimensional xenogeneic collagen matrix for augmentation around dental implants in patients with former head and neck cancer. Eight patients presenting with insufficient peri-implant gingiva underwent vestibuloplasty on 51 implants using a xenogeneic collagen matrix. The clinical performance and the shrinking tendency of the matrix were analyzed in a cohort study. Furthermore, eight biopsies from the augmented regions were examined histologically to determine the biomaterial-related tissue reaction. Initially after vestibuloplasty, a mean width of attached gingiva of 4.4 ± 0.94 mm could be achieved. At clinical follow up investigation 6 months after vestibuloplasty, a mean width of 3.9 ± 0.65 mm attached peri-implant gingiva with a mean shrinking tendency of 14 % could be detected. Histological analysis of the biopsies revealed a well integrated collagen22 matrix covered with epithelium. Within the compact layer, mononuclear cells were observed only, while the spongious layer was infiltrated with a cell-rich connective tissue. Within its limits, the presented study revealed that the investigated collagen matrix is suitable to enlarge the peri-implant attached gingiva in head and neck cancer patients without adverse reactions or a multinucleated giant cell-triggered tissue reaction. The application of the investigated three-dimensional collagen matrix in vestibuloplasty achieved a sufficient amount of peri-implant attached gingiva in head and neck cancer patients. The favorable tissue reaction and the low shrinking tendency make the collagen matrix a promising alternative to autologous tissue grafts.

  9. Altered Left Ventricular Geometry and Torsional Mechanics in High Altitude-Induced Pulmonary Hypertension: A Three-Dimensional Echocardiographic Study. (United States)

    De Boeck, Bart W; Toma, Aurel; Kiencke, Stephanie; Dehnert, Christoph; Zügel, Stefanie; Siebenmann, Christoph; Auinger, Katja; Buser, Peter T; Maggiorini, Marco; Kaufmann, Beat A


    Changes in left ventricular (LV) torsion have been related to LV geometry in patients with concomitant long-standing myocardial disease or pulmonary hypertension (PH). We evaluated the effect of acute high altitude-induced isolated PH on LV geometry, volumes, systolic function, and torsional mechanics. Twenty-three volunteers were prospectively studied at low altitude and after the second (D3) and third night (D4) at high altitude (4,559 m). LV ejection fraction, multidirectional strains and torsion, LV volumes, sphericity, and eccentricity were derived by speckle-tracking on three-dimensional echocardiographic data sets. Pulmonary pressure was estimated from the transtricuspid pressure gradient (TRPG), LV preload from end-diastolic LV volume, and transmitral over mitral annular E velocity (E/e'). At high altitude, oxygen saturation decreased by 15%-20%, heart rate and cardiac index increased by 15%-20%, and TRPG increased from 21 ± 2 to 37 ± 9 mm Hg (P geometry and torsional mechanics. Copyright © 2017 American Society of Echocardiography. Published by Elsevier Inc. All rights reserved.

  10. Two and three dimensional characterization of Zucchini Yellow Mosaic Virus induced structural alterations in Cucurbita pepo L. plants. (United States)

    Zellnig, Günther; Pöckl, Michael Herbert; Möstl, Stefan; Zechmann, Bernd


    Infection of plants by Zucchini Yellow Mosaic Virus (ZYMV) induces severe ultrastructural changes. The aim of this study was to investigate ultrastructural changes during ZYMV-infection in Cucurbita pepo L. plants on the two and three dimensional (2D and 3D) level and to correlate these changes with the spread of ZYMV throughout the plant by transmission electron microscopy (TEM) and image analysis. This study revealed that after inoculation of the cotyledons ZYMV moved into roots [3 days post inoculation (dpi)], then moved upwards into the stem and apical meristem (5 dpi), then into the first true leaf (7 dpi) and could finally be found in all plant parts (9 dpi). ZYMV-infected cells contained viral inclusion bodies in the form of cylindrical inclusions (CIs). These CIs occurred in four different forms throughout the cytosol of roots and leaves: scrolls and pinwheels when cut transversely and long tubular structures and bundles of filaments when cut longitudinally. 3D reconstruction of ZYMV-infected cells containing scrolls revealed that they form long tubes throughout the cytosol. The majority has a preferred orientation and an average length and width of 3 μm and 120 nm, respectively. Image analysis revealed an increased size of cells and vacuoles (107% and 447%, respectively) in younger ZYMV-infected leaves leading to a similar ratio of cytoplasm to vacuole (about 1:1) in older and younger ZYMV-infected leaves which indicates advanced cell growth in younger tissues. The collected data advances the current knowledge about ZYMV-induced ultrastructural changes in Cucurbita pepo. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Novel application of a tissue-engineered collagen-based three-dimensional bio-implant in a large tendon defect model: a broad-based study with high value in translational medicine. (United States)

    Meimandi-Parizi, Abdolhamid; Oryan, Ahmad; Moshiri, Ali; Silver, Ian A


    This study was designed to investigate the effectiveness of a novel tissue-engineered three-dimensional collagen implant on healing of a large tendon-defect model, in vivo. Forty rabbits were divided into two equal groups: treated and control. A 2cm full-thickness gap was created in the left Achilles tendons of all the rabbits. To maintain the gap at the desired length (2cm), a Kessler suture was anchored within the proximal and distal ends of the remaining tendon. In the treated group a collagen implant was inserted in the gap while in the control group the gap was left unfilled. At weekly intervals the animals were examined clinically and their Achilles tendons tested bioelectrically. The hematological parameters and the serum Platelet-Derived Growth Factor of the animals were analyzed at 60 days post injury (DPI) immediately prior to euthanasia. Their injured (left) and normal contralateral Achilles tendons were harvested and examined at gross morphologic level before being subjected to biomechanical testing, and biophysical and biochemical analysis. The treated animals showed superior weight-bearing and greater physical activity than their controls. New dense tendinous tissue with a transverse diameter comparable to that of intact tendons filled the defect area of the treated tendons and had entirely replaced the collagen implant, at 60 DPI. In control lesions the defect was filled with loose areolar connective tissue similar to subcutaneous fascia. Treatment significantly improved the electrical resistance, dry matter, hydroxyproline content, water uptake and water delivery characteristics, of the healing tissue, as well as maximum load, yield load, maximum stress, yield stress and modulus of elasticity of the injured treated tendons compared to those of the control tendons (P<0.05). Use of this three-dimensional collagen implant improved the healing of large tendon defects in rabbits. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Enhancement of tendon–bone healing via the combination of biodegradable collagen-loaded nanofibrous membranes and a three-dimensional printed bone-anchoring bolt

    Directory of Open Access Journals (Sweden)

    Chou YC


    Full Text Available Ying-Chao Chou,1,2 Wen-Lin Yeh,2 Chien-Lin Chao,1 Yung-Heng Hsu,1,2 Yi-Hsun Yu,1,2 Jan-Kan Chen,3 Shih-Jung Liu1,2 1Department of Mechanical Engineering, Chang Gung University, 2Department of Orthopedic Surgery, Chang Gung Memorial Hospital, 3Department of Physiology and Pharmacology, Chang Gung University, Taoyuan, Taiwan Abstract: A composite biodegradable polymeric model was developed to enhance tendon graft healing. This model included a biodegradable polylactide (PLA bolt as the bone anchor and a poly(D,L-lactide-co-glycolide (PLGA nanofibrous membrane embedded with collagen as a biomimic patch to promote tendon–bone interface integration. Degradation rate and compressive strength of the PLA bolt were measured after immersion in a buffer solution for 3 months. In vitro biochemical characteristics and the nanofibrous matrix were assessed using a water contact angle analyzer, pH meter, and tetrazolium reduction assay. In vivo efficacies of PLGA/collagen nanofibers and PLA bolts for tendon–bone healing were investigated on a rabbit bone tunnel model with histological and tendon pullout tests. The PLGA/collagen-blended nanofibrous membrane was a hydrophilic, stable, and biocompatible scaffold. The PLA bolt was durable for tendon–bone anchoring. Histology showed adequate biocompatibility of the PLA bolt on a medial cortex with progressive bone ingrowth and without tissue overreaction. PLGA nanofibers within the bone tunnel also decreased the tunnel enlargement phenomenon and enhanced tendon–bone integration. Composite polymers of the PLA bolt and PLGA/collagen nanofibrous membrane can effectively promote outcomes of tendon reconstruction in a rabbit model. The composite biodegradable polymeric system may be useful in humans for tendon reconstruction. Keywords: polylactide–polyglycolide nanofibers, PLGA, collagen, 3D printing, polylactide, PLA, bone-anchoring bolts, tendon healing

  13. MT1-MMP promotes cell growth and ERK activation through c-Src and paxillin in three-dimensional collagen matrix

    International Nuclear Information System (INIS)

    Takino, Takahisa; Tsuge, Hisashi; Ozawa, Terumasa; Sato, Hiroshi


    Membrane-type 1 matrix metalloproteinase (MT1-MMP) is essential for tumor invasion and growth. We show here that MT1-MMP induces extracellular signal-regulated kinase (ERK) activation in cancer cells cultured in collagen gel, which is indispensable for their proliferation. Inhibition of MT1-MMP by MMP inhibitor or small interfering RNA suppressed activation of focal adhesion kinase (FAK) and ERK in MT1-MMP-expressing cancer cells, which resulted in up-regulation of p21 WAF1 and suppression of cell growth in collagen gel. Cell proliferation was also abrogated by the inhibitor against ERK pathway without affecting FAK phosphorylation. MT1-MMP and integrin α v β 3 were shown to be involved in c-Src activation, which induced FAK and ERK activation in collagen gel. These MT1-MMP-mediated signal transductions were paxillin dependent, as knockdown of paxillin reduced cell growth and ERK activation, and co-expression of MT1-MMP with paxillin induced ERK activation. The results suggest that MT1-MMP contributes to proliferation of cancer cells in the extracellular matrix by activating ERK through c-Src and paxillin.

  14. Thrombolytic therapy of acute myocardial infarction alters collagen metabolism

    DEFF Research Database (Denmark)

    Høst, N B; Hansen, S S; Jensen, L T


    infarction and receiving thrombolytic therapy. Regardless of whether acute myocardial infarction was confirmed or not, S-PIIINP increased (94-120%) 4 h after streptokinase therapy (p ....02). With confirmed acute myocardial infarction, S-PIIINP increased from 24 h towards a plateau reached at day 2-3 (p acute myocardial infarction had S-PICP above baseline at 1, 2, and 6 months (p ....05). A less pronounced S-PIIINP increase was noted with tissue-plasminogen activator than with streptokinase. Thrombolytic therapy induces collagen breakdown regardless of whether acute myocardial infarction is confirmed or not. With confirmed acute myocardial infarction collagen metabolism is altered...

  15. Type V Collagen is Persistently Altered after Inguinal Hernia Repair

    DEFF Research Database (Denmark)

    Lorentzen, L; Henriksen, N A; Juhl, P


    elective cholecystectomy served as controls (n = 10). Whole venous blood was collected 35-55 months after operation. Biomarkers for type V collagen synthesis (Pro-C5) and degradation (C5M) and those for type IV collagen synthesis (P4NP) and degradation (C4M2) were measured by a solid-phase competitive...... assay. RESULTS: The turnover of type V collagen (Pro-C5/C5M) was slightly higher postoperatively when compared to preoperatively in the inguinal hernia group (P = 0.034). In addition, the results revealed a postoperatively lower type V collagen turnover level in the inguinal hernia group compared...... and incisional hernia. The aim of this study was to determine if the altered collagen metabolism was persistent after hernia repair. MATERIAL AND METHODS: Patients who had undergone repairs for inguinal hernia (n = 11) or for incisional hernia (n = 17) were included in this study. Patients who had undergone...

  16. Three-dimensional neuroimaging

    International Nuclear Information System (INIS)

    Toga, A.W.


    This book reports on new neuroimaging technologies that are revolutionizing the study of the brain be enabling investigators to visualize its structure and entire pattern of functional activity in three dimensions. The book provides a theoretical and practical explanation of the new science of creating three-dimensional computer images of the brain. The coverage includes a review of the technology and methodology of neuroimaging, the instrumentation and procedures, issues of quantification, analytic protocols, and descriptions of neuroimaging systems. Examples are given to illustrate the use of three-dimensional enuroimaging to quantitate spatial measurements, perform analysis of autoradiographic and histological studies, and study the relationship between brain structure and function

  17. Enhanced Contraction of a Normal Breast-Derived Fibroblast-Populated Three-Dimensional Collagen Lattice via Contracted Capsule Fibroblast-Derived Paracrine Factors: Functional Significance in Capsular Contracture Formation. (United States)

    Kyle, Daniel J T; Bayat, Ardeshir


    The authors' aim was to identify morphological, genotypic, and cytokine profiles of normal breast-derived fibroblasts, noncontracted breast implant capsule (Baker grades 1 and 2) fibroblasts, and contracted breast implant capsule (Baker grades 3 and 4) fibroblasts, and to investigate the paracrine effects of contracted breast capsule fibroblast--conditioned media on a breast-derived fibroblast-populated three-dimensional collagen lattice. Primary breast-derived fibroblasts (n = 5), noncontracted breast capsule fibroblasts (n = 5), and contracted breast capsule fibroblasts (n = 5) were cultured, and conditioned media were obtained from passage 1 cells. Cells were immunostained for alpha smooth muscle actin to identify myofibroblasts. A panel of 16 inflammatory, fibrosis, extracellular matrix, and tissue remodeling-related genes were investigated using quantitative reverse transcriptase polymerase chain reaction and cytokine arrays. Fibroblast-populated collagen lattices were fabricated and treated with conditioned media, and lattice contracture was measured over 5 days. Several inflammatory and fibrotic genes were significantly dysregulated in contracted breast capsule fibroblasts compared with noncontracted breast capsule fibroblasts and breast-derived fibroblasts (p fibroblast-populated collagen lattices treated with contracted breast capsule fibroblast-conditioned media demonstrated increased lattice contraction compared with treatment with normal 10% serum media (control), breast-derived fibroblasts, or noncontracted breast capsule fibroblast-conditioned media (p fibroblasts supplemented with contracted breast capsule fibroblast-conditioned media transformed into a contracted breast capsule fibroblast-like cell (p fibroblasts induce normal breast fibroblast transformation and contraction via paracrine signaling, which may contribute to capsular contracture formation.

  18. Three dimensional system integration

    CERN Document Server

    Papanikolaou, Antonis; Radojcic, Riko


    Three-dimensional (3D) integrated circuit (IC) stacking is the next big step in electronic system integration. It enables packing more functionality, as well as integration of heterogeneous materials, devices, and signals, in the same space (volume). This results in consumer electronics (e.g., mobile, handheld devices) which can run more powerful applications, such as full-length movies and 3D games, with longer battery life. This technology is so promising that it is expected to be a mainstream technology a few years from now, less than 10-15 years from its original conception. To achieve thi

  19. Three-dimensional metamaterials (United States)

    Burckel, David Bruce [Albuquerque, NM


    A fabrication method is capable of creating canonical metamaterial structures arrayed in a three-dimensional geometry. The method uses a membrane suspended over a cavity with predefined pattern as a directional evaporation mask. Metallic and/or dielectric material can be evaporated at high vacuum through the patterned membrane to deposit resonator structures on the interior walls of the cavity, thereby providing a unit cell of micron-scale dimension. The method can produce volumetric metamaterial structures comprising layers of such unit cells of resonator structures.

  20. Three-Dimensional Flows

    CERN Document Server

    Araujo, Vitor; Viana, Marcelo


    In this book, the authors present the elements of a general theory for flows on three-dimensional compact boundaryless manifolds, encompassing flows with equilibria accumulated by regular orbits. The book aims to provide a global perspective of this theory and make it easier for the reader to digest the growing literature on this subject. This is not the first book on the subject of dynamical systems, but there are distinct aspects which together make this book unique. Firstly, this book treats mostly continuous time dynamical systems, instead of its discrete counterpart, exhaustively treated

  1. Three dimensional energy profile:

    International Nuclear Information System (INIS)

    Kowsari, Reza; Zerriffi, Hisham


    The provision of adequate, reliable, and affordable energy has been considered as a cornerstone of development. More than one-third of the world's population has a very limited access to modern energy services and suffers from its various negative consequences. Researchers have been exploring various dimensions of household energy use in order to design strategies to provide secure access to modern energy services. However, despite more than three decades of effort, our understanding of household energy use patterns is very limited, particularly in the context of rural regions of the developing world. Through this paper, the past and the current trends in the field of energy analysis are investigated. The literature on rural energy and energy transition in developing world has been explored and the factors affecting households' decisions on energy use are listed. The and the factors affecting households' decisions on energy use are listed. The gaps identified in the literature on rural household energy analysis provide a basis for developing an alternative model that can create a more realistic view of household energy use. The three dimensional energy profile is presented as a new conceptual model for assessment of household energy use. This framework acts as a basis for building new theoretical and empirical models of rural household energy use. - Highlights: ► Reviews literature on household energy, energy transitions and decision-making in developing countries. ► Identifies gaps in rural household energy analysis and develops a new conceptual framework. ► The 3-d energy profile provides a holistic view of household energy system characteristics. ► Illustrates the use of the framework for understanding household energy transitions.

  2. Three-dimensional echocardiography

    International Nuclear Information System (INIS)

    Buck, Thomas


    Presents tips and tricks for beginners and experts Provides educational material for 3D training courses Features comprehensively illustrated cases Includes an accompanying DVD with video clips of all sample cases Three-dimensional echocardiography is the most recent fundamental advancement in echocardiography. Since real-time 3D echocardiography became commercially available in 2002, it has rapidly been accepted in echo labs worldwide. This book covers all clinically relevant aspects of this fascinating new technology, including a comprehensive explanation of its basic principles, practical aspects of clinical application, and detailed descriptions of specific uses in the broad spectrum of clinically important heart disease. The book was written by a group of well-recognized international experts in the field, who have not only been involved in the scientific and clinical evolution of 3D echocardiography since its inception but are also intensively involved in expert training courses. As a result, the clear focus of this book is on the practical application of 3D echocardiography in daily clinical routine with tips and tricks for both beginners and experts, accompanied by more than 150 case examples comprehensively illustrated in more than 800 images and more than 500 videos provided on a DVD. In addition to an in-depth review of the most recent literature on real-time 3D echocardiography, this book represents an invaluable reference work for beginners and expert users of 3D echocardiography. - Tips and tricks for beginners and experts - Educational material for 3D training courses - Comprehensively illustrated cases - DVD with video clips of all sample cases.

  3. Three-dimensional ICT reconstruction

    International Nuclear Information System (INIS)

    Zhang Aidong; Li Ju; Chen Fa; Sun Lingxia


    The three-dimensional ICT reconstruction method is the hot topic of recent ICT technology research. In the context, qualified visual three-dimensional ICT pictures are achieved through multi-piece two-dimensional images accumulation by, combining with thresholding method and linear interpolation. Different direction and different position images of the reconstructed pictures are got by rotation and interception respectively. The convenient and quick method is significantly instructive to more complicated three-dimensional reconstruction of ICT images. (authors)

  4. Three-dimensional ICT reconstruction

    International Nuclear Information System (INIS)

    Zhang Aidong; Li Ju; Chen Fa; Sun Lingxia


    The three-dimensional ICT reconstruction method is the hot topic of recent ICT technology research. In the context qualified visual three-dimensional ICT pictures are achieved through multi-piece two-dimensional images accumulation by order, combining with thresholding method and linear interpolation. Different direction and different position images of the reconstructed pictures are got by rotation and interception respectively. The convenient and quick method is significantly instructive to more complicated three-dimensional reconstruction of ICT images. (authors)

  5. Heat Shock Protein 47: A Novel Biomarker of Phenotypically Altered Collagen-Producing Cells

    International Nuclear Information System (INIS)

    Taguchi, Takashi; Nazneen, Arifa; Al-Shihri, Abdulmonem A.; Turkistani, Khadijah A.; Razzaque, Mohammed S.


    Heat shock protein 47 (HSP47) is a collagen-specific molecular chaperone that helps the molecular maturation of various types of collagens. A close association between increased expression of HSP47 and the excessive accumulation of collagens is found in various human and experimental fibrotic diseases. Increased levels of HSP47 in fibrotic diseases are thought to assist in the increased assembly of procollagen, and thereby contribute to the excessive deposition of collagens in fibrotic areas. Currently, there is not a good universal histological marker to identify collagen-producing cells. Identifying phenotypically altered collagen-producing cells is essential for the development of cell-based therapies to reduce the progression of fibrotic diseases. Since HSP47 has a single substrate, which is collagen, the HSP47 cellular expression provides a novel universal biomarker to identify phenotypically altered collagen-producing cells during wound healing and fibrosis. In this brief article, we explained why HSP47 could be used as a universal marker for identifying phenotypically altered collagen-producing cells

  6. Heat Shock Protein Genes Undergo Dynamic Alteration in Their Three-Dimensional Structure and Genome Organization in Response to Thermal Stress. (United States)

    Chowdhary, Surabhi; Kainth, Amoldeep S; Gross, David S


    Three-dimensional (3D) chromatin organization is important for proper gene regulation, yet how the genome is remodeled in response to stress is largely unknown. Here, we use a highly sensitive version of chromosome conformation capture in combination with fluorescence microscopy to investigate Heat Shock Protein ( HSP ) gene conformation and 3D nuclear organization in budding yeast. In response to acute thermal stress, HSP genes undergo intense intragenic folding interactions that go well beyond 5'-3' gene looping previously described for RNA polymerase II genes. These interactions include looping between upstream activation sequence (UAS) and promoter elements, promoter and terminator regions, and regulatory and coding regions (gene "crumpling"). They are also dynamic, being prominent within 60 s, peaking within 2.5 min, and attenuating within 30 min, and correlate with HSP gene transcriptional activity. With similarly striking kinetics, activated HSP genes, both chromosomally linked and unlinked, coalesce into discrete intranuclear foci. Constitutively transcribed genes also loop and crumple yet fail to coalesce. Notably, a missense mutation in transcription factor TFIIB suppresses gene looping, yet neither crumpling nor HSP gene coalescence is affected. An inactivating promoter mutation, in contrast, obviates all three. Our results provide evidence for widespread, transcription-associated gene crumpling and demonstrate the de novo assembly and disassembly of HSP gene foci. Copyright © 2017 American Society for Microbiology.

  7. Three dimensional moire pattern alignment (United States)

    Juday, Richard D. (Inventor)


    An apparatus is disclosed for determining three dimensional positioning relative to a predetermined point utilizing moire interference patterns such that the patterns are complementary when viewed on axis from the predetermined distance. Further, the invention includes means for determining rotational positioning in addition to three dimensional translational positioning.

  8. The Three-Dimensional Sign. (United States)

    Davis, Daniel R.


    Discusses the implications of the three-dimensional sign proposed by Harris (1990) for general linguistic theory and the philosophy of language. The article places the principal characteristics of the three-dimensional sign (contextuality, cotemporality, communicational relevance, and experiential grounding) against those of the two-dimensional…

  9. Tenascin-x deficiency mimics ehlers-danlos syndrome in mice through alteration of collagen deposition

    Energy Technology Data Exchange (ETDEWEB)

    Mao, J.R.; Taylor, G.; Dean, W.B.; Wagner, D.R.; Afzal, V.; Lotz, J.C.; Rubin, E.M.; Bristow, J.


    Tenascin-X is a large extracellular matrix protein of unknown function1-3. Tenascin-X deficiency in humans is associated with Ehlers-Danlos syndrome4,5, a generalized connective tissue disorder resulting from altered metabolism of the fibrillar collagens6. Because TNXB is the first Ehlers-Danlos syndrome gene that does not encode a fibrillar collagen or collagen-modifying enzyme7-14, we suggested that tenascin-X might regulate collagen synthesis or deposition15. To test this hypothesis, we inactivated Tnxb in mice. Tnxb-/- mice showed progressive skin hyperextensibility, similar to individuals with Ehlers-Danlos syndrome. Biomechanical testing confirmed increased deformability and reduced tensile strength of their skin. The skin of Tnxb-/- mice was histologically normal, but its collagen content was significantly reduced. At the ultrastructural level, collagen fibrils of Tnxb-/- mice were of normal size and shape, but the density of fibrils in their skin was reduced, commensurate with the reduction in collagen content. Studies of cultured dermal fibroblasts showed that although synthesis of collagen I by Tnxb-/- and wildtype cells was similar, Tnxb-/- fibroblasts failed to deposit collagen I into cell-associated matrix. This study confirms a causative role for TNXB in human Ehlers-Danlos syndrome and suggests that tenascin-X is an essential regulator of collagen deposition by dermal fibroblasts.

  10. Thrombolytic therapy of acute myocardial infarction alters collagen metabolism

    DEFF Research Database (Denmark)

    Høst, N B; Hansen, S S; Jensen, L T


    The objective of the study was to monitor collagen metabolism after thrombolytic therapy. Sequential measurements of serum aminoterminal type-III procollagen propeptide (S-PIIINP) and carboxyterminal type-I procollagen propeptide (S-PICP) were made in 62 patients suspected of acute myocardial...

  11. Activation of PPARs α, β/δ, and γ Impairs TGF-β1-Induced Collagens' Production and Modulates the TIMP-1/MMPs Balance in Three-Dimensional Cultured Chondrocytes

    Directory of Open Access Journals (Sweden)

    Paul-Emile Poleni


    Full Text Available Background and Purpose. We investigated the potency of Peroxisome Proliferators-Activated Receptors (PPARs α, β/δ, and γ agonists to modulate Transforming Growth Factor-β1 (TGF-β1- induced collagen production or changes in Tissue Inhibitor of Matrix Metalloproteinase- (TIMP- 1/Matrix Metalloproteinase (MMP balance in rat chondrocytes embedded in alginate beads. Experimental Approach. Collagen production was evaluated by quantitative Sirius red staining, while TIMP-1 protein levels and global MMP (-1, -2, -3, -7, and -9 or specific MMP-13 activities were measured by ELISA and fluorigenic assays in culture media, respectively. Levels of mRNA for type II collagen, TIMP-1, and MMP-3 & 13 were quantified by real-time PCR. Key Results. TGF-β1 increased collagen deposition and type II collagen mRNA levels, while inducing TIMP-1 mRNA and protein expression. In contrast, it decreased global MMP or specific MMP-13 activities, while decreasing MMP-3 or MMP-13 mRNA levels. PPAR agonists reduced most of the effects of TGF-β1 on changes in collagen metabolism and TIMP-1/MMP balance in rat in a PPAR-dependent manner, excepted for Wy14643 on MMP activities. Conclusions and Implications. PPAR agonists reduce TGF-β1-modulated ECM turnover and inhibit chondrocyte activities crucial for collagen biosynthesis, and display a different inhibitory profile depending on selectivity for PPAR isotypes.

  12. Equilibrium: three-dimensional configurations

    International Nuclear Information System (INIS)



    This chapter considers toroidal MHD configurations that are inherently three-dimensional. The motivation for investigation such complicated equilibria is that they possess the potential for providing toroidal confinement without the need of a net toroidal current. This leads to a number of advantages with respect to fusion power generation. First, the attractive feature of steady-state operation becomes more feasible since such configurations no longer require a toroidal current transformer. Second, with zero net current, one potentially dangerous class of MHD instabilities, the current-driven kink modes, is eliminated. Finally, three-dimensional configurations possess nondegenerate flux surfaces even in the absence of plasma pressure and plasma current. Although there is an enormous range of possible three-dimensional equilibria, the configurations of interest are accurately described as axisymmetric tori with superimposed helical fields; furthermore, they possess no net toroidal current. Instead, two different and less obvious restoring forces are developed: the helical sideband force and the toroidal dipole current force. Each is discussed in detail in Chapter 7. A detailed discussion of the parallel current constraint, including its physical significance, is given in section 7.2. A general analysis of helical sideband equilibria, along with a detailed description of the Elmo bumpy torus, is presented in sections 7.3 and 7.4. A general description of toroidal dipole-current equilibria, including a detailed discussion of stellarators, heliotrons, and torsatrons, is given in sections 7.5 and 7.6

  13. Effectiveness of xenogenous-based bovine-derived platelet gel embedded within a three-dimensional collagen implant on the healing and regeneration of the Achilles tendon defect in rabbits. (United States)

    Moshiri, Ali; Oryan, Ahmad; Meimandi-Parizi, Abdolhamid; Koohi-Hosseinabadi, Omid


    Tissue engineering is an option in reconstructing large tendon defects and managing their healing and regeneration. We designed and produced a novel xenogeneic-based bovine platelet, embedded it within a tissue-engineered collagen implant (CI) and applied it in an experimentally induced large tendon defect model in rabbits to test whether bovine platelets could stimulate tendon healing and regeneration in vivo. One hundred twenty rabbits were randomly divided into two experimental and pilot groups. In all the animals, the left Achilles tendon was surgically excised and the tendon edges were aligned by Kessler suture. Each group was then divided into three groups of control (no implant), treated with CI and treated with collagen-platelet implant. The pilot groups were euthanized at 10, 15, 30 and 40 days post-injury (DPI), and their gross and histologic characteristics were evaluated to study host-graft interaction mechanism. To study the tendon healing and its outcome, the experimental animals were tested during the experiment using hematologic, ultrasonographic and various methods of clinical examinations and then euthanized at 60 DPI and their tendons were evaluated by gross pathologic, histopathologic, scanning electron microscopic, biophysical and biochemical methods. Bovine platelets embedded within a CI increased inflammation at short term while it increased the rate of implant absorption and matrix replacement compared with the controls and CI alone. Treatment also significantly increased diameter, density, amount, alignment and differentiation of the collagen fibrils and fibers and approximated the water uptake and delivery behavior of the healing tendons to normal contralaterals (p tendons and reduced peritendinous adhesion, muscle fibrosis and atrophy, and therefore, it improved the clinical scores and physical activity related to the injured limb when compared with the controls (p Achilles tendon in rabbit. This strategy may be a valuable option in the

  14. Association of altered collagen content and lysyl oxidase expression in degenerative mitral valve disease. (United States)

    Purushothaman, K-Raman; Purushothaman, Meerarani; Turnbull, Irene C; Adams, David H; Anyanwu, Anelechi; Krishnan, Prakash; Kini, Annapoorna; Sharma, Samin K; O'Connor, William N; Moreno, Pedro R

    Collagen cross-linking is mediated by lysyl oxidase (LOX) enzyme in the extracellular matrix (ECM) of mitral valve leaflets. Alterations in collagen content and LOX protein expression in the ECM of degenerative mitral valve may enhance leaflet expansion and disease severity. Twenty posterior degenerative mitral valve leaflets from patients with severe mitral regurgitation were obtained at surgery. Five normal posterior mitral valve leaflets procured during autopsy served as controls. Valvular interstitial cells (VICs) density was quantified by immunohistochemistry, collagen Types I and III by picro-sirius red staining and immunohistochemistry, and proteoglycans by alcian blue staining. Protein expression of LOX and its mediator TGFβ1 were quantified by immunofluorescence and gene expression by PCR. VIC density was increased, structural Type I collagen density was reduced, while reparative Type III collagen and proteoglycan densities were increased (PDegenerative Mitral Valve Disease may be secondary to alterations in LOX protein expression, contributing to disorganization of ECM and disease severity. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Real three-dimensional biquadrics

    Energy Technology Data Exchange (ETDEWEB)

    Krasnov, Vyacheslav A [P.G. Demidov Yaroslavl State University, Yaroslavl (Russian Federation)


    We find the topological types of biquadrics (complete intersections of two real four-dimensional quadrics). The rigid isotopy classes of real three-dimensional biquadrics were described long ago: there are nine such classes. We find the correspondence between the topological types of real biquadrics and their rigid isotopy classes, and show that only two rigid isotopy classes have the same topological type. One of these classes consists of real GM-varieties and the other contains no GM-varieties. We also study the sets of real lines on real biquadrics.

  16. Comparison of Alterations in the Surface Topographies of HyFlex CM and HyFlex EDM Nickel-titanium Files after Root Canal Preparation: A Three-dimensional Optical Profilometry Study. (United States)

    Uslu, Gülşah; Özyürek, Taha; Yılmaz, Koray


    The aims of the present study were to examine the surface topographies of intact HyFlex CM and HyFlex EDM nickel-titanium files and to compare alterations in the surface topographies of these files after root canal preparation of severely curved canals of molar teeth. Eight HyFlex CM (25/.08) and 8 HyFlex EDM (25/.08) files were included in the present study. In total, 64 severely curved canals of molar teeth, with curvature angles ranging between 50° and 70°, were prepared with HyFlex CM and EDM (n = 32 in each group). Quantitative and qualitative analyses of the files' surface deformation were performed by using three-dimensional optical profilometry before and after root canal preparation. The data were analyzed with the Student t test at the 5% significant level by using SPSS 21.0 software. In the HyFlex EDM group, the qualitative evaluation revealed the presence of cracks and microcavities after use of the file for root canal preparation, whereas only minor surface deformation was observed in the HyFlex CM group. The average roughness, root mean square roughness, and peak to valley height values of the HyFlex EDM group were significantly higher than those of the HyFlex CM group before and after root canal preparation (P EDM group was not statistically significant (P > .5). Within the limitations of the present study, the HyFlex CM files showed significantly higher surface alterations compared with the HyFlex EDM files after the preparation of severely curved root canals. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  17. Alteration of cartilage surface collagen fibers differs locally after immobilization of knee joints in rats (United States)

    Nagai, Momoko; Aoyama, Tomoki; Ito, Akira; Tajino, Junichi; Iijima, Hirotaka; Yamaguchi, Shoki; Zhang, Xiangkai; Kuroki, Hiroshi


    The purpose of this study was to examine the ultrastructural changes of surface cartilage collagen fibers, which differ by region and the length of the experimental period in an immobilization model of rat. Male Wistar rats were randomly divided into histological or macroscopic and ultrastructural assessment groups. The left knees of all the animals were surgically immobilized by external fixation for 1, 2, 4, 8 or 16 weeks (n = 5/time point). Sagittal histological sections of the medial mid-condylar region of the knee were obtained and assessed in four specific regions (contact and peripheral regions of the femur and tibia) and two zones (superficial and deep). To semi-quantify the staining intensity of the collagen fibers in the cartilage, picrosirius red staining was used. The cartilage surface changes of all the assessed regions were investigated by scanning electron microscopy (SEM). From histological and SEM observations, the fibrillation and irregular changes of the cartilage surface were more severe in the peripheral region than in the contact region. Interestingly, at 16 weeks post-immobilization, we observed non-fibrous structures at both the contact and peripheral regions. The collagen fiber staining intensity decreased in the contact region compared with the peripheral region. In conclusion, the alteration of surface collagen fiber ultrastructure and collagen staining intensity differed by the specific cartilage regions after immobilization. These results demonstrate that the progressive degeneration of cartilage is region specific, and depends on the length of the immobilization period. PMID:25939458

  18. Three-Dimensional Coculture of Meniscal Cells and Mesenchymal Stem Cells in Collagen Type I Hydrogel on a Small Intestinal Matrix-A Pilot Study Toward Equine Meniscus Tissue Engineering. (United States)

    Kremer, Antje; Ribitsch, Iris; Reboredo, Jenny; Dürr, Julia; Egerbacher, Monika; Jenner, Florien; Walles, Heike


    Meniscal injuries are the most frequently encountered soft tissue injuries in the equine stifle joint. Due to the inherent limited repair potential of meniscal tissue, meniscal injuries do not only affect the meniscus itself but also lead to impaired joint homeostasis and secondary osteoarthritis. The presented study compares 3D coculture constructs of primary equine mesenchymal stem cells (MSC) and meniscus cells (MC) seeded on three different scaffolds-a cell-laden collagen type I hydrogel (Col I gel), a tissue-derived small intestinal matrix scaffold (SIS-muc) and a combination thereof-for their qualification to be applied for meniscus tissue engineering. To investigate cell attachment of primary MC and MSC on SIS-muc matrix SEM pictures were performed. For molecular analysis, lyophilized samples of coculture constructs with different cell ratios (100% MC, 100% MSC, and 50% MC and 50% MSC, 20% MC, and 80% MSC) were digested and analyzed for DNA and GAG content. Active matrix remodeling of 3D coculture models was indicated by matrix metalloproteinases detection. For comparison of tissue-engineered constructs with the histologic architecture of natural equine menisci, paired lateral and medial menisci of 15 horses representing different age groups were examined. A meniscus phenotype with promising similarity to native meniscus tissue in its GAG/DNA expression in addition to Col I, Col II, and Aggrecan production was achieved using a scaffold composed of Col I gel on SIS-muc combined with a coculture of MC and MSC. The results encourage further development of this scaffold-cell combination for meniscus tissue engineering.

  19. Collagen structural alterations contribute to stiffening of tissue after split-thickness skin grafting. (United States)

    Rosin, Nicole L; Agabalyan, Natacha; Olsen, Katherine; Martufi, Giampaol; Gabriel, Vincent; Biernaskie, Jeff; Di Martino, Elena S


    The gold standard treatment for full thickness injuries of the skin is autologous split-thickness skin grafting. This involves harvesting the epidermis and superficial dermis from healthy skin and transplanting it onto the prepared wound bed. The donor site regenerates spontaneously, but the appendages and cellular components from the dermal layer are excluded from the graft. As a result, the new tissue is inferior; the healed graft site is dry/itchy, has decreased elasticity, increased fragility, and altered sensory function. Because this dermal layer is composed of collagen and other extracellular matrix proteins, the aim was to characterize the changes in the dermal collagen after split thickness grafting that could contribute to a deficit in functionality. This will serve as a baseline for future studies designed to improve skin function using pharmacological or cell-based therapies for skin repair. A xenograft model whereby human split-thickness grafts were implanted into full-thickness defects on immunocompromised (athymic Nu/Nu) mice was used. The grafts were harvested 4 and 8 weeks later. The collagen microstructure was assessed with second harmonic generation with dual-photon microscopy and light polarization analysis. Collagen fiber stiffness and engagement stretch were estimated by fitting the results of biaxial mechanical tensile tests to a histo-mechanical constitutive model. The stiffness of the collagen fibril-proteoglycan complex increased from 682 ± 226 kPa/sr to 1016 ± 324 kPa/sr between 4 and 8 weeks postgrafting. At the microstructural level there were significant decreases in both thickness of collagen fibers (3.60 ± 0.34 μm vs. 2.10 ± 0.27 μm) and waviness ratio (2.04 ± 0.17 vs. 1.43 ± 0.08) of the collagen fibers postgrafting. The decrease of the macroscopic engagement stretch from 1.19 ± 0.11 to 1.09 ± 0.08 over time postgrafting mirrored the decrease in waviness measured at the microscopic level

  20. Three dimensional magnetic abacus memory. (United States)

    Zhang, ShiLei; Zhang, JingYan; Baker, Alexander A; Wang, ShouGuo; Yu, GuangHua; Hesjedal, Thorsten


    Stacking nonvolatile memory cells into a three-dimensional matrix represents a powerful solution for the future of magnetic memory. However, it is technologically challenging to access the data in the storage medium if large numbers of bits are stacked on top of each other. Here we introduce a new type of multilevel, nonvolatile magnetic memory concept, the magnetic abacus. Instead of storing information in individual magnetic layers, thereby having to read out each magnetic layer separately, the magnetic abacus adopts a new encoding scheme. It is inspired by the idea of second quantisation, dealing with the memory state of the entire stack simultaneously. Direct read operations are implemented by measuring the artificially engineered 'quantised' Hall voltage, each representing a count of the spin-up and spin-down layers in the stack. This new memory system further allows for both flexible scaling of the system and fast communication among cells. The magnetic abacus provides a promising approach for future nonvolatile 3D magnetic random access memory.

  1. Three-Dimensional Laser Microvision (United States)

    Shimotahira, Hiroshi; Iizuka, Keigo; Chu, Sun-Chun; Wah, Christopher; Costen, Furnie; Yoshikuni, Yuzo


    A three-dimensional (3-D) optical imaging system offering high resolution in all three dimensions, requiring minimum manipulation and capable of real-time operation, is presented. The system derives its capabilities from use of the superstructure grating laser source in the implementation of a laser step frequency radar for depth information acquisition. A synthetic aperture radar technique was also used to further enhance its lateral resolution as well as extend the depth of focus. High-speed operation was made possible by a dual computer system consisting of a host and a remote microcomputer supported by a dual-channel Small Computer System Interface parallel data transfer system. The system is capable of operating near real time. The 3-D display of a tunneling diode, a microwave integrated circuit, and a see-through image taken by the system operating near real time are included. The depth resolution is 40 m; lateral resolution with a synthetic aperture approach is a fraction of a micrometer and that without it is approximately 10 m.

  2. Three dimensional imaging of otoliths

    International Nuclear Information System (INIS)

    Barry, B.; Markwitz, A.; David, B.


    Otoliths are small structures in fish ears made of calcium carbonate which carry a record of the environment in which the fish live. Traditionally, in order to study their microchemistry by a scanning technique such as PIXE the otoliths have been either ground down by hand or thin sectioned to expose the otolith core. However this technique is subject to human error in judging the core position. In this study we have scanned successive layers of otoliths 50 and 100 μm apart by removing the otolith material in a lapping machine which can be set to a few μm precision. In one study by comparing data from otoliths from the two ears of a freshwater species we found that polishing by hand could miss the core and thus give misleading results as to the life cycle of the fish. In another example we showed detail in a marine species which could be used to build a three dimensional picture of the Sr distribution. (author)

  3. Three dimensional magnetic abacus memory (United States)

    Zhang, Shilei; Zhang, Jingyan; Baker, Alexander; Wang, Shouguo; Yu, Guanghua; Hesjedal, Thorsten


    Stacking nonvolatile memory cells into a three-dimensional matrix represents a powerful solution for the future of magnetic memory. However, it is technologically challenging to access the individual data in the storage medium if large numbers of bits are stacked on top of each other. Here we introduce a new type of multilevel, nonvolatile magnetic memory concept, the magnetic abacus. Instead of storing information in individual magnetic layers, thereby having to read out each magnetic layer separately, the magnetic abacus adopts a new encoding scheme which envisages a classical abacus with the beads operated by electron spins. It is inspired by the idea of second quantization, dealing with the memory state of the entire stack simultaneously. Direct read operations are implemented by measuring the artificially engineered `quantized' Hall voltage, representing a count of the spin-up and spin-down layers in the stack. This concept of `second quantization of memory' realizes the 3D memory architecture with superior reading and operation efficiency, thus is a promising approach for future nonvolatile magnetic random access memory.

  4. Osteogenic differentiation of mesenchymal stromal cells in two-dimensional and three-dimensional cultures without animal serum. (United States)

    Castrén, Eeva; Sillat, Tarvo; Oja, Sofia; Noro, Ariel; Laitinen, Anita; Konttinen, Yrjö T; Lehenkari, Petri; Hukkanen, Mika; Korhonen, Matti


    Bone marrow-derived mesenchymal stromal cells (MSCs) have been intensely studied for the purpose of developing solutions for clinical tissue engineering. Autologous MSCs can potentially be used to replace tissue defects, but the procedure also carries risks such as immunization and xenogeneic infection. Replacement of the commonly used fetal calf serum (FCS) with human platelet lysate and plasma (PLP) to support cell growth may reduce some of these risks. Altered media could, however, influence stem cell differentiation and we address this experimentally. We examined human MSC differentiation into the osteoblast lineage using in vitro two- and three-dimensional cultures with PLP or FCS as cell culture medium supplements. Differentiation was followed by quantitative polymerase chain reaction, and alkaline phosphatase activity, matrix formation and matrix calcium content were quantified. Three-dimensional culture, where human MSCs were grown on collagen sponges, markedly stimulated osteoblast differentiation; a fourfold increase in calcium deposition could be observed in both PLP and FCS groups. PLP-grown cells showed robust osteogenic differentiation both in two- and three-dimensional MSC cultures. The calcium content of the matrix in the two-dimensional PLP group at day 14 was 2.2-fold higher in comparison to the FCS group (p cultures, cellular proliferation appeared to decrease during later stages of differentiation, while in the FCS group the number of cells increased throughout the experiment. In three-dimensional experiments, the PLP and FCS groups behaved more congruently, except for the alkaline phosphatase activity and mRNA levels which were markedly increased by PLP. Human PLP was at least equal to FCS in supporting osteogenic differentiation of human MSCs in two- and three-dimensional conditions; however, proliferation was inferior. As PLP is free of animal components, and thus represents reduced risk for xenogeneic infection, its use for human MSC

  5. Elastocapillary fabrication of three-dimensional microstructures

    NARCIS (Netherlands)

    van Honschoten, J.W.; Berenschot, Johan W.; Ondarcuhu, T.; Sanders, Remco G.P.; Sundaram, J.; Elwenspoek, Michael Curt; Tas, Niels Roelof


    We describe the fabrication of three-dimensional microstructures by means of capillary forces. Using an origami-like technique, planar silicon nitride structures of various geometries are folded to produce three-dimensional objects of 50–100 m. Capillarity is a particularly effective mechanism since

  6. Microlaser-based three-dimensional display (United States)

    Takeuchi, Eric B.; Bergstedt, Robert; Hargis, David E.; Higley, Paul D.


    Three dimensional (3D) displays are critical for viewing complex multi-dimensional information and for viewing representations of the three dimensional real world. A teaming arrangement between Laser Power Corporation (LPC) and Specialty Devices, Inc. (SDI) has led to the feasibility demonstration of a directly-viewed three dimensional volumetric display. LPC has developed red, green, and blue (RGB) diode pumped solid state microlaser display technology for use as a high resolution, high brightness display engine for the three dimensional display. Concurrently, SDI has developed a unique technology for viewing high resolution three dimensional volumetric images without external viewing aids (eye wear). When coupled to LPC's display engine, the resultant all solid state three dimensional display presets a true, physical three dimensionality which is directly viewable from all angles by multiple viewers without additional viewing equipment (eye wear). The resultant volumetric display will further enable applications such as the 'virtual sandbox,' visualization of radar and sonar data, air traffic control, remote surgery and diagnostics, and CAD workstations.

  7. Enalapril alters the formation of the collagen matrix in spontaneously hypertensive rats

    Directory of Open Access Journals (Sweden)

    Alfredo de Souza Bomfim


    Full Text Available OBJECTIVE: To assess the effect of the inhibition of the angiotensin-converting enzyme on the collagen matrix (CM of the heart of newborn spontaneously hypertensive rats (SHR during embryonic development. METHODS: The study comprised the 2 following groups of SHR (n=5 each: treated group - rats conceived from SHR females treated with enalapril maleate (15 mg. during gestation; and nontreated group - offspring of nontreated females. The newborns were euthanized within the first 24 hours after birth and their hearts were removed and processed for histological study. Three fields per animal were considered for computer-assisted digital analysis and determination of the volume densities (Vv of the nuclei and CM. The images were segmented with the aid of Image Pro Plus® 4.5.029 software (Media Cybernetics. RESULTS: No difference was observed between the treated and nontreated groups in regard to body mass, cardiac mass, and the relation between cardiac and body mass. A significant reduction in the Vv[matrix] and a concomitant increase in the Vv[nuclei] were observed in the treated group as compared with those in the nontreated group. CONCLUSION: The treatment with enalapril of hypertensive rats during pregnancy alters the collagen content and structure of the myocardium of newborns.

  8. Parallelization method for three dimensional MOC calculation

    International Nuclear Information System (INIS)

    Zhang Zhizhu; Li Qing; Wang Kan


    A parallelization method based on angular decomposition for the three dimensional MOC was designed. To improve the parallel efficiency, the directions were pre-grouped and the groups were assembled to minimize the communication. The improved parallelization method was applied to the three dimensional MOC code TCM. The numerical results show that the calculation results of parallelization method are agreed with serial calculation results. The parallel efficiency gets obvious increase after the communication optimized and load balance. (authors)

  9. Three-dimensional effects in fracture mechanics

    International Nuclear Information System (INIS)

    Benitez, F.G.


    An overall view of the pioneering theories and works, which enlighten the three-dimensional nature of fracture mechanics during the last years is given. the main aim is not an exhaustive reviewing but the displaying of the last developments on this scientific field in a natural way. This work attempts to envisage the limits of disregarding the three-dimensional behaviour in theories, analyses and experiments. Moreover, it tries to draw attention on the scant fervour, although increasing, this three-dimensional nature of fracture has among the scientific community. Finally, a constructive discussion is presented on the use of two-dimensional solutions in the analysis of geometries which bear a three-dimensional configuration. the static two-dimensional solutions and its applications fields are reviewed. also, the static three-dimensional solutions, wherein a comparative analysis with elastoplastic and elastostatic solutions are presented. to end up, the dynamic three-dimensional solutions are compared to the asymptotic two-dimensional ones under the practical applications point of view. (author)

  10. Extracellular Protease Inhibition Alters the Phenotype of Chondrogenically Differentiating Human Mesenchymal Stem Cells (MSCs in 3D Collagen Microspheres.

    Directory of Open Access Journals (Sweden)

    Sejin Han

    Full Text Available Matrix remodeling of cells is highly regulated by proteases and their inhibitors. Nevertheless, how would the chondrogenesis of mesenchymal stem cells (MSCs be affected, when the balance of the matrix remodeling is disturbed by inhibiting matrix proteases, is incompletely known. Using a previously developed collagen microencapsulation platform, we investigated whether exposing chondrogenically differentiating MSCs to intracellular and extracellular protease inhibitors will affect the extracellular matrix remodeling and hence the outcomes of chondrogenesis. Results showed that inhibition of matrix proteases particularly the extracellular ones favors the phenotype of fibrocartilage rather than hyaline cartilage in chondrogenically differentiating hMSCs by upregulating type I collagen protein deposition and type II collagen gene expression without significantly altering the hypertrophic markers at gene level. This study suggests the potential of manipulating extracellular proteases to alter the outcomes of hMSC chondrogenesis, contributing to future development of differentiation protocols for fibrocartilage tissues for intervertebral disc and meniscus tissue engineering.

  11. Extracellular Protease Inhibition Alters the Phenotype of Chondrogenically Differentiating Human Mesenchymal Stem Cells (MSCs) in 3D Collagen Microspheres (United States)

    Han, Sejin; Li, Yuk Yin; Chan, Barbara Pui


    Matrix remodeling of cells is highly regulated by proteases and their inhibitors. Nevertheless, how would the chondrogenesis of mesenchymal stem cells (MSCs) be affected, when the balance of the matrix remodeling is disturbed by inhibiting matrix proteases, is incompletely known. Using a previously developed collagen microencapsulation platform, we investigated whether exposing chondrogenically differentiating MSCs to intracellular and extracellular protease inhibitors will affect the extracellular matrix remodeling and hence the outcomes of chondrogenesis. Results showed that inhibition of matrix proteases particularly the extracellular ones favors the phenotype of fibrocartilage rather than hyaline cartilage in chondrogenically differentiating hMSCs by upregulating type I collagen protein deposition and type II collagen gene expression without significantly altering the hypertrophic markers at gene level. This study suggests the potential of manipulating extracellular proteases to alter the outcomes of hMSC chondrogenesis, contributing to future development of differentiation protocols for fibrocartilage tissues for intervertebral disc and meniscus tissue engineering. PMID:26760956

  12. Towards three-dimensional optical metamaterials (United States)

    Tanaka, Takuo; Ishikawa, Atsushi


    Metamaterials have opened up the possibility of unprecedented and fascinating concepts and applications in optics and photonics. Examples include negative refraction, perfect lenses, cloaking, perfect absorbers, and so on. Since these metamaterials are man-made materials composed of sub-wavelength structures, their development strongly depends on the advancement of micro- and nano-fabrication technologies. In particular, the realization of three-dimensional metamaterials is one of the big challenges in this research field. In this review, we describe recent progress in the fabrication technologies for three-dimensional metamaterials, as well as proposed applications.

  13. Towards three-dimensional optical metamaterials. (United States)

    Tanaka, Takuo; Ishikawa, Atsushi


    Metamaterials have opened up the possibility of unprecedented and fascinating concepts and applications in optics and photonics. Examples include negative refraction, perfect lenses, cloaking, perfect absorbers, and so on. Since these metamaterials are man-made materials composed of sub-wavelength structures, their development strongly depends on the advancement of micro- and nano-fabrication technologies. In particular, the realization of three-dimensional metamaterials is one of the big challenges in this research field. In this review, we describe recent progress in the fabrication technologies for three-dimensional metamaterials, as well as proposed applications.

  14. Development of three dimensional solid modeler

    International Nuclear Information System (INIS)

    Zahoor, R.M.A.


    The work presented in this thesis is aimed at developing a three dimensional solid modeler employing computer graphics techniques using C-Language. Primitives have been generated, by combination of plane surfaces, for various basic geometrical shapes including cylinder, cube and cone. Back face removal technique for hidden surface removal has also been incorporated. Various transformation techniques such as scaling, translation, and rotation have been included for the object animation. Three dimensional solid modeler has been created by the union of two primitives to demonstrate the capabilities of the developed program. (author)

  15. Three-dimensional imaging utilizing energy discrimination

    International Nuclear Information System (INIS)

    Gunter, D.L.; Hoffman, K.R.; Beck, R.N.


    An algorithm is proposed for three-dimensional image reconstruction in nuclear medicine which uses scattered radiation rather than multiple projected images to determine the source depth within the body. Images taken from numerous energy windows are combined to construct the source distribution in the body. The gamma-ray camera is not moved during the imaging process. Experiments with both Tc-99m and Ga-67 demonstrate that two channels of depth information can be extracted from the low energy images produced by scattered radiation. By combining this technique with standard SPECT reconstruction using multiple projections the authors anticipate much improved spatial resolution in the overall three-dimensional reconstruction

  16. Alteration of cellular behavior and response to PI3K pathway inhibition by culture in 3D collagen gels.

    Directory of Open Access Journals (Sweden)

    Brian Fallica

    Full Text Available Most investigations into cancer cell drug response are performed with cells cultured on flat (2D tissue culture plastic. Emerging research has shown that the presence of a three-dimensional (3D extracellular matrix (ECM is critical for normal cell behavior including migration, adhesion, signaling, proliferation and apoptosis. In this study we investigate differences between cancer cell signaling in 2D culture and a 3D ECM, employing real-time, live cell tracking to directly observe U2OS human osteosarcoma and MCF7 human breast cancer cells embedded in type 1 collagen gels. The activation of the important PI3K signaling pathway under these different growth conditions is studied, and the response to inhibition of both PI3K and mTOR with PI103 investigated. Cells grown in 3D gels show reduced proliferation and migration as well as reduced PI3K pathway activation when compared to cells grown in 2D. Our results quantitatively demonstrate that a collagen ECM can protect U2OS cells from PI103. Overall, our data suggests that 3D gels may provide a better medium for investigation of anti-cancer drugs than 2D monolayers, therefore allowing better understanding of cellular response and behavior in native like environments.

