WorldWideScience

Sample records for alpha particle transfer

  1. Particle size and interfacial effects on heat transfer characteristics of water and {alpha}-SiC nanofluids.

    Energy Technology Data Exchange (ETDEWEB)

    Timofeeva, E.; Smith, D. S.; Yu, W.; France, D. M.; Singh, D.; Routbort, J. L. (Energy Systems); ( NE); (Univ. of Illinois)

    2010-01-01

    The effect of average particle sizes on basic macroscopic properties and heat transfer performance of {alpha}-SiC/water nanofluids was investigated. The average particle sizes, calculated from the specific surface area of nanoparticles, were varied from 16 to 90 nm. Nanofluids with larger particles of the same material and volume concentration provide higher thermal conductivity and lower viscosity increases than those with smaller particles because of the smaller solid/liquid interfacial area of larger particles. It was also demonstrated that the viscosity of water-based nanofluids can be significantly decreased by pH of the suspension independently from the thermal conductivity. Heat transfer coefficients were measured and compared to the performance of base fluids as well as to nanofluids reported in the literature. Criteria for evaluation of the heat transfer performance of nanofluids are discussed and optimum directions in nanofluid development are suggested.

  2. Particle size and interfacial effects on thermo-physical and heat transfer characteristics of water-based alpha-SiC nanofluids.

    Science.gov (United States)

    Timofeeva, Elena V; Smith, David S; Yu, Wenhua; France, David M; Singh, Dileep; Routbort, Jules L

    2010-05-28

    The effect of average particle sizes on basic macroscopic properties and heat transfer performance of alpha-SiC/water nanofluids was investigated. The average particle sizes, calculated from the specific surface area of nanoparticles, were varied from 16 to 90 nm. Nanofluids with larger particles of the same material and volume concentration provide higher thermal conductivity and lower viscosity increases than those with smaller particles because of the smaller solid/liquid interfacial area of larger particles. It was also demonstrated that the viscosity of water-based nanofluids can be significantly decreased by pH of the suspension independently from the thermal conductivity. Heat transfer coefficients were measured and compared to the performance of base fluids as well as to nanofluids reported in the literature. Criteria for evaluation of the heat transfer performance of nanofluids are discussed and optimum directions in nanofluid development are suggested.

  3. Particle size and interfacial effects on thermo-physical and heat transfer characteristics of water-based {alpha}-SiC nanofluids

    Energy Technology Data Exchange (ETDEWEB)

    Timofeeva, Elena V; Smith, David S; Yu, Wenhua; Routbort, Jules L [Energy Systems Division, Argonne National Laboratory, Argonne, IL 60439 (United States); France, David M [Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, 842 West Taylor Street (m/c 251) Chicago, IL 60607-7022 (United States); Singh, Dileep, E-mail: etimofeeva@anl.gov [Nuclear Engineering Division, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2010-05-28

    The effect of average particle sizes on basic macroscopic properties and heat transfer performance of {alpha}-SiC/water nanofluids was investigated. The average particle sizes, calculated from the specific surface area of nanoparticles, were varied from 16 to 90 nm. Nanofluids with larger particles of the same material and volume concentration provide higher thermal conductivity and lower viscosity increases than those with smaller particles because of the smaller solid/liquid interfacial area of larger particles. It was also demonstrated that the viscosity of water-based nanofluids can be significantly decreased by pH of the suspension independently from the thermal conductivity. Heat transfer coefficients were measured and compared to the performance of base fluids as well as to nanofluids reported in the literature. Criteria for evaluation of the heat transfer performance of nanofluids are discussed and optimum directions in nanofluid development are suggested.

  4. Alpha particle emitters in medicine

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, D.R.

    1989-09-01

    Radiation-induced cancer of bone, liver and lung has been a prominent harmful side-effect of medical applications of alpha emitters. In recent years, however, the potential use of antibodies labeled with alpha emitting radionuclides against cancer has seemed promising because alpha particles are highly effective in cell killing. High dose rates at high LET, effectiveness under hypoxic conditions, and minimal expectancy of repair are additional advantages of alpha emitters over antibodies labeled with beta emitting radionuclides for cancer therapy. Cyclotron-produced astatine-211 ({sup 211}At) and natural bismuth-212 ({sup 212}Bi) have been proposed and are under extensive study in the United States and Europe. Radium-223 ({sup 223}Ra) also has favorable properties as a potential alpha emitting label, including a short-lived daughter chain with four alpha emissions. The radiation dosimetry of internal alpha emitters is complex due to nonuniformly distributed sources, short particle tracks, and high relative specific ionization. The variations in dose at the cellular level may be extreme. Alpha-particle radiation dosimetry, therefore, must involve analysis of statistical energy deposition probabilities for cellular level targets. It must also account fully for nonuniform distributions of sources in tissues, source-target geometries, and particle-track physics. 18 refs., 4 figs.

  5. Analysis of radiation risk from alpha particle component of solar particle events

    Science.gov (United States)

    Cucinotta, F. A.; Townsend, L. W.; Wilson, J. W.; Golightly, M. J.; Weyland, M.

    1994-01-01

    The solar particle events (SPE) will contain a primary alpha particle component, representing a possible increase in the potential risk to astronauts during an SPE over the often studied proton component. We discuss the physical interactions of alpha particles important in describing the transport of these particles through spacecraft and body shielding. Models of light ion reactions are presented and their effects on energy and linear energy transfer (LET) spectra in shielding discussed. We present predictions of particle spectra, dose, and dose equivalent in organs of interest for SPE spectra typical of those occurring in recent solar cycles. The large events of solar cycle 19 are found to have substantial increase in biological risk from alpha particles, including a large increase in secondary neutron production from alpha particle breakup.

  6. Alpha particles diffusion due to charge changes

    Energy Technology Data Exchange (ETDEWEB)

    Clauser, C. F., E-mail: cesar.clauser@ib.edu.ar; Farengo, R. [Centro Atómico Bariloche and Instituto Balseiro, Comisión Nacional de Energía Atómica and Universidad Nacional de Cuyo, Av. Bustillo 9500, 8400 Bariloche (Argentina)

    2015-12-15

    Alpha particles diffusion due to charge changes in a magnetized plasma is studied. Analytical calculations and numerical simulations are employed to show that this process can be very important in the pedestal-edge-SOL regions. This is the first study that presents clear evidence of the importance of atomic processes on the diffusion of alpha particles. A simple 1D model that includes inelastic collisions with plasma species, “cold” neutrals, and partially ionized species was employed. The code, which follows the exact particle orbits and includes the effect of inelastic collisions via a Monte Carlo type random process, runs on a graphic processor unit (GPU). The analytical and numerical results show excellent agreement when a uniform background (plasma and cold species) is assumed. The simulations also show that the gradients in the density of the plasma and cold species, which are large and opposite in the edge region, produce an inward flux of alpha particles. Calculations of the alpha particles flux reaching the walls or divertor plates should include these processes.

  7. Superparamagnetic relaxation in alpha-Fe particles

    DEFF Research Database (Denmark)

    Bødker, Franz; Mørup, Steen; Pedersen, Michael Stanley;

    1998-01-01

    The superparamagnetic relaxation time of carbon-supported alpha-Fe particles with an average size of 3.0 Mm has been studied over a large temperature range by the use of Mossbauer spectroscopy combined with AC and DC magnetization measurements. It is found that the relaxation time varies with tem...

  8. Alpha particle radiography of small insects

    Energy Technology Data Exchange (ETDEWEB)

    Chingshen Su [National Tsing Hua Univ., Hsinchu (Taiwan) Inst. of Nuclear Science

    1993-12-31

    Radiographies of ants, mosquitoes, cockroaches and small bugs have been done with a radioisotope {sup 244}Cm alpha source. Energy of alpha particles was varied by attenuating the 5.81 MeV alpha particles with adjustable air spacings from the source to the sample. The LR-115 was used to register radiographs. The image of the insect registered on the LR-115 was etched out in a 2.5 N NaOH solution at 52{sup o}C for certain minutes, depending on various irradiation conditions for the insects. For larger insects, a scanning device for the alpha particle irradiation has been fabricated to take the radiograph of whole body of the insect, and the scanning period can be selected to give desired irradiation dosage. A CCDTV camera system connected to a microscope interfaced to an IBM/AT computer is used to register the microscopic image of the radiograph and to print it out with a video copy processor. (Author).

  9. Alpha Particle Physics Experiments in the Tokamak Fusion Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Budny, R.V.; Darrow, D.S.; Medley, S.S.; Nazikian, R.; Zweben, S.J.; et al.

    1998-12-14

    Alpha particle physics experiments were done on the Tokamak Fusion Test Reactor (TFTR) during its deuterium-tritium (DT) run from 1993-1997. These experiments utilized several new alpha particle diagnostics and hundreds of DT discharges to characterize the alpha particle confinement and wave-particle interactions. In general, the results from the alpha particle diagnostics agreed with the classical single-particle confinement model in magnetohydrodynamic (MHD) quiescent discharges. Also, the observed alpha particle interactions with sawteeth, toroidal Alfvén eigenmodes (TAE), and ion cyclotron resonant frequency (ICRF) waves were roughly consistent with theoretical modeling. This paper reviews what was learned and identifies what remains to be understood.

  10. Biomarkers of Alpha Particle Radiation Exposure

    Science.gov (United States)

    2014-04-01

    Increased forensic capability through the development of biological tools to help identify those involved should be an integral to a national strategy... forensics capabilities and emergency preparedness response plans through the detection of those exposed to alpha-particle emitting radioactive...exposure and stored at -40°C before being processed next day. Plasma was analysed using the Piccolo Express Chemistry Analyser (Fisher Scientific

  11. Enhanced homologous recombination is induced by alpha-particle radiation in somatic cells of Arabidopsis thaliana

    Science.gov (United States)

    Bian, Po; Liu, Ping; Wu, Yuejin

    Almost 9 percent of cosmic rays which strike the earth's atmosphere are alpha particles. As one of the ionizing radiations (IR), its biological effects have been widely studied. However, the plant genomic instability induced by alpha-particle radiation was not largely known. In this research, the Arabidopsis thaliana transgenic for GUS recombination substrate was used to evaluate the genomic instability induced by alpha-particle radiation (3.3MeV). The pronounced effects of systemic exposure to alpha-particle radiation on the somatic homologous recombination frequency (HRF) were found at different doses. The 10Gy dose of radiation induced the maximal HRF which was 1.9-fold higher than the control. The local radiation of alpha-particle (10Gy) on root also resulted in a 2.5-fold increase of somatic HRF in non-radiated aerial plant, indicating that the signal(s) of genomic instability was transferred to non-radiated parts and initiated their genomic instability. Concurrent treatment of seedlings of Arabidopsis thaliana with alpha-particle and DMSO(ROS scavenger) both in systemic and local radiation signifi- cantly suppressed the somatic HR, indicating that the free radicals produced by alpha-particle radiation took part in the production of signal of genomic instability rather than the signal transfer. Key words: alpha-particle radiation, somatic homologous recombination, genomic instability

  12. Alpha particle collective Thomson scattering in TFTR

    Energy Technology Data Exchange (ETDEWEB)

    Machuzak, J.S.; Woskov, P.P.; Rhee, D.Y.; Gilmore, J. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Plasma Fusion Center; Bretz, N.L.; Park, H.K. [Princeton Univ., NJ (United States). Plasma Physics Lab.; Aamodt, R.E.; Cheung, P.Y.; Russell, D.A. [Lodestar Research Corp., Boulder, CO (United States); Bindslev, H. [JET Joint Undertaking, Abingdon (United Kingdom)

    1993-11-01

    A collective Thomson scattering diagnostic is being implemented on TFTR to measure alpha particle, energetic and thermal ion densities and velocity distributions. A 60 GHz, 0.1-1 kW gyrotron will be used as the transmitter source, and the scattering geometry will be perpendicular to the magnetic field in the extraordinary mode polarization. An enhanced scattered signal is anticipated from fluctuations in the lower hybrid frequency range with this scattering geometry. Millimeter wave collective Thomson scattering diagnostics have the advantage of larger scattering angles to decrease the amount of stray light, and long, high power, modulated pulses to obtain improved signal to noise through synchronous detection techniques.

  13. Validating modelling assumptions of alpha particles in electrostatic turbulence

    CERN Document Server

    Wilkie, George; Highcock, Edmund; Dorland, William

    2014-01-01

    To rigorously model fast ions in fusion plasmas, a non-Maxwellian equilibrium distribution must be used. In the work, the response of high-energy alpha particles to electrostatic turbulence has been analyzed for several different tokamak parameters. Our results are consistent with known scalings and experimental evidence that alpha particles are generally well-confined: on the order of several seconds. It is also confirmed that the effect of alphas on the turbulence is negligible at realistically low concentrations, consistent with linear theory. It is demonstrated that the usual practice of using a high-temperature Maxwellian gives incorrect estimates for the radial alpha particle flux, and a method of correcting it is provided. Furthermore, we see that the timescales associated with collisions and transport compete at moderate energies, calling into question the assumption that alpha particles remain confined to a flux surface that is used in the derivation of the slowing-down distribution.

  14. Fire Hose instability driven by alpha particle temperature anisotropy

    CERN Document Server

    Matteini, Lorenzo; Schwartz, Steven; Landi, Simone

    2015-01-01

    We investigate properties of a solar wind-like plasma including a secondary alpha particle population exhibiting a parallel temperature anisotropy with respect to the background magnetic field, using linear and quasi-linear predictions and by means of one-dimensional hybrid simulations. We show that anisotropic alpha particles can drive a parallel fire hose instability analogous to that generated by protons, but that, remarkably, the instability can be triggered also when the parallel plasma beta of alpha particles is below unity. The wave activity generated by the alpha anisotropy affects the evolution of the more abundant protons, leading to their anisotropic heating. When both ion species have sufficient parallel anisotropies both of them can drive the instability, and we observe generation of two distinct peaks in the spectra of the fluctuations, with longer wavelengths associated to alphas and shorter ones to protons. If a non-zero relative drift is present, the unstable modes propagate preferentially in...

  15. Scintillation of thin tetraphenyl butadiene films under alpha particle excitation

    Energy Technology Data Exchange (ETDEWEB)

    Pollmann, Tina, E-mail: tina@owl.phy.queensu.c [Department of Physics, Engineering Physics, and Astronomy, Queens University, Kingston, Ontario, K7L 3N6 (Canada); Boulay, Mark; Kuzniak, Marcin [Department of Physics, Engineering Physics, and Astronomy, Queens University, Kingston, Ontario, K7L 3N6 (Canada)

    2011-04-11

    The alpha induced scintillation of the wavelength shifter 1,1,4,4-tetraphenyl-1,3-butadiene (TPB) was studied to improve the understanding of possible surface alpha backgrounds in the DEAP dark matter search experiment. We found that vacuum deposited thin TPB films emit 882{+-}210 photons per MeV under alpha particle excitation. The scintillation pulse shape consists of a double exponential decay with lifetimes of 11{+-}5 and 275{+-}10ns.

  16. Alpha particle nonionizing energy loss (NIEL) for device applications

    Science.gov (United States)

    Jun, Insoo; Xapsos, Michael A.; Messenger, Scott R.; Burke, Edward A.; Walters, Robert J.; Summers, Geoff; Jordan, Thomas

    2004-01-01

    A method developed for the proton NIEL calculation previously is extended to incident alpha particles in this study: ZBL screened potential for Coulomb interactions and MCNPX 'thin target approximation' for nuclear interactions.

  17. Determination of thin layer thickness from alpha particle energy spectra

    Energy Technology Data Exchange (ETDEWEB)

    Hnatowicz, V.; Kvitek, J. (Ceskoslovenska Akademie Ved, Prague. Ustav pro Elektrotechniku); Rybka, V.; Krejci, P. (Tesla, Prague (Czechoslovakia). Vyzkumny Ustav pro Sdelovaci Techniku); Pelikan, L. (Ceske Vysoke Uceni Technicke, Prague (Czechoslovakia). Fakulta Elektrotechnicka); Mikusik, P. (Ceskoslovenska Akademie Ved, Prague. Ustav Fyzikalni Chemie a Elektrochemie J. Heyrovskeho)

    1982-10-01

    A method which uses alpha particles from the /sup 10/B(n,alpha)/sup 7/Li nuclear reaction for the determination of surface layer thicknesses is described and experimentally checked. The thickness measurements can be performed on samples implanted with boron.

  18. Model of cell response to {\\alpha}-particle radiation

    CERN Document Server

    Liu, Longjian

    2012-01-01

    Starting from a general equation for organism (or cell system) growth and attributing additional cell death rate (besides the natural rate) to therapy, we derive an equation for cell response to {\\alpha} radiation. Different from previous models that are based on statistical theory, the present model connects the consequence of radiation with the growth process of a biosystem and each variable or parameter has meaning regarding the cell evolving process. We apply this equation to model the dose response for {\\alpha}-particle radiation. It interprets the results of both high and low linear energy transfer (LET) radiations. When LET is high, the additional death rate is a constant, which implies that the localized cells are damaged immediately and the additional death rate is proportional to the number of cells present. While at low LET, the additional death rate includes a constant term and a linear term of radiation dose, implying that the damage to some cell nuclei has a time accumulating effect. This model ...

  19. Luminescence imaging of water during alpha particle irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Seiichi, E-mail: s-yama@met.nagoya-u.ac.jp [Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine (Japan); Komori, Masataka; Koyama, Shuji [Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine (Japan); Toshito, Toshiyuki [Department of Proton Therapy Physics, Nagoya Proton Therapy Center, Nagoya City West Medical Center (Japan)

    2016-05-21

    The luminescence imaging of water using the alpha particle irradiation of several MeV energy range is thought to be impossible because this alpha particle energy is far below the Cerenkov-light threshold and the secondary electrons produced in this energy range do not emit Cerenkov-light. Contrary to this consensus, we found that the luminescence imaging of water was possible with 5.5 MeV alpha particle irradiation. We placed a 2 MBq of {sup 241}Am alpha source in water, and luminescence images of the source were conducted with a high-sensitivity, cooled charge-coupled device (CCD) camera. We also carried out such imaging of the alpha source in three different conditions to compare the photon productions with that of water, in air, with a plastic scintillator, and an acrylic plate. The luminescence imaging of water was observed from 10 to 20 s acquisition, and the intensity was linearly increased with time. The intensity of the luminescence with the alpha irradiation of water was 0.05% of that with the plastic scintillator, 4% with air, and 15% with the acrylic plate. The resolution of the luminescence image of water was better than 0.25 mm FWHM. Alpha particles of 5.5 MeV energy emit luminescence in water. Although the intensity of the luminescence was smaller than that in air, it was clearly observable. The luminescence of water with alpha particles would be a new method for alpha particle detection and distribution measurements in water.

  20. Particle Physics Aspects of Antihydrogen Studies with ALPHA at CERN

    CERN Document Server

    Fujiwara, M C; Bertsche, W; Bowe, P D; Bray, C C; Butler, E; Cesar, C L; Chapman, S; Charlton, M; Fajans, J; Funakoshi, R; Gill, D R; Hangst, J S; Hardy, W N; Hayano, R S; Hayden, M E; Humphries, A J; Hydomako, R; Jenkins, M J; Jørgensen, L V; Kurchaninov, L; Lai, W; Lambo, R; Madsen, N; Nolan, P; Olchanski, K; Olin, A; Povilus, A; Pusa, P; Robicheaux, F; Sarid, E; Seif El Nasr, S; Silveira, D M; Storey, J W; Thompson, R I; Van der Werf, D P; Wasilenko, L; Wurtele, J S; Yamazaki, Y

    2008-01-01

    We discuss aspects of antihydrogen studies, that relate to particle physics ideas and techniques, within the context of the ALPHA experiment at CERN's Antiproton Decelerator facility. We review the fundamental physics motivations for antihydrogen studies, and their potential physics reach. We argue that initial spectroscopy measurements, once antihydrogen is trapped, could provide competitive tests of CPT, possibly probing physics at the Planck Scale. We discuss some of the particle detection techniques used in ALPHA. Preliminary results from commissioning studies of a partial system of the ALPHA Si vertex detector are presented, the results of which highlight the power of annihilation vertex detection capability in antihydrogen studies.

  1. The energetic alpha particle transport method EATM

    Energy Technology Data Exchange (ETDEWEB)

    Kirkpatrick, R.C.

    1998-02-01

    The EATM method is an evolving attempt to find an efficient method of treating the transport of energetic charged particles in a dynamic magnetized (MHD) plasma for which the mean free path of the particles and the Larmor radius may be long compared to the gradient lengths in the plasma. The intent is to span the range of parameter space with the efficiency and accuracy thought necessary for experimental analysis and design of magnetized fusion targets.

  2. alpha-particle production in the scattering of 6He by 208Pb at energies around the Coulomb barrier

    OpenAIRE

    Escrig, D.; Sanchez-Benitez, A M; Moro, A. M.; Alvarez, M. A. G.; Andres, M. V.; Angulo, C.; Borge, M. J. G.; J. Cabrera; Cherubini, S.; Demaret, P; Espino, J. M.; Figuera, P.; Freer, M.; Garcia-Ramos, J. E.; Gomez-Camacho, J.

    2007-01-01

    New experimental data from the scattering of 6He+208Pb at energies around and below the Coulomb barrier are presented. The yield of breakup products coming from projectile fragmentation is dominated by a strong group of $\\alpha$ particles. The energy and angular distributions of this group have been analyzed and compared with theoretical calculations. This analysis indicates that the $\\alpha$ particles emitted at backward angles in this reaction are mainly due to two-neutron transfer to weakl...

