WorldWideScience

Sample records for altair lunar lander

  1. Altair Lunar Lander Development Status: Enabling Human Lunar Exploration

    Science.gov (United States)

    Laurini, Kathleen C.; Connolly, John F.

    2009-01-01

    As a critical part of the NASA Constellation Program lunar transportation architecture, the Altair lunar lander will return humans to the moon and enable a sustained program of lunar exploration. The Altair is to deliver up to four crew to the surface of the moon and return them to low lunar orbit at the completion of their mission. Altair will also be used to deliver large cargo elements to the lunar surface, enabling the buildup of an outpost. The Altair Project initialized its design using a minimum functionality approach that identified critical functionality required to meet a minimum set of Altair requirements. The Altair team then performed several analysis cycles using risk-informed design to selectively add back components and functionality to increase the vehicles safety and reliability. The analysis cycle results were captured in a reference Altair design. This design was reviewed at the Constellation Lunar Capabilities Concept Review, a Mission Concept Review, where key driving requirements were confirmed and the Altair Project was given authorization to begin Phase A project formulation. A key objective of Phase A is to revisit the Altair vehicle configuration, to better optimize it to complete its broad range of crew and cargo delivery missions. Industry was invited to partner with NASA early in the design to provide their insights regarding Altair configuration and key engineering challenges. A blended NASA-industry team will continue to refine the lander configuration and mature the vehicle design over the next few years. This paper will update the international community on the status of the Altair Project as it addresses the challenges of project formulation, including optimizing a vehicle configuration based on the work of the NASA Altair Project team, industry inputs and the plans going forward in designing the Altair lunar lander.

  2. Advanced Composite Thrust Chambers for the Altair Lunar Lander Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Radiation-cooled, bipropellant thrusters are being considered for the Ascent Module main engine of the Altair Lunar Lander. Currently, iridium-lined rhenium...

  3. Sensor systems for the Altair Lunar Lander:

    Energy Technology Data Exchange (ETDEWEB)

    Mariella, R

    2009-12-22

    The Altair Lunar Lander will enable astronauts to learn to live and work on the moon for extended periods of time, providing the experience needed to expand human exploration farther into the solar system. My overriding recommendation: Use independent and complementary [sometimes referred to as 'orthogonal'] techniques to disambiguate confounding/interfering signals. E.g.: a mass spectrometer ['MS'], which currently serves as a Majority Constituent Analyzer ['MCA'] can be very valuable in detecting the presence of a gaseous specie, so long as it falls on a mass-to-charge ratio ['m/z'] that is not already occupied by a majority constituent of cabin air. Consider the toxic gas, CO. Both N{sub 2} and CO have parent peaks of m/z = 28, and CO{sub 2} has a fragment peak at m/z = 28 [and at 16 and 12], so the N{sub 2} and CO{sub 2} m/z=28 signals could mask low, but potentially-dangerous levels of CO. However there are numerous surface-sensitive CO detectors, as well as tunable-diode-laser-based CO sensors that could provide independent monitoring of CO. Also, by appending a gas chromatograph ['GC'] as the front-end sample processer, prior to the inlet of the MS, one can rely upon the GC to separate CO from N{sub 2} and CO{sub 2}, providing the crew with another CO monitor. If the Altair Lunar Lander is able to include a Raman-based MCA for N{sub 2}, O{sub 2}, H{sub 2}O, and CO{sub 2}, then each type of MCA would have cross-references, providing more confidence in the ongoing performance of each technique, and decreasing the risk that one instrument might fail to perform properly, without being noticed. See, also Dr. Pete Snyder's work, which states 'An orthogonal technologies sensor system appears to be attractive for a high confidence detection of presence and temporal characterization of bioaerosols.' Another recommendation: Use data fusion for event detection to decrease uncertainty: tie together the

  4. Optical Navigation Plan and Strategy for the Lunar Lander Altair

    Science.gov (United States)

    Riedel, Joseph E.; Vaughan, Andrew T.; Werner, Robert A.; Wang, Tseng-Chan; Nolet, Simon; Myers, David M.; Mastrodemos, Nickolaos; Lee, Allan Y.; Grasso, Christopher; Ely, Todd A.; Bayard, David S.

    2010-01-01

    This paper reviews the currently planned Altair Optical Navigation (OpNav) system. The discussion includes description of the OpNav camera manifest. The Altair OpNav plan envisions one, OpNav camera assembly, with perhaps a functional backup that includes a wide angle-imager (of 40 deg to 60 deg field of view - FOV), and a narrow angle imager (of 1 to 3 deg FOV) co-mounted on a 2-degree-of-freedom gimbal. Both imagers are assumed to be relatively wide aperture and large dynamic range to provide excellent short-exposure images at mid-latitudes, and adequate images of longer-exposure near the poles. Landmark modeling and tracking methodology is discussed, including the stereophotoclinometry method assumed to be used to obtain high-accuracy terrain maps at lunar landing sites of 1 - 2 m, and 50 - 100 m elsewhere, using the images expected to be obtained from the Lunar Reconnaissance Orbiter (LRO). Characteristics of the OpNav navigation system are discussed and architecture and results from landing simulations presented, showing expected landing accuracies of better than 10m.

  5. Electrochromic Radiator Coupon Level Testing and Full Scale Thermal Math Modeling for Use on Altair Lunar Lander

    Science.gov (United States)

    Bannon, Erika T.; Bower, Chad E.; Sheth, Rubik; Stephan, Ryan

    2010-01-01

    In order to control system and component temperatures, many spacecraft thermal control systems use a radiator coupled with a pumped fluid loop to reject waste heat from the vehicle. Since heat loads and radiation environments can vary considerably according to mission phase, the thermal control system must be able to vary the heat rejection. The ability to "turn down" the heat rejected from the thermal control system is critically important when designing the system. Electrochromic technology as a radiator coating is being investigated to vary the amount of heat rejected by a radiator. Coupon level tests were performed to test the feasibility of this technology. Furthermore, thermal math models were developed to better understand the turndown ratios required by full scale radiator architectures to handle the various operation scenarios encountered during a mission profile for the Altair Lunar Lander. This paper summarizes results from coupon level tests as well as the thermal math models developed to investigate how electrochromics can be used to increase turn down ratios for a radiator. Data from the various design concepts of radiators and their architectures are outlined. Recommendations are made on which electrochromic radiator concept should be carried further for future thermal vacuum testing.

  6. Altair Lander Life Support: Requirement Analysis Cycles 1 and 2

    Science.gov (United States)

    Anderson, Molly; Curley, Su; Rotter, Henry; Yagoda, Evan

    2009-01-01

    Life support systems are a critical part of human exploration beyond low earth orbit. NASA s Altair Lunar Lander has unique missions to perform and will need a unique life support system to complete them. Initial work demonstrated a feasible minimally-functional Lander design. This work was completed in Design Analysis Cycles (DAC) 1, 2, and 3 were reported in a previous paper. On October 21, 2008, the Altair project completed the Mission Concept Review (MCR), moving the project into Phase A. In Phase A activities, the project is preparing for the System Requirements Review (SRR). Altair has conducted two Requirements Analysis Cycles (RACs) to begin this work. During this time, the life support team must examine the Altair mission concepts, Constellation Program level requirements, and interfaces with other vehicles and spacesuits to derive the right set of requirements for the new vehicle. The minimum functionality design meets some of these requirements already and can be easily adapted to meet others. But Altair must identify which will be more costly in mass, power, or other resources to meet. These especially costly requirements must be analyzed carefully to be sure they are truly necessary, and are the best way of explaining and meeting the true need. If they are necessary and clear, they become important mass threats to track at the vehicle level. If they are not clear or do not seem necessary to all stakeholders, Altair must work to redefine them or push back on the requirements writers. Additionally, the life support team is evaluating new technologies to see if they are more effective than the existing baseline design at performing necessary functions in Altair s life support system.

  7. Altair Lander Life Support: Requirements Analysis Cycles 1 and 2

    Science.gov (United States)

    Anderson, Molly; Curley, Su; Rotter, Henry; Yagoda, Evan

    2010-01-01

    Life support systems are a critical part of human exploration beyond low earth orbit. NASA's Altair Lunar Lander has unique missions to perform and will need a unique life support system to complete them. Initial work demonstrated a feasible minimally -functional Lander design. This work was completed in Design Analysis Cycles (DAC) 1, 2, and 3 were reported in a previous paper'. On October 21, 2008, the Altair project completed the Mission Concept Review (MCR), moving the project into Phase A. In Phase A activities, the project is preparing for the System Requirements Review (SRR). Altair has conducted two Requirements Analysis Cycles (RACs) to begin this work. During this time, the life support team must examine the Altair mission concepts, Constellation Program level requirements, and interfaces with other vehicles and spacesuits to derive the right set of requirements for the new vehicle. The minimum functionality design meets some of these requirements already and can be easily adapted to meet others. But Altair must identify which will be more costly in mass, power, or other resources to meet. These especially costly requirements must be analyzed carefully to be sure they are truly necessary, and are the best way of explaining and meeting the true need. If they are necessary and clear, they become important mass threats to track at the vehicle level. If they are not clear or do not seem necessary to all stakeholders, Altair must work to redefine them or push back on the requirements writers. Additionally, the life support team is evaluating new technologies to see if they are more effective than the existing baseline design at performing necessary functions in Altair's life support system.

  8. Lunar transit telescope lander design

    Science.gov (United States)

    Omar, Husam A.

    The Program Development group at NASA's Marshall Space Flight Center has been involved in studying the feasibility of placing a 16 meter telescope on the lunar surface to scan the skies using visible/ Ultraviolet/ Infrared light frequencies. The precursor telescope is now called the TRANSIT LUNAR TELESCOPE (LTT). The Program Development Group at Marshall Space Flight Center has been given the task of developing the basic concepts and providing a feasibility study on building such a telescope. The telescope should be simple with minimum weight and volume to fit into one of the available launch vehicles. The preliminary launch date is set for 2005. A study was done to determine the launch vehicle to be used to deliver the telescope to the lunar surface. The TITAN IV/Centaur system was chosen. The engineering challenge was to design the largest possible telescope to fit into the TITAN IV/Centaur launch system. The telescope will be comprised of the primary, secondary and tertiary mirrors and their supporting system in addition to the lander that will land the telescope on the lunar surface and will also serve as the telescope's base. The lunar lander should be designed integrally with the telescope in order to minimize its weight, thus allowing more weight for the telescope and its support components. The objective of this study were to design a lander that meets all the constraints of the launching system. The basic constraints of the TITAN IV/Centaur system are given.

  9. Space-Frame Lunar Lander

    Science.gov (United States)

    Curtis, Steven A.

    2010-01-01

    The space-frame lunar lander was originally intended to (1) land on rough lunar terrain, (2) deform itself to conform to the terrain so as to be able to remain there in a stable position and orientation, and (3) if required, further deform itself to perform various functions. In principle, the space-frame lunar lander could be used in the same way on Earth, as might be required, for example, to place meteorological sensors or a radio-communication relay station on an otherwise inaccessible mountain peak. the space-frame lunar lander would include a truss-like structure consisting mostly of a tetrahedral mesh of nodes connected by variable-length struts, the lengths of which would be altered in coordination to impart the desired overall size and shape to the structure. Thrusters (that is, small rocket engines), propellant tanks, a control system, and instrumentation would be mounted in and on the structure (see figure). Once it had landed and deformed itself to the terrain through coordinated variations in the lengths of the struts, the structure could be further deformed into another space-frame structure

  10. Robotic Lunar Landers for Science and Exploration

    Science.gov (United States)

    Cohen, B. A.; Hill, L. A.; Bassler, J. A.; Chavers, D. G.; Hammond, M. S.; Harris, D. W.; Kirby, K. W.; Morse, B. J.; Mulac, B. D.; Reed, C. L. B.

    2010-01-01

    NASA Marshall Space Flight Center and The Johns Hopkins University Applied Physics Laboratory has been conducting mission studies and performing risk reduction activities for NASA s robotic lunar lander flight projects. In 2005, the Robotic Lunar Exploration Program Mission #2 (RLEP-2) was selected as a Exploration Systems Mission Directorate precursor robotic lunar lander mission to demonstrate precision landing and definitively determine if there was water ice at the lunar poles; however, this project was canceled. Since 2008, the team has been supporting NASA s Science Mission Directorate designing small lunar robotic landers for diverse science missions. The primary emphasis has been to establish anchor nodes of the International Lunar Network (ILN), a network of lunar science stations envisioned to be emplaced by multiple nations. This network would consist of multiple landers carrying instruments to address the geophysical characteristics and evolution of the moon. Additional mission studies have been conducted to support other objectives of the lunar science community and extensive risk reduction design and testing has been performed to advance the design of the lander system and reduce development risk for flight projects. This paper describes the current status of the robotic lunar mission studies that have been conducted by the MSFC/APL Robotic Lunar Lander Development team, including the ILN Anchor Nodes mission. In addition, the results to date of the lunar lander development risk reduction efforts including high pressure propulsion system testing, structure and mechanism development and testing, long cycle time battery testing and combined GN&C and avionics testing will be addressed. The most visible elements of the risk reduction program are two autonomous lander test articles: a compressed air system with limited flight durations and a second version using hydrogen peroxide propellant to achieve significantly longer flight times and the ability to

  11. NASA's Robotic Lunar Lander Development Project

    Science.gov (United States)

    Cohen, Barbara A.

    2012-01-01

    Since early 2005, NASA's Robotic Lunar Lander Development (RLLD) office at NASA MSFC, in partnership with the Applied Physics Laboratory (APL), has developed mission concepts and preformed risk-reduction activities to address planetary science and exploration objectives uniquely met with landed missions. The RLLD team developed several concepts for lunar human-exploration precursor missions to demonstrate precision landing and in-situ resource utilization, a multi-node lunar geophysical network mission, either as a stand-alone mission, or as part of the International Lunar Network (ILN), a Lunar Polar Volatiles Explorer and a Mercury lander mission for the Planetary Science decadal survey, and an asteroid rendezvous and landing mission for the Exploration Precursor Robotics Mission (xPRM) office. The RLLD team has conducted an extensive number of risk-reduction activities in areas common to all lander concepts, including thruster testing, propulsion thermal control demonstration, composite deck design and fabrication, and landing leg stability and vibration. In parallel, the team has developed two robotic lander testbeds providing closed-loop, autonomous hover and descent activities for integration and testing of flight-like components and algorithms. A compressed-air test article had its first flight in September 2009 and completed over 150 successful flights. This small test article (107 kg dry/146 kg wet) uses a central throttleable thruster to offset gravity, plus 3 descent thrusters (37lbf ea) and 6 attitude-control thrusters (12lbf ea) to emulate the flight system with pulsed operation over approximately 10s of flight time. The test article uses carbon composite honeycomb decks, custom avionics (COTS components assembled in-house), and custom flight and ground software. A larger (206 kg dry/322 kg wet), hydrogen peroxide-propelled vehicle began flight tests in spring 2011 and fly over 30 successful flights to a maximum altitude of 30m. The monoprop testbed

  12. Scientific Preparations for Lunar Exploration with the European Lunar Lander

    OpenAIRE

    Carpenter, James D.; Fisackerly, Richard; De Rosa, Diego; Houdou, Berengere

    2012-01-01

    This paper discusses the scientific objectives for the ESA Lunar Lander Mission, which emphasise human exploration preparatory science and introduces the model scientific payload considered as part of the on-going mission studies, in advance of a formal instrument selection.

  13. Optimal Terminal Descent Guidance Logic to Achieve a Soft Lunar Touchdown

    Science.gov (United States)

    Lee, Allan Y.

    2011-01-01

    Altair Lunar Lander is the linchpin in the Constellation Program for human return to the Moon. In the 2010design reference mission, Altair is to be delivered to low Earth orbit by the Ares V heavy lift launch vehicle, and after subsequent docking with Orion in LEO, the Altair/Orion stack is delivered through trans-lunar injection (TLI). The Altair/Orion stack separates from the Ares V Earth departure stage shortly after TLI and continues the flight to the Moon as a single stack. Fig. 1 depicts one version of the Altair lunar lander.

  14. The ESA Lunar Lander and the search for Lunar Volatiles

    Science.gov (United States)

    Morse, A. D.; Barber, S. J.; Pillinger, J. M.; Sheridan, S.; Wright, I. P.; Gibson, E. K.; Merrifield, J. A.; Waltham, N. R.; Waugh, L. J.; Pillinger, C. T.

    2011-10-01

    Following the Apollo era the moon was considered a volatile poor body. Samples collected from the Apollo missions contained only ppm levels of water formed by the interaction of the solar wind with the lunar regolith [1]. However more recent orbiter observations have indicated that water may exist as water ice in cold polar regions buried within craters at concentrations of a few wt. % [2]. Infrared images from M3 on Chandrayaan-1 have been interpreted as showing the presence of hydrated surface minerals with the ongoing hydroxyl/water process feeding cold polar traps. This has been supported by observation of ephemeral features termed "space dew" [3]. Meanwhile laboratory studies indicate that water could be present in appreciable quantities in lunar rocks [4] and could also have a cometary source [5]. The presence of sufficient quantities of volatiles could provide a resource which would simplify logistics for long term lunar missions. The European Space Agency (ESA's Directorate of Human Spaceflight and Operations) have provisionally scheduled a robotic mission to demonstrate key technologies to enable later human exploration. Planned for launch in 2018, the primary aim is for precise automated landing, with hazard avoidance, in zones which are almost constantly illuminated (e.g. at the edge of the Shackleton crater at the lunar south pole). These regions would enable the solar powered Lander to survive for long periods > 6 months, but require accurate navigation to within 200m. Although landing in an illuminated area, these regions are close to permanently shadowed volatile rich regions and the analysis of volatiles is a major science objective of the mission. The straw man payload includes provision for a Lunar Volatile and Resources Analysis Package (LVRAP). The authors have been commissioned by ESA to conduct an evaluation of possible technologies to be included in L-VRAP which can be included within the Lander payload. Scientific aims are to demonstrate the

  15. COMPASS Final Report: Low Cost Robotic Lunar Lander

    Science.gov (United States)

    McGuire, Melissa L.; Oleson, Steven R.

    2010-01-01

    The COllaborative Modeling for the Parametric Assessment of Space Systems (COMPASS) team designed a robotic lunar Lander to deliver an unspecified payload (greater than zero) to the lunar surface for the lowest cost in this 2006 design study. The purpose of the low cost lunar lander design was to investigate how much payload can an inexpensive chemical or Electric Propulsion (EP) system deliver to the Moon s surface. The spacecraft designed as the baseline out of this study was a solar powered robotic lander, launched on a Minotaur V launch vehicle on a direct injection trajectory to the lunar surface. A Star 27 solid rocket motor does lunar capture and performs 88 percent of the descent burn. The Robotic Lunar Lander soft-lands using a hydrazine propulsion system to perform the last 10% of the landing maneuver, leaving the descent at a near zero, but not exactly zero, terminal velocity. This low-cost robotic lander delivers 10 kg of science payload instruments to the lunar surface.

  16. Lunar lander stage requirements based on the Civil Needs Data Base

    Science.gov (United States)

    Mulqueen, John A.

    1992-01-01

    This paper examines the lunar lander stages that will be necessary for the future exploration and development of the Moon. Lunar lander stage sizing is discussed based on the projected lunar payloads listed in the Civil Needs Data Base. Factors that will influence the lander stage design are identified and discussed. Some of these factors are (1) lunar orbiting and lunar surface lander bases; (2) implications of direct landing trajectories and landing from a parking orbit; (3) implications of landing site and parking orbit; (4) implications of landing site and parking orbit selection; (5) the use of expendable and reusable lander stages; and (6) the descent/ascent trajectories. Data relating the lunar lander stage design requirements to each of the above factors and others are presented in parametric form. These data will provide useful design data that will be applicable to future mission model modifications and design studies.

  17. Orbiting Depot and Reusable Lander for Lunar Transportation

    Science.gov (United States)

    Petro, Andrew

    2009-01-01

    A document describes a conceptual transportation system that would support exploratory visits by humans to locations dispersed across the surface of the Moon and provide transport of humans and cargo to sustain one or more permanent Lunar outpost. The system architecture reflects requirements to (1) minimize the amount of vehicle hardware that must be expended while maintaining high performance margins and (2) take advantage of emerging capabilities to produce propellants on the Moon while also enabling efficient operation using propellants transported from Earth. The system would include reusable single- stage lander spacecraft and a depot in a low orbit around the Moon. Each lander would have descent, landing, and ascent capabilities. A crew-taxi version of the lander would carry a pressurized crew module; a cargo version could carry a variety of cargo containers. The depot would serve as a facility for storage and for refueling with propellants delivered from Earth or propellants produced on the Moon. The depot could receive propellants and cargo sent from Earth on a variety of spacecraft. The depot could provide power and orbit maintenance for crew vehicles from Earth and could serve as a safe haven for lunar crews pending transport back to Earth.

  18. Lunar Lander Offloading Operations Using a Heavy-Lift Lunar Surface Manipulator System

    Science.gov (United States)

    Jefferies, Sharon A.; Doggett, William R.; Chrone, Jonathan; Angster, Scott; Dorsey, John T.; Jones, Thomas C.; Haddad, Michael E.; Helton, David A.; Caldwell, Darrell L., Jr.

    2010-01-01

    This study investigates the feasibility of using a heavy-lift variant of the Lunar Surface Manipulator System (LSMS-H) to lift and handle a 12 metric ton payload. Design challenges and requirements particular to handling heavy cargo were examined. Differences between the previously developed first-generation LSMS and the heavy-lift version are highlighted. An in-depth evaluation of the tip-over risk during LSMS-H operations has been conducted using the Synergistic Engineering Environment and potential methods to mitigate that risk are identified. The study investigated three specific offloading scenarios pertinent to current Lunar Campaign studies. The first involved offloading a large element, such as a habitat or logistics module, onto a mobility chassis with a lander-mounted LSMS-H and offloading that payload from the chassis onto the lunar surface with a surface-mounted LSMS-H. The second scenario involved offloading small pressurized rovers with a lander-mounted LSMS-H. The third scenario involved offloading cargo from a third-party lander, such as the proposed ESA cargo lander, with a chassis-mounted LSMS-H. In all cases, the analyses show that the LSMS-H can perform the required operations safely. However, Chariot-mounted operations require the addition of stabilizing outriggers, and when operating from the Lunar surface, LSMS-H functionality is enhanced by adding a simple ground anchoring system.

  19. NEXT-Lunar Lander -an Opportunity for a Close Look at the Lunar South Pole

    Science.gov (United States)

    Homeister, Maren; Thaeter, Joachim; Scheper, Marc; Apeldoorn, Jeffrey; Koebel, David

    The NEXT-Lunar Lander mission, as contracted by ESA and investigated by OHB-System and its industrial study team, has two main purposes. The first is technology demonstration for enabling technologies like propulsion-based soft precision landing for future planetary landing missions. This involves also enabling technology experiments, like fuel cell, life science and life support, which are embedded in the stationary payload of the lander. The second main and equally important aspect is the in-situ investigation of the surface of the Moon at the lunar South Pole by stationary payload inside the Lander, deployable payload to be placed in the vicinity of the lander and mobile payload carried by a rover. The currently assessed model payload includes 15 instruments on the lander and additional five on the rover. They are addressing the fields geophysics, geochemistry, geology and radio astronomy preparation. The mission is currently under investigation in frame of a phase A mission study contract awarded by ESA to two independent industrial teams, of which one is led by OHB-System. The phase A activities started in spring 2008 and were conducted until spring 2010. A phase B is expected shortly afterwards. The analysed mission architectures range from a Soyuz-based mission to a Shared-Ariane V class mission via different transfer trajectories. Depending on the scenario payload masses including servicing of 70 to 150 kg can be delivered to the lunar surface. The lander can offer different services to the payload. The stationary payload is powered and conditioned by the lander. Examples for embarked payloads are an optical camera system, a Radio Science Experiment and a radiation monitor. The lander surface payload is deployed to the lunar surface by a 5 DoF robotic arm and will be powered by the Lander. To this group of payloads belong seismometers, a magnetometer and an instrumented Mole. The mobile payload will be carried by a rover. The rover is equipped with its own

  20. Lunar Dust Environment and Plasma Package for Lunar Lander - Definition Study

    Science.gov (United States)

    Laifr, J.; Auster, U.; Bale, S. D.; Delory, G. T.; Devoto, P.; Farrell, W. M.; Glassmeier, K.; Guicking, L.; Halekas, J. S.; Hellinger, P.; Hercik, D.; Horanyi, M.; Kataria, D.; Kozacek, Z.; Mazelle, C. X.; Omura, Y.; Owen, C. J.; Pavelka, R.; Plaschke, F.; Rucker, H. O.; Saito, Y.; Sternovsky, Z.; Stverak, S.; Travnicek, P. M.; Turin, P.; Vana, P.

    2012-12-01

    Dust, the charged lunar surface, and the ambient plasma form a closely coupled system. The lunar surface is permanently under the influence of charging effects such as UV radiation or energetic solar wind and magnetospheric particles. The surface charging effects result in strong local electric fields which in turn may lead to mobilization and transport of charged dust particles. Furthermore, the environment can become even more complex in the presence of local crustal magnetic anomalies or due to sunlight/shadow transitions. A detail understanding of these phenomena and their dependence on external influences is a key point for future robotic and human lunar exploration and requires an appropriately tuned instrumentation for in-situ measurements. Here we present results from the concept and design phase A - a study of the Lunar Dust Environment and Plasma Package (L-DEPP), which has been proposed as one of model instrument payloads for the planned Lunar Lander mission of the European Space Agency. Focus is held on scientific objectives and return of the mission with respect to environmental and mission technology constraints and requirements. L-DEPP is proposed to consist of the following instruments: ELDA - Electrostatic Lunar Dust Analyser, LPM - Langmuir Probe and Magnetometer, LRU - Broadband radio receiver and electric field antennae and LEIA - Lunar Electron and Ion Analyser. In addition to the dust and plasma measurements the RADIO experiment will provide a site survey testing for future radio astronomy observations. Lunar Dust Environment and Plasma Package CAD Model

  1. Battery and Fuel Cell Development Goals for the Lunar Surface and Lander

    Science.gov (United States)

    Mercer, Carolyn R.

    2008-01-01

    NASA is planning a return to the moon and requires advances in energy storage technology for its planned lunar lander and lunar outpost. This presentation describes NASA s overall mission goals and technical goals for batteries and fuel cells to support the mission. Goals are given for secondary batteries for the lander s ascent stage and suits for extravehicular activity on the lunar surface, and for fuel cells for the lander s descent stage and regenerative fuel cells for outpost power. An overall approach to meeting these goals is also presented.

  2. Korean Lunar Lander - Concept Study for Landing-Site Selection for Lunar Resource Exploration

    Science.gov (United States)

    Kim, Kyeong Ja; Wöhler, Christian; Hyeok Ju, Gwang; Lee, Seung-Ryeol; Rodriguez, Alexis P.; Berezhnoy, Alexey A.; van Gasselt, Stephan; Grumpe, Arne; Aymaz, Rabab

    2016-06-01

    As part of the national space promotion plan and presidential national agendas South Korea's institutes and agencies under the auspices of the Ministry of Science, Information and Communication Technology and Future Planning (MSIP) are currently developing a lunar mission package expected to reach Moon in 2020. While the officially approved Korean Pathfinder Lunar Orbiter (KPLO) is aimed at demonstrating technologies and monitoring the lunar environment from orbit, a lander - currently in pre-phase A - is being designed to explore the local geology with a particular focus on the detection and characterization of mineral resources. In addition to scientific and potential resource potentials, the selection of the landing-site will be partly constrained by engineering constraints imposed by payload and spacecraft layout. Given today's accumulated volume and quality of available data returned from the Moon's surface and from orbital observations, an identification of landing sites of potential interest and assessment of potential hazards can be more readily accomplished by generating synoptic snapshots through data integration. In order to achieve such a view on potential landing sites, higher level processing and derivation of data are required, which integrates their spatial context, with detailed topographic and geologic characterizations. We are currently assessing the possibility of using fuzzy c-means clustering algorithms as a way to perform (semi-) automated terrain characterizations of interest. This paper provides information and background on the national lunar lander program, reviews existing approaches - including methods and tools - for landing site analysis and hazard assessment, and discusses concepts to detect and investigate elemental abundances from orbit and the surface. This is achieved by making use of manual, semi-automated as well as fully-automated remote-sensing methods to demonstrate the applicability of analyses. By considering given

  3. Lunar Dust Environment and Plasma Package for Lunar Lander - Denition Study

    Science.gov (United States)

    Travnicek, P. M.

    2012-04-01

    Dust, the charged lunar surface, and the ambient plasma form a closely coupled system. The lunar surface is permanently under the in turn may lead to mobilization and transport of charged dust particles. Furthermore, the environment can become even more complex in the presence of local crustal magnetic anomalies or due to sunlight/shadow transitions. A detail understanding of these phenomena and their dependence on external in uences is a key point for future robotic/human lunar exploration and requires an appropriately tuned instrumentation for in situ measurements. We present preliminary results from the concept and design phase A study of the Lunar Dust Environment and Plasma Package (L-DEPP), which has been proposed as one of model instrument payloads for the planned Lunar Lander mission of the European Space Agency. Focus is held on scientic objectives and return of the mission with respect to environmental and mission technology constraints and requirements. L-DEPP is proposed to consist of the following instruments: ELDA - Electrostatic lunar dust analyser, LP - Langmuir probe, RADIO - Broadband radio receiver and electric eld antennae, LEIA - Lunar electron and ion analyser, and MAG - Flux-gate magnetometer. In addition to the dust and plasma measurements the RADIO experiment will provide a site survey testing for future radio astronomy observations.

  4. Radio astronomy with the Lunar Lander: opening up the last unexplored frequency regime

    OpenAIRE

    Wolt, Marc Klein; Aminaei, Amin; Zarka, Philippe; Schrader, Jan-Rutger; Boonstra, Albert-Jan; FALCKE, Heino

    2012-01-01

    The active broadband (1 kHz-100 MHz) tripole antenna now envisaged to be placed on the European Lunar Lander located at the Lunar South Pole allows for sensitive measurements of the exosphere and ionosphere, and their interaction with the Earths magnetosphere, solar particles, wind and CMEs and studies of radio communication on the moon, that are essential for future lunar human and science exploration. In addition, the lunar South pole provides an excellent opportunity for radio astronomy. P...

  5. Instrument study of the Lunar Dust eXplorer (LDX) for a lunar lander mission

    Science.gov (United States)

    Li, Yanwei; Srama, Ralf; Henkel, Hartmut; Sternovsky, Zoltan; Kempf, Sascha; Wu, Yiyong; Grün, Eberhard

    2014-11-01

    One of the highest-priority issues for a future human or robotic lunar exploration is the lunar dust. This problem should be studied in depth in order to develop an environment model for a future lunar exploration. A future ESA lunar lander mission requires the measurement of dust transport phenomena above the lunar surface. Here, we describe an instrument design concept to measure slow and fast moving charged lunar dust which is based on the principle of charge induction. LDX has a low mass and measures the speed and trajectory of individual dust particles with sizes below one micrometer. Furthermore, LDX has an impact ionization target to monitor the interplanetary dust background. The sensor consists of three planes of segmented grid electrodes and each electrode is connected to an individual charge sensitive amplifier. Numerical signals were computed using the Coulomb software package. The LDX sensitive area is approximately 400 cm2. Our simulations reveal trajectory uncertainties of better than 2° with an absolute position accuracy of better than 2 mm.

  6. Overloading of Landing Based on the Deformation of the Lunar Lander

    Institute of Scientific and Technical Information of China (English)

    Chen Jinbao; Nie Hong

    2008-01-01

    Along with the progress of sciences and technologies, a lot of explorations are taken in many countries or organizations in succession. Lunar, the natural satellite of the earth, become a focus of the space discovery again recently because of its abundant resource and high value in use, Lunar exploration is also one of the most important projects in China, A primary objective of the probe in lunar is to soft-land a manned spacecraft on the lunar surface. The soft-landing system is the key composition of the lunar lander. In the overall design of lunar lender, the analysis of touchdown dynamics during landing stage is an important work. The rigid-flexible coupling dyuamics of a system with flexible cantilevers attached to the main landex is analyzed. The equations arc derived from the subsystem method. Results show that the deformations of cantilevers have considerable effect on the overloading of the lunar lander system.

  7. Development Of Thermal, Sensors And Drilling Systems, For Application On Lunar Lander Missions

    OpenAIRE

    Komle, NI; Hutter, ES; Kargl, G.; Ju, H; Gao, Y; Grygorczuk, J.

    2008-01-01

    The upcoming lunar lander missions, for example Chang’e 2 from CNSA and several mission proposals and studies currently under consideration at NASA (e.g. Neal et al., ROSES 2006 Proposal to NASA, 2006), ESA (e.g. Hufenbach, European Workshop on Lunar Landers, ESTEC, Noordwijk, The Netherlands, 2005; Foing, EPSC Abstracts, vol 2, EPSC2007-A-00422, European Planetary Science Congress, Potsdam, Germany, 2007) and JAXA, Japan (Matsumoto et al., Acta Astronautica, 59:68–76, 2006) offer new possibi...

  8. A simulation of the Four-way lunar Lander-Orbiter tracking mode for the Chang'E-5 mission

    Science.gov (United States)

    Li, Fei; Ye, Mao; Yan, Jianguo; Hao, Weifeng; Barriot, Jean-Pierre

    2016-06-01

    The Chang'E-5 mission is the third phase of the Chinese Lunar Exploration Program and will collect and return lunar samples. After sampling, the Orbiter and the ascent vehicle will rendezvous and dock, and both spacecraft will require high precision orbit navigation. In this paper, we present a novel tracking mode-Four-way lunar Lander-Orbiter tracking that possibly can be employed during the Chang'E-5 mission. The mathematical formulas for the Four-way lunar Lander-Orbiter tracking mode are given and implemented in our newly-designed lunar spacecraft orbit determination and gravity field recovery software, the LUnar Gravity REcovery and Analysis Software/System (LUGREAS). The simulated observables permit analysis of the potential contribution Four-way lunar Lander-Orbiter tracking could make to precision orbit determination for the Orbiter. Our results show that the Four-way lunar Lander-Orbiter Range Rate has better geometric constraint on the orbit, and is more sensitive than the traditional two-way range rate that only tracks data between the Earth station and lunar Orbiter. After combining the Four-way lunar Lander-Orbiter Range Rate data with the traditional two-way range rate data and considering the Lander position error and lunar gravity field error, the accuracy of precision orbit determination for the Orbiter in the simulation was improved significantly, with the biggest improvement being one order of magnitude, and the Lander position could be constrained to sub-meter level. This new tracking mode could provide a reference for the Chang'E-5 mission and have enormous potential for the positioning of future lunar farside Lander due to its relay characteristic.

  9. Japanese lunar robotics exploration by co-operation with lander and rover

    Indian Academy of Sciences (India)

    Takashi Kubota; Yasuharu Kunii; Yoji Kuroda

    2005-12-01

    Unmanned mobile robots for surface exploration of the Moon or planets have been extensively studied and developed.A lunar rover is expected to travel safely in a wide area and explore in detail. Japanese lunar robotics exploration is under study to conduct an unmanned geological survey in the vicinity of central peaks of impact craters for investigation of the sub-surface materials.This will give us the key information to study the lunar inner structure and understand the Moon ’s origin and evolution as well as to investigate the evolution of magma ocean and later igneous processes.To carry out the geological exploration in the central peak,lander and rover co-operative exploration is proposed.The working group has been conducting feasibility study of advance technologies.This paper addresses an overview of lunar exploration with lander and rover and also enumerates future technologies to be established. The rover R&D group has developed an innovative science micro rover with a new mobility system and a lightweight manipulator.The design and implementation of a science rover for the near future lunar missions requiring long traverses and scientific observations are described and some experimental results are presented.

  10. The method of landing sites selection for Russian lunar lander missions

    Science.gov (United States)

    Mitrofanov, Igor; Djachkova, Maya; Litvak, Maxim; Sanin, Anton

    2016-04-01

    Russian space agency is planning to launch two lunar landers in the upcoming years - Luna-Glob (2018) and Luna-Resurs (2021). Instruments installed on board the landers are designed to study volatiles and water ice, lunar exosphere, dust particles and regolith composition. As primary scientific interest is concentrated in the south polar region, the landing sites for both landers will be selected there. Since rugged terrain, conditions of solar illumination at high altitudes and necessity of direct radio communication with the Earth, it is essential to select an optimal landing site for each lander. We present the method of landing sites selection, which is based on geographical information systems (GIS) technologies to perform analysis, based on the criteria of surface suitability for landing, such as slopes, illumination conditions and Earth visibility. In addition, the estimations of hydrogen concentration in regolith based on LEND/LRO data were used to evaluate landing site candidates on possible water ice presence. The method gave us 6 canditates to land. Four of them are located in the impact craters: Simpelius D, Simpelius E, Boguslawsky C, Boussingault, and the other two are located to the north of Schomberger crater and to the north-west of Boguslawsky C crater and associated with probable basin-related materials. The main parameters of these sites will be presented with possible prioritization based on both technical requirements and scientific interest.

  11. Project UM-HAUL: A self-unloading reusable lunar lander

    Science.gov (United States)

    The establishment of a lunar base is technologically and financially challenging. Given the necessary resources and political support, it can be done. In addition to the geopolitical obstacles, however, there are logistical problems involved in establishing such bases that can only be overcome with the acquisition of a significant transportation and communications network in the Earth-Moon spatial region. Considering the significant number of payloads that will be required in this process, the mass-specific cost of launching these payloads, and the added risk and cost of human presence in space, it is clearly desirable to automate major parts of such an operation. One very costly and time-consuming factor in this picture is the delivery of payloads to the Moon. Foreseeable payloads would include atmospheric modules, inflatable habitat kits, energy and oxygen plant elements, ground vehicles, laboratory modules, crew supplies, etc. The duration of high-risk human presence on the Moon could be greatly reduced if all such payloads were delivered to the prospective base site in advance of crew arrival. In this view, the idea of a 'Self-Unloading Reusable Lunar Lander' (SURLL) arises naturally. The general scenario depicts the lander being brought to low lunar orbit (LLO) from Earth atop a generic Orbital Transfer Vehicle (OTV). From LLO, the lander shuttles payloads down to the lunar surface, where, by means of some resident, detachable unloading device, it deploys the payloads and returns to orbit. The general goal is for the system to perform with maximum payload capability, automation, and reliability, while also minimizing environmental hazards, servicing needs, and mission costs. Our response to this demand is UM-HAUL, or the UnManned Heavy pAyload Unloader and Lander. The complete study includes a system description, along with a preliminary cost analysis and a design status assessment.

  12. Characterisation of Potential Landing Sites for the European Space Agency's Lunar Lander Project

    CERN Document Server

    De Rosa, D; Cahill, J T; Lutz, T; Crawford, I; Hackwill, T; van Gasselt, S; Neukum, G; Witte, L; McGovern, A; Carpenter, J D

    2012-01-01

    This article describes the characterization activities of the landing sites currently envisaged for the Lunar Lander mission of the European Space Agency. These sites have been identified in the South Pole Region (-85{\\deg} to -90{\\deg} latitude) based on favourable illumination conditions, which make it possible to have a long-duration mission with conventional power and thermal control subsystems, capable of enduring relatively short periods of darkness (in the order of tens of hours), instead of utilising Radioisotope Heating Units. The illumination conditions are simulated at the potential landing sites based on topographic data from the Lunar Orbiter Laser Altimeter (LOLA), using three independent tools. Risk assessment of the identified sites is also being performed through independent studies. Long baseline slopes are assessed based on LOLA, while craters and boulders are detected both visually and using computer tools in Lunar Reconnaissance Orbiter Camera (LROC) images, down to a size of less than 2 ...

  13. Radio astronomy with the European Lunar Lander: Opening up the last unexplored frequency regime

    Science.gov (United States)

    Klein Wolt, Marc; Aminaei, Amin; Zarka, Philippe; Schrader, Jan-Rutger; Boonstra, Albert-Jan; Falcke, Heino

    2012-12-01

    The Moon is a unique location in our solar system and provides important information regarding the exposure to free space that is essential for future human space exploration to mars and beyond. The active broadband (100 kHz-100 MHz) tripole antenna now envisaged to be placed on the European Lunar Lander located at the Lunar South Pole allows for sensitive measurements of the exosphere and ionosphere, and their interaction with the Earths magnetosphere, solar particles, wind and CMEs and studies of radio communication on the Moon, that are essential for future lunar human and science exploration. In addition, the Lunar South Pole provides an excellent opportunity for radio astronomy. Placing a single radio antenna in an eternally dark crater or behind a mountain at the South (or North) pole would potentially provide perfect shielding from man-made radio interference (RFI), absence of ionospheric distortions, and high temperature and antenna gain stability that allows detection of the 21 cm wave emission from pristine hydrogen formed after the Big Bang and into the period where the first stars formed. A detection of the 21 cm line from the Moon at these frequencies would allow for the first time a clue on the distribution and evolution on mass in the early universe between the Epoch of Recombination and Epoch of Reionization (EoR). Next to providing a cosmological breakthrough, a single lunar radio antenna would allow for studies of the effect of solar flares and coronal mass ejections (CMEs) on the solar wind at distances close to Earth (space weather) and would open up the study of low frequency radio events (flares and pulses) from planets such as Jupiter and Saturn, which are known to emit bright (kJy-MJy) radio emission below 30 MHz (Jester and Falcke, 2009). Finally, a single radio antenna on the lunar lander would pave the way for a future large lunar radio interferometer; not only will it demonstrate the possibilities for lunar radio science and open up the

  14. An Approach to Designing Passive Self-Leveling Landing Gear with Application to the Lunar Lander

    Science.gov (United States)

    Rippere, Troy B.; Wiens, Gloria J.

    2010-01-01

    Once the lunar lander has touched down on the moon problems can occur if the crew module is not level. To mitigate, compliant landing gear provide a solution that would allow the module to be leveled once it has landed on some ground slope. The work presented here uses compliant joints, or flexures, for each leg of the module and optimizes the mechanics of these flexures such that the module can be passively leveled over a range of landing slopes. Preliminary results suggest that for landing on a slope of up to 12 deg the effective slope of the module can be reduced to a maximum of 2.5 deg.

  15. Radio astronomy with the Lunar Lander: opening up the last unexplored frequency regime

    CERN Document Server

    Wolt, Marc Klein; Zarka, Philippe; Schrader, Jan-Rutger; Boonstra, Albert-Jan; Falcke, Heino

    2012-01-01

    The active broadband (1 kHz-100 MHz) tripole antenna now envisaged to be placed on the European Lunar Lander located at the Lunar South Pole allows for sensitive measurements of the exosphere and ionosphere, and their interaction with the Earths magnetosphere, solar particles, wind and CMEs and studies of radio communication on the moon, that are essential for future lunar human and science exploration. In addition, the lunar South pole provides an excellent opportunity for radio astronomy. Placing a single radio antenna in an eternally dark crater or behind a mountain at the south (or north) pole would potentially provide perfect shielding from man-made radio interference (RFI), absence of ionospheric distortions, and high temperature and antenna gain stability that allows detection of the 21 cm wave emission from pristine hydrogen formed after the big bang and into the period where the first stars formed. A detection of the 21 cm line from the moon at these frequencies would allow for the first time a clue ...

  16. Research on Impact Process of Lander Footpad against Simulant Lunar Soils

    Directory of Open Access Journals (Sweden)

    Bo Huang

    2015-01-01

    Full Text Available The safe landing of a Moon lander and the performance of the precise instruments it carries may be affected by too heavy impact on touchdown. Accordingly, landing characteristics have become an important research focus. Described in this paper are model tests carried out using simulated lunar soils of different relative densities (called “simulant” lunar soils below, with a scale reduction factor of 1/6 to consider the relative gravities of the Earth and Moon. In the model tests, the lander was simplified as an impact column with a saucer-shaped footpad with various impact landing masses and velocities. Based on the test results, the relationships between the footpad peak feature responses and impact kinetic energy have been analyzed. Numerical simulation analyses were also conducted to simulate the vertical impact process. A 3D dynamic finite element model was built for which the material parameters were obtained from laboratory test data. When compared with the model tests, the numerical model proved able to effectively simulate the dynamic characteristics of the axial forces, accelerations, and penetration depths of the impact column during landing. This numerical model can be further used as required for simulating oblique landing impacts.

  17. Mobile Payload Element (MPE): Concept study for a sample fetching rover for the ESA Lunar Lander Mission

    Science.gov (United States)

    Haarmann, R.; Jaumann, R.; Claasen, F.; Apfelbeck, M.; Klinkner, S.; Richter, L.; Schwendner, J.; Wolf, M.; Hofmann, P.

    2012-12-01

    In late 2010, the DLR Space Administration invited the German industry to submit a proposal for a study about a Mobile Payload Element (MPE), which could be a German national contribution to the ESA Lunar Lander Mission. Several spots in the south polar region of the moon come into consideration as landing site for this mission. All possible spots provide sustained periods of solar illumination, interrupted by darkness periods of several 10 h. The MPE is outlined to be a small, autonomous, innovative vehicle in the 10 kg class for scouting and sampling the environment in the vicinity of the lunar landing site. The novel capabilities of the MPE will be to acquire samples of lunar regolith from surface, subsurface as well as shadowed locations, define their geological context and bring them back to the lander. This will enable access to samples that are not contaminated by the lander descent propulsion system plumes to increase the chances of detecting any indigenous lunar volatiles contained within the samples. Kayser-Threde, as prime industrial contractor for Phase 0/A, has assembled for this study a team of German partners with relevant industrial and institutional competence in space robotics and lunar science. The primary scientific objective of the MPE is to acquire clearly documented samples and to bring them to the lander for analysis with the onboard Lunar Dust Analysis Package (L-DAP) and Lunar Volatile Resources Analysis Package (L-VRAP). Due to the unstable nature of volatiles, which are of particular scientific interest, the MPE design needs to provide a safe storage and transportation of the samples to the lander. The proposed MPE rover concept has a four-wheeled chassis configuration with active suspension, being a compromise between innovation and mass efficiency. The suspension chosen allows a compact stowage of the MPE on the lander as well as precise alignment of the solar generators and instruments. Since therefore no further complex mechanics are

  18. Terrain Hazard Detection and Avoidance During the Descent and Landing Phase of the Altair Mission

    Science.gov (United States)

    Strhan, Alan L.; Johnson, Andrew E.

    2010-01-01

    This paper describes some of the environmental challenges associated with landing a crewed or robotic vehicle at any certified location on the lunar surface (i.e. not a mountain peak, permanently dark crater floor or overly steep terrain), with a specific focus on how hazard detection technology may be incorporated to mitigate these challenges. For this discussion, the vehicle of interest is the Altair Lunar Lander, being the vehicle element of the NASA Constellation Program aimed at returning humans to the moon. Lunar environmental challenges for such global lunar access primarily involve terrain and lighting. These would include sizable rocks and slopes, which are more concentrated in highland areas; small craters, which are essentially everywhere independent of terrain type; and for polar regions, low-angle sunlight, which leaves significant terrain in shadow. To address these issues, as well as to provide for precision landing, the Autonomous Landing and Hazard Avoidance Technology (ALHAT) Project was charted by NASA Headquarters, and has since been making significant progress. The ALHAT team considered several sensors for real-time hazard detection, settling on the use of a Flash Lidar mounted to a high-speed gimbal, with computationally intense image processing and elevation interpretation software. The Altair Project has been working with the ALHAT team to understand the capabilities and limitations of their concept, and has incorporated much of the ALHAT hazard detection system into the Altair baseline design. This integration, along with open issues relating to computational performance, the need for system redundancy, and potential pilot interaction, will be explored further in this paper.

  19. Lunar Soil Erosion Physics for Landing Rockets on the Moon

    Science.gov (United States)

    Clegg, Ryan N.; Metzger, Philip T.; Huff, Stephen; Roberson, Luke B.

    2008-01-01

    To develop a lunar outpost, we must understand the blowing of soil during launch and landing of the new Altair Lander. For example, the Apollo 12 Lunar Module landed approximately 165 meters from the deactivated Surveyor Ill spacecraft, scouring its surfaces and creating numerous tiny pits. Based on simulations and video analysis from the Apollo missions, blowing lunar soil particles have velocities up to 2000 m/s at low ejection angles relative to the horizon, reach an apogee higher than the orbiting Command and Service Module, and travel nearly the circumference of the Moon [1-3]. The low ejection angle and high velocity are concerns for the lunar outpost.

  20. Optimization of a Lunar Pallet Lander Reinforcement Structure Using a Genetic Algorithm

    Science.gov (United States)

    Burt, Adam O.; Hull, Patrick V.

    2014-01-01

    This paper presents a design automation process using optimization via a genetic algorithm to design the conceptual structure of a Lunar Pallet Lander. The goal is to determine a design that will have the primary natural frequencies at or above a target value as well as minimize the total mass. Several iterations of the process are presented. First, a concept optimization is performed to determine what class of structure would produce suitable candidate designs. From this a stiffened sheet metal approach was selected leading to optimization of beam placement through generating a two-dimensional mesh and varying the physical location of reinforcing beams. Finally, the design space is reformulated as a binary problem using 1-dimensional beam elements to truncate the design space to allow faster convergence and additional mechanical failure criteria to be included in the optimization responses. Results are presented for each design space configuration. The final flight design was derived from these results.

  1. Lunar Infrared Spectrometer to Characterize the Hydration of Regolith in the Vicinity of a Lander

    Science.gov (United States)

    Ivanov, Andrey; Fedorova, Anna; Korablev, Oleg; Mantsevich, Sergey; Stepanov, Alexander; Kalinnikov, Yury

    Lunar Infrared Spectrometer (LIS) is an experiment onboard Luna-Globe (Luna 25) and Luna-Resurce (Luna 27) Russian surface missions. It is a pencil-beam spectrometer to be pointed by a robotic arm of the landing module, and is intended for study of the lunar surface composition in the vicinity of the lander. The instrument’s field of view (FOV) of 1(°) is co-aligned with the FOV (45(°) ) of a stereo TV camera. The spectrometer will provide measurements of selected surface areas in the spectral range of 1.15-3.3 mum. The spectral selection is provided by acousto-optic tunable filter (AOTF), which scans the spectral range sequentially. Electrical command of the AOTF allows selecting the spectral sampling, and permits a random access if needed. The spectral resolution is better than 25 cm (-1) . The instrument’s mass is 1.3 kg. The primary goal of the experiment is to detect the regolith hydration at 3mum, identifying its form from the shape of the spectrum, and to follow its changes during the day/shadow pattern. Also, LIS will allow to study the mineralogical composition from mineral signatures within the spectral range, and will serve for selection of samples to be analyzed by other instruments.

  2. Overview on the Small Lunar Lander Slim and its Planetary Protection Plan

    Science.gov (United States)

    Sakai, Shinichiro

    2016-07-01

    A small experimental spacecraft "SLIM" is proposed at ISAS/JAXA to demonstrate a "pin-point" landing on the lunar surface. The spacecraft is designed to achieve 100 m-order landing ellipse in order to satisfy such needs for future surface explorations on the Moon. Since the conventional ground-based navigation system is not effective enough to achieve this level of the landing accuracy, a novel, autonomous and image-based onboard navigation system will be developed and demonstrated by the SLIM mission along with several other new technologies. Some of these new technologies aim to realize a light-weight spacecraft for future interplanetary missions. The SLIM spacecraft itself weighs ˜590 kg wet mass and ˜130kg dry mass, both of which are much lighter than any previous lunar landers. Its main engine consists of 500N-class bipropellant thruster with N2H4 and MON3. Although the SLIM's main mission is technology and operation demonstration described above, additional small scientific payloads will also be employed. Its launcher is JAXA's Epsilon rocket, and the present target launch period is in early 2020. Based on the mission scope and mission design already mentioned, the SLIM team proposes that its COSPAR planetary protection policy categorization will be the Category II, which mainly requires a planetary protection plan and other documentations, including the spacecraft organic inventory. In this talk, the overview of the SLIM mission and its planetary protection plan will be presented and discussed for requesting the COSPAR-PPP to support the Category II proposal in a timely manner.

  3. Low-Cost Suite of COTS GNC Sensors for Precision Lunar Lander Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We are proposing to exploit (in an innovative way) existing, readily available, GNC sensors for the purpose of precision lunar landing. Majority of previous lunar...

  4. NASA Lunar Dust Filtration and Separations Workshop Report

    Science.gov (United States)

    Agui, Juan H.; Stocker, Dennis P.

    2009-01-01

    NASA Glenn Research Center hosted a 2.5-day workshop, entitled "NASA Lunar Dust Filtration and Separations Workshop" at the Ohio Aerospace Institute in Cleveland, Ohio, on November 18 to 20, 2008. The purpose of the workshop was to address the issues and challenges of particulate matter removal from the cabin atmospheres in the Altair lunar lander, lunar habitats, and in pressurized rovers. The presence of lunar regolith dust inside the pressurized volumes was a theme of particular interest. The workshop provided an opportunity for NASA, industry experts, and academia to identify and discuss the capabilities of current and developing air and gas particulate matter filtration and separations technologies as they may apply to NASA s needs. A goal of the workshop was to provide recommendations for strategic research areas in cabin atmospheric particulate matter removal and disposal technologies that will advance and/or supplement the baseline approach for these future lunar surface exploration missions.

  5. Compact, Deep-Penetrating Geothermal Heat Flow Instrumentation for Lunar Landers

    Science.gov (United States)

    Nagihara, S.; Zacny, K.; Hedlund, M.; Taylor, P. T.

    2012-01-01

    Geothermal heat flow is obtained as a product of the two separate measurements of geothermal gradient in, and thermal conductivity of, the vertical soi/rock/regolith interval penetrated by the instrument. Heat flow measurements are a high priority for the geophysical network missions to the Moon recommended by the latest Decadal Survey [I] and previously the International Lunar Network [2]. The two lunar-landing missions planned later this decade by JAXA [3] and ESA [4] also consider geothermal measurements a priority.

  6. A MATLAB based Distributed Real-time Simulation of Lander-Orbiter-Earth Communication for Lunar Missions

    Science.gov (United States)

    Choudhury, Diptyajit; Angeloski, Aleksandar; Ziah, Haseeb; Buchholz, Hilmar; Landsman, Andre; Gupta, Amitava; Mitra, Tiyasa

    Lunar explorations often involve use of a lunar lander , a rover [1],[2] and an orbiter which rotates around the moon with a fixed radius. The orbiters are usually lunar satellites orbiting along a polar orbit to ensure visibility with respect to the rover and the Earth Station although with varying latency. Communication in such deep space missions is usually done using a specialized protocol like Proximity-1[3]. MATLAB simulation of Proximity-1 have been attempted by some contemporary researchers[4] to simulate all features like transmission control, delay etc. In this paper it is attempted to simulate, in real time, the communication between a tracking station on earth (earth station), a lunar orbiter and a lunar rover using concepts of Distributed Real-time Simulation(DRTS).The objective of the simulation is to simulate, in real-time, the time varying communication delays associated with the communicating elements with a facility to integrate specific simulation modules to study different aspects e.g. response due to a specific control command from the earth station to be executed by the rover. The hardware platform comprises four single board computers operating as stand-alone real time systems (developed by MATLAB xPC target and inter-networked using UDP-IP protocol). A time triggered DRTS approach is adopted. The earth station, the orbiter and the rover are programmed as three standalone real-time processes representing the communicating elements in the system. Communication from one communicating element to another constitutes an event which passes a state message from one element to another, augmenting the state of the latter. These events are handled by an event scheduler which is the fourth real-time process. The event scheduler simulates the delay in space communication taking into consideration the distance between the communicating elements. A unique time synchronization algorithm is developed which takes into account the large latencies in space

  7. Level of Automation and Failure Frequency Effects on Simulated Lunar Lander Performance

    Science.gov (United States)

    Marquez, Jessica J.; Ramirez, Margarita

    2014-01-01

    A human-in-the-loop experiment was conducted at the NASA Ames Research Center Vertical Motion Simulator, where instrument-rated pilots completed a simulated terminal descent phase of a lunar landing. Ten pilots participated in a 2 x 2 mixed design experiment, with level of automation as the within-subjects factor and failure frequency as the between subjects factor. The two evaluated levels of automation were high (fully automated landing) and low (manual controlled landing). During test trials, participants were exposed to either a high number of failures (75% failure frequency) or low number of failures (25% failure frequency). In order to investigate the pilots' sensitivity to changes in levels of automation and failure frequency, the dependent measure selected for this experiment was accuracy of failure diagnosis, from which D Prime and Decision Criterion were derived. For each of the dependent measures, no significant difference was found for level of automation and no significant interaction was detected between level of automation and failure frequency. A significant effect was identified for failure frequency suggesting failure frequency has a significant effect on pilots' sensitivity to failure detection and diagnosis. Participants were more likely to correctly identify and diagnose failures if they experienced the higher levels of failures, regardless of level of automation

  8. The ALTAIR Meteor Measurements Program

    Science.gov (United States)

    Cooke, William J.

    2007-01-01

    Established in late 2006, the Meteor Measurements Program is in the process of using the ALTAIR radar located on Kwajelein Atoll to obtain radar observations of sporadic and shower meteoroids. The goals are to determine meteoroid masses, orbits, ballistic coefficients and densities, which shall be provided to the Meteoroid Environment Office (MEO) at Marshall Space Flight Center. These data and analyses shall then be used by the MEO to 1) Add a realistic density distribution to the new Meteoroid Engineering Model (MEM), which is the specified environment for vehicle design in the NASA Constellation (return to Moon) program. This program is the implementation of President Bush's Vision for Space Exploration (VSE). 2) Investigate the meteoroid velocity distribution at smaller masses. 3) Strive to understand the differences (biases) in meteoroid observations produced by systems like ALTAIR and those of the meteor patrol radars, such as the University of Western Ontario's CMOR system. This paper outlines the program details and its progress.

  9. Radar Altimetry and Velocimetry for Inertial Navigation: A Lunar Landing Example

    Science.gov (United States)

    Ely, Todd A.; Chau, Alexandra H.

    2011-01-01

    The traditional role that altimetry and velocimetry have played in spacecraft landings is to provide a direct measure of the spacecraft's surface altitude and surface relative velocity; however, their role in determining an inertial position and velocity has seen limited investigation. In this study, inertially sensitive measurement models for altimetry and velocimetry are formulated that include relevant instrument and environment error models. These models are applied and simulated for a realistic lunar landing scenario that is based on recent work for NASA's Altair lander. The preliminary results indicate that inertial landing accuracies of several meters are possible.

  10. Lunar Landing Operational Risk Model

    Science.gov (United States)

    Mattenberger, Chris; Putney, Blake; Rust, Randy; Derkowski, Brian

    2010-01-01

    Characterizing the risk of spacecraft goes beyond simply modeling equipment reliability. Some portions of the mission require complex interactions between system elements that can lead to failure without an actual hardware fault. Landing risk is currently the least characterized aspect of the Altair lunar lander and appears to result from complex temporal interactions between pilot, sensors, surface characteristics and vehicle capabilities rather than hardware failures. The Lunar Landing Operational Risk Model (LLORM) seeks to provide rapid and flexible quantitative insight into the risks driving the landing event and to gauge sensitivities of the vehicle to changes in system configuration and mission operations. The LLORM takes a Monte Carlo based approach to estimate the operational risk of the Lunar Landing Event and calculates estimates of the risk of Loss of Mission (LOM) - Abort Required and is Successful, Loss of Crew (LOC) - Vehicle Crashes or Cannot Reach Orbit, and Success. The LLORM is meant to be used during the conceptual design phase to inform decision makers transparently of the reliability impacts of design decisions, to identify areas of the design which may require additional robustness, and to aid in the development and flow-down of requirements.

  11. 3-D Flash Lidar Performance in Flight Testing on the Morpheus Autonomous, Rocket-Propelled Lander to a Lunar-Like Hazard Field

    Science.gov (United States)

    Roback, Vincent E.; Amzajerdian, Farzin; Bulyshev, Alexander E.; Brewster, Paul F.; Barnes, Bruce W.

    2016-01-01

    For the first time, a 3-D imaging Flash Lidar instrument has been used in flight to scan a lunar-like hazard field, build a 3-D Digital Elevation Map (DEM), identify a safe landing site, and, in concert with an experimental Guidance, Navigation, and Control (GN&C) system, help to guide the Morpheus autonomous, rocket-propelled, free-flying lander to that safe site on the hazard field. The flight tests served as the TRL 6 demo of the Autonomous Precision Landing and Hazard Detection and Avoidance Technology (ALHAT) system and included launch from NASA-Kennedy, a lunar-like descent trajectory from an altitude of 250m, and landing on a lunar-like hazard field of rocks, craters, hazardous slopes, and safe sites 400m down-range. The ALHAT project developed a system capable of enabling safe, precise crewed or robotic landings in challenging terrain on planetary bodies under any ambient lighting conditions. The Flash Lidar is a second generation, compact, real-time, air-cooled instrument. Based upon extensive on-ground characterization at flight ranges, the Flash Lidar was shown to be capable of imaging hazards from a slant range of 1 km with an 8 cm range precision and a range accuracy better than 35 cm, both at 1-delta. The Flash Lidar identified landing hazards as small as 30 cm from the maximum slant range which Morpheus could achieve (450 m); however, under certain wind conditions it was susceptible to scintillation arising from air heated by the rocket engine and to pre-triggering on a dust cloud created during launch and transported down-range by wind.

  12. The Mission Assessment Post Processor (MAPP): A New Tool for Performance Evaluation of Human Lunar Missions

    Science.gov (United States)

    Williams, Jacob; Stewart, Shaun M.; Lee, David E.; Davis, Elizabeth C.; Condon, Gerald L.; Senent, Juan

    2010-01-01

    The National Aeronautics and Space Administration s (NASA) Constellation Program paves the way for a series of lunar missions leading to a sustained human presence on the Moon. The proposed mission design includes an Earth Departure Stage (EDS), a Crew Exploration Vehicle (Orion) and a lunar lander (Altair) which support the transfer to and from the lunar surface. This report addresses the design, development and implementation of a new mission scan tool called the Mission Assessment Post Processor (MAPP) and its use to provide insight into the integrated (i.e., EDS, Orion, and Altair based) mission cost as a function of various mission parameters and constraints. The Constellation architecture calls for semiannual launches to the Moon and will support a number of missions, beginning with 7-day sortie missions, culminating in a lunar outpost at a specified location. The operational lifetime of the Constellation Program can cover a period of decades over which the Earth-Moon geometry (particularly, the lunar inclination) will go through a complete cycle (i.e., the lunar nodal cycle lasting 18.6 years). This geometry variation, along with other parameters such as flight time, landing site location, and mission related constraints, affect the outbound (Earth to Moon) and inbound (Moon to Earth) translational performance cost. The mission designer must determine the ability of the vehicles to perform lunar missions as a function of this complex set of interdependent parameters. Trade-offs among these parameters provide essential insights for properly assessing the ability of a mission architecture to meet desired goals and objectives. These trades also aid in determining the overall usable propellant required for supporting nominal and off-nominal missions over the entire operational lifetime of the program, thus they support vehicle sizing.

  13. Lidar Sensor Performance in Closed-Loop Flight Testing of the Morpheus Rocket-Propelled Lander to a Lunar-Like Hazard Field

    Science.gov (United States)

    Roback, Vincent E.; Pierrottet, Diego F.; Amzajerdian, Farzin; Barnes, Bruce W.; Hines, Glenn D.; Petway, Larry B.; Brewster, Paul F.; Kempton, Kevin S.; Bulyshev, Alexander E.

    2015-01-01

    For the first time, a suite of three lidar sensors have been used in flight to scan a lunar-like hazard field, identify a safe landing site, and, in concert with an experimental Guidance, Navigation, and Control (GN&C) system, guide the Morpheus autonomous, rocket-propelled, free-flying test bed to a safe landing on the hazard field. The lidar sensors and GN&C system are part of the Autonomous Precision Landing and Hazard Detection and Avoidance Technology (ALHAT) project which has been seeking to develop a system capable of enabling safe, precise crewed or robotic landings in challenging terrain on planetary bodies under any ambient lighting conditions. The 3-D imaging flash lidar is a second generation, compact, real-time, air-cooled instrument developed from a number of cutting-edge components from industry and NASA and is used as part of the ALHAT Hazard Detection System (HDS) to scan the hazard field and build a 3-D Digital Elevation Map (DEM) in near-real time for identifying safe sites. The flash lidar is capable of identifying a 30 cm hazard from a slant range of 1 km with its 8 cm range precision at 1 sigma. The flash lidar is also used in Hazard Relative Navigation (HRN) to provide position updates down to a 250m slant range to the ALHAT navigation filter as it guides Morpheus to the safe site. The Doppler Lidar system has been developed within NASA to provide velocity measurements with an accuracy of 0.2 cm/sec and range measurements with an accuracy of 17 cm both from a maximum range of 2,200 m to a minimum range of several meters above the ground. The Doppler Lidar's measurements are fed into the ALHAT navigation filter to provide lander guidance to the safe site. The Laser Altimeter, also developed within NASA, provides range measurements with an accuracy of 5 cm from a maximum operational range of 30 km down to 1 m and, being a separate sensor from the flash lidar, can provide range along a separate vector. The Laser Altimeter measurements are also

  14. 月球着陆器着陆缓冲机构设计方法研究%Study on Design Method of Landing Gear for Lunar Lander

    Institute of Scientific and Technical Information of China (English)

    曾福明; 杨建中; 满剑锋; 朱汪; 徐青华; 罗敏

    2011-01-01

    着陆缓冲机构是着陆器实现月球或行星探测软着陆的关键部件之一,它直接关系到软着陆探测任务的成败.文章根据着陆缓冲机构的功能和特点,提出了从概念设计、方案比较到方案确定、详细分析和试验验证的方案设计流程,并结合月球着陆器着陆缓冲机构的研制经验,对每个阶段的设计方法进行了阐述,可供后续深空探测任务着陆缓冲机构设计借鉴和参考.%Landing gear is a key component for soft-landing exploration on the Moon or planet,which determines directly the success of soft-landing exploration mission. Based on the functions and characteristics of landing devices, this paper presents a design guideline which consists of concept design, scheme comparison, scheme confirmation, detailed analysis, and test verification. The design method of each step is also shown, which combines the research experience from soft-landing gear designs of lunar lander. The landing gear design method and process can be used as a reference to soft-landing and buffer gear design in the subsequent deep space exploration missions.

