WorldWideScience

Sample records for als mouse spinal

  1. Ultrastructure of the mouse spinal cord ependyma.

    OpenAIRE

    Bjugn, R; Haugland, H K; Flood, P R

    1988-01-01

    This study was done in order to investigate the normal ultrastructure of well-preserved mouse spinal canal ependyma using light, scanning and transmission electron microscopy. The ependymal lining was found to consist of a simple, cuboidal epithelium essentially similar to the unspecialized cuboidal ependyma of the brain ventricles. Apart from great variation in kinociliary density, no intracellular difference was noted between the ependymal cells. In contrast to earlier findings, indications...

  2. TDP-43 expression in mouse models of amyotrophic lateral sclerosis and spinal muscular atrophy

    Directory of Open Access Journals (Sweden)

    Ansorge Olaf

    2008-10-01

    Full Text Available Abstract Background Redistribution of nuclear TAR DNA binding protein 43 (TDP-43 to the cytoplasm and ubiquitinated inclusions of spinal motor neurons and glial cells is characteristic of amyotrophic lateral sclerosis (ALS pathology. Recent evidence suggests that TDP-43 pathology is common to sporadic ALS and familial ALS without SOD1 mutation, but not SOD1-related fALS cases. Furthermore, it remains unclear whether TDP-43 abnormalities occur in non-ALS forms of motor neuron disease. Here, we characterise TDP-43 localisation, expression levels and post-translational modifications in mouse models of ALS and spinal muscular atrophy (SMA. Results TDP-43 mislocalisation to ubiquitinated inclusions or cytoplasm was notably lacking in anterior horn cells from transgenic mutant SOD1G93A mice. In addition, abnormally phosphorylated or truncated TDP-43 species were not detected in fractionated ALS mouse spinal cord or brain. Despite partial colocalisation of TDP-43 with SMN, depletion of SMN- and coilin-positive Cajal bodies in motor neurons of affected SMA mice did not alter nuclear TDP-43 distribution, expression or biochemistry in spinal cords. Conclusion These results emphasise that TDP-43 pathology characteristic of human sporadic ALS is not a core component of the neurodegenerative mechanisms caused by SOD1 mutation or SMN deficiency in mouse models of ALS and SMA, respectively.

  3. Inhibitory zinc-enriched terminals in mouse spinal cord

    DEFF Research Database (Denmark)

    Danscher, G; Jo, S M; Varea, E;

    2001-01-01

    The ultrastructural localization of zinc transporter-3, glutamate decarboxylase and zinc ions in zinc-enriched terminals in the mouse spinal cord was studied by zinc transporter-3 and glutamate decarboxylase immunohistochemistry and zinc selenium autometallography, respectively.The distribution...

  4. Partial agonistic action of endomorphins in the mouse spinal cord.

    Science.gov (United States)

    Mizoguchi, H; Wu, H E; Narita, M

    2001-09-07

    The partial agonistic properties of endogenous mu-opioid peptides endomorphin-1 and endomorphin-2 for G-protein activation were determined in the mouse spinal cord, monitoring the increases in guanosine-5'-o-(3-[35S]thio)triphosphate binding. The G-protein activation induced by endogenous opioid peptide beta-endorphin in the spinal cord was significantly, but partially, attenuated by co-incubation with endomorphin-1 or endomorphin-2. The data indicates that endomorphin-1 and endomorphin-2 are endogenous partial agonists for mu-opioid receptor in the mouse spinal cord.

  5. Spinal cord projections to the cerebellum in the mouse.

    Science.gov (United States)

    Sengul, Gulgun; Fu, YuHong; Yu, You; Paxinos, George

    2015-09-01

    The projections from the spinal cord to the cerebellar cortex were studied using retrograde neuronal tracers. Thus far, no study has shown the detailed topographic mapping of the projections from the spinal neuron clusters to the cerebellar cortex regions for experimental animals, and there are no studies for the mouse. Tracers Fluoro-Gold and cholera toxin B were injected into circumscribed regions of the cerebellar cortex, and retrogradely labeled spinal cord neurons were mapped throughout the spinal cord. Spinal projections to the cerebellar cortex were mainly from five neuronal columns--central cervical nucleus, dorsal nucleus, lumbar and sacral precerebellar nuclei, and lumbar border precerebellar cells--and from scattered neurons located in the deep dorsal horn and laminae 6-8. The spinocerebellar projections to the cortex were mainly to the vermis. All five precerebellar cell columns projected to both anterior and posterior parts of the cerebellar cortex. Results of this study provide an amendment to the known rostral and caudal boundaries of the precerebellar cell columns in the mouse. Scattered precerebellar neurons in the most caudal deep dorsal horn and laminae 6-8 projected exclusively to the anterior part of the cerebellar cortex. In this study, no labeled spinal neurons were found to project to the lobules 6 and 7 of the cerebellar vermis, the flocculus, and the paraflocculus. Spinocerebellar neurons were located bilaterally, but the majority of the projections were contralateral for the central cervical nucleus, and ipsilateral for the remaining spinal precerebellar neuronal clusters.

  6. Transgenic mouse models of spinal and bulbar muscular atrophy (SBMA).

    Science.gov (United States)

    Katsuno, M; Adachi, H; Inukai, A; Sobue, G

    2003-01-01

    Spinal and bulbar muscular atrophy (SBMA) is a late-onset motor neuron disease characterized by proximal muscle atrophy, weakness, contraction fasciculations, and bulbar involvement. Only males develop symptoms, while female carriers usually are asymptomatic. A specific treatment for SBMA has not been established. The molecular basis of SBMA is the expansion of a trinucleotide CAG repeat, which encodes the polyglutamine (polyQ) tract, in the first exon of the androgen receptor (AR) gene. The pathologic hallmark is nuclear inclusions (NIs) containing the mutant and truncated AR with expanded polyQ in the residual motor neurons in the brainstem and spinal cord as well as in some other visceral organs. Several transgenic (Tg) mouse models have been created for studying the pathogenesis of SBMA. The Tg mouse model carrying pure 239 CAGs under human AR promoter and another model carrying truncated AR with expanded CAGs show motor impairment and nuclear NIs in spinal motor neurons. Interestingly, Tg mice carrying full-length human AR with expanded polyQ demonstrate progressive motor impairment and neurogenic pathology as well as sexual difference of phenotypes. These models recapitulate the phenotypic expression observed in SBMA. The ligand-dependent nuclear localization of the mutant AR is found to be involved in the disease mechanism, and hormonal therapy is suggested to be a therapeutic approach applicable to SBMA.

  7. The organization of the brainstem and spinal cord of the mouse : Relationships between monoaminergic, cholinergic, and spinal projection systems

    NARCIS (Netherlands)

    VanderHorst, VGJM; Ulfhake, B

    2006-01-01

    Information regarding the organization of the CNS in terms of neurotransmitter systems and spinal connections in the mouse is sparse, especially at the level of the brainstem. An overview is presented of monoaminergic and cholinergic systems in the brainstem and spinal cord that were visualized immu

  8. The wobbler mouse, an ALS animal model

    DEFF Research Database (Denmark)

    Moser, Jakob Maximilian; Bigini, Paolo; Schmitt-John, Thomas

    2013-01-01

    This review article is focused on the research progress made utilizing the wobbler mouse as animal model for human motor neuron diseases, especially the amyotrophic lateral sclerosis (ALS). The wobbler mouse develops progressive degeneration of upper and lower motor neurons and shows striking...... the disease mechanism and testing various therapeutic approaches and discuss the relevance of these advances for human ALS. The identification of the causative mutation linking the wobbler mutation to a vesicle transport factor and the research focussed on the cellular basis and the therapeutic treatment...

  9. [Gene expression profile of spinal ventral horn in ALS].

    Science.gov (United States)

    Yamamoto, Masahiko; Tanaka, Fumiaki; Sobue, Gen

    2007-10-01

    The causative pathomechanism of sporadic amyotrophic lateral sclerosis (ALS) is not clearly understood. Using microarray technology combined with laser-captured microdissection, gene expression profiles of degenerating spinal motor neurons as well as spinal ventral horn from autopsied patients with sporadic ALS were examined. Spinal motor neurons showed a distinct gene expression profile from the whole spinal ventral horn. Three percent of genes examined were significantly downregulated, and 1% were upregulated in motor neurons. In contrast with motor neurons, the total spinal ventral horn homogenates demonstrated 0.7% and 0.2% significant upregulation and downregulation of gene expression, respectively. Downregulated genes in motor neurons included those associated with cytoskeleton/axonal transport, transcription and cell surface antigens/receptors, such as dynactin 1 (DCTN1) and early growth response 3 (EGR3). In particular, DCTN1 was markedly downregulated in most residual motor neurons prior to the accumulation of pNF-H and ubiquitylated protein. Promoters for cell death pathway, death receptor 5 (DR5), cyclins C (CCNC) and A1 (CCNA), and caspases were upregulated, whereas cell death inhibitors, acetyl-CoA transporter (ACATN) and NF-kappaB (NFKB) were also upregulated. In terms of spinal ventral horn, the expression of genes related to cell surface antigens/receptors, transcription and cell adhesion/ECM were increased. The gene expression resulting in neurodegenerative and neuroprotective changes were both present in spinal motor neurons and ventral horn. Moreover, Inflammation-related genes, such as belonging to the cytokine family were not, however, significantly upregulated in either motor neurons or ventral horn. The sequence of motor neuron-specific gene expression changes from early DCTN1 downregulation to late CCNC upregulation in sporadic ALS can provide direct information on the genes leading to neurodegeneration and neuronal death, and are helpful

  10. Characterisation of the primary afferent spinal innervation of mouse uterus

    Directory of Open Access Journals (Sweden)

    Geraldine eHerweijer

    2014-07-01

    Full Text Available The primary afferent innervation of the uterus is incompletely understood. The aim of this study was to identify the location and characteristics of primary afferent neurons that innervate the uterine horn of mice and correlate the different morphological types of putative primary afferent nerve endings, immunoreactive to the sensory marker, calcitonin gene related peptide (CGRP. Using retrograde tracing, injection of 5-10µL of 1,1'-didodecyl-3,3,3,3'-tetramethylindocarbocyanine perchlorate (DiI into discrete single sites in each uterine horn revealed a biomodal distribution of sensory neurons in dorsal root ganglia (DRG with peak labelling occurring between T13-L3 and a second smaller peak between L6-S1. The mean cross sectional area of labelled cells was 463 µm2 +/- SEM. A significantly greater proportion of labelled neurons consisted of small cell bodies (<300 µm2 in the sacral spinal cord (S2 compared with peak labelling at the lumbar (L2 region. In both sections and whole mount preparations, immunohistochemical staining for CGRP revealed substantial innervation of the uterus by CGRP-positive nerve fibres located primarily at the border between the circular and longitudinal muscle layers (N=4. The nerve endings were classified into three distinct types: single, branching or complex, that often aligned preferentially in either the circular or longitudinal axis of the smooth muscles. Complex endings were often associated with mesenteric vessels. We have identified that the cell bodies of primary afferent neurons innervating the mouse uterus lie primarily in DRG at L2 and S1 spinal levels. Also, the greatest density of CGRP immunoreactivity lies within the myometrium, with at least three different morphological types of nerve endings identified. These findings will facilitate further investigations into the mechanisms underlying sensory transduction in mouse uterus.

  11. Blood supply to the thoracolumbar spinal cord in the laboratory mouse using corrosion and dissection techniques.

    Science.gov (United States)

    Flesarova, Slavka; Mazensky, David; Teleky, Jana; Almasiova, Viera; Holovska, Katarina; Supuka, Peter

    2016-01-01

    Mice are used frequently as experimental models in the study of ischemic spinal cord injury. The aim of the present study was to describe the arterial blood supply to the thoracolumbar spinal cord in the mouse. The study was carried out on 20 adult mice using the corrosion and dissection technique. Dorsal intercostal arteries were found as branches of the thoracic aorta: as 7 pairs in 80% of cases, as 8 pairs in 15% of cases and as 9 pairs in 5% of cases. The paired lumbar arteries arising from the abdominal aorta were present as 5 pairs in all cases. Along the entire thoracic and lumbar spinal regions, we observed left-sided branches entering the ventral spinal artery in 64.2% and right-sided branches in 35.8% of cases. Along the entire thoracic and lumbar spinal regions, the branches entering the dorsal spinal arteries were left-sided in 60.8% of cases and right-sided in 39.2% of cases. We found some variations in the site of origin of the artery of Adamkiewicz and in the number of dorsal spinal arteries. Documenting the anatomical variations in spinal cord blood supply in the laboratory mouse will aid the planning of future experimental studies and in determining the clinical relevance of such studies.

  12. Projections from the paralemniscal nucleus to the spinal cord in the mouse.

    Science.gov (United States)

    Liang, Huazheng; Duan, Deyi; Watson, Charles; Paxinos, George

    2013-09-01

    The present study investigated the projection from the paralemniscal nucleus (PL) to the spinal cord in the mouse by injecting the retrograde tracer fluoro-gold to different levels of the spinal cord and injecting the anterograde tracer biotinylated dextran amine into PL. We found that PL projects to the entire spinal cord with obvious contralateral predominance--420 neurons projected to the contralateral cervical cord and 270 to the contralateral lumbar cord. Fibers from PL descended in the dorsolateral funiculus on the contralateral side and terminated in laminae 5, 6, 7, and to a lesser extent in the dorsal and ventral horns. A smaller number of fibers also descended in the ventral funiculus on the ipsilateral side and terminated in laminae 7, 8 and, to a lesser extent in lamina 9. The present study is the first demonstration of the PL fiber termination in the spinal cord in mammals. The PL projection to the spinal cord may be involved in vocalization and locomotion.

  13. Imaging Serotonergic Fibers in the Mouse Spinal Cord Using the CLARITY/CUBIC Technique.

    Science.gov (United States)

    Liang, Huazheng; Schofield, Emma; Paxinos, George

    2016-02-26

    Long descending fibers to the spinal cord are essential for locomotion, pain perception, and other behaviors. The fiber termination pattern in the spinal cord of the majority of these fiber systems have not been thoroughly investigated in any species. Serotonergic fibers, which project to the spinal cord, have been studied in rats and opossums on histological sections and their functional significance has been deduced based on their fiber termination pattern in the spinal cord. With the development of CLARITY and CUBIC techniques, it is possible to investigate this fiber system and its distribution in the spinal cord, which is likely to reveal previously unknown features of serotonergic supraspinal pathways. Here, we provide a detailed protocol for imaging the serotonergic fibers in the mouse spinal cord using the combined CLARITY and CUBIC techniques. The method involves perfusion of a mouse with a hydrogel solution and clarification of the tissue with a combination of clearing reagents. Spinal cord tissue was cleared in just under two weeks, and the subsequent immunofluorescent staining against serotonin was completed in less than ten days. With a multi-photon fluorescent microscope, the tissue was scanned and a 3D image was reconstructed using Osirix software.

  14. Skeletal muscle DNA damage precedes spinal motor neuron DNA damage in a mouse model of Spinal Muscular Atrophy (SMA).

    Science.gov (United States)

    Fayzullina, Saniya; Martin, Lee J

    2014-01-01

    Spinal Muscular Atrophy (SMA) is a hereditary childhood disease that causes paralysis by progressive degeneration of skeletal muscles and spinal motor neurons. SMA is associated with reduced levels of full-length Survival of Motor Neuron (SMN) protein, due to mutations in the Survival of Motor Neuron 1 gene. The mechanisms by which lack of SMN causes SMA pathology are not known, making it very difficult to develop effective therapies. We investigated whether DNA damage is a perinatal pathological event in SMA, and whether DNA damage and cell death first occur in skeletal muscle or spinal cord of SMA mice. We used a mouse model of severe SMA to ascertain the extent of cell death and DNA damage throughout the body of prenatal and newborn mice. SMA mice at birth (postnatal day 0) exhibited internucleosomal fragmentation in genomic DNA from hindlimb skeletal muscle, but not in genomic DNA from spinal cord. SMA mice at postnatal day 5, compared with littermate controls, exhibited increased apoptotic cell death profiles in skeletal muscle, by hematoxylin and eosin, terminal deoxynucleotidyl transferase dUTP nick end labeling, and electron microscopy. SMA mice had no increased cell death, no loss of choline acetyl transferase (ChAT)-positive motor neurons, and no overt pathology in the ventral horn of the spinal cord. At embryonic days 13 and 15.5, SMA mice did not exhibit statistically significant increases in cell death profiles in spinal cord or skeletal muscle. Motor neuron numbers in the ventral horn, as identified by ChAT immunoreactivity, were comparable in SMA mice and control littermates at embryonic day 15.5 and postnatal day 5. These observations demonstrate that in SMA, disease in skeletal muscle emerges before pathology in spinal cord, including loss of motor neurons. Overall, this work identifies DNA damage and cell death in skeletal muscle as therapeutic targets for SMA.

  15. Skeletal muscle DNA damage precedes spinal motor neuron DNA damage in a mouse model of Spinal Muscular Atrophy (SMA.

    Directory of Open Access Journals (Sweden)

    Saniya Fayzullina

    Full Text Available Spinal Muscular Atrophy (SMA is a hereditary childhood disease that causes paralysis by progressive degeneration of skeletal muscles and spinal motor neurons. SMA is associated with reduced levels of full-length Survival of Motor Neuron (SMN protein, due to mutations in the Survival of Motor Neuron 1 gene. The mechanisms by which lack of SMN causes SMA pathology are not known, making it very difficult to develop effective therapies. We investigated whether DNA damage is a perinatal pathological event in SMA, and whether DNA damage and cell death first occur in skeletal muscle or spinal cord of SMA mice. We used a mouse model of severe SMA to ascertain the extent of cell death and DNA damage throughout the body of prenatal and newborn mice. SMA mice at birth (postnatal day 0 exhibited internucleosomal fragmentation in genomic DNA from hindlimb skeletal muscle, but not in genomic DNA from spinal cord. SMA mice at postnatal day 5, compared with littermate controls, exhibited increased apoptotic cell death profiles in skeletal muscle, by hematoxylin and eosin, terminal deoxynucleotidyl transferase dUTP nick end labeling, and electron microscopy. SMA mice had no increased cell death, no loss of choline acetyl transferase (ChAT-positive motor neurons, and no overt pathology in the ventral horn of the spinal cord. At embryonic days 13 and 15.5, SMA mice did not exhibit statistically significant increases in cell death profiles in spinal cord or skeletal muscle. Motor neuron numbers in the ventral horn, as identified by ChAT immunoreactivity, were comparable in SMA mice and control littermates at embryonic day 15.5 and postnatal day 5. These observations demonstrate that in SMA, disease in skeletal muscle emerges before pathology in spinal cord, including loss of motor neurons. Overall, this work identifies DNA damage and cell death in skeletal muscle as therapeutic targets for SMA.

  16. Lineage specification of neuronal precursors in the mouse spinal cord.

    OpenAIRE

    L.J. Richards; Murphy, M.; Dutton, R; Kilpatrick, T J; Puche, A. C.; Key, B; Tan, S S; Talman, P S; Bartlett, P. F.

    1995-01-01

    We have investigated the differentiation potential of precursor cells within the developing spinal cord of mice and have shown that spinal cord cells from embryonic day 10 specifically give rise to neurons when plated onto an astrocytic monolayer, Ast-1. These neurons had the morphology of motor neurons and > 83% expressed the motor neuron markers choline acetyltransferase, peripherin, calcitonin gene-related peptide, and L-14. By comparison, < 10% of the neurons arising on monolayers of othe...

  17. Projections from the brain to the spinal cord in the mouse.

    Science.gov (United States)

    Liang, Huazheng; Paxinos, George; Watson, Charles

    2011-01-01

    The cells that project from the brain to the spinal cord have previously been mapped in a wide range of mammalian species, but have not been comprehensively studied in the mouse. We have mapped these cells in the mouse using retrograde tracing after large unilateral Fluoro-Gold (FG) and horseradish peroxidase (HRP) injections in the C1 and C2 spinal cord segments. We have identified over 30 cell groups that project to the spinal cord, and have confirmed that the pattern of major projections from the cortex, diencephalon, midbrain, and hindbrain in the mouse is typically mammalian, and very similar to that found in the rat. However, we report two novel findings: we found labeled neurons in the precuneiform area (an area which has been associated with the midbrain locomotor center in other species), and the epirubrospinal nucleus. We also found labeled cells in the medial division of central nucleus of the amygdala in a small number of cases. Our findings should be of value to researchers engaged in evaluating the impact of spinal cord injury and other spinal cord pathologies on the centers which give rise to descending pathways.

  18. Projections from the oral pontine reticular nucleus to the spinal cord of the mouse.

    Science.gov (United States)

    Liang, Huazheng; Watson, Charles; Paxinos, George

    2015-01-01

    The present study investigated projections of the mouse oral pontine reticular nucleus (PnO) to the spinal cord by (a) injecting a retrograde tracer fluoro-gold (FG) to the lumbar cord and (b) an anterograde tracer biotinylated dextran amine (BDA) to PnO. We found that PnO projects to the entire spinal cord with an ipsilateral predominance. PnO fibers mainly travel in the ipsilateral ventral funiculus in the entire cord, terminating in laminae 7-10 with a lower density of fibers and boutons in lower segments. A small number of fibers travel in the contralateral ventral funiculus in the cervical cord with a similar terminating pattern to the ipsilateral counterpart. The present study is the first demonstration of PnO fiber terminals in the mouse spinal cord. This pathway might be responsible for muscle atonia during REM sleep, but needs physiological research to confirm this.

  19. Synaptic defects in the spinal and neuromuscular circuitry in a mouse model of spinal muscular atrophy.

    Directory of Open Access Journals (Sweden)

    Karen K Y Ling

    Full Text Available Spinal muscular atrophy (SMA is a major genetic cause of death in childhood characterized by marked muscle weakness. To investigate mechanisms underlying motor impairment in SMA, we examined the spinal and neuromuscular circuitry governing hindlimb ambulatory behavior in SMA model mice (SMNΔ7. In the neuromuscular circuitry, we found that nearly all neuromuscular junctions (NMJs in hindlimb muscles of SMNΔ7 mice remained fully innervated at the disease end stage and were capable of eliciting muscle contraction, despite a modest reduction in quantal content. In the spinal circuitry, we observed a ∼28% loss of synapses onto spinal motoneurons in the lateral column of lumbar segments 3-5, and a significant reduction in proprioceptive sensory neurons, which may contribute to the 50% reduction in vesicular glutamate transporter 1(VGLUT1-positive synapses onto SMNΔ7 motoneurons. In addition, there was an increase in the association of activated microglia with SMNΔ7 motoneurons. Together, our results present a novel concept that synaptic defects occur at multiple levels of the spinal and neuromuscular circuitry in SMNΔ7 mice, and that proprioceptive spinal synapses could be a potential target for SMA therapy.

  20. Akhirin regulates the proliferation and differentiation of neural stem cells in intact and injured mouse spinal cord.

    Science.gov (United States)

    Abdulhaleem, Felemban Athary M; Song, Xiaohong; Kawano, Rie; Uezono, Naohiro; Ito, Ayako; Ahmed, Giasuddin; Hossain, Mahmud; Nakashima, Kinichi; Tanaka, Hideaki; Ohta, Kunimasa

    2015-05-01

    Although the central nervous system is considered a comparatively static tissue with limited cell turnover, cells with stem cell properties have been isolated from most neural tissues. The spinal cord ependymal cells show neural stem cell potential in vitro and in vivo in injured spinal cord. However, very little is known regarding the ependymal niche in the mouse spinal cord. We previously reported that a secreted factor, chick Akhirin, is expressed in the ciliary marginal zone of the eye, where it works as a heterophilic cell-adhesion molecule. Here, we describe a new crucial function for mouse Akhirin (M-AKH) in regulating the proliferation and differentiation of progenitors in the mouse spinal cord. During embryonic spinal cord development, M-AKH is transiently expressed in the central canal ependymal cells, which possess latent neural stem cell properties. Targeted inactivation of the AKH gene in mice causes a reduction in the size of the spinal cord and decreases BrdU incorporation in the spinal cord. Remarkably, the expression patterns of ependymal niche molecules in AKH knockout (AKH-/-) mice are different from those of AKH+/+, both in vitro and in vivo. Furthermore, we provide evidence that AKH expression in the central canal is rapidly upregulated in the injured spinal cord. Taken together, these results indicate that M-AKH plays a crucial role in mouse spinal cord formation by regulating the ependymal niche in the central canal.

  1. Selective loss of alpha motor neurons with sparing of gamma motor neurons and spinal cord cholinergic neurons in a mouse model of spinal muscular atrophy.

    Science.gov (United States)

    Powis, Rachael A; Gillingwater, Thomas H

    2016-03-01

    Spinal muscular atrophy (SMA) is a neuromuscular disease characterised primarily by loss of lower motor neurons from the ventral grey horn of the spinal cord and proximal muscle atrophy. Recent experiments utilising mouse models of SMA have demonstrated that not all motor neurons are equally susceptible to the disease, revealing that other populations of neurons can also be affected. Here, we have extended investigations of selective vulnerability of neuronal populations in the spinal cord of SMA mice to include comparative assessments of alpha motor neuron (α-MN) and gamma motor neuron (γ-MN) pools, as well as other populations of cholinergic neurons. Immunohistochemical analyses of late-symptomatic SMA mouse spinal cord revealed that numbers of α-MNs were significantly reduced at all levels of the spinal cord compared with controls, whereas numbers of γ-MNs remained stable. Likewise, the average size of α-MN cell somata was decreased in SMA mice with no change occurring in γ-MNs. Evaluation of other pools of spinal cord cholinergic neurons revealed that pre-ganglionic sympathetic neurons, central canal cluster interneurons, partition interneurons and preganglionic autonomic dorsal commissural nucleus neuron numbers all remained unaffected in SMA mice. Taken together, these findings indicate that α-MNs are uniquely vulnerable among cholinergic neuron populations in the SMA mouse spinal cord, with γ-MNs and other cholinergic neuronal populations being largely spared.

  2. Termination of vestibulospinal fibers arising from the spinal vestibular nucleus in the mouse spinal cord.

    Science.gov (United States)

    Liang, H; Bácskai, T; Paxinos, G

    2015-05-21

    The present study investigated the vestibulospinal system which originates from the spinal vestibular nucleus (SpVe) with both retrograde and anterograde tracer injections. We found that fluoro-gold (FG) labeled neurons were found bilaterally with a contralateral predominance after FG injections into the upper lumbar cord. Anterogradely labeled fibers from the rostral SpVe traveled in the medial part of the ventral funiculus ipsilaterally and the dorsolateral funiculus bilaterally in the cervical cord. They mainly terminated in laminae 5-8, and 10 of the ipsilateral spinal cord. The contralateral side had fewer fibers and they were found in laminae 6-8, and 10. In the thoracic cord, fibers were also found to terminate in bilateral intermediolateral columns. In the lumbar and lower cord, fibers were mainly found in the dorsolateral funiculus bilaterally and they terminated predominantly in laminae 3-7 contralaterally. Anterogradely labeled fibers from the caudal SpVe did not travel in the medial part of the ventral funiculus but in the dorsolateral funiculus bilaterally. They mainly terminated in laminae 3-8 and 10 contralaterally. The present study is the first to describe the termination of vestibulospinal fibers arising from the SpVe in the spinal cord. It will lay the anatomical foundation for those who investigate the physiological role of vestibulospinal fibers and potentially target these fibers during rehabilitation after stroke, spinal cord injury, or vestibular organ injury.

  3. Spinal projections from the presumptive midbrain locomotor region in the mouse.

    Science.gov (United States)

    Liang, Huazheng; Paxinos, George; Watson, Charles

    2012-04-01

    The mesencephalic locomotor region (MLR) plays an important role in the control of locomotion, but there is ongoing debate about the anatomy of its connections with the spinal cord. In this study, we have examined the spinal projections of the mouse precuneiform nucleus (PrCnF), which lies within the boundaries of the presumptive MLR. We used both retrograde and anterograde labeling techniques. Small clusters of labeled neurons were seen in the medial portion of the PrCnF following fluoro-gold injections in the upper cervical spinal cord. Fewer labeled neurons were seen in the PrCnF after upper thoracic injections. Following the injection of anterograde tracer (biotinylated dextran amine) into the PrCnF, labeled fibers were clearly observed in the spinal cord. These fibers traveled in the ventral and lateral funiculi, and terminated mainly in the medial portions of laminae 7, 8, and 9, as well as area 10, with an ipsilateral predominance. Our observations indicate that projections from the PrCnF to the spinal cord may provide an anatomical substrate for the role of the MLR in locomotion.

  4. Development of granular pial cells and granular perithelial cells in the spinal cords of mouse and rabbit.

    OpenAIRE

    1987-01-01

    Free cells containing large dense granules first appear in the leptomeninges of spinal cord at E14 in the mouse and at E16 in the rabbit. These ages represent a similar stage of development of the spinal cord and meninges. Despite the early appearance of granular pial cells, granular perithelial cells are not found around blood vessels in the spinal cord until 5 days postnatum in the mouse and E28 in the rabbit. The first appearance of granular perithelial cells coincides with the development...

  5. Aberrant LncRNA Expression Profile in a Contusion Spinal Cord Injury Mouse Model

    Directory of Open Access Journals (Sweden)

    Ya Ding

    2016-01-01

    Full Text Available Long noncoding RNAs (LncRNAs play a crucial role in cell growth, development, and various diseases related to the central nervous system. However, LncRNA differential expression profiles in spinal cord injury are yet to be reported. In this study, we profiled the expression pattern of LncRNAs using a microarray method in a contusion spinal cord injury (SCI mouse model. Compared with a spinal cord without injury, few changes in LncRNA expression levels were noted 1 day after injury. The differential changes in LncRNA expression peaked 1 week after SCI and subsequently declined until 3 weeks after injury. Quantitative real-time polymerase chain reaction (qRT-PCR was used to validate the reliability of the microarray, demonstrating that the results were reliable. Gene ontology (GO analysis indicated that differentially expressed mRNAs were involved in transport, cell adhesion, ion transport, and metabolic processes, among others. Kyoto Encyclopedia of Genes and Genomes (KEGG enrichment analysis showed that the neuroactive ligand-receptor interaction, the PI3K-Akt signaling pathway, and focal adhesions were potentially implicated in SCI pathology. We constructed a dynamic LncRNA-mRNA network containing 264 LncRNAs and 949 mRNAs to elucidate the interactions between the LncRNAs and mRNAs. Overall, the results from this study indicate for the first time that LncRNAs are differentially expressed in a contusion SCI mouse model.

  6. The late and dual origin of cerebrospinal fluid-contacting neurons in the mouse spinal cord.

    Science.gov (United States)

    Petracca, Yanina L; Sartoretti, Maria Micaela; Di Bella, Daniela J; Marin-Burgin, Antonia; Carcagno, Abel L; Schinder, Alejandro F; Lanuza, Guillermo M

    2016-03-01

    Considerable progress has been made in understanding the mechanisms that control the production of specialized neuronal types. However, how the timing of differentiation contributes to neuronal diversity in the developing spinal cord is still a pending question. In this study, we show that cerebrospinal fluid-contacting neurons (CSF-cNs), an anatomically discrete cell type of the ependymal area, originate from surprisingly late neurogenic events in the ventral spinal cord. CSF-cNs are identified by the expression of the transcription factors Gata2 and Gata3, and the ionic channels Pkd2l1 and Pkd1l2. Contrasting with Gata2/3(+) V2b interneurons, differentiation of CSF-cNs is independent of Foxn4 and takes place during advanced developmental stages previously assumed to be exclusively gliogenic. CSF-cNs are produced from two distinct dorsoventral regions of the mouse spinal cord. Most CSF-cNs derive from progenitors circumscribed to the late-p2 and the oligodendrogenic (pOL) domains, whereas a second subset of CSF-cNs arises from cells bordering the floor plate. The development of these two subgroups of CSF-cNs is differentially controlled by Pax6, they adopt separate locations around the postnatal central canal and they display electrophysiological differences. Our results highlight that spatiotemporal mechanisms are instrumental in creating neural cell diversity in the ventral spinal cord to produce distinct classes of interneurons, motoneurons, CSF-cNs, glial cells and ependymal cells.

  7. Immunocytochemical localization of zinc transporter 3 in the ependyma of the mouse spinal cord.

    Science.gov (United States)

    Danscher, Gorm; Wang, Zhanyou; Kim, Yong Kuk; Kim, Sung Joo; Sun, Yuanjie; Jo, Seung Mook

    2003-05-15

    We report, for the first time, the light microscopical and ultrastructural appearance of ZnT3-immunoreactivities in the ependymal cells of the central canal of the mouse spinal cord. Light microscopy revealed the presence of ZnT3-immunoreactive (Ir) ependymal cells in 1 microm thick epon sections stained by the ABC method. The ZnT3-Ir cells were observed at all levels of the spinal cord, but were a little more numerous in lumbosacral segments than in cervicothoracic segments. The ZnT3-Ir cells had large, ovoid nuclei with abundant cytoplasm, and protruded into the lumen of the central canal. Our ultrastructural findings suggest that the ZnT3-Ir ependymal cells possess secretory activity directed towards the central canal. We propose that they may play a role in the trans-ependymal mechanism responsible for zinc homeostasis between cerebrospinal fluid and the central area of the gray matter.

  8. Quantitative 3D investigation of Neuronal network in mouse spinal cord model

    Science.gov (United States)

    Bukreeva, I.; Campi, G.; Fratini, M.; Spanò, R.; Bucci, D.; Battaglia, G.; Giove, F.; Bravin, A.; Uccelli, A.; Venturi, C.; Mastrogiacomo, M.; Cedola, A.

    2017-01-01

    The investigation of the neuronal network in mouse spinal cord models represents the basis for the research on neurodegenerative diseases. In this framework, the quantitative analysis of the single elements in different districts is a crucial task. However, conventional 3D imaging techniques do not have enough spatial resolution and contrast to allow for a quantitative investigation of the neuronal network. Exploiting the high coherence and the high flux of synchrotron sources, X-ray Phase-Contrast multiscale-Tomography allows for the 3D investigation of the neuronal microanatomy without any aggressive sample preparation or sectioning. We investigated healthy-mouse neuronal architecture by imaging the 3D distribution of the neuronal-network with a spatial resolution of 640 nm. The high quality of the obtained images enables a quantitative study of the neuronal structure on a subject-by-subject basis. We developed and applied a spatial statistical analysis on the motor neurons to obtain quantitative information on their 3D arrangement in the healthy-mice spinal cord. Then, we compared the obtained results with a mouse model of multiple sclerosis. Our approach paves the way to the creation of a “database” for the characterization of the neuronal network main features for a comparative investigation of neurodegenerative diseases and therapies.

  9. Terminations of reticulospinal fibers originating from the gigantocellular reticular formation in the mouse spinal cord.

    Science.gov (United States)

    Liang, Huazheng; Watson, Charles; Paxinos, George

    2016-04-01

    The present study investigated the projections of the gigantocellular reticular nucleus (Gi) and its neighbors--the dorsal paragigantocellular reticular nucleus (DPGi), the alpha/ventral part of the gigantocellular reticular nucleus (GiA/V), and the lateral paragigantocellular reticular nucleus (LPGi)--to the mouse spinal cord by injecting the anterograde tracer biotinylated dextran amine (BDA) into the Gi, DPGi, GiA/GiV, and LPGi. The Gi projected to the entire spinal cord bilaterally with an ipsilateral predominance. Its fibers traveled in both the ventral and lateral funiculi with a greater presence in the ventral funiculus. As the fibers descended in the spinal cord, their density in the lateral funiculus increased. The terminals were present mainly in laminae 7-10 with a dorsolateral expansion caudally. In the lumbar and sacral cord, a considerable number of terminals were also present in laminae 5 and 6. Contralateral fibers shared a similar pattern to their ipsilateral counterparts and some fibers were seen to cross the midline. Fibers arising from the DPGi were similarly distributed in the spinal cord except that there was no dorsolateral expansion in the lumbar and sacral segments and there were fewer fiber terminals. Fibers arising from GiA/V predominantly traveled in the ventral and lateral funiculi ipsilaterally. Ipsilaterally, the density of fibers in the ventral funiculus decreased along the rostrocaudal axis, whereas the density of fibers in the lateral funiculus increased. They terminate mainly in the medial ventral horn and lamina 10 with a smaller number of fibers in the dorsal horn. Fibers arising from the LPGi traveled in both the ventral and lateral funiculi and the density of these fibers in the ventral and lateral funiculi decreased dramatically in the lumbar and sacral segments. Their terminals were present in the ventral horn with a large portion of them terminating in the motor neuron columns. The present study is the first demonstration

  10. Projections from the lateral vestibular nucleus to the spinal cord in the mouse.

    Science.gov (United States)

    Liang, Huazheng; Bácskai, Timea; Watson, Charles; Paxinos, George

    2014-05-01

    The present study investigated the projections from the lateral vestibular nucleus (LVe) to the spinal cord using retrograde and anterograde tracers. Retrogradely labeled neurons were found after fluoro-gold injections into both the cervical and lumbar cord, with a smaller number of labeled neurons seen after lumbar cord injections. Labeled neurons in the LVe were found in clusters at caudal levels of the nucleus, and a small gap separated these clusters from labeled neurons in the spinal vestibular nucleus (SpVe). In the anterograde study, BDA-labeled fiber tracts were found in both the ventral and ventrolateral funiculi on the ipsilateral side. These fibers terminated in laminae 6-9. Some fibers were continuous with boutons in contact with motor neurons in both the medial and lateral motor neuron columns. In the lumbar and sacral segments, some collaterals from the ipsilateral vestibulospinal tracts were found on the contralateral side, and these fibers mainly terminated in laminae 6-8. The present study reveals for the first time the fiber terminations of the lateral vestibular nucleus in the mouse spinal cord and therefore enhances future functional studies of the vestibulospinal system.

  11. Dopamine exerts activation-dependent modulation of spinal locomotor circuits in the neonatal mouse.

    Science.gov (United States)

    Humphreys, Jennifer M; Whelan, Patrick J

    2012-12-01

    Monoamines can modulate the output of a variety of invertebrate and vertebrate networks, including the spinal cord networks that control walking. Here we examined the multiple changes in the output of locomotor networks induced by dopamine (DA). We found that DA can depress the activation of locomotor networks in the neonatal mouse spinal cord following ventral root stimulation. By examining disinhibited rhythms, where the Renshaw cell pathway was blocked, we found that DA depresses a putative recurrent excitatory pathway that projects onto rhythm-generating circuitry of the spinal cord. This depression was D(2) but not D(1) receptor dependent and was not due exclusively to depression of excitatory drive to motoneurons. Furthermore, the depression in excitation was not dependent on network activity. We next compared the modulatory effects of DA on network function by focusing on a serotonin and a N-methyl-dl-aspartate-evoked rhythm. In contrast to the depressive effects on a ventral root-evoked rhythm, we found that DA stabilized a drug-evoked rhythm, reduced the frequency of bursting, and increased amplitude. Overall, these data demonstrate that DA can potentiate network activity while at the same time reducing the gain of recurrent excitatory feedback loops from motoneurons onto the network.

  12. Silencing neuronal mutant androgen receptor in a mouse model of spinal and bulbar muscular atrophy.

    Science.gov (United States)

    Sahashi, Kentaro; Katsuno, Masahisa; Hung, Gene; Adachi, Hiroaki; Kondo, Naohide; Nakatsuji, Hideaki; Tohnai, Genki; Iida, Madoka; Bennett, C Frank; Sobue, Gen

    2015-11-01

    Spinal and bulbar muscular atrophy (SBMA), an adult-onset neurodegenerative disease that affects males, results from a CAG triplet repeat/polyglutamine expansions in the androgen receptor (AR) gene. Patients develop progressive muscular weakness and atrophy, and no effective therapy is currently available. The tissue-specific pathogenesis, especially relative pathological contributions between degenerative motor neurons and muscles, remains inconclusive. Though peripheral pathology in skeletal muscle caused by toxic AR protein has been recently reported to play a pivotal role in the pathogenesis of SBMA using mouse models, the role of motor neuron degeneration in SBMA has not been rigorously investigated. Here, we exploited synthetic antisense oligonucleotides to inhibit the RNA levels of mutant AR in the central nervous system (CNS) and explore its therapeutic effects in our SBMA mouse model that harbors a mutant AR gene with 97 CAG expansions and characteristic SBMA-like neurogenic phenotypes. A single intracerebroventricular administration of the antisense oligonucleotides in the presymptomatic phase efficiently suppressed the mutant gene expression in the CNS, and delayed the onset and progression of motor dysfunction, improved body weight gain and survival with the amelioration of neuronal histopathology in motor units such as spinal motor neurons, neuromuscular junctions and skeletal muscle. These findings highlight the importance of the neurotoxicity of mutant AR protein in motor neurons as a therapeutic target.

  13. Aging-dependent changes in the cellular composition of the mouse brain and spinal cord.

    Science.gov (United States)

    Fu, Y; Yu, Y; Paxinos, G; Watson, C; Rusznák, Z

    2015-04-02

    Although the impact of aging on the function of the central nervous system is known, only a limited amount of information is available about accompanying changes affecting the cellular composition of the brain and spinal cord. In the present work we used the isotropic fractionator method to reveal aging-associated changes in the numbers of neuronal and non-neuronal cells harbored by the brain and spinal cord. The experiments were performed on 15-week, 7-month, 13-month, and 25-month-old female mice. The major parts of the brain were studied separately, including the isocortex, hippocampus, cerebellum, olfactory bulb, and the remaining part (i.e., 'rest of brain'). The proliferative capacity of each structure was assessed by counting the number of Ki-67-positive cells. We found no aging-dependent change when the cellular composition of the isocortex was studied. In contrast, the neuronal and non-neuronal cell numbers of the hippocampus decreased in the 7-25-month period. The neuronal cell number of the olfactory bulb showed positive age-dependence between 15 weeks and 13 months of age and presented a significant decrease thereafter. The cerebellum was characterized by an age-dependent decrease of its neuronal cell number and density. In the rest of brain, the non-neuronal cell number increased with age. The neuronal and non-neuronal cell numbers of the spinal cord increased, whereas its neuronal and non-neuronal densities decreased with age. The number of proliferating cells showed a marked age-dependent decrease in the hippocampus, olfactory bulb, and rest of the brain. In contrast, the number of Ki-67-positive cells increased with age in both the cerebellum and spinal cord. In conclusion, aging-dependent changes affecting the cellular composition of the mouse central nervous system are present but they are diverse and region-specific.

  14. ALS disrupts spinal motor neuron maturation and aging pathways within gene co-expression networks

    Science.gov (United States)

    Ho, Ritchie; Sances, Samuel; Gowing, Genevieve; Amoroso, Mackenzie Weygandt; O'Rourke, Jacqueline G.; Sahabian, Anais; Wichterle, Hynek; Baloh, Robert H.; Sareen, Dhruv

    2016-01-01

    Modeling Amyotrophic Lateral Sclerosis (ALS) with human induced pluripotent stem cells (iPSCs) aims to reenact embryogenesis, maturation, and aging of spinal motor neurons (spMNs) in vitro. As the maturity of spMNs grown in vitro compared to spMNs in vivo remains largely unaddressed, it is unclear to what extent this in vitro system captures critical aspects of spMN development and molecular signatures associated with ALS. Here, we compared transcriptomes among iPSC-derived spMNs, fetal, and adult spinal tissues. This approach produced a maturation scale revealing that iPSC-derived spMNs were more similar to fetal spinal tissue than to adult spMNs. Additionally, we resolved gene networks and pathways associated with spMN maturation and aging. These networks enriched for pathogenic familial ALS genetic variants and were disrupted in sporadic ALS spMNs. Altogether, our findings suggest that developing strategies to further mature and age iPSC-derived spMNs will provide more effective iPSC models of ALS pathology. PMID:27428653

  15. Shenfu injection attenuates neurotoxicity of bupivacaine in cultured mouse spinal cord neurons

    Institute of Scientific and Technical Information of China (English)

    XIONG Li-ze; WANG Qiang; LIU Mu-yun; PENG Ye; LI Qing-bo; LU Zhi-hong; LEI Chong

    2007-01-01

    Background Our previous in vivo study in the rat demonstrates that Shenfu injection, a clinically used extract preparation from Chinese herbs, attenuates neural and cardiac toxicity induced by intravenous infusion of bupivacaine, a local anesthetic. This study was designed to investigate whether bupivacaine could induce a toxic effect in primary cultured mouse spinal cord neuron and if so, whether the Shenfu injection had a similar neuroprotective effect in the cell model. Methods The spinal cords from 11- to 14-day-old fetal mice were minced and incubated. Cytarabine was added into the medium to inhibit the proliferation of non-neuronal cells. The immunocytochemical staining of β-tubulin was used to determine the identity of cultured cells. The cultured neurons were randomly assigned into three sets treated with various doses of bupivacaine, Shenfu and bupivacaine+Shenfu, for 48 hours respectively. Cell viability in each group was analyzed by methyl thiazoleterazolium (MTT) assay. Results The viability of the cultured neurons treated with bupivacaine at concentrations of 0.01%, 0.02%, 0.04% and 0.08% was decreased in a dose-dependent manner. Although the Shenfu injection at concentrations ranging from 1/50 to 1/12.5 (V/V) had no significant influence on the viability of cultured neurons (P<0.05 vs control), the injection significantly increased the cellular viability of cultured neurons pretreated with 0.03% bupivacaine (P<0.05). Conclusion Although Shenfu injection itself has no effect on spinal neurons, it was able to reduce the bupivacaine induced neurotoxicity in vitro.

  16. Cellular composition characterizing postnatal development and maturation of the mouse brain and spinal cord.

    Science.gov (United States)

    Fu, YuHong; Rusznák, Zoltán; Herculano-Houzel, Suzana; Watson, Charles; Paxinos, George

    2013-09-01

    The process of development, maturation, and regression in the central nervous system (CNS) are genetically programmed and influenced by environment. Hitherto, most research efforts have focused on either the early development of the CNS or the late changes associated with aging, whereas an important period corresponding to adolescence has been overlooked. In this study, we searched for age-dependent changes in the number of cells that compose the CNS (divided into isocortex, hippocampus, olfactory bulb, cerebellum, 'rest of the brain', and spinal cord) and the pituitary gland in 4-40-week-old C57BL6 mice, using the isotropic fractionator method in combination with neuronal nuclear protein as a marker for neuronal cells. We found that all CNS structures, except for the isocortex, increased in mass in the period of 4-15 weeks. Over the same period, the absolute number of neurons significantly increased in the olfactory bulb and cerebellum while non-neuronal cell numbers increased in the 'rest of the brain' and isocortex. Along with the gain in body length and weight, the pituitary gland also increased in mass and cell number, the latter correlating well with changes of the brain and spinal cord mass. The majority of the age-dependent alterations (e.g., somatic parameters, relative brain mass, number of pituitary cells, and cellular composition of the cerebellum, isocortex, rest of the brain, and spinal cord) occur rapidly between the 4th and 11th postnatal weeks. This period includes murine adolescence, underscoring the significance of this stage in the postnatal development of the mouse CNS.

  17. Mass spectrometry imaging (MSI) of metals in mouse spinal cord by laser ablation ICP-MS.

    Science.gov (United States)

    Becker, J Sabine; Kumtabtim, Usarat; Wu, Bei; Steinacker, Petra; Otto, Markus; Matusch, Andreas

    2012-03-01

    Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) has been developed as a powerful MS imaging (MSI) tool for the direct investigation of element distributions in biological tissues. Here, this technique was adapted for the analysis of native mouse spinal cord cryosections of 3.1 mm × 1.7 mm by implementing a new conventional ablation system (NWR-213) and improving the spatial resolution from 120 μm to 65 μm in routine mode. Element images of the spinal cord are provided for the first time and the metalloarchitecture was established using a multimodal atlas approach. Furthermore, the spatial distribution of Rb was mapped for the first time in biological tissue. Metal concentrations were quantified using matrix-matched laboratory standards and normalization of the respective ion intensities to the average (13)C ion intensity of standards and samples as a surrogate of slice thickness. The "butterfly" shape of the central spinal grey matter was visualized in positive contrast by the distributions of Fe, Mn, Cu and Zn and in negative contrast by C and P. Mg, Na, K, S and Rb showed a more homogenous distribution. The concentrations averaged throughout grey matter and white matter were 8 and 4 μg g(-1) of Fe, 3 and 2 μg g(-1) of Cu, 8 and 5 μg g(-1) of Zn, 0.4 and 0.2 μg g(-1) of Mn. The carbon concentration in white matter exceeded that of grey matter by a factor of 1.44. Zn and Cu at 9 and 4 μg g(-1), respectively, were particularly enriched in the laminae I and II, in line with the high synaptic and cellular density there. Surprisingly Zn but not Cu was enriched in the central channel. Rb occurred at 0.3 μg g(-1) with a distribution pattern congruent to that of K. The coefficients of variation were 6%, 5%, 8% and 10% for Fe, Cu, Zn and Mn, respectively, throughout three different animals measured on different days. These MSI analyses of healthy wild type spinal cords demonstrate the suitability of the established techniques for

  18. Reduced inflammation accompanies diminished myelin damage and repair in the NG2 null mouse spinal cord

    Directory of Open Access Journals (Sweden)

    Kucharova Karolina

    2011-11-01

    Full Text Available Abstract Background Multiple sclerosis (MS is a demyelinating disease in which blood-derived immune cells and activated microglia damage myelin in the central nervous system. While oligodendrocyte progenitor cells (OPCs are essential for generating oligodendrocytes for myelin repair, other cell types also participate in the damage and repair processes. The NG2 proteoglycan is expressed by OPCs, pericytes, and macrophages/microglia. In this report we investigate the effects of NG2 on these cell types during spinal cord demyelination/remyelination. Methods Demyelinated lesions were created by microinjecting 1% lysolecithin into the lumbar spinal cord. Following demyelination, NG2 expression patterns in wild type mice were studied via immunostaining. Immunolabeling was also used in wild type and NG2 null mice to compare the extent of myelin damage, the kinetics of myelin repair, and the respective responses of OPCs, pericytes, and macrophages/microglia. Cell proliferation was quantified by studies of BrdU incorporation, and cytokine expression levels were evaluated using qRT-PCR. Results The initial volume of spinal cord demyelination in wild type mice is twice as large as in NG2 null mice. However, over the ensuing 5 weeks there is a 6-fold improvement in myelination in wild type mice, versus only a 2-fold improvement in NG2 null mice. NG2 ablation also results in reduced numbers of each of the three affected cell types. BrdU incorporation studies reveal that reduced cell proliferation is an important factor underlying NG2-dependent decreases in each of the three key cell populations. In addition, NG2 ablation reduces macrophage/microglial cell migration and shifts cytokine expression from a pro-inflammatory to anti-inflammatory phenotype. Conclusions Loss of NG2 expression leads to decreased proliferation of OPCs, pericytes, and macrophages/microglia, reducing the abundance of all three cell types in demyelinated spinal cord lesions. As a result

  19. Simultaneous submicrometric 3D imaging of the micro-vascular network and the neuronal system in a mouse spinal cord

    CERN Document Server

    Fratini, Michela; Campi, Gaetano; Brun, Francesco; Tromba, Giuliana; Modregger, Peter; Bucci, Domenico; Battaglia, Giuseppe; Spadon, Raffaele; Mastrogiacomo, Maddalena; Requardt, Herwig; Giove, Federico; Bravin, Alberto; Cedola, Alessia

    2014-01-01

    Defaults in vascular (VN) and neuronal networks of spinal cord are responsible for serious neurodegenerative pathologies. Because of inadequate investigation tools, the lacking knowledge of the complete fine structure of VN and neuronal systems is a crucial problem. Conventional 2D imaging yields incomplete spatial coverage leading to possible data misinterpretation, whereas standard 3D computed tomography imaging achieves insufficient resolution and contrast. We show that X-ray high-resolution phase-contrast tomography allows the simultaneous visualization of three-dimensional VN and neuronal systems of mouse spinal cord at scales spanning from millimeters to hundreds of nanometers, with neither contrast agent nor a destructive sample-preparation. We image both the 3D distribution of micro-capillary network and the micrometric nerve fibers, axon-bundles and neuron soma. Our approach is a crucial tool for pre-clinical investigation of neurodegenerative pathologies and spinal-cord-injuries. In particular, it s...

  20. Inflammation and neuronal death in the motor cortex of the wobbler mouse, an ALS animal model

    DEFF Research Database (Denmark)

    Dahlke, Carolin; Saberi, Darius; Ott, Bastian

    2015-01-01

    Background Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder of the upper and lower motor neurons, characterized by rapid progressive weakness, muscle atrophy, dysarthria, dysphagia, and dyspnea. Whereas the exact cause of ALS remains uncertain, the wobbler mouse (phenotyp...

  1. Identification of multisegmental nociceptive afferents that modulate locomotor circuits in the neonatal mouse spinal cord.

    Science.gov (United States)

    Mandadi, Sravan; Hong, Peter; Tran, Michelle A; Bráz, Joao M; Colarusso, Pina; Basbaum, Allan I; Whelan, Patrick J

    2013-08-15

    Compared to proprioceptive afferent collateral projections, less is known about the anatomical, neurochemical, and functional basis of nociceptive collateral projections modulating lumbar central pattern generators (CPG). Quick response times are critical to ensure rapid escape from aversive stimuli. Furthermore, sensitization of nociceptive afferent pathways can contribute to a pathological activation of motor circuits. We investigated the extent and role of collaterals of capsaicin-sensitive nociceptive sacrocaudal afferent (nSCA) nerves that directly ascend several spinal segments in Lissauer's tract and the dorsal column and regulate motor activity. Anterograde tracing demonstrated direct multisegmental projections of the sacral dorsal root 4 (S4) afferent collaterals in Lissauer's tract and in the dorsal column. Subsets of the traced S4 afferent collaterals expressed transient receptor potential vanilloid 1 (TRPV1), which transduces a nociceptive response to capsaicin. Electrophysiological data revealed that S4 dorsal root stimulation could evoke regular rhythmic bursting activity, and our data suggested that capsaicin-sensitive collaterals contribute to CPG activation across multiple segments. Capsaicin's effect on S4-evoked locomotor activity was potent until the lumbar 5 (L5) segments, and diminished in rostral segments. Using calcium imaging we found elevated calcium transients within Lissauer's tract and dorsal column at L5 segments when compared to the calcium transients only within the dorsal column at the lumbar 2 (L2) segments, which were desensitized by capsaicin. We conclude that lumbar locomotor networks in the neonatal mouse spinal cord are targets for modulation by direct multisegmental nSCA, subsets of which express TRPV1 in Lissauer's tract and the dorsal column. J. Comp. Neurol. 521:2870-2887, 2013. © 2013 Wiley Periodicals, Inc.

  2. Persistent sodium currents participate in fictive locomotion generation in neonatal mouse spinal cord.

    Science.gov (United States)

    Zhong, Guisheng; Masino, Mark A; Harris-Warrick, Ronald M

    2007-04-25

    The persistent sodium current (I(Na(P))) has been implicated in the regulation of synaptic integration, intrinsic membrane properties, and rhythm generation in many types of neurons. We characterized I(Na(P)) in commissural interneurons (CINs) in the neonatal (postnatal days 0-3) mouse spinal cord; it is activated at subthreshold potentials, inactivates slowly, and can be blocked by low concentrations of riluzole. The role of I(Na(P)) in locomotor pattern generation was examined by applying riluzole during fictive locomotion induced by NMDA, serotonin, and dopamine or by stimulation of the cauda equina. Blockade of I(Na(P)) has marginal effects on the locomotion frequency but progressively weakens the rhythmic firing and locomotor-related membrane oscillation of CINs and motoneurons (MNs) and the locomotor-like bursts in ventral roots, until the motor pattern ceases. Riluzole directly affects the intrinsic firing properties of CINs and MNs, reducing their ability to fire repetitively during tonic depolarizations and raising their spike threshold. At the same time, riluzole has little effects on the strength of spike-evoked synaptic transmission onto CINs and MNs. Our results suggest that I(Na(P)) is essential for the generation of the locomotor pattern and acts in part by regulating the frequency of interneuron firing in the central pattern generator for locomotion.

  3. Peripheral androgen receptor gene suppression rescues disease in mouse models of spinal and bulbar muscular atrophy.

    Science.gov (United States)

    Lieberman, Andrew P; Yu, Zhigang; Murray, Sue; Peralta, Raechel; Low, Audrey; Guo, Shuling; Yu, Xing Xian; Cortes, Constanza J; Bennett, C Frank; Monia, Brett P; La Spada, Albert R; Hung, Gene

    2014-05-01

    Spinal and bulbar muscular atrophy (SBMA) is caused by the polyglutamine androgen receptor (polyQ-AR), a protein expressed by both lower motor neurons and skeletal muscle. Although viewed as a motor neuronopathy, data from patients and mouse models suggest that muscle contributes to disease pathogenesis. Here, we tested this hypothesis using AR113Q knockin and human bacterial artificial chromosome/clone (BAC) transgenic mice that express the full-length polyQ-AR and display androgen-dependent weakness, muscle atrophy, and early death. We developed antisense oligonucleotides that suppressed AR gene expression in the periphery but not the CNS after subcutaneous administration. Suppression of polyQ-AR in the periphery rescued deficits in muscle weight, fiber size, and grip strength, reversed changes in muscle gene expression, and extended the lifespan of mutant males. We conclude that polyQ-AR expression in the periphery is an important contributor to pathology in SBMA mice and that peripheral administration of therapeutics should be explored for SBMA patients.

  4. Neuromuscular junctions are pathological but not denervated in two mouse models of spinal bulbar muscular atrophy.

    Science.gov (United States)

    Poort, Jessica E; Rheuben, Mary B; Breedlove, S Marc; Jordan, Cynthia L

    2016-09-01

    Spinal bulbar muscular atrophy (SBMA) is a progressive, late onset neuromuscular disease causing motor dysfunction in men. While the morphology of the neuromuscular junction (NMJ) is typically affected by neuromuscular disease, whether NMJs in SBMA are similarly affected by disease is not known. Such information will shed light on whether defective NMJs might contribute to the loss of motor function and represent a potential therapeutic target for treating symptoms of SBMA. To address this gap in information, the morphology of NMJs was examined in two mouse models of SBMA, a myogenic model that overexpresses wildtype androgen receptor (AR) exclusively in muscle fibres and a knockin (KI) model expressing a humanized mutant AR gene. The tripartite motor synapse consisting of motor nerve terminal, terminal Schwann cells (tSCs) and postsynaptic specialization were visualized and analysed using confocal microscopy. Counter to expectation, we found no evidence of denervation in either model, but junctions in both models show pathological fragmentation and an abnormal synaptophysin distribution consistent with functionally weak synapses. Neurofilament accumulations were observed only in the myogenic model, even though axonal transport dysfunction is characteristic of both models. The ultrastructure of NMJs revealed additional pathology, including deficits in docked vesicles presynaptically, wider synaptic clefts, and simpler secondary folds postsynaptically. The observed pathology of NMJs in diseased SBMA mice is likely the morphological correlates of defects in synaptic function which may underlie motor impairments associated with SBMA.

  5. Peripheral Androgen Receptor Gene Suppression Rescues Disease in Mouse Models of Spinal and Bulbar Muscular Atrophy

    Directory of Open Access Journals (Sweden)

    Andrew P. Lieberman

    2014-05-01

    Full Text Available Spinal and bulbar muscular atrophy (SBMA is caused by the polyglutamine androgen receptor (polyQ-AR, a protein expressed by both lower motor neurons and skeletal muscle. Although viewed as a motor neuronopathy, data from patients and mouse models suggest that muscle contributes to disease pathogenesis. Here, we tested this hypothesis using AR113Q knockin and human bacterial artificial chromosome/clone (BAC transgenic mice that express the full-length polyQ-AR and display androgen-dependent weakness, muscle atrophy, and early death. We developed antisense oligonucleotides that suppressed AR gene expression in the periphery but not the CNS after subcutaneous administration. Suppression of polyQ-AR in the periphery rescued deficits in muscle weight, fiber size, and grip strength, reversed changes in muscle gene expression, and extended the lifespan of mutant males. We conclude that polyQ-AR expression in the periphery is an important contributor to pathology in SBMA mice and that peripheral administration of therapeutics should be explored for SBMA patients.

  6. Serotonin modulates the properties of ascending commissural interneurons in the neonatal mouse spinal cord.

    Science.gov (United States)

    Zhong, Guisheng; Díaz-Ríos, Manuel; Harris-Warrick, Ronald M

    2006-03-01

    The interneuron populations that constitute the central pattern generator (CPG) for locomotion in the mammalian spinal cord are not well understood. We studied the properties of a set of commissural interneurons whose axons cross and ascend in the contralateral cord (aCINs) in the neonatal mouse. During N-methyl-D-aspartate (NMDA) and 5-HT-induced fictive locomotion, a majority of lumbar (L2) aCINs examined were rhythmically active; most of them fired in phase with the ipsilateral motoneuron pool, but some fired in phase with contralateral motoneurons. 5-HT plays a critical role in enabling the locomotor CPG to function. We found that 5-HT increased the excitability of aCINs by depolarizing the membrane potential, reducing the postspike afterhyperpolarization amplitude, broadening the action potential, and decreasing the action potential threshold. Serotonin had no significant effect on the input resistance and sag amplitude of aCINs. These results support the hypothesis that aCINs play important roles in coordinating left-right movements during fictive locomotion and thus may be component neurons in the locomotor CPG in neonatal mice.

  7. Cellular basis of neuroepithelial bending during mouse spinal neural tube closure.

    Science.gov (United States)

    McShane, Suzanne G; Molè, Matteo A; Savery, Dawn; Greene, Nicholas D E; Tam, Patrick P L; Copp, Andrew J

    2015-08-15

    Bending of the neural plate at paired dorsolateral hinge points (DLHPs) is required for neural tube closure in the spinal region of the mouse embryo. As a step towards understanding the morphogenetic mechanism of DLHP development, we examined variations in neural plate cellular architecture and proliferation during closure. Neuroepithelial cells within the median hinge point (MHP) contain nuclei that are mainly basally located and undergo relatively slow proliferation, with a 7 h cell cycle length. In contrast, cells in the dorsolateral neuroepithelium, including the DLHP, exhibit nuclei distributed throughout the apico-basal axis and undergo rapid proliferation, with a 4 h cell cycle length. As the neural folds elevate, cell numbers increase to a greater extent in the dorsolateral neural plate that contacts the surface ectoderm, compared with the more ventromedial neural plate where cells contact paraxial mesoderm and notochord. This marked increase in dorsolateral cell number cannot be accounted for solely on the basis of enhanced cell proliferation in this region. We hypothesised that neuroepithelial cells may translocate in a ventral-to-dorsal direction as DLHP formation occurs, and this was confirmed by vital cell labelling in cultured embryos. The translocation of cells into the neural fold, together with its more rapid cell proliferation, leads to an increase in cell density dorsolaterally compared with the more ventromedial neural plate. These findings suggest a model in which DLHP formation may proceed through 'buckling' of the neuroepithelium at a dorso-ventral boundary marked by a change in cell-packing density.

  8. Severe neuromuscular denervation of clinically relevant muscles in a mouse model of spinal muscular atrophy.

    Science.gov (United States)

    Ling, Karen K Y; Gibbs, Rebecca M; Feng, Zhihua; Ko, Chien-Ping

    2012-01-01

    Spinal muscular atrophy (SMA), a motoneuron disease caused by a deficiency of the survival of motor neuron (SMN) protein, is characterized by motoneuron loss and muscle weakness. It remains unclear whether widespread loss of neuromuscular junctions (NMJs) is involved in SMA pathogenesis. We undertook a systematic examination of NMJ innervation patterns in >20 muscles in the SMNΔ7 SMA mouse model. We found that severe denervation (<50% fully innervated endplates) occurs selectively in many vulnerable axial muscles and several appendicular muscles at the disease end stage. Since these vulnerable muscles were located throughout the body and were comprised of varying muscle fiber types, it is unlikely that muscle location or fiber type determines susceptibility to denervation. Furthermore, we found a similar extent of neurofilament accumulation at NMJs in both vulnerable and resistant muscles before the onset of denervation, suggesting that neurofilament accumulation does not predict subsequent NMJ denervation. Since vulnerable muscles were initially innervated, but later denervated, loss of innervation in SMA may be attributed to defects in synapse maintenance. Finally, we found that denervation was amendable by trichostatin A (TSA) treatment, which increased innervation in clinically relevant muscles in TSA-treated SMNΔ7 mice. Our findings suggest that neuromuscular denervation in vulnerable muscles is a widespread pathology in SMA, and can serve as a preparation for elucidating the biological basis of synapse loss, and for evaluating therapeutic efficacy.

  9. Exercise Training after Spinal Cord Injury Selectively Alters Synaptic Properties in Neurons in Adult Mouse Spinal Cord

    Science.gov (United States)

    Flynn, Jamie R.; Dunn, Lynda R.; Galea, Mary P.; Callister, Robin; Rank, Michelle M.

    2013-01-01

    Abstract Following spinal cord injury (SCI), anatomical changes such as axonal sprouting occur within weeks in the vicinity of the injury. Exercise training enhances axon sprouting; however, the exact mechanisms that mediate exercised-induced plasticity are unknown. We studied the effects of exercise training after SCI on the intrinsic and synaptic properties of spinal neurons in the immediate vicinity (<2 segments) of the SCI. Male mice (C57BL/6, 9–10 weeks old) received a spinal hemisection (T10) and after 1 week of recovery, they were randomized to trained (treadmill exercise for 3 weeks) and untrained (no exercise) groups. After 3 weeks, mice were killed and horizontal spinal cord slices (T6–L1, 250 μm thick) were prepared for visually guided whole cell patch clamp recording. Intrinsic properties, including resting membrane potential, input resistance, rheobase current, action potential (AP) threshold and after-hyperpolarization (AHP) amplitude were similar in neurons from trained and untrained mice (n=67 and 70 neurons, respectively). Neurons could be grouped into four categories based on their AP discharge during depolarizing current injection; the proportions of tonic firing, initial bursting, single spiking, and delayed firing neurons were similar in trained and untrained mice. The properties of spontaneous excitatory synaptic currents (sEPSCs) did not differ in trained and untrained animals. In contrast, evoked excitatory synaptic currents recorded after dorsal column stimulation were markedly increased in trained animals (peak amplitude 78.9±17.5 vs. 42.2±6.8 pA; charge 1054±376 vs. 348±75 pA·ms). These data suggest that 3 weeks of treadmill exercise does not affect the intrinsic properties of spinal neurons after SCI; however, excitatory synaptic drive from dorsal column pathways, such as the corticospinal tract, is enhanced. PMID:23320512

  10. A neonatal mouse spinal cord injury model for assessing post-injury adaptive plasticity and human stem cell integration.

    Directory of Open Access Journals (Sweden)

    Jean-Luc Boulland

    Full Text Available Despite limited regeneration capacity, partial injuries to the adult mammalian spinal cord can elicit variable degrees of functional recovery, mediated at least in part by reorganization of neuronal circuitry. Underlying mechanisms are believed to include synaptic plasticity and collateral sprouting of spared axons. Because plasticity is higher in young animals, we developed a spinal cord compression (SCC injury model in the neonatal mouse to gain insight into the potential for reorganization during early life. The model provides a platform for high-throughput assessment of functional synaptic connectivity that is also suitable for testing the functional integration of human stem and progenitor cell-derived neurons being considered for clinical cell replacement strategies. SCC was generated at T9-T11 and functional recovery was assessed using an integrated approach including video kinematics, histology, tract tracing, electrophysiology, and high-throughput optical recording of descending inputs to identified spinal neurons. Dramatic degeneration of axons and synaptic contacts was evident within 24 hours of SCC, and loss of neurons in the injured segment was evident for at least a month thereafter. Initial hindlimb paralysis was paralleled by a loss of descending inputs to lumbar motoneurons. Within 4 days of SCC and progressively thereafter, hindlimb motility began to be restored and descending inputs reappeared, but with examples of atypical synaptic connections indicating a reorganization of circuitry. One to two weeks after SCC, hindlimb motility approached sham control levels, and weight-bearing locomotion was virtually indistinguishable in SCC and sham control mice. Genetically labeled human fetal neural progenitor cells injected into the injured spinal cord survived for at least a month, integrated into the host tissue and began to differentiate morphologically. This integrative neonatal mouse model provides opportunities to explore early

  11. Evidence of compromised blood-spinal cord barrier in early and late symptomatic SOD1 mice modeling ALS.

    Directory of Open Access Journals (Sweden)

    Svitlana Garbuzova-Davis

    Full Text Available BACKGROUND: The blood-brain barrier (BBB, blood-spinal cord barrier (BSCB, and blood-cerebrospinal fluid barrier (BCSFB control cerebral/spinal cord homeostasis by selective transport of molecules and cells from the systemic compartment. In the spinal cord and brain of both ALS patients and animal models, infiltration of T-cell lymphocytes, monocyte-derived macrophages and dendritic cells, and IgG deposits have been observed that may have a critical role in motor neuron damage. Additionally, increased levels of albumin and IgG have been found in the cerebrospinal fluid in ALS patients. These findings suggest altered barrier permeability in ALS. Recently, we showed disruption of the BBB and BSCB in areas of motor neuron degeneration in the brain and spinal cord in G93A SOD1 mice modeling ALS at both early and late stages of disease using electron microscopy. Examination of capillary ultrastructure revealed endothelial cell degeneration, which, along with astrocyte alteration, compromised the BBB and BSCB. However, the effect of these alterations upon barrier function in ALS is still unclear. The aim of this study was to determine the functional competence of the BSCB in G93A mice at different stages of disease. METHODOLOGY/PRINCIPAL FINDINGS: Evans Blue (EB dye was intravenously injected into ALS mice at early or late stage disease. Vascular leakage and the condition of basement membranes, endothelial cells, and astrocytes were investigated in cervical and lumbar spinal cords using immunohistochemistry. Results showed EB leakage in spinal cord microvessels from all G93A mice, indicating dysfunction in endothelia and basement membranes and confirming our previous ultrastructural findings on BSCB disruption. Additionally, downregulation of Glut-1 and CD146 expressions in the endothelial cells of the BSCB were found which may relate to vascular leakage. CONCLUSIONS/SIGNIFICANCE: Results suggest that the BSCB is compromised in areas of motor neuron

  12. Changes in Synapses and Axons Demonstrated by Synaptophysin Immunohistochemistry Following Spinal Cord Compression Trauma in the Rat and Mouse

    Institute of Scientific and Technical Information of China (English)

    GUI-LIN LI; MOHAMMAD FAROOQUE; JONAS ISAKSSON; YNGVE OLSSON

    2004-01-01

    and methods To evaluate synaptic changes using synaptophysin immunohistochemstry in rat and mouse, which spinal cords were subjected to graded compression trauma at the level of Th8-9. Results Normal animals showed numerous fine dots of synaptophysin immunoreactivity in the gray matter. An increase in synaptophysin immunoreactivity was observed in the neuropil and synapses at the surface of motor neurons of the anterior horns in the Th8-9 segments lost immunoreactivity at 4-hour point after trauma. The immunoreactive synapses reappeared around motor neurons at 9-day point. Unexpected accumulation of synaptophysin immunoreactivity occurred in injured axons of the white matter of the compressed spinal cord. Conclusion Synaptic changes were important components of secondary injuries in spinal cord trauma. Loss of synapses on motor neurons may be one of the factors causing motor dysfunction of hind limbs and formation of new synapses may play an important role in recovery of motor function. Synaptophysin immunohistochemistry is also a good tool for studies of axonal swellings in spinal cord injuries.

  13. The spinal precerebellar nuclei: calcium binding proteins and gene expression profile in the mouse.

    Science.gov (United States)

    Fu, YuHong; Sengul, Gulgun; Paxinos, George; Watson, Charles

    2012-06-19

    We have localized the spinocerebellar neuron groups in C57BL/6J mice by injecting the retrograde neuronal tracer Fluoro-Gold into the cerebellum and examined the distribution of SMI 32 and the calcium-binding proteins (CBPs), calbindin-D-28K (Cb), calretinin (Cr), and parvalbumin (Pv) in the spinal precerebellar nuclei. The spinal precerebellar neuron clusters identified were the dorsal nucleus, central cervical nucleus, lumbar border precerebellar nucleus, lumbar precerebellar nucleus, and sacral precerebellar nucleus. Some dispersed neurons in the deep dorsal horn and spinal laminae 6-8 also projected to the cerebellum. Cb, Cr, Pv, and SMI 32 were present in all major spinal precerebellar nuclei and Pv was the most commonly observed CBP. A number of genes expressed in hindbrain precerebellar nuclei are also expressed in spinal precerebellar groups, but there were some differences in gene expression profile between the different spinal precerebellar nuclei, pointing to functional diversity amongst them.

  14. Brain hypermetabolism in amyotrophic lateral sclerosis: a FDG PET study in ALS of spinal and bulbar onset

    Energy Technology Data Exchange (ETDEWEB)

    Cistaro, Angelina; Fania, Piercarlo [Positron Emission Tomography Center IRMET S.p.A, Turin (Italy); Consuelo Valentini, Maria; Carrara, Giovanna [CTO Hospital, Department of Neuroradiology, Turin (Italy); Chio, Adriano; Calvo, Andrea; Moglia, Cristina; Montuschi, Anna [University of Turin, Department of Neuroscience, ALS Center, Turin (Italy); Nobili, Flavio [University of Genoa, Department of Neurosciences, Clinical Neurophysiology Unit, Ophthalmology and Genetics, Genoa (Italy); Morbelli, Silvia [University of Genoa, Department of Internal Medicine, Nuclear Medicine Unit, Genoa (Italy); Salmaso, Dario [Institute of Cognitive Sciences and Technologies, CNR, Padua (Italy); Institute of Cognitive Sciences and Technologies, CNR, Rome (Italy); Pagani, Marco [Institute of Cognitive Sciences and Technologies, CNR, Padua (Italy); Karolinska Hospital, Department of Nuclear Medicine, Stockholm (Sweden); Institute of Cognitive Sciences and Technologies, CNR, Rome (Italy)

    2012-02-15

    To identify the neurobiological traits of amyotrophic lateral sclerosis (ALS) and to elucidate functional differences between ALS of spinal and bulbar onset. We hypothesized that glucose metabolism distribution might vary between groups. The study groups comprised 32 patients with ALS of either bulbar (n = 13) or spinal (n=19) onset and 22 subjects as controls. They were investigated by [{sup 18}F]fluorodeoxyglucose (FDG) positron emission tomography (FDG PET), comparing the patient groups with each other and with the controls by statistical parametric mapping. Highly significant relative increases in glucose metabolism distribution were found in the group comprising all 32 ALS patients as compared with the controls in the bilateral amygdalae, midbrain, pons and cerebellum. Relative hypermetabolism was also found in patients with spinal onset as compared with the controls in the right midbrain. In patients with bulbar onset compared with the controls and with patients with spinal onset, large relatively hypometabolic areas were found in the bilateral frontal cortex, right insula, anterior cingulate, precuneus and inferior parietal lobe. Patients with spinal onset had significantly higher scores in a neuropsychological test assessing verbal fluency compared with patients with bulbar onset. This large FDG PET investigation provided unprecedented evidence of relatively increased metabolism in the amygdalae, midbrain and pons in ALS patients as compared with control subjects, possibly due to local activation of astrocytes and microglia. Highly significant relative decreases in metabolism were found in large frontal and parietal regions in the bulbar onset patients as compared with the spinal onset patients and the controls, suggesting a differential metabolic and neuropsychological state between the two conditions. (orig.)

  15. Increased immunoreactivity of c‑Fos in the spinal cord of the aged mouse and dog.

    Science.gov (United States)

    Ahn, Ji Hyeon; Shin, Myoung Chul; Park, Joon Ha; Kim, In Hye; Lee, Jae-Chul; Yan, Bing Chun; Hwang, In Koo; Moon, Seung Myung; Ahn, Ji Yun; Ohk, Taek Geun; Lee, Tae Hun; Cho, Jun Hwi; Shin, Hyung-Cheul; Won, Moo-Ho

    2015-02-01

    Expression of c‑Fos in the spinal cord following nociceptive stimulation is considered to be a neurotoxic biomarker. In the present study, the immunoreactivity of c‑Fos in the spinal cord was compared between young adult (2‑3 years in dogs and 6 months in mice) and aged (10‑12 years in dogs and 24 months in mice) Beagle dogs and C57BL/6J mice. In addition, changes to neuronal distribution and damage to the spinal cord were also investigated. There were no significant differences in neuronal loss or degeneration of the spinal neurons observed in either the aged dogs or mice. Weak c‑Fos immunoreactivity was observed in the spinal neurons of the young adult animals; however, c‑Fos immunoreactivity was markedly increased in the nuclei of spinal neurons in the aged dogs and mice, as compared with that of the young adults. In conclusion, c‑Fos immunoreactivity was significantly increased without any accompanying neuronal loss in the aged spinal cord of mice and dogs, as compared with the spinal cords of the young adult animals.

  16. An electron microscopic study of the development of the ependyma of the central canal of the mouse spinal cord.

    OpenAIRE

    Sturrock, R R

    1981-01-01

    The central canal of the adult mouse spinal cord is lined for most of its extent by ependymal cells which are rich in microfilaments and whose apical surface is covered with matted, broad microvilli. The canal itself is filled with amorphous material containing glycogen granules. Two forms of this material are present, a dark form rich in glycogen, and a light form containing a few glycogen granules. Each type appears to be surrounded by a membrane. The upper cervical region, however, has a l...

  17. Effects of maternal administration of endoxan, vitamin A and vitamin B12 on the development of the fetal spinal cord of the albino mouse.