  17. Imaging unsteady three-dimensional transport phenomena

    Indian Academy of Sciences (India)


    Jan 5, 2014 ... The image data can be jointly analysed with the physical laws governing transport and principles of image formation. Hence, with the experiment suitably carried out, three-dimensional physical domains with unsteady processes can be accommodated. Optical methods promise to breach the holy grail of ...

  18. Three-Dimensional Printing Surgical Applications. (United States)

    AlAli, Ahmad B; Griffin, Michelle F; Butler, Peter E


    Three-dimensional printing, a technology used for decades in the industrial field, gains a lot of attention in the medical field for its potential benefits. With advancement of desktop printers, this technology is accessible and a lot of research is going on in the medical field. To evaluate its application in surgical field, which may include but not limited to surgical planning, surgical education, implants, and prosthesis, which are the focus of this review. Research was conducted by searching PubMed, Web of science, and other reliable sources. We included original articles and excluded articles based on animals, those more than 10 years old, and those not in English. These articles were evaluated, and relevant studies were included in this review. Three-dimensional printing shows a potential benefit in surgical application. Printed implants were used in patient in a few cases and show successful results; however, longer follow-up and more trials are needed. Surgical and medical education is believed to be more efficient with this technology than the current practice. Printed surgical instrument and surgical planning are also believed to improve with three-dimensional printing. Three-dimensional printing can be a very powerful tool in the near future, which can aid the medical field that is facing a lot of challenges and obstacles. However, despite the reported results, further research on larger samples and analytical measurements should be conducted to ensure this technology's impact on the practice.

  19. Imaging unsteady three-dimensional transport phenomena

    Indian Academy of Sciences (India)


    Jan 5, 2014 ... physical domains with unsteady processes can be accommodated. Optical methods promise to breach the holy grail of measurements by extracting unsteady three-dimensional data in applications related to transport phenomena. Keywords. Optical measurement; fluid flow and transport; refractive index ...

  20. Three-dimensional chiral photonic superlattices. (United States)

    Thiel, M; Fischer, H; von Freymann, G; Wegener, M


    We investigate three-dimensional photonic superlattices composed of polymeric helices in various spatial checkerboard-like arrangements. Depending on the relative phase shift and handedness of the chiral building blocks, different circular-dichroism resonances appear or are suppressed. Samples corresponding to four different configurations are fabricated by direct laser writing. The measured optical transmittance spectra are in good agreement with numerical calculations.

  1. Three dimensional electrochemical system for neurobiological studies

    DEFF Research Database (Denmark)

    Vazquez, Patricia; Dimaki, Maria; Svendsen, Winnie Edith


    In this work we report a novel three dimensional electrode array for electrochemical measurements in neuronal studies. The main advantage of working with these out-of-plane structures is the enhanced sensitivity of the system in terms of measuring electrochemical changes in the environment...

  2. Electron crystallography of three dimensional protein crystals

    NARCIS (Netherlands)

    Georgieva, Dilyana


    This thesis describes an investigation of the potential of electron diffraction for studying three dimensional sub-micro-crystals of proteins and pharmaceuticals. A prerequisite for using electron diffraction for structural studies is the predictable availability of tiny crystals. A method for

  3. Three-dimensional patterning methods and related devices

    Energy Technology Data Exchange (ETDEWEB)

    Putnam, Morgan C.; Kelzenberg, Michael D.; Atwater, Harry A.; Boettcher, Shannon W.; Lewis, Nathan S.; Spurgeon, Joshua M.; Turner-Evans, Daniel B.; Warren, Emily L.


    Three-dimensional patterning methods of a three-dimensional microstructure, such as a semiconductor wire array, are described, in conjunction with etching and/or deposition steps to pattern the three-dimensional microstructure.

  4. Different assembly of type IV collagen on hydrophilic and hydrophobic substrata alters endothelial cells interaction

    Directory of Open Access Journals (Sweden)

    NM Coelho


    Full Text Available Considering the structural role of type IV collagen (Col IV in the assembly of the basement membrane (BM and the perspective of mimicking its organization for vascular tissue engineering purposes, we studied the adsorption pattern of this protein on model hydrophilic (clean glass and hydrophobic trichloro(octadecylsilane (ODS surfaces known to strongly affect the behavior of other matrix proteins. The amount of fluorescently labeled Col IV was quantified showing saturation of the surface for concentration of the adsorbing solution of about 50μg/ml, but with approximately twice more adsorbed protein on ODS. AFM studies revealed a fine – nearly single molecular size – network arrangement of Col IV on hydrophilic glass, which turns into a prominent and growing polygonal network consisting of molecular aggregates on hydrophobic ODS. The protein layer forms within minutes in a concentration-dependent manner. We further found that human umbilical vein endothelial cells (HUVEC attach less efficiently to the aggregated Col IV (on ODS, as judged by the significantly altered cell spreading, focal adhesions formation and the development of actin cytoskeleton. Conversely, the immunofluorescence studies for integrins revealed that the fine Col IV network formed on hydrophilic substrata is better recognized by the cells via both α1 and α2 heterodimers which support cellular interaction, apart from these on hydrophobic ODS where almost no clustering of integrins was observed.

  5. Inhibitory effect of progesterone on cervical tissue formation in a three-dimensional culture system with human cervical fibroblasts. (United States)

    House, Michael; Tadesse-Telila, Serkalem; Norwitz, Errol R; Socrate, Simona; Kaplan, David L


    Progesterone supplementation is recommended to prevent preterm birth in women with a short cervix, but the mechanism is unclear. We hypothesize that progesterone acts by altering the composition of the cervical extracellular matrix (ECM). We tested this hypothesis using human cervical fibroblasts in both two-dimensional (2D) and three-dimensional (3D) cultures. For 2D culture, cells were seeded in 6-well plates and cultured with media supplemented with estradiol (10(-8) M), progesterone (10(-7) or 10(-6) M), and vehicle. For 3D culture, the cells were cultured on a porous silk protein scaffold system. Progesterone and estrogen receptors were documented by immunohistochemistry and Western blot analysis. In both 2D and 3D cultures, decreased collagen synthesis was seen with increased progesterone concentration. Three-dimensional cultures could be maintained significantly longer than 2D cultures, and the morphology of 3D cultures appeared similar to native cervical tissue. Thus, further studies were performed in 3D culture. To determine the effect of progesterone concentration, the 3D scaffolds were cultured with estradiol (10(-8) M) and five conditions: vehicle; 10(-9), 10(-8), or 10(-7) M progesterone; or 10(-7) M progesterone plus 10(-6) M mifepristone. The highest progesterone concentration correlated with the least amount of collagen synthesis. Collagen synthesis progressively increased as progesterone concentration decreased. This effect was partially antagonized by mifepristone, suggesting the mechanism is mediated by the progesterone receptor. This hormonally responsive 3D culture system supports the hypothesis that progesterone has a direct effect on remodeling cervical ECM during pregnancy. The 3D culture system could be useful for studying the mechanism of progesterone effects on the cervix.

  6. Inhibitory Effect of Progesterone on Cervical Tissue Formation in a Three-Dimensional Culture System with Human Cervical Fibroblasts1 (United States)

    House, Michael; Tadesse-Telila, Serkalem; Norwitz, Errol R.; Socrate, Simona; Kaplan, David L.


    ABSTRACT Progesterone supplementation is recommended to prevent preterm birth in women with a short cervix, but the mechanism is unclear. We hypothesize that progesterone acts by altering the composition of the cervical extracellular matrix (ECM). We tested this hypothesis using human cervical fibroblasts in both two-dimensional (2D) and three-dimensional (3D) cultures. For 2D culture, cells were seeded in 6-well plates and cultured with media supplemented with estradiol (10−8 M), progesterone (10−7 or 10−6 M), and vehicle. For 3D culture, the cells were cultured on a porous silk protein scaffold system. Progesterone and estrogen receptors were documented by immunohistochemistry and Western blot analysis. In both 2D and 3D cultures, decreased collagen synthesis was seen with increased progesterone concentration. Three-dimensional cultures could be maintained significantly longer than 2D cultures, and the morphology of 3D cultures appeared similar to native cervical tissue. Thus, further studies were performed in 3D culture. To determine the effect of progesterone concentration, the 3D scaffolds were cultured with estradiol (10−8 M) and five conditions: vehicle; 10−9, 10−8, or 10−7 M progesterone; or 10−7 M progesterone plus 10−6 M mifepristone. The highest progesterone concentration correlated with the least amount of collagen synthesis. Collagen synthesis progressively increased as progesterone concentration decreased. This effect was partially antagonized by mifepristone, suggesting the mechanism is mediated by the progesterone receptor. This hormonally responsive 3D culture system supports the hypothesis that progesterone has a direct effect on remodeling cervical ECM during pregnancy. The 3D culture system could be useful for studying the mechanism of progesterone effects on the cervix. PMID:24285720

  7. Urinary collagen fragments are significantly altered in diabetes: a link to pathophysiology.

    Directory of Open Access Journals (Sweden)

    David M Maahs


    Full Text Available The pathogenesis of diabetes mellitus (DM is variable, comprising different inflammatory and immune responses. Proteome analysis holds the promise of delivering insight into the pathophysiological changes associated with diabetes. Recently, we identified and validated urinary proteomics biomarkers for diabetes. Based on these initial findings, we aimed to further validate urinary proteomics biomarkers specific for diabetes in general, and particularity associated with either type 1 (T1D or type 2 diabetes (T2D.Therefore, the low-molecular-weight urinary proteome of 902 subjects from 10 different centers, 315 controls and 587 patients with T1D (n = 299 or T2D (n = 288, was analyzed using capillary-electrophoresis mass-spectrometry. The 261 urinary biomarkers (100 were sequenced previously discovered in 205 subjects were validated in an additional 697 subjects to distinguish DM subjects (n = 382 from control subjects (n = 315 with 94% (95% CI: 92-95 accuracy in this study. To identify biomarkers that differentiate T1D from T2D, a subset of normoalbuminuric patients with T1D (n = 68 and T2D (n = 42 was employed, enabling identification of 131 biomarker candidates (40 were sequenced differentially regulated between T1D and T2D. These biomarkers distinguished T1D from T2D in an independent validation set of normoalbuminuric patients (n = 108 with 88% (95% CI: 81-94% accuracy, and in patients with impaired renal function (n = 369 with 85% (95% CI: 81-88% accuracy. Specific collagen fragments were associated with diabetes and type of diabetes indicating changes in collagen turnover and extracellular matrix as one hallmark of the molecular pathophysiology of diabetes. Additional biomarkers including inflammatory processes and pro-thrombotic alterations were observed.These findings, based on the largest proteomic study performed to date on subjects with DM, validate the previously described biomarkers for DM, and pinpoint differences in the urinary

  8. Three-dimensional imaging modalities in endodontics

    International Nuclear Information System (INIS)

    Mao, Teresa; Neelakantan, Prasanna


    Recent research in endodontics has highlighted the need for three-dimensional imaging in the clinical arena as well as in research. Three-dimensional imaging using computed tomography (CT) has been used in endodontics over the past decade. Three types of CT scans have been studied in endodontics, namely cone-beam CT, spiral CT, and peripheral quantitative CT. Contemporary endodontics places an emphasis on the use of cone-beam CT for an accurate diagnosis of parameters that cannot be visualized on a two-dimensional image. This review discusses the role of CT in endodontics, pertaining to its importance in the diagnosis of root canal anatomy, detection of peri-radicular lesions, diagnosis of trauma and resorption, presurgical assessment, and evaluation of the treatment outcome

  9. Three-dimensional Imaging, Visualization, and Display

    CERN Document Server

    Javidi, Bahram; Son, Jung-Young


    Three-Dimensional Imaging, Visualization, and Display describes recent developments, as well as the prospects and challenges facing 3D imaging, visualization, and display systems and devices. With the rapid advances in electronics, hardware, and software, 3D imaging techniques can now be implemented with commercially available components and can be used for many applications. This volume discusses the state-of-the-art in 3D display and visualization technologies, including binocular, multi-view, holographic, and image reproduction and capture techniques. It also covers 3D optical systems, 3D display instruments, 3D imaging applications, and details several attractive methods for producing 3D moving pictures. This book integrates the background material with new advances and applications in the field, and the available online supplement will include full color videos of 3D display systems. Three-Dimensional Imaging, Visualization, and Display is suitable for electrical engineers, computer scientists, optical e...

  10. Arching in three-dimensional clogging

    Directory of Open Access Journals (Sweden)

    Török János


    Full Text Available Arching in dry granular material is a long established concept, however it remains still an open question how three-dimensional orifices clog. We investigate by means of numerical simulations and experimental data how the outflow creates a blocked configuration of particles. We define the concave surface of the clogged dome by two independent methods (geometric and density based. The average shape of the cupola for spheres is almost a hemisphere but individual samples have large holes in the structure indicating a blocked state composed of two-dimensional force chains rather than three-dimensional objects. The force chain structure justifies this assumption. For long particles the clogged configurations display large variations, and in certain cases the empty region reaches a height of 5 hole diameters. These structures involve vertical walls consisting of horizontally placed stable stacking of particles.

  11. Three dimensional digital imaging of environmental data

    International Nuclear Information System (INIS)

    Nichols, R.L.; Eddy, C.A.


    The Environmental Sciences Section (ESS) of the Savannah River Laboratory has recently acquired the computer hardware (Silicon Graphics Personal Iris Workstations) and software (Dynamic Graphics, Interactive Surface and Volume Modeling) to perform three dimensional analysis of hydrogeologic data. Three dimensional digital imaging of environmental data is a powerful technique that can be used to incorporate field, analytical, and modeling results from geologic, hydrologic, ecologic, and chemical studies into a comprehensive model for visualization and interpretation. This report covers the contamination of four different sites of the Savannah River Plant. Each section of this report has a computer graphic display of the concentration of contamination in the groundwater and/or sediments of each site

  12. Arching in three-dimensional clogging (United States)

    Török, János; Lévay, Sára; Szabó, Balázs; Somfai, Ellák; Wegner, Sandra; Stannarius, Ralf; Börzsönyi, Tamás


    Arching in dry granular material is a long established concept, however it remains still an open question how three-dimensional orifices clog. We investigate by means of numerical simulations and experimental data how the outflow creates a blocked configuration of particles. We define the concave surface of the clogged dome by two independent methods (geometric and density based). The average shape of the cupola for spheres is almost a hemisphere but individual samples have large holes in the structure indicating a blocked state composed of two-dimensional force chains rather than three-dimensional objects. The force chain structure justifies this assumption. For long particles the clogged configurations display large variations, and in certain cases the empty region reaches a height of 5 hole diameters. These structures involve vertical walls consisting of horizontally placed stable stacking of particles.

  13. Three dimensional contact/impact methodology

    International Nuclear Information System (INIS)

    Kulak, R.F.


    The simulation of three-dimensional interface mechanics between reactor components and structures during static contact or dynamic impact is necessary to realistically evaluate their structural integrity to off-normal loads. In our studies of postulated core energy release events, we have found that significant structure-structure interactions occur in some reactor vessel head closure designs and that fluid-structure interactions occur within the reactor vessel. Other examples in which three-dimensional interface mechanics play an important role are: (1) impact response of shipping casks containing spent fuel, (2) whipping pipe impact on reinforced concrete panels or pipe-to-pipe impact after a pipe break, (3) aircraft crash on secondary containment structures, (4) missiles generated by turbine failures or tornados, and (5) drops of heavy components due to lifting accidents. The above is a partial list of reactor safety problems that require adequate treatment of interface mechanics and are discussed in this paper


    Directory of Open Access Journals (Sweden)

    Vineet V. Kumar


    Full Text Available Quality is an important aspect for every firm in modern era of competition. Every product has tough competition in terms of market reach. The factor, which actually makes any product long run in market, is quality and hence quality is the stepping-stone for success of any firm. For everyone meaning of quality is different. We have seen several economists who have defined quality by considering different factors, but what all of them have common in them is Customer satisfaction. Customer satisfaction is the ultimate result of quality. In three-dimensional graphical representation of quality, optimum quality is obtained by using three-dimensional graph by considering some important factors governing quality of any product, limiting factor, and customer satisfaction.

  15. Three-dimensional imaging modalities in endodontics

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Teresa; Neelakantan, Prasanna [Dept. of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, Saveetha University, Chennai (India)


    Recent research in endodontics has highlighted the need for three-dimensional imaging in the clinical arena as well as in research. Three-dimensional imaging using computed tomography (CT) has been used in endodontics over the past decade. Three types of CT scans have been studied in endodontics, namely cone-beam CT, spiral CT, and peripheral quantitative CT. Contemporary endodontics places an emphasis on the use of cone-beam CT for an accurate diagnosis of parameters that cannot be visualized on a two-dimensional image. This review discusses the role of CT in endodontics, pertaining to its importance in the diagnosis of root canal anatomy, detection of peri-radicular lesions, diagnosis of trauma and resorption, presurgical assessment, and evaluation of the treatment outcome.

  16. Three-dimensional imaging modalities in endodontics (United States)

    Mao, Teresa


    Recent research in endodontics has highlighted the need for three-dimensional imaging in the clinical arena as well as in research. Three-dimensional imaging using computed tomography (CT) has been used in endodontics over the past decade. Three types of CT scans have been studied in endodontics, namely cone-beam CT, spiral CT, and peripheral quantitative CT. Contemporary endodontics places an emphasis on the use of cone-beam CT for an accurate diagnosis of parameters that cannot be visualized on a two-dimensional image. This review discusses the role of CT in endodontics, pertaining to its importance in the diagnosis of root canal anatomy, detection of peri-radicular lesions, diagnosis of trauma and resorption, presurgical assessment, and evaluation of the treatment outcome. PMID:25279337

  17. Geometric actions for three-dimensional gravity (United States)

    Barnich, G.; González, H. A.; Salgado-Rebolledo, P.


    The solution space of three-dimensional asymptotically anti-de Sitter or flat Einstein gravity is given by the coadjoint representation of two copies of the Virasoro group in the former and the centrally extended BMS3 group in the latter case. Dynamical actions that control these solution spaces are usually constructed by starting from the Chern–Simons formulation and imposing all boundary conditions. In this note, an alternative route is followed. We study in detail how to derive these actions from a group-theoretical viewpoint by constructing geometric actions for each of the coadjoint orbits, including the appropriate Hamiltonians. We briefly sketch relevant generalizations and potential applications beyond three-dimensional gravity.

  18. SNAP - a three dimensional neutron diffusion code

    International Nuclear Information System (INIS)

    McCallien, C.W.J.


    This report describes a one- two- three-dimensional multi-group diffusion code, SNAP, which is primarily intended for neutron diffusion calculations but can also carry out gamma calculations if the diffusion approximation is accurate enough. It is suitable for fast and thermal reactor core calculations and for shield calculations. SNAP can solve the multi-group neutron diffusion equations using finite difference methods. The one-dimensional slab, cylindrical and spherical geometries and the two-dimensional case are all treated as simple special cases of three-dimensional geometries. Numerous reflective and periodic symmetry options are available and may be used to reduce the number of mesh points necessary to represent the system. Extrapolation lengths can be specified at internal and external boundaries. (Author)

  19. Analysis of three-dimensional transonic compressors (United States)

    Bourgeade, A.


    A method for computing the three-dimensional transonic flow around the blades of a compressor or of a propeller is given. The method is based on the use of the velocity potential, on the hypothesis that the flow is inviscid, irrotational and isentropic. The equation of the potential is solved in a transformed space such that the surface of the blade is mapped into a plane where the periodicity is implicit. This equation is in a nonconservative form and is solved with the help of a finite difference method using artificial time. A computer code is provided and some sample results are given in order to demonstrate the influence of three-dimensional effects and the blade's rotation.

  20. Three-dimensional display of document set (United States)

    Lantrip, David B [Oxnard, CA; Pennock, Kelly A [Richland, WA; Pottier, Marc C [Richland, WA; Schur, Anne [Richland, WA; Thomas, James J [Richland, WA; Wise, James A [Richland, WA; York, Jeremy [Bothell, WA


    A method for spatializing text content for enhanced visual browsing and analysis. The invention is applied to large text document corpora such as digital libraries, regulations and procedures, archived reports, and the like. The text content from these sources may be transformed to a spatial representation that preserves informational characteristics from the documents. The three-dimensional representation may then be visually browsed and analyzed in ways that avoid language processing and that reduce the analysts' effort.

  1. Three-dimensional simulation of vortex breakdown (United States)

    Kuruvila, G.; Salas, M. D.


    The integral form of the complete, unsteady, compressible, three-dimensional Navier-Stokes equations in the conservation form, cast in generalized coordinate system, are solved, numerically, to simulate the vortex breakdown phenomenon. The inviscid fluxes are discretized using Roe's upwind-biased flux-difference splitting scheme and the viscous fluxes are discretized using central differencing. Time integration is performed using a backward Euler ADI (alternating direction implicit) scheme. A full approximation multigrid is used to accelerate the convergence to steady state.

  2. Three-Dimensional Dynamic Loading of Sand (United States)


    oading conditions exist at the bulk scale, and exam ples include planetary impact and crater formation, tectonic plate movement , ballistic im pact and...found further way from an impact event, where the bulk material does not necessarily experience uniform loading in excess of the Hugoniot elastic li...either as a collection of quartz spheres in a three-dimensional rectilinear dom ain for t he mesoscale simulations or as a single representative material

  3. Three-dimensional broadband tunable terahertz metamaterials

    DEFF Research Database (Denmark)

    Fan, Kebin; Strikwerda, Andrew; Zhang, Xin


    We present optically tunable magnetic three-dimensional (3D) metamaterials at terahertz (THz) frequencies which exhibit a tuning range of ~30% of the resonance frequency. This is accomplished by fabricating 3D array structures consisting of double-split-ring resonators (DSRRs) on silicon on sapph...... as verified through electromagnetic simulations and parameter retrieval. Our approach extends dynamic metamaterial tuning to magnetic control, and may find applications in switching and modulation, polarization control, or tunable perfect absorbers....

  4. Three-Dimensional Ocean Noise Modeling (United States)


    realistic and complex three-dimensional bathymetry. This is achieved by using a parabolic equation [PE) propagation model and the reciprocity principle...explain the horizontal noise directionality observed in the Tonga Trench [Barclay, 2014], which was found not to be a 3D effect, but rather due to...modeled noise arriving on the axis of the canyon has significantly perturbed zero-crossings when compared to the equivalent Nx2D result. Theoretical

  5. Three-dimensional accelerating electromagnetic waves. (United States)

    Bandres, Miguel A; Alonso, Miguel A; Kaminer, Ido; Segev, Mordechai


    We present a general theory of three-dimensional non-paraxial spatially-accelerating waves of the Maxwell equations. These waves constitute a two-dimensional structure exhibiting shape-invariant propagation along semicircular trajectories. We provide classification and characterization of possible shapes of such beams, expressed through the angular spectra of parabolic, oblate and prolate spheroidal fields. Our results facilitate the design of accelerating beams with novel structures, broadening scope and potential applications of accelerating beams.

  6. Three-Dimensional Reconstruction of Sandpile Interiors (United States)

    Seidler, G. T.


    The granular bed, or sandpile, has become one of the condensed matter physicist's favorite systems. In addition to conceptual appeal, the simplest sandpile of monodisperse hard spheres is a valuable model system for understanding powders, liquids, and metallic glasses. Any fundamental approach to the transport and mechanical properties of three-dimensional mesoscale disordered materials must follow from a thorough understanding of their structure. However, in the overwhelming majority of cases, structure measurements have been limited to the mean filling fraction and the structural autocorrelation function. This is particularly unfortunate in the ongoing sandpile renaissance, where some of the most interesting questions concern structure and the relationship between structure and dynamics. I will discuss the combination of synchrotron x-ray microtomography and computer vision algorithms to perform three-dimensional virtual reconstructions of real sandpiles. This technique is rapid and noninvasive, and is applicable to samples large enough to separate bulk and boundary properties. The resulting complete knowledge of structure can be used to calculate otherwise inaccessible correlation functions. I will present results for several measures of the bond-orientational order in three-dimensional sandpiles, including fabric tensors and nematic order parameters.

  7. Multiparallel Three-Dimensional Optical Microscopy (United States)

    Nguyen, Lam K.; Price, Jeffrey H.; Kellner, Albert L.; Bravo-Zanoquera, Miguel


    Multiparallel three-dimensional optical microscopy is a method of forming an approximate three-dimensional image of a microscope sample as a collection of images from different depths through the sample. The imaging apparatus includes a single microscope plus an assembly of beam splitters and mirrors that divide the output of the microscope into multiple channels. An imaging array of photodetectors in each channel is located at a different distance along the optical path from the microscope, corresponding to a focal plane at a different depth within the sample. The optical path leading to each photodetector array also includes lenses to compensate for the variation of magnification with distance so that the images ultimately formed on all the photodetector arrays are of the same magnification. The use of optical components common to multiple channels in a simple geometry makes it possible to obtain high light-transmission efficiency with an optically and mechanically simple assembly. In addition, because images can be read out simultaneously from all the photodetector arrays, the apparatus can support three-dimensional imaging at a high scanning rate.

  8. Three-Dimensional Audio Client Library (United States)

    Rizzi, Stephen A.


    The Three-Dimensional Audio Client Library (3DAudio library) is a group of software routines written to facilitate development of both stand-alone (audio only) and immersive virtual-reality application programs that utilize three-dimensional audio displays. The library is intended to enable the development of three-dimensional audio client application programs by use of a code base common to multiple audio server computers. The 3DAudio library calls vendor-specific audio client libraries and currently supports the AuSIM Gold-Server and Lake Huron audio servers. 3DAudio library routines contain common functions for (1) initiation and termination of a client/audio server session, (2) configuration-file input, (3) positioning functions, (4) coordinate transformations, (5) audio transport functions, (6) rendering functions, (7) debugging functions, and (8) event-list-sequencing functions. The 3DAudio software is written in the C++ programming language and currently operates under the Linux, IRIX, and Windows operating systems.

  9. Three dimensional illustrating - three-dimensional vision and deception of sensibility

    Directory of Open Access Journals (Sweden)

    Anita Gánóczy


    Full Text Available The wide-spread digital photography and computer use gave the opportunity for everyone to make three-dimensional pictures and to make them public. The new opportunities with three-dimensional techniques give chance for the birth of new artistic photographs. We present in detail the biological roots of three-dimensional visualization, the phenomena of movement parallax, which can be used efficiently in making three-dimensional graphics, the Zöllner- and Corridor-illusion. There are present in this paper the visual elements, which contribute to define a plane two-dimensional image in three-dimension: coherent lines, the covering, the measurement changes, the relative altitude state, the abatement of detail profusion, the shadings and the perspective effects of colors.

  10. Three-dimensional analysis of craniofacial bones using three-dimensional computer tomography

    International Nuclear Information System (INIS)

    Ono, Ichiro; Ohura, Takehiko; Kimura, Chu


    Three-dimensional computer tomography (3DCT) was performed in patients with various diseases to visualize stereoscopically the deformity of the craniofacial bones. The data obtained were analyzed by the 3DCT analyzing system. A new coordinate system was established using the median sagittal plane of the face (a plane passing through sella, nasion and basion) on the three-dimensional image. Three-dimensional profilograms were prepared for detailed analysis of the deformation of craniofacial bones for cleft lip and palate, mandibular prognathia and hemifacial microsomia. For patients, asymmetry in the frontal view and twist-formed complicated deformities were observed, as well as deformity of profiles in the anteroposterior and up-and-down directions. A newly developed technique allows three-dimensional visualization of changes in craniofacial deformity. It would aid in determining surgical strategy, including crani-facial surgery and maxillo-facial surgery, and in evaluating surgical outcome. (N.K.)

  11. Three-dimensional analysis of craniofacial bones using three-dimensional computer tomography

    Energy Technology Data Exchange (ETDEWEB)

    Ono, Ichiro; Ohura, Takehiko; Kimura, Chu (Hokkaido Univ., Sapporo (Japan). School of Medicine) (and others)


    Three-dimensional computer tomography (3DCT) was performed in patients with various diseases to visualize stereoscopically the deformity of the craniofacial bones. The data obtained were analyzed by the 3DCT analyzing system. A new coordinate system was established using the median sagittal plane of the face (a plane passing through sella, nasion and basion) on the three-dimensional image. Three-dimensional profilograms were prepared for detailed analysis of the deformation of craniofacial bones for cleft lip and palate, mandibular prognathia and hemifacial microsomia. For patients, asymmetry in the frontal view and twist-formed complicated deformities were observed, as well as deformity of profiles in the anteroposterior and up-and-down directions. A newly developed technique allows three-dimensional visualization of changes in craniofacial deformity. It would aid in determining surgical strategy, including crani-facial surgery and maxillo-facial surgery, and in evaluating surgical outcome. (N.K.).

  12. Three-dimensional positioning with optofluidic microscope

    DEFF Research Database (Denmark)

    Vig, Asger Laurberg; Marie, Rodolphe; Jensen, Eric


    This paper reports on-chip based optical detection with three-dimensional spatial resolution by integration of an optofluidic microscope (OFM) in a microfluidic pinched flow fractionation (PFF) separation device. This setup also enables on-chip particle image velocimetry (PIV). The position...... a conventional fluorescence microscope as readout. The size separated microspheres are detected by OFM with an accuracy of ≤ 0.92 μm. The position in the height of the channel and the velocity of the separated microspheres are detected with an accuracy of 1.4 μm and 0.08 mm/s respectively. Throughout...

  13. Three Dimensional Double Layers in Magnetized Plasmas

    DEFF Research Database (Denmark)

    Jovanovic, D.; Lynov, Jens-Peter; Michelsen, Poul


    Experimental results are presented which demonstrate the formation of fully three dimensional double layers in a magnetized plasma. The measurements are performed in a magnetized stationary plasma column with radius 1.5 cm. Double layers are produced by introducing an electron beam with radius 0.......4 cm along the magnetic field from one end of the column. The voltage drop across the double layer is found to be determined by the energy of the incoming electron beam. In general we find that the width of the double layer along the external magnetic field is determined by plasma density and beam...

  14. Three-Dimensional Printing in Orthopedic Surgery. (United States)

    Eltorai, Adam E M; Nguyen, Eric; Daniels, Alan H


    Three-dimensional (3D) printing is emerging as a clinically promising technology for rapid prototyping of surgically implantable products. With this commercially available technology, computed tomography or magnetic resonance images can be used to create graspable objects from 3D reconstructed images. Models can enhance patients' understanding of their pathology and surgeon preoperative planning. Customized implants and casts can be made to match an individual's anatomy. This review outlines 3D printing, its current applications in orthopedics, and promising future directions. Copyright 2015, SLACK Incorporated.

  15. Three-dimensional teletherapy treatment planning

    International Nuclear Information System (INIS)

    Panthaleon van Eck, R.B. van.


    This thesis deals with physical/mathematical backgrounds of computerized teletherapy treatment planning. The subjects discussed in this thesis can be subdivided into three main categories: a) Three-dimensional treatment planning. A method is evaluated which can be used for the purpose of simulation and optimization of dose distributions in three dimensions. b) The use of Computed Tomography. The use of patient information obtained from Computed Tomography for the purpose of dose computations is evaluated. c) Dose computational models for photon- and electron beams. Models are evaluated which provide information regarding the way in which the radiation dose is distributed in the patient (viz. is absorbed and/or dispersed). (Auth.)

  16. Creating three-dimensional thermal maps

    CSIR Research Space (South Africa)



    Full Text Available stream_source_info Price_2011.pdf.txt stream_content_type text/plain stream_size 30895 Content-Encoding ISO-8859-1 stream_name Price_2011.pdf.txt Content-Type text/plain; charset=ISO-8859-1 Creating Three...-Dimensional Thermal Maps Mathew Price Cogency cc Cape Town Email: Jeremy Green CSIR Centre for Mining Innovation Johannesburg Email: John Dickens CSIR Centre for Mining Innovation Johannesburg Email: jdickens...

  17. Three-dimensional cooling of muons

    CERN Document Server

    Vsevolozhskaya, T A


    The simultaneous ionization cooling of muon beams in all three - the longitudinal and two transverse - directions is considered in a scheme, based on bent lithium lenses with dipole constituent of magnetic field in them, created by a special configuration of current-carrying rod. An analysis of three-dimensional cooling is performed with the use of kinetic equation method. Results of numerical calculation for a specific beam line configuration are presented together with results of computer simulation using the Moliere distribution to describe the Coulomb scattering and the Vavilov distribution used to describe the ionization loss of energy.

  18. Altered dermal fibroblast behavior in a collagen V haploinsufficient murine model of classic Ehlers-Danlos syndrome. (United States)

    DeNigris, John; Yao, Qingmei; Birk, Erika K; Birk, David E


    Mutations in collagen V are associated with classic Ehlers-Danlos syndrome (EDS). A significant percentage of these mutations result in haploinsufficiency for collagen V. The purpose of this work was to determine if changes in collagen V expression are associated with altered dermal fibroblast behavior contributing to the poor wound healing response. A haploinsufficient Col5a1(+/-) mouse model of EDS was utilized. In vivo wound healing studies demonstrated that mutant mice healed significantly slower than Col5a1(+/+) mice. The basis for this difference was examined in vitro using dermal fibroblast strains isolated from Col5a1(+/-) and Col5a1(+/+) mice. Fibroblast proliferation was determined for each strain by counting cells at different time points after seeding as well as using the proliferation marker Ki-67. Fibroblast attachment to collagens I and III and fibronectin also was analyzed. In addition, in vitro scratch wounds were used to analyze fibroblast wound closure. Significantly decreased fibroblast proliferation was observed in Col5a1(+/-) compared to Col5a1(+/+) fibroblasts. Our data indicate that the decreased fibroblast number was not due to apoptosis. Wildtype Col5a1(+/+) fibroblasts attached significantly better to components of the wound matrix (collagens I and III and fibronectin) than Col5a1(+/-) fibroblasts. A significant difference in in vitro scratch wound closure rates also was observed. Col5a1(+/+) fibroblasts closed wounds in 22 h, while Col5a1(+/-) fibroblasts demonstrated ~80% closure. There were significant differences in closure at all time points analyzed. Our data suggest that decreased fibroblast proliferation, extracellular matrix attachment, and migration contribute to the decreased wound healing response in classic EDS.

  19. Increased oxygen exposure alters collagen expression and tissue architecture during ligature-induced periodontitis. (United States)

    Gajendrareddy, P K; Junges, R; Cygan, G; Zhao, Y; Marucha, P T; Engeland, C G


    The aim of this study was to evaluate the effects of increased oxygen availability on gene expression and on collagen deposition/maturation in the periodontium following disease. Male Wistar rats had ligatures placed around their molars to induce periodontal disease, and a subset of animals underwent hyperbaric oxygen (HBO) treatment for 2 h twice per day. At 15 and 28 d, tissue gene expression of COL1A1, transforming growth factor-β1 and alkaline phosphatase was determined; other histological samples were stained with Picrosirius red to evaluate levels of collagen deposition, maturation and thickness. In animals that underwent HBO treatment, type I collagen expression was higher and collagen deposition, maturation and thickness were more robust. Reduced mRNA levels of transforming growth factor-beta1 and alkaline phosphatase in HBO-treated rats on day 28 suggested that a quicker resolution in both soft tissue and bone remodeling occurred following oxygen treatment. No differences in inflammation were observed between groups. The extracellular matrix regenerated more quickly in the HBO-treated group as evidenced by higher collagen expression, deposition and maturation. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Three-dimensional radiation treatment planning

    International Nuclear Information System (INIS)

    Mohan, R.


    A major aim of radiation therapy is to deliver sufficient dose to the tumour volume to kill the cancer cells while sparing the nearby health organs to prevent complications. With the introduction of devices such as CT and MR scanners, radiation therapy treatment planners have access to full three-dimensional anatomical information to define, simulate, and evaluate treatments. There are a limited number of prototype software systems that allow 3D treatment planning currently in use. In addition, there are more advanced tools under development or still in the planning stages. They require sophisticated graphics and computation equipment, complex physical and mathematical algorithms, and new radiation treatment machines that deliver dose very precisely under computer control. Components of these systems include programs for the identification and delineation of the anatomy and tumour, the definition of radiation beams, the calculation of dose distribution patterns, the display of dose on 2D images and as three dimensional surfaces, and the generation of computer images to verify proper patient positioning in treatment. Some of these functions can be performed more quickly and accurately if artificial intelligence or expert systems techniques are employed. 28 refs., figs

  1. Three dimensional animated images of anorectal malformations

    International Nuclear Information System (INIS)

    Ueno, Shigeru; Yanagimachi, Noriharu; Muro, Isao; Komiya, Taizo; Yokoyama, Seishichi; Hirakawa, Hitoshi; Tajima, Tomoo; Mitomi, Toshio; Suto, Yasuzo.


    Accurate reconstruction of the pelvic structures is a most important factor in obtaining a desirable result after anorectoplasty for a patient with anorectal malformation. Preoperative evaluation of the anatomy is indispensable for choosing an appropriate operative method in each case. To facilitate preoperative evaluation, three dimensional animated images of the pelvic structure of patients with anorectal malformations were constructed by computer graphics based upon tomographic images obtained from magnetic resonance imaging. Axial 1-mm thick images of the pelvic portion were generated with spoiling pulse gradient echo sequences using short repetition times (13 msec TR) and short echo times (6 msec TE) with a flip angle of 25 degrees with the patient in the jack-knife position. Graphic data from MR images were transferred to a graphic work station and processed on it. The skin surface, the ano-rectum, the lower urinary tract and the sphincter musculature were segmented by thresholding images by the signal intensity. Three dimensional images were displayed by surface rendering method using the segmented data of each organ and then animation images of these organs were obtained. The anatomy of each type of anomaly was easily recognized by 3-D visualization, and animation of the pelvic viscera and the sphincter musculature made the images more realistic. Animated images of the musculature were especially useful for simulating surgical procedures and could be helpful for reviewing surgical results. (author)

  2. The Three-Dimensional Universe with Gaia (United States)

    Turon, C.; O'Flaherty, K. S.; Perryman, M. A. C.


    "The Three-Dimensional Universe with Gaia" symposium was hosted by the Observatoire de Paris (Meudon), France, from 4 to 7 October 2004. The date chosen for this symposium corresponded to the end of the definition phase of Gaia, a cornerstone mission of the European Space Agency. The purposes of this symposium were: (1) to present to the scientific community the design chosen for the mission, the final characteristics and performances, and to update the resulting scientific case; (2) to bring to the attention of the scientific community the extraordinary potential of Gaia and to share with the younger generation of scientists the expertise acquired during the preparation phases of the Gaia mission, and during all phases of the Hipparcos mission; (3) to organise the next phase of scientific preparation of the mission, in particular the data reduction which constitutes a major challenge with a petabyte of interconnected data which has to be treated in a global and iterative manner, and to prepare for the scientific exploitation of the data. The symposium was open to scientists working on the preparation of Gaia and to the large community interested in using the data from the mission. The proceedings of the symposium are published by the European Space Agency as ESA SP-576: "The Three-Dimensional Universe with Gaia". These proceedings contain invited and contributed papers for six sessions covering technical and scientific aspects of the mission.

  3. Three-dimensional electrical impedance tomography (United States)

    Metherall, P.; Barber, D. C.; Smallwood, R. H.; Brown, B. H.


    THE electrical resistivity of mammalian tissues varies widely1-5 and is correlated with physiological function6-8. Electrical impedance tomography (EIT) can be used to probe such variations in vivo, and offers a non-invasive means of imaging the internal conductivity distribution of the human body9-11. But the computational complexity of EIT has severe practical limitations, and previous work has been restricted to considering image reconstruction as an essentially two-dimensional problem10,12. This simplification can limit significantly the imaging capabilities of EIT, as the electric currents used to determine the conductivity variations will not in general be confined to a two-dimensional plane13. A few studies have attempted three-dimensional EIT image reconstruction14,15, but have not yet succeeded in generating images of a quality suitable for clinical applications. Here we report the development of a three-dimensional EIT system with greatly improved imaging capabilities, which combines our 64-electrode data-collection apparatus16 with customized matrix inversion techniques. Our results demonstrate the practical potential of EIT for clinical applications, such as lung or brain imaging and diagnostic screening8.

  4. Three-dimensional turbopump flowfield analysis (United States)

    Sharma, O. P.; Belford, K. A.; Ni, R. H.


    A program was conducted to develop a flow prediction method applicable to rocket turbopumps. The complex nature of a flowfield in turbopumps is described and examples of flowfields are discussed to illustrate that physics based models and analytical calculation procedures based on computational fluid dynamics (CFD) are needed to develop reliable design procedures for turbopumps. A CFD code developed at NASA ARC was used as the base code. The turbulence model and boundary conditions in the base code were modified, respectively, to: (1) compute transitional flows and account for extra rates of strain, e.g., rotation; and (2) compute surface heat transfer coefficients and allow computation through multistage turbomachines. Benchmark quality data from two and three-dimensional cascades were used to verify the code. The predictive capabilities of the present CFD code were demonstrated by computing the flow through a radial impeller and a multistage axial flow turbine. Results of the program indicate that the present code operated in a two-dimensional mode is a cost effective alternative to full three-dimensional calculations, and that it permits realistic predictions of unsteady loadings and losses for multistage machines.

  5. The collagen turnover profile is altered in patients with inguinal and incisional hernia

    DEFF Research Database (Denmark)

    Henriksen, Nadia A; Mortensen, Joachim H; Sorensen, Lars T


    BACKGROUND: Disturbed metabolism in the extracellular matrix (ECM) contributes to formation of abdominal wall hernias. The aim of this study was to gain deeper insight into the ECM turnover in hernia patients by analyzing serum biomarkers specifically reflecting collagen synthesis and breakdown......). Patients without hernias scheduled to undergo elective operation for gallstones (n = 18) served as controls. Whole venous blood was collected preoperatively. Biomarkers for synthesis of interstitial matrix (PINP, Pro-C3, P5CP) and basement membrane (P4NP) as well as corresponding degradation (C1M, C3M, C5M......, and C4M) were measured in serum by validated, solid-phase competitive assays. RESULTS: In inguinal hernia patients, the turnover of the interstitial matrix collagens type III (P turnover of the basement membrane collagen type IV...

  6. Lathyrism-induced alterations in collagen cross-links influence the mechanical properties of bone material without affecting the mineral (United States)

    Paschalis, E.P.; Tatakis, D.N.; Robins, S.; Fratzl, P.; Manjubala, I.; Zoehrer, R.; Gamsjaeger, S.; Buchinger, B.; Roschger, A.; Phipps, R.; Boskey, A.L.; Dall'Ara, E.; Varga, P.; Zysset, P.; Klaushofer, K.; Roschger, P.


    In the present study a rat animal model of lathyrism was employed to decipher whether anatomically confined alterations in collagen cross-links are sufficient to influence the mechanical properties of whole bone. Animal experiments were performed under an ethics committee approved protocol. Sixty-four female (47 day old) rats of equivalent weights were divided into four groups (16 per group): Controls were fed a semi-synthetic diet containing 0.6% calcium and 0.6% phosphorus for 2 or 4 weeks and β-APN treated animals were fed additionally with β-aminopropionitrile (0.1% dry weight). At the end of this period the rats in the four groups were sacrificed, and L2–L6 vertebra were collected. Collagen cross-links were determined by both biochemical and spectroscopic (Fourier transform infrared imaging (FTIRI)) analyses. Mineral content and distribution (BMDD) were determined by quantitative backscattered electron imaging (qBEI), and mineral maturity/crystallinity by FTIRI techniques. Micro-CT was used to describe the architectural properties. Mechanical performance of whole bone as well as of bone matrix material was tested by vertebral compression tests and by nano-indentation, respectively. The data of the present study indicate that β-APN treatment changed whole vertebra properties compared to non-treated rats, including collagen cross-links pattern, trabecular bone volume to tissue ratio and trabecular thickness, which were all decreased (p < 0.05). Further, compression tests revealed a significant negative impact of β-APN treatment on maximal force to failure and energy to failure, while stiffness was not influenced. Bone mineral density distribution (BMDD) was not altered either. At the material level, β-APN treated rats exhibited increased Pyd/Divalent cross-link ratios in areas confined to a newly formed bone. Moreover, nano-indentation experiments showed that the E-modulus and hardness were reduced only in newly formed bone areas under the influence

  7. Calcific Aortic Valve Disease Is Associated with Layer-Specific Alterations in Collagen Architecture.

    Directory of Open Access Journals (Sweden)

    Heather N Hutson

    Full Text Available Disorganization of the valve extracellular matrix (ECM is a hallmark of calcific aortic valve disease (CAVD. However, while microarchitectural features of the ECM can strongly influence the biological and mechanical behavior of tissues, little is known about the ECM microarchitecture in CAVD. In this work, we apply advanced imaging techniques to quantify spatially heterogeneous changes in collagen microarchitecture in CAVD. Human aortic valves were obtained from individuals between 50 and 75 years old with no evidence of valvular disease (healthy and individuals who underwent valve replacement surgery due to severe stenosis (diseased. Second Harmonic Generation microscopy and subsequent image quantification revealed layer-specific changes in fiber characteristics in healthy and diseased valves. Specifically, the majority of collagen fiber changes in CAVD were found to occur in the spongiosa, where collagen fiber number increased by over 2-fold, and fiber width and density also significantly increased. Relatively few fibrillar changes occurred in the fibrosa in CAVD, where fibers became significantly shorter, but did not otherwise change in terms of number, width, density, or alignment. Immunohistochemical staining for lysyl oxidase showed localized increased expression in the diseased fibrosa. These findings reveal a more complex picture of valvular collagen enrichment and arrangement in CAVD than has previously been described using traditional analysis methods. Changes in fiber architecture may play a role in regulating the pathobiological events and mechanical properties of valves during CAVD. Additionally, characterization of the ECM microarchitecture can inform the design of fibrous scaffolds for heart valve tissue engineering.

  8. Exact solutions in three-dimensional gravity

    CERN Document Server

    Garcia-Diaz, Alberto A


    A self-contained text, systematically presenting the determination and classification of exact solutions in three-dimensional Einstein gravity. This book explores the theoretical framework and general physical and geometrical characteristics of each class of solutions, and includes information on the researchers responsible for their discovery. Beginning with the physical character of the solutions, these are identified and ordered on the basis of their geometrical invariant properties, symmetries, and algebraic classifications, or from the standpoint of their physical nature, for example electrodynamic fields, fluid, scalar field, or dilaton. Consequently, this text serves as a thorough catalogue on 2+1 exact solutions to the Einstein equations coupled to matter and fields, and on vacuum solutions of topologically massive gravity with a cosmological constant. The solutions are also examined from different perspectives, enabling a conceptual bridge between exact solutions of three- and four-dimensional gravit...

  9. AAOGlimpse: Three-dimensional Data Viewer (United States)

    Shortridge, Keith


    AAOGlimpse is an experimental display program that uses OpenGL to display FITS data (and even JPEG images) as 3D surfaces that can be rotated and viewed from different angles, all in real-time. It is WCS-compliant and designed to handle three-dimensional data. Each plane in a data cube is surfaced in the same way, and the program allows the user to travel through a cube by 'peeling off' successive planes, or to look into a cube by suppressing the display of data below a given cutoff value. It can blink images and can superimpose images and contour maps from different sources using their world coordinate data. A limited socket interface allows communication with other programs.


    Energy Technology Data Exchange (ETDEWEB)



    BAGIRA - a thermal-hydraulic program complex was primarily developed for using it in nuclear power plant simulator models, but is also used as a best-estimate analytical tool for modeling two-phase mixture flows. The code models allow consideration of phase transients and the treatment of the hydrodynamic behavior of boiling and pressurized water reactor circuits. It provides the capability to explicitly model three-dimensional flow regimes in various regions of the primary and secondary circuits such as, the mixing regions, circular downcomer, pressurizer, reactor core, main primary loops, the steam generators, the separator-reheaters. In addition, it is coupled to a severe-accident module allowing the analysis of core degradation and fuel damage behavior. Section II will present the theoretical basis for development and selected results are presented in Section III. The primary use for the code complex is to realistically model reactor core behavior in power plant simulators providing enhanced training tools for plant operators.

  11. Entanglement entropy in three dimensional gravity

    Energy Technology Data Exchange (ETDEWEB)

    Maxfield, Henry [Centre for Particle Theory & Department of Mathematical Sciences, Durham University,South Road, Durham DH1 3LE (United Kingdom)


    The Ryu-Takayanagi (RT) and covariant Hubeny-Rangamani-Takayanagi (HRT) proposals relate entanglement entropy in CFTs with holographic duals to the areas of minimal or extremal surfaces in the bulk geometry. We show how, in three dimensional pure gravity, the relevant regulated geodesic lengths can be obtained by writing a spacetime as a quotient of AdS{sub 3}, with the problem reduced to a simple purely algebraic calculation. We explain how this works in both Lorentzian and Euclidean formalisms, before illustrating its use to obtain novel results in a number of examples, including rotating BTZ, the ℝℙ{sup 2} geon, and several wormhole geometries. This includes spatial and temporal dependence of single-interval entanglement entropy, despite these symmetries being broken only behind an event horizon. We also discuss considerations allowing HRT to be derived from analytic continuation of Euclidean computations in certain contexts, and a related class of complexified extremal surfaces.

  12. Three-dimensional printing physiology laboratory technology. (United States)

    Sulkin, Matthew S; Widder, Emily; Shao, Connie; Holzem, Katherine M; Gloschat, Christopher; Gutbrod, Sarah R; Efimov, Igor R


    Since its inception in 19th-century Germany, the physiology laboratory has been a complex and expensive research enterprise involving experts in various fields of science and engineering. Physiology research has been critically dependent on cutting-edge technological support of mechanical, electrical, optical, and more recently computer engineers. Evolution of modern experimental equipment is constrained by lack of direct communication between the physiological community and industry producing this equipment. Fortunately, recent advances in open source technologies, including three-dimensional printing, open source hardware and software, present an exciting opportunity to bring the design and development of research instrumentation to the end user, i.e., life scientists. Here we provide an overview on how to develop customized, cost-effective experimental equipment for physiology laboratories.

  13. Electron in three-dimensional momentum space (United States)

    Bacchetta, Alessandro; Mantovani, Luca; Pasquini, Barbara


    We study the electron as a system composed of an electron and a photon, using lowest-order perturbation theory. We derive the leading-twist transverse-momentum-dependent distribution functions for both the electron and photon in the dressed electron, thereby offering a three-dimensional description of the dressed electron in momentum space. To obtain the distribution functions, we apply both the formalism of the light-front wave function overlap representation and the diagrammatic approach. We perform the calculations both in light-cone gauge and Feynman gauge, and we present a detailed discussion of the role of the Wilson lines to obtain gauge-independent results. We provide numerical results and plots for many of the computed distributions.

  14. Towards microscale electrohydrodynamic three-dimensional printing

    International Nuclear Information System (INIS)

    He, Jiankang; Xu, Fangyuan; Cao, Yi; Liu, Yaxiong; Li, Dichen


    It is challenging for the existing three-dimensional (3D) printing techniques to fabricate high-resolution 3D microstructures with low costs and high efficiency. In this work we present a solvent-based electrohydrodynamic 3D printing technique that allows fabrication of microscale structures like single walls, crossed walls, lattice and concentric circles. Process parameters were optimized to deposit tiny 3D patterns with a wall width smaller than 10 μm and a high aspect ratio of about 60. Tight bonding among neighbour layers could be achieved with a smooth lateral surface. In comparison with the existing microscale 3D printing techniques, the presented method is low-cost, highly efficient and applicable to multiple polymers. It is envisioned that this simple microscale 3D printing strategy might provide an alternative and innovative way for application in MEMS, biosensor and flexible electronics. (paper)

  15. An Introduction of Three-dimensional Grammar

    Directory of Open Access Journals (Sweden)

    Fan Xiao


    Full Text Available This paper introduces some key points of Three-dimensional Grammar. As for the structure, it can be distinguished into syntactic structure, semantic structure and pragmatic structure from the perspectives of syntax, semantics and pragmatics. And the same is true with the followings, such as grammatical constituents, grammatical functions, grammatical meanings, grammatical focuses. Sentence types which is called sentence pattern, sentence model and sentence types respectively, and analysis methods. This paper proposes that grammatical researches should be done in accordance with the four principles, that is form and meaning co-verified, static and dynamic co-referenced, structure and function co-testified and description and interpretation co-promoted.

  16. Three-dimensional echocardiography in valve disease

    Directory of Open Access Journals (Sweden)

    Cesare Fiorentini


    Full Text Available This review covers the role of three-dimensional (3D echocardiography in the diagnosis of heart valve disease. Several factors have contributed to the evolution of this technique, which is currently a simple and routine method: rapid evolution in probe and computer technologies, demonstration that 3D data sets allowed more complete and accurate evaluation of cardiac structures, emerging clinical experience indicating the strong potential particularly in valve diseases, volume and function of the two ventricle measurements and several other fields. This report will review current and future applications of 3D echocardiography in mitral, aortic and tricuspid valve diseases underlying both qualitative (morphologic and quantitative advantages of this technique. (Heart International 2007; 3: 35-41

  17. Three dimensional thrust chamber life prediction (United States)

    Armstrong, W. H.; Brogren, E. W.