  15. Development of Life Support System Technologies for Human Lunar Missions

    Science.gov (United States)

    Barta, Daniel J.; Ewert, Michael K.

    2009-01-01

    With the Preliminary Design Review (PDR) for the Orion Crew Exploration Vehicle planned to be completed in 2009, Exploration Life Support (ELS), a technology development project under the National Aeronautics and Space Administration s (NASA) Exploration Technology Development Program, is focusing its efforts on needs for human lunar missions. The ELS Project s goal is to develop and mature a suite of Environmental Control and Life Support System (ECLSS) technologies for potential use on human spacecraft under development in support of U.S. Space Exploration Policy. ELS technology development is directed at three major vehicle projects within NASA s Constellation Program (CxP): the Orion Crew Exploration Vehicle (CEV), the Altair Lunar Lander and Lunar Surface Systems, including habitats and pressurized rovers. The ELS Project includes four technical elements: Atmosphere Revitalization Systems, Water Recovery Systems, Waste Management Systems and Habitation Engineering, and two cross cutting elements, Systems Integration, Modeling and Analysis, and Validation and Testing. This paper will provide an overview of the ELS Project, connectivity with its customers and an update to content within its technology development portfolio with focus on human lunar missions.

  16. Numerical Simulation of Rocket Exhaust Interaction with Lunar Soil

    Science.gov (United States)

    Liever, Peter; Tosh, Abhijit; Curtis, Jennifer

    2012-01-01

    plume flow impingement under lunar vacuum conditions. Applications and improvements to the granular flow simulation tools contributed by the University of Florida were tested against Earth environment experimental results. Requirements for developing, validating, and demonstrating this solution environment were clearly identified, and an effective second phase execution plan was devised. In this phase, the physics models were refined and fully integrated into a production-oriented simulation tool set. Three-dimensional simulations of Apollo Lunar Excursion Module (LEM) and Altair landers (including full-scale lander geometry) established the practical applicability of the UFS simulation approach and its advanced performance level for large-scale realistic problems.

  17. Evaluation of Dual-Launch Lunar Architectures Using the Mission Assessment Post Processor

    Science.gov (United States)

    Stewart, Shaun M.; Senent, Juan; Williams, Jacob; Condon, Gerald L.; Lee, David E.

    2010-01-01

    The National Aeronautics and Space Administrations (NASA) Constellation Program is currently designing a new transportation system to replace the Space Shuttle, support human missions to both the International Space Station (ISS) and the Moon, and enable the eventual establishment of an outpost on the lunar surface. The present Constellation architecture is designed to meet nominal capability requirements and provide flexibility sufficient for handling a host of contingency scenarios including (but not limited to) launch delays at the Earth. This report summarizes a body of work performed in support of the Review of U.S. Human Space Flight Committee. It analyzes three lunar orbit rendezvous dual-launch architecture options which incorporate differing methodologies for mitigating the effects of launch delays at the Earth. NASA employed the recently-developed Mission Assessment Post Processor (MAPP) tool to quickly evaluate vehicle performance requirements for several candidate approaches for conducting human missions to the Moon. The MAPP tool enabled analysis of Earth perturbation effects and Earth-Moon geometry effects on the integrated vehicle performance as it varies over the 18.6-year lunar nodal cycle. Results are provided summarizing best-case and worst-case vehicle propellant requirements for each architecture option. Additionally, the associated vehicle payload mass requirements at launch are compared between each architecture and against those of the Constellation Program. The current Constellation Program architecture assumes that the Altair lunar lander and Earth Departure Stage (EDS) vehicles are launched on a heavy lift launch vehicle. The Orion Crew Exploration Vehicle (CEV) is separately launched on a smaller man-rated vehicle. This strategy relaxes man-rating requirements for the heavy lift launch vehicle and has the potential to significantly reduce the cost of the overall architecture over the operational lifetime of the program. The crew launch

  18. Analysis of ALTAIR 1998 Meteor Radar Data

    Science.gov (United States)

    Zinn, J.; Close, S.; Colestock, P. L.; MacDonell, A.; Loveland, R.

    2011-01-01

    We describe a new analysis of a set of 32 UHF meteor radar traces recorded with the 422 MHz ALTAIR radar facility in November 1998. Emphasis is on the velocity measurements, and on inferences that can be drawn from them regarding the meteor masses and mass densities. We find that the velocity vs altitude data can be fitted as quadratic functions of the path integrals of the atmospheric densities vs distance, and deceleration rates derived from those fits all show the expected behavior of increasing with decreasing altitude. We also describe a computer model of the coupled processes of collisional heating, radiative cooling, evaporative cooling and ablation, and deceleration - for meteors composed of defined mixtures of mineral constituents. For each of the cases in the data set we ran the model starting with the measured initial velocity and trajectory inclination, and with various trial values of the quantity mPs 2 (the initial mass times the mass density squared), and then compared the computed deceleration vs altitude curves vs the measured ones. In this way we arrived at the best-fit values of the mPs 2 for each of the measured meteor traces. Then further, assuming various trial values of the density Ps, we compared the computed mass vs altitude curves with similar curves for the same set of meteors determined previously from the measured radar cross sections and an electrostatic scattering model. In this way we arrived at estimates of the best-fit mass densities Ps for each of the cases. Keywords meteor ALTAIR radar analysis 1 Introduction This paper describes a new analysis of a set of 422 MHz meteor scatter radar data recorded with the ALTAIR High-Power-Large-Aperture radar facility at Kwajalein Atoll on 18 November 1998. The exceptional accuracy/precision of the ALTAIR tracking data allow us to determine quite accurate meteor trajectories, velocities and deceleration rates. The measurements and velocity/deceleration data analysis are described in Sections

  19. Lunar Riometry

    Science.gov (United States)

    Lazio, J.; Jones, D. L.; MacDowall, R. J.; Burns, J. O.; Kasper, J. C.

    2011-12-01

    The lunar exosphere is the exemplar of a plasma near the surface of an airless body. Exposed to both the solar and interstellar radiation fields, the lunar exosphere is mostly ionized, and enduring questions regarding its properties include its density and vertical extent and its behavior over time, including modification by landers. Relative ionospheric measurements (riometry) are based on the simple physical principle that electromagnetic waves cannot propagate through a partially or fully ionized medium below the plasma frequency, and riometers have been deployed on the Earth in numerous remote and hostile environments. A multi-frequency riometer on the lunar surface would be able to monitor, in situ, the peak plasma density of the lunar exosphere over time. We describe a concept for a riometer implemented as a secondary science payload on future lunar landers, such as those recommended in the recent Planetary Sciences Decadal Survey report. While the prime mission of such a riometer would be probing the lunar exosphere, our concept would also be capable to measuring the properties of nanometer- to micron-scale dust. The LUNAR consortium is funded by the NASA Lunar Science Institute to investigate concepts for astrophysical observatories on the Moon. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA.

  20. 嫦娥三号着陆器动力下降的自主导航%Autonomous navigation for powered descent phase of Chang’E-3 lunar lander

    Institute of Scientific and Technical Information of China (English)

    张洪华; 李骥; 关轶峰; 黄翔宇

    2014-01-01

    The powered descent phase of Chang’E–3 lunar lander is fully autonomous. The navigation system obtains the lander’s movement information such as position, velocity and attitude, and introduces them to the guidance and control system. To meet the requirement that landing on the lunar surface with terrain uncertain, an integrated navigation scheme is contrived, which combines a multiplicity of data types including a strap-down inertial measurement unit, a laser altimeter and a capable radar altimeter and velocimeter. The information from laser and radar altimeters are fused to correct the alti-tude output of INS, and the data from multi-beam doppler velocity radar are combined to decrease the velocity calculation error of INS. To simplify the algorithm, filters with variable gains which are calculated by predesigned functions are used to replace normal extend Kalman filters. And the validation of measurements from altimeters and radars are verified by some altitude-varing thresholds before they are introduced to these filters. The flight results demonstrate that this navigation method is reliable and effective to the Chang’E–3 lunar landing mission.%嫦娥三号着陆器的月球动力下降过程是完全自主的,导航系统需要向制导与控制系统实时提供着陆器的位置、速度和姿态信息。考虑到月表起伏的不确定性,嫦娥三号采用了惯导组合激光测距仪和微波测距测速仪的自主导航方案。通过激光和微波测距的信息融合来修正惯导高度误差,通过微波测速的多波束组合来修正惯导的速度误差。在滤波方法设计上,从工程实用出发,采用了用函数近似的变系数滤波方法,并设计了随高度变化的门限对测量数据进行有效性检验。实际飞行数据表明该导航方法可靠、有效,保证了任务的圆满完成。

  1. A Study on Advanced Lithium-Based Battery Cell Chemistries to Enhance Lunar Exploration Missions

    Science.gov (United States)

    Reid, Concha M.; Bennett, William R.

    2010-01-01

    NASAs Exploration Technology Development Program (ETDP) Energy Storage Project conducted an advanced lithium-based battery chemistry feasibility study to determine the best advanced chemistry to develop for the Altair Lunar Lander and the Extravehicular Activities (EVA) advanced Lunar surface spacesuit. These customers require safe, reliable batteries with extremely high specific energy as compared to state-of-the-art. The specific energy goals for the development project are 220 watt-hours per kilogram (Wh/kg) delivered at the battery-level at 0 degrees Celsius ( C) at a C/10 discharge rate. Continuous discharge rates between C/5 and C/2, operation between 0 and 30 C and 200 cycles are targeted. Electrode materials that were considered include layered metal oxides, spinel oxides, and olivine-type cathode materials, and lithium metal, lithium alloy, and silicon-based composite anode materials. Advanced cell chemistry options were evaluated with respect to multiple quantitative and qualitative attributes while considering their projected performance at the end of the available development timeframe. Following a rigorous ranking process, a chemistry that combines a lithiated nickel manganese cobalt oxide Li(LiNMC)O2 cathode with a silicon-based composite anode was selected as the technology that can potentially offer the best combination of safety, specific energy, energy density, and likelihood of success.

  2. Basic radio interferometry for future lunar missions

    NARCIS (Netherlands)

    Aminaei, Amin; Klein Wolt, Marc; Chen, Linjie; Bronzwaer, Thomas; Pourshaghaghi, Hamid Reza; Bentum, Mark J.; Falcke, Heino

    2014-01-01

    In light of presently considered lunar missions, we investigate the feasibility of the basic radio interferometry (RIF) for lunar missions. We discuss the deployment of two-element radio interferometer on the Moon surface. With the first antenna element is envisaged to be placed on the lunar lander,

  3. Selection and Characterization of Landing Sites for Chandrayaan-2 Lander

    Science.gov (United States)

    Gopala Krishna, Barla; Amitabh, Amitabh; Srinivasan, T. P.; Karidhal, Ritu; Nagesh, G.; Manjusha, N.

    2016-07-01

    Indian Space Research Organisation has planned the second mission to moon known as Chandrayaan-2, which consists of an Orbiter, a Lander and a Rover. This will be the first soft landing mission of India on lunar surface. The Orbiter, Lander and Rover individually will carry scientific payloads that enhance the scientific objectives of Chandrayaan-2. The Lander soft lands on the lunar surface and subsequently Lander & Rover will carry on with the payload activities on the moon surface. Landing Site identification based on the scientific and engineering constrains of lander plays an important role in success of a mission. The Lander poses some constraints because of its engineering design for the selection of the landing site and on the other hand the landing site / region imparts some constrain on the Lander. The various constraints that have to be considered for the study of the landing site are Local slope, Sun illumination during mission life, Radio communication with the Earth, Global slope towards equator, Boulders size, Crater density and boulder distribution. This paper describes the characterization activities of the different landing locations which have been studied for Chandrayaan-2 Lander. The sites have been studied both in the South Polar and North Polar regions of the moon on the near side. The Engineering Constraints at the sites due to the Lander, Factors that affect mission life (i.e. illumination at the location), Factors influencing communication to earth (i.e. RF visibility) & Shadow movements have been studied at these locations and zones that are favourable for landing have been short listed. This paper gives methodology of these studies along with the results of the characteristics of all the sites and the recommendations for further action in finalizing the landing area.

  4. Exploration Life Support Technology Development for Lunar Missions

    Science.gov (United States)

    Ewert, Michael K.; Barta, Daniel J.; McQuillan, Jeffrey

    2009-01-01

    Exploration Life Support (ELS) is one of NASA's Exploration Technology Development Projects. ELS plans, coordinates and implements the development of new life support technologies for human exploration missions as outlined in NASA's Vision for Space Exploration. ELS technology development currently supports three major projects of the Constellation Program - the Orion Crew Exploration Vehicle (CEV), the Altair Lunar Lander and Lunar Surface Systems. ELS content includes Air Revitalization Systems (ARS), Water Recovery Systems (WRS), Waste Management Systems (WMS), Habitation Engineering, Systems Integration, Modeling and Analysis (SIMA), and Validation and Testing. The primary goal of the ELS project is to provide different technology options to Constellation which fill gaps or provide substantial improvements over the state-of-the-art in life support systems. Since the Constellation missions are so challenging, mass, power, and volume must be reduced from Space Shuttle and Space Station technologies. Systems engineering analysis also optimizes the overall architecture by considering all interfaces with the life support system and potential for reduction or reuse of resources. For long duration missions, technologies which aid in closure of air and water loops with increased reliability are essential as well as techniques to minimize or deal with waste. The ELS project utilizes in-house efforts at five NASA centers, aerospace industry contracts, Small Business Innovative Research contracts and other means to develop advanced life support technologies. Testing, analysis and reduced gravity flight experiments are also conducted at the NASA field centers. This paper gives a current status of technologies under development by ELS and relates them to the Constellation customers who will eventually use them.

  5. Advanced Cathode for Ultra-High Energy Li-Ion Batteries Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced lithium-ion (Li-ion) batteries are currently under development for Extravehicular Activity Suits, Altair Lunar Landers, and Lunar Mobility Systems....

  6. The Lunar Volatile Resources Analysis Package

    OpenAIRE

    Morse, Andrew; Barber, Simeon; Dewar, Kevin; Pillinger, Judith; Sheridan, Simon; Wright, Ian; Gibson, Everett; Merifield, Jim; Howe, Chris; Waugh, Lester; Pillinger, Colin

    2012-01-01

    The presence and abundance of lunar volatiles is an important consideration for ISRU (In Situ Resource Utilisation) since this is likely to be a part of a strategy for supporting long term human exploration of the moon. The Lunar Volatile Resources Analysis Package (L-VRAP) is part of the provisional payload for the ESA European Lander [1] and aims to measure the abundance and chemical/isotopic composition of volatiles from regolith samples and the lunar exosphere.

  7. Lunar Navigation Architecture Design Considerations

    Science.gov (United States)

    D'Souza, Christopher; Getchius, Joel; Holt, Greg; Moreau, Michael

    2009-01-01

    The NASA Constellation Program is aiming to establish a long-term presence on the lunar surface. The Constellation elements (Orion, Altair, Earth Departure Stage, and Ares launch vehicles) will require a lunar navigation architecture for navigation state updates during lunar-class missions. Orion in particular has baselined earth-based ground direct tracking as the primary source for much of its absolute navigation needs. However, due to the uncertainty in the lunar navigation architecture, the Orion program has had to make certain assumptions on the capabilities of such architectures in order to adequately scale the vehicle design trade space. The following paper outlines lunar navigation requirements, the Orion program assumptions, and the impacts of these assumptions to the lunar navigation architecture design. The selection of potential sites was based upon geometric baselines, logistical feasibility, redundancy, and abort support capability. Simulated navigation covariances mapped to entry interface flightpath- angle uncertainties were used to evaluate knowledge errors. A minimum ground station architecture was identified consisting of Goldstone, Madrid, Canberra, Santiago, Hartebeeshoek, Dongora, Hawaii, Guam, and Ascension Island (or the geometric equivalent).

  8. Network science landers for Mars

    DEFF Research Database (Denmark)

    Harri, A.M.; Marsal, O.; Lognonne, P.;

    1999-01-01

    spacecraft and targeted to their locations on the Martian surface several days prior to the spacecraft's arrival at Mars. The landing system employs parachutes and airbags. During the baseline mission of one Martian year, the network payloads will conduct simultaneous seismological, atmospheric, magnetic......The NetLander Mission will deploy four landers to the Martian surface. Each lander includes a network science payload with instrumentation for studying the interior of Mars, the atmosphere and the subsurface, as well as the ionospheric structure and geodesy. The NetLander Mission is the first...... FMI (the Finnish Meteorological Institute), DLR (the German Space Agency), and other research institutes. According to current plans, the NetLander Mission will be launched in 2005 by means of an Ariane V launch, together with the Mars Sample Return mission. The landers will be separated from the...

  9. Network science landers for Mars

    DEFF Research Database (Denmark)

    Harri, A.M.; Marsal, O.; Lognonne, P.;

    1999-01-01

    FMI (the Finnish Meteorological Institute), DLR (the German Space Agency), and other research institutes. According to current plans, the NetLander Mission will be launched in 2005 by means of an Ariane V launch, together with the Mars Sample Return mission. The landers will be separated from the......The NetLander Mission will deploy four landers to the Martian surface. Each lander includes a network science payload with instrumentation for studying the interior of Mars, the atmosphere and the subsurface, as well as the ionospheric structure and geodesy. The NetLander Mission is the first...... planetary mission focusing on investigations of the interior of the planet and the large-scale circulation of the atmosphere. A broad consortium of national space agencies and research laboratories will implement the mission. It is managed by CNES (the French Space Agency), with other major players being...

  10. Scattering of Sunlight in Lunar Exosphere Caused by Gravitational Microclusters of Lunar Dust

    OpenAIRE

    De Aquino, Fran

    2013-01-01

    In this article it is showed how sub-micron dust is able to reach the lunar exosphere and produce the "horizon glow" and "streamers" observed at lunar horizon by astronauts in orbit and surface landers, during the Apollo era of exploration.

  11. Searching for Lunar Water: The Lunar Volatile Resources Analysis Package

    Science.gov (United States)

    Morse, A. D.; Barber, S. J.; Dewar, K. R.; Pillinger, J. M.; Sheridan, S.; Wright, I, P.; Gibson, E. K.; Merrifield, J. A.; Howe, C. J.; Waugh, L. J.; Pilinger, C. T.

    2012-01-01

    The ESA Lunar Lander has been conceived to demonstrate an autonomous landing capability. Once safely on the Moon the scientific payload will conduct investigations aimed at preparing the way for human exploration. As part of the provisional payload an instrument known as The Lunar Volatile Resources Analysis Package (L-VRAP) will analyse surface and exospheric volatiles. The presence and abundance of lunar water is an important consideration for ISRU (In Situ Resource Utilisation) since this is likely to be part of a strategy for supporting long-term human exploration of the Moon.

  12. Optimal Lunar Landing Trajectory Design for Hybrid Engine

    OpenAIRE

    Dong-Hyun Cho; Donghoon Kim; Henzeh Leeghim

    2015-01-01

    The lunar landing stage is usually divided into two parts: deorbit burn and powered descent phases. The optimal lunar landing problem is likely to be transformed to the trajectory design problem on the powered descent phase by using continuous thrusters. The optimal lunar landing trajectories in general have variety in shape, and the lunar lander frequently increases its altitude at the initial time to obtain enough time to reduce the horizontal velocity. Due to the increment in the altitude,...

  13. ILEWG report and discussion on Lunar Science and Exploration

    Science.gov (United States)

    Foing, Bernard

    2015-04-01

    The EGU PS2.2 session "Lunar Science and Exploration" will include oral papers and posters, and a series of discussions. Members of ILEWG International Lunar Exploration Working Group will debate: - Recent lunar results: geochemistry, geophysics in the context of open - Celebrating the lunar legacy of pioneers Gerhard Neukum, Colin Pillinger and Manfred Fuchs planetary science and exploration - Latest results from LADEE and Chang'e 3/4 - Synthesis of results from SMART-1, Kaguya, Chang-E1 and Chang-E2, Chandrayaan-1, Lunar Reconnaissance Orbiter and LCROSS impactor, Artemis and GRAIL - Goals and Status of missions under preparation: orbiters, Luna-Glob, Google Lunar X Prize, Luna Resurs, Chang'E 5, Future landers, Lunar sample return - Precursor missions, instruments and investigations for landers, rovers, sample return, and human cis-lunar activities and human lunar sorties - Preparation: databases, instruments, terrestrial field campaigns - The future international lunar exploration programme towards ILEWG roadmap of a global robotic village and permanent international lunar base - The proposals for an International Lunar Decade and International Lunar Research Parks - Strategic Knowledge Gaps, and key science Goals relevant to Human Lunar Global Exploration Lunar science and exploration are developing further with new and exciting missions being developed by China, the US, Japan, India, Russia, Korea and Europe, and with the perspective of robotic and human exploration. The session will include invited and contributed talks as well as a panel discussion and interactive posters with short oral introduction.

  14. Mars Solar Balloon Lander Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Mars Solar Balloon Lander (MSBL) is a novel concept which utilizes the capability of solar-heated hot air balloons to perform soft landings of scientific...

  15. Power System Trade Studies for the Lunar Surface Access Module

    Science.gov (United States)

    Kohout, Lisa, L.

    2008-01-01

    A Lunar Lander Preparatory Study (LLPS) was undertaken for NASA's Lunar Lander Pre-Project in 2006 to explore a wide breadth of conceptual lunar lander designs. Civil servant teams from nearly every NASA center responded with dozens of innovative designs that addressed one or more specific lander technical challenges. Although none of the conceptual lander designs sought to solve every technical design issue, each added significantly to the technical database available to the Lunar Lander Project Office as it began operations in 2007. As part of the LLPS, a first order analysis was performed to identify candidate power systems for the ascent and descent stages of the Lunar Surface Access Module (LSAM). A power profile by mission phase was established based on LSAM subsystem power requirements. Using this power profile, battery and fuel cell systems were modeled to determine overall mass and volume. Fuel cell systems were chosen for both the descent and ascent stages due to their low mass. While fuel cells looked promising based on these initial results, several areas have been identified for further investigation in subsequent studies, including the identification and incorporation of peak power requirements into the analysis, refinement of the fuel cell models to improve fidelity and incorporate ongoing technology developments, and broadening the study to include solar power.

  16. Lunar Reference Suite to Support Instrument Development and Testing

    Science.gov (United States)

    Allen, Carlton; Sellar, Glenn; Nunez, Jorge I.; Winterhalter, Daniel; Farmer, Jack

    2010-01-01

    Astronauts on long-duration lunar missions will need the capability to "high-grade" their samples - to select the highest value samples for transport to Earth - and to leave others on the Moon. Instruments that may be useful for such high-grading are under development. Instruments are also being developed for possible use on future lunar robotic landers, for lunar field work, and for more sophisticated analyses at a lunar outpost. The Johnson Space Center Astromaterials acquisition and Curation Office (JSC Curation) wll support such instrument testing by providing lunar sample "ground truth".

  17. Lunar Cold Trap Contamination by Landing Vehicles

    Science.gov (United States)

    Shipley, Scott T.; Metzger, Philip T.; Lane, John E.

    2014-01-01

    Tools have been developed to model and simulate the effects of lunar landing vehicles on the lunar environment (Metzger, 2011), mostly addressing the effects of regolith erosion by rocket plumes and the fate of the ejected lunar soil particles (Metzger, 2010). These tools are being applied at KSC to predict ejecta from the upcoming Google Lunar X-Prize Landers and how they may damage the historic Apollo landing sites. The emerging interest in lunar mining poses a threat of contamination to pristine craters at the lunar poles, which act as "cold traps" for water and may harbor other valuable minerals Crider and Vondrak (2002). The KSC Granular Mechanics and Regolith Operations Lab tools have been expanded to address the probability for contamination of these pristine "cold trap" craters.

  18. Lunar Surface Access Module Descent Engine Turbopump Technology: Detailed Design

    Science.gov (United States)

    Alvarez, Erika; Forbes, John C.; Thornton, Randall J.

    2010-01-01

    The need for a high specific impulse LOX/LH2 pump-fed lunar lander engine has been established by NASA for the new lunar exploration architecture. Studies indicate that a 4-engine cluster in the thrust range of 9,000-lbf each is a candidate configuration for the main propulsion of the manned lunar lander vehicle. The lander descent engine will be required to perform multiple burns including the powered descent onto the lunar surface. In order to achieve the wide range of thrust required, the engines must be capable of throttling approximately 10:1. Working under internal research and development funding, NASA Marshall Space Flight Center (MSFC) has been conducting the development of a 9,000-lbf LOX/LH2 lunar lander descent engine technology testbed. This paper highlights the detailed design and analysis efforts to develop the lander engine Fuel Turbopump (FTP) whose operating speeds range from 30,000-rpm to 100,000-rpm. The capability of the FTP to operate across this wide range of speeds imposes several structural and dynamic challenges, and the small size of the FTP creates scaling and manufacturing challenges that are also addressed in this paper.

  19. The payload bay in the nose of NASA's Altair unmanned aerial vehicle (UAV) will be able to carry up

    Science.gov (United States)

    2002-01-01

    The payload bay in the nose of NASA's Altair unmanned aerial vehicle (UAV), shown here during final construction at General Atomics Aeronautical Systems, Inc., (GA-ASI) facility at Adelanto, Calif., will be able to carry up to 700 lbs. of sensors, imaging equipment and other instruments for Earth science missions. General Atomics Aeronautical Systems, Inc., is developing the Altair version of its Predator B unmanned reconnaissance aircraft under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. NASA plans to use the Altair as a technology demonstrator to validate a variety of command and control technologies for UAVs, as well as demonstrate the capability to perform a variety of Earth science missions. The Altair is designed to carry an 700-lb. payload of scientific instruments and imaging equipment for as long as 32 hours at up to 52,000 feet altitude. Eleven-foot extensions have been added to each wing, giving the Altair an overall wingspan of 86 feet with an aspect ratio of 23. It is powered by a 700-hp. rear-mounted TPE-331-10 turboprop engine, driving a three-blade propeller. Altair is scheduled to begin flight tests in the fourth quarter of 2002, and be acquired by NASA following successful completion of basic airworthiness tests in early 2003 for evaluation of over-the-horizon control, detect, see and avoid and other technologies required to allow UAVs to operate safely with other aircraft in the national airspace.

  20. The left wing of NASA's Altair unmanned aerial vehicle (UAV) rests in a jig during construction at G

    Science.gov (United States)

    2002-01-01

    The left wing of NASA's Altair unmanned aerial vehicle (UAV) rests in a jig during construction at General Atomics Aeronautical Systems, Inc., (GA-ASI) facility at Adelanto, Calif. General Atomics Aeronautical Systems, Inc., is developing the Altair version of its Predator B unmanned reconnaissance aircraft under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. NASA plans to use the Altair as a technology demonstrator to validate a variety of command and control technologies for UAVs, as well as demonstrate the capability to perform a variety of Earth science missions. The Altair is designed to carry an 700-lb. payload of scientific instruments and imaging equipment for as long as 32 hours at up to 52,000 feet altitude. Eleven-foot extensions have been added to each wing, giving the Altair an overall wingspan of 86 feet with an aspect ratio of 23. It is powered by a 700-hp. rear-mounted TPE-331-10 turboprop engine, driving a three-blade propeller. Altair is scheduled to begin flight tests in the fourth quarter of 2002, and be acquired by NASA following successful completion of basic airworthiness tests in early 2003 for evaluation of over-the-horizon control, detect, see and avoid and other technologies required to allow UAVs to operate safely with other aircraft in the national airspace.

  1. Validation of the automatic image analyser to assess retinal vessel calibre (ALTAIR): a prospective study protocol

    OpenAIRE

    Garcia-Ortiz, Luis; Gómez-Marcos, Manuel A.; Recio-Rodríguez, Jose I; Maderuelo-Fernández, Jose A; Chamoso-Santos, Pablo; Rodríguez-González, Sara; de Paz-Santana, Juan F; Merchan-Cifuentes, Miguel A; Corchado-Rodríguez, Juan M

    2014-01-01

    Introduction The fundus examination is a non-invasive evaluation of the microcirculation of the retina. The aim of the present study is to develop and validate (reliability and validity) the ALTAIR software platform (Automatic image analyser to assess retinal vessel calibre) in order to analyse its utility in different clinical environments. Methods and analysis A cross-sectional study in the first phase and a prospective observational study in the second with 4 years of follow-up. The study ...

  2. Orbit Determination of Chang'e-3 and Positioning of the Lander and the Rover

    Science.gov (United States)

    Huang, Y.; Chang, S.; Li, P.; Hu, X.

    2014-12-01

    The Chang'E-3 (CE-3) lunar probe of China was launched on 2 December 2013. After about 112 h of flight, it was captured by the Moon on 6 December, and entered a polar, near circular lunar orbit with an altitude of approximately 100 km. The probe's flight on 100 km*100 km and 100 km*15 km orbit lasted about 4 days respectively, then the probe soft landed on the east of Sinus Iridum area at 13:11 UTC on 14 December successfully. Results on precision orbit determination and positioning of the lander and the rover are presented here. We describe the data, modeling and methods used to achieve position knowledge. In addition to the radiometric X-band range and Doppler tracking data, Delta Differential One-way Ranging (ΔDOR) data are also used in the calculation, which shows that they can improve the accuracy of the orbit reconstruction. Total position overlap differences are about 20 m and 30 m for the 100 km*100 km and 100 km*15 km lunar orbit respectively, increased by ~50 % with respect to CE-2. A kinematic statistical method is applied to determine the position of the lander and relative position of the rover with respect to the lander. The location of the lander is computed as: 44.1216º N, 19.5124º W and -2632.0 m in the lunar Mean Axes coordinate system. The position difference of the lander is better than 50 m compared to the result of the LRO photograph. From 15 to 21 December, the rover walked around the lander, and took photos of each other at the parking point A, B, C, D, E (max distance from the lander is about 25 m). The delta VLBI phase delay data are used to compute the relative position of the rover at the parking points, and the accuracy of the relative position can reach to 1-2 m comparing with the results of visual method.

  3. Relative Optical Navigation for a Lunar Lander Mission

    OpenAIRE

    Verveld, Mark J.

    2013-01-01

    This work explores the problem of providing relative velocity navigation for an autonomous precision landing approach on the moon without the use of telemetry or known points of support. An error-state Unscented Kalman Filter for the fusion of inertial and optical imaging sensors is presented. These sensors include a star tracker, a monocular surface camera and a laser altimeter. The filter estimates position, velocity and attitude, which, together with an initial position based on crater mat...

  4. Lunar Atmosphere Probe Station: A Proof-of-Concept Instrument Package for Monitoring the Lunar Atmosphere

    Science.gov (United States)

    Lazio, J.; Jones, D. L.; MacDowall, R. J.; Stewart, K. P.; Burns, J. O.; Farrell, W. M.; Giersch, L.; O'Dwyer, I. J.; Hicks, B. C.; Polisensky, E. J.; Hartman, J. M.; Nesnas, I.; Weiler, K.; Kasper, J. C.

    2013-12-01

    The lunar exosphere is the exemplar of a plasma near the surface of an airless body. Exposed to both the solar and interstellar radiation fields, the lunar exosphere is mostly ionized, and enduring questions regarding its properties include its density and vertical extent, the extent of contributions from volatile outgassing from the Moon, and its behavior over time, including response to the solar wind and modification by landers. Relative ionospheric measurements (riometry) are based on the simple physical principle that electromagnetic waves cannot propagate through a partially or fully ionized medium below the plasma frequency, and riometers have been deployed on the Earth in numerous remote and hostile environments. A multi-frequency riometer on the lunar surface would be able to monitor, *in situ*, the vertical extent of the lunar exosphere over time. We provide an update on a concept for a riometer implemented as a secondary science payload on future lunar landers, such as those recommended in the recent Planetary Sciences Decadal Survey report or commercial ventures. The instrument concept is simple, consisting of an antenna implemented as a metal deposited on polyimide film and receiver. We illustrate various deployment mechanisms and performance of a prototype in increasing lunar analog conditions. While the prime mission of such a riometer would be probing the lunar exosphere, our concept would also be capable to measuring the properties of dust impactors. The Lunar University Network for Astrophysical Research consortium is funded by the NASA Lunar Science Institute to investigate concepts for astrophysical observatories on the Moon. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. Artist's impression of the Lunar Atmosphere Probe Station.

  5. Entry Vehicle Control System Design for the Mars Smart Lander

    Science.gov (United States)

    Calhoun, Philip C.; Queen, Eric M.

    2002-01-01

    The NASA Langley Research Center, in cooperation with the Jet Propulsion Laboratory, participated in a preliminary design study of the Entry, Descent and Landing phase for the Mars Smart Lander Project. This concept utilizes advances in Guidance, Navigation and Control technology to significantly reduce uncertainty in the vehicle landed location on the Mars surface. A candidate entry vehicle controller based on the Reaction Control System controller for the Apollo Lunar Excursion Module digital autopilot is proposed for use in the entry vehicle attitude control. A slight modification to the phase plane controller is used to reduce jet-firing chattering while maintaining good control response for the Martian entry probe application. The controller performance is demonstrated in a six-degree-of-freedom simulation with representative aerodynamics.

  6. Constellation Architecture Team-Lunar: Lunar Habitat Concepts

    Science.gov (United States)

    Toups, Larry; Kennedy, Kriss J.

    2008-01-01

    This paper will describe lunar habitat concepts that were defined as part of the Constellation Architecture Team-Lunar (CxAT-Lunar) in support of the Vision for Space Exploration. There are many challenges to designing lunar habitats such as mission objectives, launch packaging, lander capability, and risks. Surface habitats are required in support of sustaining human life to meet the mission objectives of lunar exploration, operations, and sustainability. Lunar surface operations consist of crew operations, mission operations, EVA operations, science operations, and logistics operations. Habitats are crewed pressurized vessels that include surface mission operations, science laboratories, living support capabilities, EVA support, logistics, and maintenance facilities. The challenge is to deliver, unload, and deploy self-contained habitats and laboratories to the lunar surface. The CxAT-Lunar surface campaign analysis focused on three primary trade sets of analysis. Trade set one (TS1) investigated sustaining a crew of four for six months with full outpost capability and the ability to perform long surface mission excursions using large mobility systems. Two basic habitat concepts of a hard metallic horizontal cylinder and a larger inflatable torus concept were investigated as options in response to the surface exploration architecture campaign analysis. Figure 1 and 2 depicts the notional outpost configurations for this trade set. Trade set two (TS2) investigated a mobile architecture approach with the campaign focused on early exploration using two small pressurized rovers and a mobile logistics support capability. This exploration concept will not be described in this paper. Trade set three (TS3) investigated delivery of a "core' habitation capability in support of an early outpost that would mature into the TS1 full outpost capability. Three core habitat concepts were defined for this campaign analysis. One with a four port core habitat, another with a 2 port

  7. Lander rocket exhaust effects on Europa regolith nitrogen assays

    Science.gov (United States)

    Lorenz, Ralph D.

    2016-08-01

    Soft-landings on large worlds such as Europa or our Moon require near-surface retropropulsion, which leads to impingement of the rocket plume on the surface. Surface modification by such plumes was documented on Apollo and Surveyor, and on Mars by Viking, Curiosity and especially Phoenix. The low temperatures of the Europan regolith may lead to efficient trapping of ammonia, a principal component of the exhaust from monopropellant hydrazine thrusters. Deposited ammonia may react with any trace organics, and may overwhelm the chemical and isotopic signatures of any endogenous nitrogen compounds, which are likely rare on Europa. An empirical correlation of the photometrically-altered regions ('blast zones') around prior lunar and Mars landings is made, indicating A=0.02T1.5, where A is the area in m2 and W is the lander weight (thus, ~thrust) at landing in N: this suggests surface alteration will occur out to a distance of ~9 m from a 200 kg lander on Europa.

  8. Project Morpheus: Lessons Learned in Lander Technology Development

    Science.gov (United States)

    Olansen, Jon B.; Munday, Stephen R.; Mitchell, Jennifer D.

    2013-01-01

    NASA's Morpheus Project has developed and tested a prototype planetary lander capable of vertical takeoff and landing, that is designed to serve as a testbed for advanced spacecraft technologies. The lander vehicle, propelled by a LOX/Methane engine and sized to carry a 500kg payload to the lunar surface, provides a platform for bringing technologies from the laboratory into an integrated flight system at relatively low cost. Designed, developed, manufactured and operated in-house by engineers at Johnson Space Center, the initial flight test campaign began on-site at JSC less than one year after project start. After two years of testing, including two major upgrade periods, and recovery from a test crash that caused the loss of a vehicle, flight testing will evolve to executing autonomous flights simulating a 500m lunar approach trajectory, hazard avoidance maneuvers, and precision landing, incorporating the Autonomous Landing and Hazard Avoidance (ALHAT) sensor suite. These free-flights are conducted at a simulated planetary landscape built at Kennedy Space Center's Shuttle Landing Facility. The Morpheus Project represents a departure from recent NASA programs and projects that traditionally require longer development lifecycles and testing at remote, dedicated testing facilities. This paper expands on the project perspective that technologies offer promise, but capabilities offer solutions. It documents the integrated testing campaign, the infrastructure and testing facilities, and the technologies being evaluated in this testbed. The paper also describes the fast pace of the project, rapid prototyping, frequent testing, and lessons learned during this departure from the traditional engineering development process at NASA's Johnson Space Center.

  9. CE-4 Mission and Future Journey to Lunar

    Science.gov (United States)

    Zou, Yongliao; Wang, Qin; Liu, Xiaoqun

    2016-07-01

    Chang'E-4 mission, being undertaken by phase two of China Lunar Exploration Program, represents China's first attempt to explore farside of lunar surface. Its probe includes a lander, a rover and a telecommunication relay which is scheduled to launch in around 2018. The scientific objectives of CE-4 mission will be implemented to investigate the lunar regional geological characteristics of landing and roving area, and also will make the first radio-astronomy measurements from the most radio-quiet region of near-earth space. The rover will opreate for at least 3 months, the lander for half a year, and the relay for no less than 3 years. Its scinetific instruments includes Cameras, infrared imaging spectrometer, Penetrating Radar onboard the rover in which is the same as the paylads on board the CE-3 rover, and a Dust-analyzer, a Temperature-instrument and a Wide Band Low Frequency Digital Radio Astronomical Station will be installed on board the lander. Our scientific goals of the future lunar exploration will aim at the lunar geology, resources and surface environments. A series of exploraion missions such as robotic exploration and non-manned lunar scientific station is proposed in this paper.

  10. Hazard Detection Methods for Lunar Landing

    Science.gov (United States)

    Brady, Tye; Zimpfer, Doug; Robertson, Edward; Epp, Chirold; Paschall, Stephen

    2009-01-01

    The methods and experiences from the Apollo Program are fundamental building blocks for the development of lunar landing strategies for the Constellation Program. Each of the six lunar landing Apollo missions landed under near ideal lighting conditions. The astronauts visually performed terrain relative navigation while looking out of windows, and were greatly aided by external communication and well lit scenes. As the LM approached the landing site, the astronauts performed visual hazard detection and avoidance, also under near-ideal lighting conditions. The astronauts were looking out of the windows trying to the best of their ability to avoid rocks, slopes, and craters and find a safe landing location. NASA has expressed a desire for global lunar access for both crewed and robotic sortie lunar exploration missions (Cook, 2007) (Dale, 2006). Early NASA architecture studies have identified the lunar poles as desirable locations for early lunar missions. These polar missions have less than ideal lighting conditions and will significantly affect the way a crewed vehicle plans to land at such locales. Consequently, a variety of hazard identification methods should be considered for use by the crew to ensure a high degree of safety. This paper discusses such identification methods applicable to the poorly lit polar lunar environment, better ensuring global access for the soon to be designed Lunar Lander Vehicle (LLV).

  11. Energy conversion evolution at lunar polar sites

    Indian Academy of Sciences (India)

    James D Burke

    2005-12-01

    Lunar polar environments have many advantages from the standpoint of energy supply to robotic and human surface bases.Sunlight is nearly continuous and always horizontal at peaks of perpetual light,while waste heat rejection is aided by the existence of cold,permanently shadowed regions nearby.In this paper a possible evolution of lunar polar energy systems will be described,beginning with small robotic photovoltaic landers and continuing into the development of increasingly powerful and diverse energy installations to provide not only electric power but also piped-in sunlight,air conditioning and high-temperature process heat.

  12. Lunar Flashlight: Mapping Lunar Surface Volatiles Using a Cubesat

    Science.gov (United States)

    Cohen, Barbara A.

    2014-01-01

    Lunar Flashlight is an exciting new mission concept in preformulation studies for NASA's Advanced Exploration Systems (AES) by a team from the Jet Propulsion Laboratory, UCLA, and Marshall Space Flight Center. This innovative, low-cost concept will map the lunar south pole for volatiles and demonstrate several technological firsts, including being the first CubeSat to reach the Moon, the first mission to use an 80 m2 solar sail, and the first mission to use a solar sail as a reflector for science observations. The Lunar Flashlight mission spacecraft maneuvers to its lunar polar orbit and uses its solar sail as a mirror to reflect 50 kW of sunlight down into shaded polar regions, while the on-board spectrometer measures surface reflection and composition. The Lunar Flashlight 6U spacecraft has heritage elements from multiple cubesat systems. The deployable solar sail/reflector is based on previous solar sail experiments, scaled up for this mission. The mission will demonstrate a path where 6U CubeSats could, at dramatically lower cost than previously thought possible, explore, locate and estimate size and composition of ice deposits on the Moon. Locating ice deposits in the Moon's permanently shadowed craters addresses one of NASA's Strategic Knowledge Gaps (SKGs) to detect composition, quantity, distribution, form of water/H species and other volatiles associated with lunar cold traps. Polar volatile data collected by Lunar Flashlight could then ensure that targets for more expensive lander- and rover-borne measurements would include volatiles in sufficient quantity and near enough to the surface to be operationally useful.

  13. ROSETTA lander Philae: Touch-down reconstruction

    Science.gov (United States)

    Roll, Reinhard; Witte, Lars

    2016-06-01

    The landing of the ROSETTA-mission lander Philae on November 12th 2014 on Comet 67 P/Churyumov-Gerasimenko was planned as a descent with passive landing and anchoring by harpoons at touch-down. Actually the lander was not fixed at touch-down to the ground due to failing harpoons. The lander internal damper was actuated at touch-down for 42.6 mm with a speed of 0.08 m/s while the lander touch-down speed was 1 m/s. The kinetic energy before touch-down was 50 J, 45 J were dissipated by the lander internal damper and by ground penetration at touch-down, and 5 J kinetic energy are left after touch-down (0.325 m/s speed). Most kinetic energy was dissipated by ground penetration (41 J) while only 4 J are dissipated by the lander internal damper. Based on these data, a value for a constant compressive soil-strength of between 1.55 kPa and 1.8 kPa is calculated. This paper focuses on the reconstruction of the touch-down at Agilkia over a period of around 20 s from first ground contact to lift-off again. After rebound Philae left a strange pattern on ground documented by the OSIRIS Narrow Angle Camera (NAC). The analysis shows, that the touch-down was not just a simple damped reflection on the surface. Instead the lander had repeated contacts with the surface over a period of about 20 s±10 s. This paper discusses scenarios for the reconstruction of the landing sequence based on the data available and on computer simulations. Simulations are performed with a dedicated mechanical multi-body model of the lander, which was validated previously in numerous ground tests. The SIMPACK simulation software was used, including the option to set forces at the feet to the ground. The outgoing velocity vector is mostly influenced by the timing of the ground contact of the different feet. It turns out that ground friction during damping has strong impact on the lander outgoing velocity, on its rotation, and on its nutation. After the end of damping, the attitude of the lander can be

  14. Lunar Dust Analysis Package - LDAP

    Science.gov (United States)

    Chalkley, S. A.; Richter, L.; Goepel, M.; Sovago, M.; Pike, W. T.; Yang, S.; Rodenburg, J.; Claus, D.

    2012-09-01

    The Lunar Dust Analysis package (L-DAP) is a suite of payloads which have been designed to operate in synergy with each other at the Lunar Surface. The benefits of combining these payloads in a single package allow very precise measurements of a particular regolith sample. At the same time the integration allows mass savings since common resources are shared and this also means that interfaces with the Lander are simplified significantly leading to benefits of integration and development of the overall mission. Lunar Dust represents a real hazard for lunar exploration due to its invasive, fine microscopic structure and toxic properties. However it is also valuable resource which could be exploited for future exploration if the characteristics and chemical composition is well known. Scientifically, the regolith provides an insight into the moon formation process and there are areas on the Moon which have never been ex-plored before. For example the Lunar South Pole Aitken Basin is the oldest and largest on the moon, providing excavated deep crust which has not been found on the previous lunar landing missions. The SEA-led team has been designing a compact package, known as LDAP, which will provide key data on the lunar dust properties. The intention is for this package to be part of the payload suite deployed on the ESA Lunar Lander Mission in 2018. The LDAP has a centralised power and data electronics, including front end electronics for the detectors as well as sample handling subsystem for the following set of internal instruments : • Optical Microscope - with a 1μm resolution to provide context of the regolith samples • Raman and LIBS spectrographic instrumentation providing quantification of mineral and elemental composition information of the soil at close to grain scale. This includes the capability to detect (and measure abundance of) crystalline and adsorbed volatile phases, from their Raman signature. The LIBS equipment will also allow chemical

  15. Future lunar exploration activities in ESA

    Science.gov (United States)

    Houdou, B.; Carpenter, J. D.; Fisackerly, R.; Koschny, D.; Pradier, A.; di Pippo, S.; Gardini, B.

    2009-04-01

    Introduction Recent years have seen a resurgence of interest in the Moon and various recent and coming orbital missions including Smart-1, Kaguya, Chandrayaan-1and Lunar Reconnaissance Orbiter are advancing our understanding. In 2004 the US announced a new Vision for Space Exploration [1], whose objectives are focused towards human missions to the Moon and Mars. The European Space Agency has established similar objectives for Europe, described in [2] and approved at the ESA ministerial council (2009). There is considerable potential for international cooperation in these activities, as formulated in the recently agreed Global Exploration Strategy [3]. Present lunar exploration activities at ESA emphasise the development of European technologies and capabilities, to enable European participation in future international human exploration of the Moon. A major element in this contribution has been identified as a large lunar cargo lander, which would fulfill an ATV-like function, providing logistical support to human activities on the Moon, extending the duration of sorties and the capabilities of human explorers. To meet this ultimate goal, ESA is currently considering various possible development approaches, involving lunar landers of different sizes. Lunar Lander Mission Options A high capacity cargo lander able to deliver consumables, equipment and small infrastructure, in both sortie and outpost mission scenarios, would use a full Ariane 5 launch and is foreseen in the 2020-2025 timeframe. ESA is also considering an intermediate, smaller-scale mission beforehand, to mature the necessary landing technologies, to demonstrate human-related capabilities in preparation of human presence on the Moon and in general to gain experience in landing and operating on the lunar surface. Within this frame, ESA is currently leading several feasibility studies of a small lunar lander mission, also called "MoonNEXT". This mission is foreseen to be to be launched from Kourou with a

  16. Lagrangian Trajectory Modeling of Lunar Dust Particles

    Science.gov (United States)

    Lane, John E.; Metzger, Philip T.; Immer, Christopher D.

    2008-01-01

    Apollo landing videos shot from inside the right LEM window, provide a quantitative measure of the characteristics and dynamics of the ejecta spray of lunar regolith particles beneath the Lander during the final 10 [m] or so of descent. Photogrammetry analysis gives an estimate of the thickness of the dust layer and angle of trajectory. In addition, Apollo landing video analysis divulges valuable information on the regolith ejecta interactions with lunar surface topography. For example, dense dust streaks are seen to originate at the outer rims of craters within a critical radius of the Lander during descent. The primary intent of this work was to develop a mathematical model and software implementation for the trajectory simulation of lunar dust particles acted on by gas jets originating from the nozzle of a lunar Lander, where the particle sizes typically range from 10 micron to 500 micron. The high temperature, supersonic jet of gas that is exhausted from a rocket engine can propel dust, soil, gravel, as well as small rocks to high velocities. The lunar vacuum allows ejected particles to travel great distances unimpeded, and in the case of smaller particles, escape velocities may be reached. The particle size distributions and kinetic energies of ejected particles can lead to damage to the landing spacecraft or to other hardware that has previously been deployed in the vicinity. Thus the primary motivation behind this work is to seek a better understanding for the purpose of modeling and predicting the behavior of regolith dust particle trajectories during powered rocket descent and ascent.

  17. The Philae Lander: Science planning and operations

    Science.gov (United States)

    Moussi, Aurélie; Fronton, Jean-François; Gaudon, Philippe; Delmas, Cédric; Lafaille, Vivian; Jurado, Eric; Durand, Joelle; Hallouard, Dominique; Mangeret, Maryse; Charpentier, Antoine; Ulamec, Stephan; Fantinati, Cinzia; Geurts, Koen; Salatti, Mario; Bibring, Jean-Pierre; Boehnhardt, Hermann

    2016-08-01

    Rosetta is an ambitious mission launched in March 2004 to study comet 67P/Churyumov-Gerasimenko. It is composed of a space probe (Rosetta) and the Philae Lander. The mission is a series of premieres: among others, first probe to escort a comet, first time a landing site is selected with short turnaround time, first time a lander has landed on a comet nucleus. In November 2014, once stabilized on the comet, Philae has performed its "First Science Sequence". Philae's aim was to perform detailed and innovative in-situ experiments on the comet's surface to characterize the nucleus by performing mechanical, chemical and physical investigations on the comet surface. The main contribution to the Rosetta lander by the French space agency (CNES) is the Science Operation and Navigation Center (SONC) located in Toulouse. Among its tasks is the scheduling of the scientific activities of the 10 lander experiments and then to provide it to the Lander Control Center (LCC) located in DLR Cologne. The teams in charge of the Philae activity scheduling had to cope with considerable constraints in term of energy, data management, asynchronous processes and co-activities or exclusions between instruments. Moreover the comet itself, its environment and the landing conditions remained unknown until separation time. The landing site was selected once the operational sequence was already designed. This paper will explain the specific context of the Rosetta lander mission and all the constraints that the lander activity scheduling had to face to fulfill the scientific objectives specified for Philae. A specific tool was developed by CNES and used to design the complete sequence of activities on the comet with respect to all constraints. The baseline scenario for the lander operation will also be detailed as well as the sequence performed on the comet to highlight the difficulties and challenges that the operational team faced.

  18. Preface: The Chang'e-3 lander and rover mission to the Moon

    International Nuclear Information System (INIS)

    The Chang'e-3 (CE-3) lander and rover mission to the Moon was an intermediate step in China's lunar exploration program, which will be followed by a sample return mission. The lander was equipped with a number of remote-sensing instruments including a pair of cameras (Landing Camera and Terrain Camera) for recording the landing process and surveying terrain, an extreme ultraviolet camera for monitoring activities in the Earth's plasmasphere, and a first-ever Moon-based ultraviolet telescope for astronomical observations. The Yutu rover successfully carried out close-up observations with the Panoramic Camera, mineralogical investigations with the VIS-NIR Imaging Spectrometer, study of elemental abundances with the Active Particle-induced X-ray Spectrometer, and pioneering measurements of the lunar subsurface with Lunar Penetrating Radar. This special issue provides a collection of key information on the instrumental designs, calibration methods and data processing procedures used by these experiments with a perspective of facilitating further analyses of scientific data from CE-3 in preparation for future missions

  19. Lunar horticulture.

    Science.gov (United States)

    Walkinshaw, C. H.

    1971-01-01

    Discussion of the role that lunar horticulture may fulfill in helping establish the life support system of an earth-independent lunar colony. Such a system is expected to be a hybrid between systems which depend on lunar horticulture and those which depend upon the chemical reclamation of metabolic waste and its resynthesis into nutrients and water. The feasibility of this approach has been established at several laboratories. Plants grow well under reduced pressures and with oxygen concentrations of less than 1% of the total pressure. The carbon dioxide collected from the lunar base personnel should provide sufficient gas pressure (approx. 100 mm Hg) for growing the plants.

  20. Automatic Hazard Detection for Landers

    Science.gov (United States)

    Huertas, Andres; Cheng, Yang; Matthies, Larry H.

    2008-01-01

    Unmanned planetary landers to date have landed 'blind'; that is, without the benefit of onboard landing hazard detection and avoidance systems. This constrains landing site selection to very benign terrain,which in turn constrains the scientific agenda of missions. The state of the art Entry, Descent, and Landing (EDL) technology can land a spacecraft on Mars somewhere within a 20-100km landing ellipse.Landing ellipses are very likely to contain hazards such as craters, discontinuities, steep slopes, and large rocks, than can cause mission-fatal damage. We briefly review sensor options for landing hazard detection and identify a perception approach based on stereo vision and shadow analysis that addresses the broadest set of missions. Our approach fuses stereo vision and monocular shadow-based rock detection to maximize spacecraft safety. We summarize performance models for slope estimation and rock detection within this approach and validate those models experimentally. Instantiating our model of rock detection reliability for Mars predicts that this approach can reduce the probability of failed landing by at least a factor of 4 in any given terrain. We also describe a rock detector/mapper applied to large-high-resolution images from the Mars Reconnaissance Orbiter (MRO) for landing site characterization and selection for Mars missions.

  1. The Rosetta Lander (``Philae'') Investigations

    Science.gov (United States)

    Bibring, J.-P.; Rosenbauer, H.; Boehnhardt, H.; Ulamec, S.; Biele, J.; Espinasse, S.; Feuerbacher, B.; Gaudon, P.; Hemmerich, P.; Kletzkine, P.; Moura, D.; Mugnuolo, R.; Nietner, G.; Pätz, B.; Roll, R.; Scheuerle, H.; Szegö, K.; Wittmann, K.

    2007-02-01

    The paper describes the Rosetta Lander named Philae and introduces its complement of scientific instruments. Philae was launched aboard the European Space Agency Rosetta spacecraft on 02 March 2004 and is expected to land and operate on the nucleus of 67P/Churyumov-Gerasimenko at a distance of about 3 AU from the Sun. Its overall mass is ~98 kg (plus the support systems remaining on the Orbiter), including its scientific payload of ~27 kg. It will operate autonomously, using the Rosetta Orbiter as a communication relay to Earth. The scientific goals of its experiments focus on elemental, isotopic, molecular and mineralogical composition of the cometary material, the characterization of physical properties of the surface and subsurface material, the large-scale structure and the magnetic and plasma environment of the nucleus. In particular, surface and sub-surface samples will be acquired and sequentially analyzed by a suite of instruments. Measurements will be performed primarily during descent and along the first five days following touch-down. Philae is designed to also operate on a long time-scale, to monitor the evolution of the nucleus properties. Philae is a very integrated project at system, science and management levels, provided by an international consortium. The Philae experiments have the potential of providing unique scientific outcomes, complementing by in situ ground truth the Rosetta Orbiter investigations.

  2. Lunar scout: A Project Artemis proposal

    Science.gov (United States)

    1992-01-01

    The results of a student project to design a lunar lander in the context of a specifically defined mission are presented. The Lunar Scout will be launched from Cape Canaveral, Florida onboard a Delta II launch vehicle. The Delta II will carry the lander and its payload to a 1367 km orbit. Once it reaches that altitude, a STAR 48A solid rocket motor will kick the spacecraft into a lunar trajectory. After burnout of the lunar insertion motor, it will be jettisoned from the spacecraft. The flight from the earth to the moon will take approximately 106.4 hours. During this time the battery, which was fully charged prior to launch, will provide all power to the spacecraft. Every hour, the spacecraft will use its sun sensors and star trackers to update its position, maintain some stabilization and relay it back to earth using the dipole antennas. At the start of its lunar trajectory, the spacecraft will fire one of its 1.5 N thrusters to spin in at a very small rate. The main reason for this is to prevent one side of the spacecraft from overheating in the sun. When the spacecraft nears the moon, it will orient itself for the main retro burn. At an altitude of 200 km, a 4400 N bipropellant liquid thruster will ignite to slow the spacecraft. During the burn, the radar altimeter will be turned on to guide the spacecraft. The main retro rocket will slow the lander to 10 m/s at an approximate altitude of 40 km above the moon. From there, the space craft will use four 4.5 N hydrazine vertical thrusters and 1.5 N horizontal thrusters to guide the spacecraft to a soft landing. Once on the ground, the lander will shutoff the radar and attitude control systems. After the debris from the impact has settled, the six solar panels will be deployed to begin recharging the batteries and to power up the payload. The feedhorn antenna will then rotate to fix itself on the earth. Once it moves, it will stay in that position for the spacecraft's lifetime. The payload will then be activated to

  3. A bootstrap lunar base: Preliminary design review 2

    Science.gov (United States)

    1987-01-01

    A bootstrap lunar base is the gateway to manned solar system exploration and requires new ideas and new designs on the cutting edge of technology. A preliminary design for a Bootstrap Lunar Base, the second provided by this contractor, is presented. An overview of the work completed is discussed as well as the technical, management, and cost strategies to complete the program requirements. The lunar base design stresses the transforming capabilities of its lander vehicles to aid in base construction. The design also emphasizes modularity and expandability in the base configuration to support the long-term goals of scientific research and profitable lunar resource exploitation. To successfully construct, develop, and inhabit a permanent lunar base, however, several technological advancements must first be realized. Some of these technological advancements are also discussed.

  4. Microwave Extraction of Lunar Water for Rocket Fuel

    Science.gov (United States)

    Ethridge, Edwin C.; Donahue, Benjamin; Kaukler, William

    2008-01-01

    Nearly 50% of the lunar surface is oxygen, present as oxides in silicate rocks and soil. Methods for reduction of these oxides could liberate the oxygen. Remote sensing has provided evidence of significant quantities of hydrogen possibly indicating hundreds of millions of metric tons, MT, of water at the lunar poles. If the presence of lunar water is verified, water is likely to be the first in situ resource exploited for human exploration and for LOX-H2 rocket fuel. In-Situ lunar resources offer unique advantages for space operations. Each unit of product produced on the lunar surface represents 6 units that need not to be launched into LEO. Previous studies have indicated the economic advantage of LOX for space tugs from LEO to GEO. Use of lunar derived LOX in a reusable lunar lander would greatly reduce the LEO mass required for a given payload to the moon. And Lunar LOX transported to L2 has unique advantages for a Mars mission. Several methods exist for extraction of oxygen from the soil. But, extraction of lunar water has several significant advantages. Microwave heating of lunar permafrost has additional important advantages for water extraction. Microwaves penetrate and heat from within not just at the surface and excavation is not required. Proof of concept experiments using a moon in a bottle concept have demonstrated that microwave processing of cryogenic lunar permafrost simulant in a vacuum rapidly and efficiently extracts water by sublimation. A prototype lunar water extraction rover was built and tested for heating of simulant. Microwave power was very efficiently delivered into a simulated lunar soil. Microwave dielectric properties (complex electric permittivity and magnetic permeability) of lunar regolith simulant, JSC-1A, were measured down to cryogenic temperatures and above room temperature. The microwave penetration has been correlated with the measured dielectric properties. Since the microwave penetration depth is a function of temperature

  5. Design and Construction of Manned Lunar Base

    Science.gov (United States)

    Li, Zhijie

    2016-07-01

    support system based on physical/chemic-regenerative life support system, which includes microbial waste treatment system, plants cultivation system and animal-protein production system. Energy is another important aspect needs to be solved when building lunar base habitation. The steps of lunar base building process are divided into lunar surface landing, transport, unloading, assembly and construction. Thus the activity systems including lunar lander, lunar chain block, various lunar rovers, robots and 3D printing machine are needed while building a lunar base. For the sake of enough power support for these facilities, the integrated manned lunar base will use solar + nuclear energy plus regenerative fuel cell together with 180kW power to satisfy the requirement of power supply. Besides these two questions talked above, the lunar base habitation also needs to solve the problem of lunar dust protection. Lunar dust grains are sharp and have electrostatic adsorption, which means this kind of dust may damage the functions of spacesuit, lunar rover and other equipments, and it may cause diseases if breathed by astronauts, consequently, lunar dust protection and cleaning mechanism needs to be founded and the anti-dust, automatic dust removal and self-cleaning materials need to be used. At last, this paper puts forward corresponding advices about building lunar base by using international collaboration. Out of question, the construction of lunar base is a huge project, it is very hard to be accomplished by any country alone since lots of uncertain complications exist there. By this token, international collaboration is a certain development direction, and lots of aerospace countries have already achieved the breakout of correlation key technologies, in order to avoid unnecessary waste, the dispersive advantageous resources need to be combined together.

  6. The Lunar Mapping and Modeling Project

    Science.gov (United States)

    Noble, S. K.; Nall, M. E.; French, R. A.; Muery, K. G.

    2009-12-01

    The Lunar Mapping and Modeling Project (LMMP) has been created to manage the development of a suite of lunar mapping and modeling products that support the Constellation Program (CxP) and other lunar exploration activities, including the planning, design, development, test and operations associated with lunar sortie missions, crewed and robotic operations on the surface, and the establishment of a lunar outpost. The information provided through LMMP will assist CxP in: planning tasks in the areas of landing site evaluation and selection, design and placement of landers and other stationary assets, design of rovers and other mobile assets, developing terrain-relative navigation (TRN) capabilities, and assessment and planning of science traverses. The project draws on expertise from several NASA and non-NASA organizations (MSFC, ARC, GSFC, JPL, CRREL - US Army Cold Regions Research and Engineering Laboratory, and the USGS). LMMP will utilize data predominately from the Lunar Reconnaissance Orbiter, but also historical and international lunar mission data (e.g. Apollo, Lunar Orbiter, Kaguya, Chandrayaan-1), as available and appropriate, to meet Constellation’s data needs. LMMP will provide access to this data through a single intuitive and easy to use NASA portal that transparently accesses appropriately sanctioned portions of the widely dispersed and distributed collections of lunar data, products and tools. Two visualization systems are being developed, a web-based system called Lunar Mapper, and a desktop client, ILIADS, which will be downloadable from the LMMP portal. LMMP will provide such products as local and regional imagery and DEMs, hazard assessment maps, lighting and gravity models, and resource maps. We are working closely with the LRO team to prevent duplication of efforts and to ensure the highest quality data products. While Constellation is our primary customer, LMMP is striving to be as useful as possible to the lunar science community, the lunar

  7. Application of the Same Beam Interferometry Measurement in Relative Position Determination on Lunar Surface

    Directory of Open Access Journals (Sweden)

    HUANG Anyi

    2015-09-01

    Full Text Available Based on the principle and observation model of the same beam interferometry measurement, observation equations of differential time delay and time delay rate for targets on lunar surface are proposed. Restriction of appointed height and digital lunar height model is introduced and a Kalman filter with restriction to determine the relative position is put forward. By data simulation, the arithmetic is then validated and evaluated, which could fleetly and accurately determine the relative position between rover and lander. Low precision of the lander's position is required in the calculation.

  8. COSPAR-16-B0.1/ICEUM12A: Lunar Exploration and Science

    Science.gov (United States)

    Foing, Bernard H.

    2016-07-01

    Lunar science and exploration are having a renaissance with as many as twelve missions (and 18 vehicles) sent to Moon during the last "International Lunar decade". This session is aimed at discussing new progress in lunar science from recent missions, latest science results, newer insight into our understanding of Moon, modelling and synthesis of different scientific data, future missions, and science questions. It will include invited, contributed, and poster papers. Papers on new lunar mission concepts, instrumentation for the future missions, the upcoming lunar decade of landers and lunar robotic village, and preparations for human lunar exploration towards a "Moon Village" are also welcome in this session. COSPAR-16-B0.1 will also be ICEUM12A, part of the 12th International Conference on Exploration and Utilisation of the Moon from the ILEWG ICEUM series started in 1994.