    Science.gov (United States)

    Nawar, N N; Sakla, F B; Mahran, Z Y

    1979-01-01

    The effects of maternal administration of endoxan, vitamin A and vitamine B12 were studied on the cervical fetal spinal cord of the albino mouse. Endoxan caused dorsal and ventral herniation of the spinal cord, chromatolysis and degeneration of the neuroblasts together with neuroglial proliferation. Vitamin A and B12 resulted in an increase in the surface areas of both grey and white matter and an increase in the volume of the neuroblasts. The possible mechanisms concerned were discussed.

  18. Morphological characteristics of motor neurons do not determine their relative susceptibility to degeneration in a mouse model of severe spinal muscular atrophy.

    Directory of Open Access Journals (Sweden)

    Sophie R Thomson

    Full Text Available Spinal muscular atrophy (SMA is a leading genetic cause of infant mortality, resulting primarily from the degeneration and loss of lower motor neurons. Studies using mouse models of SMA have revealed widespread heterogeneity in the susceptibility of individual motor neurons to neurodegeneration, but the underlying reasons remain unclear. Data from related motor neuron diseases, such as amyotrophic lateral sclerosis (ALS, suggest that morphological properties of motor neurons may regulate susceptibility: in ALS larger motor units innervating fast-twitch muscles degenerate first. We therefore set out to determine whether intrinsic morphological characteristics of motor neurons influenced their relative vulnerability to SMA. Motor neuron vulnerability was mapped across 10 muscle groups in SMA mice. Neither the position of the muscle in the body, nor the fibre type of the muscle innervated, influenced susceptibility. Morphological properties of vulnerable and disease-resistant motor neurons were then determined from single motor units reconstructed in Thy.1-YFP-H mice. None of the parameters we investigated in healthy young adult mice - including motor unit size, motor unit arbor length, branching patterns, motor endplate size, developmental pruning and numbers of terminal Schwann cells at neuromuscular junctions - correlated with vulnerability. We conclude that morphological characteristics of motor neurons are not a major determinant of disease-susceptibility in SMA, in stark contrast to related forms of motor neuron disease such as ALS. This suggests that subtle molecular differences between motor neurons, or extrinsic factors arising from other cell types, are more likely to determine relative susceptibility in SMA.

  19. Measures of bulbar and spinal motor function, muscle innervation, and mitochondrial function in ALS rats.

    Science.gov (United States)

    Smittkamp, Susan E; Spalding, Heather N; Brown, Jordan W; Gupte, Anisha A; Chen, Jie; Nishimune, Hiroshi; Geiger, Paige C; Stanford, John A

    2010-07-29

    Symptom onset in amyotrophic lateral sclerosis (ALS) may occur in the muscles of the limbs (spinal onset) or those of the head and neck (bulbar onset). Most preclinical studies have focused on spinal symptoms, despite the prevalence of and increased morbidity and mortality associated with bulbar disease. We measured lick rhythm and tongue force to evaluate bulbar disease in the SOD1-G93A rat model of familial ALS. Body weight and grip strength were measured concomitantly. Testing spanned the early (maturation), middle (pre-symptomatic), and late (symptomatic and end-stage) phases of the disease. We measured a persistent tongue motility deficit that became apparent in the early phase of the disease, providing behavioral evidence of bulbar pathology. At end-stage, however, cytochrome oxidase (CO) activity was normal in the hypoglossal nucleus, and in the tongue, neuromuscular innervation, citrate synthase (CS) protein levels and activity, and uncoupling protein 3 (UCP3) protein levels remained unchanged. Interestingly, significant denervation and atrophy were evident in the end-stage sternomastoid muscle, providing peripheral anatomical evidence of bulbar pathology. Changes in body weight and grip strength occurred in the late phase of the disease. Extensive atrophy and denervation were observed in the end-stage gastrocnemius muscle. In contrast to our findings in the tongue, CS protein levels were decreased in the extensor digitorum longus (EDL) and soleus, although CS activity was maintained or increased. UCP3 protein was decreased also in the EDL. These data provide evidence of differential effects in muscles that were more or less affected by disease.

  20. Abnormal mitochondrial transport and morphology are common pathological denominators in SOD1 and TDP43 ALS mouse models.

    Science.gov (United States)

    Magrané, Jordi; Cortez, Czrina; Gan, Wen-Biao; Manfredi, Giovanni

    2014-03-15

    Neuronal mitochondrial morphology abnormalities occur in models of familial amyotrophic lateral sclerosis (ALS) associated with SOD1 and TDP43 mutations. These abnormalities have been linked to mitochondrial axonal transport defects, but the temporal and spatial relationship between mitochondrial morphology and transport alterations in these two distinct genetic forms of ALS has not been investigated in vivo. To address this question, we crossed SOD1 (wild-type SOD1(WT) and mutant SOD1(G93A)) or TDP43 (mutant TDP43(A315T)) transgenic mice with mice expressing the fluorescent protein Dendra targeted to mitochondria in neurons (mitoDendra). At different time points during the disease course, we studied mitochondrial transport in the intact sciatic nerve of living mice and analyzed axonal mitochondrial morphology at multiple sites, spanning from the spinal cord to the motor terminals. Defects of retrograde mitochondrial transport were detected at 45 days of age, before the onset of symptoms, in SOD1(G93A) and TDP43(A315T) mice, but not in SOD1(WT). At later disease stages, also anterograde mitochondrial transport was affected in both mutant mouse lines. In SOD1(G93A) mice, mitochondrial morphological abnormalities were apparent at 15 days of age, thus preceding transport abnormalities. Conversely, in TDP43(A315T) mice, morphological abnormalities appeared after the onset of transport defects. Taken together, these findings demonstrate that neuronal mitochondrial transport and morphology abnormalities occur in vivo and that they are common denominators of different genetic forms of the ALS. At the same time, differences in the temporal and spatial manifestation of mitochondrial abnormalities between the two mouse models of familial ALS imply that different molecular mechanisms may be involved.

  1. Insulinlike growth factor (IGF)-1 administration ameliorates disease manifestations in a mouse model of spinal and bulbar muscular atrophy.

    Science.gov (United States)

    Rinaldi, Carlo; Bott, Laura C; Chen, Ke-lian; Harmison, George G; Katsuno, Masahisa; Sobue, Gen; Pennuto, Maria; Fischbeck, Kenneth H

    2012-12-06

    Spinal and bulbar muscular atrophy is an X-linked motor neuron disease caused by polyglutamine expansion in the androgen receptor. Patients develop slowly progressive proximal muscle weakness, muscle atrophy and fasciculations. Affected individuals often show gynecomastia, testicular atrophy and reduced fertility as a result of mild androgen insensitivity. No effective disease-modifying therapy is currently available for this disease. Our recent studies have demonstrated that insulinlike growth factor (IGF)-1 reduces the mutant androgen receptor toxicity through activation of Akt in vitro, and spinal and bulbar muscular atrophy transgenic mice that also overexpress a noncirculating muscle isoform of IGF-1 have a less severe phenotype. Here we sought to establish the efficacy of daily intraperitoneal injections of mecasermin rinfabate, recombinant human IGF-1 and IGF-1 binding protein 3, in a transgenic mouse model expressing the mutant androgen receptor with an expanded 97 glutamine tract. The study was done in a controlled, randomized, blinded fashion, and, to reflect the clinical settings, the injections were started after the onset of disease manifestations. The treatment resulted in increased Akt phosphorylation and reduced mutant androgen receptor aggregation in muscle. In comparison to vehicle-treated controls, IGF-1-treated transgenic mice showed improved motor performance, attenuated weight loss and increased survival. Our results suggest that peripheral tissue can be targeted to improve the spinal and bulbar muscular atrophy phenotype and indicate that IGF-1 warrants further investigation in clinical trials as a potential treatment for this disease.

  2. Noggin and Sonic hedgehog are involved in compensatory changes within the motoneuron-depleted mouse spinal cord.

    Science.gov (United States)

    Gulino, Rosario; Gulisano, Massimo

    2013-09-15

    Sonic hedgehog and Noggin are morphogenetic factors involved in neural induction and ventralization of the neural tube, but recent findings suggest that they could participate in regeneration and functional recovery after injury. Here, in order to verify if these mechanisms could occur in the spinal cord and involve synaptic plasticity, we measured the expression levels of Sonic hedgehog, Noggin, Choline Acetyltransferase, Synapsin-I and Glutamate receptor subunits (GluR1, GluR2, GluR4), in a motoneuron-depleted mouse spinal cord lesion model obtained by intramuscular injection of Cholera toxin-B saporin. The lesion caused differential expression changes of the analyzed proteins. Moreover, motor performance was found correlated with Sonic hedgehog and Noggin expression in lesioned animals. The results also suggest that Sonic hedgehog could collaborate in modulating synaptic plasticity. Together, these findings confirm that the injured mammalian spinal cord has intrinsic potential for repair and that some proteins classically involved in development, such as Sonic hedgehog and Noggin could have important roles in regeneration and functional restoration, by mechanisms including synaptic plasticity.

  3. Spinal cord pathology is ameliorated by P2X7 antagonism in a SOD1-mutant mouse model of amyotrophic lateral sclerosis

    Directory of Open Access Journals (Sweden)

    Savina Apolloni

    2014-09-01

    Full Text Available In recent years there has been an increasing awareness of the role of P2X7, a receptor for extracellular ATP, in modulating physiopathological mechanisms in the central nervous system. In particular, P2X7 has been shown to be implicated in neuropsychiatry, chronic pain, neurodegeneration and neuroinflammation. Remarkably, P2X7 has also been shown to be a ‘gene modifier’ in amyotrophic lateral sclerosis (ALS: the receptor is upregulated in spinal cord microglia in human and rat at advanced stages of the disease; in vitro, activation of P2X7 exacerbates pro-inflammatory responses in microglia that have an ALS phenotype, as well as toxicity towards neuronal cells. Despite this detrimental in vitro role of P2X7, in SOD1-G93A mice lacking P2X7, the clinical onset of ALS was significantly accelerated and disease progression worsened, thus indicating that the receptor might have some beneficial effects, at least at certain stages of disease. In order to clarify this dual action of P2X7 in ALS pathogenesis, in the present work we used the antagonist Brilliant Blue G (BBG, a blood-brain barrier permeable and safe drug that has already been proven to reduce neuroinflammation in traumatic brain injury, cerebral ischemia-reperfusion, neuropathic pain and experimental autoimmune encephalitis. We tested BBG in the SOD1-G93A ALS mouse model at asymptomatic, pre-symptomatic and late pre-symptomatic phases of disease. BBG at late pre-onset significantly enhanced motor neuron survival and reduced microgliosis in lumbar spinal cord, modulating inflammatory markers such as NF-κB, NADPH oxidase 2, interleukin-1β, interleukin-10 and brain-derived neurotrophic factor. This was accompanied by delayed onset and improved general conditions and motor performance, in both male and female mice, although survival appeared unaffected. Our results prove the twofold role of P2X7 in the course of ALS and establish that P2X7 modulation might represent a promising

  4. Persistent sodium current contributes to induced voltage oscillations in locomotor-related hb9 interneurons in the mouse spinal cord.

    Science.gov (United States)

    Ziskind-Conhaim, Lea; Wu, Linying; Wiesner, Eric P

    2008-10-01

    Neurochemically induced membrane voltage oscillations and firing episodes in spinal excitatory interneurons expressing the HB9 protein (Hb9 INs) are synchronous with locomotor-like rhythmic motor outputs, suggesting that they contribute to the excitatory drive of motoneurons during locomotion. Similar to central pattern generator neurons in other systems, Hb9 INs are interconnected via electrical coupling, and their rhythmic activity does not depend on fast glutamatergic synaptic transmission. The primary objective of this study was to determine the contribution of fast excitatory and inhibitory synaptic transmission and subthreshold voltage-dependent currents to the induced membrane oscillations in Hb9 INs in the postnatal mouse spinal cord. The non-N-methyl-D-aspartate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) reduced the amplitude of voltage oscillations but did not alter their frequency. CNQX suppressed rhythmic motor activity. Blocking glycine and GABAA receptor-mediated inhibitory synapses as well as cholinergic transmission did not change the properties of CNQX-resistant membrane oscillations. However, disinhibition triggered new episodes of slow motor bursting that were not correlated with induced locomotor-like rhythms in Hb9 INs. Our observations indicated that fast excitatory and inhibitory synaptic inputs did not control the frequency of induced rhythmic activity in Hb9 INs. We next examined the contribution of persistent sodium current (INaP) to subthreshold membrane oscillations in the absence of primary glutamatergic, GABAergic and glycinergic synaptic drive to Hb9 INs. Low concentrations of riluzole that blocked the slow-inactivating component of sodium current gradually suppressed the amplitude and reduced the frequency of voltage oscillations. Our finding that INaP regulates locomotor-related rhythmic activity in Hb9 INs independently of primary synaptic transmission supports the concept that these neurons constitute an

  5. Ligation of mouse L4 and L5 spinal nerves produces robust allodynia without major motor function deficit.

    Science.gov (United States)

    Ye, Gui-Lan; Savelieva, Katerina V; Vogel, Peter; Baker, Kevin B; Mason, Sara; Lanthorn, Thomas H; Rajan, Indrani

    2015-01-01

    Spinal nerve L5/L6 ligation (SNL) in rats has become the standard for mechanistic studies of peripheral neuropathy and screening for novel analgesics. Conventional SNL in our hybrid mice resulted in a wide range of allodynia. Anatomical evaluation indicated that a variable number of lumbar vertebrae existed, resulting in L4/L5 or L5/L6 being ligated. Surprisingly, L4/L5 ligation did not result in ipsilateral hind limb paralysis and produced robust allodynia. Following a recent report that the mouse L4 neural segment is homologous with rat L5 we generated L4, L5 or both L4 and L5 (L4/L5) ligations in C57 mice after establishing a modified set of surgical landmarks. In contrast to rats, L4 ligation in these mice did not result in hind limb paralysis. Robust allodynia was observed in all three ligation groups. Nerve degeneration confirmed that L4 and L5, respectively, are primary contributors to the tibial and sural branches of the sciatic nerve in mice. A larger von Frey sensitive area reflected the wider distribution of Wallerian degeneration in the hindlimb of L4- compared to L5-ligated mice. Ligation of mouse L4 and L5 spinal nerves produces consistent, robust neuropathic pain behaviors and is suitable as a model for investigating mechanisms of neuropathic pain and for testing of novel analgesics. Gabapentin, used as a validation drug in neuropathic pain models and as a reference compound for novel analgesics, significantly reduced allodynia in the mice tested (L4/L5 ligations). Given the ease of surgery, robust allodynia, and larger von Frey sensitive area, we conclude that combined ligation of spinal nerves L4 and L5 optimizes the SNL model in mice.

  6. Mast cells promote scar remodeling and functional recovery after spinal cord injury via mouse mast cell protease 6.

    Science.gov (United States)

    Vangansewinkel, Tim; Geurts, Nathalie; Quanten, Kirsten; Nelissen, Sofie; Lemmens, Stefanie; Geboes, Lies; Dooley, Dearbhaile; Vidal, Pia M; Pejler, Gunnar; Hendrix, Sven

    2016-05-01

    An important barrier for axon regeneration and recovery after traumatic spinal cord injury (SCI) is attributed to the scar that is formed at the lesion site. Here, we investigated the effect of mouse mast cell protease (mMCP) 6, a mast cell (MC)-specific tryptase, on scarring and functional recovery after a spinal cord hemisection injury. Functional recovery was significantly impaired in both MC-deficient and mMCP6-knockout (mMCP6(-/-)) mice after SCI compared with wild-type control mice. This decrease in locomotor performance was associated with an increased lesion size and excessive scarring at the injury site. Axon growth-inhibitory chondroitin sulfate proteoglycans and the extracellular matrix components fibronectin, laminin, and collagen IV were significantly up-regulated in MC-deficient and mMCP6(-/-) mice, with an increase in scar volume between 23 and 32%. A degradation assay revealed that mMCP6 directly cleaves fibronectin and collagen IV in vitro In addition, gene expression levels of the scar components fibronectin, aggrecan, and collagen IV were increased up to 6.8-fold in mMCP6(-/-) mice in the subacute phase after injury. These data indicate that endogenous mMCP6 has scar-suppressing properties after SCI via indirect cleavage of axon growth-inhibitory scar components and alteration of the gene expression profile of these factors.-Vangansewinkel, T., Geurts, N., Quanten, K., Nelissen, S., Lemmens, S., Geboes, L., Dooley, D., Vidal, P. M., Pejler, G., Hendrix, S. Mast cells promote scar remodeling and functional recovery after spinal cord injury via mouse mast cell protease 6.

  7. Liquid chromatography-electrospray linear ion trap mass spectrometry analysis of targeted neuropeptides in Tac1(-/-) mouse spinal cords reveals significant lower concentration of opioid peptides.

    Science.gov (United States)

    Saidi, Mouna; Beaudry, Francis

    2015-08-01

    Tachykinin and opioid peptides play a central role in pain transmission, modulation and inhibition. The treatment of pain is very important in medicine and many studies using NK1 receptor antagonists failed to show significant analgesic effects in humans. Recent investigations suggest that both pronociceptive tachykinins and the analgesic opioid systems are important for normal pain sensation. The analysis of opioid peptides in Tac1(-/-) spinal cord tissues offers a great opportunity to verify the influence of the tachykinin system on specific opioid peptides. The objectives of this study were to develop an HPLC-MS/MRM assay to quantify targeted peptides in spinal cord tissues. Secondly, we wanted to verify if the Tac1(-/-) mouse endogenous opioid system is hampered and therefore affects significantly the pain modulatory pathways. Targeted neuropeptides were analyzed by high performance liquid chromatography linear ion trap mass spectrometry. Our results reveal that EM-2, Leu-Enk and Dyn A were down-regulated in Tac1(-/-) spinal cord tissues. Interestingly, Dyn A was almost 3 fold down-regulated (p<0.0001). No significant concentration differences were observed in mouse Tac1(-/-) spinal cords for Met-Enk and CGRP. The analysis of Tac1(-/-) mouse spinal cords revealed noteworthy decreases of EM-2, Leu-Enk and Dyn A concentrations which strongly suggest a significant impact on the endogenous pain-relieving mechanisms. These observations may have insightful impact on future analgesic drug developments and therapeutic strategies.

  8. Calcium Imaging of Living Astrocytes in the Mouse Spinal Cord following Sensory Stimulation

    Directory of Open Access Journals (Sweden)

    Giovanni Cirillo

    2012-01-01

    Full Text Available Astrocytic Ca2+ dynamics have been extensively studied in ex vivo models; however, the recent development of two-photon microscopy and astrocyte-specific labeling has allowed the study of Ca2+ signaling in living central nervous system. Ca2+ waves in astrocytes have been described in cultured cells and slice preparations, but evidence for astrocytic activation during sensory activity is lacking. There are currently few methods to image living spinal cord: breathing and heart-beating artifacts have impeded the widespread application of this technique. We here imaged the living spinal cord by two-photon microscopy in C57BL6/J mice. Through pressurized injection, we specifically loaded spinal astrocytes using the red fluorescent dye sulforhodamine 101 (SR101 and imaged astrocytic Ca2+ levels with Oregon-Green BAPTA-1 (OGB. Then, we studied astrocytic Ca2+ levels at rest and after right electrical hind paw stimulation. Sensory stimulation significantly increased astrocytic Ca2+ levels within the superficial dorsal horn of the spinal cord compared to rest. In conclusion, in vivo morphofunctional imaging of living astrocytes in spinal cord revealed that astrocytes actively participate to sensory stimulation.

  9. MK801 attenuates secondary injury in a mouse experimental compression model of spinal cord trauma

    Directory of Open Access Journals (Sweden)

    Meli Rosaria

    2011-04-01

    Full Text Available Abstract Background Glutamergic excitotoxicity has been shown to play a deleterious role in the pathophysiology of spinal cord injury (SCI. The aim of this study was to investigate the neuroprotective effect of dizocilpine maleate, MK801 (2 mg/Kg, 30 min and 6 hours after injury in a mice model of SCI. The spinal cord trauma was induced by the application of vascular clips to the dura via a four-level T5-T8 laminectomy. Results Spinal cord injury in mice resulted in severe trauma characterized by edema, neutrophil infiltration and apoptosis. In this study we clearly demonstrated that administration of MK801 attenuated all inflammatory parameters. In fact 24 hours after injury, the degree of spinal cord inflammation and tissue injury (evaluated as histological score, infiltration of neutrophils, NF-κB activation, iNOS, cytokines levels (TNF-α and IL-1β, neurotrophin expression were markedly reduced by MK801 treatment. Moreover, in a separate set of experiments, we have demonstrated that MK801 treatment significantly improved the recovery of locomotory function. Conclusions Blockade of NMDA by MK801 lends support to the potential importance of NMDA antagonists as therapeutic agents in the treatment of acute spinal cord injury.

  10. Superoxide dismutase 1 and tgSOD1 mouse spinal cord seed fibrils, suggesting a propagative cell death mechanism in amyotrophic lateral sclerosis.

    Directory of Open Access Journals (Sweden)

    Ruth Chia

    Full Text Available BACKGROUND: Amyotrophic lateral sclerosis (ALS is a neurodegenerative disease that specifically affects motor neurons and leads to a progressive and ultimately fatal loss of function, resulting in death typically within 3 to 5 years of diagnosis. The disease starts with a focal centre of weakness, such as one limb, and appears to spread to other parts of the body. Mutations in superoxide dismutase 1 (SOD1 are known to cause disease and it is generally accepted they lead to pathology not by loss of enzymatic activity but by gain of some unknown toxic function(s. Although different mutations lead to varying tendencies of SOD1 to aggregate, we suggest abnormal proteins share a common misfolding pathway that leads to the formation of amyloid fibrils. METHODOLOGY/PRINCIPAL FINDINGS: Here we demonstrate that misfolding of superoxide dismutase 1 leads to the formation of amyloid fibrils associated with seeding activity, which can accelerate the formation of new fibrils in an autocatalytic cascade. The time limiting event is nucleation to form a stable protein "seed" before a rapid linear polymerisation results in amyloid fibrils analogous to other protein misfolding disorders. This phenomenon was not confined to fibrils of recombinant protein as here we show, for the first time, that spinal cord homogenates obtained from a transgenic mouse model that overexpresses mutant human superoxide dismutase 1 (the TgSOD1(G93A mouse also contain amyloid seeds that accelerate the formation of new fibrils in both wildtype and mutant SOD1 protein in vitro. CONCLUSIONS/SIGNIFICANCE: These findings provide new insights into ALS disease mechanism and in particular a mechanism that could account for the spread of pathology throughout the nervous system. This model of disease spread, which has analogies to other protein misfolding disorders such as prion disease, also suggests it may be possible to design assays for therapeutics that can inhibit fibril propagation and

  11. DNA Damage Response and DNA Repair in Skeletal Myocytes From a Mouse Model of Spinal Muscular Atrophy.

    Science.gov (United States)

    Fayzullina, Saniya; Martin, Lee J

    2016-09-01

    We studied DNA damage response (DDR) and DNA repair capacities of skeletal muscle cells from a mouse model of infantile spinal muscular atrophy (SMA) caused by loss-of-function mutation of survival of motor neuron (Smn). Primary myocyte cultures derived from skeletal muscle satellite cells of neonatal control and mutant SMN mice had similar myotube length, myonuclei, satellite cell marker Pax7 and differentiated myotube marker myosin, and acetylcholine receptor clustering. DNA damage was induced in differentiated skeletal myotubes by γ-irradiation, etoposide, and methyl methanesulfonate (MMS). Unexposed control and SMA myotubes had stable genome integrity. After γ-irradiation and etoposide, myotubes repaired most DNA damage equally. Control and mutant myotubes exposed to MMS exhibited equivalent DNA damage without repair. Control and SMA myotube nuclei contained DDR proteins phospho-p53 and phospho-H2AX foci that, with DNA damage, dispersed and then re-formed similarly after recovery. We conclude that mouse primary satellite cell-derived myotubes effectively respond to and repair DNA strand-breaks, while DNA alkylation repair is underrepresented. Morphological differentiation, genome stability, genome sensor, and DNA strand-break repair potential are preserved in mouse SMA myocytes; thus, reduced SMN does not interfere with myocyte differentiation, genome integrity, and DNA repair, and faulty DNA repair is unlikely pathogenic in SMA.

  12. Fasudil improves survival and promotes skeletal muscle development in a mouse model of spinal muscular atrophy

    OpenAIRE

    Bowerman Melissa; Murray Lyndsay M; Boyer Justin G; Anderson Carrie L; Kothary Rashmi

    2012-01-01

    Abstract Background Spinal muscular atrophy (SMA) is the leading genetic cause of infant death. It is caused by mutations/deletions of the survival motor neuron 1 (SMN1) gene and is typified by the loss of spinal cord motor neurons, muscular atrophy, and in severe cases, death. The SMN protein is ubiquitously expressed and various cellular- and tissue-specific functions have been investigated to explain the specific motor neuron loss in SMA. We have previously shown that the RhoA/Rho kinase (...

  13. Nucleus retroambiguus-spinal pathway in the mouse : Localization, gender differences, and effects of estrogen treatment

    NARCIS (Netherlands)

    VanderHorst, VGJM

    2005-01-01

    Nucleus retroambiguus (NRA)-motoneuronal projections are species-specific and serve expiration, Valsalva maneuvers, vocalization, and sexual behavior. In cat and monkey, estrogen induces sprouting of NRA-spinal axons. This pathway may thus serve as a model to study mechanisms through which estrogen

  14. Parcellation of cerebellins 1, 2, and 4 among different subpopulations of dorsal horn neurons in mouse spinal cord.

    Science.gov (United States)

    Cagle, Michael C; Honig, Marcia G

    2014-02-01

    The cerebellins (Cblns) are a family of secreted proteins that are widely expressed throughout the nervous system, but whose functions have been studied only in the cerebellum and striatum. Two members of the family, Cbln1 and Cbln2, bind to neurexins on presynaptic terminals and to GluRδs postsynaptically, forming trans-synaptic triads that promote synapse formation. Cbln1 has a higher binding affinity for GluRδs and exhibits greater synaptogenic activity than Cbln2. In contrast, Cbln4 does not form such triads and its function is unknown. The different properties of the three Cblns suggest that each plays a distinct role in synapse formation. To begin to elucidate Cbln function in other neuronal systems, we used in situ hybridization to examine Cbln expression in the mouse spinal cord. We find that neurons expressing Cblns 1, 2, and 4 tend to occupy different laminar positions within the dorsal spinal cord, and that Cbln expression is limited almost exclusively to excitatory neurons. Combined in situ hybridization and immunofluorescent staining shows that Cblns 1, 2, and 4 are expressed by largely distinct neuronal subpopulations, defined in part by sensory input, although there is some overlap and some individual neurons coexpress two Cblns. Our results suggest that differences in connectivity between subpopulations of dorsal spinal cord neurons may be influenced by which Cbln each subpopulation contains. Competitive interactions between axon terminals may determine the number of synapses each forms in any given region, and thereby contribute to the development of precise patterns of connectivity in the dorsal gray matter.

  15. Longitudinal evaluation of mouse hind limb bone loss after spinal cord injury using novel, in vivo, methodology.

    Science.gov (United States)

    McManus, Madonna M; Grill, Raymond J

    2011-12-07

    Spinal cord injury (SCI) is often accompanied by osteoporosis in the sublesional regions of the pelvis and lower extremities, leading to a higher frequency of fractures. As these fractures often occur in regions that have lost normal sensory function, the patient is at a greater risk of fracture-dependent pathologies, including death. SCI-dependent loss in both bone mineral density (BMD, grams/cm2) and bone mineral content (BMC, grams) has been attributed to mechanical disuse, aberrant neuronal signaling and hormonal changes. The use of rodent models of SCI-induced osteoporosis can provide invaluable information regarding the mechanisms underlying the development of osteoporosis following SCI as well as a test environment for the generation of new therapies. Mouse models of SCI are of great interest as they permit a reductionist approach to mechanism-based assessment through the use of null and transgenic mice. While such models have provided important data, there is still a need for minimally-invasive, reliable, reproducible, and quantifiable methods in determining the extent of bone loss following SCI, particularly over time and within the same cohort of experimental animals, to improve diagnosis, treatment methods, and/or prevention of SCI-induced osteoporosis. An ideal method for measuring bone density in rodents would allow multiple, sequential (over time) exposures to low-levels of X-ray radiation. This study describes the use of a new whole-animal scanner, the IVIS Lumina XR (Caliper Instruments) that can be used to provide low-energy (1-3 milligray (mGy)) high-resolution, high-magnification X-ray images of mouse hind limb bones over time following SCI. Significant bone density loss was seen in the tibiae of mice by 10 days post-spinal transection when compared to uninjured, age-matched control (naïve) mice (13% decrease, p analysis on mouse femurs post-mortem 30 days post-SCI (9). Our results suggest that the IVIS Lumina XR provides a novel, high

  16. IPLEX administration improves motor neuron survival and ameliorates motor functions in a severe mouse model of spinal muscular atrophy.

    Science.gov (United States)

    Murdocca, Michela; Malgieri, Arianna; Luchetti, Andrea; Saieva, Luciano; Dobrowolny, Gabriella; de Leonibus, Elvira; Filareto, Antonio; Quitadamo, Maria Chiara; Novelli, Giuseppe; Musarò, Antonio; Sangiuolo, Federica

    2012-09-25

    Spinal muscular atrophy (SMA) is an inherited neurodegenerative disorder and the first genetic cause of death in childhood. SMA is caused by low levels of survival motor neuron (SMN) protein that induce selective loss of α-motor neurons (MNs) in the spinal cord, resulting in progressive muscle atrophy and consequent respiratory failure. To date, no effective treatment is available to counteract the course of the disease. Among the different therapeutic strategies with potential clinical applications, the evaluation of trophic and/or protective agents able to antagonize MNs degeneration represents an attractive opportunity to develop valid therapies. Here we investigated the effects of IPLEX (recombinant human insulinlike growth factor 1 [rhIGF-1] complexed with recombinant human IGF-1 binding protein 3 [rhIGFBP-3]) on a severe mouse model of SMA. Interestingly, molecular and biochemical analyses of IGF-1 carried out in SMA mice before drug administration revealed marked reductions of IGF-1 circulating levels and hepatic mRNA expression. In this study, we found that perinatal administration of IPLEX, even if does not influence survival and body weight of mice, results in reduced degeneration of MNs, increased muscle fiber size and in amelioration of motor functions in SMA mice. Additionally, we show that phenotypic changes observed are not SMN-dependent, since no significant SMN modification was addressed in treated mice. Collectively, our data indicate IPLEX as a good therapeutic candidate to hinder the progression of the neurodegenerative process in SMA.

  17. Microarray analysis of gene expression by skeletal muscle of three mouse models of Kennedy disease/spinal bulbar muscular atrophy.

    Directory of Open Access Journals (Sweden)

    Kaiguo Mo

    Full Text Available BACKGROUND: Emerging evidence implicates altered gene expression within skeletal muscle in the pathogenesis of Kennedy disease/spinal bulbar muscular atrophy (KD/SBMA. We therefore broadly characterized gene expression in skeletal muscle of three independently generated mouse models of this disease. The mouse models included a polyglutamine expanded (polyQ AR knock-in model (AR113Q, a polyQ AR transgenic model (AR97Q, and a transgenic mouse that overexpresses wild type AR solely in skeletal muscle (HSA-AR. HSA-AR mice were included because they substantially reproduce the KD/SBMA phenotype despite the absence of polyQ AR. METHODOLOGY/PRINCIPAL FINDINGS: We performed microarray analysis of lower hindlimb muscles taken from these three models relative to wild type controls using high density oligonucleotide arrays. All microarray comparisons were made with at least 3 animals in each condition, and only those genes having at least 2-fold difference and whose coefficient of variance was less than 100% were considered to be differentially expressed. When considered globally, there was a similar overlap in gene changes between the 3 models: 19% between HSA-AR and AR97Q, 21% between AR97Q and AR113Q, and 17% between HSA-AR and AR113Q, with 8% shared by all models. Several patterns of gene expression relevant to the disease process were observed. Notably, patterns of gene expression typical of loss of AR function were observed in all three models, as were alterations in genes involved in cell adhesion, energy balance, muscle atrophy and myogenesis. We additionally measured changes similar to those observed in skeletal muscle of a mouse model of Huntington's Disease, and to those common to muscle atrophy from diverse causes. CONCLUSIONS/SIGNIFICANCE: By comparing patterns of gene expression in three independent models of KD/SBMA, we have been able to identify candidate genes that might mediate the core myogenic features of KD/SBMA.

  18. Fictive locomotion in the adult decerebrate and spinal mouse in vivo

    DEFF Research Database (Denmark)

    Meehan, Claire Francesca; Grøndahl, Lillian; Nielsen, Jens Bo;

    2012-01-01

    Recently, transgenic mice have been created with mutations affecting the components of the mammalian spinal central pattern generator (CPG) for locomotion, however, it has currently only been possible to evoke fictive locomotion in mice, using neonatal in vitro preparations. Here, we demonstrate ...... organisation and allowing for future results in transgenic mice to be extrapolated to existing knowledge of CPG components and circuitry obtained in larger species....

  19. Fisetin exerts antihyperalgesic effect in a mouse model of neuropathic pain: engagement of spinal serotonergic system.

    Science.gov (United States)

    Zhao, Xin; Wang, Chuang; Cui, Wu-Geng; Ma, Qing; Zhou, Wen-Hua

    2015-03-12

    Fisetin, a natural flavonoid, has been shown in our previous studies to exert antidepressant-like effect. As antidepressant drugs are clinically used to treat chronic neuropathic pain, this work aimed to investigate the potential antinociceptive efficacies of fisetin against neuropathic pain and explore mechanism(s). We subjected mice to chronic constriction injury (CCI) by loosely ligating the sciatic nerves, and Hargreaves test or von Frey test was used to assess thermal hyperalgesia or mechanical allodynia, respectively. Chronic fisetin treatment (5, 15 or 45 mg/kg, p.o.) ameliorated thermal hyperalgesia (but not mechanical allodynia) in CCI mice, concomitant with escalated levels of spinal monoamines and suppressed monoamine oxidase (MAO)-A activity. The antihyperalgesic action of fisetin was abolished by chemical depletion of spinal serotonin (5-HT) but potentiated by co-treatment with 5-HTP, a precursor of 5-HT. Moreover, intraperitoneal (i.p.) or intrathecal (i.t.) co-treatment with 5-HT7 receptor antagonist SB-258719 completely abrogated fisetin's antihyperalgesia. These findings confirm that chronic fisetin treatment exerts antinociceptive effect on thermal hyperalgesia in neuropathic mice, with spinal serotonergic system (coupled with 5-HT7) being critically involved. Of special benefit, fisetin attenuated co-morbidly behavioral symptoms of depression and anxiety (evaluated in forced swim test, novelty suppressed feeding test and light-dark test) evoked by neuropathic pain.

  20. Expression patterns of Slit and Robo family members in adult mouse spinal cord and peripheral nervous system.

    Science.gov (United States)

    Carr, Lauren; Parkinson, David B; Dun, Xin-Peng

    2017-01-01

    The secreted glycoproteins, Slit1-3, are classic axon guidance molecules that act as repulsive cues through their well characterised receptors Robo1-2 to allow precise axon pathfinding and neuronal migration. The expression patterns of Slit1-3 and Robo1-2 have been most characterized in the rodent developing nervous system and the adult brain, but little is known about their expression patterns in the adult rodent peripheral nervous system. Here, we report a detailed expression analysis of Slit1-3 and Robo1-2 in the adult mouse sciatic nerve as well as their expression in the nerve cell bodies within the ventral spinal cord (motor neurons) and dorsal root ganglion (sensory neurons). Our results show that, in the adult mouse peripheral nervous system, Slit1-3 and Robo1-2 are expressed in the cell bodies and axons of both motor and sensory neurons. While Slit1 and Robo2 are only expressed in peripheral axons and their cell bodies, Slit2, Slit3 and Robo1 are also expressed in satellite cells of the dorsal root ganglion, Schwann cells and fibroblasts of peripheral nerves. In addition to these expression patterns, we also demonstrate the expression of Robo1 in blood vessels of the peripheral nerves. Our work gives important new data on the expression patterns of Slit and Robo family members within the peripheral nervous system that may relate both to nerve homeostasis and the reaction of the peripheral nerves to injury.

  1. The role of cerebral spinal fluid in light propagation through the mouse head: improving fluorescence tomography with Monte Carlo modeling

    Science.gov (United States)

    Ancora, Daniele; Zacharopoulos, Athanasios; Ripoll, Jorge; Zacharakis, Giannis

    2016-03-01

    Optical Neuroimaging is a highly dynamical field of research owing to the combination of many advanced imaging techniques and computational tools that uncovered unexplored paths through the functioning of the brain. Light propagation modelling through such complicated structures has always played a crucial role as the basis for a high resolution and quantitative imaging where even the slightest improvement could lead to significant results. Fluorescence Diffuse Optical Tomography (fDOT), a widely used technique for three dimensional imaging of small animals and tissues, has been proved to be inaccurate for neuroimaging the mouse head without the knowledge of a-priori anatomical information of the subject. Commonly a normalized Born approximation model is used in fDOT reconstruction based on forward photon propagation using Diffusive Equation (DE) which has strong limitations in the optically clear regime. The presence of the Cerebral Spinal Fluid (CSF) instead, a thin optically clear layer surrounding the brain, can be more accurately taken into account using Monte Carlo approaches which nowadays is becoming more usable thanks to parallelized GPU algorithms. In this work we discuss the results of a synthetic experimental comparison, resulting to the increase of the accuracy for the Born approximation by introducing the CSF layer in a realistic mouse head structure with respect to the current model. We point out the importance of such clear layer for complex geometrical models, while for simple slab phantoms neglecting it does not introduce a significant error.

  2. Overcoming the Practical Barriers to Spinal Cord Cell Transplantation for ALS

    Science.gov (United States)

    2012-10-01

    proliferation marker bromodeoxyuridine (brdU; green) in vitro following 60 days in culture. Cell nuclei are counterstained with ethidium bromide (red) (B-G... remove virally inserted DNA after reprogramming. We attempted this with adult Yucatan minipig fibroblasts and keratinocytes. Amaxa Dermal Fibroblast...vertebrae overlying C3-C5 or L2-L4 segments are removed using rongeurs and a surgical drill. 5. Placement of the Spinal Derrick We call Spinal Derrick

  3. Vitamin B₁₂ dependent changes in mouse spinal cord expression of vitamin B₁₂ related proteins and the epidermal growth factor system.

    Science.gov (United States)

    Mutti, Elena; Lildballe, Dorte L; Kristensen, Lise; Birn, Henrik; Nexo, Ebba

    2013-03-29

    Chronic vitamin B12 (cobalamin) deficiency in the mammalian central nervous system causes degenerative damage, especially in the spinal cord. Previous studies have shown that cobalamin status alters spinal cord expression of epidermal growth factor (EGF) and its receptor in rats. Employing a mouse model of cobalamin-depletion and loading, we have explored the influence of Cbl status on spinal cord expression of cobalamin related proteins, as well as all four known EGF receptors and their activating ligands. Following four weeks of osmotic minipump infusion (n=7 in each group) with cobinamide (4.25nmol/h), saline or cobalamin (1.75nmol/h) the spinal cords were analyzed for cobalamin and for the mRNA levels of cobalamin related proteins and members of the EGF system using quantitative reverse transcription PCR. The median spinal cord cobalamin content was 17, 32, and 52pmol/gr of tissues in cobinamide, saline, and cobalamin treated animals, respectively. Both cobinamide and cobalamin induced a significant decrease in the expression of the lysosomal membrane cobalamin transporter. All four EGF receptors and their activating ligands, except for EGF, were expressed in the spinal cord. Notably, the expression of one of the EGF receptors, HER3, and the ligands heparin-binding EGF-like growth factor, transforming growth factor-α, and neuregulins 1α was increased in cobalamin treated mice. Our studies show that four weeks treatment of mice with cobinamide induces spinal cord cobalamin depletion and that cobalamin loading induces an altered expression pattern of the EGF system thus confirming a spinal cord cross talk between Cbl and the EGF system.

  4. Recovery of function in a myogenic mouse model of spinal bulbar muscular atrophy

    OpenAIRE

    Johansen, Jamie A.; Yu, Zhigang; Mo, Kaiguo; Monks, D. Ashley; Lieberman, Andrew P.; Breedlove, S. Marc; Jordan, Cynthia L.

    2008-01-01

    With this paper, we deliberately challenge the prevailing neurocentric theory of the etiology of spinal bulbar muscular atrophy (SBMA). We offer data supporting an alternative view that androgen receptor (AR) acts in skeletal muscles to cause the symptoms of SBMA. While SBMA has been linked to a CAG repeat expansion in the AR gene and mutant AR is presumed to act in motoneurons to cause SBMA, we find that over-expression of wild type AR solely in skeletal muscle fibers results in the same and...

  5. Persistent at-level thermal hyperalgesia and tactile allodynia accompany chronic neuronal and astrocyte activation in superficial dorsal horn following mouse cervical contusion spinal cord injury.

    Science.gov (United States)

    Watson, Jaime L; Hala, Tamara J; Putatunda, Rajarshi; Sannie, Daniel; Lepore, Angelo C

    2014-01-01

    In humans, sensory abnormalities, including neuropathic pain, often result from traumatic spinal cord injury (SCI). SCI can induce cellular changes in the CNS, termed central sensitization, that alter excitability of spinal cord neurons, including those in the dorsal horn involved in pain transmission. Persistently elevated levels of neuronal activity, glial activation, and glutamatergic transmission are thought to contribute to the hyperexcitability of these dorsal horn neurons, which can lead to maladaptive circuitry, aberrant pain processing and, ultimately, chronic neuropathic pain. Here we present a mouse model of SCI-induced neuropathic pain that exhibits a persistent pain phenotype accompanied by chronic neuronal hyperexcitability and glial activation in the spinal cord dorsal horn. We generated a unilateral cervical contusion injury at the C5 or C6 level of the adult mouse spinal cord. Following injury, an increase in the number of neurons expressing ΔFosB (a marker of chronic neuronal activation), persistent astrocyte activation and proliferation (as measured by GFAP and Ki67 expression), and a decrease in the expression of the astrocyte glutamate transporter GLT1 are observed in the ipsilateral superficial dorsal horn of cervical spinal cord. These changes have previously been associated with neuronal hyperexcitability and may contribute to altered pain transmission and chronic neuropathic pain. In our model, they are accompanied by robust at-level hyperaglesia in the ipsilateral forepaw and allodynia in both forepaws that are evident within two weeks following injury and persist for at least six weeks. Furthermore, the pain phenotype occurs in the absence of alterations in forelimb grip strength, suggesting that it represents sensory and not motor abnormalities. Given the importance of transgenic mouse technology, this clinically-relevant model provides a resource that can be used to study the molecular mechanisms contributing to neuropathic pain

  6. Pharmacokinetics, pharmacodynamics, and efficacy of a small-molecule SMN2 splicing modifier in mouse models of spinal muscular atrophy

    Science.gov (United States)

    Zhao, Xin; Feng, Zhihua; Ling, Karen K. Y.; Mollin, Anna; Sheedy, Josephine; Yeh, Shirley; Petruska, Janet; Narasimhan, Jana; Dakka, Amal; Welch, Ellen M.; Karp, Gary; Chen, Karen S.; Metzger, Friedrich; Ratni, Hasane; Lotti, Francesco; Tisdale, Sarah; Naryshkin, Nikolai A.; Pellizzoni, Livio; Paushkin, Sergey; Ko, Chien-Ping; Weetall, Marla

    2016-01-01

    Spinal muscular atrophy (SMA) is caused by the loss or mutation of both copies of the survival motor neuron 1 (SMN1) gene. The related SMN2 gene is retained, but due to alternative splicing of exon 7, produces insufficient levels of the SMN protein. Here, we systematically characterize the pharmacokinetic and pharmacodynamics properties of the SMN splicing modifier SMN-C1. SMN-C1 is a low-molecular weight compound that promotes the inclusion of exon 7 and increases production of SMN protein in human cells and in two transgenic mouse models of SMA. Furthermore, increases in SMN protein levels in peripheral blood mononuclear cells and skin correlate with those in the central nervous system (CNS), indicating that a change of these levels in blood or skin can be used as a non-invasive surrogate to monitor increases of SMN protein levels in the CNS. Consistent with restored SMN function, SMN-C1 treatment increases the levels of spliceosomal and U7 small-nuclear RNAs and corrects RNA processing defects induced by SMN deficiency in the spinal cord of SMNΔ7 SMA mice. A 100% or greater increase in SMN protein in the CNS of SMNΔ7 SMA mice robustly improves the phenotype. Importantly, a ∼50% increase in SMN leads to long-term survival, but the SMA phenotype is only partially corrected, indicating that certain SMA disease manifestations may respond to treatment at lower doses. Overall, we provide important insights for the translation of pre-clinical data to the clinic and further therapeutic development of this series of molecules for SMA treatment. PMID:26931466

  7. A dystonia-like movement disorder with brain and spinal neuronal defects is caused by mutation of the mouse laminin β1 subunit, Lamb1.

    Science.gov (United States)

    Liu, Yi Bessie; Tewari, Ambika; Salameh, Johnny; Arystarkhova, Elena; Hampton, Thomas G; Brashear, Allison; Ozelius, Laurie J; Khodakhah, Kamran; Sweadner, Kathleen J

    2015-12-24

    A new mutant mouse (lamb1t) exhibits intermittent dystonic hindlimb movements and postures when awake, and hyperextension when asleep. Experiments showed co-contraction of opposing muscle groups, and indicated that symptoms depended on the interaction of brain and spinal cord. SNP mapping and exome sequencing identified the dominant causative mutation in the Lamb1 gene. Laminins are extracellular matrix proteins, widely expressed but also known to be important in synapse structure and plasticity. In accordance, awake recording in the cerebellum detected abnormal output from a circuit of two Lamb1-expressing neurons, Purkinje cells and their deep cerebellar nucleus targets, during abnormal postures. We propose that dystonia-like symptoms result from lapses in descending inhibition, exposing excess activity in intrinsic spinal circuits that coordinate muscles. The mouse is a new model for testing how dysfunction in the CNS causes specific abnormal movements and postures.

  8. Characterization of Neurofibromas of the Skin and Spinal Roots in a Mouse Model

    Science.gov (United States)

    2011-02-01

    I and J) surrounding fat cells ([I], blue arrows), sebaceous glands ([I], arrows), and hair follicles ([I], arrowheads). Dermal tumors stained more in...respectively target an Nf1 mutation into neural crest stem cells (NCSCs) and more differentiated Schwann cells in mouse sciatic nerves. As shown in Figure...lay the foundation to design novel therapies for neurofibroma prevention and to target neurofibromas at early stages of development. 5 Task 2

  9. A single administration of morpholino antisense oligomer rescues spinal muscular atrophy in mouse.

    Science.gov (United States)

    Porensky, Paul N; Mitrpant, Chalermchai; McGovern, Vicki L; Bevan, Adam K; Foust, Kevin D; Kaspar, Brain K; Wilton, Stephen D; Burghes, Arthur H M

    2012-04-01

    Spinal muscular atrophy (SMA) is an autosomal-recessive disorder characterized by α-motor neuron loss in the spinal cord anterior horn. SMA results from deletion or mutation of the Survival Motor Neuron 1 gene (SMN1) and retention of SMN2. A single nucleotide difference between SMN1 and SMN2 results in exclusion of exon 7 from the majority of SMN2 transcripts, leading to decreased SMN protein levels and development of SMA. A series of splice enhancers and silencers regulate incorporation of SMN2 exon 7; these splice motifs can be blocked with antisense oligomers (ASOs) to alter SMN2 transcript splicing. We have evaluated a morpholino (MO) oligomer against ISS-N1 [HSMN2Ex7D(-10,-29)], and delivered this MO to postnatal day 0 (P0) SMA pups (Smn-/-, SMN2+/+, SMNΔ7+/+) by intracerebroventricular (ICV) injection. Survival was increased markedly from 15 days to >100 days. Delayed CNS MO injection has moderate efficacy, and delayed peripheral injection has mild survival advantage, suggesting that early CNS ASO administration is essential for SMA therapy consideration. ICV treatment increased full-length SMN2 transcript as well as SMN protein in neural tissue, but only minimally in peripheral tissue. Interval analysis shows a decrease in alternative splice modification over time. We suggest that CNS increases of SMN will have a major impact on SMA, and an early increase of the SMN level results in correction of motor phenotypes. Finally, the early introduction by intrathecal delivery of MO oligomers is a potential treatment for SMA patients.

  10. Spinal Cord Ventral Horns and Lymphoid Organ Involvement in Powassan Virus Infection in a Mouse Model

    Directory of Open Access Journals (Sweden)

    Rodrigo I. Santos

    2016-08-01

    Full Text Available Powassan virus (POWV belongs to the family Flaviviridae and is a member of the tick-borne encephalitis serogroup. Transmission of POWV from infected ticks to humans has been documented in the USA, Canada, and Russia, causing fatal encephalitis in 10% of human cases and significant neurological sequelae in survivors. We used C57BL/6 mice to investigate POWV infection and pathogenesis. After footpad inoculation, infected animals exhibited rapid disease progression and 100% mortality. Immunohistochemistry and immunofluorescence revealed a very strong neuronal tropism of POWV infection. The central nervous system infection appeared as a meningoencephalitis with perivascular mononuclear infiltration and microglial activation in the brain, and a poliomyelitis-like syndrome with high level of POWV antigen at the ventral horn of the spinal cord. Pathological studies also revealed substantial infection of splenic macrophages by POWV, which suggests that the spleen plays a more important role in pathogenesis than previously realized. This report provides a detailed description of the neuroanatomical distribution of the lesions produced by POWV infection in C57BL/6 mice.

  11. Plastin-3 extends survival and reduces severity in mouse models of spinal muscular atrophy

    Science.gov (United States)

    Kaifer, Kevin A.; Osman, Erkan Y.; Glascock, Jacqueline J.; Arnold, Laura L.; Cornelison, D.D.W.; Lorson, Christian L.

    2017-01-01

    Spinal muscular atrophy (SMA) is a leading genetic cause of infantile death and is caused by the loss of survival motor neuron-1 (SMN1). Importantly, a nearly identical gene is present called SMN2; however, the majority of SMN2-derived transcripts are alternatively spliced and encode a truncated, dysfunctional protein. Recently, several compounds designed to increase SMN protein have entered clinical trials, including antisense oligonucleotides (ASOs), traditional small molecules, and gene therapy. Expanding beyond SMN-centric therapeutics is important, as it is likely that the breadth of the patient spectrum and the inherent complexity of the disease will be difficult to address with a single therapeutic strategy. Several SMN-independent pathways that could impinge upon the SMA phenotype have been examined with varied success. To identify disease-modifying pathways that could serve as stand-alone therapeutic targets or could be used in combination with an SMN-inducing compound, we investigated adeno-associated virus–mediated (AAV-mediated) gene therapy using plastin-3 (PLS3). Here, we report that AAV9-PLS3 extends survival in an intermediate model of SMA mice as well as in a pharmacologically induced model of SMA using a splice-switching ASO that increases SMN production. PLS3 coadministration improves the phenotype beyond the ASO, demonstrating the potential utility of combinatorial therapeutics in SMA that target SMN-independent and SMN-dependent pathways. PMID:28289706

  12. Effects of ethanol on glycinergic synaptic currents in mouse spinal cord neurons

    Science.gov (United States)

    Mariqueo, Trinidad A.; Agurto, Adolfo; Muñoz, Braulio; San Martin, Loreto; Coronado, Cesar; Fernández-Pérez, Eduardo J.; Murath, Pablo; Sánchez, Andrea; Homanics, Gregg E.

    2014-01-01

    Ethanol increased the frequency of miniature glycinergic currents [miniature inhibitory postsynaptic currents (mIPSCs)] in cultured spinal neurons. This effect was dependent on intracellular calcium augmentation, since preincubation with BAPTA (an intracellular calcium chelator) or thapsigargin [a sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) pump inhibitor] significantly attenuated this effect. Similarly, U73122 (a phospholipase C inhibitor) or 2-aminoethoxydiphenyl borate [2-APB, an inositol 1,4,5-trisphosphate (IP3) receptor (IP3R) inhibitor] reduced this effect. Block of ethanol action was also achieved after preincubation with Rp-cAMPS, inhibitor of the adenylate cyclase (AC)/PKA signaling pathway. These data suggest that there is a convergence at the level of IP3R that accounts for presynaptic ethanol effects. At the postsynaptic level, ethanol increased the decay time constant of mIPSCs in a group of neurons (30 ± 10% above control, n = 13/26 cells). On the other hand, the currents activated by exogenously applied glycine were consistently potentiated (55 ± 10% above control, n = 11/12 cells), which suggests that ethanol modulates synaptic and nonsynaptic glycine receptors (GlyRs) in a different fashion. Supporting the role of G protein modulation on ethanol responses, we found that a nonhydrolyzable GTP analog [guanosine 5′-O-(3-thiotriphosphate) (GTPγS)] increased the decay time constant in ∼50% of the neurons (28 ± 12%, n = 11/19 cells) but potentiated the glycine-activated Cl− current in most of the neurons examined (83 ± 29%, n = 7/9 cells). In addition, confocal microscopy showed that α1-containing GlyRs colocalized with Gβ and Piccolo (a presynaptic cytomatrix protein) in ∼40% of synaptic receptor clusters, suggesting that colocalization of Gβγ and GlyRs might account for the difference in ethanol sensitivity at the postsynaptic level. PMID:24572089

  13. Thermomineral water promotes axonal sprouting but does not reduce glial scar formation in a mouse model of spinal cord injur y

    Institute of Scientific and Technical Information of China (English)

    Dubravka Aleksi; Milan Aksi; Nevena Divac; Vidosava Radonji; Branislav Filipovi; Igor Jakovevski

    2014-01-01

    Thermomineral water from the Atomic Spa Gornja Trepča has been used for a century in the treatment of neurologic disease. The thermomineral water contains microelements, including lithium and magnesium, which show neural regeneration-promoting effects after central nervous system injury. In this study, we investigated the effects of oral intake of thermomineral water from the Atomic Spa Gornja Trepča on nerve regeneration in a 3-month-old mouse model of spinal cord injury. The mice receiving oral intake of thermomineral water showed better locomo-tor recovery than those without administration of thermomineral water at 8 and 12 weeks after lower thoracic spinal cord compression. At 12 weeks after injury, sprouting of catecholaminergic axons was better in mice that drank thermomineral water than in those without administration of thermomineral water, but there was no difference in glial reaction to injury between mice with and without administration of thermomineral water. These ifndings suggest that thermomineral water can promote the nerve regeneration but cannot reduce glial scar formation in a mouse model of spinal cord injury.

  14. Evidence for a role of srGAP3 in the positioning of commissural axons within the ventrolateral funiculus of the mouse spinal cord.

    Directory of Open Access Journals (Sweden)

    Claire Bacon

    Full Text Available Slit-Robo signaling guides commissural axons away from the floor-plate of the spinal cord and into the longitudinal axis after crossing the midline. In this study we have evaluated the role of the Slit-Robo GTPase activating protein 3 (srGAP3 in commissural axon guidance using a knockout (KO mouse model. Co-immunoprecipitation experiments confirmed that srGAP3 interacts with the Slit receptors Robo1 and Robo2 and immunohistochemistry studies showed that srGAP3 co-localises with Robo1 in the ventral and lateral funiculus and with Robo2 in the lateral funiculus. Stalling axons have been reported in the floor-plate of Slit and Robo mutant spinal cords but our axon tracing experiments revealed no dorsal commissural axon stalling in the floor plate of the srGAP3 KO mouse. Interestingly we observed a significant thickening of the ventral funiculus and a thinning of the lateral funiculus in the srGAP3 KO spinal cord, which has also recently been reported in the Robo2 KO. However, axons in the enlarged ventral funiculus of the srGAP3 KO are Robo1 positive but do not express Robo2, indicating that the thickening of the ventral funiculus in the srGAP3 KO is not a Robo2 mediated effect. We suggest a role for srGAP3 in the lateral positioning of post crossing axons within the ventrolateral funiculus.

  15. Reduced GABAergic inhibition explains cortical hyperexcitability in the wobbler mouse model of ALS

    DEFF Research Database (Denmark)

    Nieto-Gonzalez, Jose Luis; Moser, Jakob; Lauritzen, Martin;

    2011-01-01

    underlie this dysfunction. Here, we studied the GABAergic system in cortex using patch-clamp recordings in the wobbler mouse, a model of ALS. In layer 5 pyramidal neurons of motor cortex, the frequency of GABA(A) receptor-mediated spontaneous inhibitory postsynaptic currents was reduced by 72% in wobbler......Amyotrophic lateral sclerosis (ALS) is a progressive degenerative disease of the central nervous system. Symptomatic and presymptomatic ALS patients demonstrate cortical hyperexcitability, which raises the possibility that alterations in inhibitory gamma-aminobutyric acid (GABA)ergic system could...... interneurons and reduced vesicular GABA transporter immunoreactivity in the neuropil. Finally, we observed an increased input resistance and excitability of wobbler excitatory neurons, which could be explained by lack of GABA(A) receptor-mediated influences. In conclusion, we demonstrate decreases in GABAergic...

  16. Changes of gene expression profiles in the cervical spinal cord by acupuncture in an MPTP-intoxicated mouse model: microarray analysis.

    Science.gov (United States)

    Choi, Yeong-Gon; Yeo, Sujung; Hong, Yeon-Mi; Kim, Sung-Hoon; Lim, Sabina

    2011-07-15

    It has been shown that acupuncture at acupoints GB34 and LR3 inhibits the degeneration of nigrostriatal neurons in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson's disease. The degeneration of spinal cord was reported to be induced in the MPTP-treated pre-symptomatic mouse. In this study, the gene expression profile changes following acupuncture at the acupoints were investigated in the cervical spinal cord of an MPTP-induced parkinsonism model using a whole transcript array (Affymetrix GeneChip mouse gene 1.0 ST array). It was shown that 8 of the probes up-regulated in MPTP, as compared to the control, were down-regulated after acupuncture at the acupoints. Of these 8 probes, 6 probes (4 annotated genes in 6 probes: Ctla2a, EG383229, Ppbp and Ube2l6) were exclusively down-regulated by acupuncture at the specific acupoints except for 2 probes as these 2 probes were commonly down-regulated by acupuncture at both the acupoints and the non-acupoints. In addition, 11 of the probes down-regulated in MPTP, as compared to the control, were up-regulated by acupuncture at the acupoints. Of these 11 probes, 10 probes (5 annotated genes in 10 probes: EG665033, ENSMUSG00000055323, Obox6, Pbp2 and Tmem150) were exclusively up-regulated by acupuncture at the specific acupoints except for the Fut11 because the Fut11 was commonly up-regulated by acupuncture at both the acupoints and the non-acupoints. The expression levels of the representative genes in the microarray were validated by real-time RT-PCR. These data suggest that the expression of these exclusively regulated 16 probes (9 genes) may be, at least in part, affected by acupuncture at the acupoints in the cervical spinal cord which can be damaged by MPTP intoxication.

  17. Involvement of TRPM2 in peripheral nerve injury-induced infiltration of peripheral immune cells into the spinal cord in mouse neuropathic pain model.

    Directory of Open Access Journals (Sweden)

    Kouichi Isami

    Full Text Available Recent evidence suggests that transient receptor potential melastatin 2 (TRPM2 expressed in immune cells plays an important role in immune and inflammatory responses. We recently reported that TRPM2 expressed in macrophages and spinal microglia contributes to the pathogenesis of inflammatory and neuropathic pain aggravating peripheral and central pronociceptive inflammatory responses in mice. To further elucidate the contribution of TRPM2 expressed by peripheral immune cells to neuropathic pain, we examined the development of peripheral nerve injury-induced neuropathic pain and the infiltration of immune cells (particularly macrophages into the injured nerve and spinal cord by using bone marrow (BM chimeric mice by crossing wildtype (WT and TRPM2-knockout (TRPM2-KO mice. Four types of BM chimeric mice were prepared, in which irradiated WT or TRPM2-KO recipient mice were transplanted with either WT-or TRPM2-KO donor mouse-derived green fluorescence protein-positive (GFP(+ BM cells (TRPM2(BM+/Rec+, TRPM2(BM-/Rec+, TRPM2(BM+/Rec-, and TRPM2(BM-/Rec- mice. Mechanical allodynia induced by partial sciatic nerve ligation observed in TRPM2(BM+/Rec+ mice was attenuated in TRPM2(BM-/Rec+, TRPM2(BM+/Rec-, and TRPM2(BM-/Rec- mice. The numbers of GFP(+ BM-derived cells and Iba1/GFP double-positive macrophages in the injured sciatic nerve did not differ among chimeric mice 14 days after the nerve injury. In the spinal cord, the number of GFP(+ BM-derived cells, particularly GFP/Iba1 double-positive macrophages, was significantly decreased in the three TRPM2-KO chimeric mouse groups compared with TRPM2(BM+/Rec+ mice. However, the numbers of GFP(-/Iba1(+ resident microglia did not differ among chimeric mice. These results suggest that TRPM2 plays an important role in the infiltration of peripheral immune cells, particularly macrophages, into the spinal cord, rather than the infiltration of peripheral immune cells into the injured nerves and activation of spinal

  18. Motor cortex-periaqueductal gray-spinal cord neuronal circuitry may involve in modulation of nociception: a virally mediated transsynaptic tracing study in spinally transected transgenic mouse model.

    Directory of Open Access Journals (Sweden)

    Da-Wei Ye

    Full Text Available Several studies have shown that motor cortex stimulation provided pain relief by motor cortex plasticity and activating descending inhibitory pain control systems. Recent evidence indicated that the melanocortin-4 receptor (MC4R in the periaqueductal gray played an important role in neuropathic pain. This study was designed to assess whether MC4R signaling existed in motor cortex-periaqueductal gray-spinal cord neuronal circuitry modulated the activity of sympathetic pathway by a virally mediated transsynaptic tracing study. Pseudorabies virus (PRV-614 was injected into the left gastrocnemius muscle in adult male MC4R-green fluorescent protein (GFP transgenic mice (n = 15. After a survival time of 4-6 days, the mice (n = 5 were randomly assigned to humanely sacrifice, and spinal cords and brains were removed and sectioned, and processed for PRV-614 visualization. Neurons involved in the efferent control of the left gastrocnemius muscle were identified following visualization of PRV-614 retrograde tracing. The neurochemical phenotype of MC4R-GFP-positive neurons was identified using fluorescence immunocytochemical labeling. PRV-614/MC4R-GFP dual labeled neurons were detected in spinal IML, periaqueductal gray and motor cortex. Our findings support the hypothesis that MC4R signaling in motor cortex-periaqueductal gray-spinal cord neural pathway may participate in the modulation of the melanocortin-sympathetic signaling and contribute to the descending modulation of nociceptive transmission, suggesting that MC4R signaling in motor cortex-periaqueductal gray-spinal cord neural pathway may modulate the activity of sympathetic outflow sensitive to nociceptive signals.

  19. Activation of the Wnt/{beta}-catenin signaling pathway is associated with glial proliferation in the adult spinal cord of ALS transgenic mice

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yanchun [Department of Histology and Embryology, Weifang Medical University, Weifang, Shandong (China); Department of Histology and Embryology, Shandong University School of Medicine, Jinan, Shandong (China); Guan, Yingjun, E-mail: guanyj@wfmc.edu.cn [Department of Histology and Embryology, Weifang Medical University, Weifang, Shandong (China); Department of Histology and Embryology, Shandong University School of Medicine, Jinan, Shandong (China); Liu, Huancai [Department of Orthopedic, Affiliated Hospital, Weifang Medical University, Weifang, Shandong (China); Wu, Xin; Yu, Li; Wang, Shanshan; Zhao, Chunyan; Du, Hongmei [Department of Histology and Embryology, Weifang Medical University, Weifang, Shandong (China); Wang, Xin, E-mail: xwang@rics.bwh.harvard.edu [Department of Neurosurgery, Brigham and Women' s Hospital, Harvard Medical School, Boston, MA (United States)

    2012-04-06

    Highlights: Black-Right-Pointing-Pointer Wnt3a and Cyclin D1 were upregulated in the spinal cord of the ALS mice. Black-Right-Pointing-Pointer {beta}-catenin translocated from the cell membrane to the nucleus in the ALS mice. Black-Right-Pointing-Pointer Wnt3a, {beta}-catenin and Cyclin D1 co-localized for astrocytes were all increased. Black-Right-Pointing-Pointer BrdU/Cyclin D1 double-positive cells were increased in the spinal cord of ALS mice. Black-Right-Pointing-Pointer BrdU/Cyclin D1/GFAP triple-positive cells were detected in the ALS mice. -- Abstract: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the progressive and fatal loss of motor neurons. In ALS, there is a significant cell proliferation in response to neurodegeneration; however, the exact molecular mechanisms of cell proliferation and differentiation are unclear. The Wnt signaling pathway has been shown to be involved in neurodegenerative processes. Wnt3a, {beta}-catenin, and Cyclin D1 are three key signaling molecules of the Wnt/{beta}-catenin signaling pathway. We determined the expression of Wnt3a, {beta}-catenin, and Cyclin D1 in the adult spinal cord of SOD1{sup G93A} ALS transgenic mice at different stages by RT-PCR, Western blot, and immunofluorescence labeling techniques. We found that the mRNA and protein of Wnt3a and Cyclin D1 in the spinal cord of the ALS mice were upregulated compared to those in wild-type mice. In addition, {beta}-catenin translocated from the cell membrane to the nucleus and subsequently activated transcription of the target gene, Cyclin D1. BrdU and Cyclin D1 double-positive cells were increased in the spinal cord of these mice. Moreover, Wnt3a, {beta}-catenin, and Cyclin D1 were also expressed in both neurons and astrocytes. The expression of Wnt3a, {beta}-catenin or Cyclin D1 in mature GFAP{sup +} astrocytes increased. Moreover, BrdU/Cyclin D1/GFAP triple-positive cells were detected in the ALS mice. Our findings suggest that

  20. A Perturbed MicroRNA Expression Pattern Characterizes Embryonic Neural Stem Cells Derived from a Severe Mouse Model of Spinal Muscular Atrophy (SMA

    Directory of Open Access Journals (Sweden)

    Andrea Luchetti

    2015-08-01

    Full Text Available Spinal muscular atrophy (SMA is an inherited neuromuscular disorder and the leading genetic cause of death in infants. Despite the disease-causing gene, survival motor neuron (SMN1, encodes a ubiquitous protein, SMN1 deficiency preferentially affects spinal motor neurons (MNs, leaving the basis of this selective cell damage still unexplained. As neural stem cells (NSCs are multipotent self-renewing cells that can differentiate into neurons, they represent an in vitro model for elucidating the pathogenetic mechanism of neurodegenerative diseases such as SMA. Here we characterize for the first time neural stem cells (NSCs derived from embryonic spinal cords of a severe SMNΔ7 SMA mouse model. SMNΔ7 NSCs behave as their wild type (WT counterparts, when we consider neurosphere formation ability and the expression levels of specific regional and self-renewal markers. However, they show a perturbed cell cycle phase distribution and an increased proliferation rate compared to wild type cells. Moreover, SMNΔ7 NSCs are characterized by the differential expression of a limited number of miRNAs, among which miR-335-5p and miR-100-5p, reduced in SMNΔ7 NSCs compared to WT cells. We suggest that such miRNAs may be related to the proliferation differences characterizing SMNΔ7 NSCs, and may be potentially involved in the molecular mechanisms of SMA.

  1. Morphological and function al changes in the blood-spinal cord barrier of rabbits in an experimental spinal cord presyrinx state

    Institute of Scientific and Technical Information of China (English)

    Jianfeng Li; Haiying Liu; Qingjun Zhang

    2006-01-01

    BACKGROUND: Presyrinx state of spinal cord reflect the initial lesion of syringomyelia (SM).The early trals has proved that ischamia and edema are main pathological of presyrinx state. OBJECTIVE: To estabilsh SM model of rabbits for investigating the relationship between changes of morphous and function of blood-spinal cord barrier and the edema degree, histological changes in presyrinx state of SM,and to explore the mechanism of the presyrinx state of SM.DESIGN: Randomized controlled animal experiment.SETTING: Department of Neurosurgery,Fourth Hospital,Heibei Medical University.MATERIALS: Sixty Chinese healthy white rabbits,aged 3.5-4.5 months,weighing 1.5-2.0kg,were provided by Experimental Animal Center of Hehei Medical University[certification:(SYXK(Ji)2003-0026)].Evan's blue (EB)and dimethylformamide(DMF) were purchased from Jingmei Biotech Co.,Ltd RM2125 paraffin section cutter(Leica Company,Japan),H-7500 transmission electron microscope (Hitachi Company,Japan),PM-20 light microscope photograph system(Olympus Company,Japan).METHODS:The experiment was carried out in the Laboratory of Neurosurgery Department,Second Hospital of Hebei Medical University from January to June 2006.①All the rabbits were randomly divided into two groups:model group(n=40),control group(n=20).Rabbits in two groups were divided into five subgroups once again at five time points(1st , 3rd ,7th ,14th ,21st days,n=8 and n=4 at each time point in the model group and control group,respectively).Under ketamine anesthesia,0.6 mL Kaolin solution(250 g/L,37℃)was injected into the cisterna magna of rabbits in model group,while 0.6 mL physiological saline(37℃)was injected into the rabbits of control group.②On the 1st ,3rd ,7th ,14th , 21st days after kaolin injection,cervical cord samples were harvested after sacrifice of animal. Quantitative analysis on the function of blood-spinal cord barrier was performed by Evan's blue technique.Water content of spinal cord was measured by dry

  2. Effects of glutamine supplementation on muscle function and stress responses in a mouse model of spinal cord injury.

    Science.gov (United States)

    Chamney, Carissa; Godar, Michelle; Garrigan, Ethan; Huey, Kimberly A

    2013-03-01

    Spinal cord injury (SCI) results in loss of muscle function due to rapid breakdown of contractile proteins. Glutamine supplementation improves clinical outcomes, but its effects on muscle function after SCI are unknown. The benefits of glutamine in non-skeletal muscle tissues involve elevated heat shock protein (Hsp)70 and Hsp25, but the muscle response may differ because it is the largest contributor to plasma glutamine. We tested the hypothesis that glutamine preserves muscle function after SCI and that this is associated with increased heat shock protein and reduced inflammatory factors, interleukin-6 (IL-6) and tumour necrosis factor-α (TNFα). Changes in plantarflexor force, fatigability and total myofibrillar, Hsp70, Hsp25, IL-6 and TNFα muscle protein levels were measured 7 days after sham or spinal cord transection surgery in mice receiving daily placebo or glutamine. Compared with placebo, after SCI glutamine significantly attenuated the reductions in maximal isometric force (0.22 ± 0.01 versus 0.31 ± 0.03 N, respectively) and fatigue resistance (34 ± 4 versus 59 ± 4% of initial force, respectively). Glutamine significantly ameliorated the loss of myofibrillar protein with spinal cord transection. Spinal cord transection was associated with decreased Hsp70 and Hsp25 with glutamine only (45 ± 3 and 44 ± 5% of placebo, respectively). Glutamine significantly reduced spinal cord transection-associated increases in IL-6 and TNFα compared with placebo (38 ± 6 and 37 ± 8% of placebo, respectively). Functionally, early reductions in contractile protein, force and fatigue resistance after SCI were reversed with glutamine. Spinal cord transection-associated reductions in Hsp70, Hsp25, IL-6 and TNFα with glutamine versus placebo suggest lower stress in the muscle, possibly related to a reduced need to produce glutamine. These findings support glutamine as a therapeutic intervention to accelerate recovery of muscle function after SCI.

  3. p62/SQSTM1 differentially removes the toxic mutant androgen receptor via autophagy and inclusion formation in a spinal and bulbar muscular atrophy mouse model.

    Science.gov (United States)

    Doi, Hideki; Adachi, Hiroaki; Katsuno, Masahisa; Minamiyama, Makoto; Matsumoto, Shinjiro; Kondo, Naohide; Miyazaki, Yu; Iida, Madoka; Tohnai, Genki; Qiang, Qiang; Tanaka, Fumiaki; Yanagawa, Toru; Warabi, Eiji; Ishii, Tetsuro; Sobue, Gen

    2013-05-01

    Polyglutamine (polyQ) diseases are inherited neurodegenerative disorders that are caused by the expansion of trinucleotide CAG repeats in the causative genes. Spinal and bulbar muscular atrophy (SBMA) is an inherited motor neuron disease that is caused by the expansion of a polyQ tract within the androgen receptor (AR). p62 is a ubiquitin- and light-chain 3-binding protein that is known to regulate the degradation of targeted proteins via autophagy and inclusion formation. In this study, we examined the effects of p62 depletion and overexpression on cultured cells and in a transgenic mouse model that overexpressed the mutant AR. Here, we demonstrate that depletion of p62 significantly exacerbated motor phenotypes and the neuropathological outcome, whereas overexpression of p62 protected against mutant AR toxicity in SBMA mice. Depletion of p62 significantly increased the levels of monomeric mutant AR and mutant AR protein complexes in an SBMA mouse model via the impairment of autophagic degradation. In addition, p62 overexpression improved SBMA mouse phenotypes by inducing cytoprotective inclusion formation. Our results demonstrate that p62 provides two different therapeutic targets in SBMA pathogenesis: (1) autophagy-dependent degradation and (2) benevolent inclusion formation of the mutant AR.

  4. RNA-sequencing of a mouse-model of spinal muscular atrophy reveals tissue-wide changes in splicing of U12-dependent introns

    DEFF Research Database (Denmark)

    Doktor, Thomas Koed; Hua, Yimin; Andersen, Henriette Skovgaard;

    2016-01-01

    Spinal Muscular Atrophy (SMA) is a neuromuscular disorder caused by insufficient levels of the Survival of Motor Neuron (SMN) protein. SMN is expressed ubiquitously and functions in RNA processing pathways that include trafficking of mRNA and assembly of snRNP complexes. Importantly, SMA severity...... is correlated with decreased snRNP assembly activity. In particular, the minor spliceosomal snRNPs are affected, and some U12-dependent introns have been reported to be aberrantly spliced in patient cells and animal models. SMA is characterized by loss of motor neurons, but the underlying mechanism is largely...... unknown. It is likely that aberrant splicing of genes expressed in motor neurons is involved in SMA pathogenesis, but increasing evidence indicates that pathologies also exist in other tissues. We present here a comprehensive RNA-seq study that covers multiple tissues in an SMA mouse model. We show...

  5. TRPV4 mediates afferent pathways in the urinary bladder. A spinal c-fos study showing TRPV1 related adaptations in the TRPV4 knockout mouse.

    Science.gov (United States)

    Janssen, Dick A W; Hoenderop, Joost G; Heesakkers, John P F A; Schalken, Jack A

    2016-10-01

    The role of transient receptor potential vanilloid subtype 4 (TRPV4) channels in urinary bladder afferent neural pathways was investigated using spinal c-fos measurements in mice. Anesthetized wild type and TRPV4 knockout (-/-) mice underwent noxious bladder distention and treatment with either intravesical instillation with lipopolysaccharide (LPS), or the TRPV1 agonist resiniferatoxin (RTX), vehicle or an intraperitoneal injected TRPV4 antagonist (HC067047). Mice underwent paraformaldehyde perfusion for rapid fixation and L6-S1 spinal cord sections were removed followed by immunohistochemical staining for c-fos. A number of c-fos expressing neurons in the dorsal horns of L6-S1 spinal cord transections were quantified. Groups were compared using univariate ANOVA. Even with the absence of bladder inflammation on H&E, the TRPV4 -/- mice still have a significant twofold higher c-fos expression (n = 39, SD 2) after noxious bladder distention compared to wild type mice (n = 20, SD 3). A twofold increase in c-fos expression was observed after LPS treatment in wild types (n = 42, SD 5), but no increase was seen in TRPV4 -/- mice (n = 42, SD 2). After desensitization of primary afferent C-nerve fibers with RTX, c-fos expression in TRPV4-/- mice decreased significantly (threefold) (n = 12, SD 4). Results imply that TRPV4 channels are important for bladder afferent signaling. TRPV4 -/- mice bladders generate more noxious sensory output, which is predominantly mediated through TRPV1 expressing high threshold nerve fibers. This study reveals TRPV1 related adaptive changes in afferent pathways of the TRPV4 -/- mouse. We propose that this effect is caused by a congenital impairment of low threshold nerves that mediate normal bladder filling sensations.

  6. C9orf72 BAC Mouse Model with Motor Deficits and Neurodegenerative Features of ALS/FTD.

    Science.gov (United States)

    Liu, Yuanjing; Pattamatta, Amrutha; Zu, Tao; Reid, Tammy; Bardhi, Olgert; Borchelt, David R; Yachnis, Anthony T; Ranum, Laura P W

    2016-05-04

    To define how the C9orf72 GGGGCC expansion mutation causes ALS/FTD and to facilitate therapy development, a mouse model that recapitulates the molecular and phenotypic features of the disease is urgently needed. Two groups recently reported BAC mouse models that produce RNA foci and RAN proteins but, surprisingly, do not develop the neurodegenerative or behavioral features of ALS/FTD. We now report a BAC mouse model of C9orf72 ALS/FTD that shows decreased survival, paralysis, muscle denervation, motor neuron loss, anxiety-like behavior, and cortical and hippocampal neurodegeneration. These mice express C9orf72 sense transcripts and upregulated antisense transcripts. In contrast to sense RNA foci, antisense foci preferentially accumulate in ALS/FTD-vulnerable cell populations. RAN protein accumulation increases with age and disease, and TDP-43 inclusions are found in degenerating brain regions in end-stage animals. The ALS/FTD phenotypes in our mice provide a unique tool that will facilitate developing therapies targeting pathways that prevent neurodegeneration and increase survival.