    A study was performed to analytically determine the cyclic thermomechanical behavior and fatigue life of three configurations of a Plug Nozzle Thrust Chamber. This thrust chamber is a test model which represents the current trend in nozzle design calling for high performance coupled with weight and volume limitations as well as extended life for reusability. The study involved the use of different materials and material combinations to evaluate their application to the problem of low-cycle fatigue in the thrust chamber. The thermal and structural analyses were carried out on a three-dimensional basis. Results are presented which show plots of continuous temperature histories and temperature distributions at selected times during the operating cycle of the thrust chamber. Computed structural data show critical regions for low-cycle fatigue and the histories of strain within the regions for each operation cycle.

  18. Three-dimensional detectors for neutron imaging (United States)

    Mendicino, R.; Dalla Betta, G.-F.


    Solid-state sensors fabricated with 3D technologies and coupled to different neutron converter materials have been developed by several groups as direct replacement of 3 He gas detectors, mainly for homeland security applications. Results so far achieved in terms of detection efficiency are quite good (up to ≃50%) and, combined with the intrinsic excellent position resolution of silicon sensors, could lead to high performance neutron imaging systems. In this paper, we review the state of the art in three-dimensional silicon sensors for thermal-neutron detection, addressing the most promising solutions for neutron imaging. Moreover, selected results from the developments at the University of Trento on 3D pixelated detectors having relatively low fabrication complexity and expected high neutron detection efficiency up to 30% will be reported.

  19. Multilineage differentiation of rhesus monkey embryonic stem cells in three-dimensional culture systems (United States)

    Chen, Silvia S.; Revoltella, Roberto P.; Papini, Sandra; Michelini, Monica; Fitzgerald, Wendy; Zimmerberg, Joshua; Margolis, Leonid


    In the course of normal embryogenesis, embryonic stem (ES) cells differentiate along different lineages in the context of complex three-dimensional (3D) tissue structures. In order to study this phenomenon in vitro under controlled conditions, 3D culture systems are necessary. Here, we studied in vitro differentiation of rhesus monkey ES cells in 3D collagen matrixes (collagen gels and porous collagen sponges). Differentiation of ES cells in these 3D systems was different from that in monolayers. ES cells differentiated in collagen matrixes into neural, epithelial, and endothelial lineages. The abilities of ES cells to form various structures in two chemically similar but topologically different matrixes were different. In particular, in collagen gels ES cells formed gland-like circular structures, whereas in collagen sponges ES cells were scattered through the matrix or formed aggregates. Soluble factors produced by feeder cells or added to the culture medium facilitated ES cell differentiation into particular lineages. Coculture with fibroblasts in collagen gel facilitated ES cell differentiation into cells of a neural lineage expressing nestin, neural cell adhesion molecule, and class III beta-tubulin. In collagen sponges, keratinocytes facilitated ES cell differentiation into cells of an endothelial lineage expressing factor VIII. Exogenous granulocyte-macrophage colony-stimulating factor further enhanced endothelial differentiation. Thus, both soluble factors and the type of extracellular matrix seem to be critical in directing differentiation of ES cells and the formation of tissue-like structures. Three-dimensional culture systems are a valuable tool for studying the mechanisms of these phenomena.

  20. Method for Parametric Design of Three-Dimensional Shapes

    National Research Council Canada - National Science Library

    Dick, James L


    The present invention relates to computer-aided design of three-dimensional shapes and more particularly, relates to a system and method for parametric design of three-dimensional hydrodynamic shapes...

  1. Three-dimensional (3D) analysis of the temporomandibular joint

    DEFF Research Database (Denmark)

    Kitai, N.; Kreiborg, S.; Murakami, S.

    Symposium Orthodontics 2001: Where are We Now? Where are We Going?, three-dimensional analysis, temporomandibular joint......Symposium Orthodontics 2001: Where are We Now? Where are We Going?, three-dimensional analysis, temporomandibular joint...

  2. Characterization of an Actively Controlled Three-Dimensional Turret Wake (United States)

    Shea, Patrick; Glauser, Mark


    Three-dimensional turrets are commonly used for housing optical systems on airborne platforms. As bluff bodies, these geometries generate highly turbulent wakes that decrease the performance of the optical systems and the aircraft. The current experimental study looked to use dynamic suction in both open and closed-loop control configurations to actively control the turret wake. The flow field was characterized using dynamic pressure and stereoscopic PIV measurements in the wake of the turret. Results showed that the suction system was able to manipulate the wake region of the turret and could alter not only the spatial structure of the wake, but also the temporal behavior of the wake flow field. Closed-loop, feedback control techniques were used to determine a more optimal control input for the flow control. Similar control effects were seen for both the steady open-loop control case and the closed-loop feedback control configuration with a 45% reduction in the suction levels when comparing the closed-loop to the open-loop case. These results provide unique information regarding the development of the baseline three-dimensional wake and the wake with three different active flow control configurations.

  3. Three-dimensional analysis of abnormal ultrastructural alteration in ...

    Indian Academy of Sciences (India)

    We also identified the loss of peroxiredoxin 3, an endogenous cytoprotective antioxidant enzyme and the accumulation of A in the hippocampal mitochondria of transgenic mice, which differs from those in age-matched wild-type mice. The mitochondria in A plaque-detected regions were severely disrupted, and the ...

  4. Irradiation Alters MMP-2/TIMP-2 System and Collagen Type IV Degradation in Brain

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Won Hee [School of Biomedical Engineering and Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia (United States); Warrington, Junie P.; Sonntag, William E. [Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (United States); Lee, Yong Woo, E-mail: [School of Biomedical Engineering and Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia (United States); Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia (United States)


    Purpose: Blood-brain barrier (BBB) disruption is one of the major consequences of radiation-induced normal tissue injury in the central nervous system. We examined the effects of whole-brain irradiation on matrix metalloproteinases (MMPs)/tissue inhibitors of metalloproteinases (TIMPs) and extracellular matrix (ECM) degradation in the brain. Methods and Materials: Animals received either whole-brain irradiation (a single dose of 10 Gy {gamma}-rays or a fractionated dose of 40 Gy {gamma}-rays, total) or sham-irradiation and were maintained for 4, 8, and 24 h following irradiation. mRNA expression levels of MMPs and TIMPs in the brain were analyzed by real-time reverse transcriptase-polymerase chain reaction (PCR). The functional activity of MMPs was measured by in situ zymography, and degradation of ECM was visualized by collagen type IV immunofluorescent staining. Results: A significant increase in mRNA expression levels of MMP-2, MMP-9, and TIMP-1 was observed in irradiated brains compared to that in sham-irradiated controls. In situ zymography revealed a strong gelatinolytic activity in the brain 24 h postirradiation, and the enhanced gelatinolytic activity mediated by irradiation was significantly attenuated in the presence of anti-MMP-2 antibody. A significant reduction in collagen type IV immunoreactivity was also detected in the brain at 24 h after irradiation. In contrast, the levels of collagen type IV were not significantly changed at 4 and 8 h after irradiation compared with the sham-irradiated controls. Conclusions: The present study demonstrates for the first time that radiation induces an imbalance between MMP-2 and TIMP-2 levels and suggests that degradation of collagen type IV, a major ECM component of BBB basement membrane, may have a role in the pathogenesis of brain injury.

  5. Irradiation Alters MMP-2/TIMP-2 System and Collagen Type IV Degradation in Brain

    International Nuclear Information System (INIS)

    Lee, Won Hee; Warrington, Junie P.; Sonntag, William E.; Lee, Yong Woo


    Purpose: Blood-brain barrier (BBB) disruption is one of the major consequences of radiation-induced normal tissue injury in the central nervous system. We examined the effects of whole-brain irradiation on matrix metalloproteinases (MMPs)/tissue inhibitors of metalloproteinases (TIMPs) and extracellular matrix (ECM) degradation in the brain. Methods and Materials: Animals received either whole-brain irradiation (a single dose of 10 Gy γ-rays or a fractionated dose of 40 Gy γ-rays, total) or sham-irradiation and were maintained for 4, 8, and 24 h following irradiation. mRNA expression levels of MMPs and TIMPs in the brain were analyzed by real-time reverse transcriptase-polymerase chain reaction (PCR). The functional activity of MMPs was measured by in situ zymography, and degradation of ECM was visualized by collagen type IV immunofluorescent staining. Results: A significant increase in mRNA expression levels of MMP-2, MMP-9, and TIMP-1 was observed in irradiated brains compared to that in sham-irradiated controls. In situ zymography revealed a strong gelatinolytic activity in the brain 24 h postirradiation, and the enhanced gelatinolytic activity mediated by irradiation was significantly attenuated in the presence of anti-MMP-2 antibody. A significant reduction in collagen type IV immunoreactivity was also detected in the brain at 24 h after irradiation. In contrast, the levels of collagen type IV were not significantly changed at 4 and 8 h after irradiation compared with the sham-irradiated controls. Conclusions: The present study demonstrates for the first time that radiation induces an imbalance between MMP-2 and TIMP-2 levels and suggests that degradation of collagen type IV, a major ECM component of BBB basement membrane, may have a role in the pathogenesis of brain injury.

  6. Amino acid duplication in the coiled-coil structure of collagen XVII alters its maturation and trimerization causing mild junctional epidermolysis bullosa. (United States)

    Kroeger, Jasmin K; Hofmann, Silke C; Leppert, Juna; Has, Cristina; Franzke, Claus-Werner


    The function and stability of collagens depend on the accurate triple helix formation of three distinct polypeptide chains. Disruption of this triple-helical structure can result in connective-tissue disorders. Triple helix formation is thought to depend on three-stranded coiled-coil oligomerization sites within non-collagenous domains. However, only little is known about the physiological relevance of these coiled-coil structures. Transmembrane collagen XVII, also known as 180 kDa bullous pemphigoid antigen provides mechanical stability through the anchorage of epithelial cells to the basement membrane. Mutations in the collagen XVII gene, COL17A1, cause junctional epidermolysis bullosa (JEB), characterized by chronic trauma-induced skin blistering. Here we exploited a novel naturally occurring COL17A1 mutation, leading to an in-frame lysine duplication within the coiled-coil structure of the juxtamembranous NC16A domain of collagen XVII, which resulted in a mild phenotype of JEB due to reduced membrane-anchored collagen XVII molecules. This mutation causes structural changes in the mutant molecule and interferes with its maturation. The destabilized coiled-coil structure of the mutant collagen XVII unmasks a furin cleavage site that results in excessive and non-physiological ectodomain shedding during its maturation. Furthermore, it decreases its triple-helical stability due to defective coiled-coil oligomerization, which makes it highly susceptible to proteolytic degradation. As a consequence of altered maturation and decreased stability of collagen XVII trimers, reduced collagen XVII is incorporated into the cell membrane, resulting in compromised dermal-epidermal adhesion. Taken together, using this genetic model, we provide the first proof that alteration of the coiled-coil structure destabilizes oligomerization and impairs physiological shedding of collagen XVII in vivo. © The Author 2016. Published by Oxford University Press. All rights reserved. For

  7. Study on three dimensional seismic isolation system

    International Nuclear Information System (INIS)

    Morishita, Masaki; Kitamura, Seiji


    Japan Nuclear Cycle Development Institute (JNC) and Japan Atomic Power Company (JAPC) launched joint research programs on structural design and three-dimensional seismic isolation technologies, as part of the supporting R and D activities for the feasibility studies on commercialized fast breeder reactor cycle systems. A research project by JAPC under the auspices of the Ministry of Economy, Trade, and Industry (METI) with technical support by JNC is included in this joint study. This report contains the results of the research on the three-dimensional seismic isolation technologies, and the results of this year's study are summarized in the following five aspects. (1) Study on Earthquake Condition for Developing 3-dimensional Base Isolation System. The case study S2 is one of the maximum ground motions, of which the records were investigated up to this time. But a few observed near the fault exceed the case study S2 in the long period domain, depending on the fault length and conditions. Generally it is appropriate that the response spectra ratio (vertical/horizontal) is 0.6. (2) Performance Requirement for 3-dimensional Base Isolation System and Devices. Although the integrity map of main equipment/piping dominate the design criteria for the 3-dimensional base isolation system, the combined integrity map is the same as those of FY 2000, which are under fv=1Hz and over hv=20%. (3) Developing Targets and Schedule for 3-dimensional Isolation Technology. The target items for 3-dimensional base isolation system were rearranged into a table, and developing items to be examined concerning the device were also adjusted. A development plan until FY 2009 was made from the viewpoint of realization and establishment of a design guideline on 3-dimensional base isolation system. (4) Study on 3-dimensional Entire Building Base Isolation System. Three ideas among six ideas that had been proposed in FY2001, i.e., '3-dimensional base isolation system incorporating hydraulic

  8. Primary and Secondary Three Dimensional Microbatteries (United States)

    Cirigliano, Nicolas

    Today's MEMS devices are limited more so by the batteries that supply their power than the fabrication methods used to build them. Thick battery electrodes are capable of providing adequate energy, but long and tortuous diffusion pathways lead to low power capabilities. On the other hand, thin film batteries can operate at significant current densities but require large surface areas to supply practical energy. This dilemma can be solved by either developing new high capacity materials or by engineering new battery designs that decouple power and energy. Three dimensional batteries redesign traditional configurations to create nonplanar interfaces between battery components. This can be done by introducing hierarchical structures into the electrode shape. Designs such as these provide a maximum surface area over which chemical reactions can occur. Furthermore, by maintaining small feature sizes, ion diffusion and electronic transport distances can remain minimal. Manipulating these properties ensures fast kinetics that are required for high power situations. Energy density is maximized by layering material in the vertical direction, thus ensuring a minimal footprint area. Three dimensional carbon electrodes are fabricated using basic MEMS techniques. A silicon mold is anisotropically etched to produce channels of a predetermined diameter. The channels are then filled using an infiltration technique with electrode slurry. Once dried, the mold is attached to a current collector and etched using a XeF2 process. Electrodes of varying feature sizes have been fabricated using this method with aspect ratios ranging from 3.5:1 to 7:1. 3D carbon electrodes are shown to obtain capacities over 8 mAh/cm2 at 0.1 mA/cm2, or nearly 700% higher than planar carbon electrodes. When assembled with a planar cathode, the battery cell produced an average discharge capacity of 40 J/cm 2 at a current density of 0.2 mA/cm2. This places the energy density values slightly less than thick

  9. Multimodal three-dimensional dynamic signature

    Directory of Open Access Journals (Sweden)

    Yury E. Kozlov


    Full Text Available Reliable authentication in mobile applications is among the most important information security challenges. Today, we can hardly imagine a person who would not own a mobile device that connects to the Internet. Mobile devices are being used to store large amounts of confidential information, ranging from personal photos to electronic banking tools. In 2009, colleagues from Rice University together with their collaborators from Motorola, proposed an authentication through in-air gestures. This and subsequent work contributing to the development of the method are reviewed in our introduction. At the moment, there exists a version of the gesture-based authentication software available for Android mobile devices. This software has not become widespread yet. One of likely reasons for that is the insufficient reliability of the method, which involves similar to its earlier analogs the use of only one device. Here we discuss the authentication based on the multimodal three-dimensional dynamic signature (MTDS performed by two independent mobile devices. The MTDS-based authentication technique is an advanced version of in-air gesture authentication. We describe the operation of a prototype of MTDS-based authentication, including the main implemented algorithms, as well as some preliminary results of testing the software. We expect that our method can be used in any mobile application, provided a number of additional improvements discussed in the conclusion are made.

  10. Three-dimensional supersonic vortex breakdown (United States)

    Kandil, Osama A.; Kandil, Hamdy A.; Liu, C. H.


    Three-dimensional supersonic vortex-breakdown problems in bound and unbound domains are solved. The solutions are obtained using the time-accurate integration of the unsteady, compressible, full Navier-Stokes (NS) equations. The computational scheme is an implicit, upwind, flux-difference splitting, finite-volume scheme. Two vortex-breakdown applications are considered in the present paper. The first is for a supersonic swirling jet which is issued from a nozzle into a supersonic uniform flow at a lower Mach number than that of the swirling jet. The second is for a supersonic swirling flow in a configured circular duct. In the first application, an extensive study of the effects of grid fineness, shape and grid-point distribution on the vortex breakdown is presented. Four grids are used in this study and they show a substantial dependence of the breakdown bubble and shock wave on the grid used. In the second application, the bubble-type and helix-type vortex breakdown have been captured.

  11. Three dimensional characterization and archiving system

    International Nuclear Information System (INIS)

    Sebastian, R.L.; Clark, R.; Gallman, P.


    The Three Dimensional Characterization and Archiving System (3D-ICAS) is being developed as a remote system to perform rapid in situ analysis of hazardous organics and radionuclide contamination on structural materials. Coleman Research and its subcontractors, Thermedics Detection, Inc. (TD) and the University of Idaho (UI) are in the second phase of a three phase program to develop 3D-ICAS to support Decontamination and Decommissioning (D and D) operations. Accurate physical characterization of surfaces and the radioactive and organic is a critical D and D task. Surface characterization includes identification of potentially dangerous inorganic materials, such as asbestos and transite. Real-time remotely operable characterization instrumentation will significantly advance the analysis capabilities beyond those currently employed. Chemical analysis is a primary area where the characterization process will be improved. The 3D-ICAS system robotically conveys a multisensor probe near the surfaces to be inspected. The sensor position and orientation are monitored and controlled using coherent laser radar (CLR) tracking. The CLR also provides 3D facility maps which establish a 3D world view within which the robotic sensor system can operate

  12. Three dimensional characterization and archiving system

    International Nuclear Information System (INIS)

    Sebastian, R.L.; Clark, R.; Gallman, P.


    The Three Dimensional Characterization and Archiving System (3D-ICAS) is being developed as a remote system to perform rapid in situ analysis of hazardous organics and radionuclide contamination on structural materials. Coleman Research and its subcontractors, Thermedics Detection, Inc. (TD) and the University of Idaho (UI) are in the second phase of a three phase program to develop 3D-ICAS to support Decontamination and Decommissioning (D ampersand D) operations. Accurate physical characterization of surfaces and the radioactive and organic is a critical D ampersand D task. Surface characterization includes identification of potentially dangerous inorganic materials, such as asbestos and transite. Real-time remotely operable characterization instrumentation will significantly advance the analysis capabilities beyond those currently employed. Chemical analysis is a primary area where the characterization process will be improved. Chemical analysis plays a vital role throughout the process of decontamination. Before clean-up operations can begin the site must be characterized with respect to the type and concentration of contaminants, and detailed site mapping must clarify areas of both high and low risk. During remediation activities chemical analysis provides a means to measure progress and to adjust clean-up strategy. Once the clean-up process has been completed the results of chemical analysis will verify that the site is in compliance with federal and local regulations

  13. Three-dimensional endoscopy in sinus surgery. (United States)

    Singh, Ameet; Saraiya, Rupali


    Surgical endoscopy revolutionized the management of disease in nearly every surgical field, including rhinology. Endoscopy offered several advantages for the surgical management of rhinologic disease. However, it had a distinct disadvantage compared to direct vision, namely loss of binocular vision. Two-dimensional (2D) endoscopy limited depth perception, widely regarded as an important parameter for accurate and efficient movements during surgery. Three-dimensional (3D) endoscopic visualization has been actively pursued for decades by endoscopic surgeons in multiple surgical specialties. However, its clinical role has been limited due to technical limitations as well as successful adaptation by endoscopic surgeons to monocular cues offered by 2D technology. Until recently, stereoscopic technology included variations of dual channel video, dual chip-on-the-tip, and shutter mechanism, as well as various 3D displays. Over the past decade a novel 3D endoscopic technology was introduced. This technology used a lenticular array of lenses in front of a single video chip at the distal end of an endoscope to generate a stereoscopic view of the surgical field. Also known as the 'insect eye' technology since it mimics the compound eye of arthropods, this endoscope has reinvigorated the field of 3D endoscopic surgery. Recent developments in 3D endoscopy hold much promise for all surgical subspecialties, particularly endoscopic sinus and skull-base surgery.

  14. Three-dimensional laparoscopy: Principles and practice

    Directory of Open Access Journals (Sweden)

    Rakesh Y Sinha


    Full Text Available The largest challenge for laparoscopic surgeons is the eye–hand coordination within a three-dimensional (3D scene observed on a 2D display. The 2D view on flat screen laparoscopy is cerebrally intensive. The loss of binocular vision on a 2D display causes visual misperceptions, mainly loss of depth perception and adds to the surgeon's fatigue. This compromises the safety of laparoscopy. The 3D high-definition view with great depth perception and tactile feedback makes laparoscopic surgery more acceptable, safe and cost-effective. It improves surgical precision and hand–eye coordination, conventional and all straight stick instruments can be used, capital expenditure is less and recurring cost and annual maintenance cost are less. In this article, we have discussed the physics of 3D laparoscopy, principles of depth perception, and the different kinds of 3D systems available for laparoscopy. We have also discussed our experience of using 3D laparoscopy in over 2000 surgeries in the last 4 years.

  15. Three dimensional characterization and archiving system

    Energy Technology Data Exchange (ETDEWEB)

    Sebastian, R.L.; Clark, R.; Gallman, P. [and others


    The Three Dimensional Characterization and Archiving System (3D-ICAS) is being developed as a remote system to perform rapid in situ analysis of hazardous organics and radionuclide contamination on structural materials. Coleman Research and its subcontractors, Thermedics Detection, Inc. (TD) and the University of Idaho (UI) are in the second phase of a three phase program to develop 3D-ICAS to support Decontamination and Decommissioning (D&D) operations. Accurate physical characterization of surfaces and the radioactive and organic is a critical D&D task. Surface characterization includes identification of potentially dangerous inorganic materials, such as asbestos and transite. Real-time remotely operable characterization instrumentation will significantly advance the analysis capabilities beyond those currently employed. Chemical analysis is a primary area where the characterization process will be improved. Chemical analysis plays a vital role throughout the process of decontamination. Before clean-up operations can begin the site must be characterized with respect to the type and concentration of contaminants, and detailed site mapping must clarify areas of both high and low risk. During remediation activities chemical analysis provides a means to measure progress and to adjust clean-up strategy. Once the clean-up process has been completed the results of chemical analysis will verify that the site is in compliance with federal and local regulations.

  16. Nanoscale three-dimensional single particle tracking. (United States)

    Dupont, Aurélie; Lamb, Don C


    Single particle tracking (SPT) in biological systems is a quickly growing field. Many new technologies are being developed providing new tracking capabilities, which also lead to higher demands and expectations for SPT. Following a single biomolecule as it performs its function provides quantitative mechanistic information that cannot be obtained in classical ensemble methods. From the 3D trajectory, information is available over the diffusional behavior of the particle and precise position information can also be used to elucidate interactions of the tracked particle with its surroundings. Thus, three-dimensional (3D) SPT is a very valuable tool for investigating cellular processes. This review presents recent progress in 3D SPT, from image-based techniques toward more sophisticated feedback approaches. We focus mainly on the feedback technique known as orbital tracking. We present here a modified version of the original orbital tracking in which the intensities from two z-planes are simultaneously measured allowing a concomitant wide-field imaging. The system can track single particles with a precision down to 5 nm in the x-y plane and 7 nm in the axial direction. The capabilities of the system are demonstrated using single virus tracing to follow the infection pathway of Prototype Foamy Virus in living cells.


    Directory of Open Access Journals (Sweden)

    Iztok Takač


    Full Text Available Background. Although three-dimensional ultrasound (3D US imaging has been used for a decade, debate continues about its potential clinical aplications in gynecology. The same is true for the field of gynecologic oncology. Also, reports regarding usfulness of 3D US in gynecologic oncology are limited. A few potentially useful clinical applications have been described and some of these are now gaining general acceptance. In this paper, the usfulness of 3D US in the main areas of its application is demonstrated: diagnostics of cervical, endometrial, ovarian and breast cancer.Conclusions. An important advantage of 3D US over conventional two-dimensional imaging is the ability to reconstruct and display any arbitrarily chosen section within the volume dataset as well as ability to measure the volume of pelvic organs regardless of their shape. 3D US also allows the realtime analysis of the acquired image data to be conducted at a later time when the patient is off the examination table.

  18. Three-Dimensional Printed Thermal Regulation Textiles. (United States)

    Gao, Tingting; Yang, Zhi; Chen, Chaoji; Li, Yiju; Fu, Kun; Dai, Jiaqi; Hitz, Emily M; Xie, Hua; Liu, Boyang; Song, Jianwei; Yang, Bao; Hu, Liangbing


    Space cooling is a predominant part of energy consumption in people's daily life. Although cooling the whole building is an effective way to provide personal comfort in hot weather, it is energy-consuming and high-cost. Personal cooling technology, being able to provide personal thermal comfort by directing local heat to the thermally regulated environment, has been regarded as one of the most promising technologies for cooling energy and cost savings. Here, we demonstrate a personal thermal regulated textile using thermally conductive and highly aligned boron nitride (BN)/poly(vinyl alcohol) (PVA) composite (denoted as a-BN/PVA) fibers to improve the thermal transport properties of textiles for personal cooling. The a-BN/PVA composite fibers are fabricated through a fast and scalable three-dimensional (3D) printing method. Uniform dispersion and high alignment of BN nanosheets (BNNSs) can be achieved during the processing of fiber fabrication, leading to a combination of high mechanical strength (355 MPa) and favorable heat dispersion. Due to the improved thermal transport property imparted by the thermally conductive and highly aligned BNNSs, better cooling effect (55% improvement over the commercial cotton fiber) can be realized in the a-BN/PVA textile. The wearable a-BN/PVA textiles containing the 3D-printed a-BN/PVA fibers offer a promising selection for meeting the personal cooling requirement, which can significantly reduce the energy consumption and cost for cooling the whole building.

  19. Three-Dimensional Printed Graphene Foams. (United States)

    Sha, Junwei; Li, Yilun; Villegas Salvatierra, Rodrigo; Wang, Tuo; Dong, Pei; Ji, Yongsung; Lee, Seoung-Ki; Zhang, Chenhao; Zhang, Jibo; Smith, Robert H; Ajayan, Pulickel M; Lou, Jun; Zhao, Naiqin; Tour, James M


    An automated metal powder three-dimensional (3D) printing method for in situ synthesis of free-standing 3D graphene foams (GFs) was successfully modeled by manually placing a mixture of Ni and sucrose onto a platform and then using a commercial CO 2 laser to convert the Ni/sucrose mixture into 3D GFs. The sucrose acted as the solid carbon source for graphene, and the sintered Ni metal acted as the catalyst and template for graphene growth. This simple and efficient method combines powder metallurgy templating with 3D printing techniques and enables direct in situ 3D printing of GFs with no high-temperature furnace or lengthy growth process required. The 3D printed GFs show high-porosity (∼99.3%), low-density (∼0.015g cm -3 ), high-quality, and multilayered graphene features. The GFs have an electrical conductivity of ∼8.7 S cm -1 , a remarkable storage modulus of ∼11 kPa, and a high damping capacity of ∼0.06. These excellent physical properties of 3D printed GFs indicate potential applications in fields requiring rapid design and manufacturing of 3D carbon materials, for example, energy storage devices, damping materials, and sound absorption.

  20. A method for fabricating a three-dimensional carbon structure

    DEFF Research Database (Denmark)


    A method for fabricating a three-dimensional carbon structure (4) is disclosed. A mould (1) defining a three-dimensional shape is provided, and natural protein containing fibres are packed in the mould (1) at a predetermined packing density. The packed natural protein containing fibre structure (3......) undergoes pyrolysis, either while still in the mould (1) or after having been removed from the mould (1). Thereby a three-dimensional porous and electrically conducting carbon structure (4) having a three-dimensional shape defined by the three-dimensional shape of the mould (1) and a porosity defined...

  1. Corticosteroid administration alters the mechanical properties of isolated collagen fascicles in rat-tail tendon

    DEFF Research Database (Denmark)

    Haraldsson, B T; Aagaard, P; Crafoord-Larsen, D


    L of 40 mg/mL mixed with 1.0 mL 9% saline (n=12), and (B) a control group that was injected with 9% saline (n=12). Three days after the injections, the animals were sacrificed and single individual collagen fascicles were collected and underwent displacement to failure. Corticosteroid administration......Overload tendon injuries are frequent in recreational and elite sports. The optimal treatment strategy remains unknown, but local administration of corticosteroids is one common treatment option. The direct effects of the corticosteroid administration on the tissue are not fully understood...

  2. Panoramic three-dimensional CT imaging

    International Nuclear Information System (INIS)

    Kawamata, Akitoshi; Fujishita, Masami


    Panoramic radiography is a unique projection technique for producing a single image of both maxillary and mandibular arches and many other anatomical structures. To obtain a similar panoramic image without panoramic radiography system, a modified three-dimensional (3D) CT imaging technique was designed. A set of CT slice image data extending from the chin to the orbit was used for 3D reconstruction. The CT machine used in this study was the X-Vision (TOSHIBA, Japan). The helical scan technique was used. The slice thickness of reconstructed image was one or 1.5 mm. The occlusal plane or Frankfort horizontal (FH) plane was used as the reference line. The resultant slice image data was stored on a magnetic optical disk and then used to create panoramic 3D-CT images on a Macintosh computer systems (Power Macintosh 8600/250, Apple Computer Inc., USA). To create the panoramic 3D-CT image, the following procedure was designed: Design a curved panoramic 3D-CT imaging layer using the imaging layer and the movement of the x-ray beam in panoramic radiography system as a template; Cut this imaging layer from each slice image, then the trimmed image was transformed to a rectangular layer using the ''still image warping'' special effect in the Elastic Reality special effects system (Elastic Reality Inc., USA); Create panoramic 3D-CT image using the Voxel View (Vital Images Inc., USA) rendering system and volume rendering technique. Although the image quality was primitive, a panoramic view of maxillofacial region was obtained by this technique. (author)

  3. Measurements using three-dimensional product imaging

    Directory of Open Access Journals (Sweden)

    A. Sioma


    Full Text Available This article discusses a method of creating a three-dimensional cast model using vision systems and how that model can be used in thequality assessment process carried out directly on the assembly line. The technology of active vision, consisting in illumination of theobject with a laser beam, was used to create the model. Appropriate configuration of camera position geometry and laser light allows thecollection of height profiles and construction of a 3D model of the product on their basis. The article discusses problems connected with the resolution of the vision system, resolution of the laser beam analysis, and resolution connected with the application of the successive height profiles on sample cast planes. On the basis of the model, measurements allowing assessment of dimension parameters and surface defects of a given cast are presented. On the basis of tests and analyses of such a threedimensional cast model, a range of checks which are possible to conduct using 3D vision systems is indicated.Testing casts using that technology allows rapid assessment of selected parameters. Construction of the product’s model and dimensional assessment take a few seconds, which significantly reduces the duration of checks in the technological process. Depending on the product, a few checks may be carried out simultaneously on the product’s model.The possibility of controlling all outgoing products, and creating and modifying the product parameter control program, makes the solutionhighly flexible, which is confirmed by pilot industrial implementations. The technology will be developed in terms of detection andidentification of surface defects. It is important due to the possibility of using such information for the purposes of selecting technologicalprocess parameters and observing the effect of changes in selected parameters on the cast parameter controlled in a vision system.

  4. The efficacy of cetuximab in a tissue-engineered three-dimensional in vitro model of colorectal cancer

    Directory of Open Access Journals (Sweden)

    Tarig Magdeldin


    Full Text Available The preclinical development process of chemotherapeutic drugs is often carried out in two-dimensional monolayer cultures. However, a considerable amount of evidence demonstrates that two-dimensional cell culture does not accurately reflect the three-dimensional in vivo tumour microenvironment, specifically with regard to gene expression profiles, oxygen and nutrient gradients and pharmacokinetics. With this objective in mind, we have developed and established a physiologically relevant three-dimensional in vitro model of colorectal cancer based on the removal of interstitial fluid from collagen type I hydrogels. We employed the RAFT™ (Real Architecture For 3D Tissue system for producing three-dimensional cultures to create a controlled reproducible, multiwell testing platform. Using the HT29 and HCT116 cell lines to model epidermal growth factor receptor expressing colorectal cancers, we characterized three-dimensional cell growth and morphology in addition to the anti-proliferative effects of the anti–epidermal growth factor receptor chemotherapeutic agent cetuximab in comparison to two-dimensional monolayer cultures. Cells proliferated well for 14 days in three-dimensional culture and formed well-defined cellular aggregates within the concentrated collagen matrix. Epidermal growth factor receptor expression levels revealed a twofold and threefold increase in three-dimensional cultures for both HT29 and HCT116 cells in comparison to two-dimensional monolayers, respectively (p < 0.05; p < 0.01. Cetuximab efficacy was significantly lower in HT29 three-dimensional cultures in comparison to two-dimensional monolayers, whereas HCT116 cells in both two-dimension and three-dimension were non-responsive to treatment in agreement with their KRAS mutant status. In summary, these results confirm the use of a three-dimensional in vitro cancer model as a suitable drug-screening platform for in vitro pharmacological testing.

  5. [Precision of three-dimensional printed brackets]. (United States)

    Zhang, D; Wang, L C; Zhou, Y H; Liu, X M; Li, J


    This study was based on digital orthodontic diagnosis work flow for indirect bonding transfer tray model design and three-dimensional (3D) printing, and the aim of this paper was to inspect the dimensional accuracyof 3D printed brackets, which is the foundation of the follow up work and hoped that will illuminate the clinical application of the digital orthodontics work flow. The samples which consisted of 14 cases of patients with malocclusion from Department of Orthodontics Peking University were selected, including 8 cases with tooth extraction and 6 cases without tooth extraction. All the 14 patients were taken intra-oral scan (Trios 3Shape, Denmark) and cone-beam computed tomography (CBCT, NewTom 3G volumetric scanner, Aperio Service,Italy)shooting after periodontal treatment. STL data and DICOM data were obtained from intraoral scans and CBCT images.Data segmentation, registration, fusion, automatic tooth arrangement, virtual positioning of orthodontic appliance and conversion the coordinates of malocclusion model were all done with self-programming software. The data of 3D printing model with brackets on it were output finally and printed out with EDEN260V (Objet Geometries, Israel) to make indirect bonding transfer tray. Digital vernier caliper was used to measure the length and width of upper and lower left brackets and buccal tubes on those 3D models after removal of surrounding supporting material by ultrasonic vibration and water-spray. Intra-examiner reliability was assessed by using intra-class correlation coefficients (ICC), and one-sample T test was used to compare the measurements with the standard dimensional data of the brackets. There were significant differences which range in 0.04-0.17 mm between the 13 items out of the 19 measurement items. Except for the length of the lower left premolars'brackets, mean values of the other items were greater than the test value. Although the measurement results in the width of brackets and the width and

  6. Airway branching morphogenesis in three dimensional culture

    Directory of Open Access Journals (Sweden)

    Gudjonsson Thorarinn


    Full Text Available Abstract Background Lungs develop from the fetal digestive tract where epithelium invades the vascular rich stroma in a process called branching morphogenesis. In organogenesis, endothelial cells have been shown to be important for morphogenesis and the maintenance of organ structure. The aim of this study was to recapitulate human lung morphogenesis in vitro by establishing a three dimensional (3D co-culture model where lung epithelial cells were cultured in endothelial-rich stroma. Methods We used a human bronchial epithelial cell line (VA10 recently developed in our laboratory. This cell line cell line maintains a predominant basal cell phenotype, expressing p63 and other basal markers such as cytokeratin-5 and -14. Here, we cultured VA10 with human umbilical vein endothelial cells (HUVECs, to mimic the close interaction between these cell types during lung development. Morphogenesis and differentiation was monitored by phase contrast microscopy, immunostainings and confocal imaging. Results We found that in co-culture with endothelial cells, the VA10 cells generated bronchioalveolar like structures, suggesting that lung epithelial branching is facilitated by the presence of endothelial cells. The VA10 derived epithelial structures display various complex patterns of branching and show partial alveolar type-II differentiation with pro-Surfactant-C expression. The epithelial origin of the branching VA10 colonies was confirmed by immunostaining. These bronchioalveolar-like structures were polarized with respect to integrin expression at the cell-matrix interface. The endothelial-induced branching was mediated by soluble factors. Furthermore, fibroblast growth factor receptor-2 (FGFR-2 and sprouty-2 were expressed at the growing tips of the branching structures and the branching was inhibited by the FGFR-small molecule inhibitor SU5402. Discussion In this study we show that a human lung epithelial cell line can be induced by endothelial cells to

  7. The Three-dimensional Digital Factory for Shipbuilding Technology Research

    Directory of Open Access Journals (Sweden)

    Xu Wei


    Full Text Available The three-dimensional digital factory technology research is the hotspot in shipbuilding recently. The three-dimensional digital factory technology not only focus on design the components of the product, but also discuss on the simulation and analyses of the production process.Based on the three-dimensional model, the basic data layer, application control layer and the presentation layer of hierarchical structure are established in the three-dimensional digital factory of shipbuilding in this paper. And the key technologies of three-dimensional digital factory of shipbuilding are analysed. Finally, a case study is applied and the results show that the three-dimensional digital factory will play an important role in the future.

  8. Three-dimensional reconstruction of the biliary tract using spiral computed tomography. Three-dimensional cholangiography

    International Nuclear Information System (INIS)

    Gon, Masanori; Ogura, Norihiro; Uetsuji, Shouji; Ueyama, Yasuo


    In this study, 310 patients with benign biliary diseases, 20 with gallbladder cancer, and 8 with biliary tract carcinoma underwent spiral CT (SCT) scanning at cholangiography. Depiction rate of the shape of the conjunction site of the gallbladder and biliary tract was 27.5% by conventional intravenous cholangiography (DIC), 92.5% by ERC, and 90.0% by DIC-SCT. Abnormal cystic duct course was admitted in 14.1%. Multiplanar reconstruction by DIC-SCT enabled identification of the common bile duct and intrahepatic bile duct stone. Three-dimensional reconstruction of DIC-SCT was effective in evaluating obstruction of the anastomosis or passing condition of after hepatico-jejunostomy. Two-dimensional SCT images through PTCD tube enabled degree of hepatic invasion in bile duct cancer, and three-dimensional images were useful in grasping the morphology of the bile duct branches near the obstruction site. DIC-SCT is therefore considered a useful procedure as non-invasive examination of bile duct lesions. (S.Y.)

  9. A physiologic three-dimensional cell culture system to investigate the role of decorin in matrix organisation and cell survival

    International Nuclear Information System (INIS)

    Seidler, Daniela G.; Schaefer, Liliana; Robenek, Horst; Iozzo, Renato V.; Kresse, Hans; Schoenherr, Elke


    In vivo cells exist in a three-dimensional environment generated and maintained by multiple cell-cell and cell-matrix interactions. Proteoglycans, like decorin, affect these complex interactions. Thus, we sought to investigate the role of decorin in a three-dimensional environment where the matrix was generated over time by decorin-deficient fibroblasts in the presence of L-ascorbic acid 2-phosphate. The cells were viable and proliferated in response to FGF2. Decorin was incorporated in the matrix and caused a ∼2 nm shift in the average diameter of the collagen fibrils, and the range and distribution of the fibrils became narrower and more uniform. Although there were no appreciable changes in collagen composition, we found that exogenous decorin induced the de novo synthesis of collagen I and V and cross-linked β (I). In the early phases of the three-dimensional culture, decorin reduced apoptosis. However, following the establishment of a three-dimensional matrix, the cells did not require decorin for their survival

  10. Three-dimensional low-energy topological invariants

    International Nuclear Information System (INIS)

    Bakalarska, M.; Broda, B.


    A description of the one-loop approximation formula for the partition function of a three-dimensional abelian version of the Donaldson-Witten theory is proposed. The one-loop expression is shown to contain such topological invariants of a three-dimensional manifold M like the Reidemeister-Ray-Singer torsion τ R and Betti numbers. (orig.)

  11. Collapse in a forced three-dimensional nonlinear Schrodinger equation

    DEFF Research Database (Denmark)

    Lushnikov, P.M.; Saffman, M.


    We derive sufficient conditions for the occurrence of collapse in a forced three-dimensional nonlinear Schrodinger equation without dissipation. Numerical studies continue the results to the case of finite dissipation.......We derive sufficient conditions for the occurrence of collapse in a forced three-dimensional nonlinear Schrodinger equation without dissipation. Numerical studies continue the results to the case of finite dissipation....

  12. Three dimensional reductions of four-dimensional quasilinear systems (United States)

    Pavlov, Maxim V.; Stoilov, Nikola M.


    In this paper, we show that four-dimensional quasilinear systems of first order integrable by the method of two-dimensional hydrodynamic reductions possess infinitely many three-dimensional hydrodynamic reductions, which are also integrable systems. These three-dimensional multi-component integrable systems are irreducible to two-dimensional hydrodynamic reductions in a generic case.

  13. Pathogen propagation in cultured three-dimensional tissue mass (United States)

    Goodwin, Thomas J. (Inventor); Spaulding, Glenn F. (Inventor); Wolf, David A. (Inventor)


    A process for propagating a pathogen in a three-dimensional tissue mass cultured at microgravity conditions in a culture vessel containing culture media and a culture matrix is provided. The three-dimensional tissue mass is inoculated with a pathogen and pathogen replication in the cells of the tissue mass achieved.

  14. Three-dimensional plasma equilibrium near a separatrix

    International Nuclear Information System (INIS)

    Reiman, A.H.; Pomphrey, N.; Boozer, A.H.


    The limiting behavior of a general three-dimensional MHD equilibrium near a separatrix is calculated explicitly. No expansions in β or assumptions about island widths are made. Implications of the results for the numerical calculation of such equilibria, are discussed, as well as for issues concerning the existence of three-dimensional MHD equilibria. 16 refs., 2 figs

  15. River Maintenance Management System Using Three-Dimensional UAV Data in Japan (United States)

    Kubota, S.; Kawai, Y.


    River administration facilities such as levees and river walls play a major role in preventing flooding due to heavy rain. The forms of such facilities must be constantly monitored for alteration due to rain and running water, and limited human resources and budgets make it necessary to efficiently maintain river administration facilities. During maintenance, inspection results are commonly recorded on paper documents. Continuous inspection and repair using information systems are an on-going challenge. This study proposes a maintenance management system for river facilities that uses three-dimensional data to solve these problems and make operation and maintenance more efficient. The system uses three-dimensional data to visualize river facility deformation and its process, and it has functions that visualize information about river management at any point in the three-dimensional data. The threedimensional data is generated by photogrammetry using a camera on an Unmanned Aerial Vehicle.

  16. Three dimensional periodic foundations for base seismic isolation

    International Nuclear Information System (INIS)

    Yan, Y; Mo, Y L; Cheng, Z; Shi, Z; Menq, F; Tang, Y


    Based on the concept of phononic crystals, periodic foundations made of periodic materials are investigated in this paper. The periodic foundations can provide low frequency band gaps, which cover the main frequency ranges of seismic waves. Therefore, the periodic foundations are able to protect the upper structures during earthquake events. In this paper, the basic theory of three dimensional periodic foundations is studied and the finite element method was used to conduct the sensitivity study. A simplified three-dimensional periodic foundation with a superstructure was tested in the field and the feasibility of three dimensional periodic foundations was proved. The test results showed that the response of the upper structure with the three dimensional periodic foundation was reduced under excitation waves with the main frequency falling in the attenuation zones. The finite element analysis results are consistent with the experimental data, indicating that three dimensional periodic foundations are a feasible way of reducing seismic vibrations. (paper)

  17. Oriented Collagen Scaffolds for Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Shohta Kodama


    Full Text Available Oriented collagen scaffolds were developed in the form of sheet, mesh and tube by arraying flow-oriented collagen string gels and dehydrating the arrayed gels. The developed collagen scaffolds can be any practical size with any direction of orientation for tissue engineering applications. The birefringence of the collagen scaffolds was quantitatively analyzed by parallel Nicols method. Since native collagen in the human body has orientations such as bone, cartilage, tendon and cornea, and the orientation has a special role for the function of human organs, the developed various types of three-dimensional oriented collagen scaffolds are expected to be useful biomaterials for tissue engineering and regenerative medicines.

  18. Wavefront reconstruction from three dimensional intensity measurements

    International Nuclear Information System (INIS)

    Nugent, K.A.; Roberts, A.


    In this paper it is shown that is is possible to use intensity measurements taken in a series of planes perpendicular to some axis to produce full four-dimensional information about the cross spectral density function. This measurement of the intensity in any given plane gives a series of slices thorough the four-dimensional Fourier transform of the Brightness function. For a coherent field, this information also enables us to calculate the phase and amplitude of the electric field in any given plane. If a finite measurement range is taken, the resolution of the reconstructed field is degraded, but in the limit of measurements taken over an infinite range, the full Fresnel field can be calculated. When considering the practical application of this technique to real data, the delta function definition needs to be redefined in terms of a 'top-hat' function. This does not alter any of the central conclusions obtained using delta functions, but enables the production of an algorithm for the reconstruction of the electric field from real intensity measurements. This was applied to a simulation of the simple case of a Gaussian beam. The reconstructed phase and amplitude of the electric field so obtained were in good agreement with assumed values. 14 refs., 5 figs

  19. Self-organization in three-dimensional compressible magnetohydrodynamic flow

    International Nuclear Information System (INIS)

    Horiuchi, Ritoku; Sato, Tetsuya.


    A three-dimensional self-organization process of a compressible dissipative plasma with a velocity-magnetic field correlation is investigated in detail by means of a variational method and a magnetohydrodynamic simulation. There are two types of relaxation, i.e., fast relaxation in which the cross helicity is not conserved, and slow relaxation in which the cross helicity is approximately conserved. In the slow relaxation case the cross helicity consists of two components with opposite sign which have almost the same amplitude in the large wavenumber region. In both cases the system approaches a high correlation state, dependent on the initial condition. These results are consistent with an observational data of the solar wind. Selective dissipation of magnetic energy, normal cascade of magnetic energy spectrum and inverse cascade of magnetic helicity spectrum are observed for the sub-Alfvenic flow case as was previously observed for the zero flow case. When the flow velocity is super-Alfvenic, the relaxation process is significantly altered from the zero flow case. (author)

  20. Three-dimensional (3D) MRI of the knee

    International Nuclear Information System (INIS)

    Shahabpour, M.; Spruyt, D.; Leroux, G.B.; Osteaux, M.


    Three-dimensional gradient echo T2-weighted sequences have a number of advantages over spin echo T2-weighted sequences (or even 2D gradient echo T2-weighted sequences) for assessment of the knee. They allow a multidimensional analysis based on a single acquisition sequence usually obtained in the sagittal plane. Image reconstructions can be performed secondarily in the coronal, axial and oblique planes, particularly along the specific path of the anterior cruciate ligament. By providing ultrathin serial sections, decreasing the partial volume effect, small lesions, such as cartilaginous fissures or flaps and radial meniscal lesions can be detected in the axial plane, for example. This advantage, combined with the marked sensitivity of gradient echo sequences to alterations in the tissue water content, allows the detection of partial tendon ruptures. The reduction of the partial volume effect and chemical shift artefact probably participate in the capacity of these sequences to visualize the two surfaces of the cartilage of the femorotibial joint. Flow artefacts are less of a problem than with 2D imaging, which eliminates the need for techniques such as saturation of the vascular signal or cardiac gating. A disadvantage of these gradient echo sequences (3D or 2D) is their sensitivity to the presence of metallic material, limiting their application in operated knees

  1. Three Dimensional Cancellous Bone Structure in Hypoparathyroidism (United States)

    Rubin, Mishaela R.; Dempster, David W.; Kohler, Thomas; Stauber, Martin; Zhou, Hua; Shane, Elizabeth; Nickolas, Thomas; Stein, Emily; Sliney, James; Silverberg, Shonni J.; Bilezikian, John P.; Müller, Ralph


    By conventional 2-dimensional histomorphometric analysis, we have shown that cancellous bone architecture is markedly altered in hypoparathyroidism. We have now extended these observations to a 3-dimensional analysis using microcomputed tomography. Percutaneous iliac crest bone biopsies were analyzed by high-resolution microcomputed tomography from the following 25 subjects with hypoparathyroidism: 5 postmenopausal women, 13 premenopausal women and 7 men. Thirteen living premenopausal healthy controls and 12 cadaver subjects without bone disease served as matched controls. Hypoparathyroid subjects had significantly greater bone surface density (BS/TV: 5.74 ± 4.7 vs. 3.73 ± 1.01 mm2/mm3 [mean ± SD]; p=0.04), trabecular thickness (Tb.Th: 0.25 ± 0.19 vs. 0.17 ± 0.04 mm; p=0.04), trabecular number (Tb.N: 2.99 ± 3.4 vs. 1.62 ± 0.39 mm−1; p=0.05) and connectivity density (Conn.D: 16.63 ± 18.7 vs. 8.39 ± 5.8 mm3; p=0.04) in comparison to matched controls. When an additional 8 hypoparathyorid (total n= 33) and 24 cadaver (total cadaver n= 36) subjects were added to the groups for an unmatched analysis, hypoparathyroid subjects had significantly greater cancellous bone volume (BV/TV: 26.98 ± 10 vs. 15.39 ± 4%; phypoparathyroid subjects, as assessed by microcomputed tomography, were highly correlated with those assessed by conventional histomorphometry. We conclude that cancellous bone in hypoparathyroidism is abnormal, suggesting that parathyroid hormone is required to maintain normal trabecular structure. The effect of these structural changes on bone strength remains to be determined. PMID:19782782

  2. Three-dimensional optical techniques using Dammann gratings (United States)

    Zhou, Changhe; Yu, Junjie; Wang, Shaoqing; Wei, Shengbin


    This paper summarized our work on three-dimensional optical technologies using Dammann gratings, e.g., threedimnensional Dammann gratings, three dimensional imaging using a Dammann grating, etc.. We developed threedimensional Dammann grating which can produce three-dimensional array with equal distance and equal intensity with a high-numerical-aperture lens. As we know, a lens usually has a single focal point. Fresnel zone plate can generate several axial focal points, but the intensity between them is unequal. By introducing the concept of Dammann grating into the circular phase plate, we invented Dammann zone plate(DZP) which can produce a series of axial focal points with equal intensity. Combining DZP with a Dammann grating, three-dimensional Dammann array will be generated, which is highly interesting for various applications. We also built a three-dimensional measuring system using a Dammann grating, with two cameras as the right eye and right eye, respectively. We used a 64×64 Dammann grating for generation of a square array of light spots for parallel capturing the three-dimensional profile of an object. The two cameras and the illuminating part are packaged together. After scanning the object, its three-dimensional profile will be obtained. Experimental results demonstrated the effectiveness of this technique.

  3. Cylindrical Three-Dimensional Porous Anodic Alumina Networks

    Directory of Open Access Journals (Sweden)

    Pedro M. Resende


    Full Text Available The synthesis of a conformal three-dimensional nanostructure based on porous anodic alumina with transversal nanopores on wires is herein presented. The resulting three-dimensional network exhibits the same nanostructure as that obtained on planar geometries, but with a macroscopic cylindrical geometry. The morphological analysis of the nanostructure revealed the effects of the initial defects on the aluminum surface and the mechanical strains on the integrity of the three-dimensional network. The results evidence the feasibility of obtaining 3D porous anodic alumina on non-planar aluminum substrates.

  4. Fusion of three-dimensional X-ray angiography and three-dimensional echocardiography

    International Nuclear Information System (INIS)

    Rasche, Volker; Mansour, Moussa; Reddy, Vivek; Singh, Jagmeet P.; Ruskin, Jeremy; Qureshi, Answer; Manzke, Robert; Sokka, Sham


    Cardiovascular intervention guidance requires knowledge of heart function relative to its blood supply or venous drainage. Functional and vascular anatomic data are usually generated on different imaging systems, so fusion of the data is necessary to simultaneously visualize the results for intervention planning and guidance. The objective of this work is to establish the feasibility of fusing volumetric ultrasound (U/S) data with three-dimensional (3D) X-ray imaging data for visualization of cardiac morphology, function and coronary venous drainage. Temporally resolved U/S volume data was registered with the 3D reconstruction of vascular structures derived from X-ray modeling and reconstruction. U/S image registration was obtained by optical tracking fiducial markers with simultaneous X-ray imaging. The proposed technique was applied to phantom data for accuracy assessment of the registration process and to biventricular pacemaker implantation as clinical example. Fusion of U/S data with 3D X-ray reconstruction data produced an RMS registration error below 2 mm. Preliminary clinical feasibility of U/S-derived data synchronously with X-ray derived 3D coronary venography was established. This technique can be applied for fusion of functional U/S data with 3D anatomic X-ray data of the coronary veins during a biventricular pacemaker implantation procedures. (orig.)

  5. Fabrication of malleable three-dimensional-printed customized bolus using three-dimensional scanner.

    Directory of Open Access Journals (Sweden)

    Jae Won Park

    Full Text Available A three-dimensional (3D-printed customized bolus (3D bolus can be used for radiotherapy application to irregular surfaces. However, bolus fabrication based on computed tomography (CT scans is complicated and also delivers unwanted irradiation. Consequently, we fabricated a bolus using a 3D scanner and evaluated its efficacy. The head of an Alderson Rando phantom was scanned with a 3D scanner. The 3D surface data were exported and reconstructed with Geomagic Design X software. A 3D bolus of 5-mm thickness designed to fit onto the nose was printed with the use of rubber-like printing material, and a radiotherapy plan was developed. We successfully fabricated the customized 3D bolus, and further, a CT simulation indicated an acceptable fit of the 3D bolus to the nose. There was no air gap between the bolus and the phantom surface. The percent depth dose (PDD curve of the phantom with the 3D bolus showed an enhanced surface dose when compared with that of the phantom without the bolus. The PDD of the 3D bolus was comparable with that of a commercial superflab bolus. The radiotherapy plan considering the 3D bolus showed improved target coverage when compared with that without the bolus. Thus, we successfully fabricated a customized 3D bolus for an irregular surface using a 3D scanner instead of a CT scanner.

  6. Path Planning in Three Dimensional Environment Using Feedback Linearization (Preprint)

    National Research Council Canada - National Science Library

    Schumacher, Corey J; Kanchanavally, Shreecharan; Ordonez, Raul


    This paper presents a control scheme via feedback linearization for three-dimensional cooperative path planning of a class of interconnected systems in general, and unmanned aerial vehicles (UAVs) in particular...

