WorldWideScience

Sample records for alphaproteobacteria

  1. Similar diversity of Alphaproteobacteria and nitrogenase gene amplicons on two related Sphagnum mosses

    Directory of Open Access Journals (Sweden)

    Anastasia eBragina

    2012-01-01

    Full Text Available Sphagnum mosses represent a main component in ombrotrophic wetlands. They harbor a specific and diverse microbial community with essential functions for the host. To understand extend and degree of host specificity, Sphagnum fallax and S. angustifolium, two phylogenetically closely related species, which show distinct habitat preference with respect to the nutrient level, were analyzed by a multifaceted approach. Microbial fingerprints obtained by PCR-SSCP (single-strand conformation polymorphism using universal, group-specific and functional primers were highly similar. Similarity was confirmed for colonization patterns obtained by fluorescence in situ hybridization (FISH coupled with confocal laser scanning microscopy (CLSM: Alphaproteobacteria were the main colonizers inside the hyaline cells of Sphagnum leaves. A deeper survey of Alphaproteobacteria by 16S rRNA gene amplicon sequencing reveals a high diversity with Acidocella, Acidisphaera, Rhodopila and Phenylobacterium as major genera for both mosses. Pathogen defense and nitrogen fixation are important functions of Sphagnum-associated bacteria, which are fulfilled by microbial communities of both Sphagna in a similar way. NifH libraries of Sphagnum-associated microbial communities were characterized by high diversity and abundance of Alphaproteobacteria but contained also diverse amplicons of other taxa, e.g. Cyanobacteria, Geobacter and Spirochaeta. Statistically significant differences between the microbial communities of both Sphagnum species could not be discovered in any of the experimental approach. Our results show that the same close relationship, which exists between the physical, morphological and chemical characteristics of Sphagnum mosses and the ecology and function of bog ecosystems, also connects moss plantlets with their associated bacterial communities.

  2. Paracatenula, an ancient symbiosis between thiotrophic Alphaproteobacteria and catenulid flatworms

    Science.gov (United States)

    Gruber-Vodicka, Harald Ronald; Dirks, Ulrich; Leisch, Nikolaus; Stoecker, Kilian; Bulgheresi, Silvia; Heindl, Niels Robert; Horn, Matthias; Lott, Christian; Loy, Alexander; Wagner, Michael; Ott, Jörg

    2011-01-01

    Harnessing chemosynthetic symbionts is a recurring evolutionary strategy. Eukaryotes from six phyla as well as one archaeon have acquired chemoautotrophic sulfur-oxidizing bacteria. In contrast to this broad host diversity, known bacterial partners apparently belong to two classes of bacteria—the Gamma- and Epsilonproteobacteria. Here, we characterize the intracellular endosymbionts of the mouthless catenulid flatworm genus Paracatenula as chemoautotrophic sulfur-oxidizing Alphaproteobacteria. The symbionts of Paracatenula galateia are provisionally classified as “Candidatus Riegeria galateiae” based on 16S ribosomal RNA sequencing confirmed by fluorescence in situ hybridization together with functional gene and sulfur metabolite evidence. 16S rRNA gene phylogenetic analysis shows that all 16 Paracatenula species examined harbor host species-specific intracellular Candidatus Riegeria bacteria that form a monophyletic group within the order Rhodospirillales. Comparing host and symbiont phylogenies reveals strict cocladogenesis and points to vertical transmission of the symbionts. Between 33% and 50% of the body volume of the various worm species is composed of bacterial symbionts, by far the highest proportion among all known endosymbiotic associations between bacteria and metazoans. This symbiosis, which likely originated more than 500 Mya during the early evolution of flatworms, is the oldest known animal–chemoautotrophic bacteria association. The distant phylogenetic position of the symbionts compared with other mutualistic or parasitic Alphaproteobacteria promises to illuminate the common genetic predispositions that have allowed several members of this class to successfully colonize eukaryote cells. PMID:21709249

  3. Nitrogen fixation and molecular oxygen: comparative genomic reconstruction of transcription regulation in Alphaproteobacteria

    Directory of Open Access Journals (Sweden)

    Olga V Tsoy

    2016-08-01

    Full Text Available Biological nitrogen fixation plays a crucial role in the nitrogen cycle. An ability to fix atmospheric nitrogen, reducing it to ammonium, was described for multiple species of Bacteria and Archaea. Being a complex and sensitive process, nitrogen fixation requires a complicated regulatory system, also, on the level of transcription. The transcriptional regulatory network for nitrogen fixation was extensively studied in several representatives of the class Alphaproteobacteria. This regulatory network includes the activator of nitrogen fixation NifA, working in tandem with the alternative sigma-factor RpoN as well as oxygen-responsive regulatory systems, one-component regulators FnrN/FixK and two-component system FixLJ. Here we used a comparative genomics analysis for in silico study of the transcriptional regulatory network in 50 genomes of Alphaproteobacteria. We extended the known regulons and proposed the scenario for the evolution of the nitrogen fixation transcriptional network. The reconstructed network substantially expands the existing knowledge of transcriptional regulation in nitrogen-fixing microorganisms and can be used for genetic experiments, metabolic reconstruction, and evolutionary analysis.

  4. Key Role of Alphaproteobacteria and Cyanobacteria in the Formation of Stromatolites of Lake Dziani Dzaha (Mayotte, Western Indian Ocean

    Directory of Open Access Journals (Sweden)

    Emmanuelle Gérard

    2018-05-01

    Full Text Available Lake Dziani Dzaha is a thalassohaline tropical crater lake located on the “Petite Terre” Island of Mayotte (Comoros archipelago, Western Indian Ocean. Stromatolites are actively growing in the shallow waters of the lake shores. These stromatolites are mainly composed of aragonite with lesser proportions of hydromagnesite, calcite, dolomite, and phyllosilicates. They are morphologically and texturally diverse ranging from tabular covered by a cauliflower-like crust to columnar ones with a smooth surface. High-throughput sequencing of bacterial and archaeal 16S rRNA genes combined with confocal laser scanning microscopy (CLSM analysis revealed that the microbial composition of the mats associated with the stromatolites was clearly distinct from that of the Arthrospira-dominated lake water. Unicellular-colonial Cyanobacteria belonging to the Xenococcus genus of the Pleurocapsales order were detected in the cauliflower crust mats, whereas filamentous Cyanobacteria belonging to the Leptolyngbya genus were found in the smooth surface mats. Observations using CLSM, scanning electron microscopy (SEM and Raman spectroscopy indicated that the cauliflower texture consists of laminations of aragonite, magnesium-silicate phase and hydromagnesite. The associated microbial mat, as confirmed by laser microdissection and whole-genome amplification (WGA, is composed of Pleurocapsales coated by abundant filamentous and coccoid Alphaproteobacteria. These phototrophic Alphaproteobacteria promote the precipitation of aragonite in which they become incrusted. In contrast, the Pleurocapsales are not calcifying but instead accumulate silicon and magnesium in their sheaths, which may be responsible for the formation of the Mg-silicate phase found in the cauliflower crust. We therefore propose that Pleurocapsales and Alphaproteobacteria are involved in the formation of two distinct mineral phases present in the cauliflower texture: Mg-silicate and aragonite

  5. Whole-Proteome Analysis of Twelve Species of Alphaproteobacteria Links Four Pathogens

    Directory of Open Access Journals (Sweden)

    Yunyun Zhou

    2013-11-01

    Full Text Available Thousands of whole-genome and whole-proteome sequences have been made available through advances in sequencing technology, and sequences of millions more organisms will become available in the coming years. This wealth of genetic information will provide numerous opportunities to enhance our understanding of these organisms including a greater understanding of relationships among species. Researchers have used 16S rRNA and other gene sequences to study the evolutionary origins of bacteria, but these strategies do not provide insight into the sharing of genes among bacteria via horizontal transfer. In this work we use an open source software program called pClust to cluster proteins from the complete proteomes of twelve species of Alphaproteobacteria and generate a dendrogram from the resulting orthologous protein clusters. We compare the results with dendrograms constructed using the 16S rRNA gene and multiple sequence alignment of seven housekeeping genes. Analysis of the whole proteomes of these pathogens grouped Rickettsia typhi with three other animal pathogens whereas conventional sequence analysis failed to group these pathogens together. We conclude that whole-proteome analysis can give insight into relationships among species beyond their phylogeny, perhaps reflecting the effects of horizontal gene transfer and potentially providing insight into the functions of shared genes by means of shared phenotypes.

  6. Insights into the transposable mobilome of Paracoccus spp. (Alphaproteobacteria).

    Science.gov (United States)

    Dziewit, Lukasz; Baj, Jadwiga; Szuplewska, Magdalena; Maj, Anna; Tabin, Mateusz; Czyzkowska, Anna; Skrzypczyk, Grazyna; Adamczuk, Marcin; Sitarek, Tomasz; Stawinski, Piotr; Tudek, Agnieszka; Wanasz, Katarzyna; Wardal, Ewa; Piechucka, Ewa; Bartosik, Dariusz

    2012-01-01

    Several trap plasmids (enabling positive selection of transposition events) were used to identify a pool of functional transposable elements (TEs) residing in bacteria of the genus Paracoccus (Alphaproteobacteria). Complex analysis of 25 strains representing 20 species of this genus led to the capture and characterization of (i) 37 insertion sequences (ISs) representing 9 IS families (IS3, IS5, IS6, IS21, IS66, IS256, IS1182, IS1380 and IS1634), (ii) a composite transposon Tn6097 generated by two copies of the ISPfe2 (IS1634 family) containing two predicted genetic modules, involved in the arginine deiminase pathway and daunorubicin/doxorubicin resistance, (iii) 3 non-composite transposons of the Tn3 family, including Tn5393 carrying streptomycin resistance and (iv) a transposable genomic island TnPpa1 (45 kb). Some of the elements (e.g. Tn5393, Tn6097 and ISs of the IS903 group of the IS5 family) were shown to contain strong promoters able to drive transcription of genes placed downstream of the target site of transposition. Through the application of trap plasmid pCM132TC, containing a promoterless tetracycline resistance reporter gene, we identified five ways in which transposition can supply promoters to transcriptionally silent genes. Besides highlighting the diversity and specific features of several TEs, the analyses performed in this study have provided novel and interesting information on (i) the dynamics of the process of transposition (e.g. the unusually high frequency of transposition of TnPpa1) and (ii) structural changes in DNA mediated by transposition (e.g. the generation of large deletions in the recipient molecule upon transposition of ISPve1 of the IS21 family). We also demonstrated the great potential of TEs and transposition in the generation of diverse phenotypes as well as in the natural amplification and dissemination of genetic information (of adaptative value) by horizontal gene transfer, which is considered the driving force of bacterial

  7. Insights into the transposable mobilome of Paracoccus spp. (Alphaproteobacteria.

    Directory of Open Access Journals (Sweden)

    Lukasz Dziewit

    Full Text Available Several trap plasmids (enabling positive selection of transposition events were used to identify a pool of functional transposable elements (TEs residing in bacteria of the genus Paracoccus (Alphaproteobacteria. Complex analysis of 25 strains representing 20 species of this genus led to the capture and characterization of (i 37 insertion sequences (ISs representing 9 IS families (IS3, IS5, IS6, IS21, IS66, IS256, IS1182, IS1380 and IS1634, (ii a composite transposon Tn6097 generated by two copies of the ISPfe2 (IS1634 family containing two predicted genetic modules, involved in the arginine deiminase pathway and daunorubicin/doxorubicin resistance, (iii 3 non-composite transposons of the Tn3 family, including Tn5393 carrying streptomycin resistance and (iv a transposable genomic island TnPpa1 (45 kb. Some of the elements (e.g. Tn5393, Tn6097 and ISs of the IS903 group of the IS5 family were shown to contain strong promoters able to drive transcription of genes placed downstream of the target site of transposition. Through the application of trap plasmid pCM132TC, containing a promoterless tetracycline resistance reporter gene, we identified five ways in which transposition can supply promoters to transcriptionally silent genes. Besides highlighting the diversity and specific features of several TEs, the analyses performed in this study have provided novel and interesting information on (i the dynamics of the process of transposition (e.g. the unusually high frequency of transposition of TnPpa1 and (ii structural changes in DNA mediated by transposition (e.g. the generation of large deletions in the recipient molecule upon transposition of ISPve1 of the IS21 family. We also demonstrated the great potential of TEs and transposition in the generation of diverse phenotypes as well as in the natural amplification and dissemination of genetic information (of adaptative value by horizontal gene transfer, which is considered the driving force of

  8. Influence of linear alkylbenzene sulfonate (LAS) on the structure of Alphaproteobacteria, Actinobacteria, and Acidobacteria communities in a soil microcosm.

    Science.gov (United States)

    Sánchez-Peinado, M del Mar; González-López, Jesús; Martínez-Toledo, M Victoria; Pozo, Clementina; Rodelas, Belén

    2010-03-01

    Linear alkylbenzene sulfonate (LAS) is the most used anionic surfactant in a worldwide scale and is considered a high-priority pollutant. LAS is regarded as a readily biodegradable product under aerobic conditions in aqueous media and is mostly removed in wastewater treatment plants, but an important fraction (20-25%) is immobilized in sewage sludge and persists under anoxic conditions. Due to the application of the sludge as a fertilizer, LAS reaches agricultural soil, and therefore, microbial toxicity tests have been widely used to evaluate the influence of LAS on soil microbial ecology. However, molecular-based community-level analyses have been seldom applied in studies regarding the effects of LAS on natural or engineered systems, and, to our knowledge, there are no reports of their use for such appraisals in agricultural soil. In this study, a microcosm system is used to evaluate the effects of a commercial mixture of LAS on the community structure of Alphaproteobacteria, Actinobacteria, and Acidobacteria in an agricultural soil. The microcosms consisted of agricultural soil columns (800 g) fed with sterile water (8 ml h(-1)) added of different concentration of LAS (10 or 50 mg l(-1)) for periods of time up to 21 days. Sterile water was added to control columns for comparison. The structures of Alphaproteobacteria, Actinobacteria, and Acidobacteria communities were analyzed by a cultivation independent method (temperature gradient gel electrophoresis (TGGE) separation of polymerase chain reaction (PCR)-amplified partial 16S rRNA genes). Relevant populations were identified by subsequent reamplification, DNA sequencing, and database comparisons. Cluster analysis of the TGGE fingerprints taking into consideration both the number of bands and their relative intensities revealed that the structure of the Alphaproteobacteria community was significantly changed in the presence of LAS, at both concentrations tested. The average number of bands was significantly

  9. Genome and metabolic network of Candidatus Phaeomarinobacter ectocarpi Ec32, a new candidate genus of Alphaproteobacteria frequently associated with brown algae

    Directory of Open Access Journals (Sweden)

    Simon M Dittami

    2014-07-01

    Full Text Available Rhizobiales and related orders of Alphaproteobacteria comprise several genera of nodule-inducing symbiotic bacteria associated with plant roots. Here we describe the genome and the metabolic network of Candidatus Phaeomarinobacter ectocarpi Ec32, a member of a new candidate genus closely related to Rhizobiales and found in association with cultures of the filamentous brown algal model Ectocarpus. The Ca. P. ectocarpi genome encodes numerous metabolic pathways that may be relevant for this bacterium to interact with algae. Notably, it possesses a large set of glycoside hydrolases and transporters, which may serve to process and assimilate algal metabolites. It also harbors several proteins likely to be involved in the synthesis of algal hormones such as auxins and cytokinins, as well as the vitamins pyridoxine, biotin, and thiamine. As of today, Ca. P. ectocarpi has not been successfully cultured, and identical 16S rDNA sequences have been found exclusively associated with Ectocarpus. However, related sequences (≥ 97% identity have also been detected free-living and in a Fucus vesiculosus microbiome barcoding project, indicating that the candidate genus Phaeomarinobacter may comprise several species, which may colonize different niches.

  10. Isolation, cultivation and genomic analysis of magnetosome biomineralization genes of a new genus of South-seeking magnetotactic cocci within the Alphaproteobacteria

    Energy Technology Data Exchange (ETDEWEB)

    Morillo, Viviana [Universidade Federal do Rio de Janeiro; Abreu, Fernanda [Universidade Federal do Rio de Janeiro; Araujo, Ana C [Universidade Federal do Rio de Janeiro; de Almeida, Luiz G [Laboratorio Nacional de Computacao Cientifica; Enrich-Prast, Alex [Universidade Federal do Rio de Janeiro; Farina, Marcos [Universidade Federal do Rio de Janeiro; de Vasconcelos, Ana T [Laboratorio Nacional de Computacao Cientifica; Bazylinski, Dennis A [Ames Laboratory; Lins, Ulysses [Universidade Federal do Rio de Janeiro

    2014-01-01

    Although magnetotactic bacteria (MTB) are ubiquitous in aquatic habitats, they are still considered fastidious microorganisms with regard to growth and cultivation with only a relatively low number of axenic cultures available to date. Here, we report the first axenic culture of an MTB isolated in the Southern Hemisphere (Itaipu Lagoon in Rio de Janeiro, Brazil). Cells of this new isolate are coccoid to ovoid in morphology and grow microaerophilically in semi-solid medium containing an oxygen concentration ([O2]) gradient either under chemoorganoheterotrophic or chemolithoautotrophic conditions. Each cell contains a single chain of approximately 10 elongated cuboctahedral magnetite (Fe3O4) magnetosomes. Phylogenetic analysis based on the 16S rRNA gene sequence shows that the coccoid MTB isolated in this study represents a new genus in the Alphaproteobacteria; the name Magnetofaba australis strain IT-1 is proposed. Preliminary genomic data obtained by pyrosequencing shows that M. australis strain IT-1 contains a genomic region with genes involved in biomineralization similar to those found in the most closely related magnetotactic cocci Magnetococcus marinus strain MC-1. However, organization of the magnetosome genes differs from M. marinus.

  11. The Invasive Brazilian Pepper Tree (Schinus terebinthifolius) Is Colonized by a Root Microbiome Enriched With Alphaproteobacteria and Unclassified Spartobacteria.

    Science.gov (United States)

    Dawkins, Karim; Esiobu, Nwadiuto

    2018-01-01

    Little is known about the rhizosphere microbiome of the Brazilian pepper tree (BP) - a noxious category 1 invasive plant inducing an enormous economic and ecological toll in Florida. Some invasive plants have been shown to drastically change the soil microbiome compared to other native plants. The rhizobacteria community structure of BP, two Florida native plants ( Hamelia patens and Bidens alba ) and bulk soils were characterized across six geographical sites. Although all 19 well-known and 10 poorly described phyla were observed in all plant rhizospheres, BP contained the least total bacterial abundance (OTUs) with a distinct bacteria community structure and clustering patterns differing significantly (pCOA and PERMANOVA) from the natives and bulk soil. The BP rhizosphere community contained the highest overall Proteobacteria diversity (Shannon's diversity 3.25) in spite of a twofold reduction in richness of the Gammaproteobacteria. Remarkably, the invasive BP rhizosphere was highly enriched with Alphaproteobacteria, dominated by Rhizobiales, including Rhodoplanes and Bradyrhizobiaceae. Also, the relative abundance of Spartobacteria under BP rhizosphere was more than twice that of native plants and bulk soil; featuring unique members of the family Chthoniobacteraceae (DA101 genus). The trend was different for the family Pedosphaerae in the phylum Verrucomicrobia where the abundance declined under BP (26%) compared to (33-66%) for the H. patens native plant and bulk soil. BP shared the lowest number of unique phylotypes with bulk soil (146) compared to the other native plants with bulk soil ( B. alba - 222, H. patens - 520) suggestive of its capacity to overcome biotic resistance. Although there were no specific biomarkers found, taken together, our data suggests that the occurrence of key bacteria groups across multiple taxonomic ranks provides a somewhat consistent profile of the invasive BP rhizo-community. Furthermore, based on the observed prevalence of a

  12. The Invasive Brazilian Pepper Tree (Schinus terebinthifolius Is Colonized by a Root Microbiome Enriched With Alphaproteobacteria and Unclassified Spartobacteria

    Directory of Open Access Journals (Sweden)

    Karim Dawkins

    2018-05-01

    Full Text Available Little is known about the rhizosphere microbiome of the Brazilian pepper tree (BP – a noxious category 1 invasive plant inducing an enormous economic and ecological toll in Florida. Some invasive plants have been shown to drastically change the soil microbiome compared to other native plants. The rhizobacteria community structure of BP, two Florida native plants (Hamelia patens and Bidens alba and bulk soils were characterized across six geographical sites. Although all 19 well-known and 10 poorly described phyla were observed in all plant rhizospheres, BP contained the least total bacterial abundance (OTUs with a distinct bacteria community structure and clustering patterns differing significantly (pCOA and PERMANOVA from the natives and bulk soil. The BP rhizosphere community contained the highest overall Proteobacteria diversity (Shannon’s diversity 3.25 in spite of a twofold reduction in richness of the Gammaproteobacteria. Remarkably, the invasive BP rhizosphere was highly enriched with Alphaproteobacteria, dominated by Rhizobiales, including Rhodoplanes and Bradyrhizobiaceae. Also, the relative abundance of Spartobacteria under BP rhizosphere was more than twice that of native plants and bulk soil; featuring unique members of the family Chthoniobacteraceae (DA101 genus. The trend was different for the family Pedosphaerae in the phylum Verrucomicrobia where the abundance declined under BP (26% compared to (33–66% for the H. patens native plant and bulk soil. BP shared the lowest number of unique phylotypes with bulk soil (146 compared to the other native plants with bulk soil (B. alba – 222, H. patens – 520 suggestive of its capacity to overcome biotic resistance. Although there were no specific biomarkers found, taken together, our data suggests that the occurrence of key bacteria groups across multiple taxonomic ranks provides a somewhat consistent profile of the invasive BP rhizo-community. Furthermore, based on the observed

  13. Phylogenomic analysis of Odyssella thessalonicensis fortifies the common origin of Rickettsiales, Pelagibacter ubique and Reclimonas americana mitochondrion.

    Directory of Open Access Journals (Sweden)

    Kalliopi Georgiades

    Full Text Available BACKGROUND: The evolution of the Alphaproteobacteria and origin of the mitochondria are topics of considerable debate. Most studies have placed the mitochondria ancestor within the Rickettsiales order. Ten years ago, the bacterium Odyssella thessalonicensis was isolated from Acanthamoeba spp., and the 16S rDNA phylogeny placed it within the Rickettsiales. Recently, the whole genome of O. thessalonicensis has been sequenced, and 16S rDNA phylogeny and more robust and accurate phylogenomic analyses have been performed with 65 highly conserved proteins. METHODOLOGY/PRINCIPAL FINDINGS: The results suggested that the O. thessalonicensis emerged between the Rickettsiales and other Alphaproteobacteria. The mitochondrial proteins of the Reclinomonas americana have been used to locate the phylogenetic position of the mitochondrion ancestor within the Alphaproteobacteria tree. Using the K tree score method, nine mitochondrion-encoded proteins, whose phylogenies were congruent with the Alphaproteobacteria phylogenomic tree, have been selected and concatenated for Bayesian and Maximum Likelihood phylogenies. The Reclinomonas americana mitochondrion is a sister taxon to the free-living bacteria Candidatus Pelagibacter ubique, and together, they form a clade that is deeply rooted in the Rickettsiales clade. CONCLUSIONS/SIGNIFICANCE: The Reclinomonas americana mitochondrion phylogenomic study confirmed that mitochondria emerged deeply in the Rickettsiales clade and that they are closely related to Candidatus Pelagibacter ubique.

  14. Differential distribution and abundance of diazotrophic bacterial communities across different soil niches using a gene-targeted clone library approach.

    Science.gov (United States)

    Yousuf, Basit; Kumar, Raghawendra; Mishra, Avinash; Jha, Bhavanath

    2014-11-01

    Diazotrophs are key players of the globally important biogeochemical nitrogen cycle, having a significant role in maintaining ecosystem sustainability. Saline soils are pristine and unexplored habitats representing intriguing ecosystems expected to harbour potential diazotrophs capable of adapting in extreme conditions, and these implicated organisms are largely obscure. Differential occurrence of diazotrophs was studied by the nifH gene-targeted clone library approach. Four nifH gene clone libraries were constructed from different soil niches, that is saline soils (low and high salinity; EC 3.8 and 7.1 ds m(-1) ), and agricultural and rhizosphere soil. Additionally, the abundance of diazotrophic community members was assessed using quantitative PCR. Results showed environment-dependent metabolic versatility and the presence of nitrogen-fixing bacteria affiliated with a range of taxa, encompassing members of the Alphaproteobacteria, Betaproteobacteria, Deltaproteobacteria, Gammaproteobacteria, Cyanobacteria and Firmicutes. The analyses unveiled the dominance of Alphaproteobacteria and Gammaproteobacteria (Pseudomonas, Halorhodospira, Ectothiorhodospira, Bradyrhizobium, Agrobacterium, Amorphomonas) as nitrogen fixers in coastal-saline soil ecosystems, and Alphaproteobacteria and Betaproteobacteria (Bradyrhizobium, Azohydromonas, Azospirillum, Ideonella) in agricultural/rhizosphere ecosystems. The results revealed a repertoire of novel nitrogen-fixing bacterial guilds particularly in saline soil ecosystems. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  15. Exploring the plant-associated bacterial communities in Medicago sativa L

    Directory of Open Access Journals (Sweden)

    Pini Francesco

    2012-05-01

    Full Text Available Abstract Background Plant-associated bacterial communities caught the attention of several investigators which study the relationships between plants and soil and the potential application of selected bacterial species in crop improvement and protection. Medicago sativa L. is a legume crop of high economic importance as forage in temperate areas and one of the most popular model plants for investigations on the symbiosis with nitrogen fixing rhizobia (mainly belonging to the alphaproteobacterial species Sinorhizobium meliloti. However, despite its importance, no studies have been carried out looking at the total bacterial community associated with the plant. In this work we explored for the first time the total bacterial community associated with M. sativa plants grown in mesocosms conditions, looking at a wide taxonomic spectrum, from the class to the single species (S. meliloti level. Results Results, obtained by using Terminal-Restriction Fragment Length Polymorphism (T-RFLP analysis, quantitative PCR and sequencing of 16 S rRNA gene libraries, showed a high taxonomic diversity as well as a dominance by members of the class Alphaproteobacteria in plant tissues. Within Alphaproteobacteria the families Sphingomonadaceae and Methylobacteriaceae were abundant inside plant tissues, while soil Alphaproteobacteria were represented by the families of Hyphomicrobiaceae, Methylocystaceae, Bradyirhizobiaceae and Caulobacteraceae. At the single species level, we were able to detect the presence of S. meliloti populations in aerial tissues, nodules and soil. An analysis of population diversity on nodules and soil showed a relatively low sharing of haplotypes (30-40% between the two environments and between replicate mesocosms, suggesting drift as main force shaping S. meliloti population at least in this system. Conclusions In this work we shed some light on the bacterial communities associated with M. sativa plants, showing that Alphaproteobacteria may

  16. Tungsten: A Preliminary Environmental Risk Assessment

    Science.gov (United States)

    2011-05-01

    Tungsten Effects on Soil Microbial Communities BUILDING STRONG® Actinobacteria Bacteroidetes Firmicutes alpha-Proteobacteria beta-Proteobacteria gamma...Persistence of Actinobacteria & gamma- Proteobacteria • Actinobacteria – includes the actinomycetes  γ-Proteobacteria – includes a variety of microbes

  17. How the mitochondrion was shaped by radical differences in substrates: what carnitine shuttles and uncoupling tell us about mitochondrial evolution in response to ROS

    NARCIS (Netherlands)

    Speijer, Dave

    2014-01-01

    As free-living organisms, alpha-proteobacteria produce reactive oxygen species (ROS) that diffuse into the surroundings; once constrained inside the archaeal ancestor of eukaryotes, however, ROS production presented evolutionary pressures - especially because the alpha-proteobacterial symbiont made

  18. Intestinal microbiota and immune related genes in sea cucumber (Apostichopus japonicus) response to dietary β-glucan supplementation

    International Nuclear Information System (INIS)

    Yang, Gang; Xu, Zhenjiang; Tian, Xiangli; Dong, Shuanglin; Peng, Mo

    2015-01-01

    β-glucan is a prebiotic well known for its beneficial outcomes on sea cucumber health through modifying the host intestinal microbiota. High-throughput sequencing techniques provide an opportunity for the identification and characterization of microbes. In this study, we investigated the intestinal microbial community composition, interaction among species, and intestinal immune genes in sea cucumber fed with diet supplemented with or without β-glucan supplementation. The results show that the intestinal dominant classes in the control group are Flavobacteriia, Gammaproteobacteria, and Alphaproteobacteria, whereas Alphaproteobacteria, Flavobacteriia, and Verrucomicrobiae are enriched in the β-glucan group. Dietary β-glucan supplementation promoted the proliferation of the family Rhodobacteraceae of the Alphaproteobacteria class and the family Verrucomicrobiaceae of the Verrucomicrobiae class and reduced the relative abundance of the family Flavobacteriaceae of Flavobacteria class. The ecological network analysis suggests that dietary β-glucan supplementation can alter the network interactions among different microbial functional groups by changing the microbial community composition and topological roles of the OTUs in the ecological network. Dietary β-glucan supplementation has a positive impact on immune responses of the intestine of sea cucumber by activating NF-κB signaling pathway, probably through modulating the balance of intestinal microbiota. - Highlights: • Dietary β-glucan supplementation increases the abundance of Rhodobacteraceae and Verrucomicrobiaceae in the intestine. • Dietary β-glucan supplementation changes the topological roles of OTUs in the ecological network. • Dietary β-glucan supplementation has a positive impact on the immune response of intestine of sea cucumber

  19. Intestinal microbiota and immune related genes in sea cucumber (Apostichopus japonicus) response to dietary β-glucan supplementation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Gang [The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China (China); Xu, Zhenjiang [Biofrontiers Institute, University of Colorado, Boulder, CO (United States); Tian, Xiangli, E-mail: xianglitian@ouc.edu.cn [The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China (China); Dong, Shuanglin [The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China (China); Peng, Mo [School of Animal Science and Technology, Jiangxi Agricultural University (China)

    2015-02-27

    β-glucan is a prebiotic well known for its beneficial outcomes on sea cucumber health through modifying the host intestinal microbiota. High-throughput sequencing techniques provide an opportunity for the identification and characterization of microbes. In this study, we investigated the intestinal microbial community composition, interaction among species, and intestinal immune genes in sea cucumber fed with diet supplemented with or without β-glucan supplementation. The results show that the intestinal dominant classes in the control group are Flavobacteriia, Gammaproteobacteria, and Alphaproteobacteria, whereas Alphaproteobacteria, Flavobacteriia, and Verrucomicrobiae are enriched in the β-glucan group. Dietary β-glucan supplementation promoted the proliferation of the family Rhodobacteraceae of the Alphaproteobacteria class and the family Verrucomicrobiaceae of the Verrucomicrobiae class and reduced the relative abundance of the family Flavobacteriaceae of Flavobacteria class. The ecological network analysis suggests that dietary β-glucan supplementation can alter the network interactions among different microbial functional groups by changing the microbial community composition and topological roles of the OTUs in the ecological network. Dietary β-glucan supplementation has a positive impact on immune responses of the intestine of sea cucumber by activating NF-κB signaling pathway, probably through modulating the balance of intestinal microbiota. - Highlights: • Dietary β-glucan supplementation increases the abundance of Rhodobacteraceae and Verrucomicrobiaceae in the intestine. • Dietary β-glucan supplementation changes the topological roles of OTUs in the ecological network. • Dietary β-glucan supplementation has a positive impact on the immune response of intestine of sea cucumber.

  20. Spotted fever rickettsiae in wild-living rodents from south-western Poland.

    NARCIS (Netherlands)

    Gajda, Ewa; Hildebrand, Joanna; Sprong, Hein; Buńkowska-Gawlik, Katarzyna; Perec-Matysiak, Agnieszka; Coipan, Elena Claudia

    2017-01-01

    Rickettsiae are obligate intracellular alpha-proteobacteria. They are transmitted via arthropod vectors, which transmit the bacteria between animals and occasionally to humans. So far, much research has been conducted to indicate reservoir hosts for these microorganisms, but our knowledge is still

  1. Genomic differentiation among two strains of the PS1 clade isolated from geographically separated marine habitats

    KAUST Repository

    Jimenez Infante, Francy M.; Ngugi, David; Alam, Intikhab; Rashid, Mamoon; Ba Alawi, Wail; Kamau, Allan; Bajic, Vladimir B.; Stingl, Ulrich

    2014-01-01

    Using dilution-to-extinction cultivation, we isolated a strain affiliated with the PS1 clade from surface waters of the Red Sea. Strain RS24 represents the second isolate of this group of marine Alphaproteobacteria after IMCC14465 that was isolated

  2. Diversity of Nitrate-Reducing and Denitrifying Bacteria in a Marine Aquaculture Biofilter and their Response to Sulfide

    DEFF Research Database (Denmark)

    Krieger, Bärbel; Schwermer, Carsten U.; Rezakhani, Nastaran

    2006-01-01

    with Alphaproteobacteria but also including Beta- and Gammaproteobacteria, Bacteroidetes, Firmicutes, and Actinobacteria. The diversity of the isolates was compared to the cultivation-independent diversity of nitrate-reducing and denitrifying bacteria based on narG and nosZ as functional marker genes. Growth experiments...

  3. Metagenomes of Mediterranean coastal lagoons.

    Science.gov (United States)

    Ghai, Rohit; Hernandez, Claudia Mella; Picazo, Antonio; Mizuno, Carolina Megumi; Ininbergs, Karolina; Díez, Beatriz; Valas, Ruben; DuPont, Christopher L; McMahon, Katherine D; Camacho, Antonio; Rodriguez-Valera, Francisco

    2012-01-01

    Coastal lagoons, both hypersaline and freshwater, are common, but still understudied ecosystems. We describe, for the first time, using high throughput sequencing, the extant microbiota of two large and representative Mediterranean coastal lagoons, the hypersaline Mar Menor, and the freshwater Albufera de Valencia, both located on the south eastern coast of Spain. We show there are considerable differences in the microbiota of both lagoons, in comparison to other marine and freshwater habitats. Importantly, a novel uncultured sulfur oxidizing Alphaproteobacteria was found to dominate bacterioplankton in the hypersaline Mar Menor. Also, in the latter prokaryotic cyanobacteria were almost exclusively comprised by Synechococcus and no Prochlorococcus was found. Remarkably, the microbial community in the freshwaters of the hypertrophic Albufera was completely in contrast to known freshwater systems, in that there was a near absence of well known and cosmopolitan groups of ultramicrobacteria namely Low GC Actinobacteria and the LD12 lineage of Alphaproteobacteria.

  4. Microbial Community Strucure of a Tropical Wastewater Stabilization Pond (Cajati, Brazil)

    DEFF Research Database (Denmark)

    Nishio, Sandra; Schramm, Andreas; Pellizari, V.

    seasons. CARD-FISH successfully detected 55-85% and 40-50% of all cells in the water and sludge samples, respectively, and generally confirmed the DGGE results. The bacterial community was dominated by unicellular cyanobacteria, followed by either Beta- or Alphaproteobacteria, depending on the season...

  5. Characterization and transcriptional analysis of two gene clusters for type IV secretion machinery in Wolbachia of Armadillidium vulgare

    DEFF Research Database (Denmark)

    Félix, Christine; Pichon, Samuel; Braquart-Varnier, Christine

    2008-01-01

    Wolbachia are maternally inherited alpha-proteobacteria that induce feminization of genetic males in most terrestrial crustacean isopods. Two clusters of vir genes for a type IV secretion machinery have been identified at two separate loci and characterized for the first time in a feminizing Wolb...

  6. Bacterioplankton diversity and community composition in the Southern Lagoon of Venice.

    Science.gov (United States)

    Simonato, Francesca; Gómez-Pereira, Paola R; Fuchs, Bernhard M; Amann, Rudolf

    2010-04-01

    The Lagoon of Venice is a large water basin that exchanges water with the Northern Adriatic Sea through three large inlets. In this study, the 16S rRNA approach was used to investigate the bacterial diversity and community composition within the southern basin of the Lagoon of Venice and at one inlet in October 2007 and June 2008. Comparative sequence analysis of 645 mostly partial 16S rRNA gene sequences indicated high diversity and dominance of Alphaproteobacteria, Gammaproteobacteria and Bacteroidetes at the lagoon as well as at the inlet station, therefore pointing to significant mixing. Many of these sequences were close to the 16S rRNA of marine, often coastal, bacterioplankton, such as the Roseobacter clade, the family Vibrionaceae, and class Flavobacteria. Sequences of Actinobacteria were indicators of a freshwater input. The composition of the bacterioplankton was quantified by catalyzed reporter deposition fluorescence in situ hybridization (CARD-FISH) with a set of rRNA-targeted oligonucleotide probes. CARD-FISH counts corroborated the dominance of members of the phyla Alphaproteobacteria, Gammaproteobacteria and Bacteroidetes. When assessed by a probe set for the quantification of selected clades within Alphaproteobacteria and Gammaproteobacteria, bacterioplankton composition differed between October 2007 and June 2008, and also between the inlet and the lagoon. In particular, members of the readily culturable copiotrophic gammaproteobacterial genera Vibrio, Alteromonas and Pseudoalteromonas were enriched in the southern basin of the Lagoon of Venice. Interestingly, the alphaproteobacterial SAR11 clade and related clusters were also present in high abundances at the inlet and within the lagoon, which was indicative of inflow of water from the open sea.

  7. Phylogenetic characterization of epibiotic bacteria in the accessory nidamental gland and egg capsules of the squid Loligo pealei (Cephalopoda:Loliginidae).

    Science.gov (United States)

    Barbieri, E; Paster, B J; Hughes, D; Zurek, L; Moser, D P; Teske, A; Sogin, M L

    2001-03-01

    Sexually mature female squid Loligo pealei harbour dense bacterial communities in their accessory nidamental glands (ANGs) and in their egg capsules (ECs). This study describes a molecular approach using the 16S rRNA gene (rDNA) to identify bacterial populations within the ANG and the ECs of the North Atlantic squid species L. pealei. Fluorescent in situ hybridization (FISH) and 16S rDNA analysis showed that predominantly alpha- and, to a lesser extent, gamma-proteobacteria were the predominant components of the ANG and EC bacterial communities. Sequencing results showed the presence of alpha-proteobacterial populations affiliated with the Roseobacter group and additional deep-branching alpha-proteobacterial lineages. In contrast, isolates from the ANG and ECs contained only a few alpha-proteobacteria of the Roseobacter group compared with several gamma-proteobacterial isolates, mostly Shewanella and Pseudoalteromonas species. Most of the ANG-associated bacterial populations were also found within the ECs of L. pealei. The molecular approach allowed the visualization of alpha-proteobacteria as major constituents of a bacterial symbiosis within the reproductive system of the Loliginidae.

  8. Resilience of SAR11 bacteria to rapid acidification in the high latitude open ocean

    OpenAIRE

    Hartmann, Manuela; Hill, Polly G.; Tynan, Eithne; Achterberg, Eric P.; Leakey, Raymond J. G.; Zubkov, Mikhail V.

    2016-01-01

    Ubiquitous SAR11 Alphaproteobacteria numerically dominate marine planktonic communities. Because they are excruciatingly difficult to cultivate, there is comparatively little known about their physiology and metabolic responses to long- and short- term environmental changes. As surface oceans take up anthropogenic, atmospheric CO2, the consequential process of ocean acidification could affect the global biogeochemical significance of SAR11. Shipping accidents or inadvertent release of chemica...

  9. Biodegradation of weathered polystyrene films in seawater microcosms

    OpenAIRE

    Syranidou, Evdokia; Karkanorachaki, Katerina; Amorotti, Filippo; Franchini, Martina; Repouskou, Eftychia; Kaliva, Maria; Vamvakaki, Maria; Kolvenbach, Boris; Fava, Fabio; Corvini, Philippe F.-X.; Kalogerakis, Nicolas

    2017-01-01

    A microcosm experiment was conducted at two phases in order to investigate the ability of indigenous consortia alone or bioaugmented to degrade weathered polystyrene (PS) films under simulated marine conditions. Viable populations were developed on PS surfaces in a time dependent way towards convergent biofilm communities, enriched with hydrocarbon and xenobiotics degradation genes. Members of Alphaproteobacteria and Gammaproteobacteria were highly enriched in the acclimated plastic associate...

  10. Diversity of bacteria producing pigmented colonies in aerosol, snow and soil samples from remote glacial areas (Antarctica, Alps and Andes)

    Science.gov (United States)

    González-Toril, E.; Amils, R.; Delmas, R. J.; Petit, J.-R.; Komárek, J.; Elster, J.

    2008-04-01

    Four different communities and one culture of pigmented microbial assemblages were obtained by incubation in mineral medium of samples collected from high elevation snow in the Alps (Mt. Blanc area) and the Andes (Nevado Illimani summit, Bolivia), from Antarctic aerosol (French station Dumont d'Urville) and a maritime Antarctic soil (King George Island, South Shetlands, Uruguay Station Artigas). Molecular analysis of more than 200 16S rRNA gene sequences showed that all cultured cells belong to the Bacteria domain. The phylogenetic comparison with the currently available rDNA database allowed the identification of sequences belonging to Proteobacteria (Alpha-, Beta- and Gamma-proteobacteria), Actinobacteria and Bacteroidetes phyla. The Andes snow culture was the richest in bacterial diversity (eight microorganisms identified) and the maritime Antarctic soil the poorest (only one). Snow samples from Col du midi (Alps) and the Andes shared the highest number of identified microorganisms (Agrobacterium, Limnobacter, Aquiflexus and two uncultured Alphaproteobacteria clones). These two sampling sites also shared four sequences with the Antarctic aerosol sample (Limnobacter, Pseudonocardia and an uncultured Alphaproteobacteria clone). The only microorganism identified in the maritime Antarctica soil (Brevundimonas sp.) was also detected in the Antarctic aerosol. The two snow samples from the Alps only shared one common microorganism. Most of the identified microorganisms have been detected previously in cold environments (Dietzia kujamenisi, Pseudonocardia Antarctica, Hydrogenophaga palleronii and Brebundimonas sp.), marine sediments (Aquiflexus balticus, Pseudomonas pseudoalkaligenes, Pseudomonas sp. and one uncultured Alphaproteobacteria), and soils and rocks (Pseudonocardia sp., Agrobactrium sp., Limnobacter sp. and two uncultured Alphaproteobacetria clones). Air current dispersal is the best model to explain the presence of very specific microorganisms, like those

  11. Propagation of Arthropod-Borne Rickettsia spp. in Two Mosquito Cell Lines▿

    OpenAIRE

    Sakamoto, Joyce M.; Azad, Abdu F.

    2007-01-01

    Rickettsiae are obligate intracellular alphaproteobacteria that include pathogenic species in the spotted fever, typhus, and transitional groups. The development of a standardized cell line in which diverse rickettsiae can be grown and compared would be highly advantageous to investigate the differences among and between pathogenic and nonpathogenic species of rickettsiae. Although several rickettsial species have been grown in tick cells, tick cells are more difficult to maintain and they gr...

  12. Methanotrophic bacteria in warm geothermal spring sediments identified using stable-isotope probing.

    Science.gov (United States)

    Sharp, Christine E; Martínez-Lorenzo, Azucena; Brady, Allyson L; Grasby, Stephen E; Dunfield, Peter F

    2014-10-01

    We investigated methanotrophic bacteria in sediments of several warm geothermal springs ranging in temperature from 22 to 45 °C. Methane oxidation was measured at potential rates up to 141 μmol CH4 d(-1) g(-1) sediment. Active methanotrophs were identified using (13) CH4 stable-isotope probing (SIP) incubations performed at close to in situ temperatures for each site. Quantitative (q) PCR of pmoA genes identified the position of the heavy ((13) C-labelled) DNA fractions in density gradients, and 16S rRNA gene pyrotag sequencing of the heavy fractions was performed to identify the active methanotrophs. Methanotroph communities identified in heavy fractions of all samples were predominated by species similar (≥ 95% 16S rRNA gene identities) to previously characterized Gammaproteobacteria and Alphaproteobacteria methanotrophs. Among the five hottest samples (45 °C), members of the Gammaproteobacteria genus Methylocaldum dominated in two cases, while three others were dominated by an OTU closely related (96.8% similarity) to the Alphaproteobacteria genus Methylocapsa. These results suggest that diverse methanotroph groups are adapted to warm environments, including the Methylocapsa-Methylocella-Methyloferula group, which has previously only been detected in cooler sites. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  13. Methane assimilation and trophic interactions with marine Methylomicrobium in deep-water coral reef sediment off the coast of Norway.

    Science.gov (United States)

    Jensen, Sigmund; Neufeld, Josh D; Birkeland, Nils-Kåre; Hovland, Martin; Murrell, John Colin

    2008-11-01

    Deep-water coral reefs are seafloor environments with diverse biological communities surrounded by cold permanent darkness. Sources of energy and carbon for the nourishment of these reefs are presently unclear. We investigated one aspect of the food web using DNA stable-isotope probing (DNA-SIP). Sediment from beneath a Lophelia pertusa reef off the coast of Norway was incubated until assimilation of 5 micromol 13CH4 g(-1) wet weight occurred. Extracted DNA was separated into 'light' and 'heavy' fractions for analysis of labelling. Bacterial community fingerprinting of PCR-amplified 16S rRNA gene fragments revealed two predominant 13C-specific bands. Sequencing of these bands indicated that carbon from 13CH4 had been assimilated by a Methylomicrobium and an uncultivated member of the Gammaproteobacteria. Cloning and sequencing of 16S rRNA genes from the heavy DNA, in addition to genes encoding particulate methane monooxygenase and methanol dehydrogenase, all linked Methylomicrobium with methane metabolism. Putative cross-feeders were affiliated with Methylophaga (Gammaproteobacteria), Hyphomicrobium (Alphaproteobacteria) and previously unrecognized methylotrophs of the Gammaproteobacteria, Alphaproteobacteria, Deferribacteres and Bacteroidetes. This first marine methane SIP study provides evidence for the presence of methylotrophs that participate in sediment food webs associated with deep-water coral reefs.

  14. Phylogenetic analysis of a microbialite-forming microbial mat from a hypersaline lake of the Kiritimati atoll, Central Pacific.

    Science.gov (United States)

    Schneider, Dominik; Arp, Gernot; Reimer, Andreas; Reitner, Joachim; Daniel, Rolf

    2013-01-01

    On the Kiritimati atoll, several lakes exhibit microbial mat-formation under different hydrochemical conditions. Some of these lakes trigger microbialite formation such as Lake 21, which is an evaporitic, hypersaline lake (salinity of approximately 170‰). Lake 21 is completely covered with a thick multilayered microbial mat. This mat is associated with the formation of decimeter-thick highly porous microbialites, which are composed of aragonite and gypsum crystals. We assessed the bacterial and archaeal community composition and its alteration along the vertical stratification by large-scale analysis of 16S rRNA gene sequences of the nine different mat layers. The surface layers are dominated by aerobic, phototrophic, and halotolerant microbes. The bacterial community of these layers harbored Cyanobacteria (Halothece cluster), which were accompanied with known phototrophic members of the Bacteroidetes and Alphaproteobacteria. In deeper anaerobic layers more diverse communities than in the upper layers were present. The deeper layers were dominated by Spirochaetes, sulfate-reducing bacteria (Deltaproteobacteria), Chloroflexi (Anaerolineae and Caldilineae), purple non-sulfur bacteria (Alphaproteobacteria), purple sulfur bacteria (Chromatiales), anaerobic Bacteroidetes (Marinilabiacae), Nitrospirae (OPB95), Planctomycetes and several candidate divisions. The archaeal community, including numerous uncultured taxonomic lineages, generally changed from Euryarchaeota (mainly Halobacteria and Thermoplasmata) to uncultured members of the Thaumarchaeota (mainly Marine Benthic Group B) with increasing depth.

  15. Phylogenetic analysis of a microbialite-forming microbial mat from a hypersaline lake of the Kiritimati atoll, Central Pacific.

    Directory of Open Access Journals (Sweden)

    Dominik Schneider

    Full Text Available On the Kiritimati atoll, several lakes exhibit microbial mat-formation under different hydrochemical conditions. Some of these lakes trigger microbialite formation such as Lake 21, which is an evaporitic, hypersaline lake (salinity of approximately 170‰. Lake 21 is completely covered with a thick multilayered microbial mat. This mat is associated with the formation of decimeter-thick highly porous microbialites, which are composed of aragonite and gypsum crystals. We assessed the bacterial and archaeal community composition and its alteration along the vertical stratification by large-scale analysis of 16S rRNA gene sequences of the nine different mat layers. The surface layers are dominated by aerobic, phototrophic, and halotolerant microbes. The bacterial community of these layers harbored Cyanobacteria (Halothece cluster, which were accompanied with known phototrophic members of the Bacteroidetes and Alphaproteobacteria. In deeper anaerobic layers more diverse communities than in the upper layers were present. The deeper layers were dominated by Spirochaetes, sulfate-reducing bacteria (Deltaproteobacteria, Chloroflexi (Anaerolineae and Caldilineae, purple non-sulfur bacteria (Alphaproteobacteria, purple sulfur bacteria (Chromatiales, anaerobic Bacteroidetes (Marinilabiacae, Nitrospirae (OPB95, Planctomycetes and several candidate divisions. The archaeal community, including numerous uncultured taxonomic lineages, generally changed from Euryarchaeota (mainly Halobacteria and Thermoplasmata to uncultured members of the Thaumarchaeota (mainly Marine Benthic Group B with increasing depth.

  16. Plants of the fynbos biome harbour host species-specific bacterial communities.

    Science.gov (United States)

    Miyambo, Tsakani; Makhalanyane, Thulani P; Cowan, Don A; Valverde, Angel

    2016-08-01

    The fynbos biome in South Africa is globally recognised as a plant biodiversity hotspot. However, very little is known about the bacterial communities associated with fynbos plants, despite interactions between primary producers and bacteria having an impact on the physiology of both partners and shaping ecosystem diversity. This study reports on the structure, phylogenetic composition and potential roles of the endophytic bacterial communities located in the stems of three fynbos plants (Erepsia anceps, Phaenocoma prolifera and Leucadendron laureolum). Using Illumina MiSeq 16S rRNA sequencing we found that different subpopulations of Deinococcus-Thermus, Alphaproteobacteria, Acidobacteria and Firmicutes dominated the endophytic bacterial communities. Alphaproteobacteria and Actinobacteria were prevalent in P. prolifera, whereas Deinococcus-Thermus dominated in L. laureolum, revealing species-specific host-bacteria associations. Although a high degree of variability in the endophytic bacterial communities within hosts was observed, we also detected a core microbiome across the stems of the three plant species, which accounted for 72% of the sequences. Altogether, it seems that both deterministic and stochastic processes shaped microbial communities. Endophytic bacterial communities harboured putative plant growth-promoting bacteria, thus having the potential to influence host health and growth. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Bacterial Infections across the Ants: Frequency and Prevalence of Wolbachia, Spiroplasma, and Asaia

    Directory of Open Access Journals (Sweden)

    Stefanie Kautz

    2013-01-01

    Full Text Available Bacterial endosymbionts are common across insects, but we often lack a deeper knowledge of their prevalence across most organisms. Next-generation sequencing approaches can characterize bacterial diversity associated with a host and at the same time facilitate the fast and simultaneous screening of infectious bacteria. In this study, we used 16S rRNA tag encoded amplicon pyrosequencing to survey bacterial communities of 310 samples representing 221 individuals, 176 colonies and 95 species of ants. We found three distinct endosymbiont groups—Wolbachia (Alphaproteobacteria: Rickettsiales, Spiroplasma (Firmicutes: Entomoplasmatales, and relatives of Asaia (Alphaproteobacteria: Rhodospirillales—at different infection frequencies (at the ant species level: 22.1%, 28.4%, and 14.7%, resp. and relative abundances within bacterial communities (1.0%–99.9%. Spiroplasma was particularly enriched in the ant genus Polyrhachis, while Asaia relatives were most prevalent in arboreal ants of the genus Pseudomyrmex. While Wolbachia and Spiroplasma have been surveyed in ants before, Asaia, an acetic acid bacterium capable of fixing atmospheric nitrogen, has received much less attention. Due to sporadic prevalence across all ant taxa investigated, we hypothesize facultative associations for all three bacterial genera. Infection patterns are discussed in relation to potential adaptation of specific bacteria in certain ant groups.

  18. Nodulation-dependent communities of culturable bacterial endophytes from stems of field-grown soybeans.

    Science.gov (United States)

    Okubo, Takashi; Ikeda, Seishi; Kaneko, Takakazu; Eda, Shima; Mitsui, Hisayuki; Sato, Shusei; Tabata, Satoshi; Minamisawa, Kiwamu

    2009-01-01

    Endophytic bacteria (247 isolates) were randomly isolated from surface-sterilized stems of non-nodulated (Nod(-)), wild-type nodulated (Nod(+)), and hypernodulated (Nod(++)) soybeans (Glycine max [L.] Merr) on three agar media (R2A, nutrient agar, and potato dextrose agar). Their diversity was compared on the basis of 16S rRNA gene sequences. The phylogenetic composition depended on the soybean nodulation phenotype, although diversity indexes were not correlated with nodulation phenotype. The most abundant phylum throughout soybean lines tested was Proteobacteria (58-79%). Gammaproteobacteria was the dominant class (21-72%) with a group of Pseudomonas sp. significantly abundant in Nod(+) soybeans. A high abundance of Alphaproteobacteria was observed in Nod(-) soybeans, which was explained by the increase in bacterial isolates of the families Rhizobiaceae and Sphingomonadaceae. A far greater abundance of Firmicutes was observed in Nod(-) and Nod(++) mutant soybeans than in Nod(+) soybeans. An impact of culture media on the diversity of isolated endophytic bacteria was also observed: The highest diversity indexes were obtained on the R2A medium, which enabled us to access Alphaproteobacteria and other phyla more frequently. The above results indicated that the extent of nodulation changes the phylogenetic composition of culturable bacterial endophytes in soybean stems.

  19. Microbial communities in flowback water impoundments from hydraulic fracturing for recovery of shale gas

    Energy Technology Data Exchange (ETDEWEB)

    Mohan, Arvind Murali; Hartsock, Angela; Hammack, Richard W; Vidic, Radisav D; Gregory, Kelvin B

    2013-12-01

    Hydraulic fracturing for natural gas extraction from shale produces waste brine known as flowback that is impounded at the surface prior to reuse and/or disposal. During impoundment, microbial activity can alter the fate of metals including radionuclides, give rise to odorous compounds, and result in biocorrosion that complicates water and waste management and increases production costs. Here, we describe the microbial ecology at multiple depths of three flowback impoundments from the Marcellus shale that were managed differently. 16S rRNA gene clone libraries revealed that bacterial communities in the untreated and biocide-amended impoundments were depth dependent, diverse, and most similar to species within the taxa [gamma]-proteobacteria, [alpha]-proteobacteria, δ-proteobacteria, Clostridia, Synergistetes, Thermotogae, Spirochetes, and Bacteroidetes. The bacterial community in the pretreated and aerated impoundment was uniform with depth, less diverse, and most similar to known iodide-oxidizing bacteria in the [alpha]-proteobacteria. Archaea were identified only in the untreated and biocide-amended impoundments and were affiliated to the Methanomicrobia class. This is the first study of microbial communities in flowback water impoundments from hydraulic fracturing. The findings expand our knowledge of microbial diversity of an emergent and unexplored environment and may guide the management of flowback impoundments.

  20. Bacterial community structure in Apis florea larvae analyzed by denaturing gradient gel electrophoresis and 16S rRNA gene sequencing.

    Science.gov (United States)

    Saraithong, Prakaimuk; Li, Yihong; Saenphet, Kanokporn; Chen, Zhou; Chantawannakul, Panuwan

    2015-10-01

    This study characterizes the colonization and composition of bacterial flora in dwarf Asian honeybee (Apis florea) larvae and compares bacterial diversity and distribution among different sampling locations. A. florea larvae were collected from 3 locations in Chiang Mai province, Thailand. Bacterial DNA was extracted from each larva using the phenol-chloroform method. Denaturing gradient gel electrophoresis was performed, and the dominant bands were excised from the gels, cloned, and sequenced for bacterial species identification. The result revealed similarities of bacterial community profiles in each individual colony, but differences between colonies from the same and different locations. A. florea larvae harbor bacteria belonging to 2 phyla (Firmicutes and Proteobacteria), 5 classes (Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Bacilli, and Clostridia), 6 genera (Clostridium, Gilliamella, Melissococcus, Lactobacillus, Saccharibacter, and Snodgrassella), and an unknown genus from uncultured bacterial species. The classes with the highest abundance of bacteria were Alphaproteobacteria (34%), Bacilli (25%), Betaproteobacteria (11%), Gammaproteobacteria (10%), and Clostridia (8%), respectively. Similarly, uncultured bacterial species were identified (12%). Environmental bacterial species, such as Saccharibacter floricola, were also found. This is the first study in which sequences closely related to Melissococcus plutonius, the causal pathogen responsible for European foulbrood, have been identified in Thai A. florea larvae. © 2014 Institute of Zoology, Chinese Academy of Sciences.

  1. An experimental study on the influence of water stagnation and temperature change on water quality in a full-scale domestic drinking water system.

    Science.gov (United States)

    Zlatanović, Lj; van der Hoek, J P; Vreeburg, J H G

    2017-10-15

    The drinking water quality changes during the transport through distribution systems. Domestic drinking water systems (DDWSs), which include the plumbing between the water meter and consumer's taps, are the most critical points in which water quality may be affected. In distribution networks, the drinking water temperature and water residence time are regarded as indicators of the drinking water quality. This paper describes an experimental research on the influence of stagnation time and temperature change on drinking water quality in a full-scale DDWS. Two sets of stagnation experiments, during winter and summer months, with various stagnation intervals (up to 168 h of stagnation) were carried out. Water and biofilms were sampled at two different taps, a kitchen and a shower tap. Results from this study indicate that temperature and water stagnation affect both chemical and microbial quality in DDWSs, whereas microbial parameters in stagnant water appear to be driven by the temperature of fresh water. Biofilm formed in the shower pipe contained more total and intact cells than the kitchen pipe biofilm. Alphaproteobacteria were found to dominate in the shower biofilm (78% of all Proteobacteria), while in the kitchen tap biofilm Alphaproteobacteria, Betaproteobacteria and Gammaproteobacteria were evenly distributed. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Detection of Wolbachia (Alphaproteobacteria: rickettsiales in three species of terrestrial isopods (crustacea: isopoda: oniscidea in Brazil

    Directory of Open Access Journals (Sweden)

    Bianca Laís Zimmermann

    2012-06-01

    Full Text Available Terrestrial isopods are widely infected with Wolbachia. However, little is known about the presence of bacteria in the Neotropical species. The objective of this study was to test the hypothesis of presence of Wolbachia infection in the native species of terrestrial isopods, Atlantoscia floridana and Circoniscus bezzii, and in the introduced species Burmoniscus meeusei.

  3. A Novel Extracellular Gut Symbiont in the Marine Worm Priapulus caudatus (Priapulida) Reveals an Alphaproteobacterial Symbiont Clade of the Ecdysozoa

    OpenAIRE

    Kroer, Paul; Kjeldsen, Kasper U.; Nyengaard, Jens R.; Schramm, Andreas; Funch, Peter

    2016-01-01

    Priapulus caudatus (phylum Priapulida) is a benthic marine predatory worm with a cosmopolitan distribution. In its digestive tract we detected symbiotic bacteria that were consistently present in specimens collected over eight years from three sites at the Swedish west coast. Based on their 16S rRNA gene sequence, these symbionts comprise a novel genus of the order Rickettsiales (Alphaproteobacteria). Electron microscopy and fluorescence in situ hybridization (FISH) identified them as extrace...

  4. Strong linkages between DOM optical properties and main clades of aquatic bacteria

    DEFF Research Database (Denmark)

    Amaral, Valentina; Graeber, Daniel; Calliari, Danilo

    2016-01-01

    –emission fluorescence spectroscopy and spectroscopic indexes to characterize DOM composition, and fluorescence in situ hybridization, to quantify the major bacterial groups in a subtropical lagoon. The DOM exhibited marked temporal variations in concentration, molecular weight, aromaticity, color, degree...... properties. Alphaproteobacteria and Gammaproteobacteria abundances were significantly explained by low or high dissolved organic carbon concentrations, respectively. The significant relationships between DOM properties and the main bacterial groups delineated a profile of each group regarding DOM preferences...

  5. Bacterial diversity in the sediment from polymetallic nodule fields of the Clarion-Clipperton Fracture Zone.

    Science.gov (United States)

    Wang, Chun-Sheng; Liao, Li; Xu, Hong-Xiang; Xu, Xue-Wei; Wu, Min; Zhu, Li-Zhong

    2010-10-01

    The Clarion-Clipperton Fracture Zone (CCFZ) is located in the northeastern equatorial Pacific and contains abundant polymetallic nodules. To investigate its bacterial diversity, four libraries of 16S rRNA genes were constructed from sediments of four stations in different areas of the CCFZ. In total, 313 clones sequenced from the 4 libraries were assigned into 14 phylogenetic groups and 1 group of 28 unclassified bacteria. High bacterial diversity was predicted by the rarefaction analysis. The most dominant group overall was Proteobacteria, but there was variation in each library: Gammaproteobacteria was the most dominant group in two libraries, E2005-01 and ES0502, while Alphaproteobacteria and Deltaproteobacteria were the most dominant groups in libraries EP2005-03 and WS0505, respectively. Seven groups, including Alphaproteobacteria, Gammaproteobacteria, Deltaproteobacteria, Betaproteobacteria, Acidobacteria, Actinobacteria, and Bacteroidetes, were common to all four libraries. The remaining minor groups were distributed in libraries with different patterns. Most clones sequenced in this study were clustered with uncultured bacteria obtained from the environment, such as the ocean crust and marine sediment, but only distantly related to isolates. Bacteria involved in the cycling of metals, sulfur and nitrogen were detected, and their relationship with their habitat was discussed. This study sheds light on the bacterial communities associated with polymetallic nodules in the CCFZ and provides primary data on the bacterial diversity of this area.

  6. Norwegian deep-water coral reefs: cultivation and molecular analysis of planktonic microbial communities.

    Science.gov (United States)

    Jensen, Sigmund; Lynch, Michael D J; Ray, Jessica L; Neufeld, Josh D; Hovland, Martin

    2015-10-01

    Deep-sea coral reefs do not receive sunlight and depend on plankton. Little is known about the plankton composition at such reefs, even though they constitute habitats for many invertebrates and fish. We investigated plankton communities from three reefs at 260-350 m depth at hydrocarbon fields off the mid-Norwegian coast using a combination of cultivation and small subunit (SSU) rRNA gene and transcript sequencing. Eight months incubations of a reef water sample with minimal medium, supplemented with carbon dioxide and gaseous alkanes at in situ-like conditions, enabled isolation of mostly Alphaproteobacteria (Sulfitobacter, Loktanella), Gammaproteobacteria (Colwellia) and Flavobacteria (Polaribacter). The relative abundance of isolates in the original sample ranged from ∼ 0.01% to 0.80%. Comparisons of bacterial SSU sequences from filtered plankton of reef and non-reef control samples indicated high abundance and metabolic activity of primarily Alphaproteobacteria (SAR11 Ia), Gammaproteobacteria (ARCTIC96BD-19), but also of Deltaproteobacteria (Nitrospina, SAR324). Eukaryote SSU sequences indicated metabolically active microalgae and animals, including codfish, at the reef sites. The plankton community composition varied between reefs and differed between DNA and RNA assessments. Over 5000 operational taxonomic units were detected, some indicators of reef sites (e.g. Flavobacteria, Cercozoa, Demospongiae) and some more active at reef sites (e.g. Gammaproteobacteria, Ciliophora, Copepoda). © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  7. Biogeography and environmental genomics of the Roseobacter-affiliated pelagic CHAB-I-5 lineage

    DEFF Research Database (Denmark)

    Billerbeck, Sara; Wemheuer, Bernd; Voget, Sonja

    2016-01-01

    The identification and functional characterization of microbial communities remains a prevailing topic in microbial oceanography as information on environmentally relevant pelagic prokaryotes is still limited. The Roseobacter group, an abundant lineage of marine Alphaproteobacteria, can constitute...... large proportions of the bacterioplankton. Roseobacters also occur associated with eukaryotic organisms and possess streamlined as well as larger genomes from 2.2 to >5 Mpb. Here, we show that one pelagic cluster of this group, CHAB-I-5, occurs globally from tropical to polar regions and accounts for up...

  8. The (d)evolution of methanotrophy in the Beijerinckiaceae--a comparative genomics analysis.

    Science.gov (United States)

    Tamas, Ivica; Smirnova, Angela V; He, Zhiguo; Dunfield, Peter F

    2014-02-01

    The alphaproteobacterial family Beijerinckiaceae contains generalists that grow on a wide range of substrates, and specialists that grow only on methane and methanol. We investigated the evolution of this family by comparing the genomes of the generalist organotroph Beijerinckia indica, the facultative methanotroph Methylocella silvestris and the obligate methanotroph Methylocapsa acidiphila. Highly resolved phylogenetic construction based on universally conserved genes demonstrated that the Beijerinckiaceae forms a monophyletic cluster with the Methylocystaceae, the only other family of alphaproteobacterial methanotrophs. Phylogenetic analyses also demonstrated a vertical inheritance pattern of methanotrophy and methylotrophy genes within these families. Conversely, many lateral gene transfer (LGT) events were detected for genes encoding carbohydrate transport and metabolism, energy production and conversion, and transcriptional regulation in the genome of B. indica, suggesting that it has recently acquired these genes. A key difference between the generalist B. indica and its specialist methanotrophic relatives was an abundance of transporter elements, particularly periplasmic-binding proteins and major facilitator transporters. The most parsimonious scenario for the evolution of methanotrophy in the Alphaproteobacteria is that it occurred only once, when a methylotroph acquired methane monooxygenases (MMOs) via LGT. This was supported by a compositional analysis suggesting that all MMOs in Alphaproteobacteria methanotrophs are foreign in origin. Some members of the Beijerinckiaceae subsequently lost methanotrophic functions and regained the ability to grow on multicarbon energy substrates. We conclude that B. indica is a recidivist multitroph, the only known example of a bacterium having completely abandoned an evolved lifestyle of specialized methanotrophy.

  9. Microbial Community Composition of Polyhydroxyalkanoate-Accumulating Organisms in Full-Scale Wastewater Treatment Plants Operated in Fully Aerobic Mode

    Science.gov (United States)

    Oshiki, Mamoru; Onuki, Motoharu; Satoh, Hiroyasu; Mino, Takashi

    2013-01-01

    The removal of biodegradable organic matter is one of the most important objectives in biological wastewater treatments. Polyhydroxyalkanoate (PHA)-accumulating organisms (PHAAOs) significantly contribute to the removal of biodegradable organic matter; however, their microbial community composition is mostly unknown. In the present study, the microbial community composition of PHAAOs was investigated at 8 full-scale wastewater treatment plants (WWTPs), operated in fully aerobic mode, by fluorescence in situ hybridization (FISH) analysis and post-FISH Nile blue A (NBA) staining techniques. Our results demonstrated that 1) PHAAOs were in the range of 11–18% in the total number of cells, and 2) the microbial community composition of PHAAOs was similar at the bacterial domain/phylum/class/order level among the 8 full-scale WWTPs, and dominant PHAAOs were members of the class Alphaproteobacteria and Betaproteobacteria. The microbial community composition of α- and β-proteobacterial PHAAOs was examined by 16S rRNA gene clone library analysis and further by applying a set of newly designed oligonucleotide probes targeting 16S rRNA gene sequences of α- or β-proteobacterial PHAAOs. The results demonstrated that the microbial community composition of PHAAOs differed in the class Alphaproteobacteria and Betaproteobacteria, which possibly resulted in a different PHA accumulation capacity among the WWTPs (8.5–38.2 mg-C g-VSS−1 h−1). The present study extended the knowledge of the microbial diversity of PHAAOs in full-scale WWTPs operated in fully aerobic mode. PMID:23257912

  10. [Analysis of the bacterial community developing in the course of Sphagnum moss decomposition].

    Science.gov (United States)

    Kulichevskaia, I S; Belova, S E; Kevbrin, V V; Dedysh, S N; Zavarzin, G A

    2007-01-01

    Slow degradation of organic matter in acidic Sphagnum peat bogs suggests a limited activity of organotrophic microorganisms. Monitoring of the Sphagnum debris decomposition in a laboratory simulation experiment showed that this process was accompanied by a shift in the water color to brownish due to accumulation of humic substances and by the development of a specific bacterial community with a density of 2.4 x 10(7) cells ml(-1). About half of these organisms are metabolically active and detectable with rRNA-specific oligonucleotide probes. Molecular identification of the components of this microbial community showed the numerical dominance of bacteria affiliated with the phyla Alphaproteobacteria, Actinobacteria, and Phanctomycetes. The population sizes of Firmicutes and Bacteroidetes, which are believed to be the main agents of bacterially-mediated decomposition in eutrophic wetlands, were low. The numbers of planctomycetes increased at the final stage of Sphagnum decomposition. The representative isolates of Alphaproteobacteria were able to utilize galacturonic acid, the only low-molecular-weight organic compound detected in the water samples; the representatives of Planctomycetes were able to decompose some heteropolysaccharides, which points to the possible functional role of these groups of microorganisms in the community under study. Thus, the composition of the bacterial community responsible for Sphagnum decomposition in acidic and low-mineral oligotrophic conditions seems to be fundamentally different from that of the bacterial community which decomposes plant debris in eutrophic ecosystems at neutral pH.

  11. Sphagnum mosses harbour highly specific bacterial diversity during their whole lifecycle.

    Science.gov (United States)

    Bragina, Anastasia; Berg, Christian; Cardinale, Massimiliano; Shcherbakov, Andrey; Chebotar, Vladimir; Berg, Gabriele

    2012-04-01

    Knowledge about Sphagnum-associated microbial communities, their structure and their origin is important to understand and maintain climate-relevant Sphagnum-dominated bog ecosystems. We studied bacterial communities of two cosmopolitan Sphagnum species, which are well adapted to different abiotic parameters (Sphagnum magellanicum, which are strongly acidic and ombrotrophic, and Sphagnum fallax, which are weakly acidic and mesotrophic), in three Alpine bogs in Austria by a multifaceted approach. Great differences between bacterial fingerprints of both Sphagna were found independently from the site. This remarkable specificity was confirmed by a cloning and a deep sequencing approach. Besides the common Alphaproteobacteria, we found a discriminative spectrum of bacteria; although Gammaproteobacteria dominated S. magellanicum, S. fallax was mainly colonised by Verrucomicrobia and Planctomycetes. Using this information for fluorescent in situ hybridisation analyses, corresponding colonisation patterns for Alphaproteobacteria and Planctomycetes were detected. Bacterial colonies were found in high abundances inside the dead big hyalocytes, but they were always connected with the living chlorocytes. Using multivariate statistical analysis, the abiotic factors nutrient richness and pH were identified to modulate the composition of Sphagnum-specific bacterial communities. Interestingly, we found that the immense bacterial diversity was transferred via the sporophyte to the gametophyte, which can explain the high specificity of Sphagnum-associated bacteria over long distances. In contrast to higher plants, which acquire their bacteria mainly from the environment, mosses as the phylogenetically oldest land plants maintain their bacterial diversity within the whole lifecycle.

  12. Exogenous glucosinolate produced by Arabidopsis thaliana has an impact on microbes in the rhizosphere and plant roots.

    Science.gov (United States)

    Bressan, Mélanie; Roncato, Marie-Anne; Bellvert, Floriant; Comte, Gilles; Haichar, Feth Zahar; Achouak, Wafa; Berge, Odile

    2009-11-01

    A specificity of Brassicaceous plants is the production of sulphur secondary metabolites called glucosinolates that can be hydrolysed into glucose and biocidal products. Among them, isothiocyanates are toxic to a wide range of microorganisms and particularly soil-borne pathogens. The aim of this study was to investigate the role of glucosinolates and their breakdown products as a factor of selection on rhizosphere microbial community associated with living Brassicaceae. We used a DNA-stable isotope probing approach to focus on the active microbial populations involved in root exudates degradation in rhizosphere. A transgenic Arabidopsis thaliana line producing an exogenous glucosinolate and the associated wild-type plant associated were grown under an enriched (13)CO(2) atmosphere in natural soil. DNA from the rhizospheric soil was separated by density gradient centrifugation. Bacterial (Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria and Acidobacteria), Archaea and fungal community structures were analysed by DGGE fingerprints of amplified 16S and 18S rRNA gene sequences. Specific populations were characterized by sequencing DGGE fragments. Roots of the transgenic plant line presented an altered profile of glucosinolates and other minor additional modifications. These modifications significantly influenced microbial community on roots and active populations in the rhizosphere. Alphaproteobacteria, particularly Rhizobiaceae, and fungal communities were mainly impacted by these Brassicaceous metabolites, in both structure and composition. Our results showed that even a minor modification in plant root could have important repercussions for soil microbial communities.

  13. The (d)evolution of methanotrophy in the Beijerinckiaceae—a comparative genomics analysis

    Science.gov (United States)

    Tamas, Ivica; Smirnova, Angela V; He, Zhiguo; Dunfield, Peter F

    2014-01-01

    The alphaproteobacterial family Beijerinckiaceae contains generalists that grow on a wide range of substrates, and specialists that grow only on methane and methanol. We investigated the evolution of this family by comparing the genomes of the generalist organotroph Beijerinckia indica, the facultative methanotroph Methylocella silvestris and the obligate methanotroph Methylocapsa acidiphila. Highly resolved phylogenetic construction based on universally conserved genes demonstrated that the Beijerinckiaceae forms a monophyletic cluster with the Methylocystaceae, the only other family of alphaproteobacterial methanotrophs. Phylogenetic analyses also demonstrated a vertical inheritance pattern of methanotrophy and methylotrophy genes within these families. Conversely, many lateral gene transfer (LGT) events were detected for genes encoding carbohydrate transport and metabolism, energy production and conversion, and transcriptional regulation in the genome of B. indica, suggesting that it has recently acquired these genes. A key difference between the generalist B. indica and its specialist methanotrophic relatives was an abundance of transporter elements, particularly periplasmic-binding proteins and major facilitator transporters. The most parsimonious scenario for the evolution of methanotrophy in the Alphaproteobacteria is that it occurred only once, when a methylotroph acquired methane monooxygenases (MMOs) via LGT. This was supported by a compositional analysis suggesting that all MMOs in Alphaproteobacteria methanotrophs are foreign in origin. Some members of the Beijerinckiaceae subsequently lost methanotrophic functions and regained the ability to grow on multicarbon energy substrates. We conclude that B. indica is a recidivist multitroph, the only known example of a bacterium having completely abandoned an evolved lifestyle of specialized methanotrophy. PMID:23985741

  14. Influences of Plant Species, Season and Location on Leaf Endophytic Bacterial Communities of Non-Cultivated Plants.

    Science.gov (United States)

    Ding, Tao; Melcher, Ulrich

    2016-01-01

    Bacteria are known to be associated endophytically with plants. Research on endophytic bacteria has identified their importance in food safety, agricultural production and phytoremediation. However, the diversity of endophytic bacterial communities and the forces that shape their compositions in non-cultivated plants are largely uncharacterized. In this study, we explored the diversity, community structure, and dynamics of endophytic bacteria in different plant species in the Tallgrass Prairie Preserve of northern Oklahoma, USA. High throughput sequencing of amplified segments of bacterial rDNA from 81 samples collected at four sampling times from five plant species at four locations identified 335 distinct OTUs at 97% sequence similarity, representing 16 phyla. Proteobacteria was the dominant phylum in the communities, followed by the phyla Bacteriodetes and Actinobacteria. Bacteria from four classes of Proteobacteria were detected with Alphaproteobacteria as the dominant class. Analysis of molecular variance revealed that host plant species and collecting date had significant influences on the compositions of the leaf endophytic bacterial communities. The proportion of Alphaproteobacteria was much higher in the communities from Asclepias viridis than from other plant species and differed from month to month. The most dominant bacterial groups identified in LDA Effect Size analysis showed host-specific patterns, indicating mutual selection between host plants and endophytic bacteria and that leaf endophytic bacterial compositions were dynamic, varying with the host plant's growing season in three distinct patterns. In summary, next generation sequencing has revealed variations in the taxonomic compositions of leaf endophytic bacterial communities dependent primarily on the nature of the plant host species.

  15. Influences of Plant Species, Season and Location on Leaf Endophytic Bacterial Communities of Non-Cultivated Plants.

    Directory of Open Access Journals (Sweden)

    Tao Ding

    Full Text Available Bacteria are known to be associated endophytically with plants. Research on endophytic bacteria has identified their importance in food safety, agricultural production and phytoremediation. However, the diversity of endophytic bacterial communities and the forces that shape their compositions in non-cultivated plants are largely uncharacterized. In this study, we explored the diversity, community structure, and dynamics of endophytic bacteria in different plant species in the Tallgrass Prairie Preserve of northern Oklahoma, USA. High throughput sequencing of amplified segments of bacterial rDNA from 81 samples collected at four sampling times from five plant species at four locations identified 335 distinct OTUs at 97% sequence similarity, representing 16 phyla. Proteobacteria was the dominant phylum in the communities, followed by the phyla Bacteriodetes and Actinobacteria. Bacteria from four classes of Proteobacteria were detected with Alphaproteobacteria as the dominant class. Analysis of molecular variance revealed that host plant species and collecting date had significant influences on the compositions of the leaf endophytic bacterial communities. The proportion of Alphaproteobacteria was much higher in the communities from Asclepias viridis than from other plant species and differed from month to month. The most dominant bacterial groups identified in LDA Effect Size analysis showed host-specific patterns, indicating mutual selection between host plants and endophytic bacteria and that leaf endophytic bacterial compositions were dynamic, varying with the host plant's growing season in three distinct patterns. In summary, next generation sequencing has revealed variations in the taxonomic compositions of leaf endophytic bacterial communities dependent primarily on the nature of the plant host species.

  16. The Arsenite Oxidation Potential of Native Microbial Communities from Arsenic-Rich Freshwaters.

    Science.gov (United States)

    Fazi, Stefano; Crognale, Simona; Casentini, Barbara; Amalfitano, Stefano; Lotti, Francesca; Rossetti, Simona

    2016-07-01

    Microorganisms play an important role in speciation and mobility of arsenic in the environment, by mediating redox transformations of both inorganic and organic species. Since arsenite [As(III)] is more toxic than arsenate [As(V)] to the biota, the microbial driven processes of As(V) reduction and As(III) oxidation may play a prominent role in mediating the environmental impact of arsenic contamination. However, little is known about the ecology and dynamics of As(III)-oxidizing populations within native microbial communities exposed to natural high levels of As. In this study, two techniques for single cell quantification (i.e., flow cytometry, CARD-FISH) were used to analyze the structure of aquatic microbial communities across a gradient of arsenic (As) contamination in different freshwater environments (i.e., groundwaters, surface and thermal waters). Moreover, we followed the structural evolution of these communities and their capacity to oxidize arsenite, when experimentally exposed to high As(III) concentrations in experimental microcosms. Betaproteobacteria and Deltaproteobacteria were the main groups retrieved in groundwaters and surface waters, while Beta and Gammaproteobacteria dominated the bacteria community in thermal waters. At the end of microcosm incubations, the communities were able to oxidize up to 95 % of arsenite, with an increase of Alphaproteobacteria in most of the experimental conditions. Finally, heterotrophic As(III)-oxidizing strains (one Alphaproteobacteria and two Gammaproteobacteria) were isolated from As rich waters. Our findings underlined that native microbial communities from different arsenic-contaminated freshwaters can efficiently perform arsenite oxidation, thus contributing to reduce the overall As toxicity to the aquatic biota.

  17. An abundance of Epsilonproteobacteria revealed in the gut microbiome of the laboratory cultured sea urchin, Lytechinus variegatus

    Science.gov (United States)

    Hakim, Joseph A.; Koo, Hyunmin; Dennis, Lacey N.; Kumar, Ranjit; Ptacek, Travis; Morrow, Casey D.; Lefkowitz, Elliot J.; Powell, Mickie L.; Bej, Asim K.; Watts, Stephen A.

    2015-01-01

    In this study, we have examined the bacterial community composition of the laboratory cultured sea urchin Lytechinus variegatus gut microbiome and its culture environment using NextGen amplicon sequencing of the V4 segment of the 16S rRNA gene, and downstream bioinformatics tools. Overall, the gut and tank water was dominated by Proteobacteria, whereas the feed consisted of a co-occurrence of Proteobacteria and Firmicutes at a high abundance. The gut tissue represented Epsilonproteobacteria as dominant, with order Campylobacterales at the highest relative abundance (>95%). However, the pharynx tissue was dominated by class Alphaproteobacteria. The gut digesta and egested fecal pellets had a high abundance of class Gammaproteobacteria, from which Vibrio was found to be the primary genus, and Epsilonproteobacteria, with genus Arcobacter occurring at a moderate level. At the class level, the tank water was dominated by Gammaproteobacteria, and the feed by Alphaproteobacteria. Multi-Dimensional Scaling analysis showed that the microbial community of the gut tissue clustered together, as did the pharynx tissue to the feed. The gut digesta and egested fecal pellets showed a similarity relationship to the tank water. Further analysis of Campylobacterales at a lower taxonomic level using the oligotyping method revealed 37 unique types across the 10 samples, where Oligotype 1 was primarily represented in the gut tissue. BLAST analysis identified Oligotype 1 to be Arcobacter sp., Sulfuricurvum sp., and Arcobacter bivalviorum at an identity level >90%. This study showed that although distinct microbial communities are evident across multiple components of the sea urchin gut ecosystem, there is a noticeable correlation between the overall microbial communities of the gut with the sea urchin L. variegatus culture environment. PMID:26528245

  18. Microbial diversity and biomarker analysis of modern freshwater microbialites from Laguna Bacalar, Mexico.

    Science.gov (United States)

    Johnson, D B; Beddows, P A; Flynn, T M; Osburn, M R

    2018-05-01

    Laguna Bacalar is a sulfate-rich freshwater lake on the Yucatan Peninsula that hosts large microbialites. High sulfate concentrations distinguish Laguna Bacalar from other freshwater microbialite sites such as Pavilion Lake and Alchichica, Mexico, as well as from other aqueous features on the Yucatan Peninsula. While cyanobacterial populations have been described here previously, this study offers a more complete characterization of the microbial populations and corresponding biogeochemical cycling using a three-pronged geobiological approach of microscopy, high-throughput DNA sequencing, and lipid biomarker analyses. We identify and compare diverse microbial communities of Alphaproteobacteria, Deltaproteobacteria, and Gammaproteobacteria that vary with location along a bank-to-bank transect across the lake, within microbialites, and within a neighboring mangrove root agglomeration. In particular, sulfate-reducing bacteria are extremely common and diverse, constituting 7%-19% of phylogenetic diversity within the microbialites, and are hypothesized to significantly influence carbonate precipitation. In contrast, Cyanobacteria account for less than 1% of phylogenetic diversity. The distribution of lipid biomarkers reflects these changes in microbial ecology, providing meaningful biosignatures for the microbes in this system. Polysaturated short-chain fatty acids characteristic of cyanobacteria account for Bacalar microbialites. By contrast, even short-chain and monounsaturated short-chain fatty acids attributable to both Cyanobacteria and many other organisms including types of Alphaproteobacteria and Gammaproteobacteria constitute 43%-69% and 17%-25%, respectively, of total abundance in microbialites. While cyanobacteria are the largest and most visible microbes within these microbialites and dominate the mangrove root agglomeration, it is clear that their smaller, metabolically diverse associates are responsible for significant biogeochemical cycling in this

  19. Phylogenetic and functional diversity of the cultivable bacterial community associated with the paralytic shellfish poisoning dinoflagellate Gymnodinium catenatum.

    Science.gov (United States)

    Green, David H; Llewellyn, Lyndon E; Negri, Andrew P; Blackburn, Susan I; Bolch, Christopher J S

    2004-03-01

    Gymnodinium catenatum is one of several dinoflagellates that produce a suite of neurotoxins called the paralytic shellfish toxins (PST), responsible for outbreaks of paralytic shellfish poisoning in temperate and tropical waters. Previous research suggested that the bacteria associated with the surface of the sexual resting stages (cyst) were important to the production of PST by G. catenatum. This study sought to characterise the cultivable bacterial diversity of seven different strains of G. catenatum that produce both high and abnormally low amounts of PST, with the long-term aim of understanding the role the bacterial flora has in bloom development and toxicity of this alga. Sixty-one bacterial isolates were cultured and phylogenetically identified as belonging to the Proteobacteria (70%), Bacteroidetes (26%) or Actinobacteria (3%). The Alphaproteobacteria were the most numerous both in terms of the number of isolates cultured (49%) and were also the most abundant type of bacteria in each G. catenatum culture. Two phenotypic (functional) traits inferred from the phylogenetic data were shown to be a common feature of the bacteria present in each G. catenatum culture: firstly, Alphaproteobacteria capable of aerobic anoxygenic photosynthesis, and secondly, Gammaproteobacteria capable of hydrocarbon utilisation and oligotrophic growth. In relation to reports of autonomous production of PST by dinoflagellate-associated bacteria, PST production by bacterial isolates was investigated, but none were shown to produce any PST-like toxins. Overall, this study has identified a number of emergent trends in the bacterial community of G. catenatum which are mirrored in the bacterial flora of other dinoflagellates, and that are likely to be of especial relevance to the population dynamics of natural and harmful algal blooms.

  20. An abundance of Epsilonproteobacteria revealed in the gut microbiome of the laboratory cultured sea urchin, Lytechinus variegatus

    Directory of Open Access Journals (Sweden)

    Joseph Antoine Hakim

    2015-10-01

    Full Text Available In this study, we have examined the bacterial community composition in the laboratory cultured sea urchin Lytechinus variegatus gut microbiome and its culture environment using NextGen amplicon sequencing of the V4 segment of the 16S rRNA gene, and downstream bioinformatics tools. Overall, the gut and tank water was dominated by Proteobacteria, whereas the feed consisted of a co-occurrence of Proteobacteria and Firmicutes at a high abundance. The gut tissue represented Epsilonproteobacteria as dominant, with order Campylobacterales at the highest relative abundance (>95%. However, the pharynx tissue was dominated by class Alphaproteobacteria. The gut digesta and egested fecal pellets had a high abundance of class Gammaproteobacteria, from which Vibrio was found to be the primary genus, and Epsilonproteobacteria, with genus Arcobacter occurring at a moderate level. At the class level, the tank water was dominated by Gammaproteobacteria, and the feed by Alphaproteobacteria. Multi-Dimensional Scaling analysis showed that the microbial community of the gut tissue clustered together, as did the pharynx tissue to the feed. The gut digesta and egested fecal pellets showed a similar relationship to the tank water. Further analysis of Campylobacterales at a lower taxonomic level using the oligotyping method revealed 37 unique types across the ten samples, where Oligotype 1 was primarily represented in the gut tissue. BLAST analysis identified Oligotype 1 to be Arcobacter sp., Sulfuricurvum sp., and Arcobacter bivalviorum at an identity level >90%. This study showed that although distinct microbial communities were evident across multiple components of the sea urchin gut ecosystem, there is a noticeable correlation between the overall microbial communities of the gut with the sea urchin L. variegatus culture environment.

  1. Bacterial diversity of autotrophic enriched cultures from remote, glacial Antarctic, Alpine and Andean aerosol, snow and soil samples

    Directory of Open Access Journals (Sweden)

    E. González-Toril

    2009-01-01

    Full Text Available Four different communities and one culture of autotrophic microbial assemblages were obtained by incubation of samples collected from high elevation snow in the Alps (Mt. Blanc area and the Andes (Nevado Illimani summit, Bolivia, from Antarctic aerosol (French station Dumont d'Urville and a maritime Antarctic soil (King George Island, South Shetlands, Uruguay Station Artigas, in a minimal mineral (oligotrophic media. Molecular analysis of more than 200 16S rRNA gene sequences showed that all cultured cells belong to the Bacteria domain. Phylogenetic comparison with the currently available rDNA database allowed sequences belonging to Proteobacteria Alpha-, Beta- and Gamma-proteobacteria, Actinobacteria and Bacteroidetes phyla to be identified. The Andes snow culture was the richest in bacterial diversity (eight microorganisms identified and the marine Antarctic soil the poorest (only one. Snow samples from Col du Midi (Alps and the Andes shared the highest number of identified microorganisms (Agrobacterium, Limnobacter, Aquiflexus and two uncultured Alphaproteobacteria clones. These two sampling sites also shared four sequences with the Antarctic aerosol sample (Limnobacter, Pseudonocardia and an uncultured Alphaproteobacteriaclone. The only microorganism identified in the Antarctica soil (Brevundimonas sp. was also detected in the Antarctic aerosol. Most of the identified microorganisms had been detected previously in cold environments, marine sediments soils and rocks. Air current dispersal is the best model to explain the presence of very specific microorganisms, like those identified in this work, in environments very distant and very different from each other.

  2. Cultivation-Independent and Cultivation-Dependent Analysis of Microbes in the Shallow-Sea Hydrothermal System Off Kueishantao Island, Taiwan: Unmasking Heterotrophic Bacterial Diversity and Functional Capacity.

    Science.gov (United States)

    Tang, Kai; Zhang, Yao; Lin, Dan; Han, Yu; Chen, Chen-Tung A; Wang, Deli; Lin, Yu-Shih; Sun, Jia; Zheng, Qiang; Jiao, Nianzhi

    2018-01-01

    Shallow-sea hydrothermal systems experience continuous fluctuations of physicochemical conditions due to seawater influx which generates variable habitats, affecting the phylogenetic composition and metabolic potential of microbial communities. Until recently, studies of submarine hydrothermal communities have focused primarily on chemolithoautotrophic organisms, however, there have been limited studies on heterotrophic bacteria. Here, fluorescence in situ hybridization, high throughput 16S rRNA gene amplicon sequencing, and functional metagenomes were used to assess microbial communities from the shallow-sea hydrothermal system off Kueishantao Island, Taiwan. The results showed that the shallow-sea hydrothermal system harbored not only autotrophic bacteria but abundant heterotrophic bacteria. The potential for marker genes sulfur oxidation and carbon fixation were detected in the metagenome datasets, suggesting a role for sulfur and carbon cycling in the shallow-sea hydrothermal system. Furthermore, the presence of diverse genes that encode transporters, glycoside hydrolases, and peptidase indicates the genetic potential for heterotrophic utilization of organic substrates. A total of 408 cultivable heterotrophic bacteria were isolated, in which the taxonomic families typically associated with oligotrophy, copiotrophy, and phototrophy were frequently found. The cultivation-independent and -dependent analyses performed herein show that Alphaproteobacteria and Gammaproteobacteria represent the dominant heterotrophs in the investigated shallow-sea hydrothermal system. Genomic and physiological characterization of a novel strain P5 obtained in this study, belonging to the genus Rhodovulum within Alphaproteobacteria, provides an example of heterotrophic bacteria with major functional capacity presented in the metagenome datasets. Collectively, in addition to autotrophic bacteria, the shallow-sea hydrothermal system also harbors many heterotrophic bacteria with versatile

  3. Complete genome sequence of Parvibaculum lavamentivorans type strain (DS-1(T)).

    Science.gov (United States)

    Schleheck, David; Weiss, Michael; Pitluck, Sam; Bruce, David; Land, Miriam L; Han, Shunsheng; Saunders, Elizabeth; Tapia, Roxanne; Detter, Chris; Brettin, Thomas; Han, James; Woyke, Tanja; Goodwin, Lynne; Pennacchio, Len; Nolan, Matt; Cook, Alasdair M; Kjelleberg, Staffan; Thomas, Torsten

    2011-12-31

    Parvibaculum lavamentivorans DS-1(T) is the type species of the novel genus Parvibaculum in the novel family Rhodobiaceae (formerly Phyllobacteriaceae) of the order Rhizobiales of Alphaproteobacteria. Strain DS-1(T) is a non-pigmented, aerobic, heterotrophic bacterium and represents the first tier member of environmentally important bacterial communities that catalyze the complete degradation of synthetic laundry surfactants. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 3,914,745 bp long genome with its predicted 3,654 protein coding genes is the first completed genome sequence of the genus Parvibaculum, and the first genome sequence of a representative of the family Rhodobiaceae.

  4. Mutation of a Broadly Conserved Operon (RL3499-RL3502) from Rhizobium leguminosarum Biovar viciae Causes Defects in Cell Morphology and Envelope Integrity▿†

    Science.gov (United States)

    Vanderlinde, Elizabeth M.; Magnus, Samantha A.; Tambalo, Dinah D.; Koval, Susan F.; Yost, Christopher K.

    2011-01-01

    The bacterial cell envelope is of critical importance to the function and survival of the cell; it acts as a barrier against harmful toxins while allowing the flow of nutrients into the cell. It also serves as a point of physical contact between a bacterial cell and its host. Hence, the cell envelope of Rhizobium leguminosarum is critical to cell survival under both free-living and symbiotic conditions. Transposon mutagenesis of R. leguminosarum strain 3841 followed by a screen to isolate mutants with defective cell envelopes led to the identification of a novel conserved operon (RL3499-RL3502) consisting of a putative moxR-like AAA+ ATPase, a hypothetical protein with a domain of unknown function (designated domain of unknown function 58), and two hypothetical transmembrane proteins. Mutation of genes within this operon resulted in increased sensitivity to membrane-disruptive agents such as detergents, hydrophobic antibiotics, and alkaline pH. On minimal media, the mutants retain their rod shape but are roughly 3 times larger than the wild type. On media containing glycine or peptides such as yeast extract, the mutants form large, distorted spheres and are incapable of sustained growth under these culture conditions. Expression of the operon is maximal during the stationary phase of growth and is reduced in a chvG mutant, indicating a role for this sensor kinase in regulation of the operon. Our findings provide the first functional insight into these genes of unknown function, suggesting a possible role in cell envelope development in Rhizobium leguminosarum. Given the broad conservation of these genes among the Alphaproteobacteria, the results of this study may also provide insight into the physiological role of these genes in other Alphaproteobacteria, including the animal pathogen Brucella. PMID:21357485

  5. Changes in the Structure of the Microbial Community Associated with Nannochloropsis salina following Treatments with Antibiotics and Bioactive Compounds

    Science.gov (United States)

    Geng, Haifeng; Tran-Gyamfi, Mary B.; Lane, Todd W.; Sale, Kenneth L.; Yu, Eizadora T.

    2016-01-01

    Open microalgae cultures host a myriad of bacteria, creating a complex system of interacting species that influence algal growth and health. Many algal microbiota studies have been conducted to determine the relative importance of bacterial taxa to algal culture health and physiological states, but these studies have not characterized the interspecies relationships in the microbial communities. We subjected Nanochroloropsis salina cultures to multiple chemical treatments (antibiotics and quorum sensing compounds) and obtained dense time-series data on changes to the microbial community using 16S gene amplicon metagenomic sequencing (21,029,577 reads for 23 samples) to measure microbial taxa-taxa abundance correlations. Short-term treatment with antibiotics resulted in substantially larger shifts in the microbiota structure compared to changes observed following treatment with signaling compounds and glucose. We also calculated operational taxonomic unit (OTU) associations and generated OTU correlation networks to provide an overview of possible bacterial OTU interactions. This analysis identified five major cohesive modules of microbiota with similar co-abundance profiles across different chemical treatments. The Eigengenes of OTU modules were examined for correlation with different external treatment factors. This correlation-based analysis revealed that culture age (time) and treatment types have primary effects on forming network modules and shaping the community structure. Additional network analysis detected Alteromonadeles and Alphaproteobacteria as having the highest centrality, suggesting these species are “keystone” OTUs in the microbial community. Furthermore, we illustrated that the chemical tropodithietic acid, which is secreted by several species in the Alphaproteobacteria taxon, is able to drastically change the structure of the microbiota within 3 h. Taken together, these results provide valuable insights into the structure of the microbiota

  6. The bacteriological composition of biomass recovered by flushing an operational drinking water distribution system.

    Science.gov (United States)

    Douterelo, I; Husband, S; Boxall, J B

    2014-05-01

    This study investigates the influence of pipe characteristics on the bacteriological composition of material mobilised from a drinking water distribution system (DWDS) and the impact of biofilm removal on water quality. Hydrants in a single UK Distribution Management Area (DMA) with both polyethylene and cast iron pipe sections were subjected to incremental increases in flow to mobilise material from the pipe walls. Turbidity was monitored during these operations and water samples were collected for physico-chemical and bacteriological analysis. DNA was extracted from the material mobilised into the bulk water before and during flushing. Bacterial tag-encoded 454 pyrosequencing was then used to characterize the bacterial communities present in this material. Turbidity values were high in the samples from cast iron pipes. Iron, aluminium, manganese and phosphate concentrations were found to correlate to observed turbidity. The bacterial community composition of the material mobilised from the pipes was significantly different between plastic and cast iron pipe sections (p < 0.5). High relative abundances of Alphaproteobacteria (23.3%), Clostridia (10.3%) and Actinobacteria (10.3%) were detected in the material removed from plastic pipes. Sequences related to Alphaproteobacteria (22.8%), Bacilli (16.6%), and Gammaproteobacteria (1.4%) were predominant in the samples obtained from cast iron pipes. The highest species richness and diversity were found in the samples from material mobilised from plastic pipes. Spirochaeta spp., Methylobacterium spp. Clostridium spp. and Desulfobacterium spp., were the most represented genera in the material obtained prior to and during the flushing of the plastic pipes. In cast iron pipes a high relative abundance of bacteria able to utilise different iron and manganese compounds were found such as Lysinibacillus spp., Geobacillus spp. and Magnetobacterium spp. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. [Research progress and discovery process of facultative methanotrophs--a review].