  7. EGFR inhibitor erlotinib delays disease progression but does not extend survival in the SOD1 mouse model of ALS.

    Directory of Open Access Journals (Sweden)

    Claire E Le Pichon

    Full Text Available Amyotrophic lateral sclerosis (ALS is a fatal neurodegenerative disease that causes progressive paralysis due to motor neuron death. Several lines of published evidence suggested that inhibition of epidermal growth factor receptor (EGFR signaling might protect neurons from degeneration. To test this hypothesis in vivo, we treated the SOD1 transgenic mouse model of ALS with erlotinib, an EGFR inhibitor clinically approved for oncology indications. Although erlotinib failed to extend ALS mouse survival it did provide a modest but significant delay in the onset of multiple behavioral measures of disease progression. However, given the lack of protection of motor neuron synapses and the lack of survival extension, the small benefits observed after erlotinib treatment appear purely symptomatic, with no modification of disease course.

  8. Polyethylene glycol-coupled IGF1 delays motor function defects in a mouse model of spinal muscular atrophy with respiratory distress type 1.

    Science.gov (United States)

    Krieger, Frank; Elflein, Nicole; Saenger, Stefanie; Wirthgen, Elisa; Rak, Kristen; Frantz, Stefan; Hoeflich, Andreas; Toyka, Klaus V; Metzger, Friedrich; Jablonka, Sibylle

    2014-05-01

    Spinal muscular atrophy with respiratory distress type 1 is a neuromuscular disorder characterized by progressive weakness and atrophy of the diaphragm and skeletal muscles, leading to death in childhood. No effective treatment is available. The neuromuscular degeneration (Nmd(2J)) mouse shares a crucial mutation in the immunoglobulin mu-binding protein 2 gene (Ighmbp2) with spinal muscular atrophy with respiratory distress type 1 patients and also displays some basic features of the human disease. This model serves as a promising tool in understanding the complex mechanisms of the disease and in exploring novel treatment modalities such as insulin-like growth factor 1 (IGF1) which supports myogenic and neurogenic survival and stimulates differentiation during development. Here we investigated the treatment effects with polyethylene glycol-coupled IGF1 and its mechanisms of action in neurons and muscles. Polyethylene glycol-coupled IGF1 was applied subcutaneously every second day from post-natal Day 14 to post-natal Day 42 and the outcome was assessed by morphology, electromyography, and molecular studies. We found reduced IGF1 serum levels in Nmd(2J) mice 2 weeks after birth, which was normalized by polyethylene glycol-coupled IGF1 treatment. Nmd(2J) mice showed marked neurogenic muscle fibre atrophy in the gastrocnemius muscle and polyethylene glycol-coupled IGF1 treatment resulted in muscle fibre hypertrophy and slowed fibre degeneration along with significantly higher numbers of functionally active axonal sprouts. In the diaphragm with predominant myogenic changes a profound protection from muscle fibre degeneration was observed under treatment. No effects of polyethylene glycol-coupled IGF1 were monitored at the level of motor neuron survival. The beneficial effects of polyethylene glycol-coupled IGF1 corresponded to a marked activation of the IGF1 receptor, resulting in enhanced phosphorylation of Akt (protein kinase B) and the ribosomal protein S6 kinase in

  9. Androgen regulates development of the sexually dimorphic gastrin-releasing peptide neuron system in the lumbar spinal cord: evidence from a mouse line lacking androgen receptor in the nervous system.

    Science.gov (United States)

    Sakamoto, Hirotaka; Saito, Kazuhiro; Marie-Luce, Clarisse; Raskin, Kalina; Oti, Takumi; Satoh, Keita; Tamura, Kei; Sakamoto, Tatsuya; Mhaouty-Kodja, Sakina

    2014-01-13

    Androgens including testosterone, organize the nervous system as well as masculine external and internal genitalia during the perinatal period. Androgen organization involves promotion of masculine body features, usually by acting through androgen receptors (ARs). We have recently demonstrated that the gastrin-releasing peptide (GRP) system in the lumbar spinal cord also mediates spinal centers promoting penile reflexes during male sexual behavior in rats. Testosterone may induce sexual differentiation of this spinal GRP system during development and maintain its activation in adulthood. In the present study, we examined the role of ARs in the nervous system regulating the development of the sexually dimorphic GRP system. For this purpose, we used a conditional mouse line selectively lacking the AR gene in the nervous system. AR floxed males carrying (mutants) or not (controls) the nestin-Cre transgene were castrated in adulthood and supplemented with physiological amounts of testosterone. Loss of AR expression in the nervous system resulted in a significant decrease in the number of GRP neurons compared to control littermates. Consequently, the intensity of GRP axonal projections onto the lower lumbar and upper sacral spinal cord was greater in control males than in mutant males. These results suggest that ARs expressed in the nervous system play a significant role in the development of the GRP system in the male lumbar spinal cord. The AR-deletion mutation may attenuate sexual behavior and activity of mutant males via spinal GRP system-mediated neural mechanisms.

  10. A novel acylaminoimidazole derivative, WN1316, alleviates disease progression via suppression of glial inflammation in ALS mouse model.

    Directory of Open Access Journals (Sweden)

    Kazunori Tanaka

    Full Text Available Amyotrophic lateral sclerosis (ALS is an adult-onset motor neuron degenerative disease. Given that oxidative stress and resulting chronic neuronal inflammation are thought to be central pathogenic, anti-oxidative agents and modulators of neuronal inflammation could be potential therapies for ALS. We report here that the novel small molecular compound, 2-[mesityl(methylamino]-N-[4-(pyridin-2-yl-1H-imidazol-2-yl] acetamide trihydrochloride (WN1316 selectively suppresses oxidative stress-induced cell death and neuronal inflammation in the late-stage ALS mice. WN1316 has high blood-brain-barrier permeability and water solubility, and boosts both neuronal apoptosis inhibitory protein (NAIP and NF-E2-related factor 2 (Nrf2 which governed glutathione (GSH-related anti-oxidation pathway protecting motor neurons against oxidative injuries. Post-onset oral administration of low dose (1-100 µg/kg/day WN1316 in ALS(SOD1(H46R and ALS(SOD1(G93A mice resulted in sustained improved motor function and post onset survival rate. Immunohistochemical analysis revealed less DNA oxidative damage and motor neuronal inflammation as well as repression of both microgliosis and astrocytosis, concomitant down regulation of interleukin-1β and inducible nitric oxide synthase, and preservation of the motoneurons in anterior horn of lumbar spinal cord and skeletal muscle (quadriceps femoris. Thus, WN1316 would be a novel therapeutic agent for ALS.

  11. Correlation of in vivo and ex vivo 1H-MRI with histology in two severities of mouse spinal cord injury

    Science.gov (United States)

    Noristani, Harun N.; Lonjon, Nicolas; Cardoso, Maïda; Le Corre, Marine; Chan-Seng, Emilie; Captier, Guillaume; Privat, Alain; Coillot, Christophe; Goze-Bac, Christophe; Perrin, Florence E.

    2015-01-01

    Spinal cord injury (SCI) is a debilitating neuropathology with no effective treatment. Magnetic resonance imaging (MRI) technology is the only method used to assess the impact of an injury on the structure and function of the human spinal cord. Moreover, in pre-clinical SCI research, MRI is a non-invasive method with great translational potential since it provides relevant longitudinal assessment of anatomical and structural alterations induced by an injury. It is only recently that MRI techniques have been effectively used for the follow-up of SCI in rodents. However, the vast majority of these studies have been carried out on rats and when conducted in mice, the contusion injury model was predominantly chosen. Due to the remarkable potential of transgenic mice for studying the pathophysiology of SCI, we examined the use of both in and ex vivo 1H-MRI (9.4 T) in two severities of the mouse SCI (hemisection and over-hemisection) and documented their correlation with histological assessments. We demonstrated that a clear distinction between the two injury severities is possible using in and ex vivo 1H-MRI and that ex vivo MR images closely correlate with histology. Moreover, tissue modifications at a remote location from the lesion epicenter were identified by conventional ex vivo MRI analysis. Therefore, in vivo MRI has the potential to accurately identify in mice the progression of tissue alterations induced by SCI and is successfully implemented by ex vivo MRI examination. This combination of in and ex vivo MRI follow-up associated with histopathological assessment provides a valuable approach for further studies intended to evaluate therapeutic strategies on SCI. PMID:25798092

  12. Pontine Reticulospinal Projections in the Neonatal Mouse: Internal Organization and Axon Trajectories

    OpenAIRE

    Sivertsen, Magne Sand; Perreault, Marie-Claude; Glover, Joel C.

    2015-01-01

    We recently characterized physiologically a pontine reticulospinal (pRS) projection in the neonatal mouse that mediates synaptic effects on spinal motoneurons via parallel uncrossed and crossed pathways (Sivertsen et al. [2014] J Neurophysiol 112:1628–1643). Here we characterize the origins, anatomical organization, and supraspinal axon trajectories of these pathways via retrograde tracing from the high cervical spinal cord. The two pathways derive from segregated populations of ipsilaterally...

  13. In vivo characterization of colorectal and cutaneous inputs to lumbosacral dorsal horn neurons in the mouse spinal cord.

    Science.gov (United States)

    Farrell, K E; Rank, M M; Keely, S; Brichta, A M; Graham, B A; Callister, R J

    2016-03-01

    Chronic abdominal pain is a common symptom of inflammatory bowel disease and often persists in the absence of gut inflammation. Although the mechanisms responsible for ongoing pain are unknown, clinical and preclinical evidence suggests lumbosacral spinal cord dorsal horn neurons contribute to these symptoms. At present, we know little about the intrinsic and synaptic properties of this population of neurons in either normal or inflammed conditions. Therefore, we developed an in vivo preparation to make patch-clamp recordings from superficial dorsal horn (SDH) neurons receiving colonic inputs in naïve male mice. Recordings were made in the lumbosacral spinal cord (L6-S1) under isoflurane anesthesia. Noxious colorectal distension (CRD) was used to determine whether SDH neurons received inputs from mechanical stimulation/distension of the colon. Responses to hind paw/tail cutaneous stimulation and intrinsic and synaptic properties were also assessed, as well as action potential discharge properties. Approximately 11% of lumbosacral SDH neurons in the cohort of neurons sampled responded to CRD and a majority of these responses were subthreshold. Most CRD-responsive neurons (80%) also responded to cutaneous stimuli, compared with <50% of CRD-non-responsive neurons. Furthermore, CRD-responsive neurons had more hyperpolarized resting membrane potentials, larger rheobase currents, and reduced levels of excitatory drive, compared to CRD-non-responsive neurons. Our results demonstrate that CRD-responsive neurons can be distinguished from CRD-non-responsive neurons by several differences in their membrane properties and excitatory synaptic inputs. We also demonstrate that SDH neurons with colonic inputs show predominately subthreshold responses to CRD and exhibit a high degree of viscerosomatic convergence.

  14. Intracerebroventricular injection of encapsulated human mesenchymal cells producing glucagon-like peptide 1 prolongs survival in a mouse model of ALS.

    Directory of Open Access Journals (Sweden)

    Sarah Knippenberg

    Full Text Available BACKGROUND: As pharmacological therapies have largely failed so far, stem cell therapy has recently come into the focus of ALS research. Neuroprotective potential was shown for several types of stem and progenitor cells, mainly due to release of trophic factors. In the present study, we assessed the effects of intracerebroventricular injection of glucagon-like peptide 1 (GLP-1 releasing mesenchymal stromal cells (MSC in mutant SOD1 (G93A transgenic mice. METHODOLOGY/PRINCIPAL FINDINGS: To improve the neuroprotective effects of native MSC, they had been transfected with a plasmid vector encoding a GLP-1 fusion gene prior to the injection, as GLP-1 was shown to exhibit neuroprotective properties before. Cells were encapsulated and therefore protected against rejection. After intracerebroventricular injection of these GLP-1 MSC capsules in presymptomatic SOD1 (G93A mice, we assessed possible protective effects by survival analysis, measurement of body weight, daily monitoring and evaluation of motor performance by rotarod and footprint analyses. Motor neuron numbers in the spinal cord as well as the amount of astrocytosis, microglial activation, heat shock response and neuronal nitric oxide synthase (nNOS expression were analyzed by immunohistological methods. Treatment with GLP-1 producing MSC capsules significantly prolonged survival by 13 days, delayed symptom onset by 15 days and weight loss by 14 days and led to significant improvements in motor performance tests compared to vehicle treated controls. Histological data are mainly in favour of anti-inflammatory effects of GLP-1 producing MSC capsules with reduced detection of inflammatory markers and a significant heat shock protein increase. CONCLUSION/SIGNIFICANCE: Intracerebroventricular injection of GLP-1 MSC capsules shows neuroprotective potential in the SOD1 (G93A mouse model.

  15. Developmental localization of calcitonin gene-related peptide in dorsal sensory axons and ventral motor neurons of mouse cervical spinal cord.

    Science.gov (United States)

    Kim, Jeongtae; Sunagawa, Masanobu; Kobayashi, Shiori; Shin, Taekyun; Takayama, Chitoshi

    2016-04-01

    Calcitonin gene-related peptide (CGRP) is a 37-amino-acid neuropeptide, synthesized by alternative splicing of calcitonin gene mRNA. CGRP is characteristically distributed in the nervous system, and its function varies depending on where it is expressed. To reveal developmental formation of the CGRP network and its function in neuronal maturation, we examined the immunohistochemical localization of CGRP in the developing mouse cervical spinal cord and dorsal root ganglion. CGRP immunolabeling (IL) was first detected in motor neurons on E13, and in ascending axons of the posterior funiculus and DRG neurons on E14. CGRP-positive sensory axon fibers entered Laminae I and II on E16, and Laminae I through IV on E18. The intensity of the CGRP-IL gradually increased in both ventral and dorsal horns during embryonic development, but markedly decreased in the ventral horn after birth. These results suggest that CGRP is expressed several days after neuronal settling and entry of sensory fibers, and that the CGRP network is formed in chronological and sequential order. Furthermore, because CGRP is markedly expressed in motor neurons when axons are vastly extending and innervating targets, CGRP may also be involved in axonal elongation and synapse formation during normal development.

  16. Mass spectrometric peptide analysis of 2DE-separated mouse spinal cord and rat hippocampus proteins suggests an NGxG motif of importance for in vivo deamidation.

    Science.gov (United States)

    Mikkat, Stefan; Kischstein, Timo; Kreutzer, Michael; Glocker, Michael O

    2013-06-01

    Asparagine deamidation is a common nonenzymatic post-translational modification comprising the conversion of asparaginyl residues to aspartyl and isoaspartyl residues, respectively. As a result an additional negative charge is introduced that can affect the tertiary structure as well as the biological activity of a protein. Since deamidation reduces the protein's pI value, differentially deamidated forms of a protein can be separated in 2D gels. We have analyzed a dataset of 430 protein spots from 2D gels that contained mouse spinal cord proteins and estimated that roughly 10% of the spots in a Coomassie-stained gel derive from in vivo deamidation at particular asparaginyl residues. Several of the deamidated protein forms, e.g. tropomodulin-2, V-type proton ATPase subunit B, and protein disulfide-isomerase A3 were also found in 2D gels of proteins extracted from rat hippocampus. All identified deamidation sites contained a glycine residue on the carboxyl side of the asparaginyl residue. Strikingly, a second glycine residue at the +3 position was found in the majority of the deamidated peptides. We propose that the NGxG motif confers exceptional susceptibility to in vivo asparagine deamidation.

  17. Aberrant Autophagic Response in The Muscle of A Knock-in Mouse Model of Spinal and Bulbar Muscular Atrophy

    Science.gov (United States)

    Rusmini, Paola; Polanco, Maria Josefa; Cristofani, Riccardo; Cicardi, Maria Elena; Meroni, Marco; Galbiati, Mariarita; Piccolella, Margherita; Messi, Elio; Giorgetti, Elisa; Lieberman, Andrew P.; Milioto, Carmelo; Rocchi, Anna; Aggarwal, Tanya; Pennuto, Maria; Crippa, Valeria; Poletti, Angelo

    2015-01-01

    Spinal and bulbar muscular atrophy (SBMA) is characterized by loss of motoneurons and sensory neurons, accompanied by atrophy of muscle cells. SBMA is due to an androgen receptor containing a polyglutamine tract (ARpolyQ) that misfolds and aggregates, thereby perturbing the protein quality control (PQC) system. Using SBMA AR113Q mice we analyzed proteotoxic stress-induced alterations of HSPB8-mediated PQC machinery promoting clearance of misfolded proteins by autophagy. In muscle of symptomatic AR113Q male mice, we found expression upregulation of Pax-7, myogenin, E2-ubiquitin ligase UBE2Q1 and acetylcholine receptor (AchR), but not of MyoD, and of two E3-ligases (MuRF-1 and Cullin3). TGFβ1 and PGC-1α were also robustly upregulated. We also found a dramatic perturbation of the autophagic response, with upregulation of most autophagic markers (Beclin-1, ATG10, p62/SQSTM1, LC3) and of the HSPB8-mediated PQC response. Both HSPB8 and its co-chaperone BAG3 were robustly upregulated together with other specific HSPB8 interactors (HSPB2 and HSPB3). Notably, the BAG3:BAG1 ratio increased in muscle suggesting preferential misfolded proteins routing to autophagy rather than to proteasome. Thus, mutant ARpolyQ induces a potent autophagic response in muscle cells. Alteration in HSPB8-based PQC machinery may represent muscle-specific biomarkers useful to assess SBMA progression in mice and patients in response to pharmacological treatments. PMID:26490709

  18. Testosterone treatment fails to accelerate disease in a transgenic mouse model of spinal and bulbar muscular atrophy

    Directory of Open Access Journals (Sweden)

    Erica S. Chevalier-Larsen

    2012-01-01

    Evidence from multiple animal models demonstrates that testosterone plays a crucial role in the progression of symptoms in spinal and bulbar muscular atrophy (SBMA, a condition that results in neurodegeneration and muscle atrophy in affected men. Mice bearing a transgene encoding a human androgen receptor (AR that contains a stretch of 112 glutamines (expanded polyglutamine tract; AR112Q mice reproduce several aspects of the human disease. We treated transgenic male AR112Q mice with testosterone for 6 months. Surprisingly, testosterone treatment of AR112Q males did not exacerbate the disease. Although transgenic AR112Q males exhibited functional deficits when compared with non-transgenics, long-term testosterone treatment had no effect on motor function. Testosterone treatment also failed to affect cellular markers of disease, including inclusion formation (the accumulation of large nuclear aggregates of mutant AR protein and levels of unphosphorylated neurofilament heavy chain. These data suggest that the mechanism of disease in SBMA saturates at close to endogenous hormone levels and that individuals with SBMA who take, or have taken, testosterone for its putative therapeutic properties are unlikely to suffer adverse effects.

  19. Decreased stathmin expression ameliorates neuromuscular defects but fails to prolong survival in a mouse model of spinal muscular atrophy.

    Science.gov (United States)

    Wen, Hsin-Lan; Ting, Chen-Hung; Liu, Huei-Chun; Li, Hung; Lin-Chao, Sue

    2013-04-01

    Spinal muscular atrophy (SMA), a genetic neurodegenerative disorder, is caused by mutations or deletions in the survival of motor neuron 1 (SMN1) gene that result in SMN deficiency. SMN deficiency impairs microtubule networks in Smn-deficient cells and in SMA-like motor neuron cultures. Microtubule defects can be restored by knockdown of the stathmin gene (Stmn), which is upregulated in SMA. However, whether in vivo reduction of stathmin levels could improve the pathology of SMA has not been investigated. Here we generated SMA-like mice in a Stmn knockout (KO) background through a series of genetic crosses. Analyses of motor performance and histology showed that heterozygous StmnKO (Stmn(+/-)) but not homozygous StmnKO (Stmn(-/-)) ameliorates some SMA defects, with increased microtubule densities in sciatic axons, improved motor performance, enhanced NMJ maturation, and mitigated neuroinflammation. However, Stmn deletion does not prolong the lifespan of SMA-like mice, suggesting that stathmin dysregulation and microtubule disruption are not a cause but rather a consequence of SMA pathology. This work demonstrates that limiting the amount of stathmin in SMA-like mice is effective in reducing their neuromuscular defects, whereas induced aberrant expression of stathmin in SMA-like animals is detrimental.

  20. Rescue of the spinal muscular atrophy phenotype in a mouse model by early postnatal delivery of SMN.

    Science.gov (United States)

    Foust, Kevin D; Wang, Xueyong; McGovern, Vicki L; Braun, Lyndsey; Bevan, Adam K; Haidet, Amanda M; Le, Thanh T; Morales, Pablo R; Rich, Mark M; Burghes, Arthur H M; Kaspar, Brian K

    2010-03-01

    Spinal muscular atrophy (SMA), the most common autosomal recessive neurodegenerative disease affecting children, results in impaired motor neuron function. Despite knowledge of the pathogenic role of decreased survival motor neuron (SMN) protein levels, efforts to increase SMN have not resulted in a treatment for patients. We recently demonstrated that self-complementary adeno-associated virus 9 (scAAV9) can infect approximately 60% of motor neurons when injected intravenously into neonatal mice. Here we use scAAV9-mediated postnatal day 1 vascular gene delivery to replace SMN in SMA pups and rescue motor function, neuromuscular physiology and life span. Treatment on postnatal day 5 results in partial correction, whereas postnatal day 10 treatment has little effect, suggesting a developmental period in which scAAV9 therapy has maximal benefit. Notably, we also show extensive scAAV9-mediated motor neuron transduction after injection into a newborn cynomolgus macaque. This demonstration that scAAV9 traverses the blood-brain barrier in a nonhuman primate emphasizes the clinical potential of scAAV9 gene therapy for SMA.

  1. Vsx1 Transiently Defines an Early Intermediate V2 Interneuron Precursor Compartment in the Mouse Developing Spinal Cord

    Science.gov (United States)

    Francius, Cédric; Hidalgo-Figueroa, María; Debrulle, Stéphanie; Pelosi, Barbara; Rucchin, Vincent; Ronellenfitch, Kara; Panayiotou, Elena; Makrides, Neoklis; Misra, Kamana; Harris, Audrey; Hassani, Hessameh; Schakman, Olivier; Parras, Carlos; Xiang, Mengqing; Malas, Stavros; Chow, Robert L.; Clotman, Frédéric

    2016-01-01

    Spinal ventral interneurons regulate the activity of motor neurons, thereby controlling motor activities. Interneurons arise during embryonic development from distinct progenitor domains distributed orderly along the dorso-ventral axis of the neural tube. A single ventral progenitor population named p2 generates at least five V2 interneuron subsets. Whether the diversification of V2 precursors into multiple subsets occurs within the p2 progenitor domain or involves a later compartment of early-born V2 interneurons remains unsolved. Here, we provide evidence that the p2 domain produces an intermediate V2 precursor compartment characterized by the transient expression of the transcriptional repressor Vsx1. These cells display an original repertoire of cellular markers distinct from that of any V2 interneuron population. They have exited the cell cycle but have not initiated neuronal differentiation. They coexpress Vsx1 and Foxn4, suggesting that they can generate the known V2 interneuron populations as well as possible additional V2 subsets. Unlike V2 interneurons, the generation of Vsx1-positive precursors does not depend on the Notch signaling pathway but expression of Vsx1 in these cells requires Pax6. Hence, the p2 progenitor domain generates an intermediate V2 precursor compartment, characterized by the presence of the transcriptional repressor Vsx1, that contributes to V2 interneuron development. PMID:28082864

  2. Involvement of the histaminergic system in the nociceptin-induced pain-related behaviors in the mouse spinal cord.

    Science.gov (United States)

    Sakurada, Shinobu; Watanabe, Hiroyuki; Mizoguchi, Hirokazu; Yonezawa, Akihiko; Orito, Tohru; Katsuyama, Sou; Kuramasu, Atsuo; Sakurada, Chikai; Yanai, Kazuhiko; Sakurada, Tsukasa

    2004-11-01

    Intrathecal (i.t.) injection of nociceptin elicited a behavioral response mainly consisting of biting and licking, which were eliminated by the i.t. co-administration of opioid receptor-like-1 (ORL-1) receptor antagonists. The behavioral response induced by nociceptin was characteristically similar to that by i.t.-administered histamine, and was attenuated by i.t. co-administration of the H1 receptor antagonists, but not by the H2 receptor antagonists, whereas the H3 receptor antagonist promoted the nociceptin-induced behavior. H1 receptor knockout (H1R-KO) mice did not show the nociceptin-induced nociceptive behavior, which was observed in wild-type mice. Pretreatment with a histamine antiserum or a histidine decarboxylase inhibitor resulted in a significant reduction of the response to nociceptin. The previous studies showed that NK1 receptor antagonists and a novel substance P (SP)-specific antagonist given i.t. could reduce the behavioral response to nociceptin and histamine. On the other hand, the nociceptive response induced by nociceptin, but not histamine, was completely attenuated by the i.t. co-administration of agonists for GABAA and GABAB receptors. In contrast, the antagonists for GABAA and GABAB receptors injected i.t. showed same nociceptive response with nociceptin and histamine, and their nociceptive responses were significantly blocked by the i.t. co-administration of the H1 receptor antagonists, but not H2 receptor antagonists or ORL-1 receptor antagonists. The present results suggest that the activation of the ORL-1 receptor by nociceptin may induce the disinhibition of histaminergic neuron and enhance the release of histamine, which subsequently acts on the H1 receptor located on the SP-containing neurons to produce the spinal cord-mediated nociceptive response.

  3. Firing patterns and functional roles of different classes of spinal afferents in rectal nerves during colonic migrating motor complexes in mouse colon.

    Science.gov (United States)

    Zagorodnyuk, Vladimir P; Kyloh, Melinda; Brookes, Simon J; Nicholas, Sarah J; Spencer, Nick J

    2012-08-01

    The functional role of the different classes of visceral afferents that innervate the large intestine is poorly understood. Recent evidence suggests that low-threshold, wide-dynamic-range rectal afferents play an important role in the detection and transmission of visceral pain induced by noxious colorectal distension in mice. However, it is not clear which classes of spinal afferents are activated during naturally occurring colonic motor patterns or during intense contractions of the gut smooth muscle. We developed an in vitro colorectum preparation to test how the major classes of rectal afferents are activated during spontaneous colonic migrating motor complex (CMMC) or pharmacologically induced contraction. During CMMCs, circular muscle contractions increased firing in low-threshold, wide-dynamic-range muscular afferents and muscular-mucosal afferents, which generated a mean firing rate of 1.53 ± 0.23 Hz (n = 8) under isotonic conditions and 2.52 ± 0.36 Hz (n = 17) under isometric conditions. These low-threshold rectal afferents were reliably activated by low levels of circumferential stretch induced by increases in length (1-2 mm) or load (1-3 g). In a small proportion of cases (5 of 34 units), some low-threshold muscular and muscular-mucosal afferents decreased their firing rate during the peak of the CMMC contractions. High-threshold afferents were never activated during spontaneous CMMC contractions or tonic contractions induced by bethanechol (100 μM). High-threshold rectal afferents were only activated by intense levels of circumferential stretch (10-20 g). These results show that, in the rectal nerves of mice, low-threshold, wide-dynamic-range muscular and muscular-mucosal afferents are excited during contraction of the circular muscle that occurs during spontaneous CMMCs. No activation of high-threshold rectal afferents was detected during CMMCs or intense contractile activity in naïve mouse colorectum.

  4. Combinatory antibiotic therapy increases rate of bacterial kill but not final outcome in a novel mouse model of Staphylococcus aureus spinal implant infection

    Science.gov (United States)

    Hu, Yan; Johansen, Daniel; Loftin, Amanda H.; Dworsky, Erik; Zoller, Stephen D.; Park, Howard Y.; Hamad, Christopher D.; Nelson, George E.; Francis, Kevin P.; Scaduto, Anthony; Bernthal, Nicholas M.

    2017-01-01

    Background Management of spine implant infections (SII) are challenging. Explantation of infected spinal hardware can destabilize the spine, but retention can lead to cord compromise and biofilm formation, complicating management. While vancomycin monotherapy is commonly used, in vitro studies have shown reduced efficacy against biofilm compared to combination therapy with rifampin. Using an established in vivo mouse model of SII, we aim to evaluate whether combination therapy has increased efficacy compared to both vancomycin alone and infected controls. Methods An L-shaped, Kirschner-wire was transfixed into the L4 spinous process of 12-week-old C57BL/6 mice, and inoculated with bioluminescent Staphylococcus aureus. Mice were randomized into a vancomycin group, a combination group with vancomycin plus rifampin, or a control group receiving saline. Treatment began on post-operative day (POD) 7 and continued through POD 14. In vivo imaging was performed to monitor bioluminescence for 35 days. Colony-forming units (CFUs) were cultured on POD 35. Results Bioluminescence peaked around POD 7 for all groups. The combination group had a 10-fold decrease in signal by POD 10. The vancomycin and control groups reached similar levels on POD 17 and 21, respectively. On POD 25 the combination group dropped below baseline, but rebounded to the same level as the other groups, demonstrating a biofilm-associated infection by POD 35. Quantification of CFUs on POD 35 confirmed an ongoing infection in all three groups. Conclusions Although both therapies were initially effective, they were not able to eliminate implant biofilm bacteria, resulting in a rebound infection after antibiotic cessation. This model shows, for the first time, why histologic-based, static assessments of antimicrobials can be misleading, and the importance of longitudinal tracking of infection. Future studies can use this model to test combinations of antibiotic therapies to see if they are more effective in

  5. Vitamin B(12) dependent changes in mouse spinal cord expression of vitamin B(12) related proteins and the epidermal growth factor system

    DEFF Research Database (Denmark)

    Mutti, Elena; Lildballe, Dorte L; Kristensen, Lise

    2013-01-01

    Chronic vitamin B(12) (cobalamin) deficiency in the mammalian central nervous system causes degenerative damage, especially in the spinal cord. Previous studies have shown that cobalamin status alters spinal cord expression of epidermal growth factor (EGF) and its receptor in rats. Employing a mo...

  6. The Wobbler mouse model of amyotrophic lateral sclerosis (ALS displays hippocampal hyperexcitability, and reduced number of interneurons, but no presynaptic vesicle release impairments.

    Directory of Open Access Journals (Sweden)

    Karina D Thielsen

    Full Text Available Amyotrophic lateral sclerosis (ALS is the most common adult-onset motor neuron disease. It is a fatal degenerative disease, best recognized for its debilitating neuromuscular effects. ALS however also induces cognitive impairments in as many as 50% of affected individuals. Moreover, many ALS patients demonstrate cortical hyperexcitability, which has been shown to precede the onset of clinical symptoms. The wobbler mouse is a model of ALS, and like ALS patients the wobbler mouse displays cortical hyperexcitability. Here we investigated if the neocortical aberrations of the wobbler mouse also occur in the hippocampus. Consequently, we performed extracellular field excitatory postsynaptic potential recordings in the CA1 region of the hippocampus on acute brain slices from symptomatic (P45-P60 and presymptomatic (P17-P21 wobbler mice. Significant increased excitation of hippocampal synapses was revealed by leftward shifted input/output-curves in both symptomatic and presymptomatic wobbler mice, and substantiated by population spike occurrence analyses, demonstrating that the increased synaptic excitation precedes the onset of visible phenotypic symptoms in the mouse. Synaptic facilitation tested by paired-pulse facilitation and trains in wobbler and control mice showed no differences, suggesting the absence of presynaptic defects. Immunohistochemical staining revealed that symptomatic wobbler mice have a lower number of parvalbumin positive interneurons when compared to controls and presymptomatic mice. This study reveals that the wobbler mouse model of ALS exhibits hippocampal hyperexcitability. We suggest that the hyperexcitability could be caused by increased excitatory synaptic transmission and a concomitant reduced inhibition due to a decreased number of parvalbumin positive interneurons. Thus we substantiate that wobbler brain impairments are not confined to the motor cortex, but extend to the hippocampus. Importantly, we have revealed more

  7. Stereoselective action of (+)-morphine over (−)-morphine in attenuating the (−)-morphine-produced antinociception via the naloxone-sensitive sigma receptor in the mouse

    OpenAIRE

    2007-01-01

    We have previously demonstrated that (+)-morphine and (−)-morphine given spinally stereoselectively attenuate the spinally-administered (−)-morphine-produced tail-flick inhibition in the mouse. The phenomenon has been defined as antianalgesia (Wu et al., 2005). Present studies were then undertaken to determine if the systemic administration of (+)-morphine and (−)-morphine also stereoselectively attenuates the systemic (−)-morphine-produced tail-flick inhibition and the effects of (+)-morphin...

  8. Bone Marrow-Derived Cell Accumulation in the Spinal Cord Is Independent of Peripheral Mobilization in a Mouse Model of Amyotrophic Lateral Sclerosis

    Science.gov (United States)

    Peake, Kyle; Manning, John; Lewis, Coral-Ann; Tran, Kevin; Rossi, Fabio; Krieger, Charles

    2017-01-01

    Bone marrow-derived cells (BMDCs) are capable of migrating across the blood–brain barrier (BBB) and accumulating in the central nervous system (CNS) when transplanted into recipients conditioned with whole-body irradiation or chemotherapy. We used the chemotherapeutic agents busulfan and treosulfan to condition recipient mice for transplantation with bone marrow (BM) cells isolated from donor mice ubiquitously expressing green fluorescent protein. We attempted to increase the accumulation of BMDCs in the CNS by mobilization of BMDCs using either, or both, granulocyte colony-stimulating factor (GCSF) or plerixafor (AMD3100). We also used several concentrations of busulfan. We hypothesized that higher concentrations of busulfan and BMDC mobilization would increase numbers of GFP+ cells in the CNS. The doses of busulfan employed (60–125 mg/kg) all resulted in high levels of sustained chimerism (>85% 1 year post-transplant) in both the blood and BM of wild-type (WT) mice and an amyotrophic lateral sclerosis (ALS) mouse model. Moreover, cells accumulated within the CNS in a dose-, time-, and disease-dependent manner. Conditioning with the hydrophilic busulfan analog treosulfan, which is unable to cross the BBB efficiently, also resulted in a high degree of BM chimerism. However, few GFP+ BMDCs were found within the CNS of WT or ALS mice of treosulfan-conditioned mice. Mobilization of BMDCs into the circulation using GCSF and/or AMD3100 did not lead to increased accumulation of GFP+ BMDCs within the CNS of WT or ALS mice. Weekly analysis of BMDC accumulation revealed that BMDCs accumulated more rapidly and to a greater extent in the CNS of ALS mice conditioned with a high dose (125 mg/kg) of busulfan compared to a lower dose (80 mg/kg). The number of GFP+ BMDCs in the CNS labeling with the proliferation marker Ki67 increased in parallel with BMDC accumulation within the CNS. Our results indicate that establishment of high levels of blood and BM chimerism

  9. Spinal infections.

    Science.gov (United States)

    Tay, Bobby K-B; Deckey, Jeffrey; Hu, Serena S

    2002-01-01

    Spinal infections can occur in a variety of clinical situations. Their presentation ranges from the infant with diskitis who is unwilling to crawl or walk to the adult who develops an infection after a spinal procedure. The most common types of spinal infections are hematogenous bacterial or fungal infections, pediatric diskitis, epidural abscess, and postoperative infections. Prompt and accurate diagnosis of spinal infections, the cornerstone of treatment, requires a high index of suspicion in at-risk patients and the appropriate evaluation to identify the organism and determine the extent of infection. Neurologic function and spinal stability also should be carefully evaluated. The goals of therapy should include eradicating the infection, relieving pain, preserving or restoring neurologic function, improving nutrition, and maintaining spinal stability.

  10. Spinal brucellosis.

    Science.gov (United States)

    Tali, E Turgut; Koc, A Murat; Oner, A Yusuf

    2015-05-01

    Spinal involvement in human brucellosis is a common condition and a significant cause of morbidity and mortality, particularly in endemic areas, because it is often associated with therapeutic failure. Most chronic brucellosis cases are the result of inadequate treatment of the initial episode. Recognition of spinal brucellosis is challenging. Early diagnosis is important to ensure proper treatment and decrease morbidity and mortality. Radiologic evaluation has gained importance in diagnosis and treatment planning, including interventional procedures and monitoring of all spinal infections.

  11. Spinal Stenosis

    Science.gov (United States)

    ... Pharyngitis, Adenitis Syndrome (Juvenile) Polymyalgia Rheumatica Psoriatic Arthritis Raynaud's Phenomenon Reactive Arthritis Rheumatoid Arthritis Scleroderma Sjogren's Syndrome Spinal Stenosis Spondyloarthritis Systemic Lupus Erythematosus (Juvenile) Takayasu's ...

  12. Identification and quantification of neuropeptides in naïve mouse spinal cord using mass spectrometry reveals [des-Ser1]-cerebellin as a novel modulator of nociception.

    Science.gov (United States)

    Su, Jie; Sandor, Katalin; Sköld, Karl; Hökfelt, Tomas; Svensson, Camilla I; Kultima, Kim

    2014-07-01

    Neuropeptide transmitters involved in nociceptive processes are more likely to be expressed in the dorsal than the ventral horn of the spinal cord. This study was designed to examine the relative distribution of neuropeptides between the dorsal and ventral spinal cord in naïve mice using liquid chromatography, high-resolution mass spectrometry. We identified and relatively quantified 36 well-characterized full-length neuropeptides and an additional 168 not previously characterized peptides. By extraction with organic solvents we identified seven additional full-length neuropeptides. The peptide [des-Ser1]-cerebellin (desCER), originating from cerebellin precursor protein 1 (CBLN1), was predominantly expressed in the dorsal horn. Immunohistochemistry showed the presence of CBLN1 immunoreactivity with a punctate cytoplasmic pattern in neuronal cell bodies throughout the spinal gray matter. The signal was stronger in the dorsal compared to the ventral horn, with most CBLN1 positive cells present in outer laminae II/III, colocalizing with calbindin, a marker for excitatory interneurons. Intrathecal injection of desCER induced a dose-dependent mechanical hypersensitivity but not heat or cold hypersensitivity. This study provides evidence for involvement of desCER in nociception and provides a platform for continued exploration of involvement of novel neuropeptides in the regulation of nociceptive transmission. Neuropeptides involved in nociceptive processes are more likely to be expressed in the dorsal than the ventral horn of spinal cord. Well-characterized full-length neuropeptides as well as uncharacterized neuropeptides were quantified by mass spectrometry. The CBLN1-derived peptide [des-Ser1]-cerebellin (desCER) is predominantly expressed in the dorsal horn, and intrathecal injection of desCER induced a dose-dependent mechanical hypersensitivity.

  13. Neuroprotective Effect of Non-viral Gene Therapy Treatment Based on Tetanus Toxin C-fragment in a Severe Mouse Model of Spinal Muscular Atrophy.

    Science.gov (United States)

    Oliván, Sara; Calvo, Ana C; Rando, Amaya; Herrando-Grabulosa, Mireia; Manzano, Raquel; Zaragoza, Pilar; Tizzano, Eduardo F; Aquilera, Jose; Osta, Rosario

    2016-01-01

    Spinal muscular atrophy (SMA) is a hereditary childhood disease that causes paralysis and progressive degeneration of skeletal muscles and spinal motor neurons. SMA is associated with reduced levels of full-length Survival of Motor Neuron (SMN) protein, due to mutations in the Survival of Motor Neuron 1 gene. Nowadays there are no effective therapies available to treat patients with SMA, so our aim was to test whether the non-toxic carboxy-terminal fragment of tetanus toxin heavy chain (TTC), which exhibits neurotrophic properties, might have a therapeutic role or benefit in SMA. In this manuscript, we have demonstrated that TTC enhance the SMN expression in motor neurons "in vitro" and evaluated the effect of intramuscular injection of TTC-encoding plasmid in the spinal cord and the skeletal muscle of SMNdelta7 mice. For this purpose, we studied the weight and the survival time, as well as, the survival and cell death pathways and muscular atrophy. Our results showed that TTC treatment reduced the expression of autophagy markers (Becn1, Atg5, Lc3, and p62) and pro-apoptotic genes such as Bax and Casp3 in spinal cord. In skeletal muscle, TTC was able to downregulate the expression of the main marker of autophagy, Lc3, to wild-type levels and the expression of the apoptosis effector protein, Casp3. Regarding the genes related to muscular atrophy (Ankrd1, Calm1, Col19a1, Fbox32, Mt2, Myod1, NogoA, Pax7, Rrad, and Sln), TTC suggest a compensatory effect for muscle damage response, diminished oxidative stress and modulated calcium homeostasis. These preliminary findings suggest the need for further experiments to depth study the effect of TTC in SMA disease.

  14. Loss of inhibitory tone on spinal cord dorsal horn spontaneously and nonspontaneously active neurons in a mouse model of neuropathic pain.

    Science.gov (United States)

    Medrano, Maria Carmen; Dhanasobhon, Dhanasak; Yalcin, Ipek; Schlichter, Rémy; Cordero-Erausquin, Matilde

    2016-07-01

    Plasticity of inhibitory transmission in the spinal dorsal horn (SDH) is believed to be a key mechanism responsible for pain hypersensitivity in neuropathic pain syndromes. We evaluated this plasticity by recording responses to mechanical stimuli in silent neurons (nonspontaneously active [NSA]) and neurons showing ongoing activity (spontaneously active [SA]) in the SDH of control and nerve-injured mice (cuff model). The SA and NSA neurons represented 59% and 41% of recorded neurons, respectively, and were predominantly wide dynamic range (WDR) in naive mice. Nerve-injured mice displayed a marked decrease in the mechanical threshold of the injured paw. After nerve injury, the proportion of SA neurons was increased to 78%, which suggests that some NSA neurons became SA. In addition, the response to touch (but not pinch) was dramatically increased in SA neurons, and high-threshold (nociceptive specific) neurons were no longer observed. Pharmacological blockade of spinal inhibition with a mixture of GABAA and glycine receptor antagonists significantly increased responses to innocuous mechanical stimuli in SA and NSA neurons from sham animals, but had no effect in sciatic nerve-injured animals, revealing a dramatic loss of spinal inhibitory tone in this situation. Moreover, in nerve-injured mice, local spinal administration of acetazolamide, a carbonic anhydrase inhibitor, restored responses to touch similar to those observed in naive or sham mice. These results suggest that a shift in the reversal potential for anions is an important component of the abnormal mechanical responses and of the loss of inhibitory tone recorded in a model of nerve injury-induced neuropathic pain.

  15. Neuroprotective effect of non-viral gene therapy treatment based on tetanus toxin C-fragment in a severe mouse model of Spinal Muscular Atrophy.

    Directory of Open Access Journals (Sweden)

    Sara Olivan Garcia

    2016-08-01

    Full Text Available Spinal muscular atrophy (SMA is a hereditary childhood disease that causes paralysis and progressive degeneration of skeletal muscles and spinal motor neurons. SMA is associated with reduced levels of full-length Survival of Motor Neuron (SMN protein, due to mutations in the Survival of Motor Neuron 1 gene. Nowadays there are no effective therapies available to treat patients with SMA, so our aim was to test whether the non-toxic carboxy-terminal fragment of tetanus toxin heavy chain (TTC, which exhibits neurotrophic properties, might have a therapeutic role or benefit in SMA. In this manuscript, we have demonstrated that TTC enhance the SMN expression in motor neurons in vitro and evaluated the effect of intramuscular injection of TTC-encoding plasmid in the spinal cord and the skeletal muscle of SMNdelta7 mice. For this purpose, we studied the weight and the survival time, as well as, the survival and cell death pathways and muscular atrophy. Our results showed that TTC treatment reduced the expression of autophagy markers (Becn1, Atg5, Lc3 and p62 and pro-apoptotic genes such as Bax and Casp3 in spinal cord. In skeletal muscle, TTC was able to downregulate the expression of the main marker of autophagy, Lc3, to wild type levels and the expression of the apoptosis effector protein, Casp3. Regarding the genes related to muscular atrophy (Ankrd1, Calm1, Col19a1, Fbox32, Mt2, Myod1, NogoA, Pax7, Rrad, and Sln, TTC suggest a compensatory effect for muscle damage response, diminished oxidative stress and modulated calcium homeostasis. These preliminary findings suggest the need for further experiments to depth study the effect of TTC in SMA disease.

  16. Neuroprotective Effect of Non-viral Gene Therapy Treatment Based on Tetanus Toxin C-fragment in a Severe Mouse Model of Spinal Muscular Atrophy

    Science.gov (United States)

    Oliván, Sara; Calvo, Ana C.; Rando, Amaya; Herrando-Grabulosa, Mireia; Manzano, Raquel; Zaragoza, Pilar; Tizzano, Eduardo F.; Aquilera, Jose; Osta, Rosario

    2016-01-01

    Spinal muscular atrophy (SMA) is a hereditary childhood disease that causes paralysis and progressive degeneration of skeletal muscles and spinal motor neurons. SMA is associated with reduced levels of full-length Survival of Motor Neuron (SMN) protein, due to mutations in the Survival of Motor Neuron 1 gene. Nowadays there are no effective therapies available to treat patients with SMA, so our aim was to test whether the non-toxic carboxy-terminal fragment of tetanus toxin heavy chain (TTC), which exhibits neurotrophic properties, might have a therapeutic role or benefit in SMA. In this manuscript, we have demonstrated that TTC enhance the SMN expression in motor neurons “in vitro” and evaluated the effect of intramuscular injection of TTC-encoding plasmid in the spinal cord and the skeletal muscle of SMNdelta7 mice. For this purpose, we studied the weight and the survival time, as well as, the survival and cell death pathways and muscular atrophy. Our results showed that TTC treatment reduced the expression of autophagy markers (Becn1, Atg5, Lc3, and p62) and pro-apoptotic genes such as Bax and Casp3 in spinal cord. In skeletal muscle, TTC was able to downregulate the expression of the main marker of autophagy, Lc3, to wild-type levels and the expression of the apoptosis effector protein, Casp3. Regarding the genes related to muscular atrophy (Ankrd1, Calm1, Col19a1, Fbox32, Mt2, Myod1, NogoA, Pax7, Rrad, and Sln), TTC suggest a compensatory effect for muscle damage response, diminished oxidative stress and modulated calcium homeostasis. These preliminary findings suggest the need for further experiments to depth study the effect of TTC in SMA disease. PMID:27605908

  17. Efficacy and biodistribution analysis of intracerebroventricular administration of an optimized scAAV9-SMN1 vector in a mouse model of spinal muscular atrophy.

    Science.gov (United States)

    Armbruster, Nicole; Lattanzi, Annalisa; Jeavons, Matthieu; Van Wittenberghe, Laetitia; Gjata, Bernard; Marais, Thibaut; Martin, Samia; Vignaud, Alban; Voit, Thomas; Mavilio, Fulvio; Barkats, Martine; Buj-Bello, Ana

    2016-01-01

    Spinal muscular atrophy (SMA) is an autosomal recessive disease of variable severity caused by mutations in the SMN1 gene. Deficiency of the ubiquitous SMN function results in spinal cord α-motor neuron degeneration and proximal muscle weakness. Gene replacement therapy with recombinant adeno-associated viral (AAV) vectors showed therapeutic efficacy in several animal models of SMA. Here, we report a study aimed at analyzing the efficacy and biodistribution of a serotype-9, self-complementary AAV vector expressing a codon-optimized human SMN1 coding sequence (coSMN1) under the control of the constitutive phosphoglycerate kinase (PGK) promoter in neonatal SMNΔ7 mice, a severe animal model of the disease. We administered the scAAV9-coSMN1 vector in the intracerebroventricular (ICV) space in a dose-escalating mode, and analyzed survival, vector biodistribution and SMN protein expression in the spinal cord and peripheral tissues. All treated mice showed a significant, dose-dependent rescue of lifespan and growth with a median survival of 346 days. Additional administration of vector by an intravenous route (ICV+IV) did not improve survival, and vector biodistribution analysis 90 days postinjection indicated that diffusion from the cerebrospinal fluid to the periphery was sufficient to rescue the SMA phenotype. These results support the preclinical development of SMN1 gene therapy by CSF vector delivery.

  18. A Fab fragment directed against the neural cell adhesion molecule L1 enhances functional recovery after injury of the adult mouse spinal cord.

    Science.gov (United States)

    Loers, Gabriele; Cui, Yi-Fang; Neumaier, Irmgard; Schachner, Melitta; Skerra, Arne

    2014-06-15

    Lack of permissive mechanisms and abundance of inhibitory molecules in the lesioned central nervous system of adult mammals contribute to the failure of functional recovery, which leads to severe disabilities in motor functions or pain. Previous studies have indicated that the neural cell adhesion molecule L1 constitutes a viable target to promote regeneration. In the present study, we describe the cloning, functional expression in Escherichia coli cells and purification of a recombinant αL1 Fab fragment that binds to L1 with comparable activity as the function-triggering monoclonal antibody 557.B6 and induces neurite outgrowth and neuronal survival in cultured neurons, despite its monovalent function. Infusion of αL1 Fab into the lesioned spinal cord of mice enhanced functional recovery after thoracic spinal cord compression injury. αL1 Fab treatment resulted in reduced scar volume, enhanced number of tyrosine hydroxylase-positive axons and increased linear density of VGLUT1 (vesicular glutamate transporter 1) on motoneurons. Furthermore, the number and soma size of ChAT (choline acetyltransferase)-positive motoneurons and the linear density of ChAT-positive boutons on motoneurons as well as parvalbumin-positive interneurons in the lumbar spinal cord were elevated. Stimulation of endogenous L1 by application of the αL1 Fab opens new avenues for recombinant antibody technology, offering prospects for therapeutic applications after traumatic nervous system lesions.

  19. Spinal canal stenosis; Spinalkanalstenose

    Energy Technology Data Exchange (ETDEWEB)

    Papanagiotou, P.; Boutchakova, M. [Klinikum Bremen-Mitte/Bremen-Ost, Klinik fuer Diagnostische und Interventionelle Neuroradiologie, Bremen (Germany)

    2014-11-15

    Spinal stenosis is a narrowing of the spinal canal by a combination of bone and soft tissues, which can lead to mechanical compression of spinal nerve roots or the dural sac. The lumbal spinal compression of these nerve roots can be symptomatic, resulting in weakness, reflex alterations, gait disturbances, bowel or bladder dysfunction, motor and sensory changes, radicular pain or atypical leg pain and neurogenic claudication. The anatomical presence of spinal canal stenosis is confirmed radiologically with computerized tomography, myelography or magnetic resonance imaging and play a decisive role in optimal patient-oriented therapy decision-making. (orig.) [German] Die Spinalkanalstenose ist eine umschriebene, knoechern-ligamentaer bedingte Einengung des Spinalkanals, die zur Kompression der Nervenwurzeln oder des Duralsacks fuehren kann. Die lumbale Spinalkanalstenose manifestiert sich klinisch als Komplex aus Rueckenschmerzen sowie sensiblen und motorischen neurologischen Ausfaellen, die in der Regel belastungsabhaengig sind (Claudicatio spinalis). Die bildgebende Diagnostik mittels Magnetresonanztomographie, Computertomographie und Myelographie spielt eine entscheidende Rolle bei der optimalen patientenbezogenen Therapieentscheidung. (orig.)

  20. Muscles in a mouse model of spinal muscular atrophy show profound defects in neuromuscular development even in the absence of failure in neuromuscular transmission or loss of motor neurons.

    Science.gov (United States)

    Lee, Young Il; Mikesh, Michelle; Smith, Ian; Rimer, Mendell; Thompson, Wesley

    2011-08-15

    A mouse model of the devastating human disease "spinal muscular atrophy" (SMA) was used to investigate the severe muscle weakness and spasticity that precede the death of these animals near the end of the 2nd postnatal week. Counts of motor units to the soleus muscle as well as of axons in the soleus muscle nerve showed no loss of motor neurons. Similarly, neither immunostaining of neuromuscular junctions nor the measurement of the tension generated by nerve stimulation gave evidence of any significant impairment in neuromuscular transmission, even when animals were maintained up to 5days longer via a supplementary diet. However, the muscles were clearly weaker, generating less than half their normal tension. Weakness in 3 muscles examined in the study appears due to a severe but uniform reduction in muscle fiber size. The size reduction results from a failure of muscle fibers to grow during early postnatal development and, in soleus, to a reduction in number of fibers generated. Neuromuscular development is severely delayed in these mutant animals: expression of myosin heavy chain isoforms, the elimination of polyneuronal innervation, the maturation in the shape of the AChR plaque, the arrival of SCs at the junctions and their coverage of the nerve terminal, the development of junctional folds. Thus, if SMA in this particular mouse is a disease of motor neurons, it can act in a manner that does not result in their death or disconnection from their targets but nonetheless alters many aspects of neuromuscular development.

  1. Human neural stem cells differentiate and promote locomotor recovery in an early chronic spinal cord injury NOD-scid mouse model.

    Directory of Open Access Journals (Sweden)

    Desirée L Salazar

    Full Text Available BACKGROUND: Traumatic spinal cord injury (SCI results in partial or complete paralysis and is characterized by a loss of neurons and oligodendrocytes, axonal injury, and demyelination/dysmyelination of spared axons. Approximately 1,250,000 individuals have chronic SCI in the U.S.; therefore treatment in the chronic stages is highly clinically relevant. Human neural stem cells (hCNS-SCns were prospectively isolated based on fluorescence-activated cell sorting for a CD133(+ and CD24(-/lo population from fetal brain, grown as neurospheres, and lineage restricted to generate neurons, oligodendrocytes and astrocytes. hCNS-SCns have recently been transplanted sub-acutely following spinal cord injury and found to promote improved locomotor recovery. We tested the ability of hCNS-SCns transplanted 30 days post SCI to survive, differentiate, migrate, and promote improved locomotor recovery. METHODS AND FINDINGS: hCNS-SCns were transplanted into immunodeficient NOD-scid mice 30 days post spinal cord contusion injury. hCNS-SCns transplanted mice demonstrated significantly improved locomotor recovery compared to vehicle controls using open field locomotor testing and CatWalk gait analysis. Transplanted hCNS-SCns exhibited long-term engraftment, migration, limited proliferation, and differentiation predominantly to oligodendrocytes and neurons. Astrocytic differentiation was rare and mice did not exhibit mechanical allodynia. Furthermore, differentiated hCNS-SCns integrated with the host as demonstrated by co-localization of human cytoplasm with discrete staining for the paranodal marker contactin-associated protein. CONCLUSIONS: The results suggest that hCNS-SCns are capable of surviving, differentiating, and promoting improved locomotor recovery when transplanted into an early chronic injury microenvironment. These data suggest that hCNS-SCns transplantation has efficacy in an early chronic SCI setting and thus expands the "window of opportunity" for

  2. Spinal Stenosis

    Science.gov (United States)

    ... lower part of the body. It resembles a “horse’s tail” ( cauda equina in Latin). What Causes Spinal ... of the spine fails, it usually places increased stress on other parts of the spine. For example, ...

  3. Spinal Hemangiomas

    Directory of Open Access Journals (Sweden)

    I.A. Norkin

    2010-06-01

    Full Text Available The given article considers the modern view on etiology, pathogenesis, classifications, clinical picture, diagnosis and treatment of spinal hemangiomas. Advantages of vertebroplasty over the other techniques of treatment of studied pathology are presented

  4. Spinal Hemangiomas

    OpenAIRE

    I.A. Norkin; S.V. Likhachev; A.Yu. Chomartov; A.I. Norkin; D.M. Puchinian

    2010-01-01

    The given article considers the modern view on etiology, pathogenesis, classifications, clinical picture, diagnosis and treatment of spinal hemangiomas. Advantages of vertebroplasty over the other techniques of treatment of studied pathology are presented

  5. Spinal Infections

    Science.gov (United States)

    ... infections may occur following surgery or spontaneously in patients with certain risk factors. Risk factors for spinal infections include poor nutrition, immune suppression, human immunodeficiency virus (HIV) infection, cancer, diabetes and obesity. Surgical risk factors ...

  6. Spinal Stenosis

    Science.gov (United States)

    ... risk. Diseases such as arthritis and scoliosis can cause spinal stenosis, too. Symptoms might appear gradually or not at all. They include Pain in your neck or back Numbness, weakness, cramping, or pain in ...

  7. 小鼠脊髓灰质发育过程中细胞迁移与血管之间的关系%The relafionship between cell migration and vasculature in the developing spinal cord of mouse

    Institute of Scientific and Technical Information of China (English)

    王志新; 王卉; 王延芬; 高晓群

    2013-01-01

    Objective:To explore the interaction between angiogenesis and neural migration in developing spinal cord of mice.Methods:A total of 75 mice aged variously were wsed the immunofluorescence and ink perfusion were used to label the neurons and vasculature in the mouse spinal cord aged from E17 (embryonic day 17) to P30 (postnatal day 30).Results:NeuN-positive neurons began to appear in the grey matter of spinal cord at about E17,but there were fewer neurons in white matter.In the meantime,in grey matter and white mater vascular network distribution was uniform,and lumens were consistent with less branches.With age increasing,NeuN-positive neurons migrated to the center from around.Both the NeuN-positive neurons and vascular density in grey matter increased and then decreased,but positive neurons and vascular density in white matter always decreased.After P14 vascular density in grey matter was much more than that in white matter.Finally,the study also showed that some NeuN-positive cells could migrate along blood vessels.Conclusion:NeuN-positive neurons migrated to the center from the around in developing spinal cord of mice,which was closely related to the formation of H shape grey matter.And blood vessels played important role in suiing the migration of neurons in the spinal cord,probably serving as scaffolds for the neuronal migration.%目的:探讨小鼠神经系统发育过程中脊髓成熟神经元迁移与血管发育之间的关系.方法:不同年龄小鼠共计75只,应用免疫荧光及墨汁灌注的技术,标记小鼠胚胎E17到P30脊髓神经元和血管.结果:大约在胚胎E17左右,小鼠脊髓灰质内开始出现NeuN阳性的神经元,白质中神经元较少,且此时灰质和白质内血管分布均匀,管径一致,分支较少.随着年龄的增长,脊髓周围的神经元不断向内迁移,灰质内NeuN阳性的神经元数先增多后减少且血管体密度先增加后减小,而白质内的神经元持续减少,血管逐渐稀疏.P14以

  8. RNA-sequencing of a mouse-model of spinal muscular atrophy reveals tissue-wide changes in splicing of U12-dependent introns

    DEFF Research Database (Denmark)

    Doktor, Thomas Koed; Hua, Yimin; Andersen, Henriette Skovgaard;

    2016-01-01

    unknown. It is likely that aberrant splicing of genes expressed in motor neurons is involved in SMA pathogenesis, but increasing evidence indicates that pathologies also exist in other tissues. We present here a comprehensive RNA-seq study that covers multiple tissues in an SMA mouse model. We show...... are reversed. Finally, we report on missplicing of several Ca(2+) channel genes that may explain disrupted Ca(2+) homeostasis in SMA and activation of Cdk5....

  9. Role of descending noradrenergic system and spinal alpha2-adrenergic receptors in the effects of gabapentin on thermal and mechanical nociception after partial nerve injury in the mouse.

    Science.gov (United States)

    Tanabe, Mitsuo; Takasu, Keiko; Kasuya, Noriyo; Shimizu, Shinobu; Honda, Motoko; Ono, Hideki

    2005-03-01

    1. To gain further insight into the mechanisms underlying the antihyperalgesic and antiallodynic actions of gabapentin, a chronic pain model was prepared by partially ligating the sciatic nerve in mice. The mice then received systemic or local injections of gabapentin combined with either central noradrenaline (NA) depletion by 6-hydroxydopamine (6-OHDA) or alpha-adrenergic receptor blockade. 2. Intraperitoneally (i.p.) administered gabapentin produced antihyperalgesic and antiallodynic effects that were manifested by elevation of the withdrawal threshold to a thermal (plantar test) or mechanical (von Frey test) stimulus, respectively. 3. Similar effects were obtained in both the plantar and von Frey tests when gabapentin was injected intracerebroventricularly (i.c.v.) or intrathecally (i.t.), suggesting that it acts at both supraspinal and spinal loci. This novel supraspinal analgesic action of gabapentin was only obtained in ligated neuropathic mice, and gabapentin (i.p. and i.c.v.) did not affect acute thermal and mechanical nociception. 4. In mice in which central NA levels were depleted by 6-OHDA, the antihyperalgesic and antiallodynic effects of i.p. and i.c.v. gabapentin were strongly suppressed. 5. The antihyperalgesic and antiallodynic effects of systemic gabapentin were reduced by both systemic and i.t. administration of yohimbine, an alpha2-adrenergic receptor antagonist. By contrast, prazosin (i.p. or i.t.), an alpha1-adrenergic receptor antagonist, did not alter the effects of gabapentin. 6. It was concluded that the antihyperalgesic and antiallodynic effects of gabapentin are mediated substantially by the descending noradrenergic system, resulting in the activation of spinal alpha2-adrenergic receptors.

  10. Extracellular signal-regulated protein kinase activation in spinal cord contributes to pain hypersensitivity in a mouse model of type 2 diabetes.

    Science.gov (United States)

    Xu, Xiang; Chen, Hui; Ling, Bing-Yu; Xu, Lan; Cao, Hong; Zhang, Yu-Qiu

    2014-02-01

    Painful peripheral neuropathy is a common complication of diabetes mellitus. The symptom of pain can become a major factor that decreases the quality of life of patients with diabetes, while effective treatment is lacking. In the present study, we aimed to investigate the changes of pain threshold in the early stage of diabetes in db/db mice, an animal model of type 2 diabetes mellitus, and the underlying molecular mechanisms. We found that (1) db/db mice (with a leptin receptor-null mutation and characterized by obesity and hyperglycemia) showed hypersensitivity to mechanical and thermal stimuli at the early stage of diabetes; (2) phosphorylated extracellular signal-regulated kinase (pERK), but not total ERK in the spinal cord and dorsal root ganglia in db/db mice significantly increased compared with wild-type mice. The increased pERK immunoreactivity occurred in both NeuN-expressing neurons and GFAP-expressing astrocytes, but not in Iba-1-expressing microglia; (3) both single and consecutive (for 5 days) intrathecal injections of U0126 (2 nmol per day), a selective MEK (an ERK kinase) inhibitor beginning at 8 weeks of age, attenuated the bilateral mechanical allodynia in the von-Frey test and heat hyperalgesia in Hargreave's test; and (4) db/db mice also displayed increased nocifensive behavior during the formalin test, and this was blocked by intrathecal injection of U0126. Also, the expression of pERK1 and pERK2 was upregulated following the formalin injection. Our results suggested that the activation of ERK in spinal neurons and astrocytes is correlated with pain hypersensitivity of the type 2 diabetes animal model. Inhibiting the ERK pathway may provide a new therapy for pain control in type 2 diabetes.

  11. Rescue of a Mouse Model of Spinal Muscular Atrophy With Respiratory Distress Type 1 by AAV9-IGHMBP2 Is Dose Dependent.

    Science.gov (United States)

    Shababi, Monir; Feng, Zhihua; Villalon, Eric; Sibigtroth, Christine M; Osman, Erkan Y; Miller, Madeline R; Williams-Simon, Patricka A; Lombardi, Abby; Sass, Thalia H; Atkinson, Arleigh K; Garcia, Michael L; Ko, Chien-Ping; Lorson, Christian L

    2016-05-01

    Spinal muscular atrophy with respiratory distress type 1 (SMARD1) is an autosomal recessive disease occurring during childhood. The gene responsible for disease development is a ubiquitously expressed protein, IGHMBP2. Mutations in IGHMBP2 result in the loss of α-motor neurons leading to muscle atrophy in the distal limbs accompanied by respiratory complications. Although genetically and clinically distinct, proximal SMA is also caused by the loss of a ubiquitously expressed gene (SMN). Significant preclinical success has been achieved in proximal SMA using viral-based gene replacement strategies. We leveraged the technologies employed in SMA to demonstrate gene replacement efficacy in an SMARD1 animal model. Intracerebroventricular (ICV) injection of single-stranded AAV9 expressing the full-length cDNA of IGHMBP2 in a low dose led to a significant level of rescue in treated SMARD1 animals. Consistent with drastically increased survival, weight gain, and strength, the rescued animals demonstrated a significant improvement in muscle, NMJ, motor neurons, and axonal pathology. In addition, increased levels of IGHMBP2 in lumbar motor neurons verified the efficacy of the virus to transduce the target tissues. Our results indicate that AAV9-based gene replacement is a viable strategy for SMARD1, although dosing effects and potential negative impacts of high dose and ICV injection should be thoroughly investigated.

  12. Calretinin and Neuropeptide Y interneurons are differentially altered in the motor cortex of the SOD1G93A mouse model of ALS

    Science.gov (United States)

    Clark, Rosemary M.; Blizzard, Catherine A.; Young, Kaylene M.; King, Anna E.; Dickson, Tracey C.

    2017-01-01

    Increasing evidence indicates an excitatory/inhibitory imbalance may have a critical role in the pathogenesis of amyotrophic lateral sclerosis (ALS). Impaired inhibitory circuitry is consistently reported in the motor cortex of both familial and sporadic patients, closely associated with cortical hyperexcitability and ALS onset. Inhibitory network dysfunction is presumably mediated by intra-cortical inhibitory interneurons, however, the exact cell types responsible are yet to be identified. In this study we demonstrate dynamic changes in the number of calretinin- (CR) and neuropeptide Y-expressing (NPY) interneurons in the motor cortex of the familial hSOD1G93A ALS mouse model, suggesting their potential involvement in motor neuron circuitry defects. We show that the density of NPY-populations is significantly decreased by ~17% at symptom onset (8 weeks), and by end-stage disease (20 weeks) is significantly increased by ~30%. Conversely, the density of CR-populations is progressively reduced during later symptomatic stages (~31%) to end-stage (~36%), while CR-expressing interneurons also show alteration of neurite branching patterns at symptom onset. We conclude that a differential capacity for interneurons exists in the ALS motor cortex, which may not be a static phenomenon, but involves early dynamic changes throughout disease, implicating specific inhibitory circuitry. PMID:28294153

  13. Neuroendocrine and cardiac metabolic dysfunction and NLRP3 inflammasome activation in adipose tissue and pancreas following chronic spinal cord injury in the mouse

    Directory of Open Access Journals (Sweden)

    Mark S. Nash

    2013-09-01

    Full Text Available CVD (cardiovascular disease represents a leading cause of mortality in chronic SCI (spinal cord injury. Several component risk factors are observed in SCI; however, the underlying mechanisms that contribute to these risks have not been defined. Central and peripheral chronic inflammation is associated with metabolic dysfunction and CVD, including adipokine regulation of neuroendocrine and cardiac function and inflammatory processes initiated by the innate immune response. We use female C57 Bl/6 mice to examine neuroendocrine, cardiac, adipose and pancreatic signaling related to inflammation and metabolic dysfunction in response to experimentally induced chronic SCI. Using immuno-histochemical, -precipitation, and -blotting analysis, we show decreased POMC (proopiomelanocortin and increased NPY (neuropeptide-Y expression in the hypothalamic ARC (arcuate nucleus and PVN (paraventricular nucleus, 1-month post-SCI. Long-form leptin receptor (Ob-Rb, JAK2 (Janus kinase/STAT3 (signal transducer and activator of transcription 3/p38 and RhoA/ROCK (Rho-associated kinase signaling is significantly increased in the heart tissue post-SCI, and we observe the formation and activation of the NLRP3 (NOD-like receptor family, pyrin domain containing 3 inflammasome in VAT (visceral adipose tissue and pancreas post-SCI. These data demonstrate neuroendocrine signaling peptide alterations, associated with central inflammation and metabolic dysfunction post-SCI, and provide evidence for the peripheral activation of signaling mechanisms involved in cardiac, VAT and pancreatic inflammation and metabolic dysfunction post-SCI. Further understanding of biological mechanisms contributing to SCI-related inflammatory processes and metabolic dysfunction associated with CVD pathology may help to direct therapeutic and rehabilitation countermeasures.

  14. A combined electrophysiological and morphological study of neuropeptide Y-expressing inhibitory interneurons in the spinal dorsal horn of the mouse.

    Science.gov (United States)

    Iwagaki, Noboru; Ganley, Robert P; Dickie, Allen C; Polgár, Erika; Hughes, David I; Del Rio, Patricia; Revina, Yulia; Watanabe, Masahiko; Todd, Andrew J; Riddell, John S

    2016-03-01

    The spinal dorsal horn contains numerous inhibitory interneurons that control transmission of somatosensory information. Although these cells have important roles in modulating pain, we still have limited information about how they are incorporated into neuronal circuits, and this is partly due to difficulty in assigning them to functional populations. Around 15% of inhibitory interneurons in laminae I-III express neuropeptide Y (NPY), but little is known about this population. We therefore used a combined electrophysiological/morphological approach to investigate these cells in mice that express green fluorescent protein (GFP) under control of the NPY promoter. We show that GFP is largely restricted to NPY-immunoreactive cells, although it is only expressed by a third of those in lamina I-II. Reconstructions of recorded neurons revealed that they were morphologically heterogeneous, but never islet cells. Many NPY-GFP cells (including cells in lamina III) appeared to be innervated by C fibres that lack transient receptor potential vanilloid-1, and consistent with this, we found that some lamina III NPY-immunoreactive cells were activated by mechanical noxious stimuli. Projection neurons in lamina III are densely innervated by NPY-containing axons. Our results suggest that this input originates from a small subset of NPY-expressing interneurons, with the projection cells representing only a minority of their output. Taken together with results of previous studies, our findings indicate that somatodendritic morphology is of limited value in classifying functional populations among inhibitory interneurons in the dorsal horn. Because many NPY-expressing cells respond to noxious stimuli, these are likely to have a role in attenuating pain and limiting its spread.

  15. Neuroendocrine and Cardiac Metabolic Dysfunction and NLRP3 Inflammasome Activation in Adipose Tissue and Pancreas following Chronic Spinal Cord Injury in the Mouse

    Directory of Open Access Journals (Sweden)

    Gregory E. Bigford

    2013-08-01

    Full Text Available CVD (cardiovascular disease represents a leading cause of mortality in chronic SCI (spinal cord injury. Several component risk factors are observed in SCI; however, the underlying mechanisms that contribute to these risks have not been defined. Central and peripheral chronic inflammation is associated with metabolic dysfunction and CVD, including adipokine regulation of neuroendocrine and cardiac function and inflammatory processes initiated by the innate immune response. We use female C57 Bl/6 mice to examine neuroendocrine, cardiac, adipose and pancreatic signaling related to inflammation and metabolic dysfunction in response to experimentally induced chronic SCI. Using immunohistochemical, -precipitation, and -blotting analysis, we show decreased POMC (proopiomelanocortin and increased NPY (neuropeptide-Y expression in the hypothalamic ARC (arcuate nucleus and PVN (paraventricular nucleus, 1-month post-SCI. Long-form leptin receptor (Ob-Rb, JAK2 (Janus kinase/STAT3 (signal transducer and activator of transcription 3/p38 and RhoA/ROCK (Rho-associated kinase signaling is significantly increased in the heart tissue post-SCI, and we observe the formation and activation of the NLRP3 (NOD-like receptor family, pyrin domain containing 3 inflammasome in VAT (visceral adipose tissue and pancreas post-SCI. These data demonstrate neuroendocrine signaling peptide alterations, associated with central inflammation and metabolic dysfunction post-SCI, and provide evidence for the peripheral activation of signaling mechanisms involved in cardiac, VAT and pancreatic inflammation and metabolic dysfunction post-SCI. Further understanding of biological mechanisms contributing to SCI-related inflammatory processes and metabolic dysfunction associated with CVD pathology may help to direct therapeutic and rehabilitation countermeasures.

  16. Quantitative evaluation of 3D mouse behaviors and motor function in the open-field after spinal cord injury using markerless motion tracking.

    Directory of Open Access Journals (Sweden)

    Alison L Sheets

    Full Text Available Thousands of scientists strive to identify cellular mechanisms that could lead to breakthroughs in developing ameliorative treatments for debilitating neural and muscular conditions such as spinal cord injury (SCI. Most studies use rodent models to test hypotheses, and these are all limited by the methods available to evaluate animal motor function. This study's goal was to develop a behavioral and locomotor assessment system in a murine model of SCI that enables quantitative kinematic measurements to be made automatically in the open-field by applying markerless motion tracking approaches. Three-dimensional movements of eight naïve, five mild, five moderate, and four severe SCI mice were recorded using 10 cameras (100 Hz. Background subtraction was used in each video frame to identify the animal's silhouette, and the 3D shape at each time was reconstructed using shape-from-silhouette. The reconstructed volume was divided into front and back halves using k-means clustering. The animal's front Center of Volume (CoV height and whole-body CoV speed were calculated and used to automatically classify animal behaviors including directed locomotion, exploratory locomotion, meandering, standing, and rearing. More detailed analyses of CoV height, speed, and lateral deviation during directed locomotion revealed behavioral differences and functional impairments in animals with mild, moderate, and severe SCI when compared with naïve animals. Naïve animals displayed the widest variety of behaviors including rearing and crossing the center of the open-field, the fastest speeds, and tallest rear CoV heights. SCI reduced the range of behaviors, and decreased speed (r = .70 p<.005 and rear CoV height (r = .65 p<.01 were significantly correlated with greater lesion size. This markerless tracking approach is a first step toward fundamentally changing how rodent movement studies are conducted. By providing scientists with sensitive, quantitative

  17. Optimised and rapid pre-clinical screening in the SOD1(G93A transgenic mouse model of amyotrophic lateral sclerosis (ALS.

    Directory of Open Access Journals (Sweden)

    Richard J Mead

    Full Text Available The human SOD1(G93A transgenic mouse has been used extensively since its development in 1994 as a model for amyotrophic lateral sclerosis (ALS. In that time, a great many insights into the toxicity of mutant SOD1 have been gained using this and other mutant SOD transgenic mouse models. They all demonstrate a selective toxicity towards motor neurons and in some cases features of the pathology seen in the human disease. These models have two major drawbacks. Firstly the generation of robust preclinical data in these models has been highlighted as an area for concern. Secondly, the amount of time required for a single preclinical experiment in these models (3-4 months is a hurdle to the development of new therapies. We have developed an inbred C57BL/6 mouse line from the original mixed background (SJLxC57BL/6 SOD1(G93A transgenic line and show here that the disease course is remarkably consistent and much less prone to background noise, enabling reduced numbers of mice for testing of therapeutics. Secondly we have identified very early readouts showing a large decline in motor function compared to normal mice. This loss of motor function has allowed us to develop an early, sensitive and rapid screening protocol for the initial phases of denervation of muscle fibers, observed in this model. We describe multiple, quantitative readouts of motor function that can be used to interrogate this early mechanism. Such an approach will increase throughput for reduced costs, whilst reducing the severity of the experimental procedures involved.

  18. 本体觉传入纤维在小鼠脊髓内的发育变化%DEVELOPMENTAL ALTERNATIONS IN PROPRIOCEPTIVE AFFERENT PROJECTIONS IN THE MOUSE SPINAL CORD

    Institute of Scientific and Technical Information of China (English)

    黄静; 冯枫; 刘翔宇; 李云庆; 武胜昔

    2006-01-01

    目的观察本体觉传入纤维在小鼠脊髓内投射和终止的发育变化. 方法采用小牛白蛋白(PV)免疫组织化学染色特异标记本体觉传入纤维,用免疫荧光单标记和双标记方法观察本体觉传入纤维在脊髓内的生长模式以及与运动神经元的关系.染色后的切片用激光共聚焦显微镜进行观察. 结果PV样免疫阳性(LI)本体觉纤维最早于胚胎(E)14 d出现在后索,E15时进入脊髓灰质.E16时,已有较多的PV-LI纤维到达中间带灰质和前角(VH).此后,随着发育阶段的增长,脊髓VH内PV-LI本体觉纤维和终末的数量和密度逐渐增加,并在生后早期P0-P7达到最高水平.P14后,上述本体觉纤维和终末的数量逐渐减少.本体觉传入纤维的终末在E17时开始与脊髓VH运动神经元形成密切的接触.结论本体觉传入纤维在脊髓内的定位模式形成于小鼠胚胎后期和生后早期,本研究结果为深入理解脊髓反射运动环路的发育特点提供了依据.%Objective To observe the developmental changes of projection and termination of proprioceptive afferent fibers in the mouse spinal cord. Methods Parvalbumin (PV) immunohistochemistry was used to label the proprioceptive afferents. Single and dual immunofluorescence histochemistry were used to examine the growth pattern of proprioceptive afferents and their relationships with motoneurons in the spinal ventral horn (VH). The stained sections were observed under a confocal laserscanning microscope. Results PV-like immunoreactive (LI) proprioceptive fibers first appeared in the dorsal column on embryonic (E) day 14, then entered the gray matter on El5 and reached the intermediate gray matter and VH more obviously on E16. The number and intensity of PV-LI proprioceptive afferent fibers and punctata increased in the VH with age and reached a maximum during earlier postnatal (P) period (P0-P7). After P14, the number and intensity of proprioceptive afferents gradually

  19. Estudio anatómico de la transferencia de los nervios accesorio y toracodorsal al nervio cubital en el gato Anatomic study of spinal accesory and thoracodorsal nerves transfer to ulnar nerve in cats

    Directory of Open Access Journals (Sweden)

    J.R. Martínez-Méndez

    2008-09-01

    Full Text Available Las lesiones del plexo braquial son una de las patologías más graves y con mayor número de secuelas del miembro superior. En el momento actual las transferencias nerviosas se encuentran en primera línea del armamento terapéutico para reconstruir funciones proximales del miembro superior. En el estudio que presentamos se realizaron 20 transferencias nerviosas al nervio cubital del gato común, tomando bien el nervio accesorio del espinal (10 casos o bien el nervio toracodorsal (10 casos. Como grupo control se utilizó el lado contralateral al intervenido. Durante el año siguiente, se evaluó la reinervación mediante estudios electromiográficos, histológicos de nervio y músculo, así como histoquímicos de médula espinal. Tras el análisis de los resultados encontramos que las motoneuronas de ambos nervios donantes son capaces de conseguir reinervaciones parciales del territorio cubital.A brachial plexus injury is one of the most severe pathologies of the upper limb, and also has severe sequels. In the actual state of the art, nerve transfers are being used as first line of therapeutic approach in the reconstruction of proximal functions of the upper limb. In this study 20 nerve transfers were made to the ulnar nerve of the cat, using the spinal accessory nerve (10 cases or the thoracodorsal nerve (10 cases. The opposite side was used as control. During next year, reinnervation was assessed by electromyography, nerve and muscle histology and histochemical evaluation of the spinal cord. We found that motoneurons of both donor nerves are able to make partial reinervation of the ulnar nerve territory.