  9. ISA accelerometer and Lunar science

    Science.gov (United States)

    Iafolla, Valerio; Peron, Roberto; Lucchesi, David; Santoli, Francesco; Lefevre, Carlo; Fiorenza, Emiliano; Nozzoli, Sergio; Lucente, Marco; Magnafico, Carmelo; Milyukov, Vadim

    In recent years the Moon has become again a target for exploration activities, as shown by many missions, performed, ongoing or foreseen. The reasons for this new wave are manifold. The knowledge of formation and evolution of the Moon to its current state is important in order to trace the overall history of the Solar System. An effective driving factor is the possibility of building a human settlement on its surface, with all the related issues of environment characterization, safety, resources, communication and navigation. Our natural satellite is also an important laboratory for fundamental physics: Lunar Laser Ranging is continuing to provide important data for testing gravitation theories. All these topics are providing stimulus and inspirations for new experiments: in fact a wide variety of them has been proposed to be conducted on the lunar surface. ISA (Italian Spring Accelerometer) can provide an important tool for lunar studies. Thanks to its design it works on-ground with the same configuration developed for in-orbit applications. It can therefore be used onboard a spacecraft, as a support to a radio science mission, and on the surface of the Moon, as a seismometer. This second option in particular has been the subject of preliminary studies and has been proposed as a candidate to be hosted on NASA ILN (International Lunar Network) and ESA First Lunar Lander. ISA-S (ISA-Seismometer) has a very high sensitivity, which has already been demonstrated with long time periods of usage on Earth. It features also a wide bandwidth, extended towards the low frequencies. After a description of the instrument, its use in the context of landing missions will be described and discussed, giving emphasis on its integration with the other components of the systems.

  10. Photogrammetry of the Viking Lander imagery

    Science.gov (United States)

    Wu, S. S. C.; Schafer, F. J.

    1982-01-01

    The problem of photogrammetric mapping which uses Viking Lander photography as its basis is solved in two ways: (1) by converting the azimuth and elevation scanning imagery to the equivalent of a frame picture, using computerized rectification; and (2) by interfacing a high-speed, general-purpose computer to the analytical plotter employed, so that all correction computations can be performed in real time during the model-orientation and map-compilation process. Both the efficiency of the Viking Lander cameras and the validity of the rectification method have been established by a series of pre-mission tests which compared the accuracy of terrestrial maps compiled by this method with maps made from aerial photographs. In addition, 1:10-scale topographic maps of Viking Lander sites 1 and 2 having a contour interval of 1.0 cm have been made to test the rectification method.

  11. Lunar magnetism

    Science.gov (United States)

    Hood, L. L.; Sonett, C. P.; Srnka, L. J.

    1984-01-01

    Aspects of lunar paleomagnetic and electromagnetic sounding results which appear inconsistent with the hypothesis that an ancient core dynamo was the dominant source of the observed crustal magnetism are discussed. Evidence is summarized involving a correlation between observed magnetic anomalies and ejecta blankets from impact events which indicates the possible importance of local mechanisms involving meteoroid impact processes in generating strong magnetic fields at the lunar surface. A reply is given to the latter argument which also presents recent evidence of a lunar iron core.

  12. Lunar dust transport and potential interactions with power system components

    International Nuclear Information System (INIS)

    The lunar surface is covered by a thick blanket of fine dust. This dust may be readily suspended from the surface and transported by a variety of mechanisms. As a consequence, lunar dust can accumulate on sensitive power components, such as photovoltaic arrays and radiator surfaces, reducing their performance. In addition to natural mechanisms, human activities on the Moon will disturb significant amounts of lunar dust. Of all the mechanisms identified, the most serious is rocket launch and landing. The return of components from the Surveyor III provided a rare opportunity to observe the effects of the nearby landing of the Apollo 12 lunar module. The evidence proved that significant dust accumulation occurred on the Surveyor at a distance of 155 m. From available information on particle suspension and transport mechanisms, a series of models was developed to predict dust accumulation as a function of distance from the lunar module. The accumulation distribution was extrapolated to a future lunar lander scenario. These models indicate that accumulation is expected to be substantial even as far as 2 km from the landing site. Estimates of the performance penalties associated with lunar dust coverage on radiators and photovoltaic arrays are presented. Because of the lunar dust adhesive and cohesive properties, the most practical dust defensive strategy appears to be the protection of sensitive components from the arrival of lunar dust by location, orientation, or barriers

  13. Lunar Riometry: Proof-of-Concept Instrument Package

    Science.gov (United States)

    Lazio, J.; Jones, D. L.; MacDowall, R. J.; Stewart, K.; Giersch, L.; Burns, J. O.; Farrell, W. M.; Kasper, J. C.; O'Dwyer, I.; Hartman, J.

    2012-12-01

    The lunar exosphere is the exemplar of a plasma near the surface of an airless body. Exposed to both the solar and interstellar radiation fields, the lunar exosphere is mostly ionized, and enduring questions regarding its properties include its density and vertical extent, the extent of contributions from volatile outgassing from the Moon, and its behavior over time, including response to the solar wind and modification by landers. Relative ionospheric measurements (riometry) is based on the simple physical principle that electromagnetic waves cannot propagate through a partially or fully ionized medium below the plasma frequency, and riometers have been deployed on the Earth in numerous remote and hostile environments. A multi-frequency riometer on the lunar surface would be able to monitor, in situ, the vertical extent of the lunar exosphere over time. We describe a concept for a riometer implemented as a secondary science payload on future lunar landers, such as those recommended in the recent Planetary Sciences Decadal Survey report. The instrument concept is simple, consisting of an antenna implemented as a metal deposited on polyimide film and receiver. We illustrate various deployment mechanisms and performance of a prototype in increasing lunar analog conditions. While the prime mission of such a riometer would be probing the lunar exosphere, our concept would also be capable to measuring the properties of dust impactors. The Lunar University Network for Astrophysical Research consortium is funded by the NASA Lunar Science Institute to investigate concepts for astrophysical observatories on the Moon. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA.

  14. ESA's Comet Orbiter Rosetta and Lander Philae

    Science.gov (United States)

    McKenna-Lawlor, S.; Schwehm, G.; Schulz, R.; Ulamec, S.

    2014-05-01

    Rosetta is the first mission designed to orbit, and deploy a Lander onto the surface of, a comet, 67P/Churyumov-Gerasimenko (67P/C-G). After an active Cruise Phase, which included three swingbys at the Earth, one at Mars and two flybys at Main Belt asteroids, the spacecraft is scheduled to orbit the comet nucleus and, after careful reconnaissance, deliver to the surface, while still at a distance of about 3 AU from the Sun, its Lander (Philae). The Lander payload, which comprises ten onboard experiments, will investigate the physical properties of the cometary surface/subsurface, measuring in particular their chemical, mineralogical and isotopic compositions. The lifetime of the Lander will depend on the prevailing cometary environment. The spacecraft will meanwhile continue to orbit and map the comet as it advances along its trajectory toward the Sun, utilizing eleven payload experiments to investigate how the comet becomes gradually more active and how its interactions with the solar wind develop. Post-perihelion Rosetta will continue to orbit, and make observations of the gradually declining comet environment out to a distance of ˜ 2 AU.

  15. Antenna Deployment for a Pathfinder Lunar Radio Observatory

    Science.gov (United States)

    MacDowall, Robert J.; Minetto, F. A.; Lazio, T. W.; Jones, D. L.; Kasper, J. C.; Burns, J. O.; Stewart, K. P.; Weiler, K. W.

    2012-01-01

    A first step in the development of a large radio observatory on the moon for cosmological or other astrophysical and planetary goals is to deploy a few antennas as a pathfinder mission. In this presentation, we describe a mechanism being developed to deploy such antennas from a small craft, such as a Google Lunar X-prize lander. The antenna concept is to deposit antennas and leads on a polyimide film, such as Kapton, and to unroll the film on the lunar surface. The deployment technique utilized is to launch an anchor which pulls a double line from a reel at the spacecraft. Subsequently, the anchor is set by catching on the surface or collecting sufficient regolith. A motor then pulls in one end of the line, pulling the film off of its roller onto the lunar surface. Detection of a low frequency cutoff of the galactic radio background or of solar radio bursts by such a system would determine the maximum lunar ionospheric density at the time of measurement. The current design and testing, including videos of the deployment, will be presented. These activities are funded in part by the NASA Lunar Science Institute as an activity of the Lunar University Network for Astrophysical Research (LUNAR) consortium. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  16. Lunar Dust, Plasma, Waves and Fields Exploration Package

    Science.gov (United States)

    Travnicek, P. M.

    2012-09-01

    Dust, the charged lunar surface, and the ambient plasma form a closely coupled system. The lunar surface is permanently under the influence of charging effects such as UV radiation or energetic solar wind and magnetospheric particles. The surface charging effects result in strong local electric fields which in turn may lead to mobilization and transport of charged dust particles. Furthermore, the environment can become even more complex in the presence of local crustal magnetic anomalies or due to sunlight shadow transitions. A detail under-standing of these phenomena and their dependence on external influences is a key point for future robotic/human lunar exploration and requires an appropriately tuned instrumentation for in situ measurements. Here we present preliminary results from the concept and design phase A study of the Lunar Dust Environment and Plasma Package (L-DEPP), which has been proposed as one of model instrument payloads for the planned Lunar Lander mission of the European Space Agency. Focus is held on scientific objectives and return of the mission with respect to environmental and mission technology constraints and requirements. L-DEPP is proposed to consist of the following instruments: ELDA - Electrostatic lunar dust analyser, LP - Langmuir probe, RADIO - Broadband radio receiver and electric field antennae, LEIA - Lunar electron and ion analyser, and MAG - Fluxgate magnetometer. In addition to the dust and plasma measurements the RADIO experiment will provide a site survey testing for future radio astronomy observations.

  17. Lunar Ascent and Rendezvous Trajectory Design

    Science.gov (United States)

    Sostaric, Ronald R.; Merriam, Robert S.

    2008-01-01

    The Lunar Lander Ascent Module (LLAM) will leave the lunar surface and actively rendezvous in lunar orbit with the Crew Exploration Vehicle (CEV). For initial LLAM vehicle sizing efforts, a nominal trajectory, along with required delta-V and a few key sensitivities, is very useful. A nominal lunar ascent and rendezvous trajectory is shown, along with rationale and discussion of the trajectory shaping. Also included are ascent delta-V sensitivities to changes in target orbit and design thrust-to-weight of the vehicle. A sample launch window for a particular launch site has been completed and is included. The launch window shows that budgeting enough delta-V for two missed launch opportunities may be reasonable. A comparison between yaw steering and on-orbit plane change maneuvers is included. The comparison shows that for large plane changes, which are potentially necessary for an anytime return from mid-latitude locations, an on-orbit maneuver is much more efficient than ascent yaw steering. For a planned return, small amounts of yaw steering may be necessary during ascent and must be accounted for in the ascent delta-V budget. The delta-V cost of ascent yaw steering is shown, along with sensitivity to launch site latitude. Some discussion of off-nominal scenarios is also included. In particular, in the case of a failed Powered Descent Initiation burn, the requirements for subsequent rendezvous with the Orion vehicle are outlined.

  18. Lunar Missions and Datasets

    Science.gov (United States)

    Cohen, Barbara A.

    2009-01-01

    There are two slide presentations contained in this document. The first reviews the lunar missions from Surveyor, Galileo, Clementine, the Lunar Prospector, to upcoming lunar missions, Lunar Reconnaissance Orbiter (LRO), Lunar Crater Observation & Sensing Satellite (LCROSS), Acceleration, Reconnection, Turbulence and Electrodynamics of Moon's Interaction with the Sun (ARTEMIS), Gravity Recovery and Interior Laboratory (GRAIL), Lunar Atmosphere, Dust and Environment Explorer (LADEE), ILN and a possible Robotic sample return mission. The information that the missions about the moon is reviewed. The second set of slides reviews the lunar meteorites, and the importance of lunar meteorites to adding to our understanding of the moon.

  19. Photogrammetry of the Viking-Lander imagery.

    Science.gov (United States)

    Wu, S.S.C.; Schafer, F.J.

    1982-01-01

    We have solved the problem of photogrammetric mapping from the Viking Lander photography in two ways: 1) by converting the azimuth and elevation scanning imagery to the equivalent of a frame picture by means of computerized rectification; and 2) by interfacing a high-speed, general-purpose computer to the AS-11A analytical plotter so that all computations of corrections can be performed in real time during the process of model orientation and map compilation. Examples are presented of photographs and maps of Earth and Mars. -from Authors

  20. The Mars NetLander panoramic camera

    Science.gov (United States)

    Jaumann, Ralf; Langevin, Yves; Hauber, Ernst; Oberst, Jürgen; Grothues, Hans-Georg; Hoffmann, Harald; Soufflot, Alain; Bertaux, Jean-Loup; Dimarellis, Emmanuel; Mottola, Stefano; Bibring, Jean-Pierre; Neukum, Gerhard; Albertz, Jörg; Masson, Philippe; Pinet, Patrick; Lamy, Philippe; Formisano, Vittorio

    2000-10-01

    The panoramic camera (PanCam) imaging experiment is designed to obtain high-resolution multispectral stereoscopic panoramic images from each of the four Mars NetLander 2005 sites. The main scientific objectives to be addressed by the PanCam experiment are (1) to locate the landing sites and support the NetLander network sciences, (2) to geologically investigate and map the landing sites, and (3) to study the properties of the atmosphere and of variable phenomena. To place in situ measurements at a landing site into a proper regional context, it is necessary to determine the lander orientation on ground and to exactly locate the position of the landing site with respect to the available cartographic database. This is not possible by tracking alone due to the lack of on-ground orientation and the so-called map-tie problem. Images as provided by the PanCam allow to determine accurate tilt and north directions for each lander and to identify the lander locations based on landmarks, which can also be recognized in appropriate orbiter imagery. With this information, it will be further possible to improve the Mars-wide geodetic control point network and the resulting geometric precision of global map products. The major geoscientific objectives of the PanCam lander images are the recognition of surface features like ripples, ridges and troughs, and the identification and characterization of different rock and surface units based on their morphology, distribution, spectral characteristics, and physical properties. The analysis of the PanCam imagery will finally result in the generation of precise map products for each of the landing sites. So far comparative geologic studies of the Martian surface are restricted to the timely separated Mars Pathfinder and the two Viking Lander Missions. Further lander missions are in preparation (Beagle-2, Mars Surveyor 03). NetLander provides the unique opportunity to nearly double the number of accessible landing site data by providing

  1. Using Lunar Module Shadows To Scale the Effects of Rocket Exhaust Plumes

    Science.gov (United States)

    2008-01-01

    Excavating granular materials beneath a vertical jet of gas involves several physical mechanisms. These occur, for example, beneath the exhaust plume of a rocket landing on the soil of the Moon or Mars. We performed a series of experiments and simulations (Figure 1) to provide a detailed view of the complex gas-soil interactions. Measurements taken from the Apollo lunar landing videos (Figure 2) and from photographs of the resulting terrain helped demonstrate how the interactions extrapolate into the lunar environment. It is important to understand these processes at a fundamental level to support the ongoing design of higher fidelity numerical simulations and larger-scale experiments. These are needed to enable future lunar exploration wherein multiple hardware assets will be placed on the Moon within short distances of one another. The high-velocity spray of soil from the landing spacecraft must be accurately predicted and controlled or it could erode the surfaces of nearby hardware. This analysis indicated that the lunar dust is ejected at an angle of less than 3 degrees above the surface, the results of which can be mitigated by a modest berm of lunar soil. These results assume that future lunar landers will use a single engine. The analysis would need to be adjusted for a multiengine lander. Figure 3 is a detailed schematic of the Lunar Module camera calibration math model. In this chart, formulas relating the known quantities, such as sun angle and Lunar Module dimensions, to the unknown quantities are depicted. The camera angle PSI is determined by measurement of the imaged aspect ratio of a crater, where the crater is assumed to be circular. The final solution is the determination of the camera calibration factor, alpha. Figure 4 is a detailed schematic of the dust angle math model, which again relates known to unknown parameters. The known parameters now include the camera calibration factor and Lunar Module dimensions. The final computation is the ejected

  2. SP-100 reactor with Brayton conversion for lunar surface applications

    International Nuclear Information System (INIS)

    Examined here is the potential for integrating Brayton-cycle power conversion with the SP-100 reactor for lunar surface power system applications. Two designs were characterized and modeled. The first design integrates a 100-kWe SP-100 Brayton power system with a lunar lander. This system is intended to meet early lunar mission power needs while minimizing on-site installation requirements. Man-rated radiation protection is provided by an integral multilayer, cylindrical lithium hydride/tungsten (LiH/W) shield encircling the reactor vessel. Design emphasis is on ease of deployment, safety, and reliability, while utilizing relatively near-term technology. The second design combines Brayton conversion with the SP-100 reactor in a erectable 550-kWe powerplant concept intended to satisfy later-phase lunar base power requirements. This system capitalizes on experience gained from operating the initial 100-kWe module and incorporates some technology improvements. For this system, the reactor is emplaced in a lunar regolith excavation to provide man-rated shielding, and the Brayton engines and radiators are mounted on the lunar surface and extend radially from the central reactor. Design emphasis is on performance, safety, long life, and operational flexibility

  3. Europa Lander mission and the context of international cooperation

    Science.gov (United States)

    Europa Lander Team; Zelenyi, L.; Korablev, O.; Martynov, M.; Popov, G. A.; Blanc, M.; Lebreton, J. P.; Pappalardo, R.; Clark, K.; Fedorova, A.; Akim, E. L.; Simonov, A. A.; Lomakin, I. V.; Sukhanov, A.; Eismont, N.

    2011-08-01

    From 2007 the Russian Academy of Sciences and Roscosmos consider to develop a Europa surface element, in coordination with the Europa Jupiter System Mission (EJSM) international project planned to study the Jupiter system. The main scientific objectives of the Europa Lander are to search for the signatures of possible present and extinct life, in situ studies of the Europa internal structure, the surface and the environment. The mission includes the lander, and the relay orbiter, to be launched by Proton and carried to Jupiter with electric propulsion. The mass of scientific instruments on the lander is ˜50 kg, and its planned lifetime is 60 days. A dedicated international Europa Lander Workshop (ELW) was held in Moscow in February 2009. Following the ELW materials and few recent developments, the paper describes the planned mission, including the science goals, technical design of the mission elements, the ballistic scheme, and the synergy between the Europa Lander and the EJSM.

  4. Testing general relativity with Landers on the Martian satellite Phobos

    Science.gov (United States)

    Anderson, J. D.; Borderies, N. J.; Campbell, J. K.; Dunne, J. A.; Ellis, J.

    1989-01-01

    A planned experiment to obtain range and Doppler data with the Phobos 2 Lander on the surface of the Martian satellite Phobos is described. With the successful insertion on January 29, 1989 of Phobos 2 into Mars orbit, it is anticipated that the Lander will be placed on the surface of Phobos in April 1989. Depending on the longevity of the Lander, range and Doppler data for a period of from one to several years are expected. Because these data are of value in performing solar-system tests of general relativity, the current accuracy of the relevant relativity tests using Deep Space Network data from the Mariner-9 orbiter of Mars in 1971 and from the Viking Landers in 1976-1982 is reviewed. The expected improvement from data anticipated during the Phobos 2 Lander Mission is also discussed; most important will be an improved sensitivity to any time variation in the gravitational 'constant' as measured in atomic units.

  5. The ISA accelerometer and Lunar science

    Science.gov (United States)

    Iafolla, Valerio; Fiorenza, Emiliano; Lefevre, Carlo; Massimo Lucchesi, David; Lucente, Marco; Magnafico, Carmelo; Milyukov, Vadim; Nozzoli, Sergio; Peron, Roberto; Santoli, Francesco

    2014-05-01

    In recent years the Moon has become again a target for exploration activities, as shown by many missions, performed, ongoing or foreseen. The reasons for this new wave are manifold. The knowledge of formation and evolution of the Moon to its current state is important in order to trace the overall history of Solar System. An effective driving factor is the possibility of building a human settlement on its surface, with all the related issues of environment characterization, safety, resources, communication and navigation. Our natural satellite is also an important laboratory for fundamental physics: Lunar Laser Ranging is continuing to provide important data for testing gravitation theories. All these topics are providing stimulus and inspirations for new experiments: in fact a wide variety of them has been proposed to be conducted on the lunar surface. ISA (Italian Spring Accelerometer) can provide an important tool for lunar studies. Thanks to its structure (three one-dimensional sensors assembled in a composite structure) it works both in-orbit and on-ground, with the same configuration. It can therefore be used onboard a spacecraft, as a support to a radio science mission, and on the surface of the Moon, as a seismometer. This second option in particular has been the subject of preliminary studies and has been proposed as a candidate to be hosted on NASA ILN (International Lunar Network) and ESA First Lunar Lander. ISA-S (ISA-Seismometer) has a very high sensitivity, which has already been demonstrated with long time periods of usage on Earth. After a description of the instrument, its use in the context of landing missions will be described and discussed, giving emphasis on its integration with the other components of the systems.

  6. Modelling of Lunar Dust and Electrical Field for Future Lunar Surface Measurements

    Science.gov (United States)

    Lin, Yunlong

    Modelling of the lunar dust and electrical field is important to future human and robotic activities on the surface of the moon. Apollo astronauts had witnessed the maintaining of micron- and millimeter sized moon dust up to meters level while walked on the surface of the moon. The characterizations of the moon dust would enhance not only the scientific understanding of the history of the moon but also the future technology development for the surface operations on the moon. It has been proposed that the maintaining and/or settlement of the small-sized dry dust are related to the size and weight of the dust particles, the level of the surface electrical fields on the moon, and the impaction and interaction between lunar regolith and the solar particles. The moon dust distributions and settlements obviously affected the safety of long term operations of future lunar facilities. For the modelling of the lunar dust and the electrical field, we analyzed the imaging of the legs of the moon lander, the cover and the footwear of the space suits, and the envelope of the lunar mobiles, and estimated the size and charges associated with the small moon dust particles, the gravity and charging effects to them along with the lunar surface environment. We also did numerical simulation of the surface electrical fields due to the impaction of the solar winds in several conditions. The results showed that the maintaining of meters height of the micron size of moon dust is well related to the electrical field and the solar angle variations, as expected. These results could be verified and validated through future on site and/or remote sensing measurements and observations of the moon dust and the surface electrical field.

  7. Aerodynamic Parameter Identification of a Venus Lander

    Science.gov (United States)

    Sykes, Robert A.

    An analysis was conducted to identify the parameters of an aerodynamic model for a Venus lander based on experimental free-flight data. The experimental free-flight data were collected in the NASA Langley 20-ft Vertical Spin Tunnel with a 25-percent Froude-scaled model. The experimental data were classified based on the wind tunnel run type: runs where the lander model was unperturbed over the course of the run, and runs were the model was perturbed (principally in pitch, yaw, and roll) by the wind tunnel operator. The perturbations allow for data to be obtained at higher wind angles and rotation rates than those available from the unperturbed data. The model properties and equations of motion were used to determine experimental values for the aerodynamic coefficients. An aerodynamic model was selected using a priori knowledge of axisymmetric blunt entry vehicles. The least squares method was used to estimate the aerodynamic parameters. Three sets of results were obtained from the following data sets: perturbed, unperturbed, and the combination of both. The combined data set was selected for the final set of aerodynamic parameters based on the quality of the results. The identified aerodynamic parameters are consistent with that of the static wind tunnel data. Reconstructions, of experimental data not used in the parameter identification analyses, achieved similar residuals as those with data used to identify the parameters. Simulations of the experimental data, using the identified parameters, indicate that the aerodynamic model used is incapable of replicating the limit cycle oscillations with stochastic peak amplitudes observed during the test.

  8. A lunar construction shack vehicle: Final design

    Science.gov (United States)

    A lunar construction shack vehicle is a critical component in most of the plans proposed for the construction of a permanent base on the moon. The Selene Engineering Company (SEC) has developed a concept for this vehicle which is both innovative and practical. The design makes use of the most advanced technology available to meet the goals for a safe, versatile and durable habitat that will serve as a starting point for the initial phase of the construction of a permanent lunar base. This document outlines SEC's proposed design for a lander vehicle which will be fully self-sufficient and will provide for all necessary life support, including consumables and radiation protection, needed by the construction crew until they can complete the assembly of a more permanent habitat. Since it is highly likely that it will take more than one crew to complete the construction of a permanent lunar base, the design emphasis is on systems which can be easily maintained and resupplied and which will take a minimum of start up preparation by succeeding crews.

  9. Hazard Detection Software for Lunar Landing

    Science.gov (United States)

    Huertas, Andres; Johnson, Andrew E.; Werner, Robert A.; Montgomery, James F.

    2011-01-01

    The Autonomous Landing and Hazard Avoidance Technology (ALHAT) Project is developing a system for safe and precise manned lunar landing that involves novel sensors, but also specific algorithms. ALHAT has selected imaging LIDAR (light detection and ranging) as the sensing modality for onboard hazard detection because imaging LIDARs can rapidly generate direct measurements of the lunar surface elevation from high altitude. Then, starting with the LIDAR-based Hazard Detection and Avoidance (HDA) algorithm developed for Mars Landing, JPL has developed a mature set of HDA software for the manned lunar landing problem. Landing hazards exist everywhere on the Moon, and many of the more desirable landing sites are near the most hazardous terrain, so HDA is needed to autonomously and safely land payloads over much of the lunar surface. The HDA requirements used in the ALHAT project are to detect hazards that are 0.3 m tall or higher and slopes that are 5 or greater. Steep slopes, rocks, cliffs, and gullies are all hazards for landing and, by computing the local slope and roughness in an elevation map, all of these hazards can be detected. The algorithm in this innovation is used to measure slope and roughness hazards. In addition to detecting these hazards, the HDA capability also is able to find a safe landing site free of these hazards for a lunar lander with diameter .15 m over most of the lunar surface. This software includes an implementation of the HDA algorithm, software for generating simulated lunar terrain maps for testing, hazard detection performance analysis tools, and associated documentation. The HDA software has been deployed to Langley Research Center and integrated into the POST II Monte Carlo simulation environment. The high-fidelity Monte Carlo simulations determine the required ground spacing between LIDAR samples (ground sample distances) and the noise on the LIDAR range measurement. This simulation has also been used to determine the effect of

  10. Thermoacoustic Duplex Technology for Cooling and Powering a Venus Lander

    Science.gov (United States)

    Walker, A. R.; Haberbusch, M. S.; Sasson, J.

    2015-04-01

    A Thermoacoustic Stirling Heat Engine (TASHE) is directly coupled to a Pulse Tube Refrigerator (PTR) in a duplex configuration, providing simultaneous cooling and electrical power, thereby suiting the needs of a long-lived Venus lander.

  11. Viking lander camera radiometry calibration report, volume 1

    Science.gov (United States)

    Wolf, M. R.; Atwood, D. L.; Morrill, M. E.

    1977-01-01

    The test methods and data reduction techniques used to determine and remove instrumental signatures from Viking Lander camera radiometry data are described. Gain, offset, and calibration constants are presented in tables.

  12. Thermal Management System for Long-Lived Venus Landers Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Long-lived Venus landers require power and cooling. Heat from the roughly 64 General Purpose Heat Source (GPHS) modules must be delivered to the convertor with...

  13. Atlantic Deep-Water Canyons (Benthic Landers) 2013

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Each benthic lander contains a programmable sediment trap which can take 12 monthly samples, plus instruments to record temperature, salinity, dissolved oxygen,...

  14. A Novel, Low-Cost Conformable Lander Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The primary focus of this activity will be to outline a preliminary mechanical design for this conforming lander. Salient issues to be worked include (1)...

  15. Lunar Orbiter Photo Gallery

    Data.gov (United States)

    National Aeronautics and Space Administration — The Lunar Orbiter Photo Gallery is an extensive collection of over 2,600 high- and moderate-resolution photographs produced by all five of the Lunar Orbiter...

  16. Lunar Surface Navigation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — To support extended lunar operations, precision localization and route mapping is required for planetary EVA, manned rovers and lunar surface mobility units. A...

  17. Lunar Sample Compendium

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of the Lunar Sample Compendium is to inform scientists, astronauts and the public about the various lunar samples that have been returned from the Moon....

  18. Feasibility and Definition of a Lunar Polar Volatiles Prospecting Mission

    Science.gov (United States)

    Heldmann, Jennifer; Elphic, Richard; Colaprete, Anthony; Fong, Terry; Pedersen, Liam; Beyer, Ross; Cockrell, James

    2012-01-01

    The recent Lunar Crater Observing and Sensing Satellite (LCROSS) mission has provided evidence for significant amounts of cold trapped volatiles in Cabeus crater near the Moon's south pole. Moreover, LRO/Diviner measurements of extremely cold lunar polar surface temperatures imply that volatiles can be stable outside or areas of strict permanent shadows. These discoveries suggest that orbital neutron spectrometer data point to extensive deposits at both lunar poles. The physical state, composition and distribution of these volatiles are key scientific issues that relate to source and emplacement mechanisms. These issues are also important for enabling lunar in situ resource utilization (ISRU). An assessment of the feasibility of cold-trapped volatile ISRU requires a priori information regarding the location, form, quantity, and potential for extraction of available resources. A robotic mission to a mostly shadowed but briefly .unlit location with suitable environmental conditions (e.g. short periods of oblique sunlight and subsurface cryogenic temperatures which permit volatile trapping) can help answer these scientific and exploration questions. Key parameters must be defined in order to identify suitable landing sites, plan surface operations, and achieve mission success. To address this need, we have conducted an initial study for a lunar polar volatile prospecting mission, assuming the use of a solar-powered robotic lander and rover. Here we present the mission concept, goals and objectives, and landing site selection analysis for a short-duration, landed, solar-powered mission to a potential hydrogen volatile-rich site.

  19. Lunar Proton Albedo Anomalies: Soil, Surveyors, and Statistics

    Science.gov (United States)

    Wilson, J. K.; Schwadron, N.; Spence, H. E.; Case, A. W.; Golightly, M. J.; Jordan, A.; Looper, M. D.; Petro, N. E.; Robinson, M. S.; Stubbs, T. J.; Zeitlin, C. J.; Blake, J. B.; Kasper, J. C.; Mazur, J. E.; Smith, S. S.; Townsend, L. W.

    2014-12-01

    Since the launch of LRO in 2009, the CRaTER instrument has been mapping albedo protons (~100 MeV) from the Moon. These protons are produced by nuclear spallation, a consequence of galactic cosmic ray (GCR) bombardment of the lunar regolith. Just as spalled neutrons and gamma rays reveal elemental abundances in the lunar regolith, albedo protons may be a complimentary method for mapping compositional variations. We presently find that the lunar maria have an average proton yield 0.9% ±0.3% higher than the average yield in the highlands; this is consistent with neutron data that is sensitive to the regolith's average atomic weight. We also see cases where two or more adjacent pixels (15° × 15°) have significantly anomalous yields above or below the mean. These include two high-yielding regions in the maria, and three low-yielding regions in the far-side highlands. Some of the regions could be artifacts of Poisson noise, but for completeness we consider possible effects from compositional anomalies in the lunar regolith, including pyroclastic flows, antipodes of fresh craters, and so-called "red spots". We also consider man-made landers and crash sites that may have brought elements not normally found in the lunar regolith.

  20. Apollo lunar sounder experiment

    Science.gov (United States)

    Phillips, R.J.; Adams, G.F.; Brown, W.E., Jr.; Eggleton, R.E.; Jackson, P.; Jordan, R.; Linlor, W.I.; Peeples, W.J.; Porcello, L.J.; Ryu, J.; Schaber, G.; Sill, W.R.; Thompson, T.W.; Ward, S.H.; Zelenka, J.S.

    1973-01-01

    The scientific objectives of the Apollo lunar sounder experiment (ALSE) are (1) mapping of subsurface electrical conductivity structure to infer geological structure, (2) surface profiling to determine lunar topographic variations, (3) surface imaging, and (4) measuring galactic electromagnetic radiation in the lunar environment. The ALSE was a three-frequency, wide-band, coherent radar system operated from lunar orbit during the Apollo 17 mission.

  1. Comet sample acquisition for ROSETTA lander mission

    Science.gov (United States)

    Marchesi, M.; Campaci, R.; Magnani, P.; Mugnuolo, R.; Nista, A.; Olivier, A.; Re, E.

    2001-09-01

    ROSETTA/Lander is being developed with a combined effort of European countries, coordinated by German institutes. The commitment for such a challenging probe will provide a unique opportunity for in-situ analysis of a comet nucleus. The payload for coring, sampling and investigations of comet materials is called SD2 (Sampling Drilling and Distribution). The paper presents the drill/sampler tool and the sample transfer trough modeling, design and testing phases. Expected drilling parameters are then compared with experimental data; limited torque consumption and axial thrust on the tool constraint the operation and determine the success of tests. Qualification campaign involved the structural part and related vibration test, the auger/bit parts and drilling test, and the coring mechanism with related sampling test. Mechanical check of specimen volume is also reported, with emphasis on the measurement procedure and on the mechanical unit. The drill tool and all parts of the transfer chain were tested in the hypothetical comet environment, charcterized by frozen material at extreme low temperature and high vacuum (-160°C, 10-3 Pa).

  2. Ground-based real-time tracking and traverse recovery of China's first lunar rover

    Science.gov (United States)

    Zhou, Huan; Li, Haitao; Xu, Dezhen; Dong, Guangliang

    2016-02-01

    The Chang'E-3 unmanned lunar exploration mission forms an important stage in China's Lunar Exploration Program. China's first lunar rover "Yutu" is a sub-probe of the Chang'E-3 mission. Its main science objectives cover the investigations of the lunar soil and crust structure, explorations of mineral resources, and analyses of matter compositions. Some of these tasks require accurate real-time and continuous position tracking of the rover. To achieve these goals with the scale-limited Chinese observation network, this study proposed a ground-based real-time very long baseline interferometry phase referencing tracking method. We choose the Chang'E-3 lander as the phase reference source, and the accurate location of the rover is updated every 10 s using its radio-image sequences with the help of a priori information. The detailed movements of the Yutu rover have been captured with a sensitivity of several centimeters, and its traverse across the lunar surface during the first few days after its separation from the Chang'E-3 lander has been recovered. Comparisons and analysis show that the position tracking accuracy reaches a 1-m level.

  3. Comparative analysis of algorithms for lunar landing control

    Science.gov (United States)

    Zhukov, B. I.; Likhachev, V. N.; Sazonov, V. V.; Sikharulidze, Yu. G.; Tuchin, A. G.; Tuchin, D. A.; Fedotov, V. P.; Yaroshevskii, V. S.

    2015-11-01

    For the descent from the pericenter of a prelanding circumlunar orbit a comparison of three algorithms for the control of lander motion is performed. These algorithms use various combinations of terminal and programmed control in a trajectory including three parts: main braking, precision braking, and descent with constant velocity. In the first approximation, autonomous navigational measurements are taken into account and an estimate of the disturbances generated by movement of the fuel in the tanks was obtained. Estimates of the accuracy for landing placement, fuel consumption, and performance of the conditions for safe lunar landing are obtained.

  4. Conceptual analysis of a lunar base transportation system

    Science.gov (United States)

    Hoy, Trevor D.; Johnson, Lloyd B., III; Persons, Mark B.; Wright, Robert L.

    1992-01-01

    Important to the planning for a lunar base is the development of transportation requirements for the establishment and maintenance of that base. This was accomplished as part of a lunar base systems assessment study conducted by the NASA Langley Research Center in conjunction with the NASA Johnson Space Center. Lunar base parameters are presented using a baseline lunar facility concept and timeline of developmental phases. Masses for habitation and scientific modules, power systems, life support systems, and thermal control systems were generated, assuming space station technology as a starting point. The masses were manifested by grouping various systems into cargo missions and interspersing manned flights consistent with construction and base maintenance timelines. A computer program that sizes the orbital transfer vehicles (OTV's), lunar landers, lunar ascenders, and the manned capsules was developed. This program consists of an interative technique to solve the rocket equation successively for each velocity correction (delta V) in a mission. The delta V values reflect integrated trajectory values and include gravity losses. As the program computed fuel masses, it matched structural masses from General Dynamics' modular space-based OTV design. Variables in the study included the operation mode (i.e., expendable vs. reusable and single-stage vs. two-stage OTV's), cryogenic specific impulse, reflecting different levels of engine technology, and aerobraking vs. all-propulsive return to Earth orbit. The use of lunar-derived oxygen was also examined for its general impact. For each combination of factors, the low-Earth orbit (LEO) stack masses and Earth-to-orbit (ETO) lift requirements are summarized by individual mission and totaled for the developmental phase. In addition to these discrete data, trends in the variation of study parameters are presented.

  5. Conceptual analysis of a lunar base transportation system

    Science.gov (United States)

    Hoy, Trevor D.; Johnson, Lloyd B., III; Persons, Mark B.; Wright, Robert L.

    1992-09-01

    Important to the planning for a lunar base is the development of transportation requirements for the establishment and maintenance of that base. This was accomplished as part of a lunar base systems assessment study conducted by the NASA Langley Research Center in conjunction with the NASA Johnson Space Center. Lunar base parameters are presented using a baseline lunar facility concept and timeline of developmental phases. Masses for habitation and scientific modules, power systems, life support systems, and thermal control systems were generated, assuming space station technology as a starting point. The masses were manifested by grouping various systems into cargo missions and interspersing manned flights consistent with construction and base maintenance timelines. A computer program that sizes the orbital transfer vehicles (OTV's), lunar landers, lunar ascenders, and the manned capsules was developed. This program consists of an interative technique to solve the rocket equation successively for each velocity correction (delta V) in a mission. The delta V values reflect integrated trajectory values and include gravity losses. As the program computed fuel masses, it matched structural masses from General Dynamics' modular space-based OTV design. Variables in the study included the operation mode (i.e., expendable vs. reusable and single-stage vs. two-stage OTV's), cryogenic specific impulse, reflecting different levels of engine technology, and aerobraking vs. all-propulsive return to Earth orbit. The use of lunar-derived oxygen was also examined for its general impact. For each combination of factors, the low-Earth orbit (LEO) stack masses and Earth-to-orbit (ETO) lift requirements are summarized by individual mission and totaled for the developmental phase. In addition to these discrete data, trends in the variation of study parameters are presented.

  6. Toxicity of lunar dust

    CERN Document Server

    Linnarsson, Dag; Fubini, Bice; Gerde, Per; Karlsson, Lars L; Loftus, David J; Prisk, G Kim; Staufer, Urs; Tranfield, Erin M; van Westrenen, Wim

    2012-01-01

    The formation, composition and physical properties of lunar dust are incompletely characterised with regard to human health. While the physical and chemical determinants of dust toxicity for materials such as asbestos, quartz, volcanic ashes and urban particulate matter have been the focus of substantial research efforts, lunar dust properties, and therefore lunar dust toxicity may differ substantially. In this contribution, past and ongoing work on dust toxicity is reviewed, and major knowledge gaps that prevent an accurate assessment of lunar dust toxicity are identified. Finally, a range of studies using ground-based, low-gravity, and in situ measurements is recommended to address the identified knowledge gaps. Because none of the curated lunar samples exist in a pristine state that preserves the surface reactive chemical aspects thought to be present on the lunar surface, studies using this material carry with them considerable uncertainty in terms of fidelity. As a consequence, in situ data on lunar dust...

  7. Preliminary design of a universal Martian lander

    Science.gov (United States)

    Norman, Timothy L.; Gaskin, David E.; Adkins, Sean; Gunawan, Mary; Johnson, Raquel; Macdonnell, David; Parlock, Andrew; Sarick, John; Bodwell, Charles; Hashimoto, Kouichi

    1993-01-01

    In the next 25 years, mankind will be undertaking yet another giant leap forward in the exploration of the solar system: a manned mission to Mars. This journey will provide important information on the composition and history of both Mars and the Solar System. A manned mission will also provide the opportunity to study how humans can adapt to long term space flight conditions and the Martian environment. As part of the NASA/USRA program, nineteen West Virginia University students conducted a preliminary design of a manned Universal Martian Lander (UML). The UML's design will provide a 'universal' platform, consisting of four modules for living and laboratory experiments and a liquid-fuel propelled Manned Ascent Return Vehicle (MARV). The distinguishing feature of the UML is the 'universal' design of the modules which can be connected to form a network of laboratories and living quarters for future missions thereby reducing development and production costs. The WVU design considers descent to Mars from polar orbit, a six month surface stay, and ascent for rendezvous. The design begins with an unmanned UML landing at Elysium Mons followed by the manned UML landing nearby. During the six month surface stay, the eight modules will be assembled to form a Martian base where scientific experiments will be performed. The mission will also incorporate hydroponic plant growth into a Controlled Ecological Life Support System (CELSS) for water recycling, food production, and to counteract psychological effects of living on Mars. In situ fuel production for the MARV will be produced from gases in the Martian atmosphere. Following surface operations, the eight member crew will use the MARV to return to the Martian Transfer Vehicle (MTV) for the journey home to Earth.

  8. Lunar Prospecting: Searching for Volatiles at the South Pole

    Science.gov (United States)

    Trimble, Jay; Carvalho, Robert

    2016-01-01

    The Resource Prospector is an in-situ resource utilization (ISRU) technology demonstration mission, planned for a 2021 launch to search for and analyze volatiles at the Lunar South Pole. The mission poses unique operational challenges. Operating at the Lunar South Pole requires navigating a surface with lighting, shadow and regolith characteristics unlike those of previous missions. The short round trip communications time enables reactive surface operations for science and engineering. Navigation of permanently shadowed regions with a solar powered rover creates risks, including power and thermal management, and requires constant real time decision making for safe entry, path selection and egress. The mission plan requires a faster rover egress from the lander than any previous NASA rover mission.

  9. Lunar Module 5 mated with Spacecraft Lunar Module Adapter (SLA)

    Science.gov (United States)

    1969-01-01

    Interior view of the Kennedy Space Center's (KSC) Manned Spacecraft Operations Building showing Lunar Module 5 mated to its Spacecraft Lunar Module Adapter (SLA). LM-5 is scheduled to be flown on the Apollo 11 lunar landing mission.

  10. Design and Field Test of a Mass Efficient Crane for Lunar Payload Handling and Inspection: The Lunar Surface Manipulation System

    Science.gov (United States)

    Doggett, William R.; King, Bruce D.; Jones, Thomas Carno; Dorsey, John T.; Mikulas, Martin M.

    2008-01-01

    Devices for lifting, translating and precisely placing payloads are critical for efficient Earthbased construction operations. Both recent and past studies have demonstrated that devices with similar functionality will be needed to support lunar outpost operations. Lunar payloads include: a) prepackaged hardware and supplies which must be unloaded from landers and then accurately located at their operational site, b) sensor packages used for periodic inspection of landers, habitat surfaces, etc., and c) local materials such as regolith which require grading, excavation and placement. Although several designs have been developed for Earth based applications, these devices lack unique design characteristics necessary for transport to and use on the harsh lunar surface. These design characteristics include: a) composite components, b) compact packaging for launch, c) simple in-field reconfiguration and repair, and d) support for tele-operated or automated operations. Also, in contrast to Earth-based construction, where special purpose devices dominate a construction site, a lunar outpost will require versatile devices which provide operational benefit from initial construction through sustained operations. This paper will detail the design of a unique, high performance, versatile lifting device designed for operations on the lunar surface. The device is called the Lunar Surface Manipulation System to highlight the versatile nature of the device which supports conventional cable suspended crane operations as well as operations usually associated with a manipulator such as precise positioning where the payload is rigidly grappled by a tool attached to the tip of the device. A first generation test-bed to verify design methods and operational procedures is under development at the NASA Langley Research Center and recently completed field tests at Moses Lake Washington. The design relied on non-linear finite element analysis which is shown to correlate favorably with

  11. Logistics Modeling for Lunar Exploration Systems

    Science.gov (United States)

    Andraschko, Mark R.; Merrill, R. Gabe; Earle, Kevin D.

    2008-01-01

    The extensive logistics required to support extended crewed operations in space make effective modeling of logistics requirements and deployment critical to predicting the behavior of human lunar exploration systems. This paper discusses the software that has been developed as part of the Campaign Manifest Analysis Tool in support of strategic analysis activities under the Constellation Architecture Team - Lunar. The described logistics module enables definition of logistics requirements across multiple surface locations and allows for the transfer of logistics between those locations. A key feature of the module is the loading algorithm that is used to efficiently load logistics by type into carriers and then onto landers. Attention is given to the capabilities and limitations of this loading algorithm, particularly with regard to surface transfers. These capabilities are described within the context of the object-oriented software implementation, with details provided on the applicability of using this approach to model other human exploration scenarios. Some challenges of incorporating probabilistics into this type of logistics analysis model are discussed at a high level.

  12. Orbital studies of lunar magnetism

    Science.gov (United States)

    Mcleod, M. G.; Coleman, P. J., Jr.

    1982-01-01

    Limitations of present lunar magnetic maps are considered. Optimal processing of satellite derived magnetic anomaly data is also considered. Studies of coastal and core geomagnetism are discussed. Lunar remanent and induced lunar magnetization are included.

  13. A Sustainable Architecture for Lunar Resource Prospecting from an EML-based Exploration Platform

    Science.gov (United States)

    Klaus, K.; Post, K.; Lawrence, S. J.

    2012-12-01

    Introduction - We present a point of departure architecture for prospecting for Lunar Resources from an Exploration Platform at the Earth - Moon Lagrange points. Included in our study are launch vehicle, cis-lunar transportation architecture, habitat requirements and utilization, lander/rover concepts and sample return. Different transfer design techniques can be explored by mission designers, testing various propulsive systems, maneuvers, rendezvous, and other in-space and surface operations. Understanding the availability of high and low energy trajectory transfer options opens up the possibility of exploring the human and logistics support mission design space and deriving solutions never before contemplated. For sample return missions from the lunar surface, low-energy transfers could be utilized between EML platform and the surface as well as return of samples to EML-based spacecraft. Human Habitation at the Exploration Platform - Telerobotic and telepresence capabilities are considered by the agency to be "grand challenges" for space technology. While human visits to the lunar surface provide optimal opportunities for field geologic exploration, on-orbit telerobotics may provide attractive early opportunities for geologic exploration, resource prospecting, and other precursor activities in advance of human exploration campaigns and ISRU processing. The Exploration Platform provides a perfect port for a small lander which could be refueled and used for multiple missions including sample return. The EVA and robotic capabilities of the EML Exploration Platform allow the lander to be serviced both internally and externally, based on operational requirements. The placement of the platform at an EML point allows the lander to access any site on the lunar surface, thus providing the global lunar surface access that is commonly understood to be required in order to enable a robust lunar exploration program. Designing the sample return lander for low

  14. Lunar Laser Ranging Science

    CERN Document Server

    Williams, J G; Turyshev, S G; Ratcliff, J T; Williams, James G.; Boggs, Dale H.; Turyshev, Slava G.

    2004-01-01

    Analysis of Lunar Laser Ranging (LLR) data provides science results: gravitational physics and ephemeris information from the orbit, lunar science from rotation and solid-body tides, and Earth science. Sensitive tests of gravitational physics include the Equivalence Principle, limits on the time variation of the gravitational constant G, and geodetic precession. The equivalence principle test is used for an accurate determination of the parametrized post-Newtonian (PPN) parameter \\beta. Lunar ephemerides are a product of the LLR analysis used by current and future spacecraft missions. The analysis is sensitive to astronomical parameters such as orbit, masses and obliquity. The dissipation-caused semimajor axis rate is 37.9 mm/yr and the associated acceleration in orbital longitude is -25.7 ''/cent^2, dominated by tides on Earth with a 1% lunar contribution. Lunar rotational variation has sensitivity to interior structure, physical properties, and energy dissipation. The second-degree lunar Love numbers are de...

  15. Lunar Laser Ranging Science

    OpenAIRE

    Williams, James G.; Boggs, Dale H.; Turyshev, Slava G.; Ratcliff, J. Todd

    2004-01-01

    Analysis of Lunar Laser Ranging (LLR) data provides science results: gravitational physics and ephemeris information from the orbit, lunar science from rotation and solid-body tides, and Earth science. Sensitive tests of gravitational physics include the Equivalence Principle, limits on the time variation of the gravitational constant G, and geodetic precession. The equivalence principle test is used for an accurate determination of the parametrized post-Newtonian (PPN) parameter \\beta. Lunar...

  16. Toxicity of lunar dust

    OpenAIRE

    Linnarsson, Dag; Carpenter, James; Fubini, Bice; Gerde, Per; Karlsson, Lars L.; Loftus, David J.; Prisk, G. Kim; Staufer, Urs; Tranfield, Erin M.; van Westrenen, Wim

    2012-01-01

    The formation, composition and physical properties of lunar dust are incompletely characterised with regard to human health. While the physical and chemical determinants of dust toxicity for materials such as asbestos, quartz, volcanic ashes and urban particulate matter have been the focus of substantial research efforts, lunar dust properties, and therefore lunar dust toxicity may differ substantially. In this contribution, past and ongoing work on dust toxicity is reviewed, and major knowle...

  17. Lunar and interplanetary trajectories

    CERN Document Server

    Biesbroek, Robin

    2016-01-01

    This book provides readers with a clear description of the types of lunar and interplanetary trajectories, and how they influence satellite-system design. The description follows an engineering rather than a mathematical approach and includes many examples of lunar trajectories, based on real missions. It helps readers gain an understanding of the driving subsystems of interplanetary and lunar satellites. The tables and graphs showing features of trajectories make the book easy to understand. .

  18. Robotic lunar surface operations: Engineering analysis for the design, emplacement, checkout and performance of robotic lunar surface systems

    Science.gov (United States)

    Woodcock, Gordon R.

    1990-01-01

    The assembly, emplacement, checkout, operation, and maintenance of equipment on planetary surfaces are all part of expanding human presence out into the solar system. A single point design, a reference scenario, is presented for lunar base operations. An initial base, barely more than an output, which starts from nothing but then quickly grows to sustain people and produce rocket propellant. The study blended three efforts: conceptual design of all required surface systems; assessments of contemporary developments in robotics; and quantitative analyses of machine and human tasks, delivery and work schedules, and equipment reliability. What emerged was a new, integrated understanding of hot to make a lunar base happen. The overall goal of the concept developed was to maximize return, while minimizing cost and risk. The base concept uses solar power. Its primary industry is the production of liquid oxygen for propellant, which it extracts from native lunar regolith. Production supports four lander flights per year, and shuts down during the lunar nighttime while maintenance is performed.

  19. NASA Constellation Program (CxP) Key Driving Requirements and Element Descriptions for International Architecture Working Group (IAWG) Functional Teams Human Transportation Cargo Transportation

    Science.gov (United States)

    Martinez, Roland M.

    2009-01-01

    The NASA Constellation uncrewed cargo mission delivers cargo to any designated location on the lunar surface (or other staging point) in a single mission. This capability is used to deliver surface infrastructure needed for lunar outpost construction, to provide periodic logistics resupply to support a continuous human lunar presence, and potentially deliver other assets to various locations.In the nominal mission mode, the Altair lunar lander is launched on Ares V into Low Earth Orbit (LEO), following a short Low Earth Orbit (LEO) loiter period, the Earth Departure Stage (EDS) performs the Trans Lunar Injection (TLI) burn and is then jettisoned. The Altair performs translunar trajectory correction maneuvers as necessary and performs the Lunar Orbit Insertion (LOI) burn. Altair then descends to the surface to land near a designated target, presumably in proximity to an Outpost location or another site of interest for exploration.Alternatively, the EDS and Altair Descent Stage could deliver assets to various staging points within their propulsive capabilities.

  20. Viking lander camera geometry calibration report. Volume 1: Test methods and data reduction techniques

    Science.gov (United States)

    Wolf, M. B.

    1981-01-01

    The determination and removal of instrument signature from Viking Lander camera geometric data are described. All tests conducted as well as a listing of the final database (calibration constants) used to remove instrument signature from Viking Lander flight images are included. The theory of the geometric aberrations inherent in the Viking Lander camera is explored.

  1. Expendable Cooling for a One-Day Venus Lander

    Science.gov (United States)

    Pauken, M. T.; Fernandez, C. J.; Jeter, S. M.

    2014-06-01

    A thermal architecture of a Venus lander mission using an expendable coolant system has been developed to enable a day-long surface mission. The system uses an aqua-ammonia mixture to provide cooling of the electronics and the pressure vessel.

  2. Design, calibration and operation of Mars lander cameras

    Science.gov (United States)

    Bos, Brent Jon

    2002-09-01

    In the 45 years since the dawn of the space age, there have only been two Mars lander camera designs to successfully operate on the Martian surface. Therefore information on Mars imager design and operation issues is limited. In addition, good examples of Mars lander imager calibration work are almost non-existent. This work presents instrument calibration results for a Mars lander camera originally designed to fly as an instrument onboard the 2001 Mars Surveyor lander as a robotic arm camera (RAC). Test procedures and results are described as well as techniques for improving the accuracy of the calibration data. In addition we describe camera algorithms and operations research results for optimizing imager operations on the Martian surface. Finally, the lessons learned from the 2001 RAC are applied to the preliminary design of a new Mars camera for the Artemis Mars Scout mission. The design utilizes a Bayer color mosaic filter, white light LED's and includes an optical system operating at f/13 with a maximum resolution of 0.11 mrad/pixel. It is capable of imaging in several modes including: stereo, microscopic and panoramic at a mass of 0.3 kg. It will provide planetary geologists with an unprecedented view of the Martian surface.

  3. Viking lander camera radiometry calibration report, volume 2

    Science.gov (United States)

    Wolf, M. R.; Atwood, D. L.; Morrill, M. E.

    1977-01-01

    The requirements the performance validation, and interfaces for the RADCAM program, to convert Viking lander camera image data to radiometric units were established. A proposed algorithm is described, and an appendix summarizing the planned reduction of camera test data was included.

  4. Errors in Viking Lander Atmospheric Profiles Discovered Using MOLA Topography

    Science.gov (United States)

    Withers, Paul; Lorenz, R. D.; Neumann, G. A.

    2002-01-01

    Each Viking lander measured a topographic profile during entry. Comparing to MOLA (Mars Orbiter Laser Altimeter), we find a vertical error of 1-2 km in the Viking trajectory. This introduces a systematic error of 10-20% in the Viking densities and pressures at a given altitude. Additional information is contained in the original extended abstract.

  5. Telltale wind indicator for the Mars Phoenix lander

    DEFF Research Database (Denmark)

    Gunnlaugsson, H.P.; Honstein-Rathlou, C.; Merrison, J.P.;

    2008-01-01

    The Telltale wind indicator is a mechanical anemometer designed to operate on the Martian surface as part of the meteorological package on the NASA Phoenix lander. It consists of a lightweight cylinder suspended by Kevlar fibers and is deflected under the action of wind. Imaging of the Telltale d...

  6. Dusty plasma sheath-like structure in the region of lunar terminator

    Energy Technology Data Exchange (ETDEWEB)

    Popel, S. I.; Zelenyi, L. M. [Space Research Institute of the Russian Academy of Sciences, Moscow 117997, Russia and Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow Region 141700 (Russian Federation); Atamaniuk, B. [Space Research Center of the Polish Academy of Sciences, Warsaw 00-716 (Poland)

    2015-12-15

    The main properties of the dusty plasma layer near the surface over the illuminated and dark parts of the Moon are described. They are used to realize dusty plasma behaviour and to determine electric fields over the terminator region. Possibility of the existence of a dusty plasma sheath-like structure in the region of lunar terminator is shown. The electric fields excited in the terminator region are demonstrated to be on the order of 300 V/m. These electric fields can result in rise of dust particles of the size of 2–3 μm up to an altitude of about 30 cm over the lunar surface that explains the effect of “horizon glow” observed at the terminator by Surveyor lunar lander.

  7. Dusty plasma sheath-like structure in the region of lunar terminator

    International Nuclear Information System (INIS)

    The main properties of the dusty plasma layer near the surface over the illuminated and dark parts of the Moon are described. They are used to realize dusty plasma behaviour and to determine electric fields over the terminator region. Possibility of the existence of a dusty plasma sheath-like structure in the region of lunar terminator is shown. The electric fields excited in the terminator region are demonstrated to be on the order of 300 V/m. These electric fields can result in rise of dust particles of the size of 2–3 μm up to an altitude of about 30 cm over the lunar surface that explains the effect of “horizon glow” observed at the terminator by Surveyor lunar lander

  8. Lunar Soil Particle Separator

    Science.gov (United States)

    Berggren, Mark

    2010-01-01

    The Lunar Soil Particle Separator (LSPS) beneficiates soil prior to in situ resource utilization (ISRU). It can improve ISRU oxygen yield by boosting the concentration of ilmenite, or other iron-oxide-bearing materials found in lunar soils, which can substantially reduce hydrogen reduction reactor size, as well as drastically decreasing the power input required for soil heating

  9. Thermoluminescence of lunar samples

    Science.gov (United States)

    Dalrymple, G.B.; Doell, Richard R.

    1970-01-01

    Appreciable natural thermoluminescence with glow curve peaks at about 350 degrees centigrade for lunar fines and breccias and above 400 degrees centigrade for crystalline rocks has been recognized in lunar samples. Plagioclase has been identified as the principal carrier of thermoluminescence, and the difference in peak temperatures indicates compositional or structural differences between the feldspars of the different rock types. The present thermoluminescence in the lunar samples is probably the result of a dynamic equilibrium between acquisition from radiation and loss in the lunar thermal environment. A progressive change in the glow curves of core samples with depth below the surface suggests the use of thermoluminescence disequilibrium to detect surfaces buried by recent surface activity, and it also indicates that the lunar diurnal temperature variation penetrates to at least 10.5 centimeters.

  10. Beijing Lunar Declaration 2010: B) Technology and Resources; Infrastructures and Human Aspects; Moon, Space and Society

    Science.gov (United States)

    Arvidson, R.; Foing, B. H.; Plescial, J.; Cohen, B.; Blamont, J. E.

    2010-01-01

    We report on the Beijing Lunar Declaration endorsed by the delegates of the Global Lunar Conference/11th ILEWG Conference on Exploration and Utilisation of the Moon, held at Beijing on 30 May- 3 June 2010. Specifically we focus on Part B:Technologies and resources; Infrastructures and human aspects; Moon, Space, Society and Young Explorers. We recommend continued and enhanced development and implementation of sessions about lunar exploration, manned and robotic, at key scientific and engineering meetings. A number of robotic missions to the Moon are now undertaken independently by various nations, with a degree of exchange of information and coordination. That should increase towards real cooperation, still allowing areas of competition for keeping the process active, cost-effective and faster. - Lunar landers, pressurized lunar rover projects as presented from Europe, Asia and America are important steps that can create opportunities for international collaboration, within a coordinated village of robotic precursors and assistants to crew missions. - We have to think about development, modernization of existing navigation capabilities, and provision of lunar positioning, navigation and data relay assets to support future robotic and human exploration. New concepts and new methods for transportation have attracted much attention and are of great potential.

  11. Lunar Flashlight: Illuminating the Lunar South Pole

    Science.gov (United States)

    Hayne, P. O.; Greenhagen,, B. T.; Paige, D. A.; Camacho, J. M.; Cohen, B. A.; Sellar, G.; Reiter, J.

    2016-01-01

    Recent reflectance data from LRO instruments suggest water ice and other volatiles may be present on the surface in lunar permanentlyshadowed regions, though the detection is not yet definitive. Understanding the composition, quantity, distribution, and form of water and other volatiles associated with lunar permanently shadowed regions (PSRs) is identified as a NASA Strategic Knowledge Gap (SKG) for Human Exploration. These polar volatile deposits are also scientifically interesting, having the potential to reveal important information about the delivery of water to the Earth- Moon system.

  12. Lunar Water Resource Demonstration

    Science.gov (United States)

    Muscatello, Anthony C.

    2008-01-01

    In cooperation with the Canadian Space Agency, the Northern Centre for Advanced Technology, Inc., the Carnegie-Mellon University, JPL, and NEPTEC, NASA has undertaken the In-Situ Resource Utilization (ISRU) project called RESOLVE. This project is a ground demonstration of a system that would be sent to explore permanently shadowed polar lunar craters, drill into the regolith, determine what volatiles are present, and quantify them in addition to recovering oxygen by hydrogen reduction. The Lunar Prospector has determined these craters contain enhanced hydrogen concentrations averaging about 0.1%. If the hydrogen is in the form of water, the water concentration would be around 1%, which would translate into billions of tons of water on the Moon, a tremendous resource. The Lunar Water Resource Demonstration (LWRD) is a part of RESOLVE designed to capture lunar water and hydrogen and quantify them as a backup to gas chromatography analysis. This presentation will briefly review the design of LWRD and some of the results of testing the subsystem. RESOLVE is to be integrated with the Scarab rover from CMIJ and the whole system demonstrated on Mauna Kea on Hawaii in November 2008. The implications of lunar water for Mars exploration are two-fold: 1) RESOLVE and LWRD could be used in a similar fashion on Mars to locate and quantify water resources, and 2) electrolysis of lunar water could provide large amounts of liquid oxygen in LEO, leading to lower costs for travel to Mars, in addition to being very useful at lunar outposts.

  13. Telecommunications Relay Support of the Mars Phoenix Lander Mission

    Science.gov (United States)

    Edwards, Charles D., Jr.; Erickson, James K.; Gladden, Roy E.; Guinn, Joseph R.; Ilott, Peter A.; Jai, Benhan; Johnston, Martin D.; Kornfeld, Richard P.; Martin-Mur, Tomas J.; McSmith, Gaylon W.; Thomas, Reid C.; Varghese, Phil; Signori, Gina; Schmitz, Peter

    2010-01-01

    The Phoenix Lander, first of NASA's Mars Scout missions, arrived at the Red Planet on May 25, 2008. From the moment the lander separated from its interplanetary cruise stage shortly before entry, the spacecraft could no longer communicate directly with Earth, and was instead entirely dependent on UHF relay communications via an international network of orbiting Mars spacecraft, including NASA's 2001 Mars Odyssey (ODY) and Mars Reconnaissance Orbiter (MRO) spacecraft, as well as ESA's Mars Express (MEX) spacecraft. All three orbiters captured critical event telemetry and/or tracking data during Phoenix Entry, Descent and Landing. During the Phoenix surface mission, ODY and MRO provided command and telemetry services, far surpassing the original data return requirements. The availability of MEX as a backup relay asset enhanced the robustness of the surface relay plan. In addition to telecommunications services, Doppler tracking observables acquired on the UHF link yielded an accurate position for the Phoenix landing site.

  14. Command and data management system (CDMS) of the Philae lander

    Science.gov (United States)

    Balázs, A.; Baksa, A.; Bitterlich, H.; Hernyes, I.; Küchemann, O.; Pálos, Z.; Rustenbach, J.; Schmidt, W.; Spányi, P.; Sulyán, J.; Szalai, S.; Várhalmi, L.

    2016-08-01

    The paper covers the principal requirements, design concepts and implementation of the hardware and software for the central on-board computer (CDMS) of the Philae lander in the context of the ESA Rosetta space mission, including some technical details. The focus is on the implementation of fault tolerance, autonomous operation and operational flexibility by means of specific linked data structures and code execution mechanisms that can be interpreted as a kind of object oriented model for mission sequencing.

  15. Lunar sample contracts

    Science.gov (United States)

    Walker, R. M.

    1974-01-01

    The major scientific accomplishments through 1971 are reported for the particle track studies of lunar samples. Results are discussed of nuclear track measurements by optical and electron microscopy, thermoluminescence, X-ray diffraction, and differential thermal analysis.

  16. Lunar Influence On Plants

    Science.gov (United States)

    Schad, Wolfgang

    Concerning lunar periodicity in biology, we summarized all what has been observationally and experimentally found and published in scientific literature till 1996. We summoned up as many as about 600 living species (mostly animals) with identified lunar periodicities, functioning in a more or less endogenous manner. Here we give a short review about the occurrence in the plant kingdom. In Thallophytes 45 species have been described as well as 40 species of Angiosperms. In Prokaryonts no lunar rhythms could be found. Their individual life cycles do not reach the time span of at least comparable parts of a lunar day. Thus as in all Eukaryonts the occurrence of the cell nucleus constitutes specifically ndogenous rhythms in plants as well as in the animal kingdom.

  17. Lunar Health Monitor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — During the Phase II Lunar Health Monitor program, Orbital Research will develop a second generation wearable sensor suite for astronaut physiologic monitoring. The...

  18. Lunar Map Catalog

    Data.gov (United States)

    National Aeronautics and Space Administration — The Lunar Map Catalog includes various maps of the moon's surface, including Apollo landing sites; earthside, farside, and polar charts; photography index maps;...

  19. Lunar Excavator Validation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Energid Technologies proposes to create a tool for simulation-based verification of lunar excavator designs. Energid will combine the best of 1) automatic control...