    Science.gov (United States)

    Zhao, Tiantao; Xing, Zhilin; Zhang, Lijie

    2013-08-04

    Facultative methanotrophs are a group of phylogenetically diverse microorganisms characterized by their ability to use methane and some other compounds containing C-C bond as their sole source of carbon and energy. Recently, which belong to the facultative methanotrophs in the genera Methylocella, Methylocapsa and Methylocystis, which belong to the Alphaproteobacteria, have been reported that can grow on larger organic acids or ethanol for some species, as well as methane. In this paper, the research history of facultative methanotrophs was summarized systematically, some other facultative methane-oxidizing microorganisms were introduced, the metabolic mechanisms of utilizing multi-carbon compounds by facultative methanotrophs were analyzed, and the current problems and the future engineering applications were discussed.

  8. Phylogenetic placement of two previously described intranuclear bacteria from the ciliate Paramecium bursaria (Protozoa, Ciliophora): 'Holospora acuminata' and 'Holospora curviuscula'.

    Science.gov (United States)

    Rautian, Maria S; Wackerow-Kouzova, Natalia D

    2013-05-01

    'Holospora acuminata' infects micronuclei of Paramecium bursaria (Protozoa, Ciliophora), whereas 'Holospora curviuscula' infects the macronucleus in other clones of the same host species. Because these micro-organisms have not been cultivated, their description has been based only on some morphological properties and host and nuclear specificities. One16S rRNA gene sequence of 'H. curviuscula' is present in databases. The systematic position of the representative strain of 'H. curviuscula', strain MC-3, was determined in this study. Moreover, for the first time, two strains of 'H. acuminata', KBN10-1 and AC61-10, were investigated. Phylogenetic analysis indicated that all three strains belonged to the genus Holospora, family Holosporaceae, order Rickettsiales within the Alphaproteobacteria.

  9. [The new eubacterium Roseomonas baikalica sp. nov. isolated from core samples collected by deep-hole drilling of the bottom of Lake Baĭkal].

    Science.gov (United States)

    Andreeva, I S; Pechurkina, N I; Morozova, O V; Riabchikova, E I; Belikov, S I; Puchkova, L I; Emel'ianova, E K; Torok, T; Repin, V E

    2007-01-01

    Microbiological analysis of samples of sedimentary rocks from various eras of the geological history of the Baikal rift has enabled us to isolate a large number of microorganisms that can be classified into new, previously undescribed species. The present work deals with the identification and study of the morphological, biochemical, and physiological properties of one such strain, Che 82, isolated from sample C-29 of 3.4-3.5 Ma-old sedimentary rocks taken at a drilling depth of 146.74 m. As a result of our investigations, strain Che 82 is described as a new bacterial species, Roseomonas baikalica sp. nov., belonging to the genus Roseomonas within the family Methylobacteriaceae, class Alphaproteobacteria.

  10. Diversity Surveys and Evolutionary Relationships of aoxB Genes in Aerobic Arsenite-Oxidizing Bacteria▿ †

    Science.gov (United States)

    Quéméneur, Marianne; Heinrich-Salmeron, Audrey; Muller, Daniel; Lièvremont, Didier; Jauzein, Michel; Bertin, Philippe N.; Garrido, Francis; Joulian, Catherine

    2008-01-01

    A new primer set was designed to specifically amplify ca. 1,100 bp of aoxB genes encoding the As(III) oxidase catalytic subunit from taxonomically diverse aerobic As(III)-oxidizing bacteria. Comparative analysis of AoxB protein sequences showed variable conservation levels and highlighted the conservation of essential amino acids and structural motifs. AoxB phylogeny of pure strains showed well-discriminated taxonomic groups and was similar to 16S rRNA phylogeny. Alphaproteobacteria-, Betaproteobacteria-, and Gammaproteobacteria-related sequences were retrieved from environmental surveys, demonstrating their prevalence in mesophilic As-contaminated soils. Our study underlines the usefulness of the aoxB gene as a functional marker of aerobic As(III) oxidizers. PMID:18502920

  11. Biofilm comprising phototrophic, diazotrophic, and hydrocarbon-utilizing bacteria: a promising consortium in the bioremediation of aquatic hydrocarbon pollutants.

    Science.gov (United States)

    Al-Bader, Dhia; Kansour, Mayada K; Rayan, Rehab; Radwan, Samir S

    2013-05-01

    Biofilms harboring simultaneously anoxygenic and oxygenic phototrophic bacteria, diazotrophic bacteria, and hydrocarbon-utilizing bacteria were established on glass slides suspended in pristine and oily seawater. Via denaturing gradient gel electrophoresis analysis on PCR-amplified rRNA gene sequence fragments from the extracted DNA from biofilms, followed by band amplification, biofilm composition was determined. The biofilms contained anoxygenic phototrophs belonging to alphaproteobacteria; pico- and filamentous cyanobacteria (oxygenic phototrophs); two species of the diazotroph Azospirillum; and two hydrocarbon-utilizing gammaproteobacterial genera, Cycloclasticus and Oleibacter. The coexistence of all these microbial taxa with different physiologies in the biofilm makes the whole community nutritionally self-sufficient and adequately aerated, a condition quite suitable for the microbial biodegradation of aquatic pollutant hydrocarbons.

  12. [Description of the phylogenetic structure of hydrolytic prokaryotic complex in the soils].

    Science.gov (United States)

    Lukacheva, E G; Chernov, T I; Bykova, E M; Vlasenko, A N; Manucharova, N A

    2013-01-01

    With the help of the molecular-biological method of cell hybridization in situ (FISH), the abundance of a physiologically active hydrolytic prokaryotic complex in chernozem and gley-podzolic soils is determined. The total proportion of metabolically active cells, which were detected by hybridization with universal probes as representatives of the domains Bacteria and Archaea, in samples of the studied soil, was from 38% for chernozem up to 78% for gley-podzolic soil of the total number of cells. The differences in the structure of chitinolytic and pectinolytic prokaryotic soil complexes are detected. Along with the high abundance of Actinobacteria and Firmicutes in the soils with chitin, an increase in phylogenetic groups such as Alphaproteobacteria and Bacteroidetes is observed.

  13. Microbial community diversity and composition varies with habitat characteristics and biofilm function in macrophyte-rich streams

    DEFF Research Database (Denmark)

    Levi, Peter S.; Starnawski, Piotr; Poulsen, Britta

    2017-01-01

    Biofilms in streams play an integral role in ecosystem processes and function yet few studies have investigated the broad diversity of these complex prokaryotic and eukaryotic microbial communities. Physical habitat characteristics can affect the composition and abundance of microorganisms...... in these biofilms by creating microhabitats. Here we describe the prokaryotic and eukaryotic microbial diversity of biofilms in sand and macrophyte habitats (i.e. epipsammon and epiphyton, respectively) in five macrophyte-rich streams in Jutland, Denmark. The macrophyte species varied in growth morphology, C......:N stoichiometry, and preferred stream habitat, providing a range in environmental conditions for the epiphyton. Among all habitats and streams, the prokaryotic communities were dominated by common phyla, including Alphaproteobacteria, Bacteriodetes, and Gammaproteobacteria, while the eukaryotic communities were...

  14. Symbiosis within Symbiosis: Evolving Nitrogen-Fixing Legume Symbionts.

    Science.gov (United States)

    Remigi, Philippe; Zhu, Jun; Young, J Peter W; Masson-Boivin, Catherine

    2016-01-01

    Bacterial accessory genes are genomic symbionts with an evolutionary history and future that is different from that of their hosts. Packages of accessory genes move from strain to strain and confer important adaptations, such as interaction with eukaryotes. The ability to fix nitrogen with legumes is a remarkable example of a complex trait spread by horizontal transfer of a few key symbiotic genes, converting soil bacteria into legume symbionts. Rhizobia belong to hundreds of species restricted to a dozen genera of the Alphaproteobacteria and Betaproteobacteria, suggesting infrequent successful transfer between genera but frequent successful transfer within genera. Here we review the genetic and environmental conditions and selective forces that have shaped evolution of this complex symbiotic trait. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. A common soil flagellate (Cercomonas sp.) grows slowly when feeding on the bacterium Rhodococcus fascians in isolation, but does not discriminate against it in a mixed culture with Sphingopyxis witflariensis

    DEFF Research Database (Denmark)

    Lekfeldt, Jonas D S; Rønn, Regin

    2008-01-01

    Flagellates are very important predators on bacteria in soil. Because of their high growth rates, flagellate populations respond rapidly to changes in bacterial numbers. Previous results indicate that actinobacteria are generally less suitable than proteobacteria as food for flagellates. In this ......Flagellates are very important predators on bacteria in soil. Because of their high growth rates, flagellate populations respond rapidly to changes in bacterial numbers. Previous results indicate that actinobacteria are generally less suitable than proteobacteria as food for flagellates....... In this study, we investigated the growth of the flagellate Cercomonas sp. (ATCC 50334) on each of the two bacteria Sphingopyxis witflariensis (Alphaproteobacteria) and Rhodococcus fascians (actinobacteria) separately and in combination. The growth rate of the flagellate was lower and the lag phase was longer...

  16. Molybdenum-based diazotrophy in a Sphagnum peatland in northern Minnesota.

    Science.gov (United States)

    Warren, Melissa J; Lin, Xueju; Gaby, John C; Kretz, Cecilia B; Kolton, Max; Morton, Peter L; Pett-Ridge, Jennifer; Weston, David J; Schadt, Christopher W; Kostka, Joel E; Glass, Jennifer B

    2017-06-30

    Microbial N 2 fixation (diazotrophy) represents an important nitrogen source to oligotrophic peatland ecosystems, which are important sinks for atmospheric CO 2 and susceptible to changing climate. The objectives of this study were: (i) to determine the active microbial group and type of nitrogenase mediating diazotrophy in a ombrotrophic Sphagnum -dominated peat bog (the S1 peat bog, Marcell Experimental Forest, Minnesota, USA); and (ii) to determine the effect of environmental parameters (light, O 2 , CO 2 , CH 4 ) on potential rates of diazotrophy measured by acetylene (C 2 H 2 ) reduction and 15 N 2 incorporation. Molecular analysis of metabolically active microbial communities suggested that diazotrophy in surface peat was primarily mediated by Alphaproteobacteria ( Bradyrhizobiaceae and Beijerinckiaceae ). Despite higher dissolved vanadium (V; 11 nM) than molybdenum (Mo; 3 nM) in surface peat, a combination of metagenomic, amplicon sequencing and activity measurements indicated that Mo-containing nitrogenases dominate over the V-containing form. Acetylene reduction was only detected in surface peat exposed to light, with the highest rates observed in peat collected from hollows with the highest water content. Incorporation of 15 N 2 was suppressed 90% by O 2 and 55% by C 2 H 2 , and was unaffected by CH 4 and CO 2 amendments. These results suggest that peatland diazotrophy is mediated by a combination of C 2 H 2 -sensitive and C 2 H 2 -insensitive microbes that are more active at low O 2 and show similar activity at high and low CH 4 Importance Previous studies indicate that diazotrophy provides an important nitrogen source and is linked to methanotrophy in Sphagnum -dominated peatlands. However, the environmental controls and enzymatic pathways of peatland diazotrophy, as well as the metabolically active microbial populations that catalyze this process remain in question. Our findings indicate that oxygen levels and photosynthetic activity override low

  17. Microbial diversity in hydrothermal surface to subsurface environments of Suiyo Seamount, Izu-Bonin Arc, using a catheter-type in situ growth chamber.

    Science.gov (United States)

    Higashi, Yowsuke; Sunamura, Michinari; Kitamura, Keiko; Nakamura, Ko-ichi; Kurusu, Yasurou; Ishibashi, Jun-ichiro; Urabe, Tetsuro; Maruyama, Akihiko

    2004-03-01

    After excavation using a portable submarine driller near deep-sea hydrothermal vents in the Suiyo Seamount, Izu-Bonin Arc, microbial diversity was examined in samples collected from inside the boreholes using an in situ growth chamber called a vent catheter. This instrument, which we devised for this study, consists of a heat-tolerant pipe tipped with a titanium mesh entrapment capsule that is packed with sterilized inorganic porous grains, which serve as an adhesion substrate. After this instrument was deployed inside each of the boreholes, as well as a natural vent, for 3-10 days in the vicinity of hot vent fluids (maxima: 156-305 degrees C), DNA was extracted from the adhesion grains, 16S rDNA was amplified, and randomly selected clones were sequenced. In phylogenetic analysis of more than 120 clones, several novel phylotypes were detected within the epsilon-Proteobacteria, photosynthetic bacteria (PSB)-related alpha-Proteobacteria, and Euryarchaeota clusters. Members of epsilon-Proteobacteria were frequently encountered. Half of these were classified between two known groups, Corre's B and D. The other half of the clones were assigned to new groups, SSSV-BE1 and SSSV-BE2 (Suiyo Seamount sub-vent origin, Bacteria domain, epsilon-Proteobacteria, groups 1 and 2). From this hydrothermal vent field, we detected a novel lineage within the PSB cluster, SSNV-BA1 (Suiyo Seamount natural vent origin, Bacteria domain, alpha-Proteobacteria, group 1), which is closely related to Rhodopila globiformis isolated from a hot spring. A number of archaeal clones were also detected from the borehole samples. These clones formed a novel monophyletic clade, SSSV-AE1 (Suiyo Seamount sub-vent origin, Archaea domain, Euryarchaeota, group 1), approximately between methanogenic hyperthermophilic members of Methanococcales and environmental clone members of DHVE Group II. Thus, this hydrothermal vent environment appears to be a noteworthy microbial and genetic resource. It is also

  18. Investigation of the thermophilic mechanism in the genus Porphyrobacter by comparative genomic analysis.

    Science.gov (United States)

    Xu, Lin; Wu, Yue-Hong; Zhou, Peng; Cheng, Hong; Liu, Qian; Xu, Xue-Wei

    2018-05-23

    Type strains of the genus Porphyrobacter belonging to the family Erythrobacteraceae and the class Alphaproteobacteria have been isolated from various environments, such as swimming pools, lake water and hot springs. P. cryptus DSM 12079 T and P. tepidarius DSM 10594 T out of all Erythrobacteraceae type strains, are two type strains that have been isolated from geothermal environments. Next-generation sequencing (NGS) technology offers a convenient approach for detecting situational types based on protein sequence differences between thermophiles and mesophiles; amino acid substitutions can lead to protein structural changes, improving the thermal stabilities of proteins. Comparative genomic studies have revealed that different thermal types exist in different taxa, and few studies have been focused on the class Alphaproteobacteria, especially the family Erythrobacteraceae. In this study, eight genomes of Porphyrobacter strains were compared to elucidate how Porphyrobacter thermophiles developed mechanisms to adapt to thermal environments. P. cryptus DSM 12079 T grew optimally at 50 °C, which was higher than the optimal growth temperature of other Porphyrobacter type strains. Phylogenomic analysis of the genus Porphyrobacter revealed that P. cryptus DSM 12079 T formed a distinct and independent clade. Comparative genomic studies uncovered that 1405 single-copy genes were shared by Porphyrobacter type strains. Alignments of single-copy proteins showed that various types of amino acid substitutions existed between P. cryptus DSM 12079 T and the other Porphyrobacter strains. The primary substitution types were changes from glycine/serine to alanine. P. cryptus DSM 12079 T was the sole thermophile within the genus Porphyrobacter. Phylogenomic analysis and amino acid frequencies indicated that amino acid substitutions might play an important role in the thermophily of P. cryptus DSM 12079 T . Bioinformatic analysis revealed that major amino acid substitutional types

  19. Multilayer Approach for Characterization of Bacterial Diversity in a Marginal Sea: From Surface to Seabed

    Science.gov (United States)

    Ivana, Babic; Maja, Mucko; Ivica, Vilibic; Hrvoje, Mihanovic; Reffaella, Casotti; Zrinka, Ljubesic; Ivona, Cetinic; Cecilia, Balestra; Ines, Petric; Suncica, Bosak; hide

    2018-01-01

    Bacteria are the most important microorganisms in the world oceans, accounting for up to 75% of the total biomass. They are responsible for fundamental biogeochemical processes and therefore often used as ecological indicators. In this study, bacteria were quantified by flow cytometry and their diversity assessed by High Throughput Sequencing (HTS) in the southern Adriatic Sea. The most abundant bacterial groups were also quantified by qPCR. The samples were collected from the surface to the seabed over a total of 16 different depths at four stations during the late winter BIOTA (BIO-Tracing Adriatic water masses) cruise conducted in March 2016. The investigated area showed unusual water mass properties and was characterized by a shallow mixed layer, which differed from the usual winter convection conditions, typical of middle-altitude ecosystems and important for the seasonal picoplankton dynamics of this area. Heterotrophic bacteria were separated into HNA (relative High Nucleic Acid content) and LNA (Low Nucleic Acid content) subpopulations with abundances up to 1.8×10(exp 5) and 8.8×10(exp 5) cells/mL, respectively. HNA dominated at offshore stations reaching their maximum at depths below the euphotic zone. The bacterial community was dominated by Alphaproteobacteria, accounting for greater than 40% of the total sequence reads and were mainly represented by the SAR11 clade (90.84%), followed by Marinimicrobia (18% of the total sequence reads), mainly represented by clade SAR406 (8.44%). Distinctive bacterial groups were found in the euphotic layer (Bacteroidetes and Actinobacteria) and aphotic layer samples (Deltaproteobacteria, Marinimicrobia, Chloroflexi, Acidobacteria and Planctomycetes). Results of the qPCR analyses further confirmed HTS results with highest abundances obtained for Alphaproteobacteria, followed by Gammaproteobacteria and Bacteroidetes. The adopted multiple approach, combining different molecular tools, critically supported by optics and

  20. A Novel Extracellular Gut Symbiont in the Marine Worm Priapulus caudatus (Priapulida) Reveals an Alphaproteobacterial Symbiont Clade of the Ecdysozoa.

    Science.gov (United States)

    Kroer, Paul; Kjeldsen, Kasper U; Nyengaard, Jens R; Schramm, Andreas; Funch, Peter

    2016-01-01

    Priapulus caudatus (phylum Priapulida) is a benthic marine predatory worm with a cosmopolitan distribution. In its digestive tract we detected symbiotic bacteria that were consistently present in specimens collected over 8 years from three sites at the Swedish west coast. Based on their 16S rRNA gene sequence, these symbionts comprise a novel genus of the order Rickettsiales (Alphaproteobacteria). Electron microscopy and fluorescence in situ hybridization (FISH) identified them as extracellular, elongate bacteria closely associated with the microvilli, for which we propose the name "Candidatus Tenuibacter priapulorum". Within Rickettsiales, they form a phylogenetically well-defined, family-level clade with uncultured symbionts of marine, terrestrial, and freshwater arthropods. Cand. Tenuibacter priapulorum expands the host range of this candidate family from Arthropoda to the entire Ecdysozoa, which may indicate an evolutionary adaptation of this bacterial group to the microvilli-lined guts of the Ecdysozoa.

  1. Characterization of Eight Kinds of Marine Magnetotactic Bacteria

    Science.gov (United States)

    Du, H.; Pan, H.; Zhang, W.; Wu, L. F.; Xiao, T.

    2017-12-01

    Eight marine magnetotactic bacteria were isolated from intertidal sediments. Six of them are magnetococci (RO-1, RO-2, RO-3, RO-4, SC-1 and SC-2), and two of them are manetospirilla (SH-1 and HH-1). Strain RO-1, RO-2, RO-3, and RO-4 were from Lake Yuehu, Rongcheng (the Yellow Sea). Strain SC-1, SC-2 and SH-1 were from Sanya (the South China Sea). Strain HH-1 was from Huiquan Bay, Qingdao (the Yellow Sea). Magnetosomes arranged in a disorganized cluster in RO-1 and RO-4, two chains in SC-2, and in one chain in others. All the magnetosome crystals were prismatic magnetites. Phylogenetic analysis revealed that they all belonged to the Alphaproteobacteria. Strain RO-1, RO-2, RO-3, RO-4, SC-2 and SH-1 are novel cultured magnetotactic bacteria.

  2. Microbiome change by symbiotic invasion in lichens

    Science.gov (United States)

    Maier, Stefanie; Wedin, Mats; Fernandez-Brime, Samantha; Cronholm, Bodil; Westberg, Martin; Weber, Bettina; Grube, Martin

    2016-04-01

    Biological soil crusts (BSC) seal the soil surface from erosive forces in many habitats where plants cannot compete. Lichens symbioses of fungi and algae often form significant fraction of these microbial assemblages. In addition to the fungal symbiont, many species of other fungi can inhabit the lichenic structures and interact with their hosts in different ways, ranging from commensalism to parasitism. More than 1800 species of lichenicolous (lichen-inhabiting) fungi are known to science. One example is Diploschistes muscorum, a common species in lichen-dominated BSC that infects lichens of the genus Cladonia. D. muscorum starts as a lichenicolous fungus, invading the lichen Cladonia symphycarpa and gradually develops an independent Diploschistes lichen thallus. Furthermore, bacterial groups, such as Alphaproteobacteria and Acidobacteria, have been consistently recovered from lichen thalli and evidence is rapidly accumulating that these microbes may generally play integral roles in the lichen symbiosis. Here we describe lichen microbiome dynamics as the parasitic lichen D. muscorum takes over C. symphycarpa. We used high-throughput 16S rRNA gene and photobiont-specific ITS rDNA sequencing to track bacterial and algal transitions during the infection process, and employed fluorescence in situ hybridization to localize bacteria in the Cladonia and Diploschistes lichen thalli. We sampled four transitional stages, at sites in Sweden and Germany: A) Cladonia with no visible infection, B) early infection stage defined by the first visible Diploschistes thallus, C) late-stage infection with parts of the Cladonia thallus still identifiable, and D) final stage with a fully developed Diploschistes thallus, A gradual microbiome shift occurred during the transition, but fractions of Cladonia-associated bacteria were retained during the process of symbiotic reorganization. Consistent changes observed across sites included a notable decrease in the relative abundance of

  3. Descriptions of Roseiarcus fermentans gen. nov., sp. nov., a bacteriochlorophyll a-containing fermentative bacterium related phylogenetically to alphaproteobacterial methanotrophs, and of the family Roseiarcaceae fam. nov.

    Science.gov (United States)

    Kulichevskaya, Irina S; Danilova, Olga V; Tereshina, Vera M; Kevbrin, Vadim V; Dedysh, Svetlana N

    2014-08-01

    A light-pink-pigmented, microaerophilic bacterium was obtained from a methanotrophic consortium enriched from acidic Sphagnum peat and designated strain Pf56(T). Cells of this bacterium were Gram-negative, non-motile, thick curved rods that contained a vesicular intracytoplasmic membrane system characteristic of some purple non-sulfur alphaproteobacteria. The absorption spectrum of acetone/methanol extracts of cells grown in the light showed maxima at 363, 475, 505, 601 and 770 nm; the peaks at 363 and 770 nm are characteristic of bacteriochlorophyll a. However, in contrast to purple non-sulfur bacteria, strain Pf56(T) was unable to grow phototrophically under anoxic conditions in the light. Best growth occurred on some sugars and organic acids under micro-oxic conditions by means of fermentation. The fermentation products were propionate, acetate and hydrogen. Slow chemo-organotrophic growth was also observed under fully oxic conditions. Light stimulated growth. C1 substrates were not utilized. Strain Pf56(T) grew at pH 4.0-7.0 (optimum pH 5.5-6.5) and at 15-30 °C (optimum 22-28 °C). The major cellular fatty acids were 19 : 0 cyclo ω8c and 18 : 1ω7c; quinones were represented by ubiquinone Q-10. The G+C content of the DNA was 70.0 mol%. Strain Pf56 displays 93.6-94.7 and 92.7-93.7% 16S rRNA gene sequence similarity to members of the families Methylocystaceae and Beijerinckiaceae, respectively, and belongs to a large cluster of environmental sequences retrieved from various wetlands and forest soils in cultivation-independent studies. Phenotypic, genotypic and chemotaxonomic characteristics of strain Pf56(T) suggest that it represents a novel genus and species of bacteriochlorophyll a-containing fermentative bacteria, for which the name Roseiarcus fermentans gen. nov., sp. nov. is proposed. Strain Pf56(T) ( = DSM 24875(T) = VKM B-2876(T)) is the type strain of Roseiarcus fermentans, and is also the first characterized member of a novel family

  4. Analysis of bacterial community during the fermentation of pulque, a traditional Mexican alcoholic beverage, using a polyphasic approach.

    Science.gov (United States)

    Escalante, Adelfo; Giles-Gómez, Martha; Hernández, Georgina; Córdova-Aguilar, María Soledad; López-Munguía, Agustín; Gosset, Guillermo; Bolívar, Francisco

    2008-05-31

    In this study, the characterization of the bacterial community present during the fermentation of pulque, a traditional Mexican alcoholic beverage from maguey (Agave), was determined for the first time by a polyphasic approach in which both culture and non-culture dependent methods were utilized. The work included the isolation of lactic acid bacteria (LAB), aerobic mesophiles, and 16S rDNA clone libraries from total DNA extracted from the maguey sap (aguamiel) used as substrate, after inoculation with a sample of previously produced pulque and followed by 6-h fermentation. Microbiological diversity results were correlated with fermentation process parameters such as sucrose, glucose, fructose and fermentation product concentrations. In addition, medium rheological behavior analysis and scanning electron microscopy in aguamiel and during pulque fermentation were also performed. Our results showed that both culture and non-culture dependent approaches allowed the detection of several new and previously reported species within the alpha-, gamma-Proteobacteria and Firmicutes. Bacteria diversity in aguamiel was composed by the heterofermentative Leuconostoc citreum, L. mesenteroides, L. kimchi, the gamma-Proteobacteria Erwinia rhapontici, Enterobacter spp. and Acinetobacter radioresistens. Inoculation with previously fermented pulque incorporated to the system microbiota, homofermentative lactobacilli related to Lactobacillus acidophilus, several alpha-Proteobacteria such as Zymomonas mobilis and Acetobacter malorum, other gamma-Proteobacteria and an important amount of yeasts, creating a starting metabolic diversity composed by homofermentative and heterofermentative LAB, acetic and ethanol producing microorganisms. At the end of the fermentation process, the bacterial diversity was mainly composed by the homofermentative Lactobacillus acidophilus, the heterofermentative L. mesenteroides, Lactococcus lactis subsp. lactis and the alpha-Proteobacteria A. malorum. After

  5. Analysis of the bacterial community changes in soil for septic tank effluent treatment in response to bio-clogging.

    Science.gov (United States)

    Nie, J Y; Zhu, N W; Zhao, K; Wu, L; Hu, Y H

    2011-01-01

    Soil columns were set up to survey the bacterial community in the soil for septic tank effluent treatment. When bio-clogging occurred in the soil columns, the effluent from the columns was in poorer quality. To evaluate changes of the soil bacterial community in response to bio-clogging, the bacterial community was characterized by DNA gene sequences from soil samples after polymerase chain reaction coupled with denaturing gradient gel electrophoresis process. Correspondence analysis showed that Proteobacteria related bacteria were the main bacteria within the soil when treating septic tank effluent. However, Betaproteobacteria related bacteria were the dominant microorganisms in the normal soil, whereas Alphaproteobacteria related bacteria were more abundant in the clogged soil. This study provided insight into changes of the soil bacterial community in response to bio-clogging. The results can supply some useful information for the design and management of soil infiltration systems.

  6. A novel extracellular gut symbiont in the marine worm Priapulus caudatus (Priapulida reveals an alphaproteobacterial symbiont clade of the Ecdysozoa

    Directory of Open Access Journals (Sweden)

    Paul eKroer

    2016-04-01

    Full Text Available Priapulus caudatus (phylum Priapulida is a benthic marine predatory worm with a cosmopolitan distribution. In its digestive tract we detected symbiotic bacteria that were consistently present in specimens collected over eight years from three sites at the Swedish west coast. Based on their 16S rRNA gene sequence, these symbionts comprise a novel genus of the order Rickettsiales (Alphaproteobacteria. Electron microscopy and fluorescence in situ hybridization (FISH identified them as extracellular, elongate bacteria closely associated with the microvilli, for which we propose the name ‘Candidatus Tenuibacter priapulorum’. Within Rickettsiales, they form a phylogenetically well-defined, family-level clade with uncultured symbionts of marine, terrestrial, and freshwater arthropods. Cand. Tenuibacter priapulorum expands the host range of this candidate family from Arthropoda to the entire Ecdysozoa, which may indicate an evolutionary adaptation of this bacterial group to the microvilli-lined guts of the Ecdysozoa.

  7. Temporal controls of the asymmetric cell division cycle in Caulobacter crescentus.

    Directory of Open Access Journals (Sweden)

    Shenghua Li

    2009-08-01

    Full Text Available The asymmetric cell division cycle of Caulobacter crescentus is orchestrated by an elaborate gene-protein regulatory network, centered on three major control proteins, DnaA, GcrA and CtrA. The regulatory network is cast into a quantitative computational model to investigate in a systematic fashion how these three proteins control the relevant genetic, biochemical and physiological properties of proliferating bacteria. Different controls for both swarmer and stalked cell cycles are represented in the mathematical scheme. The model is validated against observed phenotypes of wild-type cells and relevant mutants, and it predicts the phenotypes of novel mutants and of known mutants under novel experimental conditions. Because the cell cycle control proteins of Caulobacter are conserved across many species of alpha-proteobacteria, the model we are proposing here may be applicable to other genera of importance to agriculture and medicine (e.g., Rhizobium, Brucella.

  8. Temporal controls of the asymmetric cell division cycle in Caulobacter crescentus.

    Science.gov (United States)

    Li, Shenghua; Brazhnik, Paul; Sobral, Bruno; Tyson, John J

    2009-08-01

    The asymmetric cell division cycle of Caulobacter crescentus is orchestrated by an elaborate gene-protein regulatory network, centered on three major control proteins, DnaA, GcrA and CtrA. The regulatory network is cast into a quantitative computational model to investigate in a systematic fashion how these three proteins control the relevant genetic, biochemical and physiological properties of proliferating bacteria. Different controls for both swarmer and stalked cell cycles are represented in the mathematical scheme. The model is validated against observed phenotypes of wild-type cells and relevant mutants, and it predicts the phenotypes of novel mutants and of known mutants under novel experimental conditions. Because the cell cycle control proteins of Caulobacter are conserved across many species of alpha-proteobacteria, the model we are proposing here may be applicable to other genera of importance to agriculture and medicine (e.g., Rhizobium, Brucella).

  9. Performance and diversity of polyvinyl alcohol-degrading bacteria under aerobic and anaerobic conditions.

    Science.gov (United States)

    Huang, Jianping; Yang, Shisu; Zhang, Siqi

    2016-11-01

    To compare the degradation performance and biodiversity of a polyvinyl alcohol-degrading microbial community under aerobic and anaerobic conditions. An anaerobic-aerobic bioreactor was operated to degrade polyvinyl alcohol (PVA) in simulated wastewater. The degradation performance of the bioreactor during sludge cultivation and the microbial communities in each reactor were compared. Both anaerobic and aerobic bioreactors demonstrated high chemical oxygen demand removal efficiencies of 87.5 and 83.6 %, respectively. Results of 16S rDNA sequencing indicated that Proteobacteria dominated in both reactors and that the microbial community structures varied significantly under different operating conditions. Both reactors obviously differed in bacterial diversity from the phyla Planctomycetes, Chlamydiae, Bacteroidetes, and Chloroflexi. Betaproteobacteria and Alphaproteobacteria dominated, respectively, in the anaerobic and aerobic reactors. The anaerobic-aerobic system is suitable for PVA wastewater treatment, and the microbial genetic analysis may serve as a reference for PVA biodegradation.

  10. Effect of UV on De-NOx performance and microbial community of a hybrid catalytic membrane biofilm reactor

    Science.gov (United States)

    Chen, Zhouyang; Huang, Zhensha; He, Yiming; Xiao, Xiaoliang; Wei, Zaishan

    2018-02-01

    The hybrid membrane catalytic biofilm reactor provides a new way of flue gas denitration. However, the effects of UV on denitrification performance, microbial community and microbial nitrogen metabolism are still unknown. In this study, the effects of UV on deNO x performance, nitrification and denitrification, microbial community and microbial nitrogen metabolism of a bench scale N-TiO2/PSF hybrid catalytic membrane biofilm reactor (HCMBR) were evaluated. The change from nature light to UV in the HCMBR leads to the fall of NO removal efficiency of HCMBR from 92.8% to 81.8%. UV affected the microbial community structure, but did not change microbial nitrogen metabolism, as shown by metagenomics sequencing method. Some dominant phyla, such as Gammaproteobacteria, Bacteroidetes, Firmicutes, Actinobacteria, and Alphaproteobacteria, increased in abundance, whereas others, such as Proteobacteria and Betaproteobacteria, decreased. There were nitrification, denitrification, nitrogen fixation, and organic nitrogen metabolism in the HCMBR.

  11. Studies on affecting factors and mechanism of treating decentralized domestic sewage by a novel anti-clogging soil infiltration system.

    Science.gov (United States)

    Yuan, Haiping; Nie, Junying; Gu, Lin; Zhu, Nanwen

    2016-12-01

    The effects of bore diameter and particle size of polyurethane (PU) foam on soil wastewater infiltration system as well as its anti-clogging mechanism were investigated in this study. Different types of PU were used to determine the effect of bore diameter and particle size on the chemical oxygen demand (COD) removal. The results revealed that bore diameter showed little effects and the optimal size of PU should be not less than 10 mm. The formation of strong hydrophilic group on the outer layer of hydrophobic PU foam was fixed with active ingredient Al2O3, leading to good anti-clogging effect. Denaturing gradient gel electrophoresis fingerprint profiles and cluster analysis showed that the microbial community in the bottom was different from that in other places of the normal column, while it in the top has obvious differences from that in other places of the clogging column. Furthermore, the dominant microbial species of the normal column was Betaproteobacteria while Alphaproteobacteria in the clogging column.

  12. The functional potential of microbial communities in hydraulic fracturing source water and produced water from natural gas extraction characterized by metagenomic sequencing.

    Directory of Open Access Journals (Sweden)

    Arvind Murali Mohan

    Full Text Available Microbial activity in produced water from hydraulic fracturing operations can lead to undesired environmental impacts and increase gas production costs. However, the metabolic profile of these microbial communities is not well understood. Here, for the first time, we present results from a shotgun metagenome of microbial communities in both hydraulic fracturing source water and wastewater produced by hydraulic fracturing. Taxonomic analyses showed an increase in anaerobic/facultative anaerobic classes related to Clostridia, Gammaproteobacteria, Bacteroidia and Epsilonproteobacteria in produced water as compared to predominantly aerobic Alphaproteobacteria in the fracturing source water. The metabolic profile revealed a relative increase in genes responsible for carbohydrate metabolism, respiration, sporulation and dormancy, iron acquisition and metabolism, stress response and sulfur metabolism in the produced water samples. These results suggest that microbial communities in produced water have an increased genetic ability to handle stress, which has significant implications for produced water management, such as disinfection.

  13. Cannibalism and predation as paths for horizontal passage of Wolbachia between terrestrial isopods.

    Directory of Open Access Journals (Sweden)

    Winka Le Clec'h

    Full Text Available The alpha-proteobacteria Wolbachia are the most widespread endosymbionts in arthropods and nematodes. Mainly maternally inherited, these so-called sex parasites have selected several strategies that increase their vertical dispersion in host populations. However, the lack of congruence between the Wolbachia and their host phylogenies suggests frequent horizontal transfers. One way that could be used for horizontal Wolbachia transfers between individuals is predation. The aim of this study was to test whether horizontal passage of Wolbachia is possible when an uninfected terrestrial isopod eats an infected one. After having eaten Armadillidium vulgare harbouring Wolbachia, the predator-recipients (the two woodlice A. vulgare and Porcellio dilatatus dilatatus that were initially Wolbachia-free were tested positive for the presence of Wolbachia both by quantitative PCR and Fluorescence in situ Hybridization (FISH. Even if the titers were low compared to vertically infected individuals, this constitutes the first demonstration of Wolbachia occurrence in various organs of an initially uninfected host after eating an infected one.

  14. Biodegradation of weathered polystyrene films in seawater microcosms.

    Science.gov (United States)

    Syranidou, Evdokia; Karkanorachaki, Katerina; Amorotti, Filippo; Franchini, Martina; Repouskou, Eftychia; Kaliva, Maria; Vamvakaki, Maria; Kolvenbach, Boris; Fava, Fabio; Corvini, Philippe F-X; Kalogerakis, Nicolas

    2017-12-21

    A microcosm experiment was conducted at two phases in order to investigate the ability of indigenous consortia alone or bioaugmented to degrade weathered polystyrene (PS) films under simulated marine conditions. Viable populations were developed on PS surfaces in a time dependent way towards convergent biofilm communities, enriched with hydrocarbon and xenobiotics degradation genes. Members of Alphaproteobacteria and Gammaproteobacteria were highly enriched in the acclimated plastic associated assemblages while the abundance of plastic associated genera was significantly increased in the acclimated indigenous communities. Both tailored consortia efficiently reduced the weight of PS films. Concerning the molecular weight distribution, a decrease in the number-average molecular weight of films subjected to microbial treatment was observed. Moreover, alteration in the intensity of functional groups was noticed with Fourier transform infrared spectrophotometry (FTIR) along with signs of bio-erosion on the PS surface. The results suggest that acclimated marine populations are capable of degrading weathered PS pieces.

  15. The abundant marine bacterium Pelagibacter simultaneously catabolizes dimethylsulfoniopropionate to the gases dimethyl sulfide and methanethiol

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Jing; Todd, Jonathan D.; Thrash, J. Cameron; Qian, Yanping; Qian, Michael C.; Temperton, Ben; Guo, Jiazhen; Fowler, Emily K.; Aldrich, Joshua T.; Nicora, Carrie D.; Lipton, Mary S.; Smith, Richard D.; De Leenheer, Patrick; Payne, Samuel H.; Johnston, Andrew W. B.; Davie-Martin, Cleo L.; Halsey, Kimberly H.; Giovannoni, Stephen J.

    2016-05-16

    Marine phytoplankton produce ~109 tons of dimethylsulfoniopropionate (DMSP) per year1,2, an estimated 10% of which is catabolized by bacteria through the DMSP cleavage pathway to the climatically active gas dimethyl sulfide (DMS)3,4. SAR11 Alphaproteobacteria (order Pelagibacterales), the most abundant chemoorganotrophic bacteria in the oceans, have been shown to assimilate DMSP into biomass, thereby supplying this cell’s unusual requirement for reduced sulfur5,6. Here we report that Pelagibacter HTCC1062 produces the gas methanethiol (MeSH) and that simultaneously a second DMSP catabolic pathway, mediated by a DMSP lyase, shunts as much as 59% of DMSP uptake to DMS production. We propose a model in which the allocation of DMSP between these pathways is kinetically controlled to release increasing amounts of DMS as the supply of DMSP exceeds cellular sulfur demands for biosynthesis. These findings suggest that DMSP supply and demand relationships in Pelagibacter metabolism are important to determining rates of oceanic DMS production.

  16. Genome-scale data suggest reclassifications in the Leisingera-Phaeobacter cluster including proposals for Sedimentitalea gen. nov. and Pseudophaeobacter gen. nov.

    Directory of Open Access Journals (Sweden)

    Sven eBreider

    2014-08-01

    Full Text Available Earlier phylogenetic analyses of the marine Rhodobacteraceae (class Alphaproteobacteria genera Leisingera and Phaeobacter indicated that neither genus might be monophyletic. We here used phylogenetic reconstruction from genome-scale data, MALDI-TOF mass-spectrometry analysis and a re-assessment of the phenotypic data from the literature to settle this matter, aiming at a reclassification of the two genera. Neither Phaeobacter nor Leisingera formed a clade in any of the phylogenetic analyses conducted. Rather, smaller monophyletic assemblages emerged, which were phenotypically more homogeneous, too. We thus propose the reclassification of Leisingera nanhaiensis as the type species of a new genus as Sedimentitalea nanhaiensis gen. nov., comb. nov., the reclassification of Phaeobacter arcticus and Phaeobacter leonis as Pseudophaeobacter arcticus gen. nov., comb. nov. and Pseudophaeobacter leonis comb. nov., and the reclassification of Phaeobacter aquaemixtae, Phaeobacter caeruleus and Phaeobacter daeponensis as Leisingera aquaemixtae comb. nov., Leisingera caerulea comb. nov. and Leisingera daeponensis comb. nov. The genera Phaeobacter and Leisingera are accordingly emended.

  17. [Phylogenetic diversity of microorganisms associated with the deep-water sponge Baikalospongia intermedia].

    Science.gov (United States)

    Kalyzhnaya, O V; Itskovich, V B

    2014-07-01

    The diversity of bacteria associated with deep-water sponge Baikalospongia intermedia was evaluated by sequence analysis of 16S rRNA genes from two sponge samples collected in Lake Baikal from depths of 550 and 1204 m. A total of 64 operational taxonomic units, belonging to nine bacterial phyla, Proteobacteria (classes Alphaproteobacteria,. Betaproteobacteria, Gammaproteobacteria, and Deltaproteobacteria), Actinobacteria, Planctomycetes, Cloroflexi, Verrucomicrobia, Acidobacteria, Chlorobi, and Nitrospirae, including candidate phylum WS5, were identified. Phylogenetic analysis showed that the examined communities contained phylotypes exhibiting homology to uncultured bacteria from different lake ecosystems, freshwater sediments, soil and geological formations. Moreover, a number of phylotypes were relative to psychrophilic, methane-oxidizing, sulfate-reducing bacteria, and to microorganisms resistant to the influence of heavy metals. It seems likely that the unusual habitation conditions of deep-water sponges contribute to the taxonomic diversity of associated bacteria and have an influence on the presence of functionally important microorganisms in bacterial communities.

  18. Study of the diversity of microbial communities in a sequencing batch reactor oxic-settling-anaerobic process and its modified process.

    Science.gov (United States)

    Sun, Lianpeng; Chen, Jianfan; Wei, Xiange; Guo, Wuzhen; Lin, Meishan; Yu, Xiaoyu

    2016-05-01

    To further reveal the mechanism of sludge reduction in the oxic-settling-anaerobic (OSA) process, the polymerase chain reaction - denaturing gradient gel electrophoresis protocol was used to study the possible difference in the microbial communities between a sequencing batch reactor (SBR)-OSA process and its modified process, by analyzing the change in the diversity of the microbial communities in each reactor of both systems. The results indicated that the structure of the microbial communities in aerobic reactors of the 2 processes was very different, but the predominant microbial populations in anaerobic reactors were similar. The predominant microbial population in the aerobic reactor of the SBR-OSA belonged to Burkholderia cepacia, class Betaproteobacteria, while those of the modified process belonged to the classes Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria. These 3 types of microbes had a cryptic growth characteristic, which was the main cause of a greater sludge reduction efficiency achieved by the modified process.

  19. Effects of High Hydrostatic Pressure on Coastal Bacterial Community Abundance and Diversity

    Science.gov (United States)

    Marietou, Angeliki

    2014-01-01

    Hydrostatic pressure is an important parameter influencing the distribution of microbial life in the ocean. In this study, the response of marine bacterial populations from surface waters to pressures representative of those under deep-sea conditions was examined. Southern California coastal seawater collected 5 m below the sea surface was incubated in microcosms, using a range of temperatures (16 to 3°C) and hydrostatic pressure conditions (0.1 to 80 MPa). Cell abundance decreased in response to pressure, while diversity increased. The morphology of the community also changed with pressurization to a predominant morphotype of small cocci. The pressure-induced community changes included an increase in the relative abundance of Alphaproteobacteria, Gammaproteobacteria, Actinobacteria, and Flavobacteria largely at the expense of Epsilonproteobacteria. Culturable high-pressure-surviving bacteria were obtained and found to be phylogenetically similar to isolates from cold and/or deep-sea environments. These results provide novel insights into the response of surface water bacteria to changes in hydrostatic pressure. PMID:25063663

  20. Characterization of culturable heterotrophic bacteria in hydrocarbon-contaminated soil from an alpine former military site.

    Science.gov (United States)

    Zhang, Dechao; Margesin, Rosa

    2014-06-01

    We characterized the culturable, heterotrophic bacterial community in soil collected from a former alpine military site contaminated with petroleum hydrocarbons. The physiologically active eubacterial community, as revealed by fluorescence-in situ-hybridization, accounted for 14.9 % of the total (DAPI-stained) bacterial community. 4.0 and 1.2 % of the DAPI-stained cells could be attributed to culturable, heterotrophic bacteria able to grow at 20 and 10 °C, respectively. The majority of culturable bacterial isolates (23/28 strains) belonged to the Proteobacteria with a predominance of Alphaproteobacteria. The remaining isolates were affiliated with the Firmicutes, Actinobacteria and Bacteroidetes. Five strains could be identified as representatives of novel species. Characterization of the 28 strains demonstrated their adaptation to the temperature and nutrient conditions prevailing in the studied soil. One-third of the strains was able to grow at subzero temperatures (-5 °C). Studies on the effect of temperature on growth and lipase production with two selected strains demonstrated their low-temperature adaptation.

  1. Cellular and Molecular Biological Approaches to Interpreting Ancient Biomarkers

    Science.gov (United States)

    Newman, Dianne K.; Neubauer, Cajetan; Ricci, Jessica N.; Wu, Chia-Hung; Pearson, Ann

    2016-06-01

    Our ability to read the molecular fossil record has advanced significantly in the past decade. Improvements in biomarker sampling and quantification methods, expansion of molecular sequence databases, and the application of genetic and cellular biological tools to problems in biomarker research have enabled much of this progress. By way of example, we review how attempts to understand the biological function of 2-methylhopanoids in modern bacteria have changed our interpretation of what their molecular fossils tell us about the early history of life. They were once thought to be biomarkers of cyanobacteria and hence the evolution of oxygenic photosynthesis, but we now believe that 2-methylhopanoid biosynthetic capacity originated in the Alphaproteobacteria, that 2-methylhopanoids are regulated in response to stress, and that hopanoid 2-methylation enhances membrane rigidity. We present a new interpretation of 2-methylhopanes that bridges the gap between studies of the functions of 2-methylhopanoids and their patterns of occurrence in the rock record.

  2. Application of Bioorganic Fertilizer Significantly Increased Apple Yields and Shaped Bacterial Community Structure in Orchard Soil.

    Science.gov (United States)

    Wang, Lei; Li, Jing; Yang, Fang; E, Yaoyao; Raza, Waseem; Huang, Qiwei; Shen, Qirong

    2017-02-01

    Application of bioorganic fertilizers has been reported to improve crop yields and change soil bacterial community structure; however, little work has been done in apple orchard soils where the biological properties of the soils are being degraded due to long-term application of chemical fertilizers. In this study, we used Illumina-based sequencing approach to characterize the bacterial community in the 0-60-cm soil profile under different fertilizer regimes in the Loess Plateau. The experiment includes three treatments: (1) control without fertilization (CK); (2) application of chemical fertilizer (CF); and (3) application of bioorganic fertilizer and organic-inorganic mixed fertilizer (BOF). The results showed that the treatment BOF increased the apple yields by 114 and 67 % compared to the CK and CF treatments, respectively. The treatment BOF also increased the soil organic matter (SOM) by 22 and 16 % compared to the CK and CF treatments, respectively. The Illumina-based sequencing showed that Acidobacteria and Proteobacteria were the predominant phyla and Alphaproteobacteria and Gammaproteobacteria were the most abundant classes in the soil profile. The bacterial richness for ACE was increased after the addition of BOF. Compared to CK and CF treatments, BOF-treated soil revealed higher abundance of Proteobacteria, Alphaproteobacteria and Gammaproteobacteria, Rhizobiales, and Xanthomonadales while Acidobacteria, Gp7, Gp17, and Sphaerobacter were found in lower abundance throughout the soil profile. Bacterial community structure varied with soil depth under different fertilizer treatments, e.g., the bacterial richness, diversity, and the relative abundance of Verruccomicrobia, Candidatus Brocadiales, and Skermanella were decreased with the soil depth in all three treatments. Permutational multivariate analysis showed that the fertilizer regime was the major factor than soil depth in the variations of the bacterial community composition. Two groups, Lysobacter

  3. Complete genome sequence of Rhodospirillum rubrum type strain (S1).

    Science.gov (United States)

    Munk, A Christine; Copeland, Alex; Lucas, Susan; Lapidus, Alla; Del Rio, Tijana Glavina; Barry, Kerrie; Detter, John C; Hammon, Nancy; Israni, Sanjay; Pitluck, Sam; Brettin, Thomas; Bruce, David; Han, Cliff; Tapia, Roxanne; Gilna, Paul; Schmutz, Jeremy; Larimer, Frank; Land, Miriam; Kyrpides, Nikos C; Mavromatis, Konstantinos; Richardson, Paul; Rohde, Manfred; Göker, Markus; Klenk, Hans-Peter; Zhang, Yaoping; Roberts, Gary P; Reslewic, Susan; Schwartz, David C

    2011-07-01

    Rhodospirillum rubrum (Esmarch 1887) Molisch 1907 is the type species of the genus Rhodospirillum, which is the type genus of the family Rhodospirillaceae in the class Alphaproteobacteria. The species is of special interest because it is an anoxygenic phototroph that produces extracellular elemental sulfur (instead of oxygen) while harvesting light. It contains one of the most simple photosynthetic systems currently known, lacking light harvesting complex 2. Strain S1(T) can grow on carbon monoxide as sole energy source. With currently over 1,750 PubMed entries, R. rubrum is one of the most intensively studied microbial species, in particular for physiological and genetic studies. Next to R. centenum strain SW, the genome sequence of strain S1(T) is only the second genome of a member of the genus Rhodospirillum to be published, but the first type strain genome from the genus. The 4,352,825 bp long chromosome and 53,732 bp plasmid with a total of 3,850 protein-coding and 83 RNA genes were sequenced as part of the DOE Joint Genome Institute Program DOEM 2002.

  4. Biodiversity patterns of plankton assemblages at the extremes of the Red Sea

    KAUST Repository

    Pearman, John K.

    2016-01-07

    The diversity of microbial plankton has received limited attention in the main basin of the Red Sea. This study investigates changes in the community composition and structure of prokaryotes and eukaryotes at the extremes of the Red Sea along cross-shelf gradients and between the surface and deep chlorophyll maximum. Using molecular methods to target both the 16S and 18S rRNA genes, it was observed that the dominant prokaryotic classes were Acidimicrobiia, Alphaproteobacteria and Cyanobacteria, regardless of the region and depth. The eukaryotes Syndiniophyceae and Dinophyceae between them dominated in the north, with Bacillariophyceae and Mamiellophyceae more prominent in the southern region. Significant differences were observed for prokaryotes and eukaryotes for region, depth and distance from shore. Similarly, it was noticed that communities became less similar with increasing distance from the shore. Canonical correspondence analysis at the class level showed that Mamiellophyceae and Bacillariophyceae correlated with increased nutrients and chlorophyll a found in the southern region, which is influenced by the input of Gulf of Aden Intermediate Water.

  5. Acetic acid bacteria: A group of bacteria with versatile biotechnological applications.

    Science.gov (United States)

    Saichana, Natsaran; Matsushita, Kazunobu; Adachi, Osao; Frébort, Ivo; Frebortova, Jitka

    2015-11-01

    Acetic acid bacteria are gram-negative obligate aerobic bacteria assigned to the family Acetobacteraceae of Alphaproteobacteria. They are members of the genera Acetobacter, Gluconobacter, Gluconacetobacter, Acidomonas, Asaia, Kozakia, Swaminathania, Saccharibacter, Neoasaia, Granulibacter, Tanticharoenia, Ameyamaea, Neokomagataea, and Komagataeibacter. Many strains of Acetobacter and Komagataeibacter have been known to possess high acetic acid fermentation ability as well as the acetic acid and ethanol resistance, which are considered to be useful features for industrial production of acetic acid and vinegar, the commercial product. On the other hand, Gluconobacter strains have the ability to perform oxidative fermentation of various sugars, sugar alcohols, and sugar acids leading to the formation of several valuable products. Thermotolerant strains of acetic acid bacteria were isolated in order to serve as the new strains of choice for industrial fermentations, in which the cooling costs for maintaining optimum growth and production temperature in the fermentation vessels could be significantly reduced. Genetic modifications by adaptation and genetic engineering were also applied to improve their properties, such as productivity and heat resistance. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Characterization of microbial communities in heavy crude oil from Saudi Arabia.

    Science.gov (United States)

    Albokari, Majed; Mashhour, Ibrahim; Alshehri, Mohammed; Boothman, Chris; Al-Enezi, Mousa

    The complete mineralization of crude oil into carbon dioxide, water, inorganic compounds and cellular constituents can be carried out as part of a bioremediation strategy. This involves the transformation of complex organic contaminants into simpler organic compounds by microbial communities, mainly bacteria. A crude oil sample and an oil sludge sample were obtained from Saudi ARAMCO Oil Company and investigated to identify the microbial communities present using PCR-based culture-independent techniques. In total, analysis of 177 clones yielded 30 distinct bacterial sequences. Clone library analysis of the oil sample was found to contain Bacillus , Clostridia and Gammaproteobacteria species while the sludge sample revealed the presence of members of the Alphaproteobacteria , Betaproteobacteria , Gammaproteobacteria , Clostridia , Spingobacteria and Flavobacteria . The dominant bacterial class identified in oil and sludge samples was found to be Bacilli and Flavobacteria , respectively. Phylogenetic analysis showed that the dominant bacterium in the oil sample has the closest sequence identity to Enterococcus aquimarinus and the dominant bacterium in the sludge sample is most closely related to the uncultured Bacteroidetes bacterium designated AH.KK.

  7. Factors Influencing Bacterial Diversity and Community Composition in Municipal Drinking Waters in the Ohio River Basin, USA.

    Directory of Open Access Journals (Sweden)

    Lee F Stanish

    Full Text Available The composition and metabolic activities of microbes in drinking water distribution systems can affect water quality and distribution system integrity. In order to understand regional variations in drinking water microbiology in the upper Ohio River watershed, the chemical and microbiological constituents of 17 municipal distribution systems were assessed. While sporadic variations were observed, the microbial diversity was generally dominated by fewer than 10 taxa, and was driven by the amount of disinfectant residual in the water. Overall, Mycobacterium spp. (Actinobacteria, MLE1-12 (phylum Cyanobacteria, Methylobacterium spp., and sphingomonads were the dominant taxa. Shifts in community composition from Alphaproteobacteria and Betaproteobacteria to Firmicutes and Gammaproteobacteria were associated with higher residual chlorine. Alpha- and beta-diversity were higher in systems with higher chlorine loads, which may reflect changes in the ecological processes structuring the communities under different levels of oxidative stress. These results expand the assessment of microbial diversity in municipal distribution systems and demonstrate the value of considering ecological theory to understand the processes controlling microbial makeup. Such understanding may inform the management of municipal drinking water resources.

  8. PHA production by mixed cultures: a way to valorize wastes from pulp industry.

    Science.gov (United States)

    Queirós, Diogo; Rossetti, Simona; Serafim, Luísa S

    2014-04-01

    In this work, hardwood spent sulfite liquor (HSSL), a complex feedstock originating from the pulp industry, was tested for the first time as a substrate for polyhydroxyalkanoate (PHA) production by a mixed microbial culture (MMC) under aerobic dynamic feeding (ADF) conditions. A sequencing batch reactor (SBR) fed with HSSL was operated for 67days and the selected MMC reached a maximum PHA content of 67.6%. The MMC demonstrated a differential utilization of the carbon sources present in HSSL. Acetic acid was fully consumed, while xylose and lignosulphonates were partially consumed (30% and 14%, respectively). The selected culture was characterized by Fluorescence in Situ Hybridization (FISH). Bacteria belonging to the three main classes were identified: Alpha- (72.7±4.0%), Beta- (11.1±0.37%) and Gammaproteobacteria (10.3±0.3%). Within Alphaproteobacteria, a small amount of Paracoccus (4.2±0.51%) and Defluvicoccus related to Tetrad Forming Organisms (9.0±0.28%) were detected. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Biofilm bacterial communities in urban drinking water distribution systems transporting waters with different purification strategies.

    Science.gov (United States)

    Wu, Huiting; Zhang, Jingxu; Mi, Zilong; Xie, Shuguang; Chen, Chao; Zhang, Xiaojian

    2015-02-01

    Biofilm formation in drinking water distribution systems (DWDS) has many adverse consequences. Knowledge of microbial community structure of DWDS biofilm can aid in the design of an effective control strategy. However, biofilm bacterial community in real DWDS and the impact of drinking water purification strategy remain unclear. The present study investigated the composition and diversity of biofilm bacterial community in real DWDSs transporting waters with different purification strategies (conventional treatment and integrated treatment). High-throughput Illumina MiSeq sequencing analysis illustrated a large shift in the diversity and structure of biofilm bacterial community in real DWDS. Proteobacteria, Firmicutes, Bacteroidetes, Actinobacteria, Nitrospirae, and Cyanobacteria were the major components of biofilm bacterial community. Proteobacteria (mainly Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria) predominated in each DWDS biofilm, but the compositions of the dominant proteobacterial classes and genera and their proportions varied among biofilm samples. Drinking water purification strategy could shape DWDS biofilm bacterial community. Moreover, Pearson's correlation analysis indicated that Actinobacteria was positively correlated with the levels of total alkalinity and dissolved organic carbon in tap water, while Firmicutes had a significant positive correlation with nitrite nitrogen.

  10. Diversity rankings among bacterial lineages in soil.

    Science.gov (United States)

    Youssef, Noha H; Elshahed, Mostafa S

    2009-03-01

    We used rarefaction curve analysis and diversity ordering-based approaches to rank the 11 most frequently encountered bacterial lineages in soil according to diversity in 5 previously reported 16S rRNA gene clone libraries derived from agricultural, undisturbed tall grass prairie and forest soils (n=26,140, 28 328, 31 818, 13 001 and 53 533). The Planctomycetes, Firmicutes and the delta-Proteobacteria were consistently ranked among the most diverse lineages in all data sets, whereas the Verrucomicrobia, Gemmatimonadetes and beta-Proteobacteria were consistently ranked among the least diverse. On the other hand, the rankings of alpha-Proteobacteria, Acidobacteria, Actinobacteria, Bacteroidetes and Chloroflexi varied widely in different soil clone libraries. In general, lineages exhibiting largest differences in diversity rankings also exhibited the largest difference in relative abundance in the data sets examined. Within these lineages, a positive correlation between relative abundance and diversity was observed within the Acidobacteria, Actinobacteria and Chloroflexi, and a negative diversity-abundance correlation was observed within the Bacteroidetes. The ecological and evolutionary implications of these results are discussed.

  11. Linking activity, composition and seasonal dynamics of atmospheric methane oxidizers in a meadow soil.

    Science.gov (United States)

    Shrestha, Pravin Malla; Kammann, Claudia; Lenhart, Katharina; Dam, Bomba; Liesack, Werner

    2012-06-01

    Microbial oxidation is the only biological sink for atmospheric methane. We assessed seasonal changes in atmospheric methane oxidation and the underlying methanotrophic communities in grassland near Giessen (Germany), along a soil moisture gradient. Soil samples were taken from the surface layer (0-10 cm) of three sites in August 2007, November 2007, February 2008 and May 2008. The sites showed seasonal differences in hydrological parameters. Net uptake rates varied seasonally between 0 and 70 μg CH(4) m(-2) h(-1). Greatest uptake rates coincided with lowest soil moisture in spring and summer. Over all sites and seasons, the methanotrophic communities were dominated by uncultivated methanotrophs. These formed a monophyletic cluster defined by the RA14, MHP and JR1 clades, referred to as upland soil cluster alphaproteobacteria (USCα)-like group. The copy numbers of pmoA genes ranged between 3.8 × 10(5)-1.9 × 10(6) copies g(-1) of soil. Temperature was positively correlated with CH(4) uptake rates (P50 vol% and primarily related to members of the MHP clade.

  12. Diversity analysis of diazotrophic bacteria associated with the roots of tea (Camellia sinensis (L.) O. Kuntze).

    Science.gov (United States)

    Gulati, Arvind; Sood, Swati; Rahi, Praveen; Thakur, Rishu; Chauhan, Sunita; Chawla, Isha

    2011-06-01

    The diversity elucidation by amplified ribosomal DNA restriction analysis and 16S rDNA sequencing of 96 associative diazotrophs, isolated from the feeder roots of tea on enriched nitrogen-free semisolid media, revealed the predominance of Gram-positive over Gram-negative bacteria within the Kangra valley in Himachal Pradesh, India. The Gram-positive bacteria observed belong to two taxonomic groupings; Firmicutes, including the genera Bacillus and Paenibacillus; and Actinobacteria, represented by the genus Microbacterium. The Gram-negative bacteria included alpha-Proteobacteria genera Brevundimonas, Rhizobium, and Mesorhizobium; gamma-Proteobacteria genera Pseudomonas and Stenotrophomonas; and beta-Proteobacteria genera Azospira, Burkholderia, Delftia, Herbaspirillum and Ralstonia. The low level of similarity of two isolates, with the type strains Paenibacillus xinjiangensis and Mesorhizobium albiziae, suggests the possibility of raising species novum. The bacterial strains of different phylogenetic groups exhibited distinct carbon-source utilization patterns and fatty acid methyl ester profiles. The strains differed in their nitrogenase activities with relatively high activity seen in the Gramnegative strains exhibiting the highest similarity to Azospira oryzae, Delftia lacustris and Herbaspirillum huttiense.

  13. Bacterial Diversity and Community Structure in Korean Ginseng Field Soil Are Shifted by Cultivation Time.

    Science.gov (United States)

    Nguyen, Ngoc-Lan; Kim, Yeon-Ju; Hoang, Van-An; Subramaniyam, Sathiyamoorthy; Kang, Jong-Pyo; Kang, Chang Ho; Yang, Deok-Chun

    2016-01-01

    Traditional molecular methods have been used to examine bacterial communities in ginseng-cultivated soil samples in a time-dependent manner. Despite these efforts, our understanding of the bacterial community is still inadequate. Therefore, in this study, a high-throughput sequencing approach was employed to investigate bacterial diversity in various ginseng field soil samples over cultivation times of 2, 4, and 6 years in the first and second rounds of cultivation. We used non-cultivated soil samples to perform a comparative study. Moreover, this study assessed changes in the bacterial community associated with soil depth and the health state of the ginseng. Bacterial richness decreased through years of cultivation. This study detected differences in relative abundance of bacterial populations between the first and second rounds of cultivation, years of cultivation, and health states of ginseng. These bacterial populations were mainly distributed in the classes Acidobacteria, Alphaproteobacteria, Deltaproteobacteria, Gammaproteobacteria, and Sphingobacteria. In addition, we found that pH, available phosphorus, and exchangeable Ca+ seemed to have high correlations with bacterial class in ginseng cultivated soil.

  14. A prevalent alpha-proteobacterium Paracoccus sp. in a population of the Cayenne ticks (Amblyomma cajennense from Rio de Janeiro, Brazil

    Directory of Open Access Journals (Sweden)

    Erik Machado-Ferreira

    2012-01-01

    Full Text Available As Rocky Mountain Spotted Fever is the most common tick-borne disease in South America, the presence of Rickettsia sp. in Amblyomma ticks is a possible indication of its endemicity in certain geographic regions. In the present work, bacterial DNA sequences related to Rickettsia amblyommii genes in A. dubitatum ticks, collected in the Brazilian state of Mato Grosso, were discovered. Simultaneously, Paracoccus sp. was detected in aproximately 77% of A. cajennense specimens collected in Rio de Janeiro, Brazil. This is the first report of Paracoccus sp. infection in a specific tick population, and raises the possibility of these bacteria being maintained and/or transmitted by ticks. Whether Paracoccus sp. represents another group of pathogenic Rhodobacteraceae or simply plays a role in A. cajennense physiology, is unknown. The data also demonstrate that the rickettsial 16S rRNA specific primers used forRickettsia spp. screening can also detect Paracoccus alpha-proteobacteria infection in biological samples. Hence, a PCRRFLP strategy is presented to distinguish between these two groups of bacteria.

  15. A prevalent alpha-proteobacterium Paracoccus sp. in a population of the Cayenne ticks (Amblyomma cajennense) from Rio de Janeiro, Brazil

    Science.gov (United States)

    Machado-Ferreira, Erik; Piesman, Joseph; Zeidner, Nordin S.; Soares, Carlos A.G.

    2012-01-01

    As Rocky Mountain Spotted Fever is the most common tick-borne disease in South America, the presence of Rickettsia sp. in Amblyomma ticks is a possible indication of its endemicity in certain geographic regions. In the present work, bacterial DNA sequences related to Rickettsia amblyommii genes in A. dubitatum ticks, collected in the Brazilian state of Mato Grosso, were discovered. Simultaneously, Paracoccus sp. was detected in aproximately 77% of A. cajennense specimens collected in Rio de Janeiro, Brazil. This is the first report of Paracoccus sp. infection in a specific tick population, and raises the possibility of these bacteria being maintained and/or transmitted by ticks. Whether Paracoccus sp. represents another group of pathogenic Rhodobacteraceae or simply plays a role in A. cajennense physiology, is unknown. The data also demonstrate that the rickettsial 16S rRNA specific primers used forRickettsia spp. screening can also detect Paracoccus alpha-proteobacteria infection in biological samples. Hence, a PCR-RFLP strategy is presented to distinguish between these two groups of bacteria. PMID:23271948

  16. Biodiversity patterns of plankton assemblages at the extremes of the Red Sea

    KAUST Repository

    Pearman, John K.; Kurten, Saskia; Yellepeddi, Sarma B.; Jones, Burton; Carvalho, Susana

    2016-01-01

    The diversity of microbial plankton has received limited attention in the main basin of the Red Sea. This study investigates changes in the community composition and structure of prokaryotes and eukaryotes at the extremes of the Red Sea along cross-shelf gradients and between the surface and deep chlorophyll maximum. Using molecular methods to target both the 16S and 18S rRNA genes, it was observed that the dominant prokaryotic classes were Acidimicrobiia, Alphaproteobacteria and Cyanobacteria, regardless of the region and depth. The eukaryotes Syndiniophyceae and Dinophyceae between them dominated in the north, with Bacillariophyceae and Mamiellophyceae more prominent in the southern region. Significant differences were observed for prokaryotes and eukaryotes for region, depth and distance from shore. Similarly, it was noticed that communities became less similar with increasing distance from the shore. Canonical correspondence analysis at the class level showed that Mamiellophyceae and Bacillariophyceae correlated with increased nutrients and chlorophyll a found in the southern region, which is influenced by the input of Gulf of Aden Intermediate Water.

  17. Electricity generation using chocolate industry wastewater and its treatment in activated sludge based microbial fuel cell and analysis of developed microbial community in the anode chamber.

    Science.gov (United States)

    Patil, Sunil A; Surakasi, Venkata Prasad; Koul, Sandeep; Ijmulwar, Shrikant; Vivek, Amar; Shouche, Y S; Kapadnis, B P

    2009-11-01

    Feasibility of using chocolate industry wastewater as a substrate for electricity generation using activated sludge as a source of microorganisms was investigated in two-chambered microbial fuel cell. The maximum current generated with membrane and salt bridge MFCs was 3.02 and 2.3 A/m(2), respectively, at 100 ohms external resistance, whereas the maximum current generated in glucose powered MFC was 3.1 A/m(2). The use of chocolate industry wastewater in cathode chamber was promising with 4.1 mA current output. Significant reduction in COD, BOD, total solids and total dissolved solids of wastewater by 75%, 65%, 68%, 50%, respectively, indicated effective wastewater treatment in batch experiments. The 16S rDNA analysis of anode biofilm and suspended cells revealed predominance of beta-Proteobacteria clones with 50.6% followed by unclassified bacteria (9.9%), alpha-Proteobacteria (9.1%), other Proteobacteria (9%), Planctomycetes (5.8%), Firmicutes (4.9%), Nitrospora (3.3%), Spirochaetes (3.3%), Bacteroides (2.4%) and gamma-Proteobacteria (0.8%). Diverse bacterial groups represented as members of the anode chamber community.

  18. Bacterial community composition of a wastewater treatment system reliant on N{sub 2} fixation

    Energy Technology Data Exchange (ETDEWEB)

    Reid, N.M.; Bowers, T.H.; Lloyd-Jones, G. [Scion, Rotorua (New Zealand)

    2008-05-15

    The temporal stability and change of the dominant phylogenetic groups of the domain bacteria were studied in a model plant-based industrial wastewater treatment system showing high levels of organic carbon removal supported by high levels of N{sub 2} fixation. Community profiles were obtained through terminal restriction fragment length polymorphism analysis and cloning of 16S rRNA amplicons followed by sequencing. Bacterial community profiles showed that ten common terminal restriction fragments made up approximately 50% of the measured bacterial community. As much as 42% of the measured bacterial community could be monitored by using quantitative PCR and primers that targeted three dominant operational taxonomic units. Despite changes in wastewater composition and dissolved oxygen levels, the bacterial community composition appeared stable and was dominated by {alpha}-Proteobacteria and {beta}-Proteobacteria, with a lesser amount of the highly diverse bacterial phylum Bacteroidetes. A short period of considerable change in the bacterial community composition did not appear to affect treatment performance indicating functional redundancy in this treatment system. (orig.)

  19. Microbial communities in acid water environments of two mines, China

    Energy Technology Data Exchange (ETDEWEB)

    Shengmu, Xiao; Xuehui, Xie [College of Environmental Science and Engineering, Donghua University, Shanghai (China); Jianshe, Liu [College of Environmental Science and Engineering, Donghua University, Shanghai (China); School of Resources Processing and Bioengineering, Central South University, Changsha (China)], E-mail: xiaoshengmu@gmail.com

    2009-03-15

    To understand the compositions and structures of microbial communities in different acid-aqueous environments, a PCR-based cloning approach was used. A total of five samples were collected from two mines in China. Two samples, named as G1 and G2, were acid mine drainage (AMD) samples and from Yunfu sulfide mine in Guangdong province, China. The rest of the three samples named as D1, DY and D3, were from three sites undertaking bioleaching in Yinshan lead-zinc mine in Jiangxi province, China. Phylogenetic analysis revealed that bacteria in the five samples fell into six putative divisions, which were {alpha}-Proteobacteria, {beta}-Proteobacteria, {gamma}-Proteobacteria, Firmicutes, Actinobacteria and Nitrospira. Archaea was only detected in the three samples from Yinshan lead-zinc mine, which fell into two phylogenentic divisions, Thermoplsma and Ferroplasma. In addition, the results of principal component analysis (PCA) suggested that more similar the geochemical properties in samples were, more similar microbial community structures in samples were. - Microbial community compositions in acid-aqueous environments from Chinese mines were studied, and the relationship with geochemical properties was obtained.

  20. A cheZ-Like Gene in Azorhizobium caulinodans Is a Key Gene in the Control of Chemotaxis and Colonization of the Host Plant.

    Science.gov (United States)

    Liu, Xiaolin; Liu, Wei; Sun, Yu; Xia, Chunlei; Elmerich, Claudine; Xie, Zhihong

    2018-02-01

    Chemotaxis can provide bacteria with competitive advantages for survival in complex environments. The CheZ chemotaxis protein is a phosphatase, affecting the flagellar motor in Escherichia coli by dephosphorylating the response regulator phosphorylated CheY protein (CheY∼P) responsible for clockwise rotation. A cheZ gene has been found in Azorhizobium caulinodans ORS571, in contrast to other rhizobial species studied so far. The CheZ protein in strain ORS571 has a conserved motif similar to that corresponding to the phosphatase active site in E. coli The construction of a cheZ deletion mutant strain and of cheZ mutant strains carrying a mutation in residues of the putative phosphatase active site showed that strain ORS571 participates in chemotaxis and motility, causing a hyperreversal behavior. In addition, the properties of the cheZ deletion mutant revealed that ORS571 CheZ is involved in other physiological processes, since it displayed increased flocculation, biofilm formation, exopolysaccharide (EPS) production, and host root colonization. In particular, it was observed that the expression of several exp genes, involved in EPS synthesis, was upregulated in the cheZ mutant compared to that in the wild type, suggesting that CheZ negatively controls exp gene expression through an unknown mechanism. It is proposed that CheZ influences the Azorhizobium -plant association by negatively regulating early colonization via the regulation of EPS production. This report established that CheZ in A. caulinodans plays roles in chemotaxis and the symbiotic association with the host plant. IMPORTANCE Chemotaxis allows bacteria to swim toward plant roots and is beneficial to the establishment of various plant-microbe associations. The level of CheY phosphorylation (CheY∼P) is central to the chemotaxis signal transduction. The mechanism of the signal termination of CheY∼P remains poorly characterized among Alphaproteobacteria , except for Sinorhizobium meliloti , which

  1. Microbial community diversity of the eastern Atlantic Ocean reveals geographic differences

    Science.gov (United States)

    Friedline, C. J.; Franklin, R. B.; McCallister, S. L.; Rivera, M. C.

    2012-01-01

    Prokaryotic communities are recognized as major drivers of the biogeochemical processes in the oceans. However, the genetic diversity and composition of those communities is poorly understood. The aim of this study was to investigate the eubacterial communities in three different water layers: surface (2-20 m), deep chlorophyll maximum (DCM; 28-90 m), and deep (100-4600 m) at nine stations along the eastern Atlantic Ocean from 42.8° N to 23.7° S. In order to describe the dynamics of the eubacterial assemblages in relation to depth, associated environmental properties, and Longhurstian ecological provinces community DNA was extracted from 16 samples, from which the V6 region of 16s rDNA was PCR-amplified with eubacteria-specific primers, and the PCR amplicons were pyrosequenced. A total of 352 029 sequences were generated; after quality filtering and processing, 257 260 sequences were clustered into 2871 normalized Operational Taxonomic Units (OTU) using a definition of 97% sequence identity. Comparisons of the phylogenetic affiliation of those 2871 OTUs show more than 54% of them were assigned to the Proteobacteria, with the Alphaproteobacteria representing 4% of the total Proteobacteria OTUs, and the Gammaproteobacteria representing 22%. Within the Alphaproteobacteria-affiliated OTUs, 44% of the OTUs were associated with the ubiquitous SAR11 clade. The phylum Cyanobacteria represent 10% of the reads, with the majority of those reads among the GpIIa family including Prochlorococcus and Synechococcus. Among the Gammaproteobacteria, a single OTU affiliated to Alteromonas comprises ~3% of the abundance. The phyla Bacteroidetes, Verrucomicrobia, Actinobacteria, and Firmicutes represent approximately 7%, 0.8%, 2%, and 0.05% of the read abundance, respectively. Community ecology statistical analyses and a novel implementation of Bayesian inference suggests that eastern Atlantic Ocean eubacterial assemblages are vertically stratified and associated with water layers

  2. Emended description of the family Beijerinckiaceae and transfer of the genera Chelatococcus and Camelimonas to the family Chelatococcaceae fam. nov.

    Science.gov (United States)

    Dedysh, Svetlana N; Haupt, Evan S; Dunfield, Peter F

    2016-08-01

    The family Beijerinckiaceae was circumscribed in 2005 to accommodate four genera of phylogenetically related alphaproteobacteria: Beijerinckia, Chelatococcus, Methylocella and Methylocapsa. Later, four additional genera, i.e. Methylovirgula, Methyloferula, Methylorosula and Camelimonas, were described and assigned to this family, which now accommodates 21 species with validly published names. Members of this family possess strikingly different lifestyles, including chemoheterotrophy, facultative methylotrophy, obligate methanotrophy and facultative methanotrophy. Levels of 16S rRNA gene sequence similarity among most of these bacteria range from 96 to 98 %, suggesting a common evolutionary origin. The genera Chelatococcus and Camelimonas, however, are not monophyletic with the other described genera based on 16S rRNA gene sequence phylogeny, and instead form a distant cluster more closely related to the Methylobacteriaceae. Physiologically these two genera also lack several properties common to the other Beijerinckiaceae. On the other hand, the genus Rhodoblastus, presently considered a member of the Bradyrhizobiaceae, affiliates with high confidence to the Beijerinckiaceae. Here, we propose to transfer the genera Chelatococcus and Camelimonas to the family Chelatococcaceae fam. nov., and present an emended description of the family Beijerinckiaceae, including the genus Rhodoblastus.

  3. Morphology and Phylogeny of the Soil Ciliate Metopus yantaiensis n. sp. (Ciliophora, Metopida), with Identification of the Intracellular Bacteria.

    Science.gov (United States)

    Omar, Atef; Zhang, Qianqian; Zou, Songbao; Gong, Jun

    2017-11-01

    The morphology and infraciliature of a new ciliate, Metopus yantaiensis n. sp., discovered in coastal soil of northern China, were investigated. It is distinguished from its congeners by a combination of the following features: nuclear apparatus situated in the preoral dome; 18-21 somatic ciliary rows, of which three extend onto the preoral dome (dome kineties); three to five distinctly elongated caudal cilia, and 21-29 adoral polykinetids. The 18S rRNA genes of this new species and two congeners, Metopus contortus and Metopus hasei, were sequenced and phylogenetically analyzed. The new species is more closely related to M. hasei and the clevelandellids than to other congeners; both the genus Metopus and the order Metopida are not monophyletic. In addition, the digestion-resistant bacteria in the cytoplasm of M. yantaiensis were identified, using a 16S rRNA gene clone library, sequencing, and fluorescence in situ hybridization. The detected intracellular bacteria are affiliated with Sphingomonadales, Rhizobiales, Rickettsiales (Alphaproteobacteria), Pseudomonas (Gammaproteobacteria), Rhodocyclales (Betaproteobacteria), Clostridiales (Firmicutes), and Flavobacteriales (Bacteroidetes). © 2017 The Author(s) Journal of Eukaryotic Microbiology © 2017 International Society of Protistologists.

  4. Phylogenetic diversity and specificity of bacteria associated with Microcystis aeruginosa and other cyanobacteria

    Institute of Scientific and Technical Information of China (English)

    SHI Limei; CAI Yuanfeng; YANG Hualin; XING Peng; LI Pengfu; KONG Lingdong; KONG Fanxiang

    2009-01-01

    Interactions between bacteria and cyanobacteria have been suggested to have a potential to influence harmful algal bloom dynamics,however,little information on these interactions is reported.In this study,the bacterial communities associated with five strains of Microcystis aeruginosa,three species of other Microcystis spp.,and four representative species of non-Microcystis cyanobacteria were compared.Bacterial 16S rDNA fragments were amplified and separated by denaturing gradient gel electrophoresis (DGGE) followed DNA sequence analysis.The similarities among bacterial communities associated with these cyanobacteria were compared to the digitized DGGE profiles using the cluster analyses technique.The bacterial community structure of all cyanobacterial cultures differed.Cluster analysis showed that the similarity values among M.aeruginosa cultures were higher than those of other cyanobacterial cultures.Sequence analysis of DGGE fragments indicated the presence of bacteria including Alphaproteobacteria,Betaproteobacteria,Gammaproteobacteria,Bacteroidetes and Actinobacteria in the cyanobacterial cultures.Members of the Sphingobacteriales were the prevalent group among the Microcystis-associated bacteria.The results provided further evidence for species-specific associations between cyanoabcteria and heterotrophic bacteria,which are useful for understanding interactions between Microcystis and their associated bacteria.

  5. Citrus plant nutritional profile in relation to huanglongbing prevalence in Pakistan

    International Nuclear Information System (INIS)

    Razi, M.F.U.D.; Khan, I.A.; Jaskani, M.J.

    2011-01-01

    Citrus is an important fruit crop in Pakistan that requires proper crop nutrition and disease management strategies as it is a tree crop and withstands harsh seasonal conditions for decades. Huanglongbing (HLB) is a century old, devastating disease of citrus caused by phloem limiting bacteria of the alpha-proteobacteria subdivision. As disease has no known cure, so, effective prevention methods are useful in crop management. Improper crop nutrition impairs plant genetic resistance to invasive pathogens, decreases yield and reduces productive life of the plant. In this study we selected 116 citrus trees from 43 orchard of Punjab for a nutritional assessment. All the trees were showing HLB symptoms and were subjected to NPK and Zn analysis as well as molecular detection of Candidatus L. asiaticus, the pathogen associated with HLB. Nitrogen and Zn were significantly higher (P=0.05) in HLB infected trees. Out of 48 diseased trees, 19, 43 and 27 were deficient in nitrogen, phosphorous and potash, respectively. Our study concludes that there is no relationship between nutritional deficiency status and HLB incidence in citrus; however, nutritional treatments may help in stress relief to infected plants. (author)

  6. Biogeographical distribution and diversity of bacterial communities in surface sediments of the South China Sea.

    Science.gov (United States)

    Li, Tao; Wang, Peng

    2013-05-01

    This paper aims at an investigation of the features of bacterial communities in surface sediments of the South China Sea (SCS). In particular, biogeographical distribution patterns and the phylogenetic diversity of bacteria found in sediments collected from a coral reef platform, a continental slope, and a deep-sea basin were determined. Bacterial diversity was measured by an observation of 16S rRNA genes, and 18 phylogenetic groups were identified in the bacterial clone library. Planctomycetes, Deltaproteobacteria, candidate division OP11, and Alphaproteobacteria made up the majority of the bacteria in the samples, with their mean bacterial clones being 16%, 15%, 12%, and 9%, respectively. By comparison, the bacterial communities found in the SCS surface sediments were significantly different from other previously observed deep-sea bacterial communities. This research also emphasizes the fact that geographical factors have an impact on the biogeographical distribution patterns of bacterial communities. For instance, canonical correspondence analyses illustrated that the percentage of sand weight and water depth are important factors affecting the bacterial community composition. Therefore, this study highlights the importance of adequately determining the relationship between geographical factors and the distribution of bacteria in the world's seas and oceans.

  7. Comparative Genomics of Acetobacterpasteurianus Ab3, an Acetic Acid Producing Strain Isolated from Chinese Traditional Rice Vinegar Meiguichu.

    Science.gov (United States)

    Xia, Kai; Li, Yudong; Sun, Jing; Liang, Xinle

    2016-01-01

    Acetobacter pasteurianus, an acetic acid resistant bacterium belonging to alpha-proteobacteria, has been widely used to produce vinegar in the food industry. To understand the mechanism of its high tolerance to acetic acid and robust ability of oxidizing ethanol to acetic acid (> 12%, w/v), we described the 3.1 Mb complete genome sequence (including 0.28 M plasmid sequence) with a G+C content of 52.4% of A. pasteurianus Ab3, which was isolated from the traditional Chinese rice vinegar (Meiguichu) fermentation process. Automatic annotation of the complete genome revealed 2,786 protein-coding genes and 73 RNA genes. The comparative genome analysis among A. pasteurianus strains revealed that A. pasteurianus Ab3 possesses many unique genes potentially involved in acetic acid resistance mechanisms. In particular, two-component systems or toxin-antitoxin systems may be the signal pathway and modulatory network in A. pasteurianus to cope with acid stress. In addition, the large numbers of unique transport systems may also be related to its acid resistance capacity and cell fitness. Our results provide new clues to understanding the underlying mechanisms of acetic acid resistance in Acetobacter species and guiding industrial strain breeding for vinegar fermentation processes.

  8. Soil nutritional status and biogeography influence rhizosphere microbial communities associated with the invasive tree Acacia dealbata.

    Science.gov (United States)

    Kamutando, Casper N; Vikram, Surendra; Kamgan-Nkuekam, Gilbert; Makhalanyane, Thulani P; Greve, Michelle; Roux, Johannes J Le; Richardson, David M; Cowan, Don; Valverde, Angel

    2017-07-26

    Invasiveness and the impacts of introduced plants are known to be mediated by plant-microbe interactions. Yet, the microbial communities associated with invasive plants are generally poorly understood. Here we report on the first comprehensive investigation of the bacterial and fungal communities inhabiting the rhizosphere and the surrounding bulk soil of a widespread invasive tree, Acacia dealbata. Amplicon sequencing data indicated that rhizospheric microbial communities differed significantly in structure and composition from those of the bulk soil. Two bacterial (Alphaproteobacteria and Gammaproteobacteria) and two fungal (Pezizomycetes and Agaricomycetes) classes were enriched in the rhizosphere compared with bulk soils. Changes in nutritional status, possibly induced by A. dealbata, primarily shaped rhizosphere soil communities. Despite a high degree of geographic variability in the diversity and composition of microbial communities, invasive A. dealbata populations shared a core of bacterial and fungal taxa, some of which are known to be involved in N and P cycling, while others are regarded as plant pathogens. Shotgun metagenomic analysis also showed that several functional genes related to plant growth promotion were overrepresented in the rhizospheres of A. dealbata. Overall, results suggest that rhizosphere microbes may contribute to the widespread success of this invader in novel environments.

  9. Endo- and exoglucanase activities in bacteria from mangrove sediment.

    Science.gov (United States)

    Soares Júnior, Fábio Lino; Dias, Armando Cavalcante Franco; Fasanella, Cristiane Cipola; Taketani, Rodrigo Gouvêa; de Souza Lima, André Oliveira; Melo, Itamar Soares; Andreote, Fernando Dini

    2013-01-01

    The mangrove ecosystem is an unexplored source for biotechnological applications. In this unique environment, endemic bacteria have the ability to thrive in the harsh environmental conditions (salinity and anaerobiosis), and act in the degradation of organic matter, promoting nutrient cycles. Thus, this study aimed to assess the cellulolytic activities of bacterial groups present in the sediment from a mangrove located in Ilha do Cardoso (SP, Brazil). To optimize the isolation of cellulolytic bacteria, enrichments in two types of culture media (tryptone broth and minimum salt medium), both supplemented with 5% NaCl and 1% of cellulose, were performed. Tests conducted with the obtained colonies showed a higher occurrence of endoglycolytic activity (33 isolates) than exoglycolytic (19 isolates), and the degradation activity was shown to be modulated by the presence of NaCl. The isolated bacteria were clustered by BOX-PCR and further classified on the basis of partial 16S rRNA sequences as Alphaproteobacteria, Gammaproteobacteria, Actinobacteria, Firmicutes or Bacteroidetes. Therefore, this study highlights the importance of studies focusing on the endemic species found in mangroves to exploit them as novel biotechnological tools for the degradation of cellulose.

  10. Widespread Wolbachia infection in terrestrial isopods and other crustaceans

    Directory of Open Access Journals (Sweden)

    Richard Cordaux

    2012-03-01

    Full Text Available Wolbachia bacteria are obligate intracellular alpha-Proteobacteria of arthropods and nematodes. Although widespread among isopod crustaceans, they have seldom been found in non-isopod crustacean species. Here, we report Wolbachia infection in fourteen new crustacean species. Our results extend the range of Wolbachia infections in terrestrial isopods and amphipods (class Malacostraca. We report the occurrence of two different Wolbachia strains in two host species (a terrestrial isopod and an amphipod. Moreover, the discovery of Wolbachia in the goose barnacle Lepas anatifera (subclass Thecostraca establishes Wolbachia infection in class Maxillopoda. The new bacterial strains are closely related to B-supergroup Wolbachia strains previously reported from crustacean hosts. Our results suggest that Wolbachia infection may be much more widespread in crustaceans than previously thought. The presence of related Wolbachia strains in highly divergent crustacean hosts suggests that Wolbachia endosymbionts can naturally adapt to a wide range of crustacean hosts. Given the ability of isopod Wolbachia strains to induce feminization of genetic males or cytoplasmic incompatibility, we speculate that manipulation of crustacean-borne Wolbachia bacteria might represent potential tools for controlling crustacean species of commercial interest and crustacean or insect disease vectors.

  11. Biodiversity patterns of plankton assemblages at the extremes of the Red Sea.

    Science.gov (United States)

    Pearman, J K; Kürten, S; Sarma, Y V B; Jones, B H; Carvalho, S

    2016-03-01

    The diversity of microbial plankton has received limited attention in the main basin of the Red Sea. This study investigates changes in the community composition and structure of prokaryotes and eukaryotes at the extremes of the Red Sea along cross-shelf gradients and between the surface and deep chlorophyll maximum. Using molecular methods to target both the 16S and 18S rRNA genes, it was observed that the dominant prokaryotic classes were Acidimicrobiia, Alphaproteobacteria and Cyanobacteria, regardless of the region and depth. The eukaryotes Syndiniophyceae and Dinophyceae between them dominated in the north, with Bacillariophyceae and Mamiellophyceae more prominent in the southern region. Significant differences were observed for prokaryotes and eukaryotes for region, depth and distance from shore. Similarly, it was noticed that communities became less similar with increasing distance from the shore. Canonical correspondence analysis at the class level showed that Mamiellophyceae and Bacillariophyceae correlated with increased nutrients and chlorophyll a found in the southern region, which is influenced by the input of Gulf of Aden Intermediate Water. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Lesion bacterial communities in American lobsters with diet-induced shell disease.

    Science.gov (United States)

    Quinn, Robert A; Metzler, Anita; Tlusty, Michael; Smolowitz, Roxanna M; Leberg, Paul; Chistoserdov, Andrei Y

    2012-04-26

    In southern New England, USA, shell disease affects the profitability of the American lobster Homarus americanus fishery. In laboratory trials using juvenile lobsters, exclusive feeding of herring Clupea harengus induces shell disease typified initially by small melanized spots that progress into distinct lesions. Amongst a cohabitated, but segregated, cohort of 11 juvenile lobsters fed exclusively herring, bacterial communities colonizing spots and lesions were investigated by denaturing gradient gel electrophoresis of 16S rDNA amplified using 1 group-specific and 2 universal primer sets. The Bacteroidetes and Proteobacteria predominated in both spots and lesions and included members of the orders Flavobacteriales (Bacteriodetes), Rhodobacterales, Rhodospirillales and Rhizobiales (Alphaproteobacteria), Xanthomonadales (Gammaproteobacteria) and unclassified Gammaproteobacteria. Bacterial communities in spot lesions displayed more diversity than communities with larger (older) lesions, indicating that the lesion communities stabilize over time. At least 8 bacterial types persisted as lesions developed from spots. Aquimarina 'homaria', a species commonly cultured from lesions present on wild lobsters with epizootic shell disease, was found ubiquitously in spots and lesions, as was the 'Candidatus Kopriimonas aquarianus', implicating putative roles of these species in diet-induced shell disease of captive lobsters.

  13. A critical re-evaluation of multilocus sequence typing (MLST) efforts in Wolbachia.

    Science.gov (United States)

    Bleidorn, Christoph; Gerth, Michael

    2018-01-01

    Wolbachia (Alphaproteobacteria, Rickettsiales) is the most common, and arguably one of the most important inherited symbionts. Molecular differentiation of Wolbachia strains is routinely performed with a set of five multilocus sequence typing (MLST) markers. However, since its inception in 2006, the performance of MLST in Wolbachia strain typing has not been assessed objectively. Here, we evaluate the properties of Wolbachia MLST markers and compare it to 252 other single copy loci present in the genome of most Wolbachia strains. Specifically, we investigated how well MLST performs at strain differentiation, at reflecting genetic diversity of strains, and as phylogenetic marker. We find that MLST loci are outperformed by other loci at all tasks they are currently employed for, and thus that they do not reflect the properties of a Wolbachia strain very well. We argue that whole genome typing approaches should be used for Wolbachia typing in the future. Alternatively, if few loci approaches are necessary, we provide a characterisation of 252 single copy loci for a number a criteria, which may assist in designing specific typing systems or phylogenetic studies. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Principal coordinate analysis assisted chromatographic analysis of bacterial cell wall collection: A robust classification approach.

    Science.gov (United States)

    Kumar, Keshav; Cava, Felipe

    2018-04-10

    In the present work, Principal coordinate analysis (PCoA) is introduced to develop a robust model to classify the chromatographic data sets of peptidoglycan sample. PcoA captures the heterogeneity present in the data sets by using the dissimilarity matrix as input. Thus, in principle, it can even capture the subtle differences in the bacterial peptidoglycan composition and can provide a more robust and fast approach for classifying the bacterial collection and identifying the novel cell wall targets for further biological and clinical studies. The utility of the proposed approach is successfully demonstrated by analysing the two different kind of bacterial collections. The first set comprised of peptidoglycan sample belonging to different subclasses of Alphaproteobacteria. Whereas, the second set that is relatively more intricate for the chemometric analysis consist of different wild type Vibrio Cholerae and its mutants having subtle differences in their peptidoglycan composition. The present work clearly proposes a useful approach that can classify the chromatographic data sets of chromatographic peptidoglycan samples having subtle differences. Furthermore, present work clearly suggest that PCoA can be a method of choice in any data analysis workflow. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Temporal succession in carbon incorporation from macromolecules by particle-attached bacteria in marine microcosms: Particle-attached bacteria incorporating organic carbon

    Energy Technology Data Exchange (ETDEWEB)

    Mayali, Xavier [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Stewart, Benjamin [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mabery, Shalini [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Weber, Peter K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-12-21

    Here, we investigated bacterial carbon assimilation from stable isotope-labelled macromolecular substrates (proteins; lipids; and two types of polysaccharides, starch and cellobiose) while attached to killed diatom detrital particles during laboratory microcosms incubated for 17 days. Using Chip-SIP (secondary ion mass spectrometry analysis of RNA microarrays), we identified generalist operational taxonomic units (OTUs) from the Gammaproteobacteria, belonging to the genera Colwellia, Glaciecola, Pseudoalteromonas and Rheinheimera, and from the Bacteroidetes, genera Owenweeksia and Maribacter, that incorporated the four tested substrates throughout the incubation period. Many of these OTUs exhibited the highest isotope incorporation relative to the others, indicating that they were likely the most active. Additional OTUs from the Gammaproteobacteria, Bacteroidetes and Alphaproteobacteria exhibited generally (but not always) lower activity and did not incorporate all tested substrates at all times, showing species succession in organic carbon incorporation. We also found evidence to suggest that both generalist and specialist OTUs changed their relative substrate incorporation over time, presumably in response to changing substrate availability as the particles aged. This pattern was demonstrated by temporal succession from relatively higher starch incorporation early in the incubations, eventually switching to higher cellobiose incorporation after 2 weeks.

  16. Phylogenetic diversity of ceftriaxone resistance and the presence of extended-spectrum β-lactamase genes in the culturable soil resistome.

    Science.gov (United States)

    Pagaling, Eulyn; Gatica, Joao; Yang, Kun; Cytryn, Eddie; Yan, Tao

    2016-09-01

    The aim of this study was to determine the phylogenetic diversity of ceftriaxone resistance and the presence of known extended-spectrum β-lactamase (ESBL) genes in culturable soil resistomes. Libraries of soil bacterial isolates resistant to ceftriaxone were established from six physicochemically diverse soils collected in Hawaii (USA) and Israel. The phylogenetic affiliation, ceftriaxone and multidrug resistance levels, and presence of known ESBL genes of the isolates were determined. The soil bacterial isolates were phylogenetically grouped with the Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Actinobacteria, Firmicutes and Bacteroidetes. Ceftriaxone minimum inhibitory concentrations (MICs) largely followed the phylogeny structure and higher levels of ceftriaxone resistance corresponded to higher multidrug resistance. Three distinct blaTEM variants were detected in soil bacterial isolates belonging to nine different genera. In conclusion, the culturable soil resistomes for ceftriaxone exhibited high phylogenetic diversity and multidrug resistance. blaTEM was the only known ESBL detected in the soil resistomes, and its distribution in different phylogenetic groups suggests its ubiquitous presence and/or possible horizontal gene transfer within the soil microbiomes. Copyright © 2016 International Society for Chemotherapy of Infection and Cancer. Published by Elsevier Ltd. All rights reserved.

  17. Opportunistic pathogens and elements of the resistome that are common in bottled mineral water support the need for continuous surveillance.

    Directory of Open Access Journals (Sweden)

    Maria Fernanda Falcone-Dias

    Full Text Available Several differences concerning bacterial species, opportunistic pathogens, elements of the resistome as well as variations concerning the CFU/mL counts were identified in some of the five most marketed bottled mineral water from Araraquara city, São Paulo, Brazil. Two out of five brands tested were confirmed as potential source of opportunistic pathogens, including Mycobacterium gordonae, Ralstonia picketti and Burkholderia cepacia complex (Bcc. A total of one hundred and six isolates were recovered from four of these bottled mineral water brands. Betaproteobacteria was predominant followed by Alphaproteobacteria, Gammaproteobacteria and Firmicutes. Ninety percent of the bacteria isolated demonstrated resistance to seventeen of the nineteen antimicrobials tested. These antimicrobials included eight different classes, including 3rd and 4th generation cephalosporins, carbapenems and fluoroquinolones. Multidrug resistant bacteria were detected for fifty-nine percent of isolates in three water brands at counts up to 103 CFU/ml. Of major concern, the two bottled mineral water harboring opportunistic pathogens were also source of elements of the resistome that could be directly transferred to humans. All these differences found among brands highlight the need for continuous bacteriological surveillance of bottled mineral water.