  20. Learning about Spinal Muscular Atrophy

    Science.gov (United States)

    ... News Release Fischbeck Group Learning About Spinal Muscular Atrophy What is spinal muscular atrophy? What are the ... for Spinal Muscular Atrophy What is spinal muscular atrophy? Spinal muscular atrophy is a group of inherited ...

  1. Inhibitory Interneurons That Express GFP in the PrP-GFP Mouse Spinal Cord Are Morphologically Heterogeneous, Innervated by Several Classes of Primary Afferent and Include Lamina I Projection Neurons among Their Postsynaptic Targets.

    Science.gov (United States)

    Ganley, Robert P; Iwagaki, Noboru; del Rio, Patricia; Baseer, Najma; Dickie, Allen C; Boyle, Kieran A; Polgár, Erika; Watanabe, Masahiko; Abraira, Victoria E; Zimmerman, Amanda; Riddell, John S; Todd, Andrew J

    2015-05-13

    The superficial dorsal horn of the spinal cord contains numerous inhibitory interneurons, which regulate the transmission of information perceived as touch, pain, or itch. Despite the importance of these cells, our understanding of their roles in the neuronal circuitry is limited by the difficulty in identifying functional populations. One group that has been identified and characterized consists of cells in the mouse that express green fluorescent protein (GFP) under control of the prion protein (PrP) promoter. Previous reports suggested that PrP-GFP cells belonged to a single morphological class (central cells), received inputs exclusively from unmyelinated primary afferents, and had axons that remained in lamina II. However, we recently reported that the PrP-GFP cells expressed neuronal nitric oxide synthase (nNOS) and/or galanin, and it has been shown that nNOS-expressing cells are more diverse in their morphology and synaptic connections. We therefore used a combined electrophysiological, pharmacological, and anatomical approach to reexamine the PrP-GFP cells. We provide evidence that they are morphologically diverse (corresponding to "unclassified" cells) and receive synaptic input from a variety of primary afferents, with convergence onto individual cells. We also show that their axons project into adjacent laminae and that they target putative projection neurons in lamina I. This indicates that the neuronal circuitry involving PrP-GFP cells is more complex than previously recognized, and suggests that they are likely to have several distinct roles in regulating the flow of somatosensory information through the dorsal horn.

  2. Spinal Cord Contusion

    Institute of Scientific and Technical Information of China (English)

    Gong Ju; Jian Wang; Yazhou Wang; Xianghui Zhao

    2014-01-01

    Spinal cord injury is a major cause of disability with devastating neurological outcomes and lim-ited therapeutic opportunities, even though there are thousands of publications on spinal cord injury annually. There are two major types of spinal cord injury, transaction of the spinal cord and spinal cord contusion. Both can theoretically be treated, but there is no well documented treatment in human being. As for spinal cord contusion, we have developed an operation with fabulous result.

  3. Acquired lumbar spinal stenosis.

    Science.gov (United States)

    Deasy, JoAnn

    2015-04-01

    Lumbar spinal stenosis is the most frequent reason for spinal surgery in patients over age 65 years. In this condition, narrowing of the lumbar spinal canal and nerve root canals leads to painful, debilitating compression of spinal nerves and blood vessels. As the population ages, an increasing number of patients will be diagnosed and treated for lumbar spinal stenosis by primary care providers. This article reviews the pathophysiology, diagnosis, and management of lumbar spinal stenosis in adults over age 50 years.

  4. Increased anxiety-like behavior and selective learning impairments are concomitant to loss of hippocampal interneurons in the presymptomatic SOD1(G93A) ALS mouse model.

    Science.gov (United States)

    Quarta, Eros; Bravi, Riccardo; Scambi, Ilaria; Mariotti, Raffaella; Minciacchi, Diego

    2015-08-01

    Amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disease primarily characterized by motor neuron death, causes damages beyond motor-related areas. In particular, cognitive impairments and hippocampal damage have been reported in ALS patients. We investigated spatial navigation learning and hippocampal interneurons in a mutant SOD1(G93A) mouse (mSOD1) model of ALS. Behavioral tests were performed by using presymptomatic mSOD1 mice. General motor activity was comparable to that of wild-type mice in the open-field test, in which, however mSOD1 exhibited increased anxiety-like behavior. In the Barnes maze test, mSOD1 mice displayed a delay in learning, outperformed wild-type mice during the first probe trial, and exhibited impaired long-term memory. Stereological counts of parvalbumin-positive interneurons, which are crucial for hippocampal physiology and known to be altered in other central nervous system regions of mSOD1 mice, were also performed. At postnatal day (P) 56, the population of parvalbumin-positive interneurons in mSOD1 mice was already reduced in CA1 and in CA3, and at P90 the reduction extended to the dentate gyrus. Loss of parvalbumin-positive hippocampal interneurons occurred mostly during the presymptomatic stage. Western blot analysis showed that hippocampal parvalbumin expression levels were already reduced in mSOD1 mice at P56. The hippocampal alterations in mSOD1 mice could at least partly account for the increased anxiety-like behavior and deficits in spatial navigation learning. Our study provides evidence for cognitive alterations and damage to the γ-aminobutyric acid (GABA)ergic system in the hippocampus of murine ALS, thereby revealing selective deficits antecedent to the onset of motor symptoms.

  5. In vitro biocorrosion of Ti-6Al-4V implant alloy by a mouse macrophage cell line.

    Science.gov (United States)

    Lin, Hsin-Yi; Bumgardner, Joel D

    2004-03-15

    Corrosion of implant alloys releasing metal ions has the potential to cause adverse tissue reactions and implant failure. We hypothesized that macrophage cells and their released reactive chemical species (RCS) affect the alloy's corrosion properties. A custom cell culture corrosion box was used to evaluate how cell culture medium, macrophage cells and RCS altered the Ti-6Al-4V corrosion behaviors in 72 h and how corrosion products affected the cells. There was no difference in the charge transfer in the presence (75.2 +/- 17.7 mC) and absence (62.3 +/- 18.8 mC) of cells. The alloy had the lowest charge transfer (28.2 +/- 4.1 mC) and metal ion release (Ti < 10 ppb, V < 2 ppb) with activated cells (releasing RCS) compared with the other two conditions. This was attributed to an enhancement of the surface oxides by RCS. Metal ion release was very low (Ti < 20 ppb, V < 10 ppb) with nonactivated cells and did not change cell morphology, viability, and NO and ATP release compared with controls. However, IL-1beta released from the activated cells and the proliferation of nonactivated cells were greater on the alloy than the controls. In summary, macrophage cells and RCS reduced the corrosion of Ti-6Al-4V alloys as hypothesized. These data are important in understanding host tissue-material interactions.

  6. Spinal pain

    Energy Technology Data Exchange (ETDEWEB)

    Izzo, R., E-mail: roberto1766@interfree.it [Neuroradiology Department, A. Cardarelli Hospital, Naples (Italy); Popolizio, T., E-mail: t.popolizio1@gmail.com [Radiology Department, Casa Sollievo della Sofferenza Hospital, San Giovanni Rotondo (Fg) (Italy); D’Aprile, P., E-mail: paoladaprile@yahoo.it [Neuroradiology Department, San Paolo Hospital, Bari (Italy); Muto, M., E-mail: mutomar@tiscali.it [Neuroradiology Department, A. Cardarelli Hospital, Napoli (Italy)

    2015-05-15

    Highlights: • Purpose of this review is to address the current concepts on the pathophysiology of discogenic, radicular, facet and dysfunctional spinal pain, focusing on the role of the imaging in the diagnostic setting, to potentially address a correct approach also to minimally invasive interventional techniques. • Special attention will be given to the discogenic pain, actually considered as the most frequent cause of chronic low back pain. • The correct distinction between referred pain and radicular pain contributes to give a more correct approach to spinal pain. • The pathogenesis of chronic pain renders this pain a true pathology requiring a specific management. - Abstract: The spinal pain, and expecially the low back pain (LBP), represents the second cause for a medical consultation in primary care setting and a leading cause of disability worldwide [1]. LBP is more often idiopathic. It has as most frequent cause the internal disc disruption (IDD) and is referred to as discogenic pain. IDD refers to annular fissures, disc collapse and mechanical failure, with no significant modification of external disc shape, with or without endplates changes. IDD is described as a separate clinical entity in respect to disc herniation, segmental instability and degenerative disc desease (DDD). The radicular pain has as most frequent causes a disc herniation and a canal stenosis. Both discogenic and radicular pain also have either a mechanical and an inflammatory genesis. For to be richly innervated, facet joints can be a direct source of pain, while for their degenerative changes cause compression of nerve roots in lateral recesses and in the neural foramina. Degenerative instability is a common and often misdiagnosed cause of axial and radicular pain, being also a frequent indication for surgery. Acute pain tends to extinguish along with its cause, but the setting of complex processes of peripheral and central sensitization may influence its evolution in chronic

  7. Spinal infections

    Energy Technology Data Exchange (ETDEWEB)

    Tali, E. Turgut E-mail: turguttali@gazi.edu.tr

    2004-05-01

    Spinal infections can be thought of as a spectrum of disease comprising spondylitis, discitis, spondylodiscitis, pyogenic facet arthropathy, epidural infections, meningitis, polyradiculopathy and myelitis. Radiological evaluations have gained importance in the diagnosis, treatment planning, treatment and treatment monitoring of the spinal infections. Conventional radiographs are usually the initial imaging study. The sensitivity and specificity of the plain radiographs are very low. The sensitivity of CT is higher while it lacks of specificity. Conventional CT has played minor role for the diagnosis of early spondylitis and disc space infection and for follow-up, researches are going on the value of MDCT. MRI is as sensitive, specific and accurate as combined nuclear medicine studies and the method of choice for the spondylitis. Low signal areas of the vertebral body, loss of definition of the end plates and interruption of the cortical continuity, destruction of the cortical margins are typical on T1WI whereas high signal of affected areas of the vertebral body and disc is typical on T2WI. Contrast is mandatory and increases conspicuity, specificity, and observer confidence in the diagnosis and facilitates the treatment planning. Contrast enhancement is the earliest sign and pathognomonic in the acute inflammatory episode and even in the subtle infection then persists to a varying degree for several weeks or months. The outcome of the treatment is influenced by the type of infection and by the degree of neurologic compromise before treatment. There is an increasing move away from surgical intervention towards conservative therapy, percutaneous drainage of abscess or both. It is therefore critical to monitor treatment response, particularly in the immuno-deficient population.

  8. Spinal angiography. Anatomy, technique and indications; Spinale Angiographie. Anatomie, Technik und Indikation

    Energy Technology Data Exchange (ETDEWEB)

    Reith, W.; Simgen, A.; Yilmaz, U. [Universitaetsklinikum des Saarlandes, Klinik fuer Diagnostische und Interventionelle Neuroradiologie, Homburg/Saar (Germany)

    2012-05-15

    Spinal angiography is a diagnostic modality requiring detailed knowledge of spinal vascular anatomy. The cervical spinal cord is supplied by the vertebral arteries while segmental arteries which are preserved from fetal anatomy, supply the thoracic and lumbar regions. As spinal angiography carries the risk of paraplegia the indications have to be considered very carefully. Nevertheless, spinal angiography should be performed if there is reason to suspect a spinal vascular malformation from magnetic resonance imaging (MRI). (orig.) [German] Indikationsstellung, Technik und Durchfuehrung der spinalen Angiographie erfordern detaillierte Kenntnisse der Gefaessversorgung des Spinalkanals und des Rueckenmarks. Die Gefaessversorgung des Rueckenmarks erfolgt im Bereich des Halsmarks aus den beiden Aa. vertebrales. Eine zusaetzliche arterielle Versorgung der Wirbelsaeule einschliesslich des Rueckenmarks wird ueber segmentale Arterien hergestellt, die im Bereich der Thorakal- und Lumbalregion aus der Embryonalphase als segmentale, interkostale und Lumbalarterien erhalten geblieben sind. Da die spinale Angiographie die Gefahr der Querschnittslaehmung birgt, ist eine strenge Indikation notwendig. Eine ueber laengere Zeit bestehende unklare klinische Symptomatik kann auch durch eine spinale Gefaessmalformation hervorgerufen werden. Ist durch die MRT-Bildgebung der Verdacht auf eine spinale Gefaessfehlbildung gegeben, sollte eine Angiographie durchgefuehrt werden, da diese Fehlbildungen oft kurabel sind. (orig.)

  9. Granulocyte colony stimulating factor attenuates inflammation in a mouse model of amyotrophic lateral sclerosis

    Directory of Open Access Journals (Sweden)

    Giniatullina Raisa

    2011-06-01

    Full Text Available Abstract Background Granulocyte colony stimulating factor (GCSF is protective in animal models of various neurodegenerative diseases. We investigated whether pegfilgrastim, GCSF with sustained action, is protective in a mouse model of amyotrophic lateral sclerosis (ALS. ALS is a fatal neurodegenerative disease with manifestations of upper and lower motoneuron death and muscle atrophy accompanied by inflammation in the CNS and periphery. Methods Human mutant G93A superoxide dismutase (SOD1 ALS mice were treated with pegfilgrastim starting at the presymptomatic stage and continued until the end stage. After long-term pegfilgrastim treatment, the inflammation status was defined in the spinal cord and peripheral tissues including hematopoietic organs and muscle. The effect of GCSF on spinal cord neuron survival and microglia, bone marrow and spleen monocyte activation was assessed in vitro. Results Long-term pegfilgrastim treatment prolonged mutant SOD1 mice survival and attenuated both astro- and microgliosis in the spinal cord. Pegfilgrastim in SOD1 mice modulated the inflammatory cell populations in the bone marrow and spleen and reduced the production of pro-inflammatory cytokine in monocytes and microglia. The mobilization of hematopoietic stem cells into the circulation was restored back to basal level after long-term pegfilgrastim treatment in SOD1 mice while the storage of Ly6C expressing monocytes in the bone marrow and spleen remained elevated. After pegfilgrastim treatment, an increased proportion of these cells in the degenerative muscle was detected at the end stage of ALS. Conclusions GCSF attenuated inflammation in the CNS and the periphery in a mouse model of ALS and thereby delayed the progression of the disease. This mechanism of action targeting inflammation provides a new perspective of the usage of GCSF in the treatment of ALS.

  10. Expression of the tyrosine kinase receptor EphA5 and its ligand ephrin-A5 during mouse spinal cord development%酪氨酸激酶受体EphA5及其配体ephrin-A5在小鼠脊髓发育过程中的表达

    Institute of Scientific and Technical Information of China (English)

    Christopher P. WASHBURN; Margaret A. COOPER; 周仁平

    2007-01-01

    Objectives To study the expression patterns of two Eph family molecules, the receptor EphA5, and the ligand ephrin-A5, during spinal cord development. Methods The receptor expression was analyzed using beta-galactosidase knockin mice, and affinity ligand probe binding. The ligand expression was assessed using two different affinity probes, and knockout mouse tissues as controls. Results EphA5 was expressed in the ventral spinal cord, while ephrin-A5 was located in the dorsolateral regions of the spinal cord throughout development. Conclusions These results show that EphA5 and ephrin-A5 are expressed over broad developmental stages and may play important roles in establishing the dorsoventral organization of the spinal cord.%目的 研究两个Eph家族分子,EphA5受体及其配体ephrin-A5,在脊髓发育过程中的表达方式.方法 β-半乳糖苷酶基因敲入小鼠和配体亲和探针分析受体的表达,两种不同的亲和探针分析配体的表达,基因敲除小鼠作为对照.结果 在发育过程中,EphA5表达于脊髓腹侧,而eprin-A5表达于脊髓背侧.结论 EphA5和ephrin-A5在多个脊髓发育阶段都有表达,他们可能在脊髓背腹侧组织结构的建立过程中发挥重要作用.

  11. Spinal and epidural anesthesia

    Science.gov (United States)

    ... you epidural or spinal anesthesia is called an anesthesiologist. First, the area of your back where the ... Chan VWS. Spinal, epidural, and caudal anesthesia. In: Miller RD, ed. Miller's Anesthesia . 8th ed. Philadelphia, PA: ...

  12. Spinal Cord Dysfunction (SCD)

    Data.gov (United States)

    Department of Veterans Affairs — The Spinal Cord Dysfunction (SCD) module supports the maintenance of local and national registries for the tracking of patients with spinal cord injury and disease...

  13. Tethered Spinal Cord Syndrome

    Science.gov (United States)

    ... roots may be cut to relieve pain. In adults, surgery to free (detether) the spinal cord can reduce the size ... is a neurological disorder caused by tissue attachments that limit the movement of the spinal cord ...

  14. Extradural spinal meningioma: MRI

    Energy Technology Data Exchange (ETDEWEB)

    Sato, N. [Department of Diagnostic Radiology, Yale University School of Medicine, P. O. Box 20 8042, New Haven, CT 06520-8042 (United States); Sze, G. [Department of Diagnostic Radiology, Yale University School of Medicine, P. O. Box 20 8042, New Haven, CT 06520-8042 (United States)

    1997-06-01

    We report a case of extradural spinal meningioma with pathologically proven features of malignant transformation. The MRI findings of extradural spinal meningioma and differences in the findings from intradural meningiomas are discussed. (orig.). With 1 fig.

  15. Spinal cord abscess

    Science.gov (United States)

    ... drugs The infection often begins in the bone ( osteomyelitis ). The bone infection may cause an epidural abscess ... Boils Cerebral spinal fluid (CSF) collection Epidural abscess Osteomyelitis Pulmonary tuberculosis Sepsis Spinal cord trauma Swelling Review ...

  16. Spinal Muscular Atrophy

    Science.gov (United States)

    Spinal muscular atrophy (SMA) is a genetic disease that attacks nerve cells, called motor neurons, in the spinal cord. These cells communicate with your voluntary muscles - the ones you can control, like in your ...

  17. Spinal Cord Diseases

    Science.gov (United States)

    ... damages the vertebrae or other parts of the spine, this can also injure the spinal cord. Other spinal cord problems include Tumors Infections such as meningitis and polio Inflammatory diseases Autoimmune diseases Degenerative diseases such as amyotrophic lateral sclerosis and spinal ...

  18. Spinal Cord Injuries

    Science.gov (United States)

    ... forth between your body and your brain. A spinal cord injury disrupts the signals. Spinal cord injuries usually begin with a blow that fractures or ... down on the nerve parts that carry signals. Spinal cord injuries can be complete or incomplete. With a complete ...

  19. Spinal Muscular Atrophy (SMA)

    Science.gov (United States)

    ... Your 1- to 2-Year-Old Spinal Muscular Atrophy (SMA) KidsHealth > For Parents > Spinal Muscular Atrophy (SMA) A A A What's in this article? ... Outlook en español Atrofia muscular espinal Spinal muscular atrophy, or SMA, is an inherited condition that causes ...

  20. Spinal epidural hematoma; Spinales epidurales Haematom

    Energy Technology Data Exchange (ETDEWEB)

    Papanagiotou, P. [Universitaetsklinikum des Saarlandes, Klinik fuer Diagnostische und Interventionelle Neuroradiologie, Homburg/Saar (Germany)

    2012-05-15

    Spinal epidural hematoma is an accumulation of blood in the potential space between the dura and bone. On unenhanced computed tomography epidural hemorrhage appears as a high-density spinal canal mass with variable cord compression. Magnetic resonance imaging is the modality of choice for evaluating spinal epidural hematoma and can demonstrate the extent of the hematoma and degree of cord compression. When treated surgically the outcome depends on the extent of preoperative neurological deficits and on the operative timing interval. (orig.) [German] Das spinale epidurale Haematom ist eine Blutansammlung zwischen Dura und Knochen. Die klinische Praesentation ist aehnlich dem akuten Bandscheibenvorfall, die Symptomatik ist allerdings in der Regel progredient. In der CT stellt sich ein frisches Haematom hyperdens dar. Die MRT ist die Methode der Wahl zur Diagnose spinaler epiduraler Haematome und kann die Ausdehnung sowie auch das Ausmass der Kompression darstellen. Die wichtigste Differenzialdiagnose vom epiduralen Haematom ist das epidurale Empyem. (orig.)

  1. 痛温觉和本体觉传入纤维在小鼠脊髓内的不同发育特点%ALTERNATIVE DEVELOPMENT OF NOCICEPTIVE AND PROPRIOCEPTIVE AFFERENT FIBERS IN THE MOUSE SPINAL CORD

    Institute of Scientific and Technical Information of China (English)

    冯枫; 黄静; 刘翔宇; 李云庆; 武胜昔

    2006-01-01

    The present study was designed to examine the developmental changes in projection and termination of nociceptive and proprioceptive afferent fibers in the spinal cord by labeling those two fibers with calcitonion gene-related peptide (CGRP) and parvalbumin (PV)separately in mouse embryos and neonatal pups aged embryonic day 15 to posanatal day 3 (E15 -P3). CGRP-like immunoreactive (LI)nociceptive fibers first appeared in the superficial dorsal horn (DH) at E16. The afferent projections extended laterally to the DH and entered into the deep portions of the DH at E17 and E18. After birth, the projection pattern of CGRP-LI fibers remained unchanged but the intensity of afferent terminals increased in the superficial laminae and their branching patterns became more complicated. In addition,CGRP-LI collaterals that projected into the contralateral DH were also examined after E16. Around birth, the contralateral projections were also found originated from the lateral part of the DH. PV-LI proprioceptive afferents were first observed entering the gray matter at E15 and reached the intermediate gray matter (IG) and the ventral horn (VH) more obviously on E16. The number and intensity of PV-LI fibers increased in the the VH with age and reached a maximum during earlier postnatal period ( P0-P3 ). The proprioceptive terminals seemed to form close relationship with motoneurons in the VH from E17. Our results indicate that the somatotopic organization of nociceptive and proprioceptive afferents in the spinal cord both are established during the late embryonic and early postnatal stages. These results help to understand the development of the sensory transmission in more details.%本研究通过采用钙基因相关肽(CGRP)和小牛白蛋白(PV)分别标记胚胎15d(E15)到生后3d(P3)小鼠脊髓的痛温觉和本体觉两种初级传入纤维,观察了这两种纤维在小鼠脊髓内投射和终止的发育变化.结果显示:CGRP样免疫阳性(LI)纤维最早于E16出现

  2. Two-photon imaging of neural activity and structural plasticity in the rodent spinal cord

    OpenAIRE

    Johannssen, H

    2011-01-01

    In my PhD thesis, I used two‐photon imaging to investigate neuronal circuits and glia cells in the spinal cord of living mice. To achieve this, a major effort first was to establish a mouse spinal cord preparation suitable for stable and long‐lasting imaging experiments. Without adequate stabilisation, the spinal cord was prone to large‐scale movement artefacts clearly hampering high‐resolution imaging in vivo. To overcome these limitations, I employed strategies to optimise th...

  3. Mutant TDP-43 deregulates AMPK activation by PP2A in ALS models.

    Directory of Open Access Journals (Sweden)

    Nirma D Perera

    Full Text Available Bioenergetic abnormalities and metabolic dysfunctionoccur in amyotrophic lateral sclerosis (ALS patients and genetic mouse models. However, whether metabolic dysfunction occurs earlyin ALS pathophysiology linked to different ALS genes remains unclear.Here, we investigatedAMP-activated protein kinase (AMPK activation, which is a key enzyme induced by energy depletion and metabolic stress, inneuronal cells and mouse models expressing mutantsuperoxide dismutase 1 (SOD1or TAR DNA binding protein 43 (TDP-43 linked to ALS.AMPKphosphorylation was sharply increased in spinal cords of transgenic SOD1G93A mice at disease onset and accumulated incytoplasmic granules in motor neurons, but not in pre-symptomatic mice. AMPK phosphorylation also occurred in peripheraltissues, liver and kidney, in SOD1G93A mice at disease onset, demonstrating that AMPK activation occurs late and is not restricted to motor neurons. Conversely, AMPK activity was drastically diminished in spinal cords and brains of presymptomatic and symptomatictransgenic TDP-43A315T mice and motor neuronal cells expressing different TDP-43 mutants. We show that mutant TDP-43 induction of the AMPK phosphatase,protein phosphatase 2A (PP2A, is associated with AMPK inactivation in these ALS models. Furthermore, PP2A inhibition by okadaic acid reversed AMPK inactivation by mutant TDP-43 in neuronal cells. Our results suggest that mutant SOD1 and TDP-43 exert contrasting effects on AMPK activation which may reflect key differences in energy metabolism and neurodegeneration in spinal cords of SOD1G93A and TDP-43A315T mice. While AMPK activation in motor neurons correlateswith progressionin mutant SOD1-mediated disease, AMPK inactivation mediated by PP2Ais associated withmutant TDP-43-linked ALS.

  4. Mutant TDP-43 deregulates AMPK activation by PP2A in ALS models.

    Directory of Open Access Journals (Sweden)

    Nirma D Perera

    Full Text Available Bioenergetic abnormalities and metabolic dysfunction occur in amyotrophic lateral sclerosis (ALS patients and genetic mouse models. However, whether metabolic dysfunction occurs early in ALS pathophysiology linked to different ALS genes remains unclear. Here, we investigated AMP-activated protein kinase (AMPK activation, which is a key enzyme induced by energy depletion and metabolic stress, in neuronal cells and mouse models expressing mutant superoxide dismutase 1 (SOD1 or TAR DNA binding protein 43 (TDP-43 linked to ALS. AMPK phosphorylation was sharply increased in spinal cords of transgenic SOD1G93A mice at disease onset and accumulated in cytoplasmic granules in motor neurons, but not in presymptomatic mice. AMPK phosphorylation also occurred in peripheral tissues, liver and kidney, in SOD1G93A mice at disease onset, demonstrating that AMPK activation occurs late and is not restricted to motor neurons. Conversely, AMPK activity was drastically diminished in spinal cords and brains of presymptomatic and symptomatic transgenic TDP-43A315T mice and motor neuronal cells expressing different TDP-43 mutants. We show that mutant TDP-43 induction of the AMPK phosphatase, protein phosphatase 2A (PP2A, is associated with AMPK inactivation in these ALS models. Furthermore, PP2A inhibition by okadaic acid reversed AMPK inactivation by mutant TDP-43 in neuronal cells. Our results suggest that mutant SOD1 and TDP-43 exert contrasting effects on AMPK activation which may reflect key differences in energy metabolism and neurodegeneration in spinal cords of SOD1G93A and TDP-43A315T mice. While AMPK activation in motor neurons correlates with progression in mutant SOD1-mediated disease, AMPK inactivation mediated by PP2A is associated with mutant TDP-43-linked ALS.

  5. Focal Transplantation of Human iPSC-Derived Glial-Rich Neural Progenitors Improves Lifespan of ALS Mice

    Directory of Open Access Journals (Sweden)

    Takayuki Kondo

    2014-08-01

    Full Text Available Transplantation of glial-rich neural progenitors has been demonstrated to attenuate motor neuron degeneration and disease progression in rodent models of mutant superoxide dismutase 1 (SOD1-mediated amyotrophic lateral sclerosis (ALS. However, translation of these results into a clinical setting requires a renewable human cell source. Here, we derived glial-rich neural progenitors from human iPSCs and transplanted them into the lumbar spinal cord of ALS mouse models. The transplanted cells differentiated into astrocytes, and the treated mouse group showed prolonged lifespan. Our data suggest a potential therapeutic mechanism via activation of AKT signal. The results demonstrated the efficacy of cell therapy for ALS by the use of human iPSCs as cell source.

  6. Pontine reticulospinal projections in the neonatal mouse: Internal organization and axon trajectories.

    Science.gov (United States)

    Sivertsen, Magne S; Perreault, Marie-Claude; Glover, Joel C

    2016-04-15

    We recently characterized physiologically a pontine reticulospinal (pRS) projection in the neonatal mouse that mediates synaptic effects on spinal motoneurons via parallel uncrossed and crossed pathways (Sivertsen et al. [2014] J Neurophysiol 112:1628-1643). Here we characterize the origins, anatomical organization, and supraspinal axon trajectories of these pathways via retrograde tracing from the high cervical spinal cord. The two pathways derive from segregated populations of ipsilaterally and contralaterally projecting pRS neurons with characteristic locations within the pontine reticular formation (PRF). We obtained estimates of relative neuron numbers by counting from sections, digitally generated neuron position maps, and 3D reconstructions. Ipsilateral pRS neurons outnumber contralateral pRS neurons by threefold and are distributed about equally in rostral and caudal regions of the PRF, whereas contralateral pRS neurons are concentrated in the rostral PRF. Ipsilateral pRS neuron somata are on average larger than contralateral. No pRS neurons are positive in transgenic mice that report the expression of GAD, suggesting that they are predominantly excitatory. Putative GABAergic interneurons are interspersed among the pRS neurons, however. Ipsilateral and contralateral pRS axons have distinctly different trajectories within the brainstem. Their initial spinal funicular trajectories also differ, with ipsilateral and contralateral pRS axons more highly concentrated medially and laterally, respectively. The larger size and greater number of ipsilateral vs. contralateral pRS neurons is compatible with our previous finding that the uncrossed projection transmits more reliably to spinal motoneurons. The information about supraspinal and initial spinal pRS axon trajectories should facilitate future physiological assessment of synaptic connections between pRS neurons and spinal neurons.

  7. Intrathecal Delivery of ssAAV9-DAO Extends Survival in SOD1(G93A) ALS Mice.

    Science.gov (United States)

    Wang, Wan; Duan, Weisong; Wang, Ying; Wen, Di; Liu, Yakun; Li, Zhongyao; Hu, Haojie; Cui, Hongying; Cui, Can; Lin, Huiqian; Li, Chunyan

    2016-12-26

    Amyotrophic lateral sclerosis (ALS) is an adult-onset, irreversible neurodegenerative disease that leads to progressive paralysis and inevitable death 3-5 years after diagnosis. The mechanisms underlying this process remain unknown, but new evidence indicates that accumulating levels of D-serine result from the downregulation of D-amino acid oxidase (DAO) and that this is a novel mechanism that leads to motoneuronal death in ALS via N-methyl-D-aspartate receptor-mediated cell toxicity. Here, we explored a new therapeutic approach to ALS by overexpressing DAO in the lumbar region of the mouse spinal cord using a single stranded adeno-associated virus serotype 9 (ssAAV9) vector. A single intrathecal injection of ssAAV9-DAO was made in SOD1(G93A) mice, a well-established mouse model of ALS. Treatment resulted in moderate expression of exogenous DAO in motorneurons in the lumbar spinal cord, reduced immunoreactivity of D-serine, alleviated motoneuronal loss and glial activation, and extended survival. The potential mechanisms underlying these effects were associated with the down-regulation of NF-κB and the restoration of the phosphorylation of Akt. In conclusion, administering ssAAV9-DAO may be an effective complementary approach to gene therapy to extend lifespans in symptomatic ALS.

  8. International Spinal Cord Injury

    DEFF Research Database (Denmark)

    Dvorak, M F; Itshayek, E; Fehlings, M G;

    2015-01-01

    of the completion of the intervention or surgical closure; (6) Surgical procedure-open reduction, (7) Surgical procedure-direct decompression of neural elements, and (8 and 9) Surgical procedure-stabilization and fusion (spinal segment number and level). All variables are coded using numbers or characters. Each...... spinal intervention and procedure is coded (variables 1 through 7) and the spinal segment level is described (variables 8 and 9). Sample clinical cases were developed to illustrate how to complete it. CONCLUSION: The International SCI Spinal Interventions and Surgical Procedures Basic Data Set......STUDY DESIGN: Survey of expert opinion, feedback and final consensus. OBJECTIVE: To describe the development and the variables included in the International Spinal Cord Injury (SCI) Spinal Interventions and Surgical Procedures Basic Data set. SETTING: International working group. METHODS...

  9. Glioblastoma with spinal seeding

    Energy Technology Data Exchange (ETDEWEB)

    Fakhrai, N.; Fazeny-Doerner, B.; Marosi, C. [Clinical Div. of Oncology, Dept. of Medicine I, Univ. of Vienna (Austria); Czech, T. [Dept. of Neurosurgery, Univ. of Vienna (Austria); Diekmann, K. [Dept. of Radiooncology, Univ. of Vienna (Austria); Birner, P.; Hainfellner, J.A. [Clinical Inst. for Neurology, Univ. of Vienna (Austria); Prayer, D. [Dept. of Neuroradiology, Univ. of Vienna (Austria)

    2004-07-01

    Background: extracranial seeding of glioblastoma multiforme (GBM) is very rare and its development depends on several factors. This case report describes two patients suffering from GBM with spinal seeding. In both cases, the anatomic localization of the primary tumor close to the cerebrospinal fluid (CSF) was the main factor for spinal seeding. Case reports: two patients with GBM and spinal seeding are presented. After diagnosis of spinal seeding, both patients were highly symptomatic from their spinal lesions. Case 1 experienced severe pain requiring opiates, and case 2 had paresis of lower limbs as well as urinary retention/incontinence. Both patients were treated with spinal radiation therapy. Nevertheless, they died 3 months after diagnosis of spinal seeding. Results: in both patients the diagnosis of spinal seeding was made at the time of cranial recurrence. Both tumors showed close contact to the CSF initially. Even though the patients underwent intensive treatment, it was not possible to keep them in a symptom-free state. Conclusion: because of short survival periods, patients deserve optimal pain management and dedicated palliative care. (orig.)

  10. Spinal arteriography: a primer

    Institute of Scientific and Technical Information of China (English)

    David A KUMPE

    2005-01-01

    Spinal arteriography is an esoteric procedure that is seldom performed by peripheral interventionalists. This presentation is intended to outline some of the essential points that the interventionalist performing the procedure should be aware of, especially about spinal dural arteriovenous fistulae (SDAVF).

  11. Spinal pain in adolescents

    DEFF Research Database (Denmark)

    Aartun, Ellen; Hartvigsen, Jan; Wedderkopp, Niels

    2014-01-01

    BACKGROUND: The severity and course of spinal pain is poorly understood in adolescents. The study aimed to determine the prevalence and two-year incidence, as well as the course, frequency, and intensity of pain in the neck, mid back, and low back (spinal pain). METHODS: This study was a school...

  12. Spinal D-Serine Increases PKC-Dependent GluN1 Phosphorylation Contributing to the Sigma-1 Receptor-Induced Development of Mechanical Allodynia in a Mouse Model of Neuropathic Pain.

    Science.gov (United States)

    Choi, Sheu-Ran; Moon, Ji-Young; Roh, Dae-Hyun; Yoon, Seo-Yeon; Kwon, Soon-Gu; Choi, Hoon-Seong; Kang, Suk-Yun; Han, Ho-Jae; Beitz, Alvin J; Lee, Jang-Hern

    2017-04-01

    We have recently shown that spinal sigma-1 receptor (Sig-1R) activation facilitates nociception via an increase in phosphorylation of the N-methyl-D-aspartate (NMDA) receptor GluN1 subunit (pGluN1). The present study was designed to examine whether the Sig-1R-induced facilitative effect on NMDA-induced nociception is mediated by D-serine, and whether D-serine modulates spinal pGluN1 expression and the development of neuropathic pain after chronic constriction injury (CCI) of the sciatic nerve. Intrathecal administration of the D-serine degrading enzyme, D-amino acid oxidase attenuated the facilitation of NMDA-induced nociception induced by the Sig-1R agonist, 2-(4-morpholinethyl)1-phenylcyclohexane carboxylate. Exogenous D-serine increased protein kinase C (PKC)-dependent (Ser896) pGluN1 expression and facilitated NMDA-induced nociception, which was attenuated by preteatment with the PKC inhibitor, chelerythrine. In CCI mice, administration of the serine racemase inhibitor, L-serine O-sulfate potassium salt or D-amino acid oxidase on postoperative days 0 to 3 suppressed CCI-induced mechanical allodynia (MA) and pGluN1 expression on day 3 after CCI surgery. Intrathecal administration of D-serine restored MA as well as the GluN1 phosphorylation on day 3 after surgery that was suppressed by the Sig-1R antagonist, N-[2-(3,4-dichlorophenyl)ethyl]-N-methyl-2-(dimethylamino)ethylamine dihydrobromide or the astrocyte inhibitor, fluorocitrate. In contrast, D-serine had no effect on CCI-induced thermal hyperalgesia or GluN1 expression. These results indicate that spinal D-serine: 1) mediates the facilitative effect of Sig-1R on NMDA-induced nociception, 2) modulates PKC-dependent pGluN1 expression, and 3) ultimately contributes to the induction of MA after peripheral nerve injury.

  13. Human spinal motor control

    DEFF Research Database (Denmark)

    Nielsen, Jens Bo

    2016-01-01

    interneurons and exert a direct (willful) muscle control with the aid of a context-dependent integration of somatosensory and visual information at cortical level. However, spinal networks also play an important role. Sensory feedback through spinal circuitries is integrated with central motor commands...... and contributes importantly to the muscle activity underlying voluntary movements. Regulation of spinal interneurons is used to switch between motor states such as locomotion (reciprocal innervation) and stance (coactivation pattern). Cortical regulation of presynaptic inhibition of sensory afferents may focus...... the central motor command by opening or closing sensory feedback pathways. In the future, human studies of spinal motor control, in close collaboration with animal studies on the molecular biology of the spinal cord, will continue to document the neural basis for human behavior. Expected final online...

  14. Caprylic triglyceride as a novel therapeutic approach to effectively improve the performance and attenuate the symptoms due to the motor neuron loss in ALS disease.

    Directory of Open Access Journals (Sweden)

    Wei Zhao

    Full Text Available Amyotrophic lateral sclerosis (ALS is a neurodegenerative disorder of motor neurons causing progressive muscle weakness, paralysis, and finally death. ALS patients suffer from asthenia and their progressive weakness negatively impacts quality of life, limiting their daily activities. They have impaired energy balance linked to lower activity of mitochondrial electron transport chain enzymes in ALS spinal cord, suggesting that improving mitochondrial function may present a therapeutic approach for ALS. When fed a ketogenic diet, the G93A ALS mouse shows a significant increase in serum ketones as well as a significantly slower progression of weakness and lower mortality rate. In this study, we treated SOD1-G93A mice with caprylic triglyceride, a medium chain triglyceride that is metabolized into ketone bodies and can serve as an alternate energy substrate for neuronal metabolism. Treatment with caprylic triglyceride attenuated progression of weakness and protected spinal cord motor neuron loss in SOD1-G93A transgenic animals, significantly improving their performance even though there was no significant benefit regarding the survival of the ALS transgenic animals. We found that caprylic triglyceride significantly promoted the mitochondrial oxygen consumption rate in vivo. Our results demonstrated that caprylic triglyceride alleviates ALS-type motor impairment through restoration of energy metabolism in SOD1-G93A ALS mice, especially during the overt stage of the disease. These data indicate the feasibility of using caprylic acid as an easily administered treatment with a high impact on the quality of life of ALS patients.

  15. GNX-4728, a Novel Small Molecule Drug Inhibitor of Mitochondrial Permeability Transition, is Therapeutic in a Mouse Model of Amyotrophic Lateral Sclerosis

    Directory of Open Access Journals (Sweden)

    Lee J Martin

    2014-12-01

    Full Text Available Amyotrophic lateral sclerosis (ALS is a fatal neurological disorder in humans characterized by progressive degeneration of skeletal muscle and motor neurons in spinal cord, brainstem, and cerebral cortex causing skeletal muscle paralysis, respiratory insufficiency, and death. There are no cures or effective treatments for ALS. ALS can be inherited, but most cases are not associated with a family history of the disease. Mitochondria have been implicated in the pathogenesis but definitive proof of causal mechanisms is lacking. Identification of new clinically translatable disease mechanism-based molecular targets and small molecule drug candidates are needed for ALS patients. We tested the hypothesis in an animal model that drug modulation of the mitochondrial permeability transition pore (mPTP is therapeutic in ALS. A prospective randomized placebo-controlled drug trial was done in a transgenic mouse model of ALS. We explored GNX-4728 as a therapeutic drug. GNX-4728 inhibits mPTP opening as evidenced by increased mitochondrial calcium retention capacity both in vitro and in vivo. Chronic systemic treatment of G37R-human mutant superoxide dismutase-1 (hSOD1 transgenic mice with GNX-4728 resulted in major therapeutic benefits. GNX-4728 slowed disease progression and significantly improved motor function. The survival of ALS mice was increased significantly by GNX-4728 treatment as evidence by a nearly 2-fold extension of lifespan (360 days to 750 days. GNX-4728 protected against motor neuron degeneration and mitochondrial degeneration, attenuated spinal cord inflammation, and preserved neuromuscular junction innervation in the diaphragm in ALS mice. This work demonstrates that a mPTP-acting drug has major disease-modifying efficacy in a preclinical mouse model of ALS and establishes mitochondrial calcium retention, and indirectly the mPTP, as targets for ALS drug development.

  16. Hexokinase I N-terminal based peptide prevents the VDAC1-SOD1 G93A interaction and re-establishes ALS cell viability

    Science.gov (United States)

    Magrì, Andrea; Belfiore, Ramona; Reina, Simona; Tomasello, Marianna Flora; Di Rosa, Maria Carmela; Guarino, Francesca; Leggio, Loredana; De Pinto, Vito; Messina, Angela

    2016-01-01

    Superoxide Dismutase 1 mutants associate with 20–25% of familial Amyotrophic Lateral Sclerosis (ALS) cases, producing toxic aggregates on mitochondria, notably in spinal cord. The Voltage Dependent Anion Channel isoform 1 (VDAC1) in the outer mitochondrial membrane is a docking site for SOD1 G93A mutant in ALS mice and the physiological receptor of Hexokinase I (HK1), which is poorly expressed in mouse spinal cord. Our results demonstrate that HK1 competes with SOD1 G93A for binding VDAC1, suggesting that in ALS spinal cord the available HK1-binding sites could be used by SOD1 mutants for docking mitochondria, producing thus organelle dysfunction. We tested this model by studying the action of a HK1-N-terminal based peptide (NHK1). This NHK1 peptide specifically interacts with VDAC1, inhibits the SOD1 G93A binding to mitochondria and restores the viability of ALS model NSC34 cells. Altogether, our results suggest that NHK1 peptide could be developed as a therapeutic tool in ALS, predicting an effective role also in other proteinopathies. PMID:27721436

  17. Effect of lycopene on the blood-spinal cord barrier after spinal cord injury in mice.

    Science.gov (United States)

    Zhang, Qian; Wang, Jianbo; Gu, Zhengsong; Zhang, Qing; Zheng, Hong

    2016-09-05

    The current study aimed to investigate the effect of lycopene on the blood-spinal cord barrier (BSCB) after spinal cord injury (SCI) in a mouse model. Lycopene inhibited lipid peroxidation and oxidative DNA damage as a highly efficient antioxidant and free radical scavenger. Lycopene (4 mg/kg/d) was administrated immediately following SCI. The permeability of the BSCB and water content in the spinal cord tissue were evaluated. Additionally, levels of expression of tight junction proteins and heme oxygenase-1 (HO-1) were determined with Western blotting. An enzyme-linked immunosorbent assay analysis of spinal cord tissue homogenates was performed 48 h after SCI to evaluate the expression of inflammation-related cytokines. In addition, recovery of motor function was assessed 1 d, 2 d, 5 d, 10 d, and 15 d after SCI using the Basso Mouse Scale to score locomotion. Compared to the group with an untreated SCI, mice with an SCI treated with lycopene had significantly reduced spinal cord tissue water content and BSCB permeability. Furthermore, motor function of mice with an SCI was also greatly improved by lycopene administration. The expression of the proinflammatory factors TNF-α and NF-kB increased markedly 48 h after SCI, and their upregulation was significantly attenuated by lycopene treatment. The expression of molecules that protect tight junctions, zonula occluden-1 and claudin-5, was upregulated by lycopene treatment after SCI. Taken together, these results clearly indicate that lycopene attenuated SCI by promoting repair of the damaged BSCB, so lycopene is a novel and promising treatment for SCI in humans.

  18. Spinal sigma-1 receptor activation increases the production of D-serine in astrocytes which contributes to the development of mechanical allodynia in a mouse model of neuropathic pain.

    Science.gov (United States)

    Moon, Ji-Young; Choi, Sheu-Ran; Roh, Dae-Hyun; Yoon, Seo-Yeon; Kwon, Soon-Gu; Choi, Hoon-Seong; Kang, Suk-Yun; Han, Ho-Jae; Kim, Hyun-Woo; Beitz, Alvin J; Oh, Seog-Bae; Lee, Jang-Hern

    2015-10-01

    We have previously demonstrated that activation of the spinal sigma-1 receptor (Sig-1R) plays an important role in the development of mechanical allodynia (MA) via secondary activation of the N-methyl-d-aspartate (NMDA) receptor. Sig-1Rs have been shown to localize to astrocytes, and blockade of Sig-1Rs inhibits the pathologic activation of astrocytes in neuropathic mice. However, the mechanism by which Sig-1R activation in astrocytes modulates NMDA receptors in neurons is currently unknown. d-serine, synthesized from l-serine by serine racemase (Srr) in astrocytes, is an endogenous co-agonist for the NMDA receptor glycine site and can control NMDA receptor activity. Here, we investigated the role of d-serine in the development of MA induced by spinal Sig-1R activation in chronic constriction injury (CCI) mice. The production of d-serine and Srr expression were both significantly increased in the spinal cord dorsal horn post-CCI surgery. Srr and d-serine were only localized to astrocytes in the superficial dorsal horn, while d-serine was also localized to neurons in the deep dorsal horn. Moreover, we found that Srr exists in astrocytes that express Sig-1Rs. The CCI-induced increase in the levels of d-serine and Srr was attenuated by sustained intrathecal treatment with the Sig-1R antagonist, BD-1047 during the induction phase of neuropathic pain. In behavioral experiments, degradation of endogenous d-serine with DAAO, or selective blockade of Srr by LSOS, effectively reduced the development of MA, but not thermal hyperalgesia in CCI mice. Finally, BD-1047 administration inhibited the development of MA and this inhibition was reversed by intrathecal treatment with exogenous d-serine. These findings demonstrate for the first time that the activation of Sig-1Rs increases the expression of Srr and d-serine in astrocytes. The increased production of d-serine induced by CCI ultimately affects dorsal horn neurons that are involved in the development of MA in neuropathic

  19. Effect of back muscle strength and sagittal spinal imbalance on locomotive syndrome in Japanese men.

    Science.gov (United States)

    Hirano, Kenichi; Imagama, Shiro; Hasegawa, Yukiharu; Wakao, Norimitsu; Muramoto, Akio; Ishiguro, Naoki

    2012-07-01

    The Japanese Orthopaedic Association has proposed the term locomotive syndrome to designate a condition of individuals in high-risk groups with musculoskeletal disease who are highly likely to require nursing care. This study investigates the influence of spinal factors on locomotive syndrome in Japanese men. A total of 105 men older than 50 years were enrolled in the study. Those answering yes to least 1 of 7 categories in a self-assessment checklist for locomotive syndrome were defined as having locomotive syndrome. The authors evaluated lateral lumbar radiographs, sagittal parameters, sagittal balance using the spinal inclination angle as an index, spinal range of motion as determined with SpinalMouse (Idiag, Volkerswill, Switzerland), back muscle strength, and body mass index. Age, back muscle strength, and spinal inclination angle significantly correlated with locomotive syndrome. Multiple logistic regression analysis indicated that a decrease in back muscle strength (odds ratio, 0.964; Pmuscle strength had significant negative correlations with age and spinal inclination angle. Spinal inclination angle had significant negative correlations with back muscle strength and lumbar and total spinal range of motion and significant positive correlations with age, body mass index, sacral slope angle, and lumbar kyphosis. A decrease in back muscle strength and an increase in spinal inclination angle may be the most important risk factors for locomotive syndrome in Japanese men. Back muscle strengthening and spinal range of motion exercises could be useful for improving the symptoms of locomotive syndrome.

  20. Spinal Cord Injury Map

    Science.gov (United States)

    ... Videos by Topic and Question Videos by Family Relationship Videos by Experts Resources The Short List Government Programs Family and Caregiver Support Financial Help Active Lifestyle Advocacy Employment and Education Adaptive Technology Recent Medical Research Good Things to Read Spinal ...

  1. Spinal Cord Injury 101

    Science.gov (United States)

    ... Videos by Topic and Question Videos by Family Relationship Videos by Experts Resources The Short List Government Programs Family and Caregiver Support Financial Help Active Lifestyle Advocacy Employment and Education Adaptive Technology Recent Medical Research Good Things to Read Spinal ...

  2. Spinal Cord Injury

    Science.gov (United States)

    ... indicated by a total lack of sensory and motor function below the level of injury. People who survive a spinal cord injury will most likely have medical complications such as chronic pain and bladder and bowel ...

  3. Extradural Spinal Arachnoid Cysts

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2007-11-01

    Full Text Available A 14-year-old boy with multiple spinal arachnoid cysts and paraplegia, and 37 similar cases in the literature are reviewed by neurosurgeons and radiologist at Univ of Sao Paulo, Brazil.

  4. Spinal curves (image)

    Science.gov (United States)

    There are four natural curves in the spinal column. The cervical, thoracic, lumbar, and sacral curvature. The curves, along with the intervertebral disks, help to absorb and distribute stresses that occur from everyday activities such as walking or from ...

  5. Spinal dysraphism: MRI evaluation

    Directory of Open Access Journals (Sweden)

    Ramacharya

    2015-08-01

    Conclusion: Thus we conclude that Spinal dysraphism were common in young females, with commonest anomaly being vertebral anomaly (Spina bifida, commonest location is lumbar region, Diastematomyelia common in young aged female. Magnetic resonance imaging is an accurate, noninvasive, safe and advanced modality for evaluation of the congenital spinal disorders and help in better management of these patients with prompt and accurate diagnosis. [Int J Res Med Sci 2015; 3(8.000: 1937-1941

  6. Androgens affect muscle, motor neuron, and survival in a mouse model of SOD1-related amyotrophic lateral sclerosis.

    Science.gov (United States)

    Aggarwal, Tanya; Polanco, Maria J; Scaramuzzino, Chiara; Rocchi, Anna; Milioto, Carmelo; Emionite, Laura; Ognio, Emanuela; Sambataro, Fabio; Galbiati, Mariarita; Poletti, Angelo; Pennuto, Maria

    2014-08-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by selective loss of upper and lower motor neurons and skeletal muscle atrophy. Epidemiologic and experimental evidence suggest the involvement of androgens in ALS pathogenesis, but the mechanism through which androgens modify the ALS phenotype is unknown. Here, we show that androgen ablation by surgical castration extends survival and disease duration of a transgenic mouse model of ALS expressing mutant human SOD1 (hSOD1-G93A). Furthermore, long-term treatment of orchiectomized hSOD1-G93A mice with nandrolone decanoate (ND), an anabolic androgenic steroid, worsened disease manifestations. ND treatment induced muscle fiber hypertrophy but caused motor neuron death. ND negatively affected survival, thereby dissociating skeletal muscle pathology from life span in this ALS mouse model. Interestingly, orchiectomy decreased androgen receptor levels in the spinal cord and muscle, whereas ND treatment had the opposite effect. Notably, stimulation with ND promoted the recruitment of endogenous androgen receptor into biochemical complexes that were insoluble in sodium dodecyl sulfate, a finding consistent with protein aggregation. Overall, our results shed light on the role of androgens as modifiers of ALS pathogenesis via dysregulation of androgen receptor homeostasis.

  7. Modeling spinal cord biomechanics

    Science.gov (United States)

    Luna, Carlos; Shah, Sameer; Cohen, Avis; Aranda-Espinoza, Helim

    2012-02-01

    Regeneration after spinal cord injury is a serious health issue and there is no treatment for ailing patients. To understand regeneration of the spinal cord we used a system where regeneration occurs naturally, such as the lamprey. In this work, we analyzed the stress response of the spinal cord to tensile loading and obtained the mechanical properties of the cord both in vitro and in vivo. Physiological measurements showed that the spinal cord is pre-stressed to a strain of 10%, and during sinusoidal swimming, there is a local strain of 5% concentrated evenly at the mid-body and caudal sections. We found that the mechanical properties are homogeneous along the body and independent of the meninges. The mechanical behavior of the spinal cord can be characterized by a non-linear viscoelastic model, described by a modulus of 20 KPa for strains up to 15% and a modulus of 0.5 MPa for strains above 15%, in agreement with experimental data. However, this model does not offer a full understanding of the behavior of the spinal cord fibers. Using polymer physics we developed a model that relates the stress response as a function of the number of fibers.

  8. Randomized clinical trial comparing spinal anesthesia with local anesthesia with sedation for loop colostomy closure Ensaio clínico randomizado comparando raquianestesia com anestesia local, associadas à sedação para o fechamento de colostomia em alça

    Directory of Open Access Journals (Sweden)

    Rone Antônio Alves de Abreu

    2010-09-01

    Full Text Available CONTEXT: Recent studies have shown that local anesthesia for loop colostomy closure is as safe as spinal anesthesia for this procedure. OBJECTIVES: Randomized clinical trial to compare the results from these two techniques. METHODS: Fifty patients were randomized for loop colostomy closure using spinal anesthesia (n = 25 and using local anesthesia (n = 25. Preoperatively, the bowel was evaluated by means of colonoscopy, and bowel preparation was performed with 10% oral mannitol solution and physiological saline solution for lavage through the distal colostomy orifice. All patients were given prophylactic antibiotics (cefoxitin. Pain, analgesia, reestablishment of peristaltism or peristalsis, diet reintroduction, length of hospitalization and rehospitalization were analyzed postoperatively. RESULTS: Surgery duration and local complications were greater in the spinal anesthesia group. Conversion to general anesthesia occurred only with spinal anesthesia. There was no difference in intraoperative pain between the groups, but postoperative pain, reestablishment of peristaltism or peristalsis, diet reintroduction and length of hospitalization were lower with local anesthesia. CONCLUSIONS: Local anesthesia plus sedation offers a safer and more effective method than spinal anesthesia for loop colostomy closure.CONTEXTO: Estudos recentes têm demonstrado que a anestesia local para o fechamento de colostomia em alça é tão segura quanto a raquianestesia para estes procedimentos. OBJETIVOS: Comparar os resultados do fechamento de colostomia em alça usando essas duas técnicas. MÉTODOS: Cinquenta pacientes foram randomizados para o fechamento de colostomia em alça sob raquianestesia (n = 25 e anestesia local (n = 25. No pré-operatório, o cólon foi avaliado por colonoscopia e o preparo intestinal foi realizado com solução oral de manitol a 10% e limpeza com solução salina fisiológica através do orifício distal da colostomia. Todos os

  9. Congenital spinal malformations; Kongenitale spinale Malformationen

    Energy Technology Data Exchange (ETDEWEB)

    Ertl-Wagner, B.B.; Reiser, M.F. [Klinikum Grosshadern, Ludwig-Maximilians-Univ. Muenchen (Germany). Inst. fuer Klinische Radiologie

    2001-12-01

    Congenital spinal malformations form a complex and heterogeneous group of disorders whose pathogenesis is best explained embryologically. Radiologically, it is important to formulate a diagnosis when the disorder first becomes symptomatic. However, it is also crucial to detect complications of the disorder or of the respective therapeutic interventions in the further course of the disease such as hydromyelia or re-tethering after repair of a meningomyelocele. Moreover, once a congenital spinal malformation is diagnosed, associated malformations should be sought after. A possible syndromal classification such as in OEIS- or VACTERL-syndromes should also be considered. (orig.) [German] Kongenitale spinale Malformationen stellen eine komplexe Gruppe an Stoerungen dar, deren Genese sich am einfachsten aus der Embryologie heraus erklaeren laesst. Bei der klinisch-radiologischen Begutachtung ist zunaechst ihre korrekte Klassifikation im Rahmen der Erstdiagnose wichtig. Im weiteren Verlauf ist es jedoch zudem entscheidend, moegliche Komplikationen wie beispielsweise eine Hydromyelie oder ein Wiederanheften des Myelons nach Operation einer Spina bifida aperta zu erkennen. Zudem sollte bei der Diagnosestellung einer kongenitalen spinalen Malformation immer auch auf assoziierte Fehlbildungen, wie z.B. die Diastematomyelie oder das intraspinale Lipom bei der Spina bifida aperta, sowie auf eine moegliche syndromale Einordnung wie beispielsweise beim OEIS-oder VACTERL-Syndrom geachtet werden. (orig.)

  10. Role of tumor necrosis factor-α in spinal cord in the development of mouse bone cancer pain%脊髓水平肿瘤坏死因子-α在小鼠骨癌痛发生中的作用

    Institute of Scientific and Technical Information of China (English)

    高勤; 马正良; 张娟; 周晓芳; 王俊华; 顾小萍; 夏小萍

    2009-01-01

    Objective To explore the role of tumor necrosis factor-α(TNF-α)in spinal cord in the development of mouse bone cancer pain.Methods Forty eight C3H/He mice were divided randomly into tumor group and sham group.Each group was further divided into three subgroups according to the time-points at 7 th,10th and 14 th post-inoculating day (n=8).Osteosarcoma NCTC 2472 cells were implanted into the intramedullary space of fight femur to make model of bone can-cer pain.The sham grouP was inoculated with α-MEM containing no cell.Inoculated mice were killed according to the corre-sponding time-points.Reverse transcriptive polymerase chain reaction(RT-PCR)was applied to analysis the expression of TNF -α mRNA in spinal cord.Changes in pain behaviors including paw withdrawal mechanical threshold(PWMT)and paw with-drawal thermal latencv (PWTL) were observed before inoculation and at 3 rd,5th,7th,lOth and 14th post-inoculating day.Results After inoculation,coupled with pain aggravation,mRNA of TNF-α in spinal cord of tumor mice increased at each time-point(P<0.05).Conclusion TNF-α in spinal cord may participate in bone cancer pain.%目的 探讨脊髓水平肿瘤坏死因子-α(TNF-α)在小鼠骨癌痛中的作用.方法 48只G3H/He小鼠随机分为肿瘤组和假手术组,每组再次划分为术后7 d、10 d、14 d组(n=8).将含105个纤维肉瘤NCTC 2472细胞的最小必需培养基(α-MEM)注射到小鼠右侧股骨远端骨髓腔内,制作骨癌痛模型.假手术组注入不含肿瘤细胞的a-MEM.按照分组在相应时间点处死小鼠,用RT-PCR的方法检测脊髓腰膨大TNF-αmRNA水平,观察术前、术后3 d,5 d、7 d、10 d、14 d小鼠痛行为学的变化:机械痛缩足阈值(paw withdrawal mechanical threshold,PWMT)、热痛缩足潜伏期(paw withdrawal thermal latency,PWTL)和自发性抬足次数.结果 肿瘤细胞接种后,在各观察时间点,肿瘤组脊髓水平TNF-αmRNA表达较假手术组增高(P<0.05)并伴随痛觉过敏.结论 脊髓

  11. Does the cycad genotoxin MAM implicated in Guam ALS-PDC induce disease-relevant changes in mouse brain that includes olfaction?

    Science.gov (United States)

    Kisby, Glen; Palmer, Valerie; Lasarev, Mike; Fry, Rebecca; Iordanov, Mihail; Magun, Eli; Samson, Leona; Spencer, Peter

    2011-11-01

    Western Pacific amyotrophic lateral sclerosis (ALS) and parkinsonism-dementia complex (PDC), a prototypical neurodegenerative disease (tauopathy) affecting distinct genetic groups with common exposure to neurotoxic chemicals in cycad seed, has many features of Parkinson's and Alzheimer's diseases (AD), including early olfactory dysfunction. Guam ALS-PDC incidence correlates with cycad flour content of cycasin and its aglycone methylazoxymethanol (MAM), which produces persistent DNA damage (O(6)-methylguanine) in the brains of mice lacking O(6)-methylguanine methyltransferase (Mgmt(-/-)). We described in Mgmt(-/-)mice up to 7 days post-MAM treatment that brain DNA damage was linked to brain gene expression changes found in human neurological disease, cancer, and skin and hair development. This addendum reports 6 months post-MAM treatment- related brain transcriptional changes as well as elevated mitogen activated protein kinases and increased caspase-3 activity, both of which are involved in tau aggregation and neurofibrillary tangle formation typical of ALS-PDC and AD, plus transcriptional changes in olfactory receptors. Does cycasin act as a "slow (geno)toxin" in ALS-PDC?

  12. Imaging in spinal trauma

    Energy Technology Data Exchange (ETDEWEB)

    Goethem, J.W.M. van [Universitair Ziekenhuis Antwerpen, University of Antwerp, Belgium, Department of Radiology, Edegem (Belgium); Algemeen Ziekenhuis Maria Middelares, Department of Radiology, Sint-Niklaas (Belgium); Maes, Menno; Oezsarlak, Oezkan; Hauwe, Luc van den; Parizel, Paul M. [Universitair Ziekenhuis Antwerpen, University of Antwerp, Belgium, Department of Radiology, Edegem (Belgium)

    2005-03-01

    Because it may cause paralysis, injury to the spine is one of the most feared traumas, and spinal cord injury is a major cause of disability. In the USA approximately 10,000 traumatic cervical spine fractures and 4000 traumatic thoracolumbar fractures are diagnosed each year. Although the number of individuals sustaining paralysis is far less than those with moderate or severe brain injury, the socioeconomic costs are significant. Since most of the spinal trauma patients survive their injuries, almost one out of 1000 inhabitants in the USA are currently being cared for partial or complete paralysis. Little controversy exists regarding the need for accurate and emergent imaging assessment of the traumatized spine in order to evaluate spinal stability and integrity of neural elements. Because clinicians fear missing occult spine injuries, they obtain radiographs for nearly all patients who present with blunt trauma. We are influenced on one side by fear of litigation and the possible devastating medical, psychologic and financial consequences of cervical spine injury, and on the other side by pressure to reduce health care costs. A set of clinical and/or anamnestic criteria, however, can be very useful in identifying patients who have an extremely low probability of injury and who consequently have no need for imaging studies. Multidetector (or multislice) computed tomography (MDCT) is the preferred primary imaging modality in blunt spinal trauma patients who do need imaging. Not only is CT more accurate in diagnosing spinal injury, it also reduces imaging time and patient manipulation. Evidence-based research has established that MDCT improves patient outcome and saves money in comparison to plain film. This review discusses the use, advantages and disadvantages of the different imaging techniques used in spinal trauma patients and the criteria used in selecting patients who do not need imaging. Finally an overview of different types of spinal injuries is given

  13. Efficient differentiation of mouse embryonic stem cells into motor neurons.

    Science.gov (United States)

    Wu, Chia-Yen; Whye, Dosh; Mason, Robert W; Wang, Wenlan

    2012-06-09

    Direct differentiation of embryonic stem (ES) cells into functional motor neurons represents a promising resource to study disease mechanisms, to screen new drug compounds, and to develop new therapies for motor neuron diseases such as spinal muscular atrophy (SMA) and amyotrophic lateral sclerosis (ALS). Many current protocols use a combination of retinoic acid (RA) and sonic hedgehog (Shh) to differentiate mouse embryonic stem (mES) cells into motor neurons. However, the differentiation efficiency of mES cells into motor neurons has only met with moderate success. We have developed a two-step differentiation protocol that significantly improves the differentiation efficiency compared with currently established protocols. The first step is to enhance the neuralization process by adding Noggin and fibroblast growth factors (FGFs). Noggin is a bone morphogenetic protein (BMP) antagonist and is implicated in neural induction according to the default model of neurogenesis and results in the formation of anterior neural patterning. FGF signaling acts synergistically with Noggin in inducing neural tissue formation by promoting a posterior neural identity. In this step, mES cells were primed with Noggin, bFGF, and FGF-8 for two days to promote differentiation towards neural lineages. The second step is to induce motor neuron specification. Noggin/FGFs exposed mES cells were incubated with RA and a Shh agonist, Smoothened agonist (SAG), for another 5 days to facilitate motor neuron generation. To monitor the differentiation of mESs into motor neurons, we used an ES cell line derived from a transgenic mouse expressing eGFP under the control of the motor neuron specific promoter Hb9. Using this robust protocol, we achieved 51 ± 0.8% of differentiation efficiency (n = 3; p motor neuron specific markers, Islet-1 and choline acetyltransferase (ChAT). Our two-step differentiation protocol provides an efficient way to differentiate mES cells into spinal motor neurons.

  14. Congenital segmental spinal muscular atrophy: a case report.

    Science.gov (United States)

    Savaş, Tülin; Erol, Ilknur; Özkale, Yasemin; Saygi, Semra

    2015-03-01

    Spinal muscular atrophies are genetic disorders in which anterior horn cells in the spinal cord and motor nuclei of the brainstem are progressively lost. We present a patient with arthrogryposis due to congenital spinal muscular atrophy predominantly affecting the upper limbs. Spinal muscular atrophies with onset at birth may be a cause of arthrogryposis. Localized forms of neurogenic arthrogryposis have been divided into cervical and caudal forms. Our case is similar to the cases described by Hageman et al (J Neurol Neurosurg Psychiatry 1993;56:365-368): severe symmetric lower motor neuron deficit in the upper extremities at the time of birth, no history of injury to the cervical spinal cord or the brachial plexus during delivery, and severe muscle wasting suggesting chronic denervation in utero. Because there was improvement of our patient's situation, her disease was also possibly nonprogressive and sporadic. To our knowledge, this is the first reported case of a Turkish patient with congenital cervical spinal muscular atrophy. Congenital cervical spinal muscular atrophy affecting predominantly the upper limbs is a relatively rare form of motor neuron disease and should be considered in the differential diagnosis of infants with congenital contractures and severe muscle weakness by wasting mainly confined to the upper limbs.

  15. Multifactorial Gene Therapy Enhancing the Glutamate Uptake System and Reducing Oxidative Stress Delays Symptom Onset and Prolongs Survival in the SOD1-G93A ALS Mouse Model.

    Science.gov (United States)

    Benkler, Chen; Barhum, Yael; Ben-Zur, Tali; Offen, Daniel

    2016-01-01

    The 150-year-long search for treatments of amyotrophic lateral sclerosis (ALS) is still fueled by frustration over the shortcomings of available therapeutics. Contributing to the therapeutic limitations might be the targeting of a single aspect of this multifactorial-multisystemic disease. In an attempt to overcome this, we devised a novel multifactorial-cocktail treatment, using lentiviruses encoding: EAAT2, GDH2, and NRF2, that act synergistically to address the band and width of the effected excito-oxidative axis, reducing extracellular-glutamate and glutamate availability while improving the metabolic state and the anti-oxidant response. This strategy yielded particularly impressive results, as all three genes together but not separately prolonged survival in ALS mice by an average of 19-22 days. This was accompanied by improvement in every parameter evaluated, including body-weight loss, reflex score, neurologic score, and motor performance. We hope to provide a novel strategy to slow down disease progression and alleviate symptoms of patients suffering from ALS.

  16. Contribution of myelunated fibers from spinal L4, L5 and L6 nerves to the sciatic nerve and its main branches in the adult rat Contribución de fibras mielínicas provenientes de los nervios espinales lumbares L4, L5 y L6 al nervio ciático de rata adulta y sus ramas principales

    Directory of Open Access Journals (Sweden)

    Juan D. Robles

    2000-04-01

    Full Text Available The rat sciatic nerve is composed by the L4, L5 and L6 lumbar spinal nerves. However, the contribution in myelinated fibers originating from these nerves along this nervous trunk has not yet been defined. In the present study, the L4, L5 and L4-L5 spinal nerves were selectively transected. After one week the sciatic, tibial, sural and peroneal nerves were dissected. These samples were fixed and processed for optical microscopy, and both degenerated and normal myelinated fibers were counted in toluidine blue-stained semi-thin sections. L4 contributed with myelinated fibers mainly to the peroneal nerve, and L5 to the sciatic, tibial and sural nerves. In general, the contribution of L6 was smaller and variable along the nervous trunk in comparison to the other two spinal branches. Our results give key information for further studies looking to correlate the contribution of spinal nerves making part of the sciatic nerve and its main branches with hind limb function. El nervio ciático de la rata está formado por los nervios espinales (ne lumbares L4, L5 y L6. Sin embargo, aún no se ha definido el aporte en fibras mielínicas de estos nervios espinales a lo largo del tronco nervioso. En este estudio se transectaron selectivamente los NE L4, L5 y L4-L5. Luego de una semana se disecaron los nervios ciático, tibial, sural y peroneal. Estas muestras se fijaron y procesaron para microscopía óptica y a partir de cortes coloreados con azul de toluidina se contaron las fibras mielínicas degeneradas y normales. L4 contribuyó con fibras mielínicas principalmente al nervio peroneal y L5 a los nervios ciático, tibial y sural. En general, el aporte de L6 fue menor y variable a lo largo del tronco nervioso comparado con las otras dos ramas espinales. Nuestros resultados brindan información valiosa para posteriores estudios que busquen correlacionar la contribución de los nervios espinales que componen el ciático y sus ramas principales con la funci

  17. A 'tool box' for deciphering neuronal circuits in the developing chick spinal cord.

    Science.gov (United States)

    Hadas, Yoav; Etlin, Alex; Falk, Haya; Avraham, Oshri; Kobiler, Oren; Panet, Amos; Lev-Tov, Aharon; Klar, Avihu

    2014-10-29

    The genetic dissection of spinal circuits is an essential new means for understanding the neural basis of mammalian behavior. Molecular targeting of specific neuronal populations, a key instrument in the genetic dissection of neuronal circuits in the mouse model, is a complex and time-demanding process. Here we present a circuit-deciphering 'tool box' for fast, reliable and cheap genetic targeting of neuronal circuits in the developing spinal cord of the chick. We demonstrate targeting of motoneurons and spinal interneurons, mapping of axonal trajectories and synaptic targeting in both single and populations of spinal interneurons, and viral vector-mediated labeling of pre-motoneurons. We also demonstrate fluorescent imaging of the activity pattern of defined spinal neurons during rhythmic motor behavior, and assess the role of channel rhodopsin-targeted population of interneurons in rhythmic behavior using specific photoactivation.

  18. Spinal cord swelling and candidiasis

    Energy Technology Data Exchange (ETDEWEB)

    Ho, K.; Gronseth, G.; Aldrich, M.; Williams, A.

    1982-11-01

    Fusiform swelling of the spinal cord was noted myelographically in a patient with Hodgkin's disease. Autopsy revealed that the swelling was caused by Candida infection of the spinal cord. It is suggested that fungal infection be included in the differential diagnosis of spinal cord swelling in the immunosuppressed cancer patient.

  19. Spinal actinomycosis: A rare disease

    Directory of Open Access Journals (Sweden)

    Dua Rakesh

    2010-01-01

    Full Text Available Actinomycosis is an indolent, slowly progressive infection caused by Actinomyces species. Of human actinomycosis, the spinal form is rare and actinomycosis-related spinal neurological deficit is uncommon. We report two cases with cervical and dorsal actinomycosis and one of them with spinal neurological deficit.

  20. Intramedullary spinal melanocytoma

    Directory of Open Access Journals (Sweden)

    Meic H. Schmidt

    2010-06-01

    Full Text Available Meningeal melanocytoma is a benign lesion arising from leptomeningeal melanocytes that at times can mimic its malignant counterpart, melanoma. Lesions of the spine usually occur in extramedullary locations and present with spinal cord compression symptoms. Because most reported spinal cases occur in the thoracic region, these symptoms usually include lower extremity weakness or numbness. The authors present a case of primary intrame­dullary spinal meningeal melanocytoma presenting with bilateral lower extremity symptoms in which the patient had no known supratentorial primary lesions. Gross total surgical resection allowed for full recovery, but early recurrence of tumor was detected on close follow-up monitoring, allowing for elective local radiation without loss of neurological function. Case reports of such tumors discuss different treatment strategies, but just as important is the close follow-up monitoring in these patients even after gross total surgical resection, since these tumors can recur.

  1. [Spinal cord infarction].

    Science.gov (United States)

    Naumann, N; Shariat, K; Ulmer, S; Stippich, C; Ahlhelm, F J

    2012-05-01

    Infarction of the spinal cord can cause a variety of symptoms and neurological deficits because of the complex vascular supply of the myelon. The most common leading symptom is distal paresis ranging from paraparesis to tetraplegia caused by arterial ischemia or infarction of the myelon. Venous infarction, however, cannot always be distinguished from arterial infarction based on the symptoms alone.Modern imaging techniques, such as computed tomography angiography (CTA) and magnetic resonance angiography (MRA) assist in preoperative planning of aortic operations to reliably identify not only the most important vascular structure supplying the spinal cord, the artery of Adamkiewicz, but also other pathologies such as tumors or infectious disorders. In contrast to CT, MRI can reliably depict infarction of the spinal cord.

  2. Spinal muscular atrophy: development and implementation of potential treatments.

    Science.gov (United States)

    Arnold, W David; Burghes, Arthur H M

    2013-09-01

    In neurodegenerative disorders, effective treatments are urgently needed, along with methods to determine whether treatment worked. In this review, we discuss the rapid progress in the understanding of recessive proximal spinal muscular atrophy and how this is leading to exciting potential treatments of the disease. Spinal muscular atrophy is caused by loss of the survival motor neuron 1 (SMN1) gene and reduced levels of SMN protein. The critical downstream targets of SMN deficiency that result in motor neuron loss are not known. However, increasing SMN levels has a marked impact in mouse models, and these therapeutics are rapidly moving toward clinical trials. Promising preclinical therapies, the varying degree of impact on the mouse models, and potential measures of treatment effect are reviewed. One key issue discussed is the variable outcome of increasing SMN at different stages of disease progression.

  3. Maladaptive spinal plasticity opposes spinal learning and recovery in spinal cord injury

    Directory of Open Access Journals (Sweden)

    Adam R Ferguson

    2012-10-01

    Full Text Available Synaptic plasticity within the spinal cord has great potential to facilitate recovery of function after spinal cord injury (SCI. Spinal plasticity can be induced in an activity-dependent manner even without input from the brain after complete SCI. The mechanistic basis for these effects is provided by research demonstrating that spinal synapses have many of the same plasticity mechanisms that are known to underlie learning and memory in the brain. In addition, the lumbar spinal cord can sustain several forms of learning and memory, including limb-position training. However, not all spinal plasticity promotes recovery of function. Central sensitization of nociceptive (pain pathways in the spinal cord may emerge with certain patterns of activity, demonstrating that plasticity within the spinal cord may contribute to maladaptive pain states. In this review we discuss interactions between adaptive and maladaptive forms of activity-dependent plasticity in the spinal cord. The literature demonstrates that activity-dependent plasticity within the spinal cord must be carefully tuned to promote adaptive spinal training. Stimulation that is delivered in a limb position-dependent manner or on a fixed interval can induce adaptive plasticity that promotes future spinal cord learning and reduces nociceptive hyper-reactivity. On the other hand, stimulation that is delivered in an unsynchronized fashion, such as randomized electrical stimulation or peripheral skin injuries, can generate maladaptive spinal plasticity that undermines future spinal cord learning, reduces recovery of locomotor function, and promotes nociceptive hyper-reactivity after spinal cord injury. We review these basic phenomena, discuss the cellular and molecular mechanisms, and discuss implications of these findings for improved rehabilitative therapies after spinal cord injury.

  4. Chronic infusion of SOD1(G93A) astrocyte-secreted factors induces spinal motoneuron degeneration and neuromuscular dysfunction in healthy rats.

    Science.gov (United States)

    Ramírez-Jarquín, Uri N; Rojas, Fabiola; van Zundert, Brigitte; Tapia, Ricardo

    2017-01-27

    Amyotrophic lateral sclerosis is a fatal neurodegenerative disease and studies in vitro show that motoneuron degeneration is triggered by non-cell-autonomous mechanisms. However, whether soluble toxic factor(s) released by mutant superoxide dismutase 1 (SOD1) expressing astrocytes induces death of motoneurons and leads to motor dysfunction in vivo is not known. To directly test this, healthy adult rats were treated with conditioned media derived from primary mouse astrocytes (ACM) that express human (h) SOD1(G93A) (ACM-hG93A) via chronic osmotic pump infusion in the lumbar spinal cord. Controls included ACM derived from transgenic mice expressing hSOD1(WT) (ACM-hWT) or non-transgenic mouse SOD1(WT) (ACM-WT) astrocytes. Rats chronically infused with ACM-hG93A started to develop motor dysfunction at 8 days, as measured by rotarod performance. Additionally, immunohistochemical analyses at day 16 revealed reactive astrogliosis and significant loss of motoneurons in the ventral horn of the infused region. Controls did not show significant motor behavior alterations or neuronal damage. Thus, we demonstrate that factors released in vitro from astrocytes derived from ALS mice cause spinal motoneuron death and consequent neuromuscular dysfunction in vivo.

  5. Neuroprotective efficacy of aminopropyl carbazoles in a mouse model of amyotrophic lateral sclerosis.

    Science.gov (United States)

    Tesla, Rachel; Wolf, Hamilton Parker; Xu, Pin; Drawbridge, Jordan; Estill, Sandi Jo; Huntington, Paula; McDaniel, Latisha; Knobbe, Whitney; Burket, Aaron; Tran, Stephanie; Starwalt, Ruth; Morlock, Lorraine; Naidoo, Jacinth; Williams, Noelle S; Ready, Joseph M; McKnight, Steven L; Pieper, Andrew A

    2012-10-16

    We previously reported the discovery of P7C3, an aminopropyl carbazole having proneurogenic and neuroprotective properties in newborn neural precursor cells of the hippocampal dentate gyrus. We have further found that chemicals having efficacy in this in vivo screening assay also protect dopaminergic neurons of the substantia nigra following exposure to the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, a mouse model of Parkinson disease. Here, we provide evidence that an active analog of P7C3, known as P7C3A20, protects ventral horn spinal cord motor neurons from cell death in the G93A-SOD1 mutant mouse model of amyotrophic lateral sclerosis (ALS). P7C3A20 is efficacious in this model when administered at disease onset, and protection from cell death correlates with preservation of motor function in assays of walking gait and in the accelerating rotarod test. The prototypical member of this series, P7C3, delays disease progression in G93A-SOD1 mice when administration is initiated substantially earlier than the expected time of symptom onset. Dimebon, an antihistaminergic drug with significantly weaker proneurogenic and neuroprotective efficacy than P7C3, confers no protection in this ALS model. We propose that the chemical scaffold represented by P7C3 and P7C3A20 may provide a basis for the discovery and optimization of pharmacologic agents for the treatment of ALS.