  20. Lunar Sulfur Capture System

    Science.gov (United States)

    Berggren, Mark; Zubrin, Robert; Bostwick-White, Emily

    2013-01-01

    The Lunar Sulfur Capture System (LSCS) protects in situ resource utilization (ISRU) hardware from corrosion, and reduces contaminant levels in water condensed for electrolysis. The LSCS uses a lunar soil sorbent to trap over 98 percent of sulfur gases and about two-thirds of halide gases evolved during hydrogen reduction of lunar soils. LSCS soil sorbent is based on lunar minerals containing iron and calcium compounds that trap sulfur and halide gas contaminants in a fixed-bed reactor held at temperatures between 250 and 400 C, allowing moisture produced during reduction to pass through in vapor phase. Small amounts of Earth-based polishing sorbents consisting of zinc oxide and sodium aluminate are used to reduce contaminant concentrations to one ppm or less. The preferred LSCS configuration employs lunar soil beneficiation to boost concentrations of reactive sorbent minerals. Lunar soils contain sulfur in concentrations of about 0.1 percent, and halogen compounds including chlorine and fluorine in concentrations of about 0.01 percent. These contaminants are released as gases such as H2S, COS, CS2,HCl, and HF during thermal ISRU processing with hydrogen or other reducing gases. Removal of contaminant gases is required during ISRU processing to prevent hardware corrosion, electrolyzer damage, and catalyst poisoning. The use of Earth-supplied, single-use consumables to entirely remove contaminants at the levels existing in lunar soils would make many ISRU processes unattractive due to the large mass of consumables relative to the mass of oxygen produced. The LSCS concept of using a primary sorbent prepared from lunar soil was identified as a method by which the majority of contaminants could be removed from process gas streams, thereby substantially reducing the required mass of Earth-supplied consumables. The LSCS takes advantage of minerals containing iron and calcium compounds that are present in lunar soil to trap sulfur and halide gases in a fixedbed reactor

  1. Neutron-induced gamma-ray measurements on soft landers

    International Nuclear Information System (INIS)

    Gamma-ray spectra provide useful data in the study of the development of planets. Measurements made on landers overcome many of the limitations of orbital measurements, especially for solar-system bodies where atmospheres interfere with obtaining orbital data. Elemental compositions can be inferred from the spectra, produced by neutron interactions with nuclei of the planetary body. The cosmic ray flux yields a relatively low neutron flux requiring long integration times (sometimes as long as a year) to obtain a statistical accuracy allowing elemental compositions to be inferred to determine different mineral compositions and to characterize the nature of the area studied. A recent advance is the combination of a gamma-ray spectrometer with a compact, pulsed neutron generator, which increases the neutron flux by orders of magnitude. Such a device is used on Earth and its capability is being extended to operate within the low weight and power requirements of typical lander missions. A pulsed source permits data accumulation by type of reaction, increasing the sensitivity for detecting many elements. The enhanced speed of measurement makes many new studies possible, such as time-dependent measurements to detect seasonal or diurnal changes from active processes. Where motion is provided, either around the lander or on a rover, data can be obtained at different positions to evaluate heterogeneities. The use of a pulsed neutron generator provides increased quality of elemental data and provides many additional options for system design to provide more useful information for understanding the creation and evolution of our solar system

  2. Rosetta Lander - Philae: activities after hibernation and landing preparations

    Science.gov (United States)

    Ulamec, Stephan; Biele, Jens; Sierks, Holger; Blazquez, Alejandro; Cozzoni, Barbara; Fantinati, Cinzia; Gaudon, Philippe; Geurts, Koen; Jurado, Eric; Paetz, Brigitte.; Maibaum, Michael

    Rosetta is a Cornerstone Mission of the ESA Horizon 2000 programme. It is going to rendezvous with comet 67P/Churyumov-Gerasimenko after a ten year cruise and will study both its nucleus and coma with an orbiting spacecraft as well as with a Lander, Philae. Aboard Philae, a payload consisting of ten scientific instruments will perform in-situ studies of the cometary material. Rosetta and Philae have been in hibernation until January 20, 2014. After the successful wakeup they will undergo a post hibernation commissioning. The orbiter instruments (like e.g. the OSIRIS cameras) are to characterize the target comet to allow landing site selection and the definition of a separation, descent and landing (SDL) strategy for the Lander. By August 2014 our currently very poor knowledge of the characteristics of the nucleus of the comet will have increased dramatically. The paper will report on the latest updates in Separation-Descent-Landing (SDL) planning. Landing is foreseen for November 2014 at a heliocentric distance of 3 AU. Philae will be separated from the mother spacecraft from a dedicated delivery trajectory. It then descends ballistically to the surface of the comet, stabilized with an internal flywheel. At touch-down anchoring harpoons will be fired and a damping mechanism within the landing gear will provide the lander from re-bouncing. The paper will give an overview of the Philae system, the operational activities after hibernation and the latest status on the preparations for landing.

  3. Lunar preform manufacturing

    Science.gov (United States)

    Leong, Gregory N.; Nease, Sandra; Lager, Vicky; Yaghjian, Raffy; Waller, Chris

    A design for a machine to produce hollow, continuous fiber-reinforced composite rods of lunar glass and a liquid crystalline matrix using the pultrusion process is presented. The glass fiber will be produced from the lunar surface, with the machine and matrix being transported to the moon. The process is adaptable to the low gravity and near-vacuum environment of the moon through the use of a thermoplastic matrix in fiber form as it enters the pultrusion process. With a power consumption of 5 kW, the proposed machine will run unmanned continuously in fourteen-day cycles, matching the length of lunar days. A number of dies could be included that would allow the machine to produce rods of varying diameter, I-beams, angles, and other structural members. These members could then be used for construction on the lunar surface or transported for use in orbit. The benefits of this proposal are in the savings in weight of the cargo each lunar mission would carry. The supply of glass on the moon is effectively endless, so enough rods would have to be produced to justify its transportation, operation, and capital cost. This should not be difficult as weight on lunar mission is at a premium.

  4. Chemical processing of lunar materials

    Science.gov (United States)

    Criswell, D. R.; Waldron, R. D.

    1979-01-01

    The paper highlights recent work on the general problem of processing lunar materials. The discussion covers lunar source materials, refined products, motivations for using lunar materials, and general considerations for a lunar or space processing plant. Attention is given to chemical processing through various techniques, including electrolysis of molten silicates, carbothermic/silicothermic reduction, carbo-chlorination process, NaOH basic-leach process, and HF acid-leach process. Several options for chemical processing of lunar materials are well within the state of the art of applied chemistry and chemical engineering to begin development based on the extensive knowledge of lunar materials.

  5. Closer look at lunar volcanism

    International Nuclear Information System (INIS)

    Although the American Apollo and Soviet Luna missions concentrated on mare basalt samples, major questions remain about lunar volcanism. Lunar field work will be indispensable for resolving the scientific questions about ages, compositions, and eruption processes of lunar volcanism. From a utilitarian standpoint, a better knowledge of lunar volcanism will also yield profitable returns in lunar base construction (e.g., exploitation of rille or lava-tube structures) and in access to materials such as volatile elements, pure glass, or ilmenite for lunar industry

  6. Hybrid Heat Pipes for Lunar and Martian Surface and High Heat Flux Space Applications

    Science.gov (United States)

    Ababneh, Mohammed T.; Tarau, Calin; Anderson, William G.; Farmer, Jeffery T.; Alvarez-Hernandez, Angel R.

    2016-01-01

    Novel hybrid wick heat pipes are developed to operate against gravity on planetary surfaces, operate in space carrying power over long distances and act as thermosyphons on the planetary surface for Lunar and Martian landers and rovers. These hybrid heat pipes will be capable of operating at the higher heat flux requirements expected in NASA's future spacecraft and on the next generation of polar rovers and equatorial landers. In addition, the sintered evaporator wicks mitigate the start-up problems in vertical gravity aided heat pipes because of large number of nucleation sites in wicks which will allow easy boiling initiation. ACT, NASA Marshall Space Flight Center, and NASA Johnson Space Center, are working together on the Advanced Passive Thermal experiment (APTx) to test and validate the operation of a hybrid wick VCHP with warm reservoir and HiK"TM" plates in microgravity environment on the ISS.

  7. Novel Architecture for a Long-Life, Lightweight Venus Lander

    International Nuclear Information System (INIS)

    This paper describes a novel concept for an extended lifetime, lightweight Venus lander. Historically, to operate in the 480 deg. C, 90 atm, corrosive, mostly CO2 Venus surface environment, previous landers have relied on thick Ti spherical outer shells and thick layers of internal insulation. But even the most resilient of these landers operated for only about 2 hours before succumbing to the environment. The goal on this project is to develop an architecture that extends lander lifetime to 20-25 hours and also reduces mass compared to the Pioneer Venus mission architecture. The idea for reducing mass is to: (a) contain the science instruments within a spherical high strength lightweight polymer matrix composite (PMC) tank; (b) surround the PMC tank with an annular shell of high performance insulation pre-pressurized to a level that (after landing) will exceed the external Venus surface pressure; and (c) surround the insulation with a thin Ti outer shell that contains only a net internal pressure, eliminating buckling overdesign mass. The combination of the PMC inner tank and thin Ti outer shell is lighter than a single thick Ti outer shell. The idea for extending lifetime is to add the following three features: (i) an expendable water supply that is placed within the insulation or is contained in an additional vessel within the PMC tank; (ii) a thin spherical evaporator shell placed within the insulation a short radial distance from the outer shell; and (iii) a thin heat-intercepting liquid cooled shield placed inboard of the evaporator shell. These features lower the temperature of the insulation below what it would have been with the insulation alone, reducing the internal heat leak and lengthening lifetime. The use of phase change materials (PCMs) inside the PMC tank is also analyzed as a lifetime-extending design option. The paper describes: (1) analytical modeling to demonstrate reduced mass and extended life; (2) thermal conductivity testing of high

  8. Battery and Fuel Cell Development for NASA's Exploration Missions

    Science.gov (United States)

    Manzo, Michelle A.; Reid, Concha M.

    2009-01-01

    NASA's return to the moon will require advanced battery, fuel cell and regenerative fuel cell energy storage systems. This paper will provide an overview of the planned energy storage systems for the Orion Spacecraft and the Aries rockets that will be used in the return journey to the Moon. Technology development goals and approaches to provide batteries and fuel cells for the Altair Lunar Lander, the new space suit under development for extravehicular activities (EVA) on the Lunar surface, and the Lunar Surface Systems operations will also be discussed.

  9. Battery and Fuel Cell Development for NASA's Constellation Missions

    Science.gov (United States)

    Manzo, Michelle A.

    2009-01-01

    NASA's return to the moon will require advanced battery, fuel cell and regenerative fuel cell energy storage systems. This paper will provide an overview of the planned energy storage systems for the Orion Spacecraft and the Aries rockets that will be used in the return journey to the Moon. Technology development goals and approaches to provide batteries and fuel cells for the Altair Lunar Lander, the new space suit under development for extravehicular activities (EY A) on the Lunar surface, and the Lunar Surface Systems operations will also be discussed.

  10. ExoGeoLab Pilot Project for Landers, Rovers and Instruments

    Science.gov (United States)

    Foing, Bernard

    2010-05-01

    We have developed a pilot facility with a Robotic Test Bench (ExoGeoLab) and a Mobile Lab Habitat (ExoHab). They can be used to validate concepts and external instruments from partner institutes. The ExoGeoLab research incubator project, has started in the frame of a collaboration between ILEWG (International Lunar Exploration working Group http://sci.esa.int/ilewg), ESTEC, NASA and academic partners, supported by a design and control desk in the European Space Incubator (ESI), as well as infrastructure. ExoGeoLab includes a sequence of technology and research pilot project activities: - Data analysis and interpretation of remote sensing and in-situ data, and merging of multi-scale data sets - Procurement and integration of geophysical, geo-chemical and astrobiological breadboard instruments on a surface station and rovers - Integration of cameras, environment and solar sensors, Visible and near IR spectrometer, Raman spectrometer, sample handling, cooperative rovers - Delivery of a generic small planetary lander demonstrator (ExoGeoLab lander, Sept 2009) as a platform for multi-instruments tests - Research operations and exploitation of ExoGeoLab test bench for various conceptual configurations, and support for definition and design of science surface packages (Moon, Mars, NEOs, outer moons) - Field tests of lander, rovers and instruments in analogue sites (Utah MDRS 2009 & 2010, Eifel volcanic park in Sept 2009, and future campaigns). Co-authors, ILEWG ExoGeoLab & ExoHab Team: B.H. Foing(1,11)*#, C. Stoker(2,11)*, P. Ehrenfreund(10,11), L. Boche-Sauvan(1,11)*, L. Wendt(8)*, C. Gross(8, 11)*, C. Thiel(9)*, S. Peters(1,6)*, A. Borst(1,6)*, J. Zavaleta(2)*, P. Sarrazin(2)*, D. Blake(2), J. Page(1,4,11), V. Pletser(5,11)*, E. Monaghan(1)*, P. Mahapatra(1)#, A. Noroozi(3), P. Giannopoulos(1,11) , A. Calzada(1,6,11), R. Walker(7), T. Zegers(1, 15) #, G. Groemer(12)# , W. Stumptner(12)#, B. Foing(2,5), J. K. Blom(3)#, A. Perrin(14)#, M. Mikolajczak(14)#, S. Chevrier(14

  11. Lunar Sulfur Capture System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Lunar Sulfur Capture System (LSCS) is an innovative method to capture greater than 90 percent of sulfur gases evolved during thermal treatment of lunar soils....

  12. Lunar Materials Handling System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Lunar Materials Handling System (LMHS) is a method for transfer of bulk materials and products into and out of process equipment in support of lunar and Mars in...

  13. Lunar Sulfur Capture System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Lunar Sulfur Capture System (LSCS) is an innovative method to recover sulfur compounds from lunar soil using sorbents derived primarily from in-situ resources....

  14. Lunar Materials Handling System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Lunar Materials Handling System (LMHS) is a method for transfer of lunar soil into and out of process equipment in support of in situ resource utilization...

  15. A Cis-Lunar Propellant Infrastructure for Flexible Path Exploration and Space Commerce

    Science.gov (United States)

    Oeftering, Richard C.

    2012-01-01

    This paper describes a space infrastructure concept that exploits lunar water for propellant production and delivers it to users in cis-lunar space. The goal is to provide responsive economical space transportation to destinations beyond low Earth orbit (LEO) and enable in-space commerce. This is a game changing concept that could fundamentally affect future space operations, provide greater access to space beyond LEO, and broaden participation in space exploration. The challenge is to minimize infrastructure development cost while achieving a low operational cost. This study discusses the evolutionary development of the infrastructure from a very modest robotic operation to one that is capable of supporting human operations. The cis-lunar infrastructure involves a mix of technologies including cryogenic propellant production, reusable lunar landers, propellant tankers, orbital transfer vehicles, aerobraking technologies, and electric propulsion. This cislunar propellant infrastructure replaces Earth-launched propellants for missions beyond LEO. It enables users to reach destinations with smaller launchers or effectively multiplies the user s existing payload capacity. Users can exploit the expanded capacity to launch logistics material that can then be traded with the infrastructure for propellants. This mutually beneficial trade between the cis-lunar infrastructure and propellant users forms the basis of in-space commerce.

  16. Magnetisation of the lunar crust

    OpenAIRE

    Carley, Ruth Alexandra

    2011-01-01

    The Moon displays weak magnetic fields resulting from areas of the lunar crust that are remanently magnetised. The origins of the magnetic fields that produced this remanent magnetisation are still under discussion, and theories include among several, an ancient lunar dynamo, or processes occurring on the Moon as a result of impacts. Lunar crustal fields have been mapped globally by the Magnetometer (MAG) and Electron Reflectometer (ER) on the satellite Lunar Prospector, pro...

  17. Formation of Lunar Swirls

    CERN Document Server

    Bamford, R A; Cruz, F; Kellett, B J; Fonseca, R A; Silva, L O; Trines, R M G M; Halekas, J S; Kramer, G; Harnett, E; Cairns, R A; Bingham, R

    2015-01-01

    In this paper we show a plausible mechanism that could lead to the formation of the Dark Lanes in Lunar Swirls, and the electromagnetic shielding of the lunar surface that results in the preservation of the white colour of the lunar regolith. We present the results of a fully self-consistent 2 and 3 dimensional particle-in-cell simulations of mini-magnetospheres that form above the lunar surface and show that they are consistent with the formation of `lunar swirls' such as the archetypal formation Reiner Gamma. The simulations show how the microphysics of the deflection/shielding of plasma operates from a kinetic-scale cavity, and show that this interaction leads to a footprint with sharp features that could be the mechanism behind the generation of `dark lanes'. The physics of mini-magnetospheres is described and shown to be controlled by space-charge fields arising due to the magnetized electrons and unmagnetized ions. A comparison between model and observation is shown for a number of key plasma parameters...

  18. Lunar Resources: A Review

    CERN Document Server

    Crawford, Ian A

    2014-01-01

    There is growing interest in the possibility that the resource base of the Solar System might in future be used to supplement the economic resources of our own planet. As the Earth's closest celestial neighbour, the Moon is sure to feature prominently in these developments. In this paper I review what is currently known about economically exploitable resources on the Moon, while also stressing the need for continued lunar exploration. I find that, although it is difficult to identify any single lunar resource that will be sufficiently valuable to drive a lunar resource extraction industry on its own (notwithstanding claims sometimes made for the 3He isotope, which I find to be exaggerated), the Moon nevertheless does possess abundant raw materials that are of potential economic interest. These are relevant to a hierarchy of future applications, beginning with the use of lunar materials to facilitate human activities on the Moon itself, and progressing to the use of lunar resources to underpin a future industr...

  19. A Low Cost Spacecraft Architecture for Robotic Lunar Exploration Projects

    Science.gov (United States)

    Lemke, Lawrence G.; Gonzales, Andrew A.

    2006-01-01

    down for either insertion into lunar orbit or braking for landing on the lunar surface. In order to effectively use the approx.3 Mt mass-to-TLI of the EELV, two low cost spacecraft will be manifested on the same launch. One spacecraft will be located on top of the other for launch and the two will have to be released in sequence in order to achieve all mission objectives. The two spacecraft could both be landers, both orbiters, or one lander and one orbiter. In order to achieve mass efficiency, the body of the spacecraft will serve the dual purposes of carrying launch loads and providing attachment points for all the spacecraft subsystems. In order to avoid unaffordable technology development costs, small liquid propulsion components and autonomous, scene-matching navigation cameras may be adapted from military missile programs in order to execute precision soft landings.

  20. Results from the Mars Phoenix Lander Robotic Arm experiment

    Science.gov (United States)

    Arvidson, R. E.; Bonitz, R. G.; Robinson, M. L.; Carsten, J. L.; Volpe, R. A.; Trebi-Ollennu, A.; Mellon, M. T.; Chu, P. C.; Davis, K. R.; Wilson, J. J.; Shaw, A. S.; Greenberger, R. N.; Siebach, K. L.; Stein, T. C.; Cull, S. C.; Goetz, W.; Morris, R. V.; Ming, D. W.; Keller, H. U.; Lemmon, M. T.; Sizemore, H. G.; Mehta, M.

    2009-10-01

    The Mars Phoenix Lander was equipped with a 2.4 m Robotic Arm (RA) with an Icy Soil Acquisition Device capable of excavating trenches in soil deposits, grooming hard icy soil surfaces with a scraper blade, and acquiring icy soil samples using a rasp tool. A camera capable of imaging the scoop interior and a thermal and electrical conductivity probe were also included on the RA. A dozen trench complexes were excavated at the northern plains landing site and 31 samples (including water-ice-bearing soils) were acquired for delivery to instruments on the Lander during the 152 sol mission. Deliveries included sprinkling material from several centimeters height to break up cloddy soils on impact with instrument portals. Excavations were done on the side of the Humpty Dumpty and the top of the Wonderland polygons, and in nearby troughs. Resistive forces encountered during backhoe operations show that soils above the 3-5 cm deep icy soil interfaces are stronger with increasing depth. Further, soils are similar in appearance and properties to the weakly cohesive crusty and cloddy soils imaged and excavated by the Viking Lander 2, which also landed on the northern plains. Adsorbed H2O is inferred to be responsible for the variable nature and cohesive strength of the soils. Backhoe blade chatter marks on excavated icy soil surfaces, combined with rasp motor currents, are consistent with laboratory experiments using grain-supported icy soil deposits, as is the relatively rapid decrease in icy soil strength over time as the ice sublimated on Mars.

  1. The Minimum Total Heating Lander By The Maximum Principle Pontryagin

    Directory of Open Access Journals (Sweden)

    DangThi Mai

    2014-12-01

    Full Text Available The article will research a lander flying into the atmosphere with the flow velocity constraint, i.e. the total load by means of minimizing the total thermal energy at the end of the landing process. The lander’s distance at the last moment depends on the variables selected from the total thermal energy minimum. To deal with the problem we apply Pontryagin maximum principle and scheme Dubovitsky- Milutin. Solving boundary using the parameter and the solution obtained in the choice of variables. The results of simulations performed on Matlab.

  2. Geomorphic Map of Region Around Phoenix Mars Lander

    Science.gov (United States)

    2008-01-01

    This map shows shows a color-coded interpretation of geomorphic units categories based on surface textures and contours in the region where NASA's Phoenix Mars Lander has studied an arctic Martian plain. It covers an area about 65 kilometers by 65 kilometers (40 miles by 40 miles). The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  3. Rosetta lander Philae - Landing performance and touchdown safety assessment

    Science.gov (United States)

    Witte, Lars; Roll, Reinhard; Biele, Jens; Ulamec, Stephan; Jurado, Eric

    2016-08-01

    This paper describes the simulation and analysis work on Rosetta lander Philae's touchdown dynamics which was done to support its Landing Site Selection Process. The simulation part consists of a numerical multi-body simulation to describe Philae's touchdown dynamics. Suitable performance metrics in conjunction with Monte Carlo trajectory data from the flight dynamics analysis yields landing area specific landing gear performance and safety figures. These were then incorporated into the site selection process with regard to landing system performance margins and touchdown safety. While Philae finally made a nearly successful landing the actual flight data were used to review and discuss the applicability of the presented simulation and analysis scheme.

  4. Histogram Filter for Attitude Determination of Small Asteroid Lander

    OpenAIRE

    Schlotterer, Markus; Findlay, Ross; Ho, Tra-Mi; Witte, Lars; Ziach, Christian

    2014-01-01

    The Mobile Asteroid Surface Scout (MASCOT) is a small landing package build by the German Aerospace Center (DLR) jointly with the French Space Agency (CNES). MASCOT will fly onboard the Japanese space probe Hayabusa-II, built by the Japan Aerospace Exploration Agency (JAXA) and is scheduled to be launched in late 2014 on a 5-year sample return mission to the Near-Earth Asteroid 1999 JU3. The lander is equipped with four science instruments which will take detailed close-up pictures and mak...

  5. Far-Northern Destination for Phoenix Mars Lander

    Science.gov (United States)

    2007-01-01

    The planned landing site for NASA's Phoenix Mars Lander lies at a latitude on Mars equivalent to northern Alaska on Earth. It is within the region designated 'D' on this global image. This is an orthographic projection with color-coded elevation contours and shaded relief based on data from the Mars Orbiter Laser Altimeter on NASA's Mars Global Surveyor orbiter. Total vertical relief is about 28 kilometers (17 miles) from the top of the highest volcano (red) to the northern lowlands (blue). North pole is where the longitude lines converge.

  6. Lunar materials and processes

    Science.gov (United States)

    Burke, J. D.

    1986-01-01

    The paper surveys current information, describes some important unknowns about lunar materials, and discusses ways to gain more scientific and engineering knowledge concerning the industrial processes that could be used on the moon for the production of products useful in future enterprises in space. Lunar rocks and soils are rich in oxygen, but it is mostly chemically bound in silicates, so that chemical or thermal energy must be supplied to recover it. Iron and titanium are abundant and, in some of their known forms, readily recoverable; aluminum is plentiful but harder to extract. Methods for recovering lunar oxygen and metals fall into three classes: chemical, electrolytic, and dissociative, broadly characterized by their respective process temperatures. Examples of these methods are briefly discussed.

  7. An integrated design of the payload for Chang'e 3 Lunar Rover

    Science.gov (United States)

    Zhouchangyi, Zhouchangyi

    Chang’e 3 detector is launched in China Xichang Satellite Launch Center on December 2, 2013. Its project task was a complete success. CE-3 detector achieved a soft landing and started its lunar exploration andinspection. It is composed of the lander and Rover (Yutu). This paper introduces an integrated designing payload of Chang’e 3 Lunar Rover. Chang’e 3 Lunar Rover is allocated with infrared imaging spectrometer,moon-measuring radar, Alpha Particle X-ray Spectrometer(APXS), panoramic camera and other payloads. The infrared spectrometer is used to analyse the infrared spectrum and take images of the patrolling areas, to analyse the mineral composition and distribution of the lunar surface, and to do a comprehensive study of the energy sources and mineral sources.The radar is used for inspecting the thickness and structure of the lunar soil on the patrolling path as well as probing the structure of the shallow lunar crust. The APXS will use the method of alpha-particle-induced X-ray fluorescence to study in detail the composition of soil in specific areas. The panoramic camera is for obtaining three-dimensional images of the lunar surface around the patrolling path, accomplishing the inspection of near landscapes and topographic analysis. Limited by the total weight, the Rover is equipped with a payload controller, through which an integrated design consisting of the power supply, data processing, electronic units, operating management and other functions of the payload is done, to realize the centralized power supply, centralized management, centralized data processing, centralized operating controlling and centralized interfaces with the integrated electronic system of the Rover.

  8. Lunar electrostatic effects and protection

    International Nuclear Information System (INIS)

    The space environment and features on the moon surface are factors in strong electrostatic electrification. Static electricity will be produced in upon friction between lunar soil and detectors or astronauts on the lunar surface. Lunar electrostatic environment effects from lunar exploration equipment are very harmful. Lunar dust with electrostatic charge may enter the equipment or even cover the instruments. It can affect the normal performance of moon detectors. Owing to the huge environmental differences between the moon and the earth, the electrostatic protection technology on the earth can not be applied. In this paper, we review the electrostatic characteristics of lunar dust, its effects on aerospace equipment and moon static elimination technologies. It was concluded that the effect of charged lunar dust on detectors and astronauts should be completely researched as soon as possible.

  9. Design and Demonstration of Minimal Lunar Base

    Science.gov (United States)

    Boche-Sauvan, L.; Foing, B. H.; Exohab Team

    2009-04-01

    (Integrated Exploration Study, ESA ESTEC [1,2]). We will focus on the easiest and the soonest way in settling a minimal base immediately operational in scientific experimentation, but not immediately autonomous. It will prepare the next permanent lunar base by assessing its technologies, and give scientific results about the environment. The autonomy will be gained in the evolution of the base, and added equipment. A lunar outpost in a polar region would allow missions longer than 14 days, and a frequent addition of equipments. Moreover, a polar outpost will get both advantages of far-side for simulating direct or indirect communications to Earth and dark-side for observations. The low solar rays incidence may permit having ice in deep craters, which will be beneficial for the evolution of the outpost into a autonomous base. The South Pole, by its position on the edge of the South Pole Aitken (SPA) Basin, will allow different fast new data in analysis mantle samples, easily reachable due to the crater morphology. These samples will constrain the putative Late Heavy Bombarment (LHB). After a robotic sample return mission, a human presence will allow deeper research through well chosen geological samples [6]. In this modular concept, we consider various infrastructure elements: core habitat, EVA, crew mobility, energy supply, recycling module, communication, green house and food production, operations. Many of these elements have already been studied in space agencies' architecture proposals, with the tech-nological possibilities of industrial partners (lunar landers, lunar orbiter, rovers …). A deeper reflection will be therefore done about the core habitat and the laboratory equipment, proposing scientific priority experiments. Each element will be added in a range considering their priority to life support in duration [7]. Considering surface operations, protocols will be specified in the use of certain elements. After a reflexion on the different dependancies and

  10. A comparison of detection sensitivity between ALTAIR and Arecibo meteor observations: Can high power and large aperture radars detect low velocity meteor head-echoes

    Science.gov (United States)

    Janches, Diego; Close, Sigrid; Fentzke, Jonathan T.

    2008-01-01

    Meteor head-echo observations using High Power and Large Aperture (HPLA) radars have been routinely used for micrometeor studies for over a decade. The head-echo is a signal from the radar-reflective plasma region traveling with the meteoroid and its detection allows for very precise determination of instantaneous meteor altitude, velocity and deceleration. Unlike specular meteor radars (SMR), HPLA radars are diverse instruments when compared one to another. The operating frequencies range from 46 MHz to 1.29 GHz while the antenna configurations changes from 18,000 dipoles in a 300 m×300 m square array, phase arrays of dipoles to single spherical or parabolic dishes of various dimensions. Hunt et al. [Hunt, S.M., Oppenheim, M., Close, S., Brown, P.G., McKeen, F., Minardi, M., 2004. Icarus 168, 34-42] and Close et al. [Close, S., Brown, P., Campbell-Brown, M., Oppenheim, M., Colestock, P., 2007. Icarus, doi: 10.1016/j.icarus.2006.09.07] recently showed, by utilizing a head-echo plasma-based model, the presence of instrumental biases in the ALTAIR VHF radar system against detecting meteors produced by very small particles (<1 μg) moving at slow (˜20 km/s) velocities due to the low head echo radar cross-section (RCS) associated with these particles. In this paper we apply the same methodology to the Arecibo 430 MHz radar and compare the results with those presented by Close et al. [Close, S., Brown, P., Campbell-Brown, M., Oppenheim, M., Colestock, P., 2007. Icarus, doi: 10.1016/j.icarus.2006.09.07]. We show that, if the methodology applied by Hunt et al. [Hunt, S.M., Oppenheim, M., Close, S., Brown, P.G., McKeen, F., Minardi, M., 2004. Icarus 168, 34-42] and Close et al. [Close, S., Brown, P., Campbell-Brown, M., Oppenheim, M., Colestock, P., 2007. Icarus, doi: 10.1016/j.icarus.2006.09.07] is accurate, for particles at least 1 μg or heavier, while the bias may exist for the ALTAIR measurements, it does not exist in the Arecibo data due to its greater sensitivity.

  11. Current status and scientific capabilities of the Rosetta lander payload

    Science.gov (United States)

    Biele, J.; Ulamec, S.; Feuerbacher, B.; Rosenbauer, H.; Mugnuolo, R.; Moura, D.; Bibring, J. P.

    ESA's cornerstone mission "ROSETTA" to comet 46P/Wirtanen will bring a 100 kg Lander (provided by an international European consortium) with a scientific payload of about 27 kg to the surface of the comet's nucleus. After a first scientific sequence it will operate for a considerable fraction of the cometary orbit around the sun (between 3 AU and 2 AU). The Lander is an autonomous spacecraft, powered with solar cells and using the ROSETTA Orbiter as a telemetry relais to Earth. The main scientific objectives are the in-situ investigation of the chemical, elemental, isotopic and mineralogical composition of the comet, study of the physical properties of the surface material, analyze the internal structure of the nucleus, observe temporal variations (day/night cycle, approach to sun), study the relationship between the comet and the interplanetary matter and provide ground reference data for Orbiter instruments. Ten experiments with a number of sub-experiments are foreseen to fulfil these objectives. In this paper we present the current status of the instrumental development and the scientific capabilities of each of the experiments.

  12. Planetary Protection for the Beagle2 Mars Lander Mission

    Science.gov (United States)

    Spry, J. A.; Pillinger, J. M.; Pillinger, C. T.

    Following ejection from the Mars Express orbiter on 19th December 2003, the Beagle 2 probe of mass 68kg headed for the martian surface. The fact that no communications were established with the Beagle 2 lander, and thus neither its location nor fate are currently known, heightens the relevance of the planetary protection aspects of the project. Payload configuration requirements and stringent mass constraints in the design did not allow the whole spacecraft to be terminally sterilised by a single processing method, due to material incompatibility issues. The lander was therefore integrated aseptically in a specially designed and constructed Class 10 cleanroom facility, following appropriate sterilisation processing at sub-assembly level utilising one of several different sterilisation technologies. Additional further cleanliness precautions were taken to ensure the integrity of the science package. The project demonstrates that the COSPAR requirements for a category IVA mission can be met or exceeded using this approach. The data show that, even in the event of a non-nominal landing, the martian environment is protected through the precautionary and conservative approach adopted in the planetary protection strategy.

  13. A Lunar Electromagnetic Launch System for In-Situ Resource Utilization

    Science.gov (United States)

    Wright, Michael R.; Kuznetsov, Steven B.; Kloesel, Kurt J.

    2010-01-01

    Future human exploration of the moon will require the development of capabilities for in-situ resource utilization (ISRU). Transport of lunar-derived commodities such as fuel and oxygen to orbiting resource depots has been proposed to enable refueling landers or other vehicles. A lunar electromagnetic launch (LEML) system could be an effective means of transporting materials, as an alternative to non-renewable chemical-based propulsion systems. An example LEML concept is presented based on previous studies, existing EML technologies, and NASA's human exploration architecture. A preliminary assessment of the cost-versus-benefit of such a system is also offered; the conclusion, however, is not as favorable for LEML as originally suggested.

  14. Fuel-Efficient Descent and Landing Guidance Logic for a Safe Lunar Touchdown

    Science.gov (United States)

    Lee, Allan Y.

    2011-01-01

    The landing of a crewed lunar lander on the surface of the Moon will be the climax of any Moon mission. At touchdown, the landing mechanism must absorb the load imparted on the lander due to the vertical component of the lander's touchdown velocity. Also, a large horizontal velocity must be avoided because it could cause the lander to tip over, risking the life of the crew. To be conservative, the worst-case lander's touchdown velocity is always assumed in designing the landing mechanism, making it very heavy. Fuel-optimal guidance algorithms for soft planetary landing have been studied extensively. In most of these studies, the lander is constrained to touchdown with zero velocity. With bounds imposed on the magnitude of the engine thrust, the optimal control solutions typically have a "bang-bang" thrust profile: the thrust magnitude "bangs" instantaneously between its maximum and minimum magnitudes. But the descent engine might not be able to throttle between its extremes instantaneously. There is also a concern about the acceptability of "bang-bang" control to the crew. In our study, the optimal control of a lander is formulated with a cost function that penalizes both the touchdown velocity and the fuel cost of the descent engine. In this formulation, there is not a requirement to achieve a zero touchdown velocity. Only a touchdown velocity that is consistent with the capability of the landing gear design is required. Also, since the nominal throttle level for the terminal descent sub-phase is well below the peak engine thrust, no bound on the engine thrust is used in our formulated problem. Instead of bangbang type solution, the optimal thrust generated is a continuous function of time. With this formulation, we can easily derive analytical expressions for the optimal thrust vector, touchdown velocity components, and other system variables. These expressions provide insights into the "physics" of the optimal landing and terminal descent maneuver. These

  15. Lunar troilite: Crystallography

    Science.gov (United States)

    Evans, H.T., Jr.

    1970-01-01

    Fine, euhedral crystals of troilite from lunar sample 10050 show a hexagonal habit consistent with the high-temperature NiAs-type structure. Complete three-dimensional counter intensity data have been measured and used to confirm and refine Bertaut's proposed low-temperature crystal structure.

  16. Lunar Phases Planisphere

    Science.gov (United States)

    Shawl, Stephen J.

    2010-01-01

    This paper describes a lunar phases planisphere with which a user can answer questions about the rising and setting times of the Moon as well as questions about where the Moon will be at a given phase and time. The article contains figures that can be photocopied to make the planisphere. (Contains 2 figures.)

  17. Lunar exospheric argon modeling

    Science.gov (United States)

    Grava, Cesare; Chaufray, J.-Y.; Retherford, K. D.; Gladstone, G. R.; Greathouse, T. K.; Hurley, D. M.; Hodges, R. R.; Bayless, A. J.; Cook, J. C.; Stern, S. A.

    2015-07-01

    Argon is one of the few known constituents of the lunar exosphere. The surface-based mass spectrometer Lunar Atmosphere Composition Experiment (LACE) deployed during the Apollo 17 mission first detected argon, and its study is among the subjects of the Lunar Reconnaissance Orbiter (LRO) Lyman Alpha Mapping Project (LAMP) and Lunar Atmospheric and Dust Environment Explorer (LADEE) mission investigations. We performed a detailed Monte Carlo simulation of neutral atomic argon that we use to better understand its transport and storage across the lunar surface. We took into account several loss processes: ionization by solar photons, charge-exchange with solar protons, and cold trapping as computed by recent LRO/Lunar Orbiter Laser Altimeter (LOLA) mapping of Permanently Shaded Regions (PSRs). Recycling of photo-ions and solar radiation acceleration are also considered. We report that (i) contrary to previous assumptions, charge exchange is a loss process as efficient as photo-ionization, (ii) the PSR cold-trapping flux is comparable to the ionization flux (photo-ionization and charge-exchange), and (iii) solar radiation pressure has negligible effect on the argon density, as expected. We determine that the release of 2.6 × 1028 atoms on top of a pre-existing argon exosphere is required to explain the maximum amount of argon measured by LACE. The total number of atoms (1.0 × 1029) corresponds to ∼6700 kg of argon, 30% of which (∼1900 kg) may be stored in the cold traps after 120 days in the absence of space weathering processes. The required population is consistent with the amount of argon that can be released during a High Frequency Teleseismic (HFT) Event, i.e. a big, rare and localized moonquake, although we show that LACE could not distinguish between a localized and a global event. The density of argon measured at the time of LACE appears to have originated from no less than four such episodic events. Finally, we show that the extent of the PSRs that trap

  18. Multibody Modeling and Simulation for the Mars Phoenix Lander Entry, Descent and Landing

    Science.gov (United States)

    Queen, Eric M.; Prince, Jill L.; Desai, Prasun N.

    2008-01-01

    A multi-body flight simulation for the Phoenix Mars Lander has been developed that includes high fidelity six degree-of-freedom rigid-body models for the parachute and lander system. The simulation provides attitude and rate history predictions of all bodies throughout the flight, as well as loads on each of the connecting lines. In so doing, a realistic behavior of the descending parachute/lander system dynamics can be simulated that allows assessment of the Phoenix descent performance and identification of potential sensitivities for landing. This simulation provides a complete end-to-end capability of modeling the entire entry, descent, and landing sequence for the mission. Time histories of the parachute and lander aerodynamic angles are presented. The response of the lander system to various wind models and wind shears is shown to be acceptable. Monte Carlo simulation results are also presented.

  19. Property Status of Lunar Material

    Science.gov (United States)

    Pop, V.

    Most of the lunar material in private hands is of meteoric origin, and its property sta- tus does not present many challenges. The intention of Applied Space Resources, Inc, to fly a commercial lunar sample return mission and to subsequently offer lunar ma- terial for sale, raises the issue of the legality of exploitation and private ownership of retrieved lunar material. Lunar samples have been returned in the past by means of the Apollo (US) and Luna (USSR) missions and, while most of the material re- mains government property and is used for scientific means, a small fraction has been transferred abroad and some has entered the private market. Apollo-collected moon- rocks have been offered, symbolically, to heads of States, and some foreign nations have subsequently transferred ownership to private individuals. The same, lunar ma- terial of Soviet provenience has entered the private market, this forming a valuable legal precedent for the lawfulness of sale of lunar material. Recently, plans were made public to award the Apollo astronauts with lunar rocks. While in the US there is a popular misconception that it is illegal to own lunar material, the truth lies elsewhere. As the Apollo samples are the property of the US government and a small fraction was stolen, lost, or misplaced, the US government intends to recover this material, unlawfully owned. In the same time, a significant number of individuals have been prosecuted for offering for sale fake lunar rocks. The present paper will analyse the different categories of lunar material according to its ownership status, and will as- sert that private property of lunar material is lawful, and lunar material that will be returned in the future will be able to enter the market without hindrances.

  20. The International Lunar Decade Declaration

    Science.gov (United States)

    Beldavs, V.; Foing, B.; Bland, D.; Crisafulli, J.

    2015-10-01

    The International Lunar Decade Declaration was discussed at the conference held November 9-13, 2014 in Hawaii "The Next Giant Leap: Leveraging Lunar Assets for Sustainable Pathways to Space" - http://2014giantleap.aerospacehawaii.info/ and accepted by a core group that forms the International Lunar Decade Working Group (ILDWG) that is seeking to make the proposed global event and decade long process a reality. The Declaration will be updated from time to time by members of the ILDWreflecting new knowledge and fresh perspectives that bear on building a global consortium with a mission to progress from lunar exploration to the transformation of the Moon into a wealth gene rating platform for the expansion of humankind into the solar system. When key organizations have endorsed the idea and joined the effort the text of the Declaration will be considered final. An earlier International Lunar Decade proposal was issued at the 8th ICEUM Conference in 2006 in Beijing together with 13 specific initiatives for lunar exploration[1,2,3]. These initiatives have been largely implemented with coordination among the different space agencies involved provided by the International Lunar Exploration Working Group[2,3]. The Second International Lunar Decade from 2015 reflects current trends towards increasing involvement of commercial firms in space, particularly seeking opportunities beyond low Earth orbit. The central vision of the International Lunar Decade is to build the foundations for a sustainable space economy through international collaboration concurrently addressing Lunar exploration and building a shared knowledge base;Policy development that enables collabo rative research and development leading to lunar mining and industrial and commercial development;Infrastructure on the Moon and in cislunar space (communications, transport, energy systems, way-stations, other) that reduces costs, lowers risks and speeds up the time to profitable operations;Enabling technologies

  1. International lunar observatory / power station: from Hawaii to the Moon

    Science.gov (United States)

    Durst, S.

    -like lava flow geology adds to Mauna Kea / Moon similarities. Operating amidst the extinct volcano's fine grain lava and dust particles offers experience for major challenges posed by silicon-edged, powdery, deep and abundant lunar regolith. Power stations for lunar observatories, both robotic and low cost at first, are an immediate enabling necessity and will serve as a commercial-industrial driver for a wide range of lunar base technologies. Both microwave rectenna-transmitters and radio-optical telescopes, maybe 1-meter diameter, can be designed using the same, new ultra-lightweight materials. Five of the world's six major spacefaring powers - America, Russia, Japan, China and India, are located around Hawaii in the Pacific / Asia area. With Europe, which has many resources in the Pacific hemisphere including Arianespace offices in Tokyo and Singapore, they have 55-60% of the global population. New international business partnerships such as Sea Launch in the mid-Pacific, and national ventures like China's Hainan spaceport, Japan's Kiribati shuttle landing site, Australia and Indonesia's emerging launch sites, and Russia's Ekranoplane sea launcher / lander - all combine with still more and advancing technologies to provide the central Pacific a globally representative, state-of-the-art and profitable access to space in this new century. The astronomer / engineers tasked with operation of the lunar observatory / power station will be the first to voyage from Hawaii to the Moon, before this decade is out. Their scientific and technical training at the world's leading astronomical complex on the lunar-like landscape of Mauna Kea may be enhanced with the learning and transmission of local cultures. Following the astronomer / engineers, tourism and travel in the commercially and technologically dynamic Pacific hemisphere will open the new ocean of space to public access in the 21st century like they opened the old ocean of sea and air to Hawaii in the 20th - with Hawaii

  2. Lunar eclipse induces disturbance in the lunar exosphere

    CERN Document Server

    Raghav, Anil; Yadav, Virendra; Bijewar, Nitinkumar; Pai, Chintamani; Rawoot, Vaibhav

    2014-01-01

    Given the renewed scientific interest in lunar exploration missions, complete understanding of lunar near surface environment and its exosphere under different conditions is of paramount importance. Lunar exosphere has been extensively studied by ground based observations [18,19,20,21,22,23] and hypothesized by different models[1,2,3,4,5,6,7,8,9,10,11,12,13]. In present work, we have discussed overlooked possible sources behind changes in the lunar exosphere when the Moon passes through the penumbra and umbra of the Earth during a lunar eclipse. The dusty turbulent environment due to planetary shadow is not only confined to lunar studies and exploration, but it can also be extended to all terrestrial airless bodies in the universe with a dusty surface e.g. some planets, planetary satellites, asteroids etc.

  3. Data preprocessing and preliminary results of the Moon-based Ultraviolet Telescope on the CE-3 lander

    International Nuclear Information System (INIS)

    The Moon-based Ultraviolet Telescope (MUVT) is one of the payloads on the Chang'e-3 (CE-3) lunar lander. Because of the advantages of having no atmospheric disturbances and the slow rotation of the Moon, we can make long-term continuous observations of a series of important celestial objects in the near ultraviolet band (245∼340 nm), and perform a sky survey of selected areas, which cannot be completed on Earth. We can find characteristic changes in celestial brightness with time by analyzing image data from the MUVT, and deduce the radiation mechanism and physical properties of these celestial objects after comparing with a physical model. In order to explain the scientific purposes of MUVT, this article analyzes the preprocessing of MUVT image data and makes a preliminary evaluation of data quality. The results demonstrate that the methods used for data collection and preprocessing are effective, and the Level 2A and 2B image data satisfy the requirements of follow-up scientific researches

  4. Software Architecture for Planetary and Lunar Robotics

    Science.gov (United States)

    Utz, Hans; Fong, Teny; Nesnas, Iasa A. D.

    2006-01-01

    A viewgraph presentation on the role that software architecture plays in space and lunar robotics is shown. The topics include: 1) The Intelligent Robotics Group; 2) The Lunar Mission; 3) Lunar Robotics; and 4) Software Architecture for Space Robotics.

  5. Lunar eclipse induces disturbance in the lunar exosphere

    OpenAIRE

    Raghav, Anil; Bhaskar, Ankush; Yadav, Virendra; Bijewar, Nitinkumar; Pai, Chintamani; Rawoot, Vaibhav

    2014-01-01

    Given the renewed scientific interest in lunar exploration missions, complete understanding of lunar near surface environment and its exosphere under different conditions is of paramount importance. Lunar exosphere has been extensively studied by ground based observations [18,19,20,21,22,23] and hypothesized by different models[1,2,3,4,5,6,7,8,9,10,11,12,13]. In present work, we have discussed overlooked possible sources behind changes in the lunar exosphere when the Moon passes through the p...

  6. Lunar Solar Power System and Lunar Exploration

    Science.gov (United States)

    Criswell, D. R.

    2002-01-01

    Five of the six billion people on Earth produce less than 2,500 per year per person of Gross World Product (GWP). GWP growth is severely limited by the high cost, low availability and reliability, environmental damages, and political uncertainties of conventional fossil, nuclear, and terrestrial renewable power systems. In 2000 the World Energy Council challenged all decision makers to enable the equivalent of 6.7 kWt per person of thermal power within two generations. This implies 67 TWt, or approx.20 to 30 TWe, of sustainable electric power by 2050. Twenty-five power systems were reviewed to select which could: (1) sustainably provide 20 TWe to consumers; (2) profitably sell electricity for less than 0.01 per kWe-h; (3) be environmentally neutral, even nurturing; and (4) use understood technologies. The analyses indicated that only the Lunar Solar Power (LSP) System could meet these requirements within the 21st Century.

  7. Laser-powered lunar base

    International Nuclear Information System (INIS)

    The objective was to compare a nuclear reactor-driven Sterling engine lunar base power source to a laser-to-electric converter with orbiting laser power station, each providing 1 MW of electricity to the lunar base. The comparison was made on the basis of total mass required in low-Earth-orbit for each system. This total mass includes transportation mass required to place systems in low-lunar orbit or on the lunar surface. The nuclear reactor with Sterling engines is considered the reference mission for lunar base power and is described first. The details of the laser-to-electric converter and mass are discussed. The next two solar-driven high-power laser concepts, the diode array laser or the iodine laser system, are discussed with associated masses in low-lunar-orbit. Finally, the payoff for laser-power beaming is summarized

  8. Calibration and performance of the Viking lander cameras

    Science.gov (United States)

    Patterson, W. R., III; Huck, F. O.; Wall, S. D.; Wolf, M. R.

    1977-01-01

    The paper discusses Viking lander cameras which have an angular resolution of 0.12 deg, and (for broadband imaging) a resolution of 0.04 deg, used for the acquisition of data in six spectral bands for color and near-infrared imaging. Attention is given to photogrammetric calibration techniques used in the determination of spatial and spectral brightness variations from image data. The effects of sampling on the achievable photogrammetric precision are described along with techniques for preflight spectral calibrations and the corrections required for degradation in the infrared response of the detectors. The effects of the known internal reflections on the qualitative images (such as the appearance of artifact clouds) are presented, noting their effects on skyline radiometry. The qualitative and quantitative effects of the signal quantization are briefly reviewed.

  9. Phoenix Mars Lander's Chemistry Lab in a Box

    Science.gov (United States)

    2007-01-01

    The wet chemistry laboratory on NASA's Phoenix Mars Lander has four teacup-size beakers. This photograph shows one of them. The laboratory is part of the spacecraft's Microscopy, Electrochemistry and Conductivity Analyzer. Each beaker will be used only once, for assessing soluble chemicals in a sample of Martian soil by mixing water with the sample to a soupy consistency and keeping it warm enough to remain liquid during the analysis. On the inner surface of the beaker are 26 sensors, mostly electrodes behind selectively permeable membranes or gels. Some sensors will give information about the acidity or alkalinity of the soil sample. Others will gauge concentrations of such ions as chlorides, bromides, magnesium, calcium and potassium. Comparisons of the concentrations of water-soluble ions in soil samples from different depths below the surface of the landing site may provide clues to the history of the water in the soil.

  10. Aerodynamic Database Development for Mars Smart Lander Vehicle Configurations

    Science.gov (United States)

    Bobskill, Glenn J.; Parikh, Paresh C.; Prabhu, Ramadas K.; Tyler, Erik D.

    2002-01-01

    An aerodynamic database has been generated for the Mars Smart Lander Shelf-All configuration using computational fluid dynamics (CFD) simulations. Three different CFD codes, USM3D and FELISA, based on unstructured grid technology and LAURA, an established and validated structured CFD code, were used. As part of this database development, the results for the Mars continuum were validated with experimental data and comparisons made where applicable. The validation of USM3D and LAURA with the Unitary experimental data, the use of intermediate LAURA check analyses, as well as the validation of FELISA with the Mach 6 CF(sub 4) experimental data provided a higher confidence in the ability for CFD to provide aerodynamic data in order to determine the static trim characteristics for longitudinal stability. The analyses of the noncontinuum regime showed the existence of multiple trim angles of attack that can be unstable or stable trim points. This information is needed to design guidance controller throughout the trajectory.

  11. The Preliminary Design of a Universal Martian Lander

    Science.gov (United States)

    Norman, Timothy L.; Gaskin, David; Adkins, Sean; MacDonnell, David; Ross, Enoch; Hashimoto, Kouichi; Miller, Loran; Sarick, John; Hicks, Jonathan; Parlock, Andrew; Swalley, Frank (Technical Monitor)

    1993-01-01

    As part of the NASA/USRA program, nineteen West Virginia University students conducted a preliminary design of a manned Universal Martian Lander (UML). The WVU design considers descent to Mars from polar orbit, a six month surface stay, and ascent for rendezvous. The design begins with an unmanned UML landing at Elysium Mons followed by the manned UML landing nearby. During the six month surface stay, the eight modules are assembled to form a Martian base where scientific experiments are performed. The mission also incorporates hydroponic plant growth into a Controlled Ecological Life Support System (CELSS) for water recycling, food production, and to counteract psycho-logical effects of living on Mars. In situ fuel production for the Martian Ascent and Rendezvous Vehicle (MARV) is produced From gases in the Martian atmosphere. Following surface operations, the eight member crew uses the MARV to return to the Martian Transfer Vehicle (MTV) for the journey home to Earth.

  12. Modern mysteries of the Moon what we still don’t know about our lunar companion

    CERN Document Server

    Foster, Vincent S

    2016-01-01

    There are still many questions that remain about the Moon. From concentric craters to lunar swirls, water vapor and lunar reverberations on impact, Foster collects it all for a fascinating tour that will illuminate the backyard observer's understanding of this easily viewed, yet also imperfectly understood, celestial object. Data from Apollo and a flotilla of unmanned Moon orbiters, crashers, and landers have all contributed to our understanding of the Moon, but these mysteries linger despite decades of research. When Project Apollo brought back lunar rocks and soil samples, it opened a new chapter of understanding Earth's lone natural satellite, a process that continues to this day, as old results are revisited and new techniques are used on existing samples. Topics such as the origin, evolution, structure and composition of the Moon, however, are still under debate. Lunar research is still an active field of study. New technologies make it possible to continue to learn. But even so, the Moon continues to h...

  13. Lunar scout missions: Galileo encounter results and application to scientific problems and exploration requirements

    Science.gov (United States)

    Head, J. W.; Belton, M.; Greeley, R.; Pieters, C.; Mcewen, A.; Neukum, G.; Mccord, T.

    1993-01-01

    The Lunar Scout Missions (payload: x-ray fluorescence spectrometer, high-resolution stereocamera, neutron spectrometer, gamma-ray spectrometer, imaging spectrometer, gravity experiment) will provide a global data set for the chemistry, mineralogy, geology, topography, and gravity of the Moon. These data will in turn provide an important baseline for the further scientific exploration of the Moon by all-purpose landers and micro-rovers, and sample return missions from sites shown to be of primary interest from the global orbital data. These data would clearly provide the basis for intelligent selection of sites for the establishment of lunar base sites for long-term scientific and resource exploration and engineering studies. The two recent Galileo encounters with the Moon (December, 1990 and December, 1992) illustrate how modern technology can be applied to significant lunar problems. We emphasize the regional results of the Galileo SSI to show the promise of geologic unit definition and characterization as an example of what can be done with the global coverage to be obtained by the Lunar Scout Missions.

  14. International Lunar Observatory Association Advancing 21st Century Astronomy from the Moon

    Science.gov (United States)

    Durst, Steve

    2015-08-01

    Long considered a prime location to conduct astronomical observations, the Moon is beginning to prove its value in 21st Century astronomy through the Lunar Ultraviolet Telescope aboard China’s Chang’e-3 Moon lander and through the developing missions of the International Lunar Observatory Association (ILOA). With 24 hours / Earth day of potential operability facilitating long-duration observations, the stable platform of the lunar surface and extremely thin exosphere guaranteeing superior observation conditions, zones of radio-quiet for radio astronomy, and the resources and thermal stability at the lunar South Pole, the Moon provides several pioneering advantages for astronomy. ILOA, through MOUs with NAOC and CNSA, has been collaborating with China to make historic Galaxy observations with the Chang’e-3 LUT, including imaging Galaxy M101 in December 2014. LUT has an aperture of 150mm, covers a wavelength range of 245 to 340 nanometers and is capable of detecting objects at a brightness down to 14 mag. The success of China’s mission has provided support and momentum for ILOA’s mission to place a 2-meter dish, multifunctional observatory at the South Pole of the Moon NET 2017. ILOA also has plans to send a precursor observatory instrument (ILO-X) on the inaugural mission of GLXP contestant Moon Express. Advancing astronomy and astrophysics from the Moon through public-private and International partnerships will provide many valuable research opportunities while also helping to secure humanity’s position as multi world species.

  15. Dust particles investigation for future Russian lunar missions.

    Science.gov (United States)

    Dolnikov, Gennady; Horanyi, Mihaly; Esposito, Francesca; Zakharov, Alexander; Popel, Sergey; Afonin, Valeri; Borisov, Nikolay; Seran, Elena; Godefroy, Michel; Shashkova, Inna; Kuznetsov, Ilya; Lyash, Andrey; Vorobyova, Elena; Petrov, Oleg; Lisin, Evgeny

    One of the complicating factors of the future robotic and human lunar landing missions is the influence of the dust. Meteorites bombardment has accompanied by shock-explosive phenomena, disintegration and mix of the lunar soil in depth and on area simultaneously. As a consequence, the lunar soil has undergone melting, physical and chemical transformations. Recently we have the some reemergence for interest of Moon investigation. The prospects in current century declare USA, China, India, and European Union. In Russia also prepare two missions: Luna-Glob and Luna-Resource. Not last part of investigation of Moon surface is reviewing the dust condition near the ground of landers. Studying the properties of lunar dust is important both for scientific purposes to investigation the lunar exosphere component and for the technical safety of lunar robotic and manned missions. The absence of an atmosphere on the Moon's surface is leading to greater compaction and sintering. Properties of regolith and dust particles (density, temperature, composition, etc.) as well as near-surface lunar exosphere depend on solar activity, lunar local time and position of the Moon relative to the Earth's magneto tail. Upper layers of regolith are an insulator, which is charging as a result of solar UV radiation and the constant bombardment of charged particles, creates a charge distribution on the surface of the moon: positive on the illuminated side and negative on the night side. Charge distribution depends on the local lunar time, latitude and the electrical properties of the regolith (the presence of water in the regolith can influence the local distribution of charge). On light side of Moon near surface layer there exists possibility formation dusty plasma system. Altitude of levitation is depending from size of dust particle and Moon latitude. The distribution dust particle by size and altitude has estimated with taking into account photoelectrons, electrons and ions of solar wind, solar

  16. AOTF near-IR spectrometers for study of Lunar and Martian surface composition

    Science.gov (United States)

    Ivanov, A.; Korablev, O.; Mantsevich, S.; Vyazovetskiy, N.; Fedorova, A.; Evdokimova, N.; Stepanov, A.; Titov, A.; Kalinnikov, Y.; Kuzmin, R.; Kiselev, A.; Bazilevsky, A.; Bondarenko, A.; Dokuchaev, I.; Moiseev, P.; Victorov, A.; Berezhnoy, A.; Skorov, Y.; Bisikalo, D.; Velikodsky, Y.

    2014-04-01

    The series of the AOTF near-IR spectrometers is developed in Moscow Space Research Institute for study of Lunar and Martian surface composition in the vicinity of a lander or a rover. Lunar Infrared Spectrometer (LIS) is an experiment onboard Luna-Glob (launch in 2017) and Luna- Resurs (launch in 2019) Russian surface missions. It's a pencil-beam spectrometer to be pointed by a robotic arm of the landing module. The instrument's field of view (FOV) of 1° is co-aligned with the FOV(45°) of a stereo TV camera. Infrared Spectrometer for ExoMars (ISEM) is an experiment onboard ExoMars (launch in 2018) ESARoscosmos rover. It's spectrometer based on LIS with required redesign for ExoMars mission. The ISEM instrument is mounted on the rover's mast coaligned with the FOV (5°) of High Resolution camera (HRC). Spectrometers and are intended for study of the surface composition in the vicinity of the lander and rover. The spectrometers will provide measurements of selected surface areas in the spectral range of 1.15-3.3 μm. The spectral selection is provided by acoustooptic tunable filter (AOTF), which scans the spectral range sequentially. Electrical command of the AOTF allows selecting the spectral sampling, and permits a random access if needed.

  17. Lunar Dust Mitigation Screens

    Science.gov (United States)

    Knutson, Shawn; Holloway, Nancy

    With plans for the United States to return to the moon, and establish a sustainable human presence on the lunar surface many issues must be successfully overcome. Lunar dust is one of a number of issues with the potential to create a myriad of problems if not adequately addressed. Samples of dust brought back from Apollo missions show it to be soft, yet sharp and abrasive. The dust consists of a variety of morphologies including spherical, angular blocks, shards, and a number of irregular shapes. One of the main issues with lunar dust is its attraction to stick to anything it comes in contact with (i.e. astronauts, equipment, habitats, etc.). Ionized radiation from the sun strikes the moon's surface and creates an electrostatic charge on the dust. Further, the dust harbors van der Waals forces making it especially difficult to separate once it sticks to a surface. During the Apollo missions, it was discovered that trying to brush the lunar dust from spacesuits was not effective, and rubbing it caused degradation of the suit material. Further, when entering the lunar module after moonwalks, the astronauts noted that the dust was so prolific inside the cabin that they inhaled and ingested it, causing at least one of them, Harrison "Jack" Schmidt, to report irritation of the throat and lungs. It is speculated that the dust could also harm an astronaut's nervous and cardiovascular systems, especially during an extended stay. In addition to health issues, the dust can also cause problems by scouring reflective coatings off of thermal blankets, and roughening surfaces of windows and optics. Further, panels on solar cells and photovoltaics can also be compromised due to dust sticking on the surfaces. Lunar dust has the capacity to penetrate seals, interfere with connectors, as well as mechanisms on digging machines, all of which can lead to problems and failure. To address lunar dust issues, development of electrostatic screens to mitigate dust on sur-faces is currently

  18. Adhesion of Lunar Dust

    Science.gov (United States)

    Walton, Otis R.

    2007-04-01

    This paper reviews the physical characteristics of lunar dust and the effects of various fundamental forces acting on dust particles on surfaces in a lunar environment. There are transport forces and adhesion forces after contact. Mechanical forces (i.e., from rover wheels, astronaut boots and rocket engine blast) and static electric effects (from UV photo-ionization and/or tribo-electric charging) are likely to be the major contributors to the transport of dust particles. If fine regolith particles are deposited on a surface, then surface energy-related (e.g., van der Walls) adhesion forces and static-electric-image forces are likely to be the strongest contributors to adhesion. Some measurement techniques are offered to quantify the strength of adhesion forces. And finally some dust removal techniques are discussed.

  19. Lunar Health Monitor (LHM)

    Science.gov (United States)

    Lisy, Frederick J.

    2015-01-01

    Orbital Research, Inc., has developed a low-profile, wearable sensor suite for monitoring astronaut health in both intravehicular and extravehicular activities. The Lunar Health Monitor measures respiration, body temperature, electrocardiogram (EKG) heart rate, and other cardiac functions. Orbital Research's dry recording electrode is central to the innovation and can be incorporated into garments, eliminating the need for conductive pastes, adhesives, or gels. The patented dry recording electrode has been approved by the U.S. Food and Drug Administration. The LHM is easily worn under flight gear or with civilian clothing, making the system completely versatile for applications where continuous physiological monitoring is needed. During Phase II, Orbital Research developed a second-generation LHM that allows sensor customization for specific monitoring applications and anatomical constraints. Evaluations included graded exercise tests, lunar mission task simulations, functional battery tests, and resting measures. The LHM represents the successful integration of sensors into a wearable platform to capture long-duration and ambulatory physiological markers.

  20. Microwave and optical lunar transponders

    Science.gov (United States)

    Bender, P. L.; Faller, J. E.; Hall, J. L.; Degnan, J. J.; Dickey, J. O.; Newhall, X. X.; Williams, J. G.; King, R. W.; Macknik, L. O.; O'Gara, D.

    1990-01-01

    The scientific areas which used data from the Lunar Laser Ranging Experiment, collected from measurements to the Apollo 11, 14, and 15 and Lunakhod 2, include lunar science (i.e., studies of variations in the lunar angular orientation from that for uniform rotation, lunar tidal displacements, and the lunar mass distribution), geodynamics, astrometry, and gravitational physics. This paper argues that the placement of microwave and optical transponders on the moon would improve the accuracy of laser range measurements by nearly two orders of magnitude and would simplify the measurements. The K-band microwave transponders would be operated at the lunar base and at two remote sites on the moon surface, yielding much improved lunar libration and tidal displacement measurements. A two-wavelength laser transponder also would be operated at the lunar base, allowing accurate tropospheric propagation corrections to be made. This would introduce major improvements in measurements of the lunar orbit and of the earth's rotation, and in tests of general relativity.

  1. First lunar outpost

    Science.gov (United States)

    Andino, Aureo F.; Silva, Daniel; Ortiz, Nelson; Alvarez, Omar; Colon, Julio A.; Colon, Myrelle; Diaz, Alicia; Escobar, Xochiquetzal Y.; Garcia, Alberto; Gonzalez, Isabel C.

    1992-01-01

    Design and research efforts at the University of Puerto Rico have focused on the evaluation and refinement of the Habitability Criteria for a prolonged human presence in space during the last four years. Living quarters for a Mars mission and a third generation lunar base concept were proposed. This academic year, 1991-92, work on further refinement of the habitability criteria and design of partial gravity furniture was carried on. During the first semester, design alternatives for furniture necessary in a habitat design optimized for lunar and Martian environments were developed. Designs are based on recent research data from lunar and Mars gravity simulations, and current NASA standards. Artifacts will be submitted to NASA architects to be tested in KC-135 flights. Test findings will be submitted for incorporation in future updates to NASA habitat design standards. Second semester work was aimed at integrating these findings into the First Lunar Outpost (FLO), a mission scenario currently being considered by NASA. The mission consists of a manned return to the moon by crews of four astronauts for periods of 45 days. The major hardware components of the mission are as follows: (1) a Crew Module for the delivery of the crew and their supplies, and (2) the Habitat Module, which will arrive on the Moon unmanned. Our design efforts concentrated on this Habitat Module and on application of habitability criteria. Different geometries for the pressure vessel and their impact on the interior architecture were studied. Upon the selection of a geometry, a more detailed analysis of the interior design was performed, taking into consideration the reduced gravity, and the protection against radiation, micrometeorites, and the extreme temperature variation. A proposal for a FLO was submitted by the students, consisting essentially of a 24-feet (7.3 m.) by 35-feet (10.67 m) high vertical cylinder with work areas, crew quarters, galley, wardroom, leisure facilities, health

  2. Lunar resources: a review

    OpenAIRE

    Crawford, Ian A.