  18. Opportunistic pathogens and elements of the resistome that are common in bottled mineral water support the need for continuous surveillance.

    Science.gov (United States)

    Falcone-Dias, Maria Fernanda; Centrón, Daniela; Pavan, Fernando; Moura, Adriana Candido da Silva; Naveca, Felipe Gomes; de Souza, Victor Costa; Farache Filho, Adalberto; Leite, Clarice Queico Fujimura

    2015-01-01

    Several differences concerning bacterial species, opportunistic pathogens, elements of the resistome as well as variations concerning the CFU/mL counts were identified in some of the five most marketed bottled mineral water from Araraquara city, São Paulo, Brazil. Two out of five brands tested were confirmed as potential source of opportunistic pathogens, including Mycobacterium gordonae, Ralstonia picketti and Burkholderia cepacia complex (Bcc). A total of one hundred and six isolates were recovered from four of these bottled mineral water brands. Betaproteobacteria was predominant followed by Alphaproteobacteria, Gammaproteobacteria and Firmicutes. Ninety percent of the bacteria isolated demonstrated resistance to seventeen of the nineteen antimicrobials tested. These antimicrobials included eight different classes, including 3rd and 4th generation cephalosporins, carbapenems and fluoroquinolones. Multidrug resistant bacteria were detected for fifty-nine percent of isolates in three water brands at counts up to 103 CFU/ml. Of major concern, the two bottled mineral water harboring opportunistic pathogens were also source of elements of the resistome that could be directly transferred to humans. All these differences found among brands highlight the need for continuous bacteriological surveillance of bottled mineral water.

  19. A multicopper oxidase is essential for manganese oxidation and laccase-like activity in Pedomicrobium sp. ACM 3067.

    Science.gov (United States)

    Ridge, Justin P; Lin, Marianne; Larsen, Eloise I; Fegan, Mark; McEwan, Alastair G; Sly, Lindsay I

    2007-04-01

    Pedomicrobium sp. ACM 3067 is a budding-hyphal bacterium belonging to the alpha-Proteobacteria which is able to oxidize soluble Mn2+ to insoluble manganese oxide. A cosmid, from a whole-genome library, containing the putative genes responsible for manganese oxidation was identified and a primer-walking approach yielded 4350 bp of novel sequence. Analysis of this sequence showed the presence of a predicted three-gene operon, moxCBA. The moxA gene product showed homology to multicopper oxidases (MCOs) and contained the characteristic four copper-binding motifs (A, B, C and D) common to MCOs. An insertion mutation of moxA showed that this gene was essential for both manganese oxidation and laccase-like activity. The moxB gene product showed homology to a family of outer membrane proteins which are essential for Type I secretion in Gram-negative bacteria. moxBA has not been observed in other manganese-oxidizing bacteria but homologues were identified in the genomes of several bacteria including Sinorhizobium meliloti 1021 and Agrobacterium tumefaciens C58. These results suggest that moxBA and its homologues constitute a family of genes encoding an MCO and a predicted component of the Type I secretion system.

  20. Wolbachia: Evolutionary novelty in a rickettsial bacteria

    Directory of Open Access Journals (Sweden)

    Anderson Cort L

    2001-11-01

    Full Text Available Abstract Background Although closely related, the alpha-proteobacteria Wolbachia and the Rickettsiacae (Rickettsia and Ehrlichia, employ different evolutionary life history strategies. Wolbachia are obligate endocellular symbionts that infect an extraordinary host range and, in contrast to the infectious and pathogenic Rickettsia and Ehrlichia, profoundly influence host reproductive biology. Results Phylogenies of the Rickettsia, Ehrlichia, and Wolbachia were independently inferred from 16S rDNA sequences and GroEL amino acid sequences. Topologies inferred from both sets of sequence data were consistent with one another, and both indicate the genus Wolbachia shared a common ancestor most recently with Ehrlichia. These two genera are a sister group to the genus Rickettsia. Mapping biological properties onto this phylogeny reveals that manipulation of host reproduction, characteristic of Wolbachia strains, is a derived characteristic. This evolutionary novelty is accompanied by the loss of the ability to infect vertebrate hosts. Conclusions Because of the contrasting transmission strategies employed by each, Wolbachia is expected to maximize efficiency of vertical transmission, while Ehrlichia and Rickettsia will optimize horizontal transfer of infection. Wolbachia manipulation of host reproduction could thus be viewed as strategy employed by this bacterium to foster its own propagation via vertical transmission.

  1. Hydrogeology, water quality, and microbial assessment of a coastal alluvial aquifer in western Saudi Arabia: potential use of coastal wadi aquifers for desalination water supplies [Hydrogéologie, qualité de l’eau et évaluation microbienne d’un aquifère côtier alluvial dans l’Ouest de l’Arabie Saoudite: utilisation potentielle des aquifères côtiers des oueds pour l’alimentation en eau après désalinisation] [Hidrogeologia, qualidade da água e avaliação microbiológica de um aquífero costeiro no oeste da Arábia Saudita: uso potencial de aquíferos de wadi costeiros para dessalinização de águas destinadas a abastecimento] [Hidrogeología, calidad de agua y evaluación microbiana de un acuífero costero aluvial en Arabia Saudita occidental: uso potencial de acuíferos costeros uadis para la desalinización de los abastecimientos de agua

    KAUST Repository

    Missimer, Thomas M.

    2014-07-20

    Wadi alluvial aquifers located along coastal areas of the Middle East have been assumed to be suitable sources of feed water for seawater reverse osmosis facilities based on high productivity, connectedness to the sea for recharge, and the occurrence of seawater with chemistry similar to that in the adjacent Red Sea. An investigation of the intersection of Wadi Wasimi with the Red Sea in western Saudi Arabia has revealed that the associated predominantly unconfined alluvial aquifer divides into two sand-and-gravel aquifers at the coast, each with high productivity (transmissivity = 42,000 m2/day). This aquifer system becomes confined near the coast and contains hypersaline water. The hydrogeology of Wadi Wasimi shows that two of the assumptions are incorrect in that the aquifer is not well connected to the sea because of confinement by very low hydraulic conductivity terrigenous and marine muds and the aquifer contains hypersaline water as a result of a hydraulic connection to a coastal sabkha. A supplemental study shows that the aquifer system contains a diverse microbial community composed of predominantly of Proteobacteria with accompanying high percentages of Gammaproteobacteria, Alphaproteobacteria and Deltaproteobacteria.

  2. Linking activity, composition and seasonal dynamics of atmospheric methane oxidizers in a meadow soil

    Science.gov (United States)

    Shrestha, Pravin Malla; Kammann, Claudia; Lenhart, Katharina; Dam, Bomba; Liesack, Werner

    2012-01-01

    Microbial oxidation is the only biological sink for atmospheric methane. We assessed seasonal changes in atmospheric methane oxidation and the underlying methanotrophic communities in grassland near Giessen (Germany), along a soil moisture gradient. Soil samples were taken from the surface layer (0–10 cm) of three sites in August 2007, November 2007, February 2008 and May 2008. The sites showed seasonal differences in hydrological parameters. Net uptake rates varied seasonally between 0 and 70 μg CH4 m−2 h−1. Greatest uptake rates coincided with lowest soil moisture in spring and summer. Over all sites and seasons, the methanotrophic communities were dominated by uncultivated methanotrophs. These formed a monophyletic cluster defined by the RA14, MHP and JR1 clades, referred to as upland soil cluster alphaproteobacteria (USCα)-like group. The copy numbers of pmoA genes ranged between 3.8 × 105–1.9 × 106 copies g−1 of soil. Temperature was positively correlated with CH4 uptake rates (P50 vol% and primarily related to members of the MHP clade. PMID:22189499

  3. Isolation and characterization of aerobic anoxygenic phototrophs from exposed soils from the Sør Rondane Mountains, East Antarctica.

    Science.gov (United States)

    Tahon, Guillaume; Willems, Anne

    2017-09-01

    This study investigated the culturable aerobic phototrophic bacteria present in soil samples collected in the proximity of the Belgian Princess Elisabeth Station in the Sør Rondane Mountains, East Antarctica. Until recently, only oxygenic phototrophic bacteria (Cyanobacteria) were well known from Antarctic soils. However, more recent non-cultivation-based studies have demonstrated the presence of anoxygenic phototrophs and, particularly, aerobic anoxygenic phototrophic bacteria in these areas. Approximately 1000 isolates obtained after prolonged incubation under different growth conditions were studied and characterized by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Representative strains were identified by sequence analysis of 16S rRNA genes. More than half of the isolates grouped among known aerobic anoxygenic phototrophic taxa, particularly with Sphingomonadaceae, Methylobacterium and Brevundimonas. In addition, a total of 330 isolates were tested for the presence of key phototrophy genes. While rhodopsin genes were not detected, multiple isolates possessed key genes of the bacteriochlorophyll synthesis pathway. The majority of these potential aerobic anoxygenic phototrophic strains grouped with Alphaproteobacteria (Sphingomonas, Methylobacterium, Brevundimonas and Polymorphobacter). Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved.

  4. Snow surface microbiome on the High Antarctic Plateau (DOME C).

    Science.gov (United States)

    Michaud, Luigi; Lo Giudice, Angelina; Mysara, Mohamed; Monsieurs, Pieter; Raffa, Carmela; Leys, Natalie; Amalfitano, Stefano; Van Houdt, Rob

    2014-01-01

    The cryosphere is an integral part of the global climate system and one of the major habitable ecosystems of Earth's biosphere. These permanently frozen environments harbor diverse, viable and metabolically active microbial populations that represent almost all the major phylogenetic groups. In this study, we investigated the microbial diversity in the surface snow surrounding the Concordia Research Station on the High Antarctic Plateau through a polyphasic approach, including direct prokaryotic quantification by flow cytometry and catalyzed reporter deposition fluorescence in situ hybridization (CARD-FISH), and phylogenetic identification by 16S RNA gene clone library sequencing and 454 16S amplicon pyrosequencing. Although the microbial abundance was low (<10(3) cells/ml of snowmelt), concordant results were obtained with the different techniques. The microbial community was mainly composed of members of the Alpha-proteobacteria class (e.g. Kiloniellaceae and Rhodobacteraceae), which is one of the most well-represented bacterial groups in marine habitats, Bacteroidetes (e.g. Cryomorphaceae and Flavobacteriaceae) and Cyanobacteria. Based on our results, polar microorganisms could not only be considered as deposited airborne particles, but as an active component of the snowpack ecology of the High Antarctic Plateau.

  5. Snow surface microbiome on the High Antarctic Plateau (DOME C.

    Directory of Open Access Journals (Sweden)

    Luigi Michaud

    Full Text Available The cryosphere is an integral part of the global climate system and one of the major habitable ecosystems of Earth's biosphere. These permanently frozen environments harbor diverse, viable and metabolically active microbial populations that represent almost all the major phylogenetic groups. In this study, we investigated the microbial diversity in the surface snow surrounding the Concordia Research Station on the High Antarctic Plateau through a polyphasic approach, including direct prokaryotic quantification by flow cytometry and catalyzed reporter deposition fluorescence in situ hybridization (CARD-FISH, and phylogenetic identification by 16S RNA gene clone library sequencing and 454 16S amplicon pyrosequencing. Although the microbial abundance was low (<10(3 cells/ml of snowmelt, concordant results were obtained with the different techniques. The microbial community was mainly composed of members of the Alpha-proteobacteria class (e.g. Kiloniellaceae and Rhodobacteraceae, which is one of the most well-represented bacterial groups in marine habitats, Bacteroidetes (e.g. Cryomorphaceae and Flavobacteriaceae and Cyanobacteria. Based on our results, polar microorganisms could not only be considered as deposited airborne particles, but as an active component of the snowpack ecology of the High Antarctic Plateau.

  6. Resilience of SAR11 bacteria to rapid acidification in the high-latitude open ocean.

    Science.gov (United States)

    Hartmann, Manuela; Hill, Polly G; Tynan, Eithne; Achterberg, Eric P; Leakey, Raymond J G; Zubkov, Mikhail V

    2016-02-01

    Ubiquitous SAR11 Alphaproteobacteria numerically dominate marine planktonic communities. Because they are excruciatingly difficult to cultivate, there is comparatively little known about their physiology and metabolic responses to long- and short-term environmental changes. As surface oceans take up anthropogenic, atmospheric CO2, the consequential process of ocean acidification could affect the global biogeochemical significance of SAR11. Shipping accidents or inadvertent release of chemicals from industrial plants can have strong short-term local effects on oceanic SAR11. This study investigated the effect of 2.5-fold acidification of seawater on the metabolism of SAR11 and other heterotrophic bacterioplankton along a natural temperature gradient crossing the North Atlantic Ocean, Norwegian and Greenland Seas. Uptake rates of the amino acid leucine by SAR11 cells as well as other bacterioplankton remained similar to controls despite an instant ∼50% increase in leucine bioavailability upon acidification. This high physiological resilience to acidification even without acclimation, suggests that open ocean dominant bacterioplankton are able to cope even with sudden and therefore more likely with long-term acidification effects. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Live Probiotic Cultures and the Gastrointestinal Tract: Symbiotic Preservation of Tolerance Whilst Attenuating Pathogenicity.

    Directory of Open Access Journals (Sweden)

    Luis eVitetta

    2014-10-01

    Full Text Available Bacteria comprise the earliest form of independent life on this planet. Bacterial development has included co–operative symbiosis with plants (e.g., Leguminosae family and nitrogen fixing bacteria in soil and animals (e.g., the gut microbiome. A fusion event of two prokaryotes evolutionarily gave rise to the eukaryote cell in which mitochondria may be envisaged as a genetically functional mosaic, a relic from one of the prokaryote cells. The discovery of bacterial inhibitors such chloramphenicol and others has been exploited to highlight mitochondria as arising from a bacterial progenitor. As such the evolution of human life has been complexly connected to bacterial activity. This is embodied, by the appearance of mitochondria in eukaryotes (alphaproteobacteria contribution, a significant endosymbiotic evolutionary event. During the twentieth century there was an increasing dependency on anti–microbials as mainline therapy against bacterial infections. It is only comparatively recently that the essential roles played by the gastrointestinal tract (GIT microbiome in animal health and development has been recognized as opposed to the GIT microbiome being a toxic collection of micro–organisms. It is now well documented that t

  8. Microbial communities related to biodegradation of dispersed Macondo oil at low seawater temperature with Norwegian coastal seawater

    Science.gov (United States)

    Brakstad, Odd G; Throne-Holst, Mimmi; Netzer, Roman; Stoeckel, Donald M; Atlas, Ronald M

    2015-01-01

    The Deepwater Horizon (DWH) accident in 2010 created a deepwater plume of small oil droplets from a deepwater well in the Mississippi Canyon lease block 252 (‘Macondo oil’). A novel laboratory system was used in the current study to investigate biodegradation of Macondo oil dispersions (10 μm or 30 μm median droplet sizes) at low oil concentrations (2 mg l−1) in coastal Norwegian seawater at a temperature of 4–5°C. Whole metagenome analyses showed that oil biodegradation was associated with the successive increased abundances of Gammaproteobacteria, while Alphaproteobacteria (Pelagibacter) became dominant at the end of the experiment. Colwellia and Oceanospirillales were related to n-alkane biodegradation, while particularly Cycloclasticus and Marinobacter were associated with degradation of aromatic hydrocarbons (HCs). The larger oil droplet dispersions resulted in delayed sequential changes of Oceanospirillales and Cycloclasticus, related with slower degradation of alkanes and aromatic HCs. The bacterial successions associated with oil biodegradation showed both similarities and differences when compared with the results from DWH field samples and laboratory studies performed with deepwater from the Gulf of Mexico. PMID:26485443

  9. Microbial consortia of gorgonian corals from the Aleutian islands.

    Science.gov (United States)

    Gray, Michael A; Stone, Robert P; McLaughlin, Molly R; Kellogg, Christina A

    2011-04-01

    Gorgonians make up the majority of corals in the Aleutian archipelago and provide critical fish habitat in areas of economically important fisheries. The microbial ecology of the deep-sea gorgonian corals Paragorgea arborea, Plumarella superba, and Cryogorgia koolsae was examined with culture-based and 16S rRNA gene-based techniques. Six coral colonies (two per species) were collected. Samples from all corals were cultured, and clone libraries were constructed from P. superba and C. koolsae. Cultured bacteria were dominated by the Gammaproteobacteria, especially Vibrionaceae, with other phyla comprising libraries showed dramatically different bacterial communities between corals of the same species collected at different sites, with no clear pattern of conserved bacterial consortia. Two of the clone libraries (one from each coral species) were dominated by Tenericutes, with Alphaproteobacteria dominating the remaining sequences. The other libraries were more diverse and had a more even distribution of bacterial phyla, showing more similarity between genera than within coral species. Here we report the first microbiological characterization of P. arborea, P. superba, and C. koolsae. FEMS Microbiology Ecology © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. No claim to original US government works.

  10. [Genome Rearrangements in Azospirillum brasilense Sp7 with the Involvement of the Plasmid pRhico and the Prophage phiAb-Cd].

    Science.gov (United States)

    Katsy, E I; Petrova, L P

    2015-12-01

    Alphaproteobacteria of the species Azospirillum brasilense have a multicomponent genome that undergoes frequent spontaneous rearrangements, yielding changes in the plasmid profiles of strains. Specifically, variants (Cd, Sp7.K2, Sp7.1, Sp7.4, Sp7.8, etc.) of the type strainA. brasilense Sp7 that had lost a 115-MDa plasmid were previously selected. In many of them, the molecular weight of a 90-MDa plasmid (p90 or pRhico), which is a kind of "depot" for glycopolymer biosynthesis genes, increased. In this study, a collection of primers was designed to the plasmid pRhico and to the DNA of prophage phiAb-Cd integrated in it. The use ofthese primers in polymerase chain reactions allowed the detection of the probable excision of phiAb-Cd phage from the DNA of A. brasilense variants Sp7.4 and Sp7.8 and other alterations of the pRhico structure in A. brasilense strains Cd, Sp7.K2, and Sp7.8. The developed primers and PCR conditions may be recoin mended for primary analysis of spontaneous plasmid rearrangements in A. brasilense Sp7 and related strains.

  11. Cascading influence of inorganic nitrogen sources on DOM production, composition, lability and microbial community structure in the open ocean.

    Science.gov (United States)

    Goldberg, S J; Nelson, C E; Viviani, D A; Shulse, C N; Church, M J

    2017-09-01

    Nitrogen frequently limits oceanic photosynthesis and the availability of inorganic nitrogen sources in the surface oceans is shifting with global change. We evaluated the potential for abrupt increases in inorganic N sources to induce cascading effects on dissolved organic matter (DOM) and microbial communities in the surface ocean. We collected water from 5 m depth in the central North Pacific and amended duplicate 20 liter polycarbonate carboys with nitrate or ammonium, tracking planktonic carbon fixation, DOM production, DOM composition and microbial community structure responses over 1 week relative to controls. Both nitrogen sources stimulated bulk phytoplankton, bacterial and DOM production and enriched Synechococcus and Flavobacteriaceae; ammonium enriched for oligotrophic Actinobacteria OM1 and Gammaproteobacteria KI89A clades while nitrate enriched Gammaproteobacteria SAR86, SAR92 and OM60 clades. DOM resulting from both N enrichments was more labile and stimulated growth of copiotrophic Gammaproteobacteria (Alteromonadaceae and Oceanospirillaceae) and Alphaproteobacteria (Rhodobacteraceae and Hyphomonadaceae) in weeklong dark incubations relative to controls. Our study illustrates how nitrogen pulses may have direct and cascading effects on DOM composition and microbial community dynamics in the open ocean. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  12. Bioaugmentation of a 4-chloronitrobenzene contaminated soil with Pseudomonas putida ZWL73

    Energy Technology Data Exchange (ETDEWEB)

    Guilan, Niu [State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071 (China); Graduate School, Chinese Academy of Sciences, Beijing 100049 (China); Junjie, Zhang [State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071 (China); Shuo, Zhao [State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071 (China); Graduate School, Chinese Academy of Sciences, Beijing 100049 (China); Hong, Liu [State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071 (China); Boon, Nico [Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Coupure Links 653, B-9000 Gent (Belgium); Zhou Ningyi [State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071 (China)], E-mail: n.zhou@pentium.whiov.ac.cn

    2009-03-15

    The strain Pseudomonas putida ZWL73, which metabolizes 4-chloronitrobenzene (4CNB) by a partial-reductive pathway, was inoculated into lab-scale 4CNB-contaminated soil for bioaugmentation purposes in this study. The degradation of 4CNB was clearly stimulated, as indicated with the gradual accumulation of ammonium and chloride. Simultaneously, the diversity and quantity of cultivable heterotrophic bacteria decreased due to 4CNB contamination, while the quantity of 4CNB-resistant bacteria increased. During the bioaugmentation, denaturing gradient gel electrophoresis analysis showed the changes of diversity in dominant populations of intrinsic soil microbiota. The results showed that Alphaproteobacteria and Betaproteobacteria were not distinctly affected, but Actinobacteria were apparently stimulated. In addition, an interesting dynamic within Acidobacteria was observed, as well as an influence on ammonia-oxidizing bacteria population. These combined findings demonstrate that the removal of 4CNB in soils by inoculating strain ZWL73 is feasible, and that specific populations in soils rapidly changed in response to 4CNB contamination and subsequent bioaugmentation. - Pseudomonas putida ZWL73 can accelerate 4CNB removal in lab-scale soils, causing dynamic changes within intrinsic Actinobacteria and Acidobacteria.

  13. Production of quorum-sensing signals by bacteria in the coral mucus layer

    Science.gov (United States)

    Li, Jie; Kuang, Weiqi; Long, Lijuan; Zhang, Si

    2017-12-01

    Quorum sensing is an integral part of bacterial communication and interaction, but has not been well characterized in coral mucus microbiota. In this study, of 61 coral mucus isolates, five alphaproteobacteria and one Vibrio species were found to produce N-acyl homoserine lactone (AHL), a quorum-sensing signal in bacteria. Eight gammaproteobacteria isolates were found to produce autoinducer-2 (AI-2) quorum-sensing signals along with two actinobacteria of the genus Rothia. Coral mucus is rich in the antioxidant dimethylsulfoniopropionate (DMSP), the concentration of which has been found to increase under heat stress. Neither AHL nor AI-2 activity was induced by DMSP in those coral mucus isolates that did not initially produce quorum-sensing signals. However, the AI-2 activities of one Rothia isolate (SCSIO 13017) from coral mucus and of Vibrio shilonii (DSM 13774 isolated from a bleached coral) were found to increase in response to 5 μM DMSP but decreased in response to 50 μM DMSP for the first time. These findings suggest that the production of quorum-sensing signals in the coral mucus microbiota may play a role in structuring the surface microbial community as they respond to environmental stress.

  14. Bioaugmentation of a 4-chloronitrobenzene contaminated soil with Pseudomonas putida ZWL73

    International Nuclear Information System (INIS)

    Niu Guilan; Zhang Junjie; Zhao Shuo; Liu Hong; Boon, Nico; Zhou Ningyi

    2009-01-01

    The strain Pseudomonas putida ZWL73, which metabolizes 4-chloronitrobenzene (4CNB) by a partial-reductive pathway, was inoculated into lab-scale 4CNB-contaminated soil for bioaugmentation purposes in this study. The degradation of 4CNB was clearly stimulated, as indicated with the gradual accumulation of ammonium and chloride. Simultaneously, the diversity and quantity of cultivable heterotrophic bacteria decreased due to 4CNB contamination, while the quantity of 4CNB-resistant bacteria increased. During the bioaugmentation, denaturing gradient gel electrophoresis analysis showed the changes of diversity in dominant populations of intrinsic soil microbiota. The results showed that Alphaproteobacteria and Betaproteobacteria were not distinctly affected, but Actinobacteria were apparently stimulated. In addition, an interesting dynamic within Acidobacteria was observed, as well as an influence on ammonia-oxidizing bacteria population. These combined findings demonstrate that the removal of 4CNB in soils by inoculating strain ZWL73 is feasible, and that specific populations in soils rapidly changed in response to 4CNB contamination and subsequent bioaugmentation. - Pseudomonas putida ZWL73 can accelerate 4CNB removal in lab-scale soils, causing dynamic changes within intrinsic Actinobacteria and Acidobacteria

  15. A 6-Nucleotide Regulatory Motif within the AbcR Small RNAs of Brucella abortus Mediates Host-Pathogen Interactions.

    Science.gov (United States)

    Sheehan, Lauren M; Caswell, Clayton C

    2017-06-06

    In Brucella abortus , two small RNAs (sRNAs), AbcR1 and AbcR2, are responsible for regulating transcripts encoding ABC-type transport systems. AbcR1 and AbcR2 are required for Brucella virulence, as a double chromosomal deletion of both sRNAs results in attenuation in mice. Although these sRNAs are responsible for targeting transcripts for degradation, the mechanism utilized by the AbcR sRNAs to regulate mRNA in Brucella has not been described. Here, two motifs (M1 and M2) were identified in AbcR1 and AbcR2, and complementary motif sequences were defined in AbcR-regulated transcripts. Site-directed mutagenesis of M1 or M2 or of both M1 and M2 in the sRNAs revealed transcripts to be targeted by one or both motifs. Electrophoretic mobility shift assays revealed direct, concentration-dependent binding of both AbcR sRNAs to a target mRNA sequence. These experiments genetically and biochemically characterized two indispensable motifs within the AbcR sRNAs that bind to and regulate transcripts. Additionally, cellular and animal models of infection demonstrated that only M2 in the AbcR sRNAs is required for Brucella virulence. Furthermore, one of the M2-regulated targets, BAB2_0612, was found to be critical for the virulence of B. abortus in a mouse model of infection. Although these sRNAs are highly conserved among Alphaproteobacteria , the present report displays how gene regulation mediated by the AbcR sRNAs has diverged to meet the intricate regulatory requirements of each particular organism and its unique biological niche. IMPORTANCE Small RNAs (sRNAs) are important components of bacterial regulation, allowing organisms to quickly adapt to changes in their environments. The AbcR sRNAs are highly conserved throughout the Alphaproteobacteria and negatively regulate myriad transcripts, many encoding ABC-type transport systems. In Brucella abortus , AbcR1 and AbcR2 are functionally redundant, as only a double abcR1 abcR2 ( abcR1 / 2 ) deletion results in attenuation in

  16. Facultative methanotrophy: false leads, true results, and suggestions for future research.

    Science.gov (United States)

    Semrau, Jeremy D; DiSpirito, Alan A; Vuilleumier, Stéphane

    2011-10-01

    Methanotrophs are a group of phylogenetically diverse microorganisms characterized by their ability to utilize methane as their sole source of carbon and energy. Early studies suggested that growth on methane could be stimulated with the addition of some small organic acids, but initial efforts to find facultative methanotrophs, i.e., methanotrophs able to utilize compounds with carbon-carbon bonds as sole growth substrates were inconclusive. Recently, however, facultative methanotrophs in the genera Methylocella, Methylocapsa, and Methylocystis have been reported that can grow on acetate, as well as on larger organic acids or ethanol for some species. All identified facultative methanotrophs group within the Alphaproteobacteria and utilize the serine cycle for carbon assimilation from formaldehyde. It is possible that facultative methanotrophs are able to convert acetate into intermediates of the serine cycle (e.g. malate and glyoxylate), because a variety of acetate assimilation pathways convert acetate into these compounds (e.g. the glyoxylate shunt of the tricarboxylic acid cycle, the ethylmalonyl-CoA pathway, the citramalate cycle, and the methylaspartate cycle). In this review, we summarize the history of facultative methanotrophy, describe scenarios for the basis of facultative methanotrophy, and pose several topics for future research in this area. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  17. Determinants of bacterial communities in Canadian agroforestry systems.

    Science.gov (United States)

    Banerjee, Samiran; Baah-Acheamfour, Mark; Carlyle, Cameron N; Bissett, Andrew; Richardson, Alan E; Siddique, Tariq; Bork, Edward W; Chang, Scott X

    2016-06-01

    Land-use change is one of the most important factors influencing soil microbial communities, which play a pivotal role in most biogeochemical and ecological processes. Using agroforestry systems as a model, this study examined the effects of land uses and edaphic properties on bacterial communities in three agroforestry types covering a 270 km soil-climate gradient in Alberta, Canada. Our results demonstrate that land-use patterns exert stronger effects on soil bacterial communities than soil zones in these agroforestry systems. Plots with trees in agroforestry systems promoted greater bacterial abundance and to some extent species richness, which was associated with more nutrient-rich soil resources. While Acidobacteria, Actinobacteria and Alphaproteobacteria were the dominant bacterial phyla and subphyla across land uses, Arthrobacter, Acidobacteria_Gp16, Burkholderia, Rhodanobacter and Rhizobium were the keystone taxa in these agroforestry systems. Soil pH and carbon contents emerged as the major determinants of bacterial community characteristics. We found non-random co-occurrence and modular patterns of soil bacterial communities, and these patterns were controlled by edaphic factors and not their taxonomy. Overall, this study highlights the drivers and co-occurrence patterns of soil microbial communities in agroforestry systems. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  18. Ecological restoration alters microbial communities in mine tailings profiles.

    Science.gov (United States)

    Li, Yang; Jia, Zhongjun; Sun, Qingye; Zhan, Jing; Yang, Yang; Wang, Dan

    2016-04-29

    Ecological restoration of mine tailings have impact on soil physiochemical properties and microbial communities. The surface soil has been a primary concern in the past decades, however it remains poorly understood about the adaptive response of microbial communities along the profile during ecological restoration of the tailings. In this study, microbial communities along a 60-cm profile were investigated in a mine tailing pond during ecological restoration of the bare waste tailings (BW) with two vegetated soils of Imperata cylindrica (IC) and Chrysopogon zizanioides (CZ) plants. Revegetation of both IC and CZ could retard soil degradation of mine tailing by stimulation of soil pH at 0-30 cm soils and altered the bacterial communities at 0-20 cm depths of the mine tailings. Significant differences existed in the relative abundance of the phyla Alphaproteobacteria, Deltaproteobacteria, Acidobacteria, Firmicutes and Nitrospira. Slight difference of bacterial communities were found at 30-60 cm depths of mine tailings. Abundance and activity analysis of nifH genes also explained the elevated soil nitrogen contents at the surface 0-20 cm of the vegetated soils. These results suggest that microbial succession occurred primarily at surface tailings and vegetation of pioneering plants might have promoted ecological restoration of mine tailings.

  19. Symbiotic bacteria associated with a bobtail squid reproductive system are detectable in the environment, and stable in the host and developing eggs.

    Science.gov (United States)

    Kerwin, Allison H; Nyholm, Spencer V

    2017-04-01

    Female Hawaiian bobtail squid, Euprymna scolopes, have an accessory nidamental gland (ANG) housing a bacterial consortium that is hypothesized to be environmentally transmitted and to function in the protection of eggs from fouling and infection. The composition, stability, and variability of the ANG and egg jelly coat (JC) communities were characterized and compared to the bacterial community composition of the surrounding environment using Illumina sequencing and transmission electron microscopy. The ANG bacterial community was conserved throughout hosts collected from the wild and was not affected by maintaining animals in the laboratory. The core symbiotic community was composed of Alphaproteobacteria and Opitutae (a class of Verrucomicrobia). Operational taxonomic units representing 94.5% of the average ANG abundance were found in either the seawater or sediment, which is consistent with the hypothesis of environmental transmission between generations. The bacterial composition of the JC was stable during development and mirrored that of the ANG. Bacterial communities from individual egg clutches also grouped with the ANG of the female that produced them. Collectively, these data suggest a conserved role of the ANG/JC community in host reproduction. Future directions will focus on determining the function of this symbiotic community, and how it may change during ANG development. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  20. Improved group-specific primers based on the full SILVA 16S rRNA gene reference database.

    Science.gov (United States)

    Pfeiffer, Stefan; Pastar, Milica; Mitter, Birgit; Lippert, Kathrin; Hackl, Evelyn; Lojan, Paul; Oswald, Andreas; Sessitsch, Angela

    2014-08-01

    Quantitative PCR (qPCR) and community fingerprinting methods, such as the Terminal Restriction Fragment Length Polymorphism (T-RFLP) analysis,are well-suited techniques for the examination of microbial community structures. The use of phylum and class-specific primers can provide enhanced sensitivity and phylogenetic resolution as compared with domain-specific primers. To date, several phylum- and class-specific primers targeting the 16S ribosomal RNA gene have been published. However, many of these primers exhibit low discriminatory power against non-target bacteria in PCR. In this study, we evaluated the precision of certain published primers in silico and via specific PCR. We designed new qPCR and T-RFLP primer pairs (for the classes Alphaproteobacteria and Betaproteobacteria, and the phyla Bacteroidetes, Firmicutes and Actinobacteria) by combining the sequence information from a public dataset (SILVA SSU Ref 102 NR) with manual primer design. We evaluated the primer pairs via PCR using isolates of the above-mentioned groups and via screening of clone libraries from environmental soil samples and human faecal samples. As observed through theoretical and practical evaluation, the primers developed in this study showed a higher level of precision than previously published primers, thus allowing a deeper insight into microbial community dynamics.

  1. Microbiological investigations on the water of a thermal bath at Budapest.

    Science.gov (United States)

    Szuróczki, Sára; Kéki, Zsuzsa; Káli, Szandra; Lippai, Anett; Márialigeti, Károly; Tóth, Erika

    2016-06-01

    Thermal baths are unique aquatic environments combining a wide variety of natural and anthropogenic ecological factors, which also appear in their microbiological state. There is limited information on the microbiology of thermal baths in their complexity, tracking community shifts from the thermal wells to the pools. In the present study, the natural microbial community of well and pool waters in Gellért bath was studied in detail by cultivation-based techniques. To isolate bacteria, 10% R2A and minimal synthetic media (with "bath water") with agar-agar and gellan gum were used after prolonged incubation time; moreover, polyurethane blocks covered with media were also applied. Strains were identified by sequencing their 16S rRNA gene after grouping them by amplified rDNA restriction analysis. From each sample, the dominance of Alphaproteobacteria was characteristic though their diversity differed among samples. Members of Actinobacteria, Firmicutes, Beta- and Gamma-proteobacteria, Deinococcus-Thermus, and Bacteroidetes were also identified. Representatives of Deinococcus-Thermus phylum appeared only in the pool water. The largest groups in the pool water belonged to the Tistrella and Chelatococcus genera. The most dominant member in the well water was a new taxon, its similarity to Hartmannibacter diazotrophicus as closest relative was 93.93%.

  2. Genomic Characterization of Two Novel SAR11 Isolates From the Red Sea, Including the First Strain of the SAR11 Ib clade

    KAUST Repository

    Jimenez Infante, Francy M.

    2017-06-22

    The SAR11 clade (Pelagibacterales) is a diverse group that forms a monophyletic clade within the Alphaproteobacteria, and constitutes up to one third of all prokaryotic cells in the photic zone of most oceans. Pelagibacterales are very abundant in the warm and highly saline surface waters of the Red Sea, raising the question of adaptive traits of SAR11 populations in this water body and warmer oceans through the world. In this study, two pure cultures were successfully obtained from surface waters on the Red Sea, one isolate of subgroup Ia and one of the previously uncultured SAR11 Ib lineage. The novel genomes were very similar to each other and to genomes of isolates of SAR11 subgroup Ia (Ia pan-genome), both in terms of gene content and synteny. Among the genes that were not present in the Ia pan-genome, 108 (RS39, Ia) and 151 genes (RS40, Ib) were strain-specific. Detailed analyses showed that only 51 (RS39, Ia) and 55 (RS40, Ib) of these strain-specific genes had not reported before on genome fragments of Pelagibacterales. Further analyses revealed the potential production of phosphonates by some SAR11 members and possible adaptations for oligotrophic life, including pentose sugar utilization and adhesion to marine particulate matter.

  3. Microbial community changes in hydraulic fracturing fluids and produced water from shale gas extraction.

    Science.gov (United States)

    Murali Mohan, Arvind; Hartsock, Angela; Bibby, Kyle J; Hammack, Richard W; Vidic, Radisav D; Gregory, Kelvin B

    2013-11-19

    Microbial communities associated with produced water from hydraulic fracturing are not well understood, and their deleterious activity can lead to significant increases in production costs and adverse environmental impacts. In this study, we compared the microbial ecology in prefracturing fluids (fracturing source water and fracturing fluid) and produced water at multiple time points from a natural gas well in southwestern Pennsylvania using 16S rRNA gene-based clone libraries, pyrosequencing, and quantitative PCR. The majority of the bacterial community in prefracturing fluids constituted aerobic species affiliated with the class Alphaproteobacteria. However, their relative abundance decreased in produced water with an increase in halotolerant, anaerobic/facultative anaerobic species affiliated with the classes Clostridia, Bacilli, Gammaproteobacteria, Epsilonproteobacteria, Bacteroidia, and Fusobacteria. Produced water collected at the last time point (day 187) consisted almost entirely of sequences similar to Clostridia and showed a decrease in bacterial abundance by 3 orders of magnitude compared to the prefracturing fluids and produced water samplesfrom earlier time points. Geochemical analysis showed that produced water contained higher concentrations of salts and total radioactivity compared to prefracturing fluids. This study provides evidence of long-term subsurface selection of the microbial community introduced through hydraulic fracturing, which may include significant implications for disinfection as well as reuse of produced water in future fracturing operations.

  4. Genome-engineered Sinorhizobium meliloti for the production of poly(lactic-co-3-hydroxybutyric) acid copolymer.

    Science.gov (United States)

    Tran, Tam T; Charles, Trevor C

    2016-02-01

    Economically competitive commercial production of biodegradable bioplastics with desirable properties is an important goal. In this study, we demonstrate the use of chromosome engineering of an alternative bacterial host, Sinorhizobium meliloti, for production of the copolymer, poly(lactate-co-3-hydroxybutyrate). Codon-optimized genes for 2 previously engineered enzymes, Clostridium propionicum propionate CoA transferase (Pct532Cp) and Pseudomonas sp. strain MBEL 6-19 polyhydroxyalkanoate (PHA) synthase 1 (PhaC1400Ps6-19), were introduced into S. meliloti Rm1021 by chromosome integration, replacing the native phbC gene. On the basis of phenotypic analysis and detection of polymer product by gas chromatography analysis, synthesis and accumulation of the copolymer was confirmed. The chromosome integrant strain, with the introduced genes under the control of the native phbC promoter, is able to produce over 15% cell dry mass of poly(lactate-co-3-hydroxybutyrate), containing 30 mol% lactate, from growth on mannitol. We were also able to purify the polymer from the culture and confirm the structure by NMR and GC-MS. To our knowledge, this is the first demonstration of production of this copolymer in the Alphaproteobacteria. Further optimization of this system may eventually yield strains that are able to produce economically viable commercial product.

  5. Pathogenomic inference of virulence-associated genes in Leptospira interrogans.

    Science.gov (United States)

    Lehmann, Jason S; Fouts, Derrick E; Haft, Daniel H; Cannella, Anthony P; Ricaldi, Jessica N; Brinkac, Lauren; Harkins, Derek; Durkin, Scott; Sanka, Ravi; Sutton, Granger; Moreno, Angelo; Vinetz, Joseph M; Matthias, Michael A

    2013-01-01

    Leptospirosis is a globally important, neglected zoonotic infection caused by spirochetes of the genus Leptospira. Since genetic transformation remains technically limited for pathogenic Leptospira, a systems biology pathogenomic approach was used to infer leptospiral virulence genes by whole genome comparison of culture-attenuated Leptospira interrogans serovar Lai with its virulent, isogenic parent. Among the 11 pathogen-specific protein-coding genes in which non-synonymous mutations were found, a putative soluble adenylate cyclase with host cell cAMP-elevating activity, and two members of a previously unstudied ∼15 member paralogous gene family of unknown function were identified. This gene family was also uniquely found in the alpha-proteobacteria Bartonella bacilliformis and Bartonella australis that are geographically restricted to the Andes and Australia, respectively. How the pathogenic Leptospira and these two Bartonella species came to share this expanded gene family remains an evolutionary mystery. In vivo expression analyses demonstrated up-regulation of 10/11 Leptospira genes identified in the attenuation screen, and profound in vivo, tissue-specific up-regulation by members of the paralogous gene family, suggesting a direct role in virulence and host-pathogen interactions. The pathogenomic experimental design here is generalizable as a functional systems biology approach to studying bacterial pathogenesis and virulence and should encourage similar experimental studies of other pathogens.

  6. Spatial Homogeneity of Bacterial Communities Associated with the Surface Mucus Layer of the Reef-Building Coral Acropora palmata.

    Science.gov (United States)

    Kemp, Dustin W; Rivers, Adam R; Kemp, Keri M; Lipp, Erin K; Porter, James W; Wares, John P

    2015-01-01

    Coral surface mucus layer (SML) microbiota are critical components of the coral holobiont and play important roles in nutrient cycling and defense against pathogens. We sequenced 16S rRNA amplicons to examine the structure of the SML microbiome within and between colonies of the threatened Caribbean reef-building coral Acropora palmata in the Florida Keys. Samples were taken from three spatially distinct colony regions--uppermost (high irradiance), underside (low irradiance), and the colony base--representing microhabitats that vary in irradiance and water flow. Phylogenetic diversity (PD) values of coral SML bacteria communities were greater than surrounding seawater and lower than adjacent sediment. Bacterial diversity and community composition was consistent among the three microhabitats. Cyanobacteria, Bacteroidetes, Alphaproteobacteria, and Proteobacteria, respectively were the most abundant phyla represented in the samples. This is the first time spatial variability of the surface mucus layer of A. palmata has been studied. Homogeneity in the microbiome of A. palmata contrasts with SML heterogeneity found in other Caribbean corals. These findings suggest that, during non-stressful conditions, host regulation of SML microbiota may override diverse physiochemical influences induced by the topographical complexity of A. palmata. Documenting the spatial distribution of SML microbes is essential to understanding the functional roles these microorganisms play in coral health and adaptability to environmental perturbations.

  7. Identities of epilithic hydrocarbon-utilizing diazotrophic bacteria from the Arabian Gulf Coasts, and their potential for oil bioremediation without nitrogen supplementation.

    Science.gov (United States)

    Radwan, Samir; Mahmoud, Huda; Khanafer, Majida; Al-Habib, Aamar; Al-Hasan, Redha

    2010-08-01

    Gravel particles from four sites along the Arabian Gulf coast in autumn, winter, and spring were naturally colonized with microbial consortia containing between 7 and 400 × 10(2) cm(-2) of cultivable oil-utilizing bacteria. The 16S rRNA gene sequences of 70 representatives of oil-utilizing bacteria revealed that they were predominantly affiliated with the Gammaproteobacteria and the Actinobacteria. The Gammaproteobacteria comprised among others, the genera Pseudomonas, Pseudoalteromonas, Shewanella, Marinobacter, Psychrobacter, Idiomarina, Alcanivorax, Cobetia, and others. Actinobacteria comprised the genera Dietzia, Kocuria, Isoptericola, Rhodococcus, Microbacterium, and others. In autumn, Firmicutes members were isolated from bay and nonbay stations while Alphaproteobacteria were detected only during winter from Anjefa bay station. Fingerprinting by denaturing gradient gel electrophoresis of amplified 16S rRNA genes of whole microbial consortia confirmed the culture-based bacterial diversities in the various epilithons in various sites and seasons. Most of the representative oil-utilizing bacteria isolated from the epilithons were diazotrophic and could attenuate oil also in nitrogen-rich (7.9-62%) and nitrogen-free (4-54%) cultures, which, makes the microbial consortia suitable for oil bioremediation in situ, without need for nitrogen supplementation. This was confirmed in bench-scale experiments in which unfertilized oily seawater was bioremediated by epilithon-coated gravel particles.

  8. Secretome of obligate intracellular Rickettsia

    Science.gov (United States)

    Gillespie, Joseph J.; Kaur, Simran J.; Rahman, M. Sayeedur; Rennoll-Bankert, Kristen; Sears, Khandra T.; Beier-Sexton, Magda; Azad, Abdu F.

    2014-01-01

    The genus Rickettsia (Alphaproteobacteria, Rickettsiales, Rickettsiaceae) is comprised of obligate intracellular parasites, with virulent species of interest both as causes of emerging infectious diseases and for their potential deployment as bioterrorism agents. Currently, there are no effective commercially available vaccines, with treatment limited primarily to tetracycline antibiotics, although others (e.g. josamycin, ciprofloxacin, chloramphenicol, and azithromycin) are also effective. Much of the recent research geared toward understanding mechanisms underlying rickettsial pathogenicity has centered on characterization of secreted proteins that directly engage eukaryotic cells. Herein, we review all aspects of the Rickettsia secretome, including six secretion systems, 19 characterized secretory proteins, and potential moonlighting proteins identified on surfaces of multiple Rickettsia species. Employing bioinformatics and phylogenomics, we present novel structural and functional insight on each secretion system. Unexpectedly, our investigation revealed that the majority of characterized secretory proteins have not been assigned to their cognate secretion pathways. Furthermore, for most secretion pathways, the requisite signal sequences mediating translocation are poorly understood. As a blueprint for all known routes of protein translocation into host cells, this resource will assist research aimed at uniting characterized secreted proteins with their apposite secretion pathways. Furthermore, our work will help in the identification of novel secreted proteins involved in rickettsial ‘life on the inside’. PMID:25168200

  9. Molecular Analysis of Bacterial Communities in Biofilms of a Drinking Water Clearwell

    Science.gov (United States)

    Zhang, Minglu; Liu, Wenjun; Nie, Xuebiao; Li, Cuiping; Gu, Junnong; Zhang, Can

    2012-01-01

    Microbial community structures in biofilms of a clearwell in a drinking water supply system in Beijing, China were examined by clone library, terminal restriction fragment length polymorphism (T-RFLP) and 454 pyrosequencing of the amplified 16S rRNA gene. Six biofilm samples (designated R1–R6) collected from six locations (upper and lower sites of the inlet, middle and outlet) of the clearwell revealed similar bacterial patterns by T-RFLP analysis. With respect to the dominant groups, the phylotypes detected by clone library and T-RFLP generally matched each other. A total of 9,543 reads were obtained from samples located at the lower inlet and the lower outlet sites by pyrosequencing. The bacterial diversity of the two samples was compared at phylum and genus levels. Alphaproteobacteria dominated the communities in both samples and the genus of Sphingomonas constituted 75.1%–99.6% of this phylum. A high level of Sphingomonas sp. was first observed in the drinking water biofilms with 0.6–1.0 mg L−1 of chlorine residual. Disinfectant-resistant microorganisms deserve special attention in drinking water management. This study provides novel insights into the microbial populations in drinking water systems and highlights the important role of Sphingomonas species in biofilm formation. PMID:23059725

  10. Provision of water by halite deliquescence for Nostoc commune biofilms under Mars relevant surface conditions

    Science.gov (United States)

    Jänchen, Jochen; Feyh, Nina; Szewzyk, Ulrich; de Vera, Jean-Pierre P.

    2016-04-01

    Motivated by findings of new mineral related water sources for organisms under extremely dry conditions on Earth we studied in an interdisciplinary approach the water sorption behaviour of halite, soil component and terrestrial Nostoc commune biofilm under Mars relevant environmental conditions. Physicochemical methods served for the determination of water sorption equilibrium data and survival of heterotrophic bacteria in biofilm samples with different water contents was assured by recultivation. Deliquescence of halite provides liquid water at temperatures <273 K and may serve as water source on Mars during the morning stabilized by the CO2 atmosphere for a few hours. The protecting biofilm of N. commune is rather hygroscopic and tends to store water at lower humidity values. Survival tests showed that a large proportion of the Alphaproteobacteria dominated microbiota associated to N. commune is very desiccation tolerant and water uptake from saturated NaCl solutions (either by direct uptake of brine or adsorption of humidity) did not enhance recultivability in long-time desiccated samples. Still, a minor part can grow under highly saline conditions. However, the salinity level, although unfavourable for the host organism, might be for parts of the heterotrophic microbiota no serious hindrance for growing in salty Mars-like environments.

  11. Plastics in the North Atlantic garbage patch: A boat-microbe for hitchhikers and plastic degraders.

    Science.gov (United States)

    Debroas, Didier; Mone, Anne; Ter Halle, Alexandra

    2017-12-01

    Plastic is a broad name given to different polymers with high molecular weight that impact wildlife. Their fragmentation leads to a continuum of debris sizes (meso to microplastics) entrapped in gyres and colonized by microorganisms. In the present work, the structure of eukaryotes, bacteria and Archaea was studied by a metabarcoding approach, and statistical analysis associated with network building was used to define a core microbiome at the plastic surface. Most of the bacteria significantly associated with the plastic waste originated from non-marine ecosystems, and numerous species can be considered as hitchhikers, whereas others act as keystone species (e.g., Rhodobacterales, Rhizobiales, Streptomycetales and Cyanobacteria) in the biofilm. The chemical analysis provides evidence for a specific colonization of the polymers. Alphaproteobacteria and Gammaproteobacteria significantly dominated mesoplastics consisting of poly(ethylene terephthalate) and polystyrene. Polyethylene was also dominated by these bacterial classes and Actinobacteria. Microplastics were made of polyethylene but differed in their crystallinity, and the majorities were colonized by Betaproteobacteria. Our study indicated that the bacteria inhabiting plastics harboured distinct metabolisms from those present in the surrounding water. For instance, the metabolic pathway involved in xenobiotic degradation was overrepresented on the plastic surface. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Methanol removal efficiency and bacterial diversity of an activated carbon biofilter.

    Science.gov (United States)

    Babbitt, Callie W; Pacheco, Adriana; Lindner, Angela S

    2009-12-01

    Motivated by the need to establish an economical and environmentally friendly methanol control technology for the pulp and paper industry, a bench-scale activated carbon biofiltration system was developed. This system was evaluated for its performance in removing methanol from an artificially contaminated air stream and characterized for its bacterial diversity over time, under varied methanol loading rates, and in different spatial regions of the filter. The biofilter system, composed of a novel packing mixture, provided an excellent support for growth and activity of methanol-degrading bacteria, resulting in approximately 100% methanol removal efficiency for loading rates of 1-17 g/m(3) packing/h, when operated both with and without inoculum containing enriched methanol-degrading bacteria. Although bacterial diversity and abundance varied over the length of the biofilter, the populations present rapidly formed a stable community that was maintained over the entire 138-day operation of the system and through variable operating conditions, as observed by PCR-DGGE methods that targeted all bacteria as well as specific methanol-oxidizing microorganisms. Phylogenetic analysis of bands excised and sequenced from DGGE gels indicated that the biofilter system supported a diverse community of methanol-degrading bacteria, with high similarity to species in the genera Methylophilus (beta-proteobacteria), Hyphomicrobium and Methylocella (both alpha-proteobacteria).

  13. Bacterial diversity in the active stage of a bioremediation system for mineral oil hydrocarbon-contaminated soils.

    Science.gov (United States)

    Popp, Nicole; Schlömann, Michael; Mau, Margit

    2006-11-01

    Soils contaminated with mineral oil hydrocarbons are often cleaned in off-site bioremediation systems. In order to find out which bacteria are active during the degradation phase in such systems, the diversity of the active microflora in a degrading soil remediation system was investigated by small-subunit (SSU) rRNA analysis. Two sequential RNA extracts from one soil sample were generated by a procedure incorporating bead beating. Both extracts were analysed separately by generating individual SSU rDNA clone libraries from cDNA of the two extracts. The sequencing results showed moderate diversity. The two clone libraries were dominated by Gammaproteobacteria, especially Pseudomonas spp. Alphaproteobacteria and Betaproteobacteria were two other large groups in the clone libraries. Actinobacteria, Firmicutes, Bacteroidetes and Epsilonproteobacteria were detected in lower numbers. The obtained sequences were predominantly related to genera for which cultivated representatives have been described, but were often clustered together in the phylogenetic tree, and the sequences that were most similar were originally obtained from soils and not from pure cultures. Most of the dominant genera in the clone libraries, e.g. Pseudomonas, Acinetobacter, Sphingomonas, Acidovorax and Thiobacillus, had already been detected in (mineral oil hydrocarbon) contaminated environmental samples. The occurrence of the genera Zymomonas and Rhodoferax was novel in mineral oil hydrocarbon-contaminated soil.

  14. Microbial diversity in an Armenian geothermal spring assessed by molecular and culture-based methods.

    Science.gov (United States)

    Panosyan, Hovik; Birkeland, Nils-Kåre

    2014-11-01

    The phylogenetic diversity of the prokaryotic community thriving in the Arzakan hot spring in Armenia was studied using molecular and culture-based methods. A sequence analysis of 16S rRNA gene clone libraries demonstrated the presence of a diversity of microorganisms belonging to the Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Epsilonproteobacteria, Firmicutes, Bacteroidetes phyla, and Cyanobacteria. Proteobacteria was the dominant group, representing 52% of the bacterial clones. Denaturing gradient gel electrophoresis profiles of the bacterial 16S rRNA gene fragments also indicated the abundance of Proteobacteria, Bacteroidetes, and Cyanobacteria populations. Most of the sequences were most closely related to uncultivated microorganisms and shared less than 96% similarity with their closest matches in GenBank, indicating that this spring harbors a unique community of novel microbial species or genera. The majority of the sequences of an archaeal 16S rRNA gene library, generated from a methanogenic enrichment, were close relatives of members of the genus Methanoculleus. Aerobic endospore-forming bacteria mainly belonging to Bacillus and Geobacillus were detected only by culture-dependent methods. Three isolates were successfully obtained having 99, 96, and 96% 16S rRNA gene sequence similarities to Arcobacter sp., Methylocaldum sp., and Methanoculleus sp., respectively. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Methylopila helvetica sp. nov. and Methylobacterium dichloromethanicum sp. nov.--novel aerobic facultatively methylotrophic bacteria utilizing dichloromethane.

    Science.gov (United States)

    Doronina, N V; Trotsenko, Y A; Tourova, T P; Kuznetsov, B B; Leisinger, T

    2000-06-01

    Eight strains of Gram-negative, aerobic, asporogenous, neutrophilic, mesophilic, facultatively methylotrophic bacteria are taxonomically described. These icl- serine pathway methylobacteria utilize dichloromethane, methanol and methylamine as well as a variety of polycarbon compounds as the carbon and energy source. The major cellular fatty acids of the non-pigmented strains DM1, DM3, and DM5 to DM9 are C18:1, C16:0, C18:0, Ccy19:0 and that of the pink-pigmented strain DM4 is C18:1. The main quinone of all the strains is Q-10. The non-pigmented strains have similar phenotypic properties and a high level of DNA-DNA relatedness (81-98%) as determined by hybridization. All strains belong to the alpha-subgroup of the alpha-Proteobacteria. 16S rDNA sequence analysis led to the classification of these dichloromethane-utilizers in the genus Methylopila as a new species - Methylopila helvetica sp.nov. with the type strain DM9 (=VKM B-2189). The pink-pigmented strain DM4 belongs to the genus Methylobacterium but differs from the known members of this genus by some phenotypic properties, DNA-DNA relatedness (14-57%) and 16S rDNA sequence. Strain DM4 is named Methylobacterium dichloromethanicum sp. nov. (VKM B-2191 = DSMZ 6343).

  16. Diversity of pufM genes, involved in aerobic anoxygenic photosynthesis, in the bacterial communities associated with colonial ascidians.

    Science.gov (United States)

    Martínez-García, Manuel; Díaz-Valdés, Marta; Antón, Josefa

    2010-03-01

    Ascidians are invertebrate filter feeders widely distributed in benthic marine environments. A total of 14 different ascidian species were collected from the Western Mediterranean and their bacterial communities were analyzed by denaturing gradient gel electrophoresis (DGGE) of 16S rRNA gene. Results showed that ascidian tissues harbored Bacteria belonging to Gamma- and Alphaproteobacteria classes, some of them phylogenetically related to known aerobic anoxygenic phototrophs (AAPs), such as Roseobacter sp. In addition, hierarchical cluster analysis of DGGE patterns showed a large variability in the bacterial diversity among the different ascidians analyzed, which indicates that they would harbor different bacterial communities. Furthermore, pufM genes, involved in aerobic anoxygenic photosynthesis in marine and freshwater systems, were widely detected within the ascidians analyzed, because nine out of 14 species had pufM genes inside their tissues. The pufM gene was only detected in those specimens that inhabited shallow waters (<77 m of depth). Most pufM gene sequences were very closely related to that of uncultured marine bacteria. Thus, our results suggest that the association of ascidians with bacteria related to AAPs could be a general phenomenon and that ascidian-associated microbiota could use the light that penetrates through the tunic tissue as an energy source.

  17. Bacterial quorum sensing and nitrogen cycling in rhizosphere soil

    Energy Technology Data Exchange (ETDEWEB)

    DeAngelis, K.M.; Lindow, S.E.; Firestone, M.K.

    2008-10-01

    Plant photosynthate fuels carbon-limited microbial growth and activity, resulting in increased rhizosphere nitrogen (N)-mineralization. Most soil organic N is macromolecular (chitin, protein, nucleotides); enzymatic depolymerization is likely rate-limiting for plant N accumulation. Analyzing Avena (wild oat) planted in microcosms containing sieved field soil, we observed increased rhizosphere chitinase and protease specific activities, bacterial cell densities, and dissolved organic nitrogen (DON) compared to bulk soil. Low-molecular weight DON (<3000 Da) was undetectable in bulk soil but comprised 15% of rhizosphere DON. Extracellular enzyme production in many bacteria requires quorum sensing (QS), cell-density dependent group behavior. Because proteobacteria are considered major rhizosphere colonizers, we assayed the proteobacterial QS signals acyl-homoserine lactones (AHLs), which were significantly increased in the rhizosphere. To investigate the linkage between soil signaling and N cycling, we characterized 533 bacterial isolates from Avena rhizosphere: 24% had chitinase or protease activity and AHL production; disruption of QS in 7 of 8 eight isolates disrupted enzyme activity. Many {alpha}-Proteobacteria were newly found with QS-controlled extracellular enzyme activity. Enhanced specific activities of N-cycling enzymes accompanied by bacterial density-dependent behaviors in rhizosphere soil gives rise to the hypothesis that QS could be a control point in the complex process of rhizosphere N-mineralization.

  18. Properties and biotechnological applications of ice-binding proteins in bacteria.

    Science.gov (United States)

    Cid, Fernanda P; Rilling, Joaquín I; Graether, Steffen P; Bravo, Leon A; Mora, María de La Luz; Jorquera, Milko A

    2016-06-01

    Ice-binding proteins (IBPs), such as antifreeze proteins (AFPs) and ice-nucleating proteins (INPs), have been described in diverse cold-adapted organisms, and their potential applications in biotechnology have been recognized in various fields. Currently, both IBPs are being applied to biotechnological processes, primarily in medicine and the food industry. However, our knowledge regarding the diversity of bacterial IBPs is limited; few studies have purified and characterized AFPs and INPs from bacteria. Phenotypically verified IBPs have been described in members belonging to Gammaproteobacteria, Actinobacteria and Flavobacteriia classes, whereas putative IBPs have been found in Gammaproteobacteria, Alphaproteobacteria and Bacilli classes. Thus, the main goal of this minireview is to summarize the current information on bacterial IBPs and their application in biotechnology, emphasizing the potential application in less explored fields such as agriculture. Investigations have suggested the use of INP-producing bacteria antagonists and AFPs-producing bacteria (or their AFPs) as a very attractive strategy to prevent frost damages in crops. UniProt database analyses of reported IBPs (phenotypically verified) and putative IBPs also show the limited information available on bacterial IBPs and indicate that major studies are required. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Seawater mesocosm experiments in the Arctic uncover differential transfer of marine bacteria to aerosols.

    Science.gov (United States)

    Fahlgren, Camilla; Gómez-Consarnau, Laura; Zábori, Julia; Lindh, Markus V; Krejci, Radovan; Mårtensson, E Monica; Nilsson, Douglas; Pinhassi, Jarone

    2015-06-01

    Biogenic aerosols critically control atmospheric processes. However, although bacteria constitute major portions of living matter in seawater, bacterial aerosolization from oceanic surface layers remains poorly understood. We analysed bacterial diversity in seawater and experimentally generated aerosols from three Kongsfjorden sites, Svalbard. Construction of 16S rRNA gene clone libraries from paired seawater and aerosol samples resulted in 1294 sequences clustering into 149 bacterial and 34 phytoplankton operational taxonomic units (OTUs). Bacterial communities in aerosols differed greatly from corresponding seawater communities in three out of four experiments. Dominant populations of both seawater and aerosols were Flavobacteriia, Alphaproteobacteria and Gammaproteobacteria. Across the entire dataset, most OTUs from seawater could also be found in aerosols; in each experiment, however, several OTUs were either selectively enriched in aerosols or little aerosolized. Notably, a SAR11 clade OTU was consistently abundant in the seawater, but was recorded in significantly lower proportions in aerosols. A strikingly high proportion of colony-forming bacteria were pigmented in aerosols compared with seawater, suggesting that selection during aerosolization contributes to explaining elevated proportions of pigmented bacteria frequently observed in atmospheric samples. Our findings imply that atmospheric processes could be considerably influenced by spatiotemporal variations in the aerosolization efficiency of different marine bacteria. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  20. Co-ordinate synthesis and protein localization in a bacterial organelle by the action of a penicillin-binding-protein.

    Science.gov (United States)

    Hughes, H Velocity; Lisher, John P; Hardy, Gail G; Kysela, David T; Arnold, Randy J; Giedroc, David P; Brun, Yves V

    2013-12-01

    Organelles with specialized form and function occur in diverse bacteria. Within the Alphaproteobacteria, several species extrude thin cellular appendages known as stalks, which function in nutrient uptake, buoyancy and reproduction. Consistent with their specialization, stalks maintain a unique molecular composition compared with the cell body, but how this is achieved remains to be fully elucidated. Here we dissect the mechanism of localization of StpX, a stalk-specific protein in Caulobacter crescentus. Using a forward genetics approach, we identify a penicillin-binding-protein, PbpC, which is required for the localization of StpX in the stalk. We show that PbpC acts at the stalked cell pole to anchor StpX to rigid components of the outer membrane of the elongating stalk, concurrent with stalk synthesis. Stalk-localized StpX in turn functions in cellular responses to copper and zinc, suggesting that the stalk may contribute to metal homeostasis in Caulobacter. Together, these results identify a novel role for a penicillin-binding-protein in compartmentalizing a bacterial organelle it itself helps create, raising the possibility that cell wall-synthetic enzymes may broadly serve not only to synthesize the diverse shapes of bacteria, but also to functionalize them at the molecular level. © 2013 John Wiley & Sons Ltd.

  1. Ecological restoration alters microbial communities in mine tailings profiles

    Science.gov (United States)

    Li, Yang; Jia, Zhongjun; Sun, Qingye; Zhan, Jing; Yang, Yang; Wang, Dan

    2016-04-01

    Ecological restoration of mine tailings have impact on soil physiochemical properties and microbial communities. The surface soil has been a primary concern in the past decades, however it remains poorly understood about the adaptive response of microbial communities along the profile during ecological restoration of the tailings. In this study, microbial communities along a 60-cm profile were investigated in a mine tailing pond during ecological restoration of the bare waste tailings (BW) with two vegetated soils of Imperata cylindrica (IC) and Chrysopogon zizanioides (CZ) plants. Revegetation of both IC and CZ could retard soil degradation of mine tailing by stimulation of soil pH at 0-30 cm soils and altered the bacterial communities at 0-20 cm depths of the mine tailings. Significant differences existed in the relative abundance of the phyla Alphaproteobacteria, Deltaproteobacteria, Acidobacteria, Firmicutes and Nitrospira. Slight difference of bacterial communities were found at 30-60 cm depths of mine tailings. Abundance and activity analysis of nifH genes also explained the elevated soil nitrogen contents at the surface 0-20 cm of the vegetated soils. These results suggest that microbial succession occurred primarily at surface tailings and vegetation of pioneering plants might have promoted ecological restoration of mine tailings.

  2. Stromatolites on the rise in peat-bound karstic wetlands.

    Science.gov (United States)

    Proemse, Bernadette C; Eberhard, Rolan S; Sharples, Chris; Bowman, John P; Richards, Karen; Comfort, Michael; Barmuta, Leon A

    2017-11-13

    Stromatolites are the oldest evidence for life on Earth, but modern living examples are rare and predominantly occur in shallow marine or (hyper-) saline lacustrine environments, subject to exotic physico-chemical conditions. Here we report the discovery of living freshwater stromatolites in cool-temperate karstic wetlands in the Giblin River catchment of the UNESCO-listed Tasmanian Wilderness World Heritage Area, Australia. These stromatolites colonize the slopes of karstic spring mounds which create mildly alkaline (pH of 7.0-7.9) enclaves within an otherwise uniformly acidic organosol terrain. The freshwater emerging from the springs is Ca-HCO 3 dominated and water temperatures show no evidence of geothermal heating. Using 16 S rRNA gene clone library analysis we revealed that the bacterial community is dominated by Cyanobacteria, Alphaproteobacteria and an unusually high proportion of Chloroflexi, followed by Armatimonadetes and Planctomycetes, and is therefore unique compared to other living examples. Macroinvertebrates are sparse and snails in particular are disadvantaged by the development of debilitating accumulations of carbonate on their shells, corroborating evidence that stromatolites flourish under conditions where predation by metazoans is suppressed. Our findings constitute a novel habitat for stromatolites because cool-temperate freshwater wetlands are not a conventional stromatolite niche, suggesting that stromatolites may be more common than previously thought.

  3. Phylogenomics of Rhodobacteraceae reveals evolutionary adaptation to marine and non-marine habitats.

    Science.gov (United States)

    Simon, Meinhard; Scheuner, Carmen; Meier-Kolthoff, Jan P; Brinkhoff, Thorsten; Wagner-Döbler, Irene; Ulbrich, Marcus; Klenk, Hans-Peter; Schomburg, Dietmar; Petersen, Jörn; Göker, Markus

    2017-06-01

    Marine Rhodobacteraceae (Alphaproteobacteria) are key players of biogeochemical cycling, comprise up to 30% of bacterial communities in pelagic environments and are often mutualists of eukaryotes. As 'Roseobacter clade', these 'roseobacters' are assumed to be monophyletic, but non-marine Rhodobacteraceae have not yet been included in phylogenomic analyses. Therefore, we analysed 106 genome sequences, particularly emphasizing gene sampling and its effect on phylogenetic stability, and investigated relationships between marine versus non-marine habitat, evolutionary origin and genomic adaptations. Our analyses, providing no unequivocal evidence for the monophyly of roseobacters, indicate several shifts between marine and non-marine habitats that occurred independently and were accompanied by characteristic changes in genomic content of orthologs, enzymes and metabolic pathways. Non-marine Rhodobacteraceae gained high-affinity transporters to cope with much lower sulphate concentrations and lost genes related to the reduced sodium chloride and organohalogen concentrations in their habitats. Marine Rhodobacteraceae gained genes required for fucoidan desulphonation and synthesis of the plant hormone indole 3-acetic acid and the compatible solutes ectoin and carnitin. However, neither plasmid composition, even though typical for the family, nor the degree of oligotrophy shows a systematic difference between marine and non-marine Rhodobacteraceae. We suggest the operational term 'Roseobacter group' for the marine Rhodobacteraceae strains.

  4. Genomic Characterization of Two Novel SAR11 Isolates From the Red Sea, Including the First Strain of the SAR11 Ib clade

    KAUST Repository

    Jimenez Infante, Francy M.; Ngugi, David; Vinu, Manikandan; Blom, Jochen; Alam, Intikhab; Bajic, Vladimir B.; Stingl, Ulrich

    2017-01-01

    The SAR11 clade (Pelagibacterales) is a diverse group that forms a monophyletic clade within the Alphaproteobacteria, and constitutes up to one third of all prokaryotic cells in the photic zone of most oceans. Pelagibacterales are very abundant in the warm and highly saline surface waters of the Red Sea, raising the question of adaptive traits of SAR11 populations in this water body and warmer oceans through the world. In this study, two pure cultures were successfully obtained from surface waters on the Red Sea, one isolate of subgroup Ia and one of the previously uncultured SAR11 Ib lineage. The novel genomes were very similar to each other and to genomes of isolates of SAR11 subgroup Ia (Ia pan-genome), both in terms of gene content and synteny. Among the genes that were not present in the Ia pan-genome, 108 (RS39, Ia) and 151 genes (RS40, Ib) were strain-specific. Detailed analyses showed that only 51 (RS39, Ia) and 55 (RS40, Ib) of these strain-specific genes had not reported before on genome fragments of Pelagibacterales. Further analyses revealed the potential production of phosphonates by some SAR11 members and possible adaptations for oligotrophic life, including pentose sugar utilization and adhesion to marine particulate matter.

  5. Bioremediation using Novosphingobium strain DY4 for 2,4-dichlorophenoxyacetic acid-contaminated soil and impact on microbial community structure.

    Science.gov (United States)

    Dai, Yu; Li, Ningning; Zhao, Qun; Xie, Shuguang

    2015-04-01

    The herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) is commonly used for weed control. The ubiquity of 2,4-D has gained increasing environmental concerns. Biodegradation is an attractive way to clean up 2,4-D in contaminated soil. However, information on the bioaugmentation trial for remediating contaminated soil is still very limited. The impact of bioaugmentation using 2,4-D-degraders on soil microbial community remains unknown. The present study investigated the bioremediation potential of a novel degrader (strain DY4) for heavily 2,4-D-polluted soil and its bioaugmentation impact on microbial community structure. The strain DY4 was classified as a Novosphingobium species within class Alphaproteobacteria and harbored 2,4-D-degrading TfdAα gene. More than 50 and 95 % of the herbicide could be dissipated in bioaugmented soil (amended with 200 mg/kg 2,4-D) respectively in 3-4 and 5-7 days after inoculation of Novosphingobium strain DY4. A significant growth of the strain DY4 was observed in bioaugmented soil with the biodegradation of 2,4-D. Moreover, herbicide application significantly altered soil bacterial community structure but bioaumentation using the strain DY4 showed a relatively weak impact.

  6. Dust Rains Deliver Diverse Assemblages of Microorganisms to the Eastern Mediterranean

    Science.gov (United States)

    Itani, Ghida Nouhad; Smith, Colin Andrew

    2016-03-01

    Dust rains may be particularly effective at delivering microorganisms, yet their biodiversities have been seldom examined. During 2011 and 2012 in Beirut, Lebanon, 16 of 21 collected rainfalls appeared dusty. Trajectory modelling of air mass origins was consistent with North African sources and at least one Southwest Asian source. As much as ~4 g particulate matter, ~20 μg DNA, and 50 million colony forming units were found deposited per square meter during rainfalls each lasting less than one day. Sequencing of 93 bacteria and 25 fungi cultured from rain samples revealed diverse bacterial phyla, both Gram positive and negative, and Ascomycota fungi. Denaturing Gradient Gel Electrophoresis of amplified 16S rDNA of 13 rains revealed distinct and diverse assemblages of bacteria. Dust rain 16S libraries yielded 131 sequences matching, in decreasing order of abundance, Betaproteobacteria, Alphaproteobacteria, Firmicutes, Actinobacteria, Bacteroidetes, Cyanobacteria, Epsilonproteobacteria, Gammaproteobacteria, and Deltaproteobacteria. Clean rain 16S libraries yielded 33 sequences matching only Betaproteobacteria family Oxalobacteraceae. Microbial composition varied between dust rains, and more diverse and different microbes were found in dust rains than clean rains. These results show that dust rains deliver diverse communities of microorganisms that may be complex products of revived desert soil species and fertilized cloud species.

  7. Intrinsic rates of petroleum hydrocarbon biodegradation in Gulf of Mexico intertidal sandy sediments and its enhancement by organic substrates

    International Nuclear Information System (INIS)

    Mortazavi, Behzad; Horel, Agota; Beazley, Melanie J.; Sobecky, Patricia A.

    2013-01-01

    The rates of crude oil degradation by the extant microorganisms in intertidal sediments from a northern Gulf of Mexico beach were determined. The enhancement in crude oil degradation by amending the microbial communities with marine organic matter was also examined. Replicate mesocosm treatments consisted of: (i) controls (intertidal sand), (ii) sand contaminated with crude oil, (iii) sand plus organic matter, and (iv) sand plus crude oil and organic matter. Carbon dioxide (CO 2 ) production was measured daily for 42 days and the carbon isotopic ratio of CO 2 (δ 13 CO 2 ) was used to determine the fraction of CO 2 derived from microbial respiration of crude oil. Bacterial 16S rRNA clone library analyses indicated members of Actinobacteria, Bacteroidetes, and Chloroflexi occurred exclusively in control sediments whereas Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, and Firmicutes occurred in both control and oil contaminated sediments. Members of the hydrocarbon-degrading genera Hydrocarboniphaga, Pseudomonas, and Pseudoxanthomonas were found primarily in oil contaminated treatments. Hydrocarbon mineralization was 76% higher in the crude oil amended with organic matter treatment compared to the rate in the crude oil only treatment indicating that biodegradation of crude oil in the intertidal zone by an extant microbial community is enhanced by input of organic matter

  8. Dynamics of bacterial communities in two unpolluted soils after spiking with phenanthrene: soil type specific and common responders

    Directory of Open Access Journals (Sweden)

    Guo-Chun eDing

    2012-08-01

    Full Text Available Considering their key role for ecosystem processes, it is important to understand the response of microbial communities in unpolluted soils to pollution with polycyclic aromatic hydrocarbons (PAH. Phenanthrene, a model compound for PAH, was spiked to a Cambisol and a Luvisol soil. Total community DNA from phenanthrene-spiked and control soils collected on days 0, 21 and 63 were analyzed based on PCR-amplified 16S rRNA genefragments. Denaturing gradient gel electrophoresis (DGGE fingerprints of bacterial communities increasingly deviated with time between spiked and control soils. In taxon specific DGGE, significant responses of Alphaproteobacteria and Actinobacteria became only detectable after 63 days, while significant effects on Betaproteobacteria were detectable in both soils after 21 days. Comparison of the taxonomic distribution of bacteria in spiked and control soils on day 63 as revealed by pyrosequencing indicated soil type specific negative effects of phenanthrene on several taxa, many of them belonging to the Gamma-, Beta- or Deltaproteobacteria. Bacterial richness and evenness decreased in spiked soils. Despite the significant differences in the bacterial community structure between both soils on day 0, similar genera increased in relative abundance after PAH spiking, especially Sphingomonas and Polaromonas. However, this did not result in an increased overall similarity of the bacterial communities in both soils.

  9. Intrinsic rates of petroleum hydrocarbon biodegradation in Gulf of Mexico intertidal sandy sediments and its enhancement by organic substrates

    Energy Technology Data Exchange (ETDEWEB)

    Mortazavi, Behzad [University of Alabama, Department of Biological Sciences, Box 870344, University of Alabama, Tuscaloosa, AL 35487 (United States); Dauphin Island Sea Lab, 101 Bienville Boulevard, Dauphin Island, AL, 36528 (United States); Horel, Agota [University of Alabama, Department of Biological Sciences, Box 870344, University of Alabama, Tuscaloosa, AL 35487 (United States); Dauphin Island Sea Lab, 101 Bienville Boulevard, Dauphin Island, AL, 36528 (United States); Beazley, Melanie J.; Sobecky, Patricia A. [University of Alabama, Department of Biological Sciences, Box 870344, University of Alabama, Tuscaloosa, AL 35487 (United States)

    2013-01-15

    The rates of crude oil degradation by the extant microorganisms in intertidal sediments from a northern Gulf of Mexico beach were determined. The enhancement in crude oil degradation by amending the microbial communities with marine organic matter was also examined. Replicate mesocosm treatments consisted of: (i) controls (intertidal sand), (ii) sand contaminated with crude oil, (iii) sand plus organic matter, and (iv) sand plus crude oil and organic matter. Carbon dioxide (CO{sub 2}) production was measured daily for 42 days and the carbon isotopic ratio of CO{sub 2} (δ{sup 13}CO{sub 2}) was used to determine the fraction of CO{sub 2} derived from microbial respiration of crude oil. Bacterial 16S rRNA clone library analyses indicated members of Actinobacteria, Bacteroidetes, and Chloroflexi occurred exclusively in control sediments whereas Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, and Firmicutes occurred in both control and oil contaminated sediments. Members of the hydrocarbon-degrading genera Hydrocarboniphaga, Pseudomonas, and Pseudoxanthomonas were found primarily in oil contaminated treatments. Hydrocarbon mineralization was 76% higher in the crude oil amended with organic matter treatment compared to the rate in the crude oil only treatment indicating that biodegradation of crude oil in the intertidal zone by an extant microbial community is enhanced by input of organic matter.

  10. Brucella melitensis MucR, an orthologue of Sinorhizobium meliloti MucR, is involved in resistance to oxidative, detergent, and saline stresses and cell envelope modifications.

    Science.gov (United States)

    Mirabella, A; Terwagne, M; Zygmunt, M S; Cloeckaert, A; De Bolle, X; Letesson, J J

    2013-02-01

    Brucella spp. and Sinorhizobium meliloti are alphaproteobacteria that share not only an intracellular lifestyle in their respective hosts, but also a crucial requirement for cell envelope components and their timely regulation for a successful infectious cycle. Here, we report the characterization of Brucella melitensis mucR, which encodes a zinc finger transcriptional regulator that has previously been shown to be involved in cellular and mouse infections at early time points. MucR modulates the surface properties of the bacteria and their resistance to environmental stresses (i.e., oxidative stress, cationic peptide, and detergents). We show that B. melitensis mucR is a functional orthologue of S. meliloti mucR, because it was able to restore the production of succinoglycan in an S. meliloti mucR mutant, as detected by calcofluor staining. Similar to S. meliloti MucR, B. melitensis MucR also represses its own transcription and flagellar gene expression via the flagellar master regulator ftcR. More surprisingly, we demonstrate that MucR regulates a lipid A core modification in B. melitensis. These changes could account for the attenuated virulence of a mucR mutant. These data reinforce the idea that there is a common conserved circuitry between plant symbionts and animal pathogens that regulates the relationship they have with their hosts.

  11. Characterizing changes in soil bacterial community structure in response to short-term warming

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Jinbo [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing China; School of Marine Sciences, Ningbo University, Ningbo China; Sun, Huaibo [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing China; Peng, Fei [Key Laboratory of Desert and Desertification, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou China; Zhang, Huayong [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing China; Xue, Xian [Key Laboratory of Desert and Desertification, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou China; Gibbons, Sean M. [Argonne National Laboratory Biosciences Division, Argonne IL USA; Graduate Program in Biophysical Sciences, University of Chicago, Chicago IL USA; Gilbert, Jack A. [Argonne National Laboratory Biosciences Division, Argonne IL USA; Department of Ecology and Evolution, University of Chicago, Chicago IL USA; Chu, Haiyan [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing China

    2014-02-18

    High altitude alpine meadows are experiencing considerably greater than average increases in soil surface temperature, potentially as a result of ongoing climate change. The effects of warming on plant productivity and soil edaphic variables have been established previously, but the influence of warming on soil microbial community structure has not been well characterized. Here, the impact of 15 months of soil warming (both + 1 and + 2 degrees C) on bacterial community structure was examined in a field experiment on a Tibetan plateau alpine meadow using bar-coded pyrosequencing. Warming significantly changed (P < 0.05) the structure of the soil bacterial community, but the alpha diversity was not dramatically affected. Changes in the abundance of the Actinobacteria and Alphaproteobacteria were found to contribute the most to differences between ambient (AT) and artificially warmed conditions. A variance partitioning analysis (VPA) showed that warming directly explained 7.15% variation in bacterial community structure, while warming-induced changes in soil edaphic and plant phenotypic properties indirectly accounted for 28.3% and 20.6% of the community variance, respectively. Interestingly, certain taxa showed an inconsistent response to the two warming treatments, for example Deltaproteobacteria showed a decreased relative abundance at + 1 degrees C, but a return to AT control relative abundance at + 2 degrees C. This suggests complex microbial dynamics that could result from conditional dependencies between bacterial taxa.

  12. Microbial community composition during anaerobic mineralization of tert-butyl alcohol (TBA) in fuel-contaminated aquifer material.

    Science.gov (United States)

    Wei, Na; Finneran, Kevin T

    2011-04-01

    Anaerobic mineralization of tert-butyl alcohol (TBA) and methyl tert-butyl ether (MTBE) were studied in sediment incubations prepared with fuel-contaminated aquifer material. Microbial community compositions in all incubations were characterized by amplified ribosomal DNA restriction analysis (ARDRA). The aquifer material mineralized 42.3±9.9% of [U-(14)C]-TBA to 14CO2 without electron acceptor amendment. Fe(III), sulfate, and Fe(III) plus anthraquinone-2,6-disulfonate addition also promoted U-[14C]-TBA mineralization at levels similar to those of the unamended controls. Nitrate actually inhibited TBA mineralization relative to unamended controls. In contrast to TBA, [U-(14)C]-MTBE was not significantly mineralized in 400 days regardless of electron acceptor amendment. Microbial community analysis indicated that the abundance of one dominant clone group correlated closely with anaerobic TBA mineralization. The clone was phylogenetically distinct from known aerobic TBA-degrading microorganisms, Fe(III)- or sulfate-reducing bacteria. It was most closely associated with organisms belonging to the alphaproteobacteria. Microbial communities were different in MTBE and TBA amended incubations. Shannon indices and Simpson indices (statistical community comparison tools) both demonstrated that microbial community diversity decreased in incubations actively mineralizing TBA, with distinct "dominant" clones developing. These data contribute to our understanding of anaerobic microbial transformation of fuel oxygenates in contaminated aquifer material and the organisms that may catalyze the reactions.

  13. Methanol oxidation by temperate soils and environmental determinants of associated methylotrophs

    Science.gov (United States)

    Stacheter, Astrid; Noll, Matthias; Lee, Charles K; Selzer, Mirjam; Glowik, Beate; Ebertsch, Linda; Mertel, Ralf; Schulz, Daria; Lampert, Niclas; Drake, Harold L; Kolb, Steffen

    2013-01-01

    The role of soil methylotrophs in methanol exchange with the atmosphere has been widely overlooked. Methanol can be derived from plant polymers and be consumed by soil microbial communities. In the current study, methanol-utilizing methylotrophs of 14 aerated soils were examined to resolve their comparative diversities and capacities to utilize ambient concentrations of methanol. Abundances of cultivable methylotrophs ranged from 106–108 gsoilDW−1. Methanol dissimilation was measured based on conversion of supplemented 14C-methanol, and occurred at concentrations down to 0.002 μmol methanol gsoilDW−1. Tested soils exhibited specific affinities to methanol (a0s=0.01 d−1) that were similar to those of other environments suggesting that methylotrophs with similar affinities were present. Two deep-branching alphaproteobacterial genotypes of mch responded to the addition of ambient concentrations of methanol (⩽0.6 μmol methanol gsoilDW−1) in one of these soils. Methylotroph community structures were assessed by amplicon pyrosequencing of genes of mono carbon metabolism (mxaF, mch and fae). Alphaproteobacteria-affiliated genotypes were predominant in all investigated soils, and the occurrence of novel genotypes indicated a hitherto unveiled diversity of methylotrophs. Correlations between vegetation type, soil pH and methylotroph community structure suggested that plant–methylotroph interactions were determinative for soil methylotrophs. PMID:23254514

  14. Short-term dynamics of culturable bacteria in a soil amended with biotransformed dry olive residue.

    Science.gov (United States)

    Siles, J A; Pascual, J; González-Menéndez, V; Sampedro, I; García-Romera, I; Bills, G F

    2014-03-01

    Dry olive residue (DOR) transformation by wood decomposing basidiomycetes (e.g. Coriolopsis floccosa) is a possible strategy for eliminating the liabilities related to the use of olive oil industry waste as an organic soil amendment. The effects of organic fertilization with DOR on the culturable soil microbiota are largely unknown. Therefore, the objectives of this study were to measure the short-term effects of DOR and C. floccosa-transformed DOR on the culturable bacterial soil community, while at the same time documenting the bacterial diversity of an agronomic soil in the southeastern Iberian Peninsula. The control soil was compared with the same soil treated with DOR and with C. floccosa-transformed DOR for 0, 30 and 60 days. Impact was measured from total viable cells and CFU counts, as well as the isolation and characterization of 900 strains by fatty acid methyl ester profiles and 16S rRNA partial sequencing. The bacterial diversity was distributed between Actinobacteria, Alphaproteobacteria, Gammaproteobacteria, Betaproteobacteria, Bacilli, Sphingobacteria and Cytophagia. Analysis of the treatments and controls demonstrated that soil amendment with untransformed DOR produced important changes in bacterial density and diversity. However, when C. floccosa-transformed DOR was applied, bacterial proliferation was observed but bacterial diversity was less affected, and the distribution of microorganisms was more similar to the unamended soil. Copyright © 2013 Elsevier GmbH. All rights reserved.

  15. Methane- and Hydrogen-Influenced Microbial Communities in Hydrothermal Plumes above the Atlantis Massif, Mid Atlantic Ridge

    Science.gov (United States)

    Stewart, C. L.; Schrenk, M.

    2017-12-01

    Ultramafic-hosted hydrothermal systems associated with slow-spreading mid ocean ridges emit copious amounts of hydrogen and methane into the deep-sea, generated through a process known as serpentinization. Hydrothermal plumes carrying the reduced products of water-rock interaction dissipate and mix with deep seawater, and potentially harbor microbial communities adapted to these conditions. Methane and hydrogen enriched hydrothermal plumes were sampled from 3 sites near the Atlantis Massif (30°N, Mid Atlantic Ridge) during IODP Expedition 357 and used to initiate cultivation experiments targeting methanotrophic and hydrogenotrophic microorganisms. One set of experiments incubated the cultures at in situ hydrostatic pressures and gas concentrations resulting in the enrichment of gammaproteobacterial assemblages, including Marinobacter spp. That may be involved in hydrocarbon degradation. A second set of experiments pursued the anaerobic enrichment of microbial communities on solid media, resulting in the enrichment of alphaproteobacteria related to Ruegeria. The most prodigious growth in both case occurred in methane-enriched media, which may play a role as both an energy and carbon source. Ongoing work is evaluating the physiological characteristics of these isolates, including their metabolic outputs under different physical-chemical conditions. In addition to providing novel isolates from hydrothermal habitats near the Lost City Hydrothermal Field, these experiments will provide insight into the ecology of microbial communities from serpentinization influenced hydrothermal systems that may aid in future exploration of these sites.

  16. The Ecology of Microbial Communities Associated with Macrocystis pyrifera.

    Science.gov (United States)

    Michelou, Vanessa K; Caporaso, J Gregory; Knight, Rob; Palumbi, Stephen R

    2013-01-01

    Kelp forests are characterized by high biodiversity and productivity, and the cycling of kelp-produced carbon is a vital process in this ecosystem. Although bacteria are assumed to play a major role in kelp forest carbon cycling, knowledge of the composition and diversity of these bacterial communities is lacking. Bacterial communities on the surface of Macrocystis pyrifera and adjacent seawater were sampled at the Hopkins Marine Station in Monterey Bay, CA, and further studied using 454-tag pyrosequencing of 16S RNA genes. Our results suggest that M. pyrifera-dominated kelp forests harbor distinct microbial communities that vary temporally. The distribution of sequence tags assigned to Gammaproteobacteria, Alphaproteobacteria and Bacteriodetes differed between the surface of the kelp and the surrounding water. Several abundant Rhodobacteraceae, uncultivated Gammaproteobacteria and Bacteriodetes-associated tags displayed considerable temporal variation, often with similar trends in the seawater and the surface of the kelp. Bacterial community structure and membership correlated with the kelp surface serving as host, and varied over time. Several kelp-specific taxa were highly similar to other bacteria known to either prevent the colonization of eukaryotic larvae or exhibit antibacterial activities. Some of these kelp-specific bacterial associations might play an important role for M. pyrifera. This study provides the first assessment of the diversity and phylogenetic profile of the bacterial communities associated with M. pyrifera.

  17. Major similarities in the bacterial communities associated with lesioned and healthy Fungiidae corals

    KAUST Repository

    Apprill, Amy; Hughen, Konrad; Mincer, Tracy

    2013-01-01

    Cultivation-based studies have demonstrated that yellow-band disease (YBD), a lesion-producing ailment affecting diverse species of coral, is caused by a consortium of Vibrio spp. This study takes the first cultivation-independent approach to examine the whole bacterial community associated with YBD-like lesioned corals. Two species of Fungiidae corals, Ctenactis crassa and Herpolitha limax, displaying YBD-like lesions were examined across diverse reefs throughout the Red Sea. Using a pyrosequencing approach targeting the V1-V3 regions of the SSU rRNA gene, no major differences in bacterial community composition or diversity were identified between healthy and lesioned corals of either species. Indicator species analysis did not find Vibrio significantly associated with the lesioned corals. However, operational taxonomic units belonging to the Ruegeria genus of Alphaproteobacteria and NS9 marine group of Flavobacteria were significantly associated with the lesioned corals. The most striking trend of this dataset was that reef location was found to be the most significant influence on the coral-bacterial community. It is possible that more pronounced lesion-specific bacterial signatures might have been concealed by the strong influence of environmental conditions on coral-bacteria. Overall, this study demonstrates inconsistencies between cultivation-independent and cultivation-based studies regarding the role of specific bacteria in coral diseases. © 2013 John Wiley & Sons Ltd and Society for Applied Microbiology.

  18. Bacterial diversity on the surface of potato tubers in soil and the influence of the plant genotype.

    Science.gov (United States)

    Weinert, Nicole; Meincke, Remo; Gottwald, Christine; Heuer, Holger; Schloter, Michael; Berg, Gabriele; Smalla, Kornelia

    2010-10-01

    The surface of tubers might be a reservoir for bacteria that are disseminated with seed potatoes or that affect postharvest damage. The numbers of culturable bacteria and their antagonistic potential, as well as bacterial community fingerprints were analysed from tubers of seven field-grown potato genotypes, including two lines with tuber-accumulated zeaxanthin. The plant genotype significantly affected the number of culturable bacteria only at one field site. Zeaxanthin had no effect on the bacterial plate counts. In dual culture, 72 of 700 bacterial isolates inhibited at least one of the potato pathogens Rhizoctonia solani, Verticillium dahliae or Phytophthora infestans, 12 of them suppressing all three. Most of these antagonists were identified as Bacillus or Streptomyces. From tubers of two plant genotypes, including one zeaxanthin line, higher numbers of antagonists were isolated. Most antagonists showed glucanase, cellulase and protease activity, which could represent mechanisms for pathogen suppression. PCR-DGGE fingerprints of the 16S rRNA genes of bacterial communities from the tuber surfaces revealed that the potato genotype significantly affected the Pseudomonas community structure at one site. However, the genotypes showed nearly identical fingerprints for Bacteria, Actinobacteria, Alphaproteobacteria, Betaproteobacteria, Bacillus and Streptomycetaceae. In conclusion, tuber-associated bacteria were only weakly affected by the plant genotype. © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  19. Microbial and functional diversity of a subterrestrial high pH groundwater associated to serpentinization.

    Science.gov (United States)

    Tiago, Igor; Veríssimo, António

    2013-06-01

    Microbial and functional diversity were assessed, from a serpentinization-driven subterrestrial alkaline aquifer - Cabeço de Vide Aquifer (CVA) in Portugal. DGGE analyses revealed the presence of a stable microbial community. By 16S rRNA gene libraries and pyrosequencing analyses, a diverse bacterial composition was determined, contrasting with low archaeal diversity. Within Bacteria the majority of the populations were related to organisms or sequences affiliated to class Clostridia, but members of classes Acidobacteria, Actinobacteria, Alphaproteobacteria, Betaproteobacteria, Deinococci, Gammaproteobacteria and of the phyla Bacteroidetes, Chloroflexi and Nitrospira were also detected. Domain Archaea encompassed mainly sequences affiliated to Euryarchaeota. Only form I RuBisCO - cbbL was detected. Autotrophic carbon fixation via the rTCA, 3-HP and 3-HP/4H-B cycles could not be confirmed. The detected APS reductase alpha subunit - aprA sequences were phylogenetically related to sequences of sulfate-reducing bacteria belonging to Clostridia, and also to sequences of chemolithoautothrophic sulfur-oxidizing bacteria belonging to Betaproteobacteria. Sequences of methyl coenzyme M reductase - mcrA were phylogenetically affiliated to sequences belonging to Anaerobic Methanotroph group 1 (ANME-1). The populations found and the functional key markers detected in CVA suggest that metabolisms related to H2 , methane and/or sulfur may be the major driving forces in this environment. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  20. Abundance and genetic diversity of nifH gene sequences in anthropogenically affected Brazilian mangrove sediments.

    Science.gov (United States)

    Dias, Armando Cavalcante Franco; Pereira e Silva, Michele de Cassia; Cotta, Simone Raposo; Dini-Andreote, Francisco; Soares, Fábio Lino; Salles, Joana Falcão; Azevedo, João Lúcio; van Elsas, Jan Dirk; Andreote, Fernando Dini

    2012-11-01

    Although mangroves represent ecosystems of global importance, the genetic diversity and abundance of functional genes that are key to their functioning scarcely have been explored. Here, we present a survey based on the nifH gene across transects of sediments of two mangrove systems located along the coast line of São Paulo state (Brazil) which differed by degree of disturbance, i.e., an oil-spill-affected and an unaffected mangrove. The diazotrophic communities were assessed by denaturing gradient gel electrophoresis (DGGE), quantitative PCR (qPCR), and clone libraries. The nifH gene abundance was similar across the two mangrove sediment systems, as evidenced by qPCR. However, the nifH-based PCR-DGGE profiles revealed clear differences between the mangroves. Moreover, shifts in the nifH gene diversities were noted along the land-sea transect within the previously oiled mangrove. The nifH gene diversity depicted the presence of nitrogen-fixing bacteria affiliated with a wide range of taxa, encompassing members of the Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Firmicutes, and also a group of anaerobic sulfate-reducing bacteria. We also detected a unique mangrove-specific cluster of sequences denoted Mgv-nifH. Our results indicate that nitrogen-fixing bacterial guilds can be partially endemic to mangroves, and these communities are modulated by oil contamination, which has important implications for conservation strategies.

  1. Major similarities in the bacterial communities associated with lesioned and healthy Fungiidae corals

    KAUST Repository

    Apprill, Amy

    2013-03-21

    Cultivation-based studies have demonstrated that yellow-band disease (YBD), a lesion-producing ailment affecting diverse species of coral, is caused by a consortium of Vibrio spp. This study takes the first cultivation-independent approach to examine the whole bacterial community associated with YBD-like lesioned corals. Two species of Fungiidae corals, Ctenactis crassa and Herpolitha limax, displaying YBD-like lesions were examined across diverse reefs throughout the Red Sea. Using a pyrosequencing approach targeting the V1-V3 regions of the SSU rRNA gene, no major differences in bacterial community composition or diversity were identified between healthy and lesioned corals of either species. Indicator species analysis did not find Vibrio significantly associated with the lesioned corals. However, operational taxonomic units belonging to the Ruegeria genus of Alphaproteobacteria and NS9 marine group of Flavobacteria were significantly associated with the lesioned corals. The most striking trend of this dataset was that reef location was found to be the most significant influence on the coral-bacterial community. It is possible that more pronounced lesion-specific bacterial signatures might have been concealed by the strong influence of environmental conditions on coral-bacteria. Overall, this study demonstrates inconsistencies between cultivation-independent and cultivation-based studies regarding the role of specific bacteria in coral diseases. © 2013 John Wiley & Sons Ltd and Society for Applied Microbiology.

  2. Recombination and horizontal transfer of nodulation and ACC deaminase (acdS) genes within Alpha- and Betaproteobacteria nodulating legumes of the Cape Fynbos biome.

    Science.gov (United States)

    Lemaire, Benny; Van Cauwenberghe, Jannick; Chimphango, Samson; Stirton, Charles; Honnay, Olivier; Smets, Erik; Muasya, A Muthama

    2015-11-01

    The goal of this work is to study the evolution and the degree of horizontal gene transfer (HGT) within rhizobial genera of both Alphaproteobacteria (Mesorhizobium, Rhizobium) and Betaproteobacteria (Burkholderia), originating from South African Fynbos legumes. By using a phylogenetic approach and comparing multiple chromosomal and symbiosis genes, we revealed conclusive evidence of high degrees of horizontal transfer of nodulation genes among closely related species of both groups of rhizobia, but also among species with distant genetic backgrounds (Rhizobium and Mesorhizobium), underscoring the importance of lateral transfer of symbiosis traits as an important evolutionary force among rhizobia of the Cape Fynbos biome. The extensive exchange of symbiosis genes in the Fynbos is in contrast with a lack of significant events of HGT among Burkholderia symbionts from the South American Cerrado and Caatinga biome. Furthermore, homologous recombination among selected housekeeping genes had a substantial impact on sequence evolution within Burkholderia and Mesorhizobium. Finally, phylogenetic analyses of the non-symbiosis acdS gene in Mesorhizobium, a gene often located on symbiosis islands, revealed distinct relationships compared to the chromosomal and symbiosis genes, suggesting a different evolutionary history and independent events of gene transfer. The observed events of HGT and incongruence between different genes necessitate caution in interpreting topologies from individual data types. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Dynamics of coral-associated microbiomes during a thermal bleaching event.