  7. Magnetic structure of two- and three-dimensional supramolecular compounds

    Energy Technology Data Exchange (ETDEWEB)

    Decurtins, S.; Schmalle, H.W.; Pellaux, R. [Zurich Univ. (Switzerland); Fischer, P.; Fauth, F. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Ouladdiaf, B. [Institut Max von Laue - Paul Langevin, 75 - Paris (France)


    Supramolecular chiral networks of oxalato-bridged transition metals show either two- or three-dimensional structural features. The magnetic structures of such compounds have been investigated by means of elastic neutron powder diffraction. (author) 2 figs., 2 refs.

  8. Direct Linear Transformation Method for Three-Dimensional Cinematography (United States)

    Shapiro, Robert


    The ability of Direct Linear Transformation Method for three-dimensional cinematography to locate points in space was shown to meet the accuracy requirements associated with research on human movement. (JD)

  9. Three dimensional QSAR: applications in pharmacology and toxicology

    National Research Council Canada - National Science Library

    Doucet, Jean-Pierre; Panaye, Annick


    ... networks and support vector machines. Three-Dimensional QSAR addresses the scope and limitations of different modeling techniques using case studies from pharmacology, toxicology, and ecotoxicology to demonstrate the utility of each...

  10. Three-dimensional anthropometry of the adult face. (United States)


    This study describes a new three-dimensional anatomical axis system based on four conventional anthropometrical face landmarks. Coincident as a coordinate (orthogonal) axis system, this reference system was developed to provide convenient orientation...

  11. Three-dimensional reconstructions of solid surfaces using conventional microscopes. (United States)

    Ficker, Tomáš; Martišek, Dalibor


    The three-dimensional digital replicas of solid surfaces are subject of interest of different branches of science and technology. The present paper in its introductory parts brings an overview of the various microscopic reconstructive techniques based on optical sectioning. The main attention is devoted to conventional reconstruction methods and especially to that one employing the Fourier transform. The three-dimensional replicas of this special reconstructive frequency method are compared graphically and numerically with the three-dimensional replicas of the confocal method. Based on the comparative study it has been concluded that the quality of the conventional replicas of surfaces possessing textures of intermediate height irregularities is acceptable and almost comparable with the quality of confocal replicas. This study is relevant both for identifying a convenient technique that provides good qualities of three-dimensional replicas and for selecting the hardware whose price is affordable even for small research groups studying rougher surface textures. © Wiley Periodicals, Inc.

  12. Utility of three-dimensional method for diagnosing meniscal lesions

    International Nuclear Information System (INIS)

    Ohshima, Suguru; Nomura, Kazutoshi; Hirano, Mako; Hashimoto, Noburo; Fukumoto, Tetsuya; Katahira, Kazuhiro


    MRI of the knee is a useful method for diagnosing meniscal tears. Although the spin echo method is usually used for diagnosing meniscal tears, we examined the utility of thin slice scan with the three-dimensional method. We reviewed 70 menisci in which arthroscopic findings were confirmed. In this series, sensitivity was 90.9% for medial meniscal injuries and 68.8% for lateral meniscal injuries. There were 3 meniscal tears in which we could not detect tears on preoperative MRI. We could find tears in two of these cases when re-evaluated using the same MRI. In conclusion, we can get the same diagnostic rate with the three-dimensional method compared with the spin echo method. Scan time of the three-dimensional method is 3 minutes, on the other hand that of spin echo method in 17 minutes. This slice scan with three-dimensional method is useful for screening meniscal injuries before arthroscopy. (author)

  13. Analysis and validation of carbohydrate three-dimensional structures

    International Nuclear Information System (INIS)

    Lütteke, Thomas


    The article summarizes the information that is gained from and the errors that are found in carbohydrate structures in the Protein Data Bank. Validation tools that can locate these errors are described. Knowledge of the three-dimensional structures of the carbohydrate molecules is indispensable for a full understanding of the molecular processes in which carbohydrates are involved, such as protein glycosylation or protein–carbohydrate interactions. The Protein Data Bank (PDB) is a valuable resource for three-dimensional structural information on glycoproteins and protein–carbohydrate complexes. Unfortunately, many carbohydrate moieties in the PDB contain inconsistencies or errors. This article gives an overview of the information that can be obtained from individual PDB entries and from statistical analyses of sets of three-dimensional structures, of typical problems that arise during the analysis of carbohydrate three-dimensional structures and of the validation tools that are currently available to scientists to evaluate the quality of these structures

  14. Analysis of three-dimensional transient seepage into ditch drains ...

    Indian Academy of Sciences (India)

    Ratan Sarmah

    dimensional solutions to the problem are actually valid not for a field of finite size but for an infinite one only. Keywords. Analytical models; three-dimensional ponded ditch drainage; transient seepage; variable ponding; hydraulic conductivity ...

  15. Simulation on three dimensional bubble formation using MARS

    International Nuclear Information System (INIS)

    Kunugi, Tomoaki


    This paper describes a numerical simulation on three-dimensional bubble formation by means of the MARS (Multi-interfaces Advection and Reconstruction Solver) developed by the author. The comparison between two-dimensional and three-dimensional simulation on an agglomeration of two bubbles is discussed. Moreover, some simulation results regarding a phase change phenomena such as a boiling and condensation in a two dimensional enclosure with heated and cooled walls are presented. (author)

  16. Computational study of three-dimensional wake structure

    International Nuclear Information System (INIS)

    Himeno, R.; Shirayama, S.; Kamo, K.; Kuwahara, K.


    Three-dimensional wake structure is studied by numerically solving the incompressible Navier-Stokes equations. Results are visualized by a three-dimensional color graphic system. It was found that a pair of vortex tubes separated from a body plays the most important role in the wake. Near the body vortex tubes are rather stable, however, they gradually become unsteady as they flow down

  17. Alignment-free three-dimensional optical metamaterials. (United States)

    Zhao, Yang; Shi, Jinwei; Sun, Liuyang; Li, Xiaoqin; Alù, Andrea


    Three-dimensional optical metamaterials based on multilayers typically rely on critical vertical alignment to achieve the desired functionality. Here the conditions under which three-dimensional metamaterials with different functionalities may be realized without constraints on alignment are analyzed and demonstrated experimentally. This study demonstrates that the release of alignment constraints for multilayered metamaterials is allowed, while their anomalous interaction with light is preserved. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Comparison of two three-dimensional cephalometric analysis computer software


    Sawchuk, Dena; Alhadlaq, Adel; Alkhadra, Thamer; Carlyle, Terry D; Kusnoto, Budi; El-Bialy, Tarek


    Background: Three-dimensional cephalometric analyses are getting more attraction in orthodontics. The aim of this study was to compare two softwares to evaluate three-dimensional cephalometric analyses of orthodontic treatment outcomes. Materials and Methods: Twenty cone beam computed tomography images were obtained using i-CAT® imaging system from patient's records as part of their regular orthodontic records. The images were analyzed using InVivoDental5.0 (Anatomage Inc.) and 3DCeph™ (Unive...

  19. Three-dimensional study of the multi-cavity FEL

    Energy Technology Data Exchange (ETDEWEB)

    Krishnagopal, S.; Kumar, V. [Centre for Advanced Technology, Indore (India)


    The Multi-Cavity Free-Electron Laser has been proposed earlier, as a new configuration to obtain short, intense pulses of radiation, the key idea being to pre-bunch the electron beam in a number of very short cavities. Those studies were one-dimensional. Here we use three-dimensional simulations to study the viability of this concept when three-dimensional effects are included, particularly with regard to the transverse modes of the optical beam.

  20. Three-dimensional reconstruction of functional brain images

    International Nuclear Information System (INIS)

    Inoue, Masato; Shoji, Kazuhiko; Kojima, Hisayoshi; Hirano, Shigeru; Naito, Yasushi; Honjo, Iwao


    We consider PET (positron emission tomography) measurement with SPM (Statistical Parametric Mapping) analysis to be one of the most useful methods to identify activated areas of the brain involved in language processing. SPM is an effective analytical method that detects markedly activated areas over the whole brain. However, with the conventional presentations of these functional brain images, such as horizontal slices, three directional projection, or brain surface coloring, makes understanding and interpreting the positional relationships among various brain areas difficult. Therefore, we developed three-dimensionally reconstructed images from these functional brain images to improve the interpretation. The subjects were 12 normal volunteers. The following three types of images were constructed: routine images by SPM, three-dimensional static images, and three-dimensional dynamic images, after PET images were analyzed by SPM during daily dialog listening. The creation of images of both the three-dimensional static and dynamic types employed the volume rendering method by VTK (The Visualization Toolkit). Since the functional brain images did not include original brain images, we synthesized SPM and MRI brain images by self-made C++ programs. The three-dimensional dynamic images were made by sequencing static images with available software. Images of both the three-dimensional static and dynamic types were processed by a personal computer system. Our newly created images showed clearer positional relationships among activated brain areas compared to the conventional method. To date, functional brain images have been employed in fields such as neurology or neurosurgery, however, these images may be useful even in the field of otorhinolaryngology, to assess hearing and speech. Exact three-dimensional images based on functional brain images are important for exact and intuitive interpretation, and may lead to new developments in brain science. Currently, the surface

  1. Discretization model for nonlinear dynamic analysis of three dimensional structures

    International Nuclear Information System (INIS)

    Hayashi, Y.


    A discretization model for nonlinear dynamic analysis of three dimensional structures is presented. The discretization is achieved through a three dimensional spring-mass system and the dynamic response obtained by direct integration of the equations of motion using central diferences. First the viability of the model is verified through the analysis of homogeneous linear structures and then its performance in the analysis of structures subjected to impulsive or impact loads, taking into account both geometrical and physical nonlinearities is evaluated. (Author) [pt

  2. Three-dimensional stellarator equilibrium as an ohmic steady state

    International Nuclear Information System (INIS)

    Park, W.; Monticello, D.A.; Strauss, H.; Manickam, J.


    A stable three-dimensional stellarator equilibrium can be obtained numerically by a time-dependent relaxation method using small values of dissipation. The final state is an ohmic steady state which approaches an ohmic equilibrium in the limit of small dissipation coefficients. We describe a method to speed up the relaxation process and a method to implement the B vector . del p = 0 condition. These methods are applied to obtain three-dimensional heliac equilibria using the reduced heliac equations



    MATERIALS COMPATIBILITY STUDY FOR THREE-DIMENSIONAL PRINTER MATERIALS ECBC-TR-1459 James D. Wright Jr. Mary...REPORT DATE (DD-MM-YYYY) XX-09-2017 2. REPORT TYPE Final 3. DATES COVERED (From - To) Mar 2016 – Dec 2016 4. TITLE AND SUBTITLE Materials ...Compatibility Study for Three-Dimensional Printer Materials 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Wright

  4. Alterations in biosynthetic accumulation of collagen types I and III during growth and morphogenesis of embryonic mouse salivary glands (United States)

    Hardman, P.; Spooner, B. S.


    We examined the biosynthetic patterns of interstitial collagens in mouse embryonic submandibular and sublingual glands cultured in vitro. Rudiments explanted on day 13 of gestation and cultured for 24, 48, and 72 h all synthesized collagen types I, III, and V. However, while the total incorporation of label into collagenous proteins did not change over the three-day culture period, the rate of accumulation of newly synthesized types I and III did change. At 24 h, the ratio of newly synthesized collagen types I:III was approximately 2, whereas at 72 h, the ratio was approximately 5. These data suggest that collagen types I and III may be important in initiation of branching in this organ, but that type I may become dominant in the later stages of development and in maintenance of the adult organ.

  5. Some Remarks on the Three Dimensionality of Hydrofoil Cavitation

    Directory of Open Access Journals (Sweden)

    Mehmet Salih KARAALİOĞLU


    Full Text Available As it is well-known that cavitation is a very important physical phenomenon that affects significantly the performance of three-dimensional hydrofoils. Prediction of cavitation on three-dimensional hydrofoils is very important in the design stage. In this study, some approaches have been verified for hydrofoil cavitation. The main aim of this paper is to compare the mid-section pressure distribution of three-dimensional cavitating rectangular hydrofoil for increasing aspect ratios, with the pressure distribution of two-dimensional cavitating hydrofoil having the same section geometry as in the three-dimensional hydrofoil. In this study, a boundary element (panel method (BEM has been applied to investigate the hydrofoil cavitation for both two- and three-dimensional cases. Two-dimensional analytical solution in case of cavitating flat-plate has also been applied for comparison. It has been shown that the pressure distributions on the mid-section of three-dimensional cavitating and non-cavitating hydrofoil for increasing aspect ratios have converged to the solutions in two-dimensional case.

  6. Ordered three-dimensional interconnected nanoarchitectures in anodic porous alumina (United States)

    Martín, Jaime; Martín-González, Marisol; Fernández, Jose Francisco; Caballero-Calero, Olga


    Three-dimensional nanostructures combine properties of nanoscale materials with the advantages of being macro-sized pieces when the time comes to manipulate, measure their properties, or make a device. However, the amount of compounds with the ability to self-organize in ordered three-dimensional nanostructures is limited. Therefore, template-based fabrication strategies become the key approach towards three-dimensional nanostructures. Here we report the simple fabrication of a template based on anodic aluminum oxide, having a well-defined, ordered, tunable, homogeneous 3D nanotubular network in the sub 100 nm range. The three-dimensional templates are then employed to achieve three-dimensional, ordered nanowire-networks in Bi2Te3 and polystyrene. Lastly, we demonstrate the photonic crystal behavior of both the template and the polystyrene three-dimensional nanostructure. Our approach may establish the foundations for future high-throughput, cheap, photonic materials and devices made of simple commodity plastics, metals, and semiconductors. PMID:25342247

  7. Prophylactic effect of the oral administration of transgenic rice seeds containing altered peptide ligands of type II collagen on rheumatoid arthritis. (United States)

    Iizuka, Mana; Wakasa, Yuhya; Tsuboi, Hiroto; Asashima, Hiromitsu; Hirota, Tomoya; Kondo, Yuya; Matsumoto, Isao; Sumida, Takayuki; Takaiwa, Fumio


    Rheumatoid arthritis is an autoimmune disease associated with the recognition of self proteins secluded in arthritic joints. We generated transgenic rice seeds expressing three types of altered peptide ligands (APL) and the T cell epitope of type II collagen (CII256-271). When these transgenic rice and non-transgenic rice seeds were orally administrated to DBA/1 J mice once a day for 14 days, followed by immunization with CII, the clinical score of collagen-induced arthritis (CIA) was reduced and inflammation and erosion in the joints were prevented in mice fed APL7 transgenic rice only. IL-10 production against the CII antigen significantly increased in the splenocytes and iLN of CIA mice immunized with the CII antigen, whereas IFN-γ, IL-17, and IL-2 levels were not altered. These results suggest that IL-10-mediated immune suppression is involved in the prophylactic effects caused by transgenic rice expressing APL7.

  8. Visual Interpretation with Three-Dimensional Annotations (VITA): Three-Dimensional Image Interpretation Tool for Radiological Reporting


    Roy, Sharmili; Brown, Michael S.; Shih, George L.


    This paper introduces a software framework called Visual Interpretation with Three-Dimensional Annotations (VITA) that is able to automatically generate three-dimensional (3D) visual summaries based on radiological annotations made during routine exam reporting. VITA summaries are in the form of rotating 3D volumes where radiological annotations are highlighted to place important clinical observations into a 3D context. The rendered volume is produced as a Digital Imaging and Communications i...

  9. Electron tomography, three-dimensional Fourier analysis and colour prediction of a three-dimensional amorphous biophotonic nanostructure (United States)

    Shawkey, Matthew D.; Saranathan, Vinodkumar; Pálsdóttir, Hildur; Crum, John; Ellisman, Mark H.; Auer, Manfred; Prum, Richard O.


    Organismal colour can be created by selective absorption of light by pigments or light scattering by photonic nanostructures. Photonic nanostructures may vary in refractive index over one, two or three dimensions and may be periodic over large spatial scales or amorphous with short-range order. Theoretical optical analysis of three-dimensional amorphous nanostructures has been challenging because these structures are difficult to describe accurately from conventional two-dimensional electron microscopy alone. Intermediate voltage electron microscopy (IVEM) with tomographic reconstruction adds three-dimensional data by using a high-power electron beam to penetrate and image sections of material sufficiently thick to contain a significant portion of the structure. Here, we use IVEM tomography to characterize a non-iridescent, three-dimensional biophotonic nanostructure: the spongy medullary layer from eastern bluebird Sialia sialis feather barbs. Tomography and three-dimensional Fourier analysis reveal that it is an amorphous, interconnected bicontinuous matrix that is appropriately ordered at local spatial scales in all three dimensions to coherently scatter light. The predicted reflectance spectra from the three-dimensional Fourier analysis are more precise than those predicted by previous two-dimensional Fourier analysis of transmission electron microscopy sections. These results highlight the usefulness, and obstacles, of tomography in the description and analysis of three-dimensional photonic structures. PMID:19158016

  10. Three-dimensional simulations of resistance spot welding

    DEFF Research Database (Denmark)

    Nielsen, Chris Valentin; Zhang, Wenqi; Perret, William


    This paper draws from the fundamentals of electro-thermo-mechanical coupling to the main aspects of finite element implementation and three-dimensional modelling of resistance welding. A new simulation environment is proposed in order to perform three-dimensional simulations and optimization of r....... The overall presentation is supported by numerical simulations of electrode misalignment caused by the flexibility of the welding machine arms and electrical shunting due to consecutive welds in the resistance spot welding of two sheets.......This paper draws from the fundamentals of electro-thermo-mechanical coupling to the main aspects of finite element implementation and three-dimensional modelling of resistance welding. A new simulation environment is proposed in order to perform three-dimensional simulations and optimization...... of resistance welding together with the simulations of conventional and special-purpose quasi-static mechanical tests. Three-dimensional simulations of resistance welding consider the electrical, thermal, mechanical and metallurgical characteristics of the material as well as the operating conditions...

  11. Robot vision based on three-dimensional model

    International Nuclear Information System (INIS)

    Shirai, Yoshiaki


    In order that robots recognize objects, the models of the objects are required. If there is not any constraint about an object scene, it is desirable that robot vision has the three-dimensional models of the things composing the scene. Since the preparation of three-dimensional models takes much time, here, the utilization of the geometrical models made by CAD is proposed. Besides, when the description of a scene and three-dimensional models are compared, to attempt the comparison with all attitudes of respective models is not efficient, therefore, stratum-wise comparison was proposed. As concrete examples, when input information is only in the direction of a part of surfaces such as lustrous bodies, when information can be obtained in all the directions of the surfaces of a body visible by a photometric stereo, and when complete three dimensional information is obtained by a distance-measuring instrument, the techniques of object recognition are described. In all cases, by carrying out the stratum-wise comparison based on three-dimensional models, the efficient and generalized object recognition was able to be achieved. (Kako, I.)

  12. A plastic surgery application in evolution: three-dimensional printing. (United States)

    Gerstle, Theodore L; Ibrahim, Ahmed M S; Kim, Peter S; Lee, Bernard T; Lin, Samuel J


    Three-dimensional printing represents an evolving technology still in its infancy. Currently, individuals and small business entities have the ability to manufacture physical objects from digital renderings, computer-aided design, and open source files. Design modifications and improvements in extrusion methods have made this technology much more affordable. This article explores the potential uses of three-dimensional printing in plastic surgery. A review was performed detailing the known uses of three-dimensional printing in medicine. The potential applications of three-dimensional printing in plastic surgery are discussed. Various applications for three-dimensional printing technology have emerged in medicine, including printing organs, printing body parts, bio-printing, and computer-aided tissue engineering. In plastic surgery, these tools offer various prospective applications for surgical planning, resident education, and the development of custom prosthetics. Numerous applications exist in medicine, including the printing of devices, implants, tissue replacements, and even whole organs. Plastic surgeons may likely find this technology indispensable in surgical planning, education, and prosthetic device design and development in the near future.

  13. Three-dimensional magnetospheric equilibrium with isotropic pressure

    International Nuclear Information System (INIS)

    Cheng, C.Z.


    In the absence of the toroidal flux, two coupled quasi two-dimensional elliptic equilibrium equations have been derived to describe self-consistent three-dimensional static magnetospheric equilibria with isotropic pressure in an optimal (Ψ,α,χ) flux coordinate system, where Ψ is the magnetic flux function, χ is a generalized poloidal angle, α is the toroidal angle, α = φ - δ(Ψ,φ,χ) is the toroidal angle, δ(Ψ,φ,χ) is periodic in φ, and the magnetic field is represented as rvec B = ∇Ψ x ∇α. A three-dimensional magnetospheric equilibrium code, the MAG-3D code, has been developed by employing an iterative metric method. The main difference between the three-dimensional and the two-dimensional axisymmetric solutions is that the field-aligned current and the toroidal magnetic field are finite for the three-dimensional case, but vanish for the two-dimensional axisymmetric case. With the same boundary flux surface shape, the two-dimensional axisymmetric results are similar to the three-dimensional magnetosphere at each local time cross section

  14. A study to evaluate the reliability of using two-dimensional photographs, three-dimensional images, and stereoscopic projected three-dimensional images for patient assessment


    Zhu, S; Yang, Y; Khambay, B


    Clinicians are accustomed to viewing conventional two-dimensional (2D) photographs and assume that viewing three-dimensional (3D) images is similar. Facial images captured in 3D are not viewed in true 3D; this may alter clinical judgement. The aim of this study was to evaluate the reliability of using conventional photographs, 3D images, and stereoscopic projected 3D images to rate the severity of the deformity in pre-surgical class III patients. Forty adult patients were recruited. Eight rat...

  15. Three-dimensional imaging of rheumatoid hands with MR

    International Nuclear Information System (INIS)

    Phillips, J.J.; Fischer, H.; Hollister, A.; Myers, L.


    Quantitative evaluation of soft-tissue proliferation associated with rheumatoid disease provided an objective measure of the activity and pattern of joint pathology. This paper propose a three-dimensional model for this purpose. With use of a 1.5-T Picker MR imager and a stellar GS 2000 computer graphics workstation, hands from patients with rheumatoid arthritis and age-matched controls were imaged to measure the quantity and location of inflammatory tissues. Three-dimensional Fourier transform gradient-echo sequences were used, with 0.8-1.6-mm section thickness. The definition of soft-tissue abnormalities and normal structures was facilitated by image smoothing and edge-detection computer algorithms. Separation of joint components permitted volume measurements and three-dimensional graphic displays

  16. On three-dimensional quiver gauge theories of type B (United States)

    Dey, Anindya; Hanany, Amihay; Koroteev, Peter; Mekareeya, Noppadol


    We study three-dimensional supersymmetric quiver gauge theories with a nonsimply laced global symmetry primarily focusing on framed affine B N quiver theories. Using a supersymmetric partition function on a three sphere, and its transformation under S-duality, we study the three-dimensional ADHM quiver for SO(2 N + 1) instantons with a half-integer Chern-Simons coupling. The theory after S-duality has no Lagrangian, and can not be represented by a single quiver, however its partition function can be conveniently described by a collection of framed affine B N quivers. This correspondence can be conjectured to generalize three-dimensional mirror symmetry to theories with nontrivial Chern-Simons terms. In addition, we propose a formula for the superconformal index of a theory described by a framed affine B N quiver.

  17. Three-dimensional particle image velocimetry measurement technique

    International Nuclear Information System (INIS)

    Hassan, Y.A.; Seeley, C.H.; Henderson, J.A.; Schmidl, W.D.


    The experimental flow visualization tool, Particle Image Velocimetry (PIV), is being used to determine the velocity field in two-dimensional fluid flows. In the past few years, the technique has been improved to allow the capture of flow fields in three dimensions. This paper describes changes which were made to two existing two-dimensional tracking algorithms to enable them to track three-dimensional PIV data. Results of the tests performed on these three-dimensional routines with synthetic data are presented. Experimental data was also used to test the tracking algorithms. The test setup which was used to acquire the three-dimensional experimental data is described, along with the results from both of the tracking routines which were used to analyze the experimental data. (author)

  18. Eustachian tube three-dimensional reconstruction of secretory otitis media

    International Nuclear Information System (INIS)

    Yu Yafeng; Zhou Weirong; Bao Xueping; Li Min; Hu Zhenmin


    Objective: To study relationship between Eustachian tube and secretory otitis media and to explore the pathogeny of secretory otitis by three-dimensional reconstruction of Eustachian tube. Methods: Thirty cases of secretory otitis media (male 19, female 11) were selected randomly. Everyone was checked by otoscope and audiometry. Their bilateral Eustachian tubes were scanning by helix CT while making Valsalva's action. All images were passed on to work station to make three-dimensional reconstruction. Results: Four patients were found have Eustachian tube diseases, while most of patients' Eustachian tubes ventilated normally. Conclusions: Three-dimensional reconstruction of Eustachian tube can open out some pathogens of some secretory otitis medias. It will be helpful to diagnosis and therapy of secretory otitis media. (authors)

  19. Computational methods for three-dimensional microscopy reconstruction

    CERN Document Server

    Frank, Joachim


    Approaches to the recovery of three-dimensional information on a biological object, which are often formulated or implemented initially in an intuitive way, are concisely described here based on physical models of the object and the image-formation process. Both three-dimensional electron microscopy and X-ray tomography can be captured in the same mathematical framework, leading to closely-related computational approaches, but the methodologies differ in detail and hence pose different challenges. The editors of this volume, Gabor T. Herman and Joachim Frank, are experts in the respective methodologies and present research at the forefront of biological imaging and structural biology.   Computational Methods for Three-Dimensional Microscopy Reconstruction will serve as a useful resource for scholars interested in the development of computational methods for structural biology and cell biology, particularly in the area of 3D imaging and modeling.

  20. Three-dimensional, three-component wall-PIV (United States)

    Berthe, André; Kondermann, Daniel; Christensen, Carolyn; Goubergrits, Leonid; Garbe, Christoph; Affeld, Klaus; Kertzscher, Ulrich


    This paper describes a new time-resolved three-dimensional, three-component (3D-3C) measurement technique called wall-PIV. It was developed to assess near wall flow fields and shear rates near non-planar surfaces. The method is based on light absorption according to Beer-Lambert’s law. The fluid containing a molecular dye and seeded with buoyant particles is illuminated by a monochromatic, diffuse light. Due to the dye, the depth of view is limited to the near wall layer. The three-dimensional particle positions can be reconstructed by the intensities of the particle’s projection on an image sensor. The flow estimation is performed by a new algorithm, based on learned particle trajectories. Possible sources of measurement errors related to the wall-PIV technique are analyzed. The accuracy analysis was based on single particle experiments and a three-dimensional artificial data set simulating a rotating sphere.

  1. Shape memory polymers: three-dimensional isotropic modeling (United States)

    Balogun, Olaniyi; Mo, Changki


    This paper presents a comprehensive three-dimensional isotropic numerical simulation for a thermo-mechanical constitutive model of shape memory polymers (SMPs). In order to predict the thermo-mechanical behavior of SMPs, a one-dimensional rheological thermo-mechanical constitutive model is adopted, translated into a three-dimensional form and a time discrete form of the three-dimensional model is then presented. Numerical simulation of this model was developed using the UMAT subroutine capabilities of the finite element software ABAQUS. Evolution of the analysis was conducted by making use of the backward difference scheme, which was applied to all quantities within the model, including the material properties. A comparison of the numerical simulation results was carried out with the available experimental data. Numerical simulation results clearly exhibit the thermo-mechanical properties of the material which include shape fixity, shape recovery, and recovery stress. Finally, a prediction for the transverse and shear directions of the material is presented.

  2. Novel multipole Wien filter as three-dimensional spin manipulator (United States)

    Yasue, T.; Suzuki, M.; Tsuno, K.; Goto, S.; Arai, Y.; Koshikawa, T.


    Spin polarized electron beam is often used in material characterizations which relates to magnetism as well as in the high energy particle physics. The manipulation of the spin polarization toward the arbitrary direction is indispensable in such studies. In the present work, a novel multipole Wien filter is proposed as the three-dimensional spin manipulator, and a prototype 8-pole Wien filter is developed. It is applied to spin polarized low energy electron microscopy, and the variation of the magnetic contrast with managing the spin polarization is evaluated. It is confirmed that the novel multipole Wien filter can manipulate the spin polarization three-dimensionally.

  3. Novel multipole Wien filter as three-dimensional spin manipulator

    Energy Technology Data Exchange (ETDEWEB)

    Yasue, T., E-mail:; Suzuki, M.; Koshikawa, T. [Fundamental Electronics Research Institute, Osaka Electro-Communication University, 18-8 Hatsu-cho, Neyagawa, Osaka 572-8530 (Japan); Tsuno, K. [Electron Optics Solutions Tsuno, 10-11 Mihori, Akishima, Tokyo 196-0001 (Japan); Goto, S. [Sanyu Electron Co., Ltd., 1-22-6 Hyakunin-cho, Shinjyuku, Tokyo 169-0073 (Japan); Arai, Y. [Terabase Inc., Myodaiji, Okazaki, Aichi 444-8787 (Japan)


    Spin polarized electron beam is often used in material characterizations which relates to magnetism as well as in the high energy particle physics. The manipulation of the spin polarization toward the arbitrary direction is indispensable in such studies. In the present work, a novel multipole Wien filter is proposed as the three-dimensional spin manipulator, and a prototype 8-pole Wien filter is developed. It is applied to spin polarized low energy electron microscopy, and the variation of the magnetic contrast with managing the spin polarization is evaluated. It is confirmed that the novel multipole Wien filter can manipulate the spin polarization three-dimensionally.

  4. Three Dimensional Analysis of Elastic Rocket and Launcher at Launching (United States)

    Takeuchi, Shinsuke

    In this paper, a three-dimensional analysis of launching dynamics of a sounding rocket is investigated. In the analysis, the elastic vibration of the vehicle and launcher is considered. To estimate a trajectory dispersion including the effect of elasticity of the vehicle and launcher, a three-dimensional numerical simulation of a launch is performed. The accuracy of the numerical simulation is discussed and it is concluded that the simulation can estimate the maximum value of the trajectory dispersion properly. After that, the maximum value is estimated for the actual sounding rocket and the value is shown to be within the safty margin for this particular case.

  5. Three-dimensional boron particle loaded thermal neutron detector (United States)

    Nikolic, Rebecca J.; Conway, Adam M.; Graff, Robert T.; Kuntz, Joshua D.; Reinhardt, Catherine; Voss, Lars F.; Cheung, Chin Li; Heineck, Daniel


    Three-dimensional boron particle loaded thermal neutron detectors utilize neutron sensitive conversion materials in the form of nano-powders and micro-sized particles, as opposed to thin films, suspensions, paraffin, etc. More specifically, methods to infiltrate, intersperse and embed the neutron nano-powders to form two-dimensional and/or three-dimensional charge sensitive platforms are specified. The use of nano-powders enables conformal contact with the entire charge-collecting structure regardless of its shape or configuration.

  6. Weyl and Dirac semimetals in three-dimensional solids (United States)

    Armitage, N. P.; Mele, E. J.; Vishwanath, Ashvin


    Weyl and Dirac semimetals are three-dimensional phases of matter with gapless electronic excitations that are protected by topology and symmetry. As three-dimensional analogs of graphene, they have generated much recent interest. Deep connections exist with particle physics models of relativistic chiral fermions, and, despite their gaplessness, to solid-state topological and Chern insulators. Their characteristic electronic properties lead to protected surface states and novel responses to applied electric and magnetic fields. The theoretical foundations of these phases, their proposed realizations in solid-state systems, and recent experiments on candidate materials as well as their relation to other states of matter are reviewed.

  7. Three-dimensional Reciprocal Structures: Morphology, Concepts, Generative Rules

    DEFF Research Database (Denmark)

    Parigi, Dario; Pugnale, Alberto


    This paper present seven different three dimensional structures based on the principle of structural reciprocity with superimposition joint and standardized un-notched elements. Such typology could be regarded as being intrinsically three-dimensional because elements sit one of the top of the oth......, causing every configuration to develop naturally out-of the plane. The structures presented here were developed and built by the students of the Master of Science in “Architectural Design” during a two week long workshop organized at Aalborg University in the fall semester 2011....

  8. Cytokeratin expression of engrafted three-dimensional culture tissues using epithelial cells derived from porcine periodontal ligaments. (United States)

    Yamada, Rie; Kitajima, Kayoko; Arai, Kyoko; Igarashi, Masaru


    This study investigated the differentiation and proliferation of epithelial cells derived from periodontal ligaments after three-dimensional culture using collagen gel with fibroblasts in vitro and in vivo. Epithelial cells and fibroblasts were derived from porcine periodontal ligaments. Epithelial cells were labeled using a fluorescent red membrane marker (PKH-26GL) and were seeded onto collagen gel with fibroblasts, followed by incubation in an air-liquid interface for 7 days. Three-dimensional cultures were grafted onto the backs of nude mice and removed at 1, 7, and 14 days after surgery (in vivo model). Unfixed sections (5 μm) were used to detect the presence of red fluorescent cells. Paraffin sections were analyzed histologically and immunohistochemically. Specimens were compared with three-dimensional culture tissues at 8, 14 and 21 days (in vitro model). Grafted three-dimensional cultures formed a stratified epithelial structure similar to skin in vivo. Epithelial cells were sequenced in basal-layer-like structures at 14 days in vivo. Immunohistochemical findings showed that the expression of cytokeratin was detected in the epithelial layer in in vitro and in vivo models. Ck8 + 18 + 19 was expressed in the upper epithelial layer in the in vitro model at 14 and 21 days, but not in vivo. Involucrin was expressed in the certified layers in vitro at 14 days, but not in vivo. Laminin was detected at the dermo-epidermal junction in vivo at 7 and 14 days, but not in vitro. These results suggest that differentiation of three-dimensional culture tissues differs in vivo and in vitro. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Characterization of human lung cancer-associated fibroblasts in three-dimensional in vitro co-culture model

    Energy Technology Data Exchange (ETDEWEB)

    Horie, Masafumi [Department of Respiratory Medicine, Graduate School of Medicine, University of Tokyo (Japan); Saito, Akira, E-mail: [Department of Respiratory Medicine, Graduate School of Medicine, University of Tokyo (Japan); Mikami, Yu [Department of Respiratory Medicine, Graduate School of Medicine, University of Tokyo (Japan); Ohshima, Mitsuhiro [Department of Biochemistry, Ohu University School of Pharmaceutical Sciences (Japan); Morishita, Yasuyuki [Department of Molecular Pathology, Graduate School of Medicine, University of Tokyo (Japan); Nakajima, Jun [Department of Thoracic Surgery, Graduate School of Medicine, University of Tokyo (Japan); Kohyama, Tadashi; Nagase, Takahide [Department of Respiratory Medicine, Graduate School of Medicine, University of Tokyo (Japan)


    Highlights: Black-Right-Pointing-Pointer We established three patient-paired sets of CAFs and NFs. Black-Right-Pointing-Pointer CAFs and NFs were analyzed using three-dimensional co-culture experiments. Black-Right-Pointing-Pointer CAFs clearly enhanced collagen gel contraction. Black-Right-Pointing-Pointer CAFs showed higher {alpha}-SMA expression than NFs. Black-Right-Pointing-Pointer CAFs were implicated in invasion and differentiation of lung cancer cells. -- Abstract: Lung cancer is the most common cause of cancer-related death worldwide. Stromal cancer-associated fibroblasts (CAFs) play crucial roles in carcinogenesis, proliferation, invasion, and metastasis of non-small cell lung carcinoma, and targeting of CAFs could be a novel strategy for cancer treatment. However, the characteristics of human CAFs still remain to be better defined. In this study, we established patient-matched CAFs and normal fibroblasts (NFs), from tumoral and non-tumoral portions of resected lung tissue from lung cancer patients. CAFs showed higher {alpha}-smooth muscle actin ({alpha}-SMA) expression than NFs, and CAFs clearly enhanced collagen gel contraction. Furthermore, we employed three-dimensional co-culture assay with A549 lung cancer cells, where CAFs were more potent in inducing collagen gel contraction. Hematoxylin and eosin staining of co-cultured collagen gel revealed that CAFs had the potential to increase invasion of A549 cells compared to NFs. These observations provide evidence that lung CAFs have the tumor-promoting capacity distinct from NFs.

  10. Characterization of human lung cancer-associated fibroblasts in three-dimensional in vitro co-culture model

    International Nuclear Information System (INIS)

    Horie, Masafumi; Saito, Akira; Mikami, Yu; Ohshima, Mitsuhiro; Morishita, Yasuyuki; Nakajima, Jun; Kohyama, Tadashi; Nagase, Takahide


    Highlights: ► We established three patient-paired sets of CAFs and NFs. ► CAFs and NFs were analyzed using three-dimensional co-culture experiments. ► CAFs clearly enhanced collagen gel contraction. ► CAFs showed higher α-SMA expression than NFs. ► CAFs were implicated in invasion and differentiation of lung cancer cells. -- Abstract: Lung cancer is the most common cause of cancer-related death worldwide. Stromal cancer-associated fibroblasts (CAFs) play crucial roles in carcinogenesis, proliferation, invasion, and metastasis of non-small cell lung carcinoma, and targeting of CAFs could be a novel strategy for cancer treatment. However, the characteristics of human CAFs still remain to be better defined. In this study, we established patient-matched CAFs and normal fibroblasts (NFs), from tumoral and non-tumoral portions of resected lung tissue from lung cancer patients. CAFs showed higher α-smooth muscle actin (α-SMA) expression than NFs, and CAFs clearly enhanced collagen gel contraction. Furthermore, we employed three-dimensional co-culture assay with A549 lung cancer cells, where CAFs were more potent in inducing collagen gel contraction. Hematoxylin and eosin staining of co-cultured collagen gel revealed that CAFs had the potential to increase invasion of A549 cells compared to NFs. These observations provide evidence that lung CAFs have the tumor-promoting capacity distinct from NFs.

  11. Effects of lens extirpation with anterior vitrectomy on vitreous three-dimensional mesh structure

    Directory of Open Access Journals (Sweden)

    Yan Zhao


    Full Text Available AIM: To investigate the changes in vitreous gel structure after lens extirpation combined with anterior vitrectomy in rabbit eyes. METHODS: Twenty-eight chinchilla rabbits were divided into three groups. The control group (Group I included 16 eyes from eight rabbits who did not receive any treatment. Group II included 20 eyes from 10 rabbits that underwent lens aspiration only. Group III included 20 eyes from 10 rabbits that underwent lens aspiration combined with posterior capsulotomy and anterior vitrectomy. Eyes were harvested on the 30th and 60th day postoperatively, respectively. Changes in vitreous gel stretch length due to gravity and the rate of vitreous liquefaction were observed. The collagen content in the vitreous body was examined using the L-hydroxyproline test. Electronic microscopic images were obtained from each eyeball. RESULTS: On both the 30th and 60th day postoperatively, the vitreous gel length of group III was significantly shorter than group I and group II (P<0.05, while the rate of liquefaction of the vitreous body in group III was significantly higher than group I and group II (P<0.05. The collagen content in group III was also higher than that in group I and group II (P<0.05. CONCLUSION: Loss of vitreous gel mass is more likely to occur in the eyes of rabbits receiving anterior vitrectomy. Lensectomy combined with anterior vitrectomy may damage the stable three-dimensional mesh structure of collagen, which could aggravate vitreous gel liquefaction.

  12. Differentiation patterns of embryonic stem cells in two- versus three-dimensional culture. (United States)

    Pineda, Emma T; Nerem, Robert M; Ahsan, Tabassum


    Pluripotent stem cells are attractive candidates as a cell source for regenerative medicine and tissue engineering therapies. Current methods of differentiation result in low yields and impure populations of target phenotypes, with attempts for improved efficiency often comparing protocols that vary multiple parameters. This basic science study focused on a single variable to understand the effects of two-dimensional (2D) versus three-dimensional (3D) culture on directed differentiation. We compared mouse embryonic stem cells (ESCs) differentiated on collagen type I-coated surfaces (SLIDEs), embedded in collagen type I gels (GELs), and in suspension as embryoid bodies (EBs). For a systematic analysis in these studies, key parameters were kept identical to allow for direct comparison across culture configurations. We determined that all three configurations supported differentiation of ESCs and that the kinetics of differentiation differed greatly for cells cultured in 2D versus 3D. SLIDE cultures induced overall differentiation more quickly than 3D configurations, with earlier expression of cytoskeletal and extracellular matrix proteins. For 3D culture as GELs or EBs, cells clustered similarly, formed complex structures and promoted differentiation towards cardiovascular phenotypes. GEL culture, however, also allowed for contraction of the collagen matrix. For differentiation towards fibroblasts and smooth muscle cells which actively remodel their environment, GEL culture may be particularly beneficial. Overall, this study determined the effects of dimensionality on differentiation and helps in the rational design of protocols to generate phenotypes needed for tissue engineering and regenerative medicine. Copyright © 2013 S. Karger AG, Basel.

  13. Collagen reorganization at the tumor-stromal interface facilitates local invasion

    Directory of Open Access Journals (Sweden)

    Inman David R


    Full Text Available Abstract Background Stromal-epithelial interactions are of particular significance in breast tissue as misregulation of these interactions can promote tumorigenesis and invasion. Moreover, collagen-dense breast tissue increases the risk of breast carcinoma, although the relationship between collagen density and tumorigenesis is not well understood. As little is known about epithelial-stromal interactions in vivo, it is necessary to visualize the stroma surrounding normal epithelium and mammary tumors in intact tissues to better understand how matrix organization, density, and composition affect tumor formation and progression. Methods Epithelial-stromal interactions in normal mammary glands, mammary tumors, and tumor explants in three-dimensional culture were studied with histology, electron microscopy, and nonlinear optical imaging methodologies. Imaging of the tumor-stromal interface in live tumor tissue ex vivo was performed with multiphoton laser-scanning microscopy (MPLSM to generate multiphoton excitation (MPE of endogenous fluorophores and second harmonic generation (SHG to image stromal collagen. Results We used both laser-scanning multiphoton and second harmonic generation microscopy to determine the organization of specific collagen structures around ducts and tumors in intact, unfixed and unsectioned mammary glands. Local alterations in collagen density were clearly seen, allowing us to obtain three-dimensional information regarding the organization of the mammary stroma, such as radiating collagen fibers that could not have been obtained using classical histological techniques. Moreover, we observed and defined three tumor-associated collagen signatures (TACS that provide novel markers to locate and characterize tumors. In particular, local cell invasion was found predominantly to be oriented along certain aligned collagen fibers, suggesting that radial alignment of collagen fibers relative to tumors facilitates invasion. Consistent

  14. Data Visualization in Physics II: VRML and Java for three-dimensional imaging and fully three-dimensional movies (United States)

    Fenton, Flavio H.; Evans, Steven J.; Hastings, Harold M.; Cherry, Elizabeth M.


    Presentation and analysis of large three-dimensional data sets is in general hard to do using only two-dimensional figures and plots. In this talk, we will demonstrate techniques for illustrating static and dynamic three-dimensional objects and data using Virtual Reality Modeling Language (VRML) as well as Java. The advantage of these two languages is that they are platform-independent, which allows for easy sharing of data and visualizations. In addition, manipulation of data is relatively easy as rotation, translation and zooming can be done in real- time for static objects as well as for data and objects that vary and deform in time. Examples of fully three-dimensional movies will be shown, including dendritic growth and propagation of electrical waves in cardiac tissue. In addition, we will show how to include VRML and Java viewers in PowerPoint for easy presentation of results in classes and seminars.

  15. In vivo, label-free, three-dimensional quantitative imaging of liver surface using multi-photon microscopy

    International Nuclear Information System (INIS)

    Zhuo, Shuangmu; Yan, Jie; Kang, Yuzhan; Xu, Shuoyu; Peng, Qiwen


    Various structural features on the liver surface reflect functional changes in the liver. The visualization of these surface features with molecular specificity is of particular relevance to understanding the physiology and diseases of the liver. Using multi-photon microscopy (MPM), we have developed a label-free, three-dimensional quantitative and sensitive method to visualize various structural features of liver surface in living rat. MPM could quantitatively image the microstructural features of liver surface with respect to the sinuosity of collagen fiber, the elastic fiber structure, the ratio between elastin and collagen, collagen content, and the metabolic state of the hepatocytes that are correlative with the pathophysiologically induced changes in the regions of interest. This study highlights the potential of this technique as a useful tool for pathophysiological studies and possible diagnosis of the liver diseases with further development.

  16. Acid-base properties of complexes with three-dimensional polyligands. Complexes with three-dimensional polyphosphoric acids

    International Nuclear Information System (INIS)

    Kopylova, V.D.; Bojko, Eh.T.; Saldadze, K.M.


    By the method of potentiometric titration acid-base properties of uranyl (2) complexes with three-dimensional polyphosphoric acids, KRF-8p, KF-1, KF-7 prepared by phosphorylation of copolymer of styrene and divinylbenzene or saponification of the copolymers of di-2,2'-chloroethyl ester of vinylphosphonic acid with divinyl benzene are studied. It is shown that in case of formation in the phase of three-dimensional polyphosphoric acids of UO 2 2+ complexes with the growth of bond covalence of metal ion-phosphonic group the acidjty of the second hydroxyl of the phosphonic group increases

  17. Signal processing of eddy current three-dimensional maps

    International Nuclear Information System (INIS)

    Birac, C.; David, D.; Lamant, D.


    Digital processing of eddy current three-dimensional maps improves accuracy of detection: flattening, filtering, computing deconvolution, mapping new variables,.., give new possibilities for difficult test problems. With simulation of defects, probes, probe travels, it is now possible to compute new eddy current processes, without machining defects or building probes

  18. Three-dimensional flow and turbulence structure in electrostatic precipitator

    DEFF Research Database (Denmark)

    Ullum, Thorvald Uhrskov; Larsen, Poul Scheel; Özcan, Oktay


    and bulk velocity U0 on secondary flows and turbulence levels and structures due to the action of the three-dimensional electrostatic field on the charged gas. At constant bulk velocity (U0 = 1 m/s) and current density (Jm = 0.4 mA/m2), secondary flows in the form of rolls of axial vorticity with swirl...

  19. Two-and three-dimensional gravity modeling along western ...

    Indian Academy of Sciences (India)

    The western continental margin and the intraplate Narmada-Tapti rifts are primarily covered by Deccan flood basalts. Three-dimensional gravity modeling of +70 mgal Bouguer gravity highs extending in the north-south direction along the western continental margin rift indicates the presence of a subsurface high density, ...

  20. Kondo effect in three-dimensional Dirac and Weyl systems

    NARCIS (Netherlands)

    Mitchell, Andrew K.; Fritz, Lars


    Magnetic impurities in three-dimensional Dirac and Weyl systems are shown to exhibit a fascinatingly diverse range of Kondo physics, with distinctive experimental spectroscopic signatures. When the Fermi level is precisely at the Dirac point, Dirac semimetals are in fact unlikely candidates for a

  1. Rigid isotopy classification of real three-dimensional cubics

    Energy Technology Data Exchange (ETDEWEB)

    Krasnov, Vyacheslav A [Yaroslavl Demidov State University (Russian Federation)


    We prove that the space of non-singular real three-dimensional cubics has precisely nine connected components. We also study the space of real canonical curves of genus 4 and prove, in particular, that it consists of eight connected components.

  2. Three-dimensional fractal geometry for gas permeation in microchannels

    NARCIS (Netherlands)

    Malankowska, Magdalena; Schlautmann, Stefan; Berenschot, Erwin J.W.; Tiggelaar, Roald M.; Pina, Maria Pilar; Mallada, Reyes; Tas, Niels R.; Gardeniers, Han


    The novel concept of a microfluidic chip with an integrated three-dimensional fractal geometry with nanopores, acting as a gas transport membrane, is presented. The method of engineering the 3D fractal structure is based on a combination of anisotropic etching of silicon and corner lithography. The

  3. Monitoring the three-dimensional ionospheric electron density ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 116; Issue 3. Monitoring the three-dimensional ionospheric ... A numerical experiment is used to validate the reliability of the method and its advantages to the classical algebraic reconstruction technique (ART). This is then used to reconstruct the IED images using ...

  4. A Three-Dimensional Haptic Matrix Test of Nonverbal Reasoning (United States)

    Miller, Joseph C.; Skillman, Gemma D.; Benedetto, Joanne M.; Holtz, Ann M.; Nassif, Carrie L.; Weber, Anh D.


    Three-dimensional haptic matrices were pilot-tested as a nonvisual measure of cognitive ability. The results indicated that they correlated with convergent measures, with emphasis on spatial processing and that the participants who described items "visually" completed them more quickly and accurately and tended to have become visually…

  5. Freehand three-dimensional ultrasound to assess semitendinosus muscle morphology

    NARCIS (Netherlands)

    Haberfehlner, H.; Maas, H.; Harlaar, J.; Becher, J.G.; Buizer, A.I.; Jaspers, R.T.


    In several neurological disorders and muscle injuries, morphological changes of the m. semitendinosus (ST) are presumed to contribute to movement limitations around the knee. Freehand three-dimensional (3D) ultrasound (US), using position tracking of two-dimensional US images to reconstruct a 3D

  6. Quantum field between moving mirrors: A three dimensional example (United States)

    Hacyan, S.; Jauregui, Roco; Villarreal, Carlos


    The scalar quantum field uniformly moving plates in three dimensional space is studied. Field equations for Dirichlet boundary conditions are solved exactly. Comparison of the resulting wavefunctions with their instantaneous static counterpart is performed via Bogolubov coefficients. Unlike the one dimensional problem, 'particle' creation as well as squeezing may occur. The time dependent Casimir energy is also evaluated.

  7. Three-dimensional reconstruction of the pigeon inner ear

    NARCIS (Netherlands)

    Hofman, R.; Segenhout, J. M.; Wit, H. P.


    Three-dimensional reconstructions of the inner ear of the pigeon (Columba livia domestica), from two-dimensional images, obtained with (conventional) light microscopy or orthogonal-plane fluorescence optical sectioning (OPFOS), are presented. The results are compared with available information on

  8. Three-dimensional structure of heat shock protein 90 from ...

    Indian Academy of Sciences (India)

    Madhu Sudhan


    Apr 2, 2007 ... Using inhibitors specific to the nucleotide binding domain of Hsp90, we have shown potent growth inhibitory ... role played by PfHsp90 in parasite growth, we have modeled its three dimensional structure using recently described full length .... PfHsp90 and for the development of small-molecule targets.

  9. Three-dimensional reconstruction of the rat nephron

    DEFF Research Database (Denmark)

    Christensen, Erik Ilsø; Grann, Birgitte; Kristoffersen, Inger B.


    This study gives a three-dimensional (3D) structural analysis of rat nephrons and their connections to collecting ducts. Approximately 4,500 2.5-μm-thick serial sections from the renal surface to the papillary tip were obtained from each of 3 kidneys of Wistar rats. Digital images were recorded...

  10. Three dimensional reconstruction of tomographic images of the retina

    International Nuclear Information System (INIS)

    Glittenberg, C.; Zeiler, F.; Falkner, C.; Binder, S.; Povazay, B.; Hermann, B.; Drexler, W.


    The development of a new display system for the three-dimensional visualization of tomographic images in ophthalmology. Specifically, a system that can use stacks of B-mode scans from an ultrahigh resolution optical tomography examination to vividly display retinal specimens as three-dimensional objects. Several subroutines were programmed in the rendering and raytracing program Cinema 4D XL 9.102 Studio Bundle (Maxon Computer Inc., Friedrichsburg, Germany), which could process stacks of tomographic scans into three-dimensional objects. Ultrahigh resolution optical coherence tomography examinations were performed on patients with various retinal pathologies and post processed with the subroutines that had been designed. All ultrahigh resolution optical coherence tomographies were performed with a titanium: sapphire based ultra broad bandwidth (160 nm) femtosecond laser system (INTEGRAL, Femtolasers Productions GmbH. Vienna Austria) with an axial resolution of 3 μm. A new three dimensional display system for tomographic images in ophthalmology was developed, which allows a highly vivid display of physiological and pathological structures of the retina. The system also distinguishes itself through its high interactivity and adaptability. This new display system allows the visualization of physiological and pathological structures of the retina in a new way, which will give us new insight into their morphology and development. (author) [de

  11. hp Spectral element methods for three dimensional elliptic problems ...

    Indian Academy of Sciences (India)

    125, No. 3, August 2015, pp. 413–447. c Indian Academy of Sciences h-p Spectral element methods for three dimensional elliptic problems on non-smooth domains, Part-II: Proof of stability theorem. P DUTT1, AKHLAQ HUSAIN2,∗, A S VASUDEVA MURTHY3 and C S UPADHYAY4. 1Department of Mathematics & Statistics ...

  12. Three-dimensional echocardiographic assessment of the repaired mitral valve. (United States)

    Maslow, Andrew; Mahmood, Feroze; Poppas, Athena; Singh, Arun


    This study examined the geometric changes of the mitral valve (MV) after repair using conventional and three-dimensional echocardiography. Prospective evaluation of consecutive patients undergoing mitral valve repair. Tertiary care university hospital. Fifty consecutive patients scheduled for elective repair of the mitral valve for regurgitant disease. Intraoperative transesophageal echocardiography. Assessments of valve area (MVA) were performed using two-dimensional planimetry (2D-Plan), pressure half-time (PHT), and three-dimensional planimetry (3D-Plan). In addition, the direction of ventricular inflow was assessed from the three-dimensional imaging. Good correlations (r = 0.83) and agreement (-0.08 +/- 0.43 cm(2)) were seen between the MVA measured with 3D-Plan and PHT, and were better than either compared to 2D-Plan. MVAs were smaller after repair of functional disease repaired with an annuloplasty ring. After repair, ventricular inflow was directed toward the lateral ventricular wall. Subgroup analysis showed that the change in inflow angle was not different after repair of functional disease (168 to 171 degrees) as compared to those presenting with degenerative disease (168 to 148 degrees; p<0.0001). Three-dimensional imaging provides caregivers with a unique ability to assess changes in valve function after mitral valve repair. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Mathematical modeling of three-dimensional images in emission tomography

    International Nuclear Information System (INIS)

    Koblik, Yu.N.; Khugaev, A. V.; Mktchyan, G.A.; Ioannou, P.; Dimovasili, E.