  3. Fano factor evaluation of diamond detectors for alpha particles

    Energy Technology Data Exchange (ETDEWEB)

    Shimaoka, Takehiro; Kaneko, Junichi H.; Tsubota, Masakatsu; Shimmyo, Hiroaki [Graduate School of Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo, Hokkaido, 060-8628 (Japan); Sato, Yuki [Naraha Remote Technology Development Center, Japan Atomic Energy Agency, Naraha-machi, Futaba-gun, Fukushima, 979-0513 (Japan); Chayahara, Akiyoshi; Umezawa, Hitoshi; Mokuno, Yoshiaki [Advanced Power Electronics Research Center, National Institute of Advanced Industrial Science and Technology, 1-8-31 Midorigaoka, Ikeda, Osaka, 563-8577 (Japan); Watanabe, Hideyuki [Research Institute for Electronics and Photonics, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, 305-8565 (Japan)

    2016-10-15

    This report is the first describing experimental evaluation of Fano factor for diamond detectors. High-quality self-standing chemical vapor deposited diamond samples were produced using lift-off method. Alpha-particle induced charge measurements were taken for three samples. A 13.1 ±0.07 eV of the average electron-hole pair creation energy and excellent energy resolution of approximately 0.3% were found for 5.486 MeV alpha particles from an {sup 241}Am radioactive source. The best Fano factor for 5.486 MeV alpha particles, calculated from experimentally obtained epsilon values and the detector intrinsic energy resolution, was 0.382 ± 0.007. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Alpha-particle decays from excited states in 24Mg

    Institute of Scientific and Technical Information of China (English)

    LIOTTA; R; J

    2011-01-01

    Using a cluster model based on the Woods-Saxon potential, alpha-particle decays from excited states in 24Mg have been system atically investigated. Calculations can in general reproduce experimental data, noticing the fact that the preformation factor P of alpha particle in alpha-decaying nuclei is of order from 100 to 10?2. This can be the evidence for the α+20Ne structure in 24Mg. Meanwhile, the results also show the existence of other configurations, such as 16O+2α. Since the calculated decay widths are very sensitive to the angular momentum carried by the outgoing cluster (α particle), our results could serve as a guide to experimental spin assignments.

  5. The evaporation signal from [alpha] particles stopped in superfluid helium

    Energy Technology Data Exchange (ETDEWEB)

    Bandler, S.R.; Enss, C.; Goldhaber, G.; Lanou, R.E.; Maris, H.J.; More, T.; Porter, F.S.; Seidel, G.M. (Brown Univ., Providence, RI (United States))

    1993-11-01

    Alpha particles stopped in a 3 liter volume of liquid helium at 30 mK are observed by the calorimetric detection of helium atoms evaporated from the free surface of the liquid. Quantum evaporation of the helium is produced by the rotons that are created by the [alpha] particle. While the energy spectrum of the 5.5 MeV [alpha]'s from the [sup 241]Am source has a width of less than 0.5%, the energy distribution of the observed evaporation signals extends from the low energy threshold of several keV up to a maximum of several 100 keV, depending on geometrical factors and the collection area of the calorimeter. The origin of the observed distribution may result in part from the presence of the substrate and a dependence on the direction of the track of the [alpha] particle. A simple model of the generation of rotons by the [alpha] particle will be discussed.

  6. Performance comparison of scintillators for alpha particle detectors

    Science.gov (United States)

    Morishita, Yuki; Yamamoto, Seiichi; Izaki, Kenji; Kaneko, Junichi H.; Toui, Kohei; Tsubota, Youichi; Higuchi, Mikio

    2014-11-01

    Scintillation detectors for alpha particles are often used in nuclear fuel facilities. Alpha particle detectors have also become important in the research field of radionuclide therapy using alpha emitters. ZnS(Ag) is the most often used scintillator for alpha particle detectors because its light output is high. However, the energy resolution of ZnS(Ag)-based scintillation detectors is poor because they are not transparent. A new ceramic sample, namely the cerium doped Gd2Si2O7 (GPS) scintillator, has been tested as alpha particle detector and its performances have been compared to that one of three different scintillating materials: ZnS(Ag), GAGG and a standard plastic scintillator. The different scintillating materials have been coupled to two different photodetectors, namely a photomultiplier tube (PMT) and a Silicon Photo-multiplier (Si-PM): the performances of each detection system have been compared. Promising results as far as the energy resolution performances (10% with PMT and 14% with Si-PM) have been obtained in the case of GPS and GAGG samples. Considering the quantum efficiencies of the photodetectors under test and their relation to the emission wavelength of the different scintillators, the best results were achieved coupling the GPS with the PMT and the GAGG with the Si-PM

  7. Design of lost alpha particle diagnostics for JET

    Energy Technology Data Exchange (ETDEWEB)

    Baeumel, S. [Max-Planck-Institut fuer Plasmaphysik EURATOM-Association, Wendelsteinstr.1, 17491 Greifswald (Germany)]. E-mail: baeumel@ipp.mpg.de; Werner, A. [Max-Planck-Institut fuer Plasmaphysik EURATOM-Association, Wendelsteinstr.1, 17491 Greifswald (Germany); Semler, R. [Max-Planck-Institut fuer Plasmaphysik EURATOM-Association, Wendelsteinstr.1, 17491 Greifswald (Germany); Mukherjee, S. [Max-Planck-Institut fuer Plasmaphysik EURATOM-Association, Wendelsteinstr.1, 17491 Greifswald (Germany); Darrow, D.S. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, NJ (United States); Ellis, R. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, NJ (United States); Cecil, F.E. [Colorado School of Mines, 1500 Illinois St., Golden CO 80401 (United States); Pedrick, L. [EFDA-JET, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom); Altmann, H. [EFDA-JET, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom); Kiptily, V. [EFDA-JET, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom); Gafert, J. [EFDA-JET, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom)

    2005-11-15

    In a future magnetic fusion reactor alpha particles will be utlilized for plasma heating. In order to achieve a high efficiency of this process, the aim has to be a good confinement of alpha particles. Therefore, direct measurement of alpha particle losses is of particular interest. Two diagnostics are being prepared for the JET Tokamak that are targeting on exactly this subject: a scintillator probe and a set of Faraday cups . These systems are capable of measuring ICRH tail ions and charged fusion products. The scintillator probe aims to allow the detection of particles with a pitch angle between 30{sup o} and 86{sup o} (5% resolution) and a gyroradius between 20 and 140 mm (15% resolution). The Faraday cup array will detect the current of fast ions at multiple poloidal locations, with a dynamic range of 1 nA/cm{sup 2} to 100 {mu}A/cm{sup 2} at a temporal resolution of 1 ms. For 3.5 MeV {alpha}-particles the energy binning of the foil detector will be 15-50% of the full energy depending on the geometry of the individual collector. The experience in operating both diagnostics in a high temperature and high radiation environment will give valuable information in preparation for the design of similar diagnostics for future fusion devices. This paper covers the design and engineering of both diagnostics together with their envisaged performance.

  8. FIRE HOSE INSTABILITY DRIVEN BY ALPHA PARTICLE TEMPERATURE ANISOTROPY

    Energy Technology Data Exchange (ETDEWEB)

    Matteini, L.; Schwartz, S. J. [Department of Physics, Imperial College London, London SW7 2AZ (United Kingdom); Hellinger, P. [Astronomical Institute, CAS, Prague (Czech Republic); Landi, S. [Dipartimento di Fisica e Astronomia, Università di Firenze, Firenze (Italy)

    2015-10-10

    We investigate properties of a solar wind-like plasma, including a secondary alpha particle population exhibiting a parallel temperature anisotropy with respect to the background magnetic field, using linear and quasi-linear predictions and by means of one-dimensional hybrid simulations. We show that anisotropic alpha particles can drive a parallel fire hose instability analogous to that generated by protons, but that, remarkably, can also be triggered when the parallel plasma beta of alpha particles is below unity. The wave activity generated by the alpha anisotropy affects the evolution of the more abundant protons, leading to their anisotropic heating. When both ion species have sufficient parallel anisotropies, both of them can drive the instability, and we observe the generation of two distinct peaks in the spectra of the fluctuations, with longer wavelengths associated to alphas and shorter ones to protons. If a non-zero relative drift is present, the unstable modes propagate preferentially in the direction of the drift associated with the unstable species. The generated waves scatter particles and reduce their temperature anisotropy to a marginally stable state, and, moreover, they significantly reduce the relative drift between the two ion populations. The coexistence of modes excited by both species leads to saturation of the plasma in distinct regions of the beta/anisotropy parameter space for protons and alpha particles, in good agreement with in situ solar wind observations. Our results confirm that fire hose instabilities are likely at work in the solar wind and limit the anisotropy of different ion species in the plasma.

  9. Phosphatidylinositol transfer protein alpha and its role in neurodegeneration

    NARCIS (Netherlands)

    Bunte, H.

    2007-01-01

    Selective neuronal loss is a prominent feature in neurodegenerative disorders. Recently, a link between neurodegeneration and a deficiency in the protein phosphatidylinositol transfer protein alpha (PI-TPalpha) has been demonstrated. In this context it is of importance that fibroblasts overexpressin

  10. Protons from the alpha-particle bombardment of 23Na

    NARCIS (Netherlands)

    Kuperus, J.

    1964-01-01

    Resonances in the yield of ground-state protons from alpha-particle bombardment of 23Na were investigated in the energy range Eα = 1.0 – 3.3 MeV. At least thirty-eight resonances were observed. Resonance energies and strengths are presented. At nine resonances angular distribution measurements lead

  11. 226Ra determination in phosphogypsum by alpha-particle spectrometry

    Science.gov (United States)

    Aguado, J. L.; Bolívar, J. P.; García-Tenorio, R.

    1999-01-01

    A radiochemical method for226Ra determination by alpha-particle spectrometry in environmental samples has been developed in our laboratory. The method has been validated by measurements in samples with known concentrations of this radionuclide and it has been applied in studies related to226Ra behaviour in phosphogypsum (the main by-product of producing phosphoric acid from phosphate rocks).

  12. Heat transfer in suspensions of rigid particles

    Science.gov (United States)

    Brandt, Luca; Niazi Ardekani, Mehdi; Abouali, Omid

    2016-11-01

    We study the heat transfer in laminar Couette flow of suspensions of rigid neutrally buoyant particles by means of numerical simulations. An Immersed Boundary Method is coupled with a VOF approach to simulate the heat transfer in the fluid and solid phase, enabling us to fully resolve the heat diffusion. First, we consider spherical particles and show that the proposed algorithm is able to reproduce the correlations between heat flux across the channel, the particle volume fraction and the heat diffusivity obtained in laboratory experiments and recently proposed in the literature, results valid in the limit of vanishing inertia. We then investigate the role of inertia on the heat transfer and show an increase of the suspension diffusivity at finite particle Reynolds numbers. Finally, we vary the relativity diffusivity of the fluid and solid phase and investigate its effect on the effective heat flux across the channel. The data are analyzed by considering the ensemble averaged energy equation and decomposing the heat flux in 4 different contributions, related to diffusion in the solid and fluid phase, and the correlations between wall-normal velocity and temperature fluctuations. Results for non-spherical particles will be examined before the meeting. Supported by the European Research Council Grant No. ERC-2013- CoG-616186, TRITOS. The authors acknowledge computer time provided by SNIC (Swedish National Infrastructure for Computing).

  13. Probing surface distribution of $\\alpha$-cluster in $^{20}$Ne via $\\alpha$-transfer reaction

    CERN Document Server

    Fukui, Tokuro; Suhara, Tadahiro; Kanada-En'yo, Yoshiko; Ogata, Kazuyuki

    2015-01-01

    Direct evidence of the $\\alpha$-cluster development in bound states has not been obtained yet although a number of experimental studies were carried out to extract the information of the clustering. In particular in conventional analyses of $\\alpha$-transfer reactions, there exist a few significant problems on reaction models, which are insufficient to qualitatively discuss the cluster structure. We aim to verify the development of the $\\alpha$-cluster structure from observables. As the first application, it is argued to extract the spatial information of the cluster structure of the $^{20}$Ne nucleus in its ground state through the cross section of the $\\alpha$-transfer reaction $^{16}$O($^6$Li,~$d$)$^{20}$Ne. For the analysis of the transfer reaction, we work with the coupled-channels Born approximation (CCBA) approach, in which the breakup effect of $^6$Li is explicitly taken into account by means of the continuum-discretized coupled-channels method (CDCC) based on the three-body $\\alpha + d + {}^{16}$O mo...

  14. Three-Body Model Analysis of Subbarrier alpha Transfer Reaction

    CERN Document Server

    Fukui, Tokuro; Yahiro, Masanobu

    2011-01-01

    Subbarrier alpha transfer reaction 13C(6Li,d)17O(6.356 MeV, 1/2+) at 3.6 MeV is analyzed with a alpha + d + 13C three-body model, and the asymptotic normalization coefficient (ANC) for alpha + 13C --> 17O(6.356 MeV, 1/2+), which essentially determines the reaction rate of 13C(alpha,n)16O, is extracted. Breakup effects of 6Li in the initial channel and those of 17O in the final channel are investigated with the continuum-discretized coupled-channels method (CDCC). The former is found to have a large back-coupling to the elastic channel, while the latter turns out significantly small. The transfer cross section calculated with Born approximation to the transition operator, including breakup states of 6Li, gives (C_{alpha 13C}{17O*})^2 =1.03 \\pm 0.29 fm^{-1}. This result is consistent with the value obtained by the previous DWBA calculation.

  15. Targeting Prostate Cancer Stem Cells with Alpha-Particle Therapy

    Science.gov (United States)

    Ceder, Jens; Elgqvist, Jörgen

    2017-01-01

    Modern molecular and radiopharmaceutical development has brought the promise of tumor-selective delivery of antibody–drug conjugates to tumor cells for the diagnosis and treatment of primary and disseminated tumor disease. The classical mode of discourse regarding targeted therapy has been that the antigen targeted must be highly and homogenously expressed in the tumor cell population, and at the same time exhibit low expression in healthy tissue. However, there is increasing evidence that the reason cancer patients are not cured by current protocols is that there exist subpopulations of cancer cells that are resistant to conventional therapy including radioresistance and that these cells express other target antigens than the bulk of the tumor cells. These types of cells are often referred to as cancer stem cells (CSCs). The CSCs are tumorigenic and have the ability to give rise to all types of cells found in a cancerous disease through the processes of self-renewal and differentiation. If the CSCs are not eradicated, the cancer is likely to recur after therapy. Due to some of the characteristics of alpha particles, such as short path length and high density of energy depositions per distance traveled in tissue, they are especially well suited for use in targeted therapies against microscopic cancerous disease. The characteristics of alpha particles further make it possible to minimize the irradiation of non-targeted surrounding healthy tissue, but most importantly, make it possible to deliver high-absorbed doses locally and therefore eradicating small tumor cell clusters on the submillimeter level, or even single tumor cells. When alpha particles pass through a cell, they cause severe damage to the cell membrane, cytoplasm, and nucleus, including double-strand breaks of DNA that are very difficult to repair for the cell. This means that very few hits to a cell by alpha particles are needed in order to cause cell death, enabling killing of cells, such as CSCs

  16. Effect of Photon Hormesis on Dose Responses to Alpha Particles in Zebrafish Embryos

    Directory of Open Access Journals (Sweden)

    Candy Yuen Ping Ng

    2017-02-01

    Full Text Available Photon hormesis refers to the phenomenon where the biological effect of ionizing radiation with a high linear energy transfer (LET value is diminished by photons with a low LET value. The present paper studied the effect of photon hormesis from X-rays on dose responses to alpha particles using embryos of the zebrafish (Danio rerio as the in vivo vertebrate model. The toxicity of these ionizing radiations in the zebrafish embryos was assessed using the apoptotic counts at 20, 24, or 30 h post fertilization (hpf revealed through acridine orange (AO staining. For alpha-particle doses ≥ 4.4 mGy, the additional X-ray dose of 10 mGy significantly reduced the number of apoptotic cells at 24 hpf, which proved the presence of photon hormesis. Smaller alpha-particle doses might not have inflicted sufficient aggregate damages to trigger photon hormesis. The time gap T between the X-ray (10 mGy and alpha-particle (4.4 mGy exposures was also studied. Photon hormesis was present when T ≤ 30 min, but was absent when T = 60 min, at which time repair of damage induced by alpha particles would have completed to prevent their interactions with those induced by X-rays. Finally, the drop in the apoptotic counts at 24 hpf due to photon hormesis was explained by bringing the apoptotic events earlier to 20 hpf, which strongly supported the removal of aberrant cells through apoptosis as an underlying mechanism for photon hormesis.

  17. Effect of Photon Hormesis on Dose Responses to Alpha Particles in Zebrafish Embryos

    Science.gov (United States)

    Ng, Candy Yuen Ping; Cheng, Shuk Han; Yu, Kwan Ngok

    2017-01-01

    Photon hormesis refers to the phenomenon where the biological effect of ionizing radiation with a high linear energy transfer (LET) value is diminished by photons with a low LET value. The present paper studied the effect of photon hormesis from X-rays on dose responses to alpha particles using embryos of the zebrafish (Danio rerio) as the in vivo vertebrate model. The toxicity of these ionizing radiations in the zebrafish embryos was assessed using the apoptotic counts at 20, 24, or 30 h post fertilization (hpf) revealed through acridine orange (AO) staining. For alpha-particle doses ≥ 4.4 mGy, the additional X-ray dose of 10 mGy significantly reduced the number of apoptotic cells at 24 hpf, which proved the presence of photon hormesis. Smaller alpha-particle doses might not have inflicted sufficient aggregate damages to trigger photon hormesis. The time gap T between the X-ray (10 mGy) and alpha-particle (4.4 mGy) exposures was also studied. Photon hormesis was present when T ≤ 30 min, but was absent when T = 60 min, at which time repair of damage induced by alpha particles would have completed to prevent their interactions with those induced by X-rays. Finally, the drop in the apoptotic counts at 24 hpf due to photon hormesis was explained by bringing the apoptotic events earlier to 20 hpf, which strongly supported the removal of aberrant cells through apoptosis as an underlying mechanism for photon hormesis. PMID:28208665

  18. TFTR 60 GHz alpha particle collective Thomson Scattering diagnostic

    Energy Technology Data Exchange (ETDEWEB)

    Machuzak, J.S.; Woskov, P.P.; Gilmore, J. [Massachusetts Inst. of Tech., Cambridge, MA (United States); Bretz, N.L.; Park, H.K. [Princeton Univ., NJ (United States). Plasma Physics Lab.; Aamodt, R.E.; Cheung, P.Y.; Russell, D.A. [Lodestar Research Corp., Boulder, CO (United States); Bindslev, H. [JET Joint Undertaking, Abingdon (United Kingdom)

    1995-03-01

    A 60 GHz gyrotron collective Thomson Scattering alpha particle diagnostic has been implemented for the D-T period on TFM. Gyrotron power of 0.1-1 kW in pulses of up to 1 second can be launched in X-mode. Efficient corrugated waveguides are used with antennaes and vacuum windows of the TFTR Microwave Scattering system. A multichannel synchronous detector receiver system and spectrum analyzer acquire the scattered signals. A 200 Megasample/sec digitizer is used to resolve fine structure in the frequency spectrum. By scattering nearly perpendicular to the magnetic field, this experiment will take advantage of an enhancement of the scattered signal which results from the interaction of the alpha particles with plasma resonances in the lower hybrid frequency range. Significant enhancements are expected, which will make these measurements possible with gyrotron power less than 1 kW, while maintaining an acceptable signal to noise ratio. We hope to extract alpha particle density and velocity distribution functions from the data. The D and T fuel densities and temperatures may also be obtainable by measurement of the respective ion cyclotron harmonic frequencies.

  19. A Further Measurement of the beta-Delayed alpha-Particle Emission of 16N

    CERN Document Server

    III, R H F; McDonald, J E; Wilds, E L

    2007-01-01

    We measured the beta-delayed alpha-particle emission spectrum of 16N with a sensitivity for beta-decay branching ratios of the order of 10-10. The 16N nuclei were produced using the d(15N,16N)p reaction with 70 MeV 15N beams and a deuterium gas target 7.5 cm long at a pressure of 1250 torr. The 16N nuclei were collected (over 10 s) using a thin aluminum foil with an areal density of 180 mu g/cm2 tilted at 7 Deg with respect to the beam. The activity was transferred to the counting area by means of a stepping motor in less than 3 s with the counting carried out over 8 s. The beta-delayed alpha-particles were measured using a time of flight method to achieve a sufficiently low background. Standard calibration sources (148Gd, 241Am, 208,209Po, and 227Ac) as well as alpha-particles and 7Li from the 10B(n,alpha)7Li reaction were used for an accurate energy calibration. The energy resolution of the catcher foil (180-220 keV) was calculated and the time of flight resolution (3-10 nsec) was measured using the beta-de...

  20. An alpha particle instrument with alpha, proton, and X-ray modes for planetary chemical analyses

    Science.gov (United States)

    Economou, T. E.; Turkevich, A. L.

    1976-01-01

    The interaction of alpha particles with matter is employed in a compact instrument that could provide rather complete in-situ chemical analyses of surfaces and thin atmospheres of extraterrestrial bodies. The instrument is a miniaturized and improved version of the Surveyor lunar instrument. The backscattering of alpha particles and (alpha, p) reactions provide analytical data on the light elements (carbon-iron). An X-ray mode that detects the photons produced by the alpha sources provides sensitivity and resolution for the chemical elements heavier than about silicon. The X-rays are detected by semiconductor detectors having a resolution between 150 and 250 eV at 5.9 keV. Such an instrument can identify and determine with good accuracy 99 percent of the atoms (except hydrogen) in rocks. For many trace elements, the detecting sensitivity is a few ppm. Auxiliary sources could be used to enhance the sensitivities for elements of special interest. The instrument could probably withstand the acceleration involved in semi-hard landings.

  1. Pre-Equilibrium Alpha-Particle Emission as a Probe to Explore Alpha Clustering in Nuclei

    Science.gov (United States)

    Kravchuk, V. L.; Fotina, O. V.; Gramegna, F.; Bruno, M.; D'Agostino, M.; Sambi, S.; Barlini, S.; Casini, G.

    Experimental data of the double-differential spectra of light particles emitted at pre-equilibrium stage of nuclear processes were obtained at Laboratori Nazionali di Legnaro for the heavy-ion reactions 130 and 250 MeV 16O + 116Sn. Light charged particles were measured in coincidence with evaporation residues in order to avoid unwanted competing mechanisms. The experimental data were collected in a wide angular range from 29 to 82 degrees in the laboratory system. Theoretical model was developed in order to describe simultaneously evaporative and pre-equilibrium emission of the light particles in heavy-ion reactions. Griffin exciton model was used for the description of the pre-equilibrium stage of the compound nucleus formation, while the equilibrium evaporation processes were analyzed in the framework of the statistical theory of heavy-ion reactions. Experimental data were compared with the results of the model calculations and new approach was suggested to take into account alpha cluster formation in the projectile nucleus by measuring and analyzing pre-equilibrium alpha-particle spectra.

  2. Enhancement of gene transfer activity mediated by mannosylated dendrimer/alpha-cyclodextrin conjugate (generation 3, G3).