    Science.gov (United States)

    Pootakham, Wirulda; Mhuantong, Wuttichai; Putchim, Lalita; Yoocha, Thippawan; Sonthirod, Chutima; Kongkachana, Wasitthee; Sangsrakru, Duangjai; Naktang, Chaiwat; Jomchai, Nukoon; Thongtham, Nalinee; Tangphatsornruang, Sithichoke

    2018-03-23

    Coral-associated microorganisms play an important role in their host fitness and survival. A number of studies have demonstrated connections between thermal tolerance in corals and the type/relative abundance of Symbiodinium they harbor. More recently, the shifts in coral-associated bacterial profiles were also shown to be linked to the patterns of coral heat tolerance. Here, we investigated the dynamics of Porites lutea-associated bacterial and algal communities throughout a natural bleaching event, using full-length 16S rRNA and internal transcribed spacer sequences (ITS) obtained from PacBio circular consensus sequencing. We provided evidence of significant changes in the structure and diversity of coral-associated microbiomes during thermal stress. The balance of the symbiosis shifted from a predominant association between corals and Gammaproteobacteria to a predominance of Alphaproteobacteria and to a lesser extent Betaproteobacteria following the bleaching event. On the contrary, the composition and diversity of Symbiodinium communities remained unaltered throughout the bleaching event. It appears that the switching and/or shuffling of Symbiodinium types may not be the primary mechanism used by P. lutea to cope with increasing seawater temperature. The shifts in the structure and diversity of associated bacterial communities may contribute more to the survival of the coral holobiont under heat stress. © 2018 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  4. Genomic characterization of two novel SAR11 isolates from the Red Sea, including the first strain of the SAR11 Ib clade.

    Science.gov (United States)

    Jimenez-Infante, Francy; Ngugi, David Kamanda; Vinu, Manikandan; Blom, Jochen; Alam, Intikhab; Bajic, Vladimir B; Stingl, Ulrich

    2017-07-01

    The SAR11 clade (Pelagibacterales) is a diverse group that forms a monophyletic clade within the Alphaproteobacteria, and constitutes up to one third of all prokaryotic cells in the photic zone of most oceans. Pelagibacterales are very abundant in the warm and highly saline surface waters of the Red Sea, raising the question of adaptive traits of SAR11 populations in this water body and warmer oceans through the world. In this study, two pure cultures were successfully obtained from surface waters on the Red Sea: one isolate of subgroup Ia and one of the previously uncultured SAR11 Ib lineage. The novel genomes were very similar to each other and to genomes of isolates of SAR11 subgroup Ia (Ia pan-genome), both in terms of gene content and synteny. Among the genes that were not present in the Ia pan-genome, 108 (RS39, Ia) and 151 genes (RS40, Ib) were strain specific. Detailed analyses showed that only 51 (RS39, Ia) and 55 (RS40, Ib) of these strain-specific genes had not reported before on genome fragments of Pelagibacterales. Further analyses revealed the potential production of phosphonates by some SAR11 members and possible adaptations for oligotrophic life, including pentose sugar utilization and adhesion to marine particulate matter. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Bacterial community dynamics during polysaccharide degradation at contrasting sites in the Southern and Atlantic Oceans.

    Science.gov (United States)

    Wietz, Matthias; Wemheuer, Bernd; Simon, Heike; Giebel, Helge-Ansgar; Seibt, Maren A; Daniel, Rolf; Brinkhoff, Thorsten; Simon, Meinhard

    2015-10-01

    The bacterial degradation of polysaccharides is central to marine carbon cycling, but little is known about the bacterial taxa that degrade specific marine polysaccharides. Here, bacterial growth and community dynamics were studied during the degradation of the polysaccharides chitin, alginate and agarose in microcosm experiments at four contrasting locations in the Southern and Atlantic Oceans. At the Southern polar front, chitin-supplemented microcosms were characterized by higher fractions of actively growing cells and a community shift from Alphaproteobacteria to Gammaproteobacteria and Bacteroidetes. At the Antarctic ice shelf, chitin degradation was associated with growth of Bacteroidetes, with 24% higher cell numbers compared with the control. At the Patagonian continental shelf, alginate and agarose degradation covaried with growth of different Alteromonadaceae populations, each with specific temporal growth patterns. At the Mauritanian upwelling, only the alginate hydrolysis product guluronate was consumed, coincident with increasing abundances of Alteromonadaceae and possibly cross-feeding SAR11. 16S rRNA gene amplicon libraries indicated that growth of the Bacteroidetes-affiliated genus Reichenbachiella was stimulated by chitin at all cold and temperate water stations, suggesting comparable ecological roles over wide geographical scales. Overall, the predominance of location-specific patterns showed that bacterial communities from contrasting oceanic biomes have members with different potentials to hydrolyse polysaccharides. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  6. Ice formation and growth shape bacterial community structure in Baltic Sea drift ice.

    Science.gov (United States)

    Eronen-Rasimus, Eeva; Lyra, Christina; Rintala, Janne-Markus; Jürgens, Klaus; Ikonen, Vilma; Kaartokallio, Hermanni

    2015-02-01

    Drift ice, open water and under-ice water bacterial communities covering several developmental stages from open water to thick ice were studied in the northern Baltic Sea. The bacterial communities were assessed with 16S rRNA gene terminal-restriction fragment length polymorphism and cloning, together with bacterial abundance and production measurements. In the early stages, open water and pancake ice were dominated by Alphaproteobacteria and Actinobacteria, which are common bacterial groups in Baltic Sea wintertime surface waters. The pancake ice bacterial communities were similar to the open-water communities, suggesting that the parent water determines the sea-ice bacterial community in the early stages of sea-ice formation. In consolidated young and thick ice, the bacterial communities were significantly different from water bacterial communities as well as from each other, indicating community development in Baltic Sea drift ice along with ice-type changes. The thick ice was dominated by typical sea-ice genera from classes Flavobacteria and Gammaproteobacteria, similar to those in polar sea-ice bacterial communities. Since the thick ice bacterial community was remarkably different from that of the parent seawater, results indicate that thick ice bacterial communities were recruited from the rarer members of the seawater bacterial community. © FEMS 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Seeking key microorganisms for enhancing methane production in anaerobic digestion of waste sewage sludge.

    Science.gov (United States)

    Mustapha, Nurul Asyifah; Hu, Anyi; Yu, Chang-Ping; Sharuddin, Siti Suhailah; Ramli, Norhayati; Shirai, Yoshihito; Maeda, Toshinari

    2018-04-25

    Efficient approaches for the utilization of waste sewage sludge have been widely studied. One of them is to use it for the bioenergy production, specifically methane gas which is well-known to be driven by complex bacterial interactions during the anaerobic digestion process. Therefore, it is important to understand not only microorganisms for producing methane but also those for controlling or regulating the process. In this study, azithromycin analogs belonging to macrolide, ketolide, and lincosamide groups were applied to investigate the mechanisms and dynamics of bacterial community in waste sewage sludge for methane production. The stages of anaerobic digestion process were evaluated by measuring the production of intermediate substrates, such as protease activity, organic acids, the quantification of bacteria and archaea, and its community dynamics. All azithromycin analogs used in this study achieved a high methane production compared to the control sample without any antibiotic due to the efficient hydrolysis process and the presence of important fermentative bacteria and archaea responsible in the methanogenesis stage. The key microorganisms contributing to the methane production may be Clostridia, Cladilinea, Planctomycetes, and Alphaproteobacteria as an accelerator whereas Nitrosomonadaceae and Nitrospiraceae may be suppressors for methane production. In conclusion, the utilization of antibiotic analogs of macrolide, ketolide, and lincosamide groups has a promising ability in finding the essential microorganisms and improving the methane production using waste sewage sludge.

  8. Growth of Chlorella vulgaris and associated bacteria in photobioreactors

    Science.gov (United States)

    Lakaniemi, Aino‐Maija; Intihar, Veera M.; Tuovinen, Olli H.; Puhakka, Jaakko A.

    2012-01-01

    Summary The aim of this study was to test three flat plate photobioreactor configurations for growth of Chlorella vulgaris under non‐axenic conditions and to characterize and quantify associated bacterial communities. The photobioreactor cultivations were conducted using tap water‐based media to introduce background bacterial population. Growth of algae was monitored over time with three independent methods. Additionally, the quantity and quality of eukaryotes and bacteria were analysed using culture‐independent molecular tools based on denaturing gradient gel electrophoresis (PCR‐DGGE) and quantitative polymerase chain reaction (QPCR). Static mixers used in the flat plate photobioreactors did not generally enhance the growth at the low light intensities used. The maximum biomass concentration and maximum specific growth rate were 1.0 g l−1 and 2.0 day−1 respectively. Bacterial growth as determined by QPCR was associated with the growth of C. vulgaris. Based on PCR‐DGGE, bacteria in the cultures mainly originated from the tap water. Bacterial community profiles were diverse but reproducible in all flat plate cultures. Most prominent bacteria in the C. vulgaris cultures belonged to the class Alphaproteobacteria and especially to the genus Sphingomonas. Analysis of the diversity of non‐photosynthetic microorganisms in algal mass cultures can provide useful information on the public health aspects and unravel community interactions. PMID:21936882

  9. Metagenomic identification of bacterioplankton taxa and pathways involved in microcystin degradation in lake erie.

    Directory of Open Access Journals (Sweden)

    Xiaozhen Mou

    Full Text Available Cyanobacterial harmful blooms (CyanoHABs that produce microcystins are appearing in an increasing number of freshwater ecosystems worldwide, damaging quality of water for use by human and aquatic life. Heterotrophic bacteria assemblages are thought to be important in transforming and detoxifying microcystins in natural environments. However, little is known about their taxonomic composition or pathways involved in the process. To address this knowledge gap, we compared the metagenomes of Lake Erie free-living bacterioplankton assemblages in laboratory microcosms amended with microcystins relative to unamended controls. A diverse array of bacterial phyla were responsive to elevated supply of microcystins, including Acidobacteria, Actinobacteria, Bacteroidetes, Planctomycetes, Proteobacteria of the alpha, beta, gamma, delta and epsilon subdivisions and Verrucomicrobia. At more detailed taxonomic levels, Methylophilales (mainly in genus Methylotenera and Burkholderiales (mainly in genera Bordetella, Burkholderia, Cupriavidus, Polaromonas, Ralstonia, Polynucleobacter and Variovorax of Betaproteobacteria were suggested to be more important in microcystin degradation than Sphingomonadales of Alphaproteobacteria. The latter taxa were previously thought to be major microcystin degraders. Homologs to known microcystin-degrading genes (mlr were not overrepresented in microcystin-amended metagenomes, indicating that Lake Erie bacterioplankton might employ alternative genes and/or pathways in microcystin degradation. Genes for xenobiotic metabolism were overrepresented in microcystin-amended microcosms, suggesting they are important in bacterial degradation of microcystin, a phenomenon that has been identified previously only in eukaryotic systems.

  10. Integrated metagenomic and physiochemical analyses to evaluate the potential role of microbes in the sand filter of a drinking water treatment system.

    Directory of Open Access Journals (Sweden)

    Yaohui Bai

    Full Text Available While sand filters are widely used to treat drinking water, the role of sand filter associated microorganisms in water purification has not been extensively studied. In the current investigation, we integrated molecular (based on metagenomic and physicochemical analyses to elucidate microbial community composition and function in a common sand filter used to treat groundwater for potable consumption. The results revealed that the biofilm developed rapidly within 2 days (reaching ≈ 10(11 prokaryotes per gram in the sand filter along with abiotic and biotic particulates accumulated in the interstitial spaces. Bacteria (up to 90% dominated the biofilm microbial community, with Alphaproteobacteria being the most common class. Thaumarchaeota was the sole phylum of Archaea, which might be involved in ammonia oxidation. Function annotation of metagenomic datasets revealed a number of aromatic degradation pathway genes, such as aromatic oxygenase and dehydrogenase genes, in the biofilm, suggesting a significant role for microbes in the breakdown of aromatic compounds in groundwater. Simultaneous nitrification and denitrification pathways were confirmed as the primary routes of nitrogen removal. Dissolved heavy metals in groundwater, e.g. Mn(2+ and As(3+, might be biologically oxidized to insoluble or easily adsorbed compounds and deposited in the sand filter. Our study demonstrated that the role of the microbial community in the sand filter treatment system are critical to effective water purification in drinking water.

  11. Integrated metagenomic and physiochemical analyses to evaluate the potential role of microbes in the sand filter of a drinking water treatment system.

    Science.gov (United States)

    Bai, Yaohui; Liu, Ruiping; Liang, Jinsong; Qu, Jiuhui

    2013-01-01

    While sand filters are widely used to treat drinking water, the role of sand filter associated microorganisms in water purification has not been extensively studied. In the current investigation, we integrated molecular (based on metagenomic) and physicochemical analyses to elucidate microbial community composition and function in a common sand filter used to treat groundwater for potable consumption. The results revealed that the biofilm developed rapidly within 2 days (reaching ≈ 10(11) prokaryotes per gram) in the sand filter along with abiotic and biotic particulates accumulated in the interstitial spaces. Bacteria (up to 90%) dominated the biofilm microbial community, with Alphaproteobacteria being the most common class. Thaumarchaeota was the sole phylum of Archaea, which might be involved in ammonia oxidation. Function annotation of metagenomic datasets revealed a number of aromatic degradation pathway genes, such as aromatic oxygenase and dehydrogenase genes, in the biofilm, suggesting a significant role for microbes in the breakdown of aromatic compounds in groundwater. Simultaneous nitrification and denitrification pathways were confirmed as the primary routes of nitrogen removal. Dissolved heavy metals in groundwater, e.g. Mn(2+) and As(3+), might be biologically oxidized to insoluble or easily adsorbed compounds and deposited in the sand filter. Our study demonstrated that the role of the microbial community in the sand filter treatment system are critical to effective water purification in drinking water.

  12. Pathogenomic inference of virulence-associated genes in Leptospira interrogans.

    Directory of Open Access Journals (Sweden)

    Jason S Lehmann

    Full Text Available Leptospirosis is a globally important, neglected zoonotic infection caused by spirochetes of the genus Leptospira. Since genetic transformation remains technically limited for pathogenic Leptospira, a systems biology pathogenomic approach was used to infer leptospiral virulence genes by whole genome comparison of culture-attenuated Leptospira interrogans serovar Lai with its virulent, isogenic parent. Among the 11 pathogen-specific protein-coding genes in which non-synonymous mutations were found, a putative soluble adenylate cyclase with host cell cAMP-elevating activity, and two members of a previously unstudied ∼15 member paralogous gene family of unknown function were identified. This gene family was also uniquely found in the alpha-proteobacteria Bartonella bacilliformis and Bartonella australis that are geographically restricted to the Andes and Australia, respectively. How the pathogenic Leptospira and these two Bartonella species came to share this expanded gene family remains an evolutionary mystery. In vivo expression analyses demonstrated up-regulation of 10/11 Leptospira genes identified in the attenuation screen, and profound in vivo, tissue-specific up-regulation by members of the paralogous gene family, suggesting a direct role in virulence and host-pathogen interactions. The pathogenomic experimental design here is generalizable as a functional systems biology approach to studying bacterial pathogenesis and virulence and should encourage similar experimental studies of other pathogens.

  13. Bacterial Communities Associated with the Lichen Symbiosis▿ †

    Science.gov (United States)

    Bates, Scott T.; Cropsey, Garrett W. G.; Caporaso, J. Gregory; Knight, Rob; Fierer, Noah

    2011-01-01

    Lichens are commonly described as a mutualistic symbiosis between fungi and “algae” (Chlorophyta or Cyanobacteria); however, they also have internal bacterial communities. Recent research suggests that lichen-associated microbes are an integral component of lichen thalli and that the classical view of this symbiotic relationship should be expanded to include bacteria. However, we still have a limited understanding of the phylogenetic structure of these communities and their variability across lichen species. To address these knowledge gaps, we used bar-coded pyrosequencing to survey the bacterial communities associated with lichens. Bacterial sequences obtained from four lichen species at multiple locations on rock outcrops suggested that each lichen species harbored a distinct community and that all communities were dominated by Alphaproteobacteria. Across all samples, we recovered numerous bacterial phylotypes that were closely related to sequences isolated from lichens in prior investigations, including those from a lichen-associated Rhizobiales lineage (LAR1; putative N2 fixers). LAR1-related phylotypes were relatively abundant and were found in all four lichen species, and many sequences closely related to other known N2 fixers (e.g., Azospirillum, Bradyrhizobium, and Frankia) were recovered. Our findings confirm the presence of highly structured bacterial communities within lichens and provide additional evidence that these bacteria may serve distinct functional roles within lichen symbioses. PMID:21169444

  14. Spatial Homogeneity of Bacterial Communities Associated with the Surface Mucus Layer of the Reef-Building Coral Acropora palmata.

    Directory of Open Access Journals (Sweden)

    Dustin W Kemp

    Full Text Available Coral surface mucus layer (SML microbiota are critical components of the coral holobiont and play important roles in nutrient cycling and defense against pathogens. We sequenced 16S rRNA amplicons to examine the structure of the SML microbiome within and between colonies of the threatened Caribbean reef-building coral Acropora palmata in the Florida Keys. Samples were taken from three spatially distinct colony regions--uppermost (high irradiance, underside (low irradiance, and the colony base--representing microhabitats that vary in irradiance and water flow. Phylogenetic diversity (PD values of coral SML bacteria communities were greater than surrounding seawater and lower than adjacent sediment. Bacterial diversity and community composition was consistent among the three microhabitats. Cyanobacteria, Bacteroidetes, Alphaproteobacteria, and Proteobacteria, respectively were the most abundant phyla represented in the samples. This is the first time spatial variability of the surface mucus layer of A. palmata has been studied. Homogeneity in the microbiome of A. palmata contrasts with SML heterogeneity found in other Caribbean corals. These findings suggest that, during non-stressful conditions, host regulation of SML microbiota may override diverse physiochemical influences induced by the topographical complexity of A. palmata. Documenting the spatial distribution of SML microbes is essential to understanding the functional roles these microorganisms play in coral health and adaptability to environmental perturbations.

  15. Bacterial community structure associated with white band disease in the elkhorn coral Acropora palmata determined using culture-independent 16S rRNA techniques.

    Science.gov (United States)

    Pantos, Olga; Bythell, John C

    2006-03-23

    Culture-independent molecular (16S ribosomal RNA) techniques showed distinct differences in bacterial communities associated with white band disease (WBD) Type I and healthy elkhorn coral Acropora palmata. Differences were apparent at all levels, with a greater diversity present in tissues of diseased colonies. The bacterial community associated with remote, non-diseased coral was distinct from the apparently healthy tissues of infected corals several cm from the disease lesion. This demonstrates a whole-organism effect from what appears to be a localised disease lesion, an effect that has also been recently demonstrated in white plague-like disease in star coral Montastraea annularis. The pattern of bacterial community structure changes was similar to that recently demonstrated for white plague-like disease and black band disease. Some of the changes are likely to be explained by the colonisation of dead and degrading tissues by a micro-heterotroph community adapted to the decomposition of coral tissues. However, specific ribosomal types that are absent from healthy tissues appear consistently in all samples of each of the diseases. These ribotypes are closely related members of a group of alpha-proteobacteria that cause disease, notably juvenile oyster disease, in other marine organisms. It is clearly important that members of this group are isolated for challenge experiments to determine their role in the diseases.

  16. Abundance and Genetic Diversity of nifH Gene Sequences in Anthropogenically Affected Brazilian Mangrove Sediments

    Science.gov (United States)

    Dias, Armando Cavalcante Franco; Pereira e Silva, Michele de Cassia; Cotta, Simone Raposo; Dini-Andreote, Francisco; Soares, Fábio Lino; Salles, Joana Falcão; Azevedo, João Lúcio; van Elsas, Jan Dirk

    2012-01-01

    Although mangroves represent ecosystems of global importance, the genetic diversity and abundance of functional genes that are key to their functioning scarcely have been explored. Here, we present a survey based on the nifH gene across transects of sediments of two mangrove systems located along the coast line of São Paulo state (Brazil) which differed by degree of disturbance, i.e., an oil-spill-affected and an unaffected mangrove. The diazotrophic communities were assessed by denaturing gradient gel electrophoresis (DGGE), quantitative PCR (qPCR), and clone libraries. The nifH gene abundance was similar across the two mangrove sediment systems, as evidenced by qPCR. However, the nifH-based PCR-DGGE profiles revealed clear differences between the mangroves. Moreover, shifts in the nifH gene diversities were noted along the land-sea transect within the previously oiled mangrove. The nifH gene diversity depicted the presence of nitrogen-fixing bacteria affiliated with a wide range of taxa, encompassing members of the Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Firmicutes, and also a group of anaerobic sulfate-reducing bacteria. We also detected a unique mangrove-specific cluster of sequences denoted Mgv-nifH. Our results indicate that nitrogen-fixing bacterial guilds can be partially endemic to mangroves, and these communities are modulated by oil contamination, which has important implications for conservation strategies. PMID:22941088

  17. Deep sequencing and ecological characterization of gut microbial communities of diverse bumble bee species.

    Directory of Open Access Journals (Sweden)

    Haw Chuan Lim

    Full Text Available Gut bacterial communities of bumble bees are correlated with defense against pathogens. Further understanding this host-microbe association is vitally important as bumble bees are currently experiencing global population declines, potentially due in part to emergent diseases. In this study, we used pyrosequencing and community fingerprinting (ARISA to characterize the gut microbial communities of nine bumble species from across the Bombus phylogeny. Overall, we delimited 74 bacterial taxa (operational taxonomic units or OTUs belonging to Betaproteobacteria, Gammaproteobacteria, Bacilli, Actinobacteria, Flavobacteria and Alphaproteobacteria. Each bacterial community was taxonomically simple, containing an average of 1.9 common (relative abundance per sample > 5% bacterial OTUs. The most abundant and prevalent (occurring in 92% of the samples bacterial OTU, based on 16S rRNA sequences, closely matched that of the previously described Betaproteobacteria species Snodgrassella alvi. Bacteria that were first described in bee-related external environments dominated a number of gut bacterial communities, suggesting that they are not strictly dependent on the internal gut environment. The ARISA data showed a correlation between bacterial community structures and the geographic locations where the bees were sampled, suggesting that at least a subset of the bacterial species may be transmitted environmentally. Using light and fluorescent microscopy, we demonstrated that the gut bacteria form a biofilm on the internal epithelial surface of the ileum, corroborating results obtained from Apis mellifera.

  18. Heme degrading protein HemS is involved in oxidative stress response of Bartonella henselae.

    Directory of Open Access Journals (Sweden)

    MaFeng Liu

    Full Text Available Bartonellae are hemotropic bacteria, agents of emerging zoonoses. These bacteria are heme auxotroph Alphaproteobacteria which must import heme for supporting their growth, as they cannot synthesize it. Therefore, Bartonella genome encodes for a complete heme uptake system allowing the transportation of this compound across the outer membrane, the periplasm and the inner membranes. Heme has been proposed to be used as an iron source for Bartonella since these bacteria do not synthesize a complete system required for iron Fe³⁺ uptake. Similarly to other bacteria which use heme as an iron source, Bartonellae must transport this compound into the cytoplasm and degrade it to allow the release of iron from the tetrapyrrole ring. For Bartonella, the gene cluster devoted to the synthesis of the complete heme uptake system also contains a gene encoding for a polypeptide that shares homologies with heme trafficking or degrading enzymes. Using complementation of an E. coli mutant strain impaired in heme degradation, we demonstrated that HemS from Bartonella henselae expressed in E. coli allows the release of iron from heme. Purified HemS from B. henselae binds heme and can degrade it in the presence of a suitable electron donor, ascorbate or NADPH-cytochrome P450 reductase. Knocking down the expression of HemS in B. henselae reduces its ability to face H₂O₂ induced oxidative stress.

  19. Culture -independent Pathogenic Bacterial Communities in Bottled Mineral Water

    Directory of Open Access Journals (Sweden)

    Hamdy A. Hassan

    2015-08-01

    Full Text Available Bottled mineral water (BMW is an alternative to mains water and consider it to be better and safer. Access to safe BMW from the bacteria involving potential health hazard is essential to health. Cultivation-independent technique PCR-based single-strand conformation polymorphism (SSCP for genetic profiling of PCR-amplified 16S rRNA genes was performed using Com primer set targeting the 16S rRNA genes for detection of pathogenic bacteria in bottled mineral water from the final product of six factories for bottled mineral drinking water in Wadi El-natron region- Egypt. These factories use often ozone technology to treat large quantities of water because of its effectiveness in purifying and conditioning water. A total of 27 single products were isolated from the profiles by PCR re-amplification and cloning. Sequence analysis of 27 SSCP bands revealed that the 16S rRNA sequences were clustered into seven operational taxonomic units (OTUs and the compositions of the communities of the six samples were all common. The results showed that most communities from phyla Alphaproteobacteria and certainly in the Sphingomonas sp. Culture-independent approaches produced complementary information, thus generating a more accurate view for the bacterial community in the BMW, particularly in the disinfection step, as it constitutes the final barrier before BMW distribution to the consumer

  20. Bacteriophage Infectivity Against Pseudomonas aeruginosa in Saline Conditions

    KAUST Repository

    Scarascia, Giantommaso

    2018-05-02

    Pseudomonas aeruginosa is a ubiquitous member of marine biofilm, and reduces thiosulfate to produce toxic hydrogen sulfide gas. In this study, lytic bacteriophages were isolated and applied to inhibit the growth of P. aeruginosa in planktonic mode at different temperature, pH, and salinity. Bacteriophages showed optimal infectivity at a multiplicity of infection of 10 in saline conditions, and demonstrated lytic abilities over all tested temperature (25, 30, 37, and 45°C) and pH 6–9. Planktonic P. aeruginosa exhibited significantly longer lag phase and lower specific growth rates upon exposure to bacteriophages. Bacteriophages were subsequently applied to P. aeruginosa-enriched biofilm and were determined to lower the relative abundance of Pseudomonas-related taxa from 0.17 to 5.58% in controls to 0.01–0.61% in treated microbial communities. The relative abundance of Alphaproteobacteria, Pseudoalteromonas, and Planococcaceae decreased, possibly due to the phage-induced disruption of the biofilm matrix. Lastly, when applied to mitigate biofouling of ultrafiltration membranes, bacteriophages were determined to reduce the transmembrane pressure increase by 18% when utilized alone, and by 49% when used in combination with citric acid. The combined treatment was more effective compared with the citric acid treatment alone, which reported ca. 30% transmembrane pressure reduction. Collectively, the findings demonstrated that bacteriophages can be used as a biocidal agent to mitigate undesirable P. aeruginosa-associated problems in seawater applications.

  1. Nitrogen fertilization has a stronger effect on soil nitrogen-fixing bacterial communities than elevated atmospheric CO2.

    Science.gov (United States)

    Berthrong, Sean T; Yeager, Chris M; Gallegos-Graves, Laverne; Steven, Blaire; Eichorst, Stephanie A; Jackson, Robert B; Kuske, Cheryl R

    2014-05-01

    Biological nitrogen fixation is the primary supply of N to most ecosystems, yet there is considerable uncertainty about how N-fixing bacteria will respond to global change factors such as increasing atmospheric CO2 and N deposition. Using the nifH gene as a molecular marker, we studied how the community structure of N-fixing soil bacteria from temperate pine, aspen, and sweet gum stands and a brackish tidal marsh responded to multiyear elevated CO2 conditions. We also examined how N availability, specifically, N fertilization, interacted with elevated CO2 to affect these communities in the temperate pine forest. Based on data from Sanger sequencing and quantitative PCR, the soil nifH composition in the three forest systems was dominated by species in the Geobacteraceae and, to a lesser extent, Alphaproteobacteria. The N-fixing-bacterial-community structure was subtly altered after 10 or more years of elevated atmospheric CO2, and the observed shifts differed in each biome. In the pine forest, N fertilization had a stronger effect on nifH community structure than elevated CO2 and suppressed the diversity and abundance of N-fixing bacteria under elevated atmospheric CO2 conditions. These results indicate that N-fixing bacteria have complex, interacting responses that will be important for understanding ecosystem productivity in a changing climate.

  2. [Bacterial diversity within different sections of summer sea-ice samples from the Prydz Bay, Antarctica].

    Science.gov (United States)

    Ma, Jifei; Du, Zongjun; Luo, Wei; Yu, Yong; Zeng, Yixin; Chen, Bo; Li, Huirong

    2013-02-04

    In order to assess bacterial abundance and diversity within three different sections of summer sea-ice samples collected from the Prydz Bay, Antarctica. Fluorescence in situ hybridization was applied to determine the proportions of Bacteria in sea-ice. Bacterial community composition within sea ice was analyzed by 16S rRNA gene clone library construction. Correlation analysis was performed between the physicochemical parameters and the bacterial diversity and abundance within sea ice. The result of fluorescence in situ hybridization shows that bacteria were abundant in the bottom section, and the concentration of total organic carbon, total organic nitrogen and phosphate may be the main factors for bacterial abundance. In bacterial 16S rRNA gene libraries of sea-ice, nearly complete 16S rRNA gene sequences were grouped into three distinct lineages of Bacteria (gamma-Proteobacteria, alpha-Proteobacteria and Bacteroidetes). Most clone sequences were related to cultured bacterial isolates from the marine environment, arctic and Antarctic sea-ice with high similarity. The member of Bacteroidetes was not detected in the bottom section of sea-ice. The bacterial communities within sea-ice were little heterogeneous at the genus-level between different sections, and the concentration of NH4+ may cause this distribution. The number of bacteria was abundant in the bottom section of sea-ice. Gamma-proteobacteria was the dominant bacterial lineage in sea-ice.

  3. Genomic differentiation among two strains of the PS1 clade isolated from geographically separated marine habitats

    KAUST Repository

    Jimenez Infante, Francy M.

    2014-05-22

    Using dilution-to-extinction cultivation, we isolated a strain affiliated with the PS1 clade from surface waters of the Red Sea. Strain RS24 represents the second isolate of this group of marine Alphaproteobacteria after IMCC14465 that was isolated from the East (Japan) Sea. The PS1 clade is a sister group to the OCS116 clade, together forming a putatively novel order closely related to Rhizobiales. While most genomic features and most of the genetic content are conserved between RS24 and IMCC14465, their average nucleotide identity (ANI) is < 81%, suggesting two distinct species of the PS1 clade. Next to encoding two different variants of proteorhodopsin genes, they also harbor several unique genomic islands that contain genes related to degradation of aromatic compounds in IMCC14465 and in polymer degradation in RS24, possibly reflecting the physicochemical differences in the environment they were isolated from. No clear differences in abundance of the genomic content of either strain could be found in fragment recruitment analyses using different metagenomic datasets, in which both genomes were detectable albeit as minor part of the communities. The comparative genomic analysis of both isolates of the PS1 clade and the fragment recruitment analysis provide first insights into the ecology of this group. © 2014 Federation of European Microbiological Societies.

  4. Aerobic remediation of petroleum sludge through soil supplementation: Microbial community analysis

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, M. Venkateswar; Devi, M. Prathima; Chandrasekhar, K.; Goud, R. Kannaiah [Bioengineering and Environmental Centre (BEEC), Indian Institute of Chemical Technology CSIR-IICT, Hyderabad 500 607 (India); Mohan, S. Venkata, E-mail: vmohan_s@yahoo.com [Bioengineering and Environmental Centre (BEEC), Indian Institute of Chemical Technology CSIR-IICT, Hyderabad 500 607 (India)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer Enhanced aerobic-degradation of PAHs was noticed with increasing soil concentration. Black-Right-Pointing-Pointer Lower ring PAHs showed superior degradation over higher ring PAHs. Black-Right-Pointing-Pointer Role of dehydrogenase activity, redox pattern and dissolved oxygen was investigated. Black-Right-Pointing-Pointer Community analysis detected survival of efficient aromatic degrading microorganisms. - Abstract: The effect of soil concentration on the aerobic degradation of real-field petroleum sludge was studied in slurry phase reactor. Total petroleum hydrocarbons (TPH) and polycyclic aromatic hydrocarbons (PAHs) showed effective removal but found to depend on the soil concentration. Aromatic fraction (48.12%) documented effective degradation compared to aliphatics (47.31%), NSO (28.69%) and asphaltenes (26.66%). PAHs profile showed efficient degradation of twelve individual aromatic compounds where lower ring compounds showed relatively higher degradation efficiency compared to the higher ring compounds. The redox behaviour and dehydrogenase activity showed a linear increment with the degradation pattern. Microbial community composition and changes during bioremediation were studied using denaturing gradient gel electrophoresis (DGGE). Among the 12 organisms identified, Proteobacteria was found to be dominant representing 50% of the total population (25% of {gamma}-proteobacteria; 16.6% of {beta}-proteobacteria; 8.3% of {alpha}-proteobacteria), while 33.3% were of uncultured bacteria and 16.6% were of firmicutes.

  5. The DivJ, CbrA and PleC system controls DivK phosphorylation and symbiosis in Sinorhizobium meliloti

    Science.gov (United States)

    Pini, Francesco; Frage, Benjamin; Ferri, Lorenzo; De Nisco, Nicole J.; Mohapatra, Saswat S.; Taddei, Lucilla; Fioravanti, Antonella; Dewitte, Frederique; Galardini, Marco; Brilli, Matteo; Villeret, Vincent; Bazzicalupo, Marco; Mengoni, Alessio; Walker, Graham C.; Becker, Anke; Biondi, Emanuele G.

    2013-01-01

    SUMMARY Sinorhizobium meliloti is a soil bacterium that invades the root nodules it induces on Medicago sativa, whereupon it undergoes an alteration of its cell cycle and differentiates into nitrogen-fixing, elongated and polyploid bacteroid with higher membrane permeability. In Caulobacter crescentus, a related alphaproteobacterium, the principal cell cycle regulator, CtrA, is inhibited by the phosphorylated response regulator DivK. The phosphorylation of DivK depends on the histidine kinase DivJ, while PleC is the principal phosphatase for DivK. Despite the importance of the DivJ in C. crescentus, the mechanistic role of this kinase has never been elucidated in other Alphaproteobacteria. We show here that the histidine kinases DivJ together with CbrA and PleC participate in a complex phosphorylation system of the essential response regulator DivK in S. meliloti. In particular, DivJ and CbrA are involved in DivK phosphorylation and in turn CtrA inactivation, thereby controlling correct cell cycle progression and the integrity of the cell envelope. In contrast, the essential PleC presumably acts as a phosphatase of DivK. Interestingly, we found that a DivJ mutant is able to elicit nodules and enter plant cells, but fails to establish an effective symbiosis suggesting that proper envelope and/or low CtrA levels are required for symbiosis. PMID:23909720

  6. Metal and antibiotic resistance of bacteria isolated from the Baltic Sea.

    Science.gov (United States)

    Moskot, Marta; Kotlarska, Ewa; Jakóbkiewicz-Banecka, Joanna; Gabig-Cimińska, Magdalena; Fari, Karolina; Wegrzyn, Grzegorz; Wróbel, Borys

    2012-09-01

    The resistance of 49 strains of bacteria isolated from surface Baltic Sea waters to 11 antibiotics was analyzed and the resistance of selected strains to three metal ions (Ni2+, Mn2+, Zn2+) was tested. Most isolates belonged to Gammaproteobacteria (78%), while Alphaproteobacteria (8%), Actinobacteria (10%), and Bacteroidetes (4%) were less abundant. Even though previous reports suggested relationships between resistance and the presence of plasmids or the ability to produce pigments, no compelling evidence for such relationships was obtained for the strains isolated in this work. In particular, strains resistant to multiple antibiotics did not carry plasmids more frequently than sensitive strains. A relation between resistance and the four aminoglycosides tested (gentamycin, kanamycin, neomycin, and streptomycin), but not to spectinomycin, was demonstrated. This observation is of interest given that spectinomycin is not always classified as an aminoglycoside because it lacks a traditional sugar moiety. Statistical analysis indicated relationships between resistance to some antibiotics (ampicillin and erythromycin, chloramphenicol and erythromycin, chloramphenicol and tetracycline, erythromycin and tetracycline), suggesting the linkage of resistance genes for antibiotics belonging to different classes. The effects of NiSO4, ZnCl2 and MnCl2 on various media suggested that the composition of Marine Broth might result in low concentrations of Mn2+ due to chemical interactions that potentially lead to precipitation.

  7. RpoH2 sigma factor controls the photooxidative stress response in a non-photosynthetic rhizobacterium, Azospirillum brasilense Sp7.

    Science.gov (United States)

    Kumar, Santosh; Rai, Ashutosh Kumar; Mishra, Mukti Nath; Shukla, Mansi; Singh, Pradhyumna Kumar; Tripathi, Anil Kumar

    2012-12-01

    Bacteria belonging to the Alphaproteobacteria normally harbour multiple copies of the heat shock sigma factor (known as σ(32), σ(H) or RpoH). Azospirillum brasilense, a non-photosynthetic rhizobacterium, harbours five copies of rpoH genes, one of which is an rpoH2 homologue. The genes around the rpoH2 locus in A. brasilense show synteny with that found in rhizobia. The rpoH2 of A. brasilense was able to complement the temperature-sensitive phenotype of the Escherichia coli rpoH mutant. Inactivation of rpoH2 in A. brasilense results in increased sensitivity to methylene blue and to triphenyl tetrazolium chloride (TTC). Exposure of A. brasilense to TTC and the singlet oxygen-generating agent methylene blue induced several-fold higher expression of rpoH2. Comparison of the proteome of A. brasilense with its rpoH2 deletion mutant and with an A. brasilense strain overexpressing rpoH2 revealed chaperone GroEL, elongation factors (Ef-Tu and EF-G), peptidyl prolyl isomerase, and peptide methionine sulfoxide reductase as the major proteins whose expression was controlled by RpoH2. Here, we show that the RpoH2 sigma factor-controlled photooxidative stress response in A. brasilense is similar to that in the photosynthetic bacterium Rhodobacter sphaeroides, but that RpoH2 is not involved in the detoxification of methylglyoxal in A. brasilense.

  8. Characterisation of the gill mucosal bacterial communities of four butterflyfish species: a reservoir of bacterial diversity in coral reef ecosystems.

    Science.gov (United States)

    Reverter, Miriam; Sasal, Pierre; Tapissier-Bontemps, N; Lecchini, D; Suzuki, M

    2017-06-01

    While recent studies have suggested that fish mucus microbiota play an important role in homeostasis and prevention of infections, very few studies have investigated the bacterial communities of gill mucus. We characterised the gill mucus bacterial communities of four butterflyfish species and although the bacterial diversity of gill mucus varied significantly between species, Shannon diversities were high (H = 3.7-5.7) in all species. Microbiota composition differed between butterflyfishes, with Chaetodon lunulatus and C. ornatissimus having the most similar bacterial communities, which differed significantly from C. vagabundus and C. reticulatus. The core bacterial community of all species consisted of mainly Proteobacteria followed by Actinobacteria and Firmicutes. Chaetodonlunulatus and C. ornatissimus bacterial communities were mostly dominated by Gammaproteobacteria with Vibrio as the most abundant genus. Chaetodonvagabundus and C. reticulatus presented similar abundances of Gammaproteobacteria and Alphaproteobacteria, which were well represented by Acinetobacter and Paracoccus, respectively. In conclusion, our results indicate that different fish species present specific bacterial assemblages. Finally, as mucus layers are nutrient hotspots for heterotrophic bacteria living in oligotrophic environments, such as coral reef waters, the high bacterial diversity found in butterflyfish gill mucus might indicate external fish mucus surfaces act as a reservoir of coral reef bacterial diversity. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Bacterial community and groundwater quality changes in an anaerobic aquifer during groundwater recharge with aerobic recycled water.

    Science.gov (United States)

    Ginige, Maneesha P; Kaksonen, Anna H; Morris, Christina; Shackelton, Mark; Patterson, Bradley M

    2013-09-01

    Managed aquifer recharge offers the opportunity to manage groundwater resources by storing water in aquifers when in surplus and thus increase the amount of groundwater available for abstraction during high demand. The Water Corporation of Western Australia (WA) is undertaking a Groundwater Replenishment Trial to evaluate the effects of recharging aerobic recycled water (secondary treated wastewater subjected to ultrafiltration, reverse osmosis, and ultraviolet disinfection) into the anaerobic Leederville aquifer in Perth, WA. Using culture-independent methods, this study showed the presence of Actinobacteria, Alphaproteobacteria, Bacilli, Betaproteobacteria, Cytophaga, Flavobacteria, Gammaproteobacteria, and Sphingobacteria, and a decrease in microbial diversity with an increase in depth of aquifer. Assessment of physico-chemical and microbiological properties of groundwater before and after recharge revealed that recharging the aquifer with aerobic recycled water resulted in elevated redox potentials in the aquifer and increased bacterial numbers, but reduced microbial diversity. The increase in bacterial numbers and reduced microbial diversity in groundwater could be a reflection of an increased denitrifier and sulfur-oxidizing populations in the aquifer, as a result of the increased availability of nitrate, oxygen, and residual organic matter. This is consistent with the geochemical data that showed pyrite oxidation and denitrification within the aquifer after recycled water recharge commenced. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  10. Succession of Bacterial Communities in a Seasonally Stratified Lake with an Anoxic and Sulfidic Hypolimnion

    Directory of Open Access Journals (Sweden)

    Muhe Diao

    2017-12-01

    Full Text Available Although bacteria play key roles in aquatic food webs and biogeochemical cycles, information on the seasonal succession of bacterial communities in lakes is still far from complete. Here, we report results of an integrative study on the successional trajectories of bacterial communities in a seasonally stratified lake with an anoxic hypolimnion. The bacterial community composition of epilimnion, metalimnion, and hypolimnion diverged during summer stratification and converged when the lake was mixed. In contrast, bacterial communities in the sediment remained relatively stable over the year. Phototrophic Cyanobacteria and heterotrophic Actinobacteria, Alphaproteobacteria and Planktomycetes were abundant in the aerobic epilimnion, Gammaproteobacteria (mainly Chromatiaceae dominated in the metalimnion, and Chlorobi, Betaproteobacteria, Deltaproteobacteria, and Firmicutes were abundant in the anoxic sulfidic hypolimnion. Anoxic but nonsulfidic conditions expanded to the surface layer during fall turnover, when the epilimnion, metalimnion and upper hypolimnion mixed. During this period, phototrophic sulfur bacteria (Chromatiaceae and Chlorobi disappeared, Polynucleobacter (Betaproteobacteria and Methylobacter (Gammaproteobacteria spread out from the former meta- and hypolimnion to the surface layer, and Epsilonproteobacteria dominated in the bottom water layer. Cyanobacteria and Planktomycetes regained dominance in early spring, after the oxygen concentration was restored by winter mixing. In total, these results show large spatio-temporal changes in bacterial community composition, especially during transitions from oxic to anoxic and from sulfidic to nonsulfidic conditions.

  11. First Investigation of Microbial Community Composition in the Bridge (Gadeok Channel) between the Jinhae-Masan Bay and the South Sea of Korea

    Science.gov (United States)

    Lee, Jiyoung; Lim, Jae-Hyun; Park, Junhyung; Youn, Seok-Hyun; Oh, Hyun-Ju; Kim, Ju-Hyoung; Kim, Myung Kyum; Cho, Hyeyoun; Yoon, Joo-Eun; Kim, Soyeon; Markkandan, Kesavan; Park, Ki-Tae; Kim, Il-Nam

    2018-02-01

    Microbial community composition varies based on seasonal dynamics (summer: strongly stratified water column; autumn: weakly stratified water column; winter: vertically homogeneous water column) and vertical distributions (surface, middle, and bottom depths) in the Gadeok Channel, which is the primary passage to exchange waters and materials between the Jinhae-Masan Bay and the South Sea waters. The microbial community composition was analyzed from June to December 2016 using 16S rRNA gene sequencing. The community was dominated by the phyla Proteobacteria (45%), Bacteroidetes (18%), Cyanobacteria (15%), Verrucomicrobia (6%), and Actinobacteria (6%). Alphaproteobacteria (29%) was the most abundant microbial class, followed by Flavobacteria (15%) and Gammaproteobacteria (15%) in all samples. The composition of the microbial communities was found to vary vertically and seasonally. The orders Flavobacteriales and Stramenopiles showed opposing seasonal patterns; Flavobacteriales was more abundant in August and December while Stramenopiles showed high abundance in June and October at all depths. The genus Synechococcus reached extremely high abundance (14%) in the June surface water column, but was much less abundant in December water columns. Clustering analysis showed that there was a difference in the microbial community composition pattern between the strongly stratified season and well-mixed season. These results indicate that the seasonal dynamics of physicochemical and hydrologic conditions throughout the water column are important parameters in shaping the microbial community composition in the Gadeok Channel.

  12. Application of biocathode in microbial fuel cells: cell performance and microbial community

    Energy Technology Data Exchange (ETDEWEB)

    Guo-Wei, Chen [Pusan National Univ. (Korea). Dept. of Environmental Engineering; Hefei Univ. of Technology (China). School of Civil Engineering; Choi, Soo-Jung; Lee, Tae-Ho; Lee, Gil-Young; Cha, Jae-Hwan; Kim, Chang-Won [Pusan National Univ. (Korea). Dept. of Environmental Engineering

    2008-06-15

    Instead of the utilization of artificial redox mediators or other catalysts, a biocathode has been applied in a two-chamber microbial fuel cell in this study, and the cell performance and microbial community were analyzed. After a 2-month startup, the microorganisms of each compartment in microbial fuel cell were well developed, and the output of microbial fuel cell increased and became stable gradually, in terms of electricity generation. At 20 ml/min flow rate of the cathodic influent, the maximum power density reached 19.53 W/m{sup 3}, while the corresponding current and cell voltage were 15.36 mA and 223 mV at an external resistor of 14.9 {omega}, respectively. With the development of microorganisms in both compartments, the internal resistance decreased from initial 40.2 to 14.0 {omega}, too. Microbial community analysis demonstrated that five major groups of the clones were categorized among those 26 clone types derived from the cathode microorganisms. Betaproteobacteria was the most abundant division with 50.0% (37 of 74) of the sequenced clones in the cathode compartment, followed by 21.6% (16 of 74) Bacteroidetes, 9.5% (7 of 74) Alphaproteobacteria, 8.1% (6 of 74) Chlorobi, 4.1% (3 of 74) Deltaproteobacteria, 4.1% (3 of 74) Actinobacteria, and 2.6% (2 of 74) Gammaproteobacteria. (orig.)

  13. Natural attenuation of aged tar-oil in soils: A case study from a former gas production site

    Science.gov (United States)

    Ivanov, Pavel; Eickhorst, Thilo; Wehrer, Markus; Georgiadis, Anna; Rennert, Thilo; Eusterhues, Karin; Totsche, Kai Uwe

    2017-04-01

    Contamination of soils with tar oil occurred on many industrial sites in Europe. The main source of such contamination has been former manufactured gas plants (MGP). As many of them were destroyed during the World War II or abandoned in the second half of the XXth century, the contamination is depleted in volatile and degradable hydrocarbons (HC) but enriched in the heavy oil fractions due to aging processes. We studied a small tar-oil spill in a former MGP reservoir basin. The tar-oil had a total petroleum hydrocarbon (TPH) content of 245 mg/g. At the margin of the spill, vegetation has started to overgrow and intensively root the tar-oil layer. This zone comprised the uppermost 5-7 cm of our profile and contained 28 mg/g of TPH (A-layer)- The layer below the root zone (7-15 cm) was the most contaminated, with 90 mg/g TPH (B-layer). The layer underneath (15-22 cm) had smaller concentrations of 16 mg/g TPH (C-layer). Further down in the profile (D-layer) we found only slightly higher TPH content than in the control samples (1,4 mg/g vs 0,6 mg/g). The polycyclic aromatic hydrocarbons analysis showed the same distribution throughout all layers with highest contents of the PAHs with 4-6 condensed aromatic rings. Direct cell count and extraction of microbial biomass showed that the highly contaminated soil layers A and B had 2-3 times more bacteria than the control soils. CARD-FISH analysis revealed that in samples from layers A and B Archaea were more abundant (12% opposing to 6-7% in control soil). Analysis of bacteria (tested for Alpha-, Beta-, Gamma- and Epsilonproteobacteria and Actinobacteria) showed the dominance of Alphaproteobacteria in the layer A and C both beneath and above the most contaminated layer B. The primers covered the whole microbial consortia in these two layers, leaving almost no unidentified cells. In the most contaminated layer B Alphaproteobacteria amounted only to 20% of the microbial consortium, and almost 40% of the cells remained

  14. Diversity of rare and abundant bacteria in surface waters of the Southern Adriatic Sea.

    Science.gov (United States)

    Quero, Grazia Marina; Luna, Gian Marco

    2014-10-01

    Bacteria are fundamental players in the functioning of the ocean, yet relatively little is known about the diversity of bacterioplankton assemblages and the factors shaping their spatial distribution. We investigated the diversity and community composition of bacterioplankton in surface waters of the Southern Adriatic sub-basin (SAd) in the Mediterranean Sea, across an environmental gradient from coastal to offshore stations. Bacterioplankton diversity was investigated using a whole-assemblage genetic fingerprinting technique (Automated Ribosomal Intergenic Spacer Analysis, ARISA) coupled with 16S rDNA amplicon pyrosequencing. The main physico-chemical variables showed clear differences between coastal and offshore stations, with the latter displaying generally higher temperature, salinity and oxygen content. Bacterioplankton richness was higher in coastal than offshore waters. Bacterial community composition (BCC) differed significantly between coastal and offshore waters, and appeared to be influenced by temperature (explaining up to 30% of variance) and by the trophic state. Pyrosequencing evidenced dominance of Alphaproteobacteria (SAR11 cluster), uncultured Gammaproteobacteria (Rhodobacteraceae) and Cyanobacteria (Synechococcus). Members of the Bacteroidetes phylum were also abundant, and accounted for 25% in the station characterized by the higher organic carbon availability. Bacterioplankton assemblages included a few dominant taxa and a very large proportion (85%) of rare (diversity, particularly evident at the level of the rare taxa, suggests to direct future investigations toward larger spatial or temporal scales, to better understand the role of bacterioplankton in the ecosystem functioning and the biogeochemistry of the basin. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. The One-carbon Carrier Methylofuran from Methylobacterium extorquens AM1 Contains a Large Number of α- and γ-Linked Glutamic Acid Residues*

    Science.gov (United States)

    Hemmann, Jethro L.; Saurel, Olivier; Ochsner, Andrea M.; Stodden, Barbara K.; Kiefer, Patrick; Milon, Alain; Vorholt, Julia A.

    2016-01-01

    Methylobacterium extorquens AM1 uses dedicated cofactors for one-carbon unit conversion. Based on the sequence identities of enzymes and activity determinations, a methanofuran analog was proposed to be involved in formaldehyde oxidation in Alphaproteobacteria. Here, we report the structure of the cofactor, which we termed methylofuran. Using an in vitro enzyme assay and LC-MS, methylofuran was identified in cell extracts and further purified. From the exact mass and MS-MS fragmentation pattern, the structure of the cofactor was determined to consist of a polyglutamic acid side chain linked to a core structure similar to the one present in archaeal methanofuran variants. NMR analyses showed that the core structure contains a furan ring. However, instead of the tyramine moiety that is present in methanofuran cofactors, a tyrosine residue is present in methylofuran, which was further confirmed by MS through the incorporation of a 13C-labeled precursor. Methylofuran was present as a mixture of different species with varying numbers of glutamic acid residues in the side chain ranging from 12 to 24. Notably, the glutamic acid residues were not solely γ-linked, as is the case for all known methanofurans, but were identified by NMR as a mixture of α- and γ-linked amino acids. Considering the unusual peptide chain, the elucidation of the structure presented here sets the basis for further research on this cofactor, which is probably the largest cofactor known so far. PMID:26895963

  16. Active methanotrophs in two contrasting North American peatland ecosystems revealed using DNA-SIP.

    Science.gov (United States)

    Gupta, Varun; Smemo, Kurt A; Yavitt, Joseph B; Basiliko, Nathan

    2012-02-01

    The active methanotroph community was investigated in two contrasting North American peatlands, a nutrient-rich sedge fen and nutrient-poor Sphagnum bog using in vitro incubations and (13)C-DNA stable-isotope probing (SIP) to measure methane (CH(4)) oxidation rates and label active microbes followed by fingerprinting and sequencing of bacterial and archaeal 16S rDNA and methane monooxygenase (pmoA and mmoX) genes. Rates of CH(4) oxidation were slightly, but significantly, faster in the bog and methanotrophs belonged to the class Alphaproteobacteria and were similar to other methanotrophs of the genera Methylocystis, Methylosinus, and Methylocapsa or Methylocella detected in, or isolated from, European bogs. The fen had a greater phylogenetic diversity of organisms that had assimilated (13)C, including methanotrophs from both the Alpha- and Gammaproteobacteria classes and other potentially non-methanotrophic organisms that were similar to bacteria detected in a UK and Finnish fen. Based on similarities between bacteria in our sites and those in Europe, including Russia, we conclude that site physicochemical characteristics rather than biogeography controlled the phylogenetic diversity of active methanotrophs and that differences in phylogenetic diversity between the bog and fen did not relate to measured CH(4) oxidation rates. A single crenarchaeon in the bog site appeared to be assimilating (13)C in 16S rDNA; however, its phylogenetic similarity to other CO(2)-utilizing archaea probably indicates that this organism is not directly involved in CH(4) oxidation in peat.

  17. Phylloplane bacteria of Jatropha curcas: diversity, metabolic characteristics, and growth-promoting attributes towards vigor of maize seedling.

    Science.gov (United States)

    Dubey, Garima; Kollah, Bharati; Ahirwar, Usha; Mandal, Asit; Thakur, Jyoti Kumar; Patra, Ashok Kumar; Mohanty, Santosh Ranjan

    2017-10-01

    The complex role of phylloplane microorganisms is less understood than that of rhizospheric microorganisms in lieu of their pivotal role in plant's sustainability. This experiment aims to study the diversity of the culturable phylloplane bacteria of Jatropha curcas and evaluate their growth-promoting activities towards maize seedling vigor. Heterotrophic bacteria were isolated from the phylloplane of J. curcas and their 16S rRNA genes were sequenced. Sequences of the 16S rRNA gene were very similar to those of species belonging to the classes Bacillales (50%), Gammaproteobacteria (21.8%), Betaproteobacteria (15.6%), and Alphaproteobacteria (12.5%). The phylloplane bacteria preferred to utilize alcohol rather than monosaccharides and polysaccharides as a carbon source. Isolates exhibited ACC (1-aminocyclopropane-1-carboxylic acid) deaminase, phosphatase, potassium solubilization, and indole acetic acid (IAA) production activities. The phosphate-solubilizing capacity (mg of PO 4 solubilized by 10 8 cells) varied from 0.04 to 0.21. The IAA production potential (μg IAA produced by 10 8 cells in 48 h) of the isolates varied from 0.41 to 9.29. Inoculation of the isolates to maize seed significantly increased shoot and root lengths of maize seedlings. A linear regression model of the plant-growth-promoting activities significantly correlated (p < 0.01) with the growth parameters. Similarly, a correspondence analysis categorized ACC deaminase and IAA production as the major factors contributing 41% and 13.8% variation, respectively, to the growth of maize seedlings.

  18. 'Candidatus Megaira polyxenophila' gen. nov., sp. nov.: considerations on evolutionary history, host range and shift of early divergent rickettsiae.

    Directory of Open Access Journals (Sweden)

    Martina Schrallhammer

    Full Text Available "Neglected Rickettsiaceae" (i.e. those harboured by non-hematophagous eukaryotic hosts display greater phylogenetic variability and more widespread dispersal than pathogenic ones; yet, the knowledge about their actual host range and host shift mechanism is scarce. The present work reports the characterization following the full-cycle rRNA approach (SSU rRNA sequence, specific in situ hybridization, and ultrastructure of a novel rickettsial bacterium, herewith proposed as 'Candidatus Megaira polyxenophila' gen. nov., sp. nov. We found it in association with four different free-living ciliates (Diophrys oligothrix, Euplotes octocarinatus, Paramecium caudatum, and Spirostomum sp., all belonging to Alveolata, Ciliophora; furthermore it was recently observed as intracellular occurring in Carteria cerasiformis and Pleodorina japonica (Chlorophyceae, Chlorophyta. Phylogenetic analyses demonstrated the belonging of the candidate new genus to the family Rickettsiaceae (Alphaproteobacteria, Rickettsiales as a sister group of the genus Rickettsia. In situ observations revealed the ability of the candidate new species to colonize either nuclear or cytoplasmic compartments, depending on the host organism. The presence of the same bacterial species within different, evolutionary distant, hosts indicates that 'Candidatus Megaira polyxenophila' recently underwent several distinct host shifts, thus suggesting the existence of horizontal transmission pathways. We consider these findings as indicative of an unexpected spread of rickettsial infections in aquatic communities, possibly by means of trophic interactions, and hence propose a new interpretation of the origin and phylogenetic diversification of rickettsial bacteria.

  19. Unexpected Dominance of Elusive Acidobacteria in Early Industrial Soft Coal Slags

    Directory of Open Access Journals (Sweden)

    Carl-Eric Wegner

    2017-06-01

    Full Text Available Acid mine drainage (AMD and mine tailing environments are well-characterized ecosystems known to be dominated by organisms involved in iron- and sulfur-cycling. Here we examined the microbiology of industrial soft coal slags that originate from alum leaching, an ecosystem distantly related to AMD environments. Our study involved geochemical analyses, bacterial community profiling, and shotgun metagenomics. The slags still contained high amounts of alum constituents (aluminum, sulfur, which mediated direct and indirect effects on bacterial community structure. Bacterial groups typically found in AMD systems and mine tailings were not present. Instead, the soft coal slags were dominated by uncharacterized groups of Acidobacteria (DA052 [subdivision 2], KF-JG30-18 [subdivision 13], Actinobacteria (TM214, Alphaproteobacteria (DA111, and Chloroflexi (JG37-AG-4, which have previously been detected primarily in peatlands and uranium waste piles. Shotgun metagenomics allowed us to reconstruct 13 high-quality Acidobacteria draft genomes, of which two genomes could be directly linked to dominating groups (DA052, KF-JG30-18 by recovered 16S rRNA gene sequences. Comparative genomics revealed broad carbon utilization capabilities for these two groups of elusive Acidobacteria, including polysaccharide breakdown (cellulose, xylan and the competence to metabolize C1 compounds (ribulose monophosphate pathway and lignin derivatives (dye-decolorizing peroxidases. Equipped with a broad range of efflux systems for metal cations and xenobiotics, DA052 and KF-JG30-18 may have a competitive advantage over other bacterial groups in this unique habitat.

  20. Structural and functional insights from the metagenome of an acidic hot spring microbial planktonic community in the Colombian Andes.

    Directory of Open Access Journals (Sweden)

    Diego Javier Jiménez

    Full Text Available A taxonomic and annotated functional description of microbial life was deduced from 53 Mb of metagenomic sequence retrieved from a planktonic fraction of the Neotropical high Andean (3,973 meters above sea level acidic hot spring El Coquito (EC. A classification of unassembled metagenomic reads using different databases showed a high proportion of Gammaproteobacteria and Alphaproteobacteria (in total read affiliation, and through taxonomic affiliation of 16S rRNA gene fragments we observed the presence of Proteobacteria, micro-algae chloroplast and Firmicutes. Reads mapped against the genomes Acidiphilium cryptum JF-5, Legionella pneumophila str. Corby and Acidithiobacillus caldus revealed the presence of transposase-like sequences, potentially involved in horizontal gene transfer. Functional annotation and hierarchical comparison with different datasets obtained by pyrosequencing in different ecosystems showed that the microbial community also contained extensive DNA repair systems, possibly to cope with ultraviolet radiation at such high altitudes. Analysis of genes involved in the nitrogen cycle indicated the presence of dissimilatory nitrate reduction to N2 (narGHI, nirS, norBCDQ and nosZ, associated with Proteobacteria-like sequences. Genes involved in the sulfur cycle (cysDN, cysNC and aprA indicated adenylsulfate and sulfite production that were affiliated to several bacterial species. In summary, metagenomic sequence data provided insight regarding the structure and possible functions of this hot spring microbial community, describing some groups potentially involved in the nitrogen and sulfur cycling in this environment.

  1. Genomic makeup of the marine flavobacterium Nonlabens (Donghaeana) dokdonensis and identification of a novel class of rhodopsins.

    Science.gov (United States)

    Kwon, Soon-Kyeong; Kim, Byung Kwon; Song, Ju Yeon; Kwak, Min-Jung; Lee, Choong Hoon; Yoon, Jung-Hoon; Oh, Tae Kwang; Kim, Jihyun F

    2013-01-01

    Rhodopsin-containing marine microbes such as those in the class Flavobacteriia play a pivotal role in the biogeochemical cycle of the euphotic zone (Fuhrman JA, Schwalbach MS, Stingl U. 2008. Proteorhodopsins: an array of physiological roles? Nat Rev Microbiol. 6:488-494). Deciphering the genome information of flavobacteria and accessing the diversity and ecological impact of microbial rhodopsins are important in understanding and preserving the global ecosystems. The genome sequence of the orange-pigmented marine flavobacterium Nonlabens dokdonensis (basonym: Donghaeana dokdonensis) DSW-6 was determined. As a marine photoheterotroph, DSW-6 has written in its genome physiological features that allow survival in the oligotrophic environments. The sequence analysis also uncovered a gene encoding an unexpected type of microbial rhodopsin containing a unique motif in addition to a proteorhodopsin gene and a number of photolyase or cryptochrome genes. Homologs of the novel rhodopsin gene were found in other flavobacteria, alphaproteobacteria, a species of Cytophagia, a deinococcus, and even a eukaryote diatom. They all contain the characteristic NQ motif and form a phylogenetically distinct group. Expression analysis of this rhodopsin gene in DSW-6 indicated that it is induced at high NaCl concentrations, as well as in the presence of light and the absence of nutrients. Genomic and metagenomic surveys demonstrate the diversity of the NQ rhodopsins in nature and the prevalent occurrence of the encoding genes among microbial communities inhabiting hypersaline niches, suggesting its involvement in sodium metabolism and the sodium-adapted lifestyle.

  2. Metagenomic analysis reveals that modern microbialites and polar microbial mats have similar taxonomic and functional potential

    Directory of Open Access Journals (Sweden)

    Richard Allen White III

    2015-09-01

    Full Text Available Within the subarctic climate of Clinton Creek, Yukon, Canada, lies an abandoned and flooded open-pit asbestos mine that harbors rapidly growing microbialites. To understand their formation we completed a metagenomic community profile of the microbialites and their surrounding sediments. Assembled metagenomic data revealed that bacteria within the phylum Proteobacteria numerically dominated this system, although the relative abundances of taxa within the phylum varied among environments. Bacteria belonging to Alphaproteobacteria and Gammaproteobacteria were dominant in the microbialites and sediments, respectively. The microbialites were also home to many other groups associated with microbialite formation including filamentous cyanobacteria and dissimilatory sulfate-reducing Deltaproteobacteria, consistent with the idea of a shared global microbialite microbiome. Other members were present that are typically not associated with microbialites including Gemmatimonadetes and iron-oxidizing Betaproteobacteria, which participate in carbon metabolism and iron cycling. Compared to the sediments, the microbialite microbiome has significantly more genes associated with photosynthetic processes (e.g., photosystem II reaction centers, carotenoid and chlorophyll biosynthesis and carbon fixation (e.g., CO dehydrogenase. The Clinton Creek microbialite communities had strikingly similar functional potentials to non-lithifying microbial mats from the Canadian High Arctic and Antarctica, but are functionally distinct, from non-lithifying mats or biofilms from Yellowstone. Clinton Creek microbialites also share metabolic genes (R2 0.900. These metagenomic profiles from an anthropogenic microbialite-forming ecosystem provide context to microbialite formation on a human-relevant timescale.

  3. Methylocapsa palsarum sp. nov., a methanotroph isolated from a subArctic discontinuous permafrost ecosystem.

    Science.gov (United States)

    Dedysh, Svetlana N; Didriksen, Alena; Danilova, Olga V; Belova, Svetlana E; Liebner, Susanne; Svenning, Mette M

    2015-10-01

    An aerobic methanotrophic bacterium was isolated from a collapsed palsa soil in northern Norway and designated strain NE2T. Cells of this strain were Gram-stain-negative, non-motile, non-pigmented, slightly curved thick rods that multiplied by normal cell division. The cells possessed a particulate methane monooxygenase enzyme (pMMO) and utilized methane and methanol. Strain NE2T grew in a wide pH range of 4.1–8.0 (optimum pH 5.2–6.5) at temperatures between 6 and 32 °C (optimum 18–25 °C), and was capable of atmospheric nitrogen fixation under reduced oxygen tension. The major cellular fatty acids were C18 : 1ω7c, C16 : 0 and C16 : 1ω7c, and the DNA G+C content was 61.7 mol%. The isolate belonged to the family Beijerinckiaceae of the class Alphaproteobacteria and was most closely related to the facultative methanotroph Methylocapsa aurea KYGT (98.3 % 16S rRNA gene sequence similarity and 84 % PmoA sequence identity). However, strain NE2T differed from Methylocapsa aurea KYGT by cell morphology, the absence of pigmentation, inability to grow on acetate, broader pH growth range, and higher tolerance to NaCl. Therefore, strain NE2T represents a novel species of the genus Methylocapsa, for which we propose the name Methylocapsa palsarum sp. nov. The type strain is NE2T ( = LMG 28715T = VKM B-2945T).

  4. Characterization of a Newly Discovered Symbiont of the Whitefly Bemisia tabaci (Hemiptera: Aleyrodidae)

    Science.gov (United States)

    Bing, Xiao-Li; Yang, Jiao; Zchori-Fein, Einat; Wang, Xiao-Wei

    2013-01-01

    Bemisia tabaci (Hemiptera: Aleyrodidae) is a species complex containing >28 cryptic species, some of which are important crop pests worldwide. Like many other sap-sucking insects, whiteflies harbor an obligatory symbiont, “Candidatus Portiera aleyrodidarum,” and a number of secondary symbionts. So far, six genera of secondary symbionts have been identified in B. tabaci. In this study, we report and describe the finding of an additional bacterium in the indigenous B. tabaci cryptic species China 1 (formerly known as B. tabaci biotype ZHJ3). Phylogenetic analysis based on the 16S rRNA and gltA genes showed that the bacterium belongs to the Alphaproteobacteria subdivision of the Proteobacteria and has a close relationship with human pathogens of the genus Orientia. Consequently, we temporarily named it Orientia-like organism (OLO). OLO was found in six of eight wild populations of B. tabaci China 1, with the infection rate ranging from 46.2% to 76.8%. Fluorescence in situ hybridization (FISH) of B. tabaci China 1 in nymphs and adults revealed that OLOs are confined to the bacteriome and co-occur with “Ca. Portiera aleyrodidarum.” The vertical transmission of OLO was demonstrated by detection of OLO at the anterior pole end of the oocytes through FISH. Quantitative PCR analysis of population dynamics suggested a complex interaction between “Ca. Portiera aleyrodidarum” and OLO. Based on these results, we propose “Candidatus Hemipteriphilus asiaticus” for the classification of this symbiont from B. tabaci. PMID:23144129

  5. Resilience of the prokaryotic microbial community of Acropora digitifera to elevated temperature.

    Science.gov (United States)

    Gajigan, Andrian P; Diaz, Leomir A; Conaco, Cecilia

    2017-08-01

    The coral is a holobiont formed by the close interaction between the coral animal and a diverse community of microorganisms, including dinoflagellates, bacteria, archaea, fungi, and viruses. The prokaryotic symbionts of corals are important for host fitness but are also highly sensitive to changes in the environment. In this study, we used 16S ribosomal RNA (rRNA) sequencing to examine the response of the microbial community associated with the coral, Acropora digitifera, to elevated temperature. The A. digitifera microbial community is dominated by operational taxonomic unit (OTUs) affiliated with classes Alphaproteobacteria and Gammaproteobacteria. The prokaryotic community in the coral tissue is distinct from that of the mucus and the surrounding seawater. Remarkably, the overall microbial community structure of A. digitifera remained stable for 10 days of continuous exptosure at 32°C compared to corals maintained at 27°C. However, the elevated temperature regime resulted in a decrease in the abundance of OTUs affiliated with certain groups of bacteria, such as order Rhodobacterales. On the other hand, some OTUs affiliated with the orders Alteromonadales, Vibrionales, and Flavobacteriales, which are often associated with diseased and stressed corals, increased in abundance. Thus, while the A. digitifera bacterial community structure appears resilient to higher temperature, prolonged exposure and intensified stress results in changes in the abundance of specific microbial community members that may affect the overall metabolic state and health of the coral holobiont. © 2017 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  6. Preparation of genomic DNA from a single species of uncultured magnetotactic bacterium by multiple-displacement amplification.

    Science.gov (United States)

    Arakaki, Atsushi; Shibusawa, Mie; Hosokawa, Masahito; Matsunaga, Tadashi

    2010-03-01

    Magnetotactic bacteria comprise a phylogenetically diverse group that is capable of synthesizing intracellular magnetic particles. Although various morphotypes of magnetotactic bacteria have been observed in the environment, bacterial strains available in pure culture are currently limited to a few genera due to difficulties in their enrichment and cultivation. In order to obtain genetic information from uncultured magnetotactic bacteria, a genome preparation method that involves magnetic separation of cells, flow cytometry, and multiple displacement amplification (MDA) using phi29 polymerase was used in this study. The conditions for the MDA reaction using samples containing 1 to 100 cells were evaluated using a pure-culture magnetotactic bacterium, "Magnetospirillum magneticum AMB-1," whose complete genome sequence is available. Uniform gene amplification was confirmed by quantitative PCR (Q-PCR) when 100 cells were used as a template. This method was then applied for genome preparation of uncultured magnetotactic bacteria from complex bacterial communities in an aquatic environment. A sample containing 100 cells of the uncultured magnetotactic coccus was prepared by magnetic cell separation and flow cytometry and used as an MDA template. 16S rRNA sequence analysis of the MDA product from these 100 cells revealed that the amplified genomic DNA was from a single species of magnetotactic bacterium that was phylogenetically affiliated with magnetotactic cocci in the Alphaproteobacteria. The combined use of magnetic separation, flow cytometry, and MDA provides a new strategy to access individual genetic information from magnetotactic bacteria in environmental samples.

  7. Structural and Functional Insights from the Metagenome of an Acidic Hot Spring Microbial Planktonic Community in the Colombian Andes

    Science.gov (United States)

    Jiménez, Diego Javier; Andreote, Fernando Dini; Chaves, Diego; Montaña, José Salvador; Osorio-Forero, Cesar; Junca, Howard; Zambrano, María Mercedes; Baena, Sandra

    2012-01-01

    A taxonomic and annotated functional description of microbial life was deduced from 53 Mb of metagenomic sequence retrieved from a planktonic fraction of the Neotropical high Andean (3,973 meters above sea level) acidic hot spring El Coquito (EC). A classification of unassembled metagenomic reads using different databases showed a high proportion of Gammaproteobacteria and Alphaproteobacteria (in total read affiliation), and through taxonomic affiliation of 16S rRNA gene fragments we observed the presence of Proteobacteria, micro-algae chloroplast and Firmicutes. Reads mapped against the genomes Acidiphilium cryptum JF-5, Legionella pneumophila str. Corby and Acidithiobacillus caldus revealed the presence of transposase-like sequences, potentially involved in horizontal gene transfer. Functional annotation and hierarchical comparison with different datasets obtained by pyrosequencing in different ecosystems showed that the microbial community also contained extensive DNA repair systems, possibly to cope with ultraviolet radiation at such high altitudes. Analysis of genes involved in the nitrogen cycle indicated the presence of dissimilatory nitrate reduction to N2 (narGHI, nirS, norBCDQ and nosZ), associated with Proteobacteria-like sequences. Genes involved in the sulfur cycle (cysDN, cysNC and aprA) indicated adenylsulfate and sulfite production that were affiliated to several bacterial species. In summary, metagenomic sequence data provided insight regarding the structure and possible functions of this hot spring microbial community, describing some groups potentially involved in the nitrogen and sulfur cycling in this environment. PMID:23251687

  8. Highly heterogeneous bacterial communities associated with the South China Sea reef corals Porites lutea, Galaxea fascicularis and Acropora millepora.

    Directory of Open Access Journals (Sweden)

    Jie Li

    Full Text Available Coral harbor diverse and specific bacteria play significant roles in coral holobiont function. Bacteria associated with three of the common and phylogenetically divergent reef-building corals in the South China Sea, Porites lutea, Galaxea fascicularis and Acropora millepora, were investigated using 454 barcoded-pyrosequencing. Three colonies of each species were sampled, and 16S rRNA gene libraries were constructed individually. Analysis of pyrosequencing libraries showed that bacterial communities associated with the three coral species were more diverse than previous estimates based on corals from the Caribbean Sea, Indo-Pacific reefs and the Red Sea. Three candidate phyla, including BRC1, OD1 and SR1, were found for the first time in corals. Bacterial communities were separated into three groups: P. lutea and G. fascicular, A. millepora and seawater. P. lutea and G. fascicular displayed more similar bacterial communities, and bacterial communities associated with A. millepora differed from the other two coral species. The three coral species shared only 22 OTUs, which were distributed in Alphaproteobacteria, Deltaproteobacteria, Gammaproteobacteria, Chloroflexi, Actinobacteria, Acidobacteria and an unclassified bacterial group. The composition of bacterial communities within each colony of each coral species also showed variation. The relatively small common and large specific bacterial communities in these corals implies that bacterial associations may be structured by multiple factors at different scales and that corals may associate with microbes in terms of similar function, rather than identical species.

  9. Spatial variations of prokaryotic communities in surface water from India Ocean to Chinese marginal seas and their underlining environmental determinants

    Directory of Open Access Journals (Sweden)

    Xiaowei eZheng

    2016-02-01

    Full Text Available To illustrate the biogeographic patterns of prokaryotic communities in surface sea water, 24 samples were systematically collected across a large distance from Indian Ocean to Chinese marginal seas, with an average distance of 453 km between two adjacent stations. A total of 841,364 quality reads was produced by the high throughput DNA sequencing of the 16S rRNA genes. Phylogenetic analysis showed that Proteobacteria were predominant in all samples, with Alphaproteobacteria and Gammaproteobacteria being the two most abundant components. Cyanobacteria represented the second largest fraction of the total quality reads, and mainly included Prochlorococcus and Synechococcus. The semi-closed marginal seas, including South China Sea (SCS and nearby regions, exhibited a transition in community composition between oceanic and coastal seas, based on the distribution patterns of Prochlorococcus and Synechococcus as well as a non-metric multidimensional scaling (NMDS analysis. Distinct clusters of prokaryotes from coastal and open seas, and from different water masses in Indian Ocean were obtained by Bray-Curtis dissimilarity analysis at the OTU level, revealing a clear spatial heterogeneity. The major environmental factors correlated with the community variation in this broad scale were identified as salinity, temperature and geographic distance. Community comparison among regions shows that anthropogenic contamination is another dominant factor in shaping the biogeographic patterns of the microorganisms. These results suggest that environmental factors involved in complex interactions between land and sea act synergistically in driving spatial variations in coastal areas.

  10. Enrichment of Bacteria From Eastern Mediterranean Sea Involved in Lignin Degradation via the Phenylacetyl-CoA Pathway

    Directory of Open Access Journals (Sweden)

    Hannah L. Woo

    2018-05-01

    Full Text Available The degradation of allochthonous terrestrial organic matter, such as recalcitrant lignin and hemicellulose from plants, occurs in the ocean. We hypothesize that bacteria instead of white-rot fungi, the model organisms of aerobic lignin degradation within terrestrial environments, are responsible for lignin degradation in the ocean due to the ocean’s oligotrophy and hypersalinity. Warm oxic seawater from the Eastern Mediterranean Sea was enriched on lignin in laboratory microcosms. Lignin mineralization rates by the lignin-adapted consortia improved after two sequential incubations. Shotgun metagenomic sequencing detected a higher abundance of aromatic compound degradation genes in response to lignin, particularly phenylacetyl-CoA, which may be an effective strategy for marine microbes in fluctuating oxygen concentrations. 16S rRNA gene amplicon sequencing detected a higher abundance of Gammaproteobacteria and Alphaproteobacteria bacteria such as taxonomic families Idiomarinaceae, Alcanivoraceae, and Alteromonadaceae in response to lignin. Meanwhile, fungal Ascomycetes and Basidiomycetes remained at very low abundance. Our findings demonstrate the significant potential of bacteria and microbes utilizing the phenylacetyl-CoA pathway to contribute to lignin degradation in the Eastern Mediterranean where environmental conditions are unfavorable for fungi. Exploring the diversity of bacterial lignin degraders may provide important enzymes for lignin conversion in industry. Enzymes may be key in breaking down high molecular weight lignin and enabling industry to use it as a low-cost and sustainable feedstock for biofuels or other higher-value products.

  11. Genome sequence of Ensifer adhaerens OV14 provides insights into its ability as a novel vector for the genetic transformation of plant genomes.

    Science.gov (United States)

    Rudder, Steven; Doohan, Fiona; Creevey, Christopher J; Wendt, Toni; Mullins, Ewen

    2014-04-07

    Recently it has been shown that Ensifer adhaerens can be used as a plant transformation technology, transferring genes into several plant genomes when equipped with a Ti plasmid. For this study, we have sequenced the genome of Ensifer adhaerens OV14 (OV14) and compared it with those of Agrobacterium tumefaciens C58 (C58) and Sinorhizobium meliloti 1021 (1021); the latter of which has also demonstrated a capacity to genetically transform crop genomes, albeit at significantly reduced frequencies. The 7.7 Mb OV14 genome comprises two chromosomes and two plasmids. All protein coding regions in the OV14 genome were functionally grouped based on an eggNOG database. No genes homologous to the A. tumefaciens Ti plasmid vir genes appeared to be present in the OV14 genome. Unexpectedly, OV14 and 1021 were found to possess homologs to chromosomal based genes cited as essential to A. tumefaciens T-DNA transfer. Of significance, genes that are non-essential but exert a positive influence on virulence and the ability to genetically transform host genomes were identified in OV14 but were absent from the 1021 genome. This study reveals the presence of homologs to chromosomally based Agrobacterium genes that support T-DNA transfer within the genome of OV14 and other alphaproteobacteria. The sequencing and analysis of the OV14 genome increases our understanding of T-DNA transfer by non-Agrobacterium species and creates a platform for the continued improvement of Ensifer-mediated transformation (EMT).

  12. Distinctive Microbial Community Structure in Highly Stratified Deep-Sea Brine Water Columns

    KAUST Repository

    Bougouffa, Salim; Yang, J. K.; Lee, O. O.; Wang, Y.; Batang, Zenon B.; Al-Suwailem, Abdulaziz M.; Qian, P. Y.

    2013-01-01

    Atlantis II and Discovery are two hydrothermal and hypersaline deep-sea pools in the Red Sea rift that are characterized by strong thermohalo-stratification and temperatures steadily peaking near the bottom. We conducted comprehensive vertical profiling of the microbial populations in both pools and highlighted the influential environmental factors. Pyrosequencing of the 16S rRNA genes revealed shifts in community structures vis-à-vis depth. High diversity and low abundance were features of the deepest convective layers despite the low cell density. Surprisingly, the brine interfaces had significantly higher cell counts than the overlying deep-sea water, yet they were lowest in diversity. Vertical stratification of the bacterial populations was apparent as we moved from the Alphaproteobacteria-dominated deep sea to the Planctomycetaceae- or Deferribacteres-dominated interfaces to the Gammaproteobacteria-dominated brine layers. Archaeal marine group I was dominant in the deep-sea water and interfaces, while several euryarchaeotic groups increased in the brine. Across sites, microbial phylotypes and abundances varied substantially in the brine interface of Discovery compared with Atlantis II, despite the near-identical populations in the overlying deep-sea waters. The lowest convective layers harbored interestingly similar microbial communities, even though temperature and heavy metal concentrations were very different. Multivariate analysis indicated that temperature and salinity were the major influences shaping the communities. The harsh conditions and the low-abundance phylotypes could explain the observed correlation in the brine pools.

  13. Dynamic of active microorganisms inhabiting a bioleaching industrial heap of low‐grade copper sulfide ore monitored by real‐time PCR and oligonucleotide prokaryotic acidophile microarray

    Science.gov (United States)

    Remonsellez, Francisco; Galleguillos, Felipe; Moreno‐Paz, Mercedes; Parro, Víctor; Acosta, Mauricio; Demergasso, Cecilia

    2009-01-01

    Summary The bioleaching of metal sulfide has developed into a very important industrial process and understanding the microbial dynamic is key to advancing commercial bioleaching operations. Here we report the first quantitative description of the dynamic of active communities in an industrial bioleaching heap. Acidithiobacillus ferrooxidans was the most abundant during the first part of the leaching cycle, while the abundance of Leptospirillum ferriphilum and Ferroplasma acidiphilum increased with age of the heap. Acidithiobacillus thiooxidans kept constant throughout the leaching cycle, and Firmicutes group showed a low and a patchy distribution in the heap. The Acidiphilium‐like bacteria reached their highest abundance corresponding to the amount of autotrophs. The active microorganisms in the leaching system were determined using two RNA‐based sensitive techniques. In most cases, the 16S rRNA copy numbers of At. ferrooxidans, L. ferriphilum, At. thiooxidans and F. acidiphilum, was concomitant with the DNA copy numbers, whereas Acidiphilium‐like bacteria and some Firmicutes members did not show a clear correlation between 16S rRNA accumulation and DNA copy numbers. However, the prokaryotic acidophile microarray (PAM) analysis showed active members of Alphaproteobacteria in all samples and of Sulfobacillus genus in older ones. Also, new active groups such as Actinobacteria and Acidobacterium genus were detected by PAM. The results suggest that changes during the leaching cycle in chemical and physical conditions, such as pH and Fe3+/Fe2+ ion rate, are primary factors shaping the microbial dynamic in the heap. PMID:21255296

  14. Bacterial communities associated with biofouling materials used in bench-scale hydrocarbon bioremediation.

    Science.gov (United States)

    Al-Mailem, Dina; Kansour, Mayada; Radwan, Samir

    2015-03-01

    Biofouling material samples from the Arabian (Persian) Gulf, used as inocula in batch cultures, brought about crude oil and pure-hydrocarbon removal in a mineral medium. Without any added nitrogen fertilizers, the hydrocarbon-removal values were between about 10 and 50 %. Fertilization with NaNO3 alone or together with a mixture of the vitamins thiamine, pyridoxine, vitamin B12, biotin, riboflavin, and folic acid increased the hydrocarbon-removal values, to reach 90 %. Biofouling material samples harbored total bacteria in the magnitude of 10(7) cells g(-1), about 25 % of which were hydrocarbonoclastic. These numbers were enhanced by NaNO3 and vitamin amendment. The culture-independent analysis of the total bacterioflora revealed the predominance of the gammaproteobacterial genera Marinobacter, Acinetobacter, and Alcanivorax, the Flavobacteriia, Flavobacterium, Gaetbulibacter, and Owenweeksia, and the Alphaproteobacteria Tistrella, Zavarzinia, and others. Most of those bacteria are hydrocarbonoclastic. Culture-dependent analysis of hydrocarbonoclastic bacteria revealed that Marinobacter hydrocarbonoclasticus, Dietzia maris, and Gordonia bronchialis predominated in the fouling materials. In addition, each material had several more-specific hydrocarbonoclastic species, whose frequencies were enhanced by NaNO3 and vitamin fertilization. The same samples of fouling materials were used in four successive crude-oil-removal cycles without any dramatic loss of their hydrocarbon-removal potential nor of their associated hydrocarbonoclastic bacteria. In the fifth cycle, the oil-removal value was reduced by about 50 % in only one of the studied samples. This highlights how firmly biofouling materials were immobilizing the hydrocarbonoclastic bacteria.

  15. Decreasing Fertilizer use by Optimizing Plant-microbe Interactions for Sustainable Supply of Nitrogen for Bioenergy Crops

    Science.gov (United States)

    Schicklberger, M. F.; Huang, J.; Felix, P.; Pettenato, A.; Chakraborty, R.

    2013-12-01

    Nitrogen (N) is an essential component of DNA and proteins and consequently a key element of life. N often is limited in plants, affecting plant growth and productivity. To alleviate this problem, tremendous amounts of N-fertilizer is used, which comes at a high economic price and heavy energy demand. In addition, N-fertilizer also significantly contributes to rising atmospheric greenhouse gas concentrations. Therefore, the addition of fertilizer to overcome N limitation is highly undesirable. To explore reduction in fertilizer use our research focuses on optimizing the interaction between plants and diazotrophic bacteria, which could provide adequate amounts of N to the host-plant. Therefore we investigated the diversity of microbes associated with Tobacco (Nicotiana tabacum) and Switchgrass (Panicum virgatum), considered as potential energy crop for bioenergy production. Several bacterial isolates with representatives from Alphaproteobacteria, Gammaproteobacteria, Actinobacteria, Bacteriodetes and Bacilli were obtained from the roots, leaves, rhizoplane and rhizosphere of these plants. Majority of these isolates grew best with simple sugars and small organic acids. As shown by PCR amplification of nifH, several of these isolates are potential N2-fixing bacteria. We investigated diazotrophs for their response to elevated temperature and salinity (two common climate change induced stresses found on marginal lands), their N2-fixing ability, and their response to root exudates (which drive microbial colonization of the plant). Together this understanding is necessary for the development of eco-friendly, economically sustainable energy crops by decreasing their dependency on fertilizer.

  16. Characteristics of microbial community involved in early biofilms formation under the influence of wastewater treatment plant effluent.

    Science.gov (United States)

    Peng, Yuke; Li, Jie; Lu, Junling; Xiao, Lin; Yang, Liuyan

    2018-04-01

    Effluents from wastewater treatment plants (WWTPs) containing microorganisms and residual nutrients can influence the biofilm formation. Although the process and mechanism of bacterial biofilm formation have been well characterized, little is known about the characteristics and interaction of bacteria, archaea and eukaryotes in the early colonization, especially under the influence of WWTP effluent. The aim of this study was to characterize the important bacterial, archaeal and eukaryotic species in the early stage of biofilm formation downstream of the WWTP outlet. Water and biofilm samples were collected 24 and 48hr after the deposition of bio-cords in the stream. Illumina Miseq sequencing of the 16S and 18S rDNA showed that, among the three domains, the bacterial biofilm community had the largest alpha and beta diversity. The early bacterial colonizers appeared to be "biofilm-specific", with only a few dominant operational taxonomic units (OTUs) shared between the biofilm and the ambient water environment. Alpha-proteobacteria and Ciliophora tended to dominate the bacterial and eukaryotic communities, respectively, of the early biofilm already at 24hr, whereas archaea played only a minor role during the early stage of colonization. The network analysis showed that the three domains of microbial community connected highly during the early colonization and it might be a characteristic of the microbial communities in the biofilm formation process where co-occurrence relationships could drive coexistence and diversity maintenance within the microbial communities. Copyright © 2017. Published by Elsevier B.V.

  17. Distinctive Microbial Community Structure in Highly Stratified Deep-Sea Brine Water Columns

    KAUST Repository

    Bougouffa, Salim

    2013-03-29

    Atlantis II and Discovery are two hydrothermal and hypersaline deep-sea pools in the Red Sea rift that are characterized by strong thermohalo-stratification and temperatures steadily peaking near the bottom. We conducted comprehensive vertical profiling of the microbial populations in both pools and highlighted the influential environmental factors. Pyrosequencing of the 16S rRNA genes revealed shifts in community structures vis-à-vis depth. High diversity and low abundance were features of the deepest convective layers despite the low cell density. Surprisingly, the brine interfaces had significantly higher cell counts than the overlying deep-sea water, yet they were lowest in diversity. Vertical stratification of the bacterial populations was apparent as we moved from the Alphaproteobacteria-dominated deep sea to the Planctomycetaceae- or Deferribacteres-dominated interfaces to the Gammaproteobacteria-dominated brine layers. Archaeal marine group I was dominant in the deep-sea water and interfaces, while several euryarchaeotic groups increased in the brine. Across sites, microbial phylotypes and abundances varied substantially in the brine interface of Discovery compared with Atlantis II, despite the near-identical populations in the overlying deep-sea waters. The lowest convective layers harbored interestingly similar microbial communities, even though temperature and heavy metal concentrations were very different. Multivariate analysis indicated that temperature and salinity were the major influences shaping the communities. The harsh conditions and the low-abundance phylotypes could explain the observed correlation in the brine pools.

  18. Plants Rather than Mineral Fertilization Shape Microbial Community Structure and Functional Potential in Legacy Contaminated Soil.

    Science.gov (United States)

    Ridl, Jakub; Kolar, Michal; Strejcek, Michal; Strnad, Hynek; Stursa, Petr; Paces, Jan; Macek, Tomas; Uhlik, Ondrej

    2016-01-01

    Plant-microbe interactions are of particular importance in polluted soils. This study sought to determine how selected plants (horseradish, black nightshade and tobacco) and NPK mineral fertilization shape the structure of soil microbial communities in legacy contaminated soil and the resultant impact of treatment on the soil microbial community functional potential. To explore these objectives, we combined shotgun metagenomics and 16S rRNA gene amplicon high throughput sequencing with data analysis approaches developed for RNA-seq. We observed that the presence of any of the selected plants rather than fertilization shaped the microbial community structure, and the microbial populations of the root zone of each plant significantly differed from one another and/or from the bulk soil, whereas the effect of the fertilizer proved to be insignificant. When we compared microbial diversity in root zones versus bulk soil, we observed an increase in the relative abundance of Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria or Bacteroidetes, taxa which are commonly considered copiotrophic. Our results thus align with the theory that fast-growing, copiotrophic, microorganisms which are adapted to ephemeral carbon inputs are enriched in the vegetated soil. Microbial functional potential indicated that some genetic determinants associated with signal transduction mechanisms, defense mechanisms or amino acid transport and metabolism differed significantly among treatments. Genetic determinants of these categories tend to be overrepresented in copiotrophic organisms. The results of our study further elucidate plant-microbe relationships in a contaminated environment with possible implications for the phyto/rhizoremediation of contaminated areas.

  19. Litorimonas cladophorae sp. nov., a new alphaproteobacterium isolated from the Pacific green alga Cladophora stimpsoni, and emended descriptions of the genus Litorimonas and Litorimonas taeaensis.

    Science.gov (United States)

    Nedashkovskaya, Olga I; Kukhlevskiy, Andrey D; Zhukova, Natalia V; Kim, So-Jeong; Rhee, Sung-Keun

    2013-06-01

    A strictly aerobic, Gram-stain-negative, rod-shaped and red-orange pigmented bacterium, designated strain KMM 6395(T), was isolated from the green alga Cladophora stimpsoni and subjected to a polyphasic taxonomic study. Phylogenetic analysis based on 16S rRNA gene sequencing revealed that the novel strain affiliated to the family Hyphomonadaceae of the class Alphaproteobacteria being most closely related to the type strain of the single species of the genus Litorimonas, Litorimonas taeanensis G5(T), with 16S rRNA gene sequence similarity of 96.8 %. Strain KMM 6395(T) grew with 1-5 % NaCl and at 4-35 °C, hydrolysed starch and Tween 80. The DNA G+C content was 48.7 mol%. The prevalent fatty acids were C18:1 ω7c, C19:1 ω8c and C18:1 ω7c 10-methyl. The polar lipid profile was characterized by the presence of phosphatidylglycerol, monoglycosyldiglyceride, glucuronopyranosyldiglyceride and an unidentified glycolipid. The major respiratory quinone was Q-10. The significant molecular distinctiveness between the novel isolate and its nearest neighbour, L. taeanensis G5(T), were strongly supported by the differences in physiological and biochemical tests. Therefore, strain KMM 6395(T) represents a novel species of the genus Litorimonas, for which the name Litorimonas cladophorae sp. nov. is proposed. The type strain is KMM 6395(T) (=KCTC 23968(T) = LMG 26985(T)). The emended descriptions of the genus Litorimonas and L. taeaensis are also provided.

  20. Bacterial community structure and soil properties of a subarctic tundra soil in Council, Alaska.

    Science.gov (United States)

    Kim, Hye Min; Jung, Ji Young; Yergeau, Etienne; Hwang, Chung Yeon; Hinzman, Larry; Nam, Sungjin; Hong, Soon Gyu; Kim, Ok-Sun; Chun, Jongsik; Lee, Yoo Kyung

    2014-08-01

    The subarctic region is highly responsive and vulnerable to climate change. Understanding the structure of subarctic soil microbial communities is essential for predicting the response of the subarctic soil environment to climate change. To determine the composition of the bacterial community and its relationship with soil properties, we investigated the bacterial community structure and properties of surface soil from the moist acidic tussock tundra in Council, Alaska. We collected 70 soil samples with 25-m intervals between sampling points from 0-10 cm to 10-20 cm depths. The bacterial community was analyzed by pyrosequencing of 16S rRNA genes, and the following soil properties were analyzed: soil moisture content (MC), pH, total carbon (TC), total nitrogen (TN), and inorganic nitrogen (NH4+ and NO3-). The community compositions of the two different depths showed that Alphaproteobacteria decreased with soil depth. Among the soil properties measured, soil pH was the most significant factor correlating with bacterial community in both upper and lower-layer soils. Bacterial community similarity based on jackknifed unweighted unifrac distance showed greater similarity across horizontal layers than through the vertical depth. This study showed that soil depth and pH were the most important soil properties determining bacterial community structure of the subarctic tundra soil in Council, Alaska. © 2014 The Authors. FEMS Microbiology Ecology published by John Wiley & Sons Ltd on behalf of the Federation of European Microbiological Societies.

  1. Spatial Distribution of Bacterial Communities Driven by Multiple Environmental Factors in a Beach Wetland of the Largest Freshwater Lake in China

    Directory of Open Access Journals (Sweden)

    Xia eDing

    2015-02-01

    Full Text Available The spatial distributions of bacterial communities may be driven by multiple environmental factors. Thus, understanding the relationships between bacterial distribution and environmental factors is critical for understanding wetland stability and the functioning of freshwater lakes. However, little research on the bacterial communities in deep sediment layers exists. In this study, thirty clone libraries of 16S rRNA were constructed from a beach wetland of the Poyang Lake along both horizontal (distance to the water-land junction and vertical (sediment depth gradients to assess the effects of sediment properties on bacterial community structure and diversity. Our results showed that bacterial diversity increased along the horizontal gradient and decreased along the vertical gradient. The heterogeneous sediment properties along gradients substantially affected the dominant bacterial groups at the phylum and species levels. For example, the NH4+ concentration decreased with increasing depth, which was positively correlated with the relative abundance of Alphaproteobacteria. The changes in bacterial diversity and dominant bacterial groups showed that the top layer had a different bacterial community structure than the deeper layers. Principal component analysis revealed that both gradients, not each gradient independently, contributed to the shift in the bacterial community structure. A multiple linear regression model explained the changes in bacterial diversity and richness along the depth and distance gradients. Overall, our results suggest that spatial gradients associated with sediment properties shaped the bacterial communities in the Poyang Lake beach wetland.

  2. Spatial distribution of microbial communities associated with dune landform in the Gurbantunggut Desert, China.

    Science.gov (United States)

    Liu, Ruyin; Li, Ke; Zhang, Hongxun; Zhu, Junge; Joshi, DevRaj

    2014-11-01

    The microbial community compositions and potential ammonia oxidation in the topsoil at different positions of sand dune (stoss slope, crest, lee slope, and interdune) from the Gurbantunggut Desert, the largest semi-fixed desert in China, were investigated using several molecular methods. Actinobacteria and Proteobacteria (especially Alphaproteobacteria) were commonly the dominant taxa across all soil samples. Bacterial communities were similar in soils collected from the stoss slopes and interdunes (HC-BSCs, biological soil crusts with a high abundance of cyanobacteria), containing more abundant cyanobacterial populations (16.9-24.5%) than those (0.2-0.7% of Cyanobacteria) in the crests and lee slopes (LC-BSCs, biological soil crusts with a low abundance of cyanobacteria). The Cyanobacteria were mainly composed of Microcoleus spp., and quantitative PCR analysis revealed that 16S rRNA gene copy numbers of Cyanobacteria (especially genus Microcoleus) were at least two orders of magnitude higher in HC-BSCs than in LC-BSCs. Heterotrophic Geodermatophilus spp. frequently occurred in HC-BSCs (2.5-8.0%), whereas genera Arthrobacter, Bacillus, and Segetibacter were significantly abundant in LC-BSC communities. By comparison, the desert archaeal communities were less complex, and were dominated by Nitrososphaera spp. The amoA gene abundance of ammonia-oxidizing archaea (AOA) was higher than that of ammonia-oxidizing bacteria (AOB) in all soil samples, particularly in the interdunal soils (10(6)-10(8) archaeal amoA gene copies per gram dry soil), indicating that AOA possibly dominate the ammonia oxidation at the interdunes.

  3. Bacterial diversity of autotrophic enriched cultures from remote, glacial Antarctic, Alpine and Andean aerosol, snow and soil samples

    Science.gov (United States)

    González-Toril, E.; Amils, R.; Delmas, R. J.; Petit, J.-R.; Komárek, J.; Elster, J.