    2015-01-01

    There is growing interest in the possibility that the resource base of the Solar System might in future be used to supplement the economic resources of our own planet. As the Earth’s closest celestial neighbour, the Moon is sure to feature prominently in these developments. In this paper I review what is currently known about economically exploitable resources on the Moon, while also stressing the need for continued lunar exploration. I find that, although it is difficult to identify any sing...

  3. The lunar interior

    Science.gov (United States)

    Anderson, D. L.; Kovach, R. L.

    1972-01-01

    The compressional velocities are estimated for materials in the lunar interior and compared with lunar seismic results. The lower crust has velocities appropriate for basalts or anorthosites. The high velocities associated with the uppermost mantle imply high densities and a change in composition to a lighter assemblage at depths of the order of 120 km. Calcium and aluminum are probably important components of the upper mantle and are deficient in the lower mantle. Much of the moon may have accreted from material similar in composition to eucrites. The important mineral of the upper mantle is garnet; possible accessory minerals are kyanite, spinel, and rutile. If the seismic results stand up, the high velocity layer in the moon is more likely to be a high pressure form of anorthosite than eclogite, pyroxenite, or dunite. The thickness of the layer is of the order of 50 km. Cosmic abundances can be maintained if the lower mantle is ferromagnesium silicate with minimal amounts of calcium and aluminum. Achondrites such as eucrites and howardites have more of the required characteristics of the lunar interior than carbonaceous chondrites. A density inversion in the moon is a strong possibility.

  4. Lunar science: An overview

    Indian Academy of Sciences (India)

    Stuart Ross Taylor

    2005-12-01

    Before spacecraft exploration,facts about the Moon were restricted to information about the lunar orbit,angular momentum and density.Speculations about composition and origin were unconstrained.Naked eye and telescope observations revealed two major terrains,the old heavily cratered highlands and the younger mostly circular,lightly cratered maria.The lunar highlands were thought to be composed of granite or covered with volcanic ash-flows.The maria were thought to be sediments,or were full of dust,and possibly only a few million years old.A few perceptive observers such as Ralph Baldwin (Baldwin 1949)concluded that the maria were filled with volcanic lavas, but the absence of terrestrial-type central volcanoes like Hawaii was a puzzle. The large circular craters were particularly difficult to interpret.Some thought,even after the Apollo flights,that they were some analogue to terrestrial caldera (e.g.,Green 1971),formed by explosive volcanic activity and that the central peaks were volcanoes.The fact that the craters were mostly circular was difficult to accommodate if they were due to meteorite impact,as meteorites would hit the Moon at all angles.The rilles were taken by many as de finitive evidence that there was or had been,running water on the lunar surface.Others such as Carl Sagan thought that organic compounds were likely present (see Taylor 1975,p.111,note 139).

  5. [Presentation of the Lunar Precursor Robotics Program

    Science.gov (United States)

    Lavoie, Anthony R.

    2008-01-01

    The Lunar Precursor Robotics Program (LPRP) is the host program for the Exploration Systems Mission Directorate's (ESMD) lunar robotic precursor missions to the Moon. The program includes two missions, the Lunar Reconnaissance Orbiter (LRO), and the Lunar CRater Observation and Sensing Satellite (LCROSS). Both missions will provide the required lunar information to support development and operations of those systems required for Human lunar return. LPRP is developing a lunar mapping plan, Called the Lunar Mapping and Modeling Project, to create the capability to archive and present all data from LRO, LCROSS, historical lunar missions, and international lunar missions for future mission planning and operations. LPRP is also developing its educational and public outreach activities for the Vision for Space Exploration's first missions. LPRP is working closely with the Science Mission Directorate as their lunar activities come into focus.

  6. A new lunar absolute control point: established by images from the landing camera on Chang'e-3

    International Nuclear Information System (INIS)

    The establishment of a lunar control network is one of the core tasks in selenodesy, in which defining an absolute control point on the Moon is the most important step. However, up to now, the number of absolute control points has been very sparse. These absolute control points have mainly been lunar laser ranging retroreflectors, whose geographical location can be observed by observations on Earth and also identified in high resolution lunar satellite images. The Chang'e-3 (CE-3) probe successfully landed on the Moon, and its geographical location has been monitored by an observing station on Earth. Since its positional accuracy is expected to reach the meter level, the CE-3 landing site can become a new high precision absolute control point. We use a sequence of images taken from the landing camera, as well as satellite images taken by CE-1 and CE-2, to identify the location of the CE-3 lander. With its geographical location known, the CE-3 landing site can be established as a new absolute control point, which will effectively expand the current area of the lunar absolute control network by 22%, and can greatly facilitate future research in the field of lunar surveying and mapping, as well as selenodesy

  7. Lunar radiation environment

    Science.gov (United States)

    Schwadron, Nathan; Spence, Harlan; Wilson, Jody

    One of the goals of the CRaTER investigation is to characterize the radiation environment near the Moon in order to enable exploration. The state-of-the-art understanding developed thus far during the LRO mission is documented in a special issue of the Spaceweather Journal entitled “Space Weather: Building the observational foundation to deduce biological effects of space radiation” (Schwadron et al., 2013a). This recently published CRaTER work probes deeper into the physics of the radiation environment at the Moon. It motivates and provides the scientific basis for new investigations in the next phase of the LRO mission. The effects of Galactic Cosmic Rays (GCRs) and Solar Energetic Particles (SEPs) range from chemical modification of the regolith, the generation of a radiation albedo that is increasingly illuminating chemical properties of the regolith, causing charging of the regolith and hazards to human explorers and robotic missions. Low-lunar orbit provides a platform for measuring SEP anisotropy over timescales of 2 hours both parallel and perpendicular to the ecliptic plane, and so far we have observed more than 18 SEP events with time-variable anisotropies during the LRO mission. Albedo proton maps of the Moon from CRaTER indicate that the flux of lunar albedo protons is correlated with elemental abundances at the lunar surface. The yield of albedo protons from the maria is 1% higher than the yield from the highlands, and there are localized peaks with even higher contrast (that may be co-located with peaks in trace elemental abundances as measured by the Lunar Prospector Gamma Ray Spectrometer). The Moon’s radiation environment both charges and affects the chemistry in the Moon’s polar regions, particularly in PSRs. This makes these regions a prime target for new CRaTER observations, since CRaTER measures GCRs and SEPs that penetrate the regolith down to 10s of cm. Thus, we review emerging discoveries from LRO/CRaTER’s remarkable exploration of

  8. Next generation retroreflector for lunar laser ranging: science, design and flight status

    Science.gov (United States)

    Currie, Douglas; Richards, Robert; Delle Monache, Giovanni

    2016-07-01

    provide a system that is not reliant on the location and orientation of the lander. This would consist of a system that, immediately after deployment, would detect the location of the earth, point toward the proper direction and then permanently lock to that pointing. The second is to ameliorate the vertical motion of the lander and regolith due to the thermal expansion from lunar night to lunar day. This would take advantage of the thermal stability found about one meter in depth in the regolith.

  9. Predicting the Blast of Lunar Soil Under a Rocket's Exhaust Jet

    Science.gov (United States)

    Diaz, Carlos J. Sanchez

    2007-01-01

    The blast of lunar soil represents a problem for the future missions planned for the moon. When the lander approached the ground during the Apollo missions, huge showers of dust particles were sent in all directions at extremely high velocities - including upwards towards the landing spacecraft. This represents a clear danger to the lander because the loss of visibility and the damage that can be produced to the vehicle itself. If there had been equipment on the ground, these showers of particles would have created a sand blasting effect over the equipment, possibly damaging optics and contaminating the equipment and depending on the size and velocity of the particles maybe even more extensive damage as the particles penetrated the outer surface of the equipment. Since the there is no air on the moon to slow down the particles, they can travel large distances at high speeds, in fact in some instances they can reach near escape velocity and go into an orbit around the moon and come all the way back to almost the same point where they were at the beginning; meaning that some of the lunar dust that came up during landing will shower back over the site. Once on the surface, the extremely fine dust had a habit of getting itself everywhere. During the Apollo missions it not only covered the astronauts' suits, but managed to work its way inside, damaging airtight joints and scratching up glass visors. The dust found its way inside the spacecraft, contaminating the floor and electronic systems inside, clogging air filters in the process. This is due to the fact that the lunar soil is extremely cohesive. The Lunar soil causes all of the same problems as sand does on Earth but unlike sand particles on Earth, which have smooth spherical shapes, the dust on the Moon is more like small particles of glass with sharper edges since there is no erosion on the lunar surface. During the Apollo missions the dust problem did not cause a big problem due to the fact of the length of

  10. Future Plans for MetNet Lander Mars Missions

    Science.gov (United States)

    Harri, A.-M.; Schmidt, W.; Guerrero, H.; Vázquez, L.

    2012-04-01

    For the next decade several Mars landing missions and the construction of major installations on the Martian surface are planned. To be able to bring separate large landing units safely to the surface in sufficiently close vicinity to one another, the knowledge of the Martian weather patterns, especially dust and wind, is important. The Finnish - Russian - Spanish low-mass meteorological stations are designed to provide the necessary observation data network which can provide the in-situ observations for model verification and weather forecasts. As the requirements for a transfer vehicle are not very extensive, the MetNet Landers (MNLs) [1] could be launched with any mission going to Mars. This could be a piggy-bag solution to a Martian orbiter from ESA, NASA, Russia or China or an add-on to a planned larger Martian Lander like ExoMars. Also a dedicated launch with several units from LEO is under discussion. The data link implementation uses the UHF-band with Proximity-1 protocol as other current and future Mars lander missions which makes any Mars-orbiting satellite a potential candidate for a data relay to Earth. Currently negotiations for possible opportunities with the European and the Chinese space agencies are ongoing aiming at a launch window in the 2015/16 time frame. In case of favorable results the details will be presented at the EGU. During 2011 the Mars MetNet Precursor Mission (MMPM) has completed all flight qualifications for Lander system and payload. At least two units will be ready for launch in the 2013/14 launch window or beyond. With an entry mass of 22.2kg per unit and 4kg payload allocation the MNL(s) can be easily deployed from a wide range of transfer vehicles. The simple structure allows the manufacturing of further units on short notice and to reasonable prices. The autonomous operations concept makes the implementation of complex commanding options unnecessary while offering a flexible adaptation to different operational scenarios. This

  11. Investigation of dust particles with future Russian lunar missions: achievements of further development of PmL instrument.

    Science.gov (United States)

    Kuznetsov, Ilya; Zakharov, Alexander; Afonin, Valeri; Seran, Elena; Godefroy, Michel; Shashkova, Inna; Lyash, Andrey; Dolnikov, Gennady; Popel, Sergey; Lisin, Evgeny

    2016-07-01

    One of the complicating factors of the future robotic and human lunar landing missions is the influence of the dust. Meteorites bombardment has accompanied by shock-explosive phenomena, disintegration and mix of the lunar soil in depth and on area simultaneously. As a consequence, the lunar soil has undergone melting, physical and chemical transformations. Recently we have the some reemergence for interest of Moon investigation. The prospects in current century declare USA, China, India, and European Union. In Russia also prepare two missions: Luna-Glob and Luna-Resource. Not last part of investigation of Moon surface is reviewing the dust condition near the ground of landers. Studying the properties of lunar dust is important both for scientific purposes to investigation the lunar exosphere component and for the technical safety of lunar robotic and manned missions. The absence of an atmosphere on the Moon's surface is leading to greater compaction and sintering. Properties of regolith and dust particles (density, temperature, composition, etc.) as well as near-surface lunar exosphere depend on solar activity, lunar local time and position of the Moon relative to the Earth's magneto tail. Upper layers of regolith are an insulator, which is charging as a result of solar UV radiation and the constant bombardment of charged particles, creates a charge distribution on the surface of the moon: positive on the illuminated side and negative on the night side. Charge distribution depends on the local lunar time, latitude and the electrical properties of the regolith (the presence of water in the regolith can influence the local distribution of charge). On the day side of Moon near surface layer there exists possibility formation dusty plasma system. Altitude of levitation is depending from size of dust particle and Moon latitude. The distribution of dust particles by size and altitude has estimated with taking into account photoelectrons, electrons and ions of solar wind

  12. Researches on the Orbit Determination and Positioning of the Chinese Lunar Exploration Program

    Science.gov (United States)

    Li, P. J.

    2015-07-01

    differences for several gravity models. It is found that for the 100 km× 100 km lunar orbit, with a degree and order expansion up to 165, the JPL's gravity model LP165P does not show noticeable improvement over Japan's SGM series models (100× 100), but for the 15 km× 100 km lunar orbit, a higher degree-order model can significantly improve the orbit accuracy. After accomplished its nominal mission, CE-2 launched its extended missions, which involving the L2 mission and the 4179 Toutatis mission. During the flight of the extended missions, the regime offers very little dynamics thus requires an extensive amount of time and tracking data in order to attain a solution. The overlap errors are computed, and it is indicated that the use of VLBI measurements is able to increase the accuracy and reduce the total amount of tracking time. An orbit determination method based on the polynomial fitting is proposed for the CE-3's planned lunar soft landing mission. In this method, spacecraft's dynamic modeling is not necessary, and its noise reduction is expected to be better than that of the point positioning method by making full use of all-arc observational data. The simulation experiments and real data processing showed that the optimal description of the CE-1's free-fall landing trajectory is a set of five-order polynomial functions for each of the position components as well as velocity components in J2000.0. The combination of the VLBI delay, the delay rate data, and the USB (united S-band) ranging data significantly improved the accuracy than the use of USB data alone. In order to determine the position for the CE-3's Lunar Lander, a kinematic statistical method is proposed. This method uses both ranging and VLBI measurements to the lander for a continuous arc, combing with precise knowledge about the motion of the moon as provided by planetary ephemeris, to estimate the lander's position on the lunar surface with high accuracy. Application of the lunar digital elevation model

  13. Chronology of early lunar crust

    Science.gov (United States)

    Dasch, E. J.; Nyquist, L. E.; Ryder, G.

    1988-01-01

    The chronology of lunar rocks is summarized. The oldest pristine (i.e., lacking meteoritic contamination of admixed components) lunar rock, recently dated with Sm-Nd by Lugmair, is a ferroan anorthosite, with an age of 4.44 + 0.02 Ga. Ages of Mg-suite rocks (4.1 to 4.5 Ga) have large uncertainties, so that age differences between lunar plutonic rock suites cannot yet be resolved. Most mare basalts crystallized between 3.1 and 3.9 Ga. The vast bulk of the lunar crust, therefore, formed before the oldest preserved terrestrial rocks. If the Moon accreted at 4.56 Ga, then 120 Ma may have elapsed before lunar crust was formed.

  14. Electrostatic Characterization of Lunar Dust

    Science.gov (United States)

    2008-01-01

    To ensure the safety and success of future lunar exploration missions, it is important to measure the toxicity of the lunar dust and its electrostatic properties. The electrostatic properties of lunar dust govern its behavior, from how the dust is deposited in an astronaut s lungs to how it contaminates equipment surfaces. NASA has identified the threat caused by lunar dust as one of the top two problems that need to be solved before returning to the Moon. To understand the electrostatic nature of lunar dust, NASA must answer the following questions: (1) how much charge can accumulate on the dust? (2) how long will the charge remain? and (3) can the dust be removed? These questions can be answered by measuring the electrostatic properties of the dust: its volume resistivity, charge decay, charge-to-mass ratio or chargeability, and dielectric properties.

  15. Buoyant thermal plumes from planetary landers and rovers: Application to sizing of meteorological masts

    Science.gov (United States)

    Lorenz, Ralph D.; Sotzen, Kristin S.

    2014-01-01

    Objective. Landers on Mars and Titan may have warm surfaces as a result of solar heating or the carriage of radioisotope power sources. This warmth can perturb downwind meteorological measurements, but cannot be modeled as a simple aerodynamic wake because buoyant forces can be significant. Methods. We use an analytic model from the industrial aerodynamics literature on smoke dispersion from fires and smokestacks to evaluate the plume trajectories. Computational Fluid Dynamics (CFD) simulations are also performed for a Titan lander. Results. CFD yields results similar to the analytic model. (Albeit with a possibly weaker dependence on windspeed than the classic model.) We apply the models to evaluate the probability of immersion of instrumentation in plumes from the Mars Science Laboratory (MSL) Curiosity and for a Titan lander under various wind scenarios. Conclusions. Lander perturbations can be easily calculated. Practice implications. None.

  16. Investigation of bioinspired gecko fibers to improve adhesion of HeartLander surgical robot.

    Science.gov (United States)

    Tortora, Giuseppe; Glass, Paul; Wood, Nathan; Aksak, Burak; Menciassi, Arianna; Sitti, Metin; Riviere, Cameron

    2012-01-01

    HeartLander is a medical robot proposed for minimally invasive epicardial intervention on the beating heart. To date, all prototypes have used suction to gain traction on the epicardium. Gecko-foot-inspired micro-fibers have been proposed for repeatable adhesion to surfaces. In this paper, a method for improving the traction of HeartLander on biological tissue is presented. The method involves integration of gecko-inspired fibrillar adhesives on the inner surfaces of the suction chambers of HeartLander. Experiments have been carried out on muscle tissue ex vivo assessing the traction performance of the modified HeartLander with bio-inspired adhesive. The adhesive fibers are found to improve traction on muscle tissue by 57.3 %. PMID:23366040

  17. Investigation of Bioinspired Gecko Fibers to Improve Adhesion of HeartLander Surgical Robot

    OpenAIRE

    Tortora, Giuseppe; Glass, Paul; Wood, Nathan; Aksak, Burak; Menciassi, Arianna; Sitti, Metin; Riviere, Cameron

    2012-01-01

    In this paper, a way for improving adhesion of a mobile robot (HeartLander) on biological tissue is presented, that integrates bioinspired gecko adhesive fibers on the robot surface. HeartLander is a medical robot proposed to perform clinical procedures on a beating heart, overcoming limitations of current cardiac procedures. Biologically inspired gecko fibers have been proposed for adhesion on surfaces. The aim of this work is to assess the advantages of integrating these structures for enha...

  18. Prospects of Passive Radio Detection of a Subsurface Ocean on Europa with a Lander

    OpenAIRE

    Romero-Wolf, Andrew; Schroeder, Dustin M.; Ries, Paul; Bills, Bruce G.; Naudet, Charles; Scott, Bryan R.; Treuhaft, Robert; Vance, Steve

    2016-01-01

    We estimate the sensitivity of a lander-based instrument for the passive radio detection of a subsurface ocean beneath the ice shell of Europa, expected to be between 3 km - 30 km thick, using Jupiter's decametric radiation. A passive technique was previously studied for an orbiter. Using passive detection in a lander platform provides significant improvements due to largely reduced losses from surface roughness effects, longer integration times, and diminished dispersion due to ionospheric e...

  19. Lunar Commercial Mining Logistics

    Science.gov (United States)

    Kistler, Walter P.; Citron, Bob; Taylor, Thomas C.

    2008-01-01

    Innovative commercial logistics is required for supporting lunar resource recovery operations and assisting larger consortiums in lunar mining, base operations, camp consumables and the future commercial sales of propellant over the next 50 years. To assist in lowering overall development costs, ``reuse'' innovation is suggested in reusing modified LTS in-space hardware for use on the moon's surface, developing product lines for recovered gases, regolith construction materials, surface logistics services, and other services as they evolve, (Kistler, Citron and Taylor, 2005) Surface logistics architecture is designed to have sustainable growth over 50 years, financed by private sector partners and capable of cargo transportation in both directions in support of lunar development and resource recovery development. The author's perspective on the importance of logistics is based on five years experience at remote sites on Earth, where remote base supply chain logistics didn't always work, (Taylor, 1975a). The planning and control of the flow of goods and materials to and from the moon's surface may be the most complicated logistics challenges yet to be attempted. Affordability is tied to the innovation and ingenuity used to keep the transportation and surface operations costs as low as practical. Eleven innovations are proposed and discussed by an entrepreneurial commercial space startup team that has had success in introducing commercial space innovation and reducing the cost of space operations in the past. This logistics architecture offers NASA and other exploring nations a commercial alternative for non-essential cargo. Five transportation technologies and eleven surface innovations create the logistics transportation system discussed.

  20. Concept of Operations for a Prospective "Proving Ground" in the Lunar Vicinity

    Science.gov (United States)

    Love, Stanley G.; Hill, James J.

    2016-01-01

    NASA is studying a "Proving Ground" near the Moon to conduct human space exploration missions in preparation for future flights to Mars. This paper describes a concept of operations ("conops") for activities in the Proving Ground, focusing on the construction and use of a mobile Cislunar Transit Habitat capable of months-long excursions within and beyond the Earth-Moon system. Key elements in the conops include the Orion spacecraft (with mission kits for docking and other specialized operations) and the Space Launch System heavy-lift rocket. Potential additions include commercial launch vehicles and logistics carriers, solar electric propulsion stages to move elements between different orbits and eventually take them on excursions to deep space, a node module with multiple docking ports, habitation and life support blocks, and international robotic and piloted lunar landers. The landers might include reusable ascent modules which could remain docked to in-space elements between lunar sorties. The architecture will include infrastructure for launch preparation, communication, mission control, and range safety. The conops describes "case studies" of notional missions chosen to guide the design of the architecture and its elements. One such mission is the delivery of a 10-ton pressurized element, co-manifested with an Orion on a Block 1B Space Launch System rocket, to the Proving Ground. With a large solar electric propulsion stage, the architecture could enable a year-long mission to land humans on a near-Earth asteroid. In the last case, after returning to near-lunar space, two of the asteroid explorers could join two crewmembers freshly arrived from Earth for a Moon landing, helping to safely quantify the risk of landing deconditioned crews on Mars. The conops also discusses aborts and contingency operations. Early return to Earth may be difficult, especially during later Proving Ground missions. While adding risk, limited-abort conditions provide needed practice

  1. NASA Lunar Impact Monitoring

    Science.gov (United States)

    Suggs, Robert M.; Moser, D. E.

    2015-01-01

    The MSFC lunar impact monitoring program began in 2006 in support of environment definition for the Constellation (return to Moon) program. Work continued by the Meteoroid Environment Office after Constellation cancellation. Over 330 impacts have been recorded. A paper published in Icarus reported on the first 5 years of observations and 126 calibrated flashes. Icarus: http://www.sciencedirect.com/science/article/pii/S0019103514002243; ArXiv: http://arxiv.org/abs/1404.6458 A NASA Technical Memorandum on flash locations is in press

  2. Lunar Topography: Results from the Lunar Orbiter Laser Altimeter

    Science.gov (United States)

    Neumann, Gregory; Smith, David E.; Zuber, Maria T.; Mazarico, Erwan

    2012-01-01

    The Lunar Orbiter Laser Altimeter (LOLA) onboard the Lunar Reconnaissance Orbiter (LRO) has been operating nearly continuously since July 2009, accumulating over 6 billion measurements from more than 2 billion in-orbit laser shots. LRO's near-polar orbit results in very high data density in the immediate vicinity of the lunar poles, with full coverage at the equator from more than 12000 orbital tracks averaging less than 1 km in spacing at the equator. LRO has obtained a global geodetic model of the lunar topography with 50-meter horizontal and 1-m radial accuracy in a lunar center-of-mass coordinate system, with profiles of topography at 20-m horizontal resolution, and 0.1-m vertical precision. LOLA also provides measurements of reflectivity and surface roughness down to its 5-m laser spot size. With these data LOLA has measured the shape of all lunar craters 20 km and larger. In the proposed extended mission commencing late in 2012, LOLA will concentrate observations in the Southern Hemisphere, improving the density of the polar coverage to nearly 10-m pixel resolution and accuracy to better than 20 m total position error. Uses for these data include mission planning and targeting, illumination studies, geodetic control of images, as well as lunar geology and geophysics. Further improvements in geodetic accuracy are anticipated from the use of re ned gravity fields after the successful completion of the Gravity Recovery and Interior Laboratory (GRAIL) mission in 2012.

  3. Effects of lunar and mars dust simulants on HaCaT keratinocytes and CHO-K1 fibroblasts

    Science.gov (United States)

    Rehders, Maren; Grosshäuser, Bianka B.; Smarandache, Anita; Sadhukhan, Annapurna; Mirastschijski, Ursula; Kempf, Jürgen; Dünne, Matthias; Slenzka, Klaus; Brix, Klaudia

    2011-04-01

    Exposure to lunar dust during Apollo missions resulted in occasional reports of ocular, respiratory and dermal irritations which showed that lunar dust has a risk potential for human health. This is caused by its high reactivity as well as its small size, leading to a wide distribution also inside habitats. Hence, detailed information regarding effects of extraterrestrial lunar dusts on human health is required to best support future missions to moon, mars or other destinations. In this study, we used several methods to assess the specific effects of extraterrestrial dusts onto mammalian skin by exposing HaCaT keratinocytes and CHO-K1 fibroblasts to dusts simulating lunar or mars soils. These particular cell types were chosen because the skin protects the human body from potentially harmful substances and because a well orchestrated program ensures proper wound healing. Keratinocytes and fibroblasts were exposed to the dusts for different durations of time and their effects on morphology and viability of the cells were determined. Cytotoxicity was measured using the MTT assay and by monitoring culture impedance, while phalloidin staining of the actin cytoskeleton was performed to address structural integrity of the cells which was also investigated by propidium iodide intake. It was found that the effects of the two types of dust simulants on the different features of both cell lines varied to a considerable extent. Moreover, proliferation of HaCaT keratinocytes, as analyzed by Ki67 labeling, was suppressed in sub-confluent cultures exposed to lunar dust simulant. Furthermore, experimental evidence is provided for a delay in regeneration of keratinocyte monolayers from scratch-wounding when exposed to lunar dust simulant. The obtained results will facilitate further investigations of dust exposure during wound healing and will ease risk assessment studies e.g., for lunar lander approaches. The investigations will help to determine safety measures to be taken during

  4. Brake Failure from Residual Magnetism in the Mars Exploration Rover Lander Petal Actuator

    Science.gov (United States)

    Jandura, Louise

    2004-01-01

    In January 2004, two Mars Exploration Rover spacecraft arrived at Mars. Each safely delivered an identical rover to the Martian surface in a tetrahedral lander encased in airbags. Upon landing, the airbags deflated and three Lander Petal Actuators opened the three deployable Lander side petals enabling the rover to exit the Lander. Approximately nine weeks prior to the scheduled launch of the first spacecraft, one of these mission-critical Lander Petal Actuators exhibited a brake stuck-open failure during its final flight stow at Kennedy Space Center. Residual magnetism was the definitive conclusion from the failure investigation. Although residual magnetism was recognized as an issue in the design, the lack of an appropriately specified lower bound on brake drop-out voltage inhibited the discovery of this problem earlier in the program. In addition, the brakes had more unit-to-unit variation in drop-out voltage than expected, likely due to a larger than expected variation in the magnetic properties of the 15-5 PH stainless steel brake plates. Failure analysis and subsequent rework of two other Lander Petal Actuators with marginal brakes was completed in three weeks, causing no impact to the launch date.

  5. Rosetta Lander - Landing and operations on comet 67P/Churyumov-Gerasimenko

    Science.gov (United States)

    Ulamec, Stephan; Fantinati, Cinzia; Maibaum, Michael; Geurts, Koen; Biele, Jens; Jansen, Sven; Küchemann, Oliver; Cozzoni, Barbara; Finke, Felix; Lommatsch, Valentina; Moussi-Soffys, Aurelie; Delmas, Cedric; O´Rourke, Laurence

    2016-08-01

    The Rosetta Lander Philae is part of the ESA Rosetta Mission which reached comet 67P/Churyumov-Gerasimenko after a 10 year cruise in August 2014. Since then, Rosetta has been studying both its nucleus and coma with instruments aboard the Orbiter. On November 12th, 2014 the Lander, Philae, was successfully delivered to the surface of the comet and operated for approximately 64 h after separation from the mother spacecraft. Since the active cold gas system aboard the Lander as well as the anchoring harpoons did not work, Philae bounced after the first touch-down at the planned landing site "Agilkia". At the final landing site, "Abydos", a modified First Scientific Sequence was performed. Due to the unexpectedly low illumination conditions and a lack of anchoring the sequence had to be adapted in order to minimize risk and maximize the scientific output. All ten instruments could be activated at least once, before Philae went into hibernation. In June 2015, the Lander contacted Rosetta again having survived successfully a long hibernation phase. This paper describes the Lander operations around separation, during descent and on the surface of the comet. We also address the partly successful attempts to re-establish contact with the Lander in June/July, when the internal temperature & power received were sufficient for Philae to become active again.

  6. Planetary Lake Lander - A Robotic Sentinel to Monitor a Remote Lake

    Science.gov (United States)

    Pedersen, Liam; Smith, Trey; Lee, Susan; Cabrol, Nathalie; Rose, Kevin

    2012-01-01

    The Planetary Lake Lander Project is studying the impact of rapid deglaciation at a high altitude alpine lake in the Andes, where disrupted environmental, physical, chemical, and biological cycles result in newly emerging natural patterns. The solar powered Lake Lander robot is designed to monitor the lake system and characterize both baseline characteristics and impacts of disturbance events such as storms and landslides. Lake Lander must use an onboard adaptive science-on-the-fly approach to return relevant data about these events to mission control without exceeding limited energy and bandwidth resources. Lake Lander carries weather sensors, cameras and a sonde that is winched up and down the water column to monitor temperature, dissolved oxygen, turbidity and other water quality parameters. Data from Lake Lander is returned via satellite and distributed to an international team of scientists via web-based ground data systems. Here, we describe the Lake Lander Project scientific goals, hardware design, ground data systems, and preliminary data from 2011. The adaptive science-on-the-fly system will be described in future papers.

  7. Entry, Descent, and Landing Performance of the Mars Phoenix Lander

    Science.gov (United States)

    Desai, Prasun N.; Prince, Jill L.; Wueen, Eric M.; Cruz, Juan R.; Grover, Myron R.

    2008-01-01

    On May 25, 2008, the Mars Phoenix Lander successfully landed on the northern arctic plains of Mars. An overview of a preliminary reconstruction analysis performed on each entry, descent, and landing phase to assess the performance of Phoenix as it descended is presented and a comparison to pre-entry predictions is provided. The landing occurred 21 km further downrange than the predicted landing location. Analysis of the flight data revealed that the primary cause of Phoenix s downrange landing was a higher trim total angle of attack during the hypersonic phase of the entry, which resulted in Phoenix flying a slightly lifting trajectory. The cause of this higher trim attitude is not known at this time. Parachute deployment was 6.4 s later than prediction. This later deployment time was within the variations expected and is consistent with a lifting trajectory. The parachute deployment and inflation process occurred as expected with no anomalies identified. The subsequent parachute descent and powered terminal landing also behaved as expected. A preliminary reconstruction of the landing day atmospheric density profile was found to be lower than the best apriori prediction, ranging from a few percent less to a maximum of 8%. A comparison of the flight reconstructed trajectory parameters shows that the actual Phoenix entry, descent, and landing was close to pre-entry predictions. This reconstruction investigation is currently ongoing and the results to date are in the process of being refined.

  8. Material and Stress Rotations: Anticipating the 1992 Landers, CA Earthquake

    Science.gov (United States)

    Nur, A. M.

    2014-12-01

    "Rotations make nonsense of the two-dimensional reconstructions that are still so popular among structural geologists". (McKenzie, 1990, p. 109-110) I present a comprehensive tectonic model for the strike-slip fault geometry, seismicity, material rotation, and stress rotation, in which new, optimally oriented faults can form when older ones have rotated about a vertical axis out of favorable orientations. The model was successfully tested in the Mojave region using stress rotation and three independent data sets: the alignment of epicenters and fault plane solutions from the six largest central Mojave earthquakes since 1947, material rotations inferred from paleomagnetic declination anomalies, and rotated dike strands of the Independence dike swarm. The model led not only to the anticipation of the 1992 M7.3 Landers, CA earthquake but also accounts for the great complexity of the faulting and seismicity of this event. The implication of this model for crustal deformation in general is that rotations of material (faults and the blocks between them) and of stress provide the key link between the complexity of faults systems in-situ and idealized mechanical theory of faulting. Excluding rotations from the kinematical and mechanical analysis of crustal deformation makes it impossible to explain the complexity of what geologists see in faults, or what seismicity shows us about active faults. However, when we allow for rotation of material and stress, Coulomb's law becomes consistent with the complexity of faults and faulting observed in situ.

  9. Aerial radiometric and magnetic survey: Lander National Topographic Map, Wyoming

    International Nuclear Information System (INIS)

    The results of analyses of the airborne gamma radiation and total magnetic field survey flown for the region identified as the Lander National Topographic Map NK12-6 are presented. The airborne data gathered are reduced by ground computer facilities to yield profile plots of the basic uranium, thorium and potassium equivalent gamma radiation intensities, ratios of these intensities, aircraft altitude above the earth's surface, total gamma ray and earth's magnetic field intensity, correlated as a function of geologic units. The distribution of data within each geologic unit, for all surveyed map lines and tie lines, has been calculated and is included. Two sets of profiled data for each line are included, with one set displaying the above-cited data. The second set includes only flight line magnetic field, temperature, pressure, altitude data plus magnetic field data as measured at a base station. A general description of the area, including descriptions of the various geologic units and the corresponding airborne data, is included also

  10. ESA SMART-1 mission: results and lessons for future lunar exploration

    Science.gov (United States)

    Foing, Bernard H.

    We review ESA’s SMART-1 highlights and legacy 10 years after launch. We discuss lessons for future lunar exploration and upcoming missions. The SMART-1 mission to the Moon achieved record firsts such as: 1) first Small Mission for Advanced Research and Technology; with spacecraft built and integrated in 2.5 years and launched 3.5 years after mission approval; 2) first mission leaving the Earth orbit using solar power alone with demonstration for future deep space missions such as BepiColombo; 3) most fuel effective mission (60 litres of Xenon) and longest travel (13 month) to the Moon!; 4) first ESA mission reaching the Moon and first European views of lunar poles; 5) first European demonstration of a wide range of new technologies: Li-Ion modular battery, deep-space communications in X- and Ka-bands, and autonomous positioning for navigation; 6) first lunar demonstration of an infrared spectrometer and of a Swept Charge Detector Lunar X-ray fluorescence spectrometer ; 7) first ESA mission with opportunity for lunar science, elemental geochemistry, surface mineralogy mapping, surface geology and precursor studies for exploration; 8) first controlled impact landing on the Moon with real time observations campaign; 9) first mission supporting goals of the ILEWG/COSPAR International Lunar Exploration Working Group in technical and scientific exchange, international collaboration, public and youth engagement; 10) first mission preparing the ground for ESA collaboration in Chandrayaan-1, Chang’ E1-2-3 and near-future landers, sample return and human lunar missions. The SMART-1 technology legacy is applicable to application geostationary missions and deep space missions using solar electric propulsion. The SMART-1 archive observations have been used to support scientific research and prepare subsequent lunar missions. Most recent SMART-1 results are relevant to topics on: 1) the study of properties of the lunar dust, 2) impact craters and ejecta, 3) the study of

  11. The Design of Two Nano-Rovers for Lunar Surface Exploration in the Context of the Google Lunar X Prize

    Science.gov (United States)

    Gill, E.; Honfi Camilo, L.; Kuystermans, P.; Maas, A. S. B. B.; Buutfeld, B. A. M.; van der Pols, R. H.

    2008-09-01

    This paper summarizes a study performed by ten students at the Delft University of Technology on a lunar exploration vehicle suited for competing in the Google Lunar X Prize1. The design philosophy aimed at a quick and simple design process, to comply with the mission constraints. This is achieved by using conventional technology and performing the mission with two identical rovers, increasing reliability and simplicity of systems. Both rovers are however capable of operating independently. The required subsystems have been designed for survival and operation on the lunar surface for an estimated mission lifetime of five days. This preliminary study shows that it is possible for two nano-rovers to perform the basic exploration tasks. The mission has been devised such that after launch the rovers endure a 160 hour voyage to the Moon after which they will land on Sinus Medii with a dedicated lunar transfer/lander vehicle. The mission outline itself has the two nano-rovers travelling in the same direction, moving simultaneously. This mission characteristic allows a quick take-over of the required tasks by the second rover in case of one rover breakdown. The main structure of the rovers will consist of Aluminium 2219 T851, due to its good thermal properties and high hardness. Because of the small dimensions of the rovers, the vehicles will use rigid caterpillar tracks as locomotion system. The track systems are sealed from lunar dust using closed track to prevent interference with the mechanisms. This also prevents any damage to the electronics inside the tracks. For the movement speed a velocity of 0.055 m/s has been determined. This is about 90% of the maximum rover velocity, allowing direct control from Earth. The rovers are operated by a direct control loop, involving the mission control center. In order to direct the rovers safely, a continuous video link with the Earth is necessary to assess its immediate surroundings. Two forward pointing navigational cameras

  12. Astronaut John Young photographed collecting lunar samples

    Science.gov (United States)

    1972-01-01

    Astronaut John W. Young, commander of the Apollo 16 lunar landing mission, is photographed collecting lunar samples near North Ray crater during the third Apollo 16 extravehicular activity (EVA-3) at the Descartes landing site. This picture was taken by Astronaut Charles M. Duke Jr., lunar module pilot. Young is using the lunar surface rake and a set of tongs. The Lunar Roving Vehicle is parked in the field of large boulders in the background.

  13. Lunar Base Sitting

    Science.gov (United States)

    Staehle, Robert L.; Burke, James D.; Snyder, Gerald C.; Dowling, Richard; Spudis, Paul D.

    1993-12-01

    Speculation with regard to a permanent lunar base has been with us since Robert Goddard was working on the first liquid-fueled rockets in the 1920's. With the infusion of data from the Apollo Moon flights, a once speculative area of space exploration has become an exciting possibility. A Moon base is not only a very real possibility, but is probably a critical element in the continuation of our piloted space program. This article, originally drafted by World Space Foundation volunteers in conjuction with various academic and research groups, examines some of the strategies involved in selecting an appropriate site for such a lunar base. Site selection involves a number of complex variables, including raw materials for possible rocket propellant generation, hot an cold cycles, view of the sky (for astronomical considerations, among others), geological makeup of the region, and more. This article summarizes the key base siting considerations and suggests some alternatives. Availability of specific resources, including energy and certain minerals, is critical to success.

  14. Pressurized Lunar Rover (PLR)

    Science.gov (United States)

    Creel, Kenneth; Frampton, Jeffrey; Honaker, David; McClure, Kerry; Zeinali, Mazyar; Bhardwaj, Manoj; Bulsara, Vatsal; Kokan, David; Shariff, Shaun; Svarverud, Eric

    The objective of this project was to design a manned pressurized lunar rover (PLR) for long-range transportation and for exploration of the lunar surface. The vehicle must be capable of operating on a 14-day mission, traveling within a radius of 500 km during a lunar day or within a 50-km radius during a lunar night. The vehicle must accommodate a nominal crew of four, support two 28-hour EVA's, and in case of emergency, support a crew of six when near the lunar base. A nominal speed of ten km/hr and capability of towing a trailer with a mass of two mt are required. Two preliminary designs have been developed by two independent student teams. The PLR 1 design proposes a seven meter long cylindrical main vehicle and a trailer which houses the power and heat rejection systems. The main vehicle carries the astronauts, life support systems, navigation and communication systems, lighting, robotic arms, tools, and equipment for exploratory experiments. The rover uses a simple mobility system with six wheels on the main vehicle and two on the trailer. The nonpressurized trailer contains a modular radioisotope thermoelectric generator (RTG) supplying 6.5 kW continuous power. A secondary energy storage for short-term peak power needs is provided by a bank of lithium-sulfur dioxide batteries. The life support system is partly a regenerative system with air and hygiene water being recycled. A layer of water inside the composite shell surrounds the command center allowing the center to be used as a safe haven during solar flares. The PLR 1 has a total mass of 6197 kg. It has a top speed of 18 km/hr and is capable of towing three metric tons, in addition to the RTG trailer. The PLR 2 configuration consists of two four-meter diameter, cylindrical hulls which are passively connected by a flexible passageway, resulting in the overall vehicle length of 11 m. The vehicle is driven by eight independently suspended wheels. The dual-cylinder concept allows articulated as well as double

  15. Year 3 LUNAR Annual Report to the NASA Lunar Science Institute

    OpenAIRE

    Burns, Jack; Lazio, Joseph

    2012-01-01

    The Lunar University Network for Astrophysics Research (LUNAR) is a team of researchers and students at leading universities, NASA centers, and federal research laboratories undertaking investigations aimed at using the Moon as a platform for space science. LUNAR research includes Lunar Interior Physics & Gravitation using Lunar Laser Ranging (LLR), Low Frequency Cosmology and Astrophysics (LFCA), Planetary Science and the Lunar Ionosphere, Radio Heliophysics, and Exploration Science. The LUN...

  16. Implications of Lunar Prospector Data for Lunar Geophysics

    Science.gov (United States)

    Zuber, Maria

    2003-01-01

    Research is sumamrized in the following areas: The Asymmetric Thermal Evolution of the Moon; Magma Transport Process on the Moon;The Composition and Origin of the Deep Lunar Crust;The Redistribution of Thorium on the Moon's Surface.

  17. NASA Lunar Mining and Construction Activities and Plans

    Science.gov (United States)

    Sanders, Gerald B.; Larson, William E.; Sacksteder, Kurt R.

    2009-01-01

    the need to implement efforts that are sustainable and affordable. One area NASA is developing that can significantly change how systems required for sustained human presence are designed and integrated, as well as potentially break our reliance on Earth supplied logistics, is In-Situ Resource Utilization (ISRU). ISRU, also known living off the land, involves the extraction and processing of local resources into useful products. In particular, the ability to make propellants, life support consumables, fuel cell reagents, and radiation shielding can significantly reduce the cost, mass, and risk of sustained human activities beyond Earth. Also, the ability to modify the lunar landscape for safer landing, transfer of payloads from the lander an outpost, dust generation mitigation, and infrastructure placement and buildup are also extremely important for long-term lunar operations. While extra-terrestrial excavation, material handling and processing, and site preparation and construction may be new to NASA and other space agencies, there is extensive terrestrial hardware and commercial experience that can be leveraged. This paper will provide an overview of current NASA activities in lunar ISRU mining and construction and how terrestrial experience in these areas are important to achieving the goal of affordable and sustainable human exploration.

  18. Lunar Imaging and Ionospheric Calibration for the Lunar Cherenkov Technique

    OpenAIRE

    McFadden, Rebecca; Scholten, Olaf; Mevius, Maaijke

    2013-01-01

    The Lunar Cherenkov technique is a promising method for UHE neutrino and cosmic ray detection which aims to detect nanosecond radio pulses produced during particle interactions in the Lunar regolith. For low frequency experiments, such as NuMoon, the frequency dependent dispersive effect of the ionosphere is an important experimental concern as it reduces the pulse amplitude and subsequent chances of detection. We are continuing to investigate a new method to calibrate the dispersive effect o...

  19. Impact of Water Recovery from Wastes on the Lunar Surface Mission Water Balance

    Science.gov (United States)

    Fisher, John W.; Hogan, John Andrew; Wignarajah, Kanapathipi; Pace, Gregory S.

    2010-01-01

    Future extended lunar surface missions will require extensive recovery of resources to reduce mission costs and enable self-sufficiency. Water is of particular importance due to its potential use for human consumption and hygiene, general cleaning, clothes washing, radiation shielding, cooling for extravehicular activity suits, and oxygen and hydrogen production. Various water sources are inherently present or are generated in lunar surface missions, and subject to recovery. They include: initial water stores, water contained in food, human and other solid wastes, wastewaters and associated brines, ISRU water, and scavenging from residual propellant in landers. This paper presents the results of an analysis of the contribution of water recovery from life support wastes on the overall water balance for lunar surface missions. Water in human wastes, metabolic activity and survival needs are well characterized and dependable figures are available. A detailed life support waste model was developed that summarizes the composition of life support wastes and their water content. Waste processing technologies were reviewed for their potential to recover that water. The recoverable water in waste is a significant contribution to the overall water balance. The value of this contribution is discussed in the context of the other major sources and loses of water. Combined with other analyses these results provide guidance for research and technology development and down-selection.

  20. Dusty plasma sheath-like structure in the lunar terminator region

    Science.gov (United States)

    Popel, Sergey; Zelenyi, Lev; Atamaniuk, Barbara

    2016-07-01

    The main properties of the dusty plasma layer near the surface over the illuminated and dark parts of the Moon are described. They are used to realize dusty plasma behaviour and to determine electric fields over the terminator region. Possibility of the existence of a dusty plasma sheath-like structure [1] in the region of lunar terminator is shown. The electric fields excited in the terminator region are demonstrated to be on the order of 300 V/m. These electric fields can result in rise of dust particles of the size of a few micrometers up to an altitude of about 30 cm over the lunar surface that explains the effect of ``horizon glow" observed at the terminator by Surveyor lunar lander. This work was supported in part by the Presidium of the Russian Academy of Sciences (under Fundamental Research Program No. 7, ``Experimental and Theoretical Study of the Solar System Objects and Stellar Planet Systems. Transient Explosion Processes in Astrophysics" and the Russian Foundation for Basic Research (Project No. 15-02-05627-a). [1] S. I. Popel, L. M. Zelenyi, and B. Atamaniuk, Phys. Plasmas 22, 123701 (2015); doi: 10.1063/1.4937368.

  1. Lunar Soil Particle Separator Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Lunar Soil Particle Separator (LSPS) is an innovative method to beneficiate soil prior to in-situ resource utilization (ISRU). The LSPS can improve ISRU oxygen...

  2. Lunar Core Drive Tubes Summary

    Data.gov (United States)

    National Aeronautics and Space Administration — Contains a brief summary and high resolution imagery from various lunar rock and core drive tubes collected from the Apollo and Luna missions to the moon.

  3. Lunar Probe Reaches Deep Space

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    @@ China's second lunar probe, Chang'e-2, has reached an orbit 1.5 million kilometers from Earth for an additional mission of deep space exploration, the State Administration for Science, Technology and Industry for National Defense announced.

  4. Lunar Organic Waste Reformer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Lunar Organic Waste Reformer (LOWR) utilizes high temperature steam reformation to convert all plastic, paper, and human waste materials into useful gases. In...

  5. The enigma of lunar magnetism

    Science.gov (United States)

    Hood, L. L.

    1981-01-01

    Current understandings of the nature and probable origin of lunar magnetism are surveyed. Results of examinations of returned lunar samples are discussed which reveal the main carrier of the observed natural remanent magnetization to be iron, occasionally alloyed with nickel and cobalt, but do not distinguish between thermoremanent and shock remanent origins, and surface magnetometer data is presented, which indicates small-scale magnetic fields with a wide range of field intensities implying localized, near-surface sources. A detailed examination is presented of orbital magnetometer and charged particle data concerning the geologic nature and origin of magnetic anomaly sources and the directional properties of the magnetization, which exhibit a random distribution except for a depletion in the north-south direction. A lunar magnetization survey with global coverage provided by a polar orbiting satellite is suggested as a means of placing stronger constraints on the origin of lunar crustal magnetization.

  6. Google Moon Lunar Mapping Data

    Data.gov (United States)

    National Aeronautics and Space Administration — A collection of lunar maps and charts. This tool is an exciting new way to explore the story of the Apollo missions, still the only time mankind has set foot on...

  7. Lunar Soil Particle Separator Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Lunar Soil Particle Separator (LSPS) is an innovative method to beneficiate soil prior to in-situ resource utilization (ISRU). The LSPS improves ISRU oxygen...

  8. Prospective Ukrainian lunar orbiter mission

    Science.gov (United States)

    Shkuratov, Y.; Litvinenko, L.; Shulga, V.; Yatskiv, Y.; Kislyuk, V.

    Ukraine has launch vehicles that are able to deliver about 300 kg to the lunar orbit. Future Ukrainian lunar program may propose a polar orbiter. This orbiter should fill principal information gaps in our knowledge about the Moon after Clementine and Lunar Prospector missions and the future missions, like Smart-1, Lunar-A, and Selene. We consider that this can be provided by radar studies of the Moon with supporting optical polarimetric observations from lunar polar orbit. These experiments allow one to better understand global structure of the lunar surface in a wide range of scales, from microns to kilometers. We propose three instruments for the prospective lunar orbiter. They are: a synthetic aperture imaging radar (SAR), ground-penetrating radar (GPR), and imaging polarimeter (IP). The main purpose of SAR is to study with high resolution (50 m) the permanently shadowed sites in the lunar polar regions. These sites are cold traps for volatiles, and have a potential of resource utilization. Possible presence of water ice in the regolith in the sites makes them interesting for permanent manned bases on the Moon. Radar imaging and mapping of other interesting regions could be also planned. Multi-frequencies multi-polarization soun d ing of the lunar surface with GPR can provide information about internal structure of the lunar surface from meters to several hundred meters deep. GPR can be used for measuring the megaregolith layer properties, detection of cryptomaria, and studies of internal structure of the largest craters. IP will be a CCD camera with an additional suite of polarizers. Modest spatial resolution (100 m) should provide a total coverage or a large portion of the lunar surface in oblique viewing basically at large phase angles. Polarization degree at large (>90°) phase angles bears information about characteristic size of the regolith particles. Additional radiophysical experiments are considered with the use of the SAR system, e.g., bistatic radar

  9. Electrochemistry of lunar rocks

    Science.gov (United States)

    Lindstrom, D. J.; Haskin, L. A.

    1979-01-01

    Electrolysis of silicate melts has been shown to be an effective means of producing metals from common silicate materials. No fluxing agents need be added to the melts. From solution in melts of diopside (CaMgSi2O6) composition, the elements Si, Ti, Ni, and Fe have been reduced to their metallic states. Platinum is a satisfactory anode material, but other cathode materials are needed. Electrolysis of compositional analogs of lunar rocks initially produces iron metal at the cathode and oxygen gas at the anode. Utilizing mainly heat and electricity which are readily available from sunlight, direct electrolysis is capable of producing useful metals from common feedstocks without the need for expendable chemicals. This simple process and the products obtained from it deserve further study for use in materials processing in space.

  10. Early lunar magnetism

    Science.gov (United States)

    Banerjee, S. K.; Mellema, J. P.

    1976-01-01

    A new method (Shaw, 1974) for investigating paleointensity (the ancient magnetic field) was applied to three subsamples of a single, 1-m homogeneous clast from a recrystallized boulder of lunar breccia. Several dating methods established 4 billion years as the age of boulder assembly. Results indicate that the strength of the ambient magnetic field at the Taurus-Littrow region of the moon was about 0.4 oersted at 4 billion years ago. Values as high as 1.2 oersted have been reported (Collison et al., 1973). The required fields are approximately 10,000 times greater than present interplanetary or solar flare fields. It is suggested that this large field could have arisen from a pre-main sequence T-Tauri sun.

  11. Lunar luminescence measurements

    Science.gov (United States)

    Morgan, T. H.

    1983-01-01

    Spectra of lunar sites obtained in June 1983 have been analyzed for residual luminescence using the spectral line depth technique. The results or three sites each at three wavelengths are presented. The sites observed were Mare Crisium, Kepler, and Aristarchus. In each case, the value quoted was based not only on the strong Fraunhofer line in the spectral range covered but also on from 11 to 21 weaker lines within 80 A of the strongest feature. These data do not support previous observations. The values given do not indicate a greatly reddened spectrum, and the luminescence spectrum of the mare site is not significantly different from the two young crater sites. These observations cannot be adequately explained by thermal luminescence, theories of direct excitation are also unable to explain the strength of the flux.

  12. Glass and ceramics. [lunar resources

    Science.gov (United States)

    Haskin, Larry A.

    1992-01-01

    A variety of glasses and ceramics can be produced from bulk lunar materials or from separated components. Glassy products include sintered regolith, quenched molten basalt, and transparent glass formed from fused plagioclase. No research has been carried out on lunar material or close simulants, so properties are not known in detail; however, common glass technologies such as molding and spinning seem feasible. Possible methods for producing glass and ceramic materials are discussed along with some potential uses of the resulting products.

  13. Lunar Exploration Communications Relay Microsatellite

    OpenAIRE

    Kolodziejski, Paul; Knowles, Steve; Dar, Kauser; Wetzel, Eric

    2007-01-01

    In 2005 Andrews Space, Inc. completed some preliminary microsatellite design work for a NASA Cislunar flight experiment known as Micro-X. This paper describes a low-risk satellite design option that leverages the work completed under the Micro-X contract and addresses NASA's near-term Robotic Lunar Exploration Program (RLEP) Objectives. Specifically, this paper describes enhancements to the Micro-X design that includes additional communication and data relay technologies with the Lunar Roboti...

  14. Lunar Water Resource Demonstration (LWRD)

    Science.gov (United States)

    Muscatello, Anthony C.

    2009-01-01

    Lunar Water Resource Demonstration (LWRD) is part of RESOLVE (Regolith and Environment Science & Oxygen and Lunar Volatile Extraction). RESOLVE is an ISRU ground demonstration: (1) A rover to explore a permanently shadowed crater at the south or north pole of the Moon (2) Drill core samples down to 1 meter (3) Heat the core samples to 150C (4) Analyze gases and capture water and/or hydrogen evolved (5) Use hydrogen reduction to extract oxygen from regolith

  15. Three Alternatives for the Acquisition of an Initial Lunar Installation: Lunar Laboratory, Temporary Lunar Base, Permanent Lunar Base

    Science.gov (United States)

    Koelle, H. H.

    The exploration of the Moon began with the APOLLO Program in 1969. The first phase ended in 1972 with the 6th landing of a two man crew. An attempt of President George H. Bush in 1989 to revive this program failed due to drastic changes in the geopolitical environment prevaling in the aftermath of the dissolution of the Soviet Union. However, the exploration and utilization of lunar resources is likely to continue. This will be possible as soon as the state of the planet permits an adequate priority for this enterprise, provided that viable plans are available to enter the next phase of lunar exploration. This paper presents three such program options: A Permanent Lunar Base, a Temporary Lunar Base, and a Temporary Lunar Laboratory , the latter solely for research purposes. These programs have an optional life cycle of 30 or 10 years and a crew of 50 to 100 people, respectively. Life cycle program costs of the se Lunar installation options range between 25 and 50 B, and can double if they are including the cost of the logistic system. However, average annual program cost do not exceed 3 B, a level that indicates that programs of this type and size are affordable.

  16. Apollo 11 Lunar Mission Logo

    Science.gov (United States)

    1969-01-01

    This is the flight insignia, or logo, for the Apollo 11 mission, the first manned lunar landing mission. Descending on the lunar surface, the eagle in the logo depicts the Lunar Module (LM), named 'Eagle''. Carrying astronauts Neil Armstrong and Edwin Aldrin, the 'Eagle' was the first crewed vehicle to land on the Moon. Astronaut Collins piloted the Command Module in a parking orbit around the Moon. Aboard a Saturn V launch vehicle, the Apollo 11 mission launched from The Kennedy Space Center, Florida on July 16, 1969 and safely returned to Earth on July 24, 1969. The 3-man crew aboard the flight consisted of Neil A. Armstrong, commander; Michael Collins, Command Module pilot; and Edwin E. Aldrin Jr., Lunar Module pilot. Armstrong was the first human to ever stand upon the lunar surface, followed by Edwin (Buzz) Aldrin. The crew collected 47 pounds of lunar surface material which was returned to Earth for analysis. The surface exploration was concluded in 2½ hours. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished. The Saturn V launch vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun.

  17. NEEMO 14: Evaluation of Human Performance for Rover, Cargo Lander, Crew Lander, and Exploration Tasks in Simulated Partial Gravity

    Science.gov (United States)

    Chappell, Steven P.; Abercromby, Andrew F.; Gernhardt, Michael L.

    2011-01-01

    The ultimate success of future human space exploration missions is dependent on the ability to perform extravehicular activity (EVA) tasks effectively, efficiently, and safely, whether those tasks represent a nominal mode of operation or a contingency capability. To optimize EVA systems for the best human performance, it is critical to study the effects of varying key factors such as suit center of gravity (CG), suit mass, and gravity level. During the 2-week NASA Extreme Environment Mission Operations (NEEMO) 14 mission, four crewmembers performed a series of EVA tasks under different simulated EVA suit configurations and used full-scale mockups of a Space Exploration Vehicle (SEV) rover and lander. NEEMO is an underwater spaceflight analog that allows a true mission-like operational environment and uses buoyancy effects and added weight to simulate different gravity levels. Quantitative and qualitative data collected during NEEMO 14, as well as from spacesuit tests in parabolic flight and with overhead suspension, are being used to directly inform ongoing hardware and operations concept development of the SEV, exploration EVA systems, and future EVA suits. OBJECTIVE: To compare human performance across different weight and CG configurations. METHODS: Four subjects were weighed out to simulate reduced gravity and wore either a specially designed rig to allow adjustment of CG or a PLSS mockup. Subjects completed tasks including level ambulation, incline/decline ambulation, standing from the kneeling and prone position, picking up objects, shoveling, ladder climbing, incapacitated crewmember handling, and small and large payload transfer. Subjective compensation, exertion, task acceptability, and duration data as well as photo and video were collected. RESULTS: There appear to be interactions between CG, weight, and task. CGs nearest the subject s natural CG are the most predictable in terms of acceptable performance across tasks. Future research should focus on

  18. Reflectance conversion methods for the VIS/NIR imaging spectrometer aboard the Chang'E-3 lunar rover: based on ground validation experiment data

    International Nuclear Information System (INIS)

    The second phase of the Chang'E Program (also named Chang'E-3) has the goal to land and perform in-situ detection on the lunar surface. A VIS/NIR imaging spectrometer (VNIS) will be carried on the Chang'E-3 lunar rover to detect the distribution of lunar minerals and resources. VNIS is the first mission in history to perform in-situ spectral measurement on the surface of the Moon, the reflectance data of which are fundamental for interpretation of lunar composition, whose quality would greatly affect the accuracy of lunar element and mineral determination. Until now, in-situ detection by imaging spectrometers was only performed by rovers on Mars. We firstly review reflectance conversion methods for rovers on Mars (Viking landers, Pathfinder and Mars Exploration rovers, etc). Secondly, we discuss whether these conversion methods used on Mars can be applied to lunar in-situ detection. We also applied data from a laboratory bidirectional reflectance distribution function (BRDF) using simulated lunar soil to test the availability of this method. Finally, we modify reflectance conversion methods used on Mars by considering differences between environments on the Moon and Mars and apply the methods to experimental data obtained from the ground validation of VNIS. These results were obtained by comparing reflectance data from the VNIS measured in the laboratory with those from a standard spectrometer obtained at the same time and under the same observing conditions. The shape and amplitude of the spectrum fits well, and the spectral uncertainty parameters for most samples are within 8%, except for the ilmenite sample which has a low albedo. In conclusion, our reflectance conversion method is suitable for lunar in-situ detection.

  19. Reflectance conversion methods for the VIS/NIR imaging spectrometer aboard the Chang'E-3 lunar rover: based on ground validation experiment data

    Institute of Scientific and Technical Information of China (English)

    Bin Liu; Jian-Zhong Liu; Guang-Liang Zhang; Zong-Cheng Ling; Jiang Zhang; Zhi-Ping He; Ben-Yong Yang

    2013-01-01

    The second phase of the Chang'E Program (also named Chang'E-3) has the goal to land and perform in-situ detection on the lunar surface.A VIS/NIR imaging spectrometer (VNIS) will be carried on the Chang'E-3 lunar rover to detect the distribution of lunar minerals and resources.VNIS is the first mission in history to perform in-situ spectral measurement on the surface of the Moon,the reflectance data of which are fundamental for interpretation of lunar composition,whose quality would greatly affect the accuracy of lunar element and mineral determination.Until now,in-situ detection by imaging spectrometers was only performed by rovers on Mars.We firstly review reflectance conversion methods for rovers on Mars (Viking landers,Pathfinder and Mars Exploration rovers,etc).Secondly,we discuss whether these conversion methods used on Mars can be applied to lunar in-situ detection.We also applied data from a laboratory bidirectional reflectance distribution function (BRDF) using simulated lunar soil to test the availability of this method.Finally,we modify reflectance conversion methods used on Mars by considering differences between environments on the Moon and Mars and apply the methods to experimental data obtained from the ground validation of VNIS.These results were obtained by comparing reflectance data from the VNIS measured in the laboratory with those from a standard spectrometer obtained at the same time and under the same observing conditions.The shape and amplitude of the spectrum fits well,and the spectral uncertainty parameters for most samples are within 8%,except for the ilmenite sample which has a low albedo.In conclusion,our reflectance conversion method is suitable for lunar in-situ detection.

  20. Planetary seismology—Expectations for lander and wind noise with application to Venus

    Science.gov (United States)

    Lorenz, Ralph D.

    2012-03-01

    The amplitudes of seismic signals on a planetary surface are discussed in the context of observable physical quantities - displacement, velocity and acceleration - in order to assess the number of events that a sensor with a given detection threshold may capture in a given period. Spacecraft engineers are generally unfamiliar with expected quantities or the language used to describe them, and seismologists are rarely presented with the challenges of accommodation of instrumentation on spacecraft. This paper attempts to bridge this gap, so that the feasibility of attaining seismology objectives on future missions - and in particular, a long-lived Venus lander - can be rationally assessed. For seismometers on planetary landers, the background noise due to wind or lander systems is likely to be a stronger limitation on the effective detection threshold than is the instrument sensitivity itself, and terrestrial data on vehicle noise is assessed in this context. We apply these considerations to investigate scenarios for a long-lived Venus lander mission, which may require a mechanical cooler powered by a Stirling generator. We also consider wind noise: the case for decoupling of a seismometer from a lander is strong on bodies with atmospheres, as is the case for shielding the instrument from wind loads. However, since the atmosphere acts on the elastic ground as well as directly on instruments, the case for deep burial is not strong, but it is important that windspeed and pressure be documented by adequate meteorology measurements.

  1. Report from International Lunar Exploration Working Group (ILEWG) to COSPAR

    Science.gov (United States)

    Foing, Bernard H.

    We refer to COSPAR and ILEWG ICEUM and lunar conferences and declarations [1-18]. We discuss how lunar missions SMART-1, Kaguya, Chang'E1&2, Chandrayaan-1, LCROSS, LRO, GRAIL, LADEE, Chang'E3 and upcoming missions contribute to lunar exploration objectives & roadmap. We present the GLUC/ICEUM11 declaration and give a report on ongoing relevant ILEWG community activities, with focus on: “1. Science and exploration - World-wide access to raw and derived (geophysical units) data products using consistent formats and coordinate systems will maximize return on investment. We call to develop and implement plans for generation, validation, and release of these data products. Data should be made available for scientific analysis and supporting the development and planning of future missions - There are still Outstanding Questions: Structure and composition of crust, mantle, and core and implications for the origin and evolution of the Earth-Moon system; Timing, origin, and consequences of late heavy bombardment; Impact processes and regolith evolution; Nature and origin of volatile emplacement; Implications for resource utilization. These questions require international cooperation and sharing of results in order to be answered in a cost-effective manner - Ground truth information on the lunar far side is missing and needed to address many important scientific questions, e.g. with a sample return from South Pole-Aitken Basin - Knowledge of the interior is poor relative to the surface, and is needed to address a number of key questions, e.g. with International Lunar Network for seismometry and other geophysical measurements - Lunar missions will be driven by exploration, resource utilization, and science; we should consider minimum science payload for every mission, e.g., landers and rovers should carry instruments to determine surface composition and mineralogy - It is felt important to have a shared database about previous missions available for free, so as to provide

  2. Bubble Growth in Lunar Basalts

    Science.gov (United States)

    Zhang, Y.

    2009-05-01

    Although Moon is usually said to be volatile-"free", lunar basalts are often vesicular with mm-size bubbles. The vesicular nature of the lunar basalts suggests that they contained some initial gas concentration. A recent publication estimated volatile concentrations in lunar basalts (Saal et al. 2008). This report investigates bubble growth on Moon and compares with that on Earth. Under conditions relevant to lunar basalts, bubble growth in a finite melt shell (i.e., growth of multiple regularly-spaced bubbles) is calculated following Proussevitch and Sahagian (1998) and Liu and Zhang (2000). Initial H2O content of 700 ppm (Saal et al. 2008) or lower is used and the effect of other volatiles (such as carbon dioxide, halogens, and sulfur) is ignored. H2O solubility at low pressures (Liu et al. 2005), concentration-dependent diffusivity in basalt (Zhang and Stolper 1991), and lunar basalt viscosity (Murase and McBirney 1970) are used. Because lunar atmospheric pressure is essentially zero, the confining pressure on bubbles is completely supplied by the overlying magma. Due to low H2O content in lunar basaltic melt (700 ppm H2O corresponds to a saturation pressure of 75 kPa), H2O bubbles only grow in the upper 16 m of a basalt flow or lake. A depth of 20 mm corresponds to a confining pressure of 100 Pa. Hence, vesicular lunar rocks come from very shallow depth. Some findings from the modeling are as follows. (a) Due to low confining pressure as well as low viscosity, even though volatile concentration is very low, bubble growth rate is extremely high, much higher than typical bubble growth rates in terrestrial melts. Hence, mm-size bubbles in lunar basalts are not strange. (b) Because the pertinent pressures are so low, bubble pressure due to surface tension plays a main role in lunar bubble growth, contrary to terrestrial cases. (c) Time scale to reach equilibrium bubble size increases as the confining pressure increases. References: (1) Liu Y, Zhang YX (2000) Earth

  3. Astrophysics Conducted by the Lunar University Network for Astrophysics Research (LUNAR) and the Center for Lunar Origins (CLOE)

    OpenAIRE

    Burns, Jack O.; Lazio, T. Joseph W.; Bottke, William

    2012-01-01

    [Abridged] The Moon is a unique platform from and on which to conduct astrophysical measurements. The Lunar University Network for Astrophysics Research (LUNAR) and the Center for Lunar Origins and Evolution (CLOE) teams within the NASA Lunar Science Institute (NLSI) are illustrating how the Moon can be used as a platform to advance important goals in astrophysics. Of relevance to Astrophysics and aligned with NASA strategic goals, all three of the primary research themes articulated by New W...