    Science.gov (United States)

    Arima, Hidetoshi; Chihara, Yuko; Arizono, Masayo; Yamashita, Shogo; Wada, Koki; Hirayama, Fumitoshi; Uekama, Kaneto

    2006-11-01

    To enhance gene transfer activity of dendrimers, we prepared its conjugate (generation 3, G3) with alpha-cyclodextrin bearing mannose (Man-alpha-CDE conjugates) with various degrees of substitution of the mannose moiety (DSM5, 10, 13, 20) and compared their cytotoxicity and gene transfer activity, and elucidated the enhancing mechanism for the activity. Of the various carriers used here, Man-alpha-CDE conjugate (G3, DSM10) provided the highest gene transfer activity in NR8383, A549, NIH3T3 and HepG2 cells, being independent of the expression of mannose receptors. Gene transfer activity of Man-alpha-CDE conjugate (G3, DSM10) was not decreased by the addition of 10% serum in A549 cells. Cytotoxicity of the polyplex with Man-alpha-CDE conjugates (G3, DSM10) was not observed in A549 and NIH3T3 cells up to the charge ratio of 200/1 (carrier/pDNA). The gel mobility and particle size of polyplex with Man-alpha-CDE conjugate (G3, DSM10) were relevant to those with alpha-CDE conjugate (G3), but zeta-potential, DNase I stability, pDNA condensation of the former polyplex were somewhat different from those of the latter one. Cellular association of polyplex with Man-alpha-CDE conjugate (G3, DSM10) was almost comparable to that with dendrimer (G3) complex and alpha-CDE conjugate (G3). The addition of mannan and mannose attenuated gene transfer activity of Man-alpha-CDE conjugate (G3, DSM10) in A549 cells. Alexa-pDNA complex with TRITC-Man-alpha-CDE conjugate (G3, DSM10), but not the complex with TRITC-alpha-CDE conjugate (G3), was found to translocate to nucleus at 24 h after incubation in A549 cells. HVJ-E vector including mannan, but neither the vector alone nor the vector including dextran, suppressed the nuclear localization of TRITC-Man-alpha-CDE conjugate (G3, DSM10) to a striking degree after 24 h incubation in A549 cells. These results suggest that Man-alpha-CDE conjugate (G3, DSM10) has less cytotoxicity and prominent gene transfer activity through not only its serum

  3. $\\alpha$-particle production in the scattering of 6He by 208Pb at energies around the Coulomb barrier

    CERN Document Server

    Escrig, D; Moro, A M; Alvarez, M A G; Andrés, M V; Angulo, C; García-Borge, M J; Cabrera, J; Cherubini, S; Demaret, P; Espino, J M; Figuera, P; Freer, M; García-Ramos, J E; Gómez-Camacho, J; Gulino, M; Kakuee, O R; Martel, I; Metelko, C; Pérez-Bernal, F; Rahighi, J; Rusek, K; Smirnov, D; Tengblad, O; Ziman, V

    2007-01-01

    New experimental data from the scattering of 6He+208Pb at energies around and below the Coulomb barrier are presented. The yield of breakup products coming from projectile fragmentation is dominated by a strong group of $\\alpha$ particles. The energy and angular distributions of this group have been analyzed and compared with theoretical calculations. This analysis indicates that the $\\alpha$ particles emitted at backward angles in this reaction are mainly due to two-neutron transfer to weakly bound states of the final nucleus.

  4. The $\\alpha$ particle as a canonically quantized multiskyrmion

    CERN Document Server

    Acus, A; Riska, D O

    2006-01-01

    The rational map approximation to the solution to the SU(2) Skyrme model with baryon number B=4 is canonically quantized. The quantization procedure leads to anomalous breaking of the chiral symmetry, and exponential falloff of the energy density of the soliton at large distances. The model is extended to SU(2) representations of arbitrary dimension. These soliton solutions capture the double node feature of the empirical $\\alpha$ particle charge form factor, but as expected lead to a too compact matter distribution. Comparison to phenomenology indicates a preference for the fundamental representation.

  5. Measurements of DT alpha particle loss near the outer midplane of TFTR

    Energy Technology Data Exchange (ETDEWEB)

    Zweben, S.J.; Darrow, D.S.; Herrmann, H.W.; Redi, M.H.; Schivell, J.; White, R.B.

    1995-07-01

    Measurements of DT alpha particle loss to the outer midplane region of TFTR have been made using a radially movable scintillator detector. The conclusion from this data is that mechanisms determining the DT alpha loss to the outer midplane are not substantially different from those for DD fusion products. Some of these results are compared with a simplified theoretical model for TF ripple-induced alpha loss, which is expected to be the dominant classical alpha loss mechanism near the outer midplane. An example of plasma-driven MHD-induced alpha particle loss is shown, but no signs of any ``collective`` alpha instability-induced alpha loss have yet been observed.

  6. Mutagenic effects of a single and an exact number of alpha particles in mammalian cells

    Science.gov (United States)

    Hei, T. K.; Wu, L. J.; Liu, S. X.; Vannais, D.; Waldren, C. A.; Randers-Pehrson, G.

    1997-01-01

    One of the main uncertainties in risk estimation for environmental radon exposure using lung cancer data from underground miners is the extrapolation from high- to low-dose exposure where multiple traversal is extremely rare. The biological effects of a single alpha particle are currently unknown. Using the recently available microbeam source at the Radiological Research Accelerator Facility at Columbia University, we examined the frequencies and molecular spectrum of S1- mutants induced in human-hamster hybrid (A(L)) cells by either a single or an exact number of alpha particles. Exponentially growing cells were stained briefly with a nontoxic concentration of Hoechst dye for image analysis, and the location of individual cells was computer-monitored. The nucleus of each cell was irradiated with either 1,2,4, or 8 alpha particles at a linear energy transfer of 90 keV/microm consistent with the energy spectrum of domestic radon exposure. Although single-particle traversal was only slightly cytotoxic to A(L) cells (survival fraction approximately 0.82), it was highly mutagenic, and the induced mutant fraction averaged 110 mutants per 10(5) survivors. In addition, both toxicity and mutant induction were dose-dependent. Multiplex PCR analysis of mutant DNA showed that the proportion of mutants with multilocus deletions increased with the number of particle traversals. These data provide direct evidence that a single a particle traversing a nucleus will have a high probability of resulting in a mutation and highlight the need for radiation protection at low doses.

  7. Detection of alpha particles using DNA/Al Schottky junctions

    Energy Technology Data Exchange (ETDEWEB)

    Al-Ta' ii, Hassan Maktuff Jaber, E-mail: hassankirkukly@gmail.com, E-mail: vengadeshp@um.edu.my [Low Dimensional Materials Research Centre (LDMRC), 50603 Kuala Lumpur (Malaysia); Department of Physics, Faculty of Science, University of Al-Muthana, Al-Muthana 66001 (Iraq); Periasamy, Vengadesh, E-mail: hassankirkukly@gmail.com, E-mail: vengadeshp@um.edu.my [Low Dimensional Materials Research Centre (LDMRC), 50603 Kuala Lumpur (Malaysia); Amin, Yusoff Mohd [Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2015-09-21

    Deoxyribonucleic acid or DNA can be utilized in an organic-metallic rectifying structure to detect radiation, especially alpha particles. This has become much more important in recent years due to crucial environmental detection needs in both peace and war. In this work, we fabricated an aluminum (Al)/DNA/Al structure and generated current–voltage characteristics upon exposure to alpha radiation. Two models were utilized to investigate these current profiles; the standard conventional thermionic emission model and Cheung and Cheung's method. Using these models, the barrier height, Richardson constant, ideality factor and series resistance of the metal-DNA-metal structure were analyzed in real time. The barrier height, Φ value calculated using the conventional method for non-radiated structure was 0.7149 eV, increasing to 0.7367 eV after 4 min of radiation. Barrier height values were observed to increase after 20, 30 and 40 min of radiation, except for 6, 8, and 10 min, which registered a decrease of about 0.67 eV. This was in comparison using Cheung and Cheung's method, which registered 0.6983 eV and 0.7528 eV for the non-radiated and 2 min of radiation, respectively. The barrier height values, meanwhile, were observed to decrease after 4 (0.61 eV) to 40 min (0.6945 eV). The study shows that conventional thermionic emission model could be practically utilized for estimating the diode parameters including the effect of series resistance. These changes in the electronic properties of the Al/DNA/Al junctions could therefore be utilized in the manufacture of sensitive alpha particle sensors.

  8. A self-consistent theory of collective alpha particle losses induced by Alfvenic turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Biglari, H. (Princeton Univ., NJ (United States). Plasma Physics Lab.); Diamond, P.H. (California Univ., San Diego, La Jolla, CA (United States). Dept. of Physics)

    1992-01-01

    The nonlinear dynamics of kinetic Alfven waves, resonantly excited by energetic ions/alpha particles, is investigated. It is shown that {alpha}-particles govern both linear instability and nonlinear saturation dynamics, while the background MHD turbulence results only in a nonlinear real frequency shift. The most efficient saturation mechanism is found to be self-induced profile modification. Expressions for the fluctuation amplitudes and the {alpha}-particle radial flux are self-consistently derived. The work represents the first self-consistent, turbulent treatment of collective {alpha}-particle losses by Alfvenic fluctuations.

  9. Anomalous loss of DT alpha particles in the Tokamak Fusion Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, H.W.

    1997-09-01

    An escaping alpha collector probe has been developed for TFTR`s DT phase. Energy distributions of escaping alphas have been determined by measuring the range of {alpha}-particles implanted into nickel foils located within the alpha collector. Results at 1.0 MA of plasma current are in good agreement with predictions for first orbit alpha loss. Results at 1.8 MA, however, show a significant anomalous loss of partially thermalized alphas (in addition to the expected first orbit loss), which is not observed with the lost alpha scintillator detectors in DT plasmas, but does resemble the anomalous delayed loss seen in DD plasmas. None of the candidate explanations proposed thus far are fully consistent with the anomalous loss observations. An experiment designed to study the effect of plasma major radius shifts on {alpha}-particle loss has led to a better understanding of {alpha}-particle dynamics in tokamaks. Intuitively, one might suppose that confined marginally passing {alpha}-particles forced to move toward higher magnetic field during an inward major radius shift (i.e., compression) would mirror and become trapped particles, leading to increased alpha loss. Such an effect was looked for during the shift experiment, however, no significant changes in alpha loss to the 90{degree} lost alpha scintillator detector were observed during the shifts. It is calculated that the energy gained by an {alpha}-particle during the inward shift is sufficient to explain this result. However, an unexpected loss of partially thermalized {alpha}-particles near the passing/trapped boundary was observed to occur between inward and outward shifts at an intermediate value of plasma current (1.4 MA). This anomalous loss feature is not yet understood.

  10. Development of an optical lens based alpha-particle imaging system using position sensitive photomultiplier tube

    Science.gov (United States)

    Ando, Koki; Oka, Miki; Yamamoto, Seiichi

    2017-02-01

    We developed an optical lens based alpha-particle imaging system using position sensitive photomultiplier tube (PSPMT). The alpha-particle imaging system consists of an optical lens, an extension tube and a 1 in. square high quantum efficiency (HQE) type PSPMT. After a ZnS(Ag) is attached to subject, the scintillation image of ZnS(Ag) is focused on the photocathode of the PSPMT by the use of the optical lens. With this configuration we could image the alpha particle distribution with energy information without contacting to the subject. The spatial resolution and energy resolution were 0.8 mm FWHM and 50% FWHM at 5 mm from the optical lens, respectively. We could successfully image the alpha particle distribution in uranium ore. The developed alpha-particle imaging system will be a new tool for imaging alpha emitters with energy information without contacting the subject.

  11. Chromosomal aberrations induced by alpha particles; Aberraciones cromosomicas inducidas por particulas {alpha}

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero C, C.; Brena V, M. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: cgc@nuclear.inin.mx

    2005-07-01

    The chromosomal aberrations produced by the ionizing radiation are commonly used when it is necessary to establish the exposure dose of an individual, it is a study that is used like complement of the traditional physical systems and its application is only in cases in that there is doubt about what indicates the conventional dosimetry. The biological dosimetry is based on the frequency of aberrations in the chromosomes of the lymphocytes of the individual in study and the dose is calculated taking like reference to the dose-response curves previously generated In vitro. A case of apparent over-exposure to alpha particles to which is practiced analysis of chromosomal aberrations to settle down if in fact there was exposure and as much as possible, to determine the presumed dose is presented. (Author)

  12. Pre-equilibrium {\\alpha}-particle emission as a probe to study {\\alpha}-clustering in nuclei

    CERN Document Server

    Fotina, O V; Eremenko, D O; Platonov, S Yu; Yuminov, O A; Kravchuk, V L; Gramegna, F; Marchi, T; Cinausero, M; D'Agostino, M; Bruno, M; Baiocco, G; Morelli, L; Degerlier, M; Casini, G; Barlini, S; Valdrè, S; Piantelli, S; Pasquali, G; Bracco, A; Camera, F; Wieland, O; Benzoni, G; Blasi, N; Giaz, A; Corsi, A

    2013-01-01

    A theoretical approach was developed to describe secondary particle emission in heavy ion collisions, with special regards to pre-equilibrium {\\alpha}-particle production. Griffin's model of non-equilibrium processes is used to account for the first stage of the compound system formation, while a Monte Carlo statistical approach was used to describe the further decay from a hot source at thermal equilibrium. The probabilities of neutron, proton and {\\alpha}-particle emission have been evaluated for both the equilibrium and pre-equilibrium stages of the process. Fission and {\\gamma}-ray emission competition were also considered after equilibration. Effects due the possible cluster structure of the projectile which has been excited during the collisions have been experimentally evidenced studying the double differential cross sections of p and {\\alpha}-particles emitted in the E=250MeV 16O +116Sn reaction. Calculations within the present model with different clusterization probabilities have been compared to th...

  13. Bond scission cross sections for alpha-particles in cellulose nitrate (LR115)

    CERN Document Server

    Barillon, R; Chambaudet, A; Katz, R; Stoquert, J P; Pape, A

    1999-01-01

    Chemical damage created by alpha-particles in cellulose nitrate (LR115) have been studied by infrared spectroscopy. This technique enables identifying the sensitive bonds and giving an order of magnitude of their scission cross sections for given alpha-particle energies. The high cross sections observed suggest a new description of the track etch velocity in this material.

  14. Alpha particle clusters and their condensation in nuclear systems

    Science.gov (United States)

    Schuck, Peter; Funaki, Yasuro; Horiuchi, Hisashi; Röpke, Gerd; Tohsaki, Akihiro; Yamada, Taiichi

    2016-12-01

    In this article we review the present status of α clustering in nuclear systems. First of all, an important aspect is condensation in nuclear matter. Like for pairing, quartetting in matter is at the root of similar phenomena in finite nuclei. Cluster approaches for finite nuclei are shortly recapitulated in historical order. The α container model, recently been proposed by Tohsaki-Horiuchi-Schuck-Röpke (THSR), will be outlined and the ensuing condensate aspect of the Hoyle state at 7.65 MeV in 12C is investigated in some detail. A special case will be made with respect to the very accurate reproduction of the inelastic form factor from the ground to Hoyle state with the THSR description. The extended volume will be deduced. New developments concerning excitations of the Hoyle state will be discussed. After 15 years since the proposal of the α condensation concept a critical assessment of this idea will be given. Alpha gas states in other nuclei like 16O and 13C will be considered. An important aspect is the experimental evidence, both present and future ones. The THSR wave function can also describe configurations of one α particle on top of a doubly magic core. The cases of 20Ne and 212Po will be investigated.

  15. Instabilities Driven by the Drift and Temperature Anisotropy of Alpha Particles in the Solar Wind

    CERN Document Server

    Verscharen, Daniel; Chandran, Benjamin D G

    2013-01-01

    We investigate the conditions under which parallel-propagating Alfv\\'en/ion-cyclotron (A/IC) waves and fast-magnetosonic/whistler (FM/W) waves are driven unstable by the differential flow and temperature anisotropy of alpha particles in the solar wind. We focus on the limit in which $w_{\\parallel \\alpha} \\gtrsim 0.25 v_{\\mathrm A}$, where $w_{\\parallel \\alpha} $ is the parallel alpha-particle thermal speed and $v_{\\mathrm A}$ is the Alfv\\'en speed. We derive analytic expressions for the instability thresholds of these waves, which show, e.g., how the minimum unstable alpha-particle beam speed depends upon $w_{\\parallel \\alpha}/v_{\\mathrm A}$, the degree of alpha-particle temperature anisotropy, and the alpha-to-proton temperature ratio. We validate our analytical results using numerical solutions to the full hot-plasma dispersion relation. Consistent with previous work, we find that temperature anisotropy allows A/IC waves and FM/W waves to become unstable at significantly lower values of the alpha-particle b...

  16. Radiobiological Effects of Alpha-Particles from Astatine-211: From DNA Damage to Cell Death

    Energy Technology Data Exchange (ETDEWEB)

    Claesson, Kristina

    2011-05-15

    In recent years, the use of high linear energy transfer (LET) radiation for radiotherapeutic applications has gained increased interest. Astatine-211 (211At) is an alpha-particle emitting radionuclide, promising for targeted radioimmunotherapy of isolated tumor cells and microscopic clusters. To improve development of safe radiotherapy using 211At it is important to increase our knowledge of the radiobiological effects in cells. During radiotherapy, both tumors and adjacent normal tissue will be irradiated and therefore, it is of importance to understand differences in the radio response between proliferating and resting cells. The aim of this thesis was to investigate effects in fibroblasts with different proliferation status after irradiation with alpha-particles from 211At or X-rays, from inflicted DNA damage, to cellular responses and biological consequences. Throughout this work, irradiation was performed with alpha-particles from 211A or X-rays. The induction and repair of double-strand breaks (DSBs) in human normal fibroblasts were investigated using pulsed-field gel electrophoresis and fragment analysis. The relative biological effectiveness (RBE) of 211At for DSB induction varied between 1.4 and 3.1. A small increase of DSBs was observed in cycling cells compared to stationary cells. The repair kinetics was slower after 211At and more residual damage was found after 24 h. Comparison between cells with different proliferation status showed that the repair was inefficient in cycling cells with more residual damage, regardless of radiation quality. Activation of cell cycle arrests was investigated using immunofluorescent labeling of the checkpoint kinase Chk2 and by measuring cell cycle distributions with flow cytometry analysis. After alpha-particle irradiation, the average number of Chk2-foci was larger and the cells had a more affected cell cycle progression for several weeks compared with X-irradiated cells, indicating a more powerful arrest after 211At

  17. An alpha particle detector for a portable neutron generator for the Nuclear Materials Identification System (NMIS)

    Science.gov (United States)

    Hausladen, P. A.; Neal, J. S.; Mihalczo, J. T.

    2005-12-01

    A recoil alpha particle detector has been developed for use in a portable neutron generator. The associated particle sealed tube neutron generator (APSTNG) will be used as an interrogation source for the Nuclear Materials Identification System (NMIS). With the coincident emission of 14.1 MeV neutrons and 3.5 MeV alpha particles produced by the D-T reaction, alpha detection determines the time and direction of the neutrons of interest for subsequent use as an active nuclear materials interrogation source. The alpha particle detector uses a ZnO(Ga) scintillator coating applied to a fiber optic face plate. Gallium-doped zinc oxide is a fast (inorganic scintillator with a high melting point (1975 °C). One detector has been installed in an APSTNG and is currently being tested. Initial results include a measured efficiency for 3.5 MeV alphas of 90%.

  18. Lung cancer risk at low doses of alpha particles.

    Science.gov (United States)

    Hofmann, W; Katz, R; Zhang, C X

    1986-10-01

    A survey of inhabitant exposures arising from the inhalation of 222Rn and 220Rn progeny, and lung cancer mortality has been carried out in two adjacent areas in Guangdong Province, People's Republic of China, designated as the "high background" and the "control" area. Annual exposure rates are 0.38 working level months (WLM) per year in the high background, and 0.16 WLM/yr in the control area. In 14 yr of continuous study, from 1970 to 1983, age-adjusted mortality rates were found to be 2.7 per 10(5) living persons of all ages in the high background area, and 2.9 per 10(5) living persons in the control area. From this data, we conclude that we are unable to determine excess lung cancers over the normal fluctuations below a cumulative exposure of 15 WLM. This conclusion is supported by lung cancer mortality data from Austrian and Finnish high-background areas. A theoretical analysis of epidemiological data on human lung cancer incidence from inhaled 222Rn and 220Rn progeny, which takes into account cell killing as competitive with malignant transformation, leads to the evaluation of a risk factor which is either a linear-exponential or a quadratic-exponential function of the alpha-particle dose. Animal lung cancer data and theoretical considerations can be supplied to support either hypothesis. Thus we conclude that at our current stage of knowledge both the linear-exponential and the quadratic-exponential extrapolation to low doses seem to be equally acceptable for Rn-induced lung cancer risk, possibly suggesting a linear-quadratic transformation function with an exponential cell-killing term, or the influence of risk-modifying factors such as repair or proliferation stimuli.

  19. On the approximations of the distribution function of fusion alpha particles

    Energy Technology Data Exchange (ETDEWEB)

    Bilato, R., E-mail: roberto.bilato@ipp.mpg.de; Brambilla, M.; Poli, E. [Max Planck Institute for Plasma Physics, EURATOM Association, Boltzmannstr. 2, 85748 Garching (Germany)

    2014-10-15

    The solution of the drift-kinetic equation for fusion-born alpha particles is derived in the limit of dominant parallel streaming, and it is related to the usual slowing-down distribution function. The typical approximations of the fast tail of fusion-born alpha particles are briefly compared and discussed. In particular, approximating the distribution function of fast-alpha particles with an “equivalent” Maxwellian is inaccurate to describe absorption of radio-frequency waves in the ion-cyclotron range of frequencies.

  20. Angular distribution of rotons generated by alpha particles in superfluid helium: A possible tool for low energy particle detection

    Energy Technology Data Exchange (ETDEWEB)

    Bandler, S.R.; Broueer, S.M.; Enss, C.; Lanou, R.E.; Maris, H.J.; More, T.; Porter, F.S.; Seidel, G.M. [Department of Physics, Brown University, Providence, Rhode Island 02912 (United States)

    1995-04-17

    We report measurements of the distribution of rotons generated by {alpha} particles interacting in a bath of superfluid helium. The roton flux is found to be anisotropic; it is about 4 times larger transverse to the track direction than along it. This asymmetry may provide a powerful tool in particle and astrophysics experiments where sensitivity to low energy recoil track direction is important.

  1. Interphasial energy transfer and particle dissipation in particle-laden wall turbulence

    NARCIS (Netherlands)

    Zhao, L.; Andersson, H.I.; Gillissen, J.J.J.