    2009-01-01

    Four different communities and one culture of autotrophic microbial assemblages were obtained by incubation of samples collected from high elevation snow in the Alps (Mt. Blanc area) and the Andes (Nevado Illimani summit, Bolivia), from Antarctic aerosol (French station Dumont d'Urville) and a maritime Antarctic soil (King George Island, South Shetlands, Uruguay Station Artigas), in a minimal mineral (oligotrophic) media. Molecular analysis of more than 200 16S rRNA gene sequences showed that all cultured cells belong to the Bacteria domain. Phylogenetic comparison with the currently available rDNA database allowed sequences belonging to Proteobacteria Alpha-, Beta- and Gamma-proteobacteria), Actinobacteria and Bacteroidetes phyla to be identified. The Andes snow culture was the richest in bacterial diversity (eight microorganisms identified) and the marine Antarctic soil the poorest (only one). Snow samples from Col du Midi (Alps) and the Andes shared the highest number of identified microorganisms (Agrobacterium, Limnobacter, Aquiflexus and two uncultured Alphaproteobacteria clones). These two sampling sites also shared four sequences with the Antarctic aerosol sample (Limnobacter, Pseudonocardia and an uncultured Alphaproteobacteriaclone). The only microorganism identified in the Antarctica soil (Brevundimonas sp.) was also detected in the Antarctic aerosol. Most of the identified microorganisms had been detected previously in cold environments, marine sediments soils and rocks. Air current dispersal is the best model to explain the presence of very specific microorganisms, like those identified in this work, in environments very distant and very different from each other.

  4. Effects of dietary poly-β-hydroxybutyrate (PHB) on microbiota composition and the mTOR signaling pathway in the intestines of litopenaeus vannamei.

    Science.gov (United States)

    Duan, Yafei; Zhang, Yue; Dong, Hongbiao; Wang, Yun; Zhang, Jiasong

    2017-12-01

    Poly-β-hydroxybutyrate (PHB) is a natural polymer of the short chain fatty acid β-hydroxybutyrate, which acts as a microbial control agent. The mammalian target of the rapamycin (mTOR) signaling pathway plays a crucial role in intestine inflammation and epithelial morphogenesis. In this study, we examined the composition of intestine microbiota, and mTOR signaling-related gene expression in Pacific white shrimp Litopenaeus vannamei fed diets containing different levels of PHB: 0% (Control), 1% (PHB1), 3% (PHB3), and 5% (PHB5) (w/w) for 35 days. High-throughput sequencing analysis revealed that dietary PHB altered the composition and diversity of intestine microbiota, and that the microbiota diversity decreased with the increasing doses of PHB. Specifically, dietary PHB increased the relative abundance of Proteobacteria and Tenericutes in the PHB1 and PHB5 groups, respectively, and increased that of Gammaproteobacteria in the three PHB groups. Alternatively, PHB decreased Alphaproteobacteria in the PHB3 and PHB5 groups. At the genus level, dietary PHB increased the abundance of beneficial bacteria, such as Bacillus, Lactobacillus, Lactococcus, Clostridium, and Bdellovibrio. The relative mRNA expression levels of the mTOR signaling-related genes TOR, 4E-BP, eIF4E1α, and eIF4E2 all increased in the three PHB treatment groups. These results revealed that dietary PHB supplementation had a beneficial effect on intestine health of L. vannamei by modulating the composition of intestine microbiota and activating mTOR signaling.

  5. Substrate-dependent denitrification of abundant probe-defined denitrifying bacteria in activated sludge.

    Science.gov (United States)

    Morgan-Sagastume, Fernando; Nielsen, Jeppe Lund; Nielsen, Per Halkjaer

    2008-11-01

    The denitrification capacity of different phylogenetic bacterial groups was investigated on addition of different substrates in activated sludge from two nutrient-removal plants. Nitrate/nitrite consumption rates (CRs) were calculated from nitrate and nitrite biosensor, in situ measurements. The nitrate/nitrite CRs depended on the substrate added, and acetate alone or combined with other substrates yielded the highest rates (3-6 mg N gVSS(-1) h(-1)). The nitrate CRs were similar to the nitrite CRs for most substrates tested. The structure of the active denitrifying population was investigated using heterotrophic CO2 microautoradiography (HetCO2-MAR) and FISH. Probe-defined denitrifiers appeared as specialized substrate utilizers despite acetate being preferentially used by most of them. Azoarcus and Accumulibacter abundance in the two different sludges was related to differences in their substrate-specific nitrate/nitrite CRs. Aquaspirillum-related bacteria were the most abundant potential denitrifiers (c. 20% of biovolume); however, Accumulibacter (3-7%) and Azoarcus (2-13%) may have primarily driven denitrification by utilizing pyruvate, ethanol, and acetate. Activated sludge denitrification was potentially conducted by a diverse, versatile population including not only Betaproteobacteria (Aquaspirillum, Thauera, Accumulibacter, and Azoarcus) but also some Alphaproteobacteria and Gammaproteobacteria, as indicated by the assimilation of 14CO2 by these probe-defined groups with a complex substrate mixture as an electron donor and nitrite as an electron acceptor in HetCO2-MAR-FISH tests.

  6. Resolving colocalization of bacteria and metal(loid)s on plant root surfaces by combining fluorescence in situ hybridization (FISH) with multiple-energy micro-focused X-ray fluorescence (ME μXRF).

    Science.gov (United States)

    Honeker, Linnea K; Root, Robert A; Chorover, Jon; Maier, Raina M

    2016-12-01

    Metal(loid)-contamination of the environment due to anthropogenic activities is a global problem. Understanding the fate of contaminants requires elucidation of biotic and abiotic factors that influence metal(loid) speciation from molecular to field scales. Improved methods are needed to assess micro-scale processes, such as those occurring at biogeochemical interfaces between plant tissues, microbial cells, and metal(loid)s. Here we present an advanced method that combines fluorescence in situ hybridization (FISH) with synchrotron-based multiple-energy micro-focused X-ray fluorescence microprobe imaging (ME μXRF) to examine colocalization of bacteria and metal(loid)s on root surfaces of plants used to phytostabilize metalliferous mine tailings. Bacteria were visualized on a small root section using SytoBC nucleic acid stain and FISH probes targeting the domain Bacteria and a specific group (Alphaproteobacteria, Gammaproteobacteria, or Actinobacteria). The same root region was then analyzed for elemental distribution and metal(loid) speciation of As and Fe using ME μXRF. The FISH and ME μXRF images were aligned using ImageJ software to correlate microbiological and geochemical results. Results from quantitative analysis of colocalization show a significantly higher fraction of As colocalized with Fe-oxide plaques on the root surfaces (fraction of overlap 0.49±0.19) than to bacteria (0.072±0.052) (proots, metal(loid)s and microbes, information that should lead to improved mechanistic models of metal(loid) speciation and fate. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Enhancing the biodegradation of oil in sandy sediments with choline: A naturally methylated nitrogen compound

    International Nuclear Information System (INIS)

    Mortazavi, Behzad; Horel, Agota; Anders, Jennifer S.; Mirjafari, Arsalan; Beazley, Melanie J.; Sobecky, Patricia A.

    2013-01-01

    We investigated how additions of choline, a naturally occurring methylated nitrogen-containing compound, accelerated hydrocarbon degradation in sandy sediments contaminated with moderately weathered crude oil (4000 mg kg −1 sediment). Addition of lauroylcholine chloride (LCC) and tricholine citrate (TCC) to oil contaminated sediments resulted in 1.6 times higher hydrocarbon degradation rates compared to treatments without added choline derivatives. However, the degradation rate constant for the oil contaminated sediments amended with LCC was similar to that in contaminated sediments amended with inorganic nitrogen, phosphorus, and glucose. Additions of LLC and TCC to sediments containing extensively weathered oil also resulted in enhanced mineralization rates. Cultivation-free 16S rRNA analysis revealed the presence of an extant microbial community with clones closely related to known hydrocarbon degraders from the Gammaproteobacteria, Alphaproteobacteria, and Firmicutes phyla. The results demonstrate that the addition of minimal amounts of organic compounds to oil contaminated sediments enhances the degradation of hydrocarbons. -- Highlights: •Aerobic degradation of weathered crude oil in sandy sediments was determined. •The effect of input of choline on degradation rates was determined. •16S rRNA clone library analyses were used to examine the microbial phylogeny. •The bacterial community was consisted of clones related to hydrocarbon degraders. •Hydrocarbon degradation in sandy sediments was accelerated by addition of choline. -- Choline, a naturally occurring methylated nitrogen-containing compound, accelerated hydrocarbon degradation in sandy sediments by an extant microbial community

  8. Fractionation of Nitrogen and Oxygen Isotopes and Roles of Bacteria during Denitrification

    Science.gov (United States)

    Kang, J.; Buyanjargal, A.; Jeen, S. W.

    2017-12-01

    Nitrate in groundwater can cause health and environmental problems when not properly treated. The purpose of this study was to develop a treatment method for nitrate in groundwater using organic carbon-based reactive mixtures (i.e., wood chips and gravel) through column experiments and to evaluate reaction mechanisms responsible for the treatment. The column experiments were operated for a total of 19 months. The results from the geochemical analyses for the experiments suggest that cultures of denitrifying bacteria used organic carbon while utilizing nitrate as their electron acceptor via denitrification process. Proteobacteria was the most abundant phylum in all samples, accounting for 45.7% of the bacterial reads, followed by Firmicutes (22.6%) and Chlorobi (10.6%). Bacilli, Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, and Actinobacteria_c consisted of 32, 30, 23, 11, and 2% of denitrifying bacteria class. The denitrification process caused fractionation of nitrogen and oxygen isotopes of nitrate while nitrate concentration decreased. When fitted to the Rayleigh's fractionation model, enrichment factors (ɛ) were 11.5‰ and 5.6‰ for 15N and 18O isotopes, respectively. Previous studies suggested that nitrogen isotope enrichment factors of denitrification are within the range of 4.7 to 40‰ and oxygen isotopic enrichment factors are between 8 and 18.3‰. This study shows that nitrate in groundwater can be effectively treated using passive treatment systems, such as permeable reactive barriers (PRBs), and denitrificaton is the dominant process reponsible for the removal of nitrate.

  9. Effects of solar ultraviolet radiation (UVR) on molecular diversity of plankton from the Chubut rivers estuary

    International Nuclear Information System (INIS)

    Manrique, J.M.; Halac, S.; Calvo, A.Y.; Villafane, V.; Jones, L.R.; Helbling, W.E.

    2010-01-01

    Within the framework of a project designed to evaluate the impact of UVR upon estuarine plankton, we present here a molecular analysis of plankton diversity. Water samples were exposed to three radiation treatments (PAR, PAR + UV-A and PAR + UV-A + UV-B) in microcosms for ca 10 days during the Austral summer. At the beginning (t 0 ) and at the end of the experiment samples were filtered 0 through 20, 10, 5 and 0.22 μm pore sizes. The DNA amount retained in each filter indicated that most of the plankton biomass was in the 0.22-5 μm fraction at t0. In contrast, at the end of the experiment this proportion changed according to the radiation treatment and big cells (> 20 μm) dominated. An rDNA library was obtained from the DNA corresponding to the 0.22-5 μm fraction. There was no relationship between treatments and the number and frequency of restriction genotypes. Analyses of 27 clones fraction from t 0 indicated the presence of three genera of Rhodobacteraceae, one genus of Rhodospirillaceae, one SAR11 genus, one genus of Bacillaceae, an unclassified sequences of Alphaproteobacteria, Actinobacteria and Rhodospirillaceae. Also, there were six sequences similar to Ostreococcus tauri (Mamiellales). Even though the sequence analyses are still ongoing, our initial data suggest a big impact of UV-B radiation in the amount and composition of the plankton community towards big cells. (authors)

  10. Comparative single-cell genomics reveals potential ecological niches for the freshwater acI Actinobacteria lineage.

    Science.gov (United States)

    Ghylin, Trevor W; Garcia, Sarahi L; Moya, Francisco; Oyserman, Ben O; Schwientek, Patrick; Forest, Katrina T; Mutschler, James; Dwulit-Smith, Jeffrey; Chan, Leong-Keat; Martinez-Garcia, Manuel; Sczyrba, Alexander; Stepanauskas, Ramunas; Grossart, Hans-Peter; Woyke, Tanja; Warnecke, Falk; Malmstrom, Rex; Bertilsson, Stefan; McMahon, Katherine D

    2014-12-01

    Members of the acI lineage of Actinobacteria are the most abundant microorganisms in most freshwater lakes; however, our understanding of the keys to their success and their role in carbon and nutrient cycling in freshwater systems has been hampered by the lack of pure cultures and genomes. We obtained draft genome assemblies from 11 single cells representing three acI tribes (acI-A1, acI-A7, acI-B1) from four temperate lakes in the United States and Europe. Comparative analysis of acI SAGs and other available freshwater bacterial genomes showed that acI has more gene content directed toward carbohydrate acquisition as compared to Polynucleobacter and LD12 Alphaproteobacteria, which seem to specialize more on carboxylic acids. The acI genomes contain actinorhodopsin as well as some genes involved in anaplerotic carbon fixation indicating the capacity to supplement their known heterotrophic lifestyle. Genome-level differences between the acI-A and acI-B clades suggest specialization at the clade level for carbon substrate acquisition. Overall, the acI genomes appear to be highly streamlined versions of Actinobacteria that include some genes allowing it to take advantage of sunlight and N-rich organic compounds such as polyamines, di- and oligopeptides, branched-chain amino acids and cyanophycin. This work significantly expands the known metabolic potential of the cosmopolitan freshwater acI lineage and its ecological and genetic traits.

  11. Bacterial flavin-containing monooxygenase is trimethylamine monooxygenase.

    Science.gov (United States)

    Chen, Yin; Patel, Nisha A; Crombie, Andrew; Scrivens, James H; Murrell, J Colin

    2011-10-25

    Flavin-containing monooxygenases (FMOs) are one of the most important monooxygenase systems in Eukaryotes and have many important physiological functions. FMOs have also been found in bacteria; however, their physiological function is not known. Here, we report the identification and characterization of trimethylamine (TMA) monooxygenase, termed Tmm, from Methylocella silvestris, using a combination of proteomic, biochemical, and genetic approaches. This bacterial FMO contains the FMO sequence motif (FXGXXXHXXXF/Y) and typical flavin adenine dinucleotide and nicotinamide adenine dinucleotide phosphate-binding domains. The enzyme was highly expressed in TMA-grown M. silvestris and absent during growth on methanol. The gene, tmm, was expressed in Escherichia coli, and the purified recombinant protein had high Tmm activity. Mutagenesis of this gene abolished the ability of M. silvestris to grow on TMA as a sole carbon and energy source. Close homologs of tmm occur in many Alphaproteobacteria, in particular Rhodobacteraceae (marine Roseobacter clade, MRC) and the marine SAR11 clade (Pelagibacter ubique). We show that the ability of MRC to use TMA as a sole carbon and/or nitrogen source is directly linked to the presence of tmm in the genomes, and purified Tmm of MRC and SAR11 from recombinant E. coli showed Tmm activities. The tmm gene is highly abundant in the metagenomes of the Global Ocean Sampling expedition, and we estimate that 20% of the bacteria in the surface ocean contain tmm. Taken together, our results suggest that Tmm, a bacterial FMO, plays an important yet overlooked role in the global carbon and nitrogen cycles.

  12. Shift in the microbial ecology of a hospital hot water system following the introduction of an on-site monochloramine disinfection system.

    Science.gov (United States)

    Baron, Julianne L; Vikram, Amit; Duda, Scott; Stout, Janet E; Bibby, Kyle

    2014-01-01

    Drinking water distribution systems, including premise plumbing, contain a diverse microbiological community that may include opportunistic pathogens. On-site supplemental disinfection systems have been proposed as a control method for opportunistic pathogens in premise plumbing. The majority of on-site disinfection systems to date have been installed in hospitals due to the high concentration of opportunistic pathogen susceptible occupants. The installation of on-site supplemental disinfection systems in hospitals allows for evaluation of the impact of on-site disinfection systems on drinking water system microbial ecology prior to widespread application. This study evaluated the impact of supplemental monochloramine on the microbial ecology of a hospital's hot water system. Samples were taken three months and immediately prior to monochloramine treatment and monthly for the first six months of treatment, and all samples were subjected to high throughput Illumina 16S rRNA region sequencing. The microbial community composition of monochloramine treated samples was dramatically different than the baseline months. There was an immediate shift towards decreased relative abundance of Betaproteobacteria, and increased relative abundance of Firmicutes, Alphaproteobacteria, Gammaproteobacteria, Cyanobacteria and Actinobacteria. Following treatment, microbial populations grouped by sampling location rather than sampling time. Over the course of treatment the relative abundance of certain genera containing opportunistic pathogens and genera containing denitrifying bacteria increased. The results demonstrate the driving influence of supplemental disinfection on premise plumbing microbial ecology and suggest the value of further investigation into the overall effects of premise plumbing disinfection strategies on microbial ecology and not solely specific target microorganisms.

  13. Elevated seawater temperature disrupts the microbiome of an ecologically important bioeroding sponge.

    Science.gov (United States)

    Ramsby, Blake D; Hoogenboom, Mia O; Whalan, Steve; Webster, Nicole S

    2018-04-01

    Bioeroding sponges break down calcium carbonate substratum, including coral skeleton, and their capacity for reef erosion is expected to increase in warmer and more acidic oceans. However, elevated temperature can disrupt the functionally important microbial symbionts of some sponge species, often with adverse consequences for host health. Here, we provide the first detailed description of the microbial community of the bioeroding sponge Cliona orientalis and assess how the community responds to seawater temperatures incrementally increasing from 23°C to 32°C. The microbiome, identified using 16S rRNA gene sequencing, was dominated by Alphaproteobacteria, including a single operational taxonomic unit (OTU; Rhodothalassium sp.) that represented 21% of all sequences. The "core" microbial community (taxa present in >80% of samples) included putative nitrogen fixers and ammonia oxidizers, suggesting that symbiotic nitrogen metabolism may be a key function of the C. orientalis holobiont. The C. orientalis microbiome was generally stable at temperatures up to 27°C; however, a community shift occurred at 29°C, including changes in the relative abundance and turnover of microbial OTUs. Notably, this microbial shift occurred at a lower temperature than the 32°C threshold that induced sponge bleaching, indicating that changes in the microbiome may play a role in the destabilization of the C. orientalis holobiont. C. orientalis failed to regain Symbiodinium or restore its baseline microbial community following bleaching, suggesting that the sponge has limited ability to recover from extreme thermal exposure, at least under aquarium conditions. © 2018 John Wiley & Sons Ltd.

  14. Prokaryotic caspase homologs: phylogenetic patterns and functional characteristics reveal considerable diversity.

    Directory of Open Access Journals (Sweden)

    Johannes Asplund-Samuelsson

    Full Text Available Caspases accomplish initiation and execution of apoptosis, a programmed cell death process specific to metazoans. The existence of prokaryotic caspase homologs, termed metacaspases, has been known for slightly more than a decade. Despite their potential connection to the evolution of programmed cell death in eukaryotes, the phylogenetic distribution and functions of these prokaryotic metacaspase sequences are largely uncharted, while a few experiments imply involvement in programmed cell death. Aiming at providing a more detailed picture of prokaryotic caspase homologs, we applied a computational approach based on Hidden Markov Model search profiles to identify and functionally characterize putative metacaspases in bacterial and archaeal genomes. Out of the total of 1463 analyzed genomes, merely 267 (18% were identified to contain putative metacaspases, but their taxonomic distribution included most prokaryotic phyla and a few archaea (Euryarchaeota. Metacaspases were particularly abundant in Alphaproteobacteria, Deltaproteobacteria and Cyanobacteria, which harbor many morphologically and developmentally complex organisms, and a distinct correlation was found between abundance and phenotypic complexity in Cyanobacteria. Notably, Bacillus subtilis and Escherichia coli, known to undergo genetically regulated autolysis, lacked metacaspases. Pfam domain architecture analysis combined with operon identification revealed rich and varied configurations among the metacaspase sequences. These imply roles in programmed cell death, but also e.g. in signaling, various enzymatic activities and protein modification. Together our data show a wide and scattered distribution of caspase homologs in prokaryotes with structurally and functionally diverse sub-groups, and with a potentially intriguing evolutionary role. These features will help delineate future characterizations of death pathways in prokaryotes.

  15. Microbial communities of the Lemon Creek Glacier show subtle structural variation yet stable phylogenetic composition over space and time

    Directory of Open Access Journals (Sweden)

    Cody Springer Sheik

    2015-05-01

    Full Text Available Glaciers are geologically important yet transient ecosystems that support diverse, biogeochemically significant microbial communities. During the melt season glaciers undergo dramatic physical, geochemical and biological changes that exert great influence on downstream biogeochemical cycles. Thus, we sought to understand the temporal melt-season dynamics of microbial communities and associated geochemistry at the terminus of Lemon Creek Glacier (LCG in coastal southern Alaska. Due to late season snowfall, sampling of LCG occurred in three interconnected areas: proglacial Lake Thomas, the lower glacial outflow stream and the glacier’s terminus. LCG associated microbial communities were phylogenetically diverse and varied by sampling location. However, Betaproteobacteria, Alphaproteobacteria and Bacteroidetes dominated communities at all sampling locations. Strict anaerobic groups such as methanogens, SR1, and OP11 were also recovered from glacier outflows, indicating anoxic conditions in at least some portions of the LCG subglacial environment. Microbial community structure was significantly correlated with sampling location and sodium concentrations. Microbial communities sampled from terminus outflow waters exhibited day-to-day fluctuation in taxonomy and phylogenetic similarity. However, these communities were not significantly different from randomly constructed communities from all three sites. These results indicate that glacial outflows share a large proportion of phylogenetic overlap with downstream environments and that the observed significant shifts in community structure are driven by changes in relative abundance of different taxa, and not complete restructuring of communities. We conclude that LCG glacial discharge hosts a diverse and relatively stable microbiome that shifts at fine taxonomic scales in response to geochemistry and likely water residence time.

  16. Carbon, metals and grain size correlate with bacterial community composition in sediments of a high arsenic aquifer

    Directory of Open Access Journals (Sweden)

    Teresa eLegg

    2012-03-01

    Full Text Available Bacterial communities can exert significant influence on the biogeochemical cycling of arsenic (As. This has globally important implications since As toxicity in drinking water affects the health of millions of people worldwide, including in the Ganges-Brahmaputra Delta region of Bangladesh where geogenic groundwater arsenic concentrations can be more than 10 times the World Health Organization’s limit. Thus, the goal of this research was to investigate patterns in bacterial community composition across environmental gradients in an aquifer with elevated groundwater As concentrations in Araihazar, Bangladesh. We characterized the bacterial community by pyrosequencing 16S rRNA genes from aquifer sediment samples collected at three locations along a groundwater flowpath, at a range of depths between 1.5 and 15 m. We identified significant shifts in bacterial community composition along the groundwater flowpath in the aquifer. In addition, we found that bacterial community structure was significantly related to sediment grain size, and sediment carbon (C, manganese (Mn, and iron (Fe concentrations. Deltaproteobacteria and Chloroflexi were more abundant in silty sediments with higher concentrations of C, Fe, and Mn. By contrast, Alphaproteobacteria and Betaproteobacteria were more abundant in sediments with higher concentrations of sand and Si, and lower concentrations of C and metals. Based on the phylogenetic affiliations of these taxa, these results may indicate a shift to more Fe-, Mn-, and humic substance- reducers in the high C and metal sediments. It is well-documented that C, Mn and Fe may influence the mobility of groundwater arsenic, and it is intriguing that these constituents may also structure the bacterial community.

  17. Metagenomic Insights Into the Microbial Community and Nutrient Cycling in the Western Subarctic Pacific Ocean.

    Science.gov (United States)

    Li, Yingdong; Jing, Hongmei; Xia, Xiaomin; Cheung, Shunyan; Suzuki, Koji; Liu, Hongbin

    2018-01-01

    The composition and metabolic functions of prokaryotic communities in the western subarctic Pacific (WSP), where strong mixing of waters from the Sea of Okhotsk and the East Kamchatka Current result in transfer to the Oyashio Current, were investigated using a shotgun metagenome sequencing approach. Functional metabolic genes related to nutrient cycling of nitrogen, sulfur, carbohydrates, iron and amino acids were differently distributed between the surface and deep waters of the WSP. Genes related to nitrogen metabolism were mainly found in deep waters, where Thaumarchaeaota, Sphingomonadales , and Pseudomonadales were closely associated and performing important roles in ammonia oxidation, assimilatory nitrate reduction, and dissimilatory nitrate reduction processes, respectively. In addition, orders affiliated to Spingobacteria and Alphaproteobacteria were crucial for sulfate reduction and abundant at 3000 m, whereas orders affiliated to Gammaproteobacteria , which harbored the most sulfate reduction genes, were abundant at 1000 m. Additionally, when compared with the East Kamchatka Current, the prokaryotes in the Oyashio Current were likely to consume more energy for synthesizing cellular components. Also, genes encoding iron transport and siderophore biosynthesis proteins were in low abundance, indicating that the iron was not a limiting factor in the Oyashio current. In contrast, in the East Kamchatka Current, prokaryotes were more likely to directly utilize the amino acids and absorb iron from the environment. Overall, our data indicated that the transformation from the East Kamchatka Current to the Oyashio Current reshapes not only the composition of microbial community, but also the function of the metabolic processes. These results extended our knowledge of the microbial composition and potential metabolism in the WSP.

  18. Photosynthesis within Mars' volcanic craters?: Insights from Cerro Negro Volcano, Nicaragua

    Science.gov (United States)

    Rogers, K. L.; Hynek, B. M.; McCollom, T. M.

    2011-12-01

    Discrete locales of sulfate-rich bedrocks exist on Mars and in many cases represent the products of acid-sulfate alteration of martian basalt. In some places, the products have been attributed to hydrothermal processes from local volcanism. In order to evaluate the habitability of such an environment, we are investigating the geochemical and biological composition of active fumaroles at Cerro Negro Volcano, Nicaragua, where fresh basaltic cinders similar in composition to martian basalts are altered by acidic, sulfur-bearing gases. Temperatures at active fumaroles can reach as high as 400°C and the pH of the steam ranges from Cyanobacteria and Ktedonobacteria, however Actinobacteria, alpha-Proteobacteria and Acidobacteria were also identified. Many of the cyanobacterial sequences were similar to those of the eukaryotic Cyanidiales, red algae that inhabit acidic, geothermal environments. Many of sequences related to Ktedonobacteria and Actinobacteria have also been found in acid mine drainage environments. The Archaeal community was far less diverse, with sequences matching those of unclassified Desulfurococcales and unclassified Thermoprotei. These sequences were more distant from isolated species than the bacterial sequences. Similar bacterial and archaeal communities have been found in hot spring environments in Yellowstone National Park, Greenland, Iceland, New Zealand and Costa Rica. Some of Mars' volcanoes were active for billions of years and by analogy to Cerro Negro, may have hosted photosynthetic organisms that could have been preserved in alteration mineral assemblages. Even on a generally cold and dry Mars, volcanic craters likely provided long-lived warm and wet conditions and should be a key target for future exploration assessing habitability.

  19. Bacterioplankton Community Dynamics and Nutrient Availability in a Shallow Well Mixed Estuary of the Northern Gulf of Mexico.

    Science.gov (United States)

    Hoch, M. P.

    2016-02-01

    Sabine Lake Estuary is a shallow, well mixed, tidal lagoon of the Northern Gulf of Mexico. This study defines the bacterioplankton community composition and factors that may influence its variation in Sabine Lake Estuary. Twenty physicochemical parameters, phytoplankton photopigments, and bacterial 16SrDNA sequences were analyzed seasonally from twelve sites ranging from the inflows of Sabine and Neches Rivers to the Sabine Pass outflow. Photopigments were used to estimate phytoplankton groups via CHEMTAX, and bacterioplankton 16SrDNA sequences of 97% similarity were quantified and taxa identified. Nutrient availability experiments were conducted on bacterioplankton. Notable seasonal differences were seen in six of the ten most common (>3% of total sequences) classes of bacterioplankton. Canonical correspondence analysis (CCA) of common classes was used to explore physiochemical parameters and phytoplankton groups influencing variation in the bacterioplankton. Alphaproteobacteria were most abundant throughout the year. Opitutae, Actinobacteria, Sphingobacteria, and Beta-proteobacteria were strongly influenced by conditions with higher TDN, DOC, turbidity, and Chlorophytes during winter when high river discharges reduced salinity. Planctomycetacia were most prevalent during spring and coincide with predominance of Cryptophytes. In summer and fall the aforementioned classes decline, and there is an increase in Synechococcophycideae. Nitrogen was least available to bacterioplankton during summer and fall. Clearer, warmer and more saline conditions with lower DOC reflect tidal movement of seawater into the estuary when river discharges were low, conditions favorable for Synechococcophycidea. Seasonal fluctuations in physicochemical conditions and certain phytoplankton groups influence the variation in the bacterioplankton community in Sabine Lake Estuary.

  20. Aerobic Biofilms Grown from Athabasca Watershed Sediments Are Inhibited by Increasing Concentrations of Bituminous Compounds

    Science.gov (United States)

    Lawrence, John R.; Sanschagrin, Sylvie; Roy, Julie L.; Swerhone, George D. W.; Korber, Darren R.; Greer, Charles W.

    2013-01-01

    Sediments from the Athabasca River and its tributaries naturally contain bitumen at various concentrations, but the impacts of this variation on the ecology of the river are unknown. Here, we used controlled rotating biofilm reactors in which we recirculated diluted sediments containing various concentrations of bituminous compounds taken from the Athabasca River and three tributaries. Biofilms exposed to sediments having low and high concentrations of bituminous compounds were compared. The latter were 29% thinner, had a different extracellular polysaccharide composition, 67% less bacterial biomass per μm2, 68% less cyanobacterial biomass per μm2, 64% less algal biomass per μm2, 13% fewer protozoa per cm2, were 21% less productive, and had a 33% reduced content in chlorophyll a per mm2 and a 20% reduction in the expression of photosynthetic genes, but they had a 23% increase in the expression of aromatic hydrocarbon degradation genes. Within the Bacteria, differences in community composition were also observed, with relatively more Alphaproteobacteria and Betaproteobacteria and less Cyanobacteria, Bacteroidetes, and Firmicutes in biofilms exposed to high concentrations of bituminous compounds. Altogether, our results suggest that biofilms that develop in the presence of higher concentrations of bituminous compounds are less productive and have lower biomass, linked to a decrease in the activities and abundance of photosynthetic organisms likely due to inhibitory effects. However, within this general inhibition, some specific microbial taxa and functional genes are stimulated because they are less sensitive to the inhibitory effects of bituminous compounds or can degrade and utilize some bitumen-associated compounds. PMID:24056457

  1. Sediment Microbial Communities Influenced by Cool Hydrothermal Fluid Migration

    Directory of Open Access Journals (Sweden)

    Laura A. Zinke

    2018-06-01

    Full Text Available Cool hydrothermal systems (CHSs are prevalent across the seafloor and discharge fluid volumes that rival oceanic input from rivers, yet the microbial ecology of these systems are poorly constrained. The Dorado Outcrop on the ridge flank of the Cocos Plate in the northeastern tropical Pacific Ocean is the first confirmed CHS, discharging minimally altered <15°C fluid from the shallow lithosphere through diffuse venting and seepage. In this paper, we characterize the resident sediment microbial communities influenced by cool hydrothermal advection, which is evident from nitrate and oxygen concentrations. 16S rRNA gene sequencing revealed that Thaumarchaea, Proteobacteria, and Planctomycetes were the most abundant phyla in all sediments across the system regardless of influence from seepage. Members of the Thaumarchaeota (Marine Group I, Alphaproteobacteria (Rhodospirillales, Nitrospirae, Nitrospina, Acidobacteria, and Gemmatimonadetes were enriched in the sediments influenced by CHS advection. Of the various geochemical parameters investigated, nitrate concentrations correlated best with microbial community structure, indicating structuring based on seepage of nitrate-rich fluids. A comparison of microbial communities from hydrothermal sediments, seafloor basalts, and local seawater at Dorado Outcrop showed differences that highlight the distinct niche space in CHS. Sediment microbial communities from Dorado Outcrop differ from those at previously characterized, warmer CHS sediment, but are similar to deep-sea sediment habitats with surficial ferromanganese nodules, such as the Clarion Clipperton Zone. We conclude that cool hydrothermal venting at seafloor outcrops can alter the local sedimentary oxidation–reduction pathways, which in turn influences the microbial communities within the fluid discharge affected sediment.

  2. Turbulence-driven shifts in holobionts and planktonic microbial assemblages in St Peter & St Paul Archipelago, Mid-Atlantic Ridge, Brazil

    Directory of Open Access Journals (Sweden)

    Ana Paula B. Moreira

    2015-10-01

    Full Text Available The aim of this study was to investigate the planktonic and the holobiont Madracis decactis (Scleractinia microbial diversity along a turbulence-driven upwelling event, in the world´s most isolated tropical island, St Peter and St Paul Archipelago (SPSPA, Brazil. Twenty one metagenomes were obtained for seawater (N=12, healthy and bleached holobionts (N=9 before, during and after the episode of high seawater turbulence and upwelling. Microbial assemblages differed between low turbulence-low nutrient (LLR and high-turbulence-high nutrient (HHR regimes in seawater. During LLR there was a balance between autotrophy and heterotrophy in the bacterioplankton and the ratio cyanobacteria:heterotrophs ~1 (C:H. Prochlorales, unclassified Alphaproteobacteria and Euryarchaeota were the dominant bacteria and archaea, respectively. Basic metabolisms and cyanobacterial phages characterized the LLR. During HHR C:H << 0.05 and Gammaproteobacteria approximated 50% of the most abundant organisms in seawater. Alteromonadales, Oceanospirillales and Thaumarchaeota were the dominant bacteria and archaea. Prevailing metabolisms were related to membrane transport, virulence, disease and defense. Phages targeting heterotrophs and virulence factor genes characterized HHR. Shifts were also observed in coral microbiomes, according to both annotation–indepent and -dependent methods. HHR bleached corals metagenomes were the most dissimilar and could be distinguished by their di- and tetranucleotides frequencies, Iron Acquision metabolism and virulence genes, such as V. cholerae-related virulence factors. The healthy coral holobiont was shown to be less sensitive to transient seawater-related perturbations than the diseased animals. A conceptual model for the turbulence-induced shifts is put forward.

  3. Extraordinary proliferation of microorganisms in aposymbiotic pea aphids, Acyrthosiphon pisum.

    Science.gov (United States)

    Nakabachi, Atsushi; Ishikawa, Hajime; Kudo, Toshiaki

    2003-03-01

    Aposymbiotic pea aphids, which were deprived of their intracellular symbiotic bacterium, Buchnera, exhibit growth retardation and no fecundity. High performance liquid chromatographic (HPLC) analysis revealed that these aposymbiotic aphids, when reared on broad bean plants, accumulated a large amount of histamine. To assess the possibility of extraordinary proliferation of microorganisms other than Buchnera, we enumerated eubacteria and fungi in aphids using the real-time quantitative PCR method that targets genes encoding small-subunit rRNAs. The result showed that these microorganisms were extremely abundant in the aposymbiotic aphids reared on plants. Microbial communities in aposymbiotic aphids were further profiled by phylogenetic analysis of small-subunit rDNAs. Of 172 nonchimeric sequences of fungal 18S rDNAs, 138 (80.2%) belonged to the phylum Ascomycota. Among them, 21 clustered within a monophyletic group consisting of insect-pathogenic fungi and yeast-like symbionts of homopteran insects. Thirty-one (18.0%), two (1.2%), and one (0.6%) clones were clustered within the Basidiomycota, Zygomycota, and Oomycota, respectively. Of 167 nonchimeric sequences of eubacterial 16S rDNAs, 84 (50.3%) belonged to the gamma-subdivision of Proteobacteria to which most primary endosymbionts of insects and prolific histamine producers belong. Forty (24.0%), 25 (15.0%), 10 (6.0%), and five (3.0%) clones were clustered within alpha-Proteobacteria, Cytophaga-Flavobacterium-Bacteroides (CFB) group, Actinobacteria, and beta-Proteobacteria, respectively. Three had no phylogenetic association with known taxonomic divisions. None of the sequences studied in this study coincided exactly with those deposited in GenBank.

  4. From the Surface to the Deep-Sea: Bacterial Distributions across Polymetallic Nodule Fields in the Clarion-Clipperton Zone of the Pacific Ocean.

    Science.gov (United States)

    Lindh, Markus V; Maillot, Brianne M; Shulse, Christine N; Gooday, Andrew J; Amon, Diva J; Smith, Craig R; Church, Matthew J

    2017-01-01

    Marine bacteria regulate fluxes of matter and energy essential for pelagic and benthic organisms and may also be involved in the formation and maintenance of commercially valuable abyssal polymetallic nodules. Future mining of these nodule fields is predicted to have substantial effects on biodiversity and physicochemical conditions in mined areas. Yet, the identity and distributions of bacterial populations in deep-sea sediments and associated polymetallic nodules has received relatively little attention. We examined bacterial communities using high-throughput sequencing of bacterial 16S rRNA gene fragments from samples collected in the water column, sediment, and polymetallic nodules in the Pacific Ocean (bottom depth ≥4,000 m) in the eastern Clarion-Clipperton Zone. Operational taxonomic units (OTUs; defined at 99% 16S rRNA gene identity) affiliated with JTB255 (Gammaproteobacteria) and Rhodospirillaceae (Alphaproteobacteria) had higher relative abundances in the nodule and sediment habitats compared to the water column. Rhodobiaceae family and Vibrio OTUs had higher relative abundance in nodule samples, but were less abundant in sediment and water column samples. Bacterial communities in sediments and associated with nodules were generally similar; however, 5,861 and 6,827 OTUs found in the water column were retrieved from sediment and nodule habitats, respectively. Cyanobacterial OTUs clustering among Prochlorococcus and Synechococcus were detected in both sediments and nodules, with greater representation among nodule samples. Such results suggest that vertical export of typically abundant photic-zone microbes may be an important process in delivery of water column microorganisms to abyssal habitats, potentially influencing the structure and function of communities in polymetallic nodule fields.

  5. Simultaneous selection of soil electroactive bacterial communities associated to anode and cathode in a two-chamber Microbial Fuel Cell

    Science.gov (United States)

    Chiellini, Carolina; Bacci, Giovanni; Fani, Renato; Mocali, Stefano

    2016-04-01

    Different bacteria have evolved strategies to transfer electrons over their cell surface to (or from) their extracellular environment. This electron transfer enables the use of these bacteria in bioelectrochemical systems (BES) such as Microbial Fuel Cells (MFCs). In MFC research the biological reactions at the cathode have long been a secondary point of interest. However, bacterial biocathodes in MFCs represent a potential advantage compared to traditional cathodes, for both their low costs and their low impact on the environment. The main challenge in biocathode set-up is represented by the selection of a bacterial community able to efficiently accept electrons from the electrode, starting from an environmental matrix. In this work, a constant voltage was supplied on a two-chamber MFC filled up with soil over three weeks in order to simultaneously select an electron donor bacterial biomass on the anode and an electron acceptor biomass on the cathode, starting from the same soil. Next Generation Sequencing (NGS) analysis was performed to characterize the bacterial community of the initial soil, in the anode, in the cathode and in the control chamber not supplied with any voltage. Results highlighted that both the MFC conditions and the voltage supply affected the soil bacterial communities, providing a selection of different bacterial groups preferentially associated to the anode (Betaproteobacteria, Bacilli and Clostridia) and to the cathode (Actinobacteria and Alphaproteobacteria). These results confirmed that several electroactive bacteria are naturally present within a top soil and, moreover, different soil bacterial genera could provide different electrical properties.

  6. Bacterial PerO Permeases Transport Sulfate and Related Oxyanions.

    Science.gov (United States)

    Hoffmann, Marie-Christine; Pfänder, Yvonne; Tintel, Marc; Masepohl, Bernd

    2017-07-15

    Rhodobacter capsulatus synthesizes the high-affinity ABC transporters CysTWA and ModABC to specifically import the chemically related oxyanions sulfate and molybdate, respectively. In addition, R. capsulatus has the low-affinity permease PerO acting as a general oxyanion transporter, whose elimination increases tolerance to molybdate and tungstate. Although PerO-like permeases are widespread in bacteria, their function has not been examined in any other species to date. Here, we present evidence that PerO permeases from the alphaproteobacteria Agrobacterium tumefaciens , Dinoroseobacter shibae , Rhodobacter sphaeroides , and Sinorhizobium meliloti and the gammaproteobacterium Pseudomonas stutzeri functionally substitute for R. capsulatus PerO in sulfate uptake and sulfate-dependent growth, as shown by assimilation of radioactively labeled sulfate and heterologous complementation. Disruption of perO genes in A. tumefaciens , R. sphaeroides , and S. meliloti increased tolerance to tungstate and, in the case of R. sphaeroides , to molybdate, suggesting that heterometal oxyanions are common substrates of PerO permeases. This study supports the view that bacterial PerO permeases typically transport sulfate and related oxyanions and, hence, form a functionally conserved permease family. IMPORTANCE Despite the widespread distribution of PerO-like permeases in bacteria, our knowledge about PerO function until now was limited to one species, Rhodobacter capsulatus In this study, we showed that PerO proteins from diverse bacteria are functionally similar to the R. capsulatus prototype, suggesting that PerO permeases form a conserved family whose members transport sulfate and related oxyanions. Copyright © 2017 American Society for Microbiology.

  7. Diverse Genetic Regulon of the Virulence-Associated Transcriptional Regulator MucR in Brucella abortus 2308

    Science.gov (United States)

    Caswell, Clayton C.; Elhassanny, Ahmed E. M.; Planchin, Emilie E.; Roux, Christelle M.; Weeks-Gorospe, Jenni N.; Ficht, Thomas A.; Dunman, Paul M.

    2013-01-01

    The Ros-type regulator MucR is one of the few transcriptional regulators that have been linked to virulence in Brucella. Here, we show that a Brucella abortus in-frame mucR deletion strain exhibits a pronounced growth defect during in vitro cultivation and, more importantly, that the mucR mutant is attenuated in cultured macrophages and in mice. The genetic basis for the attenuation of Brucella mucR mutants has not been defined previously, but in the present study the genes regulated by MucR in B. abortus have been elucidated using microarray analysis and real-time reverse transcription-PCR (RT-PCR). In B. abortus 2308, MucR regulates a wide variety of genes whose products may function in establishing and maintaining cell envelope integrity, polysaccharide biosynthesis, iron homeostasis, genome plasticity, and transcriptional regulation. Particularly notable among the MucR-regulated genes identified is arsR6 (nolR), which encodes a transcriptional regulator previously linked to virulence in Brucella melitensis 16 M. Importantly, electrophoretic mobility shift assays (EMSAs) determined that a recombinant MucR protein binds directly to the promoter regions of several genes repressed by MucR (including arsR6 [nolR]), and in Brucella, as in other alphaproteobacteria, MucR binds to its own promoter to repress expression of the gene that encodes it. Overall, these studies have uncovered the diverse genetic regulon of MucR in Brucella, and in doing so this work has begun to define the MucR-controlled genetic circuitry whose misregulation contributes to the virulence defect of Brucella mucR mutants. PMID:23319565

  8. Host-Specificity and Dynamics in Bacterial Communities Associated with Bloom-Forming Freshwater Phytoplankton

    Science.gov (United States)

    Bagatini, Inessa Lacativa; Eiler, Alexander; Bertilsson, Stefan; Klaveness, Dag; Tessarolli, Letícia Piton; Vieira, Armando Augusto Henriques

    2014-01-01

    Many freshwater phytoplankton species have the potential to form transient nuisance blooms that affect water quality and other aquatic biota. Heterotrophic bacteria can influence such blooms via nutrient regeneration but also via antagonism and other biotic interactions. We studied the composition of bacterial communities associated with three bloom-forming freshwater phytoplankton species, the diatom Aulacoseira granulata and the cyanobacteria Microcystis aeruginosa and Cylindrospermopsis raciborskii. Experimental cultures incubated with and without lake bacteria were sampled in three different growth phases and bacterial community composition was assessed by 454-Pyrosequencing of 16S rRNA gene amplicons. Betaproteobacteria were dominant in all cultures inoculated with lake bacteria, but decreased during the experiment. In contrast, Alphaproteobacteria, which made up the second most abundant class of bacteria, increased overall during the course of the experiment. Other bacterial classes responded in contrasting ways to the experimental incubations causing significantly different bacterial communities to develop in response to host phytoplankton species, growth phase and between attached and free-living fractions. Differences in bacterial community composition between cyanobacteria and diatom cultures were greater than between the two cyanobacteria. Despite the significance, major differences between phytoplankton cultures were in the proportion of the OTUs rather than in the absence or presence of specific taxa. Different phytoplankton species favoring different bacterial communities may have important consequences for the fate of organic matter in systems where these bloom forming species occur. The dynamics and development of transient blooms may also be affected as bacterial communities seem to influence phytoplankton species growth in contrasting ways. PMID:24465807

  9. Shift in the microbial ecology of a hospital hot water system following the introduction of an on-site monochloramine disinfection system.

    Directory of Open Access Journals (Sweden)

    Julianne L Baron

    Full Text Available Drinking water distribution systems, including premise plumbing, contain a diverse microbiological community that may include opportunistic pathogens. On-site supplemental disinfection systems have been proposed as a control method for opportunistic pathogens in premise plumbing. The majority of on-site disinfection systems to date have been installed in hospitals due to the high concentration of opportunistic pathogen susceptible occupants. The installation of on-site supplemental disinfection systems in hospitals allows for evaluation of the impact of on-site disinfection systems on drinking water system microbial ecology prior to widespread application. This study evaluated the impact of supplemental monochloramine on the microbial ecology of a hospital's hot water system. Samples were taken three months and immediately prior to monochloramine treatment and monthly for the first six months of treatment, and all samples were subjected to high throughput Illumina 16S rRNA region sequencing. The microbial community composition of monochloramine treated samples was dramatically different than the baseline months. There was an immediate shift towards decreased relative abundance of Betaproteobacteria, and increased relative abundance of Firmicutes, Alphaproteobacteria, Gammaproteobacteria, Cyanobacteria and Actinobacteria. Following treatment, microbial populations grouped by sampling location rather than sampling time. Over the course of treatment the relative abundance of certain genera containing opportunistic pathogens and genera containing denitrifying bacteria increased. The results demonstrate the driving influence of supplemental disinfection on premise plumbing microbial ecology and suggest the value of further investigation into the overall effects of premise plumbing disinfection strategies on microbial ecology and not solely specific target microorganisms.

  10. Defining Brugia malayi and Wolbachia symbiosis by stage-specific dual RNA-seq.

    Directory of Open Access Journals (Sweden)

    Alexandra Grote

    2017-03-01

    Full Text Available Filarial nematodes currently infect up to 54 million people worldwide, with millions more at risk for infection, representing the leading cause of disability in the developing world. Brugia malayi is one of the causative agents of lymphatic filariasis and remains the only human filarial parasite that can be maintained in small laboratory animals. Many filarial nematode species, including B. malayi, carry an obligate endosymbiont, the alpha-proteobacteria Wolbachia, which can be eliminated through antibiotic treatment. Elimination of the endosymbiont interferes with development, reproduction, and survival of the worms within the mamalian host, a clear indicator that the Wolbachia are crucial for survival of the parasite. Little is understood about the mechanism underlying this symbiosis.To better understand the molecular interplay between these two organisms we profiled the transcriptomes of B. malayi and Wolbachia by dual RNA-seq across the life cycle of the parasite. This helped identify functional pathways involved in this essential symbiotic relationship provided by the co-expression of nematode and bacterial genes. We have identified significant stage-specific and gender-specific differential expression in Wolbachia during the nematode's development. For example, during female worm development we find that Wolbachia upregulate genes involved in ATP production and purine biosynthesis, as well as genes involved in the oxidative stress response.This global transcriptional analysis has highlighted specific pathways to which both Wolbachia and B. malayi contribute concurrently over the life cycle of the parasite, paving the way for the development of novel intervention strategies.

  11. Microbial diversity and community structure across environmental gradients in Bransfield Strait, Western Antarctic Peninsula

    Directory of Open Access Journals (Sweden)

    Camila Negrão Signori

    2014-12-01

    Full Text Available The Southern Ocean is currently subject to intense investigations, mainly related to its importance for global biogeochemical cycles and its alarming rate of warming in response to climate change. Microbes play an essential role in the functioning of this ecosystem and are the main drivers of the biogeochemical cycling of elements. Yet, the diversity and abundance of microorganisms in this system remains poorly studied, in particular with regards to changes along environmental gradients. Here, we used amplicon sequencing of 16S rRNA gene tags using primers covering both Bacteria and Archaea to assess the composition and diversity of the microbial communities from four sampling depths (surface, the maximum and minimum of the oxygen concentration, and near the seafloor at ten oceanographic stations located in Bransfield Strait (northwest of the Antarctic Peninsula (AP and near the sea ice edge (north of the AP. Samples collected near the seafloor and at the oxygen minimum exhibited a higher diversity than those from the surface and oxygen maximum for both bacterial and archaeal communities. The main taxonomic groups identified below 100 m were Thaumarchaeota, Euryarchaeota and Proteobacteria (Gamma-, Delta-, Beta- and Alphaproteobacteria, whereas in the mixed layer above 100 m Bacteroidetes and Proteobacteria (mainly Alpha- and Gammaproteobacteria were found to be dominant. A combination of environmental factors seems to influence the microbial community composition. Our results help to understand how the dynamic seascape of the Southern Ocean shapes the microbial community composition and set a baseline for upcoming studies to evaluate the response of this ecosystem to future changes.

  12. Metagenomic Insights Into the Microbial Community and Nutrient Cycling in the Western Subarctic Pacific Ocean

    Science.gov (United States)

    Li, Yingdong; Jing, Hongmei; Xia, Xiaomin; Cheung, Shunyan; Suzuki, Koji; Liu, Hongbin

    2018-01-01

    The composition and metabolic functions of prokaryotic communities in the western subarctic Pacific (WSP), where strong mixing of waters from the Sea of Okhotsk and the East Kamchatka Current result in transfer to the Oyashio Current, were investigated using a shotgun metagenome sequencing approach. Functional metabolic genes related to nutrient cycling of nitrogen, sulfur, carbohydrates, iron and amino acids were differently distributed between the surface and deep waters of the WSP. Genes related to nitrogen metabolism were mainly found in deep waters, where Thaumarchaeaota, Sphingomonadales, and Pseudomonadales were closely associated and performing important roles in ammonia oxidation, assimilatory nitrate reduction, and dissimilatory nitrate reduction processes, respectively. In addition, orders affiliated to Spingobacteria and Alphaproteobacteria were crucial for sulfate reduction and abundant at 3000 m, whereas orders affiliated to Gammaproteobacteria, which harbored the most sulfate reduction genes, were abundant at 1000 m. Additionally, when compared with the East Kamchatka Current, the prokaryotes in the Oyashio Current were likely to consume more energy for synthesizing cellular components. Also, genes encoding iron transport and siderophore biosynthesis proteins were in low abundance, indicating that the iron was not a limiting factor in the Oyashio current. In contrast, in the East Kamchatka Current, prokaryotes were more likely to directly utilize the amino acids and absorb iron from the environment. Overall, our data indicated that the transformation from the East Kamchatka Current to the Oyashio Current reshapes not only the composition of microbial community, but also the function of the metabolic processes. These results extended our knowledge of the microbial composition and potential metabolism in the WSP. PMID:29670596

  13. Comparative Genomics of Regulation of Fatty Acid and Branched-chain Amino Acid Utilization in Proteobacteria

    Energy Technology Data Exchange (ETDEWEB)

    Kazakov, Alexey E.; Rodionov, Dmitry A.; Arkin, Adam Paul; Dubchak, Inna; Gelfand, Mikhail S.; Alm, Eric

    2008-10-31

    Bacteria can use branched-chain amino acids (ILV, i.e. isoleucine, leucine, valine) and fatty acids (FA) as sole carbon and energy sources convering ILV into acetyl-CoA, propanoyl-CoA and propionyl-CoA, respectively. In this work, we used the comparative genomic approach to identify candidate transcriptional factors and DNA motifs that control ILV and FA utilization pathways in proteobacteria. The metabolic regulons were characterized based on the identification and comparison of candidate transcription factor binding sites in groups of phylogenetically related genomes. The reconstructed ILV/FA regulatory network demonstrates considerable variability and involves six transcriptional factors from the MerR, TetR and GntR families binding to eleven distinct DNA motifs. The ILV degradation genes in gamma- and beta-proteobacteria are mainly regulated by anovel regulator from the MerR family (e.g., LiuR in Pseudomonas aeruginosa) (40 species), in addition, the TetR-type regulator LiuQ was identified in some beta-proteobacteria (8 species). Besides the core set of ILV utilization genes, the LiuR regulon in some lineages is expanded to include genes from other metabolic pathways, such as the glyoxylate shunt and glutamate synthase in the Shewanella species. The FA degradation genes are controlled by four regulators including FadR in gamma-proteobacteria (34 species), PsrA in gamma- and beta-proteobacteria (45 species), FadP in beta-proteobacteria (14 species), and LiuR orthologs in alpha-proteobacteria (22 species). The remarkable variability of the regulatory systems associated with the FA degradation pathway is discussed from the functional and evolutionary points of view.

  14. The One-carbon Carrier Methylofuran from Methylobacterium extorquens AM1 Contains a Large Number of α- and γ-Linked Glutamic Acid Residues.

    Science.gov (United States)

    Hemmann, Jethro L; Saurel, Olivier; Ochsner, Andrea M; Stodden, Barbara K; Kiefer, Patrick; Milon, Alain; Vorholt, Julia A

    2016-04-22

    Methylobacterium extorquens AM1 uses dedicated cofactors for one-carbon unit conversion. Based on the sequence identities of enzymes and activity determinations, a methanofuran analog was proposed to be involved in formaldehyde oxidation in Alphaproteobacteria. Here, we report the structure of the cofactor, which we termed methylofuran. Using an in vitro enzyme assay and LC-MS, methylofuran was identified in cell extracts and further purified. From the exact mass and MS-MS fragmentation pattern, the structure of the cofactor was determined to consist of a polyglutamic acid side chain linked to a core structure similar to the one present in archaeal methanofuran variants. NMR analyses showed that the core structure contains a furan ring. However, instead of the tyramine moiety that is present in methanofuran cofactors, a tyrosine residue is present in methylofuran, which was further confirmed by MS through the incorporation of a (13)C-labeled precursor. Methylofuran was present as a mixture of different species with varying numbers of glutamic acid residues in the side chain ranging from 12 to 24. Notably, the glutamic acid residues were not solely γ-linked, as is the case for all known methanofurans, but were identified by NMR as a mixture of α- and γ-linked amino acids. Considering the unusual peptide chain, the elucidation of the structure presented here sets the basis for further research on this cofactor, which is probably the largest cofactor known so far. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Metagenomics as a preliminary screen for antimicrobial bioprospecting

    KAUST Repository

    Al Amoudi, Soha

    2016-09-16

    Since the composition of soil directs the diversity of the contained microbiome and its potential to produce bioactive compounds, many studies has been focused on sediment types with unique features characteristic of extreme environments. However, not much is known about the potential of microbiomes that inhabit the highly saline and hot Red Sea lagoons. This case study explores mangrove mud and the microbial mat of sediments collected from the Rabigh harbor lagoon and Al Kharrar lagoon for antimicrobial bioprospecting. Rabigh harbor lagoon appears the better location, and the best sediment type for this purpose is mangrove mud. On the other hand, Al Kharrar lagoon displayed increased anaerobic hydrocarbon degradation and an abundance of bacterial DNA associated with antibiotic resistance. Moreover, our findings show an identical shift in phyla associated with historic hydrocarbon contamination exposure reported in previous studies (that is, enrichment of Gamma-and Delta-proteobacteria), but we also report that bacterial DNA sequences associated with antibiotic synthesis enzymes are derived from Gamma-, Delta-and Alpha-proteobacteria. This suggests that selection pressure associated with hydrocarbon contamination tend to enrich the bacterial classes DNA associated with antibiotic synthesis enzymes. Although Actinobacteria tends to be the common target for research when it comes to antimicrobial bioprospecting, our study suggests that Firmicutes (Bacilli and Clostridia), Bacteroidetes, Cyanobacteria, and Proteobacteria should be antimicrobial bioprospecting targets as well. To the best of our knowledge, this is the first metagenomic study that analyzed the microbiomes in Red Sea lagoons for antimicrobial bioprospecting. (C) 2016 The Authors. Published by Elsevier B.V.

  16. Dissection of Microbial Community Functions during a Cyanobacterial Bloom in the Baltic Sea via Metatranscriptomics

    Directory of Open Access Journals (Sweden)

    Carlo Berg

    2018-02-01

    Full Text Available Marine and brackish surface waters are highly dynamic habitats that undergo repeated seasonal variations in microbial community composition and function throughout time. While succession of the various microbial groups has been well investigated, little is known about the underlying gene-expression of the microbial community. We investigated microbial interactions via metatranscriptomics over a spring to fall seasonal cycle in the brackish Baltic Sea surface waters, a temperate brackish water ecosystem periodically promoting massive cyanobacterial blooms, which have implications for primary production, nutrient cycling, and expansion of hypoxic zones. Network analysis of the gene expression of all microbes from 0.22 to 200 μm in size and of the major taxonomic groups dissected the seasonal cycle into four components that comprised genes peaking during different periods of the bloom. Photoautotrophic nitrogen-fixing Cyanobacteria displayed the highest connectivity among the microbes, in contrast to chemoautotrophic ammonia-oxidizing Thaumarchaeota, while heterotrophs dominated connectivity among pre- and post-bloom peaking genes. The network was also composed of distinct functional connectivities, with an early season balance between carbon metabolism and ATP synthesis shifting to a dominance of ATP synthesis during the bloom, while carbon degradation, specifically through the glyoxylate shunt, characterized the post-bloom period, driven by Alphaproteobacteria as well as by Gammaproteobacteria of the SAR86 and SAR92 clusters. Our study stresses the exceptionally strong biotic driving force executed by cyanobacterial blooms on associated microbial communities in the Baltic Sea and highlights the impact cyanobacterial blooms have on functional microbial community composition.

  17. Photosynthesis Is Widely Distributed among Proteobacteria as Demonstrated by the Phylogeny of PufLM Reaction Center Proteins

    Directory of Open Access Journals (Sweden)

    Johannes F. Imhoff

    2018-01-01

    Full Text Available Two different photosystems for performing bacteriochlorophyll-mediated photosynthetic energy conversion are employed in different bacterial phyla. Those bacteria employing a photosystem II type of photosynthetic apparatus include the phototrophic purple bacteria (Proteobacteria, Gemmatimonas and Chloroflexus with their photosynthetic relatives. The proteins of the photosynthetic reaction center PufL and PufM are essential components and are common to all bacteria with a type-II photosynthetic apparatus, including the anaerobic as well as the aerobic phototrophic Proteobacteria. Therefore, PufL and PufM proteins and their genes are perfect tools to evaluate the phylogeny of the photosynthetic apparatus and to study the diversity of the bacteria employing this photosystem in nature. Almost complete pufLM gene sequences and the derived protein sequences from 152 type strains and 45 additional strains of phototrophic Proteobacteria employing photosystem II were compared. The results give interesting and comprehensive insights into the phylogeny of the photosynthetic apparatus and clearly define Chromatiales, Rhodobacterales, Sphingomonadales as major groups distinct from other Alphaproteobacteria, from Betaproteobacteria and from Caulobacterales (Brevundimonas subvibrioides. A special relationship exists between the PufLM sequences of those bacteria employing bacteriochlorophyll b instead of bacteriochlorophyll a. A clear phylogenetic association of aerobic phototrophic purple bacteria to anaerobic purple bacteria according to their PufLM sequences is demonstrated indicating multiple evolutionary lines from anaerobic to aerobic phototrophic purple bacteria. The impact of pufLM gene sequences for studies on the environmental diversity of phototrophic bacteria is discussed and the possibility of their identification on the species level in environmental samples is pointed out.

  18. Fish-mediated changes in bacterioplankton community composition: an in situ mesocosm experiment

    Science.gov (United States)

    Luo, Congqiang; Yi, Chunlong; Ni, Leyi; Guo, Longgen

    2017-06-01

    We characterized variations in bacterioplankton community composition (BCC) in mesocosms subject to three different treatments. Two groups contained fish (group one: Cyprinus carpio; group two: Hypophthalmichthys molitrix); and group three, the untreated mesocosm, was the control. Samples were taken seven times over a 49-day period, and BCC was analyzed by PCR-denaturing gradient gel electrophoresis (DGGE) and real-time quantitative PCR (qPCR). Results revealed that introduction of C. carpio and H. molitrix had a remarkable impact on the composition of bacterioplankton communities, and the BCC was significantly different between each treatment. Sequencing of DGGE bands revealed that the bacterioplankton community in the different treatment groups was consistent at a taxonomic level, but differed in its abundance. H. molitrix promoted the richness of Alphaproteobacteria and Actinobacteria, while more bands affiliated to Cyanobacteria were detected inC. carpio mesocosms. The redundancy analysis (RDA) result demonstrated that the BCC was closely related to the bottom-up (total phosphorus, chlorophyll a, phytoplankton biomass) and top-down forces (biomass of copepods and cladocera) in C. carpio and control mesocosms, respectively. We found no evidence for top-down regulation of BCC by zooplankton in H. molitrix mesocosms, while grazing by protozoa (heterotrophic nanoflagellates, ciliates) became the major way to regulate BCC. Total bacterioplankton abundances were significantly higher in C. carpio mesocosms because of high nutrient concentration and suspended solids. Our study provided insights into the relationship between fish and bacterioplankton at species level, leading to a deep understanding of the function of the microbial loop and the aquatic ecosystem.

  19. Dynamics of bacterial populations during bench-scale bioremediation of oily seawater and desert soil bioaugmented with coastal microbial mats.

    Science.gov (United States)

    Ali, Nidaa; Dashti, Narjes; Salamah, Samar; Sorkhoh, Naser; Al-Awadhi, Husain; Radwan, Samir

    2016-03-01

    This study describes a bench-scale attempt to bioremediate Kuwaiti, oily water and soil samples through bioaugmentation with coastal microbial mats rich in hydrocarbonoclastic bacterioflora. Seawater and desert soil samples were artificially polluted with 1% weathered oil, and bioaugmented with microbial mat suspensions. Oil removal and microbial community dynamics were monitored. In batch cultures, oil removal was more effective in soil than in seawater. Hydrocarbonoclastic bacteria associated with mat samples colonized soil more readily than seawater. The predominant oil degrading bacterium in seawater batches was the autochthonous seawater species Marinobacter hydrocarbonoclasticus. The main oil degraders in the inoculated soil samples, on the other hand, were a mixture of the autochthonous mat and desert soil bacteria; Xanthobacter tagetidis, Pseudomonas geniculata, Olivibacter ginsengisoli and others. More bacterial diversity prevailed in seawater during continuous than batch bioremediation. Out of seven hydrocarbonoclastic bacterial species isolated from those cultures, only one, Mycobacterium chlorophenolicum, was of mat origin. This result too confirms that most of the autochthonous mat bacteria failed to colonize seawater. Also culture-independent analysis of seawater from continuous cultures revealed high-bacterial diversity. Many of the bacteria belonged to the Alphaproteobacteria, Flavobacteria and Gammaproteobacteria, and were hydrocarbonoclastic. Optimal biostimulation practices for continuous culture bioremediation of seawater via mat bioaugmentation were adding the highest possible oil concentration as one lot in the beginning of bioremediation, addition of vitamins, and slowing down the seawater flow rate. © 2016 The Author. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  20. Transcriptomic profiling of Burkholderia phymatum STM815, Cupriavidus taiwanensis LMG19424 and Rhizobium mesoamericanum STM3625 in response to Mimosa pudica root exudates illuminates the molecular basis of their nodulation competitiveness and symbiotic evolutionary history.

    Science.gov (United States)

    Klonowska, Agnieszka; Melkonian, Rémy; Miché, Lucie; Tisseyre, Pierre; Moulin, Lionel

    2018-01-30

    Rhizobial symbionts belong to the classes Alphaproteobacteria and Betaproteobacteria (called "alpha" and "beta"-rhizobia). Most knowledge on the genetic basis of symbiosis is based on model strains belonging to alpha-rhizobia. Mimosa pudica is a legume that offers an excellent opportunity to study the adaptation toward symbiotic nitrogen fixation in beta-rhizobia compared to alpha-rhizobia. In a previous study (Melkonian et al., Environ Microbiol 16:2099-111, 2014) we described the symbiotic competitiveness of M. pudica symbionts belonging to Burkholderia, Cupriavidus and Rhizobium species. In this article we present a comparative analysis of the transcriptomes (by RNAseq) of B. phymatum STM815 (BP), C. taiwanensis LMG19424 (CT) and R. mesoamericanum STM3625 (RM) in conditions mimicking the early steps of symbiosis (i.e. perception of root exudates). BP exhibited the strongest transcriptome shift both quantitatively and qualitatively, which mirrors its high competitiveness in the early steps of symbiosis and its ancient evolutionary history as a symbiont, while CT had a minimal response which correlates with its status as a younger symbiont (probably via acquisition of symbiotic genes from a Burkholderia ancestor) and RM had a typical response of Alphaproteobacterial rhizospheric bacteria. Interestingly, the upregulation of nodulation genes was the only common response among the three strains; the exception was an up-regulated gene encoding a putative fatty acid hydroxylase, which appears to be a novel symbiotic gene specific to Mimosa symbionts. The transcriptional response to root exudates was correlated to each strain nodulation competitiveness, with Burkholderia phymatum appearing as the best specialised symbiont of Mimosa pudica.

  1. Microencapsulation by spray drying of nitrogen-fixing bacteria associated with lupin nodules.

    Science.gov (United States)

    Campos, Daniela C; Acevedo, Francisca; Morales, Eduardo; Aravena, Javiera; Amiard, Véronique; Jorquera, Milko A; Inostroza, Nitza G; Rubilar, Mónica

    2014-09-01

    Plant growth promoting bacteria and nitrogen-fixing bacteria (NFB) used for crop inoculation have important biotechnological potential as a sustainable fertilization tool. However, the main limitation of this technology is the low inoculum survival rate under field conditions. Microencapsulation of bacterial cells in polymer matrices provides a controlled release and greater protection against environmental conditions. In this context, the aim of this study was to isolate and characterize putative NFB associated with lupin nodules and to evaluate their microencapsulation by spray drying. For this purpose, 21 putative NFB were isolated from lupin nodules and characterized (16S rRNA genes). Microencapsulation of bacterial cells by spray drying was studied using a mixture of sodium alginate:maltodextrin at different ratios (0:15, 1:14, 2:13) and concentrations (15 and 30% solids) as the wall material. The microcapsules were observed under scanning electron microscopy to verify their suitable morphology. Results showed the association between lupin nodules of diverse known NFB and nodule-forming bacteria belonging to Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria and Bacteroidetes. In microencapsulation assays, the 1:14 ratio of sodium alginate:maltodextrin (15% solids) showed the highest cell survival rate (79%), with a microcapsule yield of 27% and spherical microcapsules of 5-50 µm in diameter. In conclusion, diverse putative NFB genera and nodule-forming bacteria are associated with the nodules of lupine plants grown in soils in southern Chile, and their microencapsulation by spray drying using sodium alginate:maltodextrin represents a scalable process to generate a biofertilizer as an alternative to traditional nitrogen fertilization.

  2. Intestinal Microbiota of White Shrimp Penaeus vannamei Under Intensive Cultivation Conditions in Ecuador.

    Science.gov (United States)

    Gainza, Oreste; Ramírez, Carolina; Ramos, Alfredo Salinas; Romero, Jaime

    2018-04-01

    The goal of the study was to characterize the intestinal tract bacterial microbiota composition of Penaeus vannamei in intensive commercial ponds in Ecuador, comparing two shrimp-farming phases: nursery and harvest. Bacterial microbiota was examined by sequencing amplicons V2-V3 of the 16S rRNA using Ion Torrent technology. Archaea sequences were detected in both phases. Sequence analyses revealed quantitative and qualitative differences between the nursery phase and the harvest phase in shrimp intestinal microbiota composition. The main differences were observed at the phylum level during the nursery phase, and the prevailing phyla were CKC4 (37.3%), Proteobacteria (29.8%), Actinobacteria (11.6%), and Firmicutes (10.1%). In the harvest phase, the prevailing phyla were Proteobacteria (28.4%), Chloroflexi (19.9%), and Actinobacteria (15.1%). At the genus level, microbiota from the nursery phase showed greater relative abundances of CKC4 uncultured bacterium (37%) and Escherichia-Shigella (18%). On the contrary, in the microbiota of harvested shrimp, the prevailing genera were uncultured Caldilinea (19%) and Alphaproteobacteria with no other assigned rate (10%). The analysis of similarity ANOSIM test (beta diversity) indicated significant differences between the shrimp microbiota for these two farming phases. Similarly, alfa-diversity analysis (Chao1) indicated that the microbiota at harvest was far more diverse than the microbiota during the nursery phase, which showed a homogeneous composition. These results suggest that shrimp microbiota diversify their composition during intensive farming. The present work offers the most detailed description of the microbiota of P. vannamei under commercial production conditions to date.

  3. Bacterial community composition in different sediments from the Eastern Mediterranean Sea: a comparison of four 16S ribosomal DNA clone libraries.

    Science.gov (United States)

    Polymenakou, Paraskevi N; Bertilsson, Stefan; Tselepides, Anastasios; Stephanou, Euripides G

    2005-10-01

    The regional variability of sediment bacterial community composition and diversity was studied by comparative analysis of four large 16S ribosomal DNA (rDNA) clone libraries from sediments in different regions of the Eastern Mediterranean Sea (Thermaikos Gulf, Cretan Sea, and South lonian Sea). Amplified rDNA restriction analysis of 664 clones from the libraries indicate that the rDNA richness and evenness was high: for example, a near-1:1 relationship among screened clones and number of unique restriction patterns when up to 190 clones were screened for each library. Phylogenetic analysis of 207 bacterial 16S rDNA sequences from the sediment libraries demonstrated that Gamma-, Delta-, and Alphaproteobacteria, Holophaga/Acidobacteria, Planctomycetales, Actinobacteria, Bacteroidetes, and Verrucomicrobia were represented in all four libraries. A few clones also grouped with the Betaproteobacteria, Nitrospirae, Spirochaetales, Chlamydiae, Firmicutes, and candidate division OPl 1. The abundance of sequences affiliated with Gammaproteobacteria was higher in libraries from shallow sediments in the Thermaikos Gulf (30 m) and the Cretan Sea (100 m) compared to the deeper South Ionian station (2790 m). Most sequences in the four sediment libraries clustered with uncultured 16S rDNA phylotypes from marine habitats, and many of the closest matches were clones from hydrocarbon seeps, benzene-mineralizing consortia, sulfate reducers, sulk oxidizers, and ammonia oxidizers. LIBSHUFF statistics of 16S rDNA gene sequences from the four libraries revealed major differences, indicating either a very high richness in the sediment bacterial communities or considerable variability in bacterial community composition among regions, or both.

  4. Bioremediation of polychlorinated-p-dioxins/dibenzofurans contaminated soil using simulated compost-amended landfill reactors under hypoxic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wei-Yu; Wu, Jer-Horng, E-mail: enewujh@mail.ncku.edu.tw; Lin, Shih-Chiang; Chang, Juu-En

    2016-07-15

    Highlights: • We developed a new hypoxic reactor system for remediating PCDD/Fs. • We demonstrated effects of compost on the degradation of PCDD/Fs. • We uncovered microbial compositions and dynamics during the degradation of PCDD/Fs. - Abstract: Compost-amended landfill reactors were developed to reduce polychlorinated-p-dioxins and dibenzofurans (PCDD/Fs) in contaminated soils. By periodically recirculating leachate and suppling oxygen, the online monitoring of the oxidation reduction potential confirmed that the reactors were maintained under hypoxic conditions, with redox levels constantly fluctuating between −400 and +80 mV. The subsequent reactor operation demonstrated that PCDD/F degradation in soil could be facilitated by amending compost originating from the cow manure and waste sludge and that the degradation might be affected by the availability of easily degradable substrates in the soil and compost. The pyrosequencing analysis of V4/V5 regions of bacterial 16S rRNA genes suggested that species richness of the soil microbial community was increased by a factor of 1.37–1.61. Although the bacterial community varied with the compost origin and changed markedly during reactor operation, it was dominated by Alphaproteobacteria, Gammaproteobacteria, Actinobacteria, and Firmicutes. The aerotolerant anaerobic Sedimentibacter and Propionibacterium spp., and the uncultured Chloroflexi group could be temporarily induced to a high abundance by amending the cow manure compost; the bacterial growths were associated with the rapid degradation of PCDD/Fs. Overall, the novel bioremediation method for PCDD/F-contaminated soils using hypoxic conditions was effective, simple, energy saving, and thus easily practicable.

  5. Bioremediation of polychlorinated-p-dioxins/dibenzofurans contaminated soil using simulated compost-amended landfill reactors under hypoxic conditions

    International Nuclear Information System (INIS)

    Chen, Wei-Yu; Wu, Jer-Horng; Lin, Shih-Chiang; Chang, Juu-En

    2016-01-01

    Highlights: • We developed a new hypoxic reactor system for remediating PCDD/Fs. • We demonstrated effects of compost on the degradation of PCDD/Fs. • We uncovered microbial compositions and dynamics during the degradation of PCDD/Fs. - Abstract: Compost-amended landfill reactors were developed to reduce polychlorinated-p-dioxins and dibenzofurans (PCDD/Fs) in contaminated soils. By periodically recirculating leachate and suppling oxygen, the online monitoring of the oxidation reduction potential confirmed that the reactors were maintained under hypoxic conditions, with redox levels constantly fluctuating between −400 and +80 mV. The subsequent reactor operation demonstrated that PCDD/F degradation in soil could be facilitated by amending compost originating from the cow manure and waste sludge and that the degradation might be affected by the availability of easily degradable substrates in the soil and compost. The pyrosequencing analysis of V4/V5 regions of bacterial 16S rRNA genes suggested that species richness of the soil microbial community was increased by a factor of 1.37–1.61. Although the bacterial community varied with the compost origin and changed markedly during reactor operation, it was dominated by Alphaproteobacteria, Gammaproteobacteria, Actinobacteria, and Firmicutes. The aerotolerant anaerobic Sedimentibacter and Propionibacterium spp., and the uncultured Chloroflexi group could be temporarily induced to a high abundance by amending the cow manure compost; the bacterial growths were associated with the rapid degradation of PCDD/Fs. Overall, the novel bioremediation method for PCDD/F-contaminated soils using hypoxic conditions was effective, simple, energy saving, and thus easily practicable.

  6. Denitrifying bacteria from the terrestrial subsurface exposed to mixed waste contamination

    International Nuclear Information System (INIS)

    Green, Stefan; Prakash, Om; Gihring, Thomas; Akob, Denise M.; Jasrotia, Puja; Jardine, Philip M.; Watson, David B.; Brown, Steven David; Palumbo, Anthony Vito; Kostka, Joel

    2010-01-01

    In terrestrial subsurface environments where nitrate is a critical groundwater contaminant, few cultivated representatives are available with which to verify the metabolism of organisms that catalyze denitrification. In this study, five species of denitrifying bacteria from three phyla were isolated from subsurface sediments exposed to metal radionuclide and nitrate contamination as part of the U.S. Department of Energy's Oak Ridge Integrated Field Research Challenge (OR-IFRC). Isolates belonged to the genera Afipia and Hyphomicrobium (Alphaproteobacteria), Rhodanobacter (Gammaproteobacteria), Intrasporangium (Actinobacteria) and Bacillus (Firmicutes). Isolates from the phylum Proteobacteria were confirmed as complete denitrifiers, whereas the Gram-positive isolates reduced nitrate to nitrous oxide. Ribosomal RNA gene analyses reveal that bacteria from the genus Rhodanobacter comprise a diverse population of circumneutral to moderately acidophilic denitrifiers at the ORIFRC site, with a high relative abundance in areas of the acidic source zone. Rhodanobacter species do not contain a periplasmic nitrite reductase and have not been previously detected in functional gene surveys of denitrifying bacteria at the OR-IFRC site. Sequences of nitrite and nitrous oxide reductase genes were recovered from the isolates and from the terrestrial subsurface by designing primer sets mined from genomic and metagenomic data and from draft genomes of two of the isolates. We demonstrate that a combination of cultivation, genomic and metagenomic data are essential to the in situ characterization of denitrifiers and that current PCR-based approaches are not suitable for deep coverage of denitrifying microorganisms. Our results indicate that the diversity of denitrifiers is significantly underestimated in the terrestrial subsurface.

  7. Fe-phyllosilicate redox cycling organisms from a redox transition zone in Hanford 300 Area sediments

    Directory of Open Access Journals (Sweden)

    Jason eBenzine

    2013-12-01

    Full Text Available Microorganisms capable of reducing or oxidizing structural iron (Fe in Fe-bearing phyllosilicate minerals were enriched and isolated from a subsurface redox transition zone at the Hanford 300 Area site in eastern Washington, USA. Both conventional and in situ i-chip enrichment strategies were employed. One Fe(III-reducing Geobacter (G. bremensis strain R1, Deltaproteobacteria and six Fe(II phyllosilicate-oxidizing isolates from the Alphaproteobacteria (Bradyrhizobium japonicum strains 22, is5, and in8p8, Betaproteobacteria (Cupriavidus necator strain A5-1, Dechloromonas agitata strain is5, and Actinobacteria (Nocardioides sp. strain in31 were recovered. The G. bremensis isolate grew by oxidizing acetate with the oxidized form of NAu-2 smectite as the electron acceptor. The Fe(II-oxidizers grew by oxidation of chemically reduced smectite as the energy source with nitrate as the electron acceptor. The Bradyrhizobium isolates could also carry out aerobic oxidation of biotite. This is the first report of the recovery of a Fe(II-oxidizing Nocardioides, and to date only one other Fe(II-oxidizing Bradyrhizobium is known. The 16S rRNA gene sequences of the isolates were similar to ones found in clone libraries from Hanford 300 sediments and groundwater, suggesting that such organisms may be present and active in situ. Whole genome sequencing of the isolates is underway, the results of which will enable comparative genomic analysis of mechanisms of extracellular phyllosilicate Fe redox metabolism, and facilitate development of techniques to detect the presence and expression of genes associated with microbial phyllosilicate Fe redox cycling in sediments.

  8. Fish-mediated changes in bacterioplankton community composition: an in situ mesocosm experiment

    Science.gov (United States)

    Luo, Congqiang; Yi, Chunlong; Ni, Leyi; Guo, Longgen

    2018-03-01

    We characterized variations in bacterioplankton community composition (BCC) in mesocosms subject to three different treatments. Two groups contained fish (group one: Cyprinus carpio; group two: Hypophthalmichthys molitrix); and group three, the untreated mesocosm, was the control. Samples were taken seven times over a 49-d period, and BCC was analyzed by PCR-denaturing gradient gel electrophoresis (DGGE) and real-time quantitative PCR (qPCR). Results revealed that introduction of C. carpio and H. molitrix had a remarkable impact on the composition of bacterioplankton communities, and the BCC was significantly different between each treatment. Sequencing of DGGE bands revealed that the bacterioplankton community in the different treatment groups was consistent at a taxonomic level, but differed in its abundance. H. molitrix promoted the richness of Alphaproteobacteria and Actinobacteria, while more bands affiliated to Cyanobacteria were detected in C. carpio mesocosms. The redundancy analysis (RDA) result demonstrated that the BCC was closely related to the bottom-up (total phosphorus, chlorophyll a, phytoplankton biomass) and top-down forces (biomass of copepods and cladocera) in C. carpio and control mesocosms, respectively. We found no evidence for top-down regulation of BCC by zooplankton in H. molitrix mesocosms, while grazing by protozoa (heterotrophic nanoflagellates, ciliates) became the major way to regulate BCC. Total bacterioplankton abundances were significantly higher in C. carpio mesocosms because of high nutrient concentration and suspended solids. Our study provided insights into the relationship between fish and bacterioplankton at species level, leading to a deep understanding of the function of the microbial loop and the aquatic ecosystem.

  9. Metagenomic analysis of the bioremediation of diesel-contaminated Canadian high arctic soils.

    Science.gov (United States)

    Yergeau, Etienne; Sanschagrin, Sylvie; Beaumier, Danielle; Greer, Charles W

    2012-01-01

    As human activity in the Arctic increases, so does the risk of hydrocarbon pollution events. On site bioremediation of contaminated soil is the only feasible clean up solution in these remote areas, but degradation rates vary widely between bioremediation treatments. Most previous studies have focused on the feasibility of on site clean-up and very little attention has been given to the microbial and functional communities involved and their ecology. Here, we ask the question: which microorganisms and functional genes are abundant and active during hydrocarbon degradation at cold temperature? To answer this question, we sequenced the soil metagenome of an ongoing bioremediation project in Alert, Canada through a time course. We also used reverse-transcriptase real-time PCR (RT-qPCR) to quantify the expression of several hydrocarbon-degrading genes. Pseudomonas species appeared as the most abundant organisms in Alert soils right after contamination with diesel and excavation (t = 0) and one month after the start of the bioremediation treatment (t = 1m), when degradation rates were at their highest, but decreased after one year (t = 1y), when residual soil hydrocarbons were almost depleted. This trend was also reflected in hydrocarbon degrading genes, which were mainly affiliated with Gammaproteobacteria at t = 0 and t = 1m and with Alphaproteobacteria and Actinobacteria at t = 1y. RT-qPCR assays confirmed that Pseudomonas and Rhodococcus species actively expressed hydrocarbon degradation genes in Arctic biopile soils. Taken together, these results indicated that biopile treatment leads to major shifts in soil microbial communities, favoring aerobic bacteria that can degrade hydrocarbons.

  10. Metagenomic analysis of the bioremediation of diesel-contaminated Canadian high arctic soils.

    Directory of Open Access Journals (Sweden)

    Etienne Yergeau

    Full Text Available As human activity in the Arctic increases, so does the risk of hydrocarbon pollution events. On site bioremediation of contaminated soil is the only feasible clean up solution in these remote areas, but degradation rates vary widely between bioremediation treatments. Most previous studies have focused on the feasibility of on site clean-up and very little attention has been given to the microbial and functional communities involved and their ecology. Here, we ask the question: which microorganisms and functional genes are abundant and active during hydrocarbon degradation at cold temperature? To answer this question, we sequenced the soil metagenome of an ongoing bioremediation project in Alert, Canada through a time course. We also used reverse-transcriptase real-time PCR (RT-qPCR to quantify the expression of several hydrocarbon-degrading genes. Pseudomonas species appeared as the most abundant organisms in Alert soils right after contamination with diesel and excavation (t = 0 and one month after the start of the bioremediation treatment (t = 1m, when degradation rates were at their highest, but decreased after one year (t = 1y, when residual soil hydrocarbons were almost depleted. This trend was also reflected in hydrocarbon degrading genes, which were mainly affiliated with Gammaproteobacteria at t = 0 and t = 1m and with Alphaproteobacteria and Actinobacteria at t = 1y. RT-qPCR assays confirmed that Pseudomonas and Rhodococcus species actively expressed hydrocarbon degradation genes in Arctic biopile soils. Taken together, these results indicated that biopile treatment leads to major shifts in soil microbial communities, favoring aerobic bacteria that can degrade hydrocarbons.

  11. Diversity of the active methanotrophic community in acidic peatlands as assessed by mRNA and SIP-PLFA analyses.

    Science.gov (United States)

    Chen, Yin; Dumont, Marc G; McNamara, Niall P; Chamberlain, Paul M; Bodrossy, Levente; Stralis-Pavese, Nancy; Murrell, J Colin

    2008-02-01

    The active methanotroph community was investigated for the first time in heather (Calluna)-covered moorlands and Sphagnum/Eriophorum-covered UK peatlands. Direct extraction of mRNA from these soils facilitated detection of expression of methane monooxygenase genes, which revealed that particulate methane monooxygenase and not soluble methane monooxygenase was probably responsible for CH(4) oxidation in situ, because only pmoA transcripts (encoding a subunit of particulate methane monooxygenase) were readily detectable. Differences in methanotroph community structures were observed between the Calluna-covered moorland and Sphagnum/Eriophorum-covered gully habitats. As with many other Sphagnum-covered peatlands, the Sphagnum/Eriophorum-covered gullies were dominated by Methylocystis. Methylocella and Methylocapsa-related species were also present. Methylobacter-related species were found as demonstrated by the use of a pmoA-based diagnostic microarray. In Calluna-covered moorlands, in addition to Methylocella and Methylocystis, a unique group of peat-associated type I methanotrophs (Gammaproteobacteria) and a group of uncultivated type II methanotrophs (Alphaproteobacteria) were also found. The pmoA sequences of the latter were only distantly related to Methylocapsa and also to the RA-14 group of methanotrophs, which are believed to be involved in oxidation of atmospheric concentrations of CH(4). Soil samples were also labelled with (13)CH(4), and subsequent analysis of the (13)C-labelled phospholipid fatty acids (PLFAs) showed that 16:1 omega 7, 18:1 omega 7 and 18:1 omega 9 were the major labelled PLFAs. The presence of (13)C-labelled 18:1 omega 9, which was not a major PLFA of any extant methanotrophs, indicated the presence of novel methanotrophs in this peatland.

  12. Methylocapsa aurea sp. nov., a facultative methanotroph possessing a particulate methane monooxygenase, and emended description of the genus Methylocapsa.

    Science.gov (United States)

    Dunfield, Peter F; Belova, Svetlana E; Vorob'ev, Alexey V; Cornish, Sabrina L; Dedysh, Svetlana N

    2010-11-01

    An aerobic, methanotrophic bacterium, designated KYG(T), was isolated from a forest soil in Germany. Cells of strain KYG(T) were Gram-negative, non-motile, slightly curved rods that multiplied by binary fission and produced yellow colonies. The cells contained intracellular granules of poly-β-hydroxybutyrate at each cell pole, a particulate methane monooxygenase (pMMO) and stacks of intracytoplasmic membranes (ICMs) packed in parallel along one side of the cell envelope. Strain KYG(T) grew at pH 5.2-7.2 and 2-33 °C and could fix atmospheric nitrogen under reduced oxygen tension. The major cellular fatty acid was C(18 : 1)ω7c (81.5 %) and the DNA G+C content was 61.4 mol%. Strain KYG(T) belonged to the family Beijerinckiaceae of the class Alphaproteobacteria and was most closely related to the obligate methanotroph Methylocapsa acidiphila B2(T) (98.1 % 16S rRNA gene sequence similarity and 84.7 % pmoA sequence similarity). Unlike Methylocapsa acidiphila B2(T), which grows only on methane and methanol, strain KYG(T) was able to grow facultatively on acetate. Facultative acetate utilization is a characteristic of the methanotrophs of the genus Methylocella, but the genus Methylocella does not produce pMMO or ICMs. Strain KYG(T) differed from Methylocapsa acidiphila B2(T) on the basis of substrate utilization pattern, pigmentation, pH range, cell ultrastructure and efficiency of dinitrogen fixation. Therefore, we propose a novel species, Methylocapsa aurea sp. nov., to accommodate this bacterium. The type strain is KYG(T) (=DSM 22158(T) =VKM B-2544(T)).

  13. The structure of the Brassica napus seed microbiome is cultivar-dependent and affects the interactions of symbionts and pathogens.

    Science.gov (United States)

    Rybakova, Daria; Mancinelli, Riccardo; Wikström, Mariann; Birch-Jensen, Ann-Sofie; Postma, Joeke; Ehlers, Ralf-Udo; Goertz, Simon; Berg, Gabriele

    2017-09-01

    Although the plant microbiome is crucial for plant health, little is known about the significance of the seed microbiome. Here, we studied indigenous bacterial communities associated with the seeds in different cultivars of oilseed rape and their interactions with symbiotic and pathogenic microorganisms. We found a high bacterial diversity expressed by tight bacterial co-occurrence networks within the rape seed microbiome, as identified by llumina MiSeq amplicon sequencing. In total, 8362 operational taxonomic units (OTUs) of 40 bacterial phyla with a predominance of Proteobacteria (56%) were found. The three cultivars that were analyzed shared only one third of the OTUs. The shared core of OTUs consisted mainly of Alphaproteobacteria (33%). Each cultivar was characterized by having its own unique bacterial structure, diversity, and proportion of unique microorganisms (25%). The cultivar with the lowest bacterial abundance, diversity, and the highest predicted bacterial metabolic activity rate contained the highest abundance of potential pathogens within the seed. This data corresponded with the observation that seedlings belonging to this cultivar responded more strongly to the seed treatments with bacterial inoculants than other cultivars. Cultivars containing higher indigenous diversity were characterized as having a higher colonization resistance against beneficial and pathogenic microorganisms. Our results were confirmed by microscopic images of the seed microbiota. The structure of the seed microbiome is an important factor in the development of colonization resistance against pathogens. It also has a strong influence on the response of seedlings to biological seed treatments. These novel insights into seed microbiome structure will enable the development of next generation strategies combining both biocontrol and breeding approaches to address world agricultural challenges.

  14. Insights into the Structure and Metabolic Function of Microbes That Shape Pelagic Iron-Rich Aggregates ( Iron Snow )

    Energy Technology Data Exchange (ETDEWEB)

    Lu, S [Friedrich Schiller University Jena, Jena Germany; Chourey, Karuna [ORNL; REICHE, M [Friedrich Schiller University Jena, Jena Germany; Nietzsche, S [Friedrich Schiller University Jena, Jena Germany; Shah, Manesh B [ORNL; Hettich, Robert {Bob} L [ORNL; Kusel, K [Friedrich Schiller University Jena, Jena Germany

    2013-01-01

    Metaproteomics combined with total nucleic acid-based methods aided in deciphering the roles of microorganisms in the formation and transformation of iron-rich macroscopic aggregates (iron snow) formed in the redoxcline of an acidic lignite mine lake. Iron snow had high total bacterial 16S rRNA gene copies, with 2 x 109 copies g (dry wt)-1 in the acidic (pH 3.5) central lake basin and 4 x 1010 copies g (dry wt)-1 in the less acidic (pH 5.5) northern lake basin. Active microbial communities in the central basin were dominated by Alphaproteobacteria (36.6%) and Actinobacteria (21.4%), and by Betaproteobacteria (36.2%) in the northern basin. Microbial Fe-cycling appeared to be the dominant metabolism in the schwertmannite-rich iron snow, because cloning and qPCR assigned up to 61% of active bacteria as Fe-cycling bacteria (FeB). Metaproteomics revealed 70 unique proteins from central basin iron snow and 283 unique proteins from 43 genera from northern basin. Protein identification provided a glimpse into in situ processes, such as primary production, motility, metabolism of acidophilic FeB, and survival strategies of neutrophilic FeB. Expression of carboxysome shell proteins and RubisCO indicated active CO2 fixation by Fe(II) oxidizers. Flagellar proteins from heterotrophs indicated their activity to reach and attach surfaces. Gas vesicle proteins related to CO2-fixing Chlorobium suggested that microbes could influence iron snow sinking. We suggest that iron snow formed by autotrophs in the redoxcline acts as a microbial parachute, since it is colonized by motile heterotrophs during sinking which start to dissolve schwertmannite.

  15. The effect of surface colour on the formation of marine micro and macrofouling communities

    KAUST Repository

    Dobretsov, Sergey V.; Abed, Raeid M M; Voolstra, Christian R.

    2013-01-01

    The effect of substratum colour on the formation of micro- and macro fouling communities was investigated. Acrylic tiles, painted either black or white were covered with transparent sheets in order to ensure similar surface properties. All substrata were exposed to biofouling at 1 m depth for 40 d in the Marina Bandar al Rowdha (Muscat, Sea of Oman). Studies were conducted in 2010 over a time course of 5, 10 and 20 d, and in 2012 samples were collected at 7, 14 and 21 d. The densities of bacteria on the black and white substrata were similar with the exception of day 10, when the black substrata had a higher abundance than white ones. Pyrosequencing via 454 of 16S rRNA genes of bacteria from white and black substrata revealed that Alphaproteobacteria and Firmicutes were the dominant groups. SIMPER analysis demonstrated that bacterial phylotypes (uncultured Gammaproteobacteria, Actibacter, Gaetbulicola, Thalassobius and Silicibacter) and the diatoms (Navicula directa, Navicula sp. and Nitzschia sp.) contributed to the dissimilarities between communities developed on white and black substrata. At day 20, the highest amount of chlorophyll a was recorded in biofilms developed on black substrata. SIMPER analysis showed that Folliculina sp., Ulva sp. and Balanus amphitrite were the major macro fouling species that contributed to the dissimilarities between the communities formed on white and black substrata. Higher densities of these species were observed on black tiles. The results emphasise the effect of substratum colour on the formation of micro and macro fouling communities; substratum colour should to be taken into account in future studies. © 2013 Copyright Taylor and Francis Group, LLC.

  16. Bacterial community shift in the coastal Gulf of Mexico salt-marsh sediment microcosm in vitro following exposure to the Mississippi Canyon Block 252 oil (MC252)

    KAUST Repository

    Koo, Hyunmin; Mojib, Nazia; Huang, Jonathan P.; Donahoe, Rona J.; Bej, Asim K.

    2014-01-01

    In this study, we examined the responses by the indigenous bacterial communities in salt-marsh sediment microcosms in vitro following treatment with Mississippi Canyon Block 252 oil (MC252). Microcosms were constructed of sediment and seawater collected from Bayou La Batre located in coastal Alabama on the Gulf of Mexico. We used an amplicon pyrosequencing approach on microcosm sediment metagenome targeting the V3–V5 region of the 16S rRNA gene. Overall, we identified a shift in the bacterial community in three distinct groups. The first group was the early responders (orders Pseudomonadales and Oceanospirillales within class Gammaproteobacteria), which increased their relative abundance within 2 weeks and were maintained 3 weeks after oil treatment. The second group was identified as early, but transient responders (order Rhodobacterales within class Alphaproteobacteria; class Epsilonproteobacteria), which increased their population by 2 weeks, but returned to the basal level 3 weeks after oil treatment. The third group was the late responders (order Clostridiales within phylum Firmicutes; order Methylococcales within class Gammaproteobacteria; and phylum Tenericutes), which only increased 3 weeks after oil treatment. Furthermore, we identified oil-sensitive bacterial taxa (order Chromatiales within class Gammaproteobacteria; order Syntrophobacterales within class Deltaproteobacteria), which decreased in their population after 2 weeks of oil treatment. Detection of alkane (alkB), catechol (C2,3DO) and biphenyl (bph) biodegradation genes by PCR, particularly in oil-treated sediment metacommunity DNA, delineates proliferation of the hydrocarbon degrading bacterial community. Overall, the indigenous bacterial communities in our salt-marsh sediment in vitro microcosm study responded rapidly and shifted towards members of the taxonomic groups that are capable of surviving in an MC252 oil-contaminated environment.

  17. Metagenomic Insights Into the Microbial Community and Nutrient Cycling in the Western Subarctic Pacific Ocean

    Directory of Open Access Journals (Sweden)

    Yingdong Li

    2018-04-01

    Full Text Available The composition and metabolic functions of prokaryotic communities in the western subarctic Pacific (WSP, where strong mixing of waters from the Sea of Okhotsk and the East Kamchatka Current result in transfer to the Oyashio Current, were investigated using a shotgun metagenome sequencing approach. Functional metabolic genes related to nutrient cycling of nitrogen, sulfur, carbohydrates, iron and amino acids were differently distributed between the surface and deep waters of the WSP. Genes related to nitrogen metabolism were mainly found in deep waters, where Thaumarchaeaota, Sphingomonadales, and Pseudomonadales were closely associated and performing important roles in ammonia oxidation, assimilatory nitrate reduction, and dissimilatory nitrate reduction processes, respectively. In addition, orders affiliated to Spingobacteria and Alphaproteobacteria were crucial for sulfate reduction and abundant at 3000 m, whereas orders affiliated to Gammaproteobacteria, which harbored the most sulfate reduction genes, were abundant at 1000 m. Additionally, when compared with the East Kamchatka Current, the prokaryotes in the Oyashio Current were likely to consume more energy for synthesizing cellular components. Also, genes encoding iron transport and siderophore biosynthesis proteins were in low abundance, indicating that the iron was not a limiting factor in the Oyashio current. In contrast, in the East Kamchatka Current, prokaryotes were more likely to directly utilize the amino acids and absorb iron from the environment. Overall, our data indicated that the transformation from the East Kamchatka Current to the Oyashio Current reshapes not only the composition of microbial community, but also the function of the metabolic processes. These results extended our knowledge of the microbial composition and potential metabolism in the WSP.