    The model of processing results of three-dimensional measurements in positron-emissive tomograph is proposed in this work. The algorithm of construction and visualization of phantom objects of arbitrary shape was developed and its concrete realization in view of program packet for PC was carried out

  14. Analysis of three-dimensional transient seepage into ditch drains ...

    Indian Academy of Sciences (India)

    Ratan Sarmah

    Abstract. An analytical solution in the form of infinite series is developed for predicting time-dependent three-dimensional seepage into ditch drains from a flat, homogeneous and anisotropic ponded field of finite size, the field being assumed to be surrounded on all its vertical faces by ditch drains with unequal water level ...

  15. Singularities at rims in three-dimensional fluid flow

    NARCIS (Netherlands)

    Driesen, C.H.; Kuerten, Johannes G.M.


    Asymptotic solutions are presented for Stokes flow near circular rims in three-dimensional geometries. Using nonstandard toroidal coordinates, asymptotic analytical expressions are derived for different corner angles. In comparison to the two-dimensional case, an extra critical corner angle value is

  16. and three-dimensional gravity modeling along western continental ...

    Indian Academy of Sciences (India)

    Three-dimensional gravity modeling of +70 mgal Bouguer gravity highs extending in the north-south direction along the western continental margin rift indicates the presence of a subsurface high density, mafic-ultramafic type, elongated, roughly ellipsoidal body. It is approximately 12.0 ± 1.2 km thick with its upper surface at ...

  17. Wave packet construction in three-dimensional quantum billiards ...

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 86; Issue 1. Wave packet construction in three-dimensional quantum billiards: Visualizing the closed orbit, collapse and revival of wave packets in the cubical billiard. Maninder Kaur Bindiya Arora Mahmood Mian. Volume 86 Issue 1 January 2016 pp 31-48 ...

  18. Three-dimensional simulation of laser–plasma-based electron ...

    Indian Academy of Sciences (India)

    Abstract. A sequential three-dimensional (3D) particle-in-cell simulation code PICPSI-3D with a user friendly graphical user interface (GUI) has been developed and used to study the interaction of plasma with ultrahigh intensity laser radiation. A case study of laser–plasma-based electron acceleration has been carried out ...

  19. Generation of a Desired Three-Dimensional Electromagnetic Field

    DEFF Research Database (Denmark)


    The present invention relates to a method and a system for synthesizing a prescribed three-dimensional electromagnetic field based on generalized phase contrast imaging. Such a method and apparatus may be utilized in advanced optical micro and nano-manipulation, such as by provision of a multiple...

  20. Three-dimensional group manifold reductions of gravity (United States)

    Linares, Román


    We review the three-dimensional group manifold reductions of pure Einstein gravity and we exhibit a new consistent group manifold reduction of gravity when the compactification group manifold is S3. The new reduction leads to a lower dimensional theory whose gauge group is SU(2).

  1. Robust cylinder fitting in three-dimensional point cloud data

    NARCIS (Netherlands)

    Nurunnabi, Abdul; Sadahiro, Yukio; Lindenbergh, R.C.


    This paper investigates the problems of cylinder fitting in laser scanning three-dimensional Point Cloud Data (PCD). Most existing methods require full cylinder data, do not study the presence of outliers, and are not statistically robust. But especially mobile laser scanning often has incomplete

  2. The Importance of Three-Dimensionality in Children's Art (United States)

    Heldmeyer, Karen


    Investigated young children's ability to represent three-dimensionality in their drawings. Preschool, kindergarten and first grade children and adults were asked to draw a cube, a house, and a ball presented in a plain form, a form differentially decorated on each side, and in both 2- and 3-dimensional forms. (JMB)

  3. Three-Dimensional Extension of a Digital Library Service System (United States)

    Xiao, Long


    Purpose: The paper aims to provide an overall methodology and case study for the innovation and extension of a digital library, especially the service system. Design/methodology/approach: Based on the three-dimensional structure theory of the information service industry, this paper combines a comprehensive analysis with the practical experiences…

  4. Three dimensional simulated modelling of diffusion capacitance of ...

    African Journals Online (AJOL)

    A three dimensional (3-D) simulated modelling was developed to analyse the excess minority carrier density in the base of a polycrystalline bifacial silicon solar cell. The concept of junction recombination velocity was ado-pted to quantify carrier flow through the junction, and to examine the solar cell diffusion capacitance for ...

  5. Three-Dimensional Utah: 100 Years of Sculpture


    Nora Eccles Harrison Museum of Art


    Three-Dimensional Utah: 100 Years of Sculpture began as a series of conversations about sculptors and sculpture nearly six years ago. Specific development of the exhibition began three years ago during the process of creating a national inventory of outdoor sculpture for a program called Save Outdoor Sculpture (SOS)! Utah is home to more than 200 pieces of outdoor sculpture.

  6. Three-dimensional computer models of electrospinning systems

    Directory of Open Access Journals (Sweden)

    Smółka Krzysztof


    Full Text Available Electrospinning is a very interesting method that allows the fabrication of continuous fibers with diameters down to a few nanometers. This paper presents an overview of electrospinning systems as well as their comparison using proposed three-dimensional parameterized numerical models. The presented solutions allow an analysis of the electric field distribution.

  7. Molecular dynamics study of two- and three-dimensional classical ...

    Indian Academy of Sciences (India)

    Abstract. We have carried out a molecular dynamics simulation of two- and three- dimensional double Yukawa fluids near the triple point. We have compared some of the static and dynamic correlation functions with those of Lennard–Jones, when parameters occurring in double Yukawa potential are chosen to fit ...

  8. Resistive drift wave turbulence in a three-dimensional geometry

    DEFF Research Database (Denmark)

    Korsholm, Søren Bang; Michelsen, Poul; Naulin, V.


    The Hasegawa-Wakatani model describing resistive drift waves is investigated analytically and numerically in a three-dimensional periodic geometry. After an initial growth of the energy the drift waves couple nonlinearly to convective cells, which eventually dominate the system completely...

  9. and three-dimensional models for analysis of optical absorption

    Indian Academy of Sciences (India)


    Goldberg et al 1975; Kam and Parkinson 1982; Baglio et al 1982, 1983; Oritz 1995; Li et al 1996) has been carried out on WS2, there is no detailed analysis of the absorption spectra obtained from the single crystals of WS2 on the basis of two- and three-dimensional models. We have therefore carried out this study and the.

  10. Optical and thermal performance of a three-dimensional compound ...

    Indian Academy of Sciences (India)

    The three-dimensional compound parabolic concentrator (3D CPC) was found to be more efficient than 2D CPC because of the higher concentration ratio. In the present work a 3D CPC was fabricated with a half acceptance angle of 4° for a spherical absorber of radius 100 mm. UV stabilized aluminized polyester foil having ...

  11. Wave packet construction in three-dimensional quantum billiards ...

    Indian Academy of Sciences (India)

    Keywords. Three-dimensional bound systems; revivals and collapses; quantum mechanics. PACS Nos 03.65.Ge; 03.65.Yz; 42.50.Md. 1. Introduction. The study of time evolution of the unbound and bound-state wave packet illuminates many features of the wave mechanics. These include both semiclassical features as well.

  12. KP Equation in a Three-Dimensional Unmagnetized Warm Dusty ...

    Indian Academy of Sciences (India)

    Kh. H. El-Shorbagy MS received 24 May 2017; accepted 26 September 2017; published online 27 November 2017. Abstract. In this work, we investigate the propagation of three-dimensional nonlinear dust-acoustic and dust-. Coulomb waves in an ...

  13. Three-dimensional free vibration analysis of thick laminated circular ...

    African Journals Online (AJOL)

    Three-dimensional free vibration analysis of thick laminated circular plates. Sumit Khare, N.D. Mittal. Abstract. In this communication, a numerical analysis regarding free vibration of thick laminated circular plates, having free, clamped as well as simply-supported boundary conditions at outer edges of plates is presented.

  14. and three-dimensional gravity modeling along western continental ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    western continental margin and the intraplate Narmada-Tapti rifts suggests that the migration and concentration of high density magma in the upper lithosphere was much more dominant along the western continental margin rift. Based on the three-dimensional gravity modeling, it is conjectured that the emplacement of ...

  15. Three dimensional rigorous model for optical scattering problems

    NARCIS (Netherlands)

    Wei, X.


    We present a three-dimensional model based on the finite element method for solving the time-harmonic Maxwell equation in optics. It applies to isotropic or anisotropic dielectrics and metals, and to many configurations such as an isolated scatterer in a multilayer, bi-gratings and crystals. We

  16. Stability analysis of non-axisymmetric three-dimensional finite ...

    Indian Academy of Sciences (India)

    In three-dimensional formulation one prefers a spinning frame for derivation of the govern- ing equations (Nandi & Neogy 2001). In this spinning frame, the orthotropic bearing stiffness becomes periodic. The governing equations thus become parametric in nature. A rotor cross- section is symmetric when the rotor has same ...

  17. Three-dimensional simulations of viscoelastic instability in polymeric filaments

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Koblitz; Hassager, Ole


    The three-dimensional Langrangian integral method is used to simulate the elastic end-plate instability that occurs in the rapid extension of some polymeric filaments between parallel plates. It is demonstrated that the upper convected Maxwell model describes the essential features of the instabi...

  18. Three-dimensional computer models of electrospinning systems (United States)

    Smółka, Krzysztof; Firych-Nowacka, Anna; Lefik, Marcin


    Electrospinning is a very interesting method that allows the fabrication of continuous fibers with diameters down to a few nanometers. This paper presents an overview of electrospinning systems as well as their comparison using proposed three-dimensional parameterized numerical models. The presented solutions allow an analysis of the electric field distribution.

  19. Three dimensional internal electromagnetic pulse calculated by particle source method

    International Nuclear Information System (INIS)

    Wang Yuzhi; Wang Taichun


    The numerical results of the primary electric current and the internal electromagnetic pulse were obtained by particle method in the rectanglar cavity. The results obtained from this method is compared with three dimensional Euler-method. It is shown that two methods are in good agreement if the conditions are the same

  20. Influence of flow conditions and matrix coatings on growth and differentiation of three-dimensionally cultured rat hepatocytes. (United States)

    Fiegel, Henning C; Havers, Joerg; Kneser, Ulrich; Smith, Molly K; Moeller, Tim; Kluth, Dietrich; Mooney, David J; Rogiers, Xavier; Kaufmann, Peter M


    Maintenance of liver-specific function of hepatocytes in culture is still difficult. Improved culture conditions may enhance the cell growth and function of cultured cells. We investigated the effect of three-dimensional culture under flow conditions, and the influence of surface modifications in hepatocyte cultures. Hepatocytes were harvested from Lewis rats. Cells were cultured on three-dimensional polymeric poly-lactic-co-glycolic acid (PLGA) matrices in static culture, or in a pulsatile flow-bioreactor system. Different surface modifications of matrices were investigated: coating with collagen I, collagen IV, laminin, or fibronectin; or uncoated matrix. Hepatocyte numbers, DNA content, and albumin secretion rate were assessed over the observation period. Culture under flow condition significantly enhanced cell numbers. An additional improvement of this effect was observed, when matrix coating was used. Cellular function also showed a significant increase (4- to 5-fold) under flow conditions when compared with static culture. Our data showed that culture under flow conditions improves cell number, and strongly enhances cellular function. Matrix modification by coating with extracellular matrix showed overall an additive stimulatory effect. Our conclusion is that combining three-dimensional culture under flow conditions and using matrix modification significantly improves culture conditions and is therefore attractive for the development of successful culture systems for hepatocytes.

  1. Oxygen tension and formation of cervical-like tissue in two-dimensional and three-dimensional culture. (United States)

    House, Michael; Daniel, Jennifer; Elstad, Kirigin; Socrate, Simona; Kaplan, David L


    Cervical dysfunction contributes to a significant number of preterm births and is a common cause of morbidity and mortality in newborn infants. Cervical dysfunction is related to weakened load bearing properties of the collagen-rich cervical stroma. However, the mechanisms responsible for cervical collagen changes during pregnancy are not well defined. It is known that blood flow and oxygen tension significantly increase in reproductive tissues during pregnancy. To examine the effect of oxygen tension, a key mediator of tissue homeostasis, on the formation of cervical-like tissue in vitro, we grew primary human cervical cells in both two-dimensional (2D) and three-dimensional (3D) culture systems at 5% and 20% oxygen. Immunofluorescence studies revealed a stable fibroblast phenotype across six passages in all subjects studied (n=5). In 2D culture for 2 weeks, 20% oxygen was associated with significantly increased collagen gene expression (p<0.01), increased tissue wet weight (p<0.01), and increased collagen concentration (p=0.046). 3D cultures could be followed for significantly longer time frames than 2D cultures (12 weeks vs. 2 weeks). In contrast to 2D cultures, 20% oxygen in 3D cultures was associated with decreased collagen concentration (p<0.01) and unchanged collagen gene expression, which is similar to cervical collagen changes seen during pregnancy. We infer that 3D culture is more relevant for studying cervical collagen changes in vitro. The data suggest that increased oxygen tension may be related to significant cervical collagen changes seen in pregnancy.

  2. Three-dimensional tooth imaging using multiphoton and second harmonic generation microscopy (United States)

    Chen, Min-Huey; Chen, Wei-Liang; Sun, Yen; Fwu, Peter Tramyeon; Lin, Ming-Gu; Dong, Chen-Yuan


    Detailed morphological and cellular information relating to the human tooth have traditionally been obtained through histological studies that required decalcification, staining, and fixation. With the recent invention of multiphoton microscopy, it has become possible to acquire high resolution images without histological procedures. Using an epiilluminated multiphoton microscope, we obtained two-photon excited autofluorescence and second harmonic generation (SHG) images of ex vivo human tooth. By combining these two imaging modalities we obtained submicron resolution images of the enamel, dentin, and the periodontal ligaments. The enamel emits endogenous two-photon autofluorescence. The structure of the dentin is visible from both the autofluorescence and second harmonic generation signals. The periodontal ligament composed mostly of collagen can be visualized by SHG imaging. We also constructed three dimensional images of the enamel, dentin, and periodontal ligament. The effectiveness of using multiphoton and second harmonic generation microscopy to obtain structural information of teeth suggest its potential use in dental diagnostics.

  3. Three-dimensional epithelial tissues generated from human embryonic stem cells. (United States)

    Hewitt, Kyle J; Shamis, Yulia; Carlson, Mark W; Aberdam, Edith; Aberdam, Daniel; Garlick, Jonathan A


    The use of pluripotent human embryonic stem (hES) cells for tissue engineering may provide advantages over traditional sources of progenitor cells because of their ability to give rise to multiple cell types and their unlimited expansion potential. We derived cell populations with properties of ectodermal and mesenchymal cells in two-dimensional culture and incorporated these divergent cell populations into three-dimensional (3D) epithelial tissues. When grown in specific media and substrate conditions, two-dimensional cultures were enriched in cells (EDK1) with mesenchymal morphology and surface markers. Cells with a distinct epithelial morphology (HDE1) that expressed cytokeratin 12 and beta-catenin at cell junctions became the predominant cell type when EDK1 were grown on surfaces enriched in keratinocyte-derived extracellular matrix proteins. When these cells were incorporated into the stromal and epithelial tissue compartments of 3D tissues, they generated multilayer epithelia similar to those generated with foreskin-derived epithelium and fibroblasts. Three-dimensional tissues demonstrated stromal cells with morphologic features of mature fibroblasts, type IV collagen deposition in the basement membrane, and a stratified epithelium that expressed cytokeratin 12. By deriving two distinct cell lineages from a common hES cell source to fabricate complex tissues, it is possible to explore environmental cues that will direct hES-derived cells toward optimal tissue form and function.

  4. Ultrastructural and three-dimensional study of post-LASIK ectasia cornea. (United States)

    Akhtar, Saeed; Alkatan, Hind; Kirat, Omar; Almubrad, Turki


    Post-laser in situ keratomileusis (LASIK) corneal ectasia is a serious late postoperative complication. Here, we report the ultrastructural features of the post-LASIK cornea of two patients. Two normal corneas (age 24 and 37 years old) and two post-LASIK ectaic corneas from two patients (A and B) were studied. The "patient A" (age 27 years) underwent penetrating keratoplasty and "patient B" (age 31 years) underwent deep-anterior lamellar keratoplasty. The excised corneas were processed for light and electron microscopy. A total of 120 images for three-dimensional (3D) reconstruction were taken by using the software "Recorder" and using a bottom mounted camera "Quemesa" attached to a JOEL 1400 transmission electron microscope. The 3D images were constructed using "Visual Kai" software. In the post-LASIK cornea, the hemidesmosomes, the basement membrane, and Bowman"s layer were abnormal. The stromal lamellae were thin and disorganized. The collagen fibrils (CFs) diameter and interfibrillar spacing had decreased. Aggregated microfibrils were present in the Bowman's layer and all parts of the stroma. A large number of microfilaments were present at the detachment end of the flap and residual stroma. The 3D images showed the presence of collagen microfibrils and proteoglycans (PGs) within the CF of the normal and post-LASIK cornea. The collagen microfibrils and PGs within the CFs had degenerated in the post-LASIK cornea. Collagen microfibrils and PGs within the CFs were degenerated, leading to the degeneration of CFs, followed by the disorganization of lamellae in post-LASIK cornea. The CFs diameter and interfibrillar spacing decreased. Copyright © 2013 Wiley Periodicals, Inc.

  5. Analysis and three-dimensional visualization of collagen in artificial scaffolds using nonlinear microscopy techniques

    Czech Academy of Sciences Publication Activity Database

    Filová, Eva; Burdíková, Zuzana; Rampichová, Michala; Bianchini, P.; Čapek, Martin; Košťáková, E.; Amler, Evžen; Kubínová, Lucie


    Roč. 15, č. 6 (2010), 066011-1-066011-7 ISSN 1083-3668 R&D Projects: GA MŠk(CZ) LC06063; GA ČR GAP304/10/1307; GA AV ČR IAA500390702 Grant - others:GA MŠk(CZ) 2B06130; GA ČR(CZ) GA102/08/0691; GA MŠk(CZ) 1M0510; GA ČR(CZ) GA202/09/1151; EU(XE) BIOSCENT ID 214539 Program:2B; GA; 1M; GA Institutional research plan: CEZ:AV0Z50390512; CEZ:AV0Z50390703; CEZ:AV0Z50110509 Keywords : biomedical materials * biomedical optical imaging * cellular biophysics Subject RIV: BO - Biophysics Impact factor: 3.188, year: 2010

  6. Three-dimensional genome architecture influences partner selection for chromosomal translocations in human disease.

    Directory of Open Access Journals (Sweden)

    Jesse M Engreitz

    Full Text Available Chromosomal translocations are frequent features of cancer genomes that contribute to disease progression. These rearrangements result from formation and illegitimate repair of DNA double-strand breaks (DSBs, a process that requires spatial colocalization of chromosomal breakpoints. The "contact first" hypothesis suggests that translocation partners colocalize in the nuclei of normal cells, prior to rearrangement. It is unclear, however, the extent to which spatial interactions based on three-dimensional genome architecture contribute to chromosomal rearrangements in human disease. Here we intersect Hi-C maps of three-dimensional chromosome conformation with collections of 1,533 chromosomal translocations from cancer and germline genomes. We show that many translocation-prone pairs of regions genome-wide, including the cancer translocation partners BCR-ABL and MYC-IGH, display elevated Hi-C contact frequencies in normal human cells. Considering tissue specificity, we find that translocation breakpoints reported in human hematologic malignancies have higher Hi-C contact frequencies in lymphoid cells than those reported in sarcomas and epithelial tumors. However, translocations from multiple tissue types show significant correlation with Hi-C contact frequencies, suggesting that both tissue-specific and universal features of chromatin structure contribute to chromosomal alterations. Our results demonstrate that three-dimensional genome architecture shapes the landscape of rearrangements directly observed in human disease and establish Hi-C as a key method for dissecting these effects.

  7. Informatics solutions for Three-dimensional visualization in real time

    International Nuclear Information System (INIS)

    Guzman Montoto, Jose Ignacio


    The advances reached in the development of the hardware and in the methods of acquisition of data like tomographic scanners and systems of analysis of images, have allowed obtaining geometric models of biomedical elements with the property of being manipulated through the three-dimensional visualization (3D). Nowadays, this visualization embraces from biological applications, including analysis of structures and its functional relationships, until medical applications that include anatomical accuracies and the planning or the training for complex surgical operations. This work proposes computer solutions to satisfy visualization requirements in real time. The developed algorithms are contained in a graphic library that will facilitate the development of future works. The obtained results allow facing current problems of three-dimensional representation of complex surfaces, realism is reached in the images and they have possible application in bioinformatics and medicine

  8. Three-dimensional MR imaging of congenital heart disease

    International Nuclear Information System (INIS)

    Laschinger, J.C.; Vannier, M.W.; Knapp, R.H.; Gutierrez, F.R.; Cox, J.L.


    Contiguous 5-mm thick ECG-gated MR images of the thorax were edited using surface reconstruction techniques to produce three-dimensional (3D) images of the heart and great vessels in four healthy individuals and 25 patients with congenital heart disease (aged 3 months-30 years). Anomalies studied include atrial and ventricular septal defects, aortic coarctation, AV canal defects, double outlet ventricles, hypoplastic left heart syndrome, and a wide spectrum of patients with tetralogy of Fallot. The results were correlated with echocardiographic and cineradiographic studies, and with surgical findings or pathologic specimens. Three-dimensional reconstructions accurately localized the dimensions and locations of all cardiac and great vessel anomalies and often displayed anatomic findings not diagnosed or visualized with other forms of diagnostic imaging

  9. Polarization singularity anarchy in three dimensional ellipse fields (United States)

    Freund, Isaac


    Lines of circular polarization, C lines, and lines of linear polarization, L lines, are studied in a computer simulated random three-dimensional ellipse field. Although we verify existing predictions for the location of particular points on these lines at which the sign of the topological index of the line inverts, we show that from the point of view of foliations of the field such points are better described as points of pair production. We find a new set of true sign inversion points, and show that when all possible foliations are considered this set includes all points on the line. We also find three new families of polarization singularities whose members include all polarization ellipses. The recently described polarization singularity democracy in two-dimensional fields evidently explodes into polarization singularity anarchy in three-dimensional fields.

  10. Three-dimensional data visualization using DSP meshes (United States)

    Liow, Yuh-Tay; Civanlar, Mehmet R.; Dzik, Steven C.


    This paper presents a parallel scheme for three dimensional data visualization at interactive rates. The scheme is particularly suitable for multiprocessor systems with distributed frame buffers and is currently implemented on an AT&T Pixel Machine, a parallel computer based on mesh connected digital signal processors with a distributed frame buffer. Nearly linear performance increase with the number of processors in the mesh is obtained by partitioning the original three dimensional data into sub-blocks and processing each sub-block in parallel. The approach is very flexible in implementing a variety of visualization techniques, such as volume compositing (translucent models), binary-class and percentage mixtures and surface based volume rendering.

  11. Three-dimensional P velocity structure in Beijing area (United States)

    Yu, Xiang-Wei; Chen, Yun-Tai; Wang, Pei-De


    A detail three-dimensional P wave velocity structure of Beijing, Tianjin and Tangshan area (BTT area) was determined by inverting local earthquake data. In total 16 048 P wave first arrival times from 16048 shallow and mid-depth crustal earthquakes, which occurred in and around the BTT area from 1992 to 1999 were used. The first arrival times are recorded by Northern China United Telemetry Seismic Network and Yanqing-Huailai Digital Seismic Network. Hypocentral parameters of 1 132 earthquakes with magnitude M L=1.7 6.2 and the three-dimensional P wave velocity structure were obtained simultaneously. The inversion result reveals the complicated lateral heterogeneity of P wave velocity structure around BTT area. The tomographic images obtained are also found to explain other seismological observations well.

  12. Three-dimensional Modeling of Type Ia Supernova Explosions (United States)

    Khokhlov, Alexei


    A deflagration explosion of a Type Ia Supernova (SNIa) is studied using three-dimensional, high-resolution, adaptive mesh refinement fluid dynamic calculations. Deflagration speed in an exploding Chandrasekhar-mass carbon-oxygen white dwarf (WD) grows exponentially, reaches approximately 30the speed of sound, and then declines due to a WD expansion. Outermost layers of the WD remain unburned. The explosion energy is comparable to that of a Type Ia supernova. The freezing of turbulent motions by expansion appears to be a crucial physical mechanism regulating the strength of a supernova explosion. In contrast to one-dimensional models, three-dimensional calculations predict the formation of Si-group elements and pockets of unburned CO in the middle and in central regions of a supernova ejecta. This, and the presence of unburned outer layer of carbon-oxygen may pose problems for SNIa spectra. Explosion sensitivity to initial conditions and its relation to a diversity of SNIa is discussed.

  13. Ultrafast three-dimensional x-ray computed tomography

    International Nuclear Information System (INIS)

    Bieberle, Martina; Barthel, Frank; Hampel, Uwe; Menz, Hans-Juergen; Mayer, Hans-Georg


    X-ray computed tomography (CT) is a well established visualization technique in medicine and nondestructive testing. However, since CT scanning requires sampling of radiographic projections from different viewing angles, common CT systems with mechanically moving parts are too slow for dynamic imaging, for instance of multiphase flows or live animals. Here, we introduce an ultrafast three-dimensional x-ray CT method based on electron beam scanning, which achieves volume rates of 500 s -1 . Primary experiments revealed the capability of this method to recover the structure of phase boundaries in gas-solid and gas-liquid two-phase flows, which undergo three-dimensional structural changes in the millisecond scale.

  14. SNAP-3D: a three-dimensional neutron diffusion code

    International Nuclear Information System (INIS)

    McCallien, C.W.J.


    A preliminary report is presented describing the data requirements of a one- two- or three-dimensional multi-group diffusion code, SNAP-3D. This code is primarily intended for neutron diffusion calculations but it can also carry out gamma calculations if the diffuse approximation is accurate enough. It is suitable for fast and thermal reactor core calculations and for shield calculations. It is assumed the reader is familiar with the older, two-dimensional code SNAP and can refer to the report [TRG-Report-1990], describing it. The present report concentrates on the enhancements to SNAP that have been made to produce the three-dimensional version, SNAP-3D, and is intended to act a a guide on data preparation until a single, comprehensive report can be published. (author)

  15. Three-dimensional computerized tomography in mandibular condyle fractures

    International Nuclear Information System (INIS)

    Bermeo, Fausto; Salazar, Abad


    Now, car accidents are so commons, this associated to the high technology in produce automobiles make this type of accidents so serious and the consequences of mandibular condyle fractures are more commons and with more gravity, some of these patients, generally need a traqueostomy to be operated, that is why every second that we can save during the surgery is important. The normal exams as X rays and simple TAC give as an important idea but no complete, on the contrary the three-dimensional TAC permits to observe every damages and its exact location, this contribute to make a better surgery organization, the number and type of plates that we have to put and the better way to treat each case, that contribute to reduce time in operating theatre which is in benefit of the patient, diminishing risks in serious patients as they are, that is why we recommend the utilization of the three-dimensional TAC. (The author)

  16. Canonical and symplectic analysis for three dimensional gravity without dynamics

    International Nuclear Information System (INIS)

    Escalante, Alberto; Osmart Ochoa-Gutiérrez, H.


    In this paper a detailed Hamiltonian analysis of three-dimensional gravity without dynamics proposed by V. Hussain is performed. We report the complete structure of the constraints and the Dirac brackets are explicitly computed. In addition, the Faddeev–Jackiw symplectic approach is developed; we report the complete set of Faddeev–Jackiw constraints and the generalized brackets, then we show that the Dirac and the generalized Faddeev–Jackiw brackets coincide to each other. Finally, the similarities and advantages between Faddeev–Jackiw and Dirac’s formalism are briefly discussed. - Highlights: • We report the symplectic analysis for three dimensional gravity without dynamics. • We report the Faddeev–Jackiw constraints. • A pure Dirac’s analysis is performed. • The complete structure of Dirac’s constraints is reported. • We show that symplectic and Dirac’s brackets coincide to each other.

  17. Canonical and symplectic analysis for three dimensional gravity without dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Escalante, Alberto, E-mail: [Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apartado Postal J-48 72570, Puebla, Pue. (Mexico); Osmart Ochoa-Gutiérrez, H. [Facultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla, Apartado postal 1152, 72001 Puebla, Pue. (Mexico)


    In this paper a detailed Hamiltonian analysis of three-dimensional gravity without dynamics proposed by V. Hussain is performed. We report the complete structure of the constraints and the Dirac brackets are explicitly computed. In addition, the Faddeev–Jackiw symplectic approach is developed; we report the complete set of Faddeev–Jackiw constraints and the generalized brackets, then we show that the Dirac and the generalized Faddeev–Jackiw brackets coincide to each other. Finally, the similarities and advantages between Faddeev–Jackiw and Dirac’s formalism are briefly discussed. - Highlights: • We report the symplectic analysis for three dimensional gravity without dynamics. • We report the Faddeev–Jackiw constraints. • A pure Dirac’s analysis is performed. • The complete structure of Dirac’s constraints is reported. • We show that symplectic and Dirac’s brackets coincide to each other.

  18. Handwriting: three-dimensional kinetic synergies in circle drawing movements. (United States)

    Hooke, Alexander W; Karol, Sohit; Park, Jaebum; Kim, Yoon Hyuk; Shim, Jae Kun


    The purpose of this study was to investigate central nervous system (CNS) strategies for controlling multifinger forces during a circle-drawing task. Subjects drew 30 concentric, discontinuous clockwise and counter clockwise circles, at self and experimenter-set paces. The three-dimensional trajectory of the pen's center of mass and the three-dimensional forces and moments of force at each contact between the hand and the pen were recorded. Uncontrolled Manifold Analysis was used to quantify the synergies between pen-hand contact forces in radial, tangential and vertical directions. Results showed that synergies in the radial and tangential components were significantly stronger than in the vertical component. Synergies in the clockwise direction were significantly stronger than the counterclockwise direction in the radial and vertical components. Pace was found to be insignificant under any condition.

  19. Secondary instability and transition in three-dimensional boundary layers

    Energy Technology Data Exchange (ETDEWEB)

    Stolte, A.; Bertolotti, F.P.; Koch, W. (Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Goettingen (Germany). Inst. fuer Stroemungsmechanik)


    Stationary and traveling crossflow modes are the most prominent disturbances in the highly accelerated three-dimensional flow near the leading edge of a swept wing. Near transition onset, secondary three-dimensional instabilities of high frequency can be observed in such flows. A model flow on the basis of a DLR swept plate experiment allows a detailed study of transition scenarios triggered by crossflow instabilities, since the favorable pressure gradient over the whole plate inhibits instabilities of Tollmien-Schlichting type. In order to shed some light upon the role of the high-frequency secondary instabilities, the saturation characteristics of crossflow vortices in this model flow are investigated using the parabolized stability equations. In contrast to nonlinear equilibrium solutions of steady crossflow vortices, the nonlinear Polarized Stability Equations (PSE) results yield different maximal disturbance amplitudes for different initial amplitudes. (orig./AKF)

  20. Secondary instability and transition in three-dimensional boundary layers

    Energy Technology Data Exchange (ETDEWEB)

    Stolte, A.; Bertolotti, F.P.; Koch, W. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Goettingen (Germany). Inst. fuer Stroemungsmechanik


    Stationary and traveling crossflow modes are the most prominent disturbances in the highly accelerated three-dimensional flow near the leading edge of a swept wing. Near transition onset, secondary three-dimensional instabilities of high frequency can be observed in such flows. A model flow on the basis of a DLR swept plate experiment allows a detailed study of transition scenarios triggered by crossflow instabilities, since the favorable pressure gradient over the whole plate inhibits instabilities of Tollmien-Schlichting type. In order to shed some light upon the role of the high-frequency secondary instabilities, the saturation characteristics of crossflow vortices in this model flow are investigated using the parabolized stability equations. In contrast to nonlinear equilibrium solutions of steady crossflow vortices, the nonlinear Polarized Stability Equations (PSE) results yield different maximal disturbance amplitudes for different initial amplitudes. (orig./AKF)

  1. Two-dimensional turbulence in three-dimensional flows (United States)

    Xia, H.; Francois, N.


    This paper presents a review of experiments performed in three-dimensional flows that show behaviour associated with two-dimensional turbulence. Experiments reveal the presence of the inverse energy cascade in two different systems, namely, flows in thick fluid layers driven electromagnetically and the Faraday wave driven flows. In thick fluid layers, large-scale coherent structures can shear off the vertical eddies and reinforce the planarity of the flow. Such structures are either self-generated or externally imposed. In the Faraday wave driven flows, a seemingly three-dimensional flow is shown to be actually two-dimensional when it is averaged over several Faraday wave periods. In this system, a coupling between the wave motion and 2D hydrodynamic turbulence is uncovered.

  2. The thermoelectric performance of bulk three-dimensional graphene

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhi, E-mail: [Key Lab of Advanced Transducers and Intelligent Control System, Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024 (China); College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024 (China); Lan, Guoqiang; Ouyang, Bin [Department of Mining and Materials Engineering, McGill University, Montreal H3A 0C5 (Canada); Xu, Li-Chun; Liu, Ruiping [College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024 (China); Liu, Xuguang, E-mail: [Key Lab of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024 (China); College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Song, Jun [Department of Mining and Materials Engineering, McGill University, Montreal H3A 0C5 (Canada)


    The electronic and thermoelectric properties of a new carbon bulk material, three-dimensional (3D) graphene, are investigated in this study. Our results show that 3D graphene has unique electronic structure, i.e., near the Fermi level there exist Dirac cones. More importantly, the thermoelectric performance of 3D graphene is excellent, at room temperature the thermoelectric figure of merit (ZT) is 0.21, an order of magnitude higher than that of graphene. By introducing line defects, the ZT of 3D graphene could be enhanced to 1.52, indicating 3D graphene is a powerful candidate for constructing novel thermoelectric materials. - Highlights: • There exist Dirac cones in three-dimensional (3D) graphene. • The thermoelectric performance of 3D graphene is excellent. • The defective 3D graphene has better thermoelectric performance.

  3. Three-dimensional potential energy surface of Ar–CO

    Energy Technology Data Exchange (ETDEWEB)

    Sumiyoshi, Yoshihiro, E-mail: [Division of Pure and Applied Science, Graduate School of Science and Technology, Gunma University, 4-2 Aramaki, Maebashi, Gunma 371-8510 (Japan); Endo, Yasuki [Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902 (Japan)


    A three-dimensional intermolecular potential energy surface of the Ar–CO complex has been determined by fitting most of the previously reported spectroscopic data, where observed transition frequencies by microwave, millimeter-wave, submillimeter-wave, and infrared spectroscopy were reproduced simultaneously within their experimental accuracies. A free rotor model Hamiltonian considering all the freedom of motions for an atom-diatom system was applied to calculate vibration-rotation energies. A three-dimensional potential energy surface obtained by ab initio calculations at the CCSD(T)-F12b/aug-cc-pV5Z level of theory was parameterized by a model function consisting of 46 parameters. They were used as initial values for the least-squares analysis of the experimental data. A total of 20 parameters were optimized to reproduce all the spectroscopic data.

  4. Three Dimensional Polarimetric Neutron Tomography of Magnetic Fields

    DEFF Research Database (Denmark)

    Sales, Morten; Strobl, Markus; Shinohara, Takenao


    -destructively with the potential to probe the interior of bulk samples which is not amenable otherwise. Using a pioneering polarimetric set-up for ToF neutron instrumentation in combination with a newly developed tailored reconstruction algorithm, the magnetic field generated by a current carrying solenoid has been measured......Through the use of Time-of-Flight Three Dimensional Polarimetric Neutron Tomography (ToF 3DPNT) we have for the first time successfully demonstrated a technique capable of measuring and reconstructing three dimensional magnetic field strengths and directions unobtrusively and non...... and reconstructed, thereby providing the proof-of-principle of a technique able to reveal hitherto unobtainable information on the magnetic fields in the bulk of materials and devices, due to a high degree of penetration into many materials, including metals, and the sensitivity of neutron polarisation to magnetic...

  5. Three Dimensional Energy Transmitting Boundary in the Time Domain

    Directory of Open Access Journals (Sweden)

    Naohiro eNakamura


    Full Text Available Although the energy transmitting boundary is accurate and efficient for the FEM earthquake response analysis, it could be applied in the frequency domain only. In the previous papers, the author proposed an earthquake response analysis method using the time domain energy transmitting boundary for two dimensional problems. In this paper, this technique is expanded for three dimensional problems. The inner field is supposed to be a hexahedron shape and the approximate time domain boundary is explained, first. Next, two dimensional anti-plane time domain boundary is studied for a part of the approximate three dimensional boundary method. Then, accuracy and efficiency of the proposed method are confirmed by example problems.

  6. Scattering and conductance quantization in three-dimensional metal nanocontacts

    DEFF Research Database (Denmark)

    Brandbyge, Mads; Jacobsen, Karsten Wedel; Nørskov, Jens Kehlet


    The transmission through three-dimensional nanocontacts is calculated in the presence of localized scattering centers and boundary scattering using a coupled-channel recursion method. Simple confining potentials are used to investigate how robust the observation of quantized conductance is with r......The transmission through three-dimensional nanocontacts is calculated in the presence of localized scattering centers and boundary scattering using a coupled-channel recursion method. Simple confining potentials are used to investigate how robust the observation of quantized conductance...... is with respect to the scattering. We find that the quantum features are quite stable: the scattering by a localized scatterer will selectively smear and downshift certain quantum steps depending on the position of the scatterer, but the remaining steps will. still be at integer positions. The effect...

  7. Three-dimensional metamaterials fabricated using Proton Beam Writing

    Energy Technology Data Exchange (ETDEWEB)

    Bettiol, A.A., E-mail: [Centre for Ion Beam Applications, Department of Physics, National University of Singapore, 2 Science Dr. 3, Singapore 117542 (Singapore); Turaga, S.P.; Yan, Y.; Vanga, S.K. [Centre for Ion Beam Applications, Department of Physics, National University of Singapore, 2 Science Dr. 3, Singapore 117542 (Singapore); Chiam, S.Y. [NUS High School for Maths and Science, 20 Clementi Avenue 1, Singapore 129957 (Singapore)


    Proton Beam Writing (PBW) is a direct write lithographic technique that has recently been applied to the fabrication of three dimensional metamaterials. In this work, we show that the unique capabilities of PBW, namely the ability to fabricate arrays of high resolution, high aspect ratio microstructures in polymer or replicated into metal, is well suited to metamaterials research. We have also developed a novel method for selectively electroless plating silver directly onto polymer structures that were fabricated using PBW. This method opens up new avenues for utilizing PBW for making metamaterials and other sub-wavelength metallic structures. Several potential applications of three dimensional metamaterials fabricated using PBW are discussed, including sensing and negative refractive index materials.

  8. Single florescent nanodiamond in a three dimensional ABEL trap (United States)

    Kayci, Metin; Radenovic, Aleksandra


    Three dimensional single particle trapping and manipulation is an outstanding challenge in various fields ranging from basic physics to life sciences. By monitoring the response of a trapped particle to a designed environment one can extract its characteristics. In addition, quantum dynamics of a spatially scanned well-known particle can provide environmental information. Precise tracking and positioning of such a particle in aqueous environment is crucial task for achieving nano-scale resolution. Here we experimentally demonstrate three dimensional ABEL trap operating at high frequency by employing a hybrid approach in particle tracking. The particle location in the transverse plane is detected via a scanning laser beam while the axial position is determined by defocused imaging. The scanning of the trapped particle is accomplished through a nano positioning stage integrated to the trap platform. PMID:26559890

  9. Three-dimensional Microarchitecture of Adolescent Cancellous Bone

    DEFF Research Database (Denmark)

    Ding, Ming; Hvid, I; Overgaard, Søren

    regarding three-dimensional (3-D) microarchitecture of normal adolescent cancellous bone. The objective of this study was to investigate 3-D microarchitecture of normal adolescent cancellous bone, and compared them with adult cancellous bone, thus seeking more insight into the subchondral bone adaptations...... during development and growth. We hypothesized that adolescent cancellous bone differed significantly from adult cancellous bone in their microarchitecture and mechanical properties. METHODS: Twenty-three human proximal tibiae were harvested and divided into 3 groups according to their ages: adolescence...... of Orthopaedics & Traumatology and Institute of Forensic Medicine, Odense and Aarhus University Hospitals, Denmark. RESULTS: Three-dimensional reconstructions of cancellous bone from micro-CT imaging are shown in Figure 1. Our data showed that trabecular separation was significantly greater in the adolescence...

  10. Study of three-dimensional effects on vortex breakdown (United States)

    Salas, M. D.; Kuruvila, G.


    The incompressible axisymmetric steady Navier-Stokes equations in primitive variables are used to simulate vortex breakdown. The equations, discretized using a second-order, central-difference scheme, are linearized and then solved using an exact LU decomposition, Gaussian elimination, and Newton iteration. Solutions are presented for Reynolds numbers, based on vortex-core radius, as high as 1500. An attempt to study the stability of the axisymmetric solutions against three-dimensional perturbations is discussed.

  11. A three-dimensional model of women's empowerment


    Huis, Marloes A.; Hansen, Nina; Otten, Sabine; Lensink, Robert


    Women's empowerment is an important goal in achieving sustainable development worldwide. Offering access to microfinance services to women is one way to increase women's empowerment. However, empirical evidence provides mixed results with respect to its effectiveness. We reviewed previous research on the impact of microfinance services on different aspects of women's empowerment. We propose a Three-Dimensional Model of Women's Empowerment to integrate previous findings and to gain a deeper un...

  12. Isotropic three-dimensional left-handed meta-materials


    Koschny, Th.; Zhang, L.; Soukoulis, C. M.


    We investigate three-dimensional left-handed and related meta-materials based on a fully symmetric multi-gap single-ring SRR design and crossing continuous wires. We demonstrate isotropic transmission properties of a SRR-only meta-material and the corresponding left-handed material which possesses a negative effective index of refraction due to simultaneously negative effective permeability and permittivity. Minor deviations from complete isotropy are due to the finite thickness of the meta-m...

  13. Three Dimensional Unstructured Multigrid for the Euler Equations (United States)


    represents an algorithmic issue. While much work has been performed in two dimensions on direct [21, iterative implicit [3,4,51, and multigrid methods [6,7,8...methods, and many of the iterative implicit methods incur too large memory overheads to be practical for three-dimensional problems. Multigrid methods , on...the Third Copper Mountain Confer- ence on Multigrid Methods , Lecture Notes in Pure and Applied Mathematics, Ed S. F. McCormick, Marcel Dckker Inc

  14. Three-dimensional discrete ordinates reactor assembly calculations on GPUs

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Thomas M [ORNL; Joubert, Wayne [ORNL; Hamilton, Steven P [ORNL; Johnson, Seth R [ORNL; Turner, John A [ORNL; Davidson, Gregory G [ORNL; Pandya, Tara M [ORNL


    In this paper we describe and demonstrate a discrete ordinates sweep algorithm on GPUs. This sweep algorithm is nested within a multilevel comunication-based decomposition based on energy. We demonstrated the effectiveness of this algorithm on detailed three-dimensional critical experiments and PWR lattice problems. For these problems we show improvement factors of 4 6 over conventional communication-based, CPU-only sweeps. These sweep kernel speedups resulted in a factor of 2 total time-to-solution improvement.

  15. Three-dimensional transparent parabolic concentrator for photovoltaics


    Huichuan Lin; Peng Xie; Yong Liu; Xiang Zhou; Baojun Li


    A three-dimensional transparent parabolic concentrator made of polymethylmethacrylate (PMMA) was designed and fabricated for photovoltaic applications. The measured maximum concentration ratio of the concentrator is 8.31, which means that for normal incident light, optical energy can be concentrated as high as 8.31 times by the concentrator. Even for oblique incident lights with an incident angle of between 5° and 15°, the concentrator maintains a concentration ratio of between 6.81 and 3.72....

  16. Aerodynamics of Airfoils Subject to Three-Dimensional Periodic Gusts. (United States)


    and computational procedures to calculate the unsteady forces acting upon airfoils of arbitrary shape subject to three-dimensional gust disturbances...However the mathenatical formulation which has evolved from our analytical work can also be applied under certain conditions to study the changes in...check the validity of our computation scheme two sets of comparisons were carried out. First we considered a two-dimensional gust with transverse and

  17. Environmental, Transient, Three-Dimensional, Hydrothermal, Mass Transport Code - FLESCOT

    Energy Technology Data Exchange (ETDEWEB)

    Onishi, Yasuo [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bao, Jie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Glass, Kevin A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Eyler, L. L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Okumura, Masahiko [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)


    The purpose of the project was to modify and apply the transient, three-dimensional FLESCOT code to be able to effectively simulate cesium behavior in Fukushima lakes/dam reservoirs, river mouths, and coastal areas. The ultimate objective of the FLESCOT simulation is to predict future changes of cesium accumulation in Fukushima area reservoirs and costal water. These evaluation results will assist ongoing and future environmental remediation activities and policies in a systematic and comprehensive manner.

  18. Heat engine in the three-dimensional spacetime

    International Nuclear Information System (INIS)

    Mo, Jie-Xiong; Liang, Feng; Li, Gu-Qiang


    We define a kind of heat engine via three-dimensional charged BTZ black holes. This case is quite subtle and needs to be more careful. The heat flow along the isochores does not equal to zero since the specific heat C V ≠0 and this point completely differs from the cases discussed before whose isochores and adiabats are identical. So one cannot simply apply the paradigm in the former literatures. However, if one introduces a new thermodynamic parameter associated with the renormalization length scale, the above problem can be solved. We obtain the analytical efficiency expression of the three-dimensional charged BTZ black hole heat engine for two different schemes. Moreover, we double check with the exact formula. Our result presents the first specific example for the sound correctness of the exact efficiency formula. We argue that the three-dimensional charged BTZ black hole can be viewed as a toy model for further investigation of holographic heat engine. Furthermore, we compare our result with that of the Carnot cycle and extend the former result to three-dimensional spacetime. In this sense, the result in this paper would be complementary to those obtained in four-dimensional spacetime or ever higher. Last but not the least, the heat engine efficiency discussed in this paper may serve as a criterion to discriminate the two thermodynamic approaches introduced in ref. and our result seems to support the approach which introduces a new thermodynamic parameter R=r 0 .

  19. Three dimensional Green's function for ship motion at forward speed

    Directory of Open Access Journals (Sweden)

    Matiur Rahman


    Full Text Available The Green's function formulation for ship motion at forward speed contains double integrals with singularities in the path of integrations with respect to the wave number. In this study, the double integrals have been replaced by single integrals with the use of complex exponential integrals. It has been found that this analysis provides an efficient way of computing the wave resistance for three dimensional potential problem of ship motion with forward speed.

  20. Functional renormalization group for three-dimensional quantum magnetism (United States)

    Iqbal, Yasir; Thomale, Ronny; Parisen Toldin, Francesco; Rachel, Stephan; Reuther, Johannes


    We formulate a pseudofermion functional renormalization group (PFFRG) scheme to address frustrated quantum magnetism in three dimensions. In a scenario where many numerical approaches fail due to sign problem or small system size, three-dimensional (3D) PFFRG allows for a quantitative investigation of the quantum spin problem and its observables. We illustrate 3D PFFRG for the simple cubic J1-J2-J3 quantum Heisenberg antiferromagnet, and benchmark it against other approaches, if available.

  1. Three dimensional refractive index imaging with differential interference contrast microscopy (United States)

    Aung, Htet; Buckley, Jared; Kostyk, Piotr; Rodriguez, Braulio; Phelan, Shelley; Xu, M.


    We report here a new approach based on an extension of the transport of the intensity equation for three dimensional refractive index imaging of a weak phase object from a series of images recorded by a differential interference contrast microscope at different focus (z-stack). Our method is first validated by imaging polystyrene spheres. We then apply this method to monitor in vivo apoptosis of human breast MCF7 epithelial cells. The potential applications are discussed at the end.

  2. Three-dimensional friction measurement during hip simulation.

    Directory of Open Access Journals (Sweden)

    Robert Sonntag

    Full Text Available Wear of total hip replacements has been the focus of many studies. However, frictional effects, such as high loading on intramodular connections or the interface to the bone, as well as friction associated squeaking have recently increased interest about the amount of friction that is generated during daily activities. The aim of this study was thus to establish and validate a three-dimensional friction setup under standardized conditions.A standard hip simulator was modified to allow for high precision measurements of small frictional effects in the hip during three-dimensional hip articulation. The setup was verified by an ideal hydrostatic bearing and validated with a static-load physical pendulum and an extension-flexion rotation with a dynamic load profile. Additionally, a pendulum model was proposed for screening measurement of frictional effects based on the damping behavior of the angular oscillation without the need for any force/moment transducer. Finally, three-dimensional friction measurements have been realized for ceramic-on-polyethylene bearings of three different sizes (28, 36 and 40 mm.A precision of less than 0.2 Nm during three-dimensional friction measurements was reported, while increased frictional torque (resultant as well as taper torque was measured for larger head diameters. These effects have been confirmed by simple pendulum tests and the theoretical model. A comparison with current literature about friction measurements is presented.This investigation of friction is able to provide more information about a field that has been dominated by the reduction of wear. It should be considered in future pre-clinical testing protocols given by international organizations of standardization.

  3. Three-dimensional reconstruction of the otosclerotic focus

    DEFF Research Database (Denmark)

    Bloch, Sune Land; Sørensen, Mads Sølvsten


    The location and three-dimensional (3D) shapes of the otosclerotic foci suggest a general centripetal distribution of otosclerotic bone remodeling around the inner ear space, whereas the normal bone remodeling is distributed centrifugally. The existence of an inverse spatial relation between norm...... and otosclerotic bone remodeling suggests that inner ear mechanisms in control of bone remodeling may have a pathogenetic role in otosclerosis....

  4. Heat engine in the three-dimensional spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Mo, Jie-Xiong [Institute of Theoretical Physics, Lingnan Normal University,Zhanjiang, 524048, Guangdong (China); Department of Physics, Lingnan Normal University,Zhanjiang, 524048, Guangdong (China); Liang, Feng [Department of Physics, Lingnan Normal University,Zhanjiang, 524048, Guangdong (China); Li, Gu-Qiang [Institute of Theoretical Physics, Lingnan Normal University,Zhanjiang, 524048, Guangdong (China); Department of Physics, Lingnan Normal University,Zhanjiang, 524048, Guangdong (China)


    We define a kind of heat engine via three-dimensional charged BTZ black holes. This case is quite subtle and needs to be more careful. The heat flow along the isochores does not equal to zero since the specific heat C{sub V}≠0 and this point completely differs from the cases discussed before whose isochores and adiabats are identical. So one cannot simply apply the paradigm in the former literatures. However, if one introduces a new thermodynamic parameter associated with the renormalization length scale, the above problem can be solved. We obtain the analytical efficiency expression of the three-dimensional charged BTZ black hole heat engine for two different schemes. Moreover, we double check with the exact formula. Our result presents the first specific example for the sound correctness of the exact efficiency formula. We argue that the three-dimensional charged BTZ black hole can be viewed as a toy model for further investigation of holographic heat engine. Furthermore, we compare our result with that of the Carnot cycle and extend the former result to three-dimensional spacetime. In this sense, the result in this paper would be complementary to those obtained in four-dimensional spacetime or ever higher. Last but not the least, the heat engine efficiency discussed in this paper may serve as a criterion to discriminate the two thermodynamic approaches introduced in ref. and our result seems to support the approach which introduces a new thermodynamic parameter R=r{sub 0}.

  5. Three-dimensional, computer simulated navigation in endoscopic neurosurgery

    Directory of Open Access Journals (Sweden)

    Roberta K. Sefcik, BHA


    Conclusion: Three-dimensional, frameless neuronavigation systems are useful in endoscopic neurosurgery to assist in the pre-operative planning of potential trajectories and to help localize the pathology of interest. Neuronavigation appears to be accurate to <1–2 mm without issues related to brain shift. Further work is necessary in the investigation of the effect of neuronavigation on operative time, cost, and patient-centered outcomes.

  6. Accuracy of three-dimensional printing for manufacturing replica teeth


    Lee, Keun-Young; Cho, Jin-Woo; Chang, Na-Young; Chae, Jong-Moon; Kang, Kyung-Hwa; Kim, Sang-Cheol; Cho, Jin-Hyoung


    Objective Three-dimensional (3D) printing is a recent technological development that may play a significant role in orthodontic diagnosis and treatment. It can be used to fabricate skull models or study models, as well as to make replica teeth in autotransplantation or tooth impaction cases. The aim of this study was to evaluate the accuracy of fabrication of replica teeth made by two types of 3D printing technologies. Methods Fifty extracted molar teeth were selected as samples. They were sc...

  7. Is a three-dimensional-printed tooth filling possible?


    Muhammet Kerim Ayar


    Introduction: Three-dimensional (3-D) printing is seen as an innovative production process in many fields of dentistry and medicine. But implantation of this novel production process into the treatment of decayed teeth in dentistry remains lacking. Destruction of dental tissues as a result of dental caries is generally treated with dental resin composite fillings. However, a 3-D-printed tooth filling approach, which could be an alternative to traditional approaches, has a potential to reduce ...

  8. Rheology and Confocal Reflectance Microscopy as Probes of Mechanical Properties and Structure during Collagen and Collagen/Hyaluronan Self-Assembly (United States)

    Yang, Ya-li; Kaufman, Laura J.