    2013-01-01

    Transfer of mechanical energy between solid spherical particles and a Newtonian carrier fluid has been explored in two-way coupled direct numerical simulations of turbulent channel flow. The inertial particles have been treated as individual point particles in a Lagrangian framework and their feedba

  2. MIRD Pamphlet No. 22 (Unabridged): Radiobiology and Dosimetry of alpha-Particle Emitters for Targeted Radionuclide Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Sgouros, George; Roeske, John C.; McDevitt, Michael S.; Palm, Stig; Allen, Barry J.; Fisher, Darrell R.; Brill, Bertrand A.; Song, Hong; Howell, R. W.; Akabani, Gamal

    2010-02-28

    The potential of alpha-particle emitters to treat cancer has been recognized since the early 1900s. Advances in the targeted delivery of radionuclides, in radionuclide conjugation chemistry, and in the increased availability of alpha-emitters appropriate for clinical use have recently led to patient trials of alpha-particle-emitter labeled radiopharmaceuticals. Although alpha-emitters have been studied for many decades, their current use in humans for targeted therapy is an important milestone. The objective of this work is to review those aspects of the field that are pertinent to targeted alpha-particle-emitter therapy and to provide guidance and recommendations for human alpha-particle-emitter dosimetry.

  3. Anomalous loss of DT alpha particles in the Tokamak Fusion Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, Hans W. [Princeton Univ., NJ (United States)

    1997-09-01

    An escaping alpha collector probe has been developed for TFTR`s DT phase. Energy distributions of escaping alphas have been determined by measuring the range of α-particles implanted into nickel foils located within the alpha collector. Results at 1.0 MA of plasma current are in good agreement with predictions for first orbit alpha loss. Results at 1.8 MA, however, show a significant anomalous loss of partially thermalized alphas (in addition to the expected first orbit loss), which is not observed with the lost alpha scintillator detectors in DT plasmas, but does resemble the anomalous delayed loss seen in DD plasmas. None of the candidate explanations proposed thus far are fully consistent with the anomalous loss observations. An experiment designed to study the effect of plasma major radius shifts on α-particle loss has led to a better understanding of α-particle dynamics in tokamaks. Intuitively, one might suppose that confined marginally passing α-particles forced to move toward higher magnetic field during an inward major radius shift (i.e., compression) would mirror and become trapped particles, leading to increased alpha loss. Such an effect was looked for during the shift experiment, however, no significant changes in alpha loss to the 90° lost alpha scintillator detector were observed during the shifts. It is calculated that the energy gained by an α-particle during the inward shift is sufficient to explain this result. However, an unexpected loss of partially thermalized α-particles near the passing/trapped boundary was observed to occur between inward and outward shifts at an intermediate value of plasma current (1.4 MA). This anomalous loss feature is not yet understood.

  4. Alpha-particle-induced bystander effects between zebrafish embryos in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Yum, E.H.W.; Choi, V.W.Y.; Nikezic, D. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong); Li, V.W.T.; Cheng, S.H. [Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong); Yu, K.N., E-mail: peter.yu@cityu.edu.h [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong)

    2009-10-15

    Dechorionaed embryos of the zebrafish, Danio rerio, at 1.5 h post-fertilization (hpf) were irradiated with alpha particles from an {sup 241}Am source. Thin polyallyldiglycol carbonate (PADC) films with a thickness of 16 mum were used as support substrates for holding the embryos and recorded alpha-particle hit positions, and thus enabled calculation of the dose absorbed by the embryos. The irradiated embryos were subsequently incubated with naive (unirradiated) embryos in such a way that the irradiated and naive embryos were spatially separated but the medium was shared. Acridine orange was used to perform in vital staining to show cell deaths in the naive embryos at 24 hpf. Our results gave evidence in supporting the existence of alpha-particle-induced bystander effects between zebrafish embryos in vivo, and a general positive correlation between the cell death signals in the naive embryos and the alpha-particle dose absorbed by the irradiated embryos.

  5. Interaction of neutrons with alpha particles: A tribute to Heinz Barschall

    CERN Document Server

    Hoop, B

    2015-01-01

    As a tribute to our teacher and mentor on the occasion of his centennial celebration, we provide a brief historical overview and a summary of sustained interest in the topic of interaction of neutrons with alpha particles.

  6. Measurement of $\\alpha$-particle quenching in LAB based scintillator in independent small-scale experiments

    CERN Document Server

    von Krosigk, B; Hans, S; Junghans, A R; Kögler, T; Kraus, C; Kuckert, L; Liu, X; Nolte, R; O'Keeffe, H M; Tseung, H S Wan Chan; Wilson, J R; Wright, A; Yeh, M; Zuber, K

    2015-01-01

    The $\\alpha$-particle light response of liquid scintillators based on linear alkylbenzene (LAB) has been measured with three different experimental approaches. In the first approach, $\\alpha$-particles were produced in the scintillator via $^{12}$C($n$,$\\alpha$)$^9$Be reactions. In the second approach, the scintillator was loaded with 2% of $^{\\mathrm{nat}}$Sm providing an $\\alpha$-emitter, $^{147}$Sm, as an internal source. In the third approach, a scintillator flask was deployed into the water-filled SNO+ detector and the radioactive contaminants $^{222}$Rn, $^{218}$Po and $^{214}$Po provided the $\\alpha$-particle signal. The behavior of the observed $\\alpha$-particle light outputs are in agreement with each case successfully described by Birks' law. The resulting Birks parameter $kB$ ranges from $(0.0071\\pm0.0003)$ cm/MeV to $(0.0076\\pm0.0003)$ cm/MeV. In the first approach, the $\\alpha$-particle light response was measured simultaneously with the light response of recoil protons produced via neutron-proto...

  7. Effect of Magnetohydrodynamic Perturbations on the Orbit Loss of Alpha Particles in Tokamak Plasma

    Institute of Scientific and Technical Information of China (English)

    邬良能; 俞国扬

    2002-01-01

    We investigate the orbit loss of alpha particles under helical magnetic perturbation in a tokamak. The results show that low-frequency andlow-mode number magnetic perturbation can cause stochastic loss ofalpha particles.This effect is significant for those particles close to the boundary between the transit zone and the trapped zone.The particle loss is sensitive to the phase of the magnetic perturbation, indicating the modulation of the particle loss with respect to magnetic perturbation. It is also found that the precession of the particle banana orbit can even further enhance the particle loss.

  8. Combined effects of alpha particles and depleted uranium on Zebrafish (Danio rerio) embryos

    Science.gov (United States)

    Ng, Candy Y.P.; Pereira, Sandrine; Cheng, Shuk Han; Adam-Guillermin, Christelle; Garnier-Laplace, Jacqueline; Yu, Kwan Ngok

    2016-01-01

    The combined effects of low-dose or high-dose alpha particles and depleted uranium (DU) in Zebrafish (Danio rerio) embryos were studied. Three schemes were examined—(i) [ILUL]: 0.44 mGy alpha-particle dose + 10 µg/l DU exposure, (ii) [IHUH]: 4.4 mGy alpha-particle dose + 100 µg/l DU exposure and (iii) [IHUL]: 4.4 mGy alpha-particle dose + 10 µg/l DU exposure—in which Zebrafish embryos were irradiated with alpha particles at 5 h post fertilization (hpf) and/or exposed to uranium at 5–6 hpf. The results were also compared with our previous work, which studied the effects of [ILUH]: 0.44 mGy alpha-particle dose + 100 µg/l DU exposure. When the Zebrafish embryos developed to 24 hpf, the apoptotic signals in the entire embryos, used as the biological endpoint for this study, were quantified. Our results showed that [ILUL] and [IHUL] led to antagonistic effects, whereas [IHUH] led to an additive effect. The effect found for the previously studied case of [ILUH] was difficult to define because it was synergistic with reference to the 100 µg/l DU exposure, but it was antagonistic with reference to the 0.44 mGy alpha-particle dose. All the findings regarding the four different schemes showed that the combined effects critically depended on the dose response to each individual stressor. We also qualitatively explained these findings in terms of promotion of early death of cells predisposed to spontaneous transformation by alpha particles, interacting with the delay in cell death resulting from various concentrations of DU exposure. PMID:26937024

  9. Alpha particles in solar cosmic rays over the last 80,000 years.

    Science.gov (United States)

    Lanzerotti, L. J.; Reedy, R. C.; Arnold, J. R.

    1973-01-01

    Present-day (1967 to 1969) fluxes of alpha particles from solar cosmic rays, determined from satellite measurements, were used to calculate the production rates of cobalt-57, cobalt-58, and nickel-59 in lunar surface samples. Comparisons with the activities of nickel-59 (half-life, 80,000 years) measured in lunar samples indicate that the long-term and present-day fluxes of solar alpha particles are comparable within a factor of approximately 4.

  10. Cellular restriction of retrovirus particle-mediated mRNA transfer.

    Science.gov (United States)

    Galla, Melanie; Schambach, Axel; Towers, Greg J; Baum, Christopher

    2008-03-01

    Analyzing cellular restriction mechanisms provides insight into viral replication strategies, identifies targets for antiviral drug design, and is crucial for the development of novel tools for experimental or therapeutic delivery of genetic information. We have previously shown that retroviral vector mutants that are unable to initiate reverse transcription mediate a transient expression of any sequence which replaces the gag-pol transcription unit, a process we call retrovirus particle-mediated mRNA transfer (RMT). Here, we further examined the mechanism of RMT by testing its sensitivity to cellular restriction factors and short hairpin RNAs (shRNAs). We found that both human TRIM5alpha and, to a lesser extent, Fv1 effectively restrict RMT if the RNA is delivered by a restriction-sensitive capsid. While TRIM5alpha restriction of RMT led to reduced levels of retroviral mRNA in target cells, restriction by Fv1 did not. Treatment with the proteasome inhibitor MG132 partially relieved TRIM5alpha-mediated restriction of RMT. Finally, cells expressing shRNAs specifically targeting the retroviral mRNA inhibited RMT particles, but not reverse-transcribing particles. Retroviral mRNA may thus serve as a translation template if not used as a template for reverse transcription. Our data imply that retroviral nucleic acids become accessible to host factors, including ribosomes, as a result of particle remodeling during cytoplasmic trafficking.

  11. Development of the MICROMEGAS Detector for Measuring the Energy Spectrum of Alpha Particles by using a 241-Am Source

    CERN Document Server

    Kim, Do Yoon; Shin, Jae Won; Park, Tae-Sun; Hong, Seung-Woo; Andriamonje, Samuel; Kadi, Yacine; Tenreiro, Claudio

    2016-01-01

    We have developed MICROMEGAS (MICRO MEsh GASeous) detectors for detecting {\\alpha} particles emitted from an 241-Am standard source. The voltage applied to the ionization region of the detector is optimized for stable operation at room temperature and atmospheric pressure. The energy of {\\alpha} particles from the 241-Am source can be varied by changing the flight path of the {\\alpha} particle from the 241 Am source. The channel numbers of the experimentally-measured pulse peak positions for different energies of the {\\alpha} particles are associated with the energies deposited by the alpha particles in the ionization region of the detector as calculated by using GEANT4 simulations; thus, the energy calibration of the MICROMEGAS detector for {\\alpha} particles is done. For the energy calibration, the thickness of the ionization region is adjusted so that {\\alpha} particles may completely stop in the ionization region and their kinetic energies are fully deposited in the region. The efficiency of our MICROMEGA...

  12. Particle swarm optimization applied to impulsive orbital transfers

    Science.gov (United States)

    Pontani, Mauro; Conway, Bruce A.

    2012-05-01

    The particle swarm optimization (PSO) technique is a population-based stochastic method developed in recent years and successfully applied in several fields of research. It mimics the unpredictable motion of bird flocks while searching for food, with the intent of determining the optimal values of the unknown parameters of the problem under consideration. At the end of the process, the best particle (i.e. the best solution with reference to the objective function) is expected to contain the globally optimal values of the unknown parameters. The central idea underlying the method is contained in the formula for velocity updating. This formula includes three terms with stochastic weights. This research applies the particle swarm optimization algorithm to the problem of optimizing impulsive orbital transfers. More specifically, the following problems are considered and solved with the PSO algorithm: (i) determination of the globally optimal two- and three-impulse transfer trajectories between two coplanar circular orbits; (ii) determination of the optimal transfer between two coplanar, elliptic orbits with arbitrary orientation; (iii) determination of the optimal two-impulse transfer between two circular, non-coplanar orbits; (iv) determination of the globally optimal two-impulse transfer between two non-coplanar elliptic orbits. Despite its intuitiveness and simplicity, the particle swarm optimization method proves to be capable of effectively solving the orbital transfer problems of interest with great numerical accuracy.

  13. Integration of Heat Transfer, Stress, and Particle Trajectory Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Thuc Bui; Michael Read; Lawrence ives

    2012-05-17

    Calabazas Creek Research, Inc. developed and currently markets Beam Optics Analyzer (BOA) in the United States and abroad. BOA is a 3D, charged particle optics code that solves the electric and magnetic fields with and without the presence of particles. It includes automatic and adaptive meshing to resolve spatial scales ranging from a few millimeters to meters. It is fully integrated with CAD packages, such as SolidWorks, allowing seamless geometry updates. The code includes iterative procedures for optimization, including a fully functional, graphical user interface. Recently, time dependent, particle in cell capability was added, pushing particles synchronically under quasistatic electromagnetic fields to obtain particle bunching under RF conditions. A heat transfer solver was added during this Phase I program. Completed tasks include: (1) Added a 3D finite element heat transfer solver with adaptivity; (2) Determined the accuracy of the linear heat transfer field solver to provide the basis for development of higher order solvers in Phase II; (3) Provided more accurate and smoother power density fields; and (4) Defined the geometry using the same CAD model, while maintaining different meshes, and interfacing the power density field between the particle simulator and heat transfer solvers. These objectives were achieved using modern programming techniques and algorithms. All programming was in C++ and parallelization in OpenMP, utilizing state-of-the-art multi-core technology. Both x86 and x64 versions are supported. The GUI design and implementation used Microsoft Foundation Class.

  14. {alpha}-particle emission probabilities in the decay of {sup 235}U

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Torano, Eduardo [Laboratorio de Metrologia de Radiaciones Ionizantes, CIEMAT, Madrid (Spain)]. E-mail: E.Garciatorano@ciemat.es; Teresa Crespo, M. [Laboratorio de Metrologia de Radiaciones Ionizantes, CIEMAT, Madrid (Spain); Roteta, Miguel [Laboratorio de Metrologia de Radiaciones Ionizantes, CIEMAT, Madrid (Spain); Sibbens, Goedele [European Commission, Joint Research Centre, Institute for Reference Materials and Measurements, Geel (Belgium); Pomme, Stefaan [European Commission, Joint Research Centre, Institute for Reference Materials and Measurements, Geel (Belgium); Martin Sanchez, Alejandro [Departamento de Fisica, Universidad de Extremadura, Badajoz (Spain); Pilar Rubio Montero, M. [Departamento de Fisica, Universidad de Extremadura, Badajoz (Spain); Woods, Simon [Radioactivity Metrology Group, National Physical Laboratory, Teddington, Middlesex (United Kingdom); Pearce, Andy [Radioactivity Metrology Group, National Physical Laboratory, Teddington, Middlesex (United Kingdom)

    2005-09-21

    {sup 235}U decays by {alpha}-particle emission to {sup 231}Th. The decay scheme of this nuclide is very complex, with more than 20 alpha branches. Recommended values for P {sub {alpha}} of this nuclide are based on measurements carried out in 1975. This work presents the results of new measurements made with Si detectors and sources of enriched uranium in the frame of the EUROMET 591 cooperation project. The use of improved measurement techniques and numerical analysis of spectra allowed a new set of P {sub {alpha}} values for 13 lines with improved uncertainties to be obtained.

  15. Registration of alpha particles in Makrofol-E nuclear track detectors

    Energy Technology Data Exchange (ETDEWEB)

    Rammah, Y.S. [Physics Department, Faculty of Science, Menoufia University, Shebin El-Koom (Egypt); Abdalla, Ayman M., E-mail: aymanabdalla62@hotmail.com [Physics Department, Faculty of Sciences and Arts, Najran University, P. O. Box. 11001, Najran (Saudi Arabia); Promising Centre for Sensors and Electronic Devices, Faculty of Arts and Sciences, Najran University (Saudi Arabia); Ashraf, O., E-mail: osama.ashraf@edu.asu.edu.eg [Physics Department, Faculty of Education, Ain Shams University, Cairo 11575 (Egypt); Ashry, A.H. [Physics Department, Faculty of Education, Ain Shams University, Cairo 11575 (Egypt)

    2016-06-15

    Highlights: • Makrofol-E detectors have been irradiated with alpha particles and fission fragments. • Fast detection of alpha particles in Makrofol-E detectors. • Bulk etching rate was calculated from fission track diameters. - Abstract: Fast detection of alpha particles in the range from 1 to 5 MeV in Makrofol-E polycarbonate nuclear track detectors (PCTDs) using a new chemical etchant was investigated. {sup 252}Cf and {sup 241}Am-thin open sources were used for irradiating Makrofol-E detectors with fission fragments and alpha particles in air at normal pressure and temperature (NPT). A chain of experimental work has been carried out using new etchants to register alpha particle in short time in Makrofol-E polycarbonate detectors. The etching efficiency were exhibited a clear dependence on the amount of methanol in the etching solution and etching time. The optimized chemical condition obtained at this stage of development for 200 μm Makrofol-E detectors are (8 ml of 10 N NaOH + 2 ml CH{sub 3}OH) etching solutions at 60 °C for 3 h. In this study; it is possible to observe energy detection windows for Makrofol-E detectors according to applied etching duration. Makrofol-E introduced the characteristic Bragg peak, which indicates the advantages of this detector as alpha spectrometer. Consequently, the suggested new etchant can be developed for heavy ions detection and monitoring radon levels and its daughters.

  16. Experimental study of the cross-sections of alpha-particle induced reactions on $^{209}$Bi

    CERN Document Server

    Hermanne, A; Shubin, Yu N; Szucs, Z; Takács, S; Tarkanyi, F; 10.1016/j.apradiso.2005.01.015

    2005-01-01

    alpha -particle-induced nuclear reactions for generation of /sup 211 /At used in therapeutic nuclear medicine and possible contaminants were investigated with the stacked foil activation technique on natural bismuth targets up to E/sub alpha /=39 MeV. Excitation functions are reported for the reactions /sup 209/Bi( alpha ,2n)/sup 211/At, /sup 209/Bi( alpha ,3n)/sup 210/At and /sup 209/Bi( alpha , x)/sup 210/Po. Results obtained from direct alpha -emission measurements and gamma -spectra from decay products are compared and correspond well with earlier literature values. Thick target yields have been deduced from the experimental cross-sections and optimised production pathways for minimal contamination are presented. A comparison with the results of the theoretical model code ALICE-IPPE is discussed.

  17. Radiative heat transfer between nanoparticles enhanced by intermediate particle

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yanhong; Wu, Jingzhi, E-mail: jzwu@live.nuc.edu.cn [Science and Technology on Electronic Test and Measurement Laboratory, North University of China, Taiyuan 030051, Shanxi (China)

    2016-02-15

    Radiative heat transfer between two polar nanostructures at different temperatures can be enhanced by resonant tunneling of surface polaritons. Here we show that the heat transfer between two nanoparticles is strongly varied by the interactions with a third nanoparticle. By controlling the size of the third particle, the time scale of thermalization toward the thermal bath temperature can be modified over 5 orders of magnitude. This effect provides control of temperature distribution in nanoparticle aggregation and facilitates thermal management at nanoscale.

  18. Fusion alpha-particle diagnostics for DT experiments on the joint European torus

    Energy Technology Data Exchange (ETDEWEB)

    Kiptily, V. G.; Beaumont, P.; Syme, D. B. [Euratom / CCFE Fusion Association, Culham Science Centre, Abingdon, Oxon (United Kingdom); Belli, F. [Associazione Euratom -ENEA sulla Fusione, C.R. Frascati, C.P. 65, Frascati (Italy); Cecil, F. E.; Riva, M. [Colorado School of Mines, Golden, CO (United States); Conroy, S.; Ericsson, G. [Department of Physics and Astronomy, Uppsala University, BOX 516, Uppsala (Sweden); Craciunescu, T. [Association Euratom -MEdC, National Institute for Laser, Plasma and Radiation Physics (Romania); Garcia-Munoz, M. [Max-Planck-Institut für Plasmaphysik, EURATOM-Association IPP, Garching, D-85748 (Germany); Curuia, M.; Soare, S. [Association Euratom -MEdC, National Institute for Cryogenics and Isotopic Technology (Romania); Darrow, D. [Princeton Plasma Physics Lab, Princeton, NJ (United States); Fernandes, A. M.; Pereira, R. C.; Sousa, J. [Euratom/IST Fusion Association, Centro de Fusão Nuclear, 1049-001 Lisboa (Portugal); Giacomelli, L.; Voitsekhovitch, I. [CNISM, Dipartimento di Fisica, Universita Milano-Bicocca, Milano (Italy); Gorini,; Nocente, M. [CNISM, Dipartimento di Fisica, Universita Milano-Bicocca, Milano, Italy and Associazione Euratom -ENEA sulla Fusione, IFP Milano (Italy); and others

    2014-08-21

    JET equipped with ITER-like wall (a beryllium wall and a tungsten divertor) can provide auxiliary heating with power up to 35MW, producing a significant population of α-particles in DT operation. The direct measurements of alphas are very difficult and α-particle studies require a significant development of dedicated diagnostics. JET now has an excellent set of confined and lost fast particle diagnostics for measuring the α-particle source and its evolution in space and time, α-particle energy distribution, and α-particle losses. This paper describes how the above mentioned JET diagnostic systems could be used for α-particle measurements, and what options exist for keeping the essential α-particle diagnostics functioning well in the presence of intense DT neutron flux. Also, α-particle diagnostics for ITER are discussed.