  18. Diversity of bacteria in the marine sponge Aplysina fulva in Brazilian coastal waters.

    Science.gov (United States)

    Hardoim, C C P; Costa, R; Araújo, F V; Hajdu, E; Peixoto, R; Lins, U; Rosado, A S; van Elsas, J D

    2009-05-01

    Microorganisms can account for up to 60% of the fresh weight of marine sponges. Marine sponges have been hypothesized to serve as accumulation spots of particular microbial communities, but it is unknown to what extent these communities are directed by the organism or the site or occur randomly. To address this question, we assessed the composition of specific bacterial communities associated with Aplysina fulva, one of the prevalent sponge species inhabiting Brazilian waters. Specimens of A. fulva and surrounding seawater were collected in triplicate in shallow water at two sites, Caboclo Island and Tartaruga beach, Búzios, Brazil. Total community DNA was extracted from the samples using "direct" and "indirect" approaches. 16S rRNA-based PCR-denaturing gradient gel electrophoresis (PCR-DGGE) analyses of the total bacterial community and of specific bacterial groups--Pseudomonas and Actinobacteria--revealed that the structure of these assemblages in A. fulva differed drastically from that observed in seawater. The DNA extraction methodology and sampling site were determinative for the composition of actinobacterial communities in A. fulva. However, no such effects could be gleaned from total bacterial and Pseudomonas PCR-DGGE profiles. Bacterial 16S rRNA gene clone libraries constructed from directly and indirectly extracted DNA did not differ significantly with respect to diversity and composition. Altogether, the libraries encompassed 15 bacterial phyla and the candidate division TM7. Clone sequences affiliated with the Cyanobacteria, Chloroflexi, Gamma- and Alphaproteobacteria, Actinobacteria, Bacteroidetes, and Acidobacteria were, in this order, most abundant. The bacterial communities associated with the A. fulva specimens were distinct and differed from those described in studies of sponge-associated microbiota performed with other sponge species.

  19. Diversity of Bacteria in the Marine Sponge Aplysina fulva in Brazilian Coastal Waters▿ †

    Science.gov (United States)

    Hardoim, C. C. P.; Costa, R.; Araújo, F. V.; Hajdu, E.; Peixoto, R.; Lins, U.; Rosado, A. S.; van Elsas, J. D.

    2009-01-01

    Microorganisms can account for up to 60% of the fresh weight of marine sponges. Marine sponges have been hypothesized to serve as accumulation spots of particular microbial communities, but it is unknown to what extent these communities are directed by the organism or the site or occur randomly. To address this question, we assessed the composition of specific bacterial communities associated with Aplysina fulva, one of the prevalent sponge species inhabiting Brazilian waters. Specimens of A. fulva and surrounding seawater were collected in triplicate in shallow water at two sites, Caboclo Island and Tartaruga beach, Búzios, Brazil. Total community DNA was extracted from the samples using “direct” and “indirect” approaches. 16S rRNA-based PCR-denaturing gradient gel electrophoresis (PCR-DGGE) analyses of the total bacterial community and of specific bacterial groups—Pseudomonas and Actinobacteria—revealed that the structure of these assemblages in A. fulva differed drastically from that observed in seawater. The DNA extraction methodology and sampling site were determinative for the composition of actinobacterial communities in A. fulva. However, no such effects could be gleaned from total bacterial and Pseudomonas PCR-DGGE profiles. Bacterial 16S rRNA gene clone libraries constructed from directly and indirectly extracted DNA did not differ significantly with respect to diversity and composition. Altogether, the libraries encompassed 15 bacterial phyla and the candidate division TM7. Clone sequences affiliated with the Cyanobacteria, Chloroflexi, Gamma- and Alphaproteobacteria, Actinobacteria, Bacteroidetes, and Acidobacteria were, in this order, most abundant. The bacterial communities associated with the A. fulva specimens were distinct and differed from those described in studies of sponge-associated microbiota performed with other sponge species. PMID:19304829

  20. Distinct summer and winter bacterial communities in the active layer of Svalbard permafrost revealed by DNA- and RNA-based analyses

    Science.gov (United States)

    Schostag, Morten; Stibal, Marek; Jacobsen, Carsten S.; Bælum, Jacob; Taş, Neslihan; Elberling, Bo; Jansson, Janet K.; Semenchuk, Philipp; Priemé, Anders

    2015-01-01

    The active layer of soil overlaying permafrost in the Arctic is subjected to dramatic annual changes in temperature and soil chemistry, which likely affect bacterial activity and community structure. We studied seasonal variations in the bacterial community of active layer soil from Svalbard (78°N) by co-extracting DNA and RNA from 12 soil cores collected monthly over a year. PCR amplicons of 16S rRNA genes (DNA) and reverse transcribed transcripts (cDNA) were quantified and sequenced to test for the effect of low winter temperature and seasonal variation in concentration of easily degradable organic matter on the bacterial communities. The copy number of 16S rRNA genes and transcripts revealed no distinct seasonal changes indicating potential bacterial activity during winter despite soil temperatures well below −10°C. Multivariate statistical analysis of the bacterial diversity data (DNA and cDNA libraries) revealed a season-based clustering of the samples, and, e.g., the relative abundance of potentially active Cyanobacteria peaked in June and Alphaproteobacteria increased over the summer and then declined from October to November. The structure of the bulk (DNA-based) community was significantly correlated with pH and dissolved organic carbon, while the potentially active (RNA-based) community structure was not significantly correlated with any of the measured soil parameters. A large fraction of the 16S rRNA transcripts was assigned to nitrogen-fixing bacteria (up to 24% in June) and phototrophic organisms (up to 48% in June) illustrating the potential importance of nitrogen fixation in otherwise nitrogen poor Arctic ecosystems and of phototrophic bacterial activity on the soil surface. PMID:25983731

  1. Patterns of ecological specialization among microbial populations in the Red Sea and diverse oligotrophic marine environments.

    Science.gov (United States)

    Thompson, Luke R; Field, Chris; Romanuk, Tamara; Ngugi, David; Siam, Rania; El Dorry, Hamza; Stingl, Ulrich

    2013-06-01

    Large swaths of the nutrient-poor surface ocean are dominated numerically by cyanobacteria (Prochlorococcus), cyanobacterial viruses (cyanophage), and alphaproteobacteria (SAR11). How these groups thrive in the diverse physicochemical environments of different oceanic regions remains poorly understood. Comparative metagenomics can reveal adaptive responses linked to ecosystem-specific selective pressures. The Red Sea is well-suited for studying adaptation of pelagic-microbes, with salinities, temperatures, and light levels at the extreme end for the surface ocean, and low nutrient concentrations, yet no metagenomic studies have been done there. The Red Sea (high salinity, high light, low N and P) compares favorably with the Mediterranean Sea (high salinity, low P), Sargasso Sea (low P), and North Pacific Subtropical Gyre (high light, low N). We quantified the relative abundance of genetic functions among Prochlorococcus, cyanophage, and SAR11 from these four regions. Gene frequencies indicate selection for phosphorus acquisition (Mediterranean/Sargasso), DNA repair and high-light responses (Red Sea/Pacific Prochlorococcus), and osmolyte C1 oxidation (Red Sea/Mediterranean SAR11). The unexpected connection between salinity-dependent osmolyte production and SAR11 C1 metabolism represents a potentially major coevolutionary adaptation and biogeochemical flux. Among Prochlorococcus and cyanophage, genes enriched in specific environments had ecotype distributions similar to nonenriched genes, suggesting that inter-ecotype gene transfer is not a major source of environment-specific adaptation. Clustering of metagenomes using gene frequencies shows similarities in populations (Red Sea with Pacific, Mediterranean with Sargasso) that belie their geographic distances. Taken together, the genetic functions enriched in specific environments indicate competitive strategies for maintaining carrying capacity in the face of physical stressors and low nutrient availability.

  2. Patterns and architecture of genomic islands in marine bacteria

    Directory of Open Access Journals (Sweden)

    Fernández-Gómez Beatriz

    2012-07-01

    Full Text Available Abstract Background Genomic Islands (GIs have key roles since they modulate the structure and size of bacterial genomes displaying a diverse set of laterally transferred genes. Despite their importance, GIs in marine bacterial genomes have not been explored systematically to uncover possible trends and to analyze their putative ecological significance. Results We carried out a comprehensive analysis of GIs in 70 selected marine bacterial genomes detected with IslandViewer to explore the distribution, patterns and functional gene content in these genomic regions. We detected 438 GIs containing a total of 8152 genes. GI number per genome was strongly and positively correlated with the total GI size. In 50% of the genomes analyzed the GIs accounted for approximately 3% of the genome length, with a maximum of 12%. Interestingly, we found transposases particularly enriched within Alphaproteobacteria GIs, and site-specific recombinases in Gammaproteobacteria GIs. We described specific Homologous Recombination GIs (HR-GIs in several genera of marine Bacteroidetes and in Shewanella strains among others. In these HR-GIs, we recurrently found conserved genes such as the β-subunit of DNA-directed RNA polymerase, regulatory sigma factors, the elongation factor Tu and ribosomal protein genes typically associated with the core genome. Conclusions Our results indicate that horizontal gene transfer mediated by phages, plasmids and other mobile genetic elements, and HR by site-specific recombinases play important roles in the mobility of clusters of genes between taxa and within closely related genomes, modulating the flexible pool of the genome. Our findings suggest that GIs may increase bacterial fitness under environmental changing conditions by acquiring novel foreign genes and/or modifying gene transcription and/or transduction.

  3. Biofilm plasmids with a rhamnose operon are widely distributed determinants of the 'swim-or-stick' lifestyle in roseobacters.

    Science.gov (United States)

    Michael, Victoria; Frank, Oliver; Bartling, Pascal; Scheuner, Carmen; Göker, Markus; Brinkmann, Henner; Petersen, Jörn

    2016-10-01

    Alphaproteobacteria of the metabolically versatile Roseobacter group (Rhodobacteraceae) are abundant in marine ecosystems and represent dominant primary colonizers of submerged surfaces. Motility and attachment are the prerequisite for the characteristic 'swim-or-stick' lifestyle of many representatives such as Phaeobacter inhibens DSM 17395. It has recently been shown that plasmid curing of its 65-kb RepA-I-type replicon with >20 genes for exopolysaccharide biosynthesis including a rhamnose operon results in nearly complete loss of motility and biofilm formation. The current study is based on the assumption that homologous biofilm plasmids are widely distributed. We analyzed 33 roseobacters that represent the phylogenetic diversity of this lineage and documented attachment as well as swimming motility for 60% of the strains. All strong biofilm formers were also motile, which is in agreement with the proposed mechanism of surface attachment. We established transposon mutants for the four genes of the rhamnose operon from P. inhibens and proved its crucial role in biofilm formation. In the Roseobacter group, two-thirds of the predicted biofilm plasmids represent the RepA-I type and their physiological role was experimentally validated via plasmid curing for four additional strains. Horizontal transfer of these replicons was documented by a comparison of the RepA-I phylogeny with the species tree. A gene content analysis of 35 RepA-I plasmids revealed a core set of genes, including the rhamnose operon and a specific ABC transporter for polysaccharide export. Taken together, our data show that RepA-I-type biofilm plasmids are essential for the sessile mode of life in the majority of cultivated roseobacters.

  4. Microbial diversity in hummock and hollow soils of three wetlands on the Qinghai-Tibetan Plateau revealed by 16S rRNA pyrosequencing.

    Science.gov (United States)

    Deng, Yongcui; Cui, Xiaoyong; Hernández, Marcela; Dumont, Marc G

    2014-01-01

    The wetlands of the Qinghai-Tibetan Plateau are believed to play an important role in global nutrient cycling, but the composition and diversity of microorganisms in this ecosystem are poorly characterized. An understanding of the effects of geography and microtopography on microbial populations will provide clues to the underlying mechanisms that structure microbial communities. In this study, we used pyrosequencing-based analysis of 16S rRNA gene sequences to assess and compare the composition of soil microbial communities present in hummock and hollow soils from three wetlands (Dangxiong, Hongyuan and Maduo) on the Qinghai-Tibetan Plateau, the world's highest plateau. A total of 36 bacterial phyla were detected. Proteobacteria (34.5% average relative abundance), Actinobacteria (17.3%) and Bacteroidetes (11%) had the highest relative abundances across all sites. Chloroflexi, Acidobacteria, Verrucomicrobia, Firmicutes, and Planctomycetes were also relatively abundant (1-10%). In addition, archaeal sequences belonging to Euryarchaea, Crenarchaea and Thaumarchaea were detected. Alphaproteobacteria sequences, especially of the order Rhodospirillales, were significantly more abundant in Maduo than Hongyuan and Dangxiong wetlands. Compared with Hongyuan soils, Dangxiong and Maduo had significantly higher relative abundances of Gammaproteobacteria sequences (mainly order Xanthomonadales). Hongyuan wetland had a relatively high abundance of methanogens (mainly genera Methanobacterium, Methanosarcina and Methanosaeta) and methanotrophs (mainly Methylocystis) compared with the other two wetlands. Principal coordinate analysis (PCoA) indicated that the microbial community structure differed between locations and microtopographies and canonical correspondence analysis indicated an association between microbial community structure and soil properties or geography. These insights into the microbial community structure and the main controlling factors in wetlands of the Qinghai

  5. Regulators of nonsulfur purple phototrophic bacteria and the interactive control of CO2 assimilation, nitrogen fixation, hydrogen metabolism and energy generation.

    Science.gov (United States)

    Dubbs, James M; Tabita, F Robert

    2004-06-01

    For the metabolically diverse nonsulfur purple phototrophic bacteria, maintaining redox homeostasis requires balancing the activities of energy supplying and energy-utilizing pathways, often in the face of drastic changes in environmental conditions. These organisms, members of the class Alphaproteobacteria, primarily use CO2 as an electron sink to achieve redox homeostasis. After noting the consequences of inactivating the capacity for CO2 reduction through the Calvin-Benson-Bassham (CBB) pathway, it was shown that the molecular control of many additional important biological processes catalyzed by nonsulfur purple bacteria is linked to expression of the CBB genes. Several regulator proteins are involved, with the two component Reg/Prr regulatory system playing a major role in maintaining redox poise in these organisms. Reg/Prr was shown to be a global regulator involved in the coordinate control of a number of metabolic processes including CO2 assimilation, nitrogen fixation, hydrogen metabolism and energy-generation pathways. Accumulating evidence suggests that the Reg/Prr system senses the oxidation/reduction state of the cell by monitoring a signal associated with electron transport. The response regulator RegA/PrrA activates or represses gene expression through direct interaction with target gene promoters where it often works in concert with other regulators that can be either global or specific. For the key CO2 reduction pathway, which clearly triggers whether other redox balancing mechanisms are employed, the ability to activate or inactivate the specific regulator CbbR is of paramount importance. From these studies, it is apparent that a detailed understanding of how diverse regulatory elements integrate and control metabolism will eventually be achieved.

  6. Bacterial community shift in the coastal Gulf of Mexico salt-marsh sediment microcosm in vitro following exposure to the Mississippi Canyon Block 252 oil (MC252)

    KAUST Repository

    Koo, Hyunmin

    2014-07-10

    In this study, we examined the responses by the indigenous bacterial communities in salt-marsh sediment microcosms in vitro following treatment with Mississippi Canyon Block 252 oil (MC252). Microcosms were constructed of sediment and seawater collected from Bayou La Batre located in coastal Alabama on the Gulf of Mexico. We used an amplicon pyrosequencing approach on microcosm sediment metagenome targeting the V3–V5 region of the 16S rRNA gene. Overall, we identified a shift in the bacterial community in three distinct groups. The first group was the early responders (orders Pseudomonadales and Oceanospirillales within class Gammaproteobacteria), which increased their relative abundance within 2 weeks and were maintained 3 weeks after oil treatment. The second group was identified as early, but transient responders (order Rhodobacterales within class Alphaproteobacteria; class Epsilonproteobacteria), which increased their population by 2 weeks, but returned to the basal level 3 weeks after oil treatment. The third group was the late responders (order Clostridiales within phylum Firmicutes; order Methylococcales within class Gammaproteobacteria; and phylum Tenericutes), which only increased 3 weeks after oil treatment. Furthermore, we identified oil-sensitive bacterial taxa (order Chromatiales within class Gammaproteobacteria; order Syntrophobacterales within class Deltaproteobacteria), which decreased in their population after 2 weeks of oil treatment. Detection of alkane (alkB), catechol (C2,3DO) and biphenyl (bph) biodegradation genes by PCR, particularly in oil-treated sediment metacommunity DNA, delineates proliferation of the hydrocarbon degrading bacterial community. Overall, the indigenous bacterial communities in our salt-marsh sediment in vitro microcosm study responded rapidly and shifted towards members of the taxonomic groups that are capable of surviving in an MC252 oil-contaminated environment.

  7. From the Surface to the Deep-Sea: Bacterial Distributions across Polymetallic Nodule Fields in the Clarion-Clipperton Zone of the Pacific Ocean

    Directory of Open Access Journals (Sweden)

    Markus V. Lindh

    2017-09-01

    Full Text Available Marine bacteria regulate fluxes of matter and energy essential for pelagic and benthic organisms and may also be involved in the formation and maintenance of commercially valuable abyssal polymetallic nodules. Future mining of these nodule fields is predicted to have substantial effects on biodiversity and physicochemical conditions in mined areas. Yet, the identity and distributions of bacterial populations in deep-sea sediments and associated polymetallic nodules has received relatively little attention. We examined bacterial communities using high-throughput sequencing of bacterial 16S rRNA gene fragments from samples collected in the water column, sediment, and polymetallic nodules in the Pacific Ocean (bottom depth ≥4,000 m in the eastern Clarion-Clipperton Zone. Operational taxonomic units (OTUs; defined at 99% 16S rRNA gene identity affiliated with JTB255 (Gammaproteobacteria and Rhodospirillaceae (Alphaproteobacteria had higher relative abundances in the nodule and sediment habitats compared to the water column. Rhodobiaceae family and Vibrio OTUs had higher relative abundance in nodule samples, but were less abundant in sediment and water column samples. Bacterial communities in sediments and associated with nodules were generally similar; however, 5,861 and 6,827 OTUs found in the water column were retrieved from sediment and nodule habitats, respectively. Cyanobacterial OTUs clustering among Prochlorococcus and Synechococcus were detected in both sediments and nodules, with greater representation among nodule samples. Such results suggest that vertical export of typically abundant photic-zone microbes may be an important process in delivery of water column microorganisms to abyssal habitats, potentially influencing the structure and function of communities in polymetallic nodule fields.

  8. Genotyping of Brucella species using clade specific SNPs

    Directory of Open Access Journals (Sweden)

    Foster Jeffrey T

    2012-06-01

    Full Text Available Abstract Background Brucellosis is a worldwide disease of mammals caused by Alphaproteobacteria in the genus Brucella. The genus is genetically monomorphic, requiring extensive genotyping to differentiate isolates. We utilized two different genotyping strategies to characterize isolates. First, we developed a microarray-based assay based on 1000 single nucleotide polymorphisms (SNPs that were identified from whole genome comparisons of two B. abortus isolates , one B. melitensis, and one B. suis. We then genotyped a diverse collection of 85 Brucella strains at these SNP loci and generated a phylogenetic tree of relationships. Second, we developed a selective primer-extension assay system using capillary electrophoresis that targeted 17 high value SNPs across 8 major branches of the phylogeny and determined their genotypes in a large collection ( n = 340 of diverse isolates. Results Our 1000 SNP microarray readily distinguished B. abortus, B. melitensis, and B. suis, differentiating B. melitensis and B. suis into two clades each. Brucella abortus was divided into four major clades. Our capillary-based SNP genotyping confirmed all major branches from the microarray assay and assigned all samples to defined lineages. Isolates from these lineages and closely related isolates, among the most commonly encountered lineages worldwide, can now be quickly and easily identified and genetically characterized. Conclusions We have identified clade-specific SNPs in Brucella that can be used for rapid assignment into major groups below the species level in the three main Brucella species. Our assays represent SNP genotyping approaches that can reliably determine the evolutionary relationships of bacterial isolates without the need for whole genome sequencing of all isolates.

  9. The Change of a Medically Important Genus: Worldwide Occurrence of Genetically Diverse Novel Brucella Species in Exotic Frogs.

    Science.gov (United States)

    Scholz, Holger C; Mühldorfer, Kristin; Shilton, Cathy; Benedict, Suresh; Whatmore, Adrian M; Blom, Jochen; Eisenberg, Tobias

    2016-01-01

    The genus Brucella comprises various species of both veterinary and human medical importance. All species are genetically highly related to each other, sharing intra-species average nucleotide identities (ANI) of > 99%. Infections occur among various warm-blooded animal species, marine mammals, and humans. Until recently, amphibians had not been recognized as a host for Brucella. In this study, however, we show that novel Brucella species are distributed among exotic frogs worldwide. Comparative recA gene analysis of 36 frog isolates from various continents and different frog species revealed an unexpected high genetic diversity, not observed among classical Brucella species. In phylogenetic reconstructions the isolates consequently formed various clusters and grouped together with atypical more distantly related brucellae, like B. inopinata, strain BO2, and Australian isolates from rodents, some of which were isolated as human pathogens. Of one frog isolate (10RB9215) the genome sequence was determined. Comparative genome analysis of this isolate and the classical Brucella species revealed additional genetic material, absent from classical Brucella species but present in Ochrobactrum, the closest genetic neighbor of Brucella, and in other soil associated genera of the Alphaproteobacteria. The presence of gene clusters encoding for additional metabolic functions, flanked by tRNAs and mobile genetic elements, as well as by bacteriophages is suggestive for a different ecology compared to classical Brucella species. Furthermore it suggests that amphibian isolates may represent a link between free living soil saprophytes and the pathogenic Brucella with a preferred intracellular habitat. We therefore assume that brucellae from frogs have a reservoir in soil and, in contrast to classical brucellae, undergo extensive horizontal gene transfer.

  10. Epilithic Cyanobacterial Communities of a Marine Tropical Beach Rock (Heron Island, Great Barrier Reef): Diversity and Diazotrophy▿

    Science.gov (United States)

    Díez, Beatriz; Bauer, Karolina; Bergman, Birgitta

    2007-01-01

    The diversity and nitrogenase activity of epilithic marine microbes in a Holocene beach rock (Heron Island, Great Barrier Reef, Australia) with a proposed biological calcification “microbialite” origin were examined. Partial 16S rRNA gene sequences from the dominant mat (a coherent and layered pink-pigmented community spread over the beach rock) and biofilms (nonstratified, differently pigmented microbial communities of small shallow depressions) were retrieved using denaturing gradient gel electrophoresis (DGGE), and a clone library was retrieved from the dominant mat. The 16S rRNA gene sequences and morphological analyses revealed heterogeneity in the cyanobacterial distribution patterns. The nonheterocystous filamentous genus Blennothrix sp., phylogenetically related to Lyngbya, dominated the mat together with unidentified nonheterocystous filaments of members of the Pseudanabaenaceae and the unicellular genus Chroococcidiopsis. The dominance and three-dimensional intertwined distribution of these organisms were confirmed by nonintrusive scanning microscopy. In contrast, the less pronounced biofilms were dominated by the heterocystous cyanobacterial genus Calothrix, two unicellular Entophysalis morphotypes, Lyngbya spp., and members of the Pseudanabaenaceae family. Cytophaga-Flavobacterium-Bacteroides and Alphaproteobacteria phylotypes were also retrieved from the beach rock. The microbial diversity of the dominant mat was accompanied by high nocturnal nitrogenase activities (as determined by in situ acetylene reduction assays). A new DGGE nifH gene optimization approach for cyanobacterial nitrogen fixers showed that the sequences retrieved from the dominant mat were related to nonheterocystous uncultured cyanobacterial phylotypes, only distantly related to sequences of nitrogen-fixing cultured cyanobacteria. These data stress the occurrence and importance of nonheterocystous epilithic cyanobacteria, and it is hypothesized that such epilithic cyanobacteria

  11. Prokaryotic diversity in one of the largest hypersaline coastal lagoons in the world.

    Science.gov (United States)

    Clementino, M M; Vieira, R P; Cardoso, A M; Nascimento, A P A; Silveira, C B; Riva, T C; Gonzalez, A S M; Paranhos, R; Albano, R M; Ventosa, A; Martins, O B

    2008-07-01

    Araruama Lagoon is an environment characterized by high salt concentrations. The low raining and high evaporation rates in this region favored the development of many salty ponds around the lagoon. In order to reveal the microbial composition of this system, we performed a 16S rRNA gene survey. Among archaea, most clones were related to uncultured environmental Euryarchaeota. In lagoon water, we found some clones related to Methanomicrobia and Methanothermococcus groups, while in the saline pond water members related to the genus Haloarcula were detected. Bacterial community was dominated by clones related to Gamma-proteobacteria, Actinobacteria, and Synechococcus in lagoon water, while Salinibacter ruber relatives dominated in saline pond. We also detected the presence of Alpha-proteobacteria, Pseudomonas-like bacteria and Verrucomicrobia. Only representatives of the genus Ralstonia were cosmopolitan, being observed in both systems. The detection of a substantial number of clones related to uncultured archaea and bacteria suggest that the hypersaline waters of Araruama harbor a pool of novel prokaryotic phylotypes, distinct from those observed in other similar systems. We also observed clones related to halophilic genera of cyanobacteria that are specific for each habitat studied. Additionally, two bacterioplankton molecular markers with ecological relevance were analyzed, one is linked to nitrogen fixation (nifH) and the other is linked to carbon fixation by bacterial photosynthesis, the protochlorophyllide genes, revealing a specific genetic distribution in this ecosystem. This is the first study of the biogeography and community structure of microbial assemblages in Brazilian tropical hypersaline environments. This work is directed towards a better understanding of the free-living prokaryotic diversity adapted to life in hypersaline waters.

  12. Genomic Diversification in Strains of Rickettsia felis Isolated from Different Arthropods

    Science.gov (United States)

    Gillespie, Joseph J.; Driscoll, Timothy P.; Verhoeve, Victoria I.; Utsuki, Tadanobu; Husseneder, Claudia; Chouljenko, Vladimir N.; Azad, Abdu F.; Macaluso, Kevin R.

    2015-01-01

    Rickettsia felis (Alphaproteobacteria: Rickettsiales) is the causative agent of an emerging flea-borne rickettsiosis with worldwide occurrence. Originally described from the cat flea, Ctenocephalides felis, recent reports have identified R. felis from other flea species, as well as other insects and ticks. This diverse host range for R. felis may indicate an underlying genetic variability associated with host-specific strains. Accordingly, to determine a potential genetic basis for host specialization, we sequenced the genome of R. felis str. LSU-Lb, which is an obligate mutualist of the parthenogenic booklouse Liposcelis bostrychophila (Insecta: Psocoptera). We also sequenced the genome of R. felis str. LSU, the second genome sequence for cat flea-associated strains (cf. R. felis str. URRWXCal2), which are presumably facultative parasites of fleas. Phylogenomics analysis revealed R. felis str. LSU-Lb diverged from the flea-associated strains. Unexpectedly, R. felis str. LSU was found to be divergent from R. felis str. URRWXCal2, despite sharing similar hosts. Although all three R. felis genomes contain the pRF plasmid, R. felis str. LSU-Lb carries an additional unique plasmid, pLbaR (plasmid of L. bostrychophila associated Rickettsia), nearly half of which encodes a unique 23-gene integrative conjugative element. Remarkably, pLbaR also encodes a repeats-in-toxin-like type I secretion system and associated toxin, heretofore unknown from other Rickettsiales genomes, which likely originated from lateral gene transfer with another obligate intracellular parasite of arthropods, Cardinium (Bacteroidetes). Collectively, our study reveals unexpected genomic diversity across three R. felis strains and identifies several diversifying factors that differentiate facultative parasites of fleas from obligate mutualists of booklice. PMID:25477419

  13. A Rickettsia Genome Overrun by Mobile Genetic Elements Provides Insight into the Acquisition of Genes Characteristic of an Obligate Intracellular Lifestyle

    Science.gov (United States)

    Joardar, Vinita; Williams, Kelly P.; Driscoll, Timothy; Hostetler, Jessica B.; Nordberg, Eric; Shukla, Maulik; Walenz, Brian; Hill, Catherine A.; Nene, Vishvanath M.; Azad, Abdu F.; Sobral, Bruno W.; Caler, Elisabet

    2012-01-01

    We present the draft genome for the Rickettsia endosymbiont of Ixodes scapularis (REIS), a symbiont of the deer tick vector of Lyme disease in North America. Among Rickettsia species (Alphaproteobacteria: Rickettsiales), REIS has the largest genome sequenced to date (>2 Mb) and contains 2,309 genes across the chromosome and four plasmids (pREIS1 to pREIS4). The most remarkable finding within the REIS genome is the extraordinary proliferation of mobile genetic elements (MGEs), which contributes to a limited synteny with other Rickettsia genomes. In particular, an integrative conjugative element named RAGE (for Rickettsiales amplified genetic element), previously identified in scrub typhus rickettsiae (Orientia tsutsugamushi) genomes, is present on both the REIS chromosome and plasmids. Unlike the pseudogene-laden RAGEs of O. tsutsugamushi, REIS encodes nine conserved RAGEs that include F-like type IV secretion systems similar to that of the tra genes encoded in the Rickettsia bellii and R. massiliae genomes. An unparalleled abundance of encoded transposases (>650) relative to genome size, together with the RAGEs and other MGEs, comprise ∼35% of the total genome, making REIS one of the most plastic and repetitive bacterial genomes sequenced to date. We present evidence that conserved rickettsial genes associated with an intracellular lifestyle were acquired via MGEs, especially the RAGE, through a continuum of genomic invasions. Robust phylogeny estimation suggests REIS is ancestral to the virulent spotted fever group of rickettsiae. As REIS is not known to invade vertebrate cells and has no known pathogenic effects on I. scapularis, its genome sequence provides insight on the origin of mechanisms of rickettsial pathogenicity. PMID:22056929

  14. Patterns of ecological specialization among microbial populations in the Red Sea and diverse oligotrophic marine environments

    KAUST Repository

    Thompson, Luke R

    2013-05-11

    Large swaths of the nutrient-poor surface ocean are dominated numerically by cyanobacteria (Prochlorococcus), cyanobacterial viruses (cyanophage), and alphaproteobacteria (SAR11). How these groups thrive in the diverse physicochemical environments of different oceanic regions remains poorly understood. Comparative metagenomics can reveal adaptive responses linked to ecosystem-specific selective pressures. The Red Sea is well-suited for studying adaptation of pelagic-microbes, with salinities, temperatures, and light levels at the extreme end for the surface ocean, and low nutrient concentrations, yet no metagenomic studies have been done there. The Red Sea (high salinity, high light, low N and P) compares favorably with the Mediterranean Sea (high salinity, low P), Sargasso Sea (low P), and North Pacific Subtropical Gyre (high light, low N). We quantified the relative abundance of genetic functions among Prochlorococcus, cyanophage, and SAR11 from these four regions. Gene frequencies indicate selection for phosphorus acquisition (Mediterranean/Sargasso), DNA repair and high-light responses (Red Sea/Pacific Prochlorococcus), and osmolyte C1 oxidation (Red Sea/Mediterranean SAR11). The unexpected connection between salinity-dependent osmolyte production and SAR11 C1 metabolism represents a potentially major coevolutionary adaptation and biogeochemical flux. Among Prochlorococcus and cyanophage, genes enriched in specific environments had ecotype distributions similar to nonenriched genes, suggesting that inter-ecotype gene transfer is not a major source of environment-specific adaptation. Clustering of metagenomes using gene frequencies shows similarities in populations (Red Sea with Pacific, Mediterranean with Sargasso) that belie their geographic distances. Taken together, the genetic functions enriched in specific environments indicate competitive strategies for maintaining carrying capacity in the face of physical stressors and low nutrient availability. 2013 The

  15. Changes in bacterial composition of biofilm in a metropolitan drinking water distribution system.

    Science.gov (United States)

    Revetta, R P; Gomez-Alvarez, V; Gerke, T L; Santo Domingo, J W; Ashbolt, N J

    2016-07-01

    This study examined the development of bacterial biofilms within a metropolitan distribution system. The distribution system is fed with different source water (i.e. groundwater, GW and surface water, SW) and undergoes different treatment processes in separate facilities. The biofilm community was characterized using 16S rRNA gene clone libraries and functional potential analysis, generated from total DNA extracted from coupons in biofilm annular reactors fed with onsite drinking water for up to 18 months. Differences in the bacterial community structure were observed between GW and SW. Representatives that explained the dissimilarity were associated with the classes Betaproteobacteria, Alphaproteobacteria, Actinobacteria, Gammaproteobacteria and Firmicutes. After 9 months the biofilm bacterial community from both GW and SW were dominated by Mycobacterium species. The distribution of the dominant operational taxonomic unit (OTU) (Mycobacterium) positively correlated with the drinking water distribution system (DWDS) temperature. In this study, the biofilm community structure observed between GW and SW were dissimilar, while communities from different locations receiving SW did not show significant differences. The results suggest that source water and/or the water quality shaped by their respective treatment processes may play an important role in shaping the bacterial communities in the distribution system. In addition, several bacterial groups were present in all samples, suggesting that they are an integral part of the core microbiota of this DWDS. These results provide an ecological insight into biofilm bacterial structure in chlorine-treated drinking water influenced by different water sources and their respective treatment processes. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  16. Evolutionary Genomics of an Ancient Prophage of the Order Sphingomonadales

    Science.gov (United States)

    Viswanathan, Vandana; Narjala, Anushree; Ravichandran, Aravind; Jayaprasad, Suvratha

    2017-01-01

    The order Sphingomonadales, containing the families Erythrobacteraceae and Sphingomonadaceae, is a relatively less well-studied phylogenetic branch within the class Alphaproteobacteria. Prophage elements are present in most bacterial genomes and are important determinants of adaptive evolution. An “intact” prophage was predicted within the genome of Sphingomonas hengshuiensis strain WHSC-8 and was designated Prophage IWHSC-8. Loci homologous to the region containing the first 22 open reading frames (ORFs) of Prophage IWHSC-8 were discovered among the genomes of numerous Sphingomonadales. In 17 genomes, the homologous loci were co-located with an ORF encoding a putative superoxide dismutase. Several other lines of molecular evidence implied that these homologous loci represent an ancient temperate bacteriophage integration, and this horizontal transfer event pre-dated niche-based speciation within the order Sphingomonadales. The “stabilization” of prophages in the genomes of their hosts is an indicator of “fitness” conferred by these elements and natural selection. Among the various ORFs predicted within the conserved prophages, an ORF encoding a putative proline-rich outer membrane protein A was consistently present among the genomes of many Sphingomonadales. Furthermore, the conserved prophages in six Sphingomonas sp. contained an ORF encoding a putative spermidine synthase. It is possible that one or more of these ORFs bestow selective fitness, and thus the prophages continue to be vertically transferred within the host strains. Although conserved prophages have been identified previously among closely related genera and species, this is the first systematic and detailed description of orthologous prophages at the level of an order that contains two diverse families and many pigmented species. PMID:28201618

  17. Hopanoids play a role in stress tolerance and nutrient storage in the cyanobacterium Nostoc punctiforme.

    Science.gov (United States)

    Ricci, J N; Morton, R; Kulkarni, G; Summers, M L; Newman, D K

    2017-01-01

    Hopanes are abundant in ancient sedimentary rocks at discrete intervals in Earth history, yet interpreting their significance in the geologic record is complicated by our incomplete knowledge of what their progenitors, hopanoids, do in modern cells. To date, few studies have addressed the breadth of diversity of physiological functions of these lipids and whether those functions are conserved across the hopanoid-producing bacterial phyla. Here, we generated mutants in the filamentous cyanobacterium, Nostoc punctiforme, that are unable to make all hopanoids (shc) or 2-methylhopanoids (hpnP). While the absence of hopanoids impedes growth of vegetative cells at high temperature, the shc mutant grows faster at low temperature. This finding is consistent with hopanoids acting as membrane rigidifiers, a function shared by other hopanoid-producing phyla. Apart from impacting fitness under temperature stress, hopanoids are dispensable for vegetative cells under other stress conditions. However, hopanoids are required for stress tolerance in akinetes, a resting survival cell type. While 2-methylated hopanoids do not appear to contribute to any stress phenotype, total hopanoids and to a lesser extent 2-methylhopanoids were found to promote the formation of cyanophycin granules in akinetes. Finally, although hopanoids support symbiotic interactions between Alphaproteobacteria and plants, they do not appear to facilitate symbiosis between N. punctiforme and the hornwort Anthoceros punctatus. Collectively, these findings support interpreting hopanes as general environmental stress biomarkers. If hopanoid-mediated enhancement of nitrogen-rich storage products turns out to be a conserved phenomenon in other organisms, a better understanding of this relationship may help us parse the enrichment of 2-methylhopanes in the rock record during episodes of disrupted nutrient cycling. © 2016 John Wiley & Sons Ltd.

  18. Phylogenetic diversity and spatial distribution of the microbial community associated with the Caribbean deep-water sponge Polymastia cf. corticata by 16S rRNA, aprA, and amoA gene analysis.

    Science.gov (United States)

    Meyer, Birte; Kuever, Jan

    2008-08-01

    Denaturing gradient gel electrophoresis (DGGE)-based analyses of 16S rRNA, aprA, and amoA genes demonstrated that a phylogenetically diverse and complex microbial community was associated with the Caribbean deep-water sponge Polymastia cf. corticata Ridley and Dendy, 1887. From the 38 archaeal and bacterial 16S rRNA phylotypes identified, 53% branched into the sponge-specific, monophyletic sequence clusters determined by previous studies (considering predominantly shallow-water sponge species), whereas 26% appeared to be P. cf. corticata specifically associated microorganisms ("specialists"); 21% of the phylotypes were confirmed to represent seawater- and sediment-derived proteobacterial species ("contaminants") acquired by filtration processes from the host environment. Consistently, the aprA and amoA gene-based analyses indicated the presence of environmentally derived sulfur- and ammonia-oxidizers besides putative sponge-specific sulfur-oxidizing Gammaproteobacteria and Alphaproteobacteria and a sulfate-reducing archaeon. A sponge-specific, endosymbiotic sulfur cycle as described for marine oligochaetes is proposed to be also present in P. cf. corticata. Overall, the results of this work support the recent studies that demonstrated the sponge species specificity of the associated microbial community while the biogeography of the host collection site has only a minor influence on the composition. In P. cf. corticata, the specificity of the sponge-microbe associations is even extended to the spatial distribution of the microorganisms within the sponge body; distinct bacterial populations were associated with the different tissue sections, papillae, outer and inner cortex, and choanosome. The local distribution of a phylotype within P. cf. corticata correlated with its (1) phylogenetic affiliation, (2) classification as sponge-specific or nonspecifically associated microorganism, and (3) potential ecological role in the host sponge.

  19. The effect of surface colour on the formation of marine micro and macrofouling communities

    KAUST Repository

    Dobretsov, Sergey V.

    2013-07-01

    The effect of substratum colour on the formation of micro- and macro fouling communities was investigated. Acrylic tiles, painted either black or white were covered with transparent sheets in order to ensure similar surface properties. All substrata were exposed to biofouling at 1 m depth for 40 d in the Marina Bandar al Rowdha (Muscat, Sea of Oman). Studies were conducted in 2010 over a time course of 5, 10 and 20 d, and in 2012 samples were collected at 7, 14 and 21 d. The densities of bacteria on the black and white substrata were similar with the exception of day 10, when the black substrata had a higher abundance than white ones. Pyrosequencing via 454 of 16S rRNA genes of bacteria from white and black substrata revealed that Alphaproteobacteria and Firmicutes were the dominant groups. SIMPER analysis demonstrated that bacterial phylotypes (uncultured Gammaproteobacteria, Actibacter, Gaetbulicola, Thalassobius and Silicibacter) and the diatoms (Navicula directa, Navicula sp. and Nitzschia sp.) contributed to the dissimilarities between communities developed on white and black substrata. At day 20, the highest amount of chlorophyll a was recorded in biofilms developed on black substrata. SIMPER analysis showed that Folliculina sp., Ulva sp. and Balanus amphitrite were the major macro fouling species that contributed to the dissimilarities between the communities formed on white and black substrata. Higher densities of these species were observed on black tiles. The results emphasise the effect of substratum colour on the formation of micro and macro fouling communities; substratum colour should to be taken into account in future studies. © 2013 Copyright Taylor and Francis Group, LLC.

  20. Effect of biostimulation using sewage sludge, soybean meal and wheat straw on oil degradation and bacterial community composition in a contaminated desert soil

    Directory of Open Access Journals (Sweden)

    Sumaiya eAl-Kindi

    2016-03-01

    Full Text Available Waste materials have a strong potential in the bioremediation of oil-contaminated sites, because of their richness in nutrients and their economical feasibility. We used sewage sludge, soybean meal and wheat straw to biostimulate oil degradation in a heavily contaminated desert soil. While oil degradation was assessed by following the produced CO2 and by using gas chromatography-mass spectrometry (GC-MS, shifts in bacterial community composition were monitored using illumina MiSeq. The addition of sewage sludge and wheat straw to the desert soil stimulated the respiration activities more than the addition of soybean meal. GC-MS analysis revealed that the addition of addition of sewage sludge and wheat straw resulted in 1.7 to 1.8 fold increase in the degraded C14 to C30 alkanes, compared to only 1.3 fold increase in the case of soybean meal addition. The degradation of ≥ 90% of the C14 to C30 alkanes were measured in the soils treated with sewage sludge and wheat straw. MiSeq sequencing revealed that the majority (76.5-86.4% of total sequences of acquired sequences from the original soil belonged to Alphaproteobacteria, Gammaproteobacteria and Firmicutes. Multivariate analysis of operational taxonomic units (OTUs placed the bacterial communities of the soils after the treatments in separate clusters (ANOSIM R=0.66, P=0.0001. The most remarkable shift in bacterial communities was in the wheat straw treatment, where 95-98% of the total sequences belonging to Bacilli. We conclude that sewage sludge and wheat straw are useful biostimulating agents for the cleanup of oil-contaminated desert soils.

  1. Low Diversity Bacterial Community and the Trapping Activity of Metabolites from Cultivable Bacteria Species in the Female Reproductive System of the Oriental Fruit Fly, Bactrocera dorsalis Hendel (Diptera: Tephritidae

    Directory of Open Access Journals (Sweden)

    Hongyu Zhang

    2012-05-01

    Full Text Available Our goal was to identify the bacteria inhabiting the reproductive system of the female oriental fruit fly, Bactrocera dorsalis (Hendel, and evaluate the chemotaxis of B. dorsalis to the metabolites produced by the bacteria. Based on 16S rRNA-based polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE, 18 operational taxonomic units (OTUs were assigned to the five bacterial classes Betaproteobacteria, Alphaproteobacteria, Gammaproteobacteria, Bacilli and Actinobacteria. Nine OTUs were assigned to Gammaproteobacteria, which was the most highly represented class. Enterobacteriaceae constituted the dominant family, and within this family, three genera and five species were identified, including Enterobacter sakazakii, Klebsiella oxytoca, Klebsiella pneumoniae, Raoultella terrigena and Enterobacter amnigenus. In this set, the first two species were the dominant components, and the latter three species were the minor ones. Finally, we found that the metabolites produced by R. terrigena, K. oxytoca and K. pneumoniae were attractive to the B. dorsalis adults, and in field studies, B. dorsalis adults were most attracted to K. oxytoca. Collectively, our results suggest that the female reproductive system plays an important role in the transfer of enterobacteria from the gut to fruit. Our data may prompt the development of a female-targeted population control strategy for this fly.

  2. The effect of surface colour on the formation of marine micro and macrofouling communities.

    Science.gov (United States)

    Dobretsov, Sergey; Abed, Raeid M M; Voolstra, Christian R

    2013-01-01

    The effect of substratum colour on the formation of micro- and macro fouling communities was investigated. Acrylic tiles, painted either black or white were covered with transparent sheets in order to ensure similar surface properties. All substrata were exposed to biofouling at 1 m depth for 40 d in the Marina Bandar al Rowdha (Muscat, Sea of Oman). Studies were conducted in 2010 over a time course of 5, 10 and 20 d, and in 2012 samples were collected at 7, 14 and 21 d. The densities of bacteria on the black and white substrata were similar with the exception of day 10, when the black substrata had a higher abundance than white ones. Pyrosequencing via 454 of 16S rRNA genes of bacteria from white and black substrata revealed that Alphaproteobacteria and Firmicutes were the dominant groups. SIMPER analysis demonstrated that bacterial phylotypes (uncultured Gammaproteobacteria, Actibacter, Gaetbulicola, Thalassobius and Silicibacter) and the diatoms (Navicula directa, Navicula sp. and Nitzschia sp.) contributed to the dissimilarities between communities developed on white and black substrata. At day 20, the highest amount of chlorophyll a was recorded in biofilms developed on black substrata. SIMPER analysis showed that Folliculina sp., Ulva sp. and Balanus amphitrite were the major macro fouling species that contributed to the dissimilarities between the communities formed on white and black substrata. Higher densities of these species were observed on black tiles. The results emphasise the effect of substratum colour on the formation of micro and macro fouling communities; substratum colour should to be taken into account in future studies.

  3. Effect of microorganisms on the chemical behavior of radionuclides in the environment

    International Nuclear Information System (INIS)

    Amachi, Seigo

    2004-01-01

    Microorganisms are affecting the fate of various radionuclides in the environment through processes such as sorption, accumulation, reduction, leaching and volatilization. We have studied on the microbial influences on the chemical behavior of iodine in the environment, and have isolated various microorganisms which can mediate volatilization, accumulation and oxidation of iodine. We found that iodine-volatilizing bacteria are distributed widely in the environment, and are very diverse group of bacteria. From gas chromatographic analyses, volatile iodine species produced by bacteria was identified as methyl iodide (CH 3 I). Radiotracer experiments were carried out to estimate bacterial contribution to the volatilization of iodine from soils and seawaters. In soil samples, bacteria were considered to play major roles in iodine volatilization since the addition of bacterial inhibitor almost completely inhibited the volatilization. On the other hand, in seawater samples, both bacterial and fungal (or algal) contributions were suggested. We also isolated iodine-accumulating bacteria and iodine-oxidizing bacteria from the environment. Iodine-accumulating bacteria were isolated from marine sediments, and 16S ribosomal DNA sequences showed that they are close to common marine bacteria Flexibacter sp. During the cultivation with iodide ion, they accumulated iodide intracellularly at a concentration that is more than 1,000 times higher than the culture medium. Iodide uptake by iodine-accumulating bacteria was found to occur biologically, and the uptake was specific for iodide but not for iodate. Iodine-oxidizing bacteria, which can mediate iodide (I - ) oxidation to molecular iodine (I 2 ), were phylogenetically divided into two groups within alpha-Proteobacteria, and iodide oxidation was mediated by an extracellular enzyme protein. (author)

  4. The effect of D123 wheat as a companion crop on soil enzyme activities, microbial biomass and microbial communities in the rhizosphere of watermelon

    Directory of Open Access Journals (Sweden)

    Wei Hui Xu

    2015-09-01

    Full Text Available The growth of watermelon is often threatened by Fusarium oxysporum f. sp. niveum (Fon in successively monocultured soil, which results in economic loss. The objective of this study was to investigate the effect of D123 wheat as a companion crop on soil enzyme activities, microbial biomass and microbial communities in the rhizosphere of watermelon and to explore the relationship between the effect and the incidence of wilt caused by Fon. The results showed that the activities of soil polyphenol oxidase, urease and invertase were increased, the microbial biomass nitrogen (MBN and microbial biomass phosphorus (MBP were significantly increased, and the ratio of MBC/MBN was decreased (P<0.05. Real-time PCR analysis showed that the Fon population declined significantly in the watermelon/wheat companion system compared with the monoculture system (P<0.05. The analysis of microbial communities showed that the relative abundance of microbial communities was changed in the rhizosphere of watermelon. Compared with the monoculture system, the relative abundances of Alphaproteobacteria, Actinobacteria, Gemmatimonadetes and Sordariomycetes were increased, and the relative abundances of Gammaproteobacteria, Sphingobacteria, Cytophagia, Pezizomycetes, and Eurotiomycetes were decreased in the rhizosphere of watermelon in the watermelon/wheat companion system; importantly, the incidence of Fusarium wilt was also decreased in the watermelon/wheat companion system. In conclusion, this study indicated that D123 wheat as a companion crop increased soil enzyme activities and microbial biomass, decreased the Fon population, and changed the relative abundance of microbial communities in the rhizosphere of watermelon, which may be related to the reduction of Fusarium wilt in the watermelon/wheat companion system.

  5. Metagenomic Analysis of the Bioremediation of Diesel-Contaminated Canadian High Arctic Soils

    Science.gov (United States)

    Yergeau, Etienne; Sanschagrin, Sylvie; Beaumier, Danielle; Greer, Charles W.

    2012-01-01

    As human activity in the Arctic increases, so does the risk of hydrocarbon pollution events. On site bioremediation of contaminated soil is the only feasible clean up solution in these remote areas, but degradation rates vary widely between bioremediation treatments. Most previous studies have focused on the feasibility of on site clean-up and very little attention has been given to the microbial and functional communities involved and their ecology. Here, we ask the question: which microorganisms and functional genes are abundant and active during hydrocarbon degradation at cold temperature? To answer this question, we sequenced the soil metagenome of an ongoing bioremediation project in Alert, Canada through a time course. We also used reverse-transcriptase real-time PCR (RT-qPCR) to quantify the expression of several hydrocarbon-degrading genes. Pseudomonas species appeared as the most abundant organisms in Alert soils right after contamination with diesel and excavation (t = 0) and one month after the start of the bioremediation treatment (t = 1m), when degradation rates were at their highest, but decreased after one year (t = 1y), when residual soil hydrocarbons were almost depleted. This trend was also reflected in hydrocarbon degrading genes, which were mainly affiliated with Gammaproteobacteria at t = 0 and t = 1m and with Alphaproteobacteria and Actinobacteria at t = 1y. RT-qPCR assays confirmed that Pseudomonas and Rhodococcus species actively expressed hydrocarbon degradation genes in Arctic biopile soils. Taken together, these results indicated that biopile treatment leads to major shifts in soil microbial communities, favoring aerobic bacteria that can degrade hydrocarbons. PMID:22253877

  6. Metagenome-based diversity analyses suggest a significant contribution of non-cyanobacterial lineages to carbonate precipitation in modern microbialites

    Directory of Open Access Journals (Sweden)

    Purificacion eLopez-Garcia

    2015-08-01

    Full Text Available Cyanobacteria are thought to play a key role in carbonate formation due to their metabolic activity, but other organisms carrying out oxygenic photosynthesis (photosynthetic eukaryotes or other metabolisms (e.g. anoxygenic photosynthesis, sulfate reduction, may also contribute to carbonate formation. To obtain more quantitative information than that provided by more classical PCR-dependent methods, we studied the microbial diversity of microbialites from the Alchichica crater lake (Mexico by mining for 16S/18S rRNA genes in metagenomes obtained by direct sequencing of environmental DNA. We studied samples collected at the Western (AL-W and Northern (AL-N shores of the lake and, at the latter site, along a depth gradient (1, 5, 10 and 15 m depth. The associated microbial communities were mainly composed of bacteria, most of which seemed heterotrophic, whereas archaea were negligible. Eukaryotes composed a relatively minor fraction dominated by photosynthetic lineages, diatoms in AL-W, influenced by Si-rich seepage waters, and green algae in AL-N samples. Members of the Gammaproteobacteria and Alphaproteobacteria classes of Proteobacteria, Cyanobacteria and Bacteroidetes were the most abundant bacterial taxa, followed by Planctomycetes, Deltaproteobacteria (Proteobacteria, Verrucomicrobia, Actinobacteria, Firmicutes and Chloroflexi. Community composition varied among sites and with depth. Although cyanobacteria were the most important bacterial group contributing to the carbonate precipitation potential, photosynthetic eukaryotes, anoxygenic photosynthesizers and sulfate reducers were also very abundant. Cyanobacteria affiliated to Pleurocapsales largely increased with depth. Scanning electron microscopy (SEM observations showed considerable areas of aragonite-encrusted Pleurocapsa-like cyanobacteria at microscale. Multivariate statistical analyses showed a strong positive correlation of Pleurocapsales and Chroococcales with aragonite formation at

  7. The Prestige oil spill: bacterial community dynamics during a field biostimulation assay

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, N; Solanas, A M [Barcelona Univ. (Spain). Dept. of Microbiology; Vinas, M [GIRO Technological Centre, Mollet del Valles (Spain); Bayona, J M; Albaiges, J [IIQAB-CSIC, Barcelona (Spain). Dept. of Environmental Chemistry

    2007-12-15

    A field bioremediation assay using the oleophilic fertilizer S200 was carried out 12 months after the Prestige heavy fuel-oil spill on a beach on the Cantabrian coast (north Spain). This assay showed that S200-enhanced oil degradation, particularly of high-molecular-weight n-alkanes and alkylated PAHs, suggesting an increase in the microbial bioavailability of these compounds. The bacterial community structure was determined by cultivation-independent analysis of polymerase chain reaction-amplified 16S rDNA by denaturing gradient gel electrophoresis. Bacterial community was mainly composed of {alpha}-Proteobacteria (Rhodobacteriaceae and Sphingomonadaceae). Representatives of {gamma}-Proteobacteria (Chromatiales, Moraxellaceae, and Halomonadaceae), Bacteroidetes (Flavobacteriaceae), and Actinobacteria group (Nocardiaceae and Corynebacteriaceae) were also found. The addition of the fertilizer led to the appearance of the bacterium Mesonia algae in the early stages, with a narrow range of growth substrates, which has been associated with the common alga Achrosiphonia sonderi. The presence of Mesonia algae may be attributable to the response of the microbial community to the addition of N and P rather than indicating a role in the biodegradation process. The Rhodococcus group appeared in both assay plots, especially at the end of the experiment. It was also found at another site on the Galician coast that had been affected by the same spill. This genus has been associated with the degradation of n-alkanes up to C{sub 36}. Taking into account the high content of heavy alkanes in the Prestige fuel, these microorganisms could play a significant role in the degradation of such fuel. A similar bacterial community structure was observed at another site that showed a similar degree of fuel weathering. (orig.)

  8. Is autoinducer-2 a universal signal for interspecies communication: a comparative genomic and phylogenetic analysis of the synthesis and signal transduction pathways

    Directory of Open Access Journals (Sweden)

    Wagner-Döbler Irene

    2004-09-01

    Full Text Available Abstract Background Quorum sensing is a process of bacterial cell-to-cell communication involving the production and detection of extracellular signaling molecules called autoinducers. Recently, it has been proposed that autoinducer-2 (AI-2, a furanosyl borate diester derived from the recycling of S-adenosyl-homocysteine (SAH to homocysteine, serves as a universal signal for interspecies communication. Results In this study, 138 completed genomes were examined for the genes involved in the synthesis and detection of AI-2. Except for some symbionts and parasites, all organisms have a pathway to recycle SAH, either using a two-step enzymatic conversion by the Pfs and LuxS enzymes or a one-step conversion using SAH-hydrolase (SahH. 51 organisms including most Gamma-, Beta-, and Epsilonproteobacteria, and Firmicutes possess the Pfs-LuxS pathway, while Archaea, Eukarya, Alphaproteobacteria, Actinobacteria and Cyanobacteria prefer the SahH pathway. In all 138 organisms, only the three Vibrio strains had strong, bidirectional matches to the periplasmic AI-2 binding protein LuxP and the central signal relay protein LuxU. The initial two-component sensor kinase protein LuxQ, and the terminal response regulator luxO are found in most Proteobacteria, as well as in some Firmicutes, often in several copies. Conclusions The genomic analysis indicates that the LuxS enzyme required for AI-2 synthesis is widespread in bacteria, while the periplasmic binding protein LuxP is only present in Vibrio strains. Thus, other organisms may either use components different from the AI-2 signal transduction system of Vibrio strains to sense the signal of AI-2, or they do not have such a quorum sensing system at all.

  9. Ocean time-series reveals recurring seasonal patterns of virioplankton dynamics in the northwestern Sargasso Sea.

    Science.gov (United States)

    Parsons, Rachel J; Breitbart, Mya; Lomas, Michael W; Carlson, Craig A

    2012-02-01

    There are an estimated 10(30) virioplankton in the world oceans, the majority of which are phages (viruses that infect bacteria). Marine phages encompass enormous genetic diversity, affect biogeochemical cycling of elements, and partially control aspects of prokaryotic production and diversity. Despite their importance, there is a paucity of data describing virioplankton distributions over time and depth in oceanic systems. A decade of high-resolution time-series data collected from the upper 300 m in the northwestern Sargasso Sea revealed recurring temporal and vertical patterns of virioplankton abundance in unprecedented detail. An annual virioplankton maximum developed between 60 and 100 m during periods of summer stratification and eroded during winter convective mixing. The timing and vertical positioning of this seasonal pattern was related to variability in water column stability and the dynamics of specific picophytoplankton and heterotrophic bacterioplankton lineages. Between 60 and 100 m, virioplankton abundance was negatively correlated to the dominant heterotrophic bacterioplankton lineage SAR11, as well as the less abundant picophytoplankton, Synechococcus. In contrast, virioplankton abundance was positively correlated to the dominant picophytoplankton lineage Prochlorococcus, and the less abundant alpha-proteobacteria, Rhodobacteraceae. Seasonally, virioplankton abundances were highly synchronous with Prochlorococcus distributions and the virioplankton to Prochlorococcus ratio remained remarkably constant during periods of water column stratification. The data suggest that a significant fraction of viruses in the mid-euphotic zone of the subtropical gyres may be cyanophages and patterns in their abundance are largely determined by Prochlorococcus dynamics in response to water column stability. This high-resolution, decadal survey of virioplankton abundance provides insight into the possible controls of virioplankton dynamics in the open ocean.

  10. Microbial population analysis of the salivary glands of ticks; a possible strategy for the surveillance of bacterial pathogens.

    Directory of Open Access Journals (Sweden)

    Yongjin Qiu

    Full Text Available Ticks are one of the most important blood-sucking vectors for infectious microorganisms in humans and animals. When feeding they inject saliva, containing microbes, into the host to facilitate the uptake of blood. An understanding of the microbial populations within their salivary glands would provide a valuable insight when evaluating the vectorial capacity of ticks. Three tick species (Ixodes ovatus, I. persulcatus and Haemaphysalis flava were collected in Shizuoka Prefecture of Japan between 2008 and 2011. Each tick was dissected and the salivary glands removed. Bacterial communities in each salivary gland were characterized by 16S amplicon pyrosequencing using a 454 GS-Junior Next Generation Sequencer. The Ribosomal Database Project (RDP Classifier was used to classify sequence reads at the genus level. The composition of the microbial populations of each tick species were assessed by principal component analysis (PCA using the Metagenomics RAST (MG-RAST metagenomic analysis tool. Rickettsia-specific PCR was used for the characterization of rickettsial species. Almost full length of 16S rDNA was amplified in order to characterize unclassified bacterial sequences obtained in I. persulcatus female samples. The numbers of bacterial genera identified for the tick species were 71 (I. ovatus, 127 (I. persulcatus and 59 (H. flava. Eighteen bacterial genera were commonly detected in all tick species. The predominant bacterial genus observed in all tick species was Coxiella. Spiroplasma was detected in Ixodes, and not in H. flava. PCA revealed that microbial populations in tick salivary glands were different between tick species, indicating that host specificities may play an important role in determining the microbial complement. Four female I. persulcatus samples contained a high abundance of several sequences belonging to Alphaproteobacteria symbionts. This study revealed the microbial populations within the salivary glands of three species of

  11. Methylobacterium frigidaeris sp. nov., isolated from an air conditioning system.

    Science.gov (United States)

    Lee, Yunho; Jeon, Che Ok

    2018-01-01

    A reddish pink-pigmented, Gram-stain-negative, aerobic and methylotrophic bacterial strain, designated strain IER25-16 T , was isolated from a laboratory air conditioning system in the Republic of Korea. Cells were motile rods showing catalase- and oxidase-positive reactions. Strain IER25-16 T grew at 10-40 °C (optimum, 30 °C), at pH 4.0-7.0 (optimum, pH 5.0-7.0) and in the presence of 0-1.0 % (w/v) NaCl (optimum, 0 %). The major respiratory quinone was ubiquinone-10 and ubiquinone-9 was also detected as the minor respiratory quinone. Summed feature 8 (comprising C18 : 1ω7c and/or C18 : 1ω6c) was detected as the predominant fatty acids. The genomic DNA G+C content of strain IER25-16 T was 70.0 mol%. Phylogenetic analysis based on 16S rRNA gene sequence comparison revealed that strain IER25-16 T belonged to the genus Methylobacterium of the class Alphaproteobacteria. Strain IER25-16 T was most closely related to Methylobacterium platani PMB02 T (97.9 %), Methylobacterium aquaticum GR16 T (97.9 %) and Methylobacterium tarhaniae N4211 T (97.5 %). The average nucleotide identity and in silico DNA-DNA hybridization values between strain IER25-16 T and M. platani, M. aquaticum and M. tarhaniae were 88.3, 88.8 and 89.6 % and 36.2, 37.3 and 39.3 %, respectively. The phenotypic and chemotaxonomic features and the phylogenetic inference clearly suggested that strain IER25-16 T represents a novel species of the genus Methylobacterium, for which the name Methylobacteriumfrigidaeris sp. nov. is proposed. The type strain is strain IER25-16 T (=KACC 19280 T =JCM 32048 T ).

  12. Influence of salinity on bacterioplankton communities from the Brazilian rain forest to the coastal Atlantic Ocean.

    Science.gov (United States)

    Silveira, Cynthia B; Vieira, Ricardo P; Cardoso, Alexander M; Paranhos, Rodolfo; Albano, Rodolpho M; Martins, Orlando B

    2011-03-09

    Planktonic bacteria are recognized as important drivers of biogeochemical processes in all aquatic ecosystems, however, the taxa that make up these communities are poorly known. The aim of this study was to investigate bacterial communities in aquatic ecosystems at Ilha Grande, Rio de Janeiro, Brazil, a preserved insular environment of the Atlantic rain forest and how they correlate with a salinity gradient going from terrestrial aquatic habitats to the coastal Atlantic Ocean. We analyzed chemical and microbiological parameters of water samples and constructed 16S rRNA gene libraries of free living bacteria obtained at three marine (two coastal and one offshore) and three freshwater (water spring, river, and mangrove) environments. A total of 836 sequences were analyzed by MOTHUR, yielding 269 freshwater and 219 marine operational taxonomic units (OTUs) grouped at 97% stringency. Richness and diversity indexes indicated that freshwater environments were the most diverse, especially the water spring. The main bacterial group in freshwater environments was Betaproteobacteria (43.5%), whereas Cyanobacteria (30.5%), Alphaproteobacteria (25.5%), and Gammaproteobacteria (26.3%) dominated the marine ones. Venn diagram showed no overlap between marine and freshwater OTUs at 97% stringency. LIBSHUFF statistics and PCA analysis revealed marked differences between the freshwater and marine libraries suggesting the importance of salinity as a driver of community composition in this habitat. The phylogenetic analysis of marine and freshwater libraries showed that the differences in community composition are consistent. Our data supports the notion that a divergent evolutionary scenario is driving community composition in the studied habitats. This work also improves the comprehension of microbial community dynamics in tropical waters and how they are structured in relation to physicochemical parameters. Furthermore, this paper reveals for the first time the pristine

  13. Isotopically labeled sulfur compounds and synthetic selenium and tellurium analogues to study sulfur metabolism in marine bacteria

    Directory of Open Access Journals (Sweden)

    Nelson L. Brock

    2013-05-01

    Full Text Available Members of the marine Roseobacter clade can degrade dimethylsulfoniopropionate (DMSP via competing pathways releasing either methanethiol (MeSH or dimethyl sulfide (DMS. Deuterium-labeled [2H6]DMSP and the synthetic DMSP analogue dimethyltelluriopropionate (DMTeP were used in feeding experiments with the Roseobacter clade members Phaeobacter gallaeciensis DSM 17395 and Ruegeria pomeroyi DSS-3, and their volatile metabolites were analyzed by closed-loop stripping and solid-phase microextraction coupled to GC–MS. Feeding experiments with [2H6]DMSP resulted in the incorporation of a deuterium label into MeSH and DMS. Knockout of relevant genes from the known DMSP demethylation pathway to MeSH showed in both species a residual production of [2H3]MeSH, suggesting that a second demethylation pathway is active. The role of DMSP degradation pathways for MeSH and DMS formation was further investigated by using the synthetic analogue DMTeP as a probe in feeding experiments with the wild-type strain and knockout mutants. Feeding of DMTeP to the R. pomeroyi knockout mutant resulted in a diminished, but not abolished production of demethylation pathway products. These results further corroborated the proposed second demethylation activity in R. pomeroyi. Isotopically labeled [2H3]methionine and 34SO42−, synthesized from elemental 34S8, were tested to identify alternative sulfur sources besides DMSP for the MeSH production in P. gallaeciensis. Methionine proved to be a viable sulfur source for the MeSH volatiles, whereas incorporation of labeling from sulfate was not observed. Moreover, the utilization of selenite and selenate salts by marine alphaproteobacteria for the production of methylated selenium volatiles was explored and resulted in the production of numerous methaneselenol-derived volatiles via reduction and methylation. The pathway of selenate/selenite reduction, however, proved to be strictly separated from sulfate reduction.

  14. Liming in the sugarcane burnt system and the green harvest practice affect soil bacterial community in northeastern São Paulo, Brazil.

    Science.gov (United States)

    Val-Moraes, Silvana Pompeia; de Macedo, Helena Suleiman; Kishi, Luciano Takeshi; Pereira, Rodrigo Matheus; Navarrete, Acacio Aparecido; Mendes, Lucas William; de Figueiredo, Eduardo Barretto; La Scala, Newton; Tsai, Siu Mui; de Macedo Lemos, Eliana Gertrudes; Alves, Lúcia Maria Carareto

    2016-12-01

    Here we show that both liming the burnt sugarcane and the green harvest practice alter bacterial community structure, diversity and composition in sugarcane fields in northeastern São Paulo state, Brazil. Terminal restriction fragment length polymorphism fingerprinting and 16S rRNA gene cloning and sequencing were used to analyze changes in soil bacterial communities. The field experiment consisted of sugarcane-cultivated soils under different regimes: green sugarcane (GS), burnt sugarcane (BS), BS in soil amended with lime applied to increase soil pH (BSL), and native forest (NF) as control soil. The bacterial community structures revealed disparate patterns in sugarcane-cultivated soils and forest soil (R = 0.786, P = 0.002), and overlapping patterns were shown for the bacterial community structure among the different management regimes applied to sugarcane (R = 0.194, P = 0.002). The numbers of operational taxonomic units (OTUs) found in the libraries were 117, 185, 173 and 166 for NF, BS, BSL and GS, respectively. Sugarcane-cultivated soils revealed higher bacterial diversity than NF soil, with BS soil accounting for a higher richness of unique OTUs (101 unique OTUs) than NF soil (23 unique OTUs). Cluster analysis based on OTUs revealed similar bacterial communities in NF and GS soils, while the bacterial community from BS soil was most distinct from the others. Acidobacteria and Alphaproteobacteria were the most abundant bacterial phyla across the different soils with Acidobacteria Gp1 accounting for a higher abundance in NF and GS soils than burnt sugarcane-cultivated soils (BS and BSL). In turn, Acidobacteria Gp4 abundance was higher in BS soils than in other soils. These differential responses in soil bacterial community structure, diversity and composition can be associated with the agricultural management, mainly liming practices, and harvest methods in the sugarcane-cultivated soils, and they can be detected shortly after harvest.

  15. A microcosm approach to evaluate the degradation of tributyltin (TBT) by Aeromonas molluscorum Av27 in estuarine sediments.

    Science.gov (United States)

    Cruz, Andreia; Henriques, Isabel; Sousa, Ana C A; Baptista, Inês; Almeida, Adelaide; Takahashi, Shin; Tanabe, Shinsuke; Correia, António; Suzuki, Satoru; Anselmo, Ana Maria; Mendo, Sónia

    2014-07-01

    Tributyltin (TBT) is a biocide extremely toxic to a wide range of organisms, which has been used for decades in antifouling paints. Despite its global ban in 2008, TBT is still a problem of great concern due to the high levels trapped in sediments. Aeromonas molluscorum Av27 is a TBT degrading bacterium that was isolated from an estuarine system. We investigated the ability and the role of this bacterium on TBT degradation in this estuarine system, using a microcosm approach in order to mimic environmental conditions. The experiment was established and followed for 150 days. Simultaneously, changes in the indigenous bacterial community structure were also investigated. The results revealed a maximum TBT degradation rate of 28% accompanied by the detection of the degradation products over time. Additionally, it was observed that TBT degradation was significantly enhanced by the presence of Av27. In addition a significantly higher TBT degradation occurred when the concentration of Av27 was higher. TBT degradation affected the bacterial community composition as revealed by the changes in the prevalence of Proteobacteria subdivisions, namely the increase of Deltaproteobacteria and the onset of Epsilonproteobacteria. However, the addition of Av27 strain did not affect the dominant phylotypes. Total bacterial number, bacterial biomass productivity, 16S rRNA gene and denaturing gradient gel electrophoresis (DGGE) analyses also indicated alterations on the bacterial community structure over time, with bacteria non-tolerant to pollutants increasing their representativeness, as, for instance, the increase of the number of Alphaproteobacteria clones from 6% in the beginning to 12% at the end of the experiment. The work herein presented confirms the potential of Av27 strain to be used in the decontamination of TBT-polluted environments. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Correlating Microbial Diversity Patterns with Geochemistry in an Extreme and Heterogeneous Environment of Mine Tailings

    Science.gov (United States)

    Liu, Jun; Hua, Zheng-Shuang; Chen, Lin-Xing; Kuang, Jia-Liang; Li, Sheng-Jin; Shu, Wen-Sheng

    2014-01-01

    Recent molecular surveys have advanced our understanding of the forces shaping the large-scale ecological distribution of microbes in Earth's extreme habitats, such as hot springs and acid mine drainage. However, few investigations have attempted dense spatial analyses of specific sites to resolve the local diversity of these extraordinary organisms and how communities are shaped by the harsh environmental conditions found there. We have applied a 16S rRNA gene-targeted 454 pyrosequencing approach to explore the phylogenetic differentiation among 90 microbial communities from a massive copper tailing impoundment generating acidic drainage and coupled these variations in community composition with geochemical parameters to reveal ecological interactions in this extreme environment. Our data showed that the overall microbial diversity estimates and relative abundances of most of the dominant lineages were significantly correlated with pH, with the simplest assemblages occurring under extremely acidic conditions and more diverse assemblages associated with neutral pHs. The consistent shifts in community composition along the pH gradient indicated that different taxa were involved in the different acidification stages of the mine tailings. Moreover, the effect of pH in shaping phylogenetic structure within specific lineages was also clearly evident, although the phylogenetic differentiations within the Alphaproteobacteria, Deltaproteobacteria, and Firmicutes were attributed to variations in ferric and ferrous iron concentrations. Application of the microbial assemblage prediction model further supported pH as the major factor driving community structure and demonstrated that several of the major lineages are readily predictable. Together, these results suggest that pH is primarily responsible for structuring whole communities in the extreme and heterogeneous mine tailings, although the diverse microbial taxa may respond differently to various environmental conditions

  17. Molecular Analysis of the Diversity of Sulfate-Reducing and Sulfur-Oxidizing Prokaryotes in the Environment, Using aprA as Functional Marker Gene▿ †

    Science.gov (United States)

    Meyer, Birte; Kuever, Jan

    2007-01-01

    The dissimilatory adenosine-5′-phosposulfate reductase is a key enzyme of the microbial sulfate reduction and sulfur oxidation processes. Because the alpha- and beta-subunit-encoding genes, aprBA, are highly conserved among sulfate-reducing and sulfur-oxidizing prokaryotes, they are most suitable for molecular profiling of the microbial community structure of the sulfur cycle in environment. In this study, a new aprA gene-targeting assay using a combination of PCR and denaturing gradient gel electrophoresis is presented. The screening of sulfate-reducing and sulfur-oxidizing reference strains as well as the analyses of environmental DNA from diverse habitats (e.g., microbial mats, invertebrate tissue, marine and estuarine sediments, and filtered hydrothermal water) by the new primer pair revealed an improved microbial diversity coverage and less-pronounced template-to-PCR product bias in direct comparison to those of the previously published primer set (B. Deplancke, K. R. Hristova, H. A. Oakley, V. J. McCracken, R. Aminov, R. I. Mackie, and H. R. Gaskins, Appl. Environ. Microbiol. 66:2166-2174, 2000). The concomitant molecular detection of sulfate-reducing and sulfur-oxidizing prokaryotes was confirmed. The new assay was applied in comparison with the 16S rRNA gene-based analysis to investigate the microbial diversity of the sulfur cycle in sediment, seawater, and manganese crust samples from four study sites in the area of the Lesser Antilles volcanic arc, Caribbean Sea (Caribflux project). The aprA gene-based approach revealed putative sulfur-oxidizing Alphaproteobacteria of chemolithoheterotrophic lifestyle to have been abundant in the nonhydrothermal sediment and water column. In contrast, the sulfur-based microbial community that inhabited the surface of the volcanic manganese crust was more complex, consisting predominantly of putative chemolithoautotrophic sulfur oxidizers of the Betaproteobacteria and Gammaproteobacteria. PMID:17921272

  18. Molecular analysis of the diversity of sulfate-reducing and sulfur-oxidizing prokaryotes in the environment, using aprA as functional marker gene.

    Science.gov (United States)

    Meyer, Birte; Kuever, Jan

    2007-12-01

    The dissimilatory adenosine-5'-phosphosulfate reductase is a key enzyme of the microbial sulfate reduction and sulfur oxidation processes. Because the alpha- and beta-subunit-encoding genes, aprBA, are highly conserved among sulfate-reducing and sulfur-oxidizing prokaryotes, they are most suitable for molecular profiling of the microbial community structure of the sulfur cycle in environment. In this study, a new aprA gene-targeting assay using a combination of PCR and denaturing gradient gel electrophoresis is presented. The screening of sulfate-reducing and sulfur-oxidizing reference strains as well as the analyses of environmental DNA from diverse habitats (e.g., microbial mats, invertebrate tissue, marine and estuarine sediments, and filtered hydrothermal water) by the new primer pair revealed an improved microbial diversity coverage and less-pronounced template-to-PCR product bias in direct comparison to those of the previously published primer set (B. Deplancke, K. R. Hristova, H. A. Oakley, V. J. McCracken, R. Aminov, R. I. Mackie, and H. R. Gaskins, Appl. Environ. Microbiol. 66:2166-2174, 2000). The concomitant molecular detection of sulfate-reducing and sulfur-oxidizing prokaryotes was confirmed. The new assay was applied in comparison with the 16S rRNA gene-based analysis to investigate the microbial diversity of the sulfur cycle in sediment, seawater, and manganese crust samples from four study sites in the area of the Lesser Antilles volcanic arc, Caribbean Sea (Caribflux project). The aprA gene-based approach revealed putative sulfur-oxidizing Alphaproteobacteria of chemolithoheterotrophic lifestyle to have been abundant in the nonhydrothermal sediment and water column. In contrast, the sulfur-based microbial community that inhabited the surface of the volcanic manganese crust was more complex, consisting predominantly of putative chemolithoautotrophic sulfur oxidizers of the Betaproteobacteria and Gammaproteobacteria.

  19. The interaction between iron nutrition, plant species and soil type shapes the rhizosphere microbiome.

    Science.gov (United States)

    Pii, Youry; Borruso, Luigimaria; Brusetti, Lorenzo; Crecchio, Carmine; Cesco, Stefano; Mimmo, Tanja

    2016-02-01

    Plant-associated microorganisms can stimulate plants growth and influence both crops yield and quality by nutrient mobilization and transport. Therefore, rhizosphere microbiome appears to be one of the key determinants of plant health and productivity. The roots of plants have the ability to influence its surrounding microbiology, the rhizosphere microbiome, through the creation of specific chemical niches in the soil mediated by the release of phytochemicals (i.e. root exudates) that depends on several factors, such as plants genotype, soil properties, plant nutritional status, climatic conditions. In the present research, two different crop species, namely barley and tomato, characterized by different strategies for Fe acquisition, have been grown in the RHIZOtest system using either complete or Fe-free nutrient solution to induce Fe starvation. Afterward, plants were cultivated for 6 days on two different calcareous soils. Total DNA was extracted from rhizosphere and bulk soil and 454 pyrosequencing technology was applied to V1-V3 16S rRNA gene region. Approximately 5000 sequences were obtained for each sample. The analysis of the bacterial population confirmed that the two bulk soils showed a different microbial community. The presence of the two plant species, as well as the nutritional status (Fe-deficiency and Fe-sufficiency), could promote a differentiation of the rhizosphere microbiome, as highlighted by non-metric multidimensional scaling (NMDS) analysis. Alphaproteobacteria, Actinobacteria, Chloracidobacteria, Thermoleophilia, Betaproteobacteria, Saprospirae, Gemmatimonadetes, Gammaproteobacteria, Acidobacteria were the most represented classes in all the samples analyzed even though their relative abundance changed as a function of the soil, plant species and nutritional status. To our knowledge, this research demonstrate for the first time that different plants species with a diverse nutritional status can promote the development of a peculiar

  20. Biodiversity of Rock Varnish at Yungay, Atacama Desert, Chile

    Science.gov (United States)

    Kuhlman, K.; Venkat, P.; La Duc, M.; Kuhlman, G.; McKay, C.

    2007-12-01

    Rock varnish is a very slow-growing nanostratigraphic coating consisting of approximately 70% clay and 30% iron and manganese oxides of fine-grained clay minerals rich in manganese and iron oxides, which forms on the surfaces of rocks in most semi-arid to hyper-arid climates. Rock varnish has even been postulated to exist on Mars based on surface imagery from several landed missions, and is considered a potential biomarker. However, the mechanism of varnish nucleation and growth remains unknown. Whether or not microbes are involved in the nucleation and growth of rock varnish, the detection of microbes using cultivation or cultivation- independent techniques has demonstrated that varnish provides a microhabitat for microbes. We hypothesized that rock varnish in the Mars-like Yungay region of the Atacama Desert may provide such a microhabitat for microbial life where none has been found to date in the surface soil (< 1 cm). The presence of microbes was investigated using adenosine triphosphate (ATP) assay techniques and culture-independent biomolecular methods. High levels of both total and intracellular ATP were associated with the rock varnish while negligible ATP was found in the surrounding surface soil, suggesting that viable organisms were present. Total DNA was extracted from ground varnish and surrounding surface soil and subjected to trifurcate polymerase chain reactions (PCR). No DNA was recovered from the soil. Amplicons were used to generate ribosomal DNA (rDNA) clone libraries, which suggest the presence of numerous phylogenetically distinct microorganisms in eight Eubacterial clades, Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Cytophaga-Flavobacterium- Bacteroides (CFB), Chloroflexi (green non-sulfur bacteria (GNS)), Gemmatimonadetes, Actinobacteria and Cyanobacteria. The diversity of bacteria found and presence of cyanobacteria suggests that rock varnish provides a niche environment for a cryptoendolithic microbial community where

  1. EDTA addition enhances bacterial respiration activities and hydrocarbon degradation in bioaugmented and non-bioaugmented oil-contaminated desert soils.

    Science.gov (United States)

    Al Kharusi, Samiha; Abed, Raeid M M; Dobretsov, Sergey

    2016-03-01

    The low number and activity of hydrocarbon-degrading bacteria and the low solubility and availability of hydrocarbons hamper bioremediation of oil-contaminated soils in arid deserts, thus bioremediation treatments that circumvent these limitations are required. We tested the effect of Ethylenediaminetetraacetic acid (EDTA) addition, at different concentrations (i.e. 0.1, 1 and 10 mM), on bacterial respiration and biodegradation of Arabian light oil in bioaugmented (i.e. with the addition of exogenous alkane-degrading consortium) and non-bioaugmented oil-contaminated desert soils. Post-treatment shifts in the soils' bacterial community structure were monitored using MiSeq sequencing. Bacterial respiration, indicated by the amount of evolved CO2, was highest at 10 mM EDTA in bioaugmented and non-bioaugmented soils, reaching an amount of 2.2 ± 0.08 and 1.6 ± 0.02 mg-CO2 g(-1) after 14 days of incubation, respectively. GC-MS revealed that 91.5% of the C14-C30 alkanes were degraded after 42 days when 10 mM EDTA and the bacterial consortium were added together. MiSeq sequencing showed that 78-91% of retrieved sequences in the original soil belonged to Deinococci, Alphaproteobacteria, Gammaproteobacteia and Bacilli. The same bacterial classes were detected in the 10 mM EDTA-treated soils, however with slight differences in their relative abundances. In the bioaugmented soils, only Alcanivorax sp. MH3 and Parvibaculum sp. MH21 from the exogenous bacterial consortium could survive until the end of the experiment. We conclude that the addition of EDTA at appropriate concentrations could facilitate biodegradation processes by increasing hydrocarbon availability to microbes. The addition of exogenous oil-degrading bacteria along with EDTA could serve as an ideal solution for the decontamination of oil-contaminated desert soils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Towards Defining the Ecological Niches of Novel Coastal Gulf of Mexico Bacterial Isolates

    Science.gov (United States)

    Henson, M. W.; Thrash, C.; Nall, E.

    2016-02-01

    The study of microbial contributions to biogeochemistry is critical to understanding the cycles of fundamental compounds and gain predictive capabilities in a changing environment. Such study requires observation of microbial communities and genetics in nature, coupled with experimental testing of hypotheses both in situ and in laboratory settings. This study combines dilution-to-extinction based high-throughput culturing (HTC) with cultivation-independent and geochemical measurements to define potential ecological niches of novel bacterial isolates from the coastal northern Gulf of Mexico (cnGOM). Here we report findings from the first of a three-year project. In total, 43 cultures from seven HTC experiments were capable of being repeatedly transferred. Sanger sequencing of the 16S rRNA gene identified these isolates as belonging to the phyla Gammaproteobacteria, Alphaproteobacteria, Actinobacteria, and Betaproteobacteria. Eight are being genome sequenced, with two selected for further physiological characterization due to their phylogenic novelty and potential ecological significance. Strain LSUCC101 likely represents a novel family of Gammaproteobacteria (best blast hit to a cultured representative showed 91% sequence identity) and strain LSUCC96 belongs to the OM252 clade, with the Hawaiian isolate HIMB30 as its closest relative. Both are small (0.3-0.5 µm) cocci. The environmental importance of both LSUCC101 and LSUCC96 was illustrated by their presence within the top 30 OTU0.03 of cnGOM 16S rRNA gene datasets as well as within clone libraries from coastal regions around the world. Ongoing work is determining growth efficiencies, substrate utilization profiles, and metabolic potential to elucidate the roles of these organisms in the cnGOM. Comparative genomics will examine the evolutionary divergence of these organisms from their closest neighbors, and metagenomic recruitment to genomes will help identify strain-based variation from different coastal regions.

  3. Unraveling the Physiological Roles of the Cyanobacterium Geitlerinema sp. BBD and Other Black Band Disease Community Members through Genomic Analysis of a Mixed Culture

    Science.gov (United States)

    Den Uyl, Paul A.; Richardson, Laurie L.; Jain, Sunit

    2016-01-01

    Black band disease (BBD) is a cyanobacterial-dominated polymicrobial mat that propagates on and migrates across coral surfaces, necrotizing coral tissue. Culture-based laboratory studies have investigated cyanobacteria and heterotrophic bacteria isolated from BBD, but the metabolic potential of various BBD microbial community members and interactions between them remain poorly understood. Here we report genomic insights into the physiological and metabolic potential of the BBD-associated cyanobacterium Geitlerinema sp. BBD 1991 and six associated bacteria that were also present in the non-axenic culture. The essentially complete genome of Geitlerinema sp. BBD 1991 contains a sulfide quinone oxidoreductase gene for oxidation of sulfide, suggesting a mechanism for tolerating the sulfidic conditions of BBD mats. Although the operon for biosynthesis of the cyanotoxin microcystin was surprisingly absent, potential relics were identified. Genomic evidence for mixed-acid fermentation indicates a strategy for energy metabolism under the anaerobic conditions present in BBD during darkness. Fermentation products may supply carbon to BBD heterotrophic bacteria. Among the six associated bacteria in the culture, two are closely related to organisms found in culture-independent studies of diseased corals. Their metabolic pathways for carbon and sulfur cycling, energy metabolism, and mechanisms for resisting coral defenses suggest adaptations to the coral surface environment and biogeochemical roles within the BBD mat. Polysulfide reductases were identified in a Flammeovirgaceae genome (Bacteroidetes) and the sox pathway for sulfur oxidation was found in the genome of a Rhodospirillales bacterium (Alphaproteobacteria), revealing mechanisms for sulfur cycling, which influences virulence of BBD. Each genomic bin possessed a pathway for conserving energy from glycerol degradation, reflecting adaptations to the glycerol-rich coral environment. The presence of genes for detoxification

  4. Temporal and Spatial Diversity of Bacterial Communities in Coastal Waters of the South China Sea

    Science.gov (United States)

    Du, Jikun; Xiao, Kai; Li, Li; Ding, Xian; Liu, Helu; Lu, Yongjun; Zhou, Shining

    2013-01-01

    Bacteria are recognized as important drivers of biogeochemical processes in all aquatic ecosystems. Temporal and geographical patterns in ocean bacterial communities have been observed in many studies, but the temporal and spatial patterns in the bacterial communities from the South China Sea remained unexplored. To determine the spatiotemporal patterns, we generated 16S rRNA datasets for 15 samples collected from the five regularly distributed sites of the South China Sea in three seasons (spring, summer, winter). A total of 491 representative sequences were analyzed by MOTHUR, yielding 282 operational taxonomic units (OTUs) grouped at 97% stringency. Significant temporal variations of bacterial diversity were observed. Richness and diversity indices indicated that summer samples were the most diverse. The main bacterial group in spring and summer samples was Alphaproteobacteria, followed by Cyanobacteria and Gammaproteobacteria, whereas Cyanobacteria dominated the winter samples. Spatial patterns in the samples were observed that samples collected from the coastal (D151, D221) waters and offshore (D157, D1512, D224) waters clustered separately, the coastal samples harbored more diverse bacterial communities. However, the temporal pattern of the coastal site D151 was contrary to that of the coastal site D221. The LIBSHUFF statistics revealed noticeable differences among the spring, summer and winter libraries collected at five sites. The UPGMA tree showed there were temporal and spatial heterogeneity of bacterial community composition in coastal waters of the South China Sea. The water salinity (P=0.001) contributed significantly to the bacteria-environment relationship. Our results revealed that bacterial community structures were influenced by environmental factors and community-level changes in 16S-based diversity were better explained by spatial patterns than by temporal patterns. PMID:23785512

  5. Abundance of two Pelagibacter ubique bacteriophage genotypes along a latitudinal transect in the North and South Atlantic Oceans

    Directory of Open Access Journals (Sweden)

    Erin M Eggleston

    2016-09-01

    Full Text Available This study characterizes viral and bacterial dynamics along a latitudinal transect in the Atlantic Ocean from approximately 10N to 40S. Overall viral abundance decreased with depth, on average there were 1.64 ± 0.71 x107 virus like particles (VLPs in surface waters, decreasing to an average of 6.50 ± 2.26 x105 VLPs in Antarctic Bottom Water. This decrease was highly correlated to bacterial abundance. There are six major water masses in the Southern Tropical Atlantic Ocean, and inclusion of water mass, temperature and salinity variables explained a majority of the variation in total viral abundance. Recent discovery of phages infecting bacteria of the SAR11 clade of Alphaproteobacteria (i.e. pelagiphages leads to intriguing questions about the roles they play in shaping epipelagic communities. Viral-size fraction DNA from epipelagic water was used to quantify the abundance of two pelagiphages, using pelagiphage-specific quantitative PCR primers and probes along the transect. We found that HTVC010P, a member of a podoviridae sub-family, was most abundant in surface waters. Copy numbers ranged from an average of 1.03 ± 2.38 x 105 copies ml-1 in surface waters, to 5.79 ± 2.86 x103 in the deep chlorophyll maximum. HTVC008M, a T4-like myovirus, was present in the deep chlorophyll maximum (5.42±2.8x103 copies ml-1 on average, although it was not as highly abundant as HTVC010P in surface waters (6.05±3.01x103 copies ml-1 on average. Interestingly, HTVC008M was only present at a few of the most southern stations, suggesting latitudinal biogeography of SAR11 phages.

  6. Microbial diversity in hummock and hollow soils of three wetlands on the Qinghai-Tibetan Plateau revealed by 16S rRNA pyrosequencing.

    Directory of Open Access Journals (Sweden)

    Yongcui Deng

    Full Text Available The wetlands of the Qinghai-Tibetan Plateau are believed to play an important role in global nutrient cycling, but the composition and diversity of microorganisms in this ecosystem are poorly characterized. An understanding of the effects of geography and microtopography on microbial populations will provide clues to the underlying mechanisms that structure microbial communities. In this study, we used pyrosequencing-based analysis of 16S rRNA gene sequences to assess and compare the composition of soil microbial communities present in hummock and hollow soils from three wetlands (Dangxiong, Hongyuan and Maduo on the Qinghai-Tibetan Plateau, the world's highest plateau. A total of 36 bacterial phyla were detected. Proteobacteria (34.5% average relative abundance, Actinobacteria (17.3% and Bacteroidetes (11% had the highest relative abundances across all sites. Chloroflexi, Acidobacteria, Verrucomicrobia, Firmicutes, and Planctomycetes were also relatively abundant (1-10%. In addition, archaeal sequences belonging to Euryarchaea, Crenarchaea and Thaumarchaea were detected. Alphaproteobacteria sequences, especially of the order Rhodospirillales, were significantly more abundant in Maduo than Hongyuan and Dangxiong wetlands. Compared with Hongyuan soils, Dangxiong and Maduo had significantly higher relative abundances of Gammaproteobacteria sequences (mainly order Xanthomonadales. Hongyuan wetland had a relatively high abundance of methanogens (mainly genera Methanobacterium, Methanosarcina and Methanosaeta and methanotrophs (mainly Methylocystis compared with the other two wetlands. Principal coordinate analysis (PCoA indicated that the microbial community structure differed between locations and microtopographies and canonical correspondence analysis indicated an association between microbial community structure and soil properties or geography. These insights into the microbial community structure and the main controlling factors in wetlands of

  7. Microbial community evolution during simulated managed aquifer recharge in response to different biodegradable dissolved organic carbon (BDOC) concentrations

    KAUST Repository

    Li, Dong

    2013-05-01

    This study investigates the evolution of the microbial community in laboratory-scale soil columns simulating the infiltration zone of managed aquifer recharge (MAR) systems and analogous natural aquifer sediment ecosystems. Parallel systems were supplemented with either moderate (1.1 mg/L) or low (0.5 mg/L) biodegradable dissolved organic carbon (BDOC) for a period of six months during which time, spatial (1 cm, 30 cm, 60 cm, 90 cm, and 120 cm) and temporal (monthly) analyses of sediment-associated microbial community structure were analyzed. Total microbial biomass associated with sediments was positively correlated with BDOC concentration where a significant decline in BDOC was observed along the column length. Analysis of 16S rRNA genes indicated dominance by Bacteria with Archaea comprising less than 1 percent of the total community. Proteobacteria was found to be the major phylum in samples from all column depths with contributions from Betaproteobacteria, Alphaproteobacteria and Gammaproteobacteria. Microbial community structure at all the phylum, class and genus levels differed significantly at 1 cm between columns receiving moderate and low BDOC concentrations; in contrast strong similarities were observed both between parallel column systems and across samples from 30 to 120 cm depths. Samples from 1 cm depth of the low BDOC columns exhibited higher microbial diversity (expressed as Shannon Index) than those at 1 cm of moderate BDOC columns, and both increased from 5.4 to 5.9 at 1 cm depth to 6.7-8.3 at 30-120 cm depths. The microbial community structure reached steady state after 3-4 months since the initiation of the experiment, which also resulted in an improved DOC removal during the same time period. This study suggested that BDOC could significantly influence microbial community structure regarding both composition and diversity of artificial MAR systems and analogous natural aquifer sediment ecosystems. © 2013 Elsevier Ltd.

  8. Influence of salinity on bacterioplankton communities from the Brazilian rain forest to the coastal Atlantic Ocean.

    Directory of Open Access Journals (Sweden)

    Cynthia B Silveira

    Full Text Available BACKGROUND: Planktonic bacteria are recognized as important drivers of biogeochemical processes in all aquatic ecosystems, however, the taxa that make up these communities are poorly known. The aim of this study was to investigate bacterial communities in aquatic ecosystems at Ilha Grande, Rio de Janeiro, Brazil, a preserved insular environment of the Atlantic rain forest and how they correlate with a salinity gradient going from terrestrial aquatic habitats to the coastal Atlantic Ocean. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed chemical and microbiological parameters of water samples and constructed 16S rRNA gene libraries of free living bacteria obtained at three marine (two coastal and one offshore and three freshwater (water spring, river, and mangrove environments. A total of 836 sequences were analyzed by MOTHUR, yielding 269 freshwater and 219 marine operational taxonomic units (OTUs grouped at 97% stringency. Richness and diversity indexes indicated that freshwater environments were the most diverse, especially the water spring. The main bacterial group in freshwater environments was Betaproteobacteria (43.5%, whereas Cyanobacteria (30.5%, Alphaproteobacteria (25.5%, and Gammaproteobacteria (26.3% dominated the marine ones. Venn diagram showed no overlap between marine and freshwater OTUs at 97% stringency. LIBSHUFF statistics and PCA analysis revealed marked differences between the freshwater and marine libraries suggesting the importance of salinity as a driver of community composition in this habitat. The phylogenetic analysis of marine and freshwater libraries showed that the differences in community composition are consistent. CONCLUSIONS/SIGNIFICANCE: Our data supports the notion that a divergent evolutionary scenario is driving community composition in the studied habitats. This work also improves the comprehension of microbial community dynamics in tropical waters and how they are structured in relation to physicochemical

  9. Bacterial populations and environmental factors controlling cellulose degradation in an acidic Sphagnum peat.

    Science.gov (United States)

    Pankratov, Timofey A; Ivanova, Anastasia O; Dedysh, Svetlana N; Liesack, Werner

    2011-07-01

    Northern peatlands represent a major global carbon store harbouring approximately one-third of the global reserves of soil organic carbon. A large proportion of these peatlands consists of acidic Sphagnum-dominated ombrotrophic bogs, which are characterized by extremely low rates of plant debris decomposition. The degradation of cellulose, the major component of Sphagnum-derived litter, was monitored in long-term incubation experiments with acidic (pH 4.0) peat extracts. This process was almost undetectable at 10°C and occurred at low rates at 20°C, while it was significantly accelerated at both temperature regimes by the addition of available nitrogen. Cellulose breakdown was only partially inhibited in the presence of cycloheximide, suggesting that bacteria participated in this process. We aimed to identify these bacteria by a combination of molecular and cultivation approaches and to determine the factors that limit their activity in situ. The indigenous bacterial community in peat was dominated by Alphaproteobacteria and Acidobacteria. The addition of cellulose induced a clear shift in the community structure towards an increase in the relative abundance of the Bacteroidetes. Increasing temperature and nitrogen availability resulted in a selective development of bacteria phylogenetically related to Cytophaga hutchinsonii (94-95% 16S rRNA gene sequence similarity), which densely colonized microfibrils of cellulose. Among isolates obtained from this community only some subdivision 1 Acidobacteria were capable of degrading cellulose, albeit at a very slow rate. These Acidobacteria represent indigenous cellulolytic members of the microbial community in acidic peat and are easily out-competed by Cytophaga-like bacteria under conditions of increased nitrogen availability. Members of the phylum Firmicutes, known to be key players in cellulose degradation in neutral habitats, were not detected in the cellulolytic community enriched at low pH. © 2011 Society for

  10. Influence of Salinity on Bacterioplankton Communities from the Brazilian Rain Forest to the Coastal Atlantic Ocean

    Science.gov (United States)

    Silveira, Cynthia B.; Vieira, Ricardo P.; Cardoso, Alexander M.; Paranhos, Rodolfo; Albano, Rodolpho M.; Martins, Orlando B.

    2011-01-01

    Background Planktonic bacteria are recognized as important drivers of biogeochemical processes in all aquatic ecosystems, however, the taxa that make up these communities are poorly known. The aim of this study was to investigate bacterial communities in aquatic ecosystems at Ilha Grande, Rio de Janeiro, Brazil, a preserved insular environment of the Atlantic rain forest and how they correlate with a salinity gradient going from terrestrial aquatic habitats to the coastal Atlantic Ocean. Methodology/Principal Findings We analyzed chemical and microbiological parameters of water samples and constructed 16S rRNA gene libraries of free living bacteria obtained at three marine (two coastal and one offshore) and three freshwater (water spring, river, and mangrove) environments. A total of 836 sequences were analyzed by MOTHUR, yielding 269 freshwater and 219 marine operational taxonomic units (OTUs) grouped at 97% stringency. Richness and diversity indexes indicated that freshwater environments were the most diverse, especially the water spring. The main bacterial group in freshwater environments was Betaproteobacteria (43.5%), whereas Cyanobacteria (30.5%), Alphaproteobacteria (25.5%), and Gammaproteobacteria (26.3%) dominated the marine ones. Venn diagram showed no overlap between marine and freshwater OTUs at 97% stringency. LIBSHUFF statistics and PCA analysis revealed marked differences between the freshwater and marine libraries suggesting the importance of salinity as a driver of community composition in this habitat. The phylogenetic analysis of marine and freshwater libraries showed that the differences in community composition are consistent. Conclusions/Significance Our data supports the notion that a divergent evolutionary scenario is driving community composition in the studied habitats. This work also improves the comprehension of microbial community dynamics in tropical waters and how they are structured in relation to physicochemical parameters

  11. Diversity of bacteria carried by pinewood nematode in USA and phylogenetic comparison with isolates from other countries.