  4. Lunar Quest in Second Life, Lunar Exploration Island, Phase II

    Science.gov (United States)

    Ireton, F. M.; Day, B. H.; Mitchell, B.; Hsu, B. C.

    2010-12-01

    Linden Lab’s Second Life is a virtual 3D metaverse created by users. At any one time there may be 40,000-50,000 users on line. Users develop a persona and are seen on screen as a human figure or avatar. Avatars move through Second Life by walking, flying, or teleporting. Users form communities or groups of mutual interest such as music, computer graphics, and education. These groups communicate via e-mail, voice, and text within Second Life. Information on downloading the Second Life browser and joining can be found on the Second Life website: www.secondlife.com. This poster details Phase II in the development of Lunar Exploration Island (LEI) located in Second Life. Phase I LEI highlighted NASA’s LRO/LCROSS mission. Avatars enter LEI via teleportation arriving at a hall of flight housing interactive exhibits on the LRO/ LCROSS missions including full size models of the two spacecraft and launch vehicle. Storyboards with information about the missions interpret the exhibits while links to external websites provide further information on the mission, both spacecraft’s instrument suites, and related EPO. Other lunar related activities such as My Moon and NLSI EPO programs. A special exhibit was designed for International Observe the Moon Night activities with links to websites for further information. The sim includes several sites for meetings, a conference stage to host talks, and a screen for viewing NASATV coverage of mission and other televised events. In Phase II exhibits are updated to reflect on-going lunar exploration highlights, discoveries, and future missions. A new section of LEI has been developed to showcase NASA’s Lunar Quest program. A new exhibit hall with Lunar Quest information has been designed and is being populated with Lunar Quest information, spacecraft models (LADEE is in place) and kiosks. A two stage interactive demonstration illustrates lunar phases with static and 3-D stations. As NASA’s Lunar Quest program matures further

  5. Mars planetary geodesy using earth-based observations of Mars landers

    Science.gov (United States)

    Edwards, C. D., Jr.; Kahn, R. D.; Folkner, W. M.; Preston, R. A.

    1992-01-01

    The potential for earth-based radiometric observations of a network of Mars surface landers to provide accurate determination of the Mars rotational orientation in inertial space is investigated. An error budget is presented for the carrier phase data type and related to system requirements for the surface landers. Differencing the carrier phase observations for a pair of Mars landers can provide extremely high precision due to common-mode error cancellation. Results of a covariance analysis are presented which show that Mars orientation can be determined to better than 10 milliarcsec, corresponding to decimeter distances at the planet surface. Recommendations on how to incorporate these concepts into future Mars missions, such as the Mars Environmental Survey, are discussed.

  6. Prospects of passive radio detection of a subsurface ocean on Europa with a lander

    Science.gov (United States)

    Romero-Wolf, Andrew; Schroeder, Dustin M.; Ries, Paul; Bills, Bruce G.; Naudet, Charles; Scott, Bryan R.; Treuhaft, Robert; Vance, Steve

    2016-09-01

    We estimate the sensitivity of a lander-based instrument for the passive radio detection of a subsurface ocean beneath the ice shell of Europa, expected to be between 3 km and 30 km thick, using Jupiter's decametric radiation. A passive technique was previously studied for an orbiter. Using passive detection in a lander platform provides a point measurement with significant improvements due to largely reduced losses from surface roughness effects, longer integration times, and diminished dispersion due to ionospheric effects allowing operation at lower frequencies and a wider band. A passive sounder on-board a lander provides a low resource instrument sensitive to subsurface ocean at Europa up to depths of 6.9 km for high loss ice (16 dB/km two-way attenuation rate) and 69 km for pure ice (1.6 dB/km).

  7. Prospects of Passive Radio Detection of a Subsurface Ocean on Europa with a Lander

    CERN Document Server

    Romero-Wolf, Andrew; Ries, Paul; Bills, Bruce G; Naudet, Charles; Scott, Bryan R; Treuhaft, Robert; Vance, Steve

    2016-01-01

    We estimate the sensitivity of a lander-based instrument for the passive radio detection of a subsurface ocean beneath the ice shell of Europa, expected to be between 3 km - 30 km thick, using Jupiter's decametric radiation. A passive technique was previously studied for an orbiter. Using passive detection in a lander platform provides significant improvements due to largely reduced losses from surface roughness effects, longer integration times, and diminished dispersion due to ionospheric effects allowing operation at lower frequencies and a wider band. A passive sounder on-board a lander provides a low resource instrument sensitive to subsurface ocean at Europa up to depths of 6.9 km for high loss ice (16 dB/km two-way attenuation rate) and 69 km for pure ice (1.6 dB/km).

  8. New Insights into Lunar True Polar Wander

    Science.gov (United States)

    Keane, J. T.; Matsuyama, I.; Siegler, M. A.

    2016-05-01

    Recent studies have revealed two new classes of lunar paleopole (the primordial fossil figure pole and the late polar volatile paleopole), opening up possibility of a unified chronology of the lunar rotational dynamics.

  9. Lunar base agriculture: Soils for plant growth

    Science.gov (United States)

    Ming, Douglas W. (Editor); Henninger, Donald L. (Editor)

    1989-01-01

    This work provides information on research and experimentation concerning various aspects of food production in space and particularly on the moon. Options for human settlement of the moon and Mars and strategies for a lunar base are discussed. The lunar environment, including the mineralogical and chemical properties of lunar regolith are investigated and chemical and physical considerations for a lunar-derived soil are considered. It is noted that biological considerations for such a soil include controlled-environment crop production, both hydroponic and lunar regolith-based; microorganisms and the growth of higher plants in lunar-derived soils; and the role of microbes to condition lunar regolith for plant cultivation. Current research in the controlled ecological life support system (CELSS) project is presented in detail and future research areas, such as the growth of higher research plants in CELSS are considered. Optimum plant and microbiological considerations for lunar derived soils are examined.

  10. Lunar Surface Solar Electric Power System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose a concentrated photovoltaic electric power system for lunar operations called C-Lite Lunar. The novel technology produces a near-term solar array system...

  11. Dust Mitigation for the Lunar Surface Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The lunar surface is, to a large extent, covered with a dust layer several meters thick. Known as lunar regolith, it has been produced by meteorite impacts since...

  12. Dust Mitigation for the Lunar Surface Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The lunar surface is to a large extent covered with a dust layer several meters thick. Known as lunar regolith, it poses a hazard in the form of dust clouds being...

  13. Petrologic Characteristics of the Lunar Surface

    OpenAIRE

    Xianmin Wang; Witold Pedrycz

    2015-01-01

    Petrologic analysis of the lunar surface is critical for determining lunar formation and evolution. Here, we report the first global petrologic map that includes the five most important lunar lithological units: the Ferroan Anorthositic (FAN) Unit, the Magnesian Suite (MS) Unit, the Alkali Suite (AS) Unit, the KREEP Basalt (KB) Unit and the Mare Basalt (MB) Unit. Based on the petrologic map and focusing on four long-debated and important issues related to lunar formation and evolution, we dra...

  14. Lunette: Lunar Farside Gravity Mapping by Nanosat

    OpenAIRE

    Spencer, Henry; Carroll, Kieran; Arkani-Hamed, Jafar; Zee, Robert

    2005-01-01

    One significant item of unfinished business in lunar exploration is the mapping of the Moon’s notoriously-irregular gravitational field. This is of interest to science because it sheds light on the lunar interior, to exploration because it may help find useful resources, and to engineers because it is important for planning and operating missions in lunar orbit. Past mapping efforts have been severely hampered by the impossibility of Earthbased tracking of spacecraft over the lunar farside; t...

  15. Contribution of magnetic measurements onboard NetLander to Mars exploration

    DEFF Research Database (Denmark)

    Menvielle, M.; Musmann, G.; Kuhnke, F.; Berthelier, J.J.; Glassmeier, K.H.; Mandea, M.H.; Motschmann, U.; Pajunpaa, K.; Pincon, J.L.; Primdahl, Fritz; Szarka, L.

    possible contributions of magnetic measurements onboard the NetLander stations are presented. Intrinsic planetary field and remanent magnetisation investigations by means of magnetometers onboard a network of landers are first considered, and the information that can be thus derived on the Martian core...... between the environment of the planet and solar radiation, and a secondary source, the electric currents induced in the conductive planet. The continuous recording of the time variations of the magnetic field at the surface of Mars by means of three component magnetometers installed onboard Net...

  16. Contribution of magnetic measurements onboard NetLander to Mars exploration

    DEFF Research Database (Denmark)

    Menvielle, M.; Musmann, G.; Kuhnke, F.;

    2000-01-01

    possible contributions of magnetic measurements onboard the NetLander stations are presented. Intrinsic planetary field and remanent magnetisation investigations by means of magnetometers onboard a network of landers are first considered, and the information that can be thus derived on the Martian core...... between the environment of the planet and solar radiation, and a secondary source, the electric currents induced in the conductive planet. The continuous recording of the time variations of the magnetic field at the surface of Mars by means of three component magnetometers installed onboard Net...

  17. Lunar and Planetary Science XXXVI, Part 19

    Science.gov (United States)

    2005-01-01

    The topics include: 1) The abundances of Iron-60 in Pyroxene Chondrules from Unequilibrated Ordinary Chondrites; 2) LL-Ordinary Chondrite Impact on the Moon: Results from the 3.9 Ga Impact Melt at the Landing Site of Appolo 17; 3) Evaluation of Chemical Methods for Projectile Identification in Terrestrial and Lunar Impactites; 4) Impact Cratering Experiments in Microgravity Environment; 5) New Achondrites with High-Calcium Pyroxene and Its implication for Igneous Differentiation of Asteroids; 6) Climate History of the Polar Regions of Mars Deduced form Geologic Mapping Results; 7) The crater Production Function for Mars: A-2 Cumulative Power-Law Slope for Pristine Craters Greater than 5 km in Diameter Based on Crater Distribution for Northern Plains Materials; 8) High Resolution Al-26 Chronology: Resolved Time Interval Between Rim and Interior of a Highly Fractionated Compact Type a CAI from Efremovka; 9) Assessing Aqueous Alteration on Mars Using Global Distributions of K and Th; 10) FeNi Metal Grains in LaPaz Mare Basalt Meteorites and Appolo 12 Basalts; 11) Unique Properties of Lunar Soil for In Situ Resource Utilization on the Moon; 12) U-Pb Systematics of Phosphates in Nakhlites; 13) Measurements of Sound Speed in Granular Materials Simulated Regolith; 14) The Effects of Oxygen, Sulphur and Silicon on the Dihedral Angles Between Fe-rich Liquid Metal and Olivine, Ringwoodite and Silicate Perovskite: Implications for Planetary Core Formation; 15) Seismic Shaking Removal of Craters 0.2-0.5 km in Diameter on Asteroid 433 Eros; 16) Focused Ion Beam Microscoopy of ALH84001 Carbonate Disks; 17) Simulating Micro-Gravity in the Laboratory; 18) Mars Atmospheric Sample Return Instrument Development; 19) Combined Remote LIBS and Raman Spectroscopy Measurements; 20) Unusual Radar Backscatter Properties Along the Northern Rim of Imbrium Basin; 21) The Mars Express/NASAS Project at JPL; 22) The Geology of the Viking 2 Lander Site Revisited; 23) An Impact Genesis for Loki

  18. Characterization of Lunar Farside Plains

    Science.gov (United States)

    Mest, S.C.; Garry, W. B.; Ostrach, L. R.; Han, S.-C.; Staid, M. I.

    2016-01-01

    The Moon contains broad and isolated areas of plains that have been recognized as mare, cryptomare, impact ejecta, or impact melt. These deposits have been extensively studied on the lunar nearside by remote sensing via telescopes and numerous spacecraft, and in some cases, in situ robotically and by astronauts. Only recently have the deposits on the entire farside been able to be observed and evaluated to the same degree. There are spatially extensive plains deposits located throughout the lunar farside highlands whose formation has remained ambiguous. Many of the plains deposits in the lunar farside highlands display higher albedos than mare materials. Some deposits are located in close proximity to relatively younger impact craters suggesting that plains could be composed of cryptomare or ejecta materials. Some deposits are within the range in which ejecta from large basin-forming events (e.g., SPA and Orientale) likely distributed large amounts of ejecta across the surface. Here we are conducting a series of observations and models in order to resolve the nature and origin of lunar farside plains deposits. Understanding these plains is important for understanding the volcanic and impact histories of the lunar farside, and is important for future mapping and thermal modeling studies.

  19. LETS: Lunar Environments Test System

    Science.gov (United States)

    Vaughn, Jason A.; Schneider, Todd; Craven, Paul; Norwood, Joey

    2008-01-01

    The Environmental Effects Branch (EM50) at the Marshall Space Flight Center has developed a unique capability within the agency, namely the Lunar Environment Test System (LETS). LETS is a cryo-pumped vacuum chamber facility capable of high vacuum (10-7 Torr). LETS is a cylindrical chamber, 30 in. (0.8 m) diameter by 48 in. (1.2 m) long thermally controlled vacuum system. The chamber is equipped with a full array of radiation sources including vacuum ultraviolet, electron, and proton radiation. The unique feature of LETS is that it contains a large lunar simulant bed (18 in. x 40 in. x 6 in.) holding 75 kg of JSC-1a simulant while operating at a vacuum of 10-7 Torr. This facility allows three applications: 1) to study the charging, levitation and migration of dust particles, 2) to simulate the radiation environment on the lunar surface, and 3) to electrically charge the lunar simulant enhancing the attraction and adhesion of dust particles to test articles more closely simulating the lunar surface dust environment. LETS has numerous diagnostic instruments including TREK electrostatic probes, residual gas analyzer (RGA), temperature controlled quartz crystal microbalance (TQCM), and particle imaging velocimeter (PIV). Finally, LETS uses continuous Labview data acquisition for computer monitoring and system control.

  20. Two lunar global asymmetries

    Science.gov (United States)

    Hartung, J. B.

    1984-01-01

    The Moon's center of mass is displaced from its center of figure about 2 km in a roughly earthward direction. Most maria are on the side of the Moon which faces the Earth. It is assumed that the Moon was initially spherically symmetric. The emplacement of mare basalts transfers mass which produces most of the observed center of mass displacement toward the Earth. The cause of the asymmetric distribution of lunar maria was examined. The Moon is in a spin orbit coupled relationship with the Earth and the effect of the Earth's gravity on the Moon is asymmetric. The earth-facing side of the Moon is a gravitational favored location for the extrusion of mare basalt magma in the same way that the topographically lower floor of a large impact basin is a gravitationally favored location. This asymmetric effect increases inversely with the fourth power of the Earth Moon distance. The history of the Earth-Moon system includes: formation of the Moon by accretion processes in a heliocentric orbit ner that of the Earth; a gravitational encounter with the Earth about 4 billion years ago resulting in capture of the Moon into a geocentric orbit and heating of the Moon through dissipation of energy related to tides raised during close approaches to the Earth(5) to produce mare basalt magma; and evolution of the Moon's orbit to its present position, slowly at first to accommodate more than 500 million years during which magmas were extruded.

  1. Resource Prospector Instrumentation for Lunar Volatiles Prospecting, Sample Acquisition and Processing

    Science.gov (United States)

    Captain, J.; Elphic, R.; Colaprete, A.; Zacny, Kris; Paz, A.

    2016-01-01

    Data gathered from lunar missions within the last two decades have significantly enhanced our understanding of the volatile resources available on the lunar surface, specifically focusing on the polar regions. Several orbiting missions such as Clementine and Lunar Prospector have suggested the presence of volatile ices and enhanced hydrogen concentrations in the permanently shadowed regions of the moon. The Lunar Crater Observation and Sensing Satellite (LCROSS) mission was the first to provide direct measurement of water ice in a permanently shadowed region. These missions with other orbiting assets have laid the groundwork for the next step in the exploration of the lunar surface; providing ground truth data of the volatiles by mapping the distribution and processing lunar regolith for resource extraction. This next step is the robotic mission Resource Prospector (RP). Resource Prospector is a lunar mission to investigate 'strategic knowledge gaps' (SKGs) for in-situ resource utilization (ISRU). The mission is proposed to land in the lunar south pole near a permanently shadowed crater. The landing site will be determined by the science team with input from broader international community as being near traversable landscape that has a high potential of containing elevated concentrations of volatiles such as water while maximizing mission duration. A rover will host the Regolith & Environment Science and Oxygen & Lunar Volatile Extraction (RESOLVE) payload for resource mapping and processing. The science instruments on the payload include a 1-meter drill, neutron spectrometer, a near infrared spectrometer, an operations camera, and a reactor with a gas chromatograph-mass spectrometer for volatile analysis. After the RP lander safely delivers the rover to the lunar surface, the science team will guide the rover team on the first traverse plan. The neutron spectrometer (NS) and near infrared (NIR) spectrometer instruments will be used as prospecting tools to guide

  2. Optimal configuration of dual-spacecraft radio occultation observation for future lunar ionosphere exploration

    Science.gov (United States)

    Kikuchi, Fuyuhiko; Matsumoto, Koji

    2014-05-01

    . Observations were carried out only when the elongation of the two spacecraft was smaller than the beam width of the ground antenna that is 0.03 degrees. Furthermore, the accuracy of the measurement was limited because two S-band signals with a relatively small frequency interval of 69 MHz were used instead of S-band and X-band signals. Therefore, the total number of observations was 19 among which the lunar ionosphere was detected only twice. In this paper, optimal configuration of the dual-spacecraft radio occultation observation is considered for a future exploration. Here, the dual-spacecraft consists of an orbiter and a lander. Appropriate orbital element and landing site are discussed to collect sufficient amount of data. We focus on a solar zenith angle dependency of observation that is a key parameter to study the mechanism of the lunar ionosphere generation. The effect of the terrestrial ionosphere for the dual-spacecraft radio occultation observation is also estimated by using GPS-derived TEC data. This effect was calculated from the differences of the TEC between two near-by GPS satellites whose elongation angles are between one to five degrees.

  3. Lunar Mare Dome Identification and Morphologic Properties Analysis Using Chang'E-2 Lunar Data

    Science.gov (United States)

    Zeng, Xingguo; Mu, Lingli; Li, Chunlai; Liu, Jianjun; Ren, Xin; Wang, Yuanyuan

    2016-04-01

    Identify the lunar mare dome and study the morphologic properties to know more knowledge about the structure will enhance the study of lunar volcanism. Traditionally, most lunar domes are identified by the scientists from exploring the images or topographic maps of the lunar surface with manual method, which already found out a bunch of lunar domes in specific local areas. For the purpose of getting more knowledge about global lunar dome, it is necessary to identify the lunar dome from the global lunar mare. However, it is hard to find new lunar domes from the global lunar mare only with manual method, since in that case, the large volume lunar data is needed and such work is too time consumed, so that, there are few researchers who have indentified and study the properties of the lunar dome from the perspective of lunar global scale. To solve the problem mentioned above, in this approach , CE-2 DEM, DOM data in 7m resolution were used in the detection and morphologic analysis of the lunar domes and a dome detection method based on topographic characteristics were developed.We firstly designed a method considering the morphologic characteristics to identify the lunar dome with Chang'E2(CE-2) lunar global data, after that, the initial identified result with properties is analyzed, and finally, by integrating the result with lunar domes already found by former researchers, we made some maps about the spatial distribution of the global lunar mare dome. With the CE-2 data covering the former lunar domes and the new found lunar domes, we surveyed and calculated some morphologic properties, and found that, lunar domes are circular or eclipse shaped, obviously different from background in topography,which has a average diameter between 3-25km, circular degree less than 1.54, with a average slope less than 10°, average height less than 650m and diameter/height less than 0.065. Almost all of the lunar domes are located in the extent of 58°N~54°S,167°W~180°E,and nearly

  4. Trace geochemistry of lunar material

    Science.gov (United States)

    Morrison, G. H.

    1974-01-01

    The lunar samples from the Apollo 16 and 17 flights which were analyzed include soil, igneous rock, anorthositic gabbro, orange soil, subfloor basalt, and norite breccia. Up to 57 elements including majors, minors, rare earths and other trace elements were determined in the lunar samples. The analytical techniques used were spark source mass spectrometry and neutron activation analysis. The latter was done either instrumentally or with group radiochemical separations. The differences in abundances of the elements in lunar soils at the various sites are discussed. With regard to the major elements only Si is about the same at all the sites. A detailed analysis which was performed on a sample of the Allende meteorite is summarized.

  5. Lunar Dust and Lunar Simulant Activation and Monitoring

    Science.gov (United States)

    Wallace, W. T.; Hammond, D. K.; Jeevarajan, A. S.

    2008-01-01

    Prior to returning to the moon, understanding the effects of lunar dust on both human physiology and mechanical equipment is a pressing concern, as problems related to lunar dust during the Apollo missions have been well documented (J.R. Gaier, The Effects of Lunar Dust on EVA Systems During the Apollo Missions. 2005, NASA-Glenn Research Center. p. 65). While efforts were made to remove the dust before reentering the lunar module, via brushing of the suits or vacuuming, a significant amount of dust was returned to the spacecraft, causing various problems. For instance, astronaut Harrison Schmitt complained of hay fever effects caused by the dust, and the abrasive nature of the material was found to cause problems with various joints and seals of the spacecraft and suits. It is clear that, in order to avoid potential health and performance problems while on the lunar surface, the reactive properties of lunar dust must be quenched. It is likely that soil on the lunar surface is in an activated form, i.e. capable of producing oxygen-based radicals in a humidified air environment, due to constant exposure to meteorite impacts, UV radiation, and elements of the solar wind. An activated silica surface serves as a good example. An oxygen-based radical species arises from the breaking of Si-OSi bonds. This system is comparable to that expected for the lunar dust system due to the large amounts of agglutinic glass and silicate vapor deposits present in lunar soil. Unfortunately, exposure to the Earth s atmosphere has passivated the active species on lunar dust, leading to efforts to reactivate the dust in order to understand the true effects that will be experienced by astronauts and equipment on the moon. Electron spin resonance (ESR) spectroscopy is commonly used for the study of radical species, and has been used previously to study silicon- and oxygen-based radicals, as well as the hydroxyl radicals produced by these species in solution (V. Vallyathan, et al., Am. Rev

  6. ALTAIR Radar Plasma Drifts and in situ Electric and Magnetic Field Measurements on Two Sounding Rockets and the C/NOFS Satellite in the Low Latitude Ionosphere at Sunset

    Science.gov (United States)

    Kudeki, Erhan; Pfaff, Robert; Rowland, Douglas; Klenzing, Jeffrey; Freudenreich, Henry

    2016-07-01

    We present ALTAIR incoherent scatter radar plasma drifts and in situ electric field, magnetic field, and plasma density measurements made simultaneously with probes on two sounding rockets and the C/NOFS satellite in the low latitude ionosphere in the vicinity of Kwajalein Atoll. The coincident data were gathered during sunset conditions prior to a spread-F event during the NASA EVEX Campaign. The sounding rocket apogees were 180 km and 330 km, while the C/NOFS altitude in this region was ~ 390 km. Electric field data from all three platforms display upwards vertical plasma drifts, while the zonal drifts change direction as a function of altitude and/or local time. The variable drifts provide evidence of a dynamic plasma environment which may contribute to the unstable conditions necessary for spread-F instabilities to form.

  7. Lunar Base Heat Pump

    Science.gov (United States)

    Walker, D.; Fischbach, D.; Tetreault, R.

    1996-01-01

    The objective of this project was to investigate the feasibility of constructing a heat pump suitable for use as a heat rejection device in applications such as a lunar base. In this situation, direct heat rejection through the use of radiators is not possible at a temperature suitable for lde support systems. Initial analysis of a heat pump of this type called for a temperature lift of approximately 378 deg. K, which is considerably higher than is commonly called for in HVAC and refrigeration applications where heat pumps are most often employed. Also because of the variation of the rejection temperature (from 100 to 381 deg. K), extreme flexibility in the configuration and operation of the heat pump is required. A three-stage compression cycle using a refrigerant such as CFC-11 or HCFC-123 was formulated with operation possible with one, two or three stages of compression. Also, to meet the redundancy requirements, compression was divided up over multiple compressors in each stage. A control scheme was devised that allowed these multiple compressors to be operated as required so that the heat pump could perform with variable heat loads and rejection conditions. A prototype heat pump was designed and constructed to investigate the key elements of the high-lift heat pump concept. Control software was written and implemented in the prototype to allow fully automatic operation. The heat pump was capable of operation over a wide range of rejection temperatures and cooling loads, while maintaining cooling water temperature well within the required specification of 40 deg. C +/- 1.7 deg. C. This performance was verified through testing.

  8. TAGS 85/2N RTG Power for Viking Lander Capsule

    Science.gov (United States)

    1969-08-01

    Results of studies performed by Isotopes, Inc., Nuclear Systems Division, to optimize and baseline a TAGS 85/2N RTG for the Viking Lander Capsule prime electrical power source are presented. These studies generally encompassed identifying the Viking RTG mission profile and design requirements, and establishing a baseline RTG design consistent with these requirements.

  9. Activity in the lunar surface: Transient Lunar Phenomena

    CERN Document Server

    AF, Cruz Roa

    2013-01-01

    Transient Lunar Phenomena (TLP) observed on the surface of the moon, are of high rarity, low repetition rate and very short observation times, resulting in that there is little information about this topic. This necessitates the importance of studying them in detail. They have been observed as very bright clouds of gases of past geological lunar activity. According its duration, there have been registered in different colors (yellow, orange, red). Its size can vary from a few to hundreds of kilometers. The TLP Usually occur in certain locations as in some craters (Aristarchus, Plato, Kepler, etc.) and at the edges of lunar maria (Sea of Fecundity, Alps hills area, etc.). The exposure time of a TLP can vary from a few seconds to a little more than one hour. In this paper, a literature review of the TLP is made to build a theory from the existing reports and scientific hypotheses, trying to unify and synthesize data and concepts that are scattered by different lunar research lines. The TLP need to be explained ...

  10. Concept study for a Venus Lander Mission to Analyze Atmospheric and Surface Composition

    Science.gov (United States)

    Kumar, K.; Banks, M. E.; Benecchi, S. D.; Bradley, B. K.; Budney, C. J.; Clark, G. B.; Corbin, B. A.; James, P. B.; O'Brien, R. C.; Rivera-Valentin, E. G.; Saltman, A.; Schmerr, N. C.; Seubert, C. R.; Siles, J. V.; Stickle, A. M.; Stockton, A. M.; Taylor, C.; Zanetti, M.; JPL Team X

    2011-12-01

    We present a concept-level study of a New Frontiers class, Venus lander mission that was developed during Session 1 of NASA's 2011 Planetary Science Summer School, hosted by Team X at JPL. Venus is often termed Earth's sister planet, yet they have evolved in strikingly different ways. Venus' surface and atmosphere dynamics, and their complex interaction are poorly constrained. A lander mission to Venus would enable us to address a multitude of outstanding questions regarding the geological evolution of the Venusian atmosphere and crust. Our proposed mission concept, VenUs Lander for Composition ANalysis (VULCAN), is a two-component mission, consisting of a lander and a carrier spacecraft functioning as relay to transmit data to Earth. The total mission duration is 150 days, with primary science obtained during a 1-hour descent through the atmosphere and a 2-hour residence on the Venusian surface. In the atmosphere, the lander will provide new data on atmospheric evolution by measuring dominant and trace gas abundances, light stable isotopes, and noble gas isotopes with a neutral mass spectrometer. It will make important meteorological observations of mid-lower atmospheric dynamics with pressure and temperature sensors and obtain unprecedented, detailed imagery of surface geomorphology and properties with a descent Near-IR/VIS camera. A nepholometer will provide new constraints on the sizes of suspended particulate matter within the lower atmosphere. On the surface, the lander will quantitatively investigate the chemical and mineralogical evolution of the Venusian crust with a LIBS-Raman spectrometer. Planetary differentiation processes recorded in heavy elements will be evaluated using a gamma-ray spectrometer. The lander will also provide the first stereo images for evaluating the geomorphologic/volcanic evolution of the Venusian surface, as well as panoramic views of the sample site using multiple filters, and detailed images of unconsolidated material and rock

  11. Lunar surface structural concepts and construction studies

    Science.gov (United States)

    Mikulas, Martin

    The topics are presented in viewgraph form and include the following: lunar surface structures construction research areas; lunar crane related disciplines; shortcomings of typical mobile crane in lunar base applications; candidate crane cable suspension systems; NIST six-cable suspension crane; numerical example of natural frequency; the incorporation of two new features for improved performance of the counter-balanced actively-controlled lunar crane; lunar crane pendulum mechanics; simulation results; 1/6 scale lunar crane testbed using GE robot for global manipulation; basic deployable truss approaches; bi-pantograph elevator platform; comparison of elevator platforms; perspective of bi-pantograph beam; bi-pantograph synchronously deployable tower/beam; lunar module off-loading concept; module off-loader concept packaged; starburst deployable precision reflector; 3-ring reflector deployment scheme; cross-section of packaged starburst reflector; and focal point and thickness packaging considerations.

  12. The Penn state lunar lion: A university mission to explore the moon

    Science.gov (United States)

    Paul, Michael V.; Spencer, David B.; Lego, Sara E.; Muncks, John P.

    2014-03-01

    The Penn State Lunar Lion Team plans to send a robotic explorer to the surface of the Moon and, by applying 30 years of technological advancements, win the Google Lunar X Prize. The Google Lunar X Prize aims to showcase the ability of the growing private space industry by having teams pursue the goal of becoming the first private entity to land a spacecraft on another body in the solar system. Through the Team's pursuit of this Prize, Penn State will establish itself as a leader in space exploration. The Lunar Lion Team will win this Prize through the collaboration of faculty and students from multiple disciplines, and the engineering and technical staff at the Penn State Applied Research Lab, as well as strategic collaborations with industry partners. The diversity of technical disciplines required to build a system that can land on the Moon can be found at Penn State. This multidisciplinary project will be not only a means for bringing together personnel from around the University, but also a way to attract faculty and students to these fields. The baseline concept for the Lunar Lion will strictly follow the requirements of the Grand Prize and the Grand Prize only, leading to the simplest possible system for the mission. By achieving the Grand Prize, Penn State will have accomplished what once took the large-scale effort of NASA's early robotic lunar landers or the USSR's space program. While the Bonus Prizes are noteworthy, ensuring their accomplishment will add development and operational risk to the flight system that could jeopardize the Team's ability to win the Grand Prize. The Team will build the simplest spacecraft, with the fewest number of systems and components. This philosophy will shorten the development timeline and result in a robust flight system that is of minimum cost. Wherever possible, the Team will use commercially available products to satisfy the needs of the system. The work of the Team will be efficient systems integration, careful

  13. Long-Lived Venus Lander Conceptual Design: How To Keep It Cool

    Science.gov (United States)

    Dyson, Ridger W.; Schmitz, Paul C.; Penswick, L. Barry; Bruder, Geoffrey A.

    2009-01-01

    Surprisingly little is known about Venus, our neighboring sister planet in the solar system, due to the challenges of operating in its extremely hot, corrosive, and dense environment. For example, after over two dozen missions to the planet, the longest-lived lander was the Soviet Venera 13, and it only survived two hours on the surface. Several conceptual Venus mission studies have been formulated in the past two decades proposing lander architectures that potentially extend lander lifetime. Most recently, the Venus Science and Technology Definition Team (STDT) was commissioned by NASA to study a Venus Flagship Mission potentially launching in the 2020- 2025 time-frame; the reference lander of this study is designed to survive for only a few hours more than Venera 13 launched back in 1981! Since Cytherean mission planners lack a viable approach to a long-lived surface architecture, specific scientific objectives outlined in the National Science Foundation Decadal Survey and Venus Exploration Advisory Group final report cannot be completed. These include: mapping the mineralogy and composition of the surface on a planetary scale determining the age of various rock samples on Venus, searching for evidence of changes in interior dynamics (seismometry) and its impact on climate and many other key observations that benefit with time scales of at least a full Venus day (Le. daylight/night cycle). This report reviews those studies and recommends a hybrid lander architecture that can survive for at least one Venus day (243 Earth days) by incorporating selective Stirling multi-stage active cooling and hybrid thermoacoustic power.

  14. Concept of Lunar Energy Park

    Science.gov (United States)

    Niino, Masayuki; Kisara, Katsuto; Chen, Lidong

    1993-10-01

    This paper presents a new concept of energy supply system named Lunar Energy Park (LEP) as one of the next-generation clean energy sources. In this concept, electricity is generated by nuclear power plants built on the moon and then transmitted to receiving stations on the earth by laser beam through transporting systems situated in geostationary orbit. The lunar nuclear power plants use a high-efficiency composite energy conversion system consisting of thermionic and thermoelectric generators to change nuclear thermal energy into electricity directly. The nuclear resources are considered to be available from the moon, and nuclear fuel transport from earth to moon is not necessary. Because direct energy conversion systems are employed, the lunar nuclear plants can be operated and controlled by robots and are maintenance-free, and so will cause no pollution to humans. The key technologies for LEP include improvements of conversion efficiency of both thermionic and thermoelectric converters, and developments of laser-beam power transmission technology as well. The details, including the construction of lunar nuclear plants, energy conversion and energy transmission systems, as well as the research plan strategies for this concept are reviewed.

  15. Hydrogen at the Lunar Terminator

    Science.gov (United States)

    Livengood, T. A.; Chin, G.; Sagdeev, R. Z.; Mitrofanov, I. G.; Boynton, W. V.; Evans, L. G.; Litvak, M. L.; McClanahan, T. P.; Sanin, A. B.; Starr, R. D.; Su, J. J.

    2015-10-01

    Suppression of the Moon's naturally occurring epithermal neutron leakage flux near the equatorial dawn terminator is consistent with the presence of diurnally varying quantities of hydrogen in the regolith with maximum concentration on the day side of the dawn terminator. This flux suppression has been observed using the Lunar Exploration Neutron Detector (LEND) on the polar-orbiting Lunar Reconnaissance Orbiter (LRO). The chemical form of hydrogen is not determined, but other remote sensing methods and elemental availability suggest water. The observed variability is interpreted as frost collecting in or on the cold nightside surface, thermally desorbing in sunlight during the lunar morning,and migrating away from the warm subsolar region across the nearby terminator to return to the lunar surface. The maximum concentration, averaged over the upper ~1m of regolith to which neutron detection is sensitive,is estimated to be 0.0125±0.0022 weight-percent water-equivalent hydrogen (wt% WEH), yielding an accumulation of 190±30 ml recoverable water per square meter of regolith at each dawn. The source of hydrogen (water) must be in equilibrium with losses due to solar photolysis and escape. A chemical recycling process or self-shielding from solar UV must be assumed in order to bring the loss rate down to compatibility with possible sources, including solar wind or micrometeoroid delivery of hydrogen, which require near-complete retention of hydrogen,or outgassing of primordial volatiles, for which a plausible supply rate requires significantly less retention efficiency.

  16. Lunar materials processing system integration

    Science.gov (United States)

    Sherwood, Brent

    1992-01-01

    The theme of this paper is that governmental resources will not permit the simultaneous development of all viable lunar materials processing (LMP) candidates. Choices will inevitably be made, based on the results of system integration trade studies comparing candidates to each other for high-leverage applications. It is in the best long-term interest of the LMP community to lead the selection process itself, quickly and practically. The paper is in five parts. The first part explains what systems integration means and why the specialized field of LMP needs this activity now. The second part defines the integration context for LMP -- by outlining potential lunar base functions, their interrelationships and constraints. The third part establishes perspective for prioritizing the development of LMP methods, by estimating realistic scope, scale, and timing of lunar operations. The fourth part describes the use of one type of analytical tool for gaining understanding of system interactions: the input/output model. A simple example solved with linear algebra is used to illustrate. The fifth and closing part identifies specific steps needed to refine the current ability to study lunar base system integration. Research specialists have a crucial role to play now in providing the data upon which this refinement process must be based.

  17. Lunar articulated remote transportation system

    Science.gov (United States)

    1990-01-01

    The students of the Florida A&M/Florida State University College of Engineering continued their design from 1988 to 1989 on a first generation lunar transportation vehicle for use on the surface of the Moon between the years 2010 and 2020. Attention is focused on specific design details on all components of the Lunar Articulated Remote Transportation System (Lunar ARTS). The Lunar ARTS will be a three-cart, six-wheeled articulated vehicle. Its purpose will be the transportation of astronauts and/or materials for excavation purposes at a short distance from the base (37.5 km). The power system includes fuel cells for both the primary system and the back-up system. The vehicle has the option of being operated in a manned or unmanned mode. The unmanned mode includes stereo imaging with signal processing for navigation. For manned missions the display console is a digital readout displayed on the inside of the astronaut's helmet. A microprocessor is also on board the vehicle. Other components of the vehicle include a double wishbone/flexible hemispherical wheel suspension; chassis; a steering system; motors; seat retraints; heat rejection systems; solar flare protection; dust protection; and meteoroid protection. A one-quarter scale dynamic model has been built to study the dynamic behavior of the vehicle. The dynamic model closely captures the mechanical and electrical details of the total design.

  18. Perspectives on Lunar Helium-3

    Science.gov (United States)

    Schmitt, Harrison H.

    1999-01-01

    Global demand for energy will likely increase by a factor of six or eight by the mid-point of the 21st Century due to a combination of population increase, new energy intensive technologies, and aspirations for improved standards of living in the less-developed world (1). Lunar helium-3 (3He), with a resource base in the Tranquillitatis titanium-rich lunar maria (2,3) of at least 10,000 tonnes (4), represents one potential energy source to meet this rapidly escalating demand. The energy equivalent value of 3He delivered to operating fusion power plants on Earth would be about 3 billion per tonne relative to today's coal which supplies most of the approximately 90 billion domestic electrical power market (5). These numbers illustrate the magnitude of the business opportunity. The results from the Lunar Prospector neutron spectrometer (6) suggests that 3He also may be concentrated at the lunar poles along with solar wind hydrogen (7). Mining, extraction, processing, and transportation of helium to Earth requires new innovations in engineering but no known new engineering concepts (1). By-products of lunar 3He extraction, largely hydrogen, oxygen, and water, have large potential markets in space and ultimately will add to the economic attractiveness of this business opportunity (5). Inertial electrostatic confinement (IEC) fusion technology appears to be the most attractive and least capital intensive approach to terrestrial fusion power plants (8). Heavy lift launch costs comprise the largest cost uncertainty facing initial business planning, however, many factors, particularly long term production contracts, promise to lower these costs into the range of 1-2000 per kilogram versus about 70,000 per kilogram fully burdened for the Apollo Saturn V rocket (1). A private enterprise approach to developing lunar 3He and terrestrial IEC fusion power would be the most expeditious means of realizing this unique opportunity (9). In spite of the large, long-term potential

  19. Lunar Polar Landing Sites

    Science.gov (United States)

    Kamps, Oscar; Foing, Bernard H.; Flahaut, Jessica

    2016-07-01

    An important step for a scientific mission is to assess on where the mission should be conducted. This study on landing site selection focuses on a mission to the poles of the Moon where an in-situ mission should be conducted to answer the questions with respect to volatiles and ices. The European interest for a mission to the poles of the Moon is presented in the mission concept called Heracles. This mission would be a tele-operated, sample return mission where astronauts will controlling a rover from an Orion capsule in cislunar orbit. The primary selection of landing sites was based on the scientific interest of areas near the poles. The maximum temperature map from Diviner was used to select sites where CO^2¬ should always be stable. This means that the maximum temperature is lower than 54K which is the sublimation temperature for CO^2¬ in lunar atmospheric pressure. Around these areas 14 potential regions of interest were selected. Further selection was based on the epoch of the surface in these regions of interest. It was thought that it would be of high scientific value if sites are sampled which have another epoch than already sampled by one of the Apollo or Luna missions. Only 6 sites on both North as South Pole could contain stable CO^2 ¬and were older than (Pre-)Necterian. Before a landing site and rover traverse was planned these six sites were compared on their accessibility of the areas which could contain stable CO^2. It was assumed that slope lower than 20^o is doable to rove. Eventually Amundsen and Rozhdestvenskiy West were selected as regions of interest. Assumptions for selecting landing sites was that area should have a slope lower than 5^o, a diameter of 1km, in partial illuminated area, and should not be isolated but inside an area which is in previous steps marked as accessible area to rove. By using multiple tools in ArcGIS it is possible to present the area's which were marked as potential landing sites. The closest potential landing

  20. Constellation Architecture and System Margins Strategy

    Science.gov (United States)

    Muirhead, Brian

    2008-01-01

    NASA's Constellation Program (CxP) is responsible for the definition, design, development, and operations of the flight, ground, and mission operations elements being developed by the United States for the human exploration of the Moon, Mars, and beyond. This paper provides an overview of the latest CxP technical architecture baseline, driving requirements, and reference missions for initial capability to fly to the International Space Station (ISS) and to the Moon. The results of the most recent design decisions and analyses supporting the architecture, including the Ares I, Ares V, Orion crew exploration vehicle, and the Altair lunar lander will be presented.

  1. Lunar Regolith Biomining: Workshop Report

    Science.gov (United States)

    Dalton, Bonnie P.; Roberto, Frank F.

    2008-01-01

    On May 5th and 6th, 2007, NASA Ames Research Center hosted a workshop entitled 'Lunar Regolith Biomining'. The workshop addressed the feasibility of biologically-based mining of the lunar regolith along with identification of views and concepts for moving this topic forward to NASA. Workshop presentations provided background in topics of interest that served as the foundation for discussion in the subsequent breakout sessions. The first topical area included the history, status, and issues with biomining on Earth to familiarize all attendees with current activities. These presentations related the primary considerations in existing biomining, e.g., microbes of choice, pH of reactions, time and temperature, specific mining applications and locations, and benefits and/or limitations of biomining. The second area reviewed existing research efforts addressing biomining of planetary surfaces (Mars, Moon), including microbial considerations, and chemical necessities in biomining and biofuel production. The last element pertained to other non-biological considerations and influences in biomining efforts on the lunar surface such as radiation fluxes and effects, and the application of small satellite experiments to learn more about the lunar and Martian surfaces. Following the presentations, the workshop attendees divided into three breakout sessions to discuss areas of interest in greater detail and to define next steps in determining the feasibility of lunar regolith biomining. Topics for each of the three breakout sessions included: 1) bio-communities of choice, target product(s), and suggested ground studies; 2) physical/environmental issues and ground studies; and 3) the development of reference experiments for the Astrobiology Small payloads Workshop. The results of the breakout sessions are summarized and a list of participants is included.

  2. Electrostatic Beneficiation of Lunar Simulant

    Science.gov (United States)

    Trigwell, Steve; Captain, James; Captain, Janine; Arens, Ellen; Quinn, Jacqueline; Calle, Carlos

    2006-01-01

    Electrostatic beneficiation of lunar regolith is a method allowing refinement of specific minerals in the material for processing on the moon. The use of tribocharging the regolith prior to separation was investigated on the lunar simulant MLS-I by passing the dust through static mixers constructed from different materials; aluminum, copper, stainless steel, and polytetrafluoroethylene (PTFE). The amount of charge acquired by the simulant was dependent upon the difference in the work function of the dust and the charging material. XPS and SEM were used to characterize the simulant after it was sieved into five size fractions (> 100 pm, 75-100 pm, 50- 75 pm, 50-25 pm, and 100 pm) size fractions were beneficiated through a charge separator using the aluminum (charged the simulant negatively) and PTFE (charged positively) mixers. The mass fractions of the separated simulant revealed that for the larger particle size, significant unipolar charging was observed for both mixers, whereas for the smaller particle sizes, more bipolar charging was observed, probably due to the finer simulant adhering to the inside of the mixers shielding the dust from the charging material. Subsequent XPS analysis of the beneficiated fractions showed the larger particle size fraction having some species differentiation, but very little difference for the smaller.size. Although MLS-1 was made to have similar chemistry to actual lunar dust, its mineralogy is quite different. On-going experiments are using NASA JSC-1 lunar simulant. A vacuum chamber has been constructed, and future experiments are planned in a simulated lunar environment.

  3. Design and Construction of Manned Lunar Base

    Science.gov (United States)

    Li, Zhijie

    2016-07-01

    Building manned lunar base is one of the core aims of human lunar exploration project, which is also an important way to carry out the exploitation and utilization of lunar in situ resources. The most important part of manned lunar base is the design and construction of living habitation and many factors should be considered including science objective and site selection. Through investigating and research, the scientific goals of manned lunar base should be status and characteristics ascertainment of lunar available in situ resources, then developing necessary scientific experiments and utilization of lunar in situ resources by using special environment conditions of lunar surface. The site selection strategy of manned lunar base should rely on scientific goals according to special lunar surface environment and engineering capacity constraints, meanwhile, consulting the landing sites of foreign unmanned and manned lunar exploration, and choosing different typical regions of lunar surface and analyzing the landform and physiognomy, reachability, thermal environment, sunlight condition, micro meteoroids protection and utilization of in situ resources, after these steps, a logical lunar living habitation site should be confirmed. This paper brings out and compares three kinds of configurations with fabricating processes of manned lunar base, including rigid module, flexible and construction module manned lunar base. 1.The rigid habitation module is usually made by metal materials. The design and fabrication may consult the experience of space station, hence with mature technique. Because this configuration cannot be folded or deployed, which not only afford limit working and living room for astronauts, but also needs repetitious cargo transit between earth and moon for lunar base extending. 2. The flexible module habitation can be folded in fairing while launching. When deploying on moon, the configuration can be inflatable or mechanically-deployed, which means under

  4. A Versatile Lifting Device for Lunar Surface Payload Handling, Inspection & Regolith Transport Operations

    Science.gov (United States)

    Doggett, William; Dorsey, John; Collins, Tim; King, Bruce; Mikulas, Martin

    2008-01-01

    Devices for lifting and transporting payloads and material are critical for efficient Earth-based construction operations. Devices with similar functionality will be needed to support lunar-outpost construction, servicing, inspection, regolith excavation, grading and payload placement. Past studies have proposed that only a few carefully selected devices are required for a lunar outpost. One particular set of operations involves lifting and manipulating payloads in the 100 kg to 3,000 kg range, which are too large or massive to be handled by unassisted astronauts. This paper will review historical devices used for payload handling in space and on earth to derive a set of desirable features for a device that can be used on planetary surfaces. Next, an innovative concept for a lifting device is introduced, which includes many of the desirable features. The versatility of the device is discussed, including its application to lander unloading, servicing, inspection, regolith excavation and site preparation. Approximate rules, which can be used to size the device for specific payload mass and reach requirements, are provided. Finally, details of a test-bed implementation of the innovative concept, which will be used to validate the structural design and develop operational procedures, is provided.

  5. A Versatile Lifting Device for Lunar Surface Payload Handling, Inspection and Regolith Transport Operations

    Science.gov (United States)

    Doggett, William R.; Dorsey, John T.; Collins, Timothy J.; King, Bruce D.; Mikulas, Martin M., Jr.

    2008-01-01

    Devices for lifting and transporting payloads and material are critical for efficient Earth-based construction operations. Devices with similar functionality will be needed to support lunar-outpost construction, servicing, inspection, regolith excavation, grading and payload placement. Past studies have proposed that only a few carefully selected devices are required for a lunar outpost. One particular set of operations involves lifting and manipulating payloads in the 100 kg to 3,000 kg range, which are too large or massive to be handled by unassisted astronauts. This paper will review historical devices used for payload handling in space and on earth to derive a set of desirable features for a device that can be used on planetary surfaces. Next, an innovative concept for a lifting device is introduced, which includes many of the desirable features. The versatility of the device is discussed, including its application to lander unloading, servicing, inspection, regolith excavation and site preparation. Approximate rules, which can be used to size the device for specific payload mass and reach requirements, are provided. Finally, details of a test-bed implementation of the innovative concept, which will be used to validate the structural design and develop operational procedures, is provided.

  6. Geological Features Study of the Lunar Surface Using the Lunar Remote Sensing Data

    Science.gov (United States)

    Fuping, G.; Yanmei, Y.

    2009-03-01

    Taking typical craters of lunar surface as the test areas, using the Clementine UVVIS, NIR and lidar data, we study the relationship between the geological features and physiognomy, analyze the rule of lithology or mineral distribution of the lunar.

  7. Lunar Impactor: Investigating lunar magnetism and swirls with a cubesat

    Science.gov (United States)

    Garrick-Bethell, I.; Dougherty, M.; Brown, P.; Hemingway, D.; Halekas, J.; Bester, M.; Cosgrove, D.; Whitlock, C.; Lozano, P.; Martel, F.; Sanchez, H.; Jaroux, B. A.

    2013-09-01

    Magnetized 100-km-scale patches of the lunar crust were first observed by the Apollo 15 and 16 subsatellites. Despite several decades of study, the origin of these magnetic "anomalies" remains unknown. Part of the difficulty in determining the origin of these features has been the relatively high altitude of orbiting lunar spacecraft. Ideally, one would send a rover to measure the surface magnetic field, but the costs are prohibitive. Instead, small spacecraft can be sent on low-angle impact-trajectories into the hearts of these features. The spacecraft transmit measurements to the Earth in real-time, until the last milliseconds, enabling measurements at altitude. To perform this mission, we have designed a fully-independent 3U cubesat capable of reaching the Moon from geosynchronous orbit. We will describe the mission science, the cubesat design, and a magnetometer for making high-frequency magnetic field measurements.

  8. Planetary Science by the NLSI LUNAR Team: The Lunar Core, Ionized Atmosphere, & Nanodust Weathering

    OpenAIRE

    Burns, Jack; Lazio, Joseph; Team, for the NLSI LUNAR

    2011-01-01

    The Lunar University Network for Astrophysics Research (LUNAR) undertakes investigations across the full spectrum of science within the mission of the NASA Lunar Science Institute (NLSI), namely science of, on, and from the Moon. The LUNAR team's work on science of and on the Moon, which is the subject of this white paper, is conducted in the broader context of ascertaining the content, origin, and evolution of the solar system.

  9. The Lunar Surface Gravimeter as a Lunar Seismograph

    OpenAIRE

    Kawamura, T; Saito, Y.; Tanaka, S.; Ono, S.; Horai, K.; Hagermann, A.

    2008-01-01

    Introduction: The primary objective for the Lunar Surface Gravimeter (LSG) on Apollo 17 was to search for gravitational waves, but it failed in detecting them [1]. When the instrument was deployed on the Moon, the sensor beam could not be balanced in the proper equilibrium position. Consequently, the LSG was not able to function as originally designed. Lauderdale and Eichelman (1974) [1] concluded that “no provision has been made to supply data from the experiment to the National Space Scienc...

  10. Evolution of the Lunar Network

    Science.gov (United States)

    Gal-Edd, Jonathan; Fatig, Curtis C.; Miller, Ron

    2008-01-01

    The National Aeronautics and Space Administration (NASA) is planning to upgrade its network Infrastructure to support missions for the 21st century. The first step is to increase the data rate provided to science missions to at least the 100 megabits per second (Mbps) range. This is under way, using Ka-band 26 Gigahertz (GHz), erecting an 18-meter antenna for the Lunar Reconnaissance Orbiter (LRO), and the planned upgrade of the Deep Space Network (DSN) 34-meter network to support the James Webb Space Telescope (JWST). The next step is the support of manned missions to the Moon and beyond. Establishing an outpost with several activities such as rovers, colonization, and observatories, is better achieved by using a network configuration rather than the current method of point-to-point communication. Another challenge associated with the Moon is communication coverage with the Earth. The Moon's South Pole, targeted for human habitat and exploration, is obscured from Earth view for half of the 28-day lunar cycle and requires the use of lunar relay satellites to provide coverage when there is no direct view of the Earth. The future NASA and Constellation network architecture is described in the Space Communications Architecture Working Group (SCAWG) Report. The Space Communications and Navigation (SCAN) Constellation Integration Project (SCIP) is responsible for coordinating Constellation requirements and has assigned the responsibility for implementing these requirements to the existing NASA communication providers: DSN, Space Network (SN), Ground Network (GN) and the NASA Integrated Services Network (NISN). The SCAWG Report provides a future architecture but does not provide implementation details. The architecture calls for a Netcentric system, using hundreds of 12-meter antennas, a ground antenna array, and a relay network around the Moon. The report did not use cost as a variable in determining the feasibility of this approach. As part of the SCIP Mission Concept

  11. Lunar domes properties and formation processes

    CERN Document Server

    Lena, Raffaello; Phillips, Jim; Chiocchetta, Maria Teresa

    2013-01-01

    Lunar domes are structures of volcanic origin which are usually difficult to observe due to their low heights. The Lunar Domes Handbook is a reference work on these elusive features. It provides a collection of images for a large number of lunar domes, including telescopic images acquired with advanced but still moderately intricate amateur equipment as well as recent orbital spacecraft images. Different methods for determining the morphometric properties of lunar domes (diameter, height, flank slope, edifice volume) from image data or orbital topographic data are discussed. Additionally, multispectral and hyperspectral image data are examined, providing insights into the composition of the dome material. Several classification schemes for lunar domes are described, including an approach based on the determined morphometric quantities and spectral analyses. Furthermore, the book provides a description of geophysical models of lunar domes, which yield information about the properties of the lava from which the...

  12. Electrostatic Characterization of Lunar Dust Simulants

    Science.gov (United States)

    Calle, C. I.; Buhler, C. R.; Ritz, M. L.

    2008-01-01

    Lunar dust can jeopardize exploration activities due to its ability to cling to most surfaces. In this paper, we report on our measurements of the electrostatic properties of the lunar soil simulants. Methods have been developed to measure the volume resistivity, dielectric constant, chargeability, and charge decay of lunar soil. While the first two parameters have been measured in the past [Olhoeft 1974], the last two have never been measured directly on the lunar regolith or on any of the Apollo samples. Measurements of the electrical properties of the lunar samples are being performed in an attempt to answer important problems that must be solved for the development of an effective dust mitigation technology, namely, how much charge can accumulate on the dust and how long does the charge remain on surfaces. The measurements will help develop coatings that are compatible with the intrinsic electrostatic properties of the lunar regolith.

  13. Lunar Roving Vehicle parked in lunar depression on slope of Stone Mountain

    Science.gov (United States)

    1972-01-01

    The Lunar Roving Vehicle appears to be parked in a deep lunar depression on the slope of Stone Mountain in this photograph of the lunar scene at Station no. 4, taken during the second Apollo 16 extravehicular activity (EVA-2) at the Descartes landing site. A sample collection bag is in the right foreground. Note field of small boulders at upper right.

  14. Apollo program soil mechanics experiment. [interaction of the lunar module with the lunar surface

    Science.gov (United States)

    Scott, R. F.

    1975-01-01

    The soil mechanics investigation was conducted to obtain information relating to the landing interaction of the lunar module (LM) with the lunar surface, and lunar soil erosion caused by the spacecraft engine exhaust. Results obtained by study of LM landing performance on each Apollo mission are summarized.

  15. Community Report and Recommendations from International Lunar Exploration Working Group (ILEWG)

    Science.gov (United States)

    Foing, Bernard H.

    2016-07-01

    Lunar Network for seismometry and other geophysical measurements - Lunar missions will be driven by exploration, resource utilization, and science; we should consider minimum science payload for every mission, e.g., landers and rovers should carry instruments to determine surface composition and mineralogy - It is felt important to have a shared database about previous missions available for free, so as to provide inputs to future missions, including a gap analysis of needed measurements. Highly resolved global data sets are required. Autonomous landing and hazard avoidance will depend on the best topographic map of the Moon, achievable by combining shared data. - New topics such as life sciences, partial gravity processes on the Moon should be followed in relation to future exploration needs. 2. Technologies and resources - A number of robotic missions to the Moon are now undertaken independently by various nations, with a degree of exchange of information and coordination. That should increase towards real cooperation, still allowing areas of competition for keeping the process active, cost-effective and faster. - Lunar landers, pressurized lunar rover projects as presented from Europe, Asia and America are important steps that can create opportunities for international collaboration, within a coordinated village of robotic precursors and assistants to crew missions. - We have to think about development, modernization of existing navigation capabilities, and provision of lunar positioning, navigation and data relay assets to support future robotic and human exploration. New concepts and new methods for transportation have attracted much attention and are of great potential. 3. Infrastructures and human aspects - It is recommended to have technical sessions and activities dealing with different aspects of human adaptation to space environments, the modeling of sub-systems, microbial protection and use of inflatable technologies - While the Moon is the best and next

  16. Lunar semimonthly signal in cloud amount

    OpenAIRE

    Pertsev, Nikolay; Dalin, Peter

    2009-01-01

    Based on NASA satellite infrared and visible range measurements, cloud amount ISCCP_D1 summer nighttime data, representing the tropospheric cloud activity at Central Russia are examined over 1994-2007, and the lunar signal in the cloud amount was extracted. The ISCCP_D1 database was used to confirm previous results of Pertsev, Dalin and Romejko (2007) on the large importance of lunar declination effect compared to the lunar phase effect. Since this database provides much more information than...

  17. Quarantine testing and biocharacterization of lunar materials

    Science.gov (United States)

    Taylor, G. R.; Mieszkuc, B. J.; Simmonds, R. C.; Walkinshaw, C. H.

    1975-01-01

    Quarantine testing was conducted to ensure the safety of all life on earth. The plants and animals which were exposed to lunar material were carefully observed for prolonged periods to determine if any mutation or changes in growing characteristics and behavior occurred. The quarantine testing was terminated after the Apollo 14 flight when it became apparent that previously returned lunar material contained no potentially harmful agents. Further biological experimentation with the lunar material was conducted to determine its chemical, physical, and nutritional qualities.

  18. Several Husar Rovers Around the Hunveyor Lander: Specific Research Strategy and Educational Model System of Universities in Hungary

    Science.gov (United States)

    Hegyi, S.; Drommer, B.; Hegyi, A.; Biró, T.; Kókány, A.; Hudoba, Gy.; Rudas, G.; Kovács, Zs.; Földi, T.; Bérczi, Sz.

    2007-07-01

    We are developing a strategy: a family of various Husar-2 rovers - smaller and larger, supported by onboard computer, camera and specific tools - to work around the Hunveyor-2 university lander robot, similar to the arrangement of Sojourner around Pathfinder.

  19. A lander mission to probe subglacial water on Saturn's moon Enceladus for life

    Science.gov (United States)

    Konstantinidis, Konstantinos; Flores Martinez, Claudio L.; Dachwald, Bernd; Ohndorf, Andreas; Dykta, Paul; Bowitz, Pascal; Rudolph, Martin; Digel, Ilya; Kowalski, Julia; Voigt, Konstantin; Förstner, Roger

    2015-01-01

    The plumes discovered by the Cassini mission emanating from the south pole of Saturn's moon Enceladus and the unique chemistry found in them have fueled speculations that Enceladus may harbor life. The presumed aquiferous fractures from which the plumes emanate would make a prime target in the search for extraterrestrial life and would be more easily accessible than the moon's subglacial ocean. A lander mission that is equipped with a subsurface maneuverable ice melting probe will be most suitable to assess the existence of life on Enceladus. A lander would have to land at a safe distance away from a plume source and melt its way to the inner wall of the fracture to analyze the plume subsurface liquids before potential biosignatures are degraded or destroyed by exposure to the vacuum of space. A possible approach for the in situ detection of biosignatures in such samples can be based on the hypothesis of universal evolutionary convergence, meaning that the independent and repeated emergence of life and certain adaptive traits is wide-spread throughout the cosmos. We thus present a hypothetical evolutionary trajectory leading towards the emergence of methanogenic chemoautotrophic microorganisms as the baseline for putative biological complexity on Enceladus. To detect their presence, several instruments are proposed that may be taken aboard a future subglacial melting probe. The "Enceladus Explorer" (EnEx) project funded by the German Space Administration (DLR), aims to develop a terrestrial navigation system for a subglacial research probe and eventually test it under realistic conditions in Antarctica using the EnEx-IceMole, a novel maneuverable subsurface ice melting probe for clean sampling and in situ analysis of ice and subglacial liquids. As part of the EnEx project, an initial concept study is foreseen for a lander mission to Enceladus to deploy the IceMole near one of the active water plumes on the moon's South-Polar Terrain, where it will search for

  20. New estimates of the Martian landers and rovers coordinates by combining Doppler data and topography model

    Science.gov (United States)

    Le Maistre, Sebastien

    2015-11-01

    We propose here a new method to determine the three coordinates of a spacecraft landed on Mars with a high accuracy as early as the very beginning of the mission. The method consists of determining first the in-equatorial plane coordinates with Doppler data only and then inferring the Z-coordinate (along the polar axis) using the MOLA topography model. The method is applied to several landed missions, providing good estimate of the Z-coordinate of Viking lander 1, Pathfinder and Spirit, but failing to improve the Z of Opportunity and Viking lander 2. Finally, the method is applied in the InSight landing ellipse showing the high probability to get InSight’s Z coordinate with a precision better than 10m after only a couple of days of observations.

  1. Reconciling the Differences between the Measurements of CO2 Isotopes by the Phoenix and MSL Landers

    Science.gov (United States)

    Niles, P. B.; Mahaffy, P. R.; Atreya, S.; Pavlov, A. A.; Trainer, M.; Webster, C. R.; Wong, M.

    2014-01-01

    Precise stable isotope measurements of the CO2 in the martian atmosphere have the potential to provide important constraints for our understanding of the history of volatiles, the carbon cycle, current atmospheric processes, and the degree of water/rock interaction on Mars. There have been several different measurements by landers and Earth based systems performed in recent years that have not been in agreement. In particular, measurements of the isotopic composition of martian atmospheric CO2 by the Thermal and Evolved Gas Analyzer (TEGA) instrument on the Mars Phoenix Lander and the Sample Analysis at Mars (SAM) instrument on the Mars Science Laboratory (MSL) are in stark disagreement. This work attempts to use measurements of mass 45 and mass 46 of martian atmospheric CO2 by the SAM and TEGA instruments to search for agreement as a first step towards reaching a consensus measurement that might be supported by data from both instruments.

  2. Artistic philosophies in lunar drawing.

    Science.gov (United States)

    Will, M. L.

    1998-04-01

    Visual observation through drawing is still a highly valued method of recording lunar and planetary observations. When used for comparison, drawings of today can help better the understanding of past visual observations. Also, the act of drawing trains the eye to see detail normally missed through other means of data collecting such as photography and electronic imaging. For two academic semesters the author enrolled in art courses that taught drawing theory. The goal was to correct for his own shortcoming in lunar drawing by applying the artistic concepts that had been learned in drawing class and to instruct students in the A.L.P.O. Training Program about these concepts. This paper examines these artistic techniques and how they relate to what the author is seeing and attempting to record while observing the Moon.

  3. Lunar western limb pyroclastic deposits

    Science.gov (United States)

    Coombs, Cassandra R.; Hawke, B. Ray

    1991-01-01

    It has become increasingly evident that the lunar pyroclastic volcanism played an important role in the formation and resurfacing of many areas of the Moon. On-going analysis of lunar Orbiter and Apollo photographs continues to locate and identify pyroclastic deposits and suggests that they just may be more ubiquitous than once thought. Located near mare/highland boundaries, many of these deposits formed contemporaneously with effusive mare volcanism. The mantling deposits formed as products of fire-fountaining. Probable source vents for these deposits include irregular depressions at the head of associated sinuous rilles and/or along irregular fractures in the floors of ancient craters. Here, researchers provide a brief synopsis of the nature of the dark mantling deposits and briefly discuss several newly identified deposits on the western limb.

  4. Advances in lunar exploration detectors

    Institute of Scientific and Technical Information of China (English)

    XU Tao; OUYANG Ziyuan; LI Chunlai; XU Lin

    2005-01-01

    Due to the rapid development of modem science and technology, many advanced sensors have been put into use to explore our solar system, including the Moon. With the help of those detectors,we can retrieve more information to about the Moon' s composition and evolution. The Clementine (January, 1994), Lunar Prospector ( January, 1998) and especially Smart-1 ( September, 2003 ) launched successively have demonstrated the next-generation planet exploration techniques. Now China has decided to send a probe to the Moon. So it is necessary to overview the development of detectors used for the scientific observation of the Moon. In this paper, some main instruments used to acquire geochemistry information are described, which include UV-VIS-NIR CCD imaging spectroscope, neutronray, gamma-ray, and X-ray spectrometers. Moreover, the payloads of China' s first lunar satellite are introduced briefly.