  19. Alpha-particle emission probabilities in the decay of {sup 240}Pu

    Energy Technology Data Exchange (ETDEWEB)

    Sibbens, G., E-mail: goedele.sibbens@ec.europa.e [European Commission, Joint Research Centre, Institute for Reference Materials and Measurements, Retieseweg 111, B-2440 Geel (Belgium); Pomme, S.; Altzitzoglou, T. [European Commission, Joint Research Centre, Institute for Reference Materials and Measurements, Retieseweg 111, B-2440 Geel (Belgium); Garcia-Torano, E. [Laboratorio de Metrologia de Radiaciones Ionizantes, CIEMAT, Avda. Complutense 22, 28040 Madrid (Spain); Janssen, H.; Dersch, R.; Ott, O. [Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig (Germany); Martin Sanchez, A. [Departamento de Fisica, Universidad de Extremadura, Badajoz, E-06071 (Spain); Rubio Montero, M.P. [Departamento de Fisica Aplicada, Universidad de Extremadura, Merida, Badajoz, E-06800 (Spain); Loidl, M. [Laboratoire National Henri Becquerel, LNE/CEA-LIST, 91191 Gif-sur-Yvette (France); Coron, N.; Marcillac, P. de [Institut d' Astrophysique Spatiale, CNRS, 91405 Orsay Campus (France); Semkow, T.M. [Wadsworth Center, New York State Department of Health, Albany, NY 12201 (United States)

    2010-07-15

    Sources of enriched {sup 240}Pu were prepared by vacuum evaporation on quartz substrates. High-resolution alpha-particle spectrometry of {sup 240}Pu was performed with high statistical accuracy using silicon detectors and with low statistical accuracy using a bolometer. The alpha-particle emission probabilities of six transitions were derived from the spectra and compared with literature values. Additionally, some alpha-particle emission probabilities were derived from {gamma}-ray intensity measurements with a high-purity germanium detector. The alpha-particle emission probabilities of the three main transitions at 5168.1, 5123.6 and 5021.2 keV were derived from seven aggregate spectra analysed with five different fit functions and the results were compatible with evaluated data. Two additional weak peaks at 4863.5 and 4492.0 keV were fitted separately, using the exponential of a polynomial function to represent the underlying tailing of the larger peaks. The peak at 4655 keV could not be detected by alpha-particle spectrometry, while {gamma}-ray spectrometry confirms that its intensity is much lower than expected from literature.

  20. Purge and trap method to determine alpha factors of VOC liquid-phase mass transfer coefficients

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A theoretical approach and laboratory practice of determining the alpha factors of volatile organic compound (VOC) liquid-phase mass transfer coefficients are present in this study.Using Purge Trap Concentrator, VOC spiked water samples are purged by high-purity nitrogen in the laboratory, the VOC liquid-phase mass transfer rate constants under the laboratory conditions are then obtained by observing the variation of VOCs purged out of the water with the purge time.The alpha factors of VOC liquid-phase mass transfer coefficients are calculated as the ratios of the liquid-phase mass transfer rate constants in real water samples to their counterparts in pure water under the same experimental conditions. This direct and fast approach is easy to control in the laboratory, and would benefit mutual comparison among researchers, so might be useful for thestudy of VOC mass transfer across the liquid-gas interface.

  1. A systematic study of Lyman-Alpha transfer through outflowing shells: Model parameter estimation

    CERN Document Server

    Gronke, Max; Dijkstra, Mark

    2015-01-01

    Outflows promote the escape of Lyman-$\\alpha$ (Ly$\\alpha$) photons from dusty interstellar media. The process of radiative transfer through interstellar outflows is often modelled by a spherically symmetric, geometrically thin shell of gas that scatters photons emitted by a central Ly$\\alpha$ source. Despite its simplified geometry, this `shell model' has been surprisingly successful at reproducing observed Ly$\\alpha$ line shapes. In this paper we perform automated line fitting on a set of noisy simulated shell model spectra, in order to determine whether degeneracies exist between the different shell model parameters. While there are some significant degeneracies, we find that most parameters are accurately recovered, especially the HI column density ($N_{\\rm HI}$) and outflow velocity ($v_{\\rm exp}$). This work represents an important first step in determining how the shell model parameters relate to the actual physical properties of Ly$\\alpha$ sources. To aid further exploration of the parameter space, we ...

  2. Measurement of the Internal Magnetic Field of Plasmas using an Alpha Particle Source

    Energy Technology Data Exchange (ETDEWEB)

    S.J. Zweben; D.S. Darrow; P.W. Ross; J.L. Lowrance; G. Renda

    2004-05-13

    The internal magnetic fields of plasmas can be measured under certain conditions from the integrated v x B deflection of MeV alpha particles emitted by a small radioactive source. This alpha source and large-area alpha particle detector would be located inside the vacuum vessel but outside the plasma. Alphas with a typical energy of 5.5 MeV (241Am) can reach the center of almost all laboratory plasmas and magnetic fusion devices, so this method can potentially determine the q(r) profile of tokamaks or STs. Orbit calculations, background evaluations, and conceptual designs for such a vxB (or ''AVB'') detector are described.

  3. Alpha particles spectrometer with photodiode PIN; Espectrometro de particulas alfa con fotodiodo PIN

    Energy Technology Data Exchange (ETDEWEB)

    Chacon R, A.; Hernandez V, R.; Hernandez D, V. M.; Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidades Academicas de Estudios Nucleares e Ingenieria Electrica, Calle Cipres No. 10, Fracc. La Penuela, 09869 Zacatecas (Mexico); Ramirez G, J. [Instituto Nacional de Estadistica Geografia e Informatica, Direccion General de Innovacion y Tecnologia de Informacion, Av. Heroes de Nacozari Sur 2301, Fracc. Jardines del Parque, 20276 Aguascalientes (Mexico)], e-mail: achruiz@hotmail.com

    2009-10-15

    The radiation propagates in form of electromagnetic waves or corpuscular radiation; if the radiation energy causes ionization in environment that crosses it is considered ionizing radiation. To detect radiation several detectors types are used, if the radiation are alpha particles are used detectors proportional type or trace elements. In this work the design results, construction and tests of an alpha particles spectrometer are presented, which was designed starting from a photodiode PIN type. The system design was simulated with a code for electronic circuits. With results of simulation phase was constructed the electronic phase that is coupled to a multichannel analyzer. The resulting electronic is evaluated analyzing the electronic circuit performance before an alphas triple source and alpha radiation that produce two smoke detectors of domestic use. On the tests phase we find that the system allows obtain, in a multichannel, the pulses height spectrum, with which we calibrate the system. (Author)

  4. In vivo particle-mediated gene transfer for cancer therapy.

    Science.gov (United States)

    Rakhmilevich, A L; Yang, N S

    2000-01-01

    During the past several years, particle-mediated delivery techniques have been developed as a nonviral technology for gene transfer (1-7). For mammalian somatic tissues, this technology, popularly known as the gene gun method, has been shown effective for transfection of skin, liver, pancreas, muscle, spleen, and other organs in vivo (3,4), brain, mammary, and leukocyte primary cultures or tissue explants ex vivo (2,5-7), and a wide range of cell lines in vitro (3,6,7). In this chapter, we describe the general principles, mechanisms, protocols, and uses of the particle-mediated gene transfer technology for in vivo gene transfer, mainly into skin tissues. Specific applications of this technology to basic studies in molecular biology as well as to gene therapy and genetic immunization against cancer are addressed.

  5. Turbulent transport of alpha particles in tokamak plasmas

    Science.gov (United States)

    Croitoru, A.; Palade, D. I.; Vlad, M.; Spineanu, F.

    2017-03-01

    We investigate the \\boldsymbol{E}× \\boldsymbol{B} diffusion of fusion born α particles in tokamak plasmas. We determine the transport regimes for a realistic model that has the characteristics of the ion temperature gradient (ITG) or of the trapped electron mode (TEM) driven turbulence. It includes a spectrum of potential fluctuations that is modeled using the results of the numerical simulations, the drift of the potential with the effective diamagnetic velocity and the parallel motion. Our semi-analytical statistical approach is based on the decorrelation trajectory method (DTM), which is adapted to the gyrokinetic approximation. We obtain the transport coefficients as a function of the parameters of the turbulence and of the energy of the α particles. According to our results, significant turbulent transport of the α particles can appear only at energies of the order of 100 KeV. We determine the corresponding conditions.

  6. Fluorescent detection of single tracks of alpha particles using lithium fluoride crystals

    Science.gov (United States)

    Bilski, P.; Marczewska, B.

    2017-02-01

    Lithium fluoride single crystals were successfully used for fluorescent imaging of single tracks of alpha particles. This was realized with a standard wide-field fluorescent microscope equipped with a 100× objective. Alpha particles create F2 and F3+ color centers in LiF crystals. The subsequent illumination with the blue light (wavelength around 445 nm), excites these centers and produces fluorescence with a broad band peaked at 670 nm. The observed tracks of alpha particles have diameter of about 500 nm. Focusing of the microscope at different depths in a LiF crystal, enables imaging changes of shape and position of tracks, allowing for visualization of their paths. These encouraging results are the first step towards practical application of LiF as fluorescent nuclear track detectors.

  7. The 1997 IAEA intercomparison of commercially available PC-based software for alpha-particle spectrometry

    CERN Document Server

    Blaauw, M; Woods, S; Fazinic, S

    1999-01-01

    Four commercially available, PC-based analysis programs for alpha-particle spectrometry were compared using the 1997 IAEA test spectra, i.e. AlphaVision 1.20 (EG and G Ortec, USA), Alps 4.21 (Westmeier GmbH, Germany), Winner Alpha 4.0f5 (Eurisys Mesures, France) and Genie-2000 (Canberra Industries Inc., USA). A systematic statistical study of the analysis results was performed based on z-scores. The results indicate that the four programs leave room for substantial improvement.

  8. Application of atomic and nuclear techniques to the study of inhomogeneities in electrodeposited {alpha}-particle sources

    Energy Technology Data Exchange (ETDEWEB)

    Martin Sanchez, A. E-mail: ams@unex.es; Nuevo, M.J.; Jurado Vargas, M.; Diaz Bejarano, J.; Silva, M.F. da; Roldan Garcia, C.; Paul, A.; Ferrero Calabuig, J.L.; Mendez Vilas, A.; Juanes Barber, D

    2002-05-01

    Three {alpha}-particle sources made by different methods of electrodeposition were analysed using {alpha}-particle spectrometry, Rutherford backscattering (RBS), and atomic force microscopy (AFM) on several surface zones. The thickness and homogeneity of these sources was studied using RBS, and the results were analysed jointly with those obtained with {alpha}-particle spectrometry and AFM techniques. The comparison of the electrodeposition methods showed that the most homogeneous electrodeposited zones corresponded to the source made with a stirring cathode.

  9. Initial evaluation of {sup 227}Th-p-benzyl-DOTA-rituximab for low-dose rate {alpha}-particle radioimmunotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Dahle, Jostein [Department of Radiation Biology, Rikshospitalet-Radiumhospitalet HE, Montebello, 0310 Oslo (Norway)]. E-mail: jostein.dahle@labmed.uio.no; Borrebaek, Jorgen [Algeta ASA, Kjelsasveien 172 A, 0411 Oslo (Norway); Melhus, Katrine B. [Department of Radiation Biology, Rikshospitalet-Radiumhospitalet HE, Montebello, 0310 Oslo (Norway); Bruland, Oyvind S. [Department of Clinical Medicine, University of Oslo, 0316 Oslo (Norway); Department of Oncology, Rikshospitalet-Radiumhospitalet HE, Montebello, 0310 Oslo (Norway); Salberg, Gro [Algeta ASA, Kjelsasveien 172 A, 0411 Oslo (Norway); Olsen, Dag Rune [Department of Radiation Biology, Rikshospitalet-Radiumhospitalet HE, Montebello, 0310 Oslo (Norway); Larsen, Roy H. [Algeta ASA, Kjelsasveien 172 A, 0411 Oslo (Norway)

    2006-02-15

    Radioimmunotherapy has proven clinically effective in patients with non-Hodgkin's lymphoma. Radioimmunotherapy trials have so far been performed with {beta}-emitting isotopes. In contrast to {beta}-emitters, the shorter range and high linear energy transfer (LET) of {alpha} particles allow for more efficient and selective killing of individually targeted tumor cells. However, there are several obstacles to the use of {alpha}-particle immunotherapy, including problems with chelation chemistry and nontarget tissue toxicity. The {alpha}-emitting radioimmunoconjugate {sup 227}Th-DOTA-p-benzyl-rituximab is a new potential anti-lymphoma agent that might overcome some of these difficulties. The present study explores the immunoreactivity, in vivo stability and biodistribution, as well as the effect on in vitro cell growth, of this novel radioimmunoconjugate. To evaluate in vivo stability, uptake in balb/c mice of the {alpha}-particle-emitting nuclide {sup 227}Th alone, the chelated form, {sup 227}Th-p-nitrobenzyl-DOTA and the radioimmunoconjugate {sup 227}Th-DOTA-p-benzyl-rituximab was compared in a range of organs at increasing time points after injection. The immunoreactive fraction of {sup 227}Th-DOTA-p-benzyl-rituximab was 56-65%. During the 28 days after injection of radioimmunoconjugate only, very modest amounts of the {sup 227}Th had detached from DOTA-p-benzyl-rituximab, indicating a relevant stability in vivo. The half-life of {sup 227}Th-DOTA-p-benzyl-rituximab in blood was 7.4 days. Incubation of lymphoma cells with {sup 227}Th-DOTA-p-benzyl-rituximab resulted in a significant antigen-dependent inhibition of cell growth. The data presented here warrant further studies of {sup 227}Th-DOTA-p-benzyl-rituximab.

  10. Alfvenic behavior of alpha particle driven ion cyclotron emission in TFTR

    Energy Technology Data Exchange (ETDEWEB)

    Cauffman, S.; Majeski, R. [Princeton Plasma Physics Lab., NJ (United States); McClements, K.G. [UKAEA Government Division, Oxfordshire (United Kingdom). Euratom/UKAEA Fusion Association] [and others

    1995-07-01

    Ion cyclotron emission (ICE) has been observed during D-T discharges in the Tokamak Fusion Test Reactor (TFTR), using rf probes located near the top and bottom of the vacuum vessel. Harmonics of the alpha cyclotron frequency ({Omega}{sub {alpha}}) evaluated at the outer midplane plasma edge are observed at the onset of the beam injection phase of TFTR supershots, and persist for approximately 100-250 ms. These results are in contrast with observations of ICE in JET, in which harmonics of {Omega}{sub {alpha}} evolve with the alpha population in the plasma edge. Such differences are believed to be due to the fact that newly-born fusion alpha particles are super-Alfvenic near the edge of JET plasmas, while they are sub-Alfvenic near the edge of TFTR supershot plasmas. In TFTR discharges with edge densities such that newly-born alpha particles are super-Alfvenic, alpha cyclotron harmonics are observed to persist. These results are in qualitative agreement with numerical calculations of growth rates due to the magnetoacoustic cyclotron instability.

  11. Range of Medium and High Energy Protons and Alpha Particles in NaI Scintillator

    Directory of Open Access Journals (Sweden)

    Onder Kabadayi

    2004-01-01

    Full Text Available We have calculated the range of proton and alpha particle in NaI scintillator which is a commonly used substance in scintillation detector manufacturing. The stopping power of proton and alpha particle in NaI is calculated first by using the theoretical treatment of Montenegro et al.[1]. The range calculation has been performed by using a technique that we developed in the earlier works[2,3]. We compared the results with Monte Carlo simulation program SRIM2003 and PRAL[4]. The obtained results are in satisfactory agreement with the literature."

  12. Preparation and preclinical evaluation of {sup 211}At-labelled compounds for {alpha}-particle radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, R.H.

    1994-12-31

    The interest for {alpha}-particle emitters in internal radiotherapy is increasing due to improved conjugation chemistry. Experimental work has concentrated on {sup 211}At and {sup 212}Bi since these to nuclides have radiochemical and physical properties suitable for medical application. In this report it is demonstrated that biologically active {sup 211}At-labelled compounds can be prepared within a relatively short time allowing utilization of this 7.2 h {alpha}-particle. It is further shown that {sup 211}At-TP-3 treatment of human osteosarcoma in vitro gives promising therapeutic ratios. 76 refs., 5 figs., 3 tabs.

  13. Path Sampling Methods for Enzymatic Quantum Particle Transfer Reactions.

    Science.gov (United States)

    Dzierlenga, M W; Varga, M J; Schwartz, S D

    2016-01-01

    The mechanisms of enzymatic reactions are studied via a host of computational techniques. While previous methods have been used successfully, many fail to incorporate the full dynamical properties of enzymatic systems. This can lead to misleading results in cases where enzyme motion plays a significant role in the reaction coordinate, which is especially relevant in particle transfer reactions where nuclear tunneling may occur. In this chapter, we outline previous methods, as well as discuss newly developed dynamical methods to interrogate mechanisms of enzymatic particle transfer reactions. These new methods allow for the calculation of free energy barriers and kinetic isotope effects (KIEs) with the incorporation of quantum effects through centroid molecular dynamics (CMD) and the full complement of enzyme dynamics through transition path sampling (TPS). Recent work, summarized in this chapter, applied the method for calculation of free energy barriers to reaction in lactate dehydrogenase (LDH) and yeast alcohol dehydrogenase (YADH). We found that tunneling plays an insignificant role in YADH but plays a more significant role in LDH, though not dominant over classical transfer. Additionally, we summarize the application of a TPS algorithm for the calculation of reaction rates in tandem with CMD to calculate the primary H/D KIE of YADH from first principles. We found that the computationally obtained KIE is within the margin of error of experimentally determined KIEs and corresponds to the KIE of particle transfer in the enzyme. These methods provide new ways to investigate enzyme mechanism with the inclusion of protein and quantum dynamics.

  14. Nuclear reactions induced by high-energy alpha particles

    Science.gov (United States)

    Shen, B. S. P.

    1974-01-01

    Experimental and theoretical studies of nuclear reactions induced by high energy protons and heavier ions are included. Fundamental data needed in the shielding, dosimetry, and radiobiology of high energy particles produced by accelerators were generated, along with data on cosmic ray interaction with matter. The mechanism of high energy nucleon-nucleus reactions is also examined, especially for light target nuclei of mass number comparable to that of biological tissue.

  15. Radiative heat transfer between nanoparticles enhanced by intermediate particle

    Directory of Open Access Journals (Sweden)

    Yanhong Wang

    2016-02-01

    Full Text Available Radiative heat transfer between two polar nanostructures at different temperatures can be enhanced by resonant tunneling of surface polaritons. Here we show that the heat transfer between two nanoparticles is strongly varied by the interactions with a third nanoparticle. By controlling the size of the third particle, the time scale of thermalization toward the thermal bath temperature can be modified over 5 orders of magnitude. This effect provides control of temperature distribution in nanoparticle aggregation and facilitates thermal management at nanoscale.

  16. Technology Transfer and Outreach for SNL/Rochester ALPHA Project.

    Energy Technology Data Exchange (ETDEWEB)

    Sinars, Daniel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-01-01

    This report describes the next stage goals and resource needs for the joint Sandia and University of Rochester ARPA-E project. A key portion of this project is Technology Transfer and Outreach, with the goal being to help ensure that this project develops a credible method or tool that the magneto-inertial fusion (MIF) research community can use to broaden the advocacy base, to pursue a viable path to commercial fusion energy, and to develop other commercial opportunities for the associated technology. This report describes an analysis of next stage goals and resource needs as requested by Milestone 5.1.1.

  17. Radiation electromagnetic effect in germanium crystals under high-energy. cap alpha. -particle irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kikoin, I.K.; Babichenko, V.S.; Kikoin, L.I.; Lazarev, S.D.; Rzhanov, A.E.; Filippov, V.I.

    1984-05-01

    Results of experimental investigation into radiation electromagnetic effect (REM) in samples of germanium crystals under approximately 40 MeV ..cap alpha..-particle irradiation in a cyclotron are presented. A high level of excitation, volumetric character of generation of non-equilibrium carriers and formation of defects as well as the form of their spatial distribution are shown to result in some peculiarities of the EMF of the REM effect on the particle flux, fluence and sample parameters. Agreement of theoretical calculations, conducted with account of specificity of ..cap alpha..-particle interaction with a crystal, and experimental data is obtained. It is revealed that the REM effect can be applied in obtaining data on spatial distribution of non-equilibrium carrier concentrations along the particle trajectory in the crystal.

  18. Radiation-electromagnetic effect in germanium crystals irradiated with high-energy. cap alpha. particles

    Energy Technology Data Exchange (ETDEWEB)

    Kikoin, I.K.; Babichenko, V.S.; Kikoin, L.I.; Lazarev, S.D.; Rzhanov, A.E.; Filippov, V.I.

    1984-05-01

    An experimental investigation was made of the radiation-electromagnetic effect in germanium crystals irradiated in a cyclotron with ..cap alpha.. particles of energies up to 40 MeV. The high excitation rate, the bulk nature of generation of nonequilibrium carriers and defects, and their spatial distributions gave rise to several special features in the dependence of the emf due to the radiation-electromagnetic effect on the particle flux, fluence, and parameters of samples. Theoretical calculations carried out allowing for the specific nature of the interaction of ..cap alpha.. particles with crystals agreed well with the experimental results. The radiation-electromagnetic effect could be used to obtain information on the nature of the spatial distribution of the density of nonequilibrium carriers along the trajectory of a particle in a crystal.

  19. Modifier Genes for Mouse Phosphatidylinositol Transfer Protein alpha (vibrator) That Bypass Juvenile Lethality

    NARCIS (Netherlands)

    Concepcion, Dorothy; Johannes, Frank; Lo, Yuan Hung; Yao, Jay; Fong, Jerry; Hamilton, Bruce A.

    2011-01-01

    Phosphatidylinositol transfer proteins (PITPs) mediate lipid signaling and membrane trafficking in eukaryotic cells. Loss-of-function mutations of the gene encoding PITP alpha in mice result in a range of dosage-sensitive phenotypes, including neurological dysfunction, neurodegeneration, and prematu

  20. Remodelling the vascular microenvironment of glioblastoma with alpha-particles

    Science.gov (United States)

    Behling, Katja; Maguire, William F.; Di Gialleonardo, Valentina; Heeb, Lukas E.M.; Hassan, Iman F.; Veach, Darren R.; Keshari, Kayvan R.; Gutin, Philip H.; Scheinberg, David A.; McDevitt, Michael R.