    In this work, the gelation of three-dimensional collagen and collagen/hyaluronan (HA) composites is studied by time sweep rheology and time lapse confocal reflectance microscopy (CRM). To investigate the complementary nature of these techniques, first collagen gel formation is investigated at concentrations of 0.5, 1.0, and 1.5 mg/mL at 37°C and 32°C. The following parameters are used to describe the self-assembly process in all gels: the crossover time (tc), the slope of the growth phase (kg), and the arrest time (ta). The first two measures are determined by rheology, and the third by CRM. A frequency-independent rheological measure of gelation, tg, is also measured at 37°C. However, this quantity cannot be straightforwardly determined for gels formed at 32°C, indicating that percolation theory does not fully capture the dynamics of collagen network formation. The effects of collagen concentration and gelation temperature on kg, tc, and ta as well as on the mechanical properties and structure of these gels both during gelation and at equilibrium are elucidated. Composite collagen/HA gels are also prepared, and their properties are monitored at equilibrium and during gelation at 37°C and 32°C. We show that addition of HA subtly alters mechanical properties and structure of these systems both during the gelation process and at equilibrium. This occurs in a temperature-dependent manner, with the ratio of HA deposited on collagen fibers versus that distributed homogeneously between fibers increasing with decreasing gelation temperature. In addition to providing information on collagen and collagen/HA structure and mechanical properties during gelation, this work shows new ways in which rheology and microscopy can be used complementarily to reveal details of gelation processes. PMID:19217873

  9. Three-dimensional fluorescence characteristics of white chrysanthemum flowers (United States)

    Fan, Yunchang; Li, Yang; Cai, Hongxin; Li, Jing; Miao, Juan; Fu, Dexue; Su, Kun


    White chrysanthemum flower is one of the most popular plants found everywhere in China and used as herbs. In the present work, three-dimensional fluorescence technique was used to discriminate species of white chrysanthemum flowers. Parameters affecting extraction efficiency were investigated. Under the optimal conditions, the three-dimensional fluorescence characteristics of three types of white chrysanthemum flowers were obtained. It was found that there were two main fluorescence peaks with remarkable difference in fluorescence intensity, one was corresponding to flavonoids and another was attributed to chlorophyll-like compounds. There were remarkable differences among the contours of the three white chrysanthemum flowers. Further studies showed that the fluorescence intensity ratios of chlorophyll-like compounds to flavonoids had a certain relationship with the species; those for Huai, Hang and Huangshan white chrysanthemum flowers were 6.9-7.4, 18.9-21.4 and 73.6-84.5, respectively. All of the results suggest that three-dimensional fluorescence spectra can be used for the discrimination of white chrysanthemum flowers with the advantages of low cost, ease for operation and intuition.

  10. Surface image of herniated disc on three-dimensional CT

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Kyung Il; Jeon, Chang Hoon; Kim, Sun Yong; Kim, Ok Hwa; Suh, Jung Ho [Ajou Univ. College of Medicine, Suwon(Korea, Republic of)


    To evaluate surface configuration of herniated disc on three-dimensional CT. Three dimensional surface images reconstructed from CT scans(1 mm thick) of 24 surgically confirmed herniated discs in 23 patients were reviewed. Disc surface was classified into peripheral and central zones in contact with consecutive peripheral ring and central endplate. Surface irregularity was categorized into two types(local and general). The incidence, size, and extent of local irregularity were observed. General irregularity incidence and severity ranges in 4 grades, and peripheral width were evaluated. The findings were correlated with discography. Local irregularity compatible with anulus tear in discography was shown in all. It was large(13/24) and mainly peripheral tract extending to disc margin in protrusion(3/5) and sequestration(5/7), and cleft encompassing central zone to disc margin in extrusion(9/12). General irregularity was predominantly grade 3(15/22) and was shown in all except in 2 protrusions. Peripheral width was 0.56 of central radius. Extrusion in herniated disc shows characteristic cleft encompassing central zone to disc margin whereas sequestration or protrusion displays tract extending from peripheral zone to disc margin. Thus, three dimensional surface imaging may aid the diagnosis, follow-up, prediction, and treatment of herniated disc.

  11. Comparison of two three-dimensional cephalometric analysis computer software. (United States)

    Sawchuk, Dena; Alhadlaq, Adel; Alkhadra, Thamer; Carlyle, Terry D; Kusnoto, Budi; El-Bialy, Tarek


    Three-dimensional cephalometric analyses are getting more attraction in orthodontics. The aim of this study was to compare two softwares to evaluate three-dimensional cephalometric analyses of orthodontic treatment outcomes. Twenty cone beam computed tomography images were obtained using i-CAT(®) imaging system from patient's records as part of their regular orthodontic records. The images were analyzed using InVivoDental5.0 (Anatomage Inc.) and 3DCeph™ (University of Illinois at Chicago, Chicago, IL, USA) software. Before and after orthodontic treatments data were analyzed using t-test. Reliability test using interclass correlation coefficient was stronger for InVivoDental5.0 (0.83-0.98) compared with 3DCeph™ (0.51-0.90). Paired t-test comparison of the two softwares shows no statistical significant difference in the measurements made in the two softwares. InVivoDental5.0 measurements are more reproducible and user friendly when compared to 3DCeph™. No statistical difference between the two softwares in linear or angular measurements. 3DCeph™ is more time-consuming in performing three-dimensional analysis compared with InVivoDental5.0.

  12. Space charge cartography by FLIMM: a three-dimensional approach

    International Nuclear Information System (INIS)

    Marty-Dessus, D; Berquez, L; Petre, A; Franceschi, J L


    A technique for three-dimensional cartography of space charges profiles inside polymer insulating samples is proposed. Called focused laser intensity modulation method (FLIMM), it is derived from the well-known LIMM method, with an additional possibility of being able to focus the laser spot on the surface of the sample to be studied. The processed data is a short-circuited pyrolectric current collected between the electrodes and induced by the interaction of the charges with the periodic variations of temperature produced by the laser source. The focused aspect of our method requires a good three-dimensional modelling of the spatial evolution of this thermal gradient. Under these conditions, the treatment of the equation of heat propagation is carried out using simultaneously a double Fourier transform and Green functions. In association with the numerical simulations of this solution, a two-dimensional scanning of the beam on polyethylene test sample surfaces shows that one can get three-dimensional representations of space charge shapes with a lateral resolution lower than 10 μm and for a depth of analysis typically included in the range 1-100 μm

  13. Nonlinear three-dimensional trajectory following: simulation and application (United States)

    Hines, George H.

    In light of recent military requirements for unmanned and autonomous vehicles, research into methods of designing arbitrary three-dimensional trajectories and controlling aircraft along them has become vital. In this report, we explore two methods of nonlinear control for the purpose of following three-dimensional trajectories and paths. First, prior work on a dynamic feedback linearization exploiting the differential flatness of the ideal airplane is adapted with the intent of implementing it on a physical testbed in MIT's Realtime indoor Autonomous Vehicle test ENvironment (RAVEN), but poor behavior—both in simulation and in hardware—under moderate levels of joint parameter uncertainty thwarted attempts at implementation. Additionally, the differential flatness technique in its pure form follows trajectories, which are sometimes inferior intuitively and practically to paths. In the context of unmanned air vehicle (UAV) flight in gusty environments, this motivated the extension of prior work on two-dimensional path following to three-dimensions, and simulations are presented in which the fully nonlinear controller derived from differential flatness follows a trajectory that is generated dynamically from a path. The three-dimensional path-following logic is actually implemented in RAVEN, and results are presented that demonstrate good vertical rise time in response to a step input and centimeter accuracy in vertical and lateral tracking. Future directions are proposed.

  14. Tensile Mechanical Properties and Dynamic Collagen Fiber Re-Alignment of the Murine Cervix are Dramatically Altered Throughout Pregnancy. (United States)

    Barnum, Carrie E; Fey, Jennifer L; Weiss, Stephanie N; Barila, Guillermo; Brown, Amy G; Connizzo, Brianne K; Shetye, Snehal S; Elovitz, Michal A; Soslowsky, Louis J


    The cervix is a unique organ able to dramatically change its shape and function by serving as a physical barrier for the growing fetus and then undergoing dramatic dilation allowing for delivery of a term infant. As a result, the cervix endures changing mechanical forces from the growing fetus. There is an emerging concept that the cervix may change or remodel "early" in many cases of spontaneous preterm birth (sPTB). However, the mechanical role of the cervix in both normal and preterm birth remains unclear. Therefore, the primary objective of this study was to determine the mechanical and structural responses of murine cervical tissue throughout a normal gestational time course. In this study, both tissue structural and material properties were determined via a quasi-static tensile load-to-failure test, while simultaneously obtaining dynamic collagen fiber re-alignment via cross-polarization imaging. This study demonstrated that the majority of the mechanical properties evaluated decreased at midgestation and not just at term, while collagen fiber re-alignment occurred earlier in the loading curve for cervices at term. This suggests that although structural changes in the cervix occur throughout gestation, the differences in material properties function in combination with collagen fiber re-alignment as mechanical precursors to regulate term gestation. This work lays a foundation for investigating cervical biomechanics and the role of the cervix in preterm birth.

  15. Dermatan Sulfate Epimerase 1-Deficient Mice Have Reduced Content and Changed Distribution of Iduronic Acids in Dermatan Sulfate and an Altered Collagen Structure in Skin

    DEFF Research Database (Denmark)

    Maccarana, M.; Kalamajski, S.; Kongsgaard, M.


    Dermatan sulfate epimerase 1 (DS-epi1) and DS-epi2 convert glucuronic acid to iduronic acid in chondroitin/dermatan sulfate biosynthesis. Here we report on the generation of DS-epi1-null mice and the resulting alterations in the chondroitin/dermatan polysaccharide chains. The numbers of long blocks...... of adjacent iduronic acids are greatly decreased in skin decorin and biglycan chondroitin/dermatan sulfate, along with a parallel decrease in iduronic-2-O-sulfated-galactosamine-4-O-sulfated structures. Both iduronic acid blocks and iduronic acids surrounded by glucuronic acids are also decreased in versican......-derived chains. DS-epi1-deficient mice are smaller than their wild-type littermates but otherwise have no gross macroscopic alterations. The lack of DS-epi1 affects the chondroitin/dermatan sulfate in many proteoglycans, and the consequences for skin collagen structure were initially analyzed. We found...

  16. Three-dimensional appearance of the lips muscles with three-dimensional isotropic MRI: in vivo study. (United States)

    Olszewski, Raphael; Liu, Y; Duprez, T; Xu, T M; Reychler, H


    Our knowledge of facial muscles is based primarily on atlases and cadaveric studies. This study describes a non-invasive in vivo method (3D MRI) for segmenting and reconstructing facial muscles in a three-dimensional fashion. Three-dimensional (3D), T1-weighted, 3 Tesla, isotropic MRI was applied to a subject. One observer performed semi-automatic segmentation using the Editor module from the 3D Slicer software (Harvard Medical School, Boston, MA, USA), version 3.2. We were able to successfully outline and three-dimensionally reconstruct the following facial muscles: pars labialis orbicularis oris, m. levatro labii superioris alaeque nasi, m. levator labii superioris, m. zygomaticus major and minor, m. depressor anguli oris, m. depressor labii inferioris, m. mentalis, m. buccinator, and m. orbicularis oculi. 3D reconstruction of the lip muscles should be taken into consideration in order to improve the accuracy and individualization of existing 3D facial soft tissue models. More studies are needed to further develop efficient methods for segmentation in this field.

  17. Collagenous Gastritis


    Freeman, Hugh J.; Piercy, James R.A.; Raine, Robert J.


    A 54-year-old woman presented with nausea, vomiting and weight loss associated with impaired gastric emptying necessitating institution of parenteral nutrition. Subsequent studies revealed an unusual gastric mucosa! inflammatory process characterized by unique subepithelial collagenous deposits. Collagenous gastritis appears to be a distinct, possibly immune-mediated, chronic disorder, pathologically reminiscent of collagenous sprue and collagenous colitis.

  18. Asymmetric three-dimensional topography over mantle plumes. (United States)

    Burov, Evgueni; Gerya, Taras


    The role of mantle-lithosphere interactions in shaping surface topography has long been debated. In general, it is supposed that mantle plumes and vertical mantle flows result in axisymmetric, long-wavelength topography, which strongly differs from the generally asymmetric short-wavelength topography created by intraplate tectonic forces. However, identification of mantle-induced topography is difficult, especially in the continents. It can be argued therefore that complex brittle-ductile rheology and stratification of the continental lithosphere result in short-wavelength modulation and localization of deformation induced by mantle flow. This deformation should also be affected by far-field stresses and, hence, interplay with the 'tectonic' topography (for example, in the 'active/passive' rifting scenario). Testing these ideas requires fully coupled three-dimensional numerical modelling of mantle-lithosphere interactions, which so far has not been possible owing to the conceptual and technical limitations of earlier approaches. Here we present new, ultra-high-resolution, three-dimensional numerical experiments on topography over mantle plumes, incorporating a weakly pre-stressed (ultra-slow spreading), rheologically realistic lithosphere. The results show complex surface evolution, which is very different from the smooth, radially symmetric patterns usually assumed as the canonical surface signature of mantle upwellings. In particular, the topography exhibits strongly asymmetric, small-scale, three-dimensional features, which include narrow and wide rifts, flexural flank uplifts and fault structures. This suggests a dominant role for continental rheological structure and intra-plate stresses in controlling dynamic topography, mantle-lithosphere interactions, and continental break-up processes above mantle plumes.

  19. Three-dimensional trajectory optimization in constrained airspace (United States)

    Dai, Ran

    This dissertation deals with the generation of three-dimensional optimized trajectory in constrained airspace. It expands the previously used two-dimensional aircraft model to a three-dimensional model and includes the consideration of complex airspace constraints not included in previous trajectory optimization studies. Two major branches of optimization methods, indirect and direct methods, are introduced and compared. Both of the methods are applied to solve a two-dimensional minimum-time-to-climb (MTTC) problem. The solution procedure is described in detail. Two traditional problems, the Brachistochrone problem and Zermelo's problem, are solved using the direct collocation and nonlinear programming method. Because analytical solutions to these problems are known. These solutions provide verification of the numerical methods. Three discretization methods, trapezoidal, Hermite-Simpson and Chebyshev Pseudospectral (CP) are introduced and applied to solve the Brachistochrone problem. The solutions obtained using these discretization methods are compared with the analytical results. An 3-D aircraft model with six state variables and two control variables are presented. Two primary trajectory optimization problems are considered using this model in the dissertation. One is to assume that the aircraft climbs up from sea level to a desired altitude in a square cross section cylinder of arbitrary height. Another is to intercept a constant velocity, constant altitude target in minimum time starting from sea level. Results of the optimal trajectories are compared with the results from the proportional navigation guidance law. Field of View constraint is finally considered in this interception problem. The CP discretization and nonlinear programming method is shown to have advantages over indirect methods in solving three-dimensional (3-D) trajectory optimization problems with multiple controls and complex constraints. Conclusions from both problems are presented and

  20. Lyapunov Schmidt reduction algorithm for three-dimensional discrete vortices (United States)

    Lukas, Mike; Pelinovsky, Dmitry; Kevrekidis, P. G.


    We address the persistence and stability of three-dimensional vortex configurations in the discrete nonlinear Schrödinger equation and develop a symbolic package based on Wolfram’s MATHEMATICA for computations of the Lyapunov-Schmidt reduction method. The Lyapunov-Schmidt reduction method is a theoretical tool which enables us to study continuations and terminations of the discrete vortices for small coupling between lattice nodes as well as the spectral stability of the persistent configurations. The method was developed earlier in the context of the two-dimensional lattice and applied to the onsite and offsite configurations (called the vortex cross and the vortex cell) by using semianalytical computations [D.E. Pelinovsky, P.G. Kevrekidis, D. Frantzeskakis, Physica D 212 (2005) 20-53; P.G. Kevrekidis, D.E. Pelinovsky, Proc. R. Soc. A 462 (2006) 2671-2694]. The present treatment develops a full symbolic computational package which takes a desired waveform at the anticontinuum limit of uncoupled sites, performs a required number of Lyapunov-Schmidt reductions and outputs the predictions on whether the configuration persists, for finite coupling, in the three-dimensional lattice and whether it is stable or unstable. It also provides approximations for the eigenvalues of the linearized stability problem. We report a number of applications of the algorithm to important multisite three-dimensional configurations, such as the simple cube, the double cross and the diamond. For each configuration, we identify exactly one solution, which is stable for small coupling between lattice nodes.

  1. Photogrammetry: applications of a three-dimensional remote measurement technique

    International Nuclear Information System (INIS)

    Peak, K.


    Photogrammetry is defined as the precise art of abstracting measurements from photographic images. Used for many years as a means to produce the world's maps, it has, in recent years, been applied in many engineering environments. The nuclear industry has, in particular, benefitted from the close range applications of photogrammetry. This paper sets out to describe the techniques involved, from the site photography through to the analytical data extraction. It will include a number of examples of where photogrammetry has been used in the nuclear industry as a remote measurement technique, from simple monitoring exercises to the compilation of complex three-dimensional as-built computer models. (author)

  2. Observation of three dimensional optical rogue waves through obstacles

    Energy Technology Data Exchange (ETDEWEB)

    Leonetti, Marco, E-mail: [Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena, 291 00161 Roma (RM) (Italy); Conti, Claudio [ISC-CNR and Department of Physics, University Sapienza, P.le Aldo Moro 5, I-00185 Roma (Italy)


    We observe three-dimensional rogue waves in the speckle distribution of a spatially modulated optical beam. Light is transmitted beyond a partially reflecting obstacle generating optical rogue waves at a controlled position in the shadow of the barrier. When the barrier transmits only 0.07% of the input laser power, we observe the mostly localized event. These results demonstrate that an optimum amount of spatial non-homogeneity maximizes the probability of a gigantic event while the technique we exploit enables to control light behind a fully reflective wall.

  3. Surgical accuracy of three-dimensional virtual planning

    DEFF Research Database (Denmark)

    Stokbro, Kasper; Aagaard, Esben; Torkov, Peter


    This retrospective study evaluated the precision and positional accuracy of different orthognathic procedures following virtual surgical planning in 30 patients. To date, no studies of three-dimensional virtual surgical planning have evaluated the influence of segmentation on positional accuracy...... and transverse expansion. Furthermore, only a few have evaluated the precision and accuracy of genioplasty in placement of the chin segment. The virtual surgical plan was compared with the postsurgical outcome by using three linear and three rotational measurements. The influence of maxillary segmentation...

  4. Quantum tunneling from three-dimensional black holes

    International Nuclear Information System (INIS)

    Ejaz, Asiya; Gohar, H.; Lin, Hai; Saifullah, K.; Yau, Shing-Tung


    We study Hawking radiation from three-dimensional black holes. For this purpose the emission of charged scalar and charged fermionic particles is investigated from charged BTZ black holes, with and without rotation. We use the quantum tunneling approach incorporating WKB approximation and spacetime symmetries. Another class of black holes which is asymptotic to a Sol three-manifold has also been investigated. This procedure gives us the tunneling probability of outgoing particles, and we compute the temperature of the radiation for these black holes. We also consider the quantum tunneling of particles from black hole asymptotic to Sol geometry

  5. Modified Three-Dimensional Multicarrier Optical Prime Codes

    Directory of Open Access Journals (Sweden)

    Rajesh Yadav


    Full Text Available We propose a mathematical model for novel three-dimensional multicarrier optical codes in terms of wavelength/time/space based on the prime sequence algorithm. The proposed model has been extensively simulated on MATLAB for prime numbers (P to analyze the performance of code in terms of autocorrelation and cross-correlation. The simulated outcome resembles the mathematical model and gives better results over other methods available in the literature as far as autocorrelation and cross-correlation are concerned. The proposed 3D optical codes are more efficient in terms of cardinality, improved security, and providing quality of services.

  6. Three-dimensional display techniques: description and critique of methods

    International Nuclear Information System (INIS)

    Budinger, T.F.


    The recent advances in non invasive medical imaging of 3 dimensional spatial distribution of radionuclides, X-ray attenuation coefficients, and nuclear magnetic resonance parameters necessitate development of a general method for displaying these data. The objective of this paper is to give a systematic description and comparison of known methods for displaying three dimensional data. The discussion of display methods is divided into two major categories: 1) computer-graphics methods which use a two dimensional display screen; and 2) optical methods (such as holography, stereopsis and vari-focal systems)

  7. Impurity states in two and three dimensional disordered system S

    International Nuclear Information System (INIS)

    Silva, A.F. da; Fabbri, M.


    We investigate the microscopic structure of the impurity states in two-and three-dimensional (2D and 3D) disordered system. A cluster model is outlined for the donor impurity density of states (DIDS) of doped semiconductors. It is shown that the impurity states are very sensitive to a change in the dimensionality of the system, i.e., from 3D to 2D system. It is found that all eigenstates become localized in 2D disordered system for a large range of concentration. (author) [pt

  8. Evaluation of solar energy over three dimensional objects

    International Nuclear Information System (INIS)

    Serposhan, S.; Yaghoubi, M.


    The knowledge of solar irradiation is important in heating and cooling of buildings architectural engineering, various solar energy utilizations, and for any system design exposed to sun radiation. In the present article, simulation is made to predict solar irradiation over any three-dimensional objects. Special consideration is made to evaluate solar radiation intensity distribution over semi-circular roof and domed roofs. For practical applications, hourly and average daily solar radiation distribution for a series of three Heller type huge cooling towers of Fars Power Plant is also determined

  9. Three-dimensional analysis of two-pile caps

    Directory of Open Access Journals (Sweden)

    T.E.T. Buttignol

    Full Text Available This paper compares the results between a non-linear three-dimensional numerical analysis of pile caps with two piles and the experimental study conducted by Delalibera. It is verified the load-carrying capacity, the crack pattern distribution, the principal stress in concrete and steel, the deflection and the fracture of the pile cap. The numerical analysis is executed with the finite-element software ATENA 3D, considering a perfect bond between concrete and steel. The numerical and experimental results are presented and have demonstrated a good approximation, reasserting the results of the experimental model and corroborating the theory.

  10. Three-dimensional fractional topological insulators in coupled Rashba layers (United States)

    Volpez, Yanick; Loss, Daniel; Klinovaja, Jelena


    We propose a model of three-dimensional topological insulators consisting of weakly coupled electron- and hole-gas layers with Rashba spin-orbit interaction stacked along a given axis. We show that in the presence of strong electron-electron interactions the system realizes a fractional strong topological insulator, where the rotational symmetry and condensation energy arguments still allow us to treat the problem as quasi-one-dimensional with bosonization techniques. We also show that if Rashba and Dresselhaus spin-orbit interaction terms are equally strong, by doping the system with magnetic impurities, one can bring it into the Weyl semimetal phase.

  11. Single-camera, three-dimensional particle tracking velocimetry


    Peterson, K.; Regaard, B.; Heinemann, S.; Sick, V.


    This paper introduces single-camera, three-dimensional particle tracking velocimetry (SC3D-PTV), an image-based, single-camera technique for measuring 3-component, volumetric velocity fields in environments with limited optical access, in particular, optically accessible internal combustion engines. The optical components used for SC3D-PTV are similar to those used for two-camera stereoscopic-PIV, but are adapted to project two simultaneous images onto a single image sensor. A novel PTV algor...

  12. Tag gas burnup based on three-dimensional FTR analysis

    International Nuclear Information System (INIS)

    Kidman, R.B.


    Flux spectra from a three-dimensional diffusion theory analysis of the Fast Test Reactor (FTR) are used to predict gas tag ratio changes, as a function of exposure, for each FTR fuel and absorber subassembly plenum. These flux spectra are also used to predict Xe-125 equilibrium activities in absorber plena in order to assess the feasibility of using Xe-125 gamma rays to detect and distinguish control rod failures from fuel rod failures. Worst case tag burnup changes are used in conjunction with burnup and mass spectrometer uncertainties to establish the minimum spacing of tags which allows the tags to be unambiguously identified

  13. Photonic Paint Developed with Metallic Three-Dimensional Photonic Crystals (United States)

    Sun, Po; Williams, John D.


    This work details the design and simulation of an inconspicuous photonic paint that can be applied onto an object for anticounterfeit and tag, track, and locate (TTL) applications. The paint consists of three-dimensional metallic tilted woodpile photonic crystals embedded into a visible and infrared transparent polymer film, which can be applied to almost any surface. The tilted woodpile photonic crystals are designed with a specific pass band detectable at nearly all incident angles of light. When painted onto a surface, these crystals provide a unique reflective infra-red optical signature that can be easily observed and recorded to verify the location or contents of a package.

  14. CATIA Core Tools Computer Aided Three-Dimensional Interactive Application

    CERN Document Server

    Michaud, Michel


    CATIA Core Tools: Computer-Aided Three-Dimensional Interactive Application explains how to use the essential features of this cutting-edge solution for product design and innovation. The book begins with the basics, such as launching the software, configuring the settings, and managing files. Next, you'll learn about sketching, modeling, drafting, and visualization tools and techniques. Easy-to-follow instructions along with detailed illustrations and screenshots help you get started using several CATIA workbenches right away. Reverse engineering--a valuable product development skill--is also covered in this practical resource.

  15. Fracture of three-dimensional fuse networks with quenched disorder


    Räisänen, V. I.; Alava, M. J.; Nieminen, Risto M.


    We study a fracture on a quasistatic time scale in a three-dimensional (3D) fuse network model with “strong” and “weak” disorder. These two cases differ noticeably in the development of the fracture. For strong disorder the damage scaling is very close to volumelike [number of broken bonds Nb∼L3/(lnL)0.3] unlike for weak disorder [Nb∼L2.4/(lnL)0.3]. With strong disorder global load sharing is only approximately valid. The size distribution of “avalanches” of broken fuses in the failure follow...

  16. Three-dimensional characterization of stress corrosion cracks

    DEFF Research Database (Denmark)

    Lozano-Perez, S.; Rodrigo, P.; Gontard, Lionel Cervera


    the best spatial resolution. To illustrate the power of these techniques, different parts of dominant stress corrosion cracks in Ni-alloys and stainless steels have been reconstructed in 3D. All relevant microstructural features can now be studied in detail and its relative orientation respect......Understanding crack propagation and initiation is fundamental if stress corrosion cracking (SCC) mechanisms are to be understood. However, cracking is a three-dimensional (3D) phenomenon and most characterization techniques are restricted to two-dimensional (2D) observations. In order to overcome...

  17. Three-dimensional laser pulse intensity diagnostic for photoinjectors

    Directory of Open Access Journals (Sweden)

    Heng Li


    Full Text Available Minimizing the electron-beam emittance of photoinjectors is an important task for maximizing the brightness of the next-generation x-ray facilities, such as free-electron lasers and energy recovery linacs. Optimally shaped laser pulses can significantly reduce emittance. A reliable diagnostic for the laser pulse intensity is required for this purpose. We demonstrate measurement of three-dimensional spatiotemporal intensity profiles, with spatial resolution of 20  μm and temporal resolution of 130 fs. The capability is illustrated by measurements of stacked soliton pulses and pulses from a dissipative-soliton laser.

  18. Teaching veterinary obstetrics using three-dimensional animation technology. (United States)

    Scherzer, Jakob; Buchanan, M Flint; Moore, James N; White, Susan L


    In this three-year study, test scores for students taught veterinary obstetrics in a classroom setting with either traditional media (photographs, text, and two-dimensional graphical presentations) were compared with those for students taught by incorporating three-dimensional (3D) media (linear animations and interactive QuickTime Virtual Reality models) into the classroom lectures. Incorporation of the 3D animations and interactive models significantly increased students' scores on essay questions designed to assess their comprehension of the subject matter. This approach to education may help to better prepare students for dealing with obstetrical cases during their final clinical year and after graduation.

  19. Coherent states on horospheric three-dimensional Lobachevsky space

    Energy Technology Data Exchange (ETDEWEB)

    Kurochkin, Yu., E-mail:; Shoukavy, Dz., E-mail: [Institute of Physics, National Academy of Sciences of Belarus, 68 Nezalezhnasci Ave., Minsk 220072 (Belarus); Rybak, I., E-mail: [Institute of Physics, National Academy of Sciences of Belarus, 68 Nezalezhnasci Ave., Minsk 220072 (Belarus); Instituto de Astrofísica e Ciências do Espaço, CAUP, Rua das Estrelas, 4150-762 Porto (Portugal); Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal)


    In the paper it is shown that due to separation of variables in the Laplace-Beltrami operator (Hamiltonian of a free quantum particle) in horospheric and quasi-Cartesian coordinates of three dimensional Lobachevsky space, it is possible to introduce standard (“conventional” according to Perelomov [Generalized Coherent States and Their Applications (Springer-Verlag, 1986), p. 320]) coherent states. Some problems (oscillator on horosphere, charged particle in analogy of constant uniform magnetic field) where coherent states are suitable for treating were considered.

  20. Three-Dimensional Magnetohydrodynamic Simulation of Slapper Initiation Systems

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, J S; Hrousis, C A


    Although useful information can be gleaned from 2D and even 1D simulations of slapper type initiation systems, these systems are inherently three-dimensional and therefore require full 3D representation to model all relevant details. Further, such representation provides additional insight into optimizing the design of such devices from a first-principles perspective and can thereby reduce experimental costs. We discuss in this paper several ongoing efforts in modeling these systems, our pursuit of validation, and extension of these methods to other systems. Our results show the substantial dependence upon highly accurate global equations of state and resistivity models in these analyses.

  1. Field approach to three-dimensional gene expression pattern characterization (United States)

    Costa, L. da F.; Travençolo, B. A. N.; Azeredo, A.; Beletti, M. E.; Müller, G. B.; Rasskin-Gutman, D.; Sternik, G.; Ibañes, M.; Izpisúa-Belmonte, J. C.


    We present a vector field method for obtaining the spatial organization of three-dimensional patterns of gene expression based on gradients and lines of force obtained by numerical integration. The convergence of these lines of force in local maxima are centers of gene expression, providing a natural and powerful framework to characterize the organization and dynamics of biological structures. We apply this methodology to analyze the expression pattern of the enhanced green fluorescent protein (EGFP) driven by the promoter of light chain myosin II during zebrafish heart formation.

  2. Self-assembled three-dimensional chiral colloidal architecture (United States)

    Ben Zion, Matan Yah; He, Xiaojin; Maass, Corinna C.; Sha, Ruojie; Seeman, Nadrian C.; Chaikin, Paul M.


    Although stereochemistry has been a central focus of the molecular sciences since Pasteur, its province has previously been restricted to the nanometric scale. We have programmed the self-assembly of micron-sized colloidal clusters with structural information stemming from a nanometric arrangement. This was done by combining DNA nanotechnology with colloidal science. Using the functional flexibility of DNA origami in conjunction with the structural rigidity of colloidal particles, we demonstrate the parallel self-assembly of three-dimensional microconstructs, evincing highly specific geometry that includes control over position, dihedral angles, and cluster chirality.

  3. Wave field restoration using three-dimensional Fourier filtering method. (United States)

    Kawasaki, T; Takai, Y; Ikuta, T; Shimizu, R


    A wave field restoration method in transmission electron microscopy (TEM) was mathematically derived based on a three-dimensional (3D) image formation theory. Wave field restoration using this method together with spherical aberration correction was experimentally confirmed in through-focus images of amorphous tungsten thin film, and the resolution of the reconstructed phase image was successfully improved from the Scherzer resolution limit to the information limit. In an application of this method to a crystalline sample, the surface structure of Au(110) was observed in a profile-imaging mode. The processed phase image showed quantitatively the atomic relaxation of the topmost layer.

  4. Conoscopic holography: toward three-dimensional reconstructions of opaque objects. (United States)

    Mugnier, L M


    Conoscopic holography is an interferometric technique that permits the recording of three-dimensional objects. A two-step scheme is presented to recover an opaque object's shape from its conoscopic hologram, consisting of a reconstruction algorithm to give a first estimate of the shape and an iterative restoration procedure that uses the object's support information to make the reconstruction more robust. The existence, uniqueness, and stability of the solution, as well as the convergence of the restoration algorithm, are studied. A preliminary experimental result is presented.

  5. Three Dimensional Digital Image Processing using Edge Detectors

    Directory of Open Access Journals (Sweden)

    John Schmeelk


    Full Text Available This paper provides an introduction to three dimensional image edge detection and its relationship to partial derivatives, convolutions and wavelets. We are especially addressing the notion of edge detection because it has far reaching applications in all areas of research to include medical research. A patient can be diagnosed as having an aneurysm by studying an angiogram. An angiogram is the visual view of the blood vessels whereby the edges are highlighted through the implementation of edge detectors. This process is completed through convolution, wavelets and matrix techniques. Some illustrations included will be vertical, horizontal, Sobel and wavelet edge detectors.

  6. Proton beam writing of three-dimensional microcavities

    International Nuclear Information System (INIS)

    Vanga, S.K.; Bettiol, A.A.


    Optical micro cavities exhibit high quality factors due to the circulation of resonant optical fields within the cavity. Polymers are good materials for the fabrication of micro cavities for practical applications due to the availability of various refractive indices and their low cost. Polymer micro cavities generally yield low Q-factors compared to semiconductor materials because of inherent material absorption losses, and their Q-factors are limited by the low index contrast between the polymer and the substrate material. In the present work, three dimensional micro cavities were fabricated in SU-8 using proton beam writing to enhance the index contrast by isolating the cavities from the substrate

  7. Three-dimensional imaging techniques: A literature review (United States)

    Karatas, Orhan Hakki; Toy, Ebubekir


    Imaging is one of the most important tools for orthodontists to evaluate and record size and form of craniofacial structures. Orthodontists routinely use 2-dimensional (2D) static imaging techniques, but deepness of structures cannot be obtained and localized with 2D imaging. Three-dimensional (3D) imaging has been developed in the early of 1990's and has gained a precious place in dentistry, especially in orthodontics. The aims of this literature review are to summarize the current state of the 3D imaging techniques and to evaluate the applications in orthodontics. PMID:24966761

  8. Three-dimensional temporal reconstruction and analysis of plume images (United States)

    Dhawan, Atam P.; Disimile, Peter J.; Peck, Charles, III


    An experiment with two subsonic jets generating a cross-flow was conducted as part of a study of the structural features of temporal reconstruction of plume images. The flow field structure was made visible using a direct injection flow visualization technique. It is shown that image analysis and temporal three-dimensional visualization can provide new information on the vortical structural dynamics of multiple jets in a cross-flow. It is expected that future developments in image analysis, quantification and interpretation, and flow visualization of rocket engine plume images may provide a tool for correlating the engine diagnostic features by interpreting the evolution of the structures in the plume.

  9. The Electron in Three-Dimensional Momentum Space (United States)

    Mantovani, L.; Bacchetta, A.; Pasquini, B.


    We study the electron as a system composed of an electron and a photon and derive the leading-twist transverse-momentum-dependent distribution functions for both the electron and photon in the dressed electron, thereby offering a three-dimensional description of the dressed electron in momentum space. To obtain the distribution functions, we apply both the formalism of light-front wave function overlap representation and the diagrammatic approach; we discuss the comparison of our results between light-cone gauge and Feynman gauge, discussing the role of the Wilson lines to obtain gauge-independent results. We provide examples of plots of the computed distributions.

  10. Turbulence in Three Dimensional Simulations of Magnetopause Reconnection (United States)

    Drake, J. F.; Price, L.; Swisdak, M.; Burch, J. L.; Cassak, P.; Dahlin, J. T.; Ergun, R.


    We present two- and three-dimensional particle-in-cell simulations of the 16 October 2015 MMS magnetopause reconnection event. While the two-dimensional simulation is laminar, turbulence develops at both the x-line and along the magnetic separatrices in the three-dimensional simulation. This turbulence is electromagnetic in nature, is characterized by a wavevector k given by kρ e ˜(m_e/m_i)0.25 with ρ e the electron Larmor radius, and appears to have the ion pressure gradient as its source of free energy. Taken together, these results suggest the instability is a variant of the lower-hybrid drift instability. The turbulence produces electric field fluctuations in the out-of-plane direction (the direction of the reconnection electric field) with an amplitude of around ± 10 mV/m, which is much greater than the reconnection electric field of around 0.1 mV/m. Such large values of the out-of-plane electric field have been identified in the MMS data. The turbulence in the simulation controls the scale lengths of the density profile and current layers in asymmetric reconnection, driving them closer to √ {ρ eρ_i } than the ρ e or de scalings seen in 2D reconnection simulations, where de is the electron inertial length. The turbulence is strong enough to make the magnetic field around the reconnection island chaotic and produces both anomalous resistivity and anomalous viscosity. Each contribute significantly to breaking the frozen-in condition in the electron diffusion region. The crescent-shaped features in velocity space seen both in MMS observations and in two-dimensional simulations survive, even in the turbulent environment of the three-dimensional system. We compare and contrast these results to a three-dimensional simulation of the 8 December 2015 MMS magnetopause reconnection event in which the reconnecting and out-of-plane guide fields are comparable. LHDI is still present in this event, although its appearance is modified by the presence of the guide

  11. Three-Dimensional Bone Adaptation of the Proximal Femur

    DEFF Research Database (Denmark)

    Bagge, Mette


    The bone remodeling of a three-dimensional model of the proximal femur is considered. The bone adaptation is numerically described as an evolution in time formulated such that the structural change goes in an optimal direction within each time step for the optimal boundary conditions. In the bone...... remodeling scheme is included the memory of past loadings to account for the delay in the bone response to the load changes. In order to get a realistic bone adaptation process, the bone structure at the onset of the remodeling needs to be realistic too. A start design is obtained by structural optimization...

  12. Plenoptic Imaging of a Three Dimensional Cold Atom Cloud (United States)

    Lott, Gordon


    A plenoptic imaging system is capable of sampling the rays of light in a volume, both spatially and angularly, providing information about the three dimensional (3D) volume being imaged. The extraction of the 3D structure of a cold atom cloud is demonstrated, using a single plenoptic camera and a single image. The reconstruction is tested against a reference image and the results discussed along with the capabilities and limitations of the imaging system. This capability is useful when the 3D distribution of the atoms is desired, such as determining the shape of an atom trap, particularly when there is limited optical access. Gratefully acknowledge support from AFRL.

  13. Three-dimensional, subsurface imaging synthetic aperture radar

    International Nuclear Information System (INIS)

    Moussally, G.J.


    The objective of this applied research and devolpment project is to develop a system known as 3-D SISAR. This sytem consists of a gound penetrating radar with software algorithms designed for detection, location, and identification of buried objects in the underground hazardous waste environments found at US DOE storage sites. Three-dimensional maps can assist the development of remdiation strategies and characterization of the digface during remediation. The system should also be useful for monitoring hydrocarbon-based contaminant migration after remediation. 5 figs

  14. Digital Simulation of Thunder from Three-Dimensional Lightning (United States)

    Dunkin, James; Fleisch, Daniel


    The physics of lightning and its resultant thunder have been investigated by many people, but we still don't have a full understanding of the governing processes. In this study, we have constructed a three-dimensional model of lightning using MATLAB^ software, and used N-waves as postulated by Ribner and Roy to synthesize the resultant thunder signature. In addition, we have taken an FFT of the thunder signature, and compared the time-domain waveform and frequency spectrum to recordings of thunder taken over the summer of 2009. This analysis is done with the goal of further understanding the processes of thunder production.

  15. Three dimensional magnetic solutions in massive gravity with (nonlinear field

    Directory of Open Access Journals (Sweden)

    S.H. Hendi


    Full Text Available The Noble Prize in physics 2016 motivates one to study different aspects of topological properties and topological defects as their related objects. Considering the significant role of the topological defects (especially magnetic strings in cosmology, here, we will investigate three dimensional horizonless magnetic solutions in the presence of two generalizations: massive gravity and nonlinear electromagnetic field. The effects of these two generalizations on properties of the solutions and their geometrical structure are investigated. The differences between de Sitter and anti de Sitter solutions are highlighted and conditions regarding the existence of phase transition in geometrical structure of the solutions are studied.

  16. Life is three-dimensional, and it begins with molecules.

    Directory of Open Access Journals (Sweden)

    Philip E Bourne


    Full Text Available The iconic image of the DNA double helix embodies the central role that three-dimensional structures play in understanding biological processes, which, in turn, impact health and well-being. Here, that role is explored through the eyes of one scientist, who has been lucky enough to have over 150 talented people pass through his laboratory. Each contributed to that understanding. What follows is a small fraction of their story, with an emphasis on basic research outcomes of importance to society at large.

  17. Three-dimensional illumination procedure for photodynamic therapy of dermatology (United States)

    Hu, Xiao-ming; Zhang, Feng-juan; Dong, Fei; Zhou, Ya


    Light dosimetry is an important parameter that affects the efficacy of photodynamic therapy (PDT). However, the irregular morphologies of lesions complicate lesion segmentation and light irradiance adjustment. Therefore, this study developed an illumination demo system comprising a camera, a digital projector, and a computing unit to solve these problems. A three-dimensional model of a lesion was reconstructed using the developed system. Hierarchical segmentation was achieved with the superpixel algorithm. The expected light dosimetry on the targeted lesion was achieved with the proposed illumination procedure. Accurate control and optimization of light delivery can improve the efficacy of PDT.

  18. The three-dimensional crystal structure of cholera toxin

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Rong-Guang; Westbrook, M.L.; Nance, S.; Spangler, B.D. [Argonne National Lab., IL (United States); Scott, D.L. [Yale Univ., New Haven, CT (United States). Dept. of Molecular Biophysics and Biochemistry; Westbrook, E.M. [Northwestern Univ., Evanston, IL (United States)


    The clinical manifestations of cholera are largely attributable to the actions of a secreted hexameric AB{sub 5} enterotoxin (choleragen). We have solved the three-dimensional structure of choleragen at 2.5 {Angstrom} resolution and compared the refined coordinates with those of choleragenoid (isolated B pentamer) and the heat-labile enterotoxin from Escherichia coli (LT). The crystalline coordinates provide a detailed view of the stereochemistry implicated in binding to GM1 gangliosides and in carrying out ADP-ribosylation. The A2 chain of choleragen, in contrast to that of LT, is a nearly continuous {alpha}-helix with an interpretable carboxyl tail.

  19. A Three-dimensional Topological Model of Ternary Phase Diagram

    International Nuclear Information System (INIS)

    Mu, Yingxue; Bao, Hong


    In order to obtain a visualization of the complex internal structure of ternary phase diagram, the paper realized a three-dimensional topology model of ternary phase diagram with the designed data structure and improved algorithm, under the guidance of relevant theories of computer graphics. The purpose of the model is mainly to analyze the relationship between each phase region of a ternary phase diagram. The model not only obtain isothermal section graph at any temperature, but also extract a particular phase region in which users are interested. (paper)

  20. Strongly interacting atom lasers in three-dimensional optical lattices. (United States)

    Hen, Itay; Rigol, Marcos


    We show that the dynamical melting of a Mott insulator in a three-dimensional lattice leads to condensation at nonzero momenta, a phenomenon that can be used to generate strongly interacting atom lasers in optical lattices. For infinite on-site repulsion, the case considered here, the momenta at which bosons condense are determined analytically and found to have a simple dependence on the hopping amplitudes. The occupation of the condensates is shown to scale linearly with the total number of atoms in the initial Mott insulator. Our results are obtained by using a Gutzwiller-type mean-field approach, gauged against exact-diagonalization solutions of small systems.

  1. On a Three Dimensional Vision Based Collision Avoidance Model (United States)

    Parzani, Céline; Filbet, Francis


    This paper presents a three dimensional collision avoidance approach for aerial vehicles inspired by coordinated behaviors in biological groups. The proposed strategy aims to enable a group of vehicles to converge to a common destination point avoiding collisions with each other and with moving obstacles in their environment. The interaction rules lead the agents to adapt their velocity vectors through a modification of the relative bearing angle and the relative elevation. Moreover the model satisfies the limited field of view constraints resulting from individual perception sensitivity. From the proposed individual based model, a mean-field kinetic model is derived. Simulations are performed to show the effectiveness of the proposed model.

  2. Analysis and visualization of complex unsteady three-dimensional flows (United States)

    Van Dalsem, William R.; Buning, Pieter G.; Dougherty, F. Carroll; Smith, Merritt H.


    Flow field animation is the natural choice as a tool in the analysis of the numerical simulations of complex unsteady three-dimensional flows. The PLOT4D extension of the widely used PLOT3D code to allow the interactive animation of a broad range of flow variables was developed and is presented. To allow direct comparison with unsteady experimental smoke and dye flow visualization, the code STREAKER was developed to produce time accurate streaklines. Considerations regarding the development of PLOT4D and STREAKER, and example results are presented.

  3. Three-dimensional nonlinear waves under spatial confinement


    Azhand, Arash


    The aim of my thesis is to study the evolution of scroll waves under spatial confinement both experimentally as well as numerically. Scroll waves represent three-dimensional (3D) analogs of spiral waves. In the simplest case, the central axis around which a scroll wave rotates is a straight line. The line is named the filament of the scroll wave, and each infinitesimal cross-section represents the core of a spiral wave. Two specific types of scroll waves are considered: (1) Straight scroll wa...

  4. Three-dimensional integrated CAE system applying computer graphic technique

    International Nuclear Information System (INIS)

    Kato, Toshisada; Tanaka, Kazuo; Akitomo, Norio; Obata, Tokayasu.


    A three-dimensional CAE system for nuclear power plant design is presented. This system utilizes high-speed computer graphic techniques for the plant design review, and an integrated engineering database for handling the large amount of nuclear power plant engineering data in a unified data format. Applying this system makes it possible to construct a nuclear power plant using only computer data from the basic design phase to the manufacturing phase, and it increases the productivity and reliability of the nuclear power plants. (author)

  5. Experimental investigation of an actively controlled three-dimensional turret wake (United States)

    Shea, Patrick R.

    Hemispherical turrets are bluff bodies commonly used to house optical systems on airborne platforms. These bluff bodies develop complex, three-dimensional flow fields that introduce high mean and fluctuating loads to the turret as well as the airframe support structure which reduce the performance of both the optical systems and the aircraft. An experimental investigation of the wake of a three-dimensional, non-conformal turret was performed in a low-speed wind tunnel at Syracuse University to develop a better understanding of the fundamental flow physics associated with the turret wake. The flow field was studied at a diameter based Reynolds number of 550,000 using stereoscopic particle image velocimetry and dynamic pressure measurements both with and without active flow control. Pressure measurements were simultaneously sampled with the PIV measurements and taken on the surrounding boundary layer plate and at several locations on the turret geometry. Active flow control of the turret wake was performed around the leading edge of the turret aperture using dynamic suction in steady open-loop, unsteady open-loop, and simple closed-loop configurations. Analysis of the uncontrolled wake provided insight into the complex three-dimensional wake when evaluated spatially using PIV measurements and temporally using spectral analysis of the pressure measurements. Steady open-loop suction was found to significantly alter the spatial and temporal nature of the turret wake despite the control being applied locally to the aperture region of the turret. Unsteady open-loop and simple closed-loop control were found to provide similar levels of control to the steady open-loop forcing with a 45% reduction in the control input as calculated using the jet momentum coefficient. The data set collected provides unique information regarding the development of the baseline three-dimensional wake and the wake with three different active flow control configurations. These data can be used to

  6. Three-dimensional lithographically-defined organotypic tissue arrays for quantitative analysis of morphogenesis and neoplastic progression

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Celeste M.; Inman, Jamie L.; Bissell, Mina J.


    Here we describe a simple micromolding method to construct three-dimensional arrays of organotypic epithelial tissue structures that approximate in vivo histology. An elastomeric stamp containing an array of posts of defined geometry and spacing is used to mold microscale cavities into the surface of type I collagen gels. Epithelial cells are seeded into the cavities and covered with a second layer of collagen. The cells reorganize into hollow tissues corresponding to the geometry of the cavities. Patterned tissue arrays can be produced in 3-4 h and will undergo morphogenesis over the following one to three days. The protocol can easily be adapted to study a variety of tissues and aspects of normal and neoplastic development.

  7. Magnetic properties of three-dimensional Hubbard-sigma model

    International Nuclear Information System (INIS)

    Yamamoto, Hisashi; Ichinose, Ikuo; Tatara, Gen; Matsui, Tetsuo.


    It is broadly viewed that the magnetism may play an important role in the high-T c superconductivity in the lamellar CuO 2 materials. In this paper, based on a Hubbard-inspired CP 1 or S 2 nonlinear σ model, we give a quantitative study of some magnetic properties in and around the Neel ordered state of three-dimensional quantum antiferromagnets such as La 2 CuO 4 with and without small hole doping. Our model is a (3+1) dimensional effective field theory describing the low energy spin dynamics of a three-dimensional Hubbard model with a very weak interlayer coupling. The effect of hole dynamics is taken into account in the leading approximation by substituting the CP 1 coupling with an 'effective' one determined by the concentration and the one-loop correction of hole fermions. A stationary-phase equation for the one-loop effective potential of S 2 model is analyzed numerically. The behavior of Neel temperature, magnetization (long range Neel order), spin correlation length, etc as functions of anisotropic parameter, temperature, hole concentrations, etc are investigated in detail. A phase diagram is also supported by the renormlization group analysis. The results show that our anisotropic field theory model with certain values of parameters could give a reasonably well description of the magnetic properties indicated by some experiments on pure and doped La 2 CuO 4 . (author)

  8. Three-dimensional structure of the γ-secretase complex

    International Nuclear Information System (INIS)

    Ogura, Toshihiko; Mio, Kazuhiro; Hayashi, Ikuo; Miyashita, Hiroyuki; Fukuda, Rie; Kopan, Raphael; Kodama, Tatsuhiko; Hamakubo, Takao; Iwastubo, Takeshi; Tomita, Taisuke; Sato, Chikara


    γ-Secretase belongs to an atypical class of aspartic proteases that hydrolyzes peptide bonds within the transmembrane domain of substrates, including amyloid-β precursor protein and Notch. γ-Secretase is comprised of presenilin, nicastrin, APH-1, and PEN-2 which form a large multimeric membrane protein complex, the three-dimensional structure of which is unknown. To gain insight into the structure of this complex enzyme, we purified functional γ-secretase complex reconstituted in Sf9 cells and analyzed it using negative stain electron microscopy and 3D reconstruction techniques. Analysis of 2341 negatively stained particle images resulted in the three-dimensional representation of γ-secretase at a resolution of 48 A. The structure occupies a volume of 560 x 320 x 240 A and resembles a flat heart comprised of two oppositely faced, dimpled domains. A low density space containing multiple pores resides between the domains. Some of the dimples in the putative transmembrane region may house the catalytic site. The large dimensions are consistent with the observation that γ-secretase activity resides within a high molecular weight complex

  9. Three-dimensional flows in a transonic compressor rotor (United States)

    Reid, Lonnie; Celestina, Mark L.; Dewitt, Kenneth; Keith, Theo


    This study involves an experimental and numerical investigation of the three-dimensional flows in a transonic compressor rotor. A variety of data which could be used, in a complementary fashion, to validate/calibrate the computational fluid dynamics turbomachinery code and improve understanding of the flow physics, were acquired. Detailed radial survey data which consisted of total pressure, total temperature, static pressure and flow angle were obtained at stations upstream and downstream of the rotor blade. Detailed velocity and turbulence profiles were obtained upstream of the rotor and used as the upstream boundary conditions for the numerical analysis. Calibrated flush-mounted hot film probes were used to measure wall shear stress on the hub and casing walls upstream of the rotor. The blade-to-blade shear-stress angle distributions were obtained at two axial locations on the rotor casing, using flush-mounted hot film probes. A numerical analysis conducted using a three-dimensional Navier-Stokes code was compared with the experimental results.

  10. Three-dimensional volumetric display by inclined-plane scanning (United States)

    Miyazaki, Daisuke; Eto, Takuma; Nishimura, Yasuhiro; Matsushita, Kenji


    A volumetric display system based on three-dimensional (3-D) scanning that uses an inclined two-dimensional (2-D) image is described. In the volumetric display system a 2-D display unit is placed obliquely in an imaging system into which a rotating mirror is inserted. When the mirror is rotated, the inclined 2-D image is moved laterally. A locus of the moving image can be observed by persistence of vision as a result of the high-speed rotation of the mirror. Inclined cross-sectional images of an object are displayed on the display unit in accordance with the position of the image plane to observe a 3-D image of the object by persistence of vision. Three-dimensional images formed by this display system satisfy all the criteria for stereoscopic vision. We constructed the volumetric display systems using a galvanometer mirror and a vector-scan display unit. In addition, we constructed a real-time 3-D measurement system based on a light section method. Measured 3-D images can be reconstructed in the 3-D display system in real time.

  11. Three-dimensional MRI with independent slab excitation and encoding. (United States)

    Eissa, Amir; Wilman, Alan H


    Three-dimensional MRI is typically performed with the same orientation for radiofrequency slab excitation and slab select phase encoding. We introduce independent slab excitation and encoding to create a new degree of freedom in three-dimensional MRI, which is the angular relationship between the prescribed excitation volume and the voxel encoding grid. By separating the directions of slab excitation and slab phase encoding, the independent slab excitation and encoding method allows choice of optimal voxel orientation, while maintaining volume excitation based on anatomic landmarks. The method requires simple pulse sequence modifications and uses standard image reconstruction followed by removal of aliasing and image reformatting. The independent slab excitation and encoding method enables arbitrary oblique angle imaging using fixed voxel encoding gradients to maintain similar eddy current, concomitant field, or magnetic dipole effects independent of the oblique angle of excitation. We apply independent slab excitation and encoding to phase and susceptibility-weighted imaging using fixed voxel encoding aligned with the main magnetic field to demonstrate its value in both standardizing and improving image contrast, when using arbitrary oblique imaging volumes. Copyright © 2011 Wiley Periodicals, Inc.