  6. Spinal Cord Stimulation

    DEFF Research Database (Denmark)

    Meier, Kaare

    2014-01-01

    pain after failed back surgery syndrome (FBSS)(4), pain due to peripheral nerve injury, stump pain(5), peripheral vascular disease(6) and diabetic neuropathy(7,8); whereas phantom pain(9), postherpetic neuralgia(10), chronic visceral pain(11), and pain after partial spinal cord injury(12) remain more...

  7. 骨癌痛小鼠脊髓水平CREB转录共激活因子1表达的变化%Changes in the expression of CREB-regulated transcription coactivator 1 in spinal cord in mouse model of bone cancer pain

    Institute of Scientific and Technical Information of China (English)

    杨许丽; 刘玥; 侯百灵; 刘明; 夏天娇; 孙蓓; 张羽; 冷鑫; 石林玉

    2014-01-01

    Objective To investigate the changes in the expression of CREB-regulated transcription coactivator 1 (CRTC1) in spinal cord during the development and maintenance of bone cancer pain in mice.Methods Forty six male C3H/HeJ mice were randomly divided into Sham group (n=23) and Tumor group (n=23).The mouse model of bone cancer pain was developed by intra-femur inoculation of α-minimal essence media (α-MEM) with osteolytic NCTC 2472 cells.The mice in sham group were inoculated with α-MEM without NCTC 2472 cells.Pain behaviors such as the paw withdrawal mechanical threshold (PWMT) and the number of spontaneous flinches (NSF) were assessed on 1 d before inoculation and on 4 d,7 d,10 d,14 d,21 d after inoculation.At each corresponding time point,three mice of each group were killed just after the pain behaviors assessment and the samples of spinal cord lumbar segment were obtained to detect the expression of CRTC1 using Western Blot.Results Compared with Sham group,PWMT((1.35±0.14) g,(1.10±0.28) g,(0.78±0.25) g,(0.47±0.16) g,(0.34±0.16)g) was significantly decreased (P<0.05) and NSF((3.12±0.74),(6.02±0.67),(7.42± 1.22),(10.824±0.98),(12.48±1.06)) was significantly increased (P<0.05) on 7 d,10 d,14 d and 21 d aftcr inoculation in Tumor group.Compared with baseline level,significant increase in the expression of CRTC1 in spinal cord was observed on 4 d in both Sham group and Tumor group (P<0.05).Compared with baseline level and Sham group,significant increase in the expression of CRTC1 in spinal cord was observed on 7 d,10 d,14 d and 21 d in Tumor group (P<0.05).Conclusion Expression of CRTC1 in spinal cord is up-regulated in mice with bone cancer pain,and this change may be involved in the development and maintenance of bone cancer pain.%目的 探讨骨癌痛小鼠脊髓水平CREB转录共激活因子1(CRTC1)表达的变化.方法 采用随机数字表法,46只C3H/HeJ雄性小鼠随机分为假手术组(Sham组,n=23)和肿瘤组(Tumor组,n=23),Tumor

  8. Spontaneous Functional Recovery from Incomplete Spinal Cord Injury

    DEFF Research Database (Denmark)

    Rasmussen, Rune; Carlsen, Eva Maria Meier

    2016-01-01

    Our interactions with the world occur via precise coordination of our motor system. Even a movement as seemingly simple as reaching for an object is a complex motor behavior that requires precise neuronal activity in supraspinal areas (Lemon, 2008) and spinal areas (Azim et al., 2014). Motor...

  9. Differential diagnoses of spinal tumors; Differenzialdiagnose spinaler Tumoren

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, U. [Universitaetsklinikum des Saarlandes, Klinik fuer Diagnostische und Interventionelle Neuroradiologie, Homburg/Saar (Germany)

    2011-12-15

    A wide variety of degenerative, inflammatory and vascular diseases can resemble the clinical presentation and imaging findings of spinal tumors. This article provides an overview of the most frequent diseases which are important to recognize for diagnostic imaging of the spine. (orig.) [German] Eine Vielzahl degenerativer, entzuendlicher und vaskulaerer Erkrankungen kann das klinische Bild und radiologische Befunde spinaler Tumoren imitieren. Dieser Artikel dient der Uebersicht ueber die haeufigsten dieser Erkrankungen, deren Kenntnis wichtig fuer die spinale Bildgebung ist. (orig.)

  10. A comprehensive assessment of the SOD1G93A low-copy transgenic mouse, which models human amyotrophic lateral sclerosis

    Directory of Open Access Journals (Sweden)

    Abraham Acevedo-Arozena

    2011-09-01

    Amyotrophic lateral sclerosis (ALS is a progressive neurodegenerative disorder that results in the death of motor neurons in the brain and spinal cord. The disorder generally strikes in mid-life, relentlessly leading to paralysis and death, typically 3–5 years after diagnosis. No effective treatments are available. Up to 10% of ALS is familial, usually autosomal dominant. Several causative genes are known and, of these, mutant superoxide dismutase 1 (SOD1 is by far the most frequently found, accounting for up to 20% of familial ALS. A range of human mutant SOD1 transgenic mouse strains has been produced, and these largely successfully model the human disease. Of these, the most widely used is the SOD1 mouse, which expresses a human SOD1 transgene with a causative G93A mutation. This mouse model is excellent for many purposes but carries up to 25 copies of the transgene and produces a great excess of SOD1 protein, which might affect our interpretation of disease processes. A variant of this strain carries a deletion of the transgene array such that the copy number is dropped to eight to ten mutant SOD1 genes. This ‘deleted’ ‘low-copy’ mouse undergoes a slower course of disease, over many months. Here we have carried out a comprehensive analysis of phenotype, including nerve and muscle physiology and histology, to add to our knowledge of this ‘deleted’ strain and give baseline data for future studies. We find differences in phenotype that arise from genetic background and sex, and we quantify the loss of nerve and muscle function over time. The slowly progressive pathology observed in this mouse strain could provide us with a more appropriate model for studying early-stage pathological processes in ALS and aid the development of therapies for early-stage treatments.

  11. Imaging of Spinal Metastatic Disease

    Directory of Open Access Journals (Sweden)

    Lubdha M. Shah

    2011-01-01

    Full Text Available Metastases to the spine can involve the bone, epidural space, leptomeninges, and spinal cord. The spine is the third most common site for metastatic disease, following the lung and the liver. Approximately 60–70% of patients with systemic cancer will have spinal metastasis. Materials/Methods. This is a review of the imaging techniques and typical imaging appearances of spinal metastatic disease. Conclusions. Awareness of the different manifestations of spinal metastatic disease is essential as the spine is the most common site of osseous metastatic disease. Imaging modalities have complimentary roles in the evaluation of spinal metastatic disease. CT best delineates osseous integrity, while MRI is better at assessing soft tissue involvement. Physiologic properties, particularly in treated disease, can be evaluated with other imaging modalities such as FDG PET and advanced MRI sequences. Imaging plays a fundamental role in not only diagnosis but also treatment planning of spinal metastatic disease.

  12. Transverse myelitis following spinal anesthesia

    Directory of Open Access Journals (Sweden)

    Jha Sanjeev

    2006-01-01

    Full Text Available Spinal anesthesia is widely used during surgical procedures. It is generally safe and the frequency of severe, permanent neurological complications associated with it has been reported to be extremely low. We report a patient, who developed paraplegia following spinal anesthesia. A 29-year-old male was referred with acute, flaccid, sensory motor paraplegia, with bladder and bowel involvement. He developed this immediately after an operation for inguinal hernia under spinal anesthesia. Spinal magnetic resonance imaging revealed hemorrhagic myelitis in the conus at D12. He was referred after he did not respond to intravenous methylprednisolone for 10 days. This case brings up the difficulty encountered in determination of the interspace used for spinal anesthesia and the potential for traumatic injury to the spinal cord. It also demonstrates the tragic outcome after a clinician violates some important, standard and established guidelines.

  13. Spinal brucellosis: a review

    Energy Technology Data Exchange (ETDEWEB)

    Chelli Bouaziz, Mouna; Ladeb, Mohamed Fethi; Chakroun, Mohamed; Chaabane, Skander [Institut M T Kassab d' orthopedie, Department of Radiology, Ksar Said (Tunisia)

    2008-09-15

    Brucellosis is a zoonosis of worldwide distribution, relatively frequent in Mediterranean countries and in the Middle East. It is a systemic infection, caused by facultative intra-cellular bacteria of the genus Brucella, that can involve many organs and tissues. The spine is the most common site of musculoskeletal involvement, followed by the sacroiliac joints. The aim of this study was to assess the clinical, biological and imaging features of spinal brucellosis. (orig.)

  14. Spontaneous spinal epidural abscess.

    LENUS (Irish Health Repository)

    Ellanti, P

    2011-10-01

    Spinal epidural abscess is an uncommon entity, the frequency of which is increasing. They occur spontaneously or as a complication of intervention. The classical triad of fever, back pain and neurological symptoms are not always present. High index of suspicion is key to diagnosis. Any delay in diagnosis and treatment can have significant neurological consequences. We present the case of a previously well man with a one month history of back pain resulting from an epidural abscess.

  15. Aspergillus spinal epidural abscess

    Energy Technology Data Exchange (ETDEWEB)

    Byrd, B.F. III (Vanderbilt Univ. School of Medicine, Nashville, TN); Weiner, M.H.; McGee, Z.A.

    1982-12-17

    A spinal epidural abscess developed in a renal transplant recipient; results of a serum radioimmunoassay for Aspergillus antigen were positive. Laminectomy disclosed an abscess of the L4-5 interspace and L-5 vertebral body that contained hyphal forms and from which Aspergillus species was cultured. Serum Aspergillus antigen radioimmunoassay may be a valuable, specific early diagnostic test when systemic aspergillosis is a consideration in an immunosuppressed host.

  16. Two spinal arachnoid cysts

    Energy Technology Data Exchange (ETDEWEB)

    Puijlaert, J.B.C.M.; Vielvoye, G.J.; Dulken, H. van

    1985-05-01

    Two cases of spinal arachnoid cysts are reported. One is extradurally located, the other intradurally. The first is only documented with myelography, the second also by subsequent CT scanning. Some clinical and diagnostic aspects of the lesion are discussed. The aim of this report is to add two new cases to the literature and to emphasize the role of high-resolution CT scanning in the diagnosis of these lesions.

  17. Neurogenic bladder in spinal cord injury patients

    Directory of Open Access Journals (Sweden)

    Al Taweel W

    2015-06-01

    Full Text Available Waleed Al Taweel, Raouf SeyamDepartment of Urology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi ArabiaAbstract: Neurogenic bladder dysfunction due to spinal cord injury poses a significant threat to the well-being of patients. Incontinence, renal impairment, urinary tract infection, stones, and poor quality of life are some complications of this condition. The majority of patients will require management to ensure low pressure reservoir function of the bladder, complete emptying, and dryness. Management typically begins with anticholinergic medications and clean intermittent catheterization. Patients who fail this treatment because of inefficacy or intolerability are candidates for a spectrum of more invasive procedures. Endoscopic managements to relieve the bladder outlet resistance include sphincterotomy, botulinum toxin injection, and stent insertion. In contrast, patients with incompetent sphincters are candidates for transobturator tape insertion, sling surgery, or artificial sphincter implantation. Coordinated bladder emptying is possible with neuromodulation in selected patients. Bladder augmentation, usually with an intestinal segment, and urinary diversion are the last resort. Tissue engineering is promising in experimental settings; however, its role in clinical bladder management is still evolving. In this review, we summarize the current literature pertaining to the pathology and management of neurogenic bladder dysfunction in patients with spinal cord injury.Keywords: neurogenic bladder, spinal cord injury, urodynamics, intestine, intermittent catheterization

  18. Pain following spinal cord injury

    OpenAIRE

    2004-01-01

    The aims of this thesis were to assess and characterise nociceptive and neuropathic pain, the use of pharmacological and non-pharmacological pain treatment, and the influence of pain on the quality of sleep in a population following spinal cord injury (SCI). This thesis is divided into five separate studies: I. Pain in a Swedish spinal cord injury population. II. Gender related differences in pain in spinal cord injured individuals. III. Use of analgesic drugs in indi...

  19. [Information analysis of spinal ganglia].

    Science.gov (United States)

    Lobko, P I; Kovaleva, D V; Kovalchuk, I E; Pivchenko, P G; Rudenok, V V; Davydova, L A

    2000-01-01

    Information parameters (entropia and redundancy) of cervical and thoracic spinal ganglia of albino rat foetuses, mature animals (cat and dog) and human subjects were analysed. Information characteristics of spinal ganglia were shown to be level-specified and to depend on their functional peculiarities. Information parameters of thoracic spinal ganglia of man and different animals are specie specified and may be used in assessment of morphological structures as information systems.

  20. Spinal sensory circuits in motion

    OpenAIRE

    2016-01-01

    International audience; The role of sensory feedback in shaping locomotion has been long debated. Recent advances in genetics and behavior analysis revealed the importance of proprioceptive pathways in spinal circuits. The mechanisms underlying peripheral mechanosensation enabled to unravel the networks that feedback to spinal circuits in order to modulate locomotion. Sensory inputs to the vertebrate spinal cord were long thought to originate from the periphery. Recent studies challenge this ...

  1. Increased aluminum content in the spinal cord of amyotrophic lateral sclerosis and Parkinsonism-dementia of Guam and in the Kii Peninsula of Japan

    Energy Technology Data Exchange (ETDEWEB)

    Wakayama, Ikuro; Yoshida, Sohei [Wakayama Medical Coll. (Japan); Sasajima, Kazuhisa; Takada, Jitsuya; Yoshida, Koichi

    1994-07-01

    Aluminum content in the lumbar spinal cord of patients with amyotrophic lateral sclerosis(ALS) and Parkinsonism-dementia(PD) in the Kii Peninsula of Japan and in the island of Guam was measured using a particle induced X-ray emission analysis. We demonstrated that aluminum content was increased in the spinal cord of patients with ALS in two foci of the western Pacific, indicating aluminum to be a important factor in the process of spinal motor neuron degeneration. (author).

  2. In vitro and in vivo analysis and characterization of engineered spinal neural implants (Conference Presentation)

    Science.gov (United States)

    Shor, Erez; Shoham, Shy; Levenberg, Shulamit

    2016-03-01

    Spinal cord injury is a devastating medical condition. Recent developments in pre-clinical and clinical research have started to yield neural implants inducing functional recovery after spinal cord transection injury. However, the functional performance of the transplants was assessed using histology and behavioral experiments which are unable to study cell dynamics and the therapeutic response. Here, we use neurophotonic tools and optogenetic probes to investigate cellular level morphology and activity characteristics of neural implants over time at the cellular level. These methods were used in-vitro and in-vivo, in a mouse spinal cord injury implant model. Following previous attempts to induce recovery after spinal cord injury, we engineered a pre-vascularized implant to obtain better functional performance. To image network activity of a construct implanted in a mouse spinal cord, we transfected the implant to express GCaMP6 calcium activity indicators and implanted these constructs under a spinal cord chamber enabling 2-photon chronic in vivo neural activity imaging. Activity and morphology analysis image processing software was developed to automatically quantify the behavior of the neural and vascular networks. Our experimental results and analyses demonstrate that vascularized and non-vascularized constructs exhibit very different morphologic and activity patterns at the cellular level. This work enables further optimization of neural implants and also provides valuable tools for continuous cellular level monitoring and evaluation of transplants designed for various neurodegenerative disease models.

  3. Spinal dysraphism: MR imaging rationale.

    Science.gov (United States)

    Rossi, A; Cama, A; Piatelli, G; Ravegnani, M; Biancheri, R; Tortori-Donati, P

    2004-01-01

    Spinal cord development occurs through the three consecutive periods of gastrulation (weeks 2-3), primary neurulation (weeks 3-4), and secondary neurulation (weeks 5-6). Spinal cord malformations derive from defects in these early embryonic stages, and are collectively called spinal dysraphisms. Spinal dysraphisms may be categorized clinically into open and closed, based on whether the abnormal nervous tissue is exposed to the environment or covered by skin. Open spinal dysraphisms include myelomeningocele and other rare abnormalities such as myelocele, hemimyelomeningocele, and hemimyelocele, and are always associated with a Chiari II malformation. Closed spinal dysraphisms are further divided into two subsets based on whether a subcutaneous mass is present in the low back. Closed spinal dysraphisms with mass comprise lipomyelocele, lipomyelomeningocele, meningocele, and myelocystocele. Closed spinal dysraphisms without mass comprise simple dysraphic states (tight filum terminale, filar and intradural lipomas, persistent terminal ventricle, and dermal sinuses) and complex dysraphic states. The latter category involves abnormal notochordal development, either in the form of failed midline integration (ranging from complete dorsal enteric fistula to neurenteric cysts and diastematomyelia) or of segmental agenesis (caudal agenesis and spinal segmental dysgenesis). Magnetic resonance imaging is the imaging modality of choice for evaluation of this complex group of disorders.

  4. Basic fibroblast growth factor attenuates the degeneration of injured spinal cord motor endplates**

    Institute of Scientific and Technical Information of China (English)

    Jianlong Wang; Jianfeng Sun; Yongxiang Tang; Gangwen Guo; Xiaozhe Zhou; Yanliang Chen; Minren Shen

    2013-01-01

    The distal end of the spinal cord and neuromuscular junction may develop secondary degeneration and damage fol owing spinal cord injury because of the loss of neural connections. In this study, a rat model of spinal cord injury, established using a modified Al en’s method, was injected with basic fibroblast growth factor solution via subarachnoid catheter. After injection, rats with spinal cord injury displayed higher scores on the Basso, Beattie and Bresnahan locomotor scale. Motor function was also wel recovered and hematoxylin-eosin staining showed that spinal glial scar hyperplasia was not apparent. Additional y, anterior tibial muscle fibers slowly, but progressively, atrophied. Immunohistochemical staining showed that the absorbance values of calcitonin gene related pep-tide and acetylcholinesterase in anterior tibial muscle and spinal cord were similar, and injection of basic fibroblast growth factor increased this absorbance. Results showed that after spinal cord injury, the distal motor neurons and motor endplate degenerated. Changes in calcitonin gene related pep-tide and acetylcholinesterase in the spinal cord anterior horn motor neurons and motor endplate then occurred that were consistent with this regeneration. Our findings indicate that basic fibroblast growth factor can protect the endplate through attenuating the decreased expression of calcitonin gene related peptide and acetylcholinesterase in anterior horn motor neurons of the injured spinal cord.

  5. The expression of SEIPIN in the mouse central nervous system.

    Science.gov (United States)

    Liu, Xiaoyun; Xie, Beibei; Qi, Yanfei; Du, Ximing; Wang, Shaoshi; Zhang, Yumei; Paxinos, George; Yang, Hongyuan; Liang, Huazheng

    2016-11-01

    Immunohistochemical staining was used to investigate the expression pattern of SEIPIN in the mouse central nervous system. SEIPIN was found to be present in a large number of areas, including the motor and somatosensory cortex, the thalamic nuclei, the hypothalamic nuclei, the mesencephalic nuclei, some cranial motor nuclei, the reticular formation of the brainstem, and the vestibular complex. Double labeling with NeuN antibody confirmed that SEIPIN-positive cells in some nuclei were neurons. Retrograde tracer injections into the spinal cord revealed that SEIPIN-positive neurons in the motor and somatosensory cortex and other movement related nuclei project to the mouse spinal cord. The present study found more nuclei positive for SEIPIN than shown using in situ hybridization and confirmed the presence of SEIPIN in neurons projecting to the spinal cord. The results of this study help to explain the clinical manifestations of patients with Berardinelli-Seip congenital lipodystrophy (Bscl2) gene mutations.

  6. Traumatic spinal cord injury in mice with human immune systems.

    Science.gov (United States)

    Carpenter, Randall S; Kigerl, Kristina A; Marbourg, Jessica M; Gaudet, Andrew D; Huey, Devra; Niewiesk, Stefan; Popovich, Phillip G

    2015-09-01

    Mouse models have provided key insight into the cellular and molecular control of human immune system function. However, recent data indicate that extrapolating the functional capabilities of the murine immune system into humans can be misleading. Since immune cells significantly affect neuron survival and axon growth and also are required to defend the body against infection, it is important to determine the pathophysiological significance of spinal cord injury (SCI)-induced changes in human immune system function. Research projects using monkeys or humans would be ideal; however, logistical and ethical barriers preclude detailed mechanistic studies in either species. Humanized mice, i.e., immunocompromised mice reconstituted with human immune cells, can help overcome these barriers and can be applied in various experimental conditions that are of interest to the SCI community. Specifically, newborn NOD-SCID-IL2rg(null) (NSG) mice engrafted with human CD34(+) hematopoietic stem cells develop normally without neurological impairment. In this report, new data show that when mice with human immune systems receive a clinically-relevant spinal contusion injury, spontaneous functional recovery is indistinguishable from that achieved after SCI using conventional inbred mouse strains. Moreover, using routine immunohistochemical and flow cytometry techniques, one can easily phenotype circulating human immune cells and document the composition and distribution of these cells in the injured spinal cord. Lesion pathology in humanized mice is typical of mouse contusion injuries, producing a centralized lesion epicenter that becomes occupied by phagocytic macrophages and lymphocytes and enclosed by a dense astrocytic scar. Specific human immune cell types, including three distinct subsets of human monocytes, were readily detected in the blood, spleen and liver. Future studies that aim to understand the functional consequences of manipulating the neuro-immune axis after SCI

  7. Medicolegal cases for spinal epidural hematoma and spinal epidural abscess.

    Science.gov (United States)

    French, Keisha L; Daniels, Eldra W; Ahn, Uri M; Ahn, Nicholas U

    2013-01-01

    Spinal epidural hematoma and spinal epidural abscess are rare surgical emergencies resulting in significant neurologic deficits. Making the diagnosis for spinal epidural hematoma and spinal epidural abscess can be challenging; however, a delay in recognition and treatment can be devastating. The objective of this retrospective analysis study was to identify risk factors for an adverse outcome for the provider. The LexisNexis Academic legal search database was used to identify a total of 19 cases of spinal epidural hematoma and spinal epidural abscess filed against medical providers. Outcome data on trial verdicts, age, sex, initial site of injury, time to consultation, time to appropriate imaging studies, time to surgery, and whether a rectal examination was performed or not were recorded. The results demonstrated a significant association between time to surgery more than 48 hours and an unfavorable verdict for the provider. The degree of permanent neurologic impairment did not appear to affect the verdicts. Fifty-eight percent of the cases did not present with an initial deficit, including loss of bowel or bladder control. All medical professionals must maintain a high level of suspicion and act quickly. Physicians who are able to identify early clinical features, appropriately image, and treat within a 48 hour time frame have demonstrated a more favorable medicolegal outcome compared with their counterparts in filed lawsuits for spinal epidural hematoma and spinal epidural abscess cases.

  8. Comparison of Naloxone and Thyrotropin-Releasing Hormone in the Treatment of Experimental Spinal Injury: Endogenous Opioids and Experimental Spinal Injury.

    Science.gov (United States)

    1983-09-30

    For these reasons we evaluated TRH treatment in a feline model of cervical spinal cord injury (8). Animals treated with -1...photomicrograph of lung illustrates severe pulmonary edema. Alveoli are filled with an eosinophilic , proteinaceous fluid. Scattered macrophages are...compression trauma to the feline spinal cord. J Neurosurg 55:200-208, 1981 26. Meyer GA, Berman IR, Dote DB, et al: Hemodynamic responses to acute

  9. Motor-circuit communication matrix from spinal cord to brainstem neurons revealed by developmental origin.

    Science.gov (United States)

    Pivetta, Chiara; Esposito, Maria Soledad; Sigrist, Markus; Arber, Silvia

    2014-01-30

    Accurate motor-task execution relies on continuous comparison of planned and performed actions. Motor-output pathways establish internal circuit collaterals for this purpose. Here we focus on motor collateral organization between spinal cord and upstream neurons in the brainstem. We used a newly developed mouse genetic tool intersectionally with viruses to uncover the connectivity rules of these ascending pathways by capturing the transient expression of neuronal subpopulation determinants. We reveal a widespread and diverse network of spinal dual-axon neurons, with coincident input to forelimb motor neurons and the lateral reticular nucleus (LRN) in the brainstem. Spinal information to the LRN is not segregated by motor pool or neurotransmitter identity. Instead, it is organized according to the developmental domain origin of the progenitor cells. Thus, excerpts of most spinal information destined for action are relayed to supraspinal centers through exquisitely organized ascending connectivity modules, enabling precise communication between command and execution centers of movement.

  10. Transmitters and pathways mediating inhibition of spinal itch-signaling neurons by scratching and other counterstimuli.

    Directory of Open Access Journals (Sweden)

    Tasuku Akiyama

    Full Text Available Scratching relieves itch, but the underlying neural mechanisms are poorly understood. We presently investigated a role for the inhibitory neurotransmitters GABA and glycine in scratch-evoked inhibition of spinal itch-signaling neurons in a mouse model of chronic dry skin itch. Superficial dorsal horn neurons ipsilateral to hindpaw dry skin treatment exhibited a high level of spontaneous firing that was significantly attenuated by cutaneous scratching, pinch and noxious heat. Scratch-evoked inhibition was nearly abolished by spinal delivery of the glycine antagonist, strychnine, and was markedly attenuated by respective GABA(A and GABA(B antagonists bicuculline and saclofen. Scratch-evoked inhibition was also significantly attenuated (but not abolished by interruption of the upper cervical spinal cord, indicating the involvement of both segmental and suprasegmental circuits that engage glycine- and GABA-mediated inhibition of spinal itch-signaling neurons by noxious counterstimuli.

  11. The Effects of rhBMP-2 Used for Spinal Fusion on Spinal Cord Pathology After Traumatic Injury

    Science.gov (United States)

    2009-07-29

    et al., 2004). In 2002, the FDA approved the use of the recombinant human BMP-2 (rhBMP-2) for treatment of discogenic pain in the lower lumbar spine...concomitant SCI (Personal communication with COL(R) Kuklo, MD). 7 Spinal column arthrodesis using rhBMP-2 with concomitant SCI As surgical...first 8 hours after injury. Therefore, in a rat model of dorsal hemisection SCI, we performed spinal arthrodesis with or without rhBMP-2 30 minutes post

  12. Commentary on: A randomized controlled trial of fusion surgery for lumbar spinal stenosis (Forsth P, Ólafsson G, Carlsson T, Frost A, Borgström F, Fritzell P, et al. N Eng J Med 2016;374:1414-23

    Directory of Open Access Journals (Sweden)

    Nancy E Epstein

    2016-01-01

    Conclusions: The authors concluded that at 2 and 5 postoperative years, patients with 1-2 level spinal stenosis did equally well with decompressions alone vs. decompressions with fusions with/without degenerative spondylolisthesis. This article offers a clear message for spinal surgeons; for older patients with 1-2 level spinal stenosis with/without DS, decompresions alone will typically suffice. This reduces patient morbidity along with LOS, operative time, and surgical costs.

  13. The spinal cord of the common marmoset (Callithrix jacchus).

    Science.gov (United States)

    Watson, Charles; Sengul, Gulgun; Tanaka, Ikuko; Rusznak, Zoltan; Tokuno, Hironobu

    2015-04-01

    The marmoset spinal cord possesses all the characteristic features of a typical mammalian spinal cord, but with some interesting variation in the levels of origin of the limb nerves. In our study Nissl and ChAT sections of the each segment of the spinal cord in two marmosets (Ma5 and Ma8), we found that the spinal cord can be functionally and anatomically divided into six regions: the prebrachial region (C1 to C3); the brachial region (C4 to C8) - segments supplying the upper limb; the post-brachial region (T1 to L1) - containing the sympathetic outflow, and supplying the hypaxial muscles of the body wall; the crural region (L2 to L5) - segments supplying the lower limb; the postcrural region (L6) - containing the parasympathetic outflow; and the caudal region (L7 to Co4) - supplying the tail. In the rat, mouse, and rhesus monkey, the prebrachial region consists of segments C1 to C4 (with the phrenic nucleus located at the C4 segment), and the brachial region extends from C5 to T1 inclusive. The prefixing of the upper limb outflow in these two marmosets mirrors the finding in the literature that a large C4 contribution to the brachial plexus is common in humans.

  14. Biomarkers in spinal cord injury.

    NARCIS (Netherlands)

    Pouw, M.H.; Hosman, A.J.F.; Middendorp, J.J. van; Verbeek, M.M.; Vos, P.E.; Meent, H. van de

    2009-01-01

    STUDY DESIGN: Literature review. OBJECTIVES: In traumatic spinal cord injury (SCI), much effort has been put into the evaluation of SCI severity and the prediction of recovery potential. An accurate prediction of the initial damage of the spinal cord that differentiates between the severities of SCI

  15. Sensory and spinal inhibitory dorsal midline crossing is independent of Robo3

    Directory of Open Access Journals (Sweden)

    John Daniel Comer

    2015-07-01

    Full Text Available Commissural neurons project across the midline at all levels of the central nervous system, providing bilateral communication critical for the coordination of motor activity and sensory perception. Midline crossing at the spinal ventral midline has been extensively studied and has revealed that multiple developmental lineages contribute to this commissural neuron population. Ventral midline crossing occurs in a manner dependent on Robo3 regulation of Robo/Slit signaling and the ventral commissure is absent in the spinal cord and hindbrain of Robo3 mutants. Midline crossing in the spinal cord is not limited to the ventral midline, however. While prior anatomical studies provide evidence that commissural axons also cross the midline dorsally, little is known of the genetic and molecular properties of dorsally-crossing neurons or of the mechanisms that regulate dorsal midline crossing. In this study, we describe a commissural neuron population that crosses the spinal dorsal midline during the last quarter of embryogenesis in discrete fiber bundles present throughout the rostrocaudal extent of the spinal cord. Using immunohistochemistry, neurotracing, and mouse genetics, we show that this commissural neuron population includes spinal inhibitory neurons and sensory nociceptors. While the floor plate and roof plate are dispensable for dorsal midline crossing, we show that this population depends on Robo/Slit signaling yet crosses the dorsal midline in a Robo3-independent manner. The dorsally-crossing commissural neuron population we describe suggests a substrate circuitry for pain processing in the dorsal spinal cord.

  16. Retraining the injured spinal cord

    Science.gov (United States)

    Edgerton, V. R.; Leon, R. D.; Harkema, S. J.; Hodgson, J. A.; London, N.; Reinkensmeyer, D. J.; Roy, R. R.; Talmadge, R. J.; Tillakaratne, N. J.; Timoszyk, W.; Tobin, A.

    2001-01-01

    The present review presents a series of concepts that may be useful in developing rehabilitative strategies to enhance recovery of posture and locomotion following spinal cord injury. First, the loss of supraspinal input results in a marked change in the functional efficacy of the remaining synapses and neurons of intraspinal and peripheral afferent (dorsal root ganglion) origin. Second, following a complete transection the lumbrosacral spinal cord can recover greater levels of motor performance if it has been exposed to the afferent and intraspinal activation patterns that are associated with standing and stepping. Third, the spinal cord can more readily reacquire the ability to stand and step following spinal cord transection with repetitive exposure to standing and stepping. Fourth, robotic assistive devices can be used to guide the kinematics of the limbs and thus expose the spinal cord to the new normal activity patterns associated with a particular motor task following spinal cord injury. In addition, such robotic assistive devices can provide immediate quantification of the limb kinematics. Fifth, the behavioural and physiological effects of spinal cord transection are reflected in adaptations in most, if not all, neurotransmitter systems in the lumbosacral spinal cord. Evidence is presented that both the GABAergic and glycinergic inhibitory systems are up-regulated following complete spinal cord transection and that step training results in some aspects of these transmitter systems being down-regulated towards control levels. These concepts and observations demonstrate that (a) the spinal cord can interpret complex afferent information and generate the appropriate motor task; and (b) motor ability can be defined to a large degree by training.

  17. Co-occurrence of TDP-43 mislocalization with reduced activity of an RNA editing enzyme, ADAR2, in aged mouse motor neurons.

    Science.gov (United States)

    Hideyama, Takuto; Teramoto, Sayaka; Hachiga, Kosuke; Yamashita, Takenari; Kwak, Shin

    2012-01-01

    TDP-43 pathology in spinal motor neurons is a neuropathological hallmark of sporadic amyotrophic lateral sclerosis (ALS) and has recently been shown to be closely associated with the downregulation of an RNA editing enzyme called adenosine deaminase acting on RNA 2 (ADAR2) in the motor neurons of sporadic ALS patients. Because TDP-43 pathology is found more frequently in the brains of elderly patients, we investigated the age-related changes in the TDP-43 localization and ADAR2 activity in mouse motor neurons. We found that ADAR2 was developmentally upregulated, and its mRNA expression level was progressively decreased in the spinal cords of aged mice. Motor neurons normally exhibit nuclear ADAR2 and TDP-43 immunoreactivity, whereas fast fatigable motor neurons in aged mice demonstrated a loss of ADAR2 and abnormal TDP-43 localization. Importantly, these motor neurons expressed significant amounts of the Q/R site-unedited AMPA receptor subunit 2 (GluA2) mRNA. Because expression of unedited GluA2 has been demonstrated as a lethality-causing molecular abnormality observed in the motor neurons, these results suggest that age-related decreases in ADAR2 activity play a mechanistic role in aging and serve as one of risk factors for ALS.

  18. The homozygote VCP(R¹⁵⁵H/R¹⁵⁵H mouse model exhibits accelerated human VCP-associated disease pathology.

    Directory of Open Access Journals (Sweden)

    Angèle Nalbandian

    Full Text Available Valosin containing protein (VCP mutations are the cause of hereditary inclusion body myopathy, Paget's disease of bone, frontotemporal dementia (IBMPFD. VCP gene mutations have also been linked to 2% of isolated familial amyotrophic lateral sclerosis (ALS. VCP is at the intersection of disrupted ubiquitin proteasome and autophagy pathways, mechanisms responsible for the intracellular protein degradation and abnormal pathology seen in muscle, brain and spinal cord. We have developed the homozygous knock-in VCP mouse (VCP(R155H/R155H model carrying the common R155H mutations, which develops many clinical features typical of the VCP-associated human diseases. Homozygote VCP(R155H/R155H mice typically survive less than 21 days, exhibit weakness and myopathic changes on EMG. MicroCT imaging of the bones reveal non-symmetrical radiolucencies of the proximal tibiae and bone, highly suggestive of PDB. The VCP(R155H/R155H mice manifest prominent muscle, heart, brain and spinal cord pathology, including striking mitochondrial abnormalities, in addition to disrupted autophagy and ubiquitin pathologies. The VCP(R155H/R155H homozygous mouse thus represents an accelerated model of VCP disease and can be utilized to elucidate the intricate molecular mechanisms involved in the pathogenesis of VCP-associated neurodegenerative diseases and for the development of novel therapeutic strategies.

  19. "INTRAOPERATIVE SPINAL STIFFNESS MEASUREMENT IN MANAGEMENT OF SPINAL CANAL STENOSIS "

    Directory of Open Access Journals (Sweden)

    M. Karami

    2005-08-01

    Full Text Available In this study to determine whether spine stiffness is predictive of clinical results after lumbar spinal fusion for spinal stenosis, a total of 78 patients were measured intraoperatively with Kocher clamp manual distraction technique to determine motion segment stiffness then spinal fusion was performed for any loose segment. ‎Statistical analysis revealed that stiffness measurement correlate with clinical results of surgery. During a minimum of 2 years follow up after surgery, patients who had loose motion segment before or after decompression and were fused had the same level of satisfaction with surgical results as patients without loose segments and fusion. ‎We concluded that intraoperative spinal stiffness measurement provide a good indicator to spine fusion after lumbar canal stenosis ‎surgery.

  20. Ephrin-B3 decreases the survival of adult rat spinal cord-derived neural stem/progenitor cells in vitro and after transplantation into the injured rat spinal cord.

    Science.gov (United States)

    Fan, Xin Yan Susan; Mothe, Andrea J; Tator, Charles H

    2013-02-01

    Although transplantation of neural stem/progenitor cells (NSPC) encourages regeneration and repair after spinal cord injury (SCI), the survival of transplanted NSPC is limited. Ephrin-B3 has been shown to reduce the death of endogenous NSPC in the subventricular zone of the mouse brain without inducing uncontrolled proliferation. Due to similarities in the environment of the brain and spinal cord, we hypothesized that ephrin-B3 might reduce the death of both transplanted and endogenous spinal cord-derived NSPC. Both normal and injured (26 g clip compression) spinal cords were examined. Ephrin-B3-Fc was tested, and Fc fragments and phosphate-buffered saline (PBS) were used as controls. We found that EphA4 receptors were expressed by spinal cord-derived NSPC and expressed in the normal and injured rat spinal cord (higher expression in the latter). In vitro, ephrin-B3-Fc did not significantly reduce the survival of NSPC except at 1 μg/mL (Pinjured spinal cord compared with the infusion of PBS (Pinjured spinal cord, the infusion of either ephrin-B3-Fc or Fc fragments alone caused a 20-fold reduction in the survival of transplanted NSPC (P<0.001). Thus, after SCI, ephrin-B3-Fc and Fc fragments are toxic to transplanted NSPC.

  1. Matrix Metalloproteinases as a Therapeutic Target to Improve Neurologic Recovery After Spinal Cord Injury

    Science.gov (United States)

    2013-10-01

    systemic side-effects, including bronchospasm, hypertension, and renal failure have been reported by others (Santos et al. , 2003) and published findings...inhibitor in a murine model of spinal cord injury (UCSF) and in dogs (Texas A & M, TAMU) that sustain naturally occurring spinal cord injuries...of GM6001 in 10 dogs supports the short-term safety of the drug. Plasma drug levels following a single dose are sustained at a significant level

  2. Retinoic Acid Signaling during Early Spinal Cord Development

    Directory of Open Access Journals (Sweden)

    Ruth Diez del Corral

    2014-06-01

    Full Text Available Retinoic acid signaling is required at several steps during the development of the spinal cord, from the specification of generic properties to the final acquisition of neuronal subtype identities, including its role in trunk neural crest development. These functions are associated with the production of retinoic acid in specific tissues and are highly dependent on context. Here, we review the defects associated with retinoic acid signaling manipulations, mostly in chick and mouse models, trying to separate the different processes where retinoic acid signaling is involved and to highlight common features, such as its ability to promote transitions along the neuronal differentiation cascade.

  3. The Relationship between Lifestyle and Pain in Patients with Spinal Disc Herniation

    Directory of Open Access Journals (Sweden)

    Monireh Dadashzadeh

    2016-12-01

    Full Text Available Due to the rapid growth of the industries and constantly involvement of the new technologies into the human lives, the lifestyles of the people are altering. Simultaneously few new disorders in their lifestyles and diseases in their lives are also emerging. The spinal cord abnormalities i.e., the spinal disc herniation and/or low back pain is one of them which have made the life of some people very miserable (Farahani et al., 2012. Indeed the overall lifestyle of a human being regulates the musculoskeletal symptoms. Differences in lifestyle and psychosocial factors associated with individuals' lifestyle are effective in experiencing the level of pressure in musculoskeletal systems. Studies related to the lifestyle and musculoskeletal system, including pain and inflammation, are largely correlate (Mikkonen et al., 2015. Proper knowledge regarding the relationship between lifestyle and spinal disc herniation is very important. Social habits such as diet, exercise, weight gain, anxiety, and depression can cause changes in the spinal cord and spinal disc herniation (Kadow et al., 2014. Further, some of the lifestyle parameters such as smoking, nutrition, BMI, level of activity, sleep status, stress, and anxiety are also seen to reduce the need for medication or avoid and reduce musculoskeletal pain (Dean et al., 2015. As per Bohman et al. (2014 people with a healthy lifestyle suffer 66% less from low back pain than those who have unhealthy lifestyles.

  4. Examining the interaction of apo E and neurotoxicity on a murine model of ALS-PDC.

    Science.gov (United States)

    Wilson, J M B; Petrik, M S; Moghadasian, M H; Shaw, C A

    2005-02-01

    Epidemiological studies have shown a positive relationship between cycad flour consumption and the development of the neurodegenerative disorder, amyotrophic lateral sclerosis - parkinsonism - dementia complex (ALS-PDC). Apolipoprotein E (apo E) allele variations have been associated with genetic susceptibility in neurodegenerative diseases, including ALS-PDC. We have studied cycad toxicity in a mouse model of ALS-PDC with a particular interest in its impact on the central nervous system (CNS) in both apo E knock-out (KO) mice and their wild-type (WT) counterparts. Behavioral motor tests, motor neuron counts, and immunohistochemical staining in brain and spinal cord, as well as routine histological examinations on internal organs, were performed to evaluate cycad toxicity. Plasma cholesterol levels were also measured before and during the study. Cycad treatment was associated with higher levels of plasma cholesterol only in apo E KO mice; increased levels of plasma cholesterol did not result in increased athero genesis. Cycad-fed wild-type mice developed progressive behavioral deficits including ALS-PDC-like pathological outcomes, while cycad-fed apo E KO mice were not significantly affected. Cycad-fed wild-type mice had shorter gait length measurements along with higher active caspase-3 levels in the striatum, substantia nigra, primary motor cortex, and spinal cord as compared with corresponding controls. These changes were associated with decreased labeling for glutamate transporter 1B and tyrosine hydroxylase activity levels. No evidence of cycad toxicity was observed in internal organs of either wild-type or apo E KO mice. Our data demonstrate that apo E KO mice are less susceptible to cycad toxicity, suggesting a role for apo E as a possible genetic susceptibility factor for some forms of toxin-induced neurodegeneration.

  5. Relationship between Spinal Cord Volume and Spinal Cord Injury due to Spinal Shortening.

    Directory of Open Access Journals (Sweden)

    Feng Qiu

    Full Text Available Vertebral column resection is associated with a risk of spinal cord injury. In the present study, using a goat model, we aimed to investigate the relationship between changes in spinal cord volume and spinal cord injury due to spinal shortening, and to quantify the spinal cord volume per 1-mm height in order to clarify a safe limit for shortening. Vertebral column resection was performed at T10 in 10 goats. The spinal cord was shortened until the somatosensory-evoked potential was decreased by 50% from the baseline amplitude or delayed by 10% relative to the baseline peak latency. A wake-up test was performed, and the goats were observed for two days postoperatively. Magnetic resonance imaging was used to measure the spinal cord volume, T10 height, disc height, osteotomy segment height, and spinal segment height pre- and postoperatively. Two of the 10 goats were excluded, and hence, only data from eight goats were analyzed. The somatosensory-evoked potential of these eight goats demonstrated meaningful changes. With regard to neurologic function, five and three goats were classified as Tarlov grades 5 and 4 at two days postoperatively. The mean shortening distance was 23.6 ± 1.51 mm, which correlated with the d-value (post-pre of the spinal cord volume per 1-mm height of the osteotomy segment (r = 0.95, p < 0.001 and with the height of the T10 body (r = 0.79, p = 0.02. The mean d-value (post-pre of the spinal cord volume per 1-mm height of the osteotomy segment was 142.87 ± 0.59 mm3 (range, 142.19-143.67 mm3. The limit for shortening was approximately 106% of the vertebral height. The mean volumes of the osteotomy and spinal segments did not significantly change after surgery (t = 0.310, p = 0.765 and t = 1.241, p = 0.255, respectively. Thus, our results indicate that the safe limit for shortening can be calculated using the change in spinal cord volume per 1-mm height.

  6. Spinal and Intracranial Epidural Abscess

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2009-03-01

    Full Text Available Presentation, epidemiology, diagnosis and treatment of spinal epidural abscess (SEA and intracranial epidural abscess (ICEA are reviewed by researchers at The John's Hopkins University School of Medicine, Baltimore, MD, and Universidad de Santander, Columbia.

  7. Depression and Spinal Cord Injury

    Science.gov (United States)

    ... About Us Patient Care Resources Information & Education SCI Empowerment Project Projects & Research FAQ © 2017 University of Washington ... Ave., Seattle WA 98104 Spinal Cord Injury Clinic nurses: 206-744-5862 University of Washington Medical Center ...

  8. Spinal syringomyelia following subarachnoid hemorrhage.

    Science.gov (United States)

    Nakanishi, Kinya; Uchiyama, Takuya; Nakano, Naoki; Fukawa, Norihito; Yamada, Kimito; Yabuuchi, Tomonari; Kato, Amami

    2012-04-01

    Subarachnoid blood has been reported as a cause of chronic spinal arachnoiditis. Although syringomyelia has been thought to be caused by spinal arachnoiditis, reports of syringomyelia following aneurysmal subarachnoid hemorrhage (SAH) are very rare. We describe two patients with syringomyelia associated with chronic spinal arachnoiditis following SAH. From January 2001 to December 2010, 198 patients with aneurysmal SAH were treated at Kinki University School of Medicine. Two of the 198 patients had syringomyelia following aneurysmal SAH; thus the rate of syringomyelia associated with aneurysmal SAH was 1.0%. Patient 1 was a 54-year-old woman who presented with back pain, back numbness and gait disturbance 20 months after SAH. Her MRI revealed syringomyelia of the spinal cord from C2 to T10. She underwent shunting of the syrinx to the subarachnoid space. Patient 2 was a 49-year-old man, who was admitted to the hospital with headache, diplopia, hoarseness, dysphagia and ataxia five months after SAH. MRI revealed syringomyelia from the medulla oblongata to C6, and an enlargement of the lateral and fourth ventricles. After foramen magnum decompression and C1 laminectomy, a fourth ventricle-subarachnoid shunt was placed by insertion of a catheter. Spinal arachnoiditis and spinal syringomyelia are rare but important chronic complications after SAH.

  9. Radionuclide imaging of spinal infections

    Energy Technology Data Exchange (ETDEWEB)

    Gemmel, Filip [Ghent Maria-Middelares, General Hospital, Division of Nuclear Medicine, Ghent (Belgium); Medical Center Leeuwarden (MCL), Division of Nuclear Medicine, Henri Dunantweg 2, Postbus 888, Leeuwarden (Netherlands); Dumarey, Nicolas [Universite Libre de Bruxelles, Hopital Erasme, Division of Nuclear Medicine, Brussels (Belgium); Palestro, Christopher J. [Long Island Jewish Medical Center, Division of Nuclear Medicine, Long Island, NY (United States)

    2006-10-15

    The diagnosis of spinal infection, with or without implants, has been a challenge for physicians for many years. Spinal infections are now being recognised more frequently, owing to aging of the population and the increasing use of spinal-fusion surgery. The diagnosis in many cases is delayed, and this may result in permanent neurological damage or even death. Laboratory evidence of infection is variable. Conventional radiography and radionuclide bone imaging lack both sensitivity and specificity. Neither in vitro labelled leucocyte scintigraphy nor {sup 99m}Tc-anti-granulocyte antibody scintigraphy is especially useful, because of the frequency with which spinal infection presents as a non-specific photopenic area on these tests. Sequential bone/gallium imaging and {sup 67}Ga-SPECT are currently the radionuclide procedures of choice for spinal osteomyelitis, but these tests lack specificity, suffer from poor spatial resolution and require several days to complete. [{sup 18}F]Fluoro-2-deoxy-D-glucose (FDG) PET is a promising technique for diagnosing spinal infection, and has several potential advantages over conventional radionuclide tests. The study is sensitive and is completed in a single session, and image quality is superior to that obtained with single-photon emitting tracers. The specificity of FDG-PET may also be superior to that of conventional tracers because degenerative bone disease and fractures usually do not produce intense FDG uptake; moreover, spinal implants do not affect FDG imaging. However, FDG-PET images have to be read with caution in patients with instrumented spinal-fusion surgery since non-specific accumulation of FDG around the fusion material is not uncommon. In the future, PET-CT will likely provide more precise localisation of abnormalities. FDG-PET may prove to be useful for monitoring response to treatment in patients with spinal osteomyelitis. Other tracers for diagnosing spinal osteomyelitis are also under investigation, including

  10. The intrathecal administration of losartan, an AT1 receptor antagonist, produces an antinociceptive effect through the inhibiton of p38 MAPK phosphorylation in the mouse formalin test.

    Science.gov (United States)

    Nemoto, Wataru; Ogata, Yoshiki; Nakagawasai, Osamu; Yaoita, Fukie; Tanado, Takeshi; Tan-No, Koichi

    2015-01-12

    We have recently reported that an intrathecal (i.t.) administration of angiotensin II (Ang II) into mice induces a nociceptive behavior accompanied by the activation of p38 MAPK signaling via AT1 receptors (Nemoto et al., 2013, Mol. Pain 9, 38). These results suggested that Ang II participates in the facilitation of nociceptive transmission in the spinal cord. In the present study, we used formalin test to examine the effect of i.t.-administered losartan, an AT1 receptor antagonist, and determine whether Ang II acts as a neurotransmitter and/or neuromodulator in the spinal transmission of nociceptive information. When administered i.t. 5 min before the injection of a 2% formalin solution into the plantar surface of the hindpaw, losartan (30-100 nmol) produced a dose-dependent and significant antinociceptive effect during both the first and second phases of the test. In the superficial dorsal horn of the spinal cord (laminae I and II), the fluorescence intensities for Ang II and phospho-p38 MAPK were both significantly increased on the ipsilateral side 3 min after the injection of formalin compared to saline-treated controls. Moreover, the increase of phospho-p38 MAPK fluorescence intensity was significantly inhibited by the i.t. administration of losartan (54.8 nmol) 5 min prior to formalin. These results indicate that losartan produces an antinociceptive effect through the inhibition of p38 MAPK phosphorylation in the mouse formalin test and that Ang II may act as a neurotransmitter and/or neuromodulator in the spinal transmission of nociceptive information.

  11. Gene expression of inducible nitric oxide synthase in injured spinal cord tissue

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective: To investigate gene expression of inducible nitric oxide synthase (iNOS) in injured spinal cord tissue of rats.Methods: Thirty-six adult Sprague-Dawley rats were divided randomly into six groups: a normal group and five injury groups, six animals in each group. Animals in the injury groups were killed at 2, 6, 12, 24, 48 hours after injury, respectively. A compression injury model of spinal cord was established according to Nystrom B et al, and gene expression of iNOS in spinal cord tissue was examined by means of reverse transcription polymerase chain reaction (RT-PCR).Results: Gene expression of iNOS was not detectable in normal spinal cord tissue but was seen in the injury groups. The expression was gradually up-regulated, reaching the maximum at 24 hours. The expression at 48hours began to decrease but was still significantly higher than that at 2 hours.Conclusions: iNOS is not involved in the normal physiological activities of spinal cord. Expression of iNOS is up-regulated in spinal cord tissue in response to injury and the up-regulation exists mainly in the late stage after injury. Over-expression of iNOS may contribute to the late injury of spinal cord.

  12. Human/mouse homology relationships

    Energy Technology Data Exchange (ETDEWEB)

    DeBry, R.W.; Seldin, M.F. [Duke Univ. Medical Center, Durham, NC (United States)

    1996-05-01

    Conservation of genomic organization in different mammalian species has long been recognized, but only recently has it been possible to examine these relationships systematically on a genome-wide scale in some detail. Mapping of several mammalian species in progressing rapidly, but by far the most detailed information is still to be found in the human and mouse databases. Perhaps the most important aspect of recent progress in genome mapping data. With mapping databases continuing to expand at a greater than linear rate, any attempt at a comprehensive comparative map is doomed to be out of date by the time it is published. However, we feel that it is valuable to provide a summary that is as nearly up to date as possible. We have made a particular effort to include recent human physical mapping data and to identify those mouse genes that have been well-mapped with respect to each other by virtue of having been examined in the same cross. As the human-mouse comparative map becomes more dense, it is not surprising that the observed number of conserved linkage groups continues to increase. Nadeau et al. placed 425 loci on both maps, which delineated over 100 conserved linkage groups. Copeland et al. put a total of 917 markers on both the human and the mouse maps, marking 101 segments of conserved linkage groups. In the present summary, we have placed 1416 loci, and these define at least 181 different conserved linkage groups. 47 refs., 1 fig.

  13. A case of acute spinal intradural hematoma due to spinal anesthesia

    Institute of Scientific and Technical Information of China (English)

    Josu M Avecillas-Chasn; Jordi A Matias-Guiu; Gustavo Gomez; Javier Saceda-Gutierrez

    2015-01-01

    Spinal intradural hematoma is a rare complication of diagnostic lumbar puncture or spinal anesthesia. This complication could be overlooked with devastating neurological consequences due to a delay in diagnosis. Here, we reported a case of a patient with a lumbar spinal intradural hematoma as a result of a difficult spinal anesthesia.

  14. Spinal Cord Injury Model System Information Network

    Science.gov (United States)

    ... Go New to Website Managing Bowel Function After Spinal Cord Injury Resilience, Depression and Bouncing Back after SCI Getting ... the UAB-SCIMS Contact the UAB-SCIMS UAB Spinal Cord Injury Model System Newly Injured Health Daily Living Consumer ...

  15. Suicide in a spinal cord injured population

    DEFF Research Database (Denmark)

    Hartkopp, A; Brønnum-Hansen, Henrik; Seidenschnur, A M;

    1998-01-01

    To determine the relation between functional status and risk of suicide among individuals with spinal cord injury (SCI).......To determine the relation between functional status and risk of suicide among individuals with spinal cord injury (SCI)....

  16. Spinal Cord disease

    Institute of Scientific and Technical Information of China (English)

    1993-01-01

    930602 The study of DSSEPs of upper limbs ondifferential diagnosis between ALS and CSM.FAN Dongsheng(樊东升),KANG Dexuan(康德宣).Dept Neurol,3rd Affili Hosp,BeijingMed Univ,Beijing,100083.Chin J Nerv & MentDis 1993;19(1):9-11.Dermatomal somatosensory evoked potentials(DSSEPs)of upper limbs were used to distin-guish amyotrophic lateral sclerosis(ALS)fromcervical spondylotic myelopathy(CSM).The re-sults showed a positive rate of 8% in ALS,and100% in CSM.There was a significant,differ-ence(P<0.001).Furthermore,a very high lin-ear correlation was found between the anatomicallevel of lesion determined by abnormal finding ofDSSEPS that determined by MRI.It is suggested

  17. Spatial Elucidation of Spinal Cord Lipid- and Metabolite- Regulations in Amyotrophic Lateral Sclerosis

    Science.gov (United States)

    Hanrieder, Jörg; Ewing, Andrew G.

    2014-06-01

    Amyotrophic lateral sclerosis (ALS) is a devastating, rapidly progressing disease of the central nervous system that is characterized by motor neuron degeneration in the brain stem and the spinal cord. We employed time of flight secondary ion mass spectrometry (ToF-SIMS) to profile spatial lipid- and metabolite- regulations in post mortem human spinal cord tissue from ALS patients to investigate chemical markers of ALS pathogenesis. ToF-SIMS scans and multivariate analysis of image and spectral data were performed on thoracic human spinal cord sections. Multivariate statistics of the image data allowed delineation of anatomical regions of interest based on their chemical identity. Spectral data extracted from these regions were compared using two different approaches for multivariate statistics, for investigating ALS related lipid and metabolite changes. The results show a significant decrease for cholesterol, triglycerides, and vitamin E in the ventral horn of ALS samples, which is presumably a consequence of motor neuron degeneration. Conversely, the biogenic mediator lipid lysophosphatidylcholine and its fragments were increased in ALS ventral spinal cord, pointing towards neuroinflammatory mechanisms associated with neuronal cell death. ToF-SIMS imaging is a promising approach for chemical histology and pathology for investigating the subcellular mechanisms underlying motor neuron degeneration in amyotrophic lateral sclerosis.

  18. Timing of Surgery After Spinal Cord Injury.

    Science.gov (United States)

    Piazza, Matthew; Schuster, James

    2017-01-01

    Although timing for surgical intervention after spinal cord injury remains controversial, there is accumulating evidence suggesting that early surgery may improve neurologic outcomes, particularly with incomplete spinal cord injury, and may reduce non-neurologic complications and health care resource utilization. Moreover, even in patients with complete spinal cord injury, minor improvement in neurologic function can lead to significant changes in quality of life. This article reviews the experimental and clinical data examining surgical timing after spinal cord injury.

  19. MRI Findings in Spinal Canal Stenosis

    OpenAIRE

    Maryam Barzin

    2010-01-01

    Spinal canal stenosis results from progressive narrowing of the central spinal canal and the lateral recesses. Primary (congenital) lumbar spinal stenosis is associated with achondroplastic dwarfism. The spinal canal may become narrowed by bulging or protrusion of the intervertebral disc annulus, herniation of the nucleus pulposus posteriorly, thickening of the posterior longitudinal ligament, hypertrophy of the facet joints, hypertrophy of the ligamentum flavum, epidural fat deposition, spon...

  20. Neuronal mechanism of epileptogenesis in EL mouse

    OpenAIRE

    2013-01-01

    The convulsions of the EL mouse (EL) were described by Imaizumi et al. in 1954 and were established as epilepsy by Suzuki in 1976. The EL mouse has been kept as an inbred strain and is considered one of the best animal models originated in Japan. The mode of inheritance is autosomal dominant, and environmental risk factors for seizure occurrence are hypothesised to contribute to the polygenic background. Paroxysmal activities in the EL brain arise from the parietal cortex (PCX) and are augmen...

  1. Nf2/Merlin controls spinal cord neural progenitor function in a Rac1/ErbB2-dependent manner.

    Directory of Open Access Journals (Sweden)

    Cynthia Garcia

    Full Text Available OBJECTIVE: Individuals with the neurofibromatosis type 2 (NF2 cancer predisposition syndrome develop spinal cord glial tumors (ependymomas that likely originate from neural progenitor cells. Whereas many spinal ependymomas exhibit indolent behavior, the only treatment option for clinically symptomatic tumors is surgery. In this regard, medical therapies are unfortunately lacking due to an incomplete understanding of the critical growth control pathways that govern the function of spinal cord (SC neural progenitor cells (NPCs. METHODS: To identify potential therapeutic targets for these tumors, we leveraged primary mouse Nf2-deficient spinal cord neural progenitor cells. RESULTS: We demonstrate that the Nf2 protein, merlin, negatively regulates spinal neural progenitor cell survival and glial differentiation in an ErbB2-dependent manner, and that NF2-associated spinal ependymomas exhibit increased ErbB2 activation. Moreover, we show that Nf2-deficient SC NPC ErbB2 activation results from Rac1-mediated ErbB2 retention at the plasma membrane. SIGNIFICANCE: Collectively, these findings establish ErbB2 as a potential rational therapeutic target for NF2-associated spinal ependymoma.

  2. A potential inhibitory function of draxin in regulating mouse trunk neural crest migration.

    Science.gov (United States)

    Zhang, Sanbing; Su, Yuhong; Gao, Jinbao; Zhang, Chenbing; Tanaka, Hideaki

    2017-01-01

    Draxin is a repulsive axon guidance protein that plays important roles in the formation of three commissures in the central nervous system and dorsal interneuron 3 (dI3) in the chick spinal cord. In the present study, we report the expression pattern of mouse draxin in the embryonic mouse trunk spinal cord. In the presence of draxin, the longest net migration length of a migrating mouse trunk neural crest cell was significantly reduced. In addition, the relative number of apolar neural crest cells increased as the draxin treatment time increased. Draxin caused actin cytoskeleton rearrangement in the migrating trunk neural crest cells. Our data suggest that draxin may regulate mouse trunk neural crest cell migration by the rearrangement of cell actin cytoskeleton and by reducing the polarization activity of these cells subsequently.

  3. Evaluation of spinal cord injury animal models

    Institute of Scientific and Technical Information of China (English)

    Ning Zhang; Marong Fang; Haohao Chen; Fangming Gou; Mingxing Ding

    2014-01-01

    Because there is no curative treatment for spinal cord injury, establishing an ideal animal model is important to identify injury mechanisms and develop therapies for individuals suffering from spinal cord injuries. In this article, we systematically review and analyze various kinds of animal models of spinal cord injury and assess their advantages and disadvantages for further studies.

  4. Functional outcome after a spinal fracture

    NARCIS (Netherlands)

    Post, Richard Bernardus

    2008-01-01

    This thesis takes a closer look at the functional outcome after a spinal fracture. An introduction to different aspects regarding spinal fractures is presented in Chapter 1. The incidence of traumatic thoracolumbar spinal fractures without neurological deficit in the Netherlands is approximately 1.2

  5. ATYPICAL GOUT: SPINAL TOPHACEOUS INJURY

    Directory of Open Access Journals (Sweden)

    Maksim Sergeevich Eliseev

    2013-01-01

    Full Text Available Spinal injury in gout occurs rarely at a young age. In the past 5 years, the Pubmed has published only 44 papers on this site of tophi mainly in gouty patients over 40 years of age. We report two such cases in patients with chronic tophaceous gout in a 28-year-old man with a 3-year history of gout and in a 30-year-old man with its 7-year history. In both cases, spinal injury with tophus masses gave rise to neurological symptomatology. Computed tomography and magnetic resonance imaging were of informative value in identifying the causes of pain. In one case, the patient underwent laminectomy; histological evidence confirmed the gouty genesis of spinal injury.

  6. Spinal reflexes in brain death.

    Science.gov (United States)

    Beckmann, Yesim; Çiftçi, Yeliz; Incesu, Tülay Kurt; Seçil, Yaprak; Akhan, Galip

    2014-12-01

    Spontaneous and reflex movements have been described in brain death and these unusual movements might cause uncertainties in diagnosis. In this study we evaluated the presence of spinal reflexes in patients who fulfilled the criteria for brain death. Thirty-two (22 %) of 144 patients presented unexpected motor movements spontaneously or during examinations. These patients exhibited the following signs: undulating toe, increased deep tendon reflexes, plantar responses, Lazarus sign, flexion-withdrawal reflex, facial myokymia, neck-arm flexion, finger jerks and fasciculations. In comparison, there were no significant differences in age, sex, etiology of brain death and hemodynamic laboratory findings in patients with and without reflex motor movement. Spinal reflexes should be well recognized by physicians and it should be born in mind that brain death can be determined in the presence of spinal reflexes.

  7. Recurrent Primary Spinal Hydatid Cyst

    Directory of Open Access Journals (Sweden)

    Okan Turk

    2015-03-01

    Full Text Available Primary hydatid disease of spine is rare and spinal hydatitosis constitute only 1% of all hydatitosis. We report a case of recurrent primary intraspinal extradural hydatid cyst of the thoracic region causing progressive paraparesis. The patient was operated 16 years ago for primary spinal hydatid disease involvement and was instrumented dorsally for stabilization. The magnetic resonance imaging (MRI of thoracic spine showed a cystic lesion at T11-12 level and compressed spinal cord posterolaterally. Intraspinal cyst was excised through T11-12 laminectomy which made formerly. The early postoperative period showed a progressive improvement of his neurological deficit and he was discharged with antihelmintic treatment consisting of albendazole and amoxicillin-sulbactam combination. [Cukurova Med J 2015; 40(Suppl 1: 84-89

  8. FGF signaling enhances a Shh negative feedback loop to control initiation of spinal cord ventral patterning

    OpenAIRE

    2015-01-01

    A prevalent developmental mechanism for the assignment of cell identities is the production of spatiotemporal concentration gradients of extracellular signaling molecules that are interpreted by the responding cells. One of such signaling systems is the Shh gradient that controls neuronal subtype identity in the ventral spinal cord. Using loss and gain of function approaches in chick and mouse embryos, we show here that the fibroblast growth factor (FGF) signaling pathway is required to restr...

  9. Comparative Magnetic Resonance Imaging and Histopathological Correlates in Two SOD1 Transgenic Mouse Models of Amyotrophic Lateral Sclerosis.

    Directory of Open Access Journals (Sweden)

    Ilaria Caron

    Full Text Available Amyotrophic Lateral Sclerosis (ALS is a progressive and fatal disease due to motoneuron degeneration. Magnetic resonance imaging (MRI is becoming a promising non-invasive approach to monitor the disease course but a direct correlation with neuropathology is not feasible in human. Therefore in this study we aimed to examine MRI changes in relation to histopathology in two mouse models of ALS (C57BL6/J and 129S2/SvHsd SOD1G93A mice with different disease onset and progression. A longitudinal in vivo analysis of T2 maps, compared to ex vivo histological changes, was performed on cranial motor nuclei. An increased T2 value was associated with a significant tissue vacuolization that occurred prior to motoneuron loss in the cranial nuclei of C57 SOD1G93A mice. Conversely, in 129Sv SOD1G93A mice, which exhibit a more severe phenotype, MRI detected a milder increase of T2 value, associated with a milder vacuolization. This suggests that alteration within brainstem nuclei is not predictive of a more severe phenotype in the SOD1G93A mouse model. Using an ex vivo paradigm, Diffusion Tensor Imaging was also applied to study white matter spinal cord degeneration. In contrast to degeneration of cranial nuclei, alterations in white matter and axons loss reflected the different disease phenotype of SOD1G93A mice. The correspondence between MRI and histology further highlights the potential of MRI to monitor progressive motoneuron and axonal degeneration non-invasively in vivo. The identification of prognostic markers of the disease nevertheless requires validation in multiple models of ALS to ensure that these are not merely model-specific. Eventually this approach has the potential to lead to the development of robust and validated non-invasive imaging biomarkers in ALS patients, which may help to monitor the efficacy of therapies.

  10. The corticospinal tract lesion of amyotrophic lateral sclerosis. Magnetic resonance imaging of the spinal cord

    Energy Technology Data Exchange (ETDEWEB)

    Terao, Shin-ichi; Sobue, Gen; Mitsuma, Terunori (Aichi Medical Univ., Nagakute (Japan)); Yasuda, Takeshi; Kachi, Teruhiko

    1994-09-01

    Magnetic resonance imaging by gradient echo method demonstrated lesions of the lateral corticospinal tract at cervical cord levels in three ALS patients. Patient 1 was a 43-year-old woman with common from of ALS. She developed right-side predominant pyramidal signs, and right-side predominant prolongation of central motor conduction time. MRI showed hypersignal intensity areas in the dorsal region of the lateral column at the 4th and 5th cervical segments with right-side predominacy. Patient 2 was a 65-year-old man with pseudopolyneuritic from of ALS, who showed lower motor neuron signs without a pyramidal sign. MRI of the 3rd and 4th cervical cord segments demonstrated bilateral hypersignal intensity areas in the dorsal part of the lateral column. Patient 3 was a 62-year-old man with common form of ALS, who showed marked bilateral pyramidal signs with Babinski's sign. MRI of the 5th cervical spinal cord segment demonstrated bilateral hypersignal intensity areas in the dorsolateral column. MR images of the spinal cord thus obtained corresponded well to the postmortem confirmed degeneration of the spinal corticospinal tract. MRI of the spinal cord performed by gradient echo method would provide additional information on the upper motor neuron involvement in ALS. (author).

  11. Imaging in spine and spinal cord malformations.

    Science.gov (United States)

    Rossi, Andrea; Biancheri, Roberta; Cama, Armando; Piatelli, Gianluca; Ravegnani, Marcello; Tortori-Donati, Paolo

    2004-05-01

    Spinal and spinal cord malformations are collectively named spinal dysraphisms. They arise from defects occurring in the early embryological stages of gastrulation (weeks 2-3), primary neurulation (weeks 3-4), and secondary neurulation (weeks 5-6). Spinal dysraphisms are categorized into open spinal dysraphisms (OSDs), in which there is exposure of abnormal nervous tissues through a skin defect, and closed spinal dysraphisms (CSD), in which there is a continuous skin coverage to the underlying malformation. Open spinal dysraphisms basically include myelomeningocele and other rare abnormalities such as myelocele and hemimyelo(meningo)cele. Closed spinal dysraphisms are further categorized based on the association with low-back subcutaneous masses. Closed spinal dysraphisms with mass are represented by lipomyelocele, lipomyelomeningocele, meningocele, and myelocystocele. Closed spinal dysraphisms without mass comprise simple dysraphic states (tight filum terminale, filar and intradural lipomas, persistent terminal ventricle, and dermal sinuses) and complex dysraphic states. The latter category further comprises defects of midline notochordal integration (basically represented by diastematomyelia) and defects of segmental notochordal formation (represented by caudal agenesis and spinal segmental dysgenesis). Magnetic resonance imaging (MRI) is the preferred modality for imaging these complex abnormalities. The use of the aforementioned classification scheme is greatly helpful to make the diagnosis.

  12. Imaging in spine and spinal cord malformations

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, Andrea E-mail: a.rossi@panet.itandrearossi@ospedale-gaslini.ge.it; Biancheri, Roberta; Cama, Armando; Piatelli, Gianluca; Ravegnani, Marcello; Tortori-Donati, Paolo

    2004-05-01

    Spinal and spinal cord malformations are collectively named spinal dysraphisms. They arise from defects occurring in the early embryological stages of gastrulation (weeks 2-3), primary neurulation (weeks 3-4), and secondary neurulation (weeks 5-6). Spinal dysraphisms are categorized into open spinal dysraphisms (OSDs), in which there is exposure of abnormal nervous tissues through a skin defect, and closed spinal dysraphisms (CSD), in which there is a continuous skin coverage to the underlying malformation. Open spinal dysraphisms basically include myelomeningocele and other rare abnormalities such as myelocele and hemimyelo(meningo)cele. Closed spinal dysraphisms are further categorized based on the association with low-back subcutaneous masses. Closed spinal dysraphisms with mass are represented by lipomyelocele, lipomyelomeningocele, meningocele, and myelocystocele. Closed spinal dysraphisms without mass comprise simple dysraphic states (tight filum terminale, filar and intradural lipomas, persistent terminal ventricle, and dermal sinuses) and complex dysraphic states. The latter category further comprises defects of midline notochordal integration (basically represented by diastematomyelia) and defects of segmental notochordal formation (represented by caudal agenesis and spinal segmental dysgenesis). Magnetic resonance imaging (MRI) is the preferred modality for imaging these complex abnormalities. The use of the aforementioned classification scheme is greatly helpful to make the diagnosis.

  13. Spinal angiography: vascular anatomy, technique, indications; Spinale Angiographie: Gefaessanatomie, Technik und Indikationsstellung

    Energy Technology Data Exchange (ETDEWEB)

    Grunwald, I.; Reith, W. [Universitaet des Saarlandes, Homburg/Saar (Germany). Abt. fuer Neuroradiologie; Thron, A. [Universitaetsklinik der RWTH Aachen (Germany). Abteilung fuer Neuroradiologie

    2001-11-01

    The indication for spinal angiography has to be closely set as in case of inadequate handling this procedure bares the risk of paraplegia. In unclear spinal symptoms lasting over a longer periode of time, spinal vascular malformation have to be considered. Spinal vascular malformations are often reversibel, especially if diagnosed early. Diagnostic methods have to include spinal angiography if other non-invasive methods do not lead to results. The main point is to consider spinal vascular malformations in unclear cases. (orig.) [German] Die Indikation zu einer spinalen Angiographie muss streng gestellt werden, da bei unsachgemaesser Durchfuehrung dieser Untersuchung die Gefahr einer bleibenden Querschnittsymptomatik besteht. Bei unklarer spinaler Symptomatik, die ueber einen laengeren Zeitraum progredient ist, muss jedoch immer auch an eine spinale Gefaessfehlbildung gedacht werden. Die durch alle diagnostischen Moeglichkeiten einschliesslich der spinalen Angiographie diagnostizierten spinalen Gefaessfehlbildungen sind haeufig kurabel, insbesondere bei frueher Diagnosestellung. Der wichtigste Punkt ist jedoch, dass differenzialdiagnostisch auch an eine spinale Gefaessfehlbildung gedacht wird. (orig.)

  14. Spinal cord injury at birth

    DEFF Research Database (Denmark)

    Fenger-Gron, Jesper; Kock, Kirsten; Nielsen, Rasmus G;

    2008-01-01

    UNLABELLED: A case of perinatally acquired spinal cord injury (SCI) is presented. The foetus was vigorous until birth, the breech presented and delivery was performed by a non-traumatic Caesarean section. The infant displayed symptoms of severe SCI but diagnosis was delayed due to severe co...

  15. Changes of BB Isoenzyme of Creatine Kinase, CaATPase and Calpain in Experimental Autoimmune Encephalomyelitis Mouse Brain and Spinal Cord%实验性自身免疫性脑脊髓炎小鼠脑组织和脊髓中脑型肌酸激酶、钙泵和钙中性蛋白酶的变化

    Institute of Scientific and Technical Information of China (English)

    王沛; 郑荣远; 林福虹; 王赵伟; 厉芳; 张正学

    2011-01-01

    Aim: To investigate the changes ofBB isoenzyme of creatine kinase(CK-BB), CaATPase and calpain in experimental autoimmune encephalomyelitis(EAE) mouse brain and spinal cord. Methods: C57BL/6 mice were induced into the models of EAE with multiple sclerosis by myelin oligodendrocyte glycoprotein 35-55 (MOG35-55) peptides. Behavioral changes of the EAE mice were observed and recorded. With HE staining, LFB myelin staining, the changes of the central nervous tissues, CK-BB, CaATPase and calpain activity were assayed in the peak incidence by using microplate reader and spectrophotometer (19 days after immunization). Results: Compared with the control group, the results of the EAE group were as follows :① Mean daily clinical scores and cumulative scores were mcreased(P<0.01).② HE staining: Central inflammatory cell infiltration became obvious(P<0.05).③ LFB Clinical Analysis of 15 Cases with Spontaneous Intracranial Hypotension HeadacheKEY WORDS spontaneous intracranial hypotension; headache; secondary headacheABSTRACT Aim: To explore the clinical features of spontaneous intracranial hypotension(SIH) headache.Methods: Clinical data of 15 cases of SIH headache were retrospectively analyzed. Results: 12 0f 15 caseswere acute onset, 9 were female. The ages of onset were from 28 t0 56 years. 93.33% cases had posturalheadache, with the common concomitant symptoms of nausea and vomit. The average cerebrospinal fluidpressure was (41.2 + 30.85)mmH20, which was higher in male than in female (P<0.05). Radionuclidecisternography and imaging were normal. All cases were cured after conservative treatment. Conclusion:Typical postural headache and cerebrospinal fluid pressure less than 60 mmH.O were the main features in SIHheadache, which were with favorable prognosis.%目的:观察实验性自身免疫性脑脊髓炎(EAE)小鼠模型脑组织和脊髓中脑型肌酸激酶(CK-BB)、钙泵(CaATPase) 和钙中性蛋白酶(calpain)的变化.方法:C57BL/6

  16. Pressure changes in spinal canal and evaluation of spinal cord injuries in spinal section subjected to impact

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective: To observe pressure changes in the spinal canal of the vertebrarium subjected to impact. From the point of view of impact, pressure changes and spinal cord injuries, the relationship between the type of spinal fracture and the severity of spinal cord injuries were analyzed and some experimental data were provided for early evaluation of severity of spinal cord injuries.   Methods: An experimental model of spinal burst fracture was made with Type BIM-I bio-impact machine and techniques of high velocity vertical loading in static pattern and stress shielding were adopted. Vertebral sections T10-L4 taken from fresh cadavers were impacted and pressure changes in the spinal canal were observed. The types and severity of spinal fracture were studied with gross and radiography examination.   Results: Great positive pressure wave (wave A) in the spinal canal of the 4 vertebral specimens with burst fracture was recorded. The peak value of pressure was correlated with the severity of posterior column injuries. Generally, the peak value of pressure was low in the samples with posterior column injuries, but high in the samples without injuries. The predominant features of fractures were burst fractures of vertebral body and severe destruction of the skeletal and fiber structure of the spinal canal. Positive and negative pressure waves (wave B) were recorded in 2 vertebral samples in which no significant abnormal changes were found by radiography examination, however, a little liquid effusion in the vertebral body was found by gross examination.   Conclusions: The type of pressure wave in the spinal canal is related to the deformation or the destruction of the spinal canal structure. The peak value of the pressure is non-linearly related to the obstruction in the spinal canal, but related to posterior column injuries.

  17. Therapeutic AAV9-mediated suppression of mutant SOD1 slows disease progression and extends survival in models of inherited ALS.

    Science.gov (United States)

    Foust, Kevin D; Salazar, Desirée L; Likhite, Shibi; Ferraiuolo, Laura; Ditsworth, Dara; Ilieva, Hristelina; Meyer, Kathrin; Schmelzer, Leah; Braun, Lyndsey; Cleveland, Don W; Kaspar, Brian K

    2013-12-01

    Mutations in superoxide dismutase 1 (SOD1) are linked to familial amyotrophic lateral sclerosis (ALS) resulting in progressive motor neuron death through one or more acquired toxicities. Involvement of wild-type SOD1 has been linked to sporadic ALS, as misfolded SOD1 has been reported in affected tissues of sporadic patients and toxicity of astrocytes derived from sporadic ALS patients to motor neurons has been reported to be reduced by lowering the synthesis of SOD1. We now report slowed disease onset and progression in two mouse models following therapeutic delivery using a single peripheral injection of an adeno-associated virus serotype 9 (AAV9) encoding an shRNA to reduce the synthesis of ALS-causing human SOD1 mutants. Delivery to young mice that develop aggressive, fatal paralysis extended survival by delaying both disease onset and slowing progression. In a later-onset model, AAV9 delivery after onset markedly slowed disease progression and significantly extended survival. Moreover, AAV9 delivered intrathecally to nonhuman primates is demonstrated to yield robust SOD1 suppression in motor neurons and glia throughout the spinal cord and therefore, setting the stage for AAV9-mediated therapy in human clinical trials.