    2016-01-01

    Rationale Tumors escape anti-angiogenic therapy by activation of pro-angiogenic signaling pathways. Bevacizumab is approved for the treatment of recurrent glioblastoma, but patients inevitably develop resistance to this angiogenic inhibitor. We investigated targeted α-particle therapy with 225Ac-E4G10 as an anti-vascular approach and previously showed increased survival and tumor control in a high-grade transgenic orthotopic glioblastoma model. Here we investigate changes in tumor-vascular morphology and functionality caused by 225Ac-E4G10. Methods We investigated remodeling of tumor microenvironment in transgenic Ntva glioblastoma mice using a therapeutic 7.4 kBq dose of 225Ac-E4G10. Immunofluorescence and immunohistochemical analyses imaged morphological changes in the tumor blood brain barrier microenvironment. Multi-color flow cytometry quantified the endothelial progenitor cell population in the bone marrow. Diffusion-weighted magnetic resonance imaged functional changes of the tumor vascular network. Results The mechanism of drug action is a combination of glioblastoma vascular microenvironment remodeling, edema relief, and depletion of regulatory T and endothelial progenitor cells. The primary remodeling event is the reduction of both endothelial and perivascular cell populations. Tumor-associated edema and necrosis was lessened and resulted in increased perfusion and reduced diffusion. Pharmacological uptake of dasatinib into tumor was enhanced following α-particle therapy. Conclusion Targeted anti-vascular α-particle radiation remodels the glioblastoma vascular microenvironment via a multimodal mechanism of action and provides insight into the vascular architecture of Platelet-derived growth factor driven glioblastoma. PMID:27261519

  1. Limits on Alpha Particle Temperature Anisotropy and Differential Flow from Kinetic Instabilities: Solar Wind Observations

    CERN Document Server

    Bourouaine, Sofiane; Chandran, Benjamin D G; Maruca, Bennett A; Kasper, Justin C

    2013-01-01

    Previous studies have shown that the observed temperature anisotropies of protons and alpha particles in the solar wind are constrained by theoretical thresholds for pressure-anisotropy-driven instabilities such as the Alfv\\'en/ion-cyclotron (A/IC) and fast-magnetosonic/whistler (FM/W) instabilities. In this letter, we use a long period of in-situ measurements provided by the {\\em Wind} spacecraft's Faraday cups to investigate the combined constraint on the alpha-proton differential flow velocity and the alpha-particle temperature anisotropy due to A/IC and FM/W instabilities. We show that the majority of the data are constrained to lie within the region of parameter space in which A/IC and FM/W waves are either stable or have extremely low growth rates. In the minority of observed cases in which the growth rate of the A/IC (FM/W) instability is comparatively large, we find relatively higher values of $T_{\\perp\\alpha}/T_{\\perp p}$ ($T_{\\parallel\\alpha}/T_{\\parallel p}$) when alpha-proton differential flow vel...

  2. The feasibility of [sup 225]Ac as a source of [alpha]-particles in radioimmunotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Geerlings, M.W.; Hout, R. van der (Akzo nv, Arnhem (Netherlands)); Kaspersen, F.M. (Organon International bv, Oss (Netherlands)); Apostolides, C. (Commission of the European Communities, Karlsruhe (Germany). European Inst. for Transuranium Elements)

    1993-02-01

    This paper proposes the utilization of [sup 225]Ac for the [alpha]-radioimmunotherapy of cancer. The isotope decays with a radioactive half-life of 10 days into a cascade of short-lived [alpha]-and [beta]-emitting isotopes. In addition, when indicated by the pharmacokinetic requirements of particular clinical applications, [sup 213]Bi, with a radioactive half-life of 47 min, can be chosen as an alternative source of [alpha]-particles in radioimmunotherapy. This isotope is the last [alpha] emitter in the [sup 225]Ac decay-cascade and can be extracted from a [sup 225]Ac source at the bedside of the patient. [sup 225]Ac can quasi ad infinitum be obtained from one of its precursors, [sup 229]Th, which can be made available by various means. The indications for the use of [alpha]-particles as an alternative to more traditional classes of radiation are derived from the particle-kinetic characteristics and the radioactive half-life of their source isotope, as well as from the properties of the target-selective carrier moiety for the source isotope. It may be expected that useful applications, complementary to and/or in conjunction with other means of therapy will be identified. (author).

  3. Mass transfer during ice particle collisions in planetary rings

    Science.gov (United States)

    Mcdonald, J. S. B.; Hatzes, A.; Bridges, F.; Lin, D. N. C.

    1989-01-01

    Experimental results are presented from laboratory environment simulations of the ice particle collisional properties defining the structure and dynamical evolution of planetary rings. It is inferred from these data that there is a dependence of the interacting volume on the impact velocity. Although the volume fraction exchanged during a collision is small, the net amount of material transferred can be substantially smaller. Attention is given to the implications of these determinations for planetary ring structure and evolution.

  4. Production of $\\alpha$-particle condensate states in heavy-ion collisions

    CERN Document Server

    Raduta, Ad R; Geraci, E; Neindre, N Le; Napolitani, P; Rivet, M F; Alba, R; Amorini, F; Cardella, G; Chatterjee, M; De Filippo, E; Guinet, D; Lautesse, P; La Guidara, E; Lanzalone, G; Lanzano, G; Lombardo, I; Lopez, O; Maiolino, C; Pagano, A; Pirrone, S; Politi, G; Porto, F; Rizzo, F; Russotto, P; Wieleczko, J P

    2010-01-01

    The fragmentation of quasi-projectiles from the nuclear reaction $^{40}Ca$ + $^{12}C$ at 25 MeV/nucleon was used to produce excited states candidates to $\\alpha$-particle condensation. The experiment was performed at LNS-Catania using the CHIMERA multidetector. Accepting the emission simultaneity and equality among the $\\alpha$-particle kinetic energies as experimental criteria for deciding in favor of the condensate nature of an excited state, we analyze the $0_2^+$ and $2_2^+$ states of $^{12}$C and the $0_6^+$ state of $^{16}$O. A sub-class of events corresponding to the direct 3-$\\alpha$ decay of the Hoyle state is isolated.

  5. Signature of the N=126 shell closure in dwell times of alpha-particle tunneling

    CERN Document Server

    Kelkar, N G

    2016-01-01

    Characteristic quantities such as the penetration and preformation probabilities, assault frequency and tunneling times in the tunneling description of alpha decay of heavy nuclei are explored to reveal their sensitivity to neutron numbers in the vicinity of the magic neutron number $N$ = 126. Using realistic nuclear potentials, the sensitivity of these quantities to the parameters of the theoretical approach is also tested. An investigation of the region from $N=116$ to $N=132$ in Po nuclei reveals that the tunneling $\\alpha$ particle spends the least amount of time with an $N=126$ magic daughter nucleus. The shell closure at $N=126$ seems to affect the behaviour of the dwell times of the tunneling alpha particles and this occurs through the influence of the $Q$-values involved.

  6. Dependence of {alpha}-particle backscattering on energy and source backing

    Energy Technology Data Exchange (ETDEWEB)

    Timon, A. Fernandez [ESCET, Universidad Rey Juan Carlos, C/ Tulipan s/n, 28933 Mostoles, Madrid (Spain)], E-mail: alfonso.fernandez@urjc.es; Vargas, M. Jurado [Departamento de Fisica, Universidad de Extremadura, Avda. Elvas s/n, 06071 Badajoz (Spain)

    2007-09-21

    Measurement of {alpha}-particle sources using 2{pi} counting detectors requires corrections for backscattering, and these depend on the material used as source backing and on the {alpha}-particle energy. This dependence has been analyzed theoretically by some authors, although assuming some simplifying approximations. In this work, we analyze the dependence of the backscattering coefficient B on energy and source backing, but by means of the Monte Carlo simulation code SRIM, thus avoiding the simplifying approximations assumed in the theoretical models. To study the dependence on the backing, we simulated {sup 210}Po point sources deposited on various backing materials with atomic numbers ranging from 4 to 79. The dependence on energy was studied by simulating {alpha}-particle point sources deposited on a platinum backing, with energies between 3 and 8 MeV. We found that the dependence of the backscattering coefficient B on {alpha}-particle energy and also on the mass number A of the backing approximately follows power function laws, in concordance with the theoretical models, although with exponents somewhat different from those established theoretically. In addition, although it was found that the scattering angle distribution is not Gaussian, our results confirm that there is a linear relationship between the backscattering coefficient B and the mean scattering angle {phi}, as suggested by the Crawford theory.

  7. Alpha-particle detection based on the BJT detector and simple, IC-based readout electronics

    Energy Technology Data Exchange (ETDEWEB)

    Rovati, L; Bonaiuti, M [Dipartimento di Ingegneria dell' Informazione, Universita di Modena e Reggio Emilia, Modena (Italy); Bettarini, S [Dipartimento di Fisica, Universita di Pisa and INFN Pisa, Pisa (Italy); Bosisio, L [Dipartimento di Fisica, Universita di Trieste and INFN Trieste, Trieste (Italy); Dalla Betta, G-F; Tyzhnevyi, V [Dipartimento di Ingegneria e Scienza dell' Informazione, Universita di Trento e INFN Trento, Trento (Italy); Verzellesi, G [Dipartimento di Scienze e Metodi dell' Ingegneria, Universita di Modena e Reggio Emilia and INFN Trento, Reggio Emilia (Italy); Zorzi, N, E-mail: giovanni.verzellesi@unimore.i [Fondazione Bruno Kessler (FBK), Trento (Italy)

    2009-11-15

    In this paper we propose a portable instrument for alpha-particle detection based on a previously-developed BJT detector and a simple, IC-based readout electronics. Experimental tests of the BJT detector and readout electronics are reported. Numerical simulations are adopted to predict the performance enhancement achievable with optimized BJT detectors.

  8. A Strange Box and a Stubborn Brit: Rutherford's Experiments with Alpha Particles.

    Science.gov (United States)

    Digilov, M.

    1991-01-01

    Discusses 5 innovative experiments conducted by Rutherford in early 1900s utilizing the 30 milligrams of radium salt he personally carried from Europe to Canada in 1903. Traces his work with alpha particles from his original results which determined their nature, charge, and mass, to his technique of backscattering which helped to advance…

  9. Alpha and beta particle induced scintillations in liquid and solid neon

    CERN Document Server

    Michniak, R A; McKinsey, D N; Doyle, J M

    2002-01-01

    Scintillations induced by alpha and beta particles in liquid and solid neon are studied and their light yield measured. Charged particle scintillation in neon is primarily in the extreme ultraviolet (EUV). We detect this EUV light by converting it to blue using a wavelength shifting fluor and detecting the blue light with a photomultiplier tube. It is observed that liquid neon is a somewhat less-efficient scintillator than liquid helium for both alpha and beta radiation while the light yield in solid neon is greater than in liquid helium. Based on our measurements of the relative light yields of liquid and solid neon to liquid helium whose absolute light yield has previously been determined, we find that an alpha source in liquid neon produces up to 5900 photons per MeV while a beta source produces up to 7400 photons per MeV. In solid neon, we find that an alpha particle produces up to 9300 photons per MeV while a beta particle produces up to 17,000 photons per MeV. We observe a significant dependence of the ...

  10. alpha-particle radioactivity from LR 115 by two methods of analysis

    CERN Document Server

    Azkour, K; Adloff, J C; Pape, A

    1999-01-01

    LR115 track detectors were exposed to samples of Moroccan phosphate and phosphogypsum to measure their alpha-particle radioactivity. Then two formalisms were used for the dosimetry: simulation by a Monte Carlo method and determination of concentrations from a numerically integrated track registration equation. The results were compared with those deduced gamma-ray spectrometry.

  11. Alpha-particles induce autophagy in multiple myeloma cells

    Directory of Open Access Journals (Sweden)

    Joelle Marcelle Gaschet

    2015-10-01

    Full Text Available Objectives: Radiations emitted by the radionuclides in radioimmunotherapy (RIT approaches induce direct killing of the targeted cells as well as indirect killing through bystander effect. Our research group is dedicated to the development of α-RIT, i.e RIT using α-particles especially for the treatment of multiple myeloma (MM. γ-irradiation and β-irradiation have been shown to trigger apoptosis in tumor cells. Cell death mode induced by 213Bi α-irradiation appears more controversial. We therefore decided to investigate the effects of 213Bi on MM cell radiobiology, notably cell death mechanisms as well as tumor cell immunogenicity after irradiation.Methods: Murine 5T33 and human LP-1 multiple myeloma (MM cell lines were used to study the effects of such α-particles. We first examined the effects of 213Bi on proliferation rate, double strand DNA breaks, cell cycle and cell death. Then, we investigated autophagy after 213Bi irradiation. Finally, a co-culture of dendritic cells (DC with irradiated tumour cells or their culture media was performed to test whether it would induce DC activation.Results: We showed that 213Bi induces DNA double strand breaks, cell cycle arrest and autophagy in both cell lines but we detected only slight levels of early apoptosis within the 120 hours following irradiation in 5T33 and LP-1. Inhibition of autophagy prevented 213Bi induced inhibition of proliferation in LP-1 suggesting that this mechanism is involved in cell death after irradiation. We then assessed the immunogenicity of irradiated cells and found that irradiated LP-1 can activate DC through the secretion of soluble factor(s, however no increase in membrane or extracellular expression of danger associated molecular patterns (DAMPs was observed after irradiation.Conclusion: This study demonstrates that 213Bi induces mainly necrosis in MM cells, low levels of apoptosis and also autophagy that might be involved in tumor cell death.

  12. SPHRAY: A Smoothed Particle Hydrodynamics Ray Tracer for Radiative Transfer

    CERN Document Server

    Altay, Gabriel; Pelupessy, Inti

    2008-01-01

    We introduce SPHRAY, a Smoothed Particle Hydrodynamics (SPH) ray tracer designed to solve the 3D, time dependent, radiative transfer (RT) equations for arbitrary density fields. The SPH nature of SPHRAY makes the incorporation of separate hydrodynamics and gravity solvers very natural. SPHRAY relies on a Monte Carlo (MC) ray tracing scheme that does not interpolate the SPH particles onto a grid but instead integrates directly through the SPH kernels. Given initial conditions and a description of the sources of ionizing radiation, the code will calculate the non-equilibrium ionization state (HI, HII, HeI, HeII, HeIII, e) and temperature (internal energy/entropy) of each SPH particle. The sources of radiation can include point like objects, diffuse recombination radiation, and a background field from outside the computational volume. The MC ray tracing implementation allows for the quick introduction of new physics and is parallelization friendly. A quick Axis Aligned Bounding Box (AABB) test taken from compute...

  13. Production of actinium-225 for alpha particle mediated radioimmunotherapy.

    Science.gov (United States)

    Boll, Rose A; Malkemus, Dairin; Mirzadeh, Saed

    2005-05-01

    The initial clinical trials for treatment of acute myeloid leukemia have demonstrated the effectiveness of the alpha emitter (213)Bi in killing cancer cells. Bismuth-213 is obtained from a radionuclide generator system from decay of 10-days (225)Ac parent. Recent pre-clinical studies have also shown the potential application of both (213)Bi, and the (225)Ac parent radionuclide in a variety of cancer systems and targeted radiotherapy. This paper describes our five years of experience in production of (225)Ac in partial support of the on-going clinical trials. A four-step chemical process, consisting of both anion and cation exchange chromatography, is utilized for routine separation of carrier-free (225)Ac from a mixture of (228)Th, (229)Th and (232)Th. The separation of Ra and Ac from Th is achieved using the marcoporous anion exchange resin MP1 in 8M HNO(3) media. Two sequential MP1/NO(3) columns provide a separation factor of approximately 10(6) for Ra and Ac from Th. The separation of Ac from Ra is accomplished on a low cross-linking cation exchange resin AG50-X4 using 1.2M HNO(3) as eluant. Two sequential AG50/NO(3) columns provide a separation factor of approximately 10(2) for Ac from Ra. A 60-day processing schedule has been adopted in order to reduce the processing cost and to provide the highest levels of (225)Ac possible. Over an 8-week campaign, a total of approximately 100 mCi of (225)Ac (approximately 80% of the theoretical yield) is shipped in 5-6 batches, with the first batch typically consisting of approximately 50 mCi. After the initial separation and purification of Ac, the Ra pool is re-processed on a bi-weekly schedule or as needed to provide smaller batches of (225)Ac. The averaged radioisotopic purity of the (225)Ac was 99.6 +/- 0.7% with a (225)Ra content of < or =0.6%, and an average (229)Th content of (4(-4)(+5)) x 10(-5)%.

  14. Lung cancer risk from exposure to alpha particles and inhalation of other pollutants in rats

    Energy Technology Data Exchange (ETDEWEB)

    Burns, F.J.

    1990-01-01

    The goal of these experiments is to establish a quantitative correlation between early DNA damage and cancer incidence in a way that would be helpful for assessing the carcinogenic risk of radon alone or in combination with specific indoor pollutants. Rat tracheal epithelium has been exposed in vivo to {sup 210}Po alpha particles in the presence and absence of NO{sub 2} or cigarette smoke. The major accomplishments so far are: the design and implementation of a tracheal implant to simulate radon alpha particle exposure, the measurement of DNA breaks in a small 7.0 mm segment of the trachea exposed to external x-irradiation, the measurement of the rate of repair of the x-ray induced tracheal DNA strand breaks, the measurement of DNA strand breaks following inhalation of cigarette smoke or NO{sub 2}, the measurement of tracheal DNA stand breaks following exposure to high doses {sup 210}Po alpha particle radiation, the assessment of the amount of mucous in the goblet cells and in the underlying mucous glands. So far we have been unable to detect DNA strand breaks in the tracheal epithelium as a result of exposure to NO{sub 2} cigarette smoke or {sup 210}Po alpha particles. We have developed a simple artificial' trachea consisting of rat tracheal epithelial cells growing on a basement membrane coated millipore filter. Experiments are proposed to utilize these artificial tracheas to eliminate the potential interference of increased mucous secretion and/or inflammation that can significantly affect the radiation dose from the alpha particles. 61 refs., 17 figs.

  15. Lyman {\\alpha} radiative transfer in the high-redshift, dusty Universe

    CERN Document Server

    Laursen, Peter

    2010-01-01

    The significance of the Ly{\\alpha} emission line as a probe of the high-redshift Universe has long been established. Originating mainly in the vicinity of young, massive stars and in association with accretion of large bulks of matter, it is ideal for detecting young galaxies, the fundamental building blocks of our Universe. Since many different processes shape the spectrum and the spatial distribution of the Ly{\\alpha} photons in various ways, a multitude of physical properties of galaxies can be unveiled. However, this also makes the interpretation of Ly{\\alpha} observations notoriously difficult. Because Ly{\\alpha} is a resonant line, it scatters on neutral hydrogen, having its path length from the source to our telescopes vastly increased, and taking it through regions of unknown physical conditions. In this work, a numerical code capable of calculating realistically the radiative transfer of Ly{\\alpha} is presented. The code is capable of performing the radiative transfer in an arbitrary and adaptively r...

  16. Fokker Planck kinetic modeling of suprathermal alpha-particles in a fusion plasma

    CERN Document Server

    Peigney, Benjamin-Edouard; Tikhonchuk, Vladimir

    2014-01-01

    We present an ion kinetic model describing the ignition and burn of the deuterium-tritium fuel of inertial fusion targets. The analysis of the underlying physical model enables us to develop efficient numerical methods to simulate the creation, transport and collisional relaxation of fusion reaction products (alpha-particles) at a kinetic level. A two-energy-scale approach leads to a self-consistent modeling of the coupling between suprathermal alpha-particles and the thermal bulk of the imploding plasma. This method provides an accurate numerical treatment of energy deposition and transport processes involving suprathermal particles. The numerical tools presented here are validated against known analytical results. This enables us to investigate the potential role of ion kinetic effects on the physics of ignition and thermonuclear burn in inertial confinement fusion schemes.

  17. New ALPHA-2 magnet

    CERN Multimedia

    Anaïs Schaeffer

    2012-01-01

    On 21 June, members of the ALPHA collaboration celebrated the handover of the first solenoid designed for the ALPHA-2 experiment. The magnet has since been successfully installed and is working well.   Khalid Mansoor, Sumera Yamin and Jeffrey Hangst in front of the new ALPHA-2 solenoid. “This was the first of three identical solenoids that will be installed between now and September, as the rest of the ALPHA-2 device is installed and commissioned,” explains ALPHA spokesperson Jeffrey Hangst. “These magnets are designed to allow us to transfer particles - antiprotons, electrons and positrons - between various parts of the new ALPHA-2 device by controlling the transverse size of the particle bunch that is being transferred.” Sumera Yamin and Khalid Mansoor, two Pakistani scientists from the National Centre for Physics in Islamabad, came to CERN in February specifically to design and manufacture these magnets. “We had the chance to work on act...

  18. Registration of alpha particles in Makrofol-E nuclear track detectors

    Science.gov (United States)

    Rammah, Y. S.; Abdalla, Ayman M.; Ashraf, O.; Ashry, A. H.

    2016-06-01

    Fast detection of alpha particles in the range from 1 to 5 MeV in Makrofol-E polycarbonate nuclear track detectors (PCTDs) using a new chemical etchant was investigated. 252Cf and 241Am-thin open sources were used for irradiating Makrofol-E detectors with fission fragments and alpha particles in air at normal pressure and temperature (NPT). A chain of experimental work has been carried out using new etchants to register alpha particle in short time in Makrofol-E polycarbonate detectors. The etching efficiency were exhibited a clear dependence on the amount of methanol in the etching solution and etching time. The optimized chemical condition obtained at this stage of development for 200 μm Makrofol-E detectors are (8 ml of 10 N NaOH + 2 ml CH3OH) etching solutions at 60 °C for 3 h. In this study; it is possible to observe energy detection windows for Makrofol-E detectors according to applied etching duration. Makrofol-E introduced the characteristic Bragg peak, which indicates the advantages of this detector as alpha spectrometer. Consequently, the suggested new etchant can be developed for heavy ions detection and monitoring radon levels and its daughters.

  19. Alpha-particle emissivity screening of materials used for semiconductor manufacturing

    Science.gov (United States)

    Gordon, Michael; Rodbell, Kenneth

    2015-03-01

    Single-Event Upsets (SEU's) in semiconductor memory and logic devices continue to be a reliability issue in modern CMOS devices. SEU's result from deposited charge in the Si devices caused by the passage of ionizing radiation. With technology scaling, the device area decreases, but the critical charge required to flip bits decreases as well. The interplay between both determines how the SEU rate scales with shrinking device geometries and dimensions. In order to minimize the alpha-particle component of SEU, the radiation in the device environment has to be at the Ultra-Low Alpha (ULA) activity levels, e.g. less than 2 α/khr-cm2. Most detectors have background levels that are significantly larger than that level which makes making these measurements difficult and time consuming. A new class of alpha particle detector, utilizing pulse shape discrimination, is now available which allows one to make measurements quickly with ultra-low detector background. This talk will discuss what is involved in making alpha particle measurements of materials in the ULA activity levels, in terms of calibration, radon adsorption mitigation, the time required for obtaining reasonable statistics and comparisons to other detectors.