  5. Production of Synthetic Lunar Simulants Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Zybek Advanced Products has proven the ability to produce industrial quantities of lunar simulant materials, including glass, agglutinate and melt breccias. These...

  6. Lunar soil properties and soil mechanics

    Science.gov (United States)

    Mitchell, J. K.; Houston, W. N.

    1974-01-01

    The long-range objectives were to develop methods of experimentation and analysis for the determination of the physical properties and engineering behavior of lunar surface materials under in situ environmental conditions. Data for this purpose were obtained from on-site manned investigations, orbiting and softlanded spacecraft, and terrestrial simulation studies. Knowledge of lunar surface material properties are reported for the development of models for several types of lunar studies and for the investigation of lunar processes. The results have direct engineering application for manned missions to the moon.

  7. Michiel Florent van Langren and Lunar Naming

    OpenAIRE

    van der Krogt, P.C.J.; Ormeling, F.J.

    2014-01-01

    Michiel Florent van Langren produced a lunar map in 1645 in order to present a way to mariners to find their position at sea by observing which craters were either illuminated by solar rays or obscured during the waxing or waning of the moon. This required a detailed map of the moon and in order to be able to refer to lunar objects these had to be named. The lunar map he produced in 1645 bore over 300 names, following the system of subdividing lunar topography into land masses and seas (a dis...

  8. On the detection of lunar volatile emissions

    Science.gov (United States)

    Srnka, L. J.

    1979-01-01

    This letter shows that the Apollo lunar-surface Suprathermal Ion Detection Experiment (SIDE) instruments lack the sensitivity to detect even large emissions of radiogenic gases from the moon if the venting of these gases occurs primarily at a few-well-defined sites of lunar transient phenomena (LTPs). It is suggested that specific flight instruments for the proposed ESA Polar Orbiting Lunar Observatory (POLO) mission, which could detect active venting, would help determine the energy source for LTPs and would increase knowledge of lunar geophysics. A critical-velocity model for the LTP energy source is briefly discussed.

  9. Regolith Volatile Recovery at Simulated Lunar Environments

    Science.gov (United States)

    Kleinhenz, Julie; Paulsen, Gale; Zacny, Kris; Schmidt, Sherry; Boucher, Dale

    2016-01-01

    Lunar Polar Volatiles: Permanently shadowed craters at the lunar poles contain water, 5 wt according to LCROSS. Interest in water for ISRU applications. Desire to ground truth water using surface prospecting e.g. Resource Prospector and RESOLVE. How to access subsurface water resources and accurately measure quantity. Excavation operations and exposure to lunar environment may affect the results. Volatile capture tests: A series a ground based dirty thermal vacuum tests are being conducted to better understand the subsurface sampling operations. Sample removal and transfer. Volatiles loss during sampling operations. Concept of operations, Instrumentation. This presentation is a progress report on volatiles capture results from these tests with lunar polar drill prototype hardware.

  10. Lunar University Network for Astrophysics Research: Comprehensive Report to The NASA Lunar Science Institute. March 1, 2012

    OpenAIRE

    Burns, Jack; Lazio, Joseph

    2012-01-01

    The Lunar University Network for Astrophysics Research (LUNAR) is a team of researchers and students at leading universities, NASA centers, and federal research laboratories undertaking investigations aimed at using the Moon as a platform for space science. LUNAR research includes Lunar Interior Physics & Gravitation using Lunar Laser Ranging (LLR), Low Frequency Cosmology and Astrophysics (LFCA), Planetary Science and the Lunar Ionosphere, Radio Heliophysics, and Exploration Science. The LUN...

  11. Investigating the Martian atmosphere using the ExoMars 2016 lander

    OpenAIRE

    Chapman, R M; Lewis, S R; Balme, M. R.; Steele, L. J.

    2015-01-01

    Accurate modelling of the Martian atmosphere is essential both for planning and completing future missions to the Martian surface, and for accurate analysis and interpretation of the data that they return. Large dust storms and local wind patterns can affect spacecraft landing profiles, and the level of dust present in the atmosphere may impact lander performance. The ExoMars 2016 Mission will carry an Entry, Descent and Landing Demonstrator Module (EDM), primarily designed to test the abilit...

  12. Planning and Implementation of Pressure and Humidity Measurements on ExoMars 2016 Schiaparelli Lander

    Science.gov (United States)

    Nikkanen, T.; Schmidt, W.; Genzer, M.; Komu, M.; Kemppinen, O.; Haukka, H.; Harri, A.-M.

    2014-04-01

    The ExoMars 2016 Schiaparelli lander offers a platform for meteorological and electric field observations ranging from timescales of seconds to Martian days, or sols. In the Finnish Meteorological Institute (FMI), this opportunity has been used to develop a new type of instrument controller unit for the already flight-proven FMI pressure and humidity instruments. The new controller allows for more flexible and autonomous data acquisition processes and planning than the previous FMI designs.

  13. The Hermes Lander project - the technology, the data, and the evaluation of concept and results

    OpenAIRE

    Godø, Olav Rune; Tenningen, Eirik; Ostrowski, Marek; Kubilius, Rokas; Kutti, Tina; Korneliussen, Rolf J.; Fosså, Jan Helge

    2012-01-01

    This report summarizes technology, operations, experience, and scientific results from the Hermes Lander project. The Project established an autonomous, multi-sensor, sub-sea sensor platform powered by batteries. The platform was launched at a coral reef location in Hola off Vesterålen and collected data during seven months in 2010 (March – September). Oceanographic and echo-sounder data were analyzed and compared with similar data from sporadically collected data from research vessels ...

  14. Feasibility of a Dragon-Derived Mars Lander for Scientific and Human-Precursor Missions

    Science.gov (United States)

    Karcz, John S.; Davis, Sanford S.; Allen, Gary A.; Glass, Brian J.; Gonzales, Andrew; Heldmann, Jennifer Lynne; Lemke, Lawrence G.; McKay, Chris; Stoker, Carol R.; Wooster, Paul Douglass; Zarchi, Kerry A.

    2013-01-01

    A minimally-modified SpaceX Dragon capsule launched on a Falcon Heavy rocket presents the possibility of a new low-cost, high-capacity Mars lander for robotic missions. We have been evaluating such a "Red Dragon" platform as an option for the Icebreaker Discovery Program mission concept. Dragon is currently in service ferrying cargo to and from the International Space Station, and a crew transport version is in development. The upcoming version, unlike other Earth-return vehicles, exhibits most of the capabilities necessary to land on Mars. In particular, it has a set of high-thrust, throttleable, storable bi-propellant "SuperDraco" engines integrated directly into the capsule that are intended for launch abort and powered landings on Earth. These thrusters provide the possibility of a parachute-free, fully-propulsive deceleration at Mars from supersonic speeds to the surface, a descent approach which would also scale well to larger future human landers. We will discuss the motivations for exploring a Red Dragon lander, the current results of our analysis of its feasibility and capabilities, and the implications of the platform for the Icebreaker mission concept. In particular, we will examine entry, descent, and landing (EDL) in detail. We will also describe the modifications to Dragon necessary for interplanetary cruise, EDL, and operations on the Martian surface. Our analysis to date indicates that a Red Dragon lander is feasible and that it would be capable of delivering more than 1000 kg of payload to sites at elevations three kilometers below the Mars Orbiter Laser Altimeter (MOLA) reference, which includes sites throughout most of the northern plains and Hellas.

  15. Energy for lunar resource exploitation

    Science.gov (United States)

    Glaser, Peter E.

    1992-01-01

    Humanity stands at the threshold of exploiting the known lunar resources that have opened up with the access to space. America's role in the future exploitation of space, and specifically of lunar resources, may well determine the level of achievement in technology development and global economic competition. Space activities during the coming decades will significantly influence the events on Earth. The 'shifting of history's tectonic plates' is a process that will be hastened by the increasingly insistent demands for higher living standards of the exponentially growing global population. Key to the achievement of a peaceful world in the 21st century, will be the development of a mix of energy resources at a societally acceptable and affordable cost within a realistic planning horizon. This must be the theme for the globally applicable energy sources that are compatible with the Earth's ecology. It is in this context that lunar resources development should be a primary goal for science missions to the Moon, and for establishing an expanding human presence. The economic viability and commercial business potential of mining, extracting, manufacturing, and transporting lunar resource based materials to Earth, Earth orbits, and to undertake macroengineering projects on the Moon remains to be demonstrated. These extensive activities will be supportive of the realization of the potential of space energy sources for use on Earth. These may include generating electricity for use on Earth based on beaming power from Earth orbits and from the Moon to the Earth, and for the production of helium 3 as a fuel for advanced fusion reactors.

  16. Pneumatic and Percussive Penetration Approaches for Heat Flow Probe Emplacement on Robotic Lunar Missions

    Science.gov (United States)

    Zacny, K.; Nagihara, S.; Hedlund, M.; Paulsen, G.; Shasho, J.; Mumm, E.; Kumar, N.; Szwarc, T.; Chu, P.; Craft, J.; Taylor, P.; Milam, M.

    2013-11-01

    In this paper, the development of heat flow probes for measuring the geothermal gradient and conductivity of lunar regolith are presented. These two measurements are the required information for determining the heat flow of a planetary body. Considering the Moon as an example, heat flow properties are very important information for studying the radiogenic isotopes, the thermal evolution and differentiation history, and the mechanical properties of the interior. In order to obtain the best measurements, the sensors must be extended to a depth of at least 3 m, i.e. beyond the depth of significant thermal cycles. Two approaches to heat flow deployment and measurement are discussed in this paper: a percussive approach and a pneumatic approach. The percussive approach utilizes a high frequency hammer to drive a cone penetrometer into the lunar simulant. Ring-like thermal sensors (heaters and temperature sensors) on the penetrometer rod are deployed into the simulant every 30 cm as the penetrometer penetrates to the required 3 m depth. Once the target depth has been achieved, the deployment rod is removed from the simulant, eliminating any thermal path to the lander. The pneumatic approach relies on pressurized gas to excavate, using a cone-shaped nozzle to penetrate the simulant. The nozzle is attached to a coiled stem with thermal sensors embedded along the length of the stem. As the simulant is being lofted out of the hole by the escaping gas, the stem is progressively reeled out from a spool, thus moving the cone deeper into the hole. Thermal conductivity is measured using a needle probe attached to the end of the cone. Breadboard prototypes of these two heat flow probe systems have been constructed and successfully tested under lunar-like conditions to approximately 70 cm, which was the maximum possible depth allowed by the size of the test bin and the chamber.

  17. Lunar Applications in Reconfigurable Computing

    Science.gov (United States)

    Somervill, Kevin

    2008-01-01

    NASA s Constellation Program is developing a lunar surface outpost in which reconfigurable computing will play a significant role. Reconfigurable systems provide a number of benefits over conventional software-based implementations including performance and power efficiency, while the use of standardized reconfigurable hardware provides opportunities to reduce logistical overhead. The current vision for the lunar surface architecture includes habitation, mobility, and communications systems, each of which greatly benefit from reconfigurable hardware in applications including video processing, natural feature recognition, data formatting, IP offload processing, and embedded control systems. In deploying reprogrammable hardware, considerations similar to those of software systems must be managed. There needs to be a mechanism for discovery enabling applications to locate and utilize the available resources. Also, application interfaces are needed to provide for both configuring the resources as well as transferring data between the application and the reconfigurable hardware. Each of these topics are explored in the context of deploying reconfigurable resources as an integral aspect of the lunar exploration architecture.

  18. A stereo-vision hazard-detection algorithm to increase planetary lander autonomy

    Science.gov (United States)

    Woicke, Svenja; Mooij, Erwin

    2016-05-01

    For future landings on any celestial body, increasing the lander autonomy as well as decreasing risk are primary objectives. Both risk reduction and an increase in autonomy can be achieved by including hazard detection and avoidance in the guidance, navigation, and control loop. One of the main challenges in hazard detection and avoidance is the reconstruction of accurate elevation models, as well as slope and roughness maps. Multiple methods for acquiring the inputs for hazard maps are available. The main distinction can be made between active and passive methods. Passive methods (cameras) have budgetary advantages compared to active sensors (radar, light detection and ranging). However, it is necessary to proof that these methods deliver sufficiently good maps. Therefore, this paper discusses hazard detection using stereo vision. To facilitate a successful landing not more than 1% wrong detections (hazards that are not identified) are allowed. Based on a sensitivity analysis it was found that using a stereo set-up at a baseline of ≤ 2 m is feasible at altitudes of ≤ 200 m defining false positives of less than 1%. It was thus shown that stereo-based hazard detection is an effective means to decrease the landing risk and increase the lander autonomy. In conclusion, the proposed algorithm is a promising candidate for future landers.

  19. Rosetta lander Philae: Flight Dynamics analyses for landing site selection and post-landing operations

    Science.gov (United States)

    Jurado, Eric; Martin, Thierry; Canalias, Elisabet; Blazquez, Alejandro; Garmier, Romain; Ceolin, Thierry; Gaudon, Philippe; Delmas, Cedric; Biele, Jens; Ulamec, Stephan; Remetean, Emile; Torres, Alex; Laurent-Varin, Julien; Dolives, Benoit; Herique, Alain; Rogez, Yves; Kofman, Wlodek; Jorda, Laurent; Zakharov, Vladimir; Crifo, Jean-François; Rodionov, Alexander; Heinish, P.; Vincent, Jean-Baptiste

    2016-08-01

    On the 12th of November 2014, The Rosetta Lander Philae became the first spacecraft to softly land on a comet nucleus. Due to the double failure of the cold gas hold-down thruster and the anchoring harpoons that should have fixed Philae to the surface, it spent approximately two hours bouncing over the comet surface to finally come at rest one km away from its target site. Nevertheless it was operated during the 57 h of its First Science Sequence. The FSS, performed with the two batteries, should have been followed by the Long Term Science Sequence but Philae was in a place not well illuminated and fell into hibernation. Yet, thanks to reducing distance to the Sun and to seasonal effect, it woke up at end of April and on 13th of June it contacted Rosetta again. To achieve this successful landing, an intense preparation work had been carried out mainly between August and November 2014 to select the targeted landing site and define the final landing trajectory. After the landing, the data collected during on-comet operations have been used to assess the final position and orientation of Philae, and to prepare the wake-up. This paper addresses the Flight Dynamics studies done in the scope of this landing preparation from Lander side, in close cooperation with the team at ESA, responsible for Rosetta, as well as for the reconstruction of the bouncing trajectory and orientation of the Lander after touchdown.

  20. System-level Analysis of Food Moisture Content Requirements for the Mars Dual Lander Transit Mission

    Science.gov (United States)

    Levri, Julie A.; Perchonok, Michele H.

    2004-01-01

    In order to ensure that adequate water resources are available during a mission, any net water loss from the habitat must be balanced with an equivalent amount of required makeup water. Makeup water may come from a variety of sources, including water in shipped tanks, water stored in prepackaged food, product water from fuel cells, and in-situ water resources. This paper specifically addresses the issue of storing required makeup water in prepackaged food versus storing the water in shipped tanks for the Mars Dual Lander Transit Mission, one of the Advanced Life Support Reference Missions. In this paper, water mass balances have been performed for the Dual Lander Transit Mission, to determine the necessary requirement of makeup water under nominal operation (i.e. no consideration of contingency needs), on a daily basis. Contingency issues are briefly discussed with respect to impacts on makeup water storage (shipped tanks versus storage in prepackaged food). The Dual Lander Transit Mission was selected for study because it has been considered by the Johnson Space Center Exploration Office in enough detail to define a reasonable set of scenario options for nominal system operation and contingencies. This study also illustrates the concept that there are multiple, reasonable life support system scenarios for any one particular mission. Thus, the need for a particular commodity can depend upon many variables in the system. In this study, we examine the need for makeup water as it depends upon the configuration of the rest of the life support system.

  1. Rosetta Lander - Philae: preparations for landing on comet 67P/Churyumov-Gerasimenko

    Science.gov (United States)

    Ulamec, S.; Biele, J.; Jurado, E.; Gaudon, P.; Geurts, K.

    2013-12-01

    Rosetta is a Cornerstone Mission of the ESA Horizon 2000 programme. It is going to rendezvous with comet 67P/Churyumov-Gerasimenko after a ten year cruise and will study both its nucleus and coma with an orbiting spacecraft as well as with a Lander, Philae, that has been designed to land softly on the comet nucleus. Aboard Philae, a payload consisting of ten scientific instruments will perform in-situ studies of the cometary material. Philae will be separated from the mother spacecraft from a dedicated delivery trajectory. It then descends, ballistically, to the surface of the comet, stabilized with an internal flywheel. At touch-down anchoring harpoons will be fired and a damping mechanism within the landing gear will provide the lander from re-bouncing. Currently the characteristics of the nucleus of the comet are hardly known. Mapping with the orbiter cameras (shape, slopes, surface roughness) and essential measurements like gravity field, state of rotation or outgassing parameters can only be performed after arrival of the main spacecraft, between May and October 2014. These data will be used for selecting a landing site and defining the detailed landing strategy. Landing is foreseen for November 2014 at a heliocentric distance of 3 AU. The paper describes the Rosetta Lander system and its payload, but emphasizes on the preparations for landing, the landing site selection process and the planned operational timeline.

  2. Lunar Landing Trajectory Design for Onboard Hazard Detection and Avoidance

    Science.gov (United States)

    Paschall, Steve; Brady, Tye; Sostaric, Ron

    2009-01-01

    The Autonomous Landing and Hazard Avoidance Technology (ALHAT) Project is developing the software and hardware technology needed to support a safe and precise landing for the next generation of lunar missions. ALHAT provides this capability through terrain-relative navigation measurements to enhance global-scale precision, an onboard hazard detection system to select safe landing locations, and an Autonomous Guidance, Navigation, and Control (AGNC) capability to process these measurements and safely direct the vehicle to a landing location. This paper focuses on the key trajectory design issues relevant to providing an onboard Hazard Detection and Avoidance (HDA) capability for the lander. Hazard detection can be accomplished by the crew visually scanning the terrain through a window, a sensor system imaging the terrain, or some combination of both. For ALHAT, this hazard detection activity is provided by a sensor system, which either augments the crew s perception or entirely replaces the crew in the case of a robotic landing. Detecting hazards influences the trajectory design by requiring the proper perspective, range to the landing site, and sufficient time to view the terrain. Following this, the trajectory design must provide additional time to process this information and make a decision about where to safely land. During the final part of the HDA process, the trajectory design must provide sufficient margin to enable a hazard avoidance maneuver. In order to demonstrate the effects of these constraints on the landing trajectory, a tradespace of trajectory designs was created for the initial ALHAT Design Analysis Cycle (ALDAC-1) and each case evaluated with these HDA constraints active. The ALHAT analysis process, described in this paper, narrows down this tradespace and subsequently better defines the trajectory design needed to support onboard HDA. Future ALDACs will enhance this trajectory design by balancing these issues and others in an overall system

  3. Feasibility Study on Lunar and Mars Exploration

    Science.gov (United States)

    Mori, Hidehiko; Takazawa, Yoshisada; Kaneko, Yutaka; Kawazoe, Takeshi; Takano, Yutaka; Namura, Eijiro

    1996-10-01

    This technical memorandum summarizes the results of an in-house study on lunar and Mars drone explorations - observation, landing and mobile explorations and sample returns for lunar and Mars respectively. So far, lunar and planet explorations have been primarily performed by the United States and the Soviet Union. ISAS and ESA have also contributed to some extent. The main purpose has been scientific exploration. There are some arguments that lunar and planet explorations should be performed for scientific purposes and the exploitation of them is not necessary. However, most scientific research involve the existence and survival of humankind, so it is not the fact that they cannot be organized from the side of exploitation. Especially, if NASDA makes approaches to lunar and Mars exploration, it should inevitably embrace exploitation plans. In this preface we provide the outline of lunar and Mars exploitation scenarios set up as a premise of the review on lunar and Mars unmanned exploration plans. Various reviews have been performed on whether the Moon or Mars would allow for human activities or survival. Among them, He mill, the solar powered satellite material mill and construction project of relay station to Mars as well as Mars teraforming plan have important issues. These projects have not yet become feasible because their expected investments are too large to make them practical. However, the present time seems the most appropriate to get with lunar and Mars exploitation projects under international cooperation since the realization of a space station is imminent and the international cooperation is being created with the participation of Russia. The international space station project will be continued until the year 2015. The post project has not yet been decided. Therefore, we expect that Japan would propose two successive projects, one is to construct an orbital service station combining manned abilities of the station and orbital service system and the

  4. Production of Lunar Concrete Using Molten Sulfur

    Science.gov (United States)

    Omar, Husam A.

    1993-01-01

    The United States has made a commitment to go back to the moon to stay in the early part of the next century. In order to achieve this objective it became evident to NASA that a Lunar Outpost will be needed to house scientists and astronauts who will be living on the moon for extended periods of time. A study has been undertaken by the authors and supported by NASA to study the feasibility of using lunar regolith with different binders such as molten sulfur, epoxy or hydraulic cement as a construction material for different lunar structures. The basic premise of this study is that it will be more logical and cost effective to manufacture lunar construction materials utilizing indigenous resources rather than transporting needed materials from earth. Lunar concrete (made from Hydraulic Cement and lunar soil) has been studied and suggested as the construction material of choice for some of the lunar projects. Unfortunately, its hydration requires water which is going to be a precious commodity on the moon. Therefore this study explores the feasibility of using binders other than hydraulic cement such as sulfur or epoxy with lunar regolith as a construction material. This report describes findings of this study which deals specifically with using molten sulfur as a binder for Lunar concrete. It describes laboratory experiments in which the sulfur to lunar soil simulant ratios by weight were varied to study the minimum amount of sulfur required to produce a particular strength. The compressive and tensile strengths of these mixes were evaluated. Metal and fiber glass fibers were added to some of the mixes to study their effects on the compressive and tensile strengths. This report also describes experiments where the sulfur is melted and mixed with the lunar regolith in a specially designed vacuum chamber. The properties of the produced concrete were compared to those of concrete produced under normal pressure.

  5. Lunar and Planetary Science XXXV: Viewing the Lunar Interior Through Titanium-Colored Glasses

    Science.gov (United States)

    2004-01-01

    The session"Viewing the Lunar Interior Through Titanium-Colored Glasses" included the following reports:Consequences of High Crystallinity for the Evolution of the Lunar Magma Ocean: Trapped Plagioclase; Low Abundances of Highly Siderophile Elements in the Lunar Mantle: Evidence for Prolonged Late Accretion; Fast Anorthite Dissolution Rates in Lunar Picritic Melts: Petrologic Implications; Searching the Moon for Aluminous Mare Basalts Using Compositional Remote-Sensing Constraints II: Detailed analysis of ROIs; Origin of Lunar High Titanium Ultramafic Glasses: A Hybridized Source?; Ilmenite Solubility in Lunar Basalts as a Function of Temperature and Pressure: Implications for Petrogenesis; Garnet in the Lunar Mantle: Further Evidence from Volcanic Glasses; Preliminary High Pressure Phase Relations of Apollo 15 Green C Glass: Assessment of the Role of Garnet; Oxygen Fugacity of Mare Basalts and the Lunar Mantle. Application of a New Microscale Oxybarometer Based on the Valence State of Vanadium; A Model for the Origin of the Dark Ring at Orientale Basin; Petrology and Geochemistry of LAP 02 205: A New Low-Ti Mare-Basalt Meteorite; Thorium and Samarium in Lunar Pyroclastic Glasses: Insights into the Composition of the Lunar Mantle and Basaltic Magmatism on the Moon; and Eu2+ and REE3+ Diffusion in Enstatite, Diopside, Anorthite, and a Silicate Melt: A Database for Understanding Kinetic Fractionation of REE in the Lunar Mantle and Crust.

  6. Mysteries of the Lunar Atmosphere

    Science.gov (United States)

    Killen, R. M.; Hurley, D. M.

    2012-12-01

    The lunar atmosphere has been probed by various instruments since the Apollo program, and continues to be measured today by the instruments onboard the Lunar Reconnaissance Orbiter, LRO. But like Sisyphus' trek, the progress has not been linear. LAMP, The Lyman Alpha Mapping Project, onboard LRO, measured He in the lunar exosphere, confirming the Apollo 17 result from the Lunar Atmosphere Composition Experiment (LACE) (Hoffman et al., 1973), but LAMP did not observe Ar although the expected 0.1 R should have been detectable by their instrument (Gladstone et al., Science, 2010). A surfeit of O+ was reported in the lunar wake (Mall et al. 1998; Hilchenbach et al. 1992;1993), but the origin of those ions is unknown, since oxygen has not been seen. Water and OH were measured on the surface of the moon, but theory tells us that efficiencies of production of water by solar wind proton bombardment may be low (Burke et al., Icarus, 2011). Starukhina and Shukaratov (LPSC, abstract 1385, 2010) suggest that the observed diurnal variation in the 3 micron band at the moon is due to thermal emission and not to variation in OH. LAMP observed Hg vapor following the LCROSS impact into Cabeus crater, but Hg atoms at 800 K (Wooden et al., LPSC abstract 2025, 2010) are too heavy to reach the altitudes where they would be exposed to sunlight, and thereby resonantly scatter photons, unless they are entrained in a gas with bulk velocity 3.5 km/s (Hurley et al., JGR, 2012). This bulk velocity is high for a 2 km/s impact. Another mystery from LCROSS is the H2 energy budget. Given the large amount of H2 observed after the LCROSS impact, and the high velocity required (a few km/s) to get in the field of view when it did, the kinetic energy associated with the H2 is too large of a fraction of the impactor energy. One possibility is that the H2 is produced by an exothermic reaction, which has implications for how it is stored in the regolith in permanently shadowed regions. The Na density is

  7. Echo simulation of lunar penetrating radar: based on a model of inhomogeneous multilayer lunar regolith structure

    International Nuclear Information System (INIS)

    Lunar Penetrating Radar (LPR) based on the time domain Ultra-Wideband (UWB) technique onboard China's Chang'e-3 (CE-3) rover, has the goal of investigating the lunar subsurface structure and detecting the depth of lunar regolith. An inhomogeneous multi-layer microwave transfer inverse-model is established. The dielectric constant of the lunar regolith, the velocity of propagation, the reflection, refraction and transmission at interfaces, and the resolution are discussed. The model is further used to numerically simulate and analyze temporal variations in the echo obtained from the LPR attached on CE-3's rover, to reveal the location and structure of lunar regolith. The thickness of the lunar regolith is calculated by a comparison between the simulated radar B-scan images based on the model and the detected result taken from the CE-3 lunar mission. The potential scientific return from LPR echoes taken from the landing region is also discussed

  8. The Pressurized Logistics Module: Providing Consumables and Resupply Logistics to the Lunar Surface for a Long-duration Manned Mission

    Science.gov (United States)

    Carpenter, Amanda; Knight, Amanda

    2008-01-01

    In response to President Bush s 2004 Vision for Space Exploration initiative, NASA established an agency-wide Lunar Architecture Team (LAT) to develop the high-level requirements, assumptions, ground-rules and objectives for a manned mission to the moon. During Phase II of the evaluation, the Habitation Focus Element Group was directed to conceptually develop and design a Pressurized Logistics Module (PLM). The PLM task was delivered with one major requirement: to derive a system with minimal mass and cost, and a maximum, functional, internal volumetric area in order to provide the maximum amount of consumables, supportability and logistic re-supply for a crew of four to the Lunar surface with an overall integrated maximum weight of 5200kg. The PLM was derived from the Habitation Group s "mini-Hab" option. This concept required that the PLM have an aluminum-clad graphite epoxy external truss, utilized for increased mobility and stability, which would encompass a 2.7 meter diameter pressurized aluminum-lithium cylinder. Several trade studies and analyses were performed to determine the final length and orientation of the module, the number of systems required to maintain the PLM, and the number of hatches/mating mechanisms which would successfully and efficiently meet the requirements. Of the five specific configurations assessed, the PLM was determined to have a 3 meter by 3 meter by 5 meter external truss with a 2.7 meter diameter and 5 meter long horizontal, pressurized cylinder with one hatch/mating mechanism on one end cone. Two major assumptions aided in the formulation of the technical baseline: 1) the PLM should be sustainable for up to 18 months on the Lunar Lander without connection to its final destination, the Lunar Outpost, and 2) it must be self-sufficient to withstand a maximum eight hour transit from the Lander to the Outpost. Per these assumptions, eight major systems constitute the PLM: structures, passive mating, protection, power, thermal

  9. Herramienta para distinguir lunares de melanoma.

    Science.gov (United States)

    “De lunares a melanoma: reconocimiento de las características ABCDE” presenta fotos que muestran cambios en lesions individuales pigmentadas con el tiempo, y describe las diferentes apariencias de lunares, de nevos displásicos y de melanomas.

  10. Fiberwise Convexity of Hill's lunar problem

    OpenAIRE

    Junyoung, Lee

    2014-01-01

    In this paper, I prove the fiberwise convexity of the regularized Hill's lunar problem below the critical energy level. This allows us to see Hill's lunar problem of any energy level below the critical value as the Legendre transformation of geodesic problem on $S^2$ with a family of Finsler metric.

  11. Lunar laser ranging: 40 years of research

    International Nuclear Information System (INIS)

    The history of the origin and development of the lunar laser ranging is described. The main results of lunar laser ranging are presented and fundamental problems solved by this technique are listed. (special issue devoted to the 80th anniversary of academician n g basov's birth)

  12. Plagioclase flotation and lunar crust formation

    Science.gov (United States)

    Walker, D.; Hays, J. F.

    1977-01-01

    Anorthitic plagioclase floats in liquids parental to the lunar highlands crust. The plagioclase enrichment that is characteristic of lunar highlands rocks can be the result of plagioclase flotation. Such rocks would form a gravitationally stable upper crust on their parental magma.

  13. Planetary science: Traces of ancient lunar water

    Science.gov (United States)

    Hauri, Erik H.

    2013-03-01

    The presence of water in lunar volcanic rocks has been attributed to delivery after the Moon formed. Water detected in rocks from the ancient lunar highlands suggests that the Moon already contained water early in its history, and poses more challenges for the giant impact theory of Moon formation.

  14. China's Lunar Orbit Exploration Prgram

    Institute of Scientific and Technical Information of China (English)

    RenShufang

    2004-01-01

    At the beginning of 2004 China National Space Administration announced that China would formally start the 1st phase of its lunar exploration program, Chang'e-1 in 2004. Whenattending the “Forum on China Important Engineering and Technology Achievements”, Mr. Hu Hao, the director of the Lunar Exploration Engineering Center,

  15. Lunar surface fission power supplies: Radiation issues

    International Nuclear Information System (INIS)

    A lunar space fission power supply shield that uses a combination of lunar regolith and materials brought from earth may be optimal for early lunar outposts and bases. This type of shield can be designed such that the fission power supply does not have to be moved from its landing configuration, minimizing handling and required equipment on the lunar surface. Mechanisms for removing heat from the lunar regolith are built into the shield, and can be tested on earth. Regolith activation is greatly reduced compared with a shield that uses only regolith, and it is possible to keep the thermal conditions of the fission power supply close to those seen in free space. For a well designed shield, the additional mass required to be brought from earth should be less than 1,000 kg. Detailed radiation transport calculations confirm the feasibility of such a shield

  16. Argon adsorption and the lunar atmosphere

    Science.gov (United States)

    Bernatowicz, T. J.; Podosek, F. A.

    1991-01-01

    The results of Ar adsorption experiments on a terrestrial labradorite and lunar rock 15415 crushed in vacuo are reported. The experiments were designed to test lunar atmosphere simulation models for the behavior of Ar on the lunar surface, as determined from the Apollo 17 mass spectrometer results. These models (Hodges, 1980, 1982) used a single adsorption potential to characterize the surfaces of lunar soil grains, with the result that high (6-7 kcal/mol) heats of adsorption were inferred. The present experimental results show that very high adsorption potentials are indeed associated with fresh mineral surfaces, but that these energetic surfaces occupy only small fractions of the total surface area. Nonetheless, these small fractions of surface, if they can be maintained in the lunar regolith in steady-state condition, could be sufficient to account for the Apollo 17 mass spectrometer observations.

  17. Scattering Properties of Lunar Dust Analogs

    Science.gov (United States)

    Davis, S.; Marshall, J.; Richard, D.; Adler, D.; Adler, B.

    2013-01-01

    A number of space missions are planned to explore the lunar exosphere which may contain a small population of dust particles. The objective of this paper is to present preliminary results from scattering experiments on a suspension of lunar simulants to support one such mission. The intensity of the light scattered from a lunar simulant is measured with a commercial version of the spectrometer used in the forthcoming LADEE mission. Physical properties of the lunar simulant are described along with two similarly-sized reference microspheres. We confirm that micron-sized particles tend to form agglomerates rather than remaining isolated entities and that certain general characteristic of the target particles can be predicted from intensity measurements alone. These results can be used directly to assess general features of the lunar exosphere from LADEE instrument data. Further analysis of particle properties from such remote sensing data will require measurements of polarization signatures.

  18. Lunar Exploration Manned and Unmanned

    Science.gov (United States)

    Spudis, P. D.; Asmar, S. W.; Bussey, D. B. J.; Duxbury, N.; Friesen, L. J.; Gillis, J. J.; Hawke, B. R.; Heiken, G.; Lawrence, D.; Manifold, J.; Slade, M. A.; Smith, A.; Taylor, G. J.; Yingst, R. A.

    2002-08-01

    The past decade has seen two global reconnaissance missions to the Moon, Clementine and Lunar Prospector, which have mapped the surface in multiple wavelengths, determined the Moon's topography and gravity fields, and discovered the presence of water ice in the permanently dark regions near the poles. Although we have learned much about the Moon, many key aspects of its history and evolution remain obscure. The three highest priority questions in lunar science are: 1) the Moon's global composition, particularly the abundance of aluminum and magnesium; 2) the extent, composition, and physical state of polar deposits, including the extent, purity, and thickness of ice, the elemental, isotopic, and molecular composition of polar volatiles, the environment of the polar regions; and 3) the cratering chronology of the Moon and the implications of a possibly unique history, such as a cataclysm, for our understanding of other Solar System objects. Answering and addressing these questions require a series of new missions, including an orbiter (carrying XRF, imaging radar, and other instruments), the deployment of surface network stations equipped with seismometers and heat flow probes, selected robotic sample return missions from geologically simple areas (e.g., youngest lava flow or crater melt sheet), and complex geological field work, conducted by human explorers. Because the Moon is a touchstone for the history and evolution of other rocky bodies in the solar system, we believe that these questions are of very high scientific priority and that lunar missions should receive much more serious attention and detailed study than they have in the past by the NASA Office of Space Science.

  19. Welcaming the Lunar New Year

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    "On the 24th, clean the house; on the 25th, make beancurd; on the26th, steam some bread; on the 27th, do the shopping; on the 28th, killthe pig; on the 29th, buy some wine; on the 30th day, eat dumplings...."This is a rhyme the Chinese have been singing for generations. Itdescribes the joy of the biggest festival for Chinese people-the traditionalSpring Festival, or, more accurately, the Chinese lunar New Year. Thisyear, the Spring Festival falls on February 16, 1999.

  20. Lunar Dust and Lunar Simulant Activation, Monitoring, Solution and Cellular Toxicity Properties

    Science.gov (United States)

    Wallace, William; Jeevarajan, A. S.

    2009-01-01

    During the Apollo missions, many undesirable situations were encountered that must be mitigated prior to returning humans to the moon. Lunar dust (that part of the lunar regolith less than 20 microns in diameter) was found to produce several problems with mechanical equipment and could have conceivably produced harmful physiological effects for the astronauts. For instance, the abrasive nature of the dust was found to cause malfunctions of various joints and seals of the spacecraft and suits. Additionally, though efforts were made to exclude lunar dust from the cabin of the lunar module, a significant amount of material nonetheless found its way inside. With the loss of gravity correlated with ascent from the lunar surface, much of the finer fraction of this dust began to float and was inhaled by the astronauts. The short visits tothe Moon during Apollo lessened exposure to the dust, but the plan for future lunar stays of up to six months demands that methods be developed to minimize the risk of dust inhalation. The guidelines for what constitutes "safe" exposure will guide the development of engineering controls aimed at preventing the presence of dust in the lunar habitat. This work has shown the effects of grinding on the activation level of lunar dust, the changes in dissolution properties of lunar simulant, and the production of cytokines by cellular systems. Grinding of lunar dust leads to the production of radicals in solution and increased dissolution of lunar simulant in buffers of different pH. Additionally, ground lunar simulant has been shown to promote the production of IL-6 and IL-8, pro-inflammatory cytokines, by alveolar epithelial cells. These results provide evidence of the need for further studies on these materials prior to returning to the lunar surface.

  1. Preliminary analysis of gamma spectrum for lunar detection

    International Nuclear Information System (INIS)

    Detecting the abundance and distribution of elements in the lunar surface was essential for understanding lunar science. By the data of Gamma-Ray Spectrometer (GRS) of Chang' E-1(CE-1) satellite, global lunar maps of relative counts distribution about uranium, thorium and potassium were presented, which indirectly reflected the distribution of elemental abundance. Compared the maps with the analytic result of GRS and samples from lunar by Apollo and Lunar Prospector(LP), some consistencies and differences were found. (authors)

  2. Lunar drill footplate and casing

    Science.gov (United States)

    Maassen, Erik C.; Hendrix, Thomas H.; Morrison, Eddie W.; Phillips, Rodrick B.; Le, Vu Quang; Works, Bruce A.

    1989-01-01

    To prevent hole collapse during lunar drilling operations, a casing has been devised of a graphite reinforced polyimide composite which will be able to withstand the lunar environment. Additionally, this casing will be inserted into the ground in segments two meters long which will penetrate the regolith simultaneously with the auger. The vertical action of the mobile platform will provide a downward force to the casing string through a special adaptor, giving the casing the needed impetus to sink the anticipated depth of ten meters. Casing segments will be connected with a simple snap arrangement. Excess casing will be cut off by a cylindrical cutting tool which will also transport the excess casing away from the hole. A footplate will be incorporated to grasp the auger rod string during rod segment additions or removals. The footplate grasping mechanism will consist of a set of vice-like arms, one end of each bearing threaded to a common power screw. The power screw will be threaded such that one end's thread pitch opposes that of the other end. The weight of the auger and rod string will be transmitted through the arms to the power screw and absorbed by a set of three ball bearing assemblies. The power screw will be driven by a one-half horsepower brushless motor actuated by radio control. The footplate will rest on four short legs and be anchored with pins that are an integral part of each leg.

  3. Visual lunar and planetary astronomy

    CERN Document Server

    Abel, Paul G

    2013-01-01

    With the advent of CCDs and webcams, the focus of amateur astronomy has to some extent shifted from science to art. The object of many amateur astronomers is now to produce “stunning images” that, although beautiful, are not intended to have scientific merit. Paul Abel has been addressing this issue by promoting visual astronomy wherever possible – at talks to astronomical societies, in articles for popular science magazines, and on BBC TV’s The Sky at Night.   Visual Lunar and Planetary Astronomy is a comprehensive modern treatment of visual lunar and planetary astronomy, showing that even in the age of space telescopes and interplanetary probes it is still possible to contribute scientifically with no more than a moderately priced commercially made astronomical telescope.   It is believed that imaging and photography is somehow more objective and more accurate than the eye, and this has led to a peculiar “crisis of faith” in the human visual system and its amazing processing power. But by anal...

  4. A model of lunar evolution

    International Nuclear Information System (INIS)

    There have been many models describing the evolution of the sister planet. As information from the intensive exploration by the Apollo program has accumulated, more constraints on these models have emerged. A hypothesis in which there is a present day asthenosphere, a heat flow between 24 and 32 ergs cm-2s-1 and a crust which developed early in the Moon's history by melting of the outer 100 to 200 km is specifically considered. A constraint which keeps the deep interior below the Curie point of iron for the first 1 to 1.5 b.y. so that it is able to carry the memory of an early field which magnetized the cold interior is also introduced. The magnetized mare basalts and breccias cooled in this field from above the Curie point of iron (approximately 8000C) and acquired a thermoremanent magnetization. While fully recognizing that some of these constraints are subject to other interpretations, it is nevertheless instructive to consider the thermal history that follows from such a model. It is a consequence of this model that solid body convection took place late in lunar history. This may well have contributed to the lunar center of figure and center of mass offset, to the low order terms in its gravity field and to, its disequilibrium moment of inertia differences. (Auth.)

  5. Lunar Dust Separation for Toxicology Studies

    Science.gov (United States)

    Cooper, Bonnie L.; McKay, D. S.; Riofrio, L. M.; Taylor, L. A.; Gonzalex, C. P.

    2010-01-01

    During the Apollo missions, crewmembers were briefly exposed to dust in the lunar module, brought in after extravehicular activity. When the lunar ascent module returned to micro-gravity, the dust that had settled on the floor now floated into the air, causing eye discomfort and occasional respiratory symptoms. Because our goal is to set an exposure standard for 6 months of episodic exposure to lunar dust for crew on the lunar surface, these brief exposures of a few days are not conclusive. Based on experience with industrial minerals such as sandblasting quartz, an exposure of several months may cause serious damage, while a short exposure may cause none. The detailed characteristics of sub-micrometer lunar dust are only poorly known, and this is the size range of particles that are of greatest concern. We have developed a method for extracting respirable dust (<2.5 micron) from Apollo lunar soils. This method meets stringent requirements that the soil must be kept dry, exposed only to pure nitrogen, and must conserve and recover the maximum amount of both respirable dust and coarser soil. In addition, we have developed a method for grinding coarser lunar soil to produce sufficient respirable soil for animal toxicity testing while preserving the freshly exposed grain surfaces in a pristine state.

  6. Tribocharging Lunar Soil for Electrostatic Beneficiation

    Science.gov (United States)

    2008-01-01

    Future human lunar habitation requires using in situ materials for both structural components and oxygen production. Lunar bases must be constructed from thermal-and radiation-shielding materials that will provide significant protection from the harmful cosmic energy which normally bombards the lunar surface. In addition, shipping oxygen from Earth is weight-prohibitive, and therefore investigating the production of breathable oxygen from oxidized mineral components is a major ongoing NASA research initiative. Lunar regolith may meet the needs for both structural protection and oxygen production. Already a number of oxygen production technologies are being tested, and full-scale bricks made of lunar simulant have been sintered. The beneficiation, or separation, of lunar minerals into a refined industrial feedstock could make production processes more efficient, requiring less energy to operate and maintain and producing higher-performance end products. The method of electrostatic beneficiation used in this research charges mineral powders (lunar simulant) by contact with materials of a different composition. The simulant acquires either a positive or negative charge depending upon its composition relative to the charging material.

  7. Sample fields of the Viking landers, physical properties, and aeolian processes

    Science.gov (United States)

    Moore, H. J.; Spitzer, C. R.; Bradford, K. Z.; Cates, P. M.; Shorthill, R. W.; Hutton, R. E.

    1979-01-01

    Surface sampler activities on Mars during the Viking extended mission are considered, including excavation of deep trenches, construction of conical piles of materials, backhoe touchdown experiments, and acquisition of contiguous pictures of the surface beneath number 2 terminal descent engines using mirrors. Results of the Physical Properties Investigation that are relevant to aeolian processes are also discussed. Both pictures and surface sampler data indicate that the surface materials in the sample fields of the Viking landers may be grouped, in order of increasing strength, into drift material, crusty to cloddy material, blocky material and rocks.

  8. Large-amplitude Moho reflections (SmS) from Landers aftershocks, southern California

    OpenAIRE

    Mori, Jim; Helmberger, Donald

    1996-01-01

    Closely spaced aftershocks of the 28 June 1992 Landers earthquake (M_w 7.3) were used to make event record sections that show the transverse components of S and SmS arrivals at a distance of 70 to 170 km. For the data recorded toward the north in the Mojave desert, large SmS phases are observed with amplitudes 2 to 5 times greater than the direct S. For similar distances to the south, the SmS arrival is comparable to or smaller than the S. Comparisons to synthetic seismograms indicate that th...

  9. Detection of crustal deformation from the Landers earthquake sequence using continuous geodetic measurements

    Science.gov (United States)

    Bock, Yehuda; Agnew, Duncan C.; Fang, Peng; Genrich, Joachim F.; Hager, Bradford H.; Herring, Thomas A.; Hudnut, Kenneth W.; King, Robert W.; Larsen, Shawn; Minster, J.-B.

    1993-01-01

    The first measurements are reported for a major earthquake by a continuously operating GPS network, the permanent GPS Genetic ARRY (PGGA) in southern California. The Landers and Big Bear earthquakes of June 28, 1992 were monitored by daily observations. Ten weeks of measurements indicate significant coseismic motion at all PGGA sites, significant postseismic motion at one site for two weeks after the earthquakes, and no significant preseismic motion. These measurements demonstrate the potential of GPS monitoring for precise detection of precursory and aftershock seismic deformation in the near and far field.

  10. Lunar hydrogen: A resource for future use at lunar bases and space activities

    Science.gov (United States)

    Gibson, Everett K., Jr.; Bustin, Roberta; Mckay, David S.

    1988-01-01

    Hydrogen abundances were determined for grain size separates of five lunar soils and one soil breccia. The hydrogen abundance studies have provided important baseline information for engineering models undergoing study at the present time. From the studies is appears that there is sufficient hydrogen present in selected lunar materials which could be recovered to support future space activities. It is well known that hydrogen can be extracted from lunar soils by heating between 400 and 800 C. Recovery of hydrogen for regolith materials would involve heating with solar mirrors and collecting the released hydrogen. Current baseline models for the lunar base are requiring the production of 1000 metric tons of oxygen per year. From this requirement it follows that around 117 metric tons per year of hydrogen would be required for the production of water. The ability to obtain hydrogen from the lunar regolith would assist in lowering the operating costs of any lunar base.

  11. Design of a lunar transportation system

    Science.gov (United States)

    Sankaravelu, A.; Goddard, H.; Gold, R.; Greenwell, S.; Lander, J.; Nordell, B.; Stepp, K.; Styer, M.

    1989-01-01

    The development of a good transportation infrastructure is a major requirement for the establishment of a permanent lunar base. Transportation is characterized by the technology available in a specific time frame and the need to transport personnel and cargo between Earth and Moon, and between lunar bases. In our study, attention was first focused on developing a transportation system for the first generation lunar base. As a first step, a tracked-type multipurpose lunar transportation vehicle was considered as a possible mode of transportation and a detailed study was conducted on the various aspects of the vehicle. Since the vehicle is composed of many moving parts, exposing it to the environment of the Moon, where fine dust particles are prevalent, can cause problems associated with lubrication and friction. The vehicle also posed problems concerning weight and power. Hence, several modifications were made to the above design ideas conceptually, and a Lunar Articulated Remote Transportation System (Lunar ARTS) is proposed as a more effective alternative with the following objectives: (1) minimizing the transportation of construction material and fuel from Earth or maximizing the use of the lunar material; (2) use of novel materials and light-weight structures; (3) use of new manufacturing methods and technology such as magnetic levitation using superconducting materials; and (4) innovative concepts of effectively utilizing the exotic lunar conditions, i.e., high thermal gradients, lack of atmosphere, lower gravity, etc. To achieve the above objectives of designing transportation systems from concept to operation, the project was planned in three phases: (1) conceptual design; (2) detailed analysis and synthesis; and (3) construction, testing, evaluation, and operation. In this project, both phases 1 and 2 have been carried out and work on phase 3 is in progress. In this paper, the details of the Lunar ARTS are discussed and the future work on the vehicle are

  12. Soil mechanics. [characteristics of lunar soil from Apollo 17 flight lunar landing site

    Science.gov (United States)

    Mitchell, J. K.; Carrier, W. D., III; Costes, N. C.; Houston, W. N.; Scott, R. F.; Hovland, H. J.

    1973-01-01

    The soil mechanics experiment on the Apollo 17 mission to the Taurus-Littrow area of the moon is discussed. The objectives of the experiment were to determine the physical characteristics and mechanical properties of the lunar soil at the surface and subsurface in lateral directions. Data obtained on the lunar surface in conjunction with observations of returned samples of lunar soil are used to determine in-place density and porosity profiles and to determine strength characteristics on local and regional scales.

  13. Lunar resources - What is known and expected

    Science.gov (United States)

    Binder, Alan B.

    It is known that the easily mined lunar regolith can be processed to provide the bulk of the basic materials needed for large-scale lunar construction. The uses of such materials include radiation shielding made from loose or bagged regolith; reinforced slabs, beams, etc. made from the lunar equivalent of cast basalt and anhydrous glass; cords, cables, cloth, etc. made from spun glass fibers; and products made of ceramics and cement. More extensive processing of the regolith will produce oxygen for propellant and life support as well as large quantities of iron, aluminum, magnesium, calcium, and titanium.

  14. Gamma ray spectrometer for Lunar Scout 2

    Science.gov (United States)

    Moss, C. E.; Burt, W. W.; Edwards, B. C.; Martin, R. A.; Nakano, George H.; Reedy, R. C.

    1993-01-01

    We review the current status of the Los Alamos program to develop a high-resolution gamma-ray spectrometer for the Lunar Scout-II mission, which is the second of two Space Exploration Initiative robotic precursor missions to study the Moon. This instrument will measure gamma rays in the energy range of approximately 0.1 - 10 MeV to determine the composition of the lunar surface. The instrument is a high-purity germanium crystal surrounded by an CsI anticoincidence shield and cooled by a split Stirling cycle cryocooler. It will provide the abundance of many elements over the entire lunar surface.

  15. Process engineering concerns in the lunar environment

    Science.gov (United States)

    Sullivan, T. A.

    1990-01-01

    The paper discusses the constraints on a production process imposed by the lunar or Martian environment on the space transportation system. A proposed chemical route to produce oxygen from iron oxide bearing minerals (including ilmenite) is presented in three different configurations which vary in complexity. A design for thermal energy storage is presented that could both provide power during the lunar night and act as a blast protection barrier for the outpost. A process to release carbon from the lunar regolith as methane is proposed, capitalizing on the greater abundance and favorable physical properties of methane relative to hydrogen to benefit the entire system.

  16. Using lunar resources - the next step

    International Nuclear Information System (INIS)

    Space can provide an answer to the energy resource problems in the 21st century. The exploitation of Moon store of helium 3 for the deuterium-helium 3 cycle is one of the possibilities. About 1 million tons could be embedded in the lunar regolith, lunar regolith could also be used to generate oxygen (Apollo and soviet Luna probes samples analysis). This production and use of lunar resources is based on an ability to mine materials on the Moon, which seems feasible with moderate technological risks. (A.B.). 8 refs., 9 figs

  17. China Starts Its Lunar Exploration Prbgram

    Institute of Scientific and Technical Information of China (English)

    RenShufang

    2004-01-01

    Why China Starts Lunar Exploration Program.Lunar exploration is always a subject of great interest, for the earth's I nearest neighbour probably holds the key to humanity's future subsistence and development. The unique mineral and energy resources on the moon are important supplement and reserve to the Earth resources, which will generate farreaching influence on the sustainable development of human society. The helium-3 resource unique to lunar soil is a clean, efficient, safe and cheap new-type nuclear fusion fuel, and it will help change the energy structure of human society.

  18. Radiation Dose from Lunar Neutron Albedo

    Science.gov (United States)

    Adams, J. H., Jr.; Bhattacharya, M.; Lin, Zi-Wei; Pendleton, G.

    2006-01-01

    The lunar neutron albedo from thermal energies to 8 MeV was measured on the Lunar Prospector Mission in 1998-1999. Using GEANT4 we have calculated the neutron albedo due to cosmic ray bombardment of the moon and found a good-agreement with the measured fast neutron spectra. We then calculated the total effective dose from neutron albedo of all energies, and made comparisons with the effective dose contributions from both galactic cosmic rays and solar particle events to be expected on the lunar surface.

  19. Growing pioneer plants for a lunar base

    Science.gov (United States)

    Kozyrovska, N. O.; Lutvynenko, T. L.; Korniichuk, O. S.; Kovalchuk, M. V.; Voznyuk, T. M.; Kononuchenko, O.; Zaetz, I.; Rogutskyy, I. S.; Mytrokhyn, O. V.; Mashkovska, S. P.; Foing, B. H.; Kordyum, V. A.

    A precursory scenario of cultivating the first plants in a lunar greenhouse was elaborated in frames of a conceptual study to grow plants for a permanently manned lunar base. A prototype plant growth system represents an ornamental plant Tagetes patula L. for growing in a lunar rock anorthosite as a substrate. Microbial community anticipated to be in use to support a growth and development of the plant in a substrate of low bioavailability and provide an acceptable growth and blossoming of T. patula under growth limiting conditions.

  20. An Application of Lunar GIS with Visualized and Auditory Japan's Lunar Explorer "Kaguya" Data

    Science.gov (United States)

    Sobue, Shin-Ichi; Araki, Hiroshi; Tazawa, Seiichi; Noda, Hirotomo; Kamiya, Izumi; Yamamoto, Aya; Fujita, Takeo; Higashiizumi, Ichiro; Okumura, Hayato

    This paper describes an application of a geographical information system with visualized and sonification lunar remote sensing data provided by Japan's lunar explorer (SELENE "KAGUYA"). Web based GIS is a very powerful tool which lunar scientists can use to visualize and access remote sensing data with other geospatial information. We discuss enhancement of the pseudo-colored visual map presentation of lunar topographical altimetry data derived from LALT and the map of the data to several sound parameters (Interval, harmony, and tempo). This paper describes an overview of this GIS with a sonification system, called "Moonbell".

  1. Correlation of Lunar South Polar Epithermal Neutron Maps: Lunar Exploration Neutron Detector and Lunar Prospector Neutron Detector

    Science.gov (United States)

    McClanahan, Timothy P.; Mitrofanov, I. G.; Boynton, W. V.; Sagdeev, R.; Trombka, J. I.; Starr, R. D.; Evans, L. G.; Litvak, M. L.; Chin, G.; Garvin, J.; Sanin, A. B.; Malakhov, A.; Milikh, G. M.; Harshman, K.; Finch, M. J.; Nandikotkur, G.

    2010-01-01

    The Lunar Reconnaissance Orbiter's (LRO), Lunar Exploration Neutron Detector (LEND) was developed to refine the lunar surface hydrogen (H) measurements generated by the Lunar Prospector Neutron Spectrometer. LPNS measurements indicated a approx.4,6% decrease in polar epithermal fluxes equivalent to (1.5+/-0,8)% H concentration and are direct geochemical evidence indicating water /high H at the poles. Given the similar operational and instrumental objectives of the LEND and LPNS systems, an important science analysis step for LEND is to test correlation with existing research including LPNS measurements. In this analysis, we compare corrected low altitude epithermal rate data from LPNS available via NASA's Planetary Data System (PDS) with calibrated LEND epithermal maps using a cross-correlation technique

  2. Lunar Impact Flash Locations from NASA's Lunar Impact Monitoring Program

    Science.gov (United States)

    Moser, D. E.; Suggs, R. M.; Kupferschmidt, L.; Feldman, J.

    2015-01-01

    Meteoroids are small, natural bodies traveling through space, fragments from comets, asteroids, and impact debris from planets. Unlike the Earth, which has an atmosphere that slows, ablates, and disintegrates most meteoroids before they reach the ground, the Moon has little-to-no atmosphere to prevent meteoroids from impacting the lunar surface. Upon impact, the meteoroid's kinetic energy is partitioned into crater excavation, seismic wave production, and the generation of a debris plume. A flash of light associated with the plume is detectable by instruments on Earth. Following the initial observation of a probable Taurid impact flash on the Moon in November 2005,1 the NASA Meteoroid Environment Office (MEO) began a routine monitoring program to observe the Moon for meteoroid impact flashes in early 2006, resulting in the observation of over 330 impacts to date. The main objective of the MEO is to characterize the meteoroid environment for application to spacecraft engineering and operations. The Lunar Impact Monitoring Program provides information about the meteoroid flux in near-Earth space in a size range-tens of grams to a few kilograms-difficult to measure with statistical significance by other means. A bright impact flash detected by the program in March 2013 brought into focus the importance of determining the impact flash location. Prior to this time, the location was estimated to the nearest half-degree by visually comparing the impact imagery to maps of the Moon. Better accuracy was not needed because meteoroid flux calculations did not require high-accuracy impact locations. But such a bright event was thought to have produced a fresh crater detectable from lunar orbit by the NASA spacecraft Lunar Reconnaissance Orbiter (LRO). The idea of linking the observation of an impact flash with its crater was an appealing one, as it would validate NASA photometric calculations and crater scaling laws developed from hypervelocity gun testing. This idea was

  3. An evaluation of a combined scanning probe and optical microscope for lunar regolith studies

    Science.gov (United States)

    Yang, S.; Pike, W. T.; Staufer, U.; Claus, D.; Rodenburg, J. M.

    2011-12-01

    ability of LOM for illuminating the details about the lunar particles sample, is demonstrated. The analysis of SEM and SPM images of the same particles of JSC-LunarA analogue soil reveals the potential of the SPM to obtain reliable microscopic images of lunar dusts including detailed morphology with the help of the micromachined Si substrates. [1] J. D. Carpenter, O. Angerer, M. Durante, D. Linnarson, W. T. Pike, "Life Sciences Investigations for ESA's First Lunar Lander," Earth, Moon, and Planets, Vol.107, pp. 11-23, 2010. [2] S. Vijendran, H.Sykulska, and W. T. Pike, "AFM investigation of Martian soil simulant on micromachined Si substrates," Journal of Microscopy, Vol.227, pp.236-245, Sep. 2007. [3] J.M. Rodenburg, "Ptychography and related diffractive imaging techniques," Advances in Imaging and Electron Physics, Vol.150, pp. 87-184, 2008

  4. Concept of Operations for Deploying a Lander on the Secondary Body of Binary Asteroid 1996 FG3

    Science.gov (United States)

    Tardivel, Simon; Michel, P.; Scheeres, D.

    2012-10-01

    The European Space Agency is currently performing an assessment study of the MarcoPolo-R space mission, in the framework of the M3 class competition of its Cosmic Vision Program. MarcoPolo-R is a sample return mission to a primitive asteroid, whose baseline target is the binary asteroid 1996FG3. The baseline mission, including the sample, is focused on the primary of the binary system. To date, little has yet been considered for the investigation of the secondary, apart from remote observations from the spacecraft. However, MarcoPolo-R may carry an optional lander, and if such a lander could be accommodated it may be relevant to use it for a more detailed investigation of the secondary. This poster presents a strategy for deploying a lander using an unpowered trajectory towards the secondary. This ballistic deployment allows for the design of a light lander with minimum platform overhead and maximum payload. The deployment operations are shown to be very simple and require minimum preparation. The main spacecraft is set on an orbit that reaches a specific point near the binary system L2 Lagrange Point facing the far side of the secondary, about 220 meters from the secondary surface, with a relative speed of about 10cm/s. The lander is then jettisoned using a spring-release mechanism that sets it on an impact trajectory that robustly intersects with the secondary surface. On impact, the lander only needs to dissipate a small amount of kinetic energy in order to ensure that it is energetically and dynamically trapped on the surface. Considering errors on spacecraft GNC and on the spring-release mechanism, and very large uncertainties on the gravity field of the asteroids, the strategy presented here yields a successful landing in more than 99.9% of cases, while ensuring the absolute safety of the spacecraft before, during and after deployment operations.

  5. House-heating emissions of carcinogenic substances. A problem of the new lander in Germany

    International Nuclear Information System (INIS)

    Intensive studies and analyses have been done to set up an air pollution management plan for an area of 752 km2 in the south of Saxony-Anhalt (182 000 inhabitants), the first one in the New Lander of Germany. The results show a higher level of harmful compounds in the ambient air in densly-populated areas, especially caused by exhaust gases from brown-coal (lignite) fired residential stoves. The combustion of indigenous lignite-briquettes with a high content of sulphur causes classical inorganic emissions, such as carbon monoxide (CO), sulphur dioxide (SO2), particulate matter and nitrogen oxides (NOx) as well as organic compounds, such as benzene, toluene, xylene (BTX), polycyclic aromatic hydrocarbons (PAH) and polychlorinated dioxins and furans (PCDD/F). The last-named are of special importance because of the carcinogenic effects. An inventory of house-heating facilities, set up on the basis of energy consumption for heating purposes in buildings, shows the still very high part of brown coal combustion (58 %) in the investigated area and in the New Lander of Germany. In the western part of Germany this percentage amounts only to 10 %. (orig.)

  6. Ionizing radiation test results for an automotive microcontroller on board the Schiaparelli Mars lander

    Science.gov (United States)

    Tapani Nikkanen, Timo; Hieta, Maria; Schmidt, Walter; Genzer, Maria; Haukka, Harri; Harri, Ari-Matti

    2016-04-01

    The Finnish Meteorological Institute (FMI) has delivered a pressure and a humidity instrument for the ESA ExoMars 2016 Schiaparelli lander mission. Schiaparelli is scheduled to launch towards Mars with the Trace Gas Orbiter on 14th of March 2016. The DREAMS-P (pressure) and DREAMS-H (Humidity) instruments are operated utilizing a novel FMI instrument controller design based on a commercial automotive microcontroller (MCU). A custom qualification program was implemented to qualify the MCU for the relevant launch, cruise and surface operations environment of a Mars lander. Resilience to ionizing radiation is one of the most critical requirements for a digital component operated in space or at planetary bodies. Thus, the expected Total Ionizing Dose accumulated by the MCU was determined and a sample of these components was exposed to a Co-60 gamma radiation source. Part of the samples was powered during the radiation exposure to include the effect of electrical biasing. All of the samples were verified to withstand the expected total ionizing dose with margin. The irradiated test samples were then radiated until failure to determine their ultimate TID.

  7. Microwave Brightness Temperature and Lunar Son Dielectric Property Retrieve

    Institute of Scientific and Technical Information of China (English)

    J. Wu; D.H. Li; A.T. Altyntsev; B.I. Lubyshev

    2005-01-01

    Among many scientific objectives of lunar exploration, investigations on lunar soil become more and more attractive to the scientists duo to the existence of abundant 3He and ilmenite in the lunar soil and their possible utilization. Although the soil composition determination on the lunar surface is available by visible light spectrometer, γ/X-ray spectrometer etc, the evaluations on the total reserves of 3He and ilmenite in the lunar deep and on the thickness of the lunar soil are still impossible so far. In this paper, the authors first give a rough analysis of the microwave brightness temperature images of the lunar disc observed using the NRAO 12 Meter Telescope and Siberian Solar Radio Telescope; then introduce our researches on the microwave dielectric properties of lunar soil simulators; finally, discuss some basic relations between the microwave brightness temperature and lunar soil properties.

  8. Lunar Wireless Power Transfer Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    Sheldon Freid, et al.

    2008-06-01

    This study examines the feasibility of a multi-kilowatt wireless radio frequency (RF) power system to transfer power between lunar base facilities. Initial analyses, show that wireless power transfer (WPT) systems can be more efficient and less expensive than traditional wired approaches for certain lunar and terrestrial applications. The study includes evaluations of the fundamental limitations of lunar WPT systems, the interrelationships of possible operational parameters, and a baseline design approach for a notionial system that could be used in the near future to power remote facilities at a lunar base. Our notional system includes state-of-the-art photovoltaics (PVs), high-efficiency microwave transmitters, low-mass large-aperture high-power transmit antennas, high-efficiency large-area rectenna receiving arrays, and reconfigurable DC combining circuitry.

  9. Lunar In-Situ Volatile Extraction Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A method of extracting volatile resources from the Lunar regolith is proposed to reduce the launch mass and cost of bringing such resources from the Earth to enable...

  10. High-Fidelity Lunar Dust Simulant Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The severity of the lunar dust problems encountered during the Apollo missions were consistently underestimated by ground tests, illustrating the need to develop...

  11. Lunar Regolith Stabilization for Excavation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — During lunar exploration, regolith is both the major available resource and a substantial obstacle in establishing a long-term presence. The fine surface dust is...

  12. Nanophase Fe0 in lunar soils

    Indian Academy of Sciences (India)

    Abhijit Basu

    2005-06-01

    Back scattered electron and transmission electron imaging of lunar soil grains reveal an abundance of submicrometer-sized pure Fe00 globules that occur in the rinds of many soil grains and in the submillimeter sized vesicular glass-cemented grains called agglutinates. Grain rinds are amorphous silicates that were deposited on grains exposed at the lunar surface from transient vapors produced by hypervelocity micrometeorite impacts. Fe0 may have dissociated from Fe-compounds in a high temperature (< 3000°C) vapor phase and then condensed as globules on grain surfaces. The agglutinitic glass is a quenched product of silicate melts, also produced by micrometeorite impacts on lunar soils. Reduction by solar wind hydrogen in agglutinitic melts may have produced immiscible droplets that solidified as globules. The exact mechanism of formation of such Fe0 globules in lunar soils remains unresolved.