  18. MicroRNA expression in the adult mouse central nervous system

    DEFF Research Database (Denmark)

    Bak, Mads; Silahtaroglu, Asli; Møller, Morten

    2008-01-01

    distinct areas of the adult mouse central nervous system (CNS). Microarray profiling in combination with real-time RT-PCR and LNA (locked nucleic acid)-based in situ hybridization uncovered 44 miRNAs displaying more than threefold enrichment in the spinal cord, cerebellum, medulla oblongata, pons......RNA-related gene regulatory networks in the mammalian central nervous system. Udgivelsesdato: 2008-Mar...

  19. Functional improvement in mouse models of familial amyotrophic lateral sclerosis by PEGylated insulin-like growth factor I treatment depends on disease severity.

    Science.gov (United States)

    Saenger, Stefanie; Holtmann, Bettina; Nilges, Mark R; Schroeder, Susanne; Hoeflich, Andreas; Kletzl, Heidemarie; Spooren, Will; Ostrowitzki, Susanne; Hanania, Taleen; Sendtner, Michael; Metzger, Friedrich

    2012-09-01

    Insulin-like growth factor I (IGF-I) has been successfully tested in the SOD1-G93A mouse model of familial amyotrophic lateral sclerosis (ALS) and proposed for clinical treatment. However, beneficial effects required gene therapy or intrathecal application. Circumventing the dosing issues we recently found that polyethylene glycol (PEG) modified IGF-I (PEG-IGF-I) modulated neuromuscular function after systemic application, and protected against disease progression in a motor neuron disease model. Here we investigated its effects in two SOD1-G93A mouse lines, the G1L with a milder and the G1H with a more severe phenotype. Results showed that in G1L mice, PEG-IGF-I treatment significantly improved muscle force, motor coordination and animal survival. In contrast, treatment of G1H mice with PEG-IGF-I or IGF-I even at high doses did not beneficially affect survival or functional outcomes despite increased signalling in brain and spinal cord by both agents. In conclusion, the data point towards further investigation of the therapeutic potential of PEG-IGF-I in ALS patients with less severe clinical phenotypes.

  20. Loss of microRNA-124 expression in neurons in the peri-lesion area in mice with spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    Yu Zhao; Hui Zhang; Dan Zhang; Cai-yong Yu; Xiang-hui Zhao; Fang-fang Liu; Gan-lan Bian; Gong Ju; Jian Wang

    2015-01-01

    MicroRNA-124 (miR-124) is abundantly expressed in neurons in the mammalian central ner-vous system, and plays critical roles in the regulation of gene expression during embryonic neurogenesis and postnatal neural differentiation. However, the expression proifle of miR-124 after spinal cord injury and the underlying regulatory mechanisms are not well understood. In the present study, we examined the expression of miR-124 in mouse brain and spinal cord after spinal cord injury usingin situ hybridization. Furthermore, the expression of miR-124 was examined with quantitative RT-PCR at 1, 3 and 7 days after spinal cord injury. The miR-124 expression in neurons at the site of injury was evaluated by in situ hybridization combined with NeuN immunohistochemical staining. The miR-124 was mainly expressed in neurons through-out the brain and spinal cord. The expression of miR-124 in neurons significantly decreased within 7 days after spinal cord injury. Some of the neurons in the peri-lesion area were NeuN+/miR-124−. Moreover, the neurons distal to the peri-lesion site were NeuN+/miR-124+. These ifndings indicate that miR-124 expression in neurons is reduced after spinal cord injury, and may relfect the severity of spinal cord injury.

  1. Neuroimaging for spine and spinal cord surgery

    Energy Technology Data Exchange (ETDEWEB)

    Koyanagi, Izumi [Hokkaido Neurosurgical Memorial Hospital (Japan); Iwasaki, Yoshinobu; Hida, Kazutoshi

    2001-01-01

    Recent advances in neuroimaging of the spine and spinal cord are described based upon our clinical experiences with spinal disorders. Preoperative neuroradiological examinations, including magnetic resonance (MR) imaging and computerized tomography (CT) with three-dimensional reconstruction (3D-CT), were retrospectively analyzed in patients with cervical spondylosis or ossification of the posterior longitudinal ligament (130 cases), spinal trauma (43 cases) and intramedullary spinal cord tumors (92 cases). CT scan and 3D-CT were useful in elucidating the spine pathology associated with degenerative and traumatic spine diseases. Visualization of the deformity of the spine or fracture-dislocation of the spinal column with 3D-CT helped to determine the correct surgical treatment. MR imaging was most important in the diagnosis of both spine and spinal cord abnormalities. The axial MR images of the spinal cord were essential in understanding the laterality of the spinal cord compression in spinal column disorders and in determining surgical approaches to the intramedullary lesions. Although non-invasive diagnostic modalities such as MR imaging and CT scans are adequate for deciding which surgical treatment to use in the majority of spine and spinal cord disorders, conventional myelography is still needed in the diagnosis of nerve root compression in some cases of cervical spondylosis. (author)

  2. Pathogenesis of spinally mediated hyperalgesia in diabetes.

    Science.gov (United States)

    Ramos, Khara M; Jiang, Yun; Svensson, Camilla I; Calcutt, Nigel A

    2007-06-01

    Hyperalgesia to noxious stimuli is accompanied by increased spinal cyclooxygenase (COX)-2 protein in diabetic rats. The present studies were initiated to establish causality between increased spinal COX-2 activity and hyperalgesia during diabetes and to assess the potential involvement of polyol pathway activity in the pathogenesis of spinally mediated hyperalgesia. Rats with 1, 2, or 4 weeks of streptozotocin-induced diabetes exhibited significantly increased levels of spinal COX-2 protein and activity, along with exaggerated paw flinching in response to 0.5% paw formalin injection. Increased flinching of diabetic rats was attenuated by intrathecal pretreatment with a selective COX-2 inhibitor immediately before formalin injection, confirming the involvement of COX-2 activity in diabetic hyperalgesia. Chronic treatment with insulin or ICI222155, an aldose reductase inhibitor (ARI) previously shown to prevent spinal polyol accumulation and formalin-evoked hyperalgesia in diabetic rats, prevented elevated spinal COX-2 protein and activity in diabetic rats. In contrast, the ARI IDD676 had no effect on spinal polyol accumulation, elevated spinal COX-2, or hyperalgesia to paw formalin injection. In the spinal cord, aldose reductase immunoreactivity was present solely in oligodendrocytes, which also contained COX-2 immunoreactivity. Polyol pathway flux in spinal oligodendrocytes provides a pathogenic mechanism linking hyperglycemia to hyperalgesia in diabetic rats.

  3. Nonlinear optical techniques for imaging and manipulating the mouse central nervous system

    Science.gov (United States)

    Farrar, Matthew John

    The spinal cord of vertebrates serves as the conduit for somatosensory information and motor control, as well as being the locus of neural circuits that govern fast reflexes and patterned behaviors, such as walking in mammals or swimming in fish. Consequently, pathologies of the spinal cord -such as spinal cord injury (SCI)- lead to loss of motor control and sensory perception, with accompanying decline in life expectancy and quality of life. Despite the devastating effects of these diseases, few therapies exist to substantially ameliorate patient outcome. In part, studies of spinal cord pathology have been limited by the inability to perform in vivo imaging at the level of cellular processes. The focus of this thesis is to present the underlying theory for and demonstration of novel multi-photon microscopy (MPM) and optical manipulation techniques as they apply to studies the mouse central nervous system (CNS), with an emphasis on the spinal cord. The scientific findings which have resulted from the implementation of these techniques are also presented. In particular, we have demonstrated that third harmonic generation is a dye-free method of imaging CNS myelin, a fundamental constituent of the spinal cord that is difficult to label using exogenous dyes and/or transgenic constructs. Since gaining optical access to the spinal cord is a prerequisite for spinal cord imaging, we review our development of a novel spinal cord imaging chamber and surgical procedure which allowed us to image for multiple weeks following implantation without the need for repeated surgeries. We also have used MPM to characterize spinal venous blood flow before and after point occlusions. We review a novel nonlinear microscopy technique that may serve to show optical interfaces in three dimensions inside scattering tissue. Finally, we discuss a model and show results of optoporation, a means of transfecting cells with genetic constructs. Brief reviews of MPM and SCI are also presented.

  4. Substantial Early, But Nonprogressive Neuronal Loss in Multiple Sclerosis (MS) Spinal Cord

    NARCIS (Netherlands)

    Schirmer, Lucas; Albert, Monika; Buss, Armin; Schulz-Schaeffer, Walter J.; Antel, Jack P.; Brueck, Wolfgang; Stadelmann, Christine

    2009-01-01

    Research in multiple sclerosis (MS) has recently been focusing on the extent of neuroaxonal damage and its contribution to disease outcome. In the present Study, we examined spinal cord tissue from 30 clinically well-characterized MS patients. MS, amyotrophic lateral sclerosis (ALS), and control spi

  5. Spinal tuberculoma in a patient with spinal myxopapillary ependymoma

    Directory of Open Access Journals (Sweden)

    Arora Brijesh

    2010-01-01

    Full Text Available Intramedullary spinal tuberculosis is a clinical curiosity. A 19-year-old female was diagnosed and treated for lumbosacral myxopapllary ependy moma (MPE. Three years later, she presented with back pain and hypoesthesia of the left upper limb. Besides revealing local recurrence, the MRI demonstrated a fresh lesion in the cervicomedullary area. The latter was operated and the histopathology revealed a tuberculoma.

  6. An astrocyte regenerative response from vimentin-containing cells in the spinal cord of amyotrophic lateral sclerosis's disease-like transgenic (G93A SOD1) mice.

    Science.gov (United States)

    Zhou, Yiyi; Lu, Yi; Fang, Xin; Zhang, Jie; Li, Jiao; Li, Shujuan; Deng, Xia; Yu, Yaqing; Xu, Renshi

    2015-01-01

    The reason for regeneration in the adult spinal cord during motor neuron degeneration in amyotrophic lateral sclerosis (ALS) remains largely unknown. To this end, we studied the alteration of vimentin (a neural precursor cells marker in CNS)-containing cells (VCCs) in spinal cord during different stages of ALS used C57BL/6J G93A SOD1 transgenic mice mimicking ALS. Results showed that VCCs were mostly distributed in the ependymal zone (EZ) surrounding the central canal of spinal cord in SOD1 wild type mice; a few of VCCs were sparsely distributed in other regions. However, the number of VCCs significantly increased in the spinal cord during the onset and progression stages of ALS. They were extensively distributed in the EZ, the anterior, the lateral and the posterior horn of grey matter, particularly in the posterior horn region at the progression stage. A majority of VCCs in the anterior, the lateral and the posterior horn of grey matter (outside of EZ) generated astrocytes, but no neurons, oligodendrocytes and microgliocytes. Our results suggested that there was a potential astrocyte regenerative response to motor neuron degeneration in motor neurons-degenerated regions in the adult spinal cord during the onset and progression stages of ALS-like disease. The regenerative responses in the adult spinal cord of ALS-like mice may be a potential pathway in attempting to repair the degenerated motor neurons and restore the dysfunctional neural circuitry.

  7. Plastic Changes in the Spinal Cord in Motor Neuron Disease

    Directory of Open Access Journals (Sweden)

    Francesco Fornai

    2014-01-01

    Full Text Available In the present paper, we analyze the cell number within lamina X at the end stage of disease in a G93A mouse model of ALS; the effects induced by lithium; the stem-cell like phenotype of lamina X cells during ALS; the differentiation of these cells towards either a glial or neuronal phenotype. In summary we found that G93A mouse model of ALS produces an increase in lamina X cells which is further augmented by lithium administration. In the absence of lithium these nestin positive stem-like cells preferentially differentiate into glia (GFAP positive, while in the presence of lithium these cells differentiate towards a neuron-like phenotype (βIII-tubulin, NeuN, and calbindin-D28K positive. These effects of lithium are observed concomitantly with attenuation in disease progression and are reminiscent of neurogenetic effects induced by lithium in the subependymal ventricular zone of the hippocampus.

  8. Plastic Changes in the Spinal Cord in Motor Neuron Disease

    Science.gov (United States)

    Fornai, Francesco; Ferrucci, Michela; Lenzi, Paola; Falleni, Alessandra; Biagioni, Francesca; Flaibani, Marina; Siciliano, Gabriele; Giannessi, Francesco; Paparelli, Antonio

    2014-01-01

    In the present paper, we analyze the cell number within lamina X at the end stage of disease in a G93A mouse model of ALS; the effects induced by lithium; the stem-cell like phenotype of lamina X cells during ALS; the differentiation of these cells towards either a glial or neuronal phenotype. In summary we found that G93A mouse model of ALS produces an increase in lamina X cells which is further augmented by lithium administration. In the absence of lithium these nestin positive stem-like cells preferentially differentiate into glia (GFAP positive), while in the presence of lithium these cells differentiate towards a neuron-like phenotype (βIII-tubulin, NeuN, and calbindin-D28K positive). These effects of lithium are observed concomitantly with attenuation in disease progression and are reminiscent of neurogenetic effects induced by lithium in the subependymal ventricular zone of the hippocampus. PMID:24829911

  9. Clinical outcome after traumatic spinal fractures in patients with ankylosing spinal disorders compared with control patients.

    NARCIS (Netherlands)

    Westerveld, L.A.; van Bemmel, J.C.; Dhert, W.J.A.; Öner, F.C.; Verlaan, J.J.

    2014-01-01

    Background context The clinical outcome of patients with ankylosing spinal disorders (ASDs) sustaining a spinal fracture has been described to be worse compared with the general trauma population. Purpose To investigate clinical outcome (neurologic deficits, complications, and mortality) after spina

  10. Moderate modulation of disease in the G93A model of ALS by the compound 2-(2-hydroxyphenyl)-benzoxazole (HBX).

    Science.gov (United States)

    Evans, Teresa M; Bhattacharya, Arunabh; Shi, Yun; Qi, Wenbo; Block, Travis J; Chaudhuri, Asish; Chaudhuri, Alakananda Ray; Hawker, Kara; Van Remmen, Holly

    2016-06-15

    Amyotrophic lateral sclerosis (ALS) is a progressive and fatal neurological disease characterized by degeneration and death of motor neurons. Aberrant protein aggregation and oxidative stress are implicated in the etiology of ALS; thus preventing propagation of early aggregation events and oxidative damage could be an effective therapy. We tested the effect of dietary supplementation (initiated 40 days of age) with 2-(2-hydroxyphenyl)-benzoxazole (HBX), a compound with metal chelator and anti-aggregation properties, on disease onset, progression and lifespan in the G93A mouse model of ALS. Tests were not sufficiently powerful to detect any change to survival distribution of mice treated with HBX. However, the disease onset was delayed and max lifespan was increased in the treatment group. Additionally, disease progression was moderated as shown by reduced neuromuscular denervation measured by repetitive nerve stimulation. F2-isoprostanes, a marker of oxidative damage, are elevated in skeletal muscle from G93A mice at onset and this increase is prevented in HBX fed G93A mice. Furthermore, HBX treatment reduced mutant SOD1 protein aggregation in whole spinal cord of G93A mice at disease onset. Overall, our data suggests that HBX may be able to improve the degenerative symptoms of ALS through the prevention of oxidative damage and protein aggregation. Further studies are needed to uncover the mechanistic effects of HBX in ameliorating ALS pathology.

  11. Convenient diagnosis of spinal and bulbar muscular atrophy using a microchip electrophoresis system

    OpenAIRE

    Maruyama, Hirofumi; Morino, Hiroyuki; Izumi, Yuishin; Noda, Kouichi; Kawakami, Hideshi

    2013-01-01

    Spinal and bulbar muscular atrophy (SBMA) is a slowly progressive motor neuron disease. Lower and primary sensory neuronopathy is one of the major neuropathological changes that occurs in SBMA. However, many sings are common to SBMA and amyotrophic lateral sclerosis (ALS), and SBMA patients are sometimes diagnosed with ALS. Leuprorelin may be used to treat SBMA, but an accurate diagnosis is necessary for treatment and care. Genetic diagnosis can be performed to detect the expansion of a CAG r...

  12. Non-contiguous spinal injury in cervical spinal trauma: evaluation with cervical spine MRI

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Soo Jung; Shin, Myung Jin; Kim, Sung Moon [University of Ulsan College of Medicine, Seoul (Korea, Republic of); Bae, Sang Jin [Sanggyepaik Hospital, Inje University, Seoul (Korea, Republic of)

    2004-12-15

    We wished to evaluate the incidence of non-contiguous spinal injury in the cervicothoracic junction (CTJ) or the upper thoracic spines on cervical spinal MR images in the patients with cervical spinal injuries. Seventy-five cervical spine MR imagings for acute cervical spinal injury were retrospectively reviewed (58 men and 17 women, mean age: 35.3, range: 18-81 years). They were divided into three groups based on the mechanism of injury; axial compression, hyperflexion or hyperextension injury, according to the findings on the MR and CT images. On cervical spine MR images, we evaluated the presence of non-contiguous spinal injury in the CTJ or upper thoracic spine with regard to the presence of marrow contusion or fracture, ligament injury, traumatic disc herniation and spinal cord injury. Twenty-one cases (28%) showed CTJ or upper thoracic spinal injuries (C7-T5) on cervical spinal MR images that were separated from the cervical spinal injuries. Seven of 21 cases revealed overt fractures in the CTJs or upper thoracic spines. Ligament injury in these regions was found in three cases. Traumatic disc herniation and spinal cord injury in these regions were shown in one and two cases, respectively. The incidence of the non-contiguous spinal injuries in CTJ or upper thoracic spines was higher in the axial compression injury group (35.5%) than in the hyperflexion injury group (26.9%) or the hyperextension (25%) injury group. However, there was no statistical significance ({rho} > 0.05). Cervical spinal MR revealed non-contiguous CTJ or upper thoracic spinal injuries in 28% of the patients with cervical spinal injury. The mechanism of cervical spinal injury did not significantly affect the incidence of the non-contiguous CTJ or upper thoracic spinal injury.

  13. Spinal deformities in tall girls.

    Science.gov (United States)

    Skogland, L B; Steen, H; Trygstad, O

    1985-04-01

    In a prospective study, 62 girls who consulted the paediatric department because of tall stature were examined for spinal deformities. Thirteen cases of scoliosis measuring 10 degrees or more were found. Eighteen girls had a thoracic kyphosis of more than 40 degrees and 11 had additional vertebral abnormalities indicating Scheuermann's disease. The incidence of scoliosis and Scheuermann's disease was much higher in our material than normal.

  14. Spinal trauma. An imaging approach

    Energy Technology Data Exchange (ETDEWEB)

    Cassar-Pullicino, V.N. [The Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, Shropshire (United Kingdom). Dept. of Radiology; Imhof, H. [University and General Hospital Vienna (Austria). Dept. of Radiodiagnostics

    2006-07-01

    The diagnosis of trauma to the spine - where the slightest oversight may have catastrophic results - requires a thorough grasp of the spectrum of resultant pathology as well as the imaging modalities used in making an accurate diagnosis. In Spinal Trauma, the internationally renowned team of experts provides a comprehensive, cutting-edge exposition of the current vital role of imaging in the diagnosis and treatment of injuries to the axial skeleton. Beginning with a valuable clinical perspective of spinal trauma, the book offers the reader a unique overview of the biomechanics underlying the pathology of cervical trauma. Acute trauma topics include: - Optimization of imaging modalities - Malalignment - signs and significance - Vertebral fractures - detection and implications - Classification of thoraco-lumbar fractures - rationale and relevance - Neurovascular injury. Distilling decades of clinical and teaching expertise, the contributors further discuss the current role of imaging in special focus topics, which include: - The pediatric spine - Sports injuries - The rigid spine - Trauma in the elderly - Vertebral collapse, benign and malignant - Spinal trauma therapy - Vertebral fractures and osteoporosis - Neuropathic spine. All throughout the book, the focus is on understanding the injury, and its implications and complications, through 'an imaging approach'. Lavishly illustrated with hundreds of superb MR images and CT scans, and clear full-color drawings, the authors conclude with a look into the future, defining clinical trends and research directions. Spinal Trauma - with its broad scope, practical imaging approach, and current focus - is designed to enhance confidence and accuracy, making it essential reading for clinicians and radiologists at all levels. (orig.)

  15. Genetics Home Reference: spinal and bulbar muscular atrophy

    Science.gov (United States)

    ... Kennedy spinal and bulbar muscular atrophy Kennedy's disease SBMA X-linked spinal and bulbar muscular atrophy Related ... Natural history of spinal and bulbar muscular atrophy (SBMA): a study of 223 Japanese patients. Brain. 2006 ...

  16. Advanced Restoration Therapies in Spinal Cord Injury

    Science.gov (United States)

    2015-07-01

    including but not limited to traumatic brain injury , Alzheimer’s disease, cerebrovascular insults, and leukodystrophy. SECTION 2 – KEYWORDS Spinal...Spinal Cord Injury Annual Report to change our proposed anesthesia method from isofluorane to medetomidine. We have made the appropriate changes and...McKinley, W., and Tulsky, D. (2004). Late neurologic recovery after traumatic spinal cord injury . Arch Phys Med Rehabil 85, 1811-1817. Lorenz, D.J

  17. An atypical case of segmental spinal dysgenesis

    Energy Technology Data Exchange (ETDEWEB)

    Zana, Elodie; Chalard, Francois; Sebag, Guy [Hopital Robert Debre, Department of Paediatric Imaging, Paris (France); Mazda, Keyvan [Hopital Robert Debre, Department of Paediatric Orthopaedic Surgery, Paris (France)

    2005-09-01

    Spinal segmental dysgenesis is a complex closed dysraphism. The diagnostic criteria are: lumbar or thoracolumbar vertebral dysgenesis causing kyphosis, focal spinal cord narrowing without exiting roots, deformity of the lower limbs and paraplegia or paraparesis. We present a newborn who showed atypical features of bifocal spinal cord narrowing, without any vertebral abnormality at the proximal level. This seems to be a variant of this rare entity, whose early diagnosis is important, as surgical stabilisation of the spine is required. (orig.)

  18. MRI Findings in Spinal Canal Stenosis

    Directory of Open Access Journals (Sweden)

    Maryam Barzin

    2010-05-01

    Full Text Available Spinal canal stenosis results from progressive narrowing of the central spinal canal and the lateral recesses. Primary (congenital lumbar spinal stenosis is associated with achondroplastic dwarfism. The spinal canal may become narrowed by bulging or protrusion of the intervertebral disc annulus, herniation of the nucleus pulposus posteriorly, thickening of the posterior longitudinal ligament, hypertrophy of the facet joints, hypertrophy of the ligamentum flavum, epidural fat deposition, spondylosis of the intervertebral disc margins and uncovertebral joint hypertrophy in the neck. The central canal and the neurorecess may be compromised by tumor infiltration, such as metastatic disease, or by infectious spondylitis."nAP diameter of the normal adult cervical canal has a mean value of 17-18 mm at vertebral levels C3-5. The lower cervical canal measures 12-14 mm. Cervical stenosis is associated with an AP diameter of less than 10 mm. The thoracic spinal canal varies from 12 to 14 mm in diameter in the adult. The diameter of the normal lumbar spinal canal varies from 15 to 27 mm. Lumbar stenosis results from a spinal canal diameter of less than 12 mm in some patients; a diameter of 10 mm is definitely stenotic."nSpinal MRI is the most suitable technique for the diagnosis of spinal stenosis. The examination should be performed using thin sections (3 mm and high resolution, including the axial and sagittal planes using T1-weighted, proton-density, and T2-weighted techniques. The bony and osteophytic components are seen best using a T2-weighted gradient-echo technique."nOn MRI, findings of spinal stenosis have a variable presentation depending on the specific disease. The goal of spinal imaging is to localize the site and level of disease and to help differentiate between conditions in which patients require surgery or conservative treatment."nIn this presentation, different kinds of spinal canal stenosis and their MRI findings would be discussed.

  19. Spinal myoclonus resembling belly dance.

    Science.gov (United States)

    Kono, I; Ueda, Y; Araki, K; Nakajima, K; Shibasaki, H

    1994-05-01

    A 63-year-old man presented with an 11-month history of progressive myoclonus in the right abdominal wall. Administration of clonazepam reduced the frequency and amplitude. When the therapy was discontinued, the frequency and amplitude of the myoclonus increased, and synchronous and weak myoclonus also was observed in the left abdomen. The trunk was twisted just after the appearance of the abdominal myoclonus associated with myoclonic jerks spreading from the rostral to caudal paraspinal muscles. Later in the clinical course, the myoclonus became stimulus sensitive and was induced by tendon tap given anywhere on the body, with the latency ranging from 50 to 150 ms irrespective of the sites of tapping. Myoclonus seen in the abdominal wall was segmental and considered to be of spinal origin. The reflex myoclonus had a 150-ms refractory period. It can be postulated that increased excitability of anterior horn cells at a certain segment might make a spino-bulbo-spinal reflex manifest at the corresponding segment. This myoclonus is considered to be a new form of spinal reflex myoclonus, because the abdominal myoclonic jerk seems to trigger another myoclonic jerk involving the paraspinal muscles.

  20. A RARE CASE OF QUADRIPLEGIA DUE TO SPINAL EPIDURAL HAEMATOMA FOLLOWING SPINAL ANAESTHESIA

    OpenAIRE

    Meher Kumar; Rakesh

    2015-01-01

    Quadriplegia following spinal anaesthesia due to spinal epidural haematoma is a rare but critical complication that usually occurs within 24 hours to a few days of the procedure. I report a case of a 32 year old male who underwent Uretero - Renal Scopy (URS) and double ‘J’ (DJ) stenting for right ureteric calculus under spinal ...

  1. Spinal cord compression due to ethmoid adenocarcinoma.

    Science.gov (United States)

    Johns, D R; Sweriduk, S T

    1987-10-15

    Adenocarcinoma of the ethmoid sinus is a rare tumor which has been epidemiologically linked to woodworking in the furniture industry. It has a low propensity to metastasize and has not been previously reported to cause spinal cord compression. A symptomatic epidural spinal cord compression was confirmed on magnetic resonance imaging (MRI) scan in a former furniture worker with widely disseminated metastases. The clinical features of ethmoid sinus adenocarcinoma and neoplastic spinal cord compression, and the comparative value of MRI scanning in the neuroradiologic diagnosis of spinal cord compression are reviewed.

  2. Spinal dorsal horn astrocytes: New players in chronic itch

    Directory of Open Access Journals (Sweden)

    Makoto Tsuda

    2017-01-01

    Full Text Available Chronic itch is a debilitating symptom of inflammatory skin conditions, such as atopic dermatitis, and systemic diseases, for which existing treatment is largely ineffective. Recent studies have revealed the selective neuronal pathways that are involved in itch sensations; however, the mechanisms by which itch turns into a pathological chronic state are poorly understood. Recent advances in our understanding of the mechanisms producing chronic itch have been made by defining causal roles for astrocytes in the spinal dorsal horn in mouse models of chronic itch including atopic dermatitis. Understanding the key roles of astrocytes may provide us with exciting insights into the mechanisms for itch chronicity and lead to a previously unrecognized target for treating chronic itch.

  3. [Development of therapeutics for spinal and bulbar muscular atrophy (SBMA)].

    Science.gov (United States)

    Sobue, Gen

    2003-11-01

    Spinal and bulbar muscular atrophy (SBMA), also known as Kennedy's disease, is a hereditary motor neuron disease that affects males, caused by the expansion of a polyglutamine (polyQ) tract in androgen receptor (AR). Female carriers are usually asymptomatic. The transgenic mouse (Tg) model carrying a full-length human AR with expanded polyQ has significant gender-related motor impairment. This phenotype is inhibited by castration, which prevents nuclear translocation of mutant AR. Leuprorelin, an LHRH agonist that reduces testosterone release from the testis, also rescues motor dysfunction and nuclear accumulation of mutant AR in the male Tg. Over-expression of a molecular chaperone HSP70, which renatures misfolded mutant AR, ameliorates neuromuscular phenotypes of the Tg by reducing nuclear-localized mutant AR. HSP70 appears to enhance the degradation of mutant AR via ubiquitin-proteasome pathway. These experimental approaches indicate the possibility of clinical application of drugs, such as leuprorelin, for SBMA patients.

  4. Neuromesodermal progenitors and the making of the spinal cord

    Science.gov (United States)

    Henrique, Domingos; Abranches, Elsa; Verrier, Laure; Storey, Kate G.

    2016-01-01

    Neuromesodermal progenitors (NMps) contribute to both the elongating spinal cord and the adjacent paraxial mesoderm. It has been assumed that these cells arise as a result of patterning of the anterior neural plate. However, as the molecular mechanisms that specify NMps in vivo are uncovered, and as protocols for generating these bipotent cells from mouse and human pluripotent stem cells in vitro are established, the emerging data suggest that this view needs to be revised. Here, we review the characteristics, regulation, in vitro derivation and in vivo induction of NMps. We propose that these cells arise within primitive streak-associated epiblast via a mechanism that is separable from that which establishes neural fate in the anterior epiblast. We thus argue for the existence of two distinct routes for making central nervous system progenitors. PMID:26329597

  5. Retraction: "Inactivation of Ink4a/Arf Leads to Deregulated Expression of miRNAs in K-Ras Transgenic Mouse Model of Pancreatic Cancer" by Ali et al.

    Science.gov (United States)

    2016-10-01

    The above article, published online on June 21, 2012 in Wiley Online Library (wileyonlinelibrary.com), has been retracted by agreement between the journal Editor in Chief, Gary S. Stein, and Wiley Periodicals, Inc. The retraction has been agreed following an investigation from Wayne State University involving the first author and the corresponding author that found Figure 5A to be inappropriately manipulated. Literature Cited Ali S, Banerjee S, Logna F, Bao B, Philip PA, Korc M, Sarkar FH. 2012. Inactivation of Ink4a/Arf leads to deregulated expression of miRNAs in K-Ras transgenic mouse model of pancreatic cancer. J Cell Physiol 227:3373-3380; doi: 10.1002/jcp.24036.

  6. Embryonic Cell Grafts in a Culture Model of Spinal Cord Lesion: Neuronal Relay Formation is Essential for Functional Regeneration

    Directory of Open Access Journals (Sweden)

    Anne Tscherter

    2016-09-01

    Full Text Available Presently there exists no cure for spinal cord injury. However, transplantation of embryonic tissue into spinal cord lesions resulted in axon outgrowth across the lesion site and some functional recovery, fostering hope for future stem cell therapies. Although in vivo evidence for functional recovery is given, the exact cellular mechanism of the graft support remains elusive: either the grafted cells provide a permissive environment for the host tissue to regenerate itself or the grafts actually integrate functionally into the host neuronal network reconnecting the separated spinal cord circuits. We tested the two hypotheses in an in vitro spinal cord lesion model that is based on propagation of activity between two rat organotypic spinal cord slices in culture. Transplantation of dissociated cells from E14 rat spinal cord or forebrain re-established the relay of activity over the lesion site and, thus, provoked functional regeneration. Combining patch-clamp recordings from transplanted cells with network activity measurements from the host tissue on multi-electrode arrays we here show that neurons differentiate from the grafted cells and integrate into the host circuits. Optogenetic silencing of neurons developed from transplanted embryonic mouse forebrain cells provides clear evidence that they replace the lost neuronal connections to relay and synchronize activity between the separated spinal cord circuits. In contrast, transplantation of neurospheres induced neither the differentiation of mature neurons from the grafts nor an improvement of functional regeneration. Together these findings suggest, that the formation of neuronal relays from grafted embryonic cells is essential to re-connect segregated spinal cord circuits.

  7. A modified sagittal spine postural classification and its relationship to deformities and spinal mobility in a chinese osteoporotic population.

    Directory of Open Access Journals (Sweden)

    Hua-Jun Wang

    Full Text Available BACKGROUND: Abnormal posture and spinal mobility have been demonstrated to cause functional impairment in the quality of life, especially in the postmenopausal osteoporotic population. Most of the literature studies focus on either thoracic kyphosis or lumbar lordosis, but not on the change of the entire spinal alignment. Very few articles reported the spinal alignment of Chinese people. The purpose of this study was threefold: to classify the spinal curvature based on the classification system defined by Satoh consisting of the entire spine alignment; to identify the change of trunk mobility; and to relate spinal curvature to balance disorder in a Chinese population. METHODOLOGY/PRINCIPAL FINDINGS: 450 osteoporotic volunteers were recruited for this study. Spinal range of motion and global curvature were evaluated noninvasively using the Spinal-Mouse® system and sagittal postural deformities were characterized. RESULTS: We found a new spine postural alignment consisting of an increased thoracic kyphosis and decreased lumbar lordosis which we classified as our modified round back. We did not find any of Satoh's type 5 classification in our population. Type 2 sagittal alignment was the most common spinal deformity (38.44%. In standing, thoracic kyphosis angles in types 2 (58.34° and 3 (58.03° were the largest and lumbar lordosis angles in types 4 (13.95° and 5 (-8.61° were the smallest. The range of flexion (ROF and range of flexion-extension (ROFE of types 2 and 3 were usually greater than types 4 and 5, with type 1 being the largest. CONCLUSIONS/SIGNIFICANCE: The present study classified and compared for the first time the mobility, curvature and balance in a Chinese population based on the entire spine alignment and found types 4 and 5 to present the worst balance and mobility. This study included a new spine postural alignment classification that should be considered in future population studies.

  8. Spontaneous Ventral Spinal Epidural Hematoma in an Infant: An Unusual Presentation

    Directory of Open Access Journals (Sweden)

    Asad ABBAS

    2013-06-01

    disorders of the spinal cord, in Davidoff RA (ed: Handbook of the Spinal Cord.Infections and Cancer, Vol 5. New York: Marcel Dekker, 1986, pp 271-273.8. Blount J, Doughty K, Tubbs RS, Wellons JC, Reddy A, Law C, et al. In utero spontaneous cervical thoracicepidural hematoma imitating spinal cord birth injury. Pediatr Neurosurg 2004;40:23-7.9. Iguchi T, Ito Y, Asai M, Ito J, Okada N, Murakami M. [A case of spontaneous spinal epidural hematoma]. No ToHattatsu 1993;25:267-70. Review. Japanese.10. Nagel MA, Taff IP, Cantos EL, Patel MP, Maytal J, Berman D. Spontaneous spinal epidural hematoma in a7-year-old girl. Diagnostic value of magnetic resonance imaging. Clin Neurol Neurosurg 1989;91:157-60.11. Metzger G, Singbartl G. Spinal epidural hematoma following epidural anesthesia versus spontaneous spinalsubdural hematoma. Two case reports. Acta Anaesthesiol Scand 1991;35:105-7.12. Patel H, Garg BP. Increasing irritability with sudden onset of flaccid weakness. Semin Pediatr Neurol 1996;3:192-7.13. Tewari MK, Tripathi LN, Mathuriya SN, Khandelwal N, Kak VK. Spontaneous spinal extradural hematomain children. Report of three cases and a review of the literature. Childs Nerv Syst 1992;8:53-5. Review.14. Pecha MD, Able AC, Barber DB, Willingham AC. Outcome after spontaneous spinal epidural hematoma in children: case report and review of the literature. Arch Phys Med Rehabil 1998;79:460-3. Review.

  9. Abnormal changes in NKT cells, the IGF-1 axis, and liver pathology in an animal model of ALS.

    Directory of Open Access Journals (Sweden)

    Arseny Finkelstein

    Full Text Available Amyotrophic lateral sclerosis (ALS is a rapidly progressing fatal neurodegenerative disorder characterized by the selective death of motor neurons (MN in the spinal cord, and is associated with local neuroinflammation. Circulating CD4(+ T cells are required for controlling the local detrimental inflammation in neurodegenerative diseases, and for supporting neuronal survival, including that of MN. T-cell deficiency increases neuronal loss, while boosting T cell levels reduces it. Here, we show that in the mutant superoxide dismutase 1 G93A (mSOD1 mouse model of ALS, the levels of natural killer T (NKT cells increased dramatically, and T-cell distribution was altered both in lymphoid organs and in the spinal cord relative to wild-type mice. The most significant elevation of NKT cells was observed in the liver, concomitant with organ atrophy. Hepatic expression levels of insulin-like growth factor (IGF-1 decreased, while the expression of IGF binding protein (IGFBP-1 was augmented by more than 20-fold in mSOD1 mice relative to wild-type animals. Moreover, hepatic lymphocytes of pre-symptomatic mSOD1 mice were found to secrete significantly higher levels of cytokines when stimulated with an NKT ligand, ex-vivo. Immunomodulation of NKT cells using an analogue of α-galactosyl ceramide (α-GalCer, in a specific regimen, diminished the number of these cells in the periphery, and induced recruitment of T cells into the affected spinal cord, leading to a modest but significant prolongation of life span of mSOD1 mice. These results identify NKT cells as potential players in ALS, and the liver as an additional site of major pathology in this disease, thereby emphasizing that ALS is not only a non-cell autonomous, but a non-tissue autonomous disease, as well. Moreover, the results suggest potential new therapeutic targets such as the liver for immunomodulatory intervention for modifying the disease, in addition to MN-based neuroprotection and systemic

  10. [Vascular and autonomic disorders of the spinal cord in dystopia of the spinal motor segment].

    Science.gov (United States)

    Gongal'skiĭ, V V; Kuftyreva, T P

    1992-01-01

    Microcirculation disorders may cause functional deviation in gray matter cells of the spinal cord. One of the setting moments of the disorders is the subluxation of a vertebra as a result of the disturbance in carrying ability of the spinal disc in case of spinal osteochondrosis. In this position the soft tissues of the spinal motional well innervated segment are stretched, which induces irritation in the segmental part of the spinal cord including vegetative nervous structures. Subluxation of a vertebra causes changes in the structures and in the microcirculation vessels which grow simultaneously and this permits supposing their interrelation.

  11. Changes in spinal range of motion after a flexibility training program in elderly women

    Directory of Open Access Journals (Sweden)

    Battaglia G

    2014-04-01

    Full Text Available Giuseppe Battaglia,1,2 Marianna Bellafiore,1,2 Giovanni Caramazza,2 Antonio Paoli,3 Antonino Bianco,1,2 Antonio Palma1,2 1Department of Law, Society, and Sport Sciences, University of Palermo, Palermo, Italy; 2Sicilian Regional Sports School of Italian National Olympic Committee (CONI, Sicily, Italy; 3Department of Biomedical Sciences, University of Padova, Padova, Italy Background: Aging-related reduced spinal mobility can interfere with the execution of important functional skills and activities in elderly women. Although several studies have shown positive outcomes in response to spinal flexibility training programs, little is known about the management of sets and repetitions in training protocols. The purpose of this study was to investigate the effects of an 8-week specific and standardized flexibility training program on the range of spinal motion in elderly women. Methods: Participants were recruited in a senior center of Palermo and randomly assigned in two groups: trained group (TG and control group (CG, which included 19 and 18 women, respectively. TG was trained for 8 weeks at two sessions/week. In particular, every session included three phases: warm up (~10 minutes, central period (~50 minutes, and cool down (~10 minutes. CG did not perform any physical activity during the experimental period. Spinal ranges of motion (ROM were measured from neutral standing position to maximum bending position and from neutral standing position to maximum extension position before and after the experimental period, using a SpinalMouse® device (Idiag, Volkerswill, Switzerland. Results: After the training period, TG showed an increase in spinal inclination by 16.4% (P<0.05, in sacral/hip ROM by 29.2% (P<0.05, and in thoracic ROM by 22.5% (P>0.05 compared with CG from maximum extension position to maximum bending position. We did not observe any significant difference in TG's lumbar ROM compared with CG after the training period (P>0.05. Conclusion

  12. Adenosine-mediated modulation of ventral horn interneurons and spinal motoneurons in neonatal mice.

    Science.gov (United States)

    Witts, Emily C; Nascimento, Filipe; Miles, Gareth B

    2015-10-01

    Neuromodulation allows neural networks to adapt to varying environmental and biomechanical demands. Purinergic signaling is known to be an important modulatory system in many parts of the CNS, including motor control circuitry. We have recently shown that adenosine modulates the output of mammalian spinal locomotor control circuitry (Witts EC, Panetta KM, Miles GB. J Neurophysiol 107: 1925-1934, 2012). Here we investigated the cellular mechanisms underlying this adenosine-mediated modulation. Whole cell patch-clamp recordings were performed on ventral horn interneurons and motoneurons within in vitro mouse spinal cord slice preparations. We found that adenosine hyperpolarized interneurons and reduced the frequency and amplitude of synaptic inputs to interneurons. Both effects were blocked by the A1-type adenosine receptor antagonist DPCPX. Analysis of miniature postsynaptic currents recorded from interneurons revealed that adenosine reduced their frequency but not amplitude, suggesting that adenosine acts on presynaptic receptors to modulate synaptic transmission. In contrast to interneurons, recordings from motoneurons revealed an adenosine-mediated depolarization. The frequency and amplitude of synaptic inputs to motoneurons were again reduced by adenosine, but we saw no effect on miniature postsynaptic currents. Again these effects on motoneurons were blocked by DPCPX. Taken together, these results demonstrate differential effects of adenosine, acting via A1 receptors, in the mouse spinal cord. Adenosine has a general inhibitory action on ventral horn interneurons while potentially maintaining motoneuron excitability. This may allow for adaptation of the locomotor pattern generated by interneuronal networks while helping to ensure the maintenance of overall motor output.

  13. Experimental study on spinal cord injury treated by embryonic spinal cord transplantation and greater omental transposition

    Institute of Scientific and Technical Information of China (English)

    Hao Dingjun(郝定均); Zheng Yonghong(郑永宏); Yuan Fuyong(袁福镛); He Liming; Wang Rong; Yuan Yong

    2004-01-01

    Objective: To observe the clinical efficacy of the embryonic spinal cellular transplantation and greater omental transposition for treatment of the spinal cord injury in 24 mongrel dogs. Methods: 24 adult mongrel dogs, weighing 10 ~ 13kg,bryonic spinal cellular transplantation and greater omental transposition group (group D). Each group consisted of 6 dogs. SEP(somatosensory evoked potential) and MEP (motor evoked potential) of the spinal cord were examed prior to the spinal cord injury and 2 months after the treatment to observe the changes of the animals' behavior. All dogs were killed 2 months after surgery and the spinal cord sections were obtained from T12 to L1 level for pathological analysis and observation under the electron microscope.Results: There was an obvious difference in the spinal somatosensory evoked potential and the motor evoked potential between the group D and the other three groups (group A, B, and C). Recovery of the behavior was noted. The spinal cells had survived for two months following the transplantation. Conclusion: Transplantation of the embryonic spinal cell and greater omentum for treatment of the spinal cord injury in dogs can gain a better outcome than the other groups in behavior and spinal somatosensory and motor evoked potential, but the further study is still essential to confirm its clinical efficacy.

  14. Extensive molecular differences between anterior- and posterior-half-sclerotomes underlie somite polarity and spinal nerve segmentation

    Directory of Open Access Journals (Sweden)

    Keynes Roger J

    2009-05-01

    Full Text Available Abstract Background The polarization of somite-derived sclerotomes into anterior and posterior halves underlies vertebral morphogenesis and spinal nerve segmentation. To characterize the full extent of molecular differences that underlie this polarity, we have undertaken a systematic comparison of gene expression between the two sclerotome halves in the mouse embryo. Results Several hundred genes are differentially-expressed between the two sclerotome halves, showing that a marked degree of molecular heterogeneity underpins the development of somite polarity. Conclusion We have identified a set of genes that warrant further investigation as regulators of somite polarity and vertebral morphogenesis, as well as repellents of spinal axon growth. Moreover the results indicate that, unlike the posterior half-sclerotome, the central region of the anterior-half-sclerotome does not contribute bone and cartilage to the vertebral column, being associated instead with the development of the segmented spinal nerves.

  15. Transplantation of oligodendrocyte precursor cells improves locomotion deficits in rats with spinal cord irradiation injury.

    Directory of Open Access Journals (Sweden)

    Yan Sun

    Full Text Available Demyelination contributes to the functional impairment of irradiation injured spinal cord. One potential therapeutic strategy involves replacing the myelin-forming cells. Here, we asked whether transplantation of Olig2(+-GFP(+-oligodendrocyte precursor cells (OPCs, which are derived from Olig2-GFP-mouse embryonic stem cells (mESCs, could enhance remyelination and functional recovery after spinal cord irradiation injury. We differentiated Olig2-GFP-mESCs into purified Olig2(+-GFP(+-OPCs and transplanted them into the rats' cervical 4-5 dorsal spinal cord level at 4 months after irradiation injury. Eight weeks after transplantation, the Olig2(+-GFP(+-OPCs survived and integrated into the injured spinal cord. Immunofluorescence analysis showed that the grafted Olig2(+-GFP(+-OPCs primarily differentiated into adenomatous polyposis coli (APC(+ oligodendrocytes (54.6±10.5%. The staining with luxol fast blue, hematoxylin & eosin (LFB/H&E and electron microscopy demonstrated that the engrafted Olig2(+-GFP(+-OPCs attenuated the demyelination resulted from the irradiation. More importantly, the recovery of forelimb locomotor function was enhanced in animals receiving grafts of Olig2(+-GFP(+-OPCs. We concluded that OPC transplantation is a feasible therapy to repair the irradiated lesions in the central nervous system (CNS.

  16. New products tissue-engineering in the treatment of spinal cord injury

    Science.gov (United States)

    Bolshakov, I. N.; Sergienko, V. I.; Kiselev, S. L.; Lagarkova, M. A.; Remigaylo, A. A.; Mihaylov, A. A.; Prokopenko, S. V.

    2015-11-01

    In the treatment of patients with complicated spinal cord injury the Russian Health spends about one million rubles for each patient in the acute and the interim period after the injury. The number of complicated spinal cord injury is different in geographical areas Russian Federation from 30 to 50 people per 1 million that is affected by the year 5600. Applied to the present surgical and pharmacological techniques provide unsatisfactory results or minimally effective treatment. Transplantation of 100 thousand neuronal mouse predecessors (24 rats) or human neuronal predecessors (18 rats) in the anatomical gap rat spinal cord, followed by analysis of neurological deficit. The neuro-matrix implantation in the rat spinal cord containing 100 thousand neuronal precursors hESC, repeatable control neuro-matrix transplantation, non-cell mass, eliminating neurological deficit for 14 weeks after transplantation about 5-9 points on the scale of the BBB. The cultivation under conditions in vitro human induced pluripotent stem cells on collagen-chitosan matrix (hIPSC) showed that neurons differentiated from induced pluripotent stem cells grown on scaffolds as compact groups and has no neurites. Cells do not penetrate into the matrix during long-term cultivation and formed near the surface of the spherical structures resembling neurospheres. At least 90% of the cells were positive for the neuronal marker tubulin b3. Further studies should be performed to examine the compatibility of neuronal cultures and matrices.

  17. Light distribution properties in spinal cord for optogenetic stimulation (Conference Presentation)

    Science.gov (United States)

    GÄ secka, Alicja; Bahdine, Mohamed; Lapointe, Nicolas; Rioux, Veronique; Perez-Sanchez, Jimena; Bonin, Robert P.; De Koninck, Yves; Côté, Daniel

    2016-03-01

    Optogenetics is currently one of the most popular technique in neuroscience. It enables cell-selective and temporally-precise control of neuronal activity. Good spatial control of the stimulated area and minimized tissue damage requires a specific knowledge about light scattering properties. Light propagation in cell cultures and brain tissue is relatively well documented and allows for a precise and reliable delivery of light to the neurons. In spinal cord, light must pass through highly organized white matter before reaching cell bodies present in grey matter, this heterogenous structure makes it difficult to predict the propagation pattern. In this work we investigate the light distribution properties through mouse and monkey spinal cord. The light propagation depends on a fibers orientation, leading to less deep penetration profile in the direction perpendicular to the fibers and lower attenuation in the direction parallel to the fibers. Additionally, the use of different illumination wavelengths results in variations of the attenuation coefficient. Next, we use Monte-Carlo simulation to study light transport. The model gives a full 3-D simulation of light distribution in spinal cord and takes into account different scattering properties related to the fibers orientation. These studies are important to estimate the minimum optical irradiance required at the fiber tip to effectively excite the optogenetic proteins in a desired region of spinal cord.

  18. Recurrent spinal adhesive arachnoiditis: a case report

    Directory of Open Access Journals (Sweden)

    James Pitágoras de Mattos

    1988-03-01

    Full Text Available Spinal adhesive arachnoiditis is not an uncommon disease, usually having a monophasic course. We studied an atypical patient with recurrent spinal adhesive arachnoiditis nine years after intrathecal anesthesia and the first attack of the disease. Also noteworthy was the favorable evolution after surgery.

  19. Spinal gout: A review with case illustration

    Science.gov (United States)

    Elgafy, Hossein; Liu, Xiaochen; Herron, Joseph

    2016-01-01

    AIM To summarize clinical presentations and treatment options of spinal gout in the literature from 2000 to 2014, and present theories for possible mechanism of spinal gout formation. METHODS The authors reviewed 68 published cases of spinal gout, which were collected by searching “spinal gout” on PubMed from 2000 to 2014. The data were analyzed for clinical features, anatomical location of spinal gout, laboratory studies, imaging studies, and treatment choices. RESULTS Of the 68 patients reviewed, the most common clinical presentation was back or neck pain in 69.1% of patients. The most common laboratory study was elevated uric acid levels in 66.2% of patients. The most common diagnostic image finding was hypointense lesion of the gout tophi on the T1-weighted magnetic resonance imaging scan. The most common surgical treatment performed was a laminectomy in 51.5% and non-surgical treatment was performed in 29.4% of patients. CONCLUSION Spinal gout most commonly present as back or neck pain with majority of reported patients with elevated uric acid. The diagnosis of spinal gout is confirmed with the presence of negatively birefringent monosodium urate crystals in tissue. Treatment for spinal gout involves medication for the reduction of uric acid level and surgery if patient symptoms failed to respond to medical treatment. PMID:27900275

  20. FUNCTIONAL PATHOLOGY OF LUMBAR SPINAL STENOSIS

    NARCIS (Netherlands)

    PENNING, L

    1992-01-01

    This paper deals with the effect of motion upon the stenotic lumbar spinal canal and its contents. A review is presented of personal investigations and relevant data from the literature. The normal spinal canal and its lateral recesses are naturally narrowed by retroflexion and/or axial loading, as

  1. Therapeutic approaches for spinal cord injury

    Directory of Open Access Journals (Sweden)

    Alexandre Fogaça Cristante

    2012-10-01

    Full Text Available This study reviews the literature concerning possible therapeutic approaches for spinal cord injury. Spinal cord injury is a disabling and irreversible condition that has high economic and social costs. There are both primary and secondary mechanisms of damage to the spinal cord. The primary lesion is the mechanical injury itself. The secondary lesion results from one or more biochemical and cellular processes that are triggered by the primary lesion. The frustration of health professionals in treating a severe spinal cord injury was described in 1700 BC in an Egyptian surgical papyrus that was translated by Edwin Smith; the papyrus reported spinal fractures as a ''disease that should not be treated.'' Over the last biological or pharmacological treatment method. Science is unraveling the mechanisms of cell protection and neuroregeneration, but clinically, we only provide supportive care for patients with spinal cord injuries. By combining these treatments, researchers attempt to enhance the functional recovery of patients with spinal cord injuries. Advances in the last decade have allowed us to encourage the development of experimental studies in the field of spinal cord regeneration. The combination of several therapeutic strategies should, at minimum, allow for partial functional recoveries for these patients, which could improve their quality of life.

  2. Psychological Aspects of Spinal Cord Injury

    Science.gov (United States)

    Cook, Daniel W.

    1976-01-01

    Reviewing literature on the psychological impact of spinal cord injury suggests: (a) depression may not be a precondition for injury adjustment; (b) many persons sustaining cord injury may have experienced psychological disruption prior to injury; and (c) indexes of rehabilitation success need to be developed for the spinal cord injured. (Author)

  3. Remote cerebellar hemorrhage after lumbar spinal surgery

    Energy Technology Data Exchange (ETDEWEB)

    Cevik, Belma [Baskent University Faculty of Medicine, Department of Radiology, Fevzi Cakmak Cad. 10. sok. No: 45, Bahcelievler, Ankara 06490 (Turkey)], E-mail: belmac@baskent-ank.edu.tr; Kirbas, Ismail; Cakir, Banu; Akin, Kayihan; Teksam, Mehmet [Baskent University Faculty of Medicine, Department of Radiology, Fevzi Cakmak Cad. 10. sok. No: 45, Bahcelievler, Ankara 06490 (Turkey)

    2009-04-15

    Background: Postoperative remote cerebellar hemorrhage (RCH) as a complication of lumbar spinal surgery is an increasingly recognized clinical entity. The aim of this study was to determine the incidence of RCH after lumbar spinal surgery and to describe diagnostic imaging findings of RCH. Methods: Between October 1996 and March 2007, 2444 patients who had undergone lumbar spinal surgery were included in the study. Thirty-seven of 2444 patients were scanned by CT or MRI due to neurologic symptoms within the first 7 days of postoperative period. The data of all the patients were studied with regard to the following variables: incidence of RCH after lumbar spinal surgery, gender and age, coagulation parameters, history of previous arterial hypertension, and position of lumbar spinal surgery. Results: The retrospective study led to the identification of two patients who had RCH after lumbar spinal surgery. Of 37 patients who had neurologic symptoms, 29 patients were women and 8 patients were men. CT and MRI showed subarachnoid hemorrhage in the folia of bilateral cerebellar hemispheres in both patients with RCH. The incidence of RCH was 0.08% among patients who underwent lumbar spinal surgery. Conclusion: RCH is a rare complication of lumbar spinal surgery, self-limiting phenomenon that should not be mistaken for more ominous pathologic findings such as hemorrhagic infarction. This type of bleeding is thought to occur secondary to venous infarction, but the exact pathogenetic mechanism is unknown. CT or MRI allowed immediate diagnosis of this complication and guided conservative management.

  4. A Neurodegeneration-Specific Gene-Expression Signature of Acutely Isolated Microglia from an Amyotrophic Lateral Sclerosis Mouse Model

    Directory of Open Access Journals (Sweden)

    Isaac M. Chiu

    2013-07-01

    Full Text Available Microglia are resident immune cells of the CNS that are activated by infection, neuronal injury, and inflammation. Here, we utilize flow cytometry and deep RNA sequencing of acutely isolated spinal cord microglia to define their activation in vivo. Analysis of resting microglia identified 29 genes that distinguish microglia from other CNS cells and peripheral macrophages/monocytes. We then analyzed molecular changes in microglia during neurodegenerative disease activation using the SOD1G93A mouse model of amyotrophic lateral sclerosis (ALS. We found that SOD1G93A microglia are not derived from infiltrating monocytes, and that both potentially neuroprotective and toxic factors, including Alzheimer’s disease genes, are concurrently upregulated. Mutant microglia differed from SOD1WT, lipopolysaccharide-activated microglia, and M1/M2 macrophages, defining an ALS-specific phenotype. Concurrent messenger RNA/fluorescence-activated cell sorting analysis revealed posttranscriptional regulation of microglia surface receptors and T cell-associated changes in the transcriptome. These results provide insights into microglia biology and establish a resource for future studies of neuroinflammation.

  5. Inhibition of the Ras/Raf/ERK1/2 Signaling Pathway Restores Cultured Spinal Cord-Injured Neuronal Migration, Adhesion, and Dendritic Spine Development.

    Science.gov (United States)

    Xu, Dongdong; Cao, Fujiang; Sun, Shiwei; Liu, Tao; Feng, Shiqing

    2016-08-01

    The Ras/Raf/ERK1/2 signaling pathway plays an important role in central and peripheral neurons in functions such as dendritic arborization, neuronal polarity, and axon assembly. However, emerging evidence also shows that up-regulation of this signaling pathway may lead to the development of spinal cord injury. The present study aimed to determine the effects of Ras/Raf/ERK1/2 signaling pathway inhibition on properties of spinal cord-injured neurons. First, neurons from spinal cord-injured C57BL/6 J mouse pups and sham-operated C57BL/6 J mouse pups were harvested. Then, immunofluorescence, western blotting, cell adhesion and cell migration assays, and DiI labeling were employed to investigate the effect of Ras/Raf/ERK1/2 signaling pathway inhibition on spinal cord-injured neurons. Immunofluorescence results of synapse formation indicated that the experimental spinal cord injury model was successfully established. Western blot results identified upregulated Erk phosphorylation in the spinal cord-injured neurons, and also showed that U0126 inhibited phosphorylation of Erk, which is a downstream kinase in the Ras/Raf signaling pathway. Additionally, cell migration and adhesion was significantly increased in the spinal cord-injured neurons. DiI labeling results also showed an increased formation of mature spines after inhibition of Ras/Raf/ERK1/2 signaling. Taken together, these results suggested that the Ras/Raf/ERK1/2 signaling pathway could serve as an effective treatment target for spinal cord injury.

  6. Proteomic assessment of a cell model of spinal muscular atrophy

    Directory of Open Access Journals (Sweden)

    Lee Kelvin H

    2011-03-01

    Full Text Available Abstract Background Deletion or mutation(s of the survival motor neuron 1 (SMN1 gene causes spinal muscular atrophy (SMA, a neuromuscular disease characterized by spinal motor neuron death and muscle paralysis. Complete loss of the SMN protein is embryonically lethal, yet reduced levels of this protein result in selective death of motor neurons. Why motor neurons are specifically targeted by SMN deficiency remains to be determined. In this study, embryonic stem (ES cells derived from a severe SMA mouse model were differentiated into motor neurons in vitro by addition of retinoic acid and sonic hedgehog agonist. Proteomic and western blot analyses were used to probe protein expression alterations in this cell-culture model of SMA that could be relevant to the disease. Results When ES cells were primed with Noggin/fibroblast growth factors (bFGF and FGF-8 in a more robust neural differentiation medium for 2 days before differentiation induction, the efficiency of in vitro motor neuron differentiation was improved from ~25% to ~50%. The differentiated ES cells expressed a pan-neuronal marker (neurofilament and motor neuron markers (Hb9, Islet-1, and ChAT. Even though SMN-deficient ES cells had marked reduced levels of SMN (~20% of that in control ES cells, the morphology and differentiation efficiency for these cells are comparable to those for control samples. However, proteomics in conjunction with western blot analyses revealed 6 down-regulated and 14 up-regulated proteins with most of them involved in energy metabolism, cell stress-response, protein degradation, and cytoskeleton stability. Some of these activated cellular pathways showed specificity for either undifferentiated or differentiated cells. Increased p21 protein expression indicated that SMA ES cells were responding to cellular stress. Up-regulation of p21 was confirmed in spinal cord tissues from the same SMA mouse model from which the ES cells were derived. Conclusion SMN

  7. Ambulation and spinal cord injury.

    Science.gov (United States)

    Hardin, Elizabeth C; Kobetic, Rudi; Triolo, Ronald J

    2013-05-01

    Walking is possible for many patients with a spinal cord injury. Avenues enabling walking include braces, robotics and FES. Among the benefits are improved musculoskeletal and mental health, however unrealistic expectations may lead to negative changes in quality of life. Use rigorous assessment standards to gauge the improvement of walking during the rehabilitation process, but also yearly. Continued walking after discharge may be limited by challenges, such as lack of accessibility in and outside the home, and complications, such as shoulder pain or injuries from falls. It is critical to determine the risks and benefits of walking for each patient.

  8. Galactorrhea: a complication of spinal cord injury.

    Science.gov (United States)

    Yarkony, G M; Novick, A K; Roth, E J; Kirschner, K L; Rayner, S; Betts, H B

    1992-09-01

    Galactorrhea, a secretion of milk or milk-like products from the breast in the absence of parturition, has been reported to occur in women with spinal cord injuries in association with amenorrhea and hyperprolactinemia. Four cases of galactorrhea in association with spinal cord injury are reported. Galactorrhea developed in four spinal cord injured women who had thoracic paraplegia. The onset of galactorrhea was from one month to five months after injury. Although the onset of galactorrhea may have been related to prescribed medications in all four cases, insufficient data exist to draw conclusions. The three women whose galactorrhea persisted declined treatment and galactorrhea continuing for more than two years in one instance. We conclude that galactorrhea with or without amenorrhea may develop after a spinal cord injury and that spinal cord injured women may have an enhanced sensitivity to medication-induced galactorrhea.

  9. Contiguous spinal metastasis mimicking infectious spondylodiscitis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chul Min; Lee, Seung Hun [Dept. of Radiology, Hanyang University Hospital, Seoul (Korea, Republic of); Bae, Ji Yoon [Dept. of Pathology, National Police Hospital, Seoul (Korea, Republic of)

    2015-12-15

    Differential diagnosis between spinal metastasis and infectious spondylodiscitis is one of the occasional challenges in daily clinical practice. We encountered an unusual case of spinal metastasis in a 75-year-old female breast cancer patient that mimicked infectious spondylodiscitis. Magnetic resonance imaging (MRI) showed diffuse bone marrow infiltrations with paraspinal soft tissue infiltrative changes in 5 contiguous cervical vertebrae without significant compression fracture or cortical destruction. These MRI findings made it difficult to differentiate between spinal metastasis and infectious spondylodiscitis. Infectious spondylodiscitis such as tuberculous spondylodiscitis was regarded as the more appropriate diagnosis due to the continuous involvement of > 5 cervical vertebrae. The patient's clinical presentation also supported the presumptive diagnosis of infectious spondylodiscitis rather than spinal metastasis. Intravenous antibiotics were administered, but clinical symptoms worsened despite treatment. After pathologic confirmation by computed tomography-guided biopsy, we were able to confirm a final diagnosis of spinal metastasis.

  10. Oriental Medical Treatment of Lumbar Spinal Stenosis

    Directory of Open Access Journals (Sweden)

    Hae-Yeon Lee

    2003-12-01

    Full Text Available Lumbar spinal stenosis results from the progressive combined narrowing of the central spinal canal, the neurorecesses, and the neuroforaminal canals. In the absence of prior surgery, tumor, or infection, the spinal canal may become narrowed by bulging or protrusion of the intervertebral disc annulus, herniation of the nucleus pulposis posteriorly, thickening of the posterior longitudinal ligament, hypertrophy of the ligamentum flavum, epidural fat deposition, spondylosis of the intervertebral disc margins, or a combination of two or more of the above factors. Patients with spinal stenosis become symptomatic when pain, motor weakness, paresthesia, or other neurologic compromise causes distress. In one case, we administrated oriental medical treatment with acupuncture treatment and herb-medicine. Oriental medical treatment showed desirable effect on lumbar spinal stenosis.

  11. Spinal morphine anesthesia and urinary retention.

    Science.gov (United States)

    Mahan, K T; Wang, J

    1993-11-01

    Spinal anesthetic is a common form of surgical anesthetic used in foot and ankle surgery. Spinal morphine anesthetic is less common, but has the advantage of providing postoperative analgesia for 12 to 24 hr. A number of complications can occur with spinal anesthesia, including urinary retention that may be a source of severe and often prolonged discomfort and pain for the patient. Management of this problem may require repeated bladder catheterization, which may lead to urinary tract infections or impairment of urethrovesicular function. This study reviews the incidence of urinary retention in 80 patients (40 after general anesthesia and 40 after spinal anesthesia) who underwent foot and ankle surgery at Saint Joseph's Hospital, Philadelphia, PA. Twenty-five percent of the patients who had spinal anesthesia experienced urinary retention, while only 7 1/2% of the group who had general anesthesia had this complication. Predisposing factors, treatment regimen, and recommendations for the prevention and management of urinary retention are presented.

  12. Spinal cord ischemia secondary to hypovolemic shock.

    Science.gov (United States)

    Oh, Jacob Yl; Kapoor, Siddhant; Koh, Roy Km; Yang, Eugene Wr; Hee, Hwan-Tak

    2014-12-01

    A 44-year-old male presented with symptoms of spinal cord compression secondary to metastatic prostate cancer. An urgent decompression at the cervical-thoracic region was performed, and there were no complications intraoperatively. Three hours postoperatively, the patient developed acute bilateral lower-limb paralysis (motor grade 0). Clinically, he was in class 3 hypovolemic shock. An urgent magnetic resonance imaging (MRI) was performed, showing no epidural hematoma. He was managed aggressively with medical therapy to improve his spinal cord perfusion. The patient improved significantly, and after one week, he was able to regain most of his motor functions. Although not commonly reported, spinal cord ischemia post-surgery should be recognized early, especially in the presence of hypovolemic shock. MRI should be performed to exclude other potential causes of compression. Spinal cord ischemia needs to be managed aggressively with medical treatment to improve spinal cord perfusion. The prognosis depends on the severity of deficits, and is usually favorable.

  13. Enterorhabdus caecimuris sp. nov., a member of the family Coriobacteriaceae isolated from a mouse model of spontaneous colitis, and emended description of the genus Enterorhabdus Clavel et al. 2009.

    Science.gov (United States)

    Clavel, Thomas; Duck, Wayne; Charrier, Cédric; Wenning, Mareike; Elson, Charles; Haller, Dirk

    2010-07-01

    The C3H/HeJBir mouse model of intestinal inflammation was used for isolation of a Gram-positive, rod-shaped, non-spore-forming bacterium (B7(T)) from caecal suspensions. On the basis of partial 16S rRNA gene sequence analysis, strain B7(T) was a member of the class Actinobacteria, family Coriobacteriaceae, and was related closely to Enterorhabdus mucosicola Mt1B8(T) (97.6 %). The major fatty acid of strain B7(T) was C(16 : 0) (19.1 %) and the respiratory quinones were mono- and dimethylated. Cells were aerotolerant, but grew only under anoxic conditions. Strain B7(T) did not convert the isoflavone daidzein and was resistant to cefotaxime. The results of DNA-DNA hybridization experiments and additional physiological and biochemical tests allowed the genotypic and phenotypic differentiation of strain B7(T) from the type strain of E. mucosicola. Therefore, strain B7(T) represents a novel species, for which the name Enterorhabdus caecimuris sp. nov. is proposed. The type strain is B7(T) (=DSM 21839(T) =CCUG 56815(T)).

  14. Tegaserod, a small compound mimetic of polysialic acid, promotes functional recovery after spinal cord injury in mice.

    Science.gov (United States)

    Pan, H-C; Shen, Y-Q; Loers, G; Jakovcevski, I; Schachner, M

    2014-09-26

    In a previous study, we have shown that the small organic compound tegaserod, a drug approved for clinical application in an unrelated condition, is a mimic of the regeneration-beneficial glycan polysialic acid (PSA) in a mouse model of femoral nerve injury. Several independent observations have shown positive effects of PSA and its mimetic peptides in different paradigms of injury of the central and peripheral mammalian nervous systems. Since small organic compounds generally have advantages over metabolically rapidly degraded glycans and the proteolytically vulnerable mimetic peptides, a screen for a small PSA mimetic compound was successfully carried out, and the identified molecule proved to be beneficial in neurite outgrowth in vitro, independent of its originally described function as a 5-HT4 receptor agonist. In the present study, a mouse spinal cord compression device was used to elicit severe compression injury. We show that tegaserod promotes hindlimb motor function at 6 weeks after spinal cord injury compared to the control group receiving vehicle only. Immunohistology of the spinal cord rostral and caudal to the lesion site showed increased numbers of neurons, and a reduced area and intensity of glial fibrillary acidic protein immunoreactivity. Quantification of regrowth/sprouting of axons immunoreactive for tyrosine hydroxylase and serotonin showed increased axonal density rostral and caudal to the injury site in the ventral horns of mice treated with tegaserod. The combined observations suggest that tegaserod has the potential for treatment of spinal cord injuries in higher vertebrates.

  15. Chondrolectin affects cell survival and neuronal outgrowth in in vitro and in vivo models of spinal muscular atrophy.

    Science.gov (United States)

    Sleigh, James N; Barreiro-Iglesias, Antón; Oliver, Peter L; Biba, Angeliki; Becker, Thomas; Davies, Kay E; Becker, Catherina G; Talbot, Kevin

    2014-02-15

    Spinal muscular atrophy (SMA) is characterized by the selective loss of spinal motor neurons owing to reduced levels of survival motor neuron (Smn) protein. In addition to its well-established role in assembling constituents of the spliceosome, diverse cellular functions have been proposed for Smn, but the reason why low levels of this widely expressed protein result in selective motor neuron pathology is still debated. In longitudinal studies of exon-level changes in SMA mouse model tissues, designed to determine the contribution of splicing dysfunction to the disease, we have previously shown that a generalized defect in splicing is unlikely to play a causative role in SMA. Nevertheless, we identified a small subset of genes that were alternatively spliced in the spinal cord compared with control mice before symptom onset, indicating a possible mechanistic role in disease. Here, we have performed functional studies of one of these genes, chondrolectin (Chodl), known to be highly expressed in motor neurons and important for correct motor axon outgrowth in zebrafish. Using in vitro and in vivo models of SMA, we demonstrate altered expression of Chodl in SMA mouse spinal motor neurons, show that Chodl has distinct effects on cell survival and neurite outgrowth and that increasing the expression of chodl can rescue motor neuron outgrowth defects in Smn-depleted zebrafish. Our findings thus link the dysregulation of Chodl to the pathophysiology of motor neuron degeneration in SMA.

  16. Degenerative spinal disease in large felids.

    Science.gov (United States)

    Kolmstetter, C; Munson, L; Ramsay, E C

    2000-03-01

    Degenerative spinal disorders, including intervertebral disc disease and spondylosis, seldom occur in domestic cats. In contrast, a retrospective study of 13 lions (Panthera leo), 16 tigers (Panthera tigris), 4 leopards (Panthera pardis), 1 snow leopard (Panthera uncia), and 3 jaguars (Panthera onca) from the Knoxville Zoo that died or were euthanatized from 1976 to 1996 indicated that degenerative spinal disease is an important problem in large nondomestic felids. The medical record, radiographic data, and the necropsy report of each animal were examined for evidence of intervertebral disc disease or spondylosis. Eight (three lions, four tigers, and one leopard) animals were diagnosed with degenerative spinal disease. Clinical signs included progressively decreased activity, moderate to severe rear limb muscle atrophy, chronic intermittent rear limb paresis, and ataxia. The age at onset of clinical signs was 10-19 yr (median = 18 yr). Radiographic evaluation of the spinal column was useful in assessing the severity of spinal lesions, and results were correlated with necropsy findings. Lesions were frequently multifocal, included intervertebral disc mineralization or herniation with collapsed intervertebral disc spaces, and were most common in the lumbar area but also involved cervical and thoracic vertebrae. Marked spondylosis was present in the cats with intervertebral disc disease, presumably subsequent to vertebral instability. Six of the animals' spinal cords were examined histologically, and five had acute or chronic damage to the spinal cord secondary to disc protrusion. Spinal disease should be suspected in geriatric large felids with decreased appetite or activity. Radiographic evaluation of the spinal column is the most useful method to assess the type and severity of spinal lesions.

  17. Neuroprotective effects of salvianolic acid B on secondary spinal cord damage

    Institute of Scientific and Technical Information of China (English)

    Zhizhong Ye; Yubin Deng; Hongfu Wu; Danhui Gan

    2011-01-01

    Salvianolic acid B(Sal B), an effective ingredient of Danshen(salvia miltiorrhiza root), has been shown to exhibit anti-oxidative and anti-inflammatory effects. The present study investigated whether Sol B has a neuroprotective effect on secondary spinal cord injury when administrated alone. In addition, the effects of $al B on attenuating expression of tumor necrosis factor-a(TNF-α)following acute spinal cord injury were analyzed, as well as the effects of combined treatment of Sal B and etanercept. Immunohistochemical staining demonstrated that Sal B significantly reduced matrix metalloproteinase-1 and c-Fos expression at 24 hours after spinal cord injury, and decreased tissue edema was detected using the dry-wet weight method at 3 days after injury. In addition, Sal B significantly promoted recovery of motor function in rats. These effects were most significant at a dose of 20 mg/kg Sal B. At 24 hours after spinal cord injury, reverse transcription-polymerase chain reaction and western blot assay results showed that Sat B, etanercept, or the combination significantly suppressed increased TNF-o mRNA and protein expression, although the combinationresulted in more significant outcomes. These results suggested that Sal B exerted neuroprotective effects against secondary spinal cord injury by reducing expression of matrix metalloproteinase-1,c-Fos, and TNF-α. Moreover, Sol B combined with etaneroept resulted in more significant anti-inflammatory effects.

  18. Clinical radiology of the spine and spinal cord

    Energy Technology Data Exchange (ETDEWEB)

    Banna, M.

    1985-01-01

    This book is a source of information about aspects of radiology of the spine and spinal column. It presents coverage of both normal and abnormal conditions. Contents: Spinal fractures and dislocations. Degenerative diseases of the spine. Gross anatomy of the spinal cord and meninges. Intraspinal mass lesions. Spinal dysraphism. Congenital anomalies. Tumors of the vertebral column, and more.

  19. The Knockout Mouse Project

    OpenAIRE

    Austin, Christopher P.; Battey, James F.; Bradley, Allan; Bucan, Maja; Capecchi, Mario; Collins, Francis S; Dove, William F.; Duyk, Geoffrey; Dymecki, Susan; Eppig, Janan T.; Grieder, Franziska B.; Heintz, Nathaniel; Hicks, Geoff; Insel, Thomas R; Joyner, Alexandra

    2004-01-01

    Mouse knockout technology provides a powerful means of elucidating gene function in vivo, and a publicly available genome-wide collection of mouse knockouts would be significantly enabling for biomedical discovery. To date, published knockouts exist for only about 10% of mouse genes. Furthermore, many of these are limited in utility because they have not been made or phenotyped in standardized ways, and many are not freely available to researchers. It is time to harness new technologies and e...

  20. Asymptomatic spinal arachnoiditis in patients with tuberculous meningitis

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, T. [Department of Neurology, CN Centre, All India Institute of Medical Sciences, New Delhi (India); Department of Medicine, S.P. Medical College, Bikaner, Rajasthan (India); Kochar, D.K. [Department of Medicine, S.P. Medical College, Bikaner, Rajasthan (India)

    2003-10-01

    Spinal arachnoiditis is one of the common and disabling complication of tuberculous meningitis (TBM). We focused on early diagnosis of spinal arachnoiditis by spinal MRI in asymptomatic patients in whom neurological examination was normal. We studied 16 patients with a diagnosis of probable or highly probable TBM with symptoms for less than 1 month; three had radiological evidence of spinal arachnoiditis. High cerebrospinal fluid protein appeared to be a risk factor for development of spinal arachnoiditis. MRI is sensitive to detect early spinal arachnoiditis. Earlier diagnosis may be helpful in management of spinal arachnoiditis in TBM. (orig.)

  1. Replacing the computer mouse

    OpenAIRE

    Dernoncourt, Franck

    2014-01-01

    In a few months the computer mouse will be half-a-century-old. It is known to have many drawbacks, the main ones being: loss of productivity due to constant switching between keyboard and mouse, and health issues such as RSI. Like the keyboard, it is an unnatural human-computer interface. However the vast majority of computer users still use computer mice nowadays. In this article, we explore computer mouse alternatives. Our research shows that moving the mouse cursor can be done efficiently ...

  2. An encyclopedia of mouse DNA elements (Mouse ENCODE).

    Science.gov (United States)

    Stamatoyannopoulos, John A; Snyder, Michael; Hardison, Ross; Ren, Bing; Gingeras, Thomas; Gilbert, David M; Groudine, Mark; Bender, Michael; Kaul, Rajinder; Canfield, Theresa; Giste, Erica; Johnson, Audra; Zhang, Mia; Balasundaram, Gayathri; Byron, Rachel; Roach, Vaughan; Sabo, Peter J; Sandstrom, Richard; Stehling, A Sandra; Thurman, Robert E; Weissman, Sherman M; Cayting, Philip; Hariharan, Manoj; Lian, Jin; Cheng, Yong; Landt, Stephen G; Ma, Zhihai; Wold, Barbara J; Dekker, Job; Crawford, Gregory E; Keller, Cheryl A; Wu, Weisheng; Morrissey, Christopher; Kumar, Swathi A; Mishra, Tejaswini; Jain, Deepti; Byrska-Bishop, Marta; Blankenberg, Daniel; Lajoie, Bryan R; Jain, Gaurav; Sanyal, Amartya; Chen, Kaun-Bei; Denas, Olgert; Taylor, James; Blobel, Gerd A; Weiss, Mitchell J; Pimkin, Max; Deng, Wulan; Marinov, Georgi K; Williams, Brian A; Fisher-Aylor, Katherine I; Desalvo, Gilberto; Kiralusha, Anthony; Trout, Diane; Amrhein, Henry; Mortazavi, Ali; Edsall, Lee; McCleary, David; Kuan, Samantha; Shen, Yin; Yue, Feng; Ye, Zhen; Davis, Carrie A; Zaleski, Chris; Jha, Sonali; Xue, Chenghai; Dobin, Alex; Lin, Wei; Fastuca, Meagan; Wang, Huaien; Guigo, Roderic; Djebali, Sarah; Lagarde, Julien; Ryba, Tyrone; Sasaki, Takayo; Malladi, Venkat S; Cline, Melissa S; Kirkup, Vanessa M; Learned, Katrina; Rosenbloom, Kate R; Kent, W James; Feingold, Elise A; Good, Peter J; Pazin, Michael; Lowdon, Rebecca F; Adams, Leslie B

    2012-08-13

    To complement the human Encyclopedia of DNA Elements (ENCODE) project and to enable a broad range of mouse genomics efforts, the Mouse ENCODE Consortium is applying the same experimental pipelines developed for human ENCODE to annotate the mouse genome.