  20. Frequencies of complex chromosome exchange aberrations induced by 238Pu alpha-particles and detected by fluorescence in situ hybridization using single chromosome-specific probes.

    Science.gov (United States)

    Griffin, C S; Marsden, S J; Stevens, D L; Simpson, P; Savage, J R

    1995-04-01

    We undertook an analysis of chromosome-type exchange aberrations induced by alpha-particles using fluorescence in situ hybridization (FISH) with whole chromosome-specific probes for human chromosomes 1 or 4, together with a pan-centromeric probe. Contact-inhibited primary human fibroblasts (in G1) were irradiated with 0.41-1.00 Gy 238Pu alpha-particles and aberrations were analysed at the next mitosis following a single chromosome paint. Exchange and aberration painting patterns were classified according to Savage and Simpson (1994a). Of exchange aberrations, 38-47% were found to be complex derived, i.e. resulting from three or more breaks in two or more chromosomes, and the variation with dose was minimal. The class of complex aberrations most frequently observed were insertions, derived from a minimum of three breaks in two chromosomes. There was also an elevated frequency of rings. The high level of complex aberrations observed after alpha-particle irradiation indicates that, when chromosome domains are traversed by high linear energy transfer alpha-particle tracks, there is an enhanced probability of production of multiple localized double-strand breaks leading to more complicated interactions.

  1. SPHRAY: A Smoothed Particle Hydrodynamics Ray Tracer for Radiative Transfer

    Science.gov (United States)

    Altay, Gabriel; Croft, Rupert A. C.; Pelupessy, Inti

    2011-03-01

    SPHRAY, a Smoothed Particle Hydrodynamics (SPH) ray tracer, is designed to solve the 3D, time dependent, radiative transfer (RT) equations for arbitrary density fields. The SPH nature of SPHRAY makes the incorporation of separate hydrodynamics and gravity solvers very natural. SPHRAY relies on a Monte Carlo (MC) ray tracing scheme that does not interpolate the SPH particles onto a grid but instead integrates directly through the SPH kernels. Given initial conditions and a description of the sources of ionizing radiation, the code will calculate the non-equilibrium ionization state (HI, HII, HeI, HeII, HeIII, e) and temperature (internal energy/entropy) of each SPH particle. The sources of radiation can include point like objects, diffuse recombination radiation, and a background field from outside the computational volume. The MC ray tracing implementation allows for the quick introduction of new physics and is parallelization friendly. A quick Axis Aligned Bounding Box (AABB) test taken from computer graphics applications allows for the acceleration of the raytracing component. We present the algorithms used in SPHRAY and verify the code by performing all the test problems detailed in the recent Radiative Transfer Comparison Project of Iliev et. al. The Fortran 90 source code for SPHRAY and example SPH density fields are made available online.

  2. Photoluminescence detection of alpha particle using DAM-ADC nuclear detector

    Science.gov (United States)

    Abdalla, Ayman M.; Harraz, Farid A.; Ali, Atif M.; Al-Sayari, S. A.; Al-Hajry, A.

    2016-09-01

    The photoluminescence (PL) and UV-vis spectral analysis of DAM-ADC (diallyl maleate: DAM, polyallyl diglycol carbonate: ADC) nuclear detector are demonstrated for the first time. The DAM-ADC surfaces were exposed to thin 241Am disk source that emits alpha particles with activity 333 kBq. It is found that the track density of the irradiated samples remarkably influences the PL characteristics of the DAM-ADC detector. The spectral peak heights and the integrated intensities under the peaks exhibit linear correlations with correlation coefficient R2=0.9636 and 0.9806, respectively for different alpha particle fluences ranging from 8.16-40.82×107 particles/cm2. Additionally, a correlation coefficient R2=0.9734 was achieved for the UV-vis spectral analysis. The linear fitting functions, along with the corresponding fitting parameters were evaluated in each case. Both the PL and the UV-vis data of the irradiated DAM-ADC samples showed considerable spectral differences, and hence they would be used to offer sensitive approaches for alpha particle detection.

  3. Photoluminescence detection of alpha particle using DAM-ADC nuclear detector

    Energy Technology Data Exchange (ETDEWEB)

    Abdalla, Ayman M., E-mail: aymanabdalla62@hotmail.com [Department of Physics, College of Science and Arts, Najran University, P.O. Box 1988, Najran 11001 (Saudi Arabia); Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, P.O. Box: 1988, Najran 11001 (Saudi Arabia); Harraz, Farid A., E-mail: fharraz68@yahoo.com [Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, P.O. Box: 1988, Najran 11001 (Saudi Arabia); Nanostructured Materials and Nanotechnology Division, Central Metallurgical Research and Development Institute (CMRDI), P.O. Box: 87 Helwan, Cairo 11421 (Egypt); Ali, Atif M. [Department of Physics, Faculty of Science, King Khalid University, Abha (Saudi Arabia); Al-Sayari, S.A. [Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, P.O. Box: 1988, Najran 11001 (Saudi Arabia); College of Science and Arts-Sharoura, Najran University (Saudi Arabia); Al-Hajry, A. [Department of Physics, College of Science and Arts, Najran University, P.O. Box 1988, Najran 11001 (Saudi Arabia); Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, P.O. Box: 1988, Najran 11001 (Saudi Arabia)

    2016-09-11

    The photoluminescence (PL) and UV–vis spectral analysis of DAM-ADC (diallyl maleate: DAM, polyallyl diglycol carbonate: ADC) nuclear detector are demonstrated for the first time. The DAM-ADC surfaces were exposed to thin {sup 241}Am disk source that emits alpha particles with activity 333 kBq. It is found that the track density of the irradiated samples remarkably influences the PL characteristics of the DAM-ADC detector. The spectral peak heights and the integrated intensities under the peaks exhibit linear correlations with correlation coefficient R{sup 2}=0.9636 and 0.9806, respectively for different alpha particle fluences ranging from 8.16–40.82×10{sup 7} particles/cm{sup 2}. Additionally, a correlation coefficient R{sup 2}=0.9734 was achieved for the UV–vis spectral analysis. The linear fitting functions, along with the corresponding fitting parameters were evaluated in each case. Both the PL and the UV–vis data of the irradiated DAM-ADC samples showed considerable spectral differences, and hence they would be used to offer sensitive approaches for alpha particle detection.

  4. Alfven Eigenmode And Ion Bernstein Wave Studies For Controlling Fusion Alpha Particles

    CERN Document Server

    Heeter, R F

    1999-01-01

    In magnetic confinement fusion reactor plasmas, the charged fusion products (such as alpha particles in deuterium-tritium plasmas) will be the dominant power source, and by controlling these charged fusion products using wave-particle interactions the reactor performance could be optimized. This thesis studies two candidate waves: Mode-Converted Ion Bernstein Waves (MCIBWs) and Alfvén Eigenmodes (AEs). Rates of MCIBW-driven losses of alpha-like fast deuterons, previously observed in the Tokamak Fusion Test Reactor (TFTR), are reproduced by a new model so that the wave-particle diffusion coefficient can be deduced. The MCIBW power in TFTR is found to be ∼ 1/3 that needed for collisionless alpha particle control. A reasonable reactor power scaling is derived. To study AEs, existing magnetic fluctuation probes at the Joint European Torus (JET) have been absolutely calibrated from 30–500 kHz for the first time, allowing fluctuation measurements with &vbm0;dBpol&vbm0;/B0&am...

  5. Modulating charge transfer through cyclic D,L-alpha-peptide self-assembly.

    Science.gov (United States)

    Horne, W Seth; Ashkenasy, Nurit; Ghadiri, M Reza

    2005-02-04

    We describe a concise, solid support-based synthetic method for the preparation of cyclic d,l-alpha-peptides bearing 1,4,5,8-naphthalenetetracarboxylic acid diimide (NDI) side chains. Studies of the structural and photoluminescence properties of these molecules in solution show that the hydrogen bond-directed self-assembly of the cyclic d,l-alpha-peptide backbone promotes intermolecular NDI excimer formation. The efficiency of NDI charge transfer in the resulting supramolecular assemblies is shown to depend on the length of the linker between the NDI and the peptide backbone, the distal NDI substituent, and the number of NDIs incorporated in a given structure. The design rationale and synthetic strategies described here should provide a basic blueprint for a series of self-assembling cyclic d,l-alpha-peptide nanotubes with interesting optical and electronic properties.

  6. Ionization-cluster distributions of alpha-particles in nanometric volumes of propane: measurement and calculation.

    Science.gov (United States)

    De Nardo, L; Colautti, P; Conte, V; Baek, W Y; Grosswendt, B; Tornielli, G

    2002-12-01

    The probability of the formation of ionization clusters by primary alpha-particles at 5.4 MeV in nanometric volumes of propane was studied experimentally and by Monte Carlo simulation, as a function of the distance between the center line of the particle beam and the center of the target volume. The volumes were of cylindrical shape, 3.7 mm in diameter and height. As the investigations were performed at gas pressures of 300 Pa and 350 Pa, the dimensions of the target volume were equivalent to 20.6 nm or 24.0 nm in a material of density 1.0 g/cm(3). The dependence of ionization-cluster formation on distance was studied up to values equivalent to about 70 nm. To validate the measurements, a Monte Carlo model was developed which allows the experimental arrangement and the interactions of alpha-particles and secondary electrons in the counter gas to be properly simulated. This model is supplemented by a mathematical formulation of cluster size formation in nanometric targets. The main results of our study are (i) that the mean ionization-cluster size in the delta-electron cloud of an alpha-particle track segment, decreases as a function of the distance between the center line of the alpha-particle beam and the center of the sensitive target volume to the power of 2.6, and (ii) that the mean cluster size in critical volumes and the relative variance of mean cluster size due to delta-electrons are invariant at distances greater than about 20 nm. We could imagine that the ionization-cluster formation in nanometric volumes might in future provide the physical basis for a redefinition of radiation quality.

  7. SPAMCART: a code for smoothed particle Monte Carlo radiative transfer

    Science.gov (United States)

    Lomax, O.; Whitworth, A. P.

    2016-10-01

    We present a code for generating synthetic spectral energy distributions and intensity maps from smoothed particle hydrodynamics simulation snapshots. The code is based on the Lucy Monte Carlo radiative transfer method, i.e. it follows discrete luminosity packets as they propagate through a density field, and then uses their trajectories to compute the radiative equilibrium temperature of the ambient dust. The sources can be extended and/or embedded, and discrete and/or diffuse. The density is not mapped on to a grid, and therefore the calculation is performed at exactly the same resolution as the hydrodynamics. We present two example calculations using this method. First, we demonstrate that the code strictly adheres to Kirchhoff's law of radiation. Secondly, we present synthetic intensity maps and spectra of an embedded protostellar multiple system. The algorithm uses data structures that are already constructed for other purposes in modern particle codes. It is therefore relatively simple to implement.

  8. SPAMCART: a code for smoothed particle Monte Carlo radiative transfer

    CERN Document Server

    Lomax, O

    2016-01-01

    We present a code for generating synthetic SEDs and intensity maps from Smoothed Particle Hydrodynamics simulation snapshots. The code is based on the Lucy (1999) Monte Carlo Radiative Transfer method, i.e. it follows discrete luminosity packets, emitted from external and/or embedded sources, as they propagate through a density field, and then uses their trajectories to compute the radiative equilibrium temperature of the ambient dust. The density is not mapped onto a grid, and therefore the calculation is performed at exactly the same resolution as the hydrodynamics. We present two example calculations using this method. First, we demonstrate that the code strictly adheres to Kirchhoff's law of radiation. Second, we present synthetic intensity maps and spectra of an embedded protostellar multiple system. The algorithm uses data structures that are already constructed for other purposes in modern particle codes. It is therefore relatively simple to implement.

  9. Single particle tracking and single molecule energy transfer

    CERN Document Server

    Bräuchle, Christoph; Michaelis, Jens

    2009-01-01

    Closing a gap in the literature, this handbook gathers all the information on single particle tracking and single molecule energy transfer. It covers all aspects of this hot and modern topic, from detecting virus entry to membrane diffusion, and from protein folding using spFRET to coupled dye systems, as well recent achievements in the field. Throughout, the first-class editors and top international authors present content of the highest quality, making this a must-have for physical chemists, spectroscopists, molecular physicists and biochemists.

  10. Methods for particle-mediated gene transfer into skin.

    Science.gov (United States)

    Yang, N S; McCabe, D E; Swain, W F

    1997-01-01

    During the past 5 yr, particle-mediated delivery techniques have been developed as a physical means for gene transfer into various eukaryotic systems, including plants, insects, fish, and mammals (1-7). For mammalian somatic tissues, this technology, popularly known as the gene gun method, has been shown effective in transfection of skin, liver, pancreas, muscle, spleen, and other organs in vivo (3,4); brain, mammary, and leukocyte pnmary cultures or explants ex vivo (2,5-7); and a wide range of different mammalian cell lines in vitro (3,6,7).

  11. Cryogenic microcalorimeter system for ultra-high resolution alpha-particle spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Rabin, Michael W [Los Alamos National Laboratory; Hoover, Andrew S [Los Alamos National Laboratory; Bacrania, Mnesh K [Los Alamos National Laboratory; Croce, Mark P [Los Alamos National Laboratory; Hoteling, N J [Los Alamos National Laboratory; Lamont, S P [Los Alamos National Laboratory; Plionis, A A [Los Alamos National Laboratory; Dry, D E [Los Alamos National Laboratory; Ullom, J N [NIST; Bennett, D A [NIST; Horansky, R [NIST; Kotsubo, V [NIST; Cantor, R [STAR CRYOELECTRONICS

    2009-01-01

    Microcalorimeters have been shown to yield unsurpassed energy resolution for alpha spectrometry, up to 1.06 keV FWHM at 5.3 MeV. These detectors use a superconducting transition-edge sensor (TES) to measure the temperature change in an absorber from energy deposited by an interacting alpha particle. Our system has four independent detectors mounted inside a liquid nitrogen/liquid helium cryostat. An adiabatic demagnetization refrigerator (ADR) cools the detector stage to its operating temperature of 80 mK. Temperature regulation with {approx}15 uK peak-to-peak variation is achieved by PID control of the ADR. The detectors are voltage-biased, and the current signal is amplified by a commercial SQUID readout system and digitized for further analysis, This paper will discuss design and operation of our microcalorimeter alpha spectrometer, and will show recent results.

  12. Turbulent transport of MeV range cyclotron heated minorities as compared to alpha particles

    CERN Document Server

    Pusztai, István; Kazakov, Yevgen O; Fülöp, Tünde

    2016-01-01

    We study the turbulent transport of an ion cyclotron resonance heated (ICRH), MeV range minority ion species in tokamak plasmas. Such highly energetic minorities, which can be produced in the three ion minority heating scheme [Ye. O. Kazakov et al. (2015) Nucl. Fusion 55, 032001], have been proposed to be used to experimentally study the confinement properties of fast ions without the generation of fusion alphas. We compare the turbulent transport properties of ICRH ions with that of fusion born alpha particles. Our results indicate that care must be taken when conclusions are drawn from experimental results: While the effect of turbulence on these particles is similar in terms of transport coefficients, differences in their distribution functions - ultimately their generation processes - make the resulting turbulent fluxes different.

  13. Optical and THz investigations of mid-IR materials exposed to alpha particle irradiation

    Science.gov (United States)

    Sporea, Dan; Mihai, Laura; Sporea, Adelina; Vâţã, Ion

    2017-01-01

    The paper is the first comprehensive study on alpha particle irradiation effects on four mid-IR materials: CaF2, BaF2, Al2O3 (sapphire) and ZnSe. The measurements of the optical spectral transmittance, spectral diffuse reflectance, radioluminescent emission, terahertz (THz) spectral response, transmittance, absorbance, refractive index, real and imaginary parts of the dielectric constant and THz imaging are used as complementary investigations to evaluate these effects. The simulations were run to estimate: (i) the penetration depth, (ii) the scattering of alpha particle beam, (iii) the amount of material affected by this interaction, and (iv) the number of vacancies produced by the radiation exposure for each type of material. The simulation results are compared to the off-line measurement outcomes. The delay and spectral composition change of the reflected THz signal highlight the modification induced in the tested materials by the irradiation process.

  14. Revisiting alpha decay-based near-light-speed particle propulsion.

    Science.gov (United States)

    Zhang, Wenwu; Liu, Zhen; Yang, Yang; Du, Shiyu

    2016-08-01

    Interplanet and interstellar travels require long-term propulsion of spacecrafts, whereas the conventional schemes of propulsion are limited by the velocity of the ejected mass. In this study, alpha particles released by nuclear decay are considered as a potential solution for long-time acceleration. The principle of near-light-speed particle propulsion (NcPP) was elucidated and the stopping and range of ions in matter (SRIM) was used to predict theoretical accelerations. The results show that NcPP by means of alpha decay is feasible for long-term spacecraft propulsion and posture adjustment in space. A practical NcPP sail can achieve a speed >150km/s and reach the brink of the solar system faster than a mass equivalent solar sail. Finally, to significantly improve the NcPP sail, the hypothesis of stimulated acceleration of nuclear decay (SAND) was proposed, which may shorten the travel time to Mars to within 20 days.

  15. Alpha particle induced DNA damage and repair in normal cultured thyrocytes of different proliferation status

    DEFF Research Database (Denmark)

    Lyckesvärd, Madeleine Nordén; Delle, Ulla; Kahu, Helena

    2014-01-01

    mechanism as (131)I [1], in cancer treatment has increased during recent years because of its high efficiency in inducing biological damage and beneficial dose distribution when compared to low-LET radiation. Most knowledge of the DNA damage response in thyroid is from studies using low-LET irradiation...... and much less is known of high-LET irradiation. In this paper we investigated the DNA damage response and biological consequences to photons from Cobolt-60 ((60)Co) and alpha particles from (211)At in normal primary thyrocytes of different cell cycle status. For both radiation qualities the intensity....... Increasing ratios of micronuclei per cell nuclei were seen up to 1Gy (211)At. We found that primary thyrocytes were much more sensitive to alpha particle exposure compared with low-LET photons. Calculations of the relative biological effectiveness yielded higher RBE for cycling cells compared with stationary...

  16. Signature of the N = 126 shell closure in dwell times of alpha-particle tunneling

    Science.gov (United States)

    Kelkar, N. G.; Nowakowski, M.

    2016-10-01

    Characteristic quantities such as the penetration and preformation probabilities, assault frequency and tunneling times in the tunneling description of alpha decay of heavy nuclei are explored to reveal their sensitivity to neutron numbers in the vicinity of the magic neutron number N = 126. Using realistic nuclear potentials, the sensitivity of these quantities to the parameters of the theoretical approach is also tested. An investigation of the region from N = 116 to N = 132 in Po nuclei reveals that the tunneling α particle spends the least amount of time with an N = 126 magic daughter nucleus. The shell closure at N = 126 seems to affect the behavior of the dwell times of the tunneling alpha particles and this occurs through the influence of the Q-values involved.

  17. Optical and THz investigations of mid-IR materials exposed to alpha particle irradiation

    Science.gov (United States)

    Sporea, Dan; Mihai, Laura; Sporea, Adelina; Vâţã, Ion

    2017-01-01

    The paper is the first comprehensive study on alpha particle irradiation effects on four mid-IR materials: CaF2, BaF2, Al2O3 (sapphire) and ZnSe. The measurements of the optical spectral transmittance, spectral diffuse reflectance, radioluminescent emission, terahertz (THz) spectral response, transmittance, absorbance, refractive index, real and imaginary parts of the dielectric constant and THz imaging are used as complementary investigations to evaluate these effects. The simulations were run to estimate: (i) the penetration depth, (ii) the scattering of alpha particle beam, (iii) the amount of material affected by this interaction, and (iv) the number of vacancies produced by the radiation exposure for each type of material. The simulation results are compared to the off-line measurement outcomes. The delay and spectral composition change of the reflected THz signal highlight the modification induced in the tested materials by the irradiation process. PMID:28067289

  18. Development of scintillator plates with high energy resolution for alpha particles made of GPS scintillator grains

    Science.gov (United States)

    Shimaoka, Takehiro; Kaneko, Junichi H.; Izaki, Kenji; Tsubota, Youichi; Higuchi, Mikio; Nishiyama, Shusuke

    2014-01-01

    A scintillator plate with high energy resolution was developed to produce an alpha particle monitor used in nuclear fuel reprocessing plants and mixed plutonium-uranium oxide (MOX) fuel plants. Grains of a Gd2Si2O7 (GPS) scintillator of several 10 to 550 μm were fixed on a glass substrate and were then mechanically polished. By increasing the size of scintillator grains and removing fine powders, the collected light yield and energy resolution for alpha particles were drastically improved. Energy resolution of 9.3% was achieved using average grain size of 91 μm. Furthermore, the ratios between counts in a peak and total counts were improved by more than 60% by the further increase of grain size and adoption of mechanically polished surfaces on both sides. Beta and gamma ray influences were suppressed sufficiently by the thin 100 μm scintillator plates.

  19. Correlated emission of three {alpha}-particles in the {beta}-decay of {sup 12}N

    Energy Technology Data Exchange (ETDEWEB)

    Fynbo, H.O.U.; Oinonen, M.; Weissman, L. [EP Division, CERN, CH-1211 Geneve 23 (Switzerland); Prezado, Y.; Borge, M.J.G.; Tengblad, O. [Instituto Estructura de la Materia, CSIC, Serrano 113bis, E-28006 Madrid (Spain); Aeystoe, J.; Dendooven, P.; Huang, W.; Huikari, J.; Jones, P.; Wang, Y. [Department of Physics, University of Jyvaeskylae, FIN-40351 Jyvaeskylae (Finland); Bergmann, U.C.; Jeppesen, H.; Riisager, K.; Vogelius, I.S. [Institut for Fysik og Astronomi, Aarhus Universitet, DK-8000 Aarhus C (Denmark); Jonson, B.; Meister, M.; Nyman, G. [Experimentell Fysik, Chalmers Tekniska Hoegskola, S-412 96 Goeteborg (Sweden); Rolander, K.W. [Fysiska Institutionen, Stockholms Universitet, Box 6730, S-113 85 Stockholm (Sweden)

    2002-10-01

    The {beta}-decay of {sup 12}N is used to populate {alpha}-emitting excited states in {sup 12}C. The {alpha}-particles from the break-up of both the 10.3 MeV and 12.71 MeV states were measured in coincidence with an efficient detector setup consisting of two double-sided Si strip detectors. The break-up of the 12.71 MeV 1{sup +} state is an interesting testing ground for the different descriptions of multi-particle break-up, whereas the properties of the 10.3 MeV state, which under some astrophysical conditions is relevant for the production of {sup 12}C in stars, are poorly known. First results from the analysis of the data is presented and compared with Monte Carlo simulations. (orig.)