  12. Tailoring thermal conductivity via three-dimensional porous alumina. (United States)

    Abad, Begoña; Maiz, Jon; Ruiz-Clavijo, Alejandra; Caballero-Calero, Olga; Martin-Gonzalez, Marisol


    Three-dimensional anodic alumina templates (3D-AAO) are an astonishing framework with open highly ordered three-dimensional skeleton structures. Since these templates are architecturally different from conventional solids or porous templates, they teem with opportunities for engineering thermal properties. By establishing the mechanisms of heat transfer in these frameworks, we aim to create materials with tailored thermal properties. The effective thermal conductivity of an empty 3D-AAO membrane was measured. As the effective medium theory was not valid to extract the skeletal thermal conductivity of 3D-AAO, a simple 3D thermal conduction model was developed, based on a mixed series and parallel thermal resistor circuit, giving a skeletal thermal conductivity value of approximately 1.25 W·m -1 ·K -1 , which matches the value of the ordinary AAO membranes prepared from the same acid solution. The effect of different filler materials as well as the variation of the number of transversal nanochannels and the length of the 3D-AAO membrane in the effective thermal conductivity of the composite was studied. Finally, the thermal conductivity of two 3D-AAO membranes filled with cobalt and bismuth telluride was also measured, which was in good agreement with the thermal model predictions. Therefore, this work proved this structure as a powerful approach to tailor thermal properties.

  13. CFD three dimensional wake analysis in complex terrain (United States)

    Castellani, F.; Astolfi, D.; Terzi, L.


    Even if wind energy technology is nowadays fully developed, the use of wind energy in very complex terrain is still challenging. In particular, it is challenging to characterize the combination effects of wind ow over complex terrain and wake interactions between nearby turbines and this has a practical relevance too, for the perspective of mitigating anomalous vibrations and loads as well improving the farm efficiency. In this work, a very complex terrain site has been analyzed through a Reynolds-averaged CFD (Computational Fluid Dynamics) numerical wind field model; in the simulation the inuence of wakes has been included through the Actuator Disk (AD) approach. In particular, the upstream turbine of a cluster of 4 wind turbines having 2.3 MW of rated power is studied. The objective of this study is investigating the full three-dimensional wind field and the impact of three-dimensionality on the evolution of the waked area between nearby turbines. A post-processing method of the output of the CFD simulation is developed and this allows to estimate the wake lateral deviation and the wake width. The reliability of the numerical approach is inspired by and crosschecked through the analysis of the operational SCADA (Supervisory Control and Data Acquisition) data of the cluster of interest.

  14. Three-dimensional nanoscale imaging by plasmonic Brownian microscopy (United States)

    Labno, Anna; Gladden, Christopher; Kim, Jeongmin; Lu, Dylan; Yin, Xiaobo; Wang, Yuan; Liu, Zhaowei; Zhang, Xiang


    Three-dimensional (3D) imaging at the nanoscale is a key to understanding of nanomaterials and complex systems. While scanning probe microscopy (SPM) has been the workhorse of nanoscale metrology, its slow scanning speed by a single probe tip can limit the application of SPM to wide-field imaging of 3D complex nanostructures. Both electron microscopy and optical tomography allow 3D imaging, but are limited to the use in vacuum environment due to electron scattering and to optical resolution in micron scales, respectively. Here we demonstrate plasmonic Brownian microscopy (PBM) as a way to improve the imaging speed of SPM. Unlike photonic force microscopy where a single trapped particle is used for a serial scanning, PBM utilizes a massive number of plasmonic nanoparticles (NPs) under Brownian diffusion in solution to scan in parallel around the unlabeled sample object. The motion of NPs under an evanescent field is three-dimensionally localized to reconstruct the super-resolution topology of 3D dielectric objects. Our method allows high throughput imaging of complex 3D structures over a large field of view, even with internal structures such as cavities that cannot be accessed by conventional mechanical tips in SPM.

  15. Vocal Fold Pathologies and Three-Dimensional Flow Separation Phenomena (United States)

    Apostoli, Adam G.; Weiland, Kelley S.; Plesniak, Michael W.


    Polyps and nodules are two different pathologies, which are geometric abnormalities that form on the medial surface of the vocal folds, and have been shown to significantly disrupt a person's ability to communicate. Although the mechanism by which the vocal folds self-oscillate and the three-dimensional nature of the glottal jet has been studied, the effect of irregularities caused by pathologies is not fully understood. Examining the formation and evolution of vortical structures created by a geometric protuberance is important, not only for understanding the aerodynamic forces exerted by these structures on the vocal folds, but also in the treatment of the above-mentioned pathological conditions. Using a wall-mounted prolate hemispheroid with a 2:1 aspect ratio in cross flow, the present investigation considers three-dimensional flow separation induced by a model vocal fold polyp. Building on previous work using skin friction line visualization, both the velocity flow field and wall pressure measurements around the model polyp are presented and compared. Supported by the National Science Foundation, Grant No. CBET-1236351 and GW Center for Biomimetics and Bioinspired Engineering (COBRE).

  16. Three-dimensional computer aided design system for plant layout

    International Nuclear Information System (INIS)

    Yoshinaga, Toshiaki; Kiguchi, Takashi; Tokumasu, Shinji; Kumamoto, Kenjiro.


    The CAD system for three-dimensional plant layout planning, with which the layout of pipings, cable trays, air conditioning ducts and so on in nuclear power plants can be planned and designed effectively in a short period is reported. This system comprises the automatic routing system by storing the rich experience and know-how of designers in a computer as the knowledge, and deciding the layout automatically following the predetermined sequence by using these, the interactive layout system for reviewing the routing results from higher level and modifying to the optimum layout, the layout evaluation system for synthetically evaluating the layout from the viewpoint of the operability such as checkup and maintenance, and the data base system which enables these effective planning and design. In this report, the total constitution of this system and the technical features and effects of the individual subsystems are outlined. In this CAD system for three-dimensional plant layout planning, knowledge engineering, CAD/CAM, computer graphics and other latest technology were introduced, accordingly by applying this system to plant design, the design can be performed quickly, various case studies can be carried out at planning stage, and systematic and optimum layout planning becomes possible. (Kako, I.)

  17. Dynamic masquerade with morphing three-dimensional skin in cuttlefish. (United States)

    Panetta, Deanna; Buresch, Kendra; Hanlon, Roger T


    Masquerade is a defence tactic in which a prey resembles an inedible or inanimate object thus causing predators to misclassify it. Most masquerade colour patterns are static although some species adopt postures or behaviours to enhance the effect. Dynamic masquerade in which the colour pattern can be changed is rare. Here we report a two-step sensory process that enables an additional novel capability known only in cuttlefish and octopus: morphing three-dimensional physical skin texture that further enhances the optical illusions created by coloured skin patterns. Our experimental design incorporated sequential sensory processes: addition of a three-dimensional rock to the testing arena, which attracted the cuttlefish to settle next to it; then visual processing by the cuttlefish of physical textures on the rock to guide expression of the skin papillae, which can range from fully relaxed (smooth skin) to fully expressed (bumpy skin). When a uniformly white smooth rock was presented, cuttlefish moved to the rock and deployed a uniform body pattern with mostly smooth skin. When a rock with small-scale fragments of contrasting shells was presented, the cuttlefish deployed mottled body patterns with strong papillae expression. These robust and reversible responses indicate a sophisticated visual sensorimotor system for dynamic masquerade. © 2017 The Author(s).

  18. The Bio Bay Game: Three-Dimensional Learning of Biomagnification. (United States)

    Jasti, Chandana; Lauren, Hillary; Wallon, Robert C; Hug, Barbara


    Pressing concerns about sustainability and the state of the environment amplify the need to teach students about the connections between ecosystem health, toxicology, and human health. Additionally, the Next Generation Science Standards call for three-dimensional science learning, which integrates disciplinary core ideas, scientific practices, and crosscutting concepts. The Bio Bay Game is a way to teach students about the biomagnification of toxicants across trophic levels while engaging them in three-dimensional learning. In the game, the class models the biomagnification of mercury in a simple aquatic food chain as they play the roles of anchovies, tuna, and humans. While playing, the class generates data, which they analyze after the game to graphically visualize the buildup of toxicants. Students also read and discuss two articles that draw connections to a real-world case. The activity ends with students applying their understanding to evaluate the game as a model of biomagnification. Throughout the activity, students practice modeling and data analysis and engage with the crosscutting concepts of patterns and cause and effect to develop an understanding of core ideas about the connections between humans and the environment.

  19. Microfluidic tactile sensors for three-dimensional contact force measurements. (United States)

    Nie, Baoqing; Li, Ruya; Brandt, James D; Pan, Tingrui


    A microfluidic tactile sensing device has been first reported for three-dimensional contact force measurement utilizing the microfluidic interfacial capacitive sensing (MICS) principle. Consisting of common and differential microfluidic sensing elements and topologically micro-textured surfaces, the microfluidic sensing devices are intended not only to resolve normal mechanical loads but also to measure forces tangent to the surface upon contact. In response to normal or shear loads, the membrane surface deforms the underlying sensing elements uniformly or differentially. The corresponding variation in interfacial capacitance can be detected from each sensing unit, from which the direction and magnitude of the original load can be determined. Benefiting from the highly sensitive and adaptive MICS principle, the microfluidic sensor is capable of detecting normal forces with a device sensitivity of 29.8 nF N(-1) in a 7 mm × 7 mm × 0.52 mm package, which is at least a thousand times higher than its solid-state counterparts to our best knowledge. In addition, the microfluidic sensing elements enable facilitated relaxation response/time in the millisecond range (up to 12 ms). To demonstrate the utility and flexibility of the three-dimensional microfluidic sensor, it has been successfully configured into a fingertip-amounted setting for continuous tracing of the fingertip movement and contact force measurement.


    International Nuclear Information System (INIS)

    Gott, J. Richard; Choi, Yun-Young; Park, Changbom; Kim, Juhan


    We measure the three-dimensional genus topology of large-scale structure using luminous red galaxies (LRGs) in the Sloan Digital Sky Survey and find it consistent with the Gaussian random phase initial conditions expected from the simplest scenarios of inflation. This studies three-dimensional topology on the largest scales ever obtained. The topology is spongelike. We measure topology in two volume-limited samples: a dense shallow sample studied with smoothing length of 21 h -1 Mpc, and a sparse deep sample studied with a smoothing length of 34 h -1 Mpc. The amplitude of the genus curve is measured with 4% uncertainty. Small distortions in the genus curve expected from nonlinear biasing and gravitational effects are well explained (to about 1σ accuracy) by N-body simulations using a subhalo-finding technique to locate LRGs. This suggests that the formation of LRGs is a clean problem that can be modeled well without any free-fitting parameters. This bodes well for using LRGs to measure the characteristic scales such as the baryon oscillation scale in future deep redshift surveys.

  1. Three-dimensional wave patterns in falling films (United States)

    Scheid, Benoit; Ruyer-Quil, Christian; Manneville, Paul


    A large number of studies have been devoted to the modeling of film flows down inclined planes since the pioneering work of Kapitza & Kapitza (1949). Ruyer-Quil & Manneville (2000,2002) have extended the Shkadov formulation (1967) applying weighting residual techniques and expanding the flow field over a complete basis of polynomial functions. Inspired from a Pad'e-like approximant technique initially proposed by Ooshida (1999), a refined model is now formulated which also includes second-order inertia effects arising from the deviation of the streamwise velocity profile from its parabolic shape. The stability of two- dimensional traveling waves against three-dimensional perturbations is investigated using this model. The secondary instability is found to be not really selective which explains the widespread presence of the synchronous instability observed in the experiments by Liu et al. (1995), though theory predicts in most cases a subharmonic scenario. Three-dimensional wave patterns are next computed assuming periodic boundary conditions. Transition from 2D to 3D flows is shown to be strongly dependent on initial conditions. The herringbone patterns, the synchronously deformed fronts, the oblique and the V-shape solitary waves observed in various experimental data (Liu et al. 1995; Park & Nosoko 2003; Alekseenko et al. 1994) are reliably recovered.

  2. Tailoring thermal conductivity via three-dimensional porous alumina (United States)

    Abad, Begoña; Maiz, Jon; Ruiz-Clavijo, Alejandra; Caballero-Calero, Olga; Martin-Gonzalez, Marisol


    Three-dimensional anodic alumina templates (3D-AAO) are an astonishing framework with open highly ordered three-dimensional skeleton structures. Since these templates are architecturally different from conventional solids or porous templates, they teem with opportunities for engineering thermal properties. By establishing the mechanisms of heat transfer in these frameworks, we aim to create materials with tailored thermal properties. The effective thermal conductivity of an empty 3D-AAO membrane was measured. As the effective medium theory was not valid to extract the skeletal thermal conductivity of 3D-AAO, a simple 3D thermal conduction model was developed, based on a mixed series and parallel thermal resistor circuit, giving a skeletal thermal conductivity value of approximately 1.25 W·m−1·K−1, which matches the value of the ordinary AAO membranes prepared from the same acid solution. The effect of different filler materials as well as the variation of the number of transversal nanochannels and the length of the 3D-AAO membrane in the effective thermal conductivity of the composite was studied. Finally, the thermal conductivity of two 3D-AAO membranes filled with cobalt and bismuth telluride was also measured, which was in good agreement with the thermal model predictions. Therefore, this work proved this structure as a powerful approach to tailor thermal properties. PMID:27934930

  3. Creation of three-dimensional craniofacial standards from CBCT images (United States)

    Subramanyan, Krishna; Palomo, Martin; Hans, Mark


    Low-dose three-dimensional Cone Beam Computed Tomography (CBCT) is becoming increasingly popular in the clinical practice of dental medicine. Two-dimensional Bolton Standards of dentofacial development are routinely used to identify deviations from normal craniofacial anatomy. With the advent of CBCT three dimensional imaging, we propose a set of methods to extend these 2D Bolton Standards to anatomically correct surface based 3D standards to allow analysis of morphometric changes seen in craniofacial complex. To create 3D surface standards, we have implemented series of steps. 1) Converting bi-plane 2D tracings into set of splines 2) Converting the 2D splines curves from bi-plane projection into 3D space curves 3) Creating labeled template of facial and skeletal shapes and 4) Creating 3D average surface Bolton standards. We have used datasets from patients scanned with Hitachi MercuRay CBCT scanner providing high resolution and isotropic CT volume images, digitized Bolton Standards from age 3 to 18 years of lateral and frontal male, female and average tracings and converted them into facial and skeletal 3D space curves. This new 3D standard will help in assessing shape variations due to aging in young population and provide reference to correct facial anomalies in dental medicine.

  4. A vein display system based on three-dimensional reconstruction (United States)

    Wang, Danting; Zhou, Ya; Hu, Xiaoming; Wu, Zhaoguo; Dai, Xiaobin


    Venipuncture is the most common way of all invasive medical procedures. A vein display system can make vein access easier by capturing the vein information and projecting a visible vein image onto the skin, which is correctly aligned with the subject's vein. The existing systems achieve correct alignment by the design of coaxial structure. Such a structure causes complex optical and mechanical design and big physical dimensions inevitably. In this paper, we design a stereovision- based vein display system, which consists of a pair of cameras, a DLP projector and a near-infrared light source. We recover the three-dimensional venous structure from image pair acquired from two near-infrared cameras. Then the vein image from the viewpoint of projector is generated from the three-dimensional venous structure and projected exactly onto skin by the DLP projector. Since the stereo cameras get the depth information of vessels, the system can make sure the alignment of projected veins and the real veins without a coaxial structure. The experiment results prove that we propose a feasible solution for a portable and low-cost vein display device.

  5. Three dimensional dynamics of a flexible Motorised Momentum Exchange Tether (United States)

    Ismail, N. A.; Cartmell, M. P.


    This paper presents a new flexural model for the three dimensional dynamics of the Motorised Momentum Exchange Tether (MMET) concept. This study has uncovered the relationships between planar and nonplanar motions, and the effect of the coupling between these two parameters on pragmatic circular and elliptical orbits. The tether sub-spans are modelled as stiffened strings governed by partial differential equations of motion, with specific boundary conditions. The tether sub-spans are flexible and elastic, thereby allowing three dimensional displacements. The boundary conditions lead to a specific frequency equation and the eigenvalues from this provide the natural frequencies of the orbiting flexible motorised tether when static, accelerating in monotonic spin, and at terminal angular velocity. A rotation transformation matrix has been utilised to get the position vectors of the system's components in an assumed inertial frame. Spatio-temporal coordinates are transformed to modal coordinates before applying Lagrange's equations, and pre-selected linear modes are included to generate the equations of motion. The equations of motion contain inertial nonlinearities which are essentially of cubic order, and these show the potential for intricate intermodal coupling effects. A simulation of planar and non-planar motions has been undertaken and the differences in the modal responses, for both motions, and between the rigid body and flexible models are highlighted and discussed.

  6. Horizontal biases in rats’ use of three-dimensional space (United States)

    Jovalekic, Aleksandar; Hayman, Robin; Becares, Natalia; Reid, Harry; Thomas, George; Wilson, Jonathan; Jeffery, Kate


    Rodent spatial cognition studies allow links to be made between neural and behavioural phenomena, and much is now known about the encoding and use of horizontal space. However, the real world is three dimensional, providing cognitive challenges that have yet to be explored. Motivated by neural findings suggesting weaker encoding of vertical than horizontal space, we examined whether rats show a similar behavioural anisotropy when distributing their time freely between vertical and horizontal movements. We found that in two- or three-dimensional environments with a vertical dimension, rats showed a prioritization of horizontal over vertical movements in both foraging and detour tasks. In the foraging tasks, the animals executed more horizontal than vertical movements and adopted a “layer strategy” in which food was collected from one horizontal level before moving to the next. In the detour tasks, rats preferred the routes that allowed them to execute the horizontal leg first. We suggest three possible reasons for this behavioural bias. First, as suggested by Grobety and Schenk [5], it allows minimisation of energy expenditure, inasmuch as costly vertical movements are minimised. Second, it may be a manifestation of the temporal discounting of effort, in which animals value delayed effort as less costly than immediate effort. Finally, it may be that at the neural level rats encode the vertical dimension less precisely, and thus prefer to bias their movements in the more accurately encoded horizontal dimension. We suggest that all three factors are related, and all play a part. PMID:21419172

  7. Three-dimensional modeler for animated images display system

    International Nuclear Information System (INIS)

    Boubekeur, Rania


    The mv3d software allows the modeling and display of three dimensional objects in interpretative mode with animation possibility in real time. This system is intended for a graphical extension of a FORTH interpreter (implemented by CEA/IRDI/D.LETI/DEIN) in order to control a specific hardware (3.D card designed and implemented by DEIN) allowing the generation of three dimensional objects. The object description is carried out with a specific graphical language integrated in the FORTH interpreter. Objects are modeled using elementary solids called basic forms (cube, cone, cylinder...) assembled with classical geometric transformations (rotation, translation and scaling). These basic forms are approximated by plane polygonal facets further divided in triangles. Coordinates of the summits of triangles constitute the geometrical data. These are sent to the 3.D. card for processing and display. Performed processing are: geometrical transformations on display, hidden surface elimination, shading and clipping. The mv3d software is not an entire modeler but a simple, modular and extensible tool, to which other specific functions may be easily added such as: robots motion, collisions... (author) [fr

  8. Three dimensional birefringence control using nanoparticles for uniaxially oriented films (United States)

    Takatoh, Kohki; Goda, Kazuya; Akimoto, Mitsuhiro; Abo, Tomohiro


    In uniaxially stretched films, the refractive indices perpendicular to the stretching direction have the same value, and so, the out-of-plane birefringence is half that of the in-plane birefringence. This means that these values cannot be controlled independently in uniaxially stretched films. The same relationship was previously observed when needle-shaped nanoparticles were added to uniaxially stretched films. This paper presents a method to achieve the three-dimensional birefringence control of uniaxially stretched films. When we added plate-shaped smectite nanoparticles to uniaxially stretched films, different relationships were observed for the in- and out-of-plane birefringence. The magnitude of the out-of-plane birefringence increased more than would be expected according to the usual relationship. According to our results, uniaxially stretched films with no out-of-plane birefringence and negative in-plane birefringence can be formed by adding smectite nanoparticles to polymer films with negative in-plane birefringence. Using our method, the three-dimensional birefringence of uniaxial polymers can be controlled, and the possibility of the uniaxial films could be drastically extended.

  9. Modular transportation system with a three dimensional routeing

    Directory of Open Access Journals (Sweden)

    Löffler Christoph


    Full Text Available In intra-enterprise logistics and automation of manufacturing processes general a rising productivity by high flexibility is required. Existing transportation systems exclusively use two-dimensional track sections, because they can be served with standard drives. Because of these simple structures the transport speed is limited and thereby also the throughput. In this paper now a modular transportation system is presented which could reach higher speeds with a direct drive and the use of centrifugal force compensating curves. Simultaneously the system also can change the altitude. All this succeeds with the integration of three-dimensional track sections. Therefore a two piped guiding system with a long stator linear motor was designed. To combine the linear motor with the three dimensional track special stator elements were developed which allow a bending of the stator to follow the route course. The current work deals with the implementation of a mechanical passive switch, which is operated by the electromagnetic forces of the linear motor. So no additional mechanical actors or a separate electromagnetic system are necessary.

  10. Three-dimensional reconstruction of scleral cold thermoreceptors of the cat eye. (United States)

    Heppelmann, B; Gallar, J; Trost, B; Schmidt, R F; Belmonte, C


    Sensory endings that respond to local cooling were identified electrophysiologically in the cat's sclera. Functionally identified scleral thermal fibers were then used to analyze the structural characteristics of cold receptor endings. Four Adelta units sensitive to controlled cooling of their scleral receptive fields were recorded. The receptive areas were mapped, demarcated with pins and examined electron microscopically using extensive three-dimensional reconstructions. The supporting tissue within the receptive areas of cold units consisted of dense collageneous tissue with a small number of blood vessels that were either veins or capillaries. Adelta nerve fibers were found within these tissue blocks presumably corresponding with cold sensitive fibers. Small nerves and single nerve fibers devoid of a perineurium were found in all parts of the tissue, only occasionally passing a blood vessel. The terminal portions showed axonal swellings all along the unmyelinated segment filled with mitochondria, glycogen particles, and some vesicles. About 30% of the terminal axonal membrane is not covered by Schwann cells. In the unmyelinated distal portion, the mitochondrial content ranged from 0.012 to 0.038 microm(3) mitochondrial volume per microm(2) nerve fiber membrane. In comparison with sensory endings in the cat's knee joint, cold receptors in the cat sclera showed many similarities in their three-dimensional structure with polymodal nociceptor endings of the knee joint but contain less mitochondria. This suggests that cold sensory endings do not require specialized cellular processes for the transduction of cold stimuli, as is the case for multimodal transduction and sensitization in the terminal portion of polymodal nociceptors. Copyright 2001 Wiley-Liss, Inc.

  11. Three-dimensional S-wave tomography under Axial Seamount (United States)

    Baillard, C.; Wilcock, W. S. D.; Arnulf, A. F.; Tolstoy, M.; Waldhauser, F.


    Axial Seamount is a submarine volcano located at the intersection of the Juande Fuca Ridge and the Cobb-Eickelberg hotspot 500 km off the coast of thenorthwestern United States. The seamount, which rises 1 km above the seafloor, ischaracterized by a shallow caldera that is elongated in the N-S direction, measure 8km by 3 km and sits on top of a 14 km by 3 km magma reservoir. Two eruptive eventsin 1998 and 2011 motivated the deployment in 2014 of a real time cabled observatorywithin the Axial caldera, as part of the Ocean Observatories Initiative (OOI).Theobservatory includes a network of seven seismometers that span the southern half ofthe caldera. Five months after the observatory came on-line in November 2014, thevolcano erupted on April 24, 2015. Well over 100,000 events were located in thevicinity of the caldera, delineating an outward dipping ring fault that extends fromnear the surface to the magma body at 2 km depth and which accommodatesinflation and deflation of the volcano.The initial earthquake locations have beenobtained with a one-dimensional velocity model but the travel time residuals suggeststrong heterogeneities. A three-dimensional P-wave velocity model, obtained bycombining multichannel and ocean bottom seismometer refraction data, is being usedto refine locations but the three-dimensional S-wave structure is presently unknown.In most mid-ocean ridge settings, the distribution of earthquakes is not conducive forjoint inversions for S-wave velocity and hypocentral parameters because there are fewcrossing ray paths but at Axial the presence of a ring fault that is seismically active atall depths on both the east and west side of the caldera, provides a reasonablegeometry for such efforts. We will present the results of joint inversions that assumethe existing three-dimensional P wave velocity model and solve for VP/VS structure andhypocentral parameters using LOTOS, an algorithm that solves the forward problemusing ray bending.The resulting model

  12. Visual Interpretation with Three-Dimensional Annotations (VITA): three-dimensional image interpretation tool for radiological reporting. (United States)

    Roy, Sharmili; Brown, Michael S; Shih, George L


    This paper introduces a software framework called Visual Interpretation with Three-Dimensional Annotations (VITA) that is able to automatically generate three-dimensional (3D) visual summaries based on radiological annotations made during routine exam reporting. VITA summaries are in the form of rotating 3D volumes where radiological annotations are highlighted to place important clinical observations into a 3D context. The rendered volume is produced as a Digital Imaging and Communications in Medicine (DICOM) object and is automatically added to the study for archival in Picture Archiving and Communication System (PACS). In addition, a video summary (e.g., MPEG4) can be generated for sharing with patients and for situations where DICOM viewers are not readily available to referring physicians. The current version of VITA is compatible with ClearCanvas; however, VITA can work with any PACS workstation that has a structured annotation implementation (e.g., Extendible Markup Language, Health Level 7, Annotation and Image Markup) and is able to seamlessly integrate into the existing reporting workflow. In a survey with referring physicians, the vast majority strongly agreed that 3D visual summaries improve the communication of the radiologists' reports and aid communication with patients.

  13. Phase Diagrams of Three-Dimensional Anderson and Quantum Percolation Models Using Deep Three-Dimensional Convolutional Neural Network (United States)

    Mano, Tomohiro; Ohtsuki, Tomi


    The three-dimensional Anderson model is a well-studied model of disordered electron systems that shows the delocalization-localization transition. As in our previous papers on two- and three-dimensional (2D, 3D) quantum phase transitions [" xlink:type="simple">J. Phys. Soc. Jpn. 85, 123706 (2016)," xlink:type="simple">86, 044708 (2017)], we used an image recognition algorithm based on a multilayered convolutional neural network. However, in contrast to previous papers in which 2D image recognition was used, we applied 3D image recognition to analyze entire 3D wave functions. We show that a full phase diagram of the disorder-energy plane is obtained once the 3D convolutional neural network has been trained at the band center. We further demonstrate that the full phase diagram for 3D quantum bond and site percolations can be drawn by training the 3D Anderson model at the band center.

  14. [Building an effective nonlinear three-dimensional finite-element model of human thoracolumbar spine]. (United States)

    Zeng, Zhi-Li; Cheng, Li-Ming; Zhu, Rui; Wang, Jian-Jie; Yu, Yan


    To build an effective nonlinear three-dimensional finite-element (FE) model of T(11)-L(3) segments for a further biomechanical study of thoracolumbar spine. The CT (computed tomography) scan images of healthy adult T(11)-L(3) segments were imported into software Simpleware 2.0 to generate a triangular mesh model. Using software Geomagic 8 for model repair and optimization, a solid model was generated into the finite element software Abaqus 6.9. The reasonable element C3D8 was selected for bone structures. Created between bony endplates, the intervertebral disc was subdivided into nucleus pulposus and annulus fibrosus (44% nucleus, 56% annulus). The nucleus was filled with 5 layers of 8-node solid elements and annulus reinforced by 8 crisscross collagenous fiber layers. The nucleus and annulus were meshed by C3D8RH while the collagen fibers meshed by two node-truss elements. The anterior (ALL) and posterior (PLL) longitudinal ligaments, flavum (FL), supraspinous (SSL), interspinous (ISL) and intertransverse (ITL) ligaments were modeled with S4R shell elements while capsular ligament (CL) was modeled with 3-node shell element. All surrounding ligaments were represented by envelope of 1 mm uniform thickness. The discs and bone structures were modeled with hyper-elastic and elasto-plastic material laws respectively while the ligaments governed by visco-elastic material law. The nonlinear three-dimensional finite-element model of T(11)-L(3) segments was generated and its efficacy verified through validating the geometric similarity and disc load-displacement and stress distribution under the impact of violence. Using ABAQUS/ EXPLICIT 6.9 the explicit dynamic finite element solver, the impact test was simulated in vitro. In this study, a 3-dimensional, nonlinear FE model including 5 vertebrae, 4 intervertebral discs and 7 ligaments consisted of 78 887 elements and 71 939 nodes. The model had good geometric similarity under the same conditions. The results of FEM

  15. Modeling flow and shear stress fields over unsteady three dimensional dunes (United States)

    Hardy, Richard; Parsons, Dan; Ashworth, Phil; Reesink, Arjan; Best, Jim


    The flow field over dunes has been extensively measured in laboratory conditions and there is general understanding on the nature of the flow over dunes formed under equilibrium flow conditions. This has allowed an understanding of bed shear stress to be derived and the development of morpho-dynamic models. However, fluvial systems typically experience unsteady flow and therefore the sediment-water interface is constantly responding and reorganizing to these unsteady flows and stresses, over a range of both spatial and temporal scales. This is primarily through the adjustment of bed forms (including ripples, dunes and bar forms) which then subsequently alter the flow field. This paper investigates, through the application of a numerical model, the influence of these roughness elements on the overall flow and bed shear stress. A series of physical experiments were undertaken in a flume, 16m long and 2m wide, where a fine sand (D50 of 239µm) was water worked under a range of unsteady hydraulic conditions to generate a series of quasi-equilibrium three dimensional bed forms. During the experiments flow was measured with acoustic Doppler velocimeters, (aDv's). On four occasions the flume was drained and the bed topography measured with terrestrial LiDAR to create digital elevation models. This data provide the necessary boundary conditions and validation data for a numerical three dimensional flow model. The prediction of flow over the four static beds demonstrates the spatial distribution of shear stress and the potential sediment transport paths between the dune crests. These appear to be associated with coherent flow structures formed by localized shear flow. These flow predictions are currently being used to develop a fully three dimensional morphodynamic model to further understand dune dynamics under unsteady flow conditions.

  16. Three dimensional simulation for bayou choctaw strategic petroleum reserve (SPR).

    Energy Technology Data Exchange (ETDEWEB)

    Ehgartner, Brian L. (Sandia National Laboratories, Albuquerque, NM); Park, Byoung Yoon; Lee, Moo Yul


    Three dimensional finite element analyses were performed to evaluate the structural integrity of the caverns located at the Bayou Choctaw (BC) site which is considered a candidate for expansion. Fifteen active and nine abandoned caverns exist at BC, with a total cavern volume of some 164 MMB. A 3D model allowing control of each cavern individually was constructed because the location and depth of caverns and the date of excavation are irregular. The total cavern volume has practical interest, as this void space affects total creep closure in the BC salt mass. Operations including both cavern workover, where wellhead pressures are temporarily reduced to atmospheric, and cavern enlargement due to leaching during oil drawdowns that use water to displace the oil from the caverns, were modeled to account for as many as the five future oil drawdowns in the six SPR caverns. The impacts on cavern stability, underground creep closure, surface subsidence, infrastructure, and well integrity were quantified.

  17. Three-dimensional mechanical metamaterials with a twist. (United States)

    Frenzel, Tobias; Kadic, Muamer; Wegener, Martin


    Rationally designed artificial materials enable mechanical properties that are inaccessible with ordinary materials. Pushing on an ordinary linearly elastic bar can cause it to be deformed in many ways. However, a twist, the counterpart of optical activity in the static case, is strictly zero. The unavailability of this degree of freedom hinders applications in terms of mode conversion and the realization of advanced mechanical designs using coordinate transformations. Here, we aim at realizing microstructured three-dimensional elastic chiral mechanical metamaterials that overcome this limitation. On overall millimeter-sized samples, we measure twists per axial strain exceeding 2°/%. Scaling up the number of unit cells for fixed sample dimensions, the twist is robust due to metamaterial stiffening, indicating a characteristic length scale and bringing the aforementioned applications into reach. Copyright © 2017, American Association for the Advancement of Science.

  18. Experimental three dimensional strain estimation from ultrasonic sectorial data. (United States)

    Said, G; Basset, O; Mari, J M; Cachard, C; Brusseau, E; Vray, D


    Most of the studies devoted to elastography are focused on the estimation of the axial component of the strain. However when subjected to any load, whatever the direction, soft biological media deform in the three spatial dimensions. The aim of our work is to build a three dimensional strain mapping from data acquired with a 3D clinical sectorial probe. The estimation of radial strain is based on the estimation of local scaling factors. A method of cross-correlation of interpolated signals between adjacent radiofrequency lines was used to estimate the angular displacement and strain. For the sectorial strain estimation, the same displacement estimation technique has been implemented. The method has been tested on experimental data acquired on calibrated phantoms and compared to simulation.

  19. Automated three-dimensional reconstruction of the Caenorhabditis elegans germline. (United States)

    Gopal, Sandeep; Boag, Peter; Pocock, Roger


    The Caenorhabditis elegans germline is widely used as a model to study stem cell development, chromosome dynamics and apoptosis. Major readouts of germline phenotypes such as cell counting and protein expression profiling are routinely analyzed manually and in a two-dimensional manner. The major disadvantages of the existing approaches are 1) they are time-consuming and laborious and 2) there is an inability to study the effects of genetic mutations in three dimensions. Here, we demonstrate a rapid, automated method for analyzing the three-dimensional distribution of proteins, germline nuclei and cytoskeletal structures in the C. elegans germline. Using this method, we have revealed previously unappreciated germline organization and cytoskeletal structures that will have a major impact on the characterization of germline phenotypes. To conclude, our new method dramatically enhances the efficiency and resolution of C. elegans germline analysis and may be applied to other cellular structures. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Three-dimensional morphology of the human embryonic brain

    Directory of Open Access Journals (Sweden)

    N. Shiraishi


    Full Text Available The morphogenesis of the cerebral vesicles and ventricles was visualized in 3D movies using images derived from human embryo specimens between Carnegie stage 13 and 23 from the Kyoto Collection. These images were acquired with a magnetic resonance microscope equipped with a 2.35-T superconducting magnet. Three-dimensional images using the same scale demonstrated brain development and growth effectively. The non-uniform thickness of the brain tissue, which may indicate brain differentiation, was visualized with thickness-based surface color mapping. A closer view was obtained of the unique and complicated differentiation of the rhombencephalon, especially with regard to the internal view and thickening of the brain tissue. The present data contribute to a better understanding of brain and cerebral ventricle development.

  1. Quantum Secure Direct Communication by Using Three-Dimensional Hyperentanglement

    International Nuclear Information System (INIS)

    Shi Jin; Gong Yanxiao; Xu Ping; Zhu Shining; Zhan Youbang


    We propose two schemes for realizing quantum secure direct communication (QSDC) by using a set of ordered two-photon three-dimensional hyperentangled states entangled in two degrees of freedom (DOFs) as quantum information channels. In the first scheme, the photons from Bob to Alice are transmitted only once. After insuring the security of the quantum channels, Bob encodes the secret message on his photons. Then Alice performs single-photon two-DOF Bell bases measurements on her photons. This scheme has better security than former QSDC protocols. In the second scheme, Bob transmits photons to Alice twice. After insuring the security of the quantum channels, Bob encodes the secret message on his photons. Then Alice performs two-photon Bell bases measurements on each DOF. The scheme has more information capacity than former QSDC protocols. (general)

  2. Three-dimensional MR imaging of the knee joint

    International Nuclear Information System (INIS)

    Niitsu, Mamoru


    The value of a three-dimensional (3D) imaging system was evaluated using a newly developed workstation. Fifteen knee joints with meniscal tears confirmed by arthroscopic examinations underwent 3D magnetic resonance (MR) imaging. These 3D data sets were processed into 3D display by multiplanar reformation (MPR) and the volume rendering technique, and the features of the meniscal tears were compared with those on conventional two-dimensional (2D) MR images. The 3D images with MPR provided higher detectability and more descriptive delineation of the meniscal tears than the 2D images. With its powerful image processing capacity, the workstation facilitated high-speed, high-quality 3D display and provided precise views of meniscal cleavages for the planning of surgical treatment. The independent processing system permitted efficient throughput of the MR data and eliminated wasteful filming processes. (author)

  3. Micro-Mirrors for Nanoscale Three-Dimensional Microscopy (United States)

    Seale, Kevin; Janetopoulos, Chris; Wikswo, John


    A research-grade optical microscope is capable of resolving fine structures in two-dimensional images. However, three-dimensional resolution, or the ability of the microscope to distinguish between objects lying above or below the focal plane from in-focus objects, is not nearly as good as in-plane resolution. In this issue of ACS Nano, McMahon et al. report the use of mirrored pyramidal wells with a conventional microscope for rapid, 3D localization and tracking of nanoparticles. Mirrors have been used in microscopy before, but recent work with MPWs is unique because it enables the rapid determination of the x-, y-, and z-position of freely diffusing nanoparticles and cellular nanostructures with unprecedented speed and spatial accuracy. As inexpensive tools for 3D visualization, mirrored pyramidal wells may prove to be invaluable aids in nanotechnology and engineering of nanomaterials. PMID:19309167

  4. Single-camera, three-dimensional particle tracking velocimetry. (United States)

    Peterson, Kevin; Regaard, Boris; Heinemann, Stefan; Sick, Volker


    This paper introduces single-camera, three-dimensional particle tracking velocimetry (SC3D-PTV), an image-based, single-camera technique for measuring 3-component, volumetric velocity fields in environments with limited optical access, in particular, optically accessible internal combustion engines. The optical components used for SC3D-PTV are similar to those used for two-camera stereoscopic-µPIV, but are adapted to project two simultaneous images onto a single image sensor. A novel PTV algorithm relying on the similarity of the particle images corresponding to a single, physical particle produces 3-component, volumetric velocity fields, rather than the 3-component, planar results obtained with stereoscopic PIV, and without the reconstruction of an instantaneous 3D particle field. The hardware and software used for SC3D-PTV are described, and experimental results are presented.

  5. Three-dimensional solution structure of Acanthamoeba profilin-I (United States)


    We have determined a medium resolution three-dimensional solution structure of Acanthamoeba profilin-I by multidimensional nuclear magnetic resonance spectroscopy. This 13-kD actin binding protein consists of a five stranded antiparallel beta sheet flanked by NH2- and COOH-terminal helices on one face and by a third helix and a two stranded beta sheet on the other face. Data from actin-profilin cross- linking experiments and the localization of conserved residues between profilins in different phyla indicate that actin binding occurs on the molecular face occupied by the terminal helices. The other face of the molecule contains the residues that differ between Acanthamoeba profilins-I and II and may be important in determining the difference in polyphosphoinositide binding between these isoforms. This suggests that lipids and actin bind to different faces of the molecule. PMID:8397216

  6. Controlling Random Lasing with Three-Dimensional Plasmonic Nanorod Metamaterials. (United States)

    Wang, Zhuoxian; Meng, Xiangeng; Choi, Seung Ho; Knitter, Sebastian; Kim, Young L; Cao, Hui; Shalaev, Vladimir M; Boltasseva, Alexandra


    Plasmonics has brought revolutionary advances to laser science by enabling deeply subwavelength nanolasers through surface plasmon amplification. However, the impact of plasmonics on other promising laser systems has so far remained elusive. Here, we present a class of random lasers enabled by three-dimensional plasmonic nanorod metamaterials. While dense metallic nanostructures are usually detrimental to laser performance due to absorption losses, here the lasing threshold keeps decreasing as the volume fraction of metal is increased up to ∼0.07. This is ∼460 times higher than the optimal volume fraction reported thus far. The laser supports spatially confined lasing modes and allows for efficient modulation of spectral profiles by simply tuning the polarization of the pump light. Full-field speckle-free imaging at micron-scales has been achieved by using plasmonic random lasers as the illumination sources. Our findings show that plasmonic metamaterials hold potential to enable intriguing coherent optical sources.

  7. Three-dimensional structure of brain tissue at submicrometer resolution

    Energy Technology Data Exchange (ETDEWEB)

    Saiga, Rino; Mizutani, Ryuta, E-mail: [Department of Applied Biochemistry, Tokai University, Hiratsuka, Kanagawa 259-1292 (Japan); Inomoto, Chie; Takekoshi, Susumu; Nakamura, Naoya; Tsuboi, Akio; Osawa, Motoki [Tokai University School of Medicine, Isehara, Kanagawa 259-1193 (Japan); Arai, Makoto; Oshima, Kenichi; Itokawa, Masanari [Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8506 (Japan); Uesugi, Kentaro; Takeuchi, Akihisa; Terada, Yasuko; Suzuki, Yoshio [Japan Synchrotron Radiation Research Institute (JASRI/SPring-8), Sayo, Hyogo 679-5198 (Japan)


    Biological objects are composed of submicrometer structures such as cells and organelles that are essential for their functions. Here, we report on three-dimensional X-ray visualization of cells and organelles at resolutions up to 100 nm by imaging microtomography (micro-CT) equipped with Fresnel zone plate optics. Human cerebral tissue, fruit fly cephalic ganglia, and Escherichia coli bacteria labeled with high atomic-number elements were embedded in epoxy resin and subjected to X-ray microtomography at the BL37XU and BL47XU beamlines of the SPring-8 synchrotron radiation facility. The obtained results indicated that soft tissue structures can be visualized with the imaging microtomography.

  8. Three-dimensional spatial grouping affects estimates of the illuminant. (United States)

    Perkins, Kenneth R; Schirillo, James A


    The brightnesses (i.e., perceived luminance) of surfaces within a three-dimensional scene are contingent on both the luminances and the spatial arrangement of the surfaces. Observers viewed a CRT through a haploscope that presented simulated achromatic surfaces in three dimensions. They set a test patch to be approximately 33% more intense than a comparison patch to match the comparison patch in brightness, which is consistent with viewing a real scene with a simple lightning interpretation from which to estimate a different level of illumination in each depth plane. Randomly positioning each surface in either depth plane minimized any simple lighting interpretation, concomitantly reducing brightness differences to approximately 8.5%, although the immediate surrounds of the test and comparison patches continued to differ by a 5:1 luminance ratio.

  9. Three-dimensional theory for light-matter interaction

    DEFF Research Database (Denmark)

    Sørensen, Martin Westring; Sørensen, Anders Søndberg


    We present a full quantum mechanical three dimensional theory describing an electromagnetic field interacting with an ensemble of identical atoms. The theory is constructed such that it describes recent experiments on light-matter quantum interfaces, where the quantum fluctuations of light...... are mapped onto the atoms and back onto light. We show that the interaction of the light with the atoms may be separated into a mean effect of the ensemble and a deviation from the mean. The mean effect of the interaction effectively give rise to an index of refraction of the gas. We formally change...... to a dressed state picture, where the light modes are solutions to the diffraction problem, and develop a perturbative expansion in the fluctuations. The fluctuations are due to quantum fluctuations as well as the random positions of the atoms. In this perturbative expansion we show how the quantum...

  10. Visualising very large phylogenetic trees in three dimensional hyperbolic space

    Directory of Open Access Journals (Sweden)

    Liberles David A


    Full Text Available Abstract Background Common existing phylogenetic tree visualisation tools are not able to display readable trees with more than a few thousand nodes. These existing methodologies are based in two dimensional space. Results We introduce the idea of visualising phylogenetic trees in three dimensional hyperbolic space with the Walrus graph visualisation tool and have developed a conversion tool that enables the conversion of standard phylogenetic tree formats to Walrus' format. With Walrus, it becomes possible to visualise and navigate phylogenetic trees with more than 100,000 nodes. Conclusion Walrus enables desktop visualisation of very large phylogenetic trees in 3 dimensional hyperbolic space. This application is potentially useful for visualisation of the tree of life and for functional genomics derivatives, like The Adaptive Evolution Database (TAED.

  11. Inner mechanics of three-dimensional black holes. (United States)

    Detournay, Stéphane


    We investigate properties of the inner horizons of certain black holes in higher-derivative three-dimensional gravity theories. We focus on Bañados-Teitelboim-Zanelli and spacelike warped anti-de Sitter black holes, as well as on asymptotically warped de Sitter solutions exhibiting both a cosmological and a black hole horizon. We verify that a first law is satisfied at the inner horizon, in agreement with the proposal of Castro and Rodriguez [arXiv:1204.1284]. We then show that, in topologically massive gravity, the product of the areas of the inner and outer horizons fails to be independent on the mass, and we trace this to the diffeomorphism anomaly of the theory.

  12. Three Dimensional Quantized Vortex Dynamics in Superfluid Helium (United States)

    Meichle, David; Megson, Peter; Lathrop, Daniel


    Vorticity is constrained to line-like topological defects in quantum superfluids, such as liquid Helium below the Lambda transition temperature of 2.17 Kelvin. A tangle of vortices exists in a dissipative dynamical state called quantum turbulence, which has quantitative features distinct from classical turbulence. To study the vortex dynamics, we have invented a novel method to disperse fluorescent nanoparticles directly into the superfluid which become trapped on the vortex cores. Using a newly constructed multi-camera stereographic microscope, we present new data showing vortex reconnections and Kelvin waves with fully three-dimensional particle trajectories. These events are of scientific interest as they play a key role in the dissipation of quantum turbulence.

  13. A Three-Dimensional Cooperative Guidance Law of Multimissile System

    Directory of Open Access Journals (Sweden)

    Xing Wei


    Full Text Available In order to conduct saturation attacks on a static target, the cooperative guidance problem of multimissile system is researched. A three-dimensional guidance model is built using vector calculation and the classic proportional navigation guidance (PNG law is extended to three dimensions. Based on this guidance law, a distributed cooperative guidance strategy is proposed and a consensus protocol is designed to coordinate the time-to-go commands of all missiles. Then an expert system, which contains two extreme learning machines (ELM, is developed to regulate the local proportional coefficient of each missile according to the command. All missiles can arrive at the target simultaneously under the assumption that the multimissile network is connected. A simulation scenario is given to demonstrate the validity of the proposed method.

  14. Three-dimensional information encryption and anticounterfeiting using digital holography. (United States)

    Shiu, Min-Tzung; Chew, Yang-Kun; Chan, Huang-Tian; Wong, Xin-Yu; Chang, Chi-Ching


    In this work, arbitrary micro phase-step digital holography with optical interferometry and digital image processing is utilized to obtain information about an image of a three-dimensional object and encrypting keys. Then, a computer-generated hologram is used for the purpose of holographic encryption. All information about the keys is required to perform the decryption, comprising the amplitude and phase distribution of the encrypting key, the distance of image reconstruction, zero-order term elimination, and twin-image term suppression. In addition to using identifiable information on different image planes and linear superposition processing hidden within the encrypted information, not only can we convey an important message, but we can also achieve anticounterfeiting. This approach retains the strictness of traditional holographic encryption and the convenience of digital holographic processing without image distortion. Therefore, this method provides better solutions to earlier methods for the security of the transmission of holographic information.

  15. Three-dimensional numerical simulation during laser processing of CFRP (United States)

    Ohkubo, Tomomasa; Sato, Yuji; Matsunaga, Ei-ichi; Tsukamoto, Masahiro


    We performed three-dimensional numerical simulation about laser processing of carbon-fiber-reinforced plastic (CFRP) using OpenFOAM as libraries of finite volume method (FVM). Although a little theoretical or numerical studies about heat affected zone (HAZ) formation were performed, there is no research discussing how HAZ is generated considering time development about removal of each material. It is important to understand difference of removal speed of carbon fiber and resin in order to improve quality of cut surface of CFRP. We demonstrated how the carbon fiber and resin are removed by heat of ablation plume by our simulation. We found that carbon fiber is removed faster than resin at first stage because of the difference of thermal conductivity, and after that, the resin is removed faster because of its low combustion temperature. This result suggests the existence of optimal contacting time of the laser ablation and kerf of the target.

  16. Three-dimensional transparent parabolic concentrator for photovoltaics

    Directory of Open Access Journals (Sweden)

    Huichuan Lin


    Full Text Available A three-dimensional transparent parabolic concentrator made of polymethylmethacrylate (PMMA was designed and fabricated for photovoltaic applications. The measured maximum concentration ratio of the concentrator is 8.31, which means that for normal incident light, optical energy can be concentrated as high as 8.31 times by the concentrator. Even for oblique incident lights with an incident angle of between 5° and 15°, the concentrator maintains a concentration ratio of between 6.81 and 3.72. The concentrator was connected to Si cell, which increased the maximum output power of the Si cell by 12 times, compared with that of the bare cell. This indicates that the concentrator can increase the energy generated by Si cell by 12 times.

  17. Three-Dimensional Printing of Drug-Eluting Implants

    DEFF Research Database (Denmark)

    Water, Jorrit Jeroen; Bohr, Adam; Bøtker, Johan Peter


    The aim of the present work was to investigate the potential of three-dimensional (3D) printing as a manufacturing method for products intended for personalized treatments by exploring the production of novel polylactide-based feedstock materials for 3D printing purposes. Nitrofurantoin (NF......) and hydroxyapatite (HA) were successfully mixed and extruded with up to 30% drug load with and without addition of 5% HA in polylactide strands, which were subsequently 3D-printed into model disc geometries (10 × 2 mm). X-ray powder diffraction analysis showed that NF maintained its anhydrate solid form during...... of custom-made, drug-loaded feedstock materials for 3D printing of pharmaceutical products for controlled release....

  18. Applications of three-dimensional printing technology in urological practice. (United States)

    Youssef, Ramy F; Spradling, Kyle; Yoon, Renai; Dolan, Benjamin; Chamberlin, Joshua; Okhunov, Zhamshid; Clayman, Ralph; Landman, Jaime


    A rapid expansion in the medical applications of three-dimensional (3D)-printing technology has been seen in recent years. This technology is capable of manufacturing low-cost and customisable surgical devices, 3D models for use in preoperative planning and surgical education, and fabricated biomaterials. While several studies have suggested 3D printers may be a useful and cost-effective tool in urological practice, few studies are available that clearly demonstrate the clinical benefit of 3D-printed materials. Nevertheless, 3D-printing technology continues to advance rapidly and promises to play an increasingly larger role in the field of urology. Herein, we review the current urological applications of 3D printing and discuss the potential impact of 3D-printing technology on the future of urological practice. © 2015 The Authors BJU International © 2015 BJU International Published by John Wiley & Sons Ltd.

  19. Three-dimensional flow measurements in a tesla turbine rotor (United States)

    Fuchs, Thomas; Schosser, Constantin; Hain, Rainer; Kaehler, Christian


    Tesla turbines are fluid mechanical devices converting flow energy into rotation energy by two physical effects: friction and adhesion. The advantages of the tesla turbine are its simple and robust design, as well as its scalability, which makes it suitable for custom power supply solutions, and renewable energy applications. To this day, there is a lack of experimental data to validate theoretical studies, and CFD simulations of these turbines. This work presents a comprehensive analysis of the flow through a tesla turbine rotor gap, with a gap height of only 0.5 mm, by means of three-dimensional Particle Tracking Velocimetry (3D-PTV). For laminar flows, the experimental results match the theory very well, since the measured flow profiles show the predicted second order parabolic shape in radial direction and a fourth order behavior in circumferential direction. In addition to these laminar measurements, turbulent flows at higher mass flow rates were investigated.

  20. Three-dimensional periodic dielectric structures having photonic Dirac points (United States)

    Bravo-Abad, Jorge; Joannopoulos, John D.; Soljacic, Marin


    The dielectric, three-dimensional photonic materials disclosed herein feature Dirac-like dispersion in quasi-two-dimensional systems. Embodiments include a face-centered cubic (fcc) structure formed by alternating layers of dielectric rods and dielectric slabs patterned with holes on respective triangular lattices. This fcc structure also includes a defect layer, which may comprise either dielectric rods or a dielectric slab with patterned with holes. This defect layer introduces Dirac cone dispersion into the fcc structure's photonic band structure. Examples of these fcc structures enable enhancement of the spontaneous emission coupling efficiency (the .beta.-factor) over large areas, contrary to the conventional wisdom that the .beta.-factor degrades as the system's size increases. These results enable large-area, low-threshold lasers; single-photon sources; quantum information processing devices; and energy harvesting systems.

  1. Validation of three-dimensional micro injection molding simulation accuracy

    DEFF Research Database (Denmark)

    Tosello, Guido; Costa, F.S.; Hansen, Hans Nørgaard


    the simulation accuracy (i.e. decrease deviations from experimental values): injection speed profile, cavity injection pressure, melt and mold temperatures, three-dimensional mesh parameters, and material rheological characterization. Quality factors investigated for the quantitative comparisons were: short shot...... length, injection pressure profile, molding mass and flow pattern. The importance of calibrated micro molding process monitoring for an accurate implementation strategy of the simulation and its validation has been demonstrated. In fact, inconsistencies and uncertainties in the experimental data must......Data analysis and simulations on micro-molding experiments have been conducted. Micro molding simulations have been executed taking into account actual processing conditions implementation in the software. Various aspects of the simulation set-up have been considered in order to improve...

  2. Phonon band structures of the three dimensional latticed pentamode metamaterials

    Directory of Open Access Journals (Sweden)

    Guan Wang


    Full Text Available The artificially designed three-dimensional (3D pentamode metamaterials have such an extraordinary characteristic that the solid materials behave like liquids. Meanwhile, the ideal structure of the pentamode metamaterials arranges in the same way as that of the diamond crystals. In the present research, we regard three types of pentamode metamaterials derived from the 3D crystal lattices as research objects. The phonon band structures of the candidate pentamode structures are calculated by using the finite element method (FEM. We illustrate the relation between the ratio of the bulk modulus B and the shear modulus G of different combinations of D and d. Finally, we find out the relationship between the phonon band structure and the structure parameters. It is useful for generating the phonon band structure and controlling elastic wave propagation.

  3. Spin wave steering in three-dimensional magnonic networks (United States)

    Beginin, E. N.; Sadovnikov, A. V.; Sharaevskaya, A. Yu.; Stognij, A. I.; Nikitov, S. A.


    We report the concept of three-dimensional (3D) magnonic structures which are especially promising for controlling and manipulating magnon currents. The approach for fabrication of 3D magnonic crystals (MCs) and 3D magnonic networks is presented. A meander type ferromagnetic film grown at the top of the initially structured substrate can be a candidate for such 3D crystals. Using the finite element method, transfer matrix method, and micromagnetic simulations, we study spin-wave propagation in both isolated and coupled 3D MCs and reconstruct spin-wave dispersion and transmission response to elucidate the mechanism of magnonic bandgap formation. Our results show the possibility of the utilization of proposed structures for fabrication of a 3D magnonic network.