  3. Diagnosis and management of traumatic cervical central spinal cord injury: A review

    Directory of Open Access Journals (Sweden)

    Nancy E Epstein

    2015-01-01

    Full Text Available Background: The classical clinical presentation, neuroradiographic features, and conservative vs. surgical management of traumatic cervical central spinal cord (CSS injury remain controversial. Methods: CSS injuries, occurring in approximately 9.2% of all cord injuries, are usually attributed to significant hyperextension trauma combined with congenital/acquired cervical stenosis/spondylosis. Patients typically present with greater motor deficits in the upper vs. lower extremities accompanied by patchy sensory loss. T2-weighted magnetic resonance (MR scans usually show hyperintense T2 intramedullary signals reflecting acute edema along with ligamentous injury, while noncontrast computed tomography (CT studies typically show no attendant bony pathology (e.g. no fracture, dislocation. Results: CSS constitute only a small percentage of all traumatic spinal cord injuries. Aarabi et al. found CSS patients averaged 58.3 years of age, 83% were male and 52.4% involved accidents/falls in patients with narrowed spinal canals (average 5.6 mm; their average American Spinal Injury Association (ASIA motor score was 63.8, and most pathology was at the C3-C4 and C4-C5 levels (71%. Surgery was performed within 24 h (9 patients, 24-48 h (10 patients, or after 48 h (23 patients. In the Brodell et al. study of 16,134 patients with CSS, 39.7% had surgery. In the Gu et al. series, those with CSS and stenosis/ossification of the posterior longitudinal ligament (OPLL exhibited better outcomes following laminoplasty. Conclusions: Recognizing the unique features of CSS is critical, as the clinical, neuroradiological, and management strategies (e.g. conservative vs. surgical management: early vs. late differ from those utilized for other spinal cord trauma. Increased T2-weighted MR images best document CSS, while CT studies confirm the absence of fracture/dislocation.

  4. Spinal cord evolution in early Homo.

    Science.gov (United States)

    Meyer, Marc R; Haeusler, Martin

    2015-11-01

    The discovery at Nariokotome of the Homo erectus skeleton KNM-WT 15000, with a narrow spinal canal, seemed to show that this relatively large-brained hominin retained the primitive spinal cord size of African apes and that brain size expansion preceded postcranial neurological evolution. Here we compare the size and shape of the KNM-WT 15000 spinal canal with modern and fossil taxa including H. erectus from Dmanisi, Homo antecessor, the European middle Pleistocene hominins from Sima de los Huesos, and Pan troglodytes. In terms of shape and absolute and relative size of the spinal canal, we find all of the Dmanisi and most of the vertebrae of KNM-WT 15000 are within the human range of variation except for the C7, T2, and T3 of KNM-WT 15000, which are constricted, suggesting spinal stenosis. While additional fossils might definitively indicate whether H. erectus had evolved a human-like enlarged spinal canal, the evidence from the Dmanisi spinal canal and the unaffected levels of KNM-WT 15000 show that unlike Australopithecus, H. erectus had a spinal canal size and shape equivalent to that of modern humans. Subadult status is unlikely to affect our results, as spinal canal growth is complete in both individuals. We contest the notion that vertebrae yield information about respiratory control or language evolution, but suggest that, like H. antecessor and European middle Pleistocene hominins from Sima de los Huesos, early Homo possessed a postcranial neurological endowment roughly commensurate to modern humans, with implications for neurological, structural, and vascular improvements over Pan and Australopithecus.

  5. Spinal fractures resulting from traumatic injuries

    Institute of Scientific and Technical Information of China (English)

    Heidari Pedram; Zarei Mohammad Reza; Rasouli Mohammad Reza; Alexander R Vaccaro; Rahimi-Movaghar Vafa

    2010-01-01

    Objective:To illustrate mechanisms of spine fractures and the pattern of spinal injuries characterized by the major mechanisms in urban population of Iran.Methods:Data regarding spinal injuries including demographics,mechanism and level of spinal injury,abbreviated injury score,associated injuries and final fate of the patients were extracted from the Iranian national trauma registry database from 1999 to 2004.Results:A total of 619 patients with traumatic spine fractures were identified,of whom 68.5% were males.The peak frequency of these injuries occurred in the 21-40 year age-group.Accidental falls and road traffic crashes(RTCs)were the most common mechanisms of spinal fractures(47.2% and 44.1%,respectively).RTCs tended to occur in younger patients compared with accidental falls.The most common spinal region for spinal fracture was the lumbar spine(53.63%).Cervical spine fractures were significantly more common in RTCs,while lumbar spine fractures were more common in accidental falls(P<0.001).A total of 171(27.6%)patients had associated non-spinal injuries,of whom 127 had associated extremity injuries,and 55 had head injuries.Thirty-six(5.6%)patients had spinal cord injury(SCI).The injury severity score of the RTC group was significantly higher than that of accidental falls(P=0.002).Fifteen(4%)patients died of traumatic injuries.The rate of death was significantly higher in RTCs compared with accidental falls(5.1% vs 2.1%,P=0.039).Conclusions:The patterns of spinal fractures are similar to those reported from developed countries.RTCs tend to affect the younger age population and are associated with a higher degree of associated injuries and mortality than accidental falls.Therefore preventive strategies should be based on reduction of the number and severity of RTCs.

  6. What is different about spinal pain?

    Directory of Open Access Journals (Sweden)

    Vernon Howard

    2012-07-01

    Full Text Available Abstract Background The mechanisms subserving deep spinal pain have not been studied as well as those related to the skin and to deep pain in peripheral limb structures. The clinical phenomenology of deep spinal pain presents unique features which call for investigations which can explain these at a mechanistic level. Methods Targeted searches of the literature were conducted and the relevant materials reviewed for applicability to the thesis that deep spinal pain is distinctive from deep pain in the peripheral limb structures. Topics related to the neuroanatomy and neurophysiology of deep spinal pain were organized in a hierarchical format for content review. Results Since the 1980’s the innervation characteristics of the spinal joints and deep muscles have been elucidated. Afferent connections subserving pain have been identified in a distinctive somatotopic organization within the spinal cord whereby afferents from deep spinal tissues terminate primarily in the lateral dorsal horn while those from deep peripheral tissues terminate primarily in the medial dorsal horn. Mechanisms underlying the clinical phenomena of referred pain from the spine, poor localization of spinal pain and chronicity of spine pain have emerged from the literature and are reviewed here, especially emphasizing the somatotopic organization and hyperconvergence of dorsal horn “low back (spinal neurons”. Taken together, these findings provide preliminary support for the hypothesis that deep spine pain is different from deep pain arising from peripheral limb structures. Conclusions This thesis addressed the question “what is different about spine pain?” Neuroanatomic and neurophysiologic findings from studies in the last twenty years provide preliminary support for the thesis that deep spine pain is different from deep pain arising from peripheral limb structures.

  7. CT myelography in the diagnosis of spinal diseases

    Energy Technology Data Exchange (ETDEWEB)

    Kunishio, Katsuzo; Yamamoto, Yoshihiro; Sunami, Norio; Yamamoto, Yuji; Asari, Shoji

    1987-06-01

    CT myelography of the spinal column was carried out in 37 patients. There were 13 patients with disk lesions, 10 with narrow spinal canals, 2 each with ossifications of the posterior longitudinal ligament and metastatic spinal tumors, and one each with ossification of yellow ligament, atlanto-axial dislocation, syringomyelia, and spinal cord multiple sclerosis. CT myelography was of diagnostic value for various spinal problems.

  8. Nanomedicine for treating spinal cord injury

    Science.gov (United States)

    Tyler, Jacqueline Y.; Xu, Xiao-Ming; Cheng, Ji-Xin

    2013-09-01

    Spinal cord injury results in significant mortality and morbidity, lifestyle changes, and difficult rehabilitation. Treatment of spinal cord injury is challenging because the spinal cord is both complex to treat acutely and difficult to regenerate. Nanomaterials can be used to provide effective treatments; their unique properties can facilitate drug delivery to the injury site, enact as neuroprotective agents, or provide platforms to stimulate regrowth of damaged tissues. We review recent uses of nanomaterials including nanowires, micelles, nanoparticles, liposomes, and carbon-based nanomaterials for neuroprotection in the acute phase. We also review the design and neural regenerative application of electrospun scaffolds, conduits, and self-assembling peptide scaffolds.

  9. Spinal lipomas: clinical spectrum, embryology, and treatment.

    Science.gov (United States)

    Finn, Michael A; Walker, Marion L

    2007-01-01

    Spinal lipomas, particularly lipomas of the conus medullaris and terminal filum, are the most common form of occult spinal dysraphism and represent a wide spectrum of disease with regard to anatomy, clinical presentation, and treatment options. These lesions, however, are united by a similar embryology and pathological mechanism by which symptoms arise. Recently, the treatment of these lesions has generated much controversy, with some physicians advocating surgical treatment for all patients regardless of symptoms and others proposing that surgery be withheld until symptoms develop. The authors discuss lumbosacral spinal lipomas, with particular attention to the theories of their origin, anatomical and pathological features, and treatment options, including a review of current controversies.

  10. Post-traumatic recto-spinal fistula

    Energy Technology Data Exchange (ETDEWEB)

    Lantsberg, L.; Greenberg, G. [Department of Surgery A, Soroka University Medical Center, Beer-Sheva (Israel); Laufer, L.; Hertzanu, Y. [Department of Diagnostic Radiology, Soroka University Medical Center, Beer-Sheva (Israel)

    2000-01-01

    Acquired recto-spinal fistula has been described elsewhere as a rare complication of colorectal malignancy and Crohn's enterocolitis. We treated a young man who developed a recto-spinal fistula as a result of a high fall injury. The patient presented with meningeal signs, sepsis and perianal laceration. Computerized axial tomography revealed air in the supersellar cistern. Gastrografin enema showed that contrast material was leaking from the rectum into the spinal canal. Surgical management included a diverting sigmoid colostomy, sacral bone curettage and wide presacral drainage. To the best of our knowledge, rectospinal fistula of traumatic origin has not been previously reported in the English literature. (orig.)

  11. Computed tomography of the spinal disorders

    Energy Technology Data Exchange (ETDEWEB)

    Ohkubo, K.; Ueki, K.; Shinohara, S.; Sakoh, T. (Kagoshima Univ. (Japan). Faculty of Medicine)

    1981-03-01

    A comprehensive study of all spinal CT scans was performed to evaluate the diagnostic usefulness of this technique. CT scan was performed on 108 cases, including cases of ossification of the posterior longitudinal ligament, spondylosis deformans, disc herniation, caries, spondylolisthesis, spinal fracture, and others. CT scan is apparently useful in demonstrating spinal canal stenosis, bony lesion, and surrounding soft tissue abnormality. In this study, we also identify the herniated intervertebral disc, so CT scan will become the primary modes of evaluation in patients with low back pain.

  12. Spinal Deformity Associated with Chiari Malformation.

    Science.gov (United States)

    Kelly, Michael P; Guillaume, Tenner J; Lenke, Lawrence G

    2015-10-01

    Despite the frequency of Chiari-associated spinal deformities, this disease process remains poorly understood. Syringomyelia is often present; however, this is not necessary and scoliosis has been described in the absence of a syrinx. Decompression of the hindbrain is often recommended. In young patients (<10 years old) and/or those with small coronal Cobb measurements (<40°), decompression of the hindbrain may lead to resolution of the spinal deformity. Spinal fusion is reserved for those curves that progress to deformities greater than 50°. Further research is needed to understand the underlying pathophysiology to improve prognostication and treatment of this patient population.

  13. Molecular mapping of the origin of postnatal spinal cord ependymal cells: evidence that adult ependymal cells are derived from Nkx6.1+ ventral neural progenitor cells.

    Science.gov (United States)

    Fu, Hui; Qi, Yingchuan; Tan, Min; Cai, Jun; Hu, Xuemei; Liu, Zijing; Jensen, Jan; Qiu, Mengsheng

    2003-02-10

    Recent studies have suggested that the ependymal cells lining the central canal of postnatal spinal cord possess certain properties of neural stem cells. However, the embryonic origin and developmental potential of the postnatal spinal cord ependymal cells remain to be defined. In this report, we investigated the developmental origin of postnatal spinal ependymal cells by studying the dynamic expression of several neural progenitor genes that are initially expressed in distinct domains of neuroepithelium in young embryos. At later stages of development, as the ventricular zone of the embryonic spinal cord is reduced, expression of Nkx6.1 progenitor gene is constantly detected in ependymal cells throughout chick and mouse development. Expression of other neural progenitor genes that lie either dorsal or ventral to the Nkx6.1+ domain is gradually decreased and eventually disappeared. These results suggest that the remaining neuroepithelial cells at later stages of animal life are derived from the Nkx6.1+ ventral neuroepithelial cells. Expression of Nkx6.1 in the remaining neuroepithelium is closely associated with, and regulated by, Shh expression in the floor plate. In addition, we suggested that the Nkx6.1+ ependymal cells in adult mouse spinal cords may retain the proliferative property of neural stem cells.

  14. Incidence of Primary Spinal Cord, Spinal Meninges, and Cauda Equina Tumors in Korea, 2006-2010

    OpenAIRE

    2014-01-01

    Purpose Primary spinal cord and appendage tumors (PSCAT) originating from the spinal cord, spinal meninges, and cauda equina are uncommon. Worldwide, population-based cancer registry data are mostly based on malignant tumors only, which means few data are available on PSCATs, including non-malignant tumors. Therefore, the objective of this study was to provide information regarding the incidence of both non-malignant and malignant PSCATs in Korea on a national level. Materials and Methods Inc...

  15. Anabolic Steroids as a Novel Therapeutic Strategy for the Prevention of Bone Loss after Spinal Cord Injury: Animal Model and Molecular Mechanism

    Science.gov (United States)

    2012-10-01

    osteoporosis . Curr Osteoporos Rep. 8(4): p. 212-8. 5. Kalincik, T., et al., Selected changes in spinal cord morphology after T4 transection and olfactory...mass and strength in animal models of bone loss due to estrogen deficiency and immobilization (4). Scl-Ab also increased bone mineral density (BMD) in... osteoporosis . Curr Osteoporos Rep. 2010, 8:212-218. 3. Jiang SD, Jiang LS, Dai L. Mechanisms of osteoporosis in spinal cord injury. Clin Endocrinol (Oxf

  16. Phenotype of the taurine transporter knockout mouse.

    Science.gov (United States)

    Warskulat, Ulrich; Heller-Stilb, Birgit; Oermann, Evelyn; Zilles, Karl; Haas, Helmut; Lang, Florian; Häussinger, Dieter

    2007-01-01

    This chapter reports present knowledge on the properties of mice with disrupted gene coding for the taurine transporter (taut-/- mice). Study of those mice unraveled some of the roles of taurine and its membrane transport for the development and maintenance of normal organ functions and morphology. When compared with wild-type controls, taut-/- mice have decreased taurine levels in skeletal and heart muscle by about 98%, in brain, kidney, plasma, and retina by 80 to 90%, and in liver by about 70%. taut-/- mice exhibit a lower body mass as well as a strongly reduced exercise capacity compared with taut+/- and wild-type mice. Furthermore, taut-/- mice show a variety of pathological features, for example, subtle derangement of renal osmoregulation, changes in neuroreceptor expression, and loss of long-term potentiation in the striatum, and they develop clinically relevant age-dependent disorders, for example, visual, auditory, and olfactory dysfunctions, unspecific hepatitis, and liver fibrosis. Taurine-deficient animal models such as acutely dietary-manipulated foxes and cats, pharmacologically induced taurine-deficient rats, and taurine transporter knockout mouse are powerful tools allowing identification of the mechanisms and complexities of diseases mediated by impaired taurine transport and taurine depletion (Chapman et al., 1993; Heller-Stilb et al., 2002; Huxtable, 1992; Lake, 1993; Moise et al., 1991; Novotny et al., 1991; Pion et al., 1987; Timbrell et al., 1995; Warskulat et al., 2004, 2006b). Taurine, which is the most abundant amino acid in many tissues, is normally found in intracellular concentrations of 10 to 70 mmol/kg in mammalian heart, brain, skeletal muscle, liver, and retina (Chapman et al., 1993; Green et al., 1991; Huxable, 1992; Timbrell et al., 1995). These high taurine levels are maintained by an ubiquitous expression of Na(+)-dependent taurine transporter (TAUT) in the plasma membrane (Burg, 1995; Kwon and Handler, 1995; Lang et al., 1998

  17. Spinal dural arteriovenous fistulas. Diagnostics and therapy; Spinale durale arteriovenoese Fisteln. Diagnostik und Therapie

    Energy Technology Data Exchange (ETDEWEB)

    Reith, W.; Kettner, M.; Simgen, A.; Yilmaz, U. [Universitaetsklinikum des Saarlandes, Klinik fuer Diagnostische und Interventionelle Neuroradiologie, Homburg/Saar (Germany)

    2012-05-15

    Spinal dural arteriovenous fistulas are rare spinal vascular malformations which can cause progressive paraparesis and paraplegia if not treated. As symptoms are unspecific diagnosis is often delayed and clinical outcome is dependent on early therapy. While magnetic resonance imaging (MRI) is the first choice imaging procedure, selective spinal digital subtraction angiography is necessary to analyze the angioarchitecture and to plan the treatment. This article provides an overview on the epidemiology, etiology, clinical aspects and imaging features as well as therapeutic aspects of spinal dural arteriovenous fistulas. Knowledge of spinal vascular anatomy is the basis for understanding spinal dural arteriovenous fistulas. (orig.) [German] Spinale durale arteriovenoese Fisteln (dAVF) sind seltene spinale vaskulaere Malformationen, die unbehandelt zu einer progredienten Paraparese und Paraplegie fuehren koennen. Da die klinischen Symptome oft unspezifisch sind, werden sie haeufig erst in einem spaeteren Stadium diagnostiziert. Die Erkrankungshaeufigkeit ist mit 5-10 Neuerkrankungen/1 Mio. Einwohner/Jahr relativ selten, ueber 80% der Betroffenen sind Maenner. Der unbehandelt schlechte klinische Verlauf der dAVF sowie die Moeglichkeit der Therapie, deren Erfolg von einer fruehzeitigen Behandlung abhaengt, macht sie jedoch zu einer wichtigen Erkrankung. Die Diagnose ist haeufig im MRT zu stellen, zur genauen Darstellung der Fistel ist eine selektive spinale Subtraktionsangiographie jedoch notwendig. Ziel dieses Artikels ist, einen Ueberblick ueber die Epidemiologie, Aetiologie, Klinik und bildgebende Verfahren sowie therapeutischen Moeglichkeiten dieser spinalen vaskulaeren Malformation zu geben. Voraussetzung zum grundlegenden Verstaendnis der duralen AVF sind genaue Kenntnisse der vaskulaeren spinalen Gefaessversorgung. (orig.)

  18. Relationships between falls, spinal curvature, spinal mobility and back extensor strength in elderly people.

    Science.gov (United States)

    Kasukawa, Yuji; Miyakoshi, Naohisa; Hongo, Michio; Ishikawa, Yoshinori; Noguchi, Hideaki; Kamo, Keiji; Sasaki, Hiroshi; Murata, Katsuyuki; Shimada, Yoichi

    2010-01-01

    Spinal mobility and back extensor strength (BES) are important in determining quality of life (QOL) for elderly people. However, the impact of spinal factors on falls remains unclear. The purpose of this study was to clarify spinal factors related to falls in elderly people, including deformity of spinal curvature, spinal mobility and BES. Subjects comprised 92 elderly people divided into 3 groups: subjects without a history of falls or fear of falls (Non-falls group, n = 40); subjects with a history of fear of falls or requiring any support when walking (Fear of falls group, n = 36); and subjects with a history of falls (Falls group, n = 16). Kyphotic angles and mobility of the thoracic and/or lumbar spine, and spinal inclination were measured using a computer-assisted device. Postural imbalance was evaluated using a computerized stabilometer. Isometric BES was also measured. Angle of lumbar kyphosis, spinal inclination, and postural imbalance were significantly higher in the Falls group (p spinal inclination (p = 0.0378), mobility of lumbar spine (0.027), and mobility of spinal inclination (p = 0.0282) were significantly associated with presence/absence of falls in elderly individuals.

  19. Spinal epidural abscess in brucellosis.

    Science.gov (United States)

    Boyaci, Ahmet; Boyaci, Nurefsan; Tutoglu, Ahmet; Dokumaci, Dilek Sen

    2013-09-26

    Involvement of the skeletal system is a common complication of brucellosis. However, muscle involvement or paraspinal abscess formation are rare complications. Paraspinal abscess usually develops secondary to spondylitis. A case is reported here of a 33-year-old woman with symptoms of night sweats, fever and low back pain. Rose-Bengal test for brucellosis was positive and Brucella standard tube agglutination test was positive at a titre of 1/160. The diagnosis was made on MRI. The patient was treated with doxycycline and rifampin daily for 16 weeks. On day 14 of treatment, decline was observed in the patient's symptoms. In the presence of inflammatory lower back pain and fever, brucellosis should be considered particularly in the endemic areas. Furthermore, tuberculosis should be remembered in the differential diagnosis when a spinal epidural abscess is determined.

  20. Spinal instability in ankylosing spondylitis

    Directory of Open Access Journals (Sweden)

    Badve Siddharth

    2010-01-01

    Full Text Available Background: Unstable spinal lesions in patients with ankylosing spondylitis are common and have a high incidence of associated neurological deficit. The evolution and presentation of these lesions is unclear and the management strategies can be confusing. We present retrospective analysis of the cases of ankylosing spondylitis developing spinal instability either due to spondylodiscitis or fractures for mechanisms of injury, presentations, management strategies and outcome. Materials and Methods: In a retrospective analysis of 16 cases of ankylosing spondylitis, treated surgically for unstable spinal lesions over a period of 12 years (1995-2007; 87.5% (n=14 patients had low energy (no obvious/trivial trauma while 12.5% (n=2 patients sustained high energy trauma. The most common presentation was pain associated with neurological deficit. The surgical indications included neurological deficit, chronic pain due to instability and progressive deformity. All patients were treated surgically with anterior surgery in 18.8% (n=3 patients, posterior in 56.2% (n=9 patients and combined approach in 25% (n=4 patients. Instrumented fusion was carried out in 87.5% (n=14 patients. Average surgical duration was 3.84 (Range 2-7.5 hours, blood loss 765.6 (± 472.5 ml and follow-up 54.5 (Range 18-54 months. The patients were evaluated for pain score, Frankel neurological grading, deformity progression and radiological fusion. One patient died of medical complications a week following surgery. Results: Intra-operative adverse events like dural tears and inadequate deformity correction occurred in 18.7% (n=3 patients (Cases 6, 7 and 8 which could be managed conservatively. There was a significant improvement in the Visual analogue score for pain from a pre-surgical median of 8 to post-surgical median of 2 (P=0.001, while the neurological status improved in 90% (n=9 patients among those with preoperative neurological deficit who could be followed-up (n =10. Frankel

  1. Muscle after spinal cord injury

    DEFF Research Database (Denmark)

    Biering-Sørensen, Bo; Kristensen, Ida Bruun; Kjaer, Michael;

    2009-01-01

    The morphological and contractile changes of muscles below the level of the lesion after spinal cord injury (SCI) are dramatic. In humans with SCI, a fiber-type transformation away from type I begins 4-7 months post-SCI and reaches a new steady state with predominantly fast glycolytic IIX fibers...... years after the injury. There is a progressive drop in the proportion of slow myosin heavy chain (MHC) isoform fibers and a rise in the proportion of fibers that coexpress both the fast and slow MHC isoforms. The oxidative enzymatic activity starts to decline after the first few months post-SCI. Muscles...... from individuals with chronic SCI show less resistance to fatigue, and the speed-related contractile properties change, becoming faster. These findings are also present in animals. Future studies should longitudinally examine changes in muscles from early SCI until steady state is reached in order...

  2. Spinal imaging and image analysis

    CERN Document Server

    Yao, Jianhua

    2015-01-01

    This book is instrumental to building a bridge between scientists and clinicians in the field of spine imaging by introducing state-of-the-art computational methods in the context of clinical applications.  Spine imaging via computed tomography, magnetic resonance imaging, and other radiologic imaging modalities, is essential for noninvasively visualizing and assessing spinal pathology. Computational methods support and enhance the physician’s ability to utilize these imaging techniques for diagnosis, non-invasive treatment, and intervention in clinical practice. Chapters cover a broad range of topics encompassing radiological imaging modalities, clinical imaging applications for common spine diseases, image processing, computer-aided diagnosis, quantitative analysis, data reconstruction and visualization, statistical modeling, image-guided spine intervention, and robotic surgery. This volume serves a broad audience as  contributions were written by both clinicians and researchers, which reflects the inte...

  3. Gaze beats mouse

    DEFF Research Database (Denmark)

    Mateo, Julio C.; San Agustin, Javier; Hansen, John Paulin

    2008-01-01

    Facial EMG for selection is fast, easy and, combined with gaze pointing, it can provide completely hands-free interaction. In this pilot study, 5 participants performed a simple point-and-select task using mouse or gaze for pointing and a mouse button or a facial-EMG switch for selection. Gaze...

  4. The MOUSE Squad

    Science.gov (United States)

    Borja, Rhea R.

    2004-01-01

    This article presents a New York city after-school program started by MOUSE (Making Opportunities for Upgrading Schools and Education), a national nonprofit group that teaches students how to fix computers, and equips them with the communication and problem-solving skills to help them in the working world. The MOUSE program is part of a trend…

  5. The possible meaning of fractional anisotropy measurement of the cervical spinal cord in correct diagnosis of amyotrophic lateral sclerosis.

    Science.gov (United States)

    Budrewicz, Slawomir; Szewczyk, Pawel; Bladowska, Joanna; Podemski, Ryszard; Koziorowska-Gawron, Ewa; Ejma, Maria; Słotwiński, Krzysztof; Koszewicz, Magdalena

    2016-03-01

    Diagnosis of amyotrophic lateral sclerosis (ALS) is based on clinical criteria and electrophysiological tests (electromyography, and transcranial magnetic stimulation). In the search for ALS biomarkers, the role of imaging procedures is currently emphasized, especially modern MR techniques. MR procedures were performed on 15 ALS patients and a sex- and age-matched control group. The MR examinations were performed with a 1.5-T MR unit, and the protocol consisted of sagittal T1-weighed images, sagittal and axial T2-weighed images, and sagittal T2-weighed FAT SAT images followed by an axial diffusion tensor imaging (DTI) sequence of the cervical spinal cord. FA values in individual segments of the cervical spinal cord were decreased in the ALS group in comparison with the control group. After comparing FA values for anterior, posterior, and lateral corticospinal columns, the greatest difference was observed between the C2 and C5 segments. Spinal cord assessment with the use of FA measurements allows for confirmation of the motor pathways lesion in ALS patients. The method, together with clinical criteria, could be helpful in ALS diagnosis, assessment of clinical course, or even the effects of new drugs. The results also confirmed the theory of the generalized character of ALS.

  6. Mouse genome database 2016.

    Science.gov (United States)

    Bult, Carol J; Eppig, Janan T; Blake, Judith A; Kadin, James A; Richardson, Joel E

    2016-01-01

    The Mouse Genome Database (MGD; http://www.informatics.jax.org) is the primary community model organism database for the laboratory mouse and serves as the source for key biological reference data related to mouse genes, gene functions, phenotypes and disease models with a strong emphasis on the relationship of these data to human biology and disease. As the cost of genome-scale sequencing continues to decrease and new technologies for genome editing become widely adopted, the laboratory mouse is more important than ever as a model system for understanding the biological significance of human genetic variation and for advancing the basic research needed to support the emergence of genome-guided precision medicine. Recent enhancements to MGD include new graphical summaries of biological annotations for mouse genes, support for mobile access to the database, tools to support the annotation and analysis of sets of genes, and expanded support for comparative biology through the expansion of homology data.

  7. Spinal Cord Injury: Hope through Research

    Science.gov (United States)

    ... recent tetraplegia. Much as in the general population, cardiovascular disease (CVD) is a leading cause of death in persons with spinal cord injury. After the injury, the opportunity to actively exercise large muscles affected by paralysis is limited or ...

  8. Successful medical treatment of spinal epidural abscess.

    Science.gov (United States)

    Xiao, Bo-Ren; Wang, Chih-Wei; Lin, Jung-Chung; Chang, Feng-Yee

    2008-04-01

    Spinal epidural abscess is a rare but potentially fatal disease. A 67-year-old female suffered fever and painful swelling of the right knee and lower leg for one week. Both synovial fluid and blood cultures yielded methicillin-sensitive Staphylococcus aureus. Low back pain developed and fever was sustained despite the administration of intravenous oxacillin. Magnetic resonance imaging (MRI) of the thoracolumbar spine revealed spinal epidural abscess from T12 to S1. Because of severe hypoalbuminemia and general anasarca and followed by exploratory laparotomy for massive duodenal bleeding, she did not receive surgical intervention for the spinal epidural abscess. After intravenous administration of oxacillin 2 g 4-hourly for 12 weeks, she recovered and follow-up MRI confirmed the efficacy of the medical treatment. She remained well at 1-year follow-up. In a patient with minimal neurological deficit or surgical contraindication, spinal epidural abscess can be successfully treated with a medical regimen.

  9. APOPTOSIS AFTER SPINAL CORD INJURY IN RATS

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Objective To confirm the role played by apoptosis in spinal cord injury. Methods 36 rats models of spinal cord injury were made by Allen method. Histological examinations using HE staining and in situ end-labeling were used to observe apoptosis in spinal cord tissues from 1h to 21d after injury. Results HE staining sections showed hemorrhage and necrosis, neuronal degeneration and gliai cell proliferation. In situ end-labeling sections showed the appearance of apoptosis in both gray and white matter as well as in both central and surrounding region. The number of apoptotic cells increased from 12h after injury, increased to the peak at 4d and declined to normal at 21d. Conclu sion The results suggest that apoptosis, especially glial apoptosis, plays a role in the pathogenesis of spinal cord in jury.

  10. Types of SMA (Spinal Muscular Atrophy)

    Science.gov (United States)

    ... genes other than the SMN1 gene. Spinal Muscular Atrophy Respiratory Distress (SMARD) SMARD is a very rare ... and 50. It causes muscle weakness and wasting (atrophy) throughout the body, which is most noticeable in ...

  11. An ergonomic task analysis of spinal anaesthesia.

    LENUS (Irish Health Repository)

    Ajmal, Muhammad

    2009-12-01

    Ergonomics is the study of physical interaction between humans and their working environment. The objective of this study was to characterize the performance of spinal anaesthesia in an acute hospital setting, applying ergonomic task analysis.

  12. Acute rehabilitation of spinal cord injury

    OpenAIRE

    KIDRIČ-SIVEC, Urška; SEDEJ, Bogdana; MAROLT, Melita

    2015-01-01

    Traumatic spinal cord injury presents with loss of function of neuromuscular and other systems below the level of injury. Patients may suffer from minor loss of strength to complete quadriplegia with respiratory distress. All the patients with traumatic spinal cord injury who are admitted and treated in University Medical Centre Ljubljana are evaluated after admission and individualized plan of rehabilitation is made. The neurological level of injury is documented with international standa...

  13. Segmentation of the human spinal cord.

    Science.gov (United States)

    De Leener, Benjamin; Taso, Manuel; Cohen-Adad, Julien; Callot, Virginie

    2016-04-01

    Segmenting the spinal cord contour is a necessary step for quantifying spinal cord atrophy in various diseases. Delineating gray matter (GM) and white matter (WM) is also useful for quantifying GM atrophy or for extracting multiparametric MRI metrics into specific WM tracts. Spinal cord segmentation in clinical research is not as developed as brain segmentation, however with the substantial improvement of MR sequences adapted to spinal cord MR investigations, the field of spinal cord MR segmentation has advanced greatly within the last decade. Segmentation techniques with variable accuracy and degree of complexity have been developed and reported in the literature. In this paper, we review some of the existing methods for cord and WM/GM segmentation, including intensity-based, surface-based, and image-based methods. We also provide recommendations for validating spinal cord segmentation techniques, as it is important to understand the intrinsic characteristics of the methods and to evaluate their performance and limitations. Lastly, we illustrate some applications in the healthy and pathological spinal cord. One conclusion of this review is that robust and automatic segmentation is clinically relevant, as it would allow for longitudinal and group studies free from user bias as well as reproducible multicentric studies in large populations, thereby helping to further our understanding of the spinal cord pathophysiology and to develop new criteria for early detection of subclinical evolution for prognosis prediction and for patient management. Another conclusion is that at the present time, no single method adequately segments the cord and its substructure in all the cases encountered (abnormal intensities, loss of contrast, deformation of the cord, etc.). A combination of different approaches is thus advised for future developments, along with the introduction of probabilistic shape models. Maturation of standardized frameworks, multiplatform availability, inclusion

  14. Application of Tuina Techniques to Spinal Diseases

    Institute of Scientific and Technical Information of China (English)

    FANG Min; SHEN Guo-quan; YAN Jun-tao; HAN Chou-ping

    2003-01-01

    @@ It's one of the earliest medical techniques to relieve pain, restore health and enjoy comfort with manipulations. Knowledge on spinal neck pain, shoulder pain, low back pain and leg pain can be traced back to the early stage of human evolution and upright position of two legs. Therefore the history of treating spinal diseases with Tuina or manipulations probably keeps the same pace with civilization.

  15. Serotonergic modulation of spinal motor control

    DEFF Research Database (Denmark)

    Perrier, Jean-Francois Marie; Cotel, Florence

    2015-01-01

    Serotonin (5-HT) is a monoamine that powerfully modulates spinal motor control by acting on intrasynaptic and extrasynaptic receptors. Here we review the diversity of 5-HT actions on locomotor and motoneuronal activities. Two approaches have been used on in vitro spinal cord preparations: either...... and promotes the excitability of motoneurons, while stronger release inhibits rhythmic activity and motoneuron firing. This latter effect is responsible for central fatigue and secures rotation of motor units....

  16. Protein-RNA Networks Regulated by Normal and ALS-Associated Mutant HNRNPA2B1 in the Nervous System.

    Science.gov (United States)

    Martinez, Fernando J; Pratt, Gabriel A; Van Nostrand, Eric L; Batra, Ranjan; Huelga, Stephanie C; Kapeli, Katannya; Freese, Peter; Chun, Seung J; Ling, Karen; Gelboin-Burkhart, Chelsea; Fijany, Layla; Wang, Harrison C; Nussbacher, Julia K; Broski, Sara M; Kim, Hong Joo; Lardelli, Rea; Sundararaman, Balaji; Donohue, John P; Javaherian, Ashkan; Lykke-Andersen, Jens; Finkbeiner, Steven; Bennett, C Frank; Ares, Manuel; Burge, Christopher B; Taylor, J Paul; Rigo, Frank; Yeo, Gene W

    2016-11-23

    HnRNPA2B1 encodes an RNA binding protein associated with neurodegeneration. However, its function in the nervous system is unclear. Transcriptome-wide crosslinking and immunoprecipitation in mouse spinal cord discover UAGG motifs enriched within ∼2,500 hnRNP A2/B1 binding sites and an unexpected role for hnRNP A2/B1 in alternative polyadenylation. HnRNP A2/B1 loss results in alternative splicing (AS), including skipping of an exon in amyotrophic lateral sclerosis (ALS)-associated D-amino acid oxidase (DAO) that reduces D-serine metabolism. ALS-associated hnRNP A2/B1 D290V mutant patient fibroblasts and motor neurons differentiated from induced pluripotent stem cells (iPSC-MNs) demonstrate abnormal splicing changes, likely due to increased nuclear-insoluble hnRNP A2/B1. Mutant iPSC-MNs display decreased survival in long-term culture and exhibit hnRNP A2/B1 localization to cytoplasmic granules as well as exacerbated changes in gene expression and splicing upon cellular stress. Our findings provide a cellular resource and reveal RNA networks relevant to neurodegeneration, regulated by normal and mutant hnRNP A2/B1. VIDEO ABSTRACT.

  17. Hypermetabolism as a Risk Factor for ALS

    Science.gov (United States)

    2012-07-01

    hypermetabolism related to loss of TDP-43, an essential RNA binding protein implicated in ALS and Frontotemporal dementia ( FTD ), may contribute to disease...with Paget’s disease of bone and FTD (IBMPFD), it will also be interesting to test whether hypermetabolism may also be a risk factor in these...mouse strain confers leanness and protects from diet-induced obesity. Nat Genet 40(11):1354-1359, 2008. 3. Stone S, et al: TBC1D1 is a candidate

  18. Cervical dorsal rhizotomy increases brain-derived neurotrophic factor and neurotrophin-3 expression in the ventral spinal cord.

    Science.gov (United States)

    Johnson, R A; Okragly, A J; Haak-Frendscho, M; Mitchell, G S

    2000-05-15

    Although neurotrophic factors have been implicated in several forms of neuroplasticity, little is known concerning their potential role in spinal plasticity. Cervical dorsal rhizotomy (CDR) enhances serotonin terminal density near (spinal) phrenic motoneurons and serotonin-dependent long-term facilitation of phrenic motor output (Kinkead et al., 1998). We tested the hypothesis that selected neurotrophic factors change in a manner consistent with an involvement in this model of spinal plasticity. Brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), glial cell line-derived neurotrophic factor (GDNF), and transforming growth factor-beta(1) (TGF-beta(1)) concentrations were measured (ELISA) in three regions of interest to respiratory control: (1) ventral cervical spinal segments associated with the phrenic motor nucleus (C3-C6), (2) ventral thoracic spinal segments associated with inspiratory intercostal motor output (T3-T6) and (3) the diaphragm. Tissues were harvested from rats 7 d after bilateral CDR and compared with sham-operated and unoperated control rats. CDR increased BDNF (110%; p = 0.002) and NT-3 (100%; p = 0.002) in the cervical and NT-3 in the thoracic spinal cord (98%; p = 0.009). GDNF and TGF-beta(1) were not altered by CDR in any tissue. Immunohistochemistry localized BDNF and NT-3 to motoneurons and interneurons of the ventral spinal cord. These studies provide novel, suggestive evidence that BDNF and NT-3, possibly through their trophic effects on serotonergic neurons and/or motoneurons, may underlie serotonin-dependent plasticity in (spinal) respiratory motor control after CDR.

  19. Engineering a new mouse model for vitiligo.

    Science.gov (United States)

    Manga, Prashiela; Orlow, Seth J

    2012-07-01

    Although the precise mechanisms that trigger vitiligo remain elusive, autoimmune responses mediate its progression. The development of therapies has been impeded by a paucity of animal models, since mice lack interfollicular melanocytes, the primary targets in vitiligo. In this issue, Harris et al. describe a mouse model in which interfollicular melanocytes are retained by Kit ligand overexpression and an immune response is initiated by transplanting melanocyte-targeting CD8+ T cells.

  20. Large spinal intraosseous arteriovenous fistula: case report.

    Science.gov (United States)

    Imajo, Yasuaki; Kanchiku, Tsukasa; Yoshida, Yuichiro; Nishida, Norihiro; Taguchi, Toshihiko

    2015-04-01

    Here the authors report the case of a fresh vertebral body fracture with a large spinal intraosseous arteriovenous fistula (AVF). A 74-year-old woman started to experience low-back pain following a rear-end car collision. Plain radiography showed diffuse idiopathic skeletal hyperostosis (DISH). Sagittal CT sections revealed a transverse fracture of the L-4 vertebral body with a bone defect. Sagittal fat-suppressed T2-weighted MRI revealed a flow void in the fractured vertebra. Spinal angiography revealed an intraosseous AVF with a feeder from the right L-4 segmental artery. A fresh fracture of the L-4 vertebral body with a spinal intraosseous AVF was diagnosed. Observation of a flow void in the vertebral body on fat-suppressed T2-weighted MRI was important for the diagnosis of the spinal intraosseous AVF. Because conservative treatment was ineffective, surgery was undertaken. The day before surgery, embolization through the right L-4 segmental artery was performed using 2 coils to achieve AVF closure. Posterolateral fusion with instrumentation at the T12-S2 vertebral levels was performed without L-4 vertebroplasty. The spinal intraosseous AVF had disappeared after 4 months. At 24 months after surgery, the bone defect was completely replaced by bone and the patient experienced no limitations in daily activities. Given their experience with the present case, the authors believe that performing vertebroplasty or anterior reconstruction may not be necessary in treating spinal intraosseous AVF.

  1. Localization of spinal tumors by MRI

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Mutsumasa; Sakamoto, Yuji; Kojima, Ryutaro; Yamashita, Yasuyuki; Bussaka, Hiromasa

    1989-02-01

    Exact localization of the spinal tumors is particularly important for differential diagnosis and surgery. Therefore, it was attempted to evauate the diagnostic accuracy of MRI in localizing the spinal tumors exactly. Nineteen cases of spinal cord tumors, being localized in the intradural extramedullary, extradural and both intradural and extradural spaces, were studied with MRI. Intradural extramedullary tumors showed small CSF spaces just below and above the tumor which were demonstrated as CSF intensity on T1 and T2 weighted images. Although extradural tumors did not show CSF spaces, there was extradural sign or dural density between the tumor and the spinal cord. Intradural and extradural tumors were outlined as having both characteristics. Signal intensities of the spinal tumors were not characteristic for specific histology. Gd-DTPA was quite useful for accurate localization of the tumors. In comparison with myelography, MRI was superior to myelography in extradural tumors and equally useful for intradural and extradural tumors, but it was less diagnostic in intradural extramedullary tumors. In general, MRI was quite useful in localizing the spinal tumors exactly and the accuracy of MRI was quite high. In the near future this technique will replace myelography and other radiologic methods.

  2. [Spinal accessory nerve and lymphatic neck dissection].

    Science.gov (United States)

    Pinsolle, V; Michelet, V; Majoufre, C; Caix, P; Siberchicot, F; Pinsolle, J

    1997-09-01

    Radical neck dissection was the golden standard of treatment for cervical nodes in head and neck tumors. From the seventies, the preservation of the spinal accessory nerve has become increasingly popular in order to improve the functional result of the neck dissections. The aim of this study was to assess the degree of functional disability associated with each type of neck dissection and the value of anatomical references for dissection of the spinal accessory nerve. One hundred twenty seven patients were evaluated 1 month and 1 year after radical, functional or supraomohyoid neck dissection with a questionnaire and a physical examination. Anatomical measurements of the spinal accessory nerve were performed in 20 patients. We found considerable or severe shoulder dysfunction in 7%, 34% and 51% respectively of patients in whom supraomohyoid, functional and radical neck dissections were performed. Furthermore 49% of patients having undergone a radical neck dissection had little or no symptoms. Sacrifice of the spinal accessory nerve in radical neck dissection may lead to shoulder dysfunction. A functional disability may also be associated, although in a less extent, with any neck dissection in which the spinal accessory nerve is dissected and placed in traction. There is a large variation in the degree of functional disability and pain in patients with similar neck dissections. The course of the spinal accessory nerve in the neck makes it particularly vulnerable to injury during the dissection near the sternocleidomastoid muscle and in the posterior cervical triangle.

  3. Symptomatic spinal cord metastasis from cerebral oligodendroglioma.

    Science.gov (United States)

    Elefante, A; Peca, C; Del Basso De Caro, M L; Russo, C; Formicola, F; Mariniello, G; Brunetti, A; Maiuri, F

    2012-06-01

    Spinal subarachnoid spread is not uncommon in brain oligodendrogliomas; on the other hand, symptomatic involvement of the spinal cord and cauda is very rare, with only 16 reported cases. We report the case of a 41-year-old man who underwent resection of a low-grade frontal oligodendroglioma 4 years previously. He was again observed because of bilateral sciatic pain followed by left leg paresis. A spine MRI showed an intramedullary T12-L1 tumor with root enhancement. At operation, an intramedullary anaplastic oligodendroglioma with left exophytic component was found and partially resected. Two weeks later, a large left frontoparietal anaplastic oligodendroglioma was diagnosed and completely resected. The patient was neurologically stable for 8 months and died 1 year after the spinal surgery because of diffuse brain and spinal leptomeningeal spread. The review of the reported cases shows that spinal symptomatic metastases can occur in both low-grade and anaplastic oligodendrogliomas, even many years after surgery of the primary tumor; however, they exceptionally occur as first clinical manifestation or as anaplastic progression. The spinal seeding represents a negative event leading to a short survival.

  4. Spinal astrocytes produce and secrete dynorphin neuropeptides.

    Science.gov (United States)

    Wahlert, Andrew; Funkelstein, Lydiane; Fitzsimmons, Bethany; Yaksh, Tony; Hook, Vivian

    2013-04-01

    Dynorphin peptide neurotransmitters (neuropeptides) have been implicated in spinal pain processing based on the observations that intrathecal delivery of dynorphin results in proalgesic effects and disruption of extracellular dynorphin activity (by antisera) prevents injury evoked hyperalgesia. However, the cellular source of secreted spinal dynorphin has been unknown. For this reason, this study investigated the expression and secretion of dynorphin-related neuropeptides from spinal astrocytes (rat) in primary culture. Dynorphin A (1-17), dynorphin B, and α-neoendorphin were found to be present in the astrocytes, illustrated by immunofluorescence confocal microscopy, in a discrete punctate pattern of cellular localization. Measurement of astrocyte cellular levels of these dynorphins by radioimmunoassays confirmed the expression of these three dynorphin-related neuropeptides. Notably, BzATP (3'-O-(4-benzoyl)benzoyl adenosine 5'-triphosphate) and KLA (di[3-deoxy-D-manno-octulosonyl]-lipid A) activation of purinergic and toll-like receptors, respectively, resulted in stimulated secretion of dynorphins A and B. However, α-neoendorphin secretion was not affected by BzATP or KLA. These findings suggest that dynorphins A and B undergo regulated secretion from spinal astrocytes. These findings also suggest that spinal astrocytes may provide secreted dynorphins that participate in spinal pain processing.

  5. Treatment of Pain and Autonomic Dysreflexia in Spinal Cord Injury with Deep Brain Stimulation

    Science.gov (United States)

    2015-10-01

    outcome and the incidence of insertional effect. Pain . 125, 188-96. Heinricher, M.M., et al., 2009. Descending control of nociception : Specificity...T.R., Henderson, J., 2010. Intracranial neurostimulation for pain control: a review. Pain Physician. 13, 157-65. Lovick, T.A., 2008. Pro- nociceptive ...AWARD NUMBER: W81XWH-12-1-0559 TITLE: Treatment of Pain and Autonomic Dysreflexia in Spinal Cord Injury with Deep Brain Stimulation PRINCIPAL

  6. A Review of Computational Spinal Injury Biomechanics Research and Recommendations for Future Efforts

    Science.gov (United States)

    2011-09-01

    column and (b) vertebra. Netter illustration from www.netterimages.com. c©Elsevier Inc. All rights reserved...most inferior vertebra in the region has been named. 2 Figure 1. Bony anatomy of the (a) spinal column and (b) vertebra. Netter illustration from...results (88). In 2007, Natarajan et al. developed a poroelastic model that incorporated physiological parameters, such as the change in permeability in the

  7. Muscle-Derived GDNF: A Gene Therapeutic Approach for Preserving Motor Neuron Function in ALS

    Science.gov (United States)

    2015-08-01

    neural progenitor cells (hNPC) secreting GDNF to the spinal of SOD1G93A rats protects motor neurons from degeneration. Supported by the California...56S-61S. 12. Suzuki, M., et al., GDNF secreting human neural progenitor cells protect dying motor neurons, but not their projection to muscle, in a rat ...into astrocytes, and no tumor formation following transplantation into the spinal cord of immunocompromised rats . Neuroreport, 2013. 21. Emborg, M.E

  8. Bloqueio combinado para analgesia de parto: a adição de sufentanil ao anestésico local influencia o apgar dos recém-nascidos? Bloqueo combinado para analgesia de parto: ¿la adición de sufentanil al anestésico local influye en el apgar de los reciÿn nacidos? Combined spinal-epidural for labor analgesia: does the addition of sufentanil to the local anesthetic influence apgar scores of the newborns?

    Directory of Open Access Journals (Sweden)

    Domingos Dias Cicarelli

    2007-06-01

    Universidade de São Paulo (USP y evaluar si la utilización de sufentanil asociado al anestésico local en el BC altera el Apgar de los recién nacidos. MÉTODO: Se analizaron las fichas de anestesia en que se realizaron BC para la analgesia de parto durante 12 meses en el Hospital Universitario de la USP. Se registraron el uso y la dosis de sufentanil, la vía de parto utilizada y las puntuaciones de Apgar del 1°, 5° y 10° minutos de los recién nacidos. RESULTADOS: De los 635 BC evaluados, 307 utilizaron sufentanil y anestésico local (Grupo SUF y 328, solo anestésico local (Grupo AL. Ciento veinte y siete (20% fueron realizados a través de la técnica de aguja por dentro de aguja y los otros 508 (80% realizados por la técnica dos punciones. No se verificó diferencia entre el Apgar de los grupos estudiados en el 1°, 5° y 10° minutos. CONCLUSIONES: El sufentanil utilizado en el bloqueo combinado no alteró el Apgar de los recién nacidos.BACKGROUND AND OBJECTIVES: Combined spinal-epidural (CSE is a very common obstetric technique. However, the literature does not present a standardization regarding the technique, doses, and anesthetics used, besides there is also the controversy about the possibility that the addition of opioids to the local anesthetic causes fetal bradycardia and affects its vitality. The aim of this study was to identify the techniques and anesthetics used in the Anesthesiology Service of the Hospital Universitário of Universidade de São Paulo (USP and determine whether the use of sufentanil associated with the local anesthetic affects Apgar scores of newborns. METHODS: The anesthesiology charts of patients submitted to CSE for labor analgesia over a 12-month period at the Hospital Universitário of USP were analyzed. The use and dose of sufentanil, the type of delivery, and Apgar scores in the 1st, 5th, and 10th minutes were recorded. RESULTS: Of the 635 CSE analyzed, 307 used sufentanil and local anesthetic (SUF Group and 328 only local

  9. 810 NM Light Treatment of Acute Spinal Cord Injury Alters the Immune Response and Improves Axonal Regeneration and Functional Recovery

    Science.gov (United States)

    2003-01-01

    Bresnahan-Basso BDNF Brain derived neurotrophic factor cAMP Cyclic adenosine – 3’,5’ monophosphate C-C Cysteine-cysteine cDNA Complementary...layer IX of the ventral horn, as well as on interneurons in the intermediate gray matter (Molander et al., 1984; Kennedy, 1990). Damage to the...spinal cord after injury, such as neurotrophin 3 (NT3) and brain derived neurotrophic factor ( BDNF ; Hayashi et al., 2000). Functional Impact Several

  10. Insights from Human/Mouse genome comparisons

    Energy Technology Data Exchange (ETDEWEB)

    Pennacchio, Len A.

    2003-03-30

    Large-scale public genomic sequencing efforts have provided a wealth of vertebrate sequence data poised to provide insights into mammalian biology. These include deep genomic sequence coverage of human, mouse, rat, zebrafish, and two pufferfish (Fugu rubripes and Tetraodon nigroviridis) (Aparicio et al. 2002; Lander et al. 2001; Venter et al. 2001; Waterston et al. 2002). In addition, a high-priority has been placed on determining the genomic sequence of chimpanzee, dog, cow, frog, and chicken (Boguski 2002). While only recently available, whole genome sequence data have provided the unique opportunity to globally compare complete genome contents. Furthermore, the shared evolutionary ancestry of vertebrate species has allowed the development of comparative genomic approaches to identify ancient conserved sequences with functionality. Accordingly, this review focuses on the initial comparison of available mammalian genomes and describes various insights derived from such analysis.

  11. Drug distribution in spinal cord during administration with spinal loop dialysis probes in anaesthetized rats

    DEFF Research Database (Denmark)

    Uustalu, Maria; Abelson, Klas S P

    2007-01-01

    ]Epibatidine in concentrations of 1, 10 and 100 nM was dissolved in Ringer's solution and administered through the dialysis membrane into the dorsal region of the cervical spinal cord. First, the outflow of [(3)H]epibatidine from the probe into the spinal cord was examined with respect to different concentrations and changes...

  12. Assessing small-volume spinal cord dose for repeat spinal stereotactic body radiotherapy treatments

    Science.gov (United States)

    Ma, Lijun; Kirby, Neil; Korol, Renee; Larson, David A.; Sahgal, Arjun

    2012-12-01

    Spinal cord biologically effective dose (BED) limits are critical to safe spine stereotactic body radiotherapy (SBRT) delivery. In particular, when repeating SBRT to the same site, the problem of adding non-uniform BED distributions within small volumes of spinal cord has yet to be solved. We report a probability-based generalized BED (gBED) model to guide repeat spine SBRT treatment planning. The gBED was formulated by considering the sequential damaging probabilities of repeat spine SBRT treatments. Parameters from the standard linear-quadratic model, such as α/β = 2 Gy for the spinal cord, were applied. We tested the model based on SBRT specific spinal cord tolerance using a simulated and ten clinical repeat SBRT cases. The gBED provides a consistent solution for superimposing non-uniform dose distributions from different fractionation schemes, analogous to the BED for uniform dose distributions. Based on ten clinical cases, the gBED was observed to eliminate discrepancies in the cumulative BED of approximately 5% to 20% within small volumes (e.g. 0.1-2.0 cc) of spinal cord, as compared to a conventional calculation method. When assessing spinal cord tolerance for repeat spinal SBRT treatments, caution should be exercised when applying conventional BED calculations for small volumes of spinal cord irradiated, and the gBED potentially provides more conservative and consistently derived dose surrogates to guide safe treatment planning and treatment outcome modeling.

  13. Degenerative spondylolisthesis is associated with low spinal bone density

    DEFF Research Database (Denmark)

    Andersen, Thomas; Christensen, Finn B; Langdahl, Bente Lomholt;

    2013-01-01

    Spinal stenosis and degenerative spondylolisthesis share many symptoms and the same treatment, but their causes remain unclear. Bone mineral density has been suggested to play a role. The aim of this study was to investigate differences in spinal bone density between spinal stenosis and degenerat......Spinal stenosis and degenerative spondylolisthesis share many symptoms and the same treatment, but their causes remain unclear. Bone mineral density has been suggested to play a role. The aim of this study was to investigate differences in spinal bone density between spinal stenosis...

  14. Spinal cord infarction: a rare cause of paraplegia.

    Science.gov (United States)

    Patel, Sonali; Naidoo, Khimara; Thomas, Peter

    2014-06-25

    Spinal cord infarction is rare and represents a diagnostic challenge for many physicians. There are few reported cases worldwide with a prevalence of 1.2% of all strokes. Circulation to the spinal cord is supplied by a rich anastomosis. The anterior spinal artery supplies the anterior two thirds of the spinal cord and infarction to this area is marked by paralysis, spinothalamic sensory deficit and loss of sphincter control depending on where the lesion is. Treatment of spinal cord infarction focuses on rehabilitation with diverse outcomes. This report presents a case of acute spinal cord infarction with acquisition of MRI to aid diagnosis.

  15. Surgical treatment of hydrocephalus and spinal dysraphism

    Institute of Scientific and Technical Information of China (English)

    Besnik Elshani; Basri Lenjani

    2014-01-01

    Objective:To identify during intrauterine congenital malformations;Surgery to dysraphism and hydrocephalus neurological benefit, the ability to live independently;Forecast possibility of lowering birth rates with congenital malformations.Methods:Epidemiological and congenital malformations of the spinal dysraphism were included in this prospective clinical study-research.Its forms were manifested by the appearance of hydrocephalus inNeurosurgicalClinic inPristina for the period2010-2012.All cases of spinal dysraphism operated in theNeurosurgery Clinic inPrishtina for the period2010-2012 were analyzed.Results:In theNeurosurgeryClinic atUCC since2010 to2012 are operated total55 cases of spinal dysraphism;The largest number of operations were recorded in2011 with20 operated cases or36.36%, while smaller in2010 with17 operated cases or30.91%,Number of patients varies by year, with some variations of the graph, where at the beginning of the graph have gradually increased over the years, following the continuous growing and finally landing back with graph;By sex and years, the largest number of cases in male gender with spinal dysraphism were registered in2012 with14 cases or37.8%, while the smallest number in2010 with11 cases or29.7%,Whereas the female gender, number of large backlog of cases was registered in2011 with8 cases or44.4%, while the smallest number in 2012 with4 cases or22.2%.Divided by types of spinal dysraphism total were identified:13 with spinal dysraphism meningocele or23.6% and42 spinal dysraphism myelomeningocele or76.4% of which were male dominance in relation to female sex ratio(M:F =40:15 occasions), by gender and spinal dysraphism species, the males are identified with many cases, the spinal dysraphism meningocele8 or20% and32 with spinal dysraphism myelomeningocele or80%,Eksterioizm Shanti where the body rejects foreign body system as the one we had at1 patient.Conclusions:Shant meningitis due to infection or eventual reduction in immune

  16. The primary locus of motor neuron death in an ALS–PDC mouse model

    OpenAIRE

    2009-01-01

    A mouse model of amyotrophic lateral sclerosis–parkinsonism–dementia complex based on the consumption of cycad seed flour was used to determine whether the observed pathology of motor neuron loss begins in the distal axons or the spinal cord. Assessments of neuromuscular junction integrity and motor neurons were performed at multiple time points. Mice fed cycad pellets performed worse on the wire hang than controls. Microglial activation in cycad-fed mice was observed with motor neuron degene...

  17. Postoperative spinal column; Postoperative Wirbelsaeule

    Energy Technology Data Exchange (ETDEWEB)

    Kaefer, W. [Westpfalzklinikum GmbH, Standort II, Abteilung fuer Wirbelsaeulenchirurgie, Kusel (Germany); Heumueller, I. [Westpfalzklinikum GmbH, Standort II, Institut fuer Radiologie II, Kusel (Germany); Harsch, N.; Kraus, C.; Reith, W. [Universitaetsklinikum des Saarlandes, Klinik fuer Diagnostische und Interventionelle Neuroradiologie, Homburg/Saar (Germany)

    2016-08-15

    As a rule, postoperative imaging is carried out after spinal interventions to document the exact position of the implant material. Imaging is absolutely necessary when new clinical symptoms occur postoperatively. In this case a rebleeding or an incorrect implant position abutting a root or the spinal cord must be proven. In addition to these immediately occurring postoperative clinical symptoms, there are a number of complications that can occur several days, weeks or even months later. These include the failed back surgery syndrome, implant loosening or breakage of the material and relapse of a disc herniation and spondylodiscitis. In addition to knowledge of the original clinical symptoms, it is also important to know the operation details, such as the access route and the material used. In almost all postoperative cases, imaging with contrast medium administration and corresponding correction of artefacts by the implant material, such as the dual energy technique, correction algorithms and the use of special magnetic resonance (MR) sequences are necessary. In order to correctly assess the postoperative imaging, knowledge of the surgical procedure and the previous clinical symptoms are mandatory besides special computed tomography (CT) techniques and MR sequences. (orig.) [German] In der Regel erfolgt bei spinalen Eingriffen eine postoperative Bildgebung, um die exakte Lage des Implantatmaterials zu dokumentieren. Unbedingt notwendig ist die Bildgebung, wenn postoperativ neue klinische Symptome aufgetreten sind. Hier muessen eine Nachblutung bzw. inkorrekte, eine Wurzel oder das Myelon tangierende Implantatlage nachgewiesen werden. Neben diesen direkt postoperativ auftretenden klinischen Symptomen gibt es eine Reihe von Komplikationen, die erst nach mehreren Tagen, Wochen oder sogar nach Monaten auftreten koennen. Hierzu zaehlen das Failed-back-surgery-Syndrom, die Implantatlockerung oder -bruch, aber auch ein Rezidivvorfall und die Spondylodiszitis. Neben der

  18. Role of fetal surgery in spinal dysraphism

    Directory of Open Access Journals (Sweden)

    A Martina Messing-Jünger

    2013-01-01

    Full Text Available Open spinal dysraphism is a common and clinically challenging organo-genetic malformation. Due to the well-known multi-organ affection with significant implication on the lives of patients and their families, abortion after prenatal diagnosis became reality in most parts of the world. After publication of the Management of Myelomeningocele Study (MOMS results fetal surgery seems to be a new option and a broad discussion arose regarding advantages and risks of in utero treatment of spina bifida. This paper tries to evaluate objectively the actual state of knowledge and experience. This review article gives a historical overview as well as the experimental and pathophysiological background of fetal surgery in open spinal dysraphism. Additionally clinical follow-up experience of foetoscopically treated patients are presented and discussed. After carefully outweighing all available information on fetal surgery for spina bifida, one has to conclude, in accordance with the MOMS investigators, that in utero surgery cannot be considered a standard option at present time. But there is clear evidence of the hypothesis that early closure of the spinal canal has a positive influence on spinal cord function and severity of Chiari malformation type II, has been proven. A persisting problem is the fetal risk of prematurity and the maternal risk of uterus damage. There is also evidence that due to technical restrictions, fetal closure of the spinal canal bears unsolved problems leading to a higher postnatal incidence of complication surgery. Finally, missing long-term results make a definite evaluation impossible so far. At the moment, fetal surgery in open spinal dysraphism is not a standard of care despite promising results regarding central nervous system protection due to early spinal canal closure. Many technical problems need to be solved in the future in order to make this option a safe and standard one.

  19. Using General Anesthesia plus Muscle Relaxant in a Patient with Spinal Muscular Atrophy Type IV: A Case Report.

    Science.gov (United States)

    Liu, Xiu-Fen; Wang, Dong-Xin; Ma, Daqing

    2011-01-01

    Spinal muscular atrophy (SMA) is a rare genetic disease characterized by degeneration of spinal cord motor neurons, which results in hypotonia and muscle weakness. Patients with type IV SMA often have onset of weakness from adulthood. Anesthetic management is often difficult in these patients as a result of muscle weakness and hypersensitivity to neuromuscular blocking agents as shown by (Lunn and Wang; 2008, Simic; 2008, and Cifuentes-Diaz et al.; 2002). Herein we report a case of anesthetic management of a patient with SMA type IV for mammectomy and review some other cases of SMA patients receiving different kinds of anesthesia.

  20. Helical CT for lumbosacral spinal

    Energy Technology Data Exchange (ETDEWEB)

    Tatsuno, Satoshi; Fukuda, Kunihiko [Jikei Univ., Tokyo (Japan). School of Medicine

    1996-10-01

    The aim of this study was to investigate the efficacy of helical CT for lumbosacral pathology. We performed helical CT with multiplanar reconstruction, including the formation of oblique transaxial and coronal images, in 62 patients with various lumboscral disorders, including 32 non-enhanced CT and 36 CT after myelography. We correlated the appearance of the stenotic spinal canal and neoplastic disease with the findings on MRI obtained at nearly the same time. We obtained helical CT images in all cases in about 30 seconds. The diagnostic ability of helical CT was roughly equal to that of MRI in patients with spondylosis deformans, spondylolisthesis and herniated nucleus pulposus. There was no significant difference in diagnostic value for degenerative lumbosacral disease with canal and foraminal stenosis between non-enhanced and post-myelography helical CT. However, non-enhanced helical CT could not clearly demonstrate neoplastic disease because of the poor contrast resolution. Helical CT was useful in evaluating degenerative disorder and its diagnostic value was nearly equal to that of MRI. We considered that helical CT may be suitable for the assessment of patients with severe lumbago owing to the markedly shortened examination time. However, if helical CT is used as a screening method for lumbosacral disease, one must be careful of its limitations, for example, poor detectability of neoplastic disease, vascular anomalies and so on. (author)

  1. Prevention against diffuse spinal cord astrocytoma: can the Notch pathway be a novel treatment target?

    Science.gov (United States)

    Sun, Jian-Jun; Wang, Zhen-Yu; Li, Ling-Song; Yu, Hai-Yan; Xu, Yong-Sheng; Wu, Hai-Bo; Luo, Yi; Liu, Bin; Zheng, Mei; Mao, Jin-Long; Lou, Xiao-Hui

    2015-02-01

    This study was designed to investigate whether the Notch pathway is involved in the development of diffuse spinal cord astrocytomas. BALB/c nude mice received injections of CD133(+) and CD133(-) cell suspensions prepared using human recurrent diffuse spinal cord astrocytoma tissue through administration into the right parietal lobe. After 7-11 weeks, magnetic resonance imaging was performed weekly. Xenografts were observed on the surfaces of the brains of mice receiving the CD133(+) cell suspension, and Notch-immunopositive expression was observed in the xenografts. By contrast, no xenografts appeared in the identical position on the surfaces of the brains of mice receiving the CD133(-) cell suspension, and Notch-immunopositive expression was hardly detected either. Hematoxylin-eosin staining and immunohistochemical staining revealed xenografts on the convex surfaces of the brains of mice that underwent CD133(+) astrocytoma transplantation. Some sporadic astroglioma cells showed pseudopodium-like structures, which extended into the cerebral white matter. However, it should be emphasized that the subcortex xenograft with Notch-immunopositive expression was found in the fourth mouse received injection of CD133(-) astrocytoma cells. However, these findings suggest that the Notch pathway plays an important role in the formation of astrocytomas, and can be considered a novel treatment target for diffuse spinal cord astrocytoma.

  2. Squalenoyl adenosine nanoparticles provide neuroprotection after stroke and spinal cord injury

    Science.gov (United States)

    Gaudin, Alice; Yemisci, Müge; Eroglu, Hakan; Lepetre-Mouelhi, Sinda; Turkoglu, Omer Faruk; Dönmez-Demir, Buket; Caban, Seçil; Sargon, Mustafa Fevzi; Garcia-Argote, Sébastien; Pieters, Grégory; Loreau, Olivier; Rousseau, Bernard; Tagit, Oya; Hildebrandt, Niko; Le Dantec, Yannick; Mougin, Julie; Valetti, Sabrina; Chacun, Hélène; Nicolas, Valérie; Desmaële, Didier; Andrieux, Karine; Capan, Yilmaz; Dalkara, Turgay; Couvreur, Patrick

    2014-12-01

    There is an urgent need to develop new therapeutic approaches for the treatment of severe neurological trauma, such as stroke and spinal cord injuries. However, many drugs with potential neuropharmacological activity, such as adenosine, are inefficient upon systemic administration because of their fast metabolization and rapid clearance from the bloodstream. Here, we show that conjugation of adenosine to the lipid squalene and the subsequent formation of nanoassemblies allows prolonged circulation of this nucleoside, providing neuroprotection in mouse stroke and rat spinal cord injury models. The animals receiving systemic administration of squalenoyl adenosine nanoassemblies showed a significant improvement of their neurologic deficit score in the case of cerebral ischaemia, and an early motor recovery of the hindlimbs in the case of spinal cord injury. Moreover, in vitro and in vivo studies demonstrated that the nanoassemblies were able to extend adenosine circulation and its interaction with the neurovascular unit. This Article shows, for the first time, that a hydrophilic and rapidly metabolized molecule such as adenosine may become pharmacologically efficient owing to a single conjugation with the lipid squalene.

  3. Prevention against diffuse spinal cord astrocytoma: can the Notch pathway be a novel treatment target?

    Directory of Open Access Journals (Sweden)

    Jian-jun Sun

    2015-01-01

    Full Text Available This study was designed to investigate whether the Notch pathway is involved in the development of diffuse spinal cord astrocytomas. BALB/c nude mice received injections of CD133 + and CD133− cell suspensions prepared using human recurrent diffuse spinal cord astrocytoma tissue through administration into the right parietal lobe. After 7-11 weeks, magnetic resonance imaging was performed weekly. Xenografts were observed on the surfaces of the brains of mice receiving the CD133 + cell suspension, and Notch-immunopositive expression was observed in the xenografts. By contrast, no xenografts appeared in the identical position on the surfaces of the brains of mice receiving the CD133− cell suspension, and Notch-immunopositive expression was hardly detected either. Hematoxylin-eosin staining and immunohistochemical staining revealed xenografts on the convex surfaces of the brains of mice that underwent CD133 + astrocytoma transplantation. Some sporadic astroglioma cells showed pseudopodium-like structures, which extended into the cerebral white matter. However, it should be emphasized that the subcortex xenograft with Notch-immunopositive expression was found in the fourth mouse received injection of CD133− astrocytoma cells. However, these findings suggest that the Notch pathway plays an important role in the formation of astrocytomas, and can be considered a novel treatment target for diffuse spinal cord astrocytoma.

  4. Assessing mechanical integrity of spinal fusion by in situ endochondral osteoinduction in the murine model

    Directory of Open Access Journals (Sweden)

    Dewan Ashvin K

    2010-08-01

    Full Text Available Abstract Background Historically, radiographs, micro-computed tomography (micro-CT exams, palpation and histology have been used to assess fusions in a mouse spine. The objective of this study was to develop a faster, cheaper, reproducible test to directly quantify the mechanical integrity of spinal fusions in mice. Methods Fusions were induced in ten mice spine using a previously described technique of in situ endochondral ossification, harvested with soft tissue, and cast in radiolucent alginate material for handling. Using a validated software package and a customized mechanical apparatus that flexed and extended the spinal column, the amount of intervertebral motion between adjacent vertebral discs was determined with static flexed and extended lateral spine radiographs. Micro-CT images of the same were also blindly reviewed for fusion. Results Mean intervertebral motion between control, non-fused, spinal vertebral discs was 6.1 ± 0.2° during spine flexion/extension. In fusion samples, adjacent vertebrae with less than 3.5° intervertebral motion had fusions documented by micro-CT inspection. Conclusions Measuring the amount of intervertebral rotation between vertebrae during spine flexion/extension is a relatively simple, cheap (

  5. Mouse Genome Informatics (MGI)

    Data.gov (United States)

    U.S. Department of Health & Human Services — MGI is the international database resource for the laboratory mouse, providing integrated genetic, genomic, and biological data to facilitate the study of human...

  6. Mouse Phenome Database (MPD)

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Mouse Phenome Database (MPD) has characterizations of hundreds of strains of laboratory mice to facilitate translational discoveries and to assist in selection...

  7. The adult spinal cord harbors a population of GFAP-positive progenitors with limited self-renewal potential.

    Science.gov (United States)

    Fiorelli, Roberto; Cebrian-Silla, Arantxa; Garcia-Verdugo, Jose-Manuel; Raineteau, Olivier

    2013-12-01

    Adult neural stem cells (aNSCs) of the forebrain are GFAP-expressing cells that are intercalated within ependymal cells of the subventricular zone (SVZ). Cells showing NSCs characteristics in vitro can also be isolated from the periaqueductal region in the adult spinal cord (SC), but contradicting results exist concerning their glial versus ependymal identity. We used an inducible transgenic mouse line (hGFAP-CreERT2) to conditionally label GFAP-expressing cells in the adult SVZ and SC periaqueduct, and directly and systematically compared their self-renewal and multipotential properties in vitro. We demonstrate that a population of GFAP(+) cells that share the morphology and the antigenic properties of SVZ-NSCs mostly reside in the dorsal aspect of the central canal (CC) throughout the spinal cord. These cells are non-proliferative in the intact spinal cord, but incorporate the S-phase marker EdU following spinal cord injury. Multipotent, clonal YFP-expressing neurospheres (i.e., deriving from recombined GFAP-expressing cells) were successfully obtained from both the intact and injured spinal cord. These spheres however showed limited self-renewal properties when compared with SVZ-neurospheres, even after spinal cord injury. Altogether, these results demonstrate that significant differences exist in NSCs lineages between neurogenic and non-neurogenic regions of the adult CNS. Thus, although we confirm that a population of multipotent GFAP(+) cells co-exists alongside with multipotent ependymal cells within the adult SC, we identify these cells as multipotent progenitors showing limited self-renewal properties.

  8. Gene expression in the spinal cord in female lewis rats with experimental autoimmune encephalomyelitis induced with myelin basic protein.

    Directory of Open Access Journals (Sweden)

    Hayley R Inglis

    Full Text Available BACKGROUND: Experimental autoimmune encephalomyelitis (EAE, the best available model of multiple sclerosis, can be induced in different animal strains using immunization with central nervous system antigens. EAE is associated with inflammation and demyelination of the nervous system. Micro-array can be used to investigate gene expression and biological pathways that are altered during disease. There are few studies of the changes in gene expression in EAE, and these have mostly been done in a chronic mouse EAE model. EAE induced in the Lewis with myelin basic protein (MBP-EAE is well characterised, making it an ideal candidate for the analysis of gene expression in this disease model. METHODOLOGY/PRINCIPAL FINDINGS: MBP-EAE was induced in female Lewis rats by inoculation with MBP and adjuvants. Total RNA was extracted from the spinal cords and used for micro-array analysis using AffimetrixGeneChip Rat Exon 1.0 ST Arrays. Gene expression in the spinal cords was compared between healthy female rats and female rats with MBP-EAE. Gene expression in the spinal cord of rats with MBP-EAE differed from that in the spinal cord of normal rats, and there was regulation of pathways involved with immune function and nervous system function. For selected genes the change in expression was confirmed with real-time PCR. CONCLUSIONS/SIGNIFICANCE: EAE leads to modulation of gene expression in the spinal cord. We have identified the genes that are most significantly regulated in MBP-EAE in the Lewis rat and produced a profile of gene expression in the spinal cord at the peak of disease.

  9. AL Amyloidosis

    Directory of Open Access Journals (Sweden)

    Desport Estelle

    2012-08-01

    Full Text Available Abstract Definition of the disease AL amyloidosis results from extra-cellular deposition of fibril-forming monoclonal immunoglobulin (Ig light chains (LC (most commonly of lambda isotype usually secreted by a small plasma cell clone. Most patients have evidence of isolated monoclonal gammopathy or smoldering myeloma, and the occurrence of AL amyloidosis in patients with symptomatic multiple myeloma or other B-cell lymphoproliferative disorders is unusual. The key event in the development of AL amyloidosis is the change in the secondary or tertiary structure of an abnormal monoclonal LC, which results in instable conformation. This conformational change is responsible for abnormal folding of the LC, rich in β leaves, which assemble into monomers that stack together to form amyloid fibrils. Epidemiology AL amyloidosis is the most common type of systemic amyloidois in developed countries with an estimated incidence of 9 cases/million inhabitant/year. The average age of diagnosed patients is 65 years and less than 10% of patients are under 50. Clinical description The clinical presentation is protean, because of the wide number of tissues or organs that may be affected. The most common presenting symptoms are asthenia and dyspnoea, which are poorly specific and may account for delayed diagnosis. Renal manifestations are the most frequent, affecting two thirds of patients at presentation. They are characterized by heavy proteinuria, with nephrotic syndrome and impaired renal function in half of the patients. Heart involvement, which is present at diagnosis in more than 50% of patients, leading to restrictive cardiopathy, is the most serious complication and engages prognosis. Diagnostic methods The diagnosis relies on pathological examination of an involved site showing Congo red-positive amyloid deposits, with typical apple-green birefringence under polarized light, that stain positive with an anti-LC antibody by immunohistochemistry and

  10. Accelerated cell divisions drive the outgrowth of the regenerating spinal cord in axolotls

    Science.gov (United States)

    Rost, Fabian; Albors, Aida Rodrigo; Mazurov, Vladimir; Brusch, Lutz; Deutsch, Andreas

    2016-01-01

    Axolotls are unique in their ability to regenerate the spinal cord. However, the mechanisms that underlie this phenomenon remain poorly understood. Previously, we showed that regenerating stem cells in the axolotl spinal cord revert to a molecular state resembling embryonic neuroepithelial cells and functionally acquire rapid proliferative divisions (Rodrigo Albors et al., 2015). Here, we refine the analysis of cell proliferation in space and time and identify a high-proliferation zone in the regenerating spinal cord that shifts posteriorly over time. By tracking sparsely-labeled cells, we also quantify cell influx into the regenerate. Taking a mathematical modeling approach, we integrate these quantitative datasets of cell proliferation, neural stem cell activation and cell influx, to predict regenerative tissue outgrowth. Our model shows that while cell influx and neural stem cell activation play a minor role, the acceleration of the cell cycle is the major driver of regenerative spinal cord outgrowth in axolotls. DOI: http://dx.doi.org/10.7554/eLife.20357.001 PMID:27885987

  11. A Polarization and Spectral Study of the Mouse

    Science.gov (United States)

    Yusef-Zadeh, F.; Gaensler, B.; Law, C.

    Recent detection of a young pulsar powering the Mouse G359.23-0.82 (Camilo et al. 2002) as well as the discovery of diffuse X-ray emission from the nebula (Gaensler et al. 2004) have motivated us to investigate the structural details of this remarkable source in radio wavelengths. We present multi-configuration VLA observations of the Mouse with its pulsar powered bow shock between 2 and 90cm wavelengths and compare the morphological details of its polarized and total intensity emission. We also show the spectral characteristics across this elongated radio and X-ray source

  12. Morphogenetic movements in the neural plate and neural tube: mouse.

    Science.gov (United States)

    Massarwa, R'ada; Ray, Heather J; Niswander, Lee

    2014-01-01

    The neural tube (NT), the embryonic precursor of the vertebrate brain and spinal cord, is generated by a complex and highly dynamic morphological process. In mammals, the initially flat neural plate bends and lifts bilaterally to generate the neural folds followed by fusion of the folds at the midline during the process of neural tube closure (NTC). Failures in any step of this process can lead to neural tube defects (NTDs), a common class of birth defects that occur in approximately 1 in 1000 live births. These severe birth abnormalities include spina bifida, a failure of closure at the spinal level; craniorachischisis, a failure of NTC along the entire body axis; and exencephaly, a failure of the cranial neural folds to close which leads to degeneration of the exposed brain tissue termed anencephaly. The mouse embryo presents excellent opportunities to explore the genetic basis of NTC in mammals; however, its in utero development has also presented great challenges in generating a deeper understanding of how gene function regulates the cell and tissue behaviors that drive this highly dynamic process. Recent technological advances are now allowing researchers to address these questions through visualization of NTC dynamics in the mouse embryo in real time, thus offering new insights into the morphogenesis of mammalian NTC.