  13. Observations of lunar mini-magnetospheres

    International Nuclear Information System (INIS)

    The study of the near-Moon plasma environment is one of the key scientific objectives of China's Chang'E-1 and Chang'E-2 missions. We investigate here specifically the interactions of the Lunar Magnetic Anomalies (LMA) with the Solar Wind (SW) ,based on the proton/ion data acquired by the Solar Wind Ion. Detector (SWID) mounted on both lunar orbiter. Through the measured proton phase space distribution, we propose tentatively that the lunar magnetic anomalies could shield and heat the incident solar wind particles, with the possible formation of mini-magnetospheres near the anomaly. This study serves as one of the very few observational incidences of the presence of these plasma structures. This work, as well as follow- up studies, may contribute to the studies of both lunar space weathering and magnetospheric physics on scales where finite gyroradius effects are important. (authors)

  14. Developing Information System on Lunar Crescent Observations

    Directory of Open Access Journals (Sweden)

    T. Hidayat

    2010-03-01

    Full Text Available We present a progress report on the development of information system of lunar crescent astronomical observations which will be largely accessible for public domain. This consists of calculations of the Moon’s ephemeris as well as systematic real-time lunar crescent observations. A well suited small telescope, equipped with a simple digital detector, is connected to a server to provide information on lunar crescent observations. The system has been used and worked well. The only constraint is poor weather condition. Network of small telescopes, installed at various locations in Indonesia, are currently planned to provide plethora of data. In the long term, this will be used to help to determine the astronomical visibility criteria of lunar crescent for Islamic calendar.

  15. Energy management study for lunar oxygen production

    Science.gov (United States)

    Fazzolare, R. A.; Wong-Swanson, B. G.

    1989-01-01

    Energy management opportunities in the process of hydrogen reduction of ilmenite for lunar oxygen production are being investigated. An optimal energy system to supply the power requirements for the process will be determined.

  16. Regenerable Lunar Airborne Dust Filter Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Effective methods are needed to control pervasive Lunar Dust within spacecraft and surface habitations. Once inside, airborne transmission is the primary mode of...

  17. Mobile Asteroid Surface Scout (MASCOT) - Design, Development and Delivery of a Small Asteroid Lander Aboard Hayabusa2

    OpenAIRE

    Grundmann, Jan Thimo; Auster, U.; Baturkin, Volodymyr; Bellion, Anthony; Bibring, Jean-Pierre; Biele, Jens; Boden, Ralf; Bompis, Olivier; Borgs, Belinda; Bousquet, Pierre; Canalias, Elisabet; Celotti, Luca; Cenac-Morthe, Céline; Cordero, Federico; Deleuze, Muriel

    2015-01-01

    MASCOT is a small asteroid lander launched on December 3rd, 2014, aboard the Japanese HAYABUSA2 asteroid sample-return mission towards the 980 m diameter C-type near-Earth asteroid (162173) 1999 JU3. MASCOT carries four full-scale asteroid science instruments and an uprighting and relocation device within a shoebox-sized 10 kg spacecraft; a complete lander comparable in mass and volume to a medium-sized science instrument on interplanetary missions. Asteroid surface science will be ob...

  18. The Camera of the MASCOT Asteroid Lander on Board Hayabusa 2

    Science.gov (United States)

    Jaumann, R.; Schmitz, N.; Koncz, A.; Michaelis, H.; Schroeder, S. E.; Mottola, S.; Trauthan, F.; Hoffmann, H.; Roatsch, T.; Jobs, D.; Kachlicki, J.; Pforte, B.; Terzer, R.; Tschentscher, M.; Weisse, S.; Mueller, U.; Perez-Prieto, L.; Broll, B.; Kruselburger, A.; Ho, T.-M.; Biele, J.; Ulamec, S.; Krause, C.; Grott, M.; Bibring, J.-P.; Watanabe, S.; Sugita, S.; Okada, T.; Yoshikawa, M.; Yabuta, H.

    2016-06-01

    The MASCOT Camera (MasCam) is part of the Mobile Asteroid Surface Scout (MASCOT) lander's science payload. MASCOT has been launched to asteroid (162173) Ryugu onboard JAXA's Hayabusa 2 asteroid sample return mission on Dec 3rd, 2014. It is scheduled to arrive at Ryugu in 2018, and return samples to Earth by 2020. MasCam was designed and built by DLR's Institute of Planetary Research, together with Airbus-DS Germany. The scientific goals of the MasCam investigation are to provide ground truth for the orbiter's remote sensing observations, provide context for measurements by the other lander instruments (radiometer, spectrometer and magnetometer), the orbiter sampling experiment, and characterize the geological context, compositional variations and physical properties of the surface (e.g. rock and regolith particle size distributions). During daytime, clear filter images will be acquired. During night, illumination of the dark surface is performed by an LED array, equipped with 4×36 monochromatic light-emitting diodes (LEDs) working in four spectral bands. Color imaging will allow the identification of spectrally distinct surface units. Continued imaging during the surface mission phase and the acquisition of image series at different sun angles over the course of an asteroid day will contribute to the physical characterization of the surface and also allow the investigation of time-dependent processes and to determine the photometric properties of the regolith. The MasCam observations, combined with the MASCOT hyperspectral microscope (MMEGA) and radiometer (MARA) thermal observations, will cover a wide range of observational scales and serve as a strong tie point between Hayabusa 2's remote-sensing scales ( 103- 10^{-3} m) and sample scales ( 10^{-3}- 10^{-6} m). The descent sequence and the close-up images will reveal the surface features over a broad range of scales, allowing an assessment of the surface's diversity and close the gap between the orbital

  19. Lunar Orbiter: Moon and Earth

    Science.gov (United States)

    1966-01-01

    The worlds first view of the Earth taken by a spacecraft from the vicinity of the Moon. The photo was transmitted to Earth by the United States Lunar Orbiter I and recieved at the NASA tracking station at Robledo de Chavela near Madrid, Spain. This crescent of the Earth was photographed August 23 at 16:35 GMT when the spacecraft was on its 16th orbit and just about to pass behind the Moon. This is the view the astronauts will have when they come around the backside of the Moon and face the Earth. The Earth is shown on the left of the photo with the U.S. east coast in the upper left, southern Europe toward the dark or night side of the Earth, and Antartica at the bottom of the Earth crescent. The surface of the Moon is shown on the right side of the photograph.

  20. On the control of magnetic perturbing field onboard landers: the Magnetometer Protection program for the ESA ExoMars/Humboldt MSMO magnetometer experiment

    DEFF Research Database (Denmark)

    Menvielle, M.; Primdahl, Fritz; Brauer, Peter;

    to planetary research. The major difficulty in implementing a magnetometer experiment onboard a lander is to achieve at acceptable costs a good Magnetometer Protection, namely to control the perturbing magnetic field generated by the lander during operations at the planetary surfa ce, so as to achieve...

  1. Modeling lunar calendar effects in taiwan

    OpenAIRE

    Jin-Lung Lin; Tian- Syh Liu

    2003-01-01

    The three most important Chinese holidays, Chinese New Year, the Dragon- boat Festival, and Mid-Autumn Holiday have dates determined by a lunar calendar and move between two solar months. Consumption, production, and other economic behavior in countries with large Chinese population including Taiwan are strongly affected by these holidays. For example, production accelerates before lunar new year, almost completely stops during the holidays and gradually rises to an average level after the ho...

  2. Lunar Tractive Forces and Renal Stone Incidence

    OpenAIRE

    Spyridon Arampatzis; Thalmann, George N.; Heinz Zimmermann; Exadaktylos, Aristomenis K

    2011-01-01

    Background. Several factors are implicated in renal stone formation and peak incidence of renal colic admissions to emergency departments (ED). Little is known about the influence of potential environmental triggers such as lunar gravitational forces. We conducted a retrospective study to test the hypothesis that the incidence of symptomatic renal colics increases at the time of the full and new moon because of increased lunar gravitational forces. Methods. We analysed 1500 patients who atten...

  3. Sulfur 'Concrete' for Lunar Applications - Environmental Considerations

    Science.gov (United States)

    Grugel, R. N.

    2008-01-01

    Commercial use of sulfur concrete on Earth is well established, particularly in corrosive, e.g., acid and salt, environments. Having found troilite (FeS) on the Moon raises the question of using extracted sulfur as a lunar construction material, an attractive alternative to conventional concrete as it does not require water. For the purpose of this Technical Memorandum, it is assumed that lunar ore is mined, refined, and the raw sulfur processed with appropriate lunar regolith to form, for example, bricks. With this stipulation, it is then noted that the viability of sulfur concrete in a lunar environment, which is characterized by lack of an atmosphere and extreme temperatures, is not well understood. The work presented here evaluates two sets of small sulfur concrete samples that have been prepared using JSC-1 lunar simulant as an aggregate addition. One set was subjected to extended periods in high vacuum to evaluate sublimation issues, and the other was cycled between room and liquid nitrogen temperatures to investigate their subsequent mechanical integrity. Results are presented from both investigations, discussed, and put into the context of the lunar environment.

  4. COMPASS Final Report: Lunar Relay Satellite (LRS)

    Science.gov (United States)

    Oleson, Steven R.; McGuire, Melissa L.

    2012-01-01

    The Lunar Relay Satellite (LRS) COllaborative Modeling and Parametric Assessment of Space Systems (COMPASS) session was tasked to design a satellite to orbit in an elliptical lunar polar orbit to provide relay communications between lunar South Pole assets and the Earth. The design included a complete master equipment list, power requirement list, configuration design, and brief risk assessment and cost analysis. The LRS is a half-TDRSS sized box spacecraft, which provides communications and navigation relay between lunar outposts (via Lunar Communications Terminals (LCT)) or Sortie parties (with user radios) and large ground antennas on Earth. The LRS consists of a spacecraft containing all the communications and avionics equipment designed by NASA Jet Propulsion Laboratory s (JPL) Team X to perform the relay between lunar-based assets and the Earth. The satellite design is a standard box truss spacecraft design with a thermal control system, 1.7 m solar arrays for 1 kWe power, a 1 m diameter Ka/S band dish which provides relay communications with the LCT, and a Q-band dish for communications to/from the Earth based assets. While JPL's Team X and Goddard Space Flight Center s (GSFC) I M Design Center (IMDC) have completed two other LRS designs, this NASA Glenn Research Center (GRC) COMPASS LRS design sits between them in terms of physical size and capabilities.

  5. Petrologic Characteristics of the Lunar Surface

    Science.gov (United States)

    Wang, Xianmin; Pedrycz, Witold

    2015-01-01

    Petrologic analysis of the lunar surface is critical for determining lunar formation and evolution. Here, we report the first global petrologic map that includes the five most important lunar lithological units: the Ferroan Anorthositic (FAN) Unit, the Magnesian Suite (MS) Unit, the Alkali Suite (AS) Unit, the KREEP Basalt (KB) Unit and the Mare Basalt (MB) Unit. Based on the petrologic map and focusing on four long-debated and important issues related to lunar formation and evolution, we draw the following conclusions from the new insights into the global distribution of the five petrologic units: (1) there may be no petrogenetic relationship between MS rocks and KB; (2) there may be no petrogenetic link between MS and AS rocks; (3) the exposure of the KREEP component on the lunar surface is likely not a result of MB volcanism but is instead mainly associated with the combined action of plutonic intrusion, KREEP volcanism and celestial collision; (4) the impact size of the South Pole-Aitken basin is constrained, i.e., the basin has been excavated through the whole crust to exhume a vast majority of lower-crustal material and a very limited mantle components to the lunar surface. PMID:26611148

  6. Distribution of Amino Acids in Lunar Regolith

    Science.gov (United States)

    Elsila, J. E.; Callahan, M. P.; Glavin, D. P.; Dworkin, J. P.; Noble, S. K.; Gibson, E. K., Jr.

    2014-01-01

    One of the most eagerly studied questions upon initial return of lunar samples was whether significant amounts of organic compounds, including amino acids, were present. Analyses during the 1970s produced only tentative and inconclusive identifications of indigenous amino acids. Those analyses were hampered by analytical difficulties including relative insensitivity to certain compounds, the inability to separate chiral enantiomers, and the lack of compound-specific isotopic measurements, which made it impossible to determine whether the detected amino acids were indigenous to the lunar samples or the results of contamination. Numerous advances have been made in instrumentation and methodology for amino acid characterization in extraterrestrial samples in the intervening years, yet the origin of amino acids in lunar regolith samples has been revisited only once for a single lunar sample, (3) and remains unclear. Here, we present initial data from the analyses of amino acid abundances in 12 lunar regolith samples. We discuss these abundances in the context of four potential amino acid sources: (1) terrestrial biological contamination; (2) contamination from lunar module (LM) exhaust; (3) derivation from solar windimplanted precursors; and (4) exogenous delivery from meteorites.

  7. Reference Avionics Architecture for Lunar Surface Systems

    Science.gov (United States)

    Somervill, Kevin M.; Lapin, Jonathan C.; Schmidt, Oron L.

    2010-01-01

    Developing and delivering infrastructure capable of supporting long-term manned operations to the lunar surface has been a primary objective of the Constellation Program in the Exploration Systems Mission Directorate. Several concepts have been developed related to development and deployment lunar exploration vehicles and assets that provide critical functionality such as transportation, habitation, and communication, to name a few. Together, these systems perform complex safety-critical functions, largely dependent on avionics for control and behavior of system functions. These functions are implemented using interchangeable, modular avionics designed for lunar transit and lunar surface deployment. Systems are optimized towards reuse and commonality of form and interface and can be configured via software or component integration for special purpose applications. There are two core concepts in the reference avionics architecture described in this report. The first concept uses distributed, smart systems to manage complexity, simplify integration, and facilitate commonality. The second core concept is to employ extensive commonality between elements and subsystems. These two concepts are used in the context of developing reference designs for many lunar surface exploration vehicles and elements. These concepts are repeated constantly as architectural patterns in a conceptual architectural framework. This report describes the use of these architectural patterns in a reference avionics architecture for Lunar surface systems elements.

  8. Extraction of Water from Lunar Permafrost

    Science.gov (United States)

    Ethridge, Edwin C.; Kaukler, William

    2009-01-01

    Remote sensing indicates the presence of hydrogen rich regions associated with the lunar poles. The logical hypothesis is that there is cryogenically trapped water ice located in craters at the lunar poles. Some of the craters have been in permanent darkness for a billion years. The presence of water at the poles as well as other scientific advantages of a polar base, have influenced NASA plans for the lunar outpost. The lunar outpost has water and oxygen requirements on the order of 1 ton per year scaling up to as much as 5 tons per year. Microwave heating of the frozen permafrost has unique advantages for water extraction. Proof of principle experiments have successfully demonstrated that microwaves will couple to the cryogenic soil in a vacuum and the sublimed water vapor can be successfully captured on a cold trap. Dielectric property measurements of lunar soil simulant have been measured. Microwave absorption and attenuation in lunar soil simulant has been correlated with measured dielectric properties. Future work will be discussed.

  9. GRAIL Refinements to Lunar Seismic Structure

    Science.gov (United States)

    Weber, Renee C.

    2014-01-01

    Gravity field measurements are perhaps the most numerous of the indirect observations relevant to the Moon's internal structure. Multiple recent missions have mapped the global lunar gravity field, each one improving upon the resolution of the last. The details of the Moon's deepest structure, including the parameters that define the lunar core, however, were still largely unaddressed by pre-GRAIL gravity measurements, which were not high enough resolution to resolve the tidal coefficients at a sufficient degree of accuracy. Current constraints on core size and state arise from other indirect measurements, including lunar laser ranging, magnetic induction studies, and analyses of elemental abundances in depth-derived mare basalts. These inferences vary widely, but when considered together with structure models derived from the seismic data gathered during the Apollo missions, a schematic of the lunar interior containing a partially molten deepest mantle layer overlying molten outer and solid inner core layers was obtained. Seismology provides the most direct constraints on the variables that govern the dynamic properties of the body. However, the GRAIL mission's high-resolution measurements of the lunar gravity field are being used to constrain the interior structure of the Moon using a "crust to core" approach. GRAIL's constraints on crustal thickness, mantle structure, core radius and stratification, and core state (solid vs. molten) therefore complement seismic investigations. This work focuses on expanding our knowledge of the Moon's internal structure using joint gravity and seismic analyses, which will improve constraints on the deep lunar mantle and core.

  10. Petrologic Characteristics of the Lunar Surface.

    Science.gov (United States)

    Wang, Xianmin; Pedrycz, Witold

    2015-01-01

    Petrologic analysis of the lunar surface is critical for determining lunar formation and evolution. Here, we report the first global petrologic map that includes the five most important lunar lithological units: the Ferroan Anorthositic (FAN) Unit, the Magnesian Suite (MS) Unit, the Alkali Suite (AS) Unit, the KREEP Basalt (KB) Unit and the Mare Basalt (MB) Unit. Based on the petrologic map and focusing on four long-debated and important issues related to lunar formation and evolution, we draw the following conclusions from the new insights into the global distribution of the five petrologic units: (1) there may be no petrogenetic relationship between MS rocks and KB; (2) there may be no petrogenetic link between MS and AS rocks; (3) the exposure of the KREEP component on the lunar surface is likely not a result of MB volcanism but is instead mainly associated with the combined action of plutonic intrusion, KREEP volcanism and celestial collision; (4) the impact size of the South Pole-Aitken basin is constrained, i.e., the basin has been excavated through the whole crust to exhume a vast majority of lower-crustal material and a very limited mantle components to the lunar surface. PMID:26611148

  11. Astronaut John Young leaps from lunar surface to salute flag

    Science.gov (United States)

    1972-01-01

    Astronaut John W. Young, commander of the Apollo 16 lunar landing mission, leaps from the lunar surface as he salutes the U.S. Flag at the Descartes landing site during the first Apollo 16 extravehicular activity (EVA-1). Astronaut Charles M. Duke Jr., lunar module pilot, took this picture. The Lunar Module (LM) 'Orion' is on the left. The Lunar Roving Vehicle is parked beside the LM. The object behind Young in the shade of the LM is the Far Ultraviolet Camera/Spectrograph. Stone Mountain dominates the background in this lunar scene.

  12. Plume Mitigation: Soil Erosion and Lunar Prospecting Sensor Project

    Science.gov (United States)

    Metzger, Philip T.

    2014-01-01

    Demonstrate feasibility of the simplest, lowest-mass method of measuring density of a cloud of lunar soil ejected by rocket exhaust, using new math techniques with a small baseline laser/camera system. Focus is on exploring the erosion process that occurs when the exhaust plume of a lunar rocket impacts the regolith. Also, predicting the behavior of the lunar soil that would be blasted from a lunar landing/launch site shall assist in better design and protection of any future lunar settlement from scouring of structures and equipment. NASA is gathering experimental data to improve soil erosion models and understand how lunar particles enter the plume flow.

  13. Low-Energy Ballistic Transfers to Lunar Halo Orbits

    Science.gov (United States)

    Parker, Jeffrey S.

    2009-01-01

    Recent lunar missions have begun to take advantage of the benefits of low-energy ballistic transfers between the Earth and the Moon rather than implementing conventional Hohmann-like lunar transfers. Both Artemis and GRAIL plan to implement low-energy lunar transfers in the next few years. This paper explores the characteristics and potential applications of many different families of low-energy ballistic lunar transfers. The transfers presented here begin from a wide variety of different orbits at the Earth and follow several different distinct pathways to the Moon. This paper characterizes these pathways to identify desirable low-energy lunar transfers for future lunar missions.

  14. Lunar e-Library: A Research Tool Focused on the Lunar Environment

    Science.gov (United States)

    McMahan, Tracy A.; Shea, Charlotte A.; Finckenor, Miria; Ferguson, Dale

    2007-01-01

    As NASA plans and implements the Vision for Space Exploration, managers, engineers, and scientists need lunar environment information that is readily available and easily accessed. For this effort, lunar environment data was compiled from a variety of missions from Apollo to more recent remote sensing missions, such as Clementine. This valuable information comes not only in the form of measurements and images but also from the observations of astronauts who have visited the Moon and people who have designed spacecraft for lunar missions. To provide a research tool that makes the voluminous lunar data more accessible, the Space Environments and Effects (SEE) Program, managed at NASA's Marshall Space Flight Center (MSFC) in Huntsville, AL, organized the data into a DVD knowledgebase: the Lunar e-Library. This searchable collection of 1100 electronic (.PDF) documents and abstracts makes it easy to find critical technical data and lessons learned from past lunar missions and exploration studies. The SEE Program began distributing the Lunar e-Library DVD in 2006. This paper describes the Lunar e-Library development process (including a description of the databases and resources used to acquire the documents) and the contents of the DVD product, demonstrates its usefulness with focused searches, and provides information on how to obtain this free resource.

  15. Experimental petrology of lunar material: the nature of mascons, seas, and the lunar interior.

    Science.gov (United States)

    O'hara, M J; Biggar, G M; Richardson, S W

    1970-01-30

    One-atmosphere melting data show that Apollo 11 samples are near cotectic. Melting relations at pressures up to 35 kilobars show that clinopyroxenite or amphibole peridotite are possible lunar interiors. Mascons cannot be eclogite; they may be ilmenite accumulate. Hot lunar surface material will boil off alkalis. PMID:17781513

  16. An Experiment to Detect Lunar Horizon Glow with the Lunar Orbit Laser Altimeter Laser Ranging Telescope

    Science.gov (United States)

    Smith, David E.; Zuber, Maria T.; Barker, Michael; Mazarico, Erwan; Neumann, Gregory A.; McClanahan, Timothy P.; Sun, Xiaoli

    2016-04-01

    Lunar horizon glow (LHG) was an observation by the Apollo astronauts of a brightening of the horizon around the time of sunrise. The effect has yet to be fully explained or confirmed by instruments on lunar orbiting spacecraft despite several attempts. The Lunar Reconnaissance Orbiter (LRO) spacecraft carries the laser altimeter (LOLA) instrument which has a 2.5 cm aperture telescope for Earth-based laser ranging (LR) mounted and bore-sighted with the high gain antenna (HGA). The LR telescope is connected to LOLA by a fiber-glass cable to one of its 5 detectors. For the LGH experiments the LR telescope is pointed toward the horizon shortly before lunar sunrise with the intent of observing any forward scattering of sunlight due to the presence of dust or particles in the field of view. Initially, the LR telescope is pointed at the dark lunar surface, which provides a measure of the dark count, and moves toward the lunar limb so as to measure the brightness of the sky just above the lunar limb immediately prior to lunar sunrise. At no time does the sun shine directly into the LR telescope, although the LR telescope is pointed as close to the sun as the 1.75-degree field of view permits. Experiments show that the LHG signal seen by the astronauts can be detected with a four-second integration of the noise counts.

  17. A Fractal Model for the Capacitance of Lunar Dust and Lunar Dust Aggregates

    Science.gov (United States)

    Collier, Michael R.; Stubbs, Timothy J.; Keller, John W.; Farrell, William M.; Marshall, John; Richard, Denis Thomas

    2011-01-01

    Lunar dust grains and dust aggregates exhibit clumping, with an uneven mass distribution, as well as features that span many spatial scales. It has been observed that these aggregates display an almost fractal repetition of geometry with scale. Furthermore, lunar dust grains typically have sharp protrusions and jagged features that result from the lack of aeolian weathering (as opposed to space weathering) on the Moon. A perfectly spherical geometry, frequently used as a model for lunar dust grains, has none of these characteristics (although a sphere may be a reasonable proxy for the very smallest grains and some glasses). We present a fractal model for a lunar dust grain or aggregate of grains that reproduces (1) the irregular clumpy nature of lunar dust, (2) the presence of sharp points, and (3) dust features that span multiple scale lengths. We calculate the capacitance of the fractal lunar dust analytically assuming fixed dust mass (i.e. volume) for an arbitrary number of fractal levels and compare the capacitance to that of a non-fractal object with the same volume, surface area, and characteristic width. The fractal capacitance is larger than that of the equivalent non-fractal object suggesting that for a given potential, electrostatic forces on lunar dust grains and aggregates are greater than one might infer from assuming dust grains are sphericaL Consequently, electrostatic transport of lunar dust grains, for example lofting, appears more plausible than might be inferred by calculations based on less realistic assumptions about dust shape and associated capacitance.

  18. Advanced Lithium-Ion Cell Development for NASA's Constellation Missions

    Science.gov (United States)

    Reid, Concha M.; Miller, Thomas B.; Manzo, Michelle A.; Mercer, Carolyn R.

    2008-01-01

    The Energy Storage Project of NASA s Exploration Technology Development Program is developing advanced lithium-ion batteries to meet the requirements for specific Constellation missions. NASA GRC, in conjunction with JPL and JSC, is leading efforts to develop High Energy and Ultra High Energy cells for three primary Constellation customers: Altair, Extravehicular Activities (EVA), and Lunar Surface Systems. The objective of the High Energy cell development is to enable a battery system that can operationally deliver approximately 150 Wh/kg for 2000 cycles. The Ultra High Energy cell development will enable a battery system that can operationally deliver 220 Wh/kg for 200 cycles. To accomplish these goals, cathode, electrolyte, separator, and safety components are being developed for High Energy Cells. The Ultra High Energy cell development adds lithium alloy anodes to the component development portfolio to enable much higher cell-level specific energy. The Ultra High Energy cell development is targeted for the ascent stage of Altair, which is the Lunar Lander, and for power for the Portable Life support System of the EVA Lunar spacesuit. For these missions, mass is highly critical, but only a limited number of cycles are required. The High Energy cell development is primarily targeted for Mobility Systems (rovers) for Lunar Surface Systems, however, due to the high risk nature of the Ultra High Energy cell development, the High Energy cell will also serve as a backup technology for Altair and EVA. This paper will discuss mission requirements and the goals of the material, component, and cell development efforts in further detail.

  19. Attitude reconstruction of ROSETTA's Lander PHILAE using two-point magnetic field observations by ROMAP and RPC-MAG

    Science.gov (United States)

    Heinisch, Philip; Auster, Hans-Ulrich; Richter, Ingo; Hercik, David; Jurado, Eric; Garmier, Romain; Güttler, Carsten; Glassmeier, Karl-Heinz

    2016-08-01

    As part of the European Space Agency's ROSETTA Mission the Lander PHILAE touched down on comet 67P/Churyumov-Gerasimenko on November 12, 2014. The magnetic field has been measured onboard the orbiter and the lander. The orbiter's tri-axial fluxgate magnetometer RPC-MAG is one of five sensors of the ROSETTA Plasma Consortium. The lander is also equipped with a tri-axial fluxgate magnetometer as part of the ROSETTA Lander Magnetometer and Plasma-Monitor package (ROMAP). This unique setup makes a two point measurement between the two spacecrafts in a relatively small distance of less than 50 km possible. Both magnetometers were switched on during the entire descent, the initial touchdown, the bouncing between the touchdowns and after the final touchdown. We describe a method for attitude determination by correlating magnetic low-frequency waves, which was tested under different conditions and finally used to reconstruct PHILAE's attitude during descent and after landing. In these cases the attitude could be determined with an accuracy of better than ± 5 °. These results were essential not only for PHILAE operations planning but also for the analysis of the obtained scientific data, because nominal sources for this information, like solar panel currents and camera pictures could not provide sufficient information due to the unexpected landing position.

  20. Lunar transportation scenarios utilising the Space Elevator

    Science.gov (United States)

    Engel, Kilian A.

    2005-07-01

    The Space Elevator (SE) concept has begun to receive an increasing amount of attention within the space community over the past couple of years and is no longer widely dismissed as pure science fiction. In light of the renewed interest in a, possibly sustained, human presence on the Moon and the fact that transportation and logistics form the bottleneck of many conceivable lunar missions, it is interesting to investigate what role the SE could eventually play in implementing an efficient Earth to Moon transportation system. The elevator allows vehicles to ascend from Earth and be injected into a trans-lunar trajectory without the use of chemical thrusters, thus eliminating gravity loss, aerodynamic loss and the need of high thrust multistage launch systems. Such a system therefore promises substantial savings of propellant and structural mass and could greatly increase the efficiency of Earth to Moon transportation. This paper analyzes different elevator-based trans-lunar transportation scenarios and characterizes them in terms of a number of benchmark figures. The transportation scenarios include direct elevator-launched trans-lunar trajectories, elevator-launched trajectories via L1 and L2, as well as launch from an Earth-based elevator and subsequent rendezvous with lunar elevators placed either on the near or on the far side of the Moon. The benchmark figures by which the different transfer options are characterized and evaluated include release radius (RR), required Δv, transfer times as well as other factors such as accessibility of different lunar latitudes, frequency of launch opportunities and mission complexity. The performances of the different lunar transfer options are compared with each other as well as with the performance of conventional mission concepts, represented by Apollo.

  1. Flywheel Energy Storage for Lunar Rovers & Other Small Spacecraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA continues to be interested in returning to the Lunar surface. The Lunar surface is a harsh and unforgiving environment. Perhaps most challenging is the drastic...

  2. Terrestrial and Lunar Geological Terminology for Non-Geoscientists

    Science.gov (United States)

    Schrader, Christian M.

    2009-01-01

    This slide presentation reviews several geologic concepts applicable to lunar geology with particular interest in creating lunar regolith simulant. Fundamental ways in which the Moon differs from the Earth. Concepts that are described in detail are: minerals, glass, and rocks.

  3. Contaminant Robust System for Oxygen Production from Lunar Regolith Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The necessity of oxygen for consumption by human inhabitants on the lunar surface is readily apparent. NASA is pursuing several ways to generate oxygen from lunar...

  4. Microwave brightness temperature imaging and dielectric properties of lunar soil

    Indian Academy of Sciences (India)

    Wu Ji; Li Dihui; Zhang Xiaohui; Jiang Jingshan; A T Altyntsev; B I Lubyshev

    2005-12-01

    Among many scientific objectives of lunar exploration, investigations on lunar soil become attractive due to the existence of He3 and ilmenite in the lunar soil and their possible utilization as nuclear fuel for power generation.Although the composition of the lunar surface soil can be determined by optical and /X-ray spectrometers, etc., the evaluation of the total reserves of He3 and ilmenite within the regolith and in the lunar interior are still not available.In this paper,we give a rough analysis of the microwave brightness temperature images of the lunar disc observed using the NRAO 12 meter Telescope and Siberian Solar Radio Telescope.We also present the results of the microwave dielectric properties of terrestrial analogues of lunar soil and,discuss some basic relations between the microwave brightness temperature and lunar soil properties.

  5. Lunar All-Terrain Utility Vehicle for EVA Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ProtoInnovations, LLC proposes to develop a new type of planetary rover called a Lunar All-terrain Utility Vehicle ("Lunar ATV") to assist extra-vehicular...

  6. Autonomous Utility Connector for Lunar Surface Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Lunar dust has been identified as a significant and present challenge in future exploration missions. The interlocking, angular nature of Lunar dust and its broad...

  7. The DREAMS experiment on-board the Schiaparelli lander of ExoMars mission

    Science.gov (United States)

    Esposito, F.

    2015-10-01

    The DREAMS package is a suite of sensors for the characterization of the Martian basic state meteorology and of the atmospheric electric properties at the landing site of the Entry, descent and landing Demonstration Module (EDM) of the ExoMars mission. The EDM will land on Meridiani Planum in October 2016, during the statistical dust storm season. This will allow DREAMS to investigate the status of the atmosphere of Mars during this particular season and also to understand the role of dust as a potential source of electrical phenomena on Mars. DREAMS will be the first instrument to perform a measurement of electric field on Mars. DREAMS FM has been completely developed and tested and it has been delivered to ESA for integration on the Schiaparelli lander of the ExoMars 2016 mission. Launch is foreseen for January 2016.

  8. Microrover Nanokhod enhancing the scientific output of the ExoMars Lander

    Science.gov (United States)

    Klinkner, Sabine; Bernhardt, Bodo; Henkel, Hartmut; Rodionov, Daniel; Klingelhoefer, Goestar

    The Nanokhod rover is a small and mobile exploration platform carrying out in-situ exploration by transporting and operating scientific instruments to interesting samples beyond the landing point. The microrover has a volume of 160x65x250mm (3) it weighs 3.2kg including a payload mass of 1kg and it has a peak power of 5W. The scientific model payload of the rover is a Geochemistry Instrument Package Facility (GIPF), which analyses the chemical and mineralogical composition of planetary surfaces. It consists of: An Alpha-Particle-Xray-spectrometer, a Mößbauer spectrometer and a miniature imaging system. The amount of science which can be performed within the operating range of the lander is limited since there are only few reachable, scientific interesting objects. By travelling to new sites with the aid of a microrover, the additional reach enhances the mission output and provides a significant increase in scientific return. The implementation of the Nanokhod rover on the ExoMars Lander increases its operating range by a radius of several meters, requiring only a minor mass impact of few kilograms. The Nanokhod rover is a tethered vehicle based on a Russian concept. It stays connected to the Lander via thin cables throughout the mission. This connection is used for power supply to the rover as well as the transmission of commands and scientific data. This solution minimises the communication unit and eliminates the power subsystems on the rover side, saving valuable mass and thus improving the payload to system mass ratio. By removing the power storage subsystem on the rover side, the mobile system provides a high thermal robustness and allows the system to easily survive Martian nights. The locomotion of the rover is provided by tracks. This is the optimised locomotion method on a soft and sandy surface for such a small, low-mass system, allowing even to negotiate steep slopes. The tracks enable a large contact surface of the vehicle, thus reducing its contact

  9. An improved JPL Mars gravity field and orientation from Mars orbiter and lander tracking data

    Science.gov (United States)

    Konopliv, Alex S.; Park, Ryan S.; Folkner, William M.

    2016-08-01

    The Mars gravity field resolution is mostly determined by the lower altitude Mars Reconnaissance Orbiter (MRO) tracking data. With nearly four years of additional MRO and Mars Odyssey tracking data since the last JPL released gravity field MRO110C and lander tracking from the MER Opportunity Rover, the gravity field and orientation of Mars have been improved. The new field, MRO120D, extends the maximum spherical harmonic degree slightly to 120, improves the determination of the higher degree coefficients as demonstrated by improved correlation with topography and reduces the uncertainty in the corresponding Mars orientation parameters by up to a factor of two versus previously combined gravity and orientation solutions. The new precession solution is ψ˙ = - 7608.3 ± 2.1 mas / yr and is consistent with previous results but with a reduced uncertainty by 40%. The Love number solution, k2 = 0.169 ± 0.006, also shows a similar result to previous studies.

  10. Geothermal Resource Area 6: Lander and Eureka Counties. Area development plan

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, S.; Pugsley, M.

    1981-01-01

    Geothermal Resource Area 6 includes Lander and Eureka Counties. There are several different geothermal resources ranging in temperature from 70/sup 0/F to in excess of 400/sup 0/F within this two county area. Eleven of these resources are considered major and have been selected for evaluation in this area development plan. The various potential uses of the energy found at each of the 11 resource sites were determined after evaluating the study area's physical characteristics, land ownership and land use patterns, existing population and projected growth rates, and transportation facilities. These were then compared with the site specific resource characteristics. The uses considered were divided into five main categories: electrical generation, space heating, recreation, industrial process heat, and agriculture. Within two of these categories certain subdivisions were considered separately. The findings about each of the geothermal sites considered are summarized.

  11. Strategy of atmospheric electric field and electromagnetic wave measurements by Mars lander

    Science.gov (United States)

    Takahashi, Yukihiro; Shimizu, Hisayoshi; Ishisaka, Keigo

    Measurement of atmospheric electric field and electromagnetic waves on the ground in Mars is very new and unique approach dedicated not only to the electrical current research but also to the meteorology. Dust devil and storm could be the generator of the currents via dust particle collision process in the very near surface region. If we compare the electric filed near the ground with the dust devil activity, we could clarify the mechanism of dust devil generation. Also the electromagnetic wave measurement makes it possible to know the location and the quantitative strength of dust devil wind only with few observation sites. This measurement also contributes to the studies both on the crust and the upper atmosphere physics. We propose an instrumentation set for the DC and AC electromagnetic observation installed at MArs lander.

  12. Optical analysis of a compound quasi-microscope for planetary landers

    Science.gov (United States)

    Wall, S. D.; Burcher, E. E.; Huck, F. O.

    1974-01-01

    A quasi-microscope concept, consisting of facsimile camera augmented with an auxiliary lens as a magnifier, was introduced and analyzed. The performance achievable with this concept was primarily limited by a trade-off between resolution and object field; this approach leads to a limiting resolution of 20 microns when used with the Viking lander camera (which has an angular resolution of 0.04 deg). An optical system is analyzed which includes a field lens between camera and auxiliary lens to overcome this limitation. It is found that this system, referred to as a compound quasi-microscope, can provide improved resolution (to about 2 microns ) and a larger object field. However, this improvement is at the expense of increased complexity, special camera design requirements, and tighter tolerances on the distances between optical components.

  13. Lunar and Planetary Science XXXV: Undergraduate Education and Research Programs, Facilities, and Information Access

    Science.gov (United States)

    2004-01-01

    The titles in this section include: 1) GRIDVIEW: Recent Improvements in Research and Education Software for Exploring Mars Topography; 2) Software and Hardware Upgrades for the University of North Dakota Asteroid and Comet Internet Telescope (ACIT); 3) Web-based Program for Calculating Effects of an Earth Impact; 4) On-Line Education, Web- and Virtual-Classes in an Urban University: A Preliminary Overview; 5) Modelling Planetary Material's Structures: From Quasicrystalline Microstructure to Crystallographic Materials by Use of Mathematica; 6) How We Used NASA Lunar Set in Planetary and Material Science Studies: Textural and Cooling Sequences in Sections of Lava Column from a Thin and a Thick Lava-Flow, from the Moon and Mars with Terrestrial Analogue and Chondrule Textural Comparisons; 7) Classroom Teaching of Space Technology and Simulations by the Husar Rover Model; 8) New Experiments (In Meteorology, Aerosols, Soil Moisture and Ice) on the New Hunveyor Educational Planetary Landers of Universities and Colleges in Hungary; 9) Teaching Planetary GIS by Constructing Its Model for the Test Terrain of the Hunveyor and Husar; 10) Undergraduate Students: An Untapped Resource for Planetary Researchers; 11) Analog Sites in Field Work of Petrology: Rock Assembly Delivered to a Plain by Floods on Earth and Mars; 12) RELAB (Reflectance Experiment Laboratory): A NASA Multiuser Spectroscopy Facility; 13) Full Text Searching and Customization in the NASA ADS Abstract Service.

  14. Martian airfall dust on smooth, inclined surfaces as observed on the Phoenix Mars Lander telltale mirror

    Science.gov (United States)

    Moores, John E.; Ha, Taesung; Lemmon, Mark T.; Gunnlaugsson, Haraldur Páll

    2015-10-01

    The telltale mirror, a smooth inclined surface raised over 1 m above the deck of the Phoenix Mars Lander, was observed by the Surface Stereo Imager (SSI) several times per sol during the Phoenix Mars Lander mission. These observations were combined with a radiative transfer model to determine the thickness of dust on the wind telltale mirror as a function of time. 239 telltale sequences were analyzed and dustiness was determined on a diurnal and seasonal basis. The thickness of accumulated dust did not follow any particular diurnal or seasonal trend. The dust thickness on the mirror over the mission was 0.82±0.39 μm, which suggests a similar thickness to the modal scattering particle diameter. This suggests that inclining a surface beyond the angle of repose and polishing it to remove surface imperfections is an effective way to mitigate the accumulation of dust to less than a micron over a wide range of meteorological conditions and could be beneficial for surfaces which can tolerate some dust but not thick accumulations, such as solar panels. However, such a surface will not remain completely dust free through this action alone and mechanical or electrical clearing must be employed to remove adhered dust if a pristine surface is required. The single-scattering phase function of the dust on the mirror was consistent with the single-scattering phase function of martian aerosol dust at 450 nm, suggesting that this result is inconsistent with models of the atmosphere which require vertically or horizontally separated components or broad size distributions to explain the scattering behavior of these aerosols in the blue. The single-scattering behavior of the dust on the mirror is also consistent with Hapke modeling of spherical particles. The presence of a monolayer of particles would tend to support the spherical conclusion: such particles would be most strongly adhered electrostatically.

  15. Thermal and microstructural properties of fine-grained material at the Viking Lander 1 site

    Science.gov (United States)

    Paton, M. D.; Harri, A.-M.; Savijärvi, H.; Mäkinen, T.; Hagermann, A.; Kemppinen, O.; Johnston, A.

    2016-06-01

    As Viking Lander 1 touched down on Mars one of its footpads fully penetrated a patch of loose fine-grained drift material. The surrounding landing site, as observed by VL-1, was found to exhibit a complex terrain consisting of a crusted surface with an assortment of rocks, large dune-like drifts and smaller patches of drift material. We use a temperature sensor attached to the buried footpad and covered in fine-grained material to determine the thermal properties of drift material at the VL-1 site. The thermal properties are used to investigate the microstructure of the drift material and understand its relevance to surface-atmosphere interactions. We obtained a thermal inertia value of 103 ± 22 tiu. This value is in the upper range of previous thermal inertia estimates of martian dust as measured from orbit and is significantly lower than the regional thermal inertia of the VL-1 site, of around 283 tiu, obtained from orbit. We estimate a thermal inertia of around 263 ± 29 tiu for the duricrust at the VL-1 site. It was noted the patch of fine-grained regolith around the footpad was about 20-30 K warmer compared to similar material beyond the thermal influence of the lander. An effective diameter of 8 ± 5 μm was calculated for the particles in the drift material. This is larger than atmospheric dust and large compared to previous estimates of the drift material particle diameter. We interpret our results as the presence of a range of particle sizes, Mars.

  16. All Recent Mars Landers Have Landed Downrange - Are Mars Atmosphere Models Mis-Predicting Density?

    Science.gov (United States)

    Desai, Prasun N.

    2008-01-01

    All recent Mars landers (Mars Pathfinder, the two Mars Exploration Rovers Spirit and Opportunity, and the Mars Phoenix Lander) have landed further downrange than their pre-entry predictions. Mars Pathfinder landed 27 km downrange of its prediction [1], Spirit and Opportunity landed 13.4 km and 14.9 km, respectively, downrange from their predictions [2], and Phoenix landed 21 km downrange from its prediction [3]. Reconstruction of their entries revealed a lower density profile than the best a priori atmospheric model predictions. Do these results suggest that there is a systemic issue in present Mars atmosphere models that predict a higher density than observed on landing day? Spirit Landing: The landing location for Spirit was 13.4 km downrange of the prediction as shown in Fig. 1. The navigation errors upon Mars arrival were very small [2]. As such, the entry interface conditions were not responsible for this downrange landing. Consequently, experiencing a lower density during the entry was the underlying cause. The reconstructed density profile that Spirit experienced is shown in Fig. 2, which is plotted as a fraction of the pre-entry baseline prediction that was used for all the entry, descent, and landing (EDL) design analyses. The reconstructed density is observed to be less dense throughout the descent reaching a maximum reduction of 15% at 21 km. This lower density corresponded to approximately a 1- low profile relative to the dispersions predicted. Nearly all the deceleration during the entry occurs within 10- 50 km. As such, prediction of density within this altitude band is most critical for entry flight dynamics analyses and design (e.g., aerodynamic and aerothermodynamic predictions, landing location, etc.).

  17. Astronaut Charles Duke photographed collecting lunar samples at Station 1

    Science.gov (United States)

    1972-01-01

    Astronaut Charles M. Duke Jr., lunar module pilot of the Apollo 16 lunar landing mission, is photographed collecting lunar samples at Station no. 1 during the first Apollo 16 extravehicular activity at the Descartes landing site. This picture, looking eastward, was taken by Astronaut John W. Young, commander. Duke is standing at the rim of Plum crater, which is 40 meters in diameter and 10 meters deep. The parked Lunar Roving Vehicle can be seen in the left background.

  18. Initial observations from the Lunar Orbiter Laser Altimeter (LOLA)

    OpenAIRE

    Smith, David E.; Zuber, Maria T.; Neumann, Gregory A.; Lemoine, Frank G.; Mazarico, Erwan; Torrence, Mark H.; McGarry, Jan F.; Rowlands, David D.; Head, James W.; Duxbury, Thomas H.; Aharonson, Oded; Lucey, Paul G.; Robinson, Mark S.; Barnouin, Olivier S.; Cavanaugh, John F.

    2010-01-01

    As of June 19, 2010, the Lunar Orbiter Laser Altimeter, an instrument on the Lunar Reconnaissance Orbiter, has collected over 2.0 × 10^9 measurements of elevation that collectively represent the highest resolution global model of lunar topography yet produced. These altimetric observations have been used to improve the lunar geodetic grid to ~10 m radial and ~100 m spatial accuracy with respect to the Moon's center of mass. LOLA has also provided the highest resolution global maps yet produce...

  19. Thermal in situ measurements in the Lunar Regolith using the LUNAR-A penetrators: an outline of data reduction methods

    OpenAIRE

    Hagermann, A.; S. Tanaka; Yoshida, S; Hayakawa, M.; A. Fujimura; Mizutani, H

    2001-01-01

    For determining the lunar heat flow two parameters need to be measured: The thermal gradient and the thermal conductivity of the regolith. Methods for inferring these quantities from in situ measurements using the LUNAR-A penetrators will be presented.

  20. Design of a lunar oxygen production plant

    Science.gov (United States)

    Radhakrishnan, Ramalingam

    1990-01-01

    To achieve permanent human presence and activity on the moon, oxygen is required for both life support and propulsion. Lunar oxygen production using resources existing on the moon will reduce or eliminate the need to transport liquid oxygen from earth. In addition, the co-products of oxygen production will provide metals, structural ceramics, and other volatile compounds. This will enable development of even greater self-sufficiency as the lunar outpost evolves. Ilmenite is the most abundant metal-oxide mineral in the lunar regolith. A process involving the reaction of ilmenite with hydrogen at 1000 C to produce water, followed by the electrolysis of this water to provide oxygen and recycle the hydrogen has been explored. The objective of this 1990 Summer Faculty Project was to design a lunar oxygen-production plant to provide 5 metric tons of liquid oxygen per year from lunar soil. The results of this study describe the size and mass of the equipment, the power needs, feedstock quantity and the engineering details of the plant.

  1. Lunar and Meteorite Sample Disk for Educators

    Science.gov (United States)

    Foxworth, Suzanne; Luckey, M.; McInturff, B.; Allen, J.; Kascak, A.

    2015-01-01

    NASA Johnson Space Center (JSC) has the unique responsibility to curate NASA's extraterrestrial samples from past and future missions. Curation includes documentation, preservation, preparation and distribution of samples for research, education and public outreach. Between 1969 and 1972 six Apollo missions brought back 382 kilograms of lunar rocks, core and regolith samples, from the lunar surface. JSC also curates meteorites collected from a US cooperative effort among NASA, the National Science Foundation (NSF) and the Smithsonian Institution that funds expeditions to Antarctica. The meteorites that are collected include rocks from Moon, Mars, and many asteroids including Vesta. The sample disks for educational use include these different samples. Active relevant learning has always been important to teachers and the Lunar and Meteorite Sample Disk Program provides this active style of learning for students and the general public. The Lunar and Meteorite Sample Disks permit students to conduct investigations comparable to actual scientists. The Lunar Sample Disk contains 6 samples; Basalt, Breccia, Highland Regolith, Anorthosite, Mare Regolith and Orange Soil. The Meteorite Sample Disk contains 6 samples; Chondrite L3, Chondrite H5, Carbonaceous Chondrite, Basaltic Achondrite, Iron and Stony-Iron. Teachers are given different activities that adhere to their standards with the disks. During a Sample Disk Certification Workshop, teachers participate in the activities as students gain insight into the history, formation and geologic processes of the moon, asteroids and meteorites.

  2. Lunar surface exploration using mobile robots

    Science.gov (United States)

    Nishida, Shin-Ichiro; Wakabayashi, Sachiko

    2012-06-01

    A lunar exploration architecture study is being carried out by space agencies. JAXA is carrying out research and development of a mobile robot (rover) to be deployed on the lunar surface for exploration and outpost construction. The main target areas for outpost construction and lunar exploration are mountainous zones. The moon's surface is covered by regolith. Achieving a steady traversal of such irregular terrain constitutes the major technical problem for rovers. A newly developed lightweight crawler mechanism can effectively traverse such irregular terrain because of its low contact force with the ground. This fact was determined on the basis of the mass and expected payload of the rover. This paper describes a plan for Japanese lunar surface exploration using mobile robots, and presents the results of testing and analysis needed in their development. This paper also gives an overview of the lunar exploration robot to be deployed in the SELENE follow-on mission, and the composition of its mobility, navigation, and control systems.

  3. Thermal investigation of a large lunar telescope

    Science.gov (United States)

    Walker, Sherry T.

    1992-01-01

    Recent interest in construction of a large telescope on the lunar surface (Nein and Davis, 1991; Bely, Burrows, and Illingworth, 1989) has prompted this feasibility study of a thermal control system for a 16 meter diameter telescope located near the lunar equator. In addition to detailed analyses for a telescope located in a flat area near the equator, the thermal effect of locating the telescope in a crater, on a hill, and at higher latitude sites is discussed. Because an unprotected telescope experiences a wide range of temperature swings, several thermal protection schemes have been examined, including domes, sunshades, and ground shields to limit the temperature excursions of the primary mirror. Results of these analyses indicate that mirror temperature excursions can be limited to less than 100 Kelvin (K) per lunar cycle with an appropriate passive thermal protection system (dome), and that the telescope primary mirror can be maintained at less than 100 K for at least 7 days of each lunar cycle. However, such a dome precludes observations during the lunar day. Mirror temperature excursions can be reduced by incorporating thermal enclosures or shades in the design or by placing the telescope at a higher latitude.

  4. Analytical formulation of lunar cratering asymmetries

    CERN Document Server

    Wang, Nan

    2016-01-01

    We formulate the lunar cratering distribution and verify the cratering asymmetries generated by the main-belt asteroids (MBAs) as well as the near-Earth objects (NEOs). Based on a planar model that excludes the terrestrial and lunar gravitations on the impactors and assuming the impactor encounter speed with Earth $v_{\\rm{enc}}$ is higher than the lunar orbital speed $v_{\\rm{M}}$, we rigorously integrated the lunar cratering distribution, and derived its approximation to the first order of $v_{\\rm{M}}/v_{\\rm{enc}}$. Numerical simulations of lunar bombardment by the MBAs during the late heavy bombardment were performed with an Earth-Moon distance $a_{\\rm{M}}$ = 20--60 Earth radii in five cases. The analytical model directly proves the existence of a leading/trailing asymmetry and the absence of near/far asymmetry. The approximate form of the leading/trailing asymmetry is $(1 + A_1 \\cos\\beta)$, which decreases as the apex distance $\\beta$ increases. The numerical simulations show evidence of a pole/equator asym...

  5. The lunar thermal ice pump

    International Nuclear Information System (INIS)

    It has long been suggested that water ice can exist in extremely cold regions near the lunar poles, where sublimation loss is negligible. The geographic distribution of H-bearing regolith shows only a partial or ambiguous correlation with permanently shadowed areas, thus suggesting that another mechanism may contribute to locally enhancing water concentrations. We show that under suitable conditions, water molecules can be pumped down into the regolith by day-night temperature cycles, leading to an enrichment of H2O in excess of the surface concentration. Ideal conditions for pumping are estimated and found to occur where the mean surface temperature is below 105 K and the peak surface temperature is above 120 K. These conditions complement those of the classical cold traps that are roughly defined by peak temperatures lower than 120 K. On the present-day Moon, an estimated 0.8% of the global surface area experiences such temperature variations. Typically, pumping occurs on pole-facing slopes in small areas, but within a few degrees of each pole the equator-facing slopes are preferred. Although pumping of water molecules is expected over cumulatively large areas, the absolute yield of this pump is low; at best, a few percent of the H2O delivered to the surface could have accumulated in the near-surface layer in this way. The amount of ice increases with vapor diffusivity and is thus higher in the regolith with large pore spaces.

  6. The lunar thermal ice pump

    Energy Technology Data Exchange (ETDEWEB)

    Schorghofer, Norbert [Institute for Astronomy and NASA Astrobiology Institute, University of Hawaii, Honolulu, HI 96822 (United States); Aharonson, Oded, E-mail: norbert@hawaii.edu [Helen Kimmel Center for Planetary Science, Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, 76100 (Israel)

    2014-06-20

    It has long been suggested that water ice can exist in extremely cold regions near the lunar poles, where sublimation loss is negligible. The geographic distribution of H-bearing regolith shows only a partial or ambiguous correlation with permanently shadowed areas, thus suggesting that another mechanism may contribute to locally enhancing water concentrations. We show that under suitable conditions, water molecules can be pumped down into the regolith by day-night temperature cycles, leading to an enrichment of H{sub 2}O in excess of the surface concentration. Ideal conditions for pumping are estimated and found to occur where the mean surface temperature is below 105 K and the peak surface temperature is above 120 K. These conditions complement those of the classical cold traps that are roughly defined by peak temperatures lower than 120 K. On the present-day Moon, an estimated 0.8% of the global surface area experiences such temperature variations. Typically, pumping occurs on pole-facing slopes in small areas, but within a few degrees of each pole the equator-facing slopes are preferred. Although pumping of water molecules is expected over cumulatively large areas, the absolute yield of this pump is low; at best, a few percent of the H{sub 2}O delivered to the surface could have accumulated in the near-surface layer in this way. The amount of ice increases with vapor diffusivity and is thus higher in the regolith with large pore spaces.

  7. Lunar Human Research Requirements (LHRR)

    Science.gov (United States)

    Denkins, Pamela

    2009-01-01

    Biomedical research will be conducted during transit and on the surface of the Moon to prepare for extended stays on the Moon and to prepare for the exploration of Mars. The objective of the Human Research Program (HRP) is to preserve the health and enhance performance of astronaut explorers. Specific objectives of the HRP include developing the knowledge, capabilities, and necessary countermeasures and technologies in support of human space exploration; focusing on mitigating the highest risks to crew health and performance; and defining and improving human spaceflight medical, environmental, behavioral, and human factors standards. This document contains a detailed description of the resource accommodations, interfaces, and environments to be provided by the Constellation Program (CxP) to support the HRP research in transit and on the lunar surface. Covered, specifically, are the requirements for mass and volume transport; crew availability; ground operations, baseline data collection, and payload processing; power, and data. Volumes and mass are given for transport of conditioned samples only. They do not account for the engineering solution that the Constellation Program will implement (refrigerator/freezer volume/mass). This document does not account for requirements on the Orion vehicle for transportation to and from the International Space Station (ISS). The ISS Program has supplied requirements for this mission.

  8. Characterization of lunar ilmenite resources

    International Nuclear Information System (INIS)

    Ilmenite will be an important lunar resource, to be used mainly for oxygen production but also as a source of iron. Ilmenite abundances in high-Ti basaltic lavas are higher (9-19 vol pct) than in high-Ti mare soils (mostly less than 10 vol pct). This factor alone may make crushed high-Ti basaltic lavas most attractive as a target for ilmenite extraction. Concentration of ilmenite from either a crushed basalt or regolith requires size sorting to avoid polycrystalline fragments. In coarse-grained high-Ti basaltic lavas, about 60-80 percent of the ilmenite will consist of relatively 'clean' single crystals if the rocks are crushed to a size of 0.2 mm. Fine-grained high-Ti basalts, with thin skeletal or hopper-shaped ilmentes, would produce essentially no free or 'clean' ilmenite grains even if crushed to 0.15 mm and only about 7 percent free ilmenite if crushed to 0.05 mm. Data from the 2.8-m-thick regolith sampled by coring at the Apollo 17 site show that in even the most basalt-clast-rich and least mature stratigraphic intervals, free ilmenite grains make up less than 2 percent of the 0.02- to 0.2-mm size fraction and a mere 0.3 percent of the 0.2- to 2-mm size fraction. 26 refs

  9. Immune Alterations in Rats Exposed to Airborne Lunar Dust

    Science.gov (United States)

    Crucian, Brian; Quiriarte, Heather; Nelman, Mayra; Lam, Chiu-wing; James, John T.; Sams, Clarence

    2014-01-01

    The lunar surface is covered by a layer of fine, reactive dust. Very little is known regarding the toxicity of lunar dust on human physiology. This study assessed the toxicity of airborne lunar dust exposure in rats on pulmonary and systemic immune parameters.

  10. Apollo 16 Lunar Module 'Orion' at the Descartes landing site

    Science.gov (United States)

    1972-01-01

    The Apollo 16 Lunar Module 'Orion' is part of the lunar scene at the Descartes landing site, as seen in the reproduction taken from a color television transmission made by the color TV camera mounted on the Lunar Roving Vehicle. Note the U.S. flag deployed on the left. This picture was made during the second Apollo 16 extravehicular activity (EVA-2).

  11. The Near Side: Regional Lunar Gravity Field Determination

    NARCIS (Netherlands)

    Goossens, S.

    2005-01-01

    In the past ten years the Moon has come fully back into focus, resulting in missions such as Clementine and Lunar Prospector. Data from these missions resulted in a boost in lunar gravity field modelling. Until this date, the lunar gravity field has mainly been expressed in a global representation,

  12. Walking Wheel Design for Lunar Rove-Rand and Its Application Simulation Based on Virtual Lunar Environment

    OpenAIRE

    Zhao Yibing; Zhang Ronghui; Li Linhui; Guo Lie; Zhang Mingheng

    2014-01-01

    The lunar rover design is the key problem of planet exploration. It is extraordinarily important for researchers to fully understand the lunar terrain and propose the reasonable lunar rover. In this paper, one new type of walking wheel modeled on impeller is presented based on vehicle terramechanics. The passive earth pressure of soil mechanics put forward by C. A. Coulomb is employed to obtain the wheel traction force. Some kinematics simulations are conducted for lunar rover model. Besides,...

  13. Lunar Radio Telescopes: A Staged Approach for Lunar Science, Heliophysics, Astrobiology, Cosmology, and Exploration

    Science.gov (United States)

    Lazio, Joseph; Bowman, Judd D.; Burns, Jack O.; Farrell, W. M.; Jones, D. L.; Kasper, J. C.; MacDowall, R. J.; Stewart, K. P.; Weiler, K.

    2012-01-01

    Observations with radio telescopes address key problems in cosmology, astrobiology, heliophysics, and planetary science including the first light in the Universe (Cosmic Dawn), magnetic fields of extrasolar planets, particle acceleration mechanisms, and the lunar ionosphere. The Moon is a unique science platform because it allows access to radio frequencies that do not penetrate the Earth's ionosphere and because its far side is shielded from intense terrestrial emissions. The instrument packages and infrastructure needed for radio telescopes can be transported and deployed as part of Exploration activities, and the resulting science measurements may inform Exploration (e.g., measurements of lunar surface charging). An illustrative roadmap for the staged deployment of lunar radio telescopes

  14. Dielectric Constant Measurements for Characterizing Lunar Soils

    Science.gov (United States)

    Anderson, Robert C.; Buehler, M.; Seshadri, S.; Kuhlman, G.; Schaap, M.

    2005-01-01

    The return to the Moon has ignited the need to characterize the lunar regolith using fast, reliable in-situ methods. Characterizing the physical properties of the rocks and soils can be very difficult because of the many complex parameters that influence the measurements. In particular, soil electrical property measurements are influenced by temperature, mineral type, grain size, porosity, and soil conductivity. Determining the dielectric constant of lunar materials may be very important in providing quick characterization of surface deposits, especially for the Moon. A close examination of the lunar regolith samples collected by the Apollo astronauts indicates that the rocks and soils on the Moon are dominated by silicates and oxides. In this presentation, we will show that determining the dielectric constant measurements can provide a simple, quick detection method for minerals that contain titanium, iron, and water. Their presence is manifest by an unusually large imaginary permittivity.

  15. Lunar Radar Cross Section at Low Frequency

    Science.gov (United States)

    Rodriguez, P.; Kennedy, E. J.; Kossey, P.; McCarrick, M.; Kaiser, M. L.; Bougeret, J.-L.; Tokarev, Y. V.

    2002-01-01

    Recent bistatic measurements of the lunar radar cross-section have extended the spectrum to long radio wavelength. We have utilized the HF Active Auroral Research Program (HAARP) radar facility near Gakona, Alaska to transmit high power pulses at 8.075 MHz to the Moon; the echo pulses were received onboard the NASA/WIND spacecraft by the WAVES HF receiver. This lunar radar experiment follows our previous use of earth-based HF radar with satellites to conduct space experiments. The spacecraft was approaching the Moon for a scheduled orbit perturbation when our experiment of 13 September 2001 was conducted. During the two-hour experiment, the radial distance of the satellite from the Moon varied from 28 to 24 Rm, where Rm is in lunar radii.

  16. Studying space plasmas from a lunar base

    International Nuclear Information System (INIS)

    During the late 1960s and early 1970s, space plasma physics research on and near the moon thrived, with several satellites operating in lunar orbit and several sets of instruments arrayed on the lunar surface. The moon was found to be a uniquely ''clean'' plasma physics observatory when compared with all other celestial bodies that have been visited by spacecraft. Having no atmosphere and no intrinsic magnetic field and having no induced magnetic field because of its very poor electrical conductivity, it provides no advance warning of its presence to approaching space plasmas which therefore impinge directly on its surface. Magnetic lines of force from external sources thread through the moon in a rectilinear manner as though it did not exist. It is anticipated that space plasma physics will remain an active discipline when a lunar base becomes possible and that the moon will be the site of much important research whose exact nature it is impossible to foresee today

  17. The Microstructure of Lunar Micrometeorite Impact Craters

    Science.gov (United States)

    Noble, S. K.; Keller, L. P.; Christoffersen, R.; Rahman, Z.

    2016-01-01

    The peak of the mass flux of impactors striking the lunar surface is made up of objects approximately 200 micrometers in diameter that erode rocks, comminute regolith grains, and produce agglutinates. The effects of these micro-scale impacts are still not fully understood. Much effort has focused on evaluating the physical and optical effects of micrometeorite impacts on lunar and meteoritic material using pulsed lasers to simulate the energy deposited into a substrate in a typical hypervelocity impact. Here we characterize the physical and chemical changes that accompany natural micrometeorite impacts into lunar rocks with long surface exposure to the space environment (12075 and 76015). Transmission electron microscope (TEM) observations were obtained from cross-sections of approximately 10-20 micrometers diameter craters that revealed important micro-structural details of micrometeorite impact processes, including the creation of npFe (sup 0) in the melt, and extensive deformation around the impact site.

  18. Lunar base power options and evaluation

    International Nuclear Information System (INIS)

    Issues that must be considered in selecting the electrical and thermal power system are reviewed including the goals and objectives of the lunar base. For a reference base with primary objectives of manned exploration with a ten person crew, indigenous resource recovery, and geoscience data collection, six power systems are compared using thirteen selection criteria. The systems are configured, basic characteristics are given, and the main features of each are described. The systems are ranked using the selection criteria to provide insight into the most likely power systems for the reference base. The sources of energy (solar, nuclear), the heat-to-electrical conversion subsystems (photovoltaic, dynamic, thermoelectric, thermionic), the energy storage system for power production during the lunar night, and the heat rejection systems are candidate subsystems for integration into lunar power systems

  19. Lunar Reconnaissance Orbiter Camera (LROC) instrument overview

    Science.gov (United States)

    Robinson, M.S.; Brylow, S.M.; Tschimmel, M.; Humm, D.; Lawrence, S.J.; Thomas, P.C.; Denevi, B.W.; Bowman-Cisneros, E.; Zerr, J.; Ravine, M.A.; Caplinger, M.A.; Ghaemi, F.T.; Schaffner, J.A.; Malin, M.C.; Mahanti, P.; Bartels, A.; Anderson, J.; Tran, T.N.; Eliason, E.M.; McEwen, A.S.; Turtle, E.; Jolliff, B.L.; Hiesinger, H.

    2010-01-01

    The Lunar Reconnaissance Orbiter Camera (LROC) Wide Angle Camera (WAC) and Narrow Angle Cameras (NACs) are on the NASA Lunar Reconnaissance Orbiter (LRO). The WAC is a 7-color push-frame camera (100 and 400 m/pixel visible and UV, respectively), while the two NACs are monochrome narrow-angle linescan imagers (0.5 m/pixel). The primary mission of LRO is to obtain measurements of the Moon that will enable future lunar human exploration. The overarching goals of the LROC investigation include landing site identification and certification, mapping of permanently polar shadowed and sunlit regions, meter-scale mapping of polar regions, global multispectral imaging, a global morphology base map, characterization of regolith properties, and determination of current impact hazards.

  20. Lunar Dust and Dusty Plasma Physics

    Science.gov (United States)

    Wilson, Thomas L.

    2009-01-01

    In the plasma and radiation environment of space, small dust grains from the Moon s surface can become charged. This has the consequence that their motion is determined by electromagnetic as well as gravitational forces. The result is a plasma-like condition known as "dusty plasmas" with the consequence that lunar dust can migrate and be transported by magnetic, electric, and gravitational fields into places where heavier, neutral debris cannot. Dust on the Moon can exhibit unusual behavior, being accelerated into orbit by electrostatic surface potentials as blow-off dust, or being swept away by moving magnetic fields like the solar wind as pick-up dust. Hence, lunar dust must necessarily be treated as a dusty plasma subject to the physics of magnetohydrodynamics (MHD). A review of this subject has been given before [1], but a synopsis will be presented here to make it more readily available for lunar scientists.