  4. Quantitative volumetric Raman imaging of three dimensional cell cultures

    KAUST Repository

    Kallepitis, Charalambos


    The ability to simultaneously image multiple biomolecules in biologically relevant three-dimensional (3D) cell culture environments would contribute greatly to the understanding of complex cellular mechanisms and cell–material interactions. Here, we present a computational framework for label-free quantitative volumetric Raman imaging (qVRI). We apply qVRI to a selection of biological systems: human pluripotent stem cells with their cardiac derivatives, monocytes and monocyte-derived macrophages in conventional cell culture systems and mesenchymal stem cells inside biomimetic hydrogels that supplied a 3D cell culture environment. We demonstrate visualization and quantification of fine details in cell shape, cytoplasm, nucleus, lipid bodies and cytoskeletal structures in 3D with unprecedented biomolecular specificity for vibrational microspectroscopy.

  5. An exactly solvable three-dimensional nonlinear quantum oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Schulze-Halberg, A. [Department of Mathematics and Actuarial Science, Indiana University Northwest, 3400 Broadway, Gary, Indiana 46408 (United States); Morris, J. R. [Department of Physics, Indiana University Northwest, 3400 Broadway, Gary, Indiana 46408 (United States)


    Exact analytical, closed-form solutions, expressed in terms of special functions, are presented for the case of a three-dimensional nonlinear quantum oscillator with a position dependent mass. This system is the generalization of the corresponding one-dimensional system, which has been the focus of recent attention. In contrast to other approaches, we are able to obtain solutions in terms of special functions, without a reliance upon a Rodrigues-type of formula. The wave functions of the quantum oscillator have the familiar spherical harmonic solutions for the angular part. For the s-states of the system, the radial equation accepts solutions that have been recently found for the one-dimensional nonlinear quantum oscillator, given in terms of associated Legendre functions, along with a constant shift in the energy eigenvalues. Radial solutions are obtained for all angular momentum states, along with the complete energy spectrum of the bound states.

  6. Is a three-dimensional-printed tooth filling possible?

    Directory of Open Access Journals (Sweden)

    Muhammet Kerim Ayar


    Full Text Available Introduction: Three-dimensional (3-D printing is seen as an innovative production process in many fields of dentistry and medicine. But implantation of this novel production process into the treatment of decayed teeth in dentistry remains lacking. Destruction of dental tissues as a result of dental caries is generally treated with dental resin composite fillings. However, a 3-D-printed tooth filling approach, which could be an alternative to traditional approaches, has a potential to reduce treatment costs and technique-sensitivity of the placement of restorative material. The Hypothesis: Here, the hypothesis that a 3-D-printed tooth filling approach could be an alternative to traditional approaches to treatment of decayed teeth is proposed. Evaluation of the Hypothesis: The actual implementation of the 3-D-printed tooth filling technique in the practice of restorative dentistry was discussed in this manuscript.

  7. Brain lesion analysis using three-dimensional SPECT imaging

    International Nuclear Information System (INIS)

    Shibata, Iekado; Onagi, Atsuo; Kuroki, Takao


    A three-headed gamma camera (PRISM 3000) is capable to scan the protocol of early dynamic SPECT and to analyze two radioisotopes at the same time. We have framed three-dimensional brain SPECT images for several brain diseases by using the Application Visualization System (AVS). We carried out volume measurements in brain tumors and/or AVMs by applying this methodology. Thallium-201 and/or 123I-IMP were used for brain SPECT imaging. The dynamic scan protocol was changed in accordance with the given disease. The protocol for brain tumors was derived from a preliminary comparative study with thallium-201 and 123I-IMP that had suggested a disparity in the detection of brain tumors and the differentiation between tumor tissue and normal brain. The three-dimension SPECT image represented the brain tumor or AVM in a striking fashion, and the changes with respect to tumor or AVM after radiosurgery or embolization were understood readily. (author)

  8. Voro++: a three-dimensional Voronoi cell library in C++

    Energy Technology Data Exchange (ETDEWEB)

    Rycroft, Chris


    Voro++ is a free software library for the computation of three dimensional Voronoi cells. It is primarily designed for applications in physics and materials science, where the Voronoi tessellation can be a useful tool in the analysis of densely-packed particle systems, such as granular materials or glasses. The software comprises of several C++ classes that can be modified and incorporated into other programs. A command-line utility is also provided that can use most features of the code. Voro++ makes use of a direct cell-by-cell construction, which is particularly suited to handling special boundary conditions and walls. It employs algorithms which are tolerant for numerical precision errors, and it has been successfully employed on very large particle systems.

  9. The three-dimensional origin of the classifying algebra

    International Nuclear Information System (INIS)

    Fuchs, Juergen; Schweigert, Christoph; Stigner, Carl


    It is known that reflection coefficients for bulk fields of a rational conformal field theory in the presence of an elementary boundary condition can be obtained as representation matrices of irreducible representations of the classifying algebra, a semisimple commutative associative complex algebra. We show how this algebra arises naturally from the three-dimensional geometry of factorization of correlators of bulk fields on the disk. This allows us to derive explicit expressions for the structure constants of the classifying algebra as invariants of ribbon graphs in the three-manifold S 2 xS 1 . Our result unravels a precise relation between intertwiners of the action of the mapping class group on spaces of conformal blocks and boundary conditions in rational conformal field theories.

  10. An exactly solvable three-dimensional nonlinear quantum oscillator

    International Nuclear Information System (INIS)

    Schulze-Halberg, A.; Morris, J. R.


    Exact analytical, closed-form solutions, expressed in terms of special functions, are presented for the case of a three-dimensional nonlinear quantum oscillator with a position dependent mass. This system is the generalization of the corresponding one-dimensional system, which has been the focus of recent attention. In contrast to other approaches, we are able to obtain solutions in terms of special functions, without a reliance upon a Rodrigues-type of formula. The wave functions of the quantum oscillator have the familiar spherical harmonic solutions for the angular part. For the s-states of the system, the radial equation accepts solutions that have been recently found for the one-dimensional nonlinear quantum oscillator, given in terms of associated Legendre functions, along with a constant shift in the energy eigenvalues. Radial solutions are obtained for all angular momentum states, along with the complete energy spectrum of the bound states

  11. Three-dimensional super Yang-Mills with unquenched flavor (United States)

    Faedo, Antón F.; Mateos, David; Tarrío, Javier


    We construct analytically the gravity duals of three-dimensional, super Yang-Mills-type theories with supersymmetry coupled to N f quark flavors. The backreaction of the quarks on the color degrees of freedom is included, and corresponds on the gravity side to the backreaction of N f D6-branes on the background of N D2-branes. The D6-branes are smeared over the compact part of the geometry, which must be a six-dimensional nearly Kähler manifold in order to preserve supersymmetry. For massless quarks, the solutions flow in the IR to an AdS 4 fixed point dual to a Chern-Simons-matter theory. For light quarks the theories exhibit quasi-conformal dynamics (walking) at energy scales m q ≪ E ≪ λN f / N, with λ = g YM 2 N the 't Hooft coupling.

  12. Diffusion equation three-dimensional solution in rectangular subcritical assemblies

    International Nuclear Information System (INIS)

    Barroso, Dalton E.G.; Carvalho Vital, Helio de; Oliveira Vellozo, Sergio de; Paixao, Sergio Barros


    This work describes a three-dimensional diffusion code developed for neutron flux and current calculations in rectangular subcritical assemblies (loaded with fuel or not) with arbitrary point source distributions in their bases. The two-group analytical solution, expressed as Fourier's double series expansion, is calculated for each source. A summation is then performed over all sources to evaluate the total flux distributions. The input includes positions and activities of the external neutron sources, besides the effective two-group macroscopic cross sections. The code can also provide the individual contributions of the harmonics to the thermal and fast neutron flux and current. Calculation-to-Experiment comparisons for the thermal flux in a exponential pile have shown agreement within experimental errors. 11 refs., 3 figs., 3 tabs

  13. On the secondary instability of three-dimensional boundary layers

    Energy Technology Data Exchange (ETDEWEB)

    Janke, E. [DLR Deutsches Zentrum fuer Luft- und Raumfahrt e.V., Goettingen (Germany). Inst. fuer Stroemungsmechanik; Balakumar, P. [Department of Aerospace Engineering, Old Dominion University, Norfolk, VA 23529 (United States)


    One of the possible transition scenarios in three-dimensional boundary layers, the saturation of stationary crossflow vortices and their secondary instability to high-frequency disturbances, is studied using the parabolized stability equations (PSE) and Floquet theory. Starting from nonlinear PSE solutions, we investigate the region where a purely stationary crossflow disturbance saturates for its secondary instability characteristics utilizing global and local eigenvalue solvers that are based on the implicitly restarted Arnoldi method and a Newton-Raphson technique, respectively. Results are presented for swept Hiemenz flow and the DLR swept flat plate experiment. The main focuses of this study are on the existence of multiple roots in the eigenvalue spectrum that could explain experimental observations of time-dependent occurrences of an explosive growth of traveling disturbances, on the origin of high-frequency disturbances, as well as on gaining more information about threshold amplitudes of primary disturbances necessary for the growth of secondary disturbances. (orig.)

  14. Three-dimensional adult echocardiography: where the hidden dimension helps. (United States)

    Mor-Avi, Victor; Sugeng, Lissa; Lang, Roberto M


    The introduction of three-dimensional (3D) imaging and its evolution from slow and labor-intense off-line reconstruction to real-time volumetric imaging is one of the most significant developments in ultrasound imaging of the heart of the past decade. This imaging modality currently provides valuable clinical information that empowers echocardiography with new levels of confidence in diagnosing heart disease. One major advantage of seeing the additional dimension is the improvement in the accuracy of the evaluation of cardiac chamber volumes by eliminating geometric modeling and the errors caused by foreshortened views. Another benefit of 3D imaging is the realistic views of cardiac valves capable of demonstrating numerous pathologies in a unique, noninvasive manner. This article reviews the major technological developments in 3D echocardiography and some of the recent literature that has provided the scientific basis for its clinical use.

  15. Three dimensional density cavities in guide field collisionless magnetic reconnection (United States)

    Markidis, S.; Lapenta, G.; Divin, A.; Goldman, M.; Newman, D.; Andersson, L.


    Particle-in-cell simulations of collisionless magnetic reconnection with a guide field reveal for the first time the three dimensional features of the low density regions along the magnetic reconnection separatrices, the so-called cavities. It is found that structures with further lower density develop within the cavities. Because their appearance is similar to the rib shape, these formations are here called low density ribs. Their location remains approximately fixed in time and their density progressively decreases, as electron currents along the cavities evacuate them. They develop along the magnetic field lines and are supported by a strong perpendicular electric field that oscillates in space. In addition, bipolar parallel electric field structures form as isolated spheres between the cavities and the outflow plasma, along the direction of the low density ribs and of magnetic field lines.

  16. Three-dimensional imaging of atomic four-body processes

    CERN Document Server

    Schulz, M; Fischer, D; Kollmus, H; Madison, D H; Jones, S; Ullrich, J


    To understand the physical processes that occur in nature we need to obtain a solid concept about the 'fundamental' forces acting between pairs of elementary particles. it is also necessary to describe the temporal and spatial evolution of many mutually interacting particles under the influence of these forces. This latter step, known as the few-body problem, remains an important unsolved problem in physics. Experiments involving atomic collisions represent a useful testing ground for studying the few-body problem. For the single ionization of a helium atom by charged particle impact, kinematically complete experiments have been performed since 1969. The theoretical analysis of such experiments was thought to yield a complete picture of the basic features of the collision process, at least for large collision energies. These conclusions are, however, almost exclusively based on studies of restricted electron-emission geometries. We report three- dimensional images of the complete electron emission pattern for...

  17. Manufacturing of Three-dimensional Micro Structure Using Proton Beam

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Suonggyu; Kwon, Wontae [Seoul University, Seoul (Korea, Republic of)


    The diameter of a proton beam emanating from the MC-50 cyclotron is about 2?3 mm with Gaussian distribution. This widely irradiated proton beam is not suitable for semiconductor etching, precise positioning, and micromachining, which require a small spot. In this study, a beam cutting method using a microhole is proposed as an economical alternative. We produced a microhole with aspect ratio, average diameter, and thickness of 428, 21 μm, and 9 mm, respectively, for cutting the proton beam. By using this high-aspect-ratio microhole, we conducted machinability tests on microstructures with sizes of tens of μm. Additionally, the results of simulation using GEANT4 and those of the actual experiment were compared and analyzed. The outcome confirmed the possibility of implementing a micro process technology for the fabrication of three-dimensional microstructures of 20 micron units using the MC-50 cyclotron with the microhole.

  18. Engineering three-dimensional cell mechanical microenvironment with hydrogels. (United States)

    Huang, Guoyou; Wang, Lin; Wang, Shuqi; Han, Yulong; Wu, Jinhui; Zhang, Qiancheng; Xu, Feng; Lu, Tian Jian


    Cell mechanical microenvironment (CMM) significantly affects cell behaviors such as spreading, migration, proliferation and differentiation. However, most studies on cell response to mechanical stimulation are based on two-dimensional (2D) planar substrates, which cannot mimic native three-dimensional (3D) CMM. Accumulating evidence has shown that there is a significant difference in cell behavior in 2D and 3D microenvironments. Among the materials used for engineering 3D CMM, hydrogels have gained increasing attention due to their tunable properties (e.g. chemical and mechanical properties). In this paper, we provide an overview of recent advances in engineering hydrogel-based 3D CMM. Effects of mechanical cues (e.g. hydrogel stiffness and externally induced stress/strain in hydrogels) on cell behaviors are described. A variety of approaches to load mechanical stimuli in 3D hydrogel-based constructs are also discussed.

  19. Black holes in three dimensional higher spin gravity: a review (United States)

    Ammon, Martin; Gutperle, Michael; Kraus, Per; Perlmutter, Eric


    We review recent progress in the construction of black holes in three dimensional higher spin gravity theories. Starting from spin-3 gravity and working our way toward the theory of an infinite tower of higher spins coupled to matter, we show how to harness higher spin gauge invariance to consistently generalize familiar notions of black holes. We review the construction of black holes with conserved higher spin charges and the computation of their partition functions to leading asymptotic order. In view of the anti-de Sitter/conformal field theory (CFT) correspondence as applied to certain vector-like conformal field theories with extended conformal symmetry, we successfully compare to CFT calculations in a generalized Cardy regime. A brief recollection of pertinent aspects of ordinary gravity is also given. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Higher spin theories and holography’.

  20. Engineering Three-dimensional Epithelial Tissues Embedded within Extracellular Matrix. (United States)

    Piotrowski-Daspit, Alexandra S; Nelson, Celeste M


    The architecture of branched organs such as the lungs, kidneys, and mammary glands arises through the developmental process of branching morphogenesis, which is regulated by a variety of soluble and physical signals in the microenvironment. Described here is a method created to study the process of branching morphogenesis by forming engineered three-dimensional (3D) epithelial tissues of defined shape and size that are completely embedded within an extracellular matrix (ECM). This method enables the formation of arrays of identical tissues and enables the control of a variety of environmental factors, including tissue geometry, spacing, and ECM composition. This method can also be combined with widely used techniques such as traction force microscopy (TFM) to gain more information about the interactions between cells and their surrounding ECM. The protocol can be used to investigate a variety of cell and tissue processes beyond branching morphogenesis, including cancer invasion.

  1. Shape synchronization control for three-dimensional chaotic systems

    International Nuclear Information System (INIS)

    Huang, Yuanyuan; Wang, Yinhe; Chen, Haoguang; Zhang, Siying


    This paper aims to the three-dimensional continuous chaotic system and shape of the chaotic attractor by utilizing the basic theory of plane curves in classical differential geometry, the continuous controller is synthesized for the master–slave synchronization in shape. This means that the slave system can possess the same shape of state trajectory with the master system via the continuous controller. The continuous controller is composed of three sub-controllers, which respectively correspond to the master–slave synchronization in shape for the three projective curves of the chaotic attractor onto the three coordinate planes. Moreover, the proposed shape synchronization technique as well as application of control scheme to secure communication is also demonstrated in this paper, where numerical simulation results show the proposed control method works well.

  2. Micro-fabrication of three dimensional pyrolysed carbon microelectrodes

    DEFF Research Database (Denmark)


    ; soft baking the photoresist layer; performing a full depth exposure with UV light through a first mask; performing a partial depth exposure with UV light through a second mask; wherein the full depth exposure and the partial depth exposure are aligned to ensure that the first and second latent images...... are connected to each other; post-exposure baking the photoresist layer; and developing the microscale patterned resist template as a free-standing structure of cross-linked resist with lateral hanging structures that are supported by vertical support structures at a free height above the substrate. The method...... is characterized by a soft baking temperature below 70 °C. Repetitive coating and partial depth exposure allows for the fabrication of multiple level laterally interconnected structures. Carbonization of the resist template provides truly three-dimensional carbon microelectrode structures....

  3. Three-dimensional protein structure prediction: Methods and computational strategies. (United States)

    Dorn, Márcio; E Silva, Mariel Barbachan; Buriol, Luciana S; Lamb, Luis C


    A long standing problem in structural bioinformatics is to determine the three-dimensional (3-D) structure of a protein when only a sequence of amino acid residues is given. Many computational methodologies and algorithms have been proposed as a solution to the 3-D Protein Structure Prediction (3-D-PSP) problem. These methods can be divided in four main classes: (a) first principle methods without database information; (b) first principle methods with database information; (c) fold recognition and threading methods; and (d) comparative modeling methods and sequence alignment strategies. Deterministic computational techniques, optimization techniques, data mining and machine learning approaches are typically used in the construction of computational solutions for the PSP problem. Our main goal with this work is to review the methods and computational strategies that are currently used in 3-D protein prediction. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. A free boundary problem on three-dimensional cones (United States)

    Allen, Mark


    We consider a free boundary problem on cones depending on a parameter c and study when the free boundary is allowed to pass through the vertex of the cone. We show that when the cone is three-dimensional and c is large enough, the free boundary avoids the vertex. We also show that when c is small enough but still positive, the free boundary is allowed to pass through the vertex. This establishes 3 as the critical dimension for which the free boundary may pass through the vertex of a right circular cone. In view of the well-known connection between area-minimizing surfaces and the free boundary problem under consideration, our result is analogous to a result of Morgan that classifies when an area-minimizing surface on a cone passes through the vertex.

  5. Multifractal analysis of three-dimensional histogram from color images

    International Nuclear Information System (INIS)

    Chauveau, Julien; Rousseau, David; Richard, Paul; Chapeau-Blondeau, Francois


    Natural images, especially color or multicomponent images, are complex information-carrying signals. To contribute to the characterization of this complexity, we investigate the possibility of multiscale organization in the colorimetric structure of natural images. This is realized by means of a multifractal analysis applied to the three-dimensional histogram from natural color images. The observed behaviors are confronted to those of reference models with known multifractal properties. We use for this purpose synthetic random images with trivial monofractal behavior, and multidimensional multiplicative cascades known for their actual multifractal behavior. The behaviors observed on natural images exhibit similarities with those of the multifractal multiplicative cascades and display the signature of elaborate multiscale organizations stemming from the histograms of natural color images. This type of characterization of colorimetric properties can be helpful to various tasks of digital image processing, as for instance modeling, classification, indexing.

  6. A New Three-Dimensional Cephalometric Analysis for Orthognathic Surgery (United States)

    Gateno, Jaime; Xia, James J.; Teichgraeber, John F.


    Two basic problems are associated with traditional 2-dimensional ((2D) cephalometry First, many important parameters cannot be measured on plain cephalograms; and second, most 2D cephalometric measurements are distorted in the presence of facial asymmetry. Three-dimensional (3D) cephalometry, which has been facilitated by the introduction of cone beam computed tomography scans, can be solved these problems. However, before this can be realized, fundamental problems must be solved. They are the unreliability of internal reference systems and some 3D measurements, and the lack of tools to assess and measure symmetry. In this manuscript, the authors present a new 3D cephalometric analysis that uses different geometric approaches to solve the fundamental problems previously mentioned. This analysis allows the accurate measurement of the size, shape, position and orientation of the different facial units and incorporates a novel method to measure asymmetry. PMID:21257250

  7. Mapping three-dimensional temperature in microfluidic chip.

    KAUST Repository

    Wu, Jinbo


    Three-dimensional (3D) temperature mapping method with high spatial resolution and acquisition rate is of vital importance in evaluating thermal processes in micro-environment. We have synthesized a new temperature-sensitive functional material (Rhodamine B functionalized Polydimethylsiloxane). By performing optical sectioning of this material, we established an advanced method for visualizing the micro-scale 3D thermal distribution inside microfluidic chip with down to 10 ms temporal resolution and 2 ~ 6 °C temperature resolution depending the capture parameters. This method is successfully applied to monitor the local temperature variation throughout micro-droplet heat transfer process and further reveal exothermic nanoliter droplet reactions to be unique and milder than bench-top experiment.

  8. Three-dimensional computed tomography of the acetabulum

    Energy Technology Data Exchange (ETDEWEB)

    Pozzi Mucelli, R.S.; Muner, G.; Pozzi Mucelli, F.; Pozzi Mucelli, M.; Marotti, F.; Dalla Palma, L.


    Acetabular fractures represent a complex variety that are classified in different types. Conventional radiology is often inadequate to demonstrate and classify the fractures. Computed tomography (CT) has already been shown to be superior in this field. A further advantage of CT is represented by the recent availability of three-dimensional (3D) images that are realized from axial CT scans by means of a new software. The Authors report the applications of this new software to the study of the normal acetabulum and in patients with fractures. 3D images allows an effective demonstration of the fracture, its irradiation and the dislocation of bone fragments. The information is contained in one or few images rather than many axial images. Therefore the role of 3D images may be considered complementary to axial CT scans.

  9. Orthodontics and Dental Anatomy: Three-dimensional Scanner Contribution. (United States)

    Nabbout, Fidele; Baron, Pascal


    The objective of this article is to focus on the dental anatomy, its influence on therapeutic choices, and decision in orthodontics. A sample of 80 subjects was selected and analyzed. Through the usage of the three-dimensional scanner with the C2000-Cepha and Cepha3DT software, it is now possible to calculate the volume and the dimensions of both crown and root of each tooth and compare them to the literature. Data were collected and statistically evaluated with the StatView software (version 5.0). These references values were compared with those known in the literature redefining our approaches to treatment in orthodontics. The individual anatomical data either unique or in a group of teeth give new insights on the orthodontic therapeutic options.

  10. Architecture and Applications of Functional Three-Dimensional Graphene Networks

    DEFF Research Database (Denmark)

    Dey, Ramendra Sundar; Chi, Qijin


    building blocksfor the bottom-up architecture of various graphene based nanomaterials. Th eassembly of functionalized GNS into three-dimensional (3D) porous graphenenetworks represents a novel approach. Resulting 3D porous graphene materialsposses unique physicochemical properties such as large surface......As the fi rst atomic-thick two-dimensional crystalline material, graphene has continuouslycreated a wonder land in materials science within the past decade. Anumber of methods have been developed for preparation and functionalizationof single-layered graphene nanosheets (GNS), which are essential...... areas, goodconductivity and mechanical strength, high thermal stability and desirable fl exibility,which altogether makes this new type of porous materials be highly attractivefor a wide range of applications. In this chapter, we will cover some crucialaspects of porous graphene networked materials...

  11. Anomalous dimension in three-dimensional semiclassical gravity

    International Nuclear Information System (INIS)

    Alesci, Emanuele; Arzano, Michele


    The description of the phase space of relativistic particles coupled to three-dimensional Einstein gravity requires momenta which are coordinates on a group manifold rather than on ordinary Minkowski space. The corresponding field theory turns out to be a non-commutative field theory on configuration space and a group field theory on momentum space. Using basic non-commutative Fourier transform tools we introduce the notion of non-commutative heat-kernel associated with the Laplacian on the non-commutative configuration space. We show that the spectral dimension associated to the non-commutative heat kernel varies with the scale reaching a non-integer value smaller than three for Planckian diffusion scales.

  12. Strain effects in freestanding three-dimensional nitride nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Povolotskyi, Michael; Auf der Maur, Matthias; Di Carlo, Aldo [MINAS Lab., Department of Electronic Engeneering, University of Rome ' ' Tor Vergata' ' , via del Politecnico, 1, 00133 Rome (Italy)


    Nitride based heterostructures of nanometer size have been studied. A theoretical model is presented that allows to study strain in lattice mismatched three-dimensional freestanding heterostructures. The model has been applied to an AlGaN/GaN quantum well structure. We computed a strain pattern that is found to be highly nonhomogeneous. Effect of strain on the band structure has been studied considering piezoelectric field and deformation potential. We calculated energy and oscillator strength of the fundamental optical transition in different regions of the structure in order to estimate the intrinsic broadening of a spectral line. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. Three-dimensional imaging of lumbar spinal fusions

    International Nuclear Information System (INIS)

    Chafetz, N.; Hunter, J.C.; Cann, C.E.; Morris, J.M.; Ax, L.; Catterling, K.F.


    Using a Cemax 1000 three-dimensional (3D) imaging computer/workstation, the author evaluated 15 patients with lumbar spinal fusions (four with pseudarthrosis). Both axial images with sagittal and coronal reformations and 3D images were obtained. The diagnoses (spinal stenosis and psuedarthrosis) were changed in four patients, confirmed in six patients, and unchanged in five patients with the addition of the 3D images. The ''cut-away'' 3D images proved particularly helpful for evaluation of central and lateral spinal stenosis, whereas the ''external'' 3D images were most useful for evaluation of the integrity of the fusion. Additionally, orthopedic surgeons found 3D images superior for both surgical planning and explaining pathology to patients

  14. Fabrication of three-dimensional carbon microelectrodes for electrochemical sensing

    DEFF Research Database (Denmark)

    Hemanth, Suhith

    microelectrodes four different model systems (Glucose sensing, Yeast analysis, Dopamine detection in human stem cell and bone cell monitoring) were tested. In all the model systems 3D carbon microelectrodes showed a 2-3 folds higher sensing signal when compared to 2D carbon electrodes.......Carbon microelectrodes have a wide range of applications because of their unique material properties and biocompatibility. The aim of the research work carried out in this thesis was to develop three-dimensional (3D) carbon microelectrodes for electrochemical applications. Three different...... fabrication processes were established for fabrication of 3D carbon microelectrodes using UV photolithography followed by pyrolysis. UV exposure at three different wavelengths 365 nm, 313 nm and 405 nm was optimized to fabricate suspended 3D epoxy polymer templates. The polymer template was pyrolysed at high...

  15. Turbulent mixing in three-dimensional droplet arrays

    International Nuclear Information System (INIS)

    Zoby, M.R.G.; Navarro-Martinez, S.; Kronenburg, A.; Marquis, A.J.


    The atomisation, evaporation and subsequent mixing of fuel from a liquid spray determines the effectiveness of the combustion processes in gas turbines and internal combustion engines. In the present paper, three-dimensional direct numerical simulations (DNS) of the evaporation of methanol droplets in hot environments are presented. The gas phase mixing is assessed by examining the scalar dissipation and the mixture fraction probability density function (PDF). Novel multi-conditional models are proposed that use mixture fraction and structural parameters as the conditioning variables for the scalar dissipation which is found to be well predicted in terms of magnitude and distribution. The β-PDF description of the mixture fraction seems to capture well the global behaviour for a laminar environment and for time-averaged results in turbulent cases. A novel model for the mixture fraction PDF is also proposed based on the multi-conditional model for scalar dissipation and an accurate representation of the PDF is achieved.

  16. Three-dimensional live microscopy beyond the diffraction limit

    International Nuclear Information System (INIS)

    Fiolka, Reto


    In fluorescence microscopy it has become possible to fundamentally overcome the diffraction limited resolution in all three spatial dimensions. However, to have the most impact in biological sciences, new optical microscopy techniques need to be compatible with live cell imaging: image acquisition has to be fast enough to capture cellular dynamics at the new resolution limit while light exposure needs to be minimized to prevent photo-toxic effects. With increasing spatial resolution, these requirements become more difficult to meet, even more so when volumetric imaging is performed. In this review, techniques that have been successfully applied to three-dimensional, super-resolution live microscopy are presented and their relative strengths and weaknesses are discussed. (special issue article)

  17. Hydrogel microfabrication technology toward three dimensional tissue engineering

    Directory of Open Access Journals (Sweden)

    Fumiki Yanagawa


    Full Text Available The development of biologically relevant three-dimensional (3D tissue constructs is essential for the alternative methods of organ transplantation in regenerative medicine, as well as the development of improved drug discovery assays. Recent technological advances in hydrogel microfabrication, such as micromolding, 3D bioprinting, photolithography, and stereolithography, have led to the production of 3D tissue constructs that exhibit biological functions with precise 3D microstructures. Furthermore, microfluidics technology has enabled the development of the perfusion culture of 3D tissue constructs with vascular networks. In this review, we present these hydrogel microfabrication technologies for the in vitro reconstruction and cultivation of 3D tissues. Additionally, we discuss current challenges and future perspectives of 3D tissue engineering.

  18. Three-dimensional stress analysis of plain weave composites (United States)

    Whitcomb, John D.


    Techniques were developed and described for performing three-dimensional finite element analysis of plain weave composites. Emphasized here are aspects of the analysis which are different from analysis of traditional laminated composites, such as the mesh generation and representative unit cells. The analysis was used to study several different variations of plain weaves which illustrate the effects of tow waviness on composite moduli, Poisson's ratios, and internal strain distributions. In-plane moduli decreased almost linearly with increasing tow waviness. The tow waviness was shown to cause large normal and shear strain concentrations in composites subjected to uniaxial load. These strain concentrations may lead to earlier damage initiation than occurs in traditional cross-ply laminates.

  19. Three-dimensional analysis of magnetometer array data (United States)

    Richmond, A. D.; Baumjohann, W.


    A technique is developed for mapping magnetic variation fields in three dimensions using data from an array of magnetometers, based on the theory of optimal linear estimation. The technique is applied to data from the Scandinavian Magnetometer Array. Estimates of the spatial power spectra for the internal and external magnetic variations are derived, which in turn provide estimates of the spatial autocorrelation functions of the three magnetic variation components. Statistical errors involved in mapping the external and internal fields are quantified and displayed over the mapping region. Examples of field mapping and of separation into external and internal components are presented. A comparison between the three-dimensional field separation and a two-dimensional separation from a single chain of stations shows that significant differences can arise in the inferred internal component.

  20. Three dimensional vortices and interfaces in Hele-Shaw cells

    International Nuclear Information System (INIS)

    Pumir, A.


    A model of nonviscous flow, based on the Biot-Savart equations is used to examine the existence of singularities in three dimensional, incompressible, hydrodynamic equations. The results suggest a fairly simple physical mechanism, which could lead to the formation of singularities in the nonviscous case: two vortex tubes with opposite circulations pair up and stretch each other, until the radii of the vortex cores become extremely small, causing a divergence of the vorticity. The cases of a perfect and a slightly viscous fluid are considered. The results are unclear as to whether the vorticity of a slightly viscous fluid can become infinite or not, and whether singularities exist. The dynamics of hydrodynamic interfaces are also investigated. The propagation of bubbles in a slightly viscous fluid, in a Hele-Shaw cell are described [fr

  1. Chern-Simons theory and three-dimensional surfaces

    International Nuclear Information System (INIS)

    Guven, Jemal


    There are two natural Chern-Simons theories associated with the embedding of a three-dimensional surface in Euclidean space: one is constructed using the induced metric connection and involves only the intrinsic geometry? the other is extrinsic and uses the connection associated with the gauging of normal rotations. As such, the two theories appear to describe very different aspects of the surface geometry. Remarkably, at a classical level, they are equivalent. In particular, it will be shown that their stress tensors differ only by a null contribution. Their Euler-Lagrange equations provide identical constraints on the normal curvature. A new identity for the Cotton tensor is associated with the triviality of the Chern-Simons theory for embedded hypersurfaces implied by this equivalence

  2. Three-dimensional photonic band gaps in woven structures

    CERN Document Server

    Tsai Ya Chih; Pendry, J B


    In this paper, we studied the photonic properties of dielectric fibres woven into three-dimensional (3D) structures. Such fibres can be fabricated on the micrometre scale, and hence the gaps are in the far-infrared to the infrared regime. The vector-wave transfer matrix method is applied to evaluate the photonic band structures. We have also employed the constant-frequency dispersion surface scheme to investigate the development of a full band gap. Such a 3D absolute gap is observed in a rectangular lattice, but at a fairly large dielectric constant for the fibres. Ways to improve on this have been suggested. Our study indicates that woven structures are promising materials for realizing the 3D photonic insulator in the infrared regime. (author)

  3. Logistics of Three-dimensional Printing: Primer for Radiologists. (United States)

    Hodgdon, Taryn; Danrad, Raman; Patel, Midhir J; Smith, Stacy E; Richardson, Michael L; Ballard, David H; Ali, Sayed; Trace, Anthony Paul; DeBenedectis, Carolynn M; Zygmont, Matthew E; Lenchik, Leon; Decker, Summer J


    The Association of University Radiologists Radiology Research Alliance Task Force on three-dimensional (3D) printing presents a review of the logistic considerations for establishing a clinical service using this new technology, specifically focused on implications for radiology. Specific topics include printer selection for 3D printing, software selection, creating a 3D model for printing, providing a 3D printing service, research directions, and opportunities for radiologists to be involved in 3D printing. A thorough understanding of the technology and its capabilities is necessary as the field of 3D printing continues to grow. Radiologists are in the unique position to guide this emerging technology and its use in the clinical arena. Copyright © 2018 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  4. DNA Origami with Complex Curvatures in Three-Dimensional Space

    Energy Technology Data Exchange (ETDEWEB)

    Han, Dongran; Pal, Suchetan; Nangreave, Jeanette; Deng, Zhengtao; Liu, Yan; Yan, Hao


    We present a strategy to design and construct self-assembling DNA nanostructures that define intricate curved surfaces in three-dimensional (3D) space using the DNA origami folding technique. Double-helical DNA is bent to follow the rounded contours of the target object, and potential strand crossovers are subsequently identified. Concentric rings of DNA are used to generate in-plane curvature, constrained to 2D by rationally designed geometries and crossover networks. Out-of-plane curvature is introduced by adjusting the particular position and pattern of crossovers between adjacent DNA double helices, whose conformation often deviates from the natural, B-form twist density. A series of DNA nanostructures with high curvature—such as 2D arrangements of concentric rings and 3D spherical shells, ellipsoidal shells, and a nanoflask—were assembled.

  5. Three-dimensional structural characterization of nonwoven fabrics. (United States)

    Venu, Lalith B Suragani; Shim, Eunkyoung; Anantharamaiah, Nagendra; Pourdeyhimi, Behnam


    Nonwoven materials are found in a gamut of critical applications. This is partly due to the fact that these structures can be produced at high speed and engineered to deliver unique functionality at low cost. The behavior of these materials is highly dependent on alignment of fibers within the structure. The ability to characterize and also to control the structure is important, but very challenging due to the complex nature of the structures. Thus, to date, focus has been placed mainly on two-dimensional analysis techniques for describing the behavior of nonwovens. This article demonstrates the utility of three-dimensional (3D) digital volumetric imaging technique for visualizing and characterizing a complex 3D class of nonwoven structures produced by hydroentanglement.

  6. Three-dimensional force-free looplike magnetohydrodynamic equilibria (United States)

    Finn, John M.; Guzdar, Parvez N.; Usikov, Daniel


    Computations of three-dimensional force-free magnetohydrodynamic (MHD) equilibria, del x B = lambdaB with lambda = lambda(sub 0), a constant are presented. These equilibria are determined by boundary conditions on a surface corresponding to the solar photosphere. The specific boundary conditions used correspond to looplike magnetic fields in the corona. It is found that as lambda(sub 0) is increased, the loops of flux become kinked, and for sufficiently large lambda(sub 0), develop knots. The relationship between the kinking and knotting properties of these equilibria and the presence of a kink instability and related loss of equilibrium is explored. Clearly, magnetic reconnection must be involved for an unknotted loop equilibrium to become knotted, and speculations are made about the creation of a closed hyperbolic field line (X-line) about which this reconnection creating knotted field lines is centered.

  7. Visualization of Three-Dimensional Nephron Structure With Microcomputed Tomography

    International Nuclear Information System (INIS)

    Bentley, M.; Jorgensen, S.; Lerman, L.; Ritman, E.; Romero, J.


    The three-dimensional architecture of nephrons in situ and their interrelationship with other nephrons are difficult to visualize by microscopic methods. The present study uses microcomputed X-ray tomography (micro-CT) to visualize intact nephrons in situ. Rat kidneys were perfusion-fixed with buffered formalin and their vasculature was subsequently perfused with radiopaque silicone. Cortical tissue was stained en bloc with osmium tetroxide, embedded in plastic, scanned, and reconstructed at voxel resolutions of 6, 2, and 1 μm. At 6 μm resolution, large blood vessels and glomeruli could be visualized but nephrons and their lumens were small and difficult to visualize. Optimal images were obtained using a synchrotron radiation source at 2 μm resolution where nephron components could be identified, correlated with histological sections, and traced. Proximal tubules had large diameters and opaque walls, whereas distal tubules, connecting tubules, and collecting ducts had smaller diameters and less opaque walls. Blood vessels could be distinguished from nephrons by the luminal presence of radiopaque silicone. Proximal tubules were three times longer than distal tubules. Proximal and distal tubules were tightly coiled in the outer cortex but were loosely coiled in the middle and inner cortex. The connecting tubules had the narrowest diameters of the tubules and converged to form arcades that paralleled the radial vessels as they extended to the outer cortex. These results illustrate a potential use of micro-CT to obtain three-dimensional information about nephron architecture and nephron interrelationships, which could be useful in evaluating experimental tubular hypertrophy, atrophy, and necrosis

  8. In vitro measurement accuracy of three-dimensional ultrasound. (United States)

    Zotz, R J; Trabold, T; Bock, A; Kollmann, C


    We sought to validate distance and volume measurements in three-dimensional (3-D) ultrasound images. Even with the latest equipment, it is not known how accurate 3-D echocardiographic measurements are. Six models were imaged in ethanol solution and two within a tissue phantom using a mechanical rotation device rotating in 1 degrees intervals and a real-time 3-D scanner. Distance and volume measurements (n = 60) were performed in two-dimensional (2-D) and 3-D images using TomTec and InViVo software. Distance measurements had a mean total error between 1.12% and 2.31% for Acuson (2.5 MHZ, 3 MHZ, and 4 MHZ) and Hewlett Parkard (HP) fusion frequencies h and m, HP fusion harmonic B in the axial, and between 3.5% and 4.9% in the lateral dimension. HP Harmonic A and B, Volumetrics (2.5 MHZ), and HP fusion Harmonic A exhibited significantly higher differences to reality with a mean difference between 5.1% and 8.9% in the axial and between 6.2% and 7.9% in the lateral direction. Axial 2-D measurements were not different from real dimensions except Volumetrics model 1. In the lateral axis, all imaging modalities were different from reality except the fusion harmonic modus B. Using the HP fusion frequency h and HP fusion Harmonic B-mode, volume measurements in 3-D images significantly underestimated reality, while Acuson's fundamental frequency 3.5 MHZ was not different from real volumes. Three-dimensional visualization using different ultrasound settings results in different accuracy.

  9. Three-dimensional MRI of the glenoid labrum

    International Nuclear Information System (INIS)

    Loehr, S.P.; Pope, T.L. Jr.; Martin, D.F.; Link, K.M.; Monu, J.U.V.; Hunter, M.; Reboussin, D.


    The objective of this study was to assess the accuracy of three-dimensional (3D) magnetic resonance imaging (MRI) reformation in the evaluation of tears of the glenoid labrum complex (GLC). Fifty-five shoulders were evaluated by MRI using standard spin-echo sequences. Gradient-refocused-echo axial projections were used to assess the GLC on the two-dimensional (2D) studies. Three-dimensional Fourier transform multiplanar gradient-recalled imaging with a resolution of 0.7 mm was also performed in all patients. Independent analyses of the anterior and posterior labra were performed in a blinded manner for both the 2D and 3D studies by three experienced musculoskeletal radiologists. Observations of the imaging studies were compared with the videoarthroscopic findings. The appearance of the GLC was rated on a scale of 0 to 4 (0-2=normal, 3, 4=abnormal or torn). The diagnostic confidence was averaged from the three reader's scores. Anterior labral tears were effectively detected with sensitivities of 89% and 96% and specificities of 96% and 100% (P<0.0001) for the 2D and 3D studies, respectively. For posterior labral tears, the sensitivity and specificity of the 2D method were 47% and 98%, respectively. The sensitivity and specificity of the 3D volume sequence were 53% and 98%, respectively. The lower sensitivity of both imaging methods for detecting posterior labral tears may be influenced by the smaller number (n=5) of arthroscopically confirmed cases in our study and reflects the difficulty of visualizing the posteroinferior borders of the GLC with present MRI techniques. (orig.)

  10. [Fetal brain fissures development a three-dimensional ultrasonography study]. (United States)

    Alves, Cynthia Maria Soares; Araujo Júnior, Edward; Nardozza, Luciano Marcondes Machado; Oliveira, Patrícia Soares de; Goldman, Suzan Menasce; Ajzen, Sérgio Aron; Moron, Antonio Fernandes


    to assess the distance of the fetal cerebral fissures from the inner edge of the skull by three-dimensional ultrasonography (3DUS). this cross-sectional study included 80 women with normal pregnancies between 21st and 34th weeks. The distances between the Sylvian, parieto-occiptal, hippocampus and calcarine fissures and the internal surface of the fetal skull were measured. For the evaluation of the distance of the first three fissures, an axial three-dimensional scan was obtained (at the level of the lateral ventricles). To obtain the calcarine fissure measurement, a coronal scan was used (at the level of the occipital lobes). First degree regressions were performed to assess the correlation between fissure measurements and gestational age, using the determination coefficient (R²) for adjustment. The 5th, 50th and 95th percentiles were calculated for each fissure measurement. Pearson's correlation coefficient (r) was used to assess the correlation between fissure measurements and the biparietal diameter (BPD) and head circumference (HC). all fissure measurements were linearly correlated with gestational age (Sylvian: R²=0.5; parieto-occiptal: R²= 0.7; hippocampus: R²= 0.3 and calcarine: R²= 0.3). Mean fissure measurement ranged from 7.0 to 14.0 mm, 15.9 to 28.7 mm, 15.4 to 25.4 mm and 15.7 to 24.8 mm for the Sylvian, parieto-occiptal, hippocampus and calcarine fissures, respectively. The Sylvian and parieto-occiptal fissure measurements had the highest correlations with the BPD (r=0.8 and 0.7, respectively) and HC (r=0.7 and 0.8, respectively). the distance from the fetal cerebral fissures to the inner edge of the skull measured by 3DUS was positively correlated with gestational age.

  11. Three-Dimensional Morphology of a Coronal Prominence Cavity (United States)

    Gibson, S. E.; Kucera, T. A.; Rastawicki, D.; Dove, J.; deToma, G.; Hao, J.; Hill, S.; Hudson, H. S.; Marque, C.; McIntosh, P. S.; hide


    We present a three-dimensional density model of coronal prominence cavities, and a morphological fit that has been tightly constrained by a uniquely well-observed cavity. Observations were obtained as part of an International Heliophysical Year campaign by instruments from a variety of space- and ground-based observatories, spanning wavelengths from radio to soft-X-ray to integrated white light. From these data it is clear that the prominence cavity is the limb manifestation of a longitudinally-extended polar-crown filament channel, and that the cavity is a region of low density relative to the surrounding corona. As a first step towards quantifying density and temperature from campaign spectroscopic data, we establish the three-dimensional morphology of the cavity. This is critical for taking line-of-sight projection effects into account, since cavities are not localized in the plane of the sky and the corona is optically thin. We have augmented a global coronal streamer model to include a tunnel-like cavity with elliptical cross-section and a Gaussian variation of height along the tunnel length. We have developed a semi-automated routine that fits ellipses to cross-sections of the cavity as it rotates past the solar limb, and have applied it to Extreme Ultraviolet Imager (EUVI) observations from the two Solar Terrestrial Relations Observatory (STEREO) spacecraft. This defines the morphological parameters of our model, from which we reproduce forward-modeled cavity observables. We find that cavity morphology and orientation, in combination with the viewpoints of the observing spacecraft, explains the observed variation in cavity visibility for the east vs. west limbs

  12. Three-dimensional Magnetic Resonance Imaging of fossils across taxa

    Directory of Open Access Journals (Sweden)

    D. Mietchen


    Full Text Available The frequency of life forms in the fossil record is largely determined by the extent to which they were mineralised at the time of their death. In addition to mineral structures, many fossils nonetheless contain detectable amounts of residual water or organic molecules, the analysis of which has become an integral part of current palaeontological research. The methods available for this sort of investigations, though, typically require dissolution or ionisation of the fossil sample or parts thereof, which is an issue with rare taxa and outstanding materials like pathological or type specimens. In such cases, non-destructive techniques could provide a valuable methodological alternative. While Computed Tomography has long been used to study palaeontological specimens, a number of complementary approaches have recently gained ground. These include Magnetic Resonance Imaging (MRI which had previously been employed to obtain three-dimensional images of pathological belemnites non-invasively on the basis of intrinsic contrast. The present study was undertaken to investigate whether 1H MRI can likewise provide anatomical information about non-pathological belemnites and specimens of other fossil taxa. To this end, three-dimensional MR image series were acquired from intact non-pathological invertebrate, vertebrate and plant fossils. At routine voxel resolutions in the range of several dozens to some hundreds of micrometers, these images reveal a host of anatomical details and thus highlight the potential of MR techniques to effectively complement existing methodological approaches for palaeontological investigations in a wide range of taxa. As for the origin of the MR signal, relaxation and diffusion measurements as well as 1H and 13C MR spectra acquired from a belemnite suggest intracrystalline water or hydroxyl groups, rather than organic residues.


    Directory of Open Access Journals (Sweden)

    D. Dimitrov


    Full Text Available

    ENGLISH ABSTRACT: The current development of the rapid prototyping industry in South Africa is characterised by the strong dominance and fast growth in sales of three dimensional printers. Although it reflects the international trend, it seems that the industrial community lacks a clear appreciation of the real strength of this technology, especially with respect to the large variety of devices available today on the market. This paper surveys the current state and capabilities of three dimensional printing (3DP. Based on its technical background – the ink-jet printing known from the printer and plotter industry – a classification structure is developed and proposed. Different printing techniques and process concepts, together with their advantages and limitations, are described and analysed. Typical examples from three completely different application areas – manufacturing, medicine, and architecture – are presented and discussed. Some basic considerations for an informed selection of the right technology for a particular application are then presented.

    AFRIKAANSE OPSOMMING: Sterk groei in die verkope van drie dimensionele drukkers (3DP kenmerk die onlangse groei in die snelle prototipe industrie in Suid-Afrika. Ten spyte daarvan dat hierdie ‘n internasionale tendens reflekteer, blyk dit dat die werklike waarde van die tegnologie nog nie ten volle waardeer word in die industriële gemeenskap nie, veral aangesien daar so ‘n groot verskeidenheid masjiene in die mark beskikbaar is. ‘n Oorsig oor die huidige stand en vermoë van drie dimensionele drukkers word hier gegee. ‘n Klassifikasiestruktuur – gebaseer op die inkspuitdrukkertegnologie – word ontwikkel en voorgestel. Verskillende druktegnieke en konsepprosesse word ontleed. Daar word ook gekyk na die voor- en nadele hiervan. Tipiese voorbeelde van drie verskillende toepassings (vervaardiging, medies, en argitektuur word aangebied en bespreek. Basiese riglyne vir

  14. Three-dimensional measurement system for crime scene documentation (United States)

    Adamczyk, Marcin; Hołowko, Elwira; Lech, Krzysztof; Michoński, Jakub; MÄ czkowski, Grzegorz; Bolewicki, Paweł; Januszkiewicz, Kamil; Sitnik, Robert


    Three dimensional measurements (such as photogrammetry, Time of Flight, Structure from Motion or Structured Light techniques) are becoming a standard in the crime scene documentation process. The usage of 3D measurement techniques provide an opportunity to prepare more insightful investigation and helps to show every trace in the context of the entire crime scene. In this paper we would like to present a hierarchical, three-dimensional measurement system that is designed for crime scenes documentation process. Our system reflects the actual standards in crime scene documentation process - it is designed to perform measurement in two stages. First stage of documentation, the most general, is prepared with a scanner with relatively low spatial resolution but also big measuring volume - it is used for the whole scene documentation. Second stage is much more detailed: high resolution but smaller size of measuring volume for areas that required more detailed approach. The documentation process is supervised by a specialised application CrimeView3D, that is a software platform for measurements management (connecting with scanners and carrying out measurements, automatic or semi-automatic data registration in the real time) and data visualisation (3D visualisation of documented scenes). It also provides a series of useful tools for forensic technicians: virtual measuring tape, searching for sources of blood spatter, virtual walk on the crime scene and many others. In this paper we present our measuring system and the developed software. We also provide an outcome from research on metrological validation of scanners that was performed according to VDI/VDE standard. We present a CrimeView3D - a software-platform that was developed to manage the crime scene documentation process. We also present an outcome from measurement sessions that were conducted on real crime scenes with cooperation with Technicians from Central Forensic Laboratory of Police.

  15. Three-dimensional optofluidic device for isolating microbes (United States)

    Keloth, A.; Paterson, L.; Markx, G. H.; Kar, A. K.


    Development of efficient methods for isolation and manipulation of microorganisms is essential to study unidentified and yet-to-be cultured microbes originating from a variety of environments. The discovery of novel microbes and their products have the potential to contribute to the development of new medicines and other industrially important bioactive compounds. In this paper we describe the design, fabrication and validation of an optofluidic device capable of redirecting microbes within a flow using optical forces. The device holds promise to enable the high throughput isolation of single microbes for downstream culture and analysis. Optofluidic devices are widely used in clinical research, cell biology and biomedical engineering as they are capable of performing analytical functions such as controlled transportation, compact and rapid processing of nanolitres to millilitres of clinical or biological samples. We have designed and fabricated a three dimensional optofluidic device to control and manipulate microorganisms within a microfluidic channel. The device was fabricated in fused silica by ultrafast laser inscription (ULI) followed by selective chemical etching. The unique three-dimensional capability of ULI is utilized to integrate microfluidic channels and waveguides within the same substrate. The main microfluidic channel in the device constitutes the path of the sample. Optical waveguides are fabricated at right angles to the main microfluidic channel. The potential of the optical scattering force to control and manipulate microorganisms is discussed in this paper. A 980 nm continuous wave (CW) laser source, coupled to the waveguide, is used to exert radiation pressure on the particle and particle migrations at different flow velocities are recorded. As a first demonstration, device functionality is validated using fluorescent microbeads and initial trials with microalgae are presented.

  16. Classification of three-dimensional exceptional log canonical hypersurface singularities. II

    International Nuclear Information System (INIS)

    Kudryavtsev, S A


    We study three-dimensional exceptional canonical hypersurface singularities which do not satisfy the condition of well-formedness. The result obtained completes the classification of three-dimensional exceptional log canonical hypersurface singularities begun in [4

  17. Classification of three-dimensional exceptional log canonical hypersurface singularities. I

    International Nuclear Information System (INIS)

    Kudryavtsev, S A


    We describe three-dimensional exceptional strictly log canonical hypersurface singularities and give a detailed classification of three-dimensional exceptional canonical hypersurface singularities under the condition of well-formedness

  18. Classification of three-dimensional exceptional log canonical hypersurface singularities. I (United States)

    Kudryavtsev, S. A.


    We describe three-dimensional exceptional strictly log canonical hypersurface singularities and give a detailed classification of three-dimensional exceptional canonical hypersurface singularities under the condition of well-formedness.

  19. Classification of three-dimensional exceptional log canonical hypersurface singularities. II (United States)

    Kudryavtsev, S. A.


    We study three-dimensional exceptional canonical hypersurface singularities which do not satisfy the condition of well-formedness. The result obtained completes the classification of three-dimensional exceptional log canonical hypersurface singularities begun in [4].

  20. Three dimensional extrusion printing induces polymer molecule alignment and cell organization within engineered cartilage. (United States)

    Guo, Ting; Ringel, Julia P; Lim, Casey G; Bracaglia, Laura G; Noshin, Maeesha; Baker, Hannah B; Powell, Douglas A; Fisher, John P


    Proper cell-material interactions are critical to remain cell function and thus successful tissue regeneration. Many fabrication processes have been developed to create microenvironments to control cell attachment and organization on a three-dimensional (3D) scaffold. However, these approaches often involve heavy engineering and only the surface layer can be patterned. We found that 3D extrusion based printing at high temperature and pressure will result an aligned effect on the polymer molecules, and this molecular arrangement will further induce the cell alignment and different differentiation capacities. In particular, articular cartilage tissue is known to have zonal collagen fiber and cell orientation to support different functions, where collagen fibers and chondrocytes align parallel, randomly, and perpendicular, respectively, to the surface of the joint. Therefore, cell alignment was evaluated in a cartilage model in this study. We used small angle X-ray scattering analysis to substantiate the polymer molecule alignment phenomenon. The cellular response was evaluated both in vitro and in vivo. Seeded mesenchymal stem cells (MSCs) showed different morphology and orientation on scaffolds, as a combined result of polymer molecule alignment and printed scaffold patterns. Gene expression results showed improved superficial zonal chondrogenic marker expression in parallel-aligned group. The cell alignment was successfully maintained in the animal model after 7 days with distinct MSC morphology between the casted and parallel printed scaffolds. This 3D printing induced polymer and cell alignment will have a significant impact on developing scaffold with controlled cell-material interactions for complex tissue engineering while avoiding complicated surface treatment, and therefore provides new concept for effective tissue repairing in future clinical applications. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2018. © 2018 Wiley Periodicals, Inc.