  13. Mechanisms of symptomatic spinal cord ischemia after TEVAR

    DEFF Research Database (Denmark)

    Czerny, Martin; Eggebrecht, Holger; Sodeck, Gottfried;

    2012-01-01

    To test the hypothesis that simultaneous closure of at least 2 independent vascular territories supplying the spinal cord and/or prolonged hypotension may be associated with symptomatic spinal cord ischemia (SCI) after thoracic endovascular aortic repair (TEVAR)....

  14. Seminal plasma PSA in spinal cord injured men

    DEFF Research Database (Denmark)

    Brasso, K; Sønksen, J; Sommer, P;

    1998-01-01

    The aim of the study was to evaluate the impact of spinal cord injury on seminal plasma PSA concentration.......The aim of the study was to evaluate the impact of spinal cord injury on seminal plasma PSA concentration....

  15. Vocational Rehabilitation of Persons with Spinal Cord Injuries

    Science.gov (United States)

    Poor, Charles R.

    1975-01-01

    Reviews historical development of organized vocational rehabilitation programming for the spinal cord injured in the United States. Significant factors that affect vocational rehabilitation outcomes with spinal cord injured persons are listed and discussed. (Author)

  16. Genetics Home Reference: spinal muscular atrophy with progressive myoclonic epilepsy

    Science.gov (United States)

    ... Spinal muscular atrophy with progressive myoclonic epilepsy (SMA-PME) is a neurological condition that causes muscle weakness ... muscle jerks (myoclonic epilepsy). In individuals with SMA-PME, spinal muscular atrophy results from a loss of ...

  17. Schwann cells for spinal cord repair

    Directory of Open Access Journals (Sweden)

    Oudega M.

    2005-01-01

    Full Text Available The complex nature of spinal cord injury appears to demand a multifactorial repair strategy. One of the components that will likely be included is an implant that will fill the area of lost nervous tissue and provide a growth substrate for injured axons. Here we will discuss the role of Schwann cells (SCs in cell-based, surgical repair strategies of the injured adult spinal cord. We will review key studies that showed that intraspinal SC grafts limit injury-induced tissue loss and promote axonal regeneration and myelination, and that this response can be improved by adding neurotrophic factors or anti-inflammatory agents. These results will be compared with several other approaches to the repair of the spinal cord. A general concern with repair strategies is the limited functional recovery, which is in large part due to the failure of axons to grow across the scar tissue at the distal graft-spinal cord interface. Consequently, new synaptic connections with spinal neurons involved in motor function are not formed. We will highlight repair approaches that did result in growth across the scar and discuss the necessity for more studies involving larger, clinically relevant types of injuries, addressing this specific issue. Finally, this review will reflect on the prospect of SCs for repair strategies in the clinic.

  18. An interesting case of primary spinal arachnoiditis.

    LENUS (Irish Health Repository)

    Vaughan, Denis

    2012-02-27

    Spinal arachnoiditis describes inflammation of the meninges, subarachnoid space and, in most cases, also involve the pial layer. The vast majority of cases described are secondary and are preceded by a known event, for example,. trauma, infections or irritative substances. Here, we present the case of primary spinal arachnoiditis. A 35-year-old lady was referred to the neurosurgical services in Dublin, Ireland with a 15-month history of progressive, right lower limb weakness. Magnetic resonance imaging revealed cystic distortion of the lumbar spinal canal extending up to the conus. Initially, an L2-L4 laminectomy was performed revealing thickened and adherent arachnoid with a large cyst in the spinal canal. Four months after initial operation, the patient represented with bilateral lower limb weakness and loss of detrusor function. Repeat magnetic resonance imaging was performed, which showed the development of a syrinx in the patient\\'s thoracic spine. We then performed a T9-T10 laminectomy, midline myelotomy and insertion of a syringe-arachnoid shunt. Post-operative imaging showed resolution of the syrinx and a vast improvement in lower limb power. The patient also regained bladder control. In conclusion, spinal arachnoiditis is a clearly defined pathological and radiological entity with a highly variable clinical presentation. It is exceedingly difficult to treat as there is no recognised treatment currently, with most interventions aimed at symptomatic relief.

  19. Regression Segmentation for M³ Spinal Images.

    Science.gov (United States)

    Wang, Zhijie; Zhen, Xiantong; Tay, KengYeow; Osman, Said; Romano, Walter; Li, Shuo

    2015-08-01

    Clinical routine often requires to analyze spinal images of multiple anatomic structures in multiple anatomic planes from multiple imaging modalities (M(3)). Unfortunately, existing methods for segmenting spinal images are still limited to one specific structure, in one specific plane or from one specific modality (S(3)). In this paper, we propose a novel approach, Regression Segmentation, that is for the first time able to segment M(3) spinal images in one single unified framework. This approach formulates the segmentation task innovatively as a boundary regression problem: modeling a highly nonlinear mapping function from substantially diverse M(3) images directly to desired object boundaries. Leveraging the advancement of sparse kernel machines, regression segmentation is fulfilled by a multi-dimensional support vector regressor (MSVR) which operates in an implicit, high dimensional feature space where M(3) diversity and specificity can be systematically categorized, extracted, and handled. The proposed regression segmentation approach was thoroughly tested on images from 113 clinical subjects including both disc and vertebral structures, in both sagittal and axial planes, and from both MRI and CT modalities. The overall result reaches a high dice similarity index (DSI) 0.912 and a low boundary distance (BD) 0.928 mm. With our unified and expendable framework, an efficient clinical tool for M(3) spinal image segmentation can be easily achieved, and will substantially benefit the diagnosis and treatment of spinal diseases.

  20. [Spinal sonography of a newborn infant with postpartal paraplegia].

    Science.gov (United States)

    Sauter, R; Klemm, T

    1988-01-01

    Cranial ultrasonography is a well established diagnostic procedure. In contrast ultrasonography of the spine and the spinal cord is less frequently used. It is indicated in infants with spinal dysraphism and may help to diagnose patients with meningomyelocele, spinal lipoma or cord tethering. We present a newborn with parplectic symptoms as a result of an epidural hematoma, which could be demonstrated exclusively by ultrasonography. We want to stress that spinal ultrasonography is a method of high clinical value.

  1. Expression of nerve growth factor in spinal dorsal horn following crushed spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    AIM: The aim of this study was to explore the expression of nerve growth factor(NGF) in spinal dorsal horn following crushed spinal cord injury. METHODS: The adult Srague-Dawley rat model of crushed spinal cord injury was established by the method in our laboratory, and intact spinal cord was used as control. The rats were sacrificed respectively after 24 hours, 7 days, and 21 days of operation, and the L3 spinal segments were removed out and fixed in 4% polyformaldehyde. The segments were sectioned into sections of 20 μm in thickness. The sections were stained with anti-NGF antibody by ABC method of immunohistochemistry technique. The immunoreactive intensity of NGF and the number of positive neurons as well as glial cells in dorsal horn were observed and counted under light microscope. RESULTS: The number of positive cells and immunoreactive intensity of NGF increased gradually in the dorsal horn at 24 hours, 7 days and 21 days following crushed spinal cord injury compared with control group (P<0.01). CONCLUSION: These results indicated that NGF plays an important role in the postoperative reaction during the early period of the crushed spinal cord injury.

  2. Concentration of nitric oxide (NO in spinal fluid of chronic spinal disease.

    Directory of Open Access Journals (Sweden)

    Yumite Y

    2001-08-01

    Full Text Available We studied total nitric oxide (nitrite + nitrate (NO levels in cerebrospinal fluid (CSF of chronic spinal diseases in nonsmokers (133 patients: 76 men and 57 women; mean age, 63 years; range, 15-92 years by the Griess method to clarify the role of NO in different spinal diseases. The extent of compression in terms of numbers of disc level at the compressed spinal nerve and neurological evaluation were also assessed according to the Japanese Orthopaedic Association scores. The spinal diseases included cervical myelopathy and radiculopathy (cervical disease group, ossification of yellow ligament (thoracic disease group, and lumbar disc herniation, lumbar canal stenosis and lumbar spondylolisthesis (lumbar disease group. NO levels in the spinal disease groups (4.98+/-2.28 micromol/l: mean +/- SD were significantly higher than that in the control group (2.53+/-0.94 micromol/l. An inverse correlation was detected between the elevated levels of NO and the grade of clinical symptoms in the cervical disorders. The number of disc level at the compressed spinal nerve was positively correlated with elevated NO levels in CSF in the cervical and lumbar disorder groups. These results indicate that nerve compression may elevate NO levels in CSF, and that NO concentration in the CSF might be a useful marker of damage to nervous system in spinal disorders.

  3. Primary Dural Spinal Lymphoma Presentation of a Rare Spinal Tumor Case

    Directory of Open Access Journals (Sweden)

    Dilber Ayçiçek Çeçen

    2015-01-01

    Full Text Available Background. Primary spinal dural lymphomas (PSDL are tumors with characteristic histopathology of a lymphoma, which are completely in the spinal epidural space without any other systemic involvement. Extranodal primary lymphoma involving nervous system prefers thalamus/basal ganglia, periventricular region, cerebellum, eyes, meninges/dura, and cranial nerves or spinal cord. Rare spinal localization with acute spinal cord compression is worth attention. Case Presentation. A 48-year-old male presented with a several-month-long history of upper back pain. Lately, he had numbness and weakness at both lower extremities and was unable to walk for one week. A spinal MRI showed a thoracic lesion with cord compression at T2–T4 levels. The patient underwent surgical decompression, with his final histopathology showing diffuse large B-cell lymphoma. Systemic work-up was negative for nodal disease. Following surgery, he received radiotherapy combined with chemotherapy. He experienced a good outcome after four years. Conclusion. The upper thoracic cord is a rare location for primary spinal lesions/metastases, both of which prefer the lower thoracic and upper lumbar regions. In cases of progressive paraparesis, there should be immediate surgical intervention in the case of denovo disease, followed by combined radiotherapy and chemotherapy procedures.

  4. MRI Evaluation of Spinal Length and Vertebral Body Angle During Loading with a Spinal Compression Harness

    Science.gov (United States)

    Campbell, James A.; Hargens, Alan R.; Murthy, G.; Ballard, R. E.; Watenpaugh, D. E.; Hargens, Alan, R.; Sanchez, E.; Yang, C.; Mitsui, I.; Schwandt, D.; Fechner, K. P.; Holton, Emily M. (Technical Monitor)

    1998-01-01

    Weight bearing by the spinal column during upright posture often plays a role in the common problem of low back pain. Therefore, we developed a non-ferromagnetic spinal compression harness to enable MRI investigations of the spinal column during axial loading. Human subjects were fitted with a Nest and a footplate which were connected by adjustable straps to an analog load cell. MRI scans of human subjects (5 males and 1 female with age range of 27-53 yrs) during loaded and unloaded conditions were accomplished with a 1.5 Tesla GE Signa scanner. Studies of two subjects undergoing sequentially increasing spinal loads revealed significant decreases (r(sup 2) = 0.852) in spinal length between T4 and L5 culminating in a 1.5 to 2% length decrease during loading with 75% body weight. Sagittal vertebral body angles of four subjects placed under a constant 50% body weight load for one hour demonstrated increased lordotic and kyphotic curvatures. In the lumbar spine, the L2 vertebral body experienced the greatest angular change (-3 deg. to -5 deg.) in most subjects while in the thoracic spine, T4 angles increased from the unloaded state by +2 deg. to +9 deg. Overall, our studies demonstrate: 1) a progressive, although surprisingly small, decrease in spinal length with increasing load and 2) relatively large changes in spinal column angulation with 50% body weight.

  5. Lou Gehrig's Disease (ALS)

    Science.gov (United States)

    ... for side (of the spinal cord) "sclerosis" for hardening or scarring So, amyotrophic means that the muscles ... stuff, and even reaching for a glass of water — are all controlled by the neuromuscular system. Here's ...

  6. The Healing of Bone Marrow-Derived Stem Cells on Motor Functions in Acute Spinal Cord Injury of Mice

    Directory of Open Access Journals (Sweden)

    N Gashmardi

    2016-10-01

    Full Text Available Background & aim: Spinal cord injury is a devastating damage that can cause motor and sensory deficits reducing quality of life and life expectancy of patients. Stem cell transplantation can be one of the promising therapeutic strategies. Bone marrow is a rich source of stem cells that is able to differentiate into various cell types. In this study, bone marrow stem cells were transplanted into mice spinal cord injury model to evaluate the motor function test. Methods: Bone marrow stem cells were isolated from 3 mice. Thirty six mice were randomly divided into 3 groups: the control, sham and experimental. In sham group, mice were subjected to spinal cord compression. In experimental group, one day after lesion, isolated stem cells (200,000 were injected intravenously. Assessment of locomotor function was done by Toyama Mouse Score (TMS after 1, 2, 3, 4, 5 week post-injury. The data were analyzed using one-way Analysis of Variance and Tukey tests and statistical software Graph Pad and SPSS.P > 0/05 was considered as significant difference.  Results: The score of TMS after cell transplantation was higher in cell transplantation group (experimental, while it was significantly higher after fifth week when compared to other groups. Conclusion: The increase in TMS score in cell transplantation group showed that injection of stem cells in acute spinal cord injury can have a therapeutic effect and promote locomotor function.

  7. Endogenous Two-Photon Excited Fluorescence Provides Label-Free Visualization of the Inflammatory Response in the Rodent Spinal Cord

    Directory of Open Access Journals (Sweden)

    Ortrud Uckermann

    2015-01-01

    Full Text Available Activation of CNS resident microglia and invasion of external macrophages plays a central role in spinal cord injuries and diseases. Multiphoton microscopy based on intrinsic tissue properties offers the possibility of label-free imaging and has the potential to be applied in vivo. In this work, we analyzed cellular structures displaying endogenous two-photon excited fluorescence (TPEF in the pathologic spinal cord. It was compared qualitatively and quantitatively to Iba1 and CD68 immunohistochemical staining in two models: rat spinal cord injury and mouse encephalomyelitis. The extent of tissue damage was retrieved by coherent anti-Stokes Raman scattering (CARS and second harmonic generation imaging. The pattern of CD68-positive cells representing postinjury activated microglia/macrophages was colocalized to the TPEF signal. Iba1-positive microglia were found in areas lacking any TPEF signal. In peripheral areas of inflammation, we found similar numbers of CD68-positive microglia/macrophages and TPEF-positive structures while the number of Iba1-positive cells was significantly higher. Therefore, we conclude that multiphoton imaging of unstained spinal cord tissue enables retrieving the extent of microglia activation by acquisition of endogenous TPEF. Future application of this technique in vivo will enable monitoring inflammatory responses of the nervous system allowing new insights into degenerative and regenerative processes.

  8. Endogenous Two-Photon Excited Fluorescence Provides Label-Free Visualization of the Inflammatory Response in the Rodent Spinal Cord

    Science.gov (United States)

    Uckermann, Ortrud; Galli, Roberta; Beiermeister, Rudolf; Sitoci-Ficici, Kerim-Hakan; Later, Robert; Leipnitz, Elke; Neuwirth, Ales; Chavakis, Triantafyllos; Koch, Edmund; Schackert, Gabriele; Steiner, Gerald; Kirsch, Matthias

    2015-01-01

    Activation of CNS resident microglia and invasion of external macrophages plays a central role in spinal cord injuries and diseases. Multiphoton microscopy based on intrinsic tissue properties offers the possibility of label-free imaging and has the potential to be applied in vivo. In this work, we analyzed cellular structures displaying endogenous two-photon excited fluorescence (TPEF) in the pathologic spinal cord. It was compared qualitatively and quantitatively to Iba1 and CD68 immunohistochemical staining in two models: rat spinal cord injury and mouse encephalomyelitis. The extent of tissue damage was retrieved by coherent anti-Stokes Raman scattering (CARS) and second harmonic generation imaging. The pattern of CD68-positive cells representing postinjury activated microglia/macrophages was colocalized to the TPEF signal. Iba1-positive microglia were found in areas lacking any TPEF signal. In peripheral areas of inflammation, we found similar numbers of CD68-positive microglia/macrophages and TPEF-positive structures while the number of Iba1-positive cells was significantly higher. Therefore, we conclude that multiphoton imaging of unstained spinal cord tissue enables retrieving the extent of microglia activation by acquisition of endogenous TPEF. Future application of this technique in vivo will enable monitoring inflammatory responses of the nervous system allowing new insights into degenerative and regenerative processes. PMID:26355949

  9. Taltirelin improves motor ataxia independently of monoamine levels in rolling mouse nagoya, a model of spinocerebellar atrophy.

    Science.gov (United States)

    Nakamura, Tomoka; Honda, Motoko; Kimura, Satoko; Tanabe, Mitsuo; Oda, Sen-ichi; Ono, Hideki

    2005-12-01

    To examine the relationship between motor ataxia and monoamine levels in the central nervous system, the contents and concentrations of noradrenaline (NA), dopamine (DA) and serotonin (5-HT) in the cerebellum, brain stem and spinal cord were measured in rolling mouse Nagoya (RMN), a murine model of spinocerebellar atrophy. The tissue weight of the cerebellum and spinal cord, but not that of the brain stem was significantly lower in RMN than in the control group. In RMN, the NA content of the brain stem and spinal cord, but not the cerebellum were decreased relative to the control, and the concentration of NA in the spinal cord was also lower, but not significant. The DA and 5-HT contents in each tissue did not differ from those of the control, but the concentrations of monoamines, except for DA, were elevated in the brain stem and spinal cord in RMN. In particular, the concentrations of NA, DA and 5-HT in the cerebellum were significantly increased in RMN. Repeated administration of tartilerin hydrate, an analog of thyrotropin-releasing hormone, improved the ataxia of RMN, and elicited no obvious changes in either monoamine content or concentration of cerebellum, brain stem and spinal cord. These results indicate that the concentration of DA, as well as NA and 5-HT, increased in the RMN cerebellum, and that tartilerin improves the motor function of these mice via mechanisms other than changes in the levels of NA, DA and 5-HT in the central nervous system.

  10. Extensive spinal epidural abscess as a complication of Crohn's disease.

    Science.gov (United States)

    Smith, Chez; Kavar, Bhadrakant

    2010-01-01

    A spinal epidural abscess is a neurosurgical emergency. Successful treatment frequently requires decompression of the spinal canal in combination with intravenous antibiotics. We report a patient with Crohn's disease who developed an extensive spinal epidural abscess communicating with an intra-abdominal collection.

  11. Simultaneous Intracranial and Spinal Subdural Hematoma: Two Case Reports

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Chung Dae; Song, Chang Joon; Lee, Jeong Eun; Choi, Seung Won [Chungnam National University, Daejeon (Korea, Republic of)

    2009-02-15

    Spinal subdural hematoma is a rare disease. Simultaneous intracranial and spinal subdural hematoma is extremely rare and only 14 such cases have been reported. We report here on two cases of simultaneous intracranial and spinal subdural hematoma that occurred following a fall-down head injury and intracranial surgery, and we discuss the pathogenesis of the disease.

  12. Levetiracetam in spinal cord injury pain: a randomized controlled trial

    DEFF Research Database (Denmark)

    Finnerup, N B; Grydehøj, J; Bing, J;

    2009-01-01

    . OBJECTIVES: The objective of the study was primarily to evaluate the efficacy of the anticonvulsant levetiracetam in patients with spinal cord injury (SCI) at- and below-level pain and secondarily to evaluate the effect on spasm severity. SETTING: Outpatients at two spinal cord units and a pain center...... severity following spinal cord injury....

  13. SURGICAL TREATMENT OF METASTATIC SPINAL TUMOR

    Institute of Scientific and Technical Information of China (English)

    徐宏光; 王以朋; 等

    2002-01-01

    Objective:To evaluate the effect of surgical treatment on metastatic spinal tumor.Methods:The results of surgical intervention for metastatic spinal tumor of 31 consecutive patients since October 1985 were reviewed.Results:The average survival time was 17.6 months (range from 3 months to 9 years),and 4 patients are still alive with an average survival time of 24.6 months(range,14-84 months).No postoperative complication was noted.The preoperative symptoms were partially relieved and neurological functions were improved after surgery.Conclusions:Surgical treatment for metastatic spinal tumor could improve the life quality,but should be adopted cautiously.The surgical procedures such as decompression and internal fixation should be involved only when neurological deficits occurred.The surgery with postoperative complementary therapy may not only improve the life quality,but also extend the patients' life span.

  14. Spinal cord stimulation: Background and clinical application

    DEFF Research Database (Denmark)

    Meier, Kaare

    2014-01-01

    Background Spinal cord stimulation (SCS) is a surgical treatment for chronic neuropathic pain refractory to conventional treatment. SCS treatment consists of one or more leads implanted in the epidural space of the spinal canal, connected to an implantable pulse generator (IPG). Each lead carries...... for the treatment include pregnancy, coagulopathy, severe addiction to psychoactive substances, and lack of ability to cooperate (e.g. due to active psychosis or cognitive impairment). Most common complications to the treatment include lead migration, lead breakage, infection, pain over the implant, and dural...... is described in detail and illustrated with a series of intraoperative pictures. Finally, indications for SCS are discussed along with some of the controversies surrounding the therapy. Implications The reader is presented with a broad overview of spinal cord stimulation, including the historical...

  15. Primary multifocal gliosarcoma of the spinal cord

    Directory of Open Access Journals (Sweden)

    Ramesh M. Kumar

    2016-03-01

    Full Text Available Gliosarcoma (GS is a rare and exceedingly malignant neoplasm of the central nervous system. It displays clinical features similar to glioblastoma, yet is histologically unique as it harbors both gliomatous and sarcomatous cellular components. Involvement of the neuroaxis is predominantly limited to the cerebral parenchyma and meninges. Primary GS of the spinal cord is rarely encountered. We report a case of a 54 year old male who presented with 2 months of progressive, bilateral lower extremity sensory deficits. Magnetic resonance imaging of the neuro-axis revealed multiple intradural lesions involving the cervical and thoracic spinal cord without evidence of intracranial involvement. Surgical resection of a dural based, extramedullary cervical lesion and two exophytic, intramedullary thoracic lesions revealed gliosarcoma, WHO grade IV. The patient died approximately 11 months after presentation. This report confirms that GS is not limited to supratentorial involvement and can primarily affect the spinal cord.

  16. Transient Neurological Symptoms after Spinal Anesthesia

    Directory of Open Access Journals (Sweden)

    Zehra Hatipoglu

    2013-02-01

    Full Text Available Lidocaine has been used for more than 50 years for spinal anesthesia and has a remarkable safety record. In 1993, a new adverse effect, transient neurologic toxicity was described in patients recovering from spinal anesthesia with lidocaine. Transient neurological symptoms have been defined as pain in the lower extremities (buttocks, thighs and legs after an uncomplicated spinal anesthesia and after an initial full recovery during the immediate postoperative period (less than 24 h. The incidence of transient neurological symptoms reported in prospective, randomized trials varies from 4% to 37%. The etiology of transient neurological symptoms remains unkonwn. Despite the transient nature of this syndrome, it has proven to be difficult to treat effectively. Drug or some interventional therapy may be necessary. [Archives Medical Review Journal 2013; 22(1.000: 33-44

  17. Surgical Neurostimulation for Spinal Cord Injury

    Science.gov (United States)

    Chari, Aswin; Hentall, Ian D.; Papadopoulos, Marios C.; Pereira, Erlick A. C.

    2017-01-01

    Traumatic spinal cord injury (SCI) is a devastating neurological condition characterized by a constellation of symptoms including paralysis, paraesthesia, pain, cardiovascular, bladder, bowel and sexual dysfunction. Current treatment for SCI involves acute resuscitation, aggressive rehabilitation and symptomatic treatment for complications. Despite the progress in scientific understanding, regenerative therapies are lacking. In this review, we outline the current state and future potential of invasive and non-invasive neuromodulation strategies including deep brain stimulation (DBS), spinal cord stimulation (SCS), motor cortex stimulation (MCS), transcutaneous direct current stimulation (tDCS) and repetitive transcranial magnetic stimulation (rTMS) in the context of SCI. We consider the ability of these therapies to address pain, sensorimotor symptoms and autonomic dysregulation associated with SCI. In addition to the potential to make important contributions to SCI treatment, neuromodulation has the added ability to contribute to our understanding of spinal cord neurobiology and the pathophysiology of SCI. PMID:28208601

  18. Spinal cord injury without radiographic abnormality

    Directory of Open Access Journals (Sweden)

    Singh Anil

    2006-01-01

    Full Text Available Spinal cord injury without radiological abnormality is rare in adults. Below we present a case report of 20 yrs old male with isolated cervical cord injury, without accompanying vertebral dislocation or fracture involving the spinal canal rim. He fell down on plain and smooth ground while carrying 40 kg weight overhead and developed quadriparesis with difficulty in respiration. Plain radiographs of the neck revealed no fractures or dislocations. MRI showed bulky spinal cord and an abnormal hyper intense signal on the T2W image from C2 vertebral body level to C3/4 intervertebral disc level predominantly in the anterior aspect of the cord The patient was managed conservatively with head halter traction and invasive ventilatory support for the initial 7 days period in the ICU. In our patient recovery was good and most of the neurological deficit improved over 4 weeks with conservative management.

  19. Surgical Strategies for Cervical Spinal Neurinomas.

    Science.gov (United States)

    Ito, Kiyoshi; Aoyama, Tatsuro; Miyaoka, Yoshinari; Horiuchi, Tetsuyoshi; Hongo, Kazuhiro

    2015-01-01

    Cervical spinal neurinomas are benign tumors that arise from nerve roots. Based on their location, these tumors can also take the form of a dumbbell-shaped mass. Treatment strategies for these tumors have raised several controversial issues such as appropriate surgical indications and selection of surgical approaches for cervical dumbbell-shaped spinal neurinomas. In this report, we review previous literature and retrospectively analyze cervical spinal neurinoma cases that have been treated at our hospital. Surgical indications and approaches based on tumor location and severity are discussed in detail. Thus, with advances in neuroimaging and neurophysiological monitoring, we conclude that appropriate surgical approaches and intraoperative surgical manipulations should be chosen on a case-by-case basis.

  20. Metastatic carcinoid tumour with spinal cord compression.

    Science.gov (United States)

    Scott, Si; Antwi-Yeboah, Y; Bucur, Sd

    2012-07-01

    Carcinoid tumours are rare with an incidence of 5.25/100,000. They predominantly originate in the gastrointestinal tract (50-60%) or bronchopulmonary system (25-30%). Common sites of metastasis are lymph nodes, liver, lungs and bone. Spinal metastasis are rare, but has been reported in patients with symptoms of spinal cord compression including neurological deficits. We report a rare case of carcinoid metastasis with spinal cord compression, in a 63-year-old man, presenting with a one-year history of back pain without any neurological symptoms. The patient underwent a two-level decompressive laminectomy of T10 and T11 as well as piecemeal tumour resection. Post-operatively the patient made a good recovery without complications.

  1. Spinal 5-HT7 receptors are critical for alternating activity during locomotion: in vitro neonatal and in vivo adult studies using 5-HT7 receptor knockout mice.

    Science.gov (United States)

    Liu, Jun; Akay, Turgay; Hedlund, Peter B; Pearson, Keir G; Jordan, Larry M

    2009-07-01

    5-HT7 receptors have been implicated in the control of locomotion. Here we use 5-HT7 receptor knockout mice to rigorously test whether 5-HT acts at the 5-HT7 receptor to control locomotor-like activity in the neonatal mouse spinal cord in vitro and voluntary locomotion in adult mice. We found that 5-HT applied onto in vitro spinal cords of 5-HT7+/+ mice produced locomotor-like activity that was disrupted and subsequently blocked by the 5-HT7 receptor antagonist SB-269970. In spinal cords isolated from 5-HT7-/- mice, 5-HT produced either uncoordinated rhythmic activity or resulted in synchronous discharges of the ventral roots. SB-269970 had no effect on 5-HT-induced rhythmic activity in the 5-HT7-/- mice. In adult in vivo experiments, SB-269970 applied directly to the spinal cord consistently disrupted locomotion and produced prolonged-extension of the hindlimbs in 5-HT7+/+ but not 5-HT7-/- mice. Disrupted EMG activity produced by SB-269970 in vivo was similar to the uncoordinated rhythmic activity produced by the drug in vitro. Moreover, 5-HT7-/- mice displayed greater maximal extension at the hip and ankle joints than 5-HT7+/+ animals during voluntary locomotion. These results suggest that spinal 5-HT7 receptors are required for the production and coordination of 5-HT-induced locomotor-like activity in the neonatal mouse and are important for the coordination of voluntary locomotion in adult mice. We conclude that spinal 5-HT7 receptors are critical for alternating activity during locomotion.

  2. Extramedullary intradural spinal tumors; Extramedullaere intradurale spinale Tumoren

    Energy Technology Data Exchange (ETDEWEB)

    Papanagiotou, P. [Universitaetsklinikum des Saarlandes, Klinik fuer Diagnostische und Interventionelle Neuroradiologie, Homburg/Saar (Germany)

    2011-12-15

    The category of extramedullary intradural tumors includes a variety of lesions ranging from meningiomas originating from meningeal cells and nerve sheath tumors (neurofibromas, schwannomas) to less common primary tumors, such as lipomas, ependymomas, hemangiopericytomas, epidermoid cysts and dermoid cysts. Extramedullary metastases can occur as transcoelomic metastases in tumors of the central nervous system (CNS) or metastasization from other tumors. Magnetic resonance imaging (MRI) is the method of choice for localization and characterization of these lesions before treatment. (orig.) [German] Die Kategorie der extramedullaeren intraduralen Tumoren enthaelt Laesionen, die von den Nervenhuellen (Schwannome und Neurofibrome) oder von den meningealen Zellen ausgehen (Meningeome). Ependymome, Lipome, Haemangioperizytome, Epidermoidzysten und Dermoidzysten entsprechen selteneren primaeren Tumoren. Extramedullaere Metastasen koennen als Abtropfmetastasen bei ZNS-Tumoren oder als Metastasierung anderer Karzinomerkrankungen auftreten. Die Magnetresonanztomographie (MRT) ist die Methode der Wahl zur Abklaerung einer intraduralen Raumforderung. (orig.)

  3. EphA4 deficient mice maintain astroglial-fibrotic scar formation after spinal cord injury.

    Science.gov (United States)

    Herrmann, Julia E; Shah, Ravi R; Chan, Andrea F; Zheng, Binhai

    2010-06-01

    One important aspect of recovery and repair after spinal cord injury (SCI) lies in the complex cellular interactions at the injury site that leads to the formation of a lesion scar. EphA4, a promiscuous member of the EphA family of repulsive axon guidance receptors, is expressed by multiple cell types in the injured spinal cord, including astrocytes and neurons. We hypothesized that EphA4 contributes to aspects of cell-cell interactions at the injury site after SCI, thus modulating the formation of the astroglial-fibrotic scar. To test this hypothesis, we studied tissue responses to a thoracic dorsal hemisection SCI in an EphA4 mutant mouse line. We found that EphA4 expression, as assessed by beta-galactosidase reporter gene activity, is associated primarily with astrocytes in the spinal cord, neurons in the cerebral cortex and, to a lesser extent, spinal neurons, before and after SCI. However, we did not observe any overt reduction of glial fibrillary acidic protein (GFAP) expression in the injured area of EphA4 mutants in comparison with controls following SCI. Furthermore, there was no evident disruption of the fibrotic scar, and the boundary between reactive astrocytes and meningeal fibroblasts appeared unaltered in the mutants, as were lesion size, neuronal survival and inflammation marker expression. Thus, genetic deletion of EphA4 does not significantly alter the astroglial response or the formation of the astroglial-fibrotic scar following a dorsal hemisection SCI in mice. In contrast to what has been proposed, these data do not support a major role for EphA4 in reactive astrogliosis following SCI.

  4. Reciprocal functional interactions between the brainstem and the lower spinal cord

    Directory of Open Access Journals (Sweden)

    Itaru eYazawa

    2014-05-01

    Full Text Available The interplay of the neuronal discharge patterns regarding respiration and locomotion was investigated using electrophysiological techniques in a decerebrate and arterially perfused in situ mouse preparation. The phrenic, tibial and/or peroneal nerve discharge became clearly organized into discharge episodes of increasing frequency and duration, punctuated by periods of quiescence as the perfusion flow rate increased at room temperature. The modulated sympathetic tone induced by the hyperoxic/normocapnic state was found to activate the locomotor pattern generator (LPG via descending pathways and generate a left and right alternating discharge during discharge episodes in the motor nerves. The rhythm coupling of respiration and locomotion occurred at a 1:1 frequency ratio. Although the phrenic discharge synchronized with the tibial discharge at all flow rates tested, the time lag between peaks of the two discharges during locomotion was ≈400 ms rather than ≈200 ms, suggesting spinal feedback via ascending pathways. The incidence of the phrenic and tibial discharge episodes decreased by ≈50% after spinalization at the twelfth thoracic vertebra and the respiratory rhythm was more regular. These results indicate that: (i locomotion can be generated in a hyperoxic/normocapnic state induced by specific respiratory conditions, (ii the central mechanism regarding entrainment of respiratory and locomotor rhythms relies on spinal feedback via ascending pathways, initiated by the activated LPG generating locomotion, and (iii the increase in respiratory rate seen during locomotion is caused not only by afferent mechanical and nociceptive inputs but also by impulses from the activated spinal cord producing a locomotor-like discharge via ascending pathways.

  5. The transformation of spinal curvature into spinal deformity: pathological processes and implications for treatment

    Directory of Open Access Journals (Sweden)

    Hawes Martha C

    2006-03-01

    Full Text Available Abstract Background This review summarizes what is known about the pathological processes (e.g. structural and functional changes, by which spinal curvatures develop and evolve into spinal deformities. Methods Comprehensive review of articles (English language only published on 'scoliosis,' whose content yielded data on the pathological changes associated with spinal curvatures. Medline, Science Citation Index and other searches yielded > 10,000 titles each of which was surveyed for content related to 'pathology' and related terms such as 'etiology,' 'inheritance,' 'pathomechanism,' 'signs and symptoms.' Additional resources included all books published on 'scoliosis' and available through the Arizona Health Sciences Library, Interlibrary Loan, or through direct contact with the authors or publishers. Results A lateral curvature of the spine–'scoliosis'–can develop in association with postural imbalance due to genetic defects and injury as well as pain and scarring from trauma or surgery. Irrespective of the factor that triggers its appearance, a sustained postural imbalance can result, over time, in establishment of a state of continuous asymmetric loading relative to the spinal axis. Recent studies support the longstanding hypothesis that spinal deformity results directly from such postural imbalance, irrespective of the primary trigger, because the dynamics of growth within vertebrae are altered by continuous asymmetric mechanical loading. These data suggest that, as long as growth potential remains, evolution of a spinal curvature into a spinal deformity can be prevented by reversing the state of continuous asymmetric loading. Conclusion Spinal curvatures can routinely be diagnosed in early stages, before pathological deformity of the vertebral elements is induced in response to asymmetric loading. Current clinical approaches involve 'watching and waiting' while mild reversible spinal curvatures develop into spinal deformities with

  6. SDF1 in the dorsal corticospinal tract promotes CXCR4+ cell migration after spinal cord injury

    Directory of Open Access Journals (Sweden)

    Jung Hosung

    2011-02-01

    Full Text Available Abstract Background Stromal cell-derived factor-1 (SDF1 and its major signaling receptor, CXCR4, were initially described in the immune system; however, they are also expressed in the nervous system, including the spinal cord. After spinal cord injury, the blood brain barrier is compromised, opening the way for chemokine signaling between these two systems. These experiments clarified prior contradictory findings on normal expression of SDF1 and CXCR4 as well as examined the resulting spinal cord responses resulting from this signaling. Methods These experiments examined the expression and function of SDF1 and CXCR4 in the normal and injured adult mouse spinal cord primarily using CXCR4-EGFP and SDF1-EGFP transgenic reporter mice. Results In the uninjured spinal cord, SDF1 was expressed in the dorsal corticospinal tract (dCST as well as the meninges, whereas CXCR4 was found only in ependymal cells surrounding the central canal. After spinal cord injury (SCI, the pattern of SDF1 expression did not change rostral to the lesion but it disappeared from the degenerating dCST caudally. By contrast, CXCR4 expression changed dramatically after SCI. In addition to the CXCR4+ cells in the ependymal layer, numerous CXCR4+ cells appeared in the peripheral white matter and in the dorsal white matter localized between the dorsal corticospinal tract and the gray matter rostral to the lesion site. The non-ependymal CXCR4+ cells were found to be NG2+ and CD11b+ macrophages that presumably infiltrated through the broken blood-brain barrier. One population of macrophages appeared to be migrating towards the dCST that contains SDF1 rostral to the injury but not towards the caudal dCST in which SDF1 is no longer present. A second population of the CXCR4+ macrophages was present near the SDF1-expressing meningeal cells. Conclusions These observations suggest that attraction of CXCR4+ macrophages is part of a programmed response to injury and that modulation of the

  7. The red nucleus and the rubrospinal projection in the mouse.

    Science.gov (United States)

    Liang, Huazheng; Paxinos, George; Watson, Charles

    2012-04-01

    We studied the organization and spinal projection of the mouse red nucleus with a range of techniques (Nissl stain, immunofluorescence, retrograde tracer injections into the spinal cord, anterograde tracer injections into the red nucleus, and in situ hybridization) and counted the number of neurons in the red nucleus (3,200.9 ± 230.8). We found that the rubrospinal neurons were mainly located in the parvicellular region of the red nucleus, more lateral in the rostral part and more medial in the caudal part. Labeled neurons were least common in the rostral and caudal most parts of the red nucleus. Neurons projecting to the cervical cord were predominantly dorsomedially placed and neurons projecting to the lumbar cord were predominantly ventrolaterally placed. Immunofluorescence staining with SMI-32 antibody showed that ~60% of SMI-32-positive neurons were cervical cord-projecting neurons and 24% were lumbar cord-projecting neurons. SMI-32-positive neurons were mainly located in the caudomedial part of the red nucleus. A study of vGluT2 expression showed that the number and location of glutamatergic neurons matched with those of the rubrospinal neurons. In the anterograde tracing experiments, rubrospinal fibers travelled in the dorsal portion of the lateral funiculus, between the lateral spinal nucleus and the calretinin-positive fibers of the lateral funiculus. Rubrospinal fibers terminated in contralateral laminae 5, 6, and the dorsal part of lamina 7 at all spinal cord levels. A few fibers could be seen next to the neurons in the dorsolateral part of lamina 9 at levels of C8-T1 (hand motor neurons) and L5-L6 (foot motor neurons), which is consistent with a view that rubrospinal fibers may play a role in distal limb movement in rodents.

  8. Endogenous neurotrophins and plasticity following spinal deafferentation.

    Science.gov (United States)

    Ramer, Matt S

    2012-05-01

    Neurons intrinsic to the spinal cord dorsal horn receive input from various classes of long-distance projection systems. Two of the best known of these are primary afferent and descending monoaminergic axons. Together with intrinsic interneurons, activity in these axonal populations shapes the early part of the sensory experience before it is transmitted to supraspinal structures via ascending projection axons. Injury to dorsal roots, which contain the centrally projecting branches of primary afferent axons, results in their permanent disconnection from the spinal cord, as well as sensory dysfunction such as pain. In animals, experimental dorsal root injuries affecting a small number of roots produce dynamic behavioural changes, providing evidence for the now familiar concept that sensory processing at the level of the spinal cord is not hard-wired. Changes in behaviour following rhizotomy suggest changes in spinal sensory circuitry, and we and others have shown that the density of spinal serotonergic axons as well as processes of inhibitory interneurons increases following rhizotomy. Intact primary afferent axons are less apt to sprout into denervated territory. Recent work from our group has asked (1) what is the stimulus that induces sprouting of serotonergic (and other) axons and (2) what prevents spared primary afferent axons from occupying the territory of those lost to injury. This article will review the evidence that a single factor upregulated by dorsal root injury, brain-derived neurotrophic factor (BDNF), underpins both serotonergic sprouting and a lack of primary afferent plasticity. BDNF also differentially modulates some of the behavioural consequences of dorsal root injury: antagonizing endogenous BDNF improves spontaneous mechanosensory recovery but prevents recovery from rhizotomy-induced hypersensitivity to cold. These findings reinforce the notion that in disease states as complex and variable as spinal cord injury, single pharmacological

  9. Vascular dysfunctions following spinal cord injury.

    Science.gov (United States)

    Popa, Constantin; Popa, Florian; Grigorean, Valentin Titus; Onose, Gelu; Sandu, Aurelia Mihaela; Popescu, Mihai; Burnei, Gheorghe; Strambu, Victor; Sinescu, Crina

    2010-01-01

    The aim of this article is to analyze the vascular dysfunctions occurring after spinal cord injury (SCI). Vascular dysfunctions are common complications of SCI. Cardiovascular disturbances are the leading causes of morbidity and mortality in both acute and chronic stages of SCI. Neuroanatomy and physiology of autonomic nervous system, sympathetic and parasympathetic, is reviewed. SCI implies disruption of descendent pathways from central centers to spinal sympathetic neurons, originating in intermediolateral nuclei of T1-L2 cord segments. Loss of supraspinal control over sympathetic nervous system results in reduced overall sympathetic activity below the level of injury and unopposed parasympathetic outflow through intact vagal nerve. SCI associates significant vascular dysfunction. Spinal shock occurs during the acute phase following SCI and it is a transitory suspension of function and reflexes below the level of the injury. Neurogenic shock, part of spinal shock, consists of severe arterial hypotension and bradycardia. Autonomic dysreflexia appears during the chronic phase, after spinal shock resolution, and it is a life-threatening syndrome of massive imbalanced reflex sympathetic discharge occurring in patients with SCI above the splanchnic sympathetic outflow (T5-T6). Arterial hypotension with orthostatic hypotension occurs in both acute and chronic phases. The etiology is multifactorial. We described a few factors influencing the orthostatic hypotension occurrence in SCI: sympathetic nervous system dysfunction, low plasma catecholamine levels, rennin-angiotensin-aldosterone activity, peripheral alpha-adrenoceptor hyperresponsiveness, impaired function of baroreceptors, hyponatremia and low plasmatic volume, cardiovascular deconditioning, morphologic changes in sympathetic neurons, plasticity within spinal circuits, and motor deficit leading to loss of skeletal muscle pumping activity. Additional associated cardiovascular concerns in SCI, such as deep vein

  10. Cervical spinal canal narrowing in idiopathic syringomyelia

    Energy Technology Data Exchange (ETDEWEB)

    Struck, Aaron F. [Massachusetts General Hospital, Department of Neurology, Boston, MA (United States); Carr, Carrie M. [Mayo Clinic, Department of Radiology, Rochester, MN (United States); Shah, Vinil [University of California San Francisco, Department of Radiology, San Francisco, CA (United States); Hesselink, John R. [University of California San Diego, Department of Radiology, San Diego, CA (United States); Haughton, Victor M. [University of Wisconsin, Department of Radiology, Madison, WI (United States)

    2016-08-15

    The cervical spine in Chiari I patient with syringomyelia has significantly different anteroposterior diameters than it does in Chiari I patients without syringomyelia. We tested the hypothesis that patients with idiopathic syringomyelia (IS) also have abnormal cervical spinal canal diameters. The finding in both groups may relate to the pathogenesis of syringomyelia. Local institutional review boards approved this retrospective study. Patients with IS were compared to age-matched controls with normal sagittal spine MR. All subjects had T1-weighted spin-echo (500/20) and T2-weighted fast spin-echo (2000/90) sagittal cervical spine images at 1.5 T. Readers blinded to demographic data and study hypothesis measured anteroposterior diameters at each cervical level. The spinal canal diameters were compared with a Mann-Whitney U test. The overall difference was assessed with a Friedman test. Seventeen subjects were read by two reviewers to assess inter-rater reliability. Fifty IS patients with 50 age-matched controls were studied. IS subjects had one or more syrinxes varying from 1 to 19 spinal segments. Spinal canal diameters narrowed from C1 to C3 and then enlarged from C5 to C7 in both groups. Diameters from C2 to C4 were narrower in the IS group (p < 0.005) than in controls. The ratio of the C3 to the C7 diameters was also smaller (p = 0.004) in IS than controls. Collectively, the spinal canal diameters in the IS were significantly different from controls (Friedman test p < 0.0001). Patients with IS have abnormally narrow upper and mid cervical spinal canal diameters and greater positive tapering between C3 and C7. (orig.)

  11. SPINAL DEFORMITIES AFTER SELECTIVE DORSAL RHIZOTOMY

    Directory of Open Access Journals (Sweden)

    PATRICIO PABLO MANZONE

    Full Text Available ABSTRACT Objective: Selective dorsal rhizotomy (SDR used for spasticity treatment could worsen or develop spinal deformities. Our goal is to describe spinal deformities seen in patients with cerebral palsy (CP after being treated by SDR. Methods: Retrospective study of patients operated on (SDR between January/1999 and June/2012. Inclusion criteria: spinal Rx before SDR surgery, spinography, and assessment at follow-up. We evaluated several factors emphasizing level and type of SDR approach, spinal deformity and its treatment, final Risser, and follow-up duration. Results: We found 7 patients (6 males: mean age at SDR 7.56 years (4.08-11.16. Mean follow-up: 6.64 years (2.16-13, final age: 14.32 years (7.5-19. No patient had previous deformity. GMFCS: 2 patients level IV, 2 level III, 3 level II. Initial walking status: 2 community walkers, 2 household walkers, 2 functional walkers, 1 not ambulant, at the follow-up, 3 patients improved, and 4 kept their status. We found 4 TL/L laminotomies, 2 L/LS laminectomies, and 1 thoracic laminectomy. Six spinal deformities were observed: 2 sagittal, 3 mixed, and 1 scoliosis. There was no association among the type of deformity, final gait status, topographic type, GMFCS, age, or SDR approach. Three patients had surgery indication for spinal deformity at skeletal maturity, while those patients with smaller deformities were still immature (Risser 0 to 2/3 although with progressive curves. Conclusions: After SDR, patients should be periodically evaluated until they reach Risser 5. The development of a deformity does not compromise functional results but adds morbidity because it may require surgical treatment.

  12. Posterolateral inter-transverse lumbar fusion in a mouse model

    Directory of Open Access Journals (Sweden)

    Bobyn Justin

    2013-01-01

    Full Text Available Abstract Background Spinal fusion is a common orthopaedic procedure that has been previously modeled using canine, lapine, and rodent subjects. Despite the increasing availability of genetically modified mouse strains, murine models have only been infrequently described. Purpose To present an efficient and minimally traumatic procedure for achieving spinal fusion in a mouse model and determine the optimal rhBMP-2 dose to achieve sufficient fusion mass. Method MicroCT reconstructions of the unfused mouse spine and human spine were compared to design a surgical approach. In phase 1, posterolateral lumbar spine fusion in the mouse was evaluated using 18 animals allocated to three experimental groups. Group 1 received decortication only (n = 3, Group 2 received 10 μg rhBMP-2 in a collagen sponge bilaterally (n = 6, and Group 3 received 10 μg rhBMP-2 + decortication (n = 9. The surgical technique was assessed for intra-operative safety, efficacy, access and reproducibility. Spines were harvested for analysis at 3 weeks (Groups 1, 2 and 1, 2, and 3 weeks (Group 3. In phase 2, a dose response study was carried out in an additional 18 animals with C57BL6 mice receiving sponges containing 0, 0.5, 1, 2.5, 5 μg of rhBMP-2 per sponge bilaterally. Results The operative procedure via midline access was rapid and reproducible, and fusion of the murine articular processes was found to be analogous to the human procedure. Unlike reports from other species, decortication alone (Group 1 yielded no new bone formation. Addition of rhBMP-2 (Groups 2 and 3 yielded a significant bone mass that bridged the L4-L6 vertebrae. The subsequent dose response experiment revealed that 0.5 μg rhBMP-2 per sponge was sufficient to create a fusion mass. Conclusion We describe a new approach for mouse lumbar spine fusion that is safe, efficient, and highly reproducible. The technique we employed is analogous to the human midline procedure and may be highly

  13. Diagnósticos de enfermagem e proposta de intervenções para pacientes com lesão medular Diagnósticos de enfermería y propuesta de intervenciones para pacientes con lesión medular Nursing diagnoses and interventions proposal al for patients with spinal cord lesion

    Directory of Open Access Journals (Sweden)

    Clélia Regina Cafer

    2005-12-01

    la unidad de estudio, con la finalidad de identificar los diagnósticos de enfermería. Las intervenciones fueron propuestas por las autoras y sometidas a la evaluación de dos especialistas. RESULTADOS: Fueron identificados 15 diagnósticos de enfermería prevalentes, para los cuales se propusieron 26 intervenciones de enfermería. CONCLUSIÓN: Los resultados del estudio servirán de subsidio a las enfermeras para el cuidado de pacientes con lesión medular, auxiliándolos y contribuyendo en su autonomía, a través de las intervenciones propuestas.INTRODUCTION: Spinal cord lesions constitute very serious events that occur mostly among young people. Providing care to these patients is a complex task because they are greatly dependent on nursing staff and require a very carefully designed plan of care. The purpose of this study was to contribute ways to design a quality plan of care to attend these patients. OBJECTIVES: To identify nursing diagnoses according to the NANDA for patients with spinal cord lesions from an Orthopedic and Trauma Unit, and to propose appropriate nursing interventions according to the NIC. METHODS: This study used a descriptive and prospective research design. The sample consisted of 10 patients with spinal cord lesions. Data were colleted from January, 2000 to July, 2002 using a specific assessment tool. Data analysis led the researchers to propose nursing diagnoses which were validated by two clinical nursing specialists. RESULTS: Fifteen prevalent nursing diagnoses were identified and 26 nursing interventions were proposed. CONCLUSION: The results can be used to assist nurse to provide quality care for patients with spinal cord lesions, so as to improve the patients independence.

  14. Radiotherapy of spinal cord gliomas. A retrospective mono-institutional analysis

    Energy Technology Data Exchange (ETDEWEB)

    Corradini, Stefanie; Hadi, Indrawati; Ganswindt, Ute; Belka, Claus; Niyazi, Maximilian [University of Munich, Department of Radiation Oncology, Munich (Germany); Hankel, Vinzent [Marienhospital Stuttgart, Department of Radiation Oncology, Stuttgart (Germany); Ertl, Lorenz [Staedtisches Klinikum Muenchen Harlaching, Department of Radiology, Neuroradiology, and Nuclear Medicine, Munich (Germany); University of Munich, Department of Neuroradiology, Munich (Germany)

    2016-03-15

    Behandlungsstrategie. Ziel dieser retrospektiven Studie war es, die patienten- sowie tumorbezogenen Charakteristika auszuwerten und den Einsatz sowie die Rolle der Strahlentherapie (RT) bei der Behandlung von spinalen Gliomen zu untersuchen. Es wurden retrospektiv die Daten von allen Patienten mit spinalen Gliomen untersucht, welche von 2003 bis 2013 an der Klinik fuer Strahlentherapie der LMU Muenchen behandelt wurden. Es erfolgte die Auswertung der patienten- sowie tumor- und therapiebezogenen Charakteristika. Das Gesamtueberleben (OS) wurde nach Kaplan-Meier geschaetzt. Univariate Analysen wurden mittels Log-Rank-Test durchgefuehrt. Die Daten von 16 Patienten wurden analysiert. Darunter waren sieben primaere spinale Gliome und acht Abtropfmetastasen intrakranieller Gliome. Das mediane Follow-up betrug 42 Monate. Alle Patienten erhielten eine RT mit einer medianen Gesamtdosis von 45,0 Gy. In 62,5 % erfolgte eine simultane Radiochemotherapie mit Temozolomid. Das mediane OS fuer die gesamte Kohorte lag bei 6 Monaten (95 %-KI 0,0-27,5). Patienten mit der Diagnose eines primaeren spinalen Glioms hatten ein signifikant besseres OS als Patienten mit zerebralen Abtropfmetastasen (p < 0,001). Ebenso war eine Tumorresektion mit einem signifikanten Ueberlebensvorteil assoziiert (p = 0,001). Bezueglich der RT zeigte sich eine Dosis-Wirkungs-Beziehung ab einer Dosis von ≥ 45 Gy, welche mit einem verbesserten OS im Vergleich zu einer Bestrahlungsdosis von < 45 Gy korrelierte (p < 0,001). Die simultane Chemotherapie hatte keinen Einfluss auf das OS. Schlussfolgerung Trotz der Fortschritte im Bereich der multimodalen Therapie ist die Prognose spinaler Gliome mit einem medianen OS von nur 6 Monaten immer noch schlecht. Obwohl die Aussagekraft der Ergebnisse durch die relativ kleine Anzahl an Patienten begrenzt ist, stellt diese Studie einen wichtigen Beitrag zur spaerlichen Datenlage dar. Die vorliegenden Studienergebnisse sind ausserdem eine der groessten Fallsammlungen zur simultanen

  15. Primary primitive neuroectodermal tumor of spinal cord

    Directory of Open Access Journals (Sweden)

    Ashutosh Das Sharma

    2016-01-01

    Full Text Available Primarily spinal primitive neuroectodermal tumors are rare neoplasm. A 28-year-old female presented with complaints of pain in lower back, radiating to both lower limbs. Magnetic resonance imaging scan of the lumbosacral spine showed an intradural extramedullary space-occupying lesion. The patient underwent L2–L5 laminectomy with excision of the lesion. Histopathology and immunohistochemistry reports confirmed the diagnosis of primitive neuroectodermal tumor while a thorough metastatic workup ruled out secondary to the spinal cord. The patient developed recurrence at local site within a month after surgery, even before the adjuvant treatment could be started. She is being treated with chemotherapy (human resources protocol.

  16. Spinal myoclonus: report of four cases

    Directory of Open Access Journals (Sweden)

    James Pitágoras de Mattos

    1993-11-01

    Full Text Available Four cases of spinal myoclonus are described, three males and one female. The mean age was 51 years (28-75 years. The mean time between the onset of the myelopathy and the myoclonic jerks was 4.3 months (1-8 months. The involuntary movements were determined by trauma, Devic's disease, tuberculous myelopathy and tumor. Three patients had spastic paraplegia with bilateral myoclonus more evident on the right side. The fourth patient had a flaccid paraplegia with symmetrical jerks. The data suggest that different processes (trauma, demyelinating, infection and tumor affecting the spinal cord may cause the same type of involuntary movements.

  17. Common surgical complications in degenerative spinal surgery.

    Science.gov (United States)

    Papadakis, Michael; Aggeliki, Lianou; Papadopoulos, Elias C; Girardi, Federico P

    2013-04-18

    The rapid growth of spine degenerative surgery has led to unrelenting efforts to define and prevent possible complications, the incidence of which is probably higher than that reported and varies according to the region of the spine involved (cervical and thoracolumbar) and the severity of the surgery. Several issues are becoming progressively clearer, such as complication rates in primary versus revision spinal surgery, complications in the elderly, the contribution of minimally invasive surgery to the reduction of complication rate. In this paper the most common surgical complications in degenerative spinal surgery are outlined and discussed.

  18. Pathologic approach to spinal cord infections.

    Science.gov (United States)

    Tihan, Tarik

    2015-05-01

    The pathologic evaluation of spinal cord infections requires comprehensive clinical, radiological, and laboratory correlation, because the histologic findings in acute, chronic, or granulomatous infections rarely provide clues for the specific cause. This brief review focuses on the pathologic mechanisms as well as practical issues in the diagnosis and reporting of infections of the spinal cord. Examples are provided of the common infectious agents and methods for their diagnosis. By necessity, discussion is restricted to the infections of the medulla spinalis proper and its meninges, and not bone or soft tissue infections.

  19. Multiple, primary spinal-paraspinal hydatid cysts

    Energy Technology Data Exchange (ETDEWEB)

    Sener, R.N.; Calli, C.; Kitis, O.; Yalman, O. [Dept. of Radiology, Ege University Hospital, Izmir (Turkey)

    2001-11-01

    A patient is presented with widespread primary hydatid cysts in spinal-paraspinal locations, secondary to Echinococcus granulosus. An alternative mechanism to explain how the embryos gained access to the body is proposed: The embryos penetrated the intestinal muscle and may have directly entered into the inferior vena cava system through small venous connections between this system and portal circulation. Various conditions in daily life associated with Valsalva maneuver might have caused such an atypical passage of the embryos to the inferior caval system toward the retroperitoneum and spinal-paraspinal structures via lumber epidural venous plexuses. (orig.)

  20. Novalis Stereotactic Radiosurgery for Spinal Dural Arteriovenous Fistula.

    Science.gov (United States)

    Sung, Kyoung-Su; Song, Young-Jin; Kim, Ki-Uk

    2016-07-01

    The spinal dural arteriovenous fistula (SDAVF) is rare, presenting with progressive, insidious symptoms, and inducing spinal cord ischemia and myelopathy, resulting in severe neurological deficits. If physicians have accurate and enough information about vascular anatomy and hemodynamics, they achieve the good results though the surgery or endovascular embolization. However, when selective spinal angiography is unsuccessful due to neurological deficits, surgery and endovascular embolization might be failed because of inadequate information. We describe a patient with a history of vasospasm during spinal angiography, who was successfully treated by spinal stereotactic radiosurgery using Novalis system.

  1. Imaging diagnosis--spinal cord histiocytic sarcoma in a dog.

    Science.gov (United States)

    Taylor, Amanda; Eichelberger, Bunita; Hodo, Carolyn; Cooper, Jocelyn; Porter, Brian

    2015-01-01

    A 12-year-old mixed breed dog was presented for evaluation of progressive paraparesis and ataxia. Magnetic resonance (MR) imaging was performed and identified multifocal intradural spinal cord mass lesions. The lesions were hyperintense in T2-weighted sequences, isointense to mildly hyperintense in T1-weighted sequences with strong contrast enhancement of the intradural lesions and spinal cord meninges. Spinal cord neoplasia was suspected. A diagnosis of intramedullary spinal cord histiocytic sarcoma, confined to the central nervous system, was confirmed histopathologically. Spinal cord histiocytic sarcoma is a rare neoplasm, but should be included in the differential diagnosis for dogs with clinical signs of myelopathy.

  2. Spinal myoclonus following a peripheral nerve injury: a case report

    Directory of Open Access Journals (Sweden)

    Erkol Gokhan

    2008-08-01

    Full Text Available Abstract Spinal myoclonus is a rare disorder characterized by myoclonic movements in muscles that originate from several segments of the spinal cord and usually associated with laminectomy, spinal cord injury, post-operative, lumbosacral radiculopathy, spinal extradural block, myelopathy due to demyelination, cervical spondylosis and many other diseases. On rare occasions, it can originate from the peripheral nerve lesions and be mistaken for peripheral myoclonus. Careful history taking and electrophysiological evaluation is important in differential diagnosis. The aim of this report is to evaluate the clinical and electrophysiological characteristics and treatment results of a case with spinal myoclonus following a peripheral nerve injury without any structural lesion.

  3. Melatonin lowers edema after spinal cord injur y

    Institute of Scientific and Technical Information of China (English)

    Cheng Li; Xiao Chen; Suchi Qiao; Xinwei Liu; Chang Liu; Degang Zhu; Jiacan Su; Zhiwei Wang

    2014-01-01

    Melatonin has been shown to diminish edema in rats. Melatonin can be used to treat spinal cord injury. This study presumed that melatonin could relieve spinal cord edema and examined how it might act. Our experiments found that melatonin (100 mg/kg, i.p.) could reduce the water content of the spinal cord, and suppress the expression of aquaporin-4 and glial ifbrillary acidic protein after spinal cord injury. This suggests that the mechanism by which melatonin alleviates the damage to the spinal cord by edema might be related to the expression of aquaporin-4 and glial ifbrillary acidic protein.

  4. Mouse bladder wall injection.

    Science.gov (United States)

    Fu, Chi-Ling; Apelo, Charity A; Torres, Baldemar; Thai, Kim H; Hsieh, Michael H

    2011-07-12

    Mouse bladder wall injection is a useful technique to orthotopically study bladder phenomena, including stem cell, smooth muscle, and cancer biology. Before starting injections, the surgical area must be cleaned with soap and water and antiseptic solution. Surgical equipment must be sterilized before use and between each animal. Each mouse is placed under inhaled isoflurane anesthesia (2-5% for induction, 1-3% for maintenance) and its bladder exposed by making a midline abdominal incision with scissors. If the bladder is full, it is partially decompressed by gentle squeezing between two fingers. The cell suspension of interest is intramurally injected into the wall of the bladder dome using a 29 or 30 gauge needle and 1 cc or smaller syringe. The wound is then closed using wound clips and the mouse allowed to recover on a warming pad. Bladder wall injection is a delicate microsurgical technique that can be mastered with practice.

  5. Transcutaneous spinal stimulation as a therapeutic strategy for spinal cord injury: state of the art

    Directory of Open Access Journals (Sweden)

    Grecco LH

    2015-03-01

    Full Text Available Leandro H Grecco,1,3,4,* Shasha Li,1,5,* Sarah Michel,1,6,* Laura Castillo-Saavedra,1 Andoni Mourdoukoutas,7 Marom Bikson,7 Felipe Fregni1,21Spaulding Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, 2Spaulding-Harvard Spinal Cord Injury Model System, Spaulding Rehabilitation Hospital, Harvard Medical School, Charlestown, MA, USA; 3Special Laboratory of Pain and Signaling, Butantan Institute, 4Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil; 5Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China; 6Department of Pharmacy and Biomedical Sciences, University of Namur, Belgium; 7Department of Biomedical Engineering, The City College of New York, New York, NY, USA*These authors contributed equally to this workAbstract: Treatments for spinal cord injury (SCI still have limited effects. Electrical stimulation might facilitate plastic changes in affected spinal circuitries that may be beneficial in improving motor function and spasticity or SCI-related neuropathic pain. Based on available animal and clinical evidence, we critically reviewed the physiological basis and therapeutic action of transcutaneous spinal cord stimulation in SCI. We analyzed the literature published on PubMed to date, looking for the role of three main noninvasive stimulation techniques in the recovery process of SCI and focusing mainly on transcutaneous spinal stimulation. This review discusses the main clinical applications, latest advances, and limitations of noninvasive electrical stimulation of the spinal cord. Although most recent research in this topic has focused on transcutaneous spinal direct current stimulation (tsDCS, we also reviewed the technique of transcutaneous electric nerve stimulation (TENS and neuromuscular electrical stimulation (NMES as potential methods to modulate spinal cord

  6. Spinal cord compression by spontaneous spinal subdural haematoma in polycythemia vera.

    Science.gov (United States)

    Kalina, P; Drehobl, K E; Black, K; Woldenberg, R; Sapan, M

    1995-06-01

    A woman with an eight-year history of polycythemia vera presented with numbness and weakness of both legs. A large spinal haematoma was revealed on magnetic resonance imaging which was treated clinically and which subsequently resolved.

  7. An approach for ergonomic design of mouse wheel

    Institute of Scientific and Technical Information of China (English)

    Gao Sande; Nakana Keijiro; and Huang Loulin

    2012-01-01

    A new method for ergonomic design of a computer mouse is proposed in this paper. In the method, the movements of joints and tip of the forefinger during operating a mouse was captured by a high-speed video camera. The captured videos were ana- lyzed and an algorithm was developed to decide the size and location of the mouse wheel according to ergonomic principles. The al- gorithm was then coded in a software package with Visual C++ and OpenGL languages. Results of the calculation and simulation agreed well with those of the experiments. The software can also be used for shape design of mouse body, buttons and their layouts.

  8. Engineering subtle targeted mutations into the mouse genome.

    Science.gov (United States)

    Menke, Douglas B

    2013-09-01

    Homologous recombination in embryonic stem (ES) cells offers an exquisitely precise mechanism to introduce targeted modifications to the mouse genome. This ability to produce specific alterations to the mouse genome has become an essential tool for the analysis of gene function and the development of mouse models of human disease. Of the many thousands of mouse alleles that have been generated by gene targeting, the majority are designed to completely ablate gene function, to create conditional alleles that are inactivated in the presence of Cre recombinase, or to produce reporter alleles that label-specific tissues or cell populations (Eppig et al., 2012, Nucleic Acids Res 40:D881-D886). However, there is a variety of powerful motivations for the introduction of subtle targeted mutations (STMs) such as point mutations, small deletions, or small insertions into the mouse genome. The introduction of STMs allows the ablation of specific transcript isoforms, permits the functional investigation of particular domains or amino acids within a protein, provides the ability to study the role of specific sites with in cis-regulatory elements, and can result in better mouse models of human genetic disorders. In this review, I examine the current strategies that are commonly used to introduce STMs into the mouse genome and highlight new gene targeting technologies, including TALENs and CRISPR/Cas, which are likely to influence the future of gene targeting in mice.

  9. Analysis of the host transcriptome from demyelinating spinal cord of murine coronavirus-infected mice.

    Directory of Open Access Journals (Sweden)

    Ruth Elliott

    Full Text Available Persistent infection of the mouse central nervous system (CNS with mouse hepatitis virus (MHV induces a demyelinating disease pathologically similar to multiple sclerosis and is therefore used as a model system. There is little information regarding the host factors that correlate with and contribute to MHV-induced demyelination. Here, we detail the genes and pathways associated with MHV-induced demyelinating disease in the spinal cord. High-throughput sequencing of the host transcriptome revealed that demyelination is accompanied by numerous transcriptional changes indicative of immune infiltration as well as changes in the cytokine milieu and lipid metabolism. We found evidence that a Th1-biased cytokine/chemokine response and eicosanoid-derived inflammation accompany persistent MHV infection and that antigen presentation is ongoing. Interestingly, increased expression of genes involved in lipid transport, processing, and catabolism, including some with known roles in neurodegenerative diseases, coincided with demyelination. Lastly, expression of several genes involved in osteoclast or bone-resident macrophage function, most notably TREM2 and DAP12, was upregulated in persistently infected mouse spinal cord. This study highlights the complexity of the host antiviral response, which accompany MHV-induced demyelination, and further supports previous findings that MHV-induced demyelination is immune-mediated. Interestingly, these data suggest a parallel between bone reabsorption by osteoclasts and myelin debris clearance by microglia in the bone and the CNS, respectively. To our knowledge, this is the first report of using an RNA-seq approach to study the host CNS response to persistent viral infection.

  10. Upper cervical spinal cord compression due to bony stenosis of the spinal canal.

    Science.gov (United States)

    Benitah, S; Raftopoulos, C; Balériaux, D; Levivier, M; Dedeire, S

    1994-04-01

    Compression of the upper cervical spinal cord due to stenosis of the bony spinal canal is infrequent. In the first case reported here, stenosis was due to acquired extensive, unilateral osteophytes centered on the left apophyseal joints of C1-C2 in an elderly professional violinist. In the second case, stenosis was secondary to isolated congenital hypertrophy of the laminae of C1 and C2.

  11. Directing Spinal Cord Plasticity: The Impact of Stretch Therapy on Functional Recovery after Spinal Cord Injury

    Science.gov (United States)

    2014-10-01

    atrophy. Interestingly, there is a clinical phenomenon that stretching can lead to muscle fiber hypertrophy , but that doesn’t appear to be...specific muscle groups) on functional recovery after spinal cord injury in a rat model. We have undertaken these studies because of an observation we...spinal cord injury, locomotor recovery, physical therapy, muscle stretch, joint range- of-motion, rat. Overall Project Summary: In this, the

  12. Directing Spinal Cord Plasticity: The Impact of Stretch Therapy on Functional Recovery after Spinal Cord Injury

    Science.gov (United States)

    2015-10-01

    2. Shown are stereotypic patterns of clonus (1) and spasms (2) recorded from muscles in the limb contralateral to the one being stretched. The clonus...therapy maneuvers involving force or torque applied to specific muscle groups) on functional recovery after spinal cord injury in a rat model. We have...situation. Key Words: spinal cord injury, locomotor recovery, physical therapy, muscle stretch, joint range- of-motion, rat. Overall Project Summary

  13. Spinal cord cavities; Differential-diagnostic criteria in magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Schubeus, P.; Schoerner, W.; Hosten, N.; Felix, R. (Free University of Berlin, University Clinic Rudolf Virchow, Charlottenburg (Germany). Department of Radiology)

    MRI examinations of 30 patients with idiopathic syringomyelia and 10 patients with cavities associated with an intramedullary neoplasm were evaluated with respect to typical MRI features in both groups. Al tumor-associated cases resembled the idiopathic syringomyelias in some portions of the cavity. At the tumor site, however, tumor-associated cases demonstrated typical findings; the cavities showed abrupt changes of diameter (10/10) and position (8/10) and the surrounding spinal cord demonstrated an uneven thickness (10/10), an increased signal intensity on T2-weighted images (10/10) and pathological contrast enhancement (7/7). Displacement of cerebellar tonsils below the level of the foramen magnum (921/30) and enlargement of the spinal canal (97/29) were characteristic features of idiopathic cases. In conclusion, MRI provides valuable criteria to differentiate between idiopathic and tumor-associated cavities. (author). 19 refs.; 4 figs.; 1 tab.

  14. Substantial early, but nonprogressive neuronal loss in multiple sclerosis (MS) spinal cord.

    Science.gov (United States)

    Schirmer, Lucas; Albert, Monika; Buss, Armin; Schulz-Schaeffer, Walter J; Antel, Jack P; Brück, Wolfgang; Stadelmann, Christine

    2009-11-01

    Research in multiple sclerosis (MS) has recently been focusing on the extent of neuroaxonal damage and its contribution to disease outcome. In the present study, we examined spinal cord tissue from 30 clinically well-characterized MS patients. MS, amyotrophic lateral sclerosis (ALS), and control spinal cord tissue were subjected to morphometric analysis and immunohistochemistry for markers of cell damage and regeneration. Data were related to disease duration and age at death. Here, we present evidence for substantial, nonprogressive neuronal loss on the cervical and lumbar levels early in the disease course of MS. Chromatolytic neurons and immunoreactivity for c-Jun and GAP43 were observed in the ventral gray matter in and adjacent to actively demyelinating lesions, pointing toward neuronal damage and regeneration as an early response to lesion formation.

  15. SOX2 expression is upregulated in adult spinal cord after contusion injury in both oligodendrocyte lineage and ependymal cells.

    Science.gov (United States)

    Lee, Hyun Joon; Wu, Junfang; Chung, Jumi; Wrathall, Jean R

    2013-02-01

    The upregulation of genes normally associated with development may occur in the adult after spinal cord injury (SCI). To test this, we performed real-time RT-PCR array analysis of mouse spinal cord mRNAs comparing embryonic day (E)14.5 spinal cord with intact adult and adult cord 1 week after a clinically relevant standardized contusion SCI. We found significantly increased expression of a large number of neural development- and stem cell-associated genes after SCI. These included Sox2 (sex determining region Y-box 2), a transcription factor that regulates self-renewal and potency of embryonic neural stem cells and is one of only a few key factors needed to induce pluripotency. In adult spinal cord of Sox2-EGFP mice, Sox2-EGFP was found mainly in the ependymal cells of the central canal. After SCI, both mRNA and protein levels of Sox2 were significantly increased at and near the injury site. By 1 day, Sox2 was upregulated in NG2(+) oligodendrocyte progenitor cells (OPC) in the spared white matter. By 3 days, Sox2-EGFP ependymal cells had increased proliferation and begun to form multiple layers and clusters of cells in the central lesion zone of the cord. Expression of Sox2 by NG2(+) cells had declined by 1 week, but increased numbers of other Sox2-expressing cells persisted for at least 4 weeks after SCI in both mouse and rat models. Thus, SCI upregulates many genes associated with development and neural stem cells, including the key transcription factor Sox2, which is expressed in a pool of cells that persists for weeks after SCI.

  16. Spinal cord injury reveals multilineage differentiation of ependymal cells.

    Science.gov (United States)

    Meletis, Konstantinos; Barnabé-Heider, Fanie; Carlén, Marie; Evergren, Emma; Tomilin, Nikolay; Shupliakov, Oleg; Frisén, Jonas

    2008-07-22

    Spinal cord injury often results in permanent functional impairment. Neural stem cells present in the adult spinal cord can be expanded in vitro and improve recovery when transplanted to the injured spinal cord, demonstrating the presence of cells that can promote regeneration but that normally fail to do so efficiently. Using genetic fate mapping, we show that close to all in vitro neural stem cell potential in the adult spinal cord resides within the population of ependymal cells lining the central canal. These cells are recruited by spinal cord injury and produce not only scar-forming glial cells, but also, to a lesser degree, oligodendrocytes. Modulating the fate of ependymal progeny after spinal cord injury may offer an alternative to cell transplantation for cell replacement therapies in spinal cord injury.

  17. Spinal cord injury reveals multilineage differentiation of ependymal cells.

    Directory of Open Access Journals (Sweden)

    Konstantinos Meletis

    2008-07-01

    Full Text Available Spinal cord injury often results in permanent functional impairment. Neural stem cells present in the adult spinal cord can be expanded in vitro and improve recovery when transplanted to the injured spinal cord, demonstrating the presence of cells that can promote regeneration but that normally fail to do so efficiently. Using genetic fate mapping, we show that close to all in vitro neural stem cell potential in the adult spinal cord resides within the population of ependymal cells lining the central canal. These cells are recruited by spinal cord injury and produce not only scar-forming glial cells, but also, to a lesser degree, oligodendrocytes. Modulating the fate of ependymal progeny after spinal cord injury may offer an alternative to cell transplantation for cell replacement therapies in spinal cord injury.

  18. Imatinib enhances functional outcome after spinal cord injury.

    Directory of Open Access Journals (Sweden)

    Mathew B Abrams

    Full Text Available We investigated whether imatinib (Gleevec®, Novartis, a tyrosine kinase inhibitor, could improve functional outcome in experimental spinal cord injury. Rats subjected to contusion spinal cord injury were treated orally with imatinib for 5 days beginning 30 minutes after injury. We found that imatinib significantly enhanced blood-spinal cord-barrier integrity, hindlimb locomotor function, sensorimotor integration, and bladder function, as well as attenuated astrogliosis and deposition of chondroitin sulfate proteoglycans, and increased tissue preservation. These improvements were associated with enhanced vascular integrity and reduced inflammation. Our results show that imatinib improves recovery in spinal cord injury by preserving axons and other spinal cord tissue components. The rapid time course of these beneficial effects suggests that the effects of imatinib are neuroprotective rather than neurorestorative. The positive effects on experimental spinal cord injury, obtained by oral delivery of a clinically used drug, makes imatinib an interesting candidate drug for clinical trials in spinal cord injury.

  19. Mechanical characterization of the injured spinal cord after lateral spinal hemisection injury in the rat.

    Science.gov (United States)

    Saxena, Tarun; Gilbert, Jeremy; Stelzner, Dennis; Hasenwinkel, Julie

    2012-06-10

    The glial scar formed at the site of traumatic spinal cord injury (SCI) has been classically hypothesized to be a potent physical and biochemical barrier to nerve regeneration. One longstanding hypothesis is that the scar acts as a physical barrier due to its increased stiffness in comparison to uninjured spinal cord tissue. However, the information regarding the mechanical properties of the glial scar in the current literature is mostly anecdotal and not well quantified. We monitored the mechanical relaxation behavior of injured rat spinal cord tissue at the site of mid-thoracic spinal hemisection 2 weeks and 8 weeks post-injury using a microindentation test method. Elastic moduli were calculated and a modified standard linear model (mSLM) was fit to the data to estimate the relaxation time constant and viscosity. The SLM was modified to account for a spectrum of relaxation times, a phenomenon common to biological tissues, by incorporating a stretched exponential term. Injured tissue exhibited significantly lower stiffness and elastic modulus in comparison to uninjured control tissue, and the results from the model parameters indicated that the relaxation time constant and viscosity of injured tissue were significantly higher than controls. This study presents direct micromechanical measurements of injured spinal cord tissue post-injury. The results of this study show that the injured spinal tissue displays complex viscoelastic behavior, likely indicating changes in tissue permeability and diffusivity.

  20. Estimated Risk Level of Unified Stereotactic Body Radiation Therapy Dose Tolerance Limits for Spinal Cord.

    Science.gov (United States)

    Grimm, Jimm; Sahgal, Arjun; Soltys, Scott G; Luxton, Gary; Patel, Ashish; Herbert, Scott; Xue, Jinyu; Ma, Lijun; Yorke, Ellen; Adler, John R; Gibbs, Iris C

    2016-04-01

    A literature review of more than 200 stereotactic body radiation therapy spine articles from the past 20 years found only a single article that provided dose-volume data and outcomes for each spinal cord of a clinical dataset: the Gibbs 2007 article (Gibbs et al, 2007(1)), which essentially contains the first 100 stereotactic body radiation therapy (SBRT) spine treatments from Stanford University Medical Center. The dataset is modeled and compared in detail to the rest of the literature review, which found 59 dose tolerance limits for the spinal cord in 1-5 fractions. We partitioned these limits into a unified format of high-risk and low-risk dose tolerance limits. To estimate the corresponding risk level of each limit we used the Gibbs 2007 clinical spinal cord dose-volume data for 102 spinal metastases in 74 patients treated by spinal radiosurgery. In all, 50 of the patients were previously irradiated to a median dose of 40Gy in 2-3Gy fractions and 3 patients developed treatment-related myelopathy. These dose-volume data were digitized into the dose-volume histogram (DVH) Evaluator software tool where parameters of the probit dose-response model were fitted using the maximum likelihood approach (Jackson et al, 1995(3)). Based on this limited dataset, for de novo cases the unified low-risk dose tolerance limits yielded an estimated risk of spinal cord injury of ≤1% in 1-5 fractions, and the high-risk limits yielded an estimated risk of ≤3%. The QUANTEC Dmax limits of 13Gy in a single fraction and 20Gy in 3 fractions had less than 1% risk estimated from this dataset, so we consider these among the low-risk limits. In the previously irradiated cohort, the estimated risk levels for 10 and 14Gy maximum cord dose limits in 5 fractions are 0.4% and 0.6%, respectively. Longer follow-up and more patients are required to improve the risk estimates and provide more complete validation.