    Directory of Open Access Journals (Sweden)

    Diogo Neves Proença

    Full Text Available Pine wilt disease (PWD is native to North America and has spread to Asia and Europe. Lately, mutualistic relationship has been suggested between the pinewood nematode (PWN, Bursaphelenchus xylophilus the causal nematode agent of PWD, and bacteria. In countries where PWN occurs, nematodes from diseased trees were reported to carry bacteria from several genera. However no data exists for the United States. The objective of this study was to evaluate the diversity of the bacterial community carried by B. xylophilus, isolated from different Pinus spp. with PWD in Nebraska, United States. The bacteria carried by PWN belonged to Gammaproteobacteria (79.9%, Betaproteobacteria (11.7%, Bacilli (5.0%, Alphaproteobacteria (1.7% and Flavobacteriia (1.7%. Strains from the genera Chryseobacterium and Pigmentiphaga were found associated with the nematode for the first time. These results were compared to results from similar studies conducted from other countries of three continents in order to assess the diversity of bacteria with associated with PWN. The isolates from the United States, Portugal and China belonged to 25 different genera and only strains from the genus Pseudomonas were found in nematodes from all countries. The strains from China were closely related to P. fluorescens and the strains isolated from Portugal and USA were phylogenetically related to P. mohnii and P. lutea. Nematodes from the different countries are associated with bacteria of different species, not supporting a relationship between PWN with a particular bacterial species. Moreover, the diversity of the bacteria carried by the pinewood nematode seems to be related to the geographic area and the Pinus species. The roles these bacteria play within the pine trees or when associated with the nematodes, might be independent of the presence of the nematode in the tree and only related on the bacteria's relationship with the tree.

  12. Evaluation of simultaneous nutrient and COD removal with polyhydroxybutyrate (PHB) accumulation using mixed microbial consortia under anoxic condition and their bioinformatics analysis.

    Science.gov (United States)

    Jena, Jyotsnarani; Kumar, Ravindra; Dixit, Anshuman; Pandey, Sony; Das, Trupti

    2015-01-01

    Simultaneous nitrate-N, phosphate and COD removal was evaluated from synthetic waste water using mixed microbial consortia in an anoxic environment under various initial carbon load (ICL) in a batch scale reactor system. Within 6 hours of incubation, enriched DNPAOs (Denitrifying Polyphosphate Accumulating Microorganisms) were able to remove maximum COD (87%) at 2 g/L of ICL whereas maximum nitrate-N (97%) and phosphate (87%) removal along with PHB accumulation (49 mg/L) was achieved at 8 g/L of ICL. Exhaustion of nitrate-N, beyond 6 hours of incubation, had a detrimental effect on COD and phosphate removal rate. Fresh supply of nitrate-N to the reaction medium, beyond 6 hours, helped revive the removal rates of both COD and phosphate. Therefore, it was apparent that in spite of a high carbon load, maximum COD and nutrient removal can be maintained, with adequate nitrate-N availability. Denitrifying condition in the medium was evident from an increasing pH trend. PHB accumulation by the mixed culture was directly proportional to ICL; however the time taken for accumulation at higher ICL was more. Unlike conventional EBPR, PHB depletion did not support phosphate accumulation in this case. The unique aspect of all the batch studies were PHB accumulation was observed along with phosphate uptake and nitrate reduction under anoxic conditions. Bioinformatics analysis followed by pyrosequencing of the mixed culture DNA from the seed sludge revealed the dominance of denitrifying population, such as Corynebacterium, Rhodocyclus and Paraccocus (Alphaproteobacteria and Betaproteobacteria). Rarefaction curve indicated complete bacterial population and corresponding number of OTUs through sequence analysis. Chao1 and Shannon index (H') was used to study the diversity of sampling. "UCI95" and "LCI95" indicated 95% confidence level of upper and lower values of Chao1 for each distance. Values of Chao1 index supported the results of rarefaction curve.

  13. Evaluation of simultaneous nutrient and COD removal with polyhydroxybutyrate (PHB accumulation using mixed microbial consortia under anoxic condition and their bioinformatics analysis.

    Directory of Open Access Journals (Sweden)

    Jyotsnarani Jena

    Full Text Available Simultaneous nitrate-N, phosphate and COD removal was evaluated from synthetic waste water using mixed microbial consortia in an anoxic environment under various initial carbon load (ICL in a batch scale reactor system. Within 6 hours of incubation, enriched DNPAOs (Denitrifying Polyphosphate Accumulating Microorganisms were able to remove maximum COD (87% at 2 g/L of ICL whereas maximum nitrate-N (97% and phosphate (87% removal along with PHB accumulation (49 mg/L was achieved at 8 g/L of ICL. Exhaustion of nitrate-N, beyond 6 hours of incubation, had a detrimental effect on COD and phosphate removal rate. Fresh supply of nitrate-N to the reaction medium, beyond 6 hours, helped revive the removal rates of both COD and phosphate. Therefore, it was apparent that in spite of a high carbon load, maximum COD and nutrient removal can be maintained, with adequate nitrate-N availability. Denitrifying condition in the medium was evident from an increasing pH trend. PHB accumulation by the mixed culture was directly proportional to ICL; however the time taken for accumulation at higher ICL was more. Unlike conventional EBPR, PHB depletion did not support phosphate accumulation in this case. The unique aspect of all the batch studies were PHB accumulation was observed along with phosphate uptake and nitrate reduction under anoxic conditions. Bioinformatics analysis followed by pyrosequencing of the mixed culture DNA from the seed sludge revealed the dominance of denitrifying population, such as Corynebacterium, Rhodocyclus and Paraccocus (Alphaproteobacteria and Betaproteobacteria. Rarefaction curve indicated complete bacterial population and corresponding number of OTUs through sequence analysis. Chao1 and Shannon index (H' was used to study the diversity of sampling. "UCI95" and "LCI95" indicated 95% confidence level of upper and lower values of Chao1 for each distance. Values of Chao1 index supported the results of rarefaction curve.

  14. Distribution, Community Composition, and Potential Metabolic Activity of Bacterioplankton in an Urbanized Mediterranean Sea Coastal Zone.

    Science.gov (United States)

    Richa, Kumari; Balestra, Cecilia; Piredda, Roberta; Benes, Vladimir; Borra, Marco; Passarelli, Augusto; Margiotta, Francesca; Saggiomo, Maria; Biffali, Elio; Sanges, Remo; Scanlan, David J; Casotti, Raffaella

    2017-09-01

    Bacterioplankton are fundamental components of marine ecosystems and influence the entire biosphere by contributing to the global biogeochemical cycles of key elements. Yet, there is a significant gap in knowledge about their diversity and specific activities, as well as environmental factors that shape their community composition and function. Here, the distribution and diversity of surface bacterioplankton along the coastline of the Gulf of Naples (GON; Italy) were investigated using flow cytometry coupled with high-throughput sequencing of the 16S rRNA gene. Heterotrophic bacteria numerically dominated the bacterioplankton and comprised mainly Alphaproteobacteria , Gammaproteobacteria , and Bacteroidetes Distinct communities occupied river-influenced, coastal, and offshore sites, as indicated by Bray-Curtis dissimilarity, distance metric (UniFrac), linear discriminant analysis effect size (LEfSe), and multivariate analyses. The heterogeneity in diversity and community composition was mainly due to salinity and changes in environmental conditions across sites, as defined by nutrient and chlorophyll a concentrations. Bacterioplankton communities were composed of a few dominant taxa and a large proportion (92%) of rare taxa (here defined as operational taxonomic units [OTUs] accounting for coastal zones is of critical importance, considering that these areas are highly productive and anthropogenically impacted. Their richness and evenness, as well as their potential activity, are very important to assess ecosystem health and functioning. Here, we investigated bacterial distribution, community composition, and potential metabolic activity in the GON, which is an ideal test site due to its heterogeneous environment characterized by a complex hydrodynamics and terrestrial inputs of varied quantities and quality. Our study demonstrates that bacterioplankton communities in this region are highly diverse and strongly regulated by a combination of different environmental

  15. Unraveling the Physiological Roles of the Cyanobacterium Geitlerinema sp. BBD and Other Black Band Disease Community Members through Genomic Analysis of a Mixed Culture.

    Science.gov (United States)

    Den Uyl, Paul A; Richardson, Laurie L; Jain, Sunit; Dick, Gregory J

    2016-01-01

    Black band disease (BBD) is a cyanobacterial-dominated polymicrobial mat that propagates on and migrates across coral surfaces, necrotizing coral tissue. Culture-based laboratory studies have investigated cyanobacteria and heterotrophic bacteria isolated from BBD, but the metabolic potential of various BBD microbial community members and interactions between them remain poorly understood. Here we report genomic insights into the physiological and metabolic potential of the BBD-associated cyanobacterium Geitlerinema sp. BBD 1991 and six associated bacteria that were also present in the non-axenic culture. The essentially complete genome of Geitlerinema sp. BBD 1991 contains a sulfide quinone oxidoreductase gene for oxidation of sulfide, suggesting a mechanism for tolerating the sulfidic conditions of BBD mats. Although the operon for biosynthesis of the cyanotoxin microcystin was surprisingly absent, potential relics were identified. Genomic evidence for mixed-acid fermentation indicates a strategy for energy metabolism under the anaerobic conditions present in BBD during darkness. Fermentation products may supply carbon to BBD heterotrophic bacteria. Among the six associated bacteria in the culture, two are closely related to organisms found in culture-independent studies of diseased corals. Their metabolic pathways for carbon and sulfur cycling, energy metabolism, and mechanisms for resisting coral defenses suggest adaptations to the coral surface environment and biogeochemical roles within the BBD mat. Polysulfide reductases were identified in a Flammeovirgaceae genome (Bacteroidetes) and the sox pathway for sulfur oxidation was found in the genome of a Rhodospirillales bacterium (Alphaproteobacteria), revealing mechanisms for sulfur cycling, which influences virulence of BBD. Each genomic bin possessed a pathway for conserving energy from glycerol degradation, reflecting adaptations to the glycerol-rich coral environment. The presence of genes for detoxification

  16. Unraveling the Physiological Roles of the Cyanobacterium Geitlerinema sp. BBD and Other Black Band Disease Community Members through Genomic Analysis of a Mixed Culture.

    Directory of Open Access Journals (Sweden)

    Paul A Den Uyl

    Full Text Available Black band disease (BBD is a cyanobacterial-dominated polymicrobial mat that propagates on and migrates across coral surfaces, necrotizing coral tissue. Culture-based laboratory studies have investigated cyanobacteria and heterotrophic bacteria isolated from BBD, but the metabolic potential of various BBD microbial community members and interactions between them remain poorly understood. Here we report genomic insights into the physiological and metabolic potential of the BBD-associated cyanobacterium Geitlerinema sp. BBD 1991 and six associated bacteria that were also present in the non-axenic culture. The essentially complete genome of Geitlerinema sp. BBD 1991 contains a sulfide quinone oxidoreductase gene for oxidation of sulfide, suggesting a mechanism for tolerating the sulfidic conditions of BBD mats. Although the operon for biosynthesis of the cyanotoxin microcystin was surprisingly absent, potential relics were identified. Genomic evidence for mixed-acid fermentation indicates a strategy for energy metabolism under the anaerobic conditions present in BBD during darkness. Fermentation products may supply carbon to BBD heterotrophic bacteria. Among the six associated bacteria in the culture, two are closely related to organisms found in culture-independent studies of diseased corals. Their metabolic pathways for carbon and sulfur cycling, energy metabolism, and mechanisms for resisting coral defenses suggest adaptations to the coral surface environment and biogeochemical roles within the BBD mat. Polysulfide reductases were identified in a Flammeovirgaceae genome (Bacteroidetes and the sox pathway for sulfur oxidation was found in the genome of a Rhodospirillales bacterium (Alphaproteobacteria, revealing mechanisms for sulfur cycling, which influences virulence of BBD. Each genomic bin possessed a pathway for conserving energy from glycerol degradation, reflecting adaptations to the glycerol-rich coral environment. The presence of genes

  17. The Green Berry Consortia of the Sippewissett Salt Marsh: Millimeter-Sized Aggregates of Diazotrophic Unicellular Cyanobacteria.

    Science.gov (United States)

    Wilbanks, Elizabeth G; Salman-Carvalho, Verena; Jaekel, Ulrike; Humphrey, Parris T; Eisen, Jonathan A; Buckley, Daniel H; Zinder, Stephen H

    2017-01-01

    Microbial interactions driving key biogeochemical fluxes often occur within multispecies consortia that form spatially heterogeneous microenvironments. Here, we describe the "green berry" consortia of the Sippewissett salt marsh (Falmouth, MA, United States): millimeter-sized aggregates dominated by an uncultured, diazotrophic unicellular cyanobacterium of the order Chroococcales (termed GB-CYN1). We show that GB-CYN1 is closely related to Crocosphaera watsonii (UCYN-B) and " Candidatus Atelocyanobacterium thalassa" (UCYN-A), two groups of unicellular diazotrophic cyanobacteria that play an important role in marine primary production. Other green berry consortium members include pennate diatoms and putative heterotrophic bacteria from the Alphaproteobacteria and Bacteroidetes . Tight coupling was observed between photosynthetic oxygen production and heterotrophic respiration. When illuminated, the green berries became supersaturated with oxygen. From the metagenome, we observed that GB-CYN1 encodes photosystem II genes and thus has the metabolic potential for oxygen production unlike UCYN-A. In darkness, respiratory activity rapidly depleted oxygen creating anoxia within the aggregates. Metagenomic data revealed a suite of nitrogen fixation genes encoded by GB-CYN1, and nitrogenase activity was confirmed at the whole-aggregate level by acetylene reduction assays. Metagenome reads homologous to marker genes for denitrification were observed and suggest that heterotrophic denitrifiers might co-occur in the green berries, although the physiology and activity of facultative anaerobes in these aggregates remains uncharacterized. Nitrogen fixation in the surface ocean was long thought to be driven by filamentous cyanobacterial aggregates, though recent work has demonstrated the importance of unicellular diazotrophic cyanobacteria (UCYN) from the order Chroococcales. The green berries serve as a useful contrast to studies of open ocean UCYN and may provide a tractable

  18. Comparative analysis of bacterial communities in a potato field as determined by pyrosequencing.

    Directory of Open Access Journals (Sweden)

    Özgül Inceoğlu

    Full Text Available BACKGROUND: Plants selectively attract particular soil microorganisms, in particular consumers of root-excreted compounds. It is unclear to what extent cultivar type and/or growth stage affect this process. METHODOLOGY/PRINCIPAL FINDINGS: DNA-based pyrosequencing was used to characterize the structure of bacterial communities in a field cropped with potato. The rhizospheres of six cultivars denoted Aveka, Aventra, Karnico, Modena, Premiere and Desiree, at three growth stages (young, flowering and senescence were examined, in addition to corresponding bulk soils. Around 350,000 sequences were obtained (5,700 to 38,000 per sample. Across all samples, rank abundance distributions best fitted the power law model, which indicates a community composed of a few highly dominant species next to numerous rare species. Grouping of the sequences showed that members of the Actinobacteria, Alphaproteobacteria, next to as-yet-unclassified bacteria, dominated. Other groups that were consistently found, albeit at lower abundance, were Beta-, Gamma- and Deltaproteobacteria and Acidobacteria. Principal components analyses revealed that rhizosphere samples were significantly different from corresponding bulk soil in each growth stage. Furthermore, cultivar effects were found in the young plant stage, whereas these became insignificant in the flowering and senescence stages. Besides, an effect of time of season was observed for both rhizosphere and bulk soils. The analyzed rhizosphere samples of the potato cultivars were grouped into two groups, in accordance with the allocation of carbon to starch in their tubers, i.e. Aveka, Aventra and Karnico (high versus Premiere and Desiree (low and thus replicates per group were established. CONCLUSIONS: Across all potato cultivars, the young plant stages revealed cultivar-dependent bacterial community structures, which disappeared in the flowering and senescence stages. Furthermore, Pseudomonas, Beta-, Alpha- and

  19. Influence of hydraulic regimes on bacterial community structure and composition in an experimental drinking water distribution system.

    Science.gov (United States)

    Douterelo, I; Sharpe, R L; Boxall, J B

    2013-02-01

    Microbial biofilms formed on the inner-pipe surfaces of drinking water distribution systems (DWDS) can alter drinking water quality, particularly if they are mechanically detached from the pipe wall to the bulk water, such as due to changes in hydraulic conditions. Results are presented here from applying 454 pyrosequencing of the 16S ribosomal RNA (rRNA) gene to investigate the influence of different hydrological regimes on bacterial community structure and to study the potential mobilisation of material from the pipe walls to the network using a full scale, temperature-controlled experimental pipeline facility accurately representative of live DWDS. Analysis of pyrosequencing and water physico-chemical data showed that habitat type (water vs. biofilm) and hydraulic conditions influenced bacterial community structure and composition in our experimental DWDS. Bacterial community composition clearly differed between biofilms and bulk water samples. Gammaproteobacteria and Betaproteobacteria were the most abundant phyla in biofilms while Alphaproteobacteria was predominant in bulk water samples. This suggests that bacteria inhabiting biofilms, predominantly species belonging to genera Pseudomonas, Zooglea and Janthinobacterium, have an enhanced ability to express extracellular polymeric substances to adhere to surfaces and to favour co-aggregation between cells than those found in the bulk water. Highest species richness and diversity were detected in 28 days old biofilms with this being accentuated at highly varied flow conditions. Flushing altered the pipe-wall bacterial community structure but did not completely remove bacteria from the pipe walls, particularly under highly varied flow conditions, suggesting that under these conditions more compact biofilms were generated. This research brings new knowledge regarding the influence of different hydraulic regimes on the composition and structure of bacterial communities within DWDS and the implication that this

  20. Unraveling the role of animal heme peroxidases in superoxide mediated Mn oxide formation

    Science.gov (United States)

    Learman, D. R.; Hansel, C. M.

    2013-12-01

    Manganese(III,IV) oxides are important in the environment as they can impact the fate of a broad range of nutrients (e.g. carbon and phosphate) and contaminates (e.g. lead and chromium). Bacteria play a valuable role in the production of Mn oxides, yet the mechanisms and physiological reasons remain unclear. Roseobacter sp. AzwK-3b, an organism within the abundant and ubiquitous Roseobacter clade, has recently been shown to oxidize Mn(II) via a novel pathway that involves enzymatic extracellular superoxide production. However, in reactions with only Mn(II) and abiotically generated superoxide, we find superoxide alone is not enough to produce Mn(III,IV) oxides. Scavenging of the byproduct hydrogen peroxide (via the addition of catalase) is required to generate Mn oxides via abiotic reaction of Mn(II) with superoxide. Thus, R. AzwK-3b must produce superoxide and also scavenge hydrogen peroxide to form Mn oxides. Further, in-gel Mn(II) oxidation assay revealed a protein band that could generate Mn oxides in the presence of soluble Mn(II). This Mn(II)-oxidizing protein band was excised from the gel and the peptides identified via mass spectrometry. An animal heme peroxidase (AHP) was the predominant protein found in this band. This protein is homologous to the AHPs previously implicated as a Mn(II)-oxidizing enzyme within the Alphaproteobacteria, Erythrobacter SD-21 and Aurantimonas manganoxydans strain SI85-9A1. Currently, protein expression of the AHPs in R. AzwK-3b is being examined to determine if expression is correlated with Mn(II) concentration or oxidative stress. Our data suggests that AHPs do not directly oxidize Mn(II) but rather plays a role in scavenging hydrogen peroxide and/or producing an organic Mn(III) ligand that complexes Mn(III) and likely aids in Mn oxide precipitation.

  1. Spatio-temporal interdependence of bacteria and phytoplankton during a Baltic Sea spring bloom

    Directory of Open Access Journals (Sweden)

    Carina eBunse

    2016-04-01

    Full Text Available In temperate systems, phytoplankton spring blooms deplete inorganic nutrients and are major sources of organic matter for the microbial loop. In response to phytoplankton exudates and environmental factors, heterotrophic microbial communities are highly dynamic and change their abundance and composition both on spatial and temporal scales. Yet, most of our understanding about these processes comes from laboratory model organism studies, mesocosm experiments or single temporal transects. Spatial-temporal studies examining interactions of phytoplankton blooms and bacterioplankton community composition and function, though being highly informative, are scarce. In this study, pelagic microbial community dynamics (bacteria and phytoplankton and environmental variables were monitored during a spring bloom across the Baltic Proper (two cruises between North Germany to Gulf of Finland. To test to what extent bacterioplankton community composition relates to the spring bloom, we used next generation amplicon sequencing of the 16S rRNA gene, phytoplankton diversity analysis based on microscopy counts and population genotyping of the dominating diatom Skeletonema marinoi. Several phytoplankton bloom related and environmental variables were identified to influence bacterial community composition. Members of Bacteroidetes and Alphaproteobacteria dominated the bacterial community composition but the bacterial groups showed no apparent correlation with direct bloom related variables. The less abundant bacterial phyla Actinobacteria, Planctomycetes, and Verrucomicrobia, on the other hand, were strongly associated with phytoplankton biomass, diatom:dinoflagellate ratio and colored dissolved organic matter (cDOM. Many bacterial operational taxonomic units (OTUs showed high niche specificities. For example, particular Bacteroidetes OTUs were associated with two distinct genetic clusters of S. marinoi. Our study revealed the complexity of interactions of bacterial

  2. Metagenomic analysis of the bacterial communities and their functional profiles in water and sediments of the Apies River, South Africa, as a function of land use.

    Science.gov (United States)

    Abia, Akebe Luther King; Alisoltani, Arghavan; Keshri, Jitendra; Ubomba-Jaswa, Eunice

    2018-03-01

    Water quality is an important public health issue given that the presence of pathogenic organisms in such waters can adversely affect human and animal health. Despite the numerous studies conducted to assess the quality of environmental waters in many countries, limited efforts have been put on investigating the microbial quality of the sediments in developing countries and how this relates to different land uses. The present study evaluated the bacterial diversity in water and sediments in a highly used South African river to find out how the different land uses influenced the bacterial diversity, and to verify the human diseases functional classes of the bacterial populations. Samples were collected on river stretches influenced by an informal, a peri-urban and a rural settlement. Genomic DNA was extracted from water and sediment samples and sequenced on an Illumina® MiSeq platform targeting the 16S rRNA gene variable region V3-V4 from the genomic DNA. Metagenomic data analysis revealed that there was a great diversity in the microbial populations associated with the different land uses, with the informal settlement having the most considerable influence on the bacterial diversity in the water and sediments of the Apies River. The Proteobacteria (69.8%), Cyanobacteria (4.3%), Bacteroidetes (2.7%), and Actinobacteria (2.7%) were the most abundant phyla; the Alphaproteobacteria, Betaproteobacteria and Anaerolineae were the most recorded classes. Also, the sediments had a greater diversity and abundance in bacterial population than the water column. The functional profiles of the bacterial populations revealed an association with many human diseases including cancer pathways. Further studies that would isolate these potentially pathogenic organisms in the aquatic environment are therefore needed as this would help in protecting the lives of communities using such rivers, especially against emerging bacterial pathogens. Copyright © 2017 Elsevier B.V. All rights

  3. Geographical and Cultivar Features Differentiate Grape Microbiota in Northern Italy and Spain Vineyards

    Directory of Open Access Journals (Sweden)

    Valerio Mezzasalma

    2018-05-01

    Full Text Available Recent studies have highlighted the role of the grapevine microbiome in addressing a wide panel of features, ranging from the signature of field origin to wine quality. Although the influence of cultivar and vineyard environmental conditions in shaping the grape microbiome have already been ascertained, several aspects related to this topic, deserve to be further investigated. In this study, we selected three international diffused grapevine cultivars (Cabernet Sauvignon, Syrah, and Sauvignon Blanc at three germplasm collections characterized by different climatic conditions [Northern Italy (NI, Italian Alps (AI, and Northern Spain (NS]. The soil and grape microbiome was characterized by 16s rRNA High Throughput Sequencing (HTS, and the obtained results showed that all grape samples shared some bacterial taxa, regardless of sampling locality (e.g., Bacillus, Methylobacterium, Sphingomonas, and other genera belonging to Alphaproteobacteria, Gammaproteobacteria, and Actinobacteria. However, some Operational Taxonomic Units (OTUs could act as geographical signatures and in some cases as cultivar fingerprint. Concerning the origin of the grape microbiome, our study confirms that vineyard soil represents a primary reservoir for grape associated bacteria with almost 60% of genera shared between the soil and grape. At each locality, grapevine cultivars shared a core of bacterial genera belonging to the vineyard soil, as well as from other local biodiversity elements such as arthropods inhabiting or foraging in the vineyard. Finally, a machine learning analysis showed that it was possible to predict the geographical origin and cultivar of grape starting from its microbiome composition with a high accuracy (9 cases out of 12 tested samples. Overall, these findings open new perspectives for the development of more comprehensive and integrated research activities to test which environmental variables have an effective role in shaping the microbiome

  4. Shifts in taxonomic and functional microbial diversity with agriculture: How fragile is the Brazilian Cerrado?

    Science.gov (United States)

    Souza, Renata Carolini; Mendes, Iêda Carvalho; Reis-Junior, Fábio Bueno; Carvalho, Fabíola Marques; Nogueira, Marco Antonio; Vasconcelos, Ana Tereza Ribeiro; Vicente, Vânia Aparecida; Hungria, Mariangela

    2016-03-16

    The Cerrado--an edaphic type of savannah--comprises the second largest biome of the Brazilian territory and is the main area for grain production in the country, but information about the impact of land conversion to agriculture on microbial diversity is still scarce. We used a shotgun metagenomic approach to compare undisturbed (native) soil and soils cropped for 23 years with soybean/maize under conservation tillage--"no-till" (NT)--and conventional tillage (CT) systems in the Cerrado biome. Soil management and fertilizer inputs with the introduction of agriculture improved chemical properties, but decreased soil macroporosity and microbial biomass of carbon and nitrogen. Principal coordinates analyses confirmed different taxonomic and functional profiles for each treatment. There was predominance of the Bacteria domain, especially the phylum Proteobacteria, with higher numbers of sequences in the NT and CT treatments; Archaea and Viruses also had lower numbers of sequences in the undisturbed soil. Within the Alphaproteobacteria, there was dominance of Rhizobiales and of the genus Bradyrhizobium in the NT and CT systems, attributed to massive inoculation of soybean, and also of Burkholderiales. In contrast, Rhizobium, Azospirillum, Xanthomonas, Pseudomonas and Acidobacterium predominated in the native Cerrado. More Eukaryota, especially of the phylum Ascomycota were detected in the NT. The functional analysis revealed lower numbers of sequences in the five dominant categories for the CT system, whereas the undisturbed Cerrado presented higher abundance. High impact of agriculture in taxonomic and functional microbial diversity in the biome Cerrado was confirmed. Functional diversity was not necessarily associated with taxonomic diversity, as the less conservationist treatment (CT) presented increased taxonomic sequences and reduced functional profiles, indicating a strategy to try to maintain soil functioning by favoring taxa that are probably not the most

  5. Reconstruction of the core and extended regulons of global transcription factors.

    Directory of Open Access Journals (Sweden)

    Yann S Dufour

    2010-07-01

    Full Text Available The processes underlying the evolution of regulatory networks are unclear. To address this question, we used a comparative genomics approach that takes advantage of the large number of sequenced bacterial genomes to predict conserved and variable members of transcriptional regulatory networks across phylogenetically related organisms. Specifically, we developed a computational method to predict the conserved regulons of transcription factors across alpha-proteobacteria. We focused on the CRP/FNR super-family of transcription factors because it contains several well-characterized members, such as FNR, FixK, and DNR. While FNR, FixK, and DNR are each proposed to regulate different aspects of anaerobic metabolism, they are predicted to recognize very similar DNA target sequences, and they occur in various combinations among individual alpha-proteobacterial species. In this study, the composition of the respective FNR, FixK, or DNR conserved regulons across 87 alpha-proteobacterial species was predicted by comparing the phylogenetic profiles of the regulators with the profiles of putative target genes. The utility of our predictions was evaluated by experimentally characterizing the FnrL regulon (a FNR-type regulator in the alpha-proteobacterium Rhodobacter sphaeroides. Our results show that this approach correctly predicted many regulon members, provided new insights into the biological functions of the respective regulons for these regulators, and suggested models for the evolution of the corresponding transcriptional networks. Our findings also predict that, at least for the FNR-type regulators, there is a core set of target genes conserved across many species. In addition, the members of the so-called extended regulons for the FNR-type regulators vary even among closely related species, possibly reflecting species-specific adaptation to environmental and other factors. The comparative genomics approach we developed is readily applicable to other

  6. Exploring the Cultivable Ectocarpus Microbiome.

    Science.gov (United States)

    KleinJan, Hetty; Jeanthon, Christian; Boyen, Catherine; Dittami, Simon M

    2017-01-01

    Coastal areas form the major habitat of brown macroalgae, photosynthetic multicellular eukaryotes that have great ecological value and industrial potential. Macroalgal growth, development, and physiology are influenced by the microbial community they accommodate. Studying the algal microbiome should thus increase our fundamental understanding of algal biology and may help to improve culturing efforts. Currently, a freshwater strain of the brown macroalga Ectocarpus subulatus is being developed as a model organism for brown macroalgal physiology and algal microbiome studies. It can grow in high and low salinities depending on which microbes it hosts. However, the molecular mechanisms involved in this process are still unclear. Cultivation of Ectocarpus -associated bacteria is the first step toward the development of a model system for in vitro functional studies of brown macroalgal-bacterial interactions during abiotic stress. The main aim of the present study is thus to provide an extensive collection of cultivable E . subulatus -associated bacteria. To meet the variety of metabolic demands of Ectocarpus -associated bacteria, several isolation techniques were applied, i.e., direct plating and dilution-to-extinction cultivation techniques, each with chemically defined and undefined bacterial growth media. Algal tissue and algal growth media were directly used as inoculum, or they were pretreated with antibiotics, by filtration, or by digestion of algal cell walls. In total, 388 isolates were identified falling into 33 genera (46 distinct strains), of which Halomonas ( Gammaproteobacteria ), Bosea ( Alphaproteobacteria ), and Limnobacter ( Betaproteobacteria ) were the most abundant. Comparisons with 16S rRNA gene metabarcoding data showed that culturability in this study was remarkably high (∼50%), although several cultivable strains were not detected or only present in extremely low abundance in the libraries. These undetected bacteria could be considered as part

  7. Exploring the Cultivable Ectocarpus Microbiome

    Directory of Open Access Journals (Sweden)

    Hetty KleinJan

    2017-12-01

    Full Text Available Coastal areas form the major habitat of brown macroalgae, photosynthetic multicellular eukaryotes that have great ecological value and industrial potential. Macroalgal growth, development, and physiology are influenced by the microbial community they accommodate. Studying the algal microbiome should thus increase our fundamental understanding of algal biology and may help to improve culturing efforts. Currently, a freshwater strain of the brown macroalga Ectocarpus subulatus is being developed as a model organism for brown macroalgal physiology and algal microbiome studies. It can grow in high and low salinities depending on which microbes it hosts. However, the molecular mechanisms involved in this process are still unclear. Cultivation of Ectocarpus-associated bacteria is the first step toward the development of a model system for in vitro functional studies of brown macroalgal–bacterial interactions during abiotic stress. The main aim of the present study is thus to provide an extensive collection of cultivable E. subulatus-associated bacteria. To meet the variety of metabolic demands of Ectocarpus-associated bacteria, several isolation techniques were applied, i.e., direct plating and dilution-to-extinction cultivation techniques, each with chemically defined and undefined bacterial growth media. Algal tissue and algal growth media were directly used as inoculum, or they were pretreated with antibiotics, by filtration, or by digestion of algal cell walls. In total, 388 isolates were identified falling into 33 genera (46 distinct strains, of which Halomonas (Gammaproteobacteria, Bosea (Alphaproteobacteria, and Limnobacter (Betaproteobacteria were the most abundant. Comparisons with 16S rRNA gene metabarcoding data showed that culturability in this study was remarkably high (∼50%, although several cultivable strains were not detected or only present in extremely low abundance in the libraries. These undetected bacteria could be considered

  8. Effect of Biostimulation Using Sewage Sludge, Soybean Meal, and Wheat Straw on Oil Degradation and Bacterial Community Composition in a Contaminated Desert Soil

    Science.gov (United States)

    Al-Kindi, Sumaiya; Abed, Raeid M. M.

    2016-01-01

    Waste materials have a strong potential in the bioremediation of oil-contaminated sites, because of their richness in nutrients and their economical feasibility. We used sewage sludge, soybean meal, and wheat straw to biostimulate oil degradation in a heavily contaminated desert soil. While oil degradation was assessed by following the produced CO2 and by using gas chromatography–mass spectrometry (GC–MS), shifts in bacterial community composition were monitored using illumina MiSeq. The addition of sewage sludge and wheat straw to the desert soil stimulated the respiration activities to reach 3.2–3.4 times higher than in the untreated soil, whereas the addition of soybean meal resulted in an insignificant change in the produced CO2, given the high respiration activities of the soybean meal alone. GC–MS analysis revealed that the addition of sewage sludge and wheat straw resulted in 1.7–1.8 fold increase in the degraded C14 to C30 alkanes, compared to only 1.3 fold increase in the case of soybean meal addition. The degradation of ≥90% of the C14 to C30 alkanes was measured in the soils treated with sewage sludge and wheat straw. MiSeq sequencing revealed that the majority (76.5–86.4% of total sequences) of acquired sequences from the untreated soil belonged to Alphaproteobacteria, Gammaproteobacteria, and Firmicutes. Multivariate analysis of operational taxonomic units placed the bacterial communities of the soils after the treatments in separate clusters (ANOSIM R = 0.66, P = 0.0001). The most remarkable shift in bacterial communities was in the wheat straw treatment, where 95–98% of the total sequences were affiliated to Bacilli. We conclude that sewage sludge and wheat straw are useful biostimulating agents for the cleanup of oil-contaminated desert soils. PMID:26973618

  9. Molecular Ecology of nifH Genes and Transcripts Along a Chronosequence in Revegetated Areas of the Tengger Desert.

    Science.gov (United States)

    Wang, Jin; Bao, Jing-Ting; Li, Xin-Rong; Liu, Yu-Bing

    2016-01-01

    The colonization and succession of diazotrophs are essential for the development of organic soil layers in desert. We examined the succession of diazotrophs in the well-established revegetated areas representing a chronosequence of 0 year (control), 22 years (restored artificially since 1981), 57 years (restored artificially since 1956), and more than 100 years (restored naturally) to determine the community assembly and active expression of diazotrophs. The pyrosequencing data revealed that Alphaproteobacteria-like diazotrophs predominated in the topsoil of our mobile dune site, while cyanobacterial diazotrophs predominated in the revegetated sites. The cyanobacterial diazotrophs were primarily composed of the heterocystous genera Anabaena, Calothrix, Cylindrospermum, Nodularia, Nostoc, Trichormus, and Mastigocladus. Almost all the nifH sequences belonged to the Cyanobacteria phylum (all the relative abundance values >99.1 %) at transcript level and all the active cyanobacterial diazotrophs distributed in the families Nostocaceae and Rivulariaceae. The most dominant active cyanobacterial genus was Cylindrospermum in all the samples. The rank abundance and community analyses demonstrated that most of the diazotrophic diversity originated from the "rare" species, and all the DNA-based diazotrophic libraries were richer and more diverse than their RNA-based counterparts in the revegetated sites. Significant differences in the diazotrophic community and their active population composition were observed among the four research sites. Samples from the 1981-revegetating site (predominated by cyanobacterial crusts) showed the highest nitrogenase activity, followed by samples from the naturally revegetating site (predominated by lichen crusts), the 1956-revegetating site (predominated by moss crusts), and the mobile dune site (without crusts). Collectively, our data highlight the importance of nitrogen fixation by the primary successional desert topsoil and suggest

  10. Two distinct microbial communities revealed in the sponge Cinachyrella

    Science.gov (United States)

    Cuvelier, Marie L.; Blake, Emily; Mulheron, Rebecca; McCarthy, Peter J.; Blackwelder, Patricia; Thurber, Rebecca L. Vega; Lopez, Jose V.

    2014-01-01

    Marine sponges are vital components of benthic and coral reef ecosystems, providing shelter and nutrition for many organisms. In addition, sponges act as an essential carbon and nutrient link between the pelagic and benthic environment by filtering large quantities of seawater. Many sponge species harbor a diverse microbial community (including Archaea, Bacteria and Eukaryotes), which can constitute up to 50% of the sponge biomass. Sponges of the genus Cinachyrella are common in Caribbean and Floridian reefs and their archaeal and bacterial microbiomes were explored here using 16S rRNA gene tag pyrosequencing. Cinachyrella specimens and seawater samples were collected from the same South Florida reef at two different times of year. In total, 639 OTUs (12 archaeal and 627 bacterial) belonging to 2 archaeal and 21 bacterial phyla were detected in the sponges. Based on their microbiomes, the six sponge samples formed two distinct groups, namely sponge group 1 (SG1) with lower diversity (Shannon-Weiner index: 3.73 ± 0.22) and SG2 with higher diversity (Shannon-Weiner index: 5.95 ± 0.25). Hosts' 28S rRNA gene sequences further confirmed that the sponge specimens were composed of two taxa closely related to Cinachyrella kuekenthalli. Both sponge groups were dominated by Proteobacteria, but Alphaproteobacteria were significantly more abundant in SG1. SG2 harbored many bacterial phyla (>1% of sequences) present in low abundance or below detection limits (<0.07%) in SG1 including: Acidobacteria, Chloroflexi, Gemmatimonadetes, Nitrospirae, PAUC34f, Poribacteria, and Verrucomicrobia. Furthermore, SG1 and SG2 only had 95 OTUs in common, representing 30.5 and 22.4% of SG1 and SG2's total OTUs, respectively. These results suggest that the sponge host may exert a pivotal influence on the nature and structure of the microbial community and may only be marginally affected by external environment parameters. PMID:25408689

  11. Two distinct microbial communities revealed in the sponge Cinachyrella

    Directory of Open Access Journals (Sweden)

    Marie Laure Cuvelier

    2014-11-01

    Full Text Available Marine sponges are vital components of benthic and coral reef ecosystems, providing shelter and nutrition for many organisms. In addition, sponges act as an essential carbon and nutrient link between the pelagic and benthic environment by filtering large quantities of seawater. Many sponge species harbor a diverse microbial community (including Archaea, Bacteria and Eukaryotes, which can constitute up to 50% of the sponge biomass. Sponges of the genus Cinachyrella are common in Caribbean and Floridian reefs and their archaeal and bacterial microbiomes were explored here using 16S rDNA tag pyrosequencing. Cinachyrella specimens and seawater samples were collected from the same South Florida reef at two different times of year. In total, 639 OTUs (12 archaeal and 627 bacterial belonging to 2 archaeal and 21 bacterial phyla were detected in the sponges. Based on their microbiomes, the six sponge samples formed two distinct groups, namely sponge group 1 (SG1 with low diversity (Shannon-Weiner index: 3.73 ± 0.22 and SG2 with higher diversity (Shannon-Weiner index: 5.95 ± 0.25. Hosts’ 28S rDNA sequences further confirmed that the sponge specimens were composed of two taxa closely related to Cinachyrella kuekenthalli. Both sponge groups were dominated by Proteobacteria, but Alphaproteobacteria were significantly more abundant in SG1. SG2 harbored many bacterial phyla (>1% of sequences present in low abundance or below detection limits (<0.07% in SG1 including: Acidobacteria, Chloroflexi, Gemmatimonadetes, Nitrospirae, PAUC34f, Poribacteria and Verrucomicrobia. Furthermore, SG1 and SG2 only had 95 OTUs in common, representing 30.5% and 22.4% of SG1 and SG2’s total OTUs, respectively. These results suggest that the sponge host may exert a pivotal influence on the nature and structure of the microbial community and may only be marginally affected by external environment parameters.

  12. Dynamics of phosphorus and bacterial phoX genes during the decomposition of Microcystis blooms in a mesocosm.

    Directory of Open Access Journals (Sweden)

    Jiangyu Dai

    Full Text Available Cyanobacterial blooms are a worldwide environmental problem and frequently occur in eutrophic lakes. Organophosphorus mineralization regulated by microbial alkaline phosphatase provides available nutrients for bloom regeneration. To uncover the dynamics of bacterial alkaline phosphatase activity and microbial backgrounds in relation to organophosphorus mineralization during the decomposition process of cyanobacterial blooms, the response of alkaline phosphatase PhoX-producing bacteria were explored using a 23-day mesocosm experiment with three varying densities of Microcystis biomass from eutrophic Lake Taihu. Our study found large amounts of soluble reactive phosphorus and dissolved organophosphorus were released into the lake water during the decomposition process. Bacterial alkaline phosphatase activity showed the peak values during days 5~7 in groups with different chlorophyll-a densities, and then all decreased dramatically to their initial experimental levels during the last stage of decomposition. Bacterial phoX abundances in the three experimental groups increased significantly along with the decomposition process, positively related to the dissolved organic carbon and organophosphorus released by the Microcystis blooms. The genotypes similar to the phoX genes of Alphaproteobacteria were dominant in all groups, whereas the genotypes most similar to the phoX genes of Betaproteobacteria and Cyanobacteria were also abundant in the low density (~15 μg L-1 chlorophyll-a group. At the end of the decomposition process, the number of genotypes most similar to the phoX of Betaproteobacteria and Cyanobacteria increased in the medium (~150 μg L-1 chlorophyll-a and high (~1500 μg L-1 chlorophyll-a density groups. The released organophosphorus and increased bacterial phoX abundance after decomposition of Microcystis aggregates could potentially provide sufficient nutrients and biological conditions for algal proliferation and are probably related

  13. Loktanella spp. Gb03 as an algicidal bacterium, isolated from the culture of Dinoflagellate Gambierdiscus belizeanus.

    Science.gov (United States)

    Bloh, Anmar Hameed; Usup, Gires; Ahmad, Asmat

    2016-02-01

    Bacteria associated with harmful algal blooms can play a crucial role in regulating algal blooms in the environment. This study aimed at isolating and identifying algicidal bacteria in Dinoflagellate culture and to determine the optimum growth requirement of the algicidal bacteria, Loktanella sp. Gb-03. The Dinoflagellate culture used in this study was supplied by Professor Gires Usup's Laboratory, School of Environmental and Natural Resources Sciences, Faculty of Science and Technology, University Kebangsaan Malaysia, Malaysia. The culture was used for the isolation of Loktanella sp., using biochemical tests, API 20 ONE kits. The fatty acid content of the isolates and the algicidal activity were further evaluated, and the phenotype was determined through the phylogenetic tree. Gram-negative, non-motile, non-spore-forming, short rod-shaped, aerobic bacteria (Gb01, Gb02, Gb03, Gb04, Gb05, and Gb06) were isolated from the Dinoflagellate culture. The colonies were pink in color, convex with a smooth surface and entire edge. The optimum growth temperature for the Loktanella sp. Gb03 isolate was determined to be 30°C, in 1% of NaCl and pH7. Phylogenetic analysis based on 16S rRNA gene sequences showed that the bacterium belonged to the genus Loktanella of the class Alphaproteobacteria and formed a tight cluster with the type strain of Loktanella pyoseonensis (97.0% sequence similarity). On the basis of phenotypic, phylogenetic data and genetic distinctiveness, strain Gb-03, were placed in the genus Loktanella as the type strain of species. Moreover, it has algicidal activity against seven toxic Dinoflagellate. The algicidal property of the isolated Loktanella is vital, especially where biological control is needed to mitigate algal bloom or targeted Dinoflagellates.

  14. Screening of polyhydroxyalkanoate-producing bacteria and PhaC-encoding genes in two hypersaline microbial mats from Guerrero Negro, Baja California Sur, Mexico

    Directory of Open Access Journals (Sweden)

    Carolina A. Martínez-Gutiérrez

    2018-05-01

    Full Text Available Hypersaline microbial mats develop through seasonal and diel fluctuations, as well as under several physicochemical variables. Hence, resident microorganisms commonly employ strategies such as the synthesis of polyhydroxyalkanoates (PHAs in order to resist changing and stressful conditions. However, the knowledge of bacterial PHA production in hypersaline microbial mats has been limited to date, particularly in regard to medium-chain length PHAs (mcl-PHAs, which have biotechnological applications due to their plastic properties. The aim of this study was to obtain evidence for PHA production in two hypersaline microbial mats of Guerrero Negro, Mexico by searching for PHA granules and PHA synthase genes in isolated bacterial strains and environmental samples. Six PHA-producing strains were identified by 16S rRNA gene sequencing; three of them corresponded to a Halomonas sp. In addition, Paracoccus sp., Planomicrobium sp. and Staphylococcus sp. were also identified as PHA producers. Presumptive PHA granules and PHA synthases genes were detected in both sampling sites. Moreover, phylogenetic analysis showed that most of the phylotypes were distantly related to putative PhaC synthases class I sequences belonging to members of the classes Alphaproteobacteria and Gammaproteobacteria distributed within eight families, with higher abundances corresponding mainly to Rhodobacteraceae and Rhodospirillaceae. This analysis also showed that PhaC synthases class II sequences were closely related to those of Pseudomonas putida, suggesting the presence of this group, which is probably involved in the production of mcl-PHA in the mats. According to our state of knowledge, this study reports for the first time the occurrence of phaC and phaC1 sequences in hypersaline microbial mats, suggesting that these ecosystems may be a novel source for the isolation of short- and medium-chain length PHA producers.

  15. Experimental Incubations Elicit Profound Changes in Community Transcription in OMZ Bacterioplankton

    Science.gov (United States)

    Stewart, Frank J.; Dalsgaard, Tage; Young, Curtis R.; Thamdrup, Bo; Revsbech, Niels Peter; Ulloa, Osvaldo; Canfield, Don E.; DeLong, Edward F.

    2012-01-01

    Sequencing of microbial community RNA (metatranscriptome) is a useful approach for assessing gene expression in microorganisms from the natural environment. This method has revealed transcriptional patterns in situ, but can also be used to detect transcriptional cascades in microcosms following experimental perturbation. Unambiguously identifying differential transcription between control and experimental treatments requires constraining effects that are simply due to sampling and bottle enclosure. These effects remain largely uncharacterized for “challenging” microbial samples, such as those from anoxic regions that require special handling to maintain in situ conditions. Here, we demonstrate substantial changes in microbial transcription induced by sample collection and incubation in experimental bioreactors. Microbial communities were sampled from the water column of a marine oxygen minimum zone by a pump system that introduced minimal oxygen contamination and subsequently incubated in bioreactors under near in situ oxygen and temperature conditions. Relative to the source water, experimental samples became dominated by transcripts suggestive of cell stress, including chaperone, protease, and RNA degradation genes from diverse taxa, with strong representation from SAR11-like alphaproteobacteria. In tandem, transcripts matching facultative anaerobic gammaproteobacteria of the Alteromonadales (e.g., Colwellia) increased 4–13 fold up to 43% of coding transcripts, and encoded a diverse gene set suggestive of protein synthesis and cell growth. We interpret these patterns as taxon-specific responses to combined environmental changes in the bioreactors, including shifts in substrate or oxygen availability, and minor temperature and pressure changes during sampling with the pump system. Whether such changes confound analysis of transcriptional patterns may vary based on the design of the experiment, the taxonomic composition of the source community, and on the

  16. Bacterial Biofilm Communities and Coral Larvae Settlement at Different Levels of Anthropogenic Impact in the Spermonde Archipelago, Indonesia

    Directory of Open Access Journals (Sweden)

    Pia Kegler

    2017-08-01

    Full Text Available Populations on small islands surrounded by coral reefs often heavily depend on the services provided by these reefs. The health and recovery of reefs are strongly influenced by recruitment of coral larvae. Their settlement relies on cues such as those emitted from bacterial communities forming biofilms on reef surfaces. Environmental conditions can change these bacterial community compositions (BCC and may in turn affect settlement of coral larvae. At three small inhabited islands in the Spermonde Archipelago, Indonesia, with different distance from the mainland, BCC and coral recruitment were investigated on artificial ceramic tiles after 2–8 weeks exposure time and on natural reef substrate. Water parameters showed a clear separation between inshore and near-shore/mid-shelf sites, with distinct benthic communities at all three sites. No coral recruitment was observed at the inshore site with highest natural and anthropogenic stressors. At the other two sites coral recruitment occurred on natural surfaces (recruits per 100 cm2: 0.73 ± 1.75 near-shore, 0.90 ± 1.97 mid-shelf, but there was no significant difference between the two sites. On artificial substrates coral recruitment differed between these two sites, with tile orientation and with exposure time of the tiles in the reef. The most abundant bacteria on both substrates were Gammaproteobacteria, Alphaproteobacteria, and Cyanobacteria. BCC was strongly correlated with water quality and significant differences in BCC between the inshore site and near-shore/mid-shelf were found. On artificial substrates there was a significant difference in BCC also with exposure time in the reef. Our study highlights the value of taking both BCC and coral recruitment into account, in addition to the environmental conditions, when considering the recovery potential of coral reefs.

  17. Diversity of Microbial Carbohydrate-Active enZYmes (CAZYmes) Associated with Freshwater and Soil Samples from Caatinga Biome.

    Science.gov (United States)

    Andrade, Ana Camila; Fróes, Adriana; Lopes, Fabyano Álvares Cardoso; Thompson, Fabiano L; Krüger, Ricardo Henrique; Dinsdale, Elizabeth; Bruce, Thiago

    2017-07-01

    Semi-arid and arid areas occupy about 33% of terrestrial ecosystems. However, little information is available about microbial diversity in the semi-arid Caatinga, which represents a unique biome that extends to about 11% of the Brazilian territory and is home to extraordinary diversity and high endemism level of species. In this study, we characterized the diversity of microbial genes associated with biomass conversion (carbohydrate-active enzymes, or so-called CAZYmes) in soil and freshwater of the Caatinga. Our results showed distinct CAZYme profiles in the soil and freshwater samples. Glycoside hydrolases and glycosyltransferases were the most abundant CAZYme families, with glycoside hydrolases more dominant in soil (∼44%) and glycosyltransferases more abundant in freshwater (∼50%). The abundances of individual glycoside hydrolase, glycosyltransferase, and carbohydrate-binding module subfamilies varied widely between soil and water samples. A predominance of glycoside hydrolases was observed in soil, and a higher contribution of enzymes involved in carbohydrate biosynthesis was observed in freshwater. The main taxa associated with the CAZYme sequences were Planctomycetia (relative abundance in soil, 29%) and Alphaproteobacteria (relative abundance in freshwater, 27%). Approximately 5-7% of CAZYme sequences showed low similarity with sequences deposited in non-redundant databases, suggesting putative homologues. Our findings represent a first attempt to describe specific microbial CAZYme profiles for environmental samples. Characterizing these enzyme groups associated with the conversion of carbohydrates in nature will improve our understanding of the significant roles of enzymes in the carbon cycle. We identified a CAZYme signature that can be used to discriminate between soil and freshwater samples, and this signature may be related to the microbial species adapted to the habitat. The data show the potential ecological roles of the CAZYme repertoire and

  18. Behavior of bacteriome symbionts during transovarial transmission and development of the Asian citrus psyllid.

    Directory of Open Access Journals (Sweden)

    Hiroki Dan

    Full Text Available The Asian citrus psyllid Diaphorina citri Kuwayama (Hemiptera: Liviidae is a serious pest worldwide, transmitting Candidatus Liberibacter spp. (Alphaproteobacteria, the causative agents of a devastating citrus disease known as huanglongbing or greening disease. In a symbiotic organ called the bacteriome, D. citri possesses an organelle-like defensive symbiont, Candidatus Profftella armatura (Betaproteobacteria, and a nutritional symbiont, Ca. Carsonella ruddii (Gammaproteobacteria. Drastically reduced symbiont genomes and metabolic complementarity among the symbionts and D. citri indicate their mutually indispensable association. Moreover, horizontal gene transfer between the Profftella and Liberibacter lineages suggests ecological and evolutionary interactions between the bacteriome symbiont and the HLB pathogen. Using fluorescence in situ hybridization, we examined the behavior of Profftella and Carsonella during transovarial transmission and the development of D. citri. In the bacteriomes of sexually-mature female adults, symbionts transformed from an extremely elongated tubular form into spherical or short-rod forms, which migrated toward the ovary. The symbionts then formed mosaic masses, which entered at the posterior pole of the vitellogenic oocytes. After anatrepsis, Carsonella and Profftella migrated to the central and peripheral parts of the mass, respectively. Following the appearance of host nuclei, the mass cellularized, segregating Carsonella and Profftella in the central syncytium and peripheral uninucleate bacteriocytes, respectively. Subsequently, the uninucleate bacteriocytes harboring Profftella assembled at the posterior pole, while the syncytium, containing Carsonella, sat on the anterior side facing the germ band initiating katatrepsis. During dorsal closure, the syncytium was divided into uninuclear bacteriocytes, which surrounded the mass of bacteriocytes containing Profftella. Once fully surrounded, the bacteriocyte mass

  19. Diversity and abundance of the bacterial community of the red Macroalga Porphyra umbilicalis: did bacterial farmers produce macroalgae?

    Directory of Open Access Journals (Sweden)

    Lilibeth N Miranda

    Full Text Available Macroalgae harbor microbial communities whose bacterial biodiversity remains largely uncharacterized. The goals of this study were 1 to examine the composition of the bacterial community associated with Porphyra umbilicalis Kützing from Schoodic Point, ME, 2 determine whether there are seasonal trends in species diversity but a core group of bacteria that are always present, and 3 to determine how the microbial community associated with a laboratory strain (P.um.1 established in the presence of antibiotics has changed. P. umbilicalis blades (n = 5, fall 2010; n = 5, winter 2011; n = 2, clonal P.um.1 were analyzed by pyrosequencing over two variable regions of the 16 S rDNA (V5-V6 and V8; 147,880 total reads. The bacterial taxa present were classified at an 80% confidence threshold into eight phyla (Bacteroidetes, Proteobacteria, Planctomycetes, Chloroflexi, Actinobacteria, Deinococcus-Thermus, Firmicutes, and the candidate division TM7. The Bacteroidetes comprised the majority of bacterial sequences on both field and lab blades, but the Proteobacteria (Alphaproteobacteria, Gammaproteobacteria were also abundant. Sphingobacteria (Bacteroidetes and Flavobacteria (Bacteroidetes had inverse abundances on natural versus P.um.1 blades. Bacterial communities were richer and more diverse on blades sampled in fall compared to winter. Significant differences were observed between microbial communities among all three groups of blades examined. Only two OTUs were found on all 12 blades, and only one of these, belonging to the Saprospiraceae (Bacteroidetes, was abundant. Lewinella (as 66 OTUs was found on all field blades and was the most abundant genus. Bacteria from the Bacteroidetes, Proteobacteria and Planctomycetes that are known to digest the galactan sulfates of red algal cell walls were well-represented. Some of these taxa likely provide essential morphogenetic and beneficial nutritive factors to P. umbilicalis and may have had

  20. An extracytoplasmic function sigma factor cotranscribed with its cognate anti-sigma factor confers tolerance to NaCl, ethanol and methylene blue in Azospirillum brasilense Sp7.

    Science.gov (United States)

    Mishra, Mukti Nath; Kumar, Santosh; Gupta, Namrata; Kaur, Simarjot; Gupta, Ankush; Tripathi, Anil K

    2011-04-01

    Azospirillum brasilense, a plant-growth-promoting rhizobacterium, is exposed to changes in its abiotic environment, including fluctuations in temperature, salinity, osmolarity, oxygen concentration and nutrient concentration, in the rhizosphere and in the soil. Since extra-cytoplasmic function (ECF) sigma factors play an important role in stress adaptation, we analysed the role of ECF sigma factor (also known as RpoE or σ(E)) in abiotic stress tolerance in A. brasilense. An in-frame rpoE deletion mutant of A. brasilense Sp7 was carotenoidless and slow-growing, and was sensitive to salt, ethanol and methylene blue stress. Expression of rpoE in the rpoE deletion mutant complemented the defects in growth, carotenoid biosynthesis and sensitivity to different stresses. Based on data from reverse transcriptase-PCR, a two-hybrid assay and a pull-down assay, we present evidence that rpoE is cotranscribed with chrR and the proteins synthesized from these two overlapping genes interact with each other. Identification of the transcription start site by 5' rapid amplification of cDNA ends showed that the rpoE-chrR operon was transcribed by two promoters. The proximal promoter was less active than the distal promoter, whose consensus sequence was characteristic of RpoE-dependent promoters found in alphaproteobacteria. Whereas the proximal promoter was RpoE-independent and constitutively expressed, the distal promoter was RpoE-dependent and strongly induced in response to stationary phase and elevated levels of ethanol, salt, heat and methylene blue. This study shows the involvement of RpoE in controlling carotenoid synthesis as well as in tolerance to some abiotic stresses in A. brasilense, which might be critical in the adaptation, survival and proliferation of this rhizobacterium in the soil and rhizosphere under stressful conditions.

  1. One carbon metabolism in SAR11 pelagic marine bacteria.

    Directory of Open Access Journals (Sweden)

    Jing Sun

    Full Text Available The SAR11 Alphaproteobacteria are the most abundant heterotrophs in the oceans and are believed to play a major role in mineralizing marine dissolved organic carbon. Their genomes are among the smallest known for free-living heterotrophic cells, raising questions about how they successfully utilize complex organic matter with a limited metabolic repertoire. Here we show that conserved genes in SAR11 subgroup Ia (Candidatus Pelagibacter ubique genomes encode pathways for the oxidation of a variety of one-carbon compounds and methyl functional groups from methylated compounds. These pathways were predicted to produce energy by tetrahydrofolate (THF-mediated oxidation, but not to support the net assimilation of biomass from C1 compounds. Measurements of cellular ATP content and the oxidation of (14C-labeled compounds to (14CO(2 indicated that methanol, formaldehyde, methylamine, and methyl groups from glycine betaine (GBT, trimethylamine (TMA, trimethylamine N-oxide (TMAO, and dimethylsulfoniopropionate (DMSP were oxidized by axenic cultures of the SAR11 strain Ca. P. ubique HTCC1062. Analyses of metagenomic data showed that genes for C1 metabolism occur at a high frequency in natural SAR11 populations. In short term incubations, natural communities of Sargasso Sea microbial plankton expressed a potential for the oxidation of (14C-labeled formate, formaldehyde, methanol and TMAO that was similar to cultured SAR11 cells and, like cultured SAR11 cells, incorporated a much larger percentage of pyruvate and glucose (27-35% than of C1 compounds (2-6% into biomass. Collectively, these genomic, cellular and environmental data show a surprising capacity for demethylation and C1 oxidation in SAR11 cultures and in natural microbial communities dominated by SAR11, and support the conclusion that C1 oxidation might be a significant conduit by which dissolved organic carbon is recycled to CO(2 in the upper ocean.

  2. New microbes as causative agents of Ibuprofen degradation capabilities in the hyporheic zone of a lowland stream

    Science.gov (United States)

    Njeru, Cyrus; Posselt, Malte; Horn, Marcus A.

    2017-04-01

    Ibuprofen is a non-steroidal anti-inflammatory pain reliever and among pharmaceutical residues detected in aquatic environments. Widespread use of the drug and incomplete removal during waste water treatment results in its persistence in effluents and receiving waters. Potential total removal by microbial activity in the hyporheic zone (HZ) of rivers downstream of wastewater treatment plant discharge sites has been hypothesized. Ibuprofen degradation associated microbial communities in are essentially unknown. To address this hypothesis, two sets of oxic HZ sediment microcosms spiked with ibuprofen only (5, 40, 200 and 400 µM), or ibuprofen and 1 mM acetate were set up under laboratory conditions. Ibuprofen degradation in non-sterile relative to autoclaved sediments indicated removal by microbial degradation. Ibuprofen was completely consumed in the absence and presence of supplemental acetate after approximately 11 and 16 days, respectively. Refeeding of ibuprofen and acetate after the first depletion resulted in complete degradation within 24 hours in all treatments. Metabolites of ibuprofen included 1-, 2-, 3-hydroxy- and carboxyibuprofen. Quantitative real-time PCR revealed no pronounced differences in copy numbers of 16S rRNA gene or transcripts between non-spiked controls and treatments. Time resolved triplicate amplicon Illumina MiSeq sequencing targeting the 16S rRNA genes and transcripts revealed increased relative abundances of Proteobacteria, Acidobacteria, Actinobacteria and Firmicutes in treatments with compared to those without ibuprofen. Alpha-, Beta- and Deltaproteobacteria were most active as indicated by RNA based analyses. Enrichment and isolation yielded new Alphaproteobacteria utilizing ibuprofen as sole carbon and energy source. The collective results indicated that (i) HZ sediments sustain efficient biotic (micro-)pollutant removal and (ii) are a reservoir of hitherto unknown microbial diversity associated with such ecosystem services

  3. Mechanisms of microbial destabilization of soil C shifts over decades of warming

    Science.gov (United States)

    DeAngelis, K.; Pold, G.; Chowdhury, P. R.; Schnabel, J.; Grandy, S.; Melillo, J. M.

    2017-12-01

    Microbes are major actors in regulating the earth's biogeochemical cycles, with temperature-sensitive microbial tradeoffs improving ecosystem biogeochemical models. Meanwhile, the Earth's climate is changing, with decades of warming undercutting the ability of soil to store carbon. Our work explores trends of 26 years of experimental warming in temperate deciduous forest soils, which is associated with cycles of soil carbon degradation punctuated by periods of changes in soil microbial dynamics. Using a combination of biogeochemistry and molecular analytical methods, we explore the hypotheses that substrate availability, community structure, altered temperature sensitivity of microbial turnover-growth efficiency tradeoff, and microbial evolution are responsible for observations of accelerated degradation of soil carbon over time. Amplicon sequencing of microbial communities suggests a small role of changing microbial community composition over decades of warming, but a sustained suppression of fungal biomass is accompanied by increased biomass of Actinobacteria, Actinobacteria, Alphaproteobacteria, Verrucomicrobia and Planctomycetes. Substrate availability plays an important role in microbial dynamics, with depleted labile carbon in the first decade and depleted lignin in the second decade. Increased lignin-degrading enzyme activity supports the suggestion that lignin-like organic matter is an important substrate in chronically warmed soils. Metatranscriptomics data support the suggestion that increased turnover is associated with long-term warming, with metagenomic signals of increased carbohydrate-degrading enzymes in the organic horizon but decreased in the mineral soils. Finally, traits analysis of over 200 cultivated isolates of bacterial species from heated and control soils suggests an expanded ability for degradation of cellulose and hemicellulose but not chitin, supporting the hypothesis that long-term warming is exerting evolutionary pressure on microbial

  4. Bacterial community composition and extracellular enzyme activity in temperate streambed sediment during drying and rewetting.

    Directory of Open Access Journals (Sweden)

    Elisabeth Pohlon

    Full Text Available Droughts are among the most important disturbance events for stream ecosystems; they not only affect stream hydrology but also the stream biota. Although desiccation of streams is common in Mediterranean regions, phases of dryness in headwaters have been observed more often and for longer periods in extended temperate regions, including Central Europe, reflecting global climate change and enhanced water withdrawal. The effects of desiccation and rewetting on the bacterial community composition and extracellular enzyme activity, a key process in the carbon flow of streams and rivers, were investigated in a typical Central European stream, the Breitenbach (Hesse, Germany. Wet streambed sediment is an important habitat in streams. It was sampled and exposed in the laboratory to different drying scenarios (fast, intermediate, slow for 13 weeks, followed by rewetting of the sediment from the fast drying scenario via a sediment core perfusion technique for 2 weeks. Bacterial community structure was analyzed using CARD-FISH and TGGE, and extracellular enzyme activity was assessed using fluorogenic model substrates. During desiccation the bacterial community composition shifted toward composition in soil, exhibiting increasing proportions of Actinobacteria and Alphaproteobacteria and decreasing proportions of Bacteroidetes and Betaproteobacteria. Simultaneously the activities of extracellular enzymes decreased, most pronounced with aminopeptidases and less pronounced with enzymes involved in the degradation of polymeric carbohydrates. After rewetting, the general ecosystem functioning, with respect to extracellular enzyme activity, recovered after 10 to 14 days. However, the bacterial community composition had not yet achieved its original composition as in unaffected sediments within this time. Thus, whether the bacterial community eventually recovers completely after these events remains unknown. Perhaps this community undergoes permanent changes

  5. Spatial variations in microbial community composition in surface seawater from the ultra-oligotrophic center to rim of the South Pacific Gyre.

    Directory of Open Access Journals (Sweden)

    Qi Yin

    Full Text Available Surface seawater in the South Pacific Gyre (SPG is one of the cleanest oceanic environments on earth, and the photosynthetic primary production is extremely low. Despite the ecological significance of the largest aquatic desert on our planet, microbial community composition in the ultra-oligotrophic seawater remain largely unknown. In this study, we collected surface seawater along a southern transect of the SPG during the Integrated Ocean Drilling Program (IODP Expedition 329. Samples from four distinct sites (Sites U1368, U1369, U1370 and U1371 were examined, representing ~5400 kilometers of transect line from the gyre heart to the edge area. Real-time PCR analysis showed 16S rRNA gene abundance in the gyre seawater, ranging from 5.96×10(5 to 2.55×10(6 copies ml(-1 for Bacteria and 1.17×10(3 to 1.90×10(4 copies ml(-1 for Archaea. The results obtained by statistic analyses of 16S rRNA gene clone libraries revealed the community composition in the southern SPG area: diversity richness estimators in the gyre center (Sites U1368 & U1369 are generally lower than those at sites in the gyre edge (Sites U1370 & U1371 and their community structures are clearly distinguishable. Phylogenetic analysis showed the predominance of Proteobacteria (especially Alphaproteobacteria and Cyanobacteria in bacterial 16S rRNA gene clone libraries, whereas phylotypes of Betaproteobacteria were only detected in the central gyre. Archaeal 16S rRNA genes in the clone libraries were predominated by the sequences of Marine Group II within the Euryarchaeota, and the Crenarchaeota sequences were rarely detected, which is consistent with the real-time PCR data (only 9.9 to 22.1 copies ml(-1. We also performed cultivation of heterotrophic microbes onboard, resulting in 18.9% of phylogenetically distinct bacterial isolates at least at the species level. Our results suggest that the distribution and diversity of microbial communities in the SPG surface seawater are closely

  6. Microbiology of Low Temperature Seafloor Deposits Along a Geochemical Gradient in Lau Basin

    Science.gov (United States)

    sylvan, J. B.; Sia, T. Y.; Haddad, A.; Briscoe, L. J.; Girguis, P. R.; Edwards, K. J.

    2011-12-01

    The East Lau Spreading Center (ELSC) and Valu Fa Ridge comprise a ridge segment in the southwest Pacific Ocean where rapid transitions in the underlying mantle lenses manifest themselves by gradients in seafloor rock geochemistry. At the spreading center in the north, basaltic host rock extrudes while the influence of subduction in the south creates mainly basaltic andesite host rock. A contuous gradient between these two end members exists along the spreading center. We studied the geology and microbial diversity of three silicate rock samples and three inactive sulfide chimney samples collected along the ELSC and Valu Fa Ridge by X-ray diffraction, elemental analysis, thin section analysis and construction of bacterial 16S rRNA clone libraries. Here, we discuss the geological and biological differences between the collected rocks. We found that the bacterial community composition changed as the host rock mineralogy and chemistry changed from north to south. Also, the bacterial community composition on the silicates is distinct from those on the inactive chimneys, and the interior conduit of an inactive chimney hosts a very different community from the exterior. Basalt from the northern end of the ELSC had high proportions of Alphaproteobacteria and Bacteroidetes. These proportions decreased on the silicates collected further south. Epsilonproteobacteria were also present on the basalt, decreased further south and were absent on the basaltic andesite. Conversely, basaltic andesite rocks from the southern end had high proportions of Chloroflexi, which decreased further north and were absent on basalt. The exterior of inactive sulfide structures were dominated by lineages of sulfur oxidizing Gammaproteobacteria and Epsilonproteobacteria and were less diverse than those on the silicates. The interior of one chimney was dominated by sulfate-reducing Deltaproteobacteria and was the least diverse of all samples. These results support the Mantle to Microbe hypothesis in

  7. Sunlight-exposed biofilm microbial communities are naturally resistant to chernobyl ionizing-radiation levels.

    Directory of Open Access Journals (Sweden)

    Marie Ragon

    Full Text Available BACKGROUND: The Chernobyl accident represents a long-term experiment on the effects of exposure to ionizing radiation at the ecosystem level. Though studies of these effects on plants and animals are abundant, the study of how Chernobyl radiation levels affect prokaryotic and eukaryotic microbial communities is practically non-existent, except for a few reports on human pathogens or soil microorganisms. Environments enduring extreme desiccation and UV radiation, such as sunlight exposed biofilms could in principle select for organisms highly resistant to ionizing radiation as well. METHODOLOGY/PRINCIPAL FINDINGS: To test this hypothesis, we explored the diversity of microorganisms belonging to the three domains of life by cultivation-independent approaches in biofilms developing on concrete walls or pillars in the Chernobyl area exposed to different levels of radiation, and we compared them with a similar biofilm from a non-irradiated site in Northern Ireland. Actinobacteria, Alphaproteobacteria, Bacteroidetes, Acidobacteria and Deinococcales were the most consistently detected bacterial groups, whereas green algae (Chlorophyta and ascomycete fungi (Ascomycota dominated within the eukaryotes. Close relatives to the most radio-resistant organisms known, including Rubrobacter species, Deinococcales and melanized ascomycete fungi were always detected. The diversity of bacteria and eukaryotes found in the most highly irradiated samples was comparable to that of less irradiated Chernobyl sites and Northern Ireland. However, the study of mutation frequencies in non-coding ITS regions versus SSU rRNA genes in members of a same actinobacterial operational taxonomic unit (OTU present in Chernobyl samples and Northern Ireland showed a positive correlation between increased radiation and mutation rates. CONCLUSIONS/SIGNIFICANCE: Our results show that biofilm microbial communities in the most irradiated samples are comparable to non-irradiated samples in

  8. Sunlight-exposed biofilm microbial communities are naturally resistant to chernobyl ionizing-radiation levels.

    Science.gov (United States)

    Ragon, Marie; Restoux, Gwendal; Moreira, David; Møller, Anders Pape; López-García, Purificación

    2011-01-01

    The Chernobyl accident represents a long-term experiment on the effects of exposure to ionizing radiation at the ecosystem level. Though studies of these effects on plants and animals are abundant, the study of how Chernobyl radiation levels affect prokaryotic and eukaryotic microbial communities is practically non-existent, except for a few reports on human pathogens or soil microorganisms. Environments enduring extreme desiccation and UV radiation, such as sunlight exposed biofilms could in principle select for organisms highly resistant to ionizing radiation as well. To test this hypothesis, we explored the diversity of microorganisms belonging to the three domains of life by cultivation-independent approaches in biofilms developing on concrete walls or pillars in the Chernobyl area exposed to different levels of radiation, and we compared them with a similar biofilm from a non-irradiated site in Northern Ireland. Actinobacteria, Alphaproteobacteria, Bacteroidetes, Acidobacteria and Deinococcales were the most consistently detected bacterial groups, whereas green algae (Chlorophyta) and ascomycete fungi (Ascomycota) dominated within the eukaryotes. Close relatives to the most radio-resistant organisms known, including Rubrobacter species, Deinococcales and melanized ascomycete fungi were always detected. The diversity of bacteria and eukaryotes found in the most highly irradiated samples was comparable to that of less irradiated Chernobyl sites and Northern Ireland. However, the study of mutation frequencies in non-coding ITS regions versus SSU rRNA genes in members of a same actinobacterial operational taxonomic unit (OTU) present in Chernobyl samples and Northern Ireland showed a positive correlation between increased radiation and mutation rates. Our results show that biofilm microbial communities in the most irradiated samples are comparable to non-irradiated samples in terms of general diversity patterns, despite increased mutation levels at the single

  9. NifH and NifD phylogenies: an evolutionary basis for understanding nitrogen fixation capabilities of methanotrophic bacteria.

    Science.gov (United States)

    Dedysh, Svetlana N; Ricke, Peter; Liesack, Werner

    2004-05-01

    The ability to utilize dinitrogen as a nitrogen source is an important phenotypic trait in most currently known methanotrophic bacteria (MB). This trait is especially important for acidophilic MB, which inhabit acidic oligotrophic environments, highly depleted in available nitrogen compounds. Phylogenetically, acidophilic MB are most closely related to heterotrophic dinitrogen-fixing bacteria of the genus BEIJERINCKIA: To further explore the phylogenetic linkage between these metabolically different organisms, the sequences of nifH and nifD gene fragments from acidophilic MB of the genera Methylocella and Methylocapsa, and from representatives of Beijerinckia, were determined. For reference, nifH and nifD sequences were also obtained from some type II MB of the alphaproteobacterial Methylosinus/Methylocystis group and from gammaproteobacterial type I MB. The trees constructed for the inferred amino acid sequences of nifH and nifD were highly congruent. The phylogenetic relationships among MB in the NifH and NifD trees also agreed well with the corresponding 16S rRNA-based phylogeny, except for two distinctive features. First, different methods used for phylogenetic analysis grouped the NifH and NifD sequences of strains of the gammaproteobacterial MB Methylococcus capsulatus within a clade mainly characterized by Alphaproteobacteria, including acidophilic MB and type II MB of the Methylosinus/Methylocystis group. From this and other genomic data from Methylococcus capsulatus Bath, it is proposed that an ancient event of lateral gene transfer was responsible for this aberrant branching. Second, the identity values of NifH and NifD sequences between Methylocapsa acidiphila B2 and representatives of Beijerinckia were clearly higher (98.5 and 96.6 %, respectively) than would be expected from their 16S rRNA-based relationships. Possibly, these two bacteria originated from a common acidophilic dinitrogen-fixing ancestor, and were subject to similar evolutionary pressure

  10. Restoration with pioneer plants changes soil properties and remodels the diversity and structure of bacterial communities in rhizosphere and bulk soil of copper mine tailings in Jiangxi Province, China.

    Science.gov (United States)

    Sun, Xiaoyan; Zhou, Yanling; Tan, Yinjing; Wu, Zhaoxiang; Lu, Ping; Zhang, Guohua; Yu, Faxin

    2018-05-25

    To unravel the ecological function played by pioneer plants in the practical restoration of mine tailings, it is vital to explore changes of soil characteristics and microbial communities in rhizosphere and bulk soil following the adaptation and survival of plants. In the present study, the diversity and structure of rhizospheric bacterial communities of three pioneer plants in copper mine tailings were investigated by Illumina MiSeq sequencing, and the effects of pioneer plants on soil properties were also evaluated. Significant soil improvement was detected in rhizospheric samples, and Alnus cremastogyne showed higher total organic matter, total nitrogen, and available phosphorus than two other herbaceous plants. Microbial diversity indices in rhizosphere and bulk soil of reclaimed tailings were significantly higher than bare tailings, even the soil properties of bulk soil in reclaimed tailings were not significantly different from those of bare tailings. A detailed taxonomic composition analysis demonstrated that Alphaproteobacteria and Deltaproteobacteria, Chloroflexi, Acidobacteria, and Gemmatimonadetes showed significantly higher relative abundance in rhizosphere and bulk soil. In contrast, Gammaproteobacteria and Firmicutes were abundant in bare tailings, in which Bacillus, Pseudomonas, and Lactococcus made up the majority of the bacterial community (63.04%). Many species within known heavy metal resistance and nutrient regulatory microorganism were identified in reclaimed tailings, and were more abundant among rhizospheric microbes. Hierarchical clustering and principal coordinate analysis (PCoA) analysis demonstrated that the bacterial profiles in the rhizosphere clustered strictly together according to plant types, and were distinguishable from bulk soil. However, we also identified a large shared OTUs that occurred repeatedly and was unaffected by highly diverse soil properties in rhizosphere and bulk samples. Redundancy analysis indicated that water

  11. Diversity of cultivated and metabolically active aerobic anoxygenic phototrophic bacteria along an oligotrophic gradient in the Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    C. Jeanthon

    2011-07-01

    Full Text Available Aerobic anoxygenic phototrophic (AAP bacteria play significant roles in the bacterioplankton productivity and biogeochemical cycles of the surface ocean. In this study, we applied both cultivation and mRNA-based molecular methods to explore the diversity of AAP bacteria along an oligotrophic gradient in the Mediterranean Sea in early summer 2008. Colony-forming units obtained on three different agar media were screened for the production of bacteriochlorophyll-a (BChl-a, the light-harvesting pigment of AAP bacteria. BChl-a-containing colonies represented a low part of the cultivable fraction. In total, 54 AAP strains were isolated and the phylogenetic analyses based on their 16S rRNA and pufM genes showed that they were all affiliated to the Alphaproteobacteria. The most frequently isolated strains belonged to Citromicrobium bathyomarinum, and Erythrobacter and Roseovarius species. Most other isolates were related to species not reported to produce BChl-a and/or may represent novel taxa. Direct extraction of RNA from seawater samples enabled the analysis of the expression of pufM, the gene coding for the M subunit of the reaction centre complex of aerobic anoxygenic photosynthesis. Clone libraries of pufM gene transcripts revealed that most phylotypes were highly similar to sequences previously recovered from the Mediterranean Sea and a large majority (~94 % was affiliated to the Gammaproteobacteria. The most abundantly detected phylotypes occurred in the western and eastern Mediterranean basins. However, some were exclusively detected in the eastern basin, reflecting the highest diversity of pufM transcripts observed in this ultra-oligotrophic region. To our knowledge, this is the first study to document extensively the diversity of AAP isolates and to unveil the active AAP community in an oligotrophic marine environment. By pointing out the discrepancies

  12. Impact of Lowland Rainforest Transformation on Diversity and Composition of Soil Prokaryotic Communities in Sumatra (Indonesia)

    Science.gov (United States)

    Schneider, Dominik; Engelhaupt, Martin; Allen, Kara; Kurniawan, Syahrul; Krashevska, Valentyna; Heinemann, Melanie; Nacke, Heiko; Wijayanti, Marini; Meryandini, Anja; Corre, Marife D.; Scheu, Stefan; Daniel, Rolf

    2015-01-01

    Prokaryotes are the most abundant and diverse group of microorganisms in soil and mediate virtually all biogeochemical cycles in terrestrial ecosystems. Thereby, they influence aboveground plant productivity and diversity. In this study, the impact of rainforest transformation to intensively managed cash crop systems on soil prokaryotic communities was investigated. The studied managed land use systems comprised rubber agroforests (jungle rubber), rubber plantations and oil palm plantations within two Indonesian landscapes Bukit Duabelas and Harapan. Soil prokaryotic community composition and diversity were assessed by pyrotag sequencing of bacterial and archaeal 16S rRNA genes. The curated dataset contained 16,413 bacterial and 1679 archaeal operational taxonomic units at species level (97% genetic identity). Analysis revealed changes in indigenous taxon-specific patterns of soil prokaryotic communities accompanying lowland rainforest transformation to jungle rubber, and intensively managed rubber and oil palm plantations. Distinct clustering of the rainforest soil communities indicated that these are different from the communities in the studied managed land use systems. The predominant bacterial taxa in all investigated soils were Acidobacteria, Actinobacteria, Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria. Overall, the bacterial community shifted from proteobacterial groups in rainforest soils to Acidobacteria in managed soils. The archaeal soil communities were mainly represented by Thaumarchaeota and Euryarchaeota. Members of the Terrestrial Group and South African Gold Mine Group 1 (Thaumarchaeota) dominated in the rainforest and members of Thermoplasmata in the managed land use systems. The alpha and beta diversity of the soil prokaryotic communities was higher in managed land use systems than in rainforest. In the case of bacteria, this was related to soil characteristics such as pH value, exchangeable Ca and Fe content, C to N ratio

  13. Pyrosequencing of bacterial symbionts within Axinella corrugata sponges: diversity and seasonal variability.

    Directory of Open Access Journals (Sweden)

    James R White

    Full Text Available BACKGROUND: Marine sponge species are of significant interest to many scientific fields including marine ecology, conservation biology, genetics, host-microbe symbiosis and pharmacology. One of the most intriguing aspects of the sponge "holobiont" system is the unique physiology, interaction with microbes from the marine environment and the development of a complex commensal microbial community. However, intraspecific variability and temporal stability of sponge-associated bacterial symbionts remain relatively unknown. METHODOLOGY/PRINCIPAL FINDINGS: We have characterized the bacterial symbiont community biodiversity of seven different individuals of the Caribbean reef sponge Axinella corrugata, from two different Florida reef locations during variable seasons using multiplex 454 pyrosequencing of 16 S rRNA amplicons. Over 265,512 high-quality 16 S rRNA sequences were generated and analyzed. Utilizing versatile bioinformatics methods and analytical software such as the QIIME and CloVR packages, we have identified 9,444 distinct bacterial operational taxonomic units (OTUs. Approximately 65,550 rRNA sequences (24% could not be matched to bacteria at the class level, and may therefore represent novel taxa. Differentially abundant classes between seasonal Axinella communities included Gammaproteobacteria, Flavobacteria, Alphaproteobacteria, Cyanobacteria, Acidobacter and Nitrospira. Comparisons with a proximal outgroup sponge species (Amphimedon compressa, and the growing sponge symbiont literature, indicate that this study has identified approximately 330 A. corrugata-specific symbiotic OTUs, many of which are related to the sulfur-oxidizing Ectothiorhodospiraceae. This family appeared exclusively within A. corrugata, comprising >34.5% of all sequenced amplicons. Other A. corrugata symbionts such as Deltaproteobacteria, Bdellovibrio, and Thiocystis among many others are described. CONCLUSIONS/SIGNIFICANCE: Slight shifts in several bacterial taxa

  14. Distinct bacterial communities in surficial seafloor sediments following the 2010 Deepwater Horizon blowout

    Directory of Open Access Journals (Sweden)

    Tingting Yang

    2016-09-01

    Full Text Available A major fraction of the petroleum hydrocarbons discharged during the 2010 Macondo oil spill became associated with and sank to the seafloor as marine snow flocs. This sedimentation pulse induced the development of distinct bacterial communities. Between May 2010 and July 2011, full-length 16S rRNA gene clone libraries demonstrated bacterial community succession in oil-polluted sediment samples near the wellhead area. Libraries from early May 2010, before the sedimentation event, served as the baseline control. Freshly deposited oil-derived marine snow was collected on the surface of sediment cores in September 2010, and was characterized by abundantly detected members of the marine Roseobacter cluster within the Alphaproteobacteria. Samples collected in mid-October 2010 closest to the wellhead contained members of the sulfate-reducing, anaerobic bacterial families Desulfobacteraceae and Desulfobulbaceae within the Deltaproteobacteria, suggesting that the oil-derived sedimentation pulse triggered bacterial oxygen consumption and created patchy anaerobic microniches that favored sulfate-reducing bacteria. Phylotypes of the polycyclic aromatic hydrocarbon-degrading genus Cycloclasticus, previously found both in surface oil slicks and the deep hydrocarbon plume, were also found in oil-derived marine snow flocs sedimenting on the seafloor in September 2010, and in surficial sediments collected in October and November 2010, but not in any of the control samples. Due to the relative recalcitrance and stability of polycyclic aromatic compounds, Cycloclasticus represents the most persistent microbial marker of seafloor hydrocarbon deposition that we could identify in this dataset. The bacterial imprint of the DWH oil spill had diminished in late November 2010, when the bacterial communities in oil-impacted sediment samples collected near the Macondo wellhead began to resemble their pre-spill counterparts and spatial controls. Samples collected in summer

  15. A study on climatic adaptation of dipteran mitochondrial protein coding genes

    Directory of Open Access Journals (Sweden)

    Debajyoti Kabiraj

    2017-10-01

    Full Text Available Diptera, the true flies are frequently found in nature and their habitat is found all over the world including Antarctica and Polar Regions. The number of documented species for order diptera is quite high and thought to be 14% of the total animal present in the earth [1]. Most of the study in diptera has focused on the taxa of economic and medical importance, such as the fruit flies Ceratitis capitata and Bactrocera spp. (Tephritidae, which are serious agricultural pests; the blowflies (Calliphoridae and oestrid flies (Oestridae, which can cause myiasis; the anopheles mosquitoes (Culicidae, are the vectors of malaria; and leaf-miners (Agromyzidae, vegetable and horticultural pests [2]. Insect mitochondrion consists of 13 protein coding genes, 22 tRNAs and 2 rRNAs, are the remnant portion of alpha-proteobacteria is responsible for simultaneous function of energy production and thermoregulation of the cell through the bi-genomic system thus different adaptability in different climatic condition might have compensated by complementary changes is the both genomes [3,4]. In this study we have collected complete mitochondrial genome and occurrence data of one hundred thirteen such dipteran insects from different databases and literature survey. Our understanding of the genetic basis of climatic adaptation in diptera is limited to the basic information on the occurrence location of those species and mito genetic factors underlying changes in conspicuous phenotypes. To examine this hypothesis, we have taken an approach of Nucleotide substitution analysis for 13 protein coding genes of mitochondrial DNA individually and combined by different software for monophyletic group as well as paraphyletic group of dipteran species. Moreover, we have also calculated codon adaptation index for all dipteran mitochondrial protein coding genes. Following this work, we have classified our sample organisms according to their location data from GBIF (https

  16. Hippophae leaf extract (SBL-1) countered radiation induced dysbiosis in jejunum of total body 60Cobalt gamma - irradiated mice

    International Nuclear Information System (INIS)

    Beniwal, C.S.; Madhu Bala

    2014-01-01

    Single dose of SBL-1 administered at the rate 30 mg/kg body weight (b.w.) 30 min prior to whole body 60 Co-gamma-irradiation at lethal dose (10 Gy), rendered >90% survival in comparison to zero survival in the non-SBL-1 treated 60 Co-gamma-irradiated (10 Gy) mice population (J Herbs Spices Med Plants, 2009; 15(2): 203-215). Present study investigated the effect of SBL-1 on jejunal microbiota in lethally irradiated mice. Study was performed with inbred Swiss albino Strain 'A' male mice (age 9 weeks) weighing 28±2 g. The animals were maintained under controlled environment at 26±2℃; 12 h light/dark cycle and offered standard animal food (Golden feed, Delhi) as well as tap water ad libitum. Metagenomic DNA was extracted, purified and quantified from jejunum of the mice. Universal primers (27f and 1492r) were used to amplify the 16S rRNA DNA from the metagenomic DNA. Amplicons were sequenced, vector contamination and chimeras were removed. The sequences (GenBank Accession No: KF681283 to KF681351) were taxonomically classified by using Sequence Match program, Ribosomal Database Project as well as by nucleotide-BLAST (E-value: 10, database: 16S rRNA gene sequences, Bacteria and Archea). Phylogenetic Tree was prepared using MEGA 5.2 package, using maximum likelihood algorithm after sequence alignment by MUSCLE. Thermus aquaticus was used as out-group to construct rooted tree. Branch stability was assessed by bootstrap analysis. Untreated animals and the animals treated with SBL-1 had 100% Lactobacillus; 60 Co gamma-irradiated animals had 55% Cohaesibacter (Alphaproteobacteria); 27% Mycoplasma (Tenericutes) and only 18% Lactobacillus; animals treated with SBL-1 prior to irradiation had 89% Lactobacillus and 11% Clostridium. This study demonstrated that treatment with SBL-1 at radioprotective doses before total body irradiation with lethal dose (10 Gy) countered the jejunal dysbiosis. (author)

  17. A novel endo-hydrogenase activity recycles hydrogen produced by nitrogen fixation.

    Directory of Open Access Journals (Sweden)

    Gordon Ng

    Full Text Available BACKGROUND: Nitrogen (N(2 fixation also yields hydrogen (H(2 at 1:1 stoichiometric amounts. In aerobic diazotrophic (able to grow on N(2 as sole N-source bacteria, orthodox respiratory hupSL-encoded hydrogenase activity, associated with the cell membrane but facing the periplasm (exo-hydrogenase, has nevertheless been presumed responsible for recycling such endogenous hydrogen. METHODS AND FINDINGS: As shown here, for Azorhizobium caulinodans diazotrophic cultures open to the atmosphere, exo-hydrogenase activity is of no consequence to hydrogen recycling. In a bioinformatic analysis, a novel seven-gene A. caulinodans hyq cluster encoding an integral-membrane, group-4, Ni,Fe-hydrogenase with homology to respiratory complex I (NADH: quinone dehydrogenase was identified. By analogy, Hyq hydrogenase is also integral to the cell membrane, but its active site faces the cytoplasm (endo-hydrogenase. An A. caulinodans in-frame hyq operon deletion mutant, constructed by "crossover PCR", showed markedly decreased growth rates in diazotrophic cultures; normal growth was restored with added ammonium--as expected of an H(2-recycling mutant phenotype. Using A. caulinodans hyq merodiploid strains expressing beta-glucuronidase as promoter-reporter, the hyq operon proved strongly and specifically induced in diazotrophic culture; as well, hyq operon induction required the NIFA transcriptional activator. Therefore, the hyq operon is constituent of the nif regulon. CONCLUSIONS: Representative of aerobic N(2-fixing and H(2-recycling alpha-proteobacteria, A. caulinodans possesses two respiratory Ni,Fe-hydrogenases: HupSL exo-hydrogenase activity drives exogenous H(2 respiration, and Hyq endo-hydrogenase activity recycles endogenous H(2, specifically that produced by N(2 fixation. To benefit human civilization, H(2 has generated considerable interest as potential renewable energy source as its makings are ubiquitous and its combustion yields no greenhouse gases. As

  18. Sunlight-Exposed Biofilm Microbial Communities Are Naturally Resistant to Chernobyl Ionizing-Radiation Levels

    Science.gov (United States)

    Ragon, Marie; Restoux, Gwendal; Moreira, David; Møller, Anders Pape; López-García, Purificación

    2011-01-01

    Background The Chernobyl accident represents a long-term experiment on the effects of exposure to ionizing radiation at the ecosystem level. Though studies of these effects on plants and animals are abundant, the study of how Chernobyl radiation levels affect prokaryotic and eukaryotic microbial communities is practically non-existent, except for a few reports on human pathogens or soil microorganisms. Environments enduring extreme desiccation and UV radiation, such as sunlight exposed biofilms could in principle select for organisms highly resistant to ionizing radiation as well. Methodology/Principal Findings To test this hypothesis, we explored the diversity of microorganisms belonging to the three domains of life by cultivation-independent approaches in biofilms developing on concrete walls or pillars in the Chernobyl area exposed to different levels of radiation, and we compared them with a similar biofilm from a non-irradiated site in Northern Ireland. Actinobacteria, Alphaproteobacteria, Bacteroidetes, Acidobacteria and Deinococcales were the most consistently detected bacterial groups, whereas green algae (Chlorophyta) and ascomycete fungi (Ascomycota) dominated within the eukaryotes. Close relatives to the most radio-resistant organisms known, including Rubrobacter species, Deinococcales and melanized ascomycete fungi were always detected. The diversity of bacteria and eukaryotes found in the most highly irradiated samples was comparable to that of less irradiated Chernobyl sites and Northern Ireland. However, the study of mutation frequencies in non-coding ITS regions versus SSU rRNA genes in members of a same actinobacterial operational taxonomic unit (OTU) present in Chernobyl samples and Northern Ireland showed a positive correlation between increased radiation and mutation rates. Conclusions/Significance Our results show that biofilm microbial communities in the most irradiated samples are comparable to non-irradiated samples in terms of general

  19. Culture dependent and independent analysis of bacterial communities associated with commercial salad leaf vegetables.

    Science.gov (United States)

    Jackson, Colin R; Randolph, Kevin C; Osborn, Shelly L; Tyler, Heather L

    2013-12-01

    Plants harbor a diverse bacterial community, both as epiphytes on the plant surface and as endophytes within plant tissue. While some plant-associated bacteria act as plant pathogens or promote plant growth, others may be human pathogens. The aim of the current study was to determine the bacterial community composition of organic and conventionally grown leafy salad vegetables at the point of consumption using both culture-dependent and culture-independent methods. Total culturable bacteria on salad vegetables ranged from 8.0 × 10(3) to 5.5 × 10(8) CFU g(-1). The number of culturable endophytic bacteria from surface sterilized plants was significantly lower, ranging from 2.2 × 10(3) to 5.8 × 10(5) CFU g(-1). Cultured isolates belonged to six major bacterial phyla, and included representatives of Pseudomonas, Pantoea, Chryseobacterium, and Flavobacterium. Eleven different phyla and subphyla were identified by culture-independent pyrosequencing, with Gammaproteobacteria, Betaproteobacteria, and Bacteroidetes being the most dominant lineages. Other bacterial lineages identified (e.g. Firmicutes, Alphaproteobacteria, Acidobacteria, and Actinobacteria) typically represented less than 1% of sequences obtained. At the genus level, sequences classified as Pseudomonas were identified in all samples and this was often the most prevalent genus. Ralstonia sequences made up a greater portion of the community in surface sterilized than non-surface sterilized samples, indicating that it was largely endophytic, while Acinetobacter sequences appeared to be primarily associated with the leaf surface. Analysis of molecular variance indicated there were no significant differences in bacterial community composition between organic versus conventionally grown, or surface-sterilized versus non-sterilized leaf vegetables. While culture-independent pyrosequencing identified significantly more bacterial taxa, the dominant taxa from pyrosequence data were also detected by traditional

  20. Potential for luxS related signalling in marine bacteria and production of autoinducer-2 in the genus Shewanella

    Directory of Open Access Journals (Sweden)

    Wagner-Döbler Irene

    2008-01-01

    Full Text Available Abstract Background The autoinducer-2 (AI-2 group of signalling molecules are produced by both Gram positive and Gram negative bacteria as the by-product of a metabolic transformation carried out by the LuxS enzyme. They are the only non species-specific quorum sensing compounds presently known in bacteria. The luxS gene coding for the AI-2 synthase enzyme was found in many important pathogens. Here, we surveyed its occurrence in a collection of 165 marine isolates belonging to abundant marine phyla using conserved degenerated PCR primers and sequencing of selected positive bands to determine if the presence of the luxS gene is phylogenetically conserved or dependent on the habitat. Results The luxS gene was not present in any of the Alphaproteobacteria (n = 71 and Bacteroidetes strains (n = 29 tested; by contrast, these bacteria harboured the sahH gene, coding for an alternative enzyme for the detoxification of S-adenosylhomocysteine (SAH in the activated methyl cycle. Within the Gammaproteobacteria (n = 76, luxS was found in all Shewanella, Vibrio and Alteromonas isolates and some Pseudoalteromonas and Halomonas species, while sahH was detected in Psychrobacter strains. A number of Gammaproteobacteria (n = 27 appeared to have neither the luxS nor the sahH gene. We then studied the production of AI-2 in the genus Shewanella using the Vibrio harveyi bioassay. All ten species of Shewanella tested produced a pronounced peak of AI-2 towards the end of the exponential growth phase in several media investigated. The maximum of AI-2 activity was different in each Shewanella species, ranging from 4% to 46% of the positive control. Conclusion The data are consistent with those of fully sequenced bacterial genomes and show that the potential for luxS related signalling is dependent on phylogenetic affiliation rather than ecological niche and is largest in certain groups of Gammaproteobacteria in the marine environment. This is the first report on AI-2

  1. Exposure to Crude Oil and Chemical Dispersant May Impact Marine Microbial Biofilm Composition and Steel Corrosion

    Directory of Open Access Journals (Sweden)

    Jennifer L. Salerno

    2018-06-01

    Full Text Available The release of hydrocarbons and chemical dispersant in marine environments may disrupt benthic ecosystems, including artificial reefs, formed by historic steel shipwrecks, and their associated organisms. Experiments were performed to determine the impacts of crude oil, dispersed crude oil, and dispersant on the community structure and function of microorganisms in seawater (SW and biofilms formed on carbon steel, a common ship hull construction material. Steel corrosion was also monitored to illustrate how oil spills may impact preservation of steel shipwrecks. Microcosms were filled with seawater (SW and incubated at 4°C. Carbon steel disks (CSDs were placed in each tank, and tanks were amended with crude oil and/or dispersant or no treatment. SW and CSD biofilms were sampled biweekly for genetic analysis using Illumina sequencing of 16S ribosomal RNA gene amplicons. Predicted and sequenced bacterial metagenomes were analyzed to examine impacts of oil and dispersant on metabolic function. Gammaproteobacteria, Alphaproteobacteria, and Flavobacteriia dominated SW and biofilms. Bacterial community structure differed significantly between treatments for SW and biofilms. OTUs affiliated with known (Pseudomonas and potential (Marinomonas hydrocarbon-degraders were roughly twice as abundant in biofilms treated with oil and dispersed oil, and steel corrosion of CSDs in these treatments was higher compared to control and dispersant treatments. OTUs affiliated with the Rhodobacteraceae family (biofilm formers and potential oil degraders were less abundant in the dispersant treatment compared to other treatments in biofilm and SW samples, but OTUs affiliated with the Pseudoalteromonas genus (biofilm formers and proposed hydrocarbon degraders were more abundant in dispersant-treated biofilms. Overall, functional gene analyses revealed a decrease in genes (predicted using PICRUSt and observed in sequenced metagenomes associated with hydrocarbon degradation

  2. Multi-Analytical Approach Reveals Potential Microbial Indicators in Soil for Sugarcane Model Systems.

    Directory of Open Access Journals (Sweden)

    Acacio Aparecido Navarrete

    Full Text Available This study focused on the effects of organic and inorganic amendments and straw retention on the microbial biomass (MB and taxonomic groups of bacteria in sugarcane-cultivated soils in a greenhouse mesocosm experiment monitored for gas emissions and chemical factors. The experiment consisted of combinations of synthetic nitrogen (N, vinasse (V; a liquid waste from ethanol production, and sugarcane-straw blankets. Increases in CO2-C and N2O-N emissions were identified shortly after the addition of both N and V to the soils, thus increasing MB nitrogen (MB-N and decreasing MB carbon (MB-C in the N+V-amended soils and altering soil chemical factors that were correlated with the MB. Across 57 soil metagenomic datasets, Actinobacteria (31.5%, Planctomycetes (12.3%, Deltaproteobacteria (12.3%, Alphaproteobacteria (12.0% and Betaproteobacteria (11.1% were the most dominant bacterial groups during the experiment. Differences in relative abundance of metagenomic sequences were mainly revealed for Acidobacteria, Actinobacteria, Gammaproteobacteria and Verrucomicrobia with regard to N+V fertilization and straw retention. Differential abundances in bacterial groups were confirmed using 16S rRNA gene-targeted phylum-specific primers for real-time PCR analysis in all soil samples, whose results were in accordance with sequence data, except for Gammaproteobacteria. Actinobacteria were more responsive to straw retention with Rubrobacterales, Bifidobacteriales and Actinomycetales related to the chemical factors of N+V-amended soils. Acidobacteria subgroup 7 and Opitutae, a verrucomicrobial class, were related to the chemical factors of soils without straw retention as a surface blanket. Taken together, the results showed that MB-C and MB-N responded to changes in soil chemical factors and CO2-C and N2O-N emissions, especially for N+V-amended soils. The results also indicated that several taxonomic groups of bacteria, such as Acidobacteria, Actinobacteria and

  3. Soil pH Is the Primary Factor Correlating With Soil Microbiome in Karst Rocky Desertification Regions in the Wushan County, Chongqing, China

    Directory of Open Access Journals (Sweden)

    Daihua Qi

    2018-05-01

    Full Text Available Karst rocky desertification (KRD is a process of land degradation, which causes desert-like landscapes, deconstruction of endemic biomass, and declined soil quality. The relationship of KRD progression with above-ground communities (e.g. vegetation and animal is well-studied. Interaction of soil desertification with underground communities, such as soil microbiome, however, is vastly unknown. This study characterizes change in soil bacterial community in response to KRD progression. Soil bacterial communities were surveyed by deep sequencing of 16S amplicons. Eight soil properties, pH, soil organic matter (SOM, total and available nitrogen (TN and AN, total and available phosphorus (TP and AP, and total and available potassium (TK and AK, were measured to assess soil quality. We find that the overall soil quality decreases along with KRD progressive gradient. Soil bacterial community compositions are distinguishingly different in KRD stages. The richness and diversity in bacterial community do not significantly change with KRD progression although a slight increase in diversity was observed. A slight decrease in richness was seen in SKRD areas. Soil pH primarily correlates with bacterial community composition. We identified a core microbiome for KRD soils consisting of; Acidobacteria, Alpha-Proteobacteria, Planctomycetes, Beta-Proteobacteria, Actinobacteria, Firmicutes, Delta-Proteobacteria, Chloroflexi, Bacteroidetes, Nitrospirae, and Gemmatimonadetes in this study. Phylum Cyanobacteria is significantly abundant in non-degraded soils, suggesting that Cyanobacterial activities might be correlated to soil quality. Our results suggest that Proteobacteria are sensitive to changes in soil properties caused by the KRD progression. Alpha- and beta-Proteobacteria significantly predominated in SKRD compared to NKRD, suggesting that Proteobacteria, along with many others in the core microbiome (Acidobacteria, Actinobacteria, Firmicutes, and Nitrospirae

  4. Multi-Analytical Approach Reveals Potential Microbial Indicators in Soil for Sugarcane Model Systems

    Science.gov (United States)

    Navarrete, Acacio Aparecido; Diniz, Tatiana Rosa; Braga, Lucas Palma Perez; Silva, Genivaldo Gueiros Zacarias; Franchini, Julio Cezar; Rossetto, Raffaella; Edwards, Robert Alan; Tsai, Siu Mui

    2015-01-01

    This study focused on the effects of organic and inorganic amendments and straw retention on the microbial biomass (MB) and taxonomic groups of bacteria in sugarcane-cultivated soils in a greenhouse mesocosm experiment monitored for gas emissions and chemical factors. The experiment consisted of combinations of synthetic nitrogen (N), vinasse (V; a liquid waste from ethanol production), and sugarcane-straw blankets. Increases in CO2-C and N2O-N emissions were identified shortly after the addition of both N and V to the soils, thus increasing MB nitrogen (MB-N) and decreasing MB carbon (MB-C) in the N+V-amended soils and altering soil chemical factors that were correlated with the MB. Across 57 soil metagenomic datasets, Actinobacteria (31.5%), Planctomycetes (12.3%), Deltaproteobacteria (12.3%), Alphaproteobacteria (12.0%) and Betaproteobacteria (11.1%) were the most dominant bacterial groups during the experiment. Differences in relative abundance of metagenomic sequences were mainly revealed for Acidobacteria, Actinobacteria, Gammaproteobacteria and Verrucomicrobia with regard to N+V fertilization and straw retention. Differential abundances in bacterial groups were confirmed using 16S rRNA gene-targeted phylum-specific primers for real-time PCR analysis in all soil samples, whose results were in accordance with sequence data, except for Gammaproteobacteria. Actinobacteria were more responsive to straw retention with Rubrobacterales, Bifidobacteriales and Actinomycetales related to the chemical factors of N+V-amended soils. Acidobacteria subgroup 7 and Opitutae, a verrucomicrobial class, were related to the chemical factors of soils without straw retention as a surface blanket. Taken together, the results showed that MB-C and MB-N responded to changes in soil chemical factors and CO2-C and N2O-N emissions, especially for N+V-amended soils. The results also indicated that several taxonomic groups of bacteria, such as Acidobacteria, Actinobacteria and

  5. Rickettsia phylogenomics: unwinding the intricacies of obligate intracellular life.

    Directory of Open Access Journals (Sweden)

    Joseph J Gillespie

    Full Text Available BACKGROUND: Completed genome sequences are rapidly increasing for Rickettsia, obligate intracellular alpha-proteobacteria responsible for various human diseases, including epidemic typhus and Rocky Mountain spotted fever. In light of phylogeny, the establishment of orthologous groups (OGs of open reading frames (ORFs will distinguish the core rickettsial genes and other group specific genes (class 1 OGs or C1OGs from those distributed indiscriminately throughout the rickettsial tree (class 2 OG or C2OGs. METHODOLOGY/PRINCIPAL FINDINGS: We present 1823 representative (no gene duplications and 259 non-representative (at least one gene duplication rickettsial OGs. While the highly reductive (approximately 1.2 MB Rickettsia genomes range in predicted ORFs from 872 to 1512, a core of 752 OGs was identified, depicting the essential Rickettsia genes. Unsurprisingly, this core lacks many metabolic genes, reflecting the dependence on host resources for growth and survival. Additionally, we bolster our recent reclassification of Rickettsia by identifying OGs that define the AG (ancestral group, TG (typhus group, TRG (transitional group, and SFG (spotted fever group rickettsiae. OGs for insect-associated species, tick-associated species and species that harbor plasmids were also predicted. Through superimposition of all OGs over robust phylogeny estimation, we discern between C1OGs and C2OGs, the latter depicting genes either decaying from the conserved C1OGs or acquired laterally. Finally, scrutiny of non-representative OGs revealed high levels of split genes versus gene duplications, with both phenomena confounding gene orthology assignment. Interestingly, non-representative OGs, as well as OGs comprised of several gene families typically involved in microbial pathogenicity and/or the acquisition of virulence factors, fall predominantly within C2OG distributions. CONCLUSION/SIGNIFICANCE: Collectively, we determined the relative conservation and

  6. Temporal and Spatial Variations of Bacterial and Faunal Communities Associated with Deep-Sea Wood Falls

    Science.gov (United States)

    Bienhold, Christina; Wenzhöfer, Frank; Rossel, Pamela E.; Boetius, Antje

    2017-01-01

    Sinking of large organic food falls i.e. kelp, wood and whale carcasses to the oligotrophic deep-sea floor promotes the establishment of locally highly productive and diverse ecosystems, often with specifically adapted benthic communities. However, the fragmented spatial distribution and small area poses challenges for the dispersal of their microbial and faunal communities. Our study focused on the temporal dynamics and spatial distributions of sunken wood bacterial communities, which were deployed in the vicinity of different cold seeps in the Eastern Mediterranean and the Norwegian deep-seas. By combining fingerprinting of bacterial communities by ARISA and 454 sequencing with in situ and ex situ biogeochemical measurements, we show that sunken wood logs have a locally confined long-term impact (> 3y) on the sediment geochemistry and community structure. We confirm previous hypotheses of different successional stages in wood degradation including a sulphophilic one, attracting chemosynthetic fauna from nearby seep systems. Wood experiments deployed at similar water depths (1100–1700 m), but in hydrographically different oceanic regions harbored different wood-boring bivalves, opportunistic faunal communities, and chemosynthetic species. Similarly, bacterial communities on sunken wood logs were more similar within one geographic region than between different seas. Diverse sulphate-reducing bacteria of the Deltaproteobacteria, the sulphide-oxidizing bacteria Sulfurovum as well as members of the Acidimicrobiia and Bacteroidia dominated the wood falls in the Eastern Mediterranean, while Alphaproteobacteria and Flavobacteriia colonized the Norwegian Sea wood logs. Fauna and bacterial wood-associated communities changed between 1 to 3 years of immersion, with sulphate-reducers and sulphide-oxidizers increasing in proportion, and putative cellulose degraders decreasing with time. Only 6% of all bacterial genera, comprising the core community, were found at any time

  7. Temporal and Spatial Variations of Bacterial and Faunal Communities Associated with Deep-Sea Wood Falls.

    Directory of Open Access Journals (Sweden)

    Petra Pop Ristova

    Full Text Available Sinking of large organic food falls i.e. kelp, wood and whale carcasses to the oligotrophic deep-sea floor promotes the establishment of locally highly productive and diverse ecosystems, often with specifically adapted benthic communities. However, the fragmented spatial distribution and small area poses challenges for the dispersal of their microbial and faunal communities. Our study focused on the temporal dynamics and spatial distributions of sunken wood bacterial communities, which were deployed in the vicinity of different cold seeps in the Eastern Mediterranean and the Norwegian deep-seas. By combining fingerprinting of bacterial communities by ARISA and 454 sequencing with in situ and ex situ biogeochemical measurements, we show that sunken wood logs have a locally confined long-term impact (> 3y on the sediment geochemistry and community structure. We confirm previous hypotheses of different successional stages in wood degradation including a sulphophilic one, attracting chemosynthetic fauna from nearby seep systems. Wood experiments deployed at similar water depths (1100-1700 m, but in hydrographically different oceanic regions harbored different wood-boring bivalves, opportunistic faunal communities, and chemosynthetic species. Similarly, bacterial communities on sunken wood logs were more similar within one geographic region than between different seas. Diverse sulphate-reducing bacteria of the Deltaproteobacteria, the sulphide-oxidizing bacteria Sulfurovum as well as members of the Acidimicrobiia and Bacteroidia dominated the wood falls in the Eastern Mediterranean, while Alphaproteobacteria and Flavobacteriia colonized the Norwegian Sea wood logs. Fauna and bacterial wood-associated communities changed between 1 to 3 years of immersion, with sulphate-reducers and sulphide-oxidizers increasing in proportion, and putative cellulose degraders decreasing with time. Only 6% of all bacterial genera, comprising the core community, were

  8. Genome analysis coupled with physiological studies reveals a diverse nitrogen metabolism in Methylocystis sp. strain SC2.

    Directory of Open Access Journals (Sweden)

    Bomba Dam

    Full Text Available BACKGROUND: Methylocystis sp. strain SC2 can adapt to a wide range of methane concentrations. This is due to the presence of two isozymes of particulate methane monooxygenase exhibiting different methane oxidation kinetics. To gain insight into the underlying genetic information, its genome was sequenced and found to comprise a 3.77 Mb chromosome and two large plasmids. PRINCIPAL FINDINGS: We report important features of the strain SC2 genome. Its sequence is compared with those of seven other methanotroph genomes, comprising members of the Alphaproteobacteria, Gammaproteobacteria, and Verrucomicrobia. While the pan-genome of all eight methanotroph genomes totals 19,358 CDS, only 154 CDS are shared. The number of core genes increased with phylogenetic relatedness: 328 CDS for proteobacterial methanotrophs and 1,853 CDS for the three alphaproteobacterial Methylocystaceae members, Methylocystis sp. strain SC2 and strain Rockwell, and Methylosinus trichosporium OB3b. The comparative study was coupled with physiological experiments to verify that strain SC2 has diverse nitrogen metabolism capabilities. In correspondence to a full complement of 34 genes involved in N2 fixation, strain SC2 was found to grow with atmospheric N2 as the sole nitrogen source, preferably at low oxygen concentrations. Denitrification-mediated accumulation of 0.7 nmol (30N2/hr/mg dry weight of cells under anoxic conditions was detected by tracer analysis. N2 production is related to the activities of plasmid-borne nitric oxide and nitrous oxide reductases. CONCLUSIONS/PERSPECTIVES: Presence of a complete denitrification pathway in strain SC2, including the plasmid-encoded nosRZDFYX operon, is unique among known methanotrophs. However, the exact ecophysiological role of this pathway still needs to be elucidated. Detoxification of toxic nitrogen compounds and energy conservation under oxygen-limiting conditions are among the possible roles. Relevant features that may stimulate

  9. Culture dependent and independent analysis of bacterial communities associated with commercial salad leaf vegetables

    Science.gov (United States)

    2013-01-01

    Background Plants harbor a diverse bacterial community, both as epiphytes on the plant surface and as endophytes within plant tissue. While some plant-associated bacteria act as plant pathogens or promote plant growth, others may be human pathogens. The aim of the current study was to determine the bacterial community composition of organic and conventionally grown leafy salad vegetables at the point of consumption using both culture-dependent and culture-independent methods. Results Total culturable bacteria on salad vegetables ranged from 8.0 × 103 to 5.5 × 108 CFU g-1. The number of culturable endophytic bacteria from surface sterilized plants was significantly lower, ranging from 2.2 × 103 to 5.8 × 105 CFU g-1. Cultured isolates belonged to six major bacterial phyla, and included representatives of Pseudomonas, Pantoea, Chryseobacterium, and Flavobacterium. Eleven different phyla and subphyla were identified by culture-independent pyrosequencing, with Gammaproteobacteria, Betaproteobacteria, and Bacteroidetes being the most dominant lineages. Other bacterial lineages identified (e.g. Firmicutes, Alphaproteobacteria, Acidobacteria, and Actinobacteria) typically represented less than 1% of sequences obtained. At the genus level, sequences classified as Pseudomonas were identified in all samples and this was often the most prevalent genus. Ralstonia sequences made up a greater portion of the community in surface sterilized than non-surface sterilized samples, indicating that it was largely endophytic, while Acinetobacter sequences appeared to be primarily associated with the leaf surface. Analysis of molecular variance indicated there were no significant differences in bacterial community composition between organic versus conventionally grown, or surface-sterilized versus non-sterilized leaf vegetables. While culture-independent pyrosequencing identified significantly more bacterial taxa, the dominant taxa from pyrosequence data were also detected by

  10. A novel endo-hydrogenase activity recycles hydrogen produced by nitrogen fixation.

    Science.gov (United States)

    Ng, Gordon; Tom, Curtis G S; Park, Angela S; Zenad, Lounis; Ludwig, Robert A

    2009-01-01

    Nitrogen (N(2)) fixation also yields hydrogen (H(2)) at 1:1 stoichiometric amounts. In aerobic diazotrophic (able to grow on N(2) as sole N-source) bacteria, orthodox respiratory hupSL-encoded hydrogenase activity, associated with the cell membrane but facing the periplasm (exo-hydrogenase), has nevertheless been presumed responsible for recycling such endogenous hydrogen. As shown here, for Azorhizobium caulinodans diazotrophic cultures open to the atmosphere, exo-hydrogenase activity is of no consequence to hydrogen recycling. In a bioinformatic analysis, a novel seven-gene A. caulinodans hyq cluster encoding an integral-membrane, group-4, Ni,Fe-hydrogenase with homology to respiratory complex I (NADH: quinone dehydrogenase) was identified. By analogy, Hyq hydrogenase is also integral to the cell membrane, but its active site faces the cytoplasm (endo-hydrogenase). An A. caulinodans in-frame hyq operon deletion mutant, constructed by "crossover PCR", showed markedly decreased growth rates in diazotrophic cultures; normal growth was restored with added ammonium--as expected of an H(2)-recycling mutant phenotype. Using A. caulinodans hyq merodiploid strains expressing beta-glucuronidase as promoter-reporter, the hyq operon proved strongly and specifically induced in diazotrophic culture; as well, hyq operon induction required the NIFA transcriptional activator. Therefore, the hyq operon is constituent of the nif regulon. Representative of aerobic N(2)-fixing and H(2)-recycling alpha-proteobacteria, A. caulinodans possesses two respiratory Ni,Fe-hydrogenases: HupSL exo-hydrogenase activity drives exogenous H(2) respiration, and Hyq endo-hydrogenase activity recycles endogenous H(2), specifically that produced by N(2) fixation. To benefit human civilization, H(2) has generated considerable interest as potential renewable energy source as its makings are ubiquitous and its combustion yields no greenhouse gases. As such, the reversible, group-4 Ni,Fe-hydrogenases, such

  11. Impact of lowland rainforest transformation on diversity and composition of soil prokaryotic communities in Sumatra (Indonesia

    Directory of Open Access Journals (Sweden)

    Dominik eSchneider

    2015-12-01

    Full Text Available Prokaryotes are the most abundant and diverse group of microorganisms in soil and mediate virtually all biogeochemical cycles in terrestrial ecosystems. Thereby, they influence aboveground plant productivity and diversity. In this study, the impact of rainforest transformation to intensively managed cash crop systems on soil prokaryotic communities was investigated. The studied managed land use system comprised rubber agroforests (jungle rubber, rubber plantation and oil plantations within two Indonesian landscapes Bukit Duabelas and Harapan. Soil prokaryotic community composition and diversity were assessed by pyrotag sequencing of bacterial and archaeal 16S rRNA genes. The curated dataset contained 20,494 bacterial and 1,762 archaeal Operational Taxonomic Units at species level (97% genetic identity. Analysis revealed changes in indigenous taxon-specific patterns of soil prokaryotic communities accompanying lowland rainforest transformation to jungle rubber, and intensively managed rubber and oil palm plantations. Distinct clustering of the rainforest soil communities indicated that these are different from the communities in the studied managed land use systems. The predominant bacterial taxa in all investigated soils were Acidobacteria, Actinobacteria, Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria. Overall, the bacterial community shifted from proteobacterial groups in rainforest soils to Acidobacteria in managed soils. The archaeal soil communities were mainly represented by Thaumarchaeota and Euryarchaeota. Members of the Terrestrial Group and South African Gold Mine Group 1 (Thaumarchaeota dominated in the rainforest and members of Thermoplasmata in the managed land use systems. The alpha and beta diversity of the soil prokaryotic communities was higher in managed land use systems than in rainforest. In the case of bacteria, this was related to soil characteristics such as pH value, exchangeable Ca and Fe content, C to

  12. Colonization of overlaying water by bacteria from dry river sediments.

    Science.gov (United States)

    Fazi, Stefano; Amalfitano, Stefano; Piccini, Claudia; Zoppini, Annamaria; Puddu, Alberto; Pernthaler, Jakob

    2008-10-01

    We studied the diversity, community composition and activity of the primary microbial colonizers of the water above freshly re-wetted sediments from a temporary river. Dried sediments, collected from Mulargia River (Sardinia, Italy), were covered with sterile freshwater in triplicate microcosms, and changes of the planktonic microbial assemblage were monitored over a 48 h period. During the first 9 h bacterial abundance was low (1.5 x 10(4) cells ml(-1)); it increased to 3.4 x 10(6) cells ml(-1) after 28 h and did not change thereafter. Approximately 20% of bacteria exhibited DNA de novo synthesis already after 9 h of incubation. Changes of the ratios of (3)H-leucine to (3)H-thymidine incorporation rates indicated a shift of growth patterns during the experiment. Extracellular enzyme activity showed a maximum at 48 h with aminopeptidase activity (430.8 +/- 22.6 nmol MCA l(-1) h(-1)) significantly higher than alkaline phosphatase (98.6 +/- 4.3 nmol MUF l(-1) h(-1)). The primary microbial colonizers of the overlaying water - as determined by 16S rRNA gene sequence analysis - were related to at least six different phylogenetic lineages of Bacilli and to Alphaproteobacteria (Brevundimonas spp. and Caulobacter spp.). Large bacterial cells affiliated to one clade of Bacillus sp. were rare in the dried sediments, but constituted the majority of the planktonic microbial assemblage and of cells with detectable DNA-synthesis until 28 h after re-wetting. Their community contribution decreased in parallel with a rise of flagellated and ciliated protists. Estimates based on cell production rates suggested that the rapidly enriched Bacillus sp. suffered disproportionally high loss rates from selective predation, thus favouring the establishment of a more heterogenic assemblage of microbes (consisting of Proteobacteria, Actinobacteria and Cytophaga-Flavobacteria). Our results suggest that the primary microbial colonizers of the water above dried sediments are passively released

  13. Composted Cattle Manure Increases Microbial Activity and Soil Fertility More Than Composted Swine Manure in a Submerged Rice Paddy

    Directory of Open Access Journals (Sweden)

    Suvendu Das

    2017-09-01

    Full Text Available Livestock waste composts with minimum inorganic fertilizer as a soil amendment in low-input intensive farming are a feasible agricultural practice to improve soil fertility and productivity and to mitigate soil degradation. The key benefits of the practice rely on the activities of soil microorganisms. However, the role of different livestock composts [composted cattle manure (CCM vs. composted swine manure (CSM] on soil microbes, their activities and the overall impact on soil fertility and productivity in a flooded paddy remains elusive. This study compares the effectiveness of CCM and CSM amendment on bacterial communities, activities, nutrient availability, and crop yield in a flooded rice cropping system. We used deep 16S amplicon sequencing and soil enzyme activities to decipher bacterial communities and activities, respectively. Both CCM and CSM amendment significantly increased soil pH, nutrient availability (C, N, and P, microbial biomass, soil enzyme activities indicative for C and N cycles, aboveground plant biomass and grain yield. And the increase in above-mentioned parameters was more prominent in the CCM treatment compared to the CSM treatment. The CCM amendment increased species richness and stimulated copiotrophic microbial groups (Alphaproteobacteria, Betaproteobacteria, and Firmicutes which are often involved in degradation of complex organic compounds. Moreover, some dominant species (e.g., Azospirillum zeae, Azospirillum halopraeferens, Azospirillum rugosum, Clostridium alkalicellulosi, Clostridium caenicola, Clostridium termitidis, Clostridium cellulolyticum, Magnetospirillum magnetotacticum, Pleomorphomonas oryzae, Variovorax boronicumulans, Pseudomonas xanthomarina, Pseudomonas stutzeri, and Bacillus niacini which have key roles in plant growth promotion and/or lignocellulose degradation were enhanced under CCM treatment compared to CSM treatment. Multivariate analysis revealed that soil pH and available carbon (C and

  14. Evidence for Vertical Transmission of Bacterial Symbionts from Adult to Embryo in the Caribbean Sponge Svenzea zeai

    KAUST Repository

    Lee, O. O.

    2009-07-31

    The Caribbean reef sponge Svenzea zeai was previously found to contain substantial quantities of unicellular photosynthetic and autotrophic microbes in its tissues, but the identities of these symbionts and their method of transfer from adult to progeny are largely unknown. In this study, both a 16S rRNA gene-based fingerprinting technique (denaturing gradient gel electrophoresis [DGGE]) and clone library analysis were applied to compare the bacterial communities associated with adults and embryos of S. zeai to test the hypothesis of vertical transfer across generations. In addition, the same techniques were applied to the bacterial community from the seawater adjacent to adult sponges to test the hypothesis that water column bacteria could be transferred horizontally as sponge symbionts. Results of both DGGE and clone library analysis support the vertical transfer hypothesis in that the bacterial communities associated with sponge adults and embryos were highly similar to each other but completely different from those in the surrounding seawater. Sequencing of prominent DGGE bands and of clones from the libraries revealed that the bacterial communities associated with the sponge, whether adult or embryo, consisted of a large proportion of bacteria in the phyla Chloroflexi and Acidobacteria, while most of the sequences recovered from the community in the adjacent water column belonged to the class Alphaproteobacteria. Altogether, 21 monophyletic sequence clusters, comprising sequences from both sponge adults and embryos but not from the seawater, were identified. More than half of the sponge-derived sequences fell into these clusters. Comparison of sequences recovered in this study with those deposited in GenBank revealed that more than 75% of S. zeai-derived sequences were closely related to sequences derived from other sponge species, but none of the sequences recovered from the seawater column overlapped with those from adults or embryos of S. zeai. In

  15. IMG-ABC: A Knowledge Base To Fuel Discovery of Biosynthetic Gene Clusters and Novel Secondary Metabolites.

    Science.gov (United States)

    Hadjithomas, Michalis; Chen, I-Min Amy; Chu, Ken; Ratner, Anna; Palaniappan, Krishna; Szeto, Ernest; Huang, Jinghua; Reddy, T B K; Cimermančič, Peter; Fischbach, Michael A; Ivanova, Natalia N; Markowitz, Victor M; Kyrpides, Nikos C; Pati, Amrita

    2015-07-14

    In the discovery of secondary metabolites, analysis of sequence data is a promising exploration path that remains largely underutilized due to the lack of computational platforms that enable such a systematic approach on a large scale. In this work, we present IMG-ABC (https://img.jgi.doe.gov/abc), an atlas of biosynthetic gene clusters within the Integrated Microbial Genomes (IMG) system, which is aimed at harnessing the power of "big" genomic data for discovering small molecules. IMG-ABC relies on IMG's comprehensive integrated structural and functional genomic data for the analysis of biosynthetic gene clusters (BCs) and associated secondary metabolites (SMs). SMs and BCs serve as the two main classes of objects in IMG-ABC, each with a rich collection of attributes. A unique feature of IMG-ABC is the incorporation of both experimentally validated and computationally predicted BCs in genomes as well as metagenomes, thus identifying BCs in uncultured populations and rare taxa. We demonstrate the strength of IMG-ABC's focused integrated analysis tools in enabling the exploration of microbial secondary metabolism on a global scale, through the discovery of phenazine-producing clusters for the first time in Alphaproteobacteria. IMG-ABC strives to fill the long-existent void of resources for computational exploration of the secondary metabolism universe; its underlying scalable framework enables traversal of uncovered phylogenetic and chemical structure space, serving as a doorway to a new era in the discovery of novel molecules. IMG-ABC is the largest publicly available database of predicted and experimental biosynthetic gene clusters and the secondary metabolites they produce. The system also includes powerful search and analysis tools that are integrated with IMG's extensive genomic/metagenomic data and analysis tool kits. As new research on biosynthetic gene clusters and secondary metabolites is published and more genomes are sequenced, IMG-ABC will continue to

  16. Microbial community evolution during simulated managed aquifer recharge in response to different biodegradable dissolved organic carbon (BDOC) concentrations.

    Science.gov (United States)

    Li, Dong; Alidina, Mazahirali; Ouf, Mohamed; Sharp, Jonathan O; Saikaly, Pascal; Drewes, Jörg E

    2013-05-01

    This study investigates the evolution of the microbial community in laboratory-scale soil columns simulating the infiltration zone of managed aquifer recharge (MAR) systems and analogous natural aquifer sediment ecosystems. Parallel systems were supplemented with either moderate (1.1 mg/L) or low (0.5 mg/L) biodegradable dissolved organic carbon (BDOC) for a period of six months during which time, spatial (1 cm, 30 cm, 60 cm, 90 cm, and 120 cm) and temporal (monthly) analyses of sediment-associated microbial community structure were analyzed. Total microbial biomass associated with sediments was positively correlated with BDOC concentration where a significant decline in BDOC was observed along the column length. Analysis of 16S rRNA genes indicated dominance by Bacteria with Archaea comprising less than 1 percent of the total community. Proteobacteria was found to be the major phylum in samples from all column depths with contributions from Betaproteobacteria, Alphaproteobacteria and Gammaproteobacteria. Microbial community structure at all the phylum, class and genus levels differed significantly at 1 cm between columns receiving moderate and low BDOC concentrations; in contrast strong similarities were observed both between parallel column systems and across samples from 30 to 120 cm depths. Samples from 1 cm depth of the low BDOC columns exhibited higher microbial diversity (expressed as Shannon Index) than those at 1 cm of moderate BDOC columns, and both increased from 5.4 to 5.9 at 1 cm depth to 6.7-8.3 at 30-120 cm depths. The microbial community structure reached steady state after 3-4 months since the initiation of the experiment, which also resulted in an improved DOC removal during the same time period. This study suggested that BDOC could significantly influence microbial community structure regarding both composition and diversity of artificial MAR systems and analogous natural aquifer sediment ecosystems. Copyright © 2013 Elsevier Ltd

  17. Profundibacterium mesophilum gen. nov., sp. nov., a novel member in the family Rhodobacteraceae isolated from deep-sea sediment in the Red Sea, Saudi Arabia

    KAUST Repository

    Lai, PokYui

    2012-06-08

    A slow-growing, strictly aerobic, Gram-negative, coccus bacterial strain, designated KAUST100406-0324T, was isolated from sea-floor sediment collected from the Red Sea, Saudi Arabia. The catalase- and oxidase-positive strain was non-sporulating and only slightly halophilic. Optimum growth occurred at 20-25 °C and at pH values ranging from 7.0 to 8.0. The major cellular fatty acids of the strain were unsaturated C18: 1ω6c and/or C18:1ω7c, C18:1ω7c 11-methyl and C16:1ω7c and/or C16:1ω6c. The major polar lipids were phosphatidylglycerol, phosphatidylethanolamine and two unidentified phospholipids. Ubiquinone 10 was the predominant lipoquinone. The DNA G+C content of strain KAUST100406-0324T was 64.0 mol%. Phylogenetic analysis of 16S rRNA gene sequences revealed that the novel strain belonged to the family Rhodobacteraceae of the class Alphaproteobacteria but formed a distinct evolutionary lineage from other bacterial species with validly published names. The 16S rRNA gene sequence of the novel strain was distantly related, but formed a monophyletic cluster with, those of bacteria from two moderately halophilic genera, Hwanghaeicola and Maribius. The similarity of the sequence between the novel strain KAUST100406-0324T and the type strains Hwanghaeicola aestuarii Y26T (accession number FJ230842), Maribius pelagius B5-6T (DQ514326) and Maribius salinus CL-SP27T (AY906863) were 94.5 %, 95.2 % and 95.3 %, respectively. Based on the physiological, phylogenetic and chemotaxonomic characteristics presented in this study, we propose that this strain represents a novel species of a new genus in the family Rhodobacteraceae, for which the name of Profundibacterium mesophilum gen. nov., sp. nov. was proposed, with KAUST100406-0324T (= JCM 17872T = NRRL B-59665T) as the type strain. © 2013 IUMS.

  18. Pyrosequencing-based assessment of the bacteria diversity in surface and subsurface peat layers of a northern wetland, with focus on poorly studied phyla and candidate divisions.

    Science.gov (United States)

    Serkebaeva, Yulia M; Kim, Yongkyu; Liesack, Werner; Dedysh, Svetlana N

    2013-01-01

    Northern peatlands play a key role in the global carbon and water budget, but the bacterial diversity in these ecosystems remains poorly described. Here, we compared the bacterial community composition in the surface (0-5 cm depth) and subsurface (45-50 cm) peat layers of an acidic (pH 4.0) Sphagnum-dominated wetland, using pyrosequencing of 16S rRNA genes. The denoised sequences (37,229 reads, average length ∼430 bp) were affiliated with 27 bacterial phyla and corresponded to 1,269 operational taxonomic units (OTUs) determined at 97% sequence identity. Abundant OTUs were affiliated with the Acidobacteria (35.5±2.4% and 39.2±1.2% of all classified sequences in surface and subsurface peat, respectively), Alphaproteobacteria (15.9±1.7% and 25.8±1.4%), Actinobacteria (9.5±2.0% and 10.7±0.5%), Verrucomicrobia (8.5±1.4% and 0.6±0.2%), Planctomycetes (5.8±0.4% and 9.7±0.6%), Deltaproteobacteria (7.1±0.4% and 4.4%±0.3%), and Gammaproteobacteria (6.6±0.4% and 2.1±0.1%). The taxonomic patterns of the abundant OTUs were uniform across all the subsamples taken from each peat layer. In contrast, the taxonomic patterns of rare OTUs were different from those of the abundant OTUs and varied greatly among subsamples, in both surface and subsurface peat. In addition to the bacterial taxa listed above, rare OTUs represented the following groups: Armatimonadetes, Bacteroidetes, Chlamydia, Chloroflexi, Cyanobacteria, Elusimicrobia, Fibrobacteres, Firmicutes, Gemmatimonadetes, Spirochaetes, AD3, WS1, WS4, WS5, WYO, OD1, OP3, BRC1, TM6, TM7, WPS-2, and FCPU426. OTU richness was notably higher in the surface layer (882 OTUs) than in the anoxic subsurface peat (483 OTUs), with only 96 OTUs common to both data sets. Most members of poorly studied phyla, such as the Acidobacteria, Verrucomicrobia, Planctomycetes and the candidate division TM6, showed a clear preference for growth in either oxic or anoxic conditions. Apparently, the bacterial communities in surface and

  19. The rhizome of Reclinomonas americana, Homo sapiens, Pediculus humanus and Saccharomyces cerevisiae mitochondria

    Directory of Open Access Journals (Sweden)

    Raoult Didier

    2011-10-01

    Full Text Available Abstract Background Mitochondria are thought to have evolved from eubacteria-like endosymbionts; however, the origin of the mitochondrion remains a subject of debate. In this study, we investigated the phenomenon of chimerism in mitochondria to shed light on the origin of these organelles by determining which species played a role in their formation. We used the mitochondria of four distinct organisms, Reclinomonas americana, Homo sapiens, Saccharomyces cerevisiae and multichromosome Pediculus humanus, and attempted to identify the origin of each mitochondrial gene. Results Our results suggest that the origin of mitochondrial genes is not limited to the Rickettsiales and that the creation of these genes did not occur in a single event, but through multiple successive events. Some of these events are very old and were followed by events that are more recent and occurred through the addition of elements originating from current species. The points in time that the elements were added and the parental species of each gene in the mitochondrial genome are different to the individual species. These data constitute strong evidence that mitochondria do not have a single common ancestor but likely have numerous ancestors, including proto-Rickettsiales, proto-Rhizobiales and proto-Alphaproteobacteria, as well as current alphaproteobacterial species. The analysis of the multichromosome P. humanus mitochondrion supports this mechanism. Conclusions The most plausible scenario of the origin of the mitochondrion is that ancestors of Rickettsiales and Rhizobiales merged in a proto-eukaryotic cell approximately one billion years ago. The fusion of the Rickettsiales and Rhizobiales cells was followed by gene loss, genomic rearrangements and the addition of alphaproteobacterial elements through ancient and more recent recombination events. Each gene of each of the four studied mitochondria has a different origin, while in some cases, multichromosomes may allow for

  20. Disentangling the Taxonomy of Rickettsiales and Description of Two Novel Symbionts ("Candidatus Bealeia paramacronuclearis" and "Candidatus Fokinia cryptica") Sharing the Cytoplasm of the Ciliate Protist Paramecium biaurelia.

    Science.gov (United States)

    Szokoli, Franziska; Castelli, Michele; Sabaneyeva, Elena; Schrallhammer, Martina; Krenek, Sascha; Doak, Thomas G; Berendonk, Thomas U; Petroni, Giulio

    2016-12-15

    In the past 10 years, the number of endosymbionts described within the bacterial order Rickettsiales has constantly grown. Since 2006, 18 novel Rickettsiales genera inhabiting protists, such as ciliates and amoebae, have been described. In this work, we characterize two novel bacterial endosymbionts from Paramecium collected near Bloomington, IN. Both endosymbiotic species inhabit the cytoplasm of the same host. The Gram-negative bacterium "Candidatus Bealeia paramacronuclearis" occurs in clumps and is frequently associated with the host macronucleus. With its electron-dense cytoplasm and a distinct halo surrounding the cell, it is easily distinguishable from the second smaller symbiont, "Candidatus Fokinia cryptica," whose cytoplasm is electron lucid, lacks a halo, and is always surrounded by a symbiontophorous vacuole. For molecular characterization, the small-subunit rRNA genes were sequenced and used for taxonomic assignment as well as the design of species-specific oligonucleotide probes. Phylogenetic analyses revealed that "Candidatus Bealeia paramacronuclearis" clusters with the so-called "basal" Rickettsiales, and "Candidatus Fokinia cryptica" belongs to "Candidatus Midichloriaceae." We obtained tree topologies showing a separation of Rickettsiales into at least two groups: one represented by the families Rickettsiaceae, Anaplasmataceae, and "Candidatus Midichloriaceae" (RAM clade), and the other represented by "basal Rickettsiales," including "Candidatus Bealeia paramacronuclearis." Therefore, and in accordance with recent publications, we propose to limit the order Rickettsiales to the RAM clade and to raise "basal Rickettsiales" to an independent order, Holosporales ord. nov., inside Alphaproteobacteria, which presently includes four family-level clades. Additionally, we define the family "Candidatus Hepatincolaceae" and redefine the family Holosporaceae IMPORTANCE: In this paper, we provide the characterization of two novel bacterial symbionts

  1. Microbiome of Trichodesmium Colonies from the North Pacific Subtropical Gyre

    Directory of Open Access Journals (Sweden)

    Mary R. Gradoville

    2017-07-01

    Full Text Available Filamentous diazotrophic Cyanobacteria of the genus Trichodesmium, often found in colonial form, provide an important source of new nitrogen to tropical and subtropical marine ecosystems. Colonies are composed of several clades of Trichodesmium in association with a diverse community of bacterial and eukaryotic epibionts. We used high-throughput 16S rRNA and nifH gene sequencing, carbon (C and dinitrogen (N2 fixation assays, and metagenomics to describe the diversity and functional potential of the microbiome associated with Trichodesmium colonies collected from the North Pacific Subtropical Gyre (NPSG. The 16S rRNA and nifH gene sequences from hand-picked colonies were predominantly (>99% from Trichodesmium Clade I (i.e., T. thiebautii, which is phylogenetically and ecologically distinct from the Clade III IMS101 isolate used in most laboratory studies. The bacterial epibiont communities were dominated by Bacteroidetes, Alphaproteobacteria, and Gammaproteobacteria, including several taxa with a known preference for surface attachment, and were relatively depleted in the unicellular Cyanobacteria and small photoheterotrophic bacteria that dominate NPSG surface waters. Sequencing the nifH gene (encoding a subcomponent of the nitrogenase enzyme identified non-Trichodesmium diazotrophs that clustered predominantly among the Cluster III nifH sequence-types that includes putative anaerobic diazotrophs. Trichodesmium colonies may represent an important habitat for these Cluster III diazotrophs, which were relatively rare in the surrounding seawater. Sequence analyses of nifH gene transcripts revealed several cyanobacterial groups, including heterocystous Richelia, associated with the colonies. Both the 16S rRNA and nifH datasets indicated strong differences between Trichodesmium epibionts and picoplankton in the surrounding seawater, and also between the epibionts inhabiting Trichodesmium puff and tuft colony morphologies. Metagenomic and 16S r

  2. Ecophysiological Plasticity and Bacteriome Shift in the Seagrass Halophila stipulacea along a Depth Gradient in the Northern Red Sea.

    Science.gov (United States)

    Rotini, Alice; Mejia, Astrid Y; Costa, Rodrigo; Migliore, Luciana; Winters, Gidon

    2016-01-01

    Halophila stipulacea is a small tropical seagrass species. It is the dominant seagrass species in the Gulf of Aqaba (GoA; northern Red Sea), where it grows in both shallow and deep environments (1-50 m depth). Native to the Red Sea, Persian Gulf, and Indian Ocean, this species has invaded the Mediterranean and has recently established itself in the Caribbean Sea. Due to its invasive nature, there is growing interest to understand this species' capacity to adapt to new conditions, which might be attributed to its ability to thrive in a broad range of ecological niches. In this study, a multidisciplinary approach was used to depict variations in morphology, biochemistry (pigment and phenol content) and epiphytic bacterial communities along a depth gradient (4-28 m) in the GoA. Along this gradient, H. stipulacea increased leaf area and pigment contents (Chlorophyll a and b , total Carotenoids), while total phenol contents were mostly uniform. H. stipulacea displayed a well conserved core bacteriome, as assessed by 454-pyrosequencing of 16S rRNA gene reads amplified from metagenomic DNA. The core bacteriome aboveground (leaves) and belowground (roots and rhizomes), was composed of more than 100 Operational Taxonomic Units (OTUs) representing 63 and 52% of the total community in each plant compartment, respectively, with a high incidence of the classes Alphaproteobacteria , Gammaproteobacteria , and Deltaproteobacteria across all depths. Above and belowground communities were different and showed higher within-depth variability at the intermediate depths (9 and 18 m) than at the edges. Plant parts showed a clear influence in shaping the communities while depth showed a greater influence on the belowground communities. Overall, results highlighted a different ecological status of H. stipulacea at the edges of the gradient (4-28 m), where plants showed not only marked differences in morphology and biochemistry, but also the most distinct associated bacterial consortium

  3. Long-Term Warming Shifts the Composition of Bacterial Communities in the Phyllosphere of Galium album in a Permanent Grassland Field-Experiment

    Directory of Open Access Journals (Sweden)

    Ebru L. Aydogan

    2018-02-01

    Full Text Available Global warming is currently a much discussed topic with as yet largely unexplored consequences for agro-ecosystems. Little is known about the warming effect on the bacterial microbiota inhabiting the plant surface (phyllosphere, which can have a strong impact on plant growth and health, as well as on plant diseases and colonization by human pathogens. The aim of this study was to investigate the effect of moderate surface warming on the diversity and composition of the bacterial leaf microbiota of the herbaceous plant Galium album. Leaves were collected from four control and four surface warmed (+2°C plots located at the field site of the Environmental Monitoring and Climate Impact Research Station Linden in Germany over a 6-year period. Warming had no effect on the concentration of total number of cells attached to the leaf surface as counted by Sybr Green I staining after detachment, but changes in the diversity and phylogenetic composition of the bacterial leaf microbiota analyzed by bacterial 16S rRNA gene Illumina amplicon sequencing were observed. The bacterial phyllosphere microbiota were dominated by Proteobacteria, Bacteroidetes, and Actinobacteria. Warming caused a significant higher relative abundance of members of the Gammaproteobacteria, Actinobacteria, and Firmicutes, and a lower relative abundance of members of the Alphaproteobacteria and Bacteroidetes. Plant beneficial bacteria like Sphingomonas spp. and Rhizobium spp. occurred in significantly lower relative abundance in leaf samples of warmed plots. In contrast, several members of the Enterobacteriaceae, especially Enterobacter and Erwinia, and other potential plant or human pathogenic genera such as Acinetobacter and insect-associated Buchnera and Wolbachia spp. occurred in higher relative abundances in the phyllosphere samples from warmed plots. This study showed for the first time the long-term impact of moderate (+2°C surface warming on the phyllosphere microbiota on

  4. Evaluation of preservative efficacy in pharmaceutical products: the use of psychrotolerant, low-nutrient preferring microbes in challenge tests.

    Science.gov (United States)

    Charnock, C; Otterholt, E

    2012-10-01

    Preservative efficacy in medicines is typically investigated using challenge tests. In such tests, the product is artificially contaminated with a high concentration of standard bacterial and fungal test strains such as Pseudomonas aeruginosa and Candida albicans. The rate and extent of reductions in inoculum viability over a specified period forms the basis for acceptance/rejection of preservative efficacy. None of the strains named for inclusion in the challenge test outlined in the European Pharmacopoeia are associated with the contamination of high-quality water used in pharmaceutical production. Alpha- and Betaproteobacteria are easily the most common microbes in waters intended for pharmaceutical production. In addition, none of the standard test strain panel prefer low-nutrient, dilute conditions or grow at or around refrigeration temperatures. This is important because the water activity and nutrient content of medicines can vary greatly and medicines are often stored cold. We investigate the relevance of these factors when testing preservative efficacy by including other strains in challenge tests. Psychrotolerant, low-nutrient preferring strains (Beta- and Alphaproteobacteria and a yeast) were isolated from pristine waters. These were compared in challenge tests with C. albicans and P. aeruginosa using different storage temperatures. Pharmaceutical products differing widely in water-content, pH and preservative systems were included in the study. Regardless of the type of medicine tested C. albicans always showed superior survival characteristics to the yeast isolate (Cryptococcus terricola). One of the three screened bacterial strains (a Sphingomonas sp.) survived significantly better than P. aeruginosa in all but one product tested. However, the results for all products taken together cannot easily be explained by reference to this strain's psychrotolerancy or its preference for dilute, low-nutrient environments. This study supports previous work

  5. Comparisons of Soil Properties, Enzyme Activities and Microbial Communities in Heavy Metal Contaminated Bulk and Rhizosphere Soils of Robinia pseudoacacia L. in the Northern Foot of Qinling Mountain

    Directory of Open Access Journals (Sweden)

    Yurong Yang

    2017-11-01

    Full Text Available The toxic effects of heavy metal (HM contamination on plant metabolism and soil microorganisms have been emphasized recently; however, little is known about the differences in soil physical, chemical, and biological properties between bulk and rhizosphere soils contaminated with HMs in forest ecosystem. The present study was conducted to evaluate the rhizosphere effect on soil properties, enzyme activities and bacterial communities associated with Robinia pseudoacacia L. along a HM contamination gradient. Soil organic matter (SOM, available nitrogen (AN and phosphorus (AP contents were significantly higher in rhizosphere soil than those in bulk soil at HM contaminated sites (p < 0.05. Compared to bulk soil, activities of four soil enzymes indicative of C cycle (β-glucosidase, N cycle (protease, urease and P cycle (alkaline phosphatase in rhizosphere soil across all study sites increased by 47.5%, 64.1%, 52.9% and 103.8%, respectively. Quantitative PCR (qPCR and restriction fragment length polymorphism (RFLP were used to determine the relative abundance, composition and diversity of bacteria in both bulk and rhizosphere soils, respectively. The copy number of bacterial 16S rRNA gene in bulk soil was significantly lower than that in rhizosphere soil (p < 0.05, and it had significantly negative correlations with total/DTPA-extractable Pb concentrations (p < 0.01. Alphaproteobacteria, Gammaproteobacteria and Firmicutes were the most dominant groups of bacteria at different study sites. The bacterial diversity index of Species richness (S and Margalef (dMa were significantly higher in rhizosphere soil compared with those in bulk soil, although no difference could be found in Simpson index (D between bulk and rhizosphere soils (p > 0.05. Redundancy analysis (RDA results showed that soil pH, EC, SOM and total/DTPA-extractable Pb concentrations were the most important variables affecting relative abundance, composition and diversity of bacteria (p < 0

  6. Evolution of microbial communities during electrokinetic treatment of antibiotic-polluted soil.

    Science.gov (United States)

    Li, Hongna; Li, Binxu; Zhang, Zhiguo; Zhu, Changxiong; Tian, Yunlong; Ye, Jing

    2018-02-01

    The evolution of microbial communities during the electrokinetic treatment of antibiotic-polluted soil (EKA) was investigated with chlortetracycline (CTC), oxytetracycline (OTC) and tetracycline (TC) as template antibiotics. The total population of soil microorganisms was less affected during the electrokinetic process, while living anti-CTC, anti-OTC, anti-TC and anti-MIX bacteria were inactivated by 10.48%, 31.37%, 34.76%, and 22.08%, respectively, during the 7-day treatment compared with antibiotic-polluted soil without an electric field (NOE). Accordingly, samples with NOE treatment showed a higher Shannon index than those with EKA treatment, indicating a reduction of the microbial community diversity after electrokinetic processes. The major taxonomic phyla found in the samples of EKA and NOE treatment were Proteobacteria, Bacteroidetes, Firmicutes and Actinobacteria. And the distribution of Actinobacteria, Cyanobacteria, and Chloroflexi was greatly decreased compared with blank soil. In the phylum Proteobacteria, the abundance of Alphaproteobacteria was greatly reduced in the soils supplemented with antibiotics (from 13.40% in blank soil to 6.43-10.16% after treatment); while Betaproteobacteria and Deltaproteobacteria showed a different trend with their abundance increased compared to blank soil, and Gammaproteobacteria remained unchanged for all treatments (2.36-2.78%). The varied trends for different classes indicated that the major bacterial groups changed with the treatments due to their different adaptability to the antibiotics as well as to the electric field. SulI being an exception, the reduction ratio of the observed antibiotic resistance genes (ARGs) including tetC, tetG, tetW, tetM, intI1, and sulII in the 0-2cm soil sampled with EKA versus NOE treatment reached 55.17%, 3.59%, 99.26%, 89.51%, 30.40%, and 27.92%, respectively. Finally, correlation analysis was conducted between antibiotic-resistant bacteria, ARGs and taxonomic bacterial classes. It

  7. Methyloferula stellata gen. nov., sp. nov., an acidophilic, obligately methanotrophic bacterium that possesses only a soluble methane monooxygenase.

    Science.gov (United States)

    Vorobev, Alexey V; Baani, Mohamed; Doronina, Nina V; Brady, Allyson L; Liesack, Werner; Dunfield, Peter F; Dedysh, Svetlana N

    2011-10-01

    Two strains of aerobic methanotrophic bacteria, AR4(T) and SOP9, were isolated from acidic (pH 3.8-4.0) Sphagnum peat bogs in Russia. Another phenotypically similar isolate, strain LAY, was obtained from an acidic (pH 4.0) forest soil in Germany. Cells of these strains were Gram-negative, non-pigmented, non-motile, thin rods that multiplied by irregular cell division and formed rosettes or amorphous cell conglomerates. Similar to Methylocella species, strains AR4(T), SOP9 and LAY possessed only a soluble form of methane monooxygenase (sMMO) and lacked intracytoplasmic membranes. Growth occurred only on methane and methanol; the latter was the preferred growth substrate. mRNA transcripts of sMMO were detectable in cells when either methane or both methane and methanol were available. Carbon was assimilated via the serine and ribulose-bisphosphate (RuBP) pathways; nitrogen was fixed via an oxygen-sensitive nitrogenase. Strains AR4(T), SOP9 and LAY were moderately acidophilic, mesophilic organisms capable of growth between pH 3.5 and 7.2 (optimum pH 4.8-5.2) and at 4-33 °C (optimum 20-23 °C). The major cellular fatty acid was 18 : 1ω7c and the quinone was Q-10. The DNA G+C content was 55.6-57.5 mol%. The isolates belonged to the family Beijerinckiaceae of the class Alphaproteobacteria and were most closely related to the sMMO-possessing methanotrophs of the genus Methylocella (96.4-97.0 % 16S rRNA gene sequence similarity), particulate MMO (pMMO)-possessing methanotrophs of the genus Methylocapsa (96.1-97.0 %), facultative methylotrophs of the genus Methylovirgula (96.1-96.3 %) and non-methanotrophic organotrophs of the genus Beijerinckia (96.5-97.0 %). Phenotypically, strains AR4(T), SOP9 and LAY were most similar to Methylocella species, but differed from members of this genus by cell morphology, greater tolerance of low pH, detectable activities of RuBP pathway enzymes and inability to grow on multicarbon compounds. Therefore, we propose a novel

  8. Disentangling the Taxonomy of Rickettsiales and Description of Two Novel Symbionts (“Candidatus Bealeia paramacronuclearis” and “Candidatus Fokinia cryptica”) Sharing the Cytoplasm of the Ciliate Protist Paramecium biaurelia

    Science.gov (United States)

    Szokoli, Franziska; Castelli, Michele; Sabaneyeva, Elena; Schrallhammer, Martina; Krenek, Sascha; Doak, Thomas G.; Berendonk, Thomas U.

    2016-01-01

    ABSTRACT In the past 10 years, the number of endosymbionts described within the bacterial order Rickettsiales has constantly grown. Since 2006, 18 novel Rickettsiales genera inhabiting protists, such as ciliates and amoebae, have been described. In this work, we characterize two novel bacterial endosymbionts from Paramecium collected near Bloomington, IN. Both endosymbiotic species inhabit the cytoplasm of the same host. The Gram-negative bacterium “Candidatus Bealeia paramacronuclearis” occurs in clumps and is frequently associated with the host macronucleus. With its electron-dense cytoplasm and a distinct halo surrounding the cell, it is easily distinguishable from the second smaller symbiont, “Candidatus Fokinia cryptica,” whose cytoplasm is electron lucid, lacks a halo, and is always surrounded by a symbiontophorous vacuole. For molecular characterization, the small-subunit rRNA genes were sequenced and used for taxonomic assignment as well as the design of species-specific oligonucleotide probes. Phylogenetic analyses revealed that “Candidatus Bealeia paramacronuclearis” clusters with the so-called “basal” Rickettsiales, and “Candidatus Fokinia cryptica” belongs to “Candidatus Midichloriaceae.” We obtained tree topologies showing a separation of Rickettsiales into at least two groups: one represented by the families Rickettsiaceae, Anaplasmataceae, and “Candidatus Midichloriaceae” (RAM clade), and the other represented by “basal Rickettsiales,” including “Candidatus Bealeia paramacronuclearis.” Therefore, and in accordance with recent publications, we propose to limit the order Rickettsiales to the RAM clade and to raise “basal Rickettsiales” to an independent order, Holosporales ord. nov., inside Alphaproteobacteria, which presently includes four family-level clades. Additionally, we define the family “Candidatus Hepatincolaceae” and redefine the family Holosporaceae. IMPORTANCE In this paper, we provide the

  9. Sedimentological imprint on subseafloor microbial communities in Western Mediterranean Sea Quaternary sediments

    Science.gov (United States)

    Ciobanu, M.-C.; Rabineau, M.; Droz, L.; Révillon, S.; Ghiglione, J.-F.; Dennielou, B.; Jorry, S.-J.; Kallmeyer, J.; Etoubleau, J.; Pignet, P.; Crassous, P.; Vandenabeele-Trambouze, O.; Laugier, J.; Guégan, M.; Godfroy, A.; Alain, K.

    2012-09-01

    An interdisciplinary study was conducted to evaluate the relationship between geological and paleoenvironmental parameters and the bacterial and archaeal community structure of two contrasting subseafloor sites in the Western Mediterranean Sea (Ligurian Sea and Gulf of Lion). Both depositional environments in this area are well-documented from paleoclimatic and paleooceanographic point of views. Available data sets allowed us to calibrate the investigated cores with reference and dated cores previously collected in the same area, and notably correlated to Quaternary climate variations. DNA-based fingerprints showed that the archaeal diversity was composed by one group, Miscellaneous Crenarchaeotic Group (MCG), within the Gulf of Lion sediments and of nine different lineages (dominated by MCG, South African Gold Mine Euryarchaeotal Group (SAGMEG) and Halobacteria) within the Ligurian Sea sediments. Bacterial molecular diversity at both sites revealed mostly the presence of the classes Alphaproteobacteria, Betaproteobacteria and Gammaproteobacteria within Proteobacteria phylum, and also members of Bacteroidetes phylum. The second most abundant lineages were Actinobacteria and Firmicutes at the Gulf of Lion site and Chloroflexi at the Ligurian Sea site. Various substrates and cultivation conditions allowed us to isolate 75 strains belonging to four lineages: Alpha-, Gammaproteobacteria, Firmicutes and Actinobacteria. In molecular surveys, the Betaproteobacteria group was consistently detected in the Ligurian Sea sediments, characterized by a heterolithic facies with numerous turbidites from a deep-sea levee. Analysis of relative betaproteobacterial abundances and turbidite frequency suggested that the microbial diversity was a result of main climatic changes occurring during the last 20 ka. Statistical direct multivariate canonical correspondence analyses (CCA) showed that the availability of electron acceptors and the quality of electron donors (indicated by age

  10. Prevalence of Bartonella spp. by culture, PCR and serology, in veterinary personnel from Spain

    Directory of Open Access Journals (Sweden)

    José A. Oteo

    2017-11-01

    Full Text Available Abstract Background The genus Bartonella includes fastidious, facultative intracellular bacteria mainly transmitted by arthropods and distributed among mammalian reservoirs. Bartonella spp. implicated as etiological agents of zoonoses are increasing. Apart from the classical Bartonella henselae, B. bacilliformis or B. quintana, other species (B. elizabethae, B. rochalimae, B. vinsonii arupensis and B. v. berkhoffii, B. tamiae or B. koehlerae, among others have also been associated with human and/or animal diseases. Laboratory techniques for diagnosis (culture, PCR assays and serology usually show lack of sensitivity. Since 2005, a method based on a liquid enrichment Bartonella alphaproteobacteria growth medium (BAPGM followed by PCRs for the amplification of Bartonella spp. has been developed. We aimed to assess culture, molecular and serological prevalence of Bartonella infections in companion animal veterinary personnel from Spain. Methods Each of 89 participants completed a questionnaire. Immunofluorescence assays (IFA using B. vinsonii berkhoffii (genotypes I, II and III, B. henselae, B. quintana and B. koehlerae as antigens were performed. A cut-off of 1:64 was selected as a seroreactivity titer. Blood samples were inoculated into BAPGM and subcultured onto blood agar plates. Bartonella spp. was detected using conventional and quantitative real-time PCR assays and DNA sequencing. Results Among antigens corresponding to six Bartonella spp. or genotypes, the lowest seroreactivity was found against B. quintana (11.2% and the highest, against B. v. berkhoffii genotype III (56%. A total of 27% of 89 individuals were not seroreactive to any test antigen. Bartonella spp. IFA seroreactivity was not associated with any clinical sign or symptom. DNA from Bartonella spp., including B. henselae (n = 2, B. v. berkhoffii genotypes I (n = 1 and III (n = 2, and B. quintana (n = 2 was detected in 7/89 veterinary personnel. PCR and DNA sequencing

  11. Environmental transcriptome analysis reveals physiological differences between biofilm and planktonic modes of life of the iron oxidizing bacteria Leptospirillum spp. in their natural microbial community

    Directory of Open Access Journals (Sweden)

    Parro Víctor

    2010-06-01

    acidophilic filaments are dynamic structures in which different mechanisms for biofilm formation/dispersion are operating. Specific transcriptomic fingerprints can be inferred for both planktonic and sessile cells, having the former a more active TCA cycle, while the mixed acid fermentation process dominate in the latter. The excretion of acetate may play a relevant ecological role as a source of electron donor for heterotrophic Fe3+ reducers like some Alphaproteobacteria, Acidobacterium spp. and Sulfobacillus spp., also present in the biofilm. Additionally, acetate may have a negative effect on bioleaching by inhibiting the growth of chemolithotrophic bacteria.

  12. Urban Transit System Microbial Communities Differ by Surface Type and Interaction with Humans and the Environment.

    Science.gov (United States)

    Hsu, Tiffany; Joice, Regina; Vallarino, Jose; Abu-Ali, Galeb; Hartmann, Erica M; Shafquat, Afrah; DuLong, Casey; Baranowski, Catherine; Gevers, Dirk; Green, Jessica L; Morgan, Xochitl C; Spengler, John D; Huttenhower, Curtis

    2016-01-01

    Public transit systems are ideal for studying the urban microbiome and interindividual community transfer. In this study, we used 16S amplicon and shotgun metagenomic sequencing to profile microbial communities on multiple transit surfaces across train lines and stations in the Boston metropolitan transit system. The greatest determinant of microbial community structure was the transit surface type. In contrast, little variation was observed between geographically distinct train lines and stations serving different demographics. All surfaces were dominated by human skin and oral commensals such as Propionibacterium , Corynebacterium , Staphylococcus , and Streptococcus . The detected taxa not associated with humans included generalists from alphaproteobacteria, which were especially abundant on outdoor touchscreens. Shotgun metagenomics further identified viral and eukaryotic microbes, including Propionibacterium phage and Malassezia globosa . Functional profiling showed that Propionibacterium acnes pathways such as propionate production and porphyrin synthesis were enriched on train holding surfaces (holds), while electron transport chain components for aerobic respiration were enriched on touchscreens and seats. Lastly, the transit environment was not found to be a reservoir of antimicrobial resistance and virulence genes. Our results suggest that microbial communities on transit surfaces are maintained from a metapopulation of human skin commensals and environmental generalists, with enrichments corresponding to local interactions with the human body and environmental exposures. IMPORTANCE Mass transit environments, specifically, urban subways, are distinct microbial environments with high occupant densities, diversities, and turnovers, and they are thus especially relevant to public health. Despite this, only three culture-independent subway studies have been performed, all since 2013 and all with widely differing designs and conclusions. In this study, we

  13. Environmental transcriptome analysis reveals physiological differences between biofilm and planktonic modes of life of the iron oxidizing bacteria Leptospirillum spp. in their natural microbial community.

    Science.gov (United States)

    Moreno-Paz, Mercedes; Gómez, Manuel J; Arcas, Aida; Parro, Víctor

    2010-06-24

    in which different mechanisms for biofilm formation/dispersion are operating. Specific transcriptomic fingerprints can be inferred for both planktonic and sessile cells, having the former a more active TCA cycle, while the mixed acid fermentation process dominate in the latter. The excretion of acetate may play a relevant ecological role as a source of electron donor for heterotrophic Fe3+ reducers like some Alphaproteobacteria, Acidobacterium spp. and Sulfobacillus spp., also present in the biofilm. Additionally, acetate may have a negative effect on bioleaching by inhibiting the growth of chemolithotrophic bacteria.

  14. Biofilm Composition and Threshold Concentration for Growth of Legionella pneumophila on Surfaces Exposed to Flowing Warm Tap Water without Disinfectant.

    Science.gov (United States)

    van der Kooij, Dick; Bakker, Geo L; Italiaander, Ronald; Veenendaal, Harm R; Wullings, Bart A

    2017-03-01

    Legionella pneumophila in potable water installations poses a potential health risk, but quantitative information about its replication in biofilms in relation to water quality is scarce. Therefore, biofilm formation on the surfaces of glass and chlorinated polyvinyl chloride (CPVC) in contact with tap water at 34 to 39°C was investigated under controlled hydraulic conditions in a model system inoculated with biofilm-grown L. pneumophila The biofilm on glass (average steady-state concentration, 23 ± 9 pg ATP cm -2 ) exposed to treated aerobic groundwater (0.3 mg C liter -1 ; 1 μg assimilable organic carbon [AOC] liter -1 ) did not support growth of the organism, which also disappeared from the biofilm on CPVC (49 ± 9 pg ATP cm -2 ) after initial growth. L. pneumophila attained a level of 4.3 log CFU cm -2 in the biofilms on glass (1,055 ± 225 pg ATP cm -2 ) and CPVC (2,755 ± 460 pg ATP cm -2 ) exposed to treated anaerobic groundwater (7.9 mg C liter -1 ; 10 μg AOC liter -1 ). An elevated biofilm concentration and growth of L. pneumophila were also observed with tap water from the laboratory. The Betaproteobacteria Piscinibacter and Methyloversatilis and amoeba-resisting Alphaproteobacteria predominated in the clones and isolates retrieved from the biofilms. In the biofilms, the Legionella colony count correlated significantly with the total cell count (TCC), heterotrophic plate count, ATP concentration, and presence of Vermamoeba vermiformis This amoeba was rarely detected at biofilm concentrations of water-associated disease outbreaks reported in the United States. The organism proliferates in biofilms on surfaces exposed to warm water in engineered freshwater installations. An investigation with a test system supplied with different types of warm drinking water without disinfectant under controlled hydraulic conditions showed that treated aerobic groundwater (0.3 mg liter -1 of organic carbon) induced a low biofilm concentration that supported no or very

  15. Metagenomics insights into Cr(VI effects on structural and functional diversity of bacterial community in chromite mine soils of Sukinda Valley, Odisha

    Directory of Open Access Journals (Sweden)

    Sukanta Kumar Pradhan

    2017-12-01

    Full Text Available Soil contamination with heavy metal like chromium is a wide-spread environmental problem in mining and its periphery areas causing hazard to the plant, animal and human. Bacterial communities which resist the toxic effect of Cr(VI can only survive under this hostile condition. In the study assessment of structural diversity of bacterial communities from four different locations of chromite mines area of Sukinda, Odisha (India were carried out with 16S rRNA amplicon sequencing of V3 regions using illuminaMiSeq and functional diversity analysis from in situ mining site with whole genome metagenomics using illuminaHiSeq. The taxonomic classification was carried out through QIIME program. The samples differed from each other, both in terms of level of contamination and soil characteristics. The variations in pH were small (6.67-7.32 between the mine soils from in situ and overburden sites in comparison to forest soil (5.08. The forest soil contains higher amount of available N and K as well as organic carbon as compared to both the mine soils. Heavy metals like Fe, Cr, Ni, and Cd have been detected in higher concentrations in in situ sites than both overburden and forest soil samples. Whereas concentration of other heavy metals like Co and Mn is high in overburden than in situ and forest soil. In spite of the differences between the samples, they shared many common operational taxonomic units (OTUs and it was possible to delineate the core microbiome of the soil samples. In general, Actinobacteria were the most dominant phyla with abundance of Deltaproteobacteria, Alphaproteobacteria, and Gammaproteobacteria within the soils. Certain bacterial genera like Acinetobacter, Pseudomonas, Lactobacillus, Bacillus, Clostridium and Corynebacterium were found to be predominant in in situ mining sites, whereas genera like Nitrospira, DA101, JG37-AG-70 and Nitrospira and DA101 were found to be abundant in overburden and forest soil respectively. In in situ soil

  16. Salt Marsh Bacterial Communities before and after the Deepwater Horizon Oil Spill.

    Science.gov (United States)

    Engel, Annette Summers; Liu, Chang; Paterson, Audrey T; Anderson, Laurie C; Turner, R Eugene; Overton, Edward B

    2017-10-15

    Coastal salt marshes along the northern Gulf of Mexico shoreline received varied types and amounts of weathered oil residues after the 2010 Deepwater Horizon oil spill. At the time, predicting how marsh bacterial communities would respond and/or recover to oiling and other environmental stressors was difficult because baseline information on community composition and dynamics was generally unavailable. Here, we evaluated marsh vegetation, physicochemistry, flooding frequency, hydrocarbon chemistry, and subtidal sediment bacterial communities from 16S rRNA gene surveys at 11 sites in southern Louisiana before the oil spill and resampled the same marshes three to four times over 38 months after the spill. Calculated hydrocarbon biomarker indices indicated that oil replaced native natural organic matter (NOM) originating from Spartina alterniflora and marine phytoplankton in the marshes between May 2010 and September 2010. At all the studied marshes, the major class- and order-level shifts among the phyla Proteobacteria , Firmicutes , Bacteroidetes , and Actinobacteria occurred within these first 4 months, but another community shift occurred at the time of peak oiling in 2011. Two years later, hydrocarbon levels decreased and bacterial communities became more diverse, being dominated by Alphaproteobacteria ( Rhizobiales ), Chloroflexi ( Dehalococcoidia ), and Planctomycetes Compositional changes through time could be explained by NOM source differences, perhaps due to vegetation changes, as well as marsh flooding and salinity excursions linked to freshwater diversions. These findings indicate that persistent hydrocarbon exposure alone did not explain long-term community shifts. IMPORTANCE Significant deterioration of coastal salt marshes in Louisiana has been linked to natural and anthropogenic stressors that can adversely affect how ecosystems function. Although microorganisms carry out and regulate most biogeochemical reactions, the diversity of bacterial

  17. Characterization of atmospheric bioaerosols along the transport pathway of Asian dust during the Dust-Bioaerosol 2016 Campaign

    Science.gov (United States)

    Tang, Kai; Huang, Zhongwei; Huang, Jianping; Maki, Teruya; Zhang, Shuang; Shimizu, Atsushi; Ma, Xiaojun; Shi, Jinsen; Bi, Jianrong; Zhou, Tian; Wang, Guoyin; Zhang, Lei

    2018-05-01

    Previous studies have shown that bioaerosols are injected into the atmosphere during dust events. These bioaerosols may affect leeward ecosystems, human health, and agricultural productivity and may even induce climate change. However, bioaerosol dynamics have rarely been investigated along the transport pathway of Asian dust, especially in China where dust events affect huge areas and massive numbers of people. Given this situation, the Dust-Bioaerosol (DuBi) Campaign was carried out over northern China, and the effects of dust events on the amount and diversity of bioaerosols were investigated. The results indicate that the number of bacteria showed remarkable increases during the dust events, and the diversity of the bacterial communities also increased significantly, as determined by means of microscopic observations with 4,6-diamidino-2-phenylindole (DAPI) staining and MiSeq sequencing analysis. These results indicate that dust clouds can carry many bacteria of various types into downwind regions and may have potentially important impacts on ecological environments and climate change. The abundances of DAPI-stained bacteria in the dust samples were 1 to 2 orders of magnitude greater than those in the non-dust samples and reached 105-106 particles m-3. Moreover, the concentration ratios of DAPI-stained bacteria to yellow fluorescent particles increased from 5.1 % ± 6.3 % (non-dust samples) to 9.8 % ± 6.3 % (dust samples). A beta diversity analysis of the bacterial communities demonstrated the distinct clustering of separate prokaryotic communities in the dust and non-dust samples. Actinobacteria, Bacteroidetes, and Proteobacteria remained the dominant phyla in all samples. As for Erenhot, the relative abundances of Acidobacteria and Chloroflexi had a remarkable rise in dust events. In contrast, the relative abundances of Acidobacteria and Chloroflexi in non-dust samples of R-DzToUb were greater than those in dust samples. Alphaproteobacteria made the major

  18. Anaerobic decomposition of switchgrass by tropical soil-derived feedstock-adapted consortia.

    Science.gov (United States)

    DeAngelis, Kristen M; Fortney, Julian L; Borglin, Sharon; Silver, Whendee L; Simmons, Blake A; Hazen, Terry C

    2012-01-01

    Tropical forest soils decompose litter rapidly with frequent episodes of anoxic conditions, making it likely that bacteria using alternate terminal electron acceptors (TEAs) play a large role in decomposition. This makes these soils useful templates for improving biofuel production. To investigate how TEAs affect decomposition, we cultivated feedstock-adapted consortia (FACs) derived from two tropical forest soils collected from the ends of a rainfall gradient: organic matter-rich tropical cloud forest (CF) soils, which experience sustained low redox, and iron-rich tropical rain forest (RF) soils, which experience rapidly fluctuating redox. Communities were anaerobically passed through three transfers of 10 weeks each with switchgrass as a sole carbon (C) source; FACs were then amended with nitrate, sulfate, or iron oxide. C mineralization and cellulase activities were higher in CF-FACs than in RF-FACs. Pyrosequencing of the small-subunit rRNA revealed members of the Firmicutes, Bacteroidetes, and Alphaproteobacteria as dominant. RF- and CF-FAC communities were not different in microbial diversity or biomass. The RF-FACs, derived from fluctuating redox soils, were the most responsive to the addition of TEAs, while the CF-FACs were overall more efficient and productive, both on a per-gram switchgrass and a per-cell biomass basis. These results suggest that decomposing microbial communities in fluctuating redox environments are adapted to the presence of a diversity of TEAs and ready to take advantage of them. More importantly, these data highlight the role of local environmental conditions in shaping microbial community function that may be separate from phylogenetic structure. After multiple transfers, we established microbial consortia derived from two tropical forest soils with different native redox conditions. Communities derived from the rapidly fluctuating redox environment maintained a capacity to use added terminal electron acceptors (TEAs) after multiple

  19. Wholly Rickettsia! Reconstructed Metabolic Profile of the Quintessential Bacterial Parasite of Eukaryotic Cells.

    Science.gov (United States)

    Driscoll, Timothy P; Verhoeve, Victoria I; Guillotte, Mark L; Lehman, Stephanie S; Rennoll, Sherri A; Beier-Sexton, Magda; Rahman, M Sayeedur; Azad, Abdu F; Gillespie, Joseph J

    2017-09-26

    Reductive genome evolution has purged many metabolic pathways from obligate intracellular Rickettsia ( Alphaproteobacteria ; Rickettsiaceae ). While some aspects of host-dependent rickettsial metabolism have been characterized, the array of host-acquired metabolites and their cognate transporters remains unknown. This dearth of information has thwarted efforts to obtain an axenic Rickettsia culture, a major impediment to conventional genetic approaches. Using phylogenomics and computational pathway analysis, we reconstructed the Rickettsia metabolic and transport network, identifying 51 host-acquired metabolites (only 21 previously characterized) needed to compensate for degraded biosynthesis pathways. In the absence of glycolysis and the pentose phosphate pathway, cell envelope glycoconjugates are synthesized from three imported host sugars, with a range of additional host-acquired metabolites fueling the tricarboxylic acid cycle. Fatty acid and glycerophospholipid pathways also initiate from host precursors, and import of both isoprenes and terpenoids is required for the synthesis of ubiquinone and the lipid carrier of lipid I and O-antigen. Unlike metabolite-provisioning bacterial symbionts of arthropods, rickettsiae cannot synthesize B vitamins or most other cofactors, accentuating their parasitic nature. Six biosynthesis pathways contain holes (missing enzymes); similar patterns in taxonomically diverse bacteria suggest alternative enzymes that await discovery. A paucity of characterized and predicted transporters emphasizes the knowledge gap concerning how rickettsiae import host metabolites, some of which are large and not known to be transported by bacteria. Collectively, our reconstructed metabolic network offers clues to how rickettsiae hijack host metabolic pathways. This blueprint for growth determinants is an important step toward the design of axenic media to rescue rickettsiae from the eukaryotic cell. IMPORTANCE A hallmark of obligate intracellular

  20. Insight into biogeochemical inputs and composition of Greenland Ice Sheet surface snow and glacial forefield river catchment environments.

    Science.gov (United States)

    Cameron, Karen; Hagedorn, Birgit; Dieser, Markus; Christner, Brent; Choquette, Kyla; Sletten, Ronald; Lui, Lu; Junge, Karen

    2014-05-01

    The volume of freshwater transported from Greenland to surrounding marine waters has tended to increase annually over the past four decades as a result of warmer surface air temperatures (Bamber et al 2012, Hanna et al 2008). Ice sheet run off is estimated to make up approximately of third of this volume (Bamber et al 2012). However, the biogeochemical composition and seeding sources of the Greenland Ice Sheet supraglacial landscape is largely unknown. In this study, the structure and diversity of surface snow microbial assemblages from two regions of the western Greenland Ice Sheet ice-margin was investigated through the sequencing of small subunit rRNA genes. Furthermore, the origins of microbiota were investigated by examining correlations to molecular data obtained from marine, soil, freshwater and atmospheric environments and to geochemical analytes measured in the snow. Snow was found to contain a diverse assemblage of bacteria (Alphaproteobacteria, Betaproteobacteria and Gammaproteobacteria) and eukarya (Alveolata, Fungi, Stramenopiles and Viridiplantae). Phylotypes related to archaeal Thaumarchaeota and Euryarchaeota phyla were also identified. The structure of microbial assemblages was found to have strong similarities to communities sampled from marine and air environments, and sequences obtained from the South-West region, near Kangerlussuaq, which is bordered by an extensive periglacial expanse, had additional resemblances to soil originating communities. Strong correlations were found between bacterial beta diversity and Na+ and Cl- concentrations. These data suggest that surface snow from western regions of Greenland contain microbiota that are most likely derived from exogenous, wind transported sources. Downstream of the supraglacial environment, Greenland's rivers likely influence the ecology of localized estuary and marine systems. Here we characterize the geochemical and biotic composition of a glacial and glacial forefield fed river catchment in

  1. Sedimentological imprint on subseafloor microbial communities in Western Mediterranean Sea Quaternary sediments

    Directory of Open Access Journals (Sweden)

    M.-C. Ciobanu

    2012-09-01

    Full Text Available An interdisciplinary study was conducted to evaluate the relationship between geological and paleoenvironmental parameters and the bacterial and archaeal community structure of two contrasting subseafloor sites in the Western Mediterranean Sea (Ligurian Sea and Gulf of Lion. Both depositional environments in this area are well-documented from paleoclimatic and paleooceanographic point of views. Available data sets allowed us to calibrate the investigated cores with reference and dated cores previously collected in the same area, and notably correlated to Quaternary climate variations. DNA-based fingerprints showed that the archaeal diversity was composed by one group, Miscellaneous Crenarchaeotic Group (MCG, within the Gulf of Lion sediments and of nine different lineages (dominated by MCG, South African Gold Mine Euryarchaeotal Group (SAGMEG and Halobacteria within the Ligurian Sea sediments. Bacterial molecular diversity at both sites revealed mostly the presence of the classes Alphaproteobacteria, Betaproteobacteria and Gammaproteobacteria within Proteobacteria phylum, and also members of Bacteroidetes phylum. The second most abundant lineages were Actinobacteria and Firmicutes at the Gulf of Lion site and Chloroflexi at the Ligurian Sea site. Various substrates and cultivation conditions allowed us to isolate 75 strains belonging to four lineages: Alpha-, Gammaproteobacteria, Firmicutes and Actinobacteria. In molecular surveys, the Betaproteobacteria group was consistently detected in the Ligurian Sea sediments, characterized by a heterolithic facies with numerous turbidites from a deep-sea levee. Analysis of relative betaproteobacterial abundances and turbidite frequency suggested that the microbial diversity was a result of main climatic changes occurring during the last 20 ka. Statistical direct multivariate canonical correspondence

  2. A New Catabolic Plasmid in Xanthobacter and Starkeya spp. from a 1,2-Dichloroethane-Contaminated Site

    Science.gov (United States)

    Munro, Jacob E.; Liew, Elissa F.; Ly, Mai-Anh

    2016-01-01

    ABSTRACT 1,2-Dichloroethane (DCA) is a problematic xenobiotic groundwater pollutant. Bacteria are capable of biodegrading DCA, but the evolution of such bacteria is not well understood. In particular, the mechanisms by which bacteria acquire the key dehalogenase genes dhlA and dhlB have not been well defined. In this study, the genomic context of dhlA and dhlB was determined in three aerobic DCA-degrading bacteria (Starkeya novella strain EL1, Xanthobacter autotrophicus strain EL4, and Xanthobacter flavus strain EL8) isolated from a groundwater treatment plant (GTP). A haloalkane dehalogenase gene (dhlA) identical to the canonical dhlA gene from Xanthobacter sp. strain GJ10 was present in all three isolates, and, in each case, the dhlA gene was carried on a variant of a 37-kb circular plasmid, which was named pDCA. Sequence analysis of the repA replication initiator gene indicated that pDCA was a member of the pTAR plasmid family, related to catabolic plasmids from the Alphaproteobacteria, which enable growth on aromatics, dimethylformamide, and tartrate. Genes for plasmid replication, mobilization, and stabilization were identified, along with two insertion sequences (ISXa1 and ISPme1) which were likely to have mobilized dhlA and dhlB and played a role in the evolution of aerobic DCA-degrading bacteria. Two haloacid dehalogenase genes (dhlB1 and dhlB2) were detected in the GTP isolates; dhlB1 was most likely chromosomal and was similar to the canonical dhlB gene from strain GJ10, while dhlB2 was carried on pDCA and was not closely related to dhlB1. Heterologous expression of the DhlB2 protein confirmed that this plasmid-borne dehalogenase was capable of chloroacetate dechlorination. IMPORTANCE Earlier studies on the DCA-degrading Xanthobacter sp. strain GJ10 indicated that the key dehalogenases dhlA and dhlB were carried on a 225-kb linear plasmid and on the chromosome, respectively. The present study has found a dramatically different gene organization in more

  3. Lessons from Suiyo Seamount studies, for understanding extreme (ancient?) microbial ecosystems in the deep-sea hydrothermal fields

    Science.gov (United States)

    Maruyama, A.; Higashi, Y.; Sunamura, M.; Urabe, T.

    2004-12-01

    Deep-sea hydrothermal ecosystems are driven with various geo-thermally modified, mainly reduced, compounds delivered from extremely hot subsurface environments. To date, several unique microbes including thermophilic archaeons have been isolated from/around vent chimneys. However, there is little information about microbes in over-vent and sub-vent fields. Here, we report several new findings on microbial diversity and ecology of the Suiyo Seamount that locates on the Izu-Bonin Arc in the northwest Pacific Ocean, as a result of the Japanese Archaean Park project, with special concern to the sub-vent biosphere. At first, we succeeded to reveal a very unique microbial ecosystem in hydrothermal plume reserved within the outer rim of the seamount crater, that is, it consisted of almost all metabolically active microbes belonged to only two Bacteria phylotypes, probably of sulfur oxidizers. In the center of the caldera seafloor (ca. 1,388-m deep) consisted mainly of whitish sands and pumices, we found many small chimneys (ca. 5-10 cm) and bivalve colonies distributed looking like gray to black patches. These geo/ecological features of the seafloor were supposed to be from a complex mixing of hydrothermal venting and strong water current near the seafloor. Through quantitative FISH analysis for various environmental samples, one of the two representative groups in the plume was assessed to be from some of the bivalve colonies. Using the Benthic Multi-coring System (BMS), total 10 points were drilled and 6 boreholes were maintained with stainless or titanium casing pipes. In the following submersible surveys, newly developed catheter- and column-type in situ growth chambers were deployed in and on the boreholes, respectively, for collecting indigenous sub-vent microbes. Finally, we succeeded to detect several new phylotypes of microbes in these chamber samples, e.g., within epsilon-Proteobacteria, a photosynthetic group of alpha-Proteobacteria, and hyperthermophile

  4. Global analysis of gene expression dynamics within the marine microbial community during the VAHINE mesocosm experiment in the southwest Pacific

    Science.gov (United States)

    Pfreundt, Ulrike; Spungin, Dina; Bonnet, Sophie; Berman-Frank, Ilana; Hess, Wolfgang R.

    2016-07-01

    Microbial gene expression was followed for 23 days within a mesocosm (M1) isolating 50 m3 of seawater and in the surrounding waters in the Nouméa lagoon, New Caledonia, in the southwest Pacific as part of the VAriability of vertical and tropHIc transfer of diazotroph derived N in the south wEst Pacific (VAHINE) experiment. The aim of VAHINE was to examine the fate of diazotroph-derived nitrogen (DDN) in a low-nutrient, low-chlorophyll ecosystem. On day 4 of the experiment, the mesocosm was fertilized with phosphate. In the lagoon, gene expression was dominated by the cyanobacterium Synechococcus, closely followed by Alphaproteobacteria. In contrast, drastic changes in the microbial community composition and transcriptional activity were triggered within the mesocosm within the first 4 days, with transcription bursts from different heterotrophic bacteria in rapid succession. The microbial composition and activity of the surrounding lagoon ecosystem appeared more stable, although following similar temporal trends as in M1. We detected significant gene expression from Chromerida in M1, as well as the Nouméa lagoon, suggesting these photoautotrophic alveolates were present in substantial numbers in the open water. Other groups contributing substantially to the metatranscriptome were affiliated with marine Euryarchaeota Candidatus Thalassoarchaea (inside and outside) and Myoviridae bacteriophages likely infecting Synechococcus, specifically inside M1. High transcript abundances for ammonium transporters and glutamine synthetase in many different taxa (e.g., Pelagibacteraceae, Synechococcus, Prochlorococcus, and Rhodobacteraceae) was consistent with the known preference of most bacteria for this nitrogen source. In contrast, Alteromonadaceae highly expressed urease genes; Rhodobacteraceae and Prochlorococcus showed some urease expression, too. Nitrate reductase transcripts were detected on day 10 very prominently in Synechococcus and in Halomonadaceae. Alkaline

  5. Comunidade bacteriana como indicadora do efeito de feijoeiro geneticamente modificado sobre organismos não alvo Bacterial community as an indicator of genetically modified common bean effect on nontarget organisms

    Directory of Open Access Journals (Sweden)

    Adriano Moreira Knupp

    2009-12-01

    subgroup of the Proteobacteria phylum were obtained from uncultured cells and used for amplification. Using the Jaccard coefficient and UPGMA (Unweighted pair-group method with arithmetic mean, dendrograms comparing the conventional Olathe Pinto and the elite event Olathe M1-4 transgenic varieties were obtained. The clusters obtained from the 16S rDNA PCR-DGGE profiles indicate changes in the rhizosphere bacterial community in genetically modified plants, being more notable in the profiles obtained for alphaproteobacteria. Sample origin and plant development stages affect bacterial community profiles.

  6. Targeting Autotrophic and Lithotrophic Microorganisms from Fumarolic Ice Caves of Mt. Erebus, Antarctica

    Science.gov (United States)

    Anitori, R.; Davis, R.; Connell, L.; Kelley, M.; Staudigel, H.; Tebo, B. M.

    2011-12-01

    Terrestrial and aquatic volcanic oligotrophic environments can host microorganisms that obtain their energy from reduced inorganic chemicals present in volcanic rocks and soils. We sampled basaltic rock from terrestrial Dark Oligotrophic Volcanic Ecosystems (DOVEs) located in two fumarole ice caves, Warren and Warren West, located near the summit of Mt. Erebus, Antarctica. For reference, we sampled a similar cave, Harry's Dream, which receives continuous light during the Austral summer. We report here culturing data for bacterial and eukaryotic microbes from rocky soils in these caves when targeting lithotrophic organisms using media containing reduced inorganic compounds (Mn2+, Fe2+, NH4+). In addition, to test for the possible presence of inorganic carbon fixation, we screened samples for the ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) gene. Culturing of soil samples on media targeting both autotrophs and heterotrophs yielded a diverse collection of generally slow-growing colonies of bacteria (majority), fungi and non-fungal eukaryotes. Manganese(II)-oxidizing colonies were identified in Warren and Harry's Dream, and these exhibited two colony morphotypes upon subculturing. Sequencing of the PCR amplified 16S rRNA gene identified a bacterium distantly related to Pseudonocardia sp., a genus with known manganese oxidizers. Other bacteria enriched included members of the Actinobacteria, Alphaproteobacteria and Betaproteobacteria. There was a low diversity in cultured eukaryotes representing several potential undescribed species (Geomyces sp., Penicillium sp.) and isolates that may represent alternate, previously undescribed habitats and forms (Psilolechia leprosa, Alternaria alternata). One Warren isolate was a 99% 16S rRNA match to the N2 fixer Bradyrhizobium sp.; when inoculated into liquid medium specific for N2 fixers, growth was maintained upon subculture. Putative iron oxidizers were also enriched from the two DOVE caves, using slush agar iron

  7. Variations in airborne bacterial communities at high altitudes over the Noto Peninsula (Japan) in response to Asian dust events

    Science.gov (United States)

    Maki, Teruya; Hara, Kazutaka; Iwata, Ayumu; Lee, Kevin C.; Kawai, Kei; Kai, Kenji; Kobayashi, Fumihisa; Pointing, Stephen B.; Archer, Stephen; Hasegawa, Hiroshi; Iwasaka, Yasunobu

    2017-10-01

    , when dust events disappeared, the microbial particles at > 1200 m decreased slightly to microbial-particle concentrations ranging from 6. 4 × 104 to 8. 9 × 105 particles m-3.High-throughput sequencing technology targeting 16S rRNA genes (16S rDNA) revealed that the bacterial communities collected at high altitudes (from 500 to 3000 m) during dust events exhibited higher diversities and were predominantly composed of natural-sand/terrestrial bacteria, such as Bacillus members. During non-dust periods, airborne bacteria at high altitudes were mainly composed of anthropogenic/terrestrial bacteria (Actinobacteria), marine bacteria (Cyanobacteria and Alphaproteobacteria), and plant-associated bacteria (Gammaproteobacteria), which shifted in composition in correspondence with the origins of the air masses and the meteorological conditions. The airborne bacterial structures at high altitudes suggested remarkable changes in response to air mass sources, which contributed to the increases in community richness and to the domination of a few bacterial taxa.

  8. Conserved ABC Transport System Regulated by the General Stress Response Pathways of Alpha- and Gammaproteobacteria

    Energy Technology Data Exchange (ETDEWEB)

    Herrou, Julien; Willett, Jonathan W.; Czy; #380; , Daniel M.; Babnigg, Gyorgy; Kim, Youngchang; Crosson, Sean (UC)

    2016-12-19

    ABSTRACT

    Brucella abortusσE1is an EcfG family sigma factor that regulates the transcription of dozens of genes in response to diverse stress conditions and is required for maintenance of chronic infection in a mouse model. A putative ATP-binding cassette transporter operon,bab1_0223-bab1_0226, is among the most highly activated gene sets in the σE1regulon. The proteins encoded by the operon resemble quaternary ammonium-compatible solute importers but are most similar in sequence to the broadly conserved YehZYXW system, which remains largely uncharacterized. Transcription ofyehZYXWis activated by the general stress sigma factor σSinEnterobacteriaceae, which suggests a functional role for this transport system in bacterial stress response across the classesAlphaproteobacteriaandGammaproteobacteria. We present evidence thatB. abortusYehZYXW does not function as an importer of known compatible solutes under physiological conditions and does not contribute to the virulence defect of a σE1-null strain. The solein vitrophenotype associated with genetic disruption of this putative transport system is reduced growth in the presence of high Li+ion concentrations. A crystal structure ofB. abortusYehZ revealed a class II periplasmic binding protein fold with significant structural homology toArchaeoglobus fulgidusProX, which binds glycine betaine. However, the structure

  9. A Comprehensive Assessment of Biologicals Contained Within Commercial Airliner Cabin Air

    Science.gov (United States)

    LaDuc, Myron T.; Osman, Shariff; Dekas, Anne; Stuecker, Tara; Newcombe, Dave; Piceno, Yvette; Fuhrman, J.; Andersen, Gary; Venkateswaran, Kasthuri; Bearman, Greg

    2006-01-01

    Gram-positive bacteria, Fusobacteria, Cyanobacteria, Deinococci, Bacterioidetes, Spirochetes, and Planctomyces in varying abundance. Neisseria meningitidis rDNA sequences were retrieved in great abundance from Airline A followed by Streptococcus oralis/mitis sequences. Pseudomonas synxantha sequences dominated Airline B clone libraries, followed by those of N. meningitidis and S. oralis/mitis. In Phase II, Airline C, sequences representative of more than 113 species, enveloping 12 classes of bacteria, were retrieved. Proteobacterial sequences were retrieved in greatest frequency (58% of all clone sequences), followed in short order by those stemming from Gram-positives bacteria (31% of all clone sequences). As for overall phylogenetic breadth, Gram-positive and alpha-proteobacteria seem to have a higher affinity for international flights, whereas beta-and gamma-proteobacteria are far more common about domestic cabin air parcels in Airline C samples. Ultimately, the majority of microbial species circulating throughout the cabin airs of commercial airliners are commensal, infrequently pathogenic normal flora of the human nasopharynx and respiratory system. Many of these microbes likely originate from the oral and nasal cavities, and lungs of passengers and flight crew and are disseminated unknowingly via routine conversation, coughing, sneezing, and stochastic passing of fomites. The data documented in this study will be useful to generate a baseline microbial population database and can be utilized to develop biosensor instrumentation for monitoring microbial quality of cabin or urban air.

  10. Microbiological analysis of the in situ bitumen-nitrate-Opalinus clay interaction

    International Nuclear Information System (INIS)

    Moors, Hugo; Boven, Patrick; Leys, Natalie; Geissler, Andrea; Selenska-Pobell, Sonja

    2012-01-01

    Microscopy, molecular biology methods, ATP-measurements, and cultivation based techniques of the initial pore water samples, proved the presence and activity of bacteria. Analysis of the 16 S rDNA sequences obtained from the initial interval solutions, i.e. artificial pore water used to fill the intervals and which have been in contact with the surrounding clay for more than six months, indicates similar bacterial communities in all three solutions of the test intervals with the dominant population being Proteobacteria (81.5 - 94.9 %) and Firmicutes (3.4 - 11.1%). Actinobacteria (1.7 and 7.4%) have only been detected in the initial pore water of two intervals. The first results of the Ribosomal Intergenic Spacer Amplification (RISA) analysis, using universal bacterial primers for 16 S rDNA968-983 and 23 S rDNA115-130, demonstrate that in both injection tests, i.e. nitrate (interval 1) or nitrate and acetate (interval 2), a strong shift in bacterial communities was induced. Just before the start of these injection tests the pore waters of the two intervals were strongly predominated by different Clostridial species most of them related to Desulfosporosinus species. In addition, smaller populations of Bacteroidetes and Beta- proteobacteria were found as well. Twenty-four hours later, a rapid and strong proliferation of Bacteroidetes, in interval 1, and of Alphaproteobacteria, in intervals 1 and 2, occurred. Specific for interval 1, a stimulation of Beta- and Deltaproteobacteria and a complete masking of the Clostridial groups had occurred. In contrast, in interval 2, Gammaproteobacteria were stimulated and some Clostridia continued to persist. This shift may be due to bacterial contamination of the exchanged interval solutions and/or the drastic change of carbon- and/or electron acceptor source

  11. Microbiological analysis of the in situ bitumen-nitrate-Opalinus clay interaction

    Energy Technology Data Exchange (ETDEWEB)

    Moors, Hugo; Boven, Patrick; Leys, Natalie [SCK.CEN, Institute for Environment, Health and Safety, Laboratory for Molecular and Cellular Biology, Boeretang 200, B-2400 MOL (Belgium); Geissler, Andrea; Selenska-Pobell, Sonja [Helmholtz Zentrum Dresden Rossendorf, Institute of Radiochemistry, Biogeochemistry, Bautzner Landstr. 400, D-01328 Dresden (Germany)

    2012-10-15

    Microscopy, molecular biology methods, ATP-measurements, and cultivation based techniques of the initial pore water samples, proved the presence and activity of bacteria. Analysis of the {sup 16}S rDNA sequences obtained from the initial interval solutions, i.e. artificial pore water used to fill the intervals and which have been in contact with the surrounding clay for more than six months, indicates similar bacterial communities in all three solutions of the test intervals with the dominant population being Proteobacteria (81.5 - 94.9 %) and Firmicutes (3.4 - 11.1%). Actinobacteria (1.7 and 7.4%) have only been detected in the initial pore water of two intervals. The first results of the Ribosomal Intergenic Spacer Amplification (RISA) analysis, using universal bacterial primers for {sup 16}S rDNA968-983 and {sup 23}S rDNA115-130, demonstrate that in both injection tests, i.e. nitrate (interval 1) or nitrate and acetate (interval 2), a strong shift in bacterial communities was induced. Just before the start of these injection tests the pore waters of the two intervals were strongly predominated by different Clostridial species most of them related to Desulfosporosinus species. In addition, smaller populations of Bacteroidetes and Beta- proteobacteria were found as well. Twenty-four hours later, a rapid and strong proliferation of Bacteroidetes, in interval 1, and of Alphaproteobacteria, in intervals 1 and 2, occurred. Specific for interval 1, a stimulation of Beta- and Deltaproteobacteria and a complete masking of the Clostridial groups had occurred. In contrast, in interval 2, Gammaproteobacteria were stimulated and some Clostridia continued to persist. This shift may be due to bacterial contamination of the exchanged interval solutions and/or the drastic change of carbon- and/or electron acceptor source.

  12. Characterization of microbial communities in former neutral uranium mines in Saxony and studies on the microbial immobilization of uranium and arsenic

    International Nuclear Information System (INIS)

    Gagell, Corinna

    2015-01-01

    applied in addition to the DNA based approach indicated that detected and dominant microorganisms (Bacteria as well as Archaea) in planktonic communities from Schlema and in biofilms were metabolically active. In the planktonic community from Zobes greater abundances were determined for Verrucomicrobia, Acidobacteria, and Alphaproteobacteria compared to data from the DNA based analysis. However, the meaning of these results remains open. Investigations on the microbial metabolic potential of planktonic communities by CFU and MPN analyses revealed that microorganisms of all uranium mines covered a broad range of anaerobic reactions (reduction of nitrate, iron, manganese, arsenate and sulfate as well as acetogenesis) under laboratory conditions. In good agreement with sequencing results methanogenic Archaea were only detected in flood water from Poehla and Zobes. The metaproteomic analysis revealed that 61,6% of analyzed peptides in the planktonic community of Schlema originated from dominant Epsilonproteobacteria. Whereas for Zobes the majority of detected peptides were assigned to methylotrophic and iron oxidizing Betaproteobacteria of the families Methylophilaceae and Gallionellaceae, respectively, as well as methylotrophic Gammaproteobacteria of Methylococcaceae. Although the majority of proteins was related to translation, a total of 49 protein groups was determined with relevance for energy metabolism. Especially Gammaproteobacteria from Zobes have been associated with carbon and sulfur cycle. The potential influence of microbial communities from Schlema on the mobility of arsenic and uranium in flood water was analyzed by means of laboratory microcosms and acetate as electron donor under anaerobic conditions over a period of 98 days. In comparison to controls the stimulated planktonic community as well as biofilms were capable to remove almost all of the natural arsenic from the aqueous phase. However, the subsequent increase of dissolved arsenic indicated that the