  20. Effects of magnetic ripple on 3D equilibrium and alpha particle confinement in the European DEMO

    Science.gov (United States)

    Pfefferlé, D.; Cooper, W. A.; Fasoli, A.; Graves, J. P.

    2016-11-01

    An assessment of alpha particle confinement is performed in the European DEMO reference design. 3D MHD equilibria with nested flux-surfaces and single magnetic axis are obtained with the VMEC free-boundary code, thereby including the plasma response to the magnetic ripple created by the finite number of TF coils. Populations of fusion alphas that are consistent with the equilibrium profiles are evolved until slowing-down with the VENUS-LEVIS orbit code in the guiding-centre approximation. Fast ion losses through the last-closed flux-surface are numerically evaluated with two ripple models: (1) using the 3D equilibrium and (2) algebraically adding the non-axisymmetric ripple perturbation to the 2D equilibrium. By virtue of the small ripple field and its non-resonant nature, both models quantitatively agree. Differences are however noted in the toroidal location of particles losses on the last-closed flux-surface, which in the first case is 3D and in the second not. Superbanana transport, i.e. ripple-well trapping and separatrix crossing, is expected to be the dominant loss mechanism, the strongest effect on alphas being between 100-200 KeV. Above this, stochastic ripple diffusion is responsible for a rather weak loss rate, as the stochastisation threshold is observed numerically to be higher than analytic estimates. The level of ripple in the current 18 TF coil design of the European DEMO is not found to be detrimental to fusion alpha confinement.

  1. Alpha particle spectra in coincidence with normal and superdeformed states in {sup 150}Tb

    Energy Technology Data Exchange (ETDEWEB)

    Viesti, G.; Lunardon, M.; Bazzacco, D. [dell`Universita, Padova (Italy)]|[INFN, Padova (Italy)] [and others

    1996-12-31

    The study of correlations between particle evaporation from highly excited compound nuclei at large angular momenta and the states in the final evaporation residues (ER) is a field of investigation which has been opened, in the last years, with the advent of the new large {gamma}-ray arrays. It is now possible to correlate the evaporation spectra to various bands with shapes ranging from spherical to superdeformed (SD) in the same final nucleus. It is generally accepted that the particle evaporation from the compound nucleus is chaotic and that only in the near-yrast {gamma} cascade, where the feeding of different classes of states takes place, the ordered motion is restored. The sensitivity of the particle spectra on the feeding of specific states in the residual nuclei can be taken as an indication that additional degrees of freedom might be important in the evaporation process or that particular regions of the phase space open to the decay populate preferentially some selected structures in the final cold nucleus. This latter point is important for the understanding of the feeding mechanism of SD states. Several experiments performed so far did not find a clear dependence of the shapes of the particle spectra on the excited states having different deformations in the ER. For example, the proton spectra in coincidence with transitions in the SD bands of {sup 133}Nd and {sup 152}Dy nuclei were found to be similar to those in coincidence with transitions in the normal deformed (ND) bands. Alpha particles have been proposed since long as a sensitive probe of the deformation of the emitting nucleus. Results are presented here of an experiment in which the authors have measured the energy spectra of alpha particles associated with different classes of states (ND and SD) in the {sup 150}Tb nucleus populated in the reaction {sup 37}Cl({sup 120}Sn, {alpha}3n{gamma}){sup 150}Tb.

  2. Characterization of Solidified Gas Thin Film Targets via $\\alpha$ Particle Energy Loss

    CERN Document Server

    Fujiwara, M C; Beveridge, J L; Douglas, J L; Huber, T M; Jacot-Guillarmod, R; Kim, S K; Knowles, P E; Kunselman, A R; Maier, M; Marshall, G M; Mason, G R; Mulhauser, F; Olin, A; Petitjean, C; Porcelli, T A; Zmeskal, J

    1996-01-01

    A method is reported for measuring the thickness and uniformity of thin films of solidified gas targets. The energy of alpha particles traversing the film is measured and the energy loss is converted to thickness using the stopping power. The uniformity is determined by measuring the thickness at different positions with an array of sources. Monte Carlo simulations have been performed to study the film deposition mechanism. Thickness calibrations for a TRIUMF solid hydrogen target system are presented.

  3. Kinetics of self-interstitials reactions in p-type silicon irradiated with alpha particles

    Energy Technology Data Exchange (ETDEWEB)

    Makarenko, L.F., E-mail: makarenko@bsu.by [Department of Applied Mathematics and Computer Science, Belarusian State University, Independence Ave. 4, 220030 Minsk (Belarus); Moll, M. [CERN, Geneva (Switzerland); Evans-Freeman, J.H. [University of Canterbury, Christchurch (New Zealand); Lastovski, S.B.; Murin, L.I.; Korshunov, F.P. [Scientific-Practical Materials Research Centre of NAS of Belarus, Minsk (Belarus)

    2012-08-01

    New findings on the self-interstitial migration in p-type silicon are presented. They are based on experimental studies of the formation kinetics of defects related to interstitial carbon after irradiation with alpha particles. The main parameters characterizing the interaction rate of silicon self-interstitials with substitutional carbon atoms have been determined. A preliminary interpretation of the experimental data is given. The interpretation takes into account different diffusivities of self-interstitials in their singly and doubly ionized states.

  4. BJT detector with FPGA-based read-out for alpha particle monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Tyzhnevyi, V; Dalla Betta, G-F [Universita di Trento, via Sommarive, 14, 38123 Trento (Italy); Rovati, L [Universita di Modena e Reggio Emilia, via Vignolese 905, 41125 Modena (Italy); Verzellesi, G [Universita di Modena e Reggio Emilia, via Amendola 2, Pad. Morselli, 42100 Reggio Emilia (Italy); Zorzi, N, E-mail: tyzhnevyi@disi.unitn.it [Fondazione Bruno Kessler, via Sommarive, 18, 38123 Trento (Italy)

    2011-01-15

    In this work we introduce a new prototype of readout electronics (ALPHADET), which was designed for an {alpha}-particle detection system based on a bipolar junction transistor (BJT) detector. The system uses an FPGA, which provides many advantages at the stage of prototyping and testing the detector. The main design and electrical features of the board are discussed in this paper, along with selected results from the characterization of ALPHADET coupled to BJT detectors.

  5. Nanodosimetry and nanodosimetric-based models of radiation action for radon alpha particles

    Energy Technology Data Exchange (ETDEWEB)

    Zaider, M.

    1992-01-01

    We report on a theory for describing the biological effects of ionizing radiation in particular radon [alpha] particles. Behind this approach is the recognition that biological effects such as chromosome aberrations, cellular transformation, cellular inactivation, etc, are the result of a hierarchic sequence of radiation effects. We indicate how to treat each of the individual processes in this sequence, and also how to relate one effect to the hierarchically superior one.

  6. Alpha particles energy estimation from track diameter development in a CR-39 detector.

    Science.gov (United States)

    Azooz, Aassim A; Al-Jubbori, Mushtaq A

    2016-09-01

    The slight nonlinearity in temporal development of tracks diameter in CR-39 nuclear track detectors is examined with the aim of attempting to find if such nonlinearity can be directly related to the charged particle energy. Narrowly spaced etching time-diameter experimental data for alpha particles at five energy values and for one additional energy value etched at five different temperatures are obtained. Initial results show good indication that measuring such time-diameter relationship can form a useful energy estimation tool. Good consistency with other independent published results is obtained.

  7. Acceleration of low-energy protons and alpha particles at interplanetary shock waves

    Science.gov (United States)

    Scholer, M.; Hovestadt, D.; Ipavich, F. M.; Gloeckler, G.

    1983-01-01

    The low-energy protons and alpha particles in the energy range 30 keV/charge to 150 keV/charge associated with three different interplanetary shock waves in the immediate preshock and postshock region are studied using data obtained by the ISEE 3. The spatial distributions in the preshock and postshock medium are presented, and the dependence of the phase space density at different energies on the distance from the shock and on the form of the distribution function of both species immediately at the shock is examined. It is found that in the preshock region the particles are flowing in the solar wind frame of reference away from the shock and in the postshock medium the distribution is more or less isotropic in this frame of reference. The distribution function in the postshock region can be represented by a power law in energy which has the same spectral exponent for both protons and alpha particles. It is concluded that the first-order Fermi acceleration process can consistently explain the data, although the spectra of diffuse bow shock associated particles are different from the spectra of the interplanetary shock-associated particles in the immediate vicinity of the shock. In addition, the mean free path of the low energy ions in the preshock medium is found to be considerably smaller than the mean free path determined by the turbulence of the background interplanetary medium.

  8. Heat Transfer Enhancement by Fluidized Solid Particles in Gas Carrying Evaporation

    Institute of Scientific and Technical Information of China (English)

    于志家; 孙成新; 孙相彧; 刘展红

    2001-01-01

    Heat transfer characteristics are studied for gas carrying evaporation with fluidized solid particles in a vertical rectangular conduit. Experimental results show that heat transfer of gas carrying evaporation is enhanced and the superheat of liquid in contact with heating surface lowers remarkably by introducing solid particles. Nucleate boiling on the heating surface is suppressed to a considerable degree. The mechanism of heat transfer enhancement by fluidized solid particles is analyzed with the consideration of collisions of solid particles with the boiling vapor bubbles.

  9. Inertially confined fusion plasmas dominated by alpha-particle self-heating

    Science.gov (United States)

    Hurricane, O. A.; Callahan, D. A.; Casey, D. T.; Dewald, E. L.; Dittrich, T. R.; Döppner, T.; Haan, S.; Hinkel, D. E.; Berzak Hopkins, L. F.; Jones, O.; Kritcher, A. L.; Le Pape, S.; Ma, T.; Macphee, A. G.; Milovich, J. L.; Moody, J.; Pak, A.; Park, H.-S.; Patel, P. K.; Ralph, J. E.; Robey, H. F.; Ross, J. S.; Salmonson, J. D.; Spears, B. K.; Springer, P. T.; Tommasini, R.; Albert, F.; Benedetti, L. R.; Bionta, R.; Bond, E.; Bradley, D. K.; Caggiano, J.; Celliers, P. M.; Cerjan, C.; Church, J. A.; Dylla-Spears, R.; Edgell, D.; Edwards, M. J.; Fittinghoff, D.; Barrios Garcia, M. A.; Hamza, A.; Hatarik, R.; Herrmann, H.; Hohenberger, M.; Hoover, D.; Kline, J. L.; Kyrala, G.; Kozioziemski, B.; Grim, G.; Field, J. E.; Frenje, J.; Izumi, N.; Gatu Johnson, M.; Khan, S. F.; Knauer, J.; Kohut, T.; Landen, O.; Merrill, F.; Michel, P.; Moore, A.; Nagel, S. R.; Nikroo, A.; Parham, T.; Rygg, R. R.; Sayre, D.; Schneider, M.; Shaughnessy, D.; Strozzi, D.; Town, R. P. J.; Turnbull, D.; Volegov, P.; Wan, A.; Widmann, K.; Wilde, C.; Yeamans, C.

    2016-08-01

    Alpha-particle self-heating, the process of deuterium-tritium fusion reaction products depositing their kinetic energy locally within a fusion reaction region and thus increasing the temperature in the reacting region, is essential for achieving ignition in a fusion system. Here, we report new inertial confinement fusion experiments where the alpha-particle heating of the plasma is dominant with the fusion yield produced exceeding the fusion yield from the work done on the fuel (pressure times volume change) by a factor of two or more. These experiments have achieved the highest yield (26 +/- 0.5 kJ) and stagnation pressures (≍220 +/- 40 Gbar) of any facility-based inertial confinement fusion experiments, although they are still short of the pressures required for ignition on the National Ignition Facility (~300-400 Gbar). These experiments put us in a new part of parameter space that has not been extensively studied so far because it lies between the no-alpha-particle-deposition regime and ignition.

  10. Characterization of actinide targets by low solid-angle alpha particle counting

    CERN Document Server

    Denecke, B; Pauwels, J; Robouch, P; Gilliam, D M; Hodge, P; Hutchinson, J M R; Nico, J S

    1999-01-01

    Actinide samples were characterized in an interlaboratory comparison between IRMM and NIST, including alpha-particle counting at defined low solid angle and counting in a 2 pi proportional gas counter. For this comparison, nine sup 2 sup 3 sup 3 UF sub 4 samples with high uniformity in the layer thickness were prepared at IRMM by deposition under vacuum. Polished silicon wafers were used as source substrates, and these were rotated during the deposition using a planetary rotation system. The estimated uncertainties for the defined low solid-angle methods were about 0.1% at both NIST and IRMM. The agreement of reported alpha-particle emission rates in the energy range 2.5-5.09 MeV was better than or equal to 0.02% for the defined solid-angle methods. When comparing total alpha-particle emission rates over the larger energy range 0-9 MeV (which includes all emissions from the daughter nuclides and the impurities), the agreement of the defined solid-angle methods was better than or equal to 0.05%. The 2 pi propo...

  11. Alpha particles versus conventional radiotherapy to the pituitary region: a comparison of risk-benefit

    Energy Technology Data Exchange (ETDEWEB)

    Linfoot, J.A.

    1980-01-01

    At the present time there are no prospective controlled studies or comparative studies on the effectiveness of the various modalities of pituitary treatment-surgery and photon and alpha particle pituitary irradiation. In this review the results of alpha particle pituitary irradiation (APPI), initiated at the Donner Laboratory and Donner Pavilion at the Lawrence Berkeley Laboratory, University of California, Berkeley, and the results of conventonal photon irradiation (gamma or x-rays) will be presented. In general it has been established that the effects of photon therapy are related to the size of radiation field, type of isodose curve, total radiation dose (rads), duration of therapy, and rads delivered per fraction. Minor complications of photon therapy included epilation of the scalp and, occasionally, mild headache. In the past few years there has been a trend to reduce the total radiation dose as well as the dose per fraction. Finally, in photon therapy, large fields are utilized, involving a large volume of tissue. In contrast, alpha particle pituitary irradiation utilizes a pencil-shaped beam which is made to fit the contour of the sella turcica. The dose to the skin and peripheral portions of the brain is minimal, and no epilation occurs.

  12. Utilizing Time Redundancy for Particle Filter-Based Transfer Alignment

    Science.gov (United States)

    Chattaraj, Suvendu; Mukherjee, Abhik

    2016-07-01

    Signal detection in the presence of high noise is a challenge in natural sciences. From understanding signals emanating out of deep space probes to signals in protein interactions for systems biology, domain specific innovations are needed. The present work is in the domain of transfer alignment (TA), which deals with estimation of the misalignment of deliverable daughter munitions with respect to that of the delivering mother platform. In this domain, the design of noise filtering scheme has to consider a time varying and nonlinear system dynamics at play. The accuracy of conventional particle filter formulation suffers due to deviations from modeled system dynamics. An evolutionary particle filter can overcome this problem by evolving multiple system models through few support points per particle. However, this variant has even higher time complexity for real-time execution. As a result, measurement update gets deferred and the estimation accuracy is compromised. By running these filter algorithms on multiple processors, the execution time can be reduced, to allow frequent measurement updates. Such scheme ensures better system identification so that performance improves in case of simultaneous ejection of multiple daughters and also results in better convergence of TA algorithms for single daughter.

  13. Nucleon-alpha particle interactions from inversion of scattering phase shifts

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, N.; Amos, K.; Apagyi, B.; Lun, D.R.

    1996-03-01

    Scattering amplitudes have been extracted from (elastic scattering) neutron-alpha (n-{alpha}) differential cross sections below threshold using the constraint that the scattering function is unitary. Real phase shifts have been obtained therefrom. A modification to the Newton iteration method has been used to solve the nonlinear equation that specifies the phase of the scattering amplitude in terms of the complete (0 to 180 deg) cross section since the condition for a unique and convergent solution by an exact iterated fixed point method, the `Martin` condition, is not satisfied. The results compare well with those found using standard optical model search procedures. Those optical model phase shifts, from both n - {alpha} and p - {alpha} (proton-alpha) calculations in which spin-orbit effects were included, were used in the second phase of this study, namely to determine the scattering potentials by inversion of that phase shift data. A modified Newton-Sabatier scheme to solve the inverse scattering problem has been used to obtain inversion potentials (both central and spin-orbit) for nucleon energies in the range 1 to 24 MeV. The inversion interactions differ noticeably from the Woods-Saxon forms used to give the input phase shifts. Not only do those inversion potentials when used in Schroedinger equations reproduce the starting phase shifts but they are also very smooth, decay rapidly, and are as feasible as the optical model potentials of others to be the local form for interactions deduced by folding realistic two-nucleon g matrices with the density matrix elements of the alpha particle. 23 refs., 8 tabs., 9 figs.

  14. Quantitative autoradiography of alpha particle emission in geo-materials using the Beaver™ system

    Science.gov (United States)

    Sardini, Paul; Angileri, Axel; Descostes, Michael; Duval, Samuel; Oger, Tugdual; Patrier, Patricia; Rividi, Nicolas; Siitari-Kauppi, Marja; Toubon, Hervé; Donnard, Jérôme

    2016-10-01

    In rocks or artificial geo-materials, radioactive isotopes emitting alpha particles are dispersed according to the mineralogy. At hand specimen scale, the achievement of quantitative chemical mapping of these isotopes takes on a specific importance. Knowledge of the distribution of the uranium and thorium series radionuclides is of prime interest to several disciplines, from the geochemistry of uranium deposits, to the dispersion of uranium mill tailings in the biosphere. The disequilibrium of these disintegration chains is also commonly used for dating. However, some prime importance isotopes, such as 226Ra, are complicated to localize in geo-materials. Because of its high specific activity, 226Ra is found in very low concentrations ( ppq), preventing its accurate localization in rock forming minerals. This paper formulates a quantitative answer to the following question: at hand specimen scale, how can alpha emitters in geo-materials be mapped quantitatively? In this study, we tested a new digital autoradiographic method (called the Beaver™) based on a Micro Patterned Gaseous Detector (MPGD) in order to quantitatively map alpha emission at the centimeter scale rock section. Firstly, for two thin sections containing U-bearing minerals at secular equilibrium, we compared the experimental and theoretical alpha count rates, measured by the Beaver™ and calculated from the uranium content, respectively. We found that they are very similar. Secondly, for a set of eight homemade standards made up of a mixture of inactive sand and low-radioactivity mud, we compared the count rates obtained by the Beaver™ and by an alpha spectrometer. The results indicate (i) a linearity between both count rates, and (ii) that the count obtained by the Beaver™ can be estimated from the count obtained by the alpha spectrometry using a factor of 0.82.

  15. An Experiment to Measure Range, Range Straggling, Stopping Power, and Energy Straggling of Alpha Particles in Air

    Science.gov (United States)

    Ouseph, P. J.; Mostovych, Andrew

    1978-01-01

    Experiments to measure range, range straggling, stopping power, and energy straggling of alpha particles are discussed in this article. Commercially available equipment with simple modifications is used for these measurements. (Author/GA)

  16. Time and Temperature Dependent Surface Stiffness of Poly(alpha-methylstyrene)(PAMS) through Particle Embedment

    Science.gov (United States)

    Karim, Taskin; McKenna, Gregory

    2012-02-01

    In the present work, we have used the particle embedment technique with sub-micron particles to study the time dependence surface modulus of poly(alpha-methylstyrene)(PAMS) at different temperature ranging from room temperature to 1.1Tg of PAMS. The surface was found softer at room temperature and at 1.02Tg compared to the bulk film while at 1.1Tg the surface was found stiffer compared to the macroscopic modulus measured for the same PAMS. The embedment of the particle is determined from atomic force microscope measurements and the modulus was determined using the elastic analysis of Johnson, Kendall and Roberts (JKR) with surface energy estimates of the work of adhesion as the driving force for embedment. REFERENCES 1. K. L. Johnson, K. Kendall and A. D. Roberts, P. Royal Society of Lonodon A, 324, 301-313 (1971). 2. J. H. Teichroeb and J. A. Forrest, Physical Review Letter, 91, 016104 (2003).

  17. Uses of alpha particles, especially in nuclear reaction studies and medical radionuclide production

    Energy Technology Data Exchange (ETDEWEB)

    Qaim, Syed M.; Spahn, Ingo; Scholten, Bernhard; Neumaier, Bernd [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Neurowissenschaften und Medizin (INM), Nuklearchemie (INM-5)

    2016-11-01

    Alpha particles exhibit three important characteristics: scattering, ionisation and activation. This article briefly discusses those properties and outlines their major applications. Among others, α-particles are used in elemental analysis, investigation and improvement of materials properties, nuclear reaction studies and medical radionuclide production. The latter two topics, dealing with activation of target materials, are treated in some detail in this paper. Measurements of excitation functions of α-particle induced reactions shed some light on their reaction mechanisms, and studies of isomeric cross sections reveal the probability of population of high-spin nuclear levels. Regarding medical radionuclides, an overview is presented of the isotopes commonly produced using α-particle beams. Consideration is also given to some routes which could be potentially useful for production of a few other radionuclides. The significance of α-particle induced reactions to produce a few high-spin isomeric states, decaying by emission of low-energy conversion or Auger electrons, which are of interest in localized internal radiotherapy, is outlined. The α-particle beam, thus broadens the scope of nuclear chemistry research related to development of non-standard positron emitters and therapeutic radionuclides.

  18. Coulomb excitation effects on alpha-particle optical potential below the Coulomb barrier

    CERN Document Server

    Avrigeanu, V; Mănăilescu, C

    2016-01-01

    A competition of the low-energy Coulomb excitation (CE) with the compound nucleus (CN) formation in alpha-induced reactions below the Coulomb barrier has recently been assumed in order to make possible the description of the latter as well as the alpha-particle emission by the same optical model (OM) potential. On the contrary, we show in the present work that the corresponding partial waves and integration radii provide evidence for the distinct account of the CE cross section and OM total-reaction cross section $\\sigma_R$. Thus the largest contribution to CE cross section comes by far from partial waves larger than the ones contributing to the $\\sigma_R$ values.

  19. Charge-exchange limits on low-energy alpha-particle fluxes in solar flares

    CERN Document Server

    Hudson, Hugh; MacKinnon, Alec; Woods, Tom

    2014-01-01

    This paper reports on a search for flare emission via charge-exchange radiation in the wings of the Lyman-alpha line of He ii at 304 A, as originally suggested for hydrogen by Orrall and Zirker. Via this mechanism a primary alpha particle that penetrates into the neutral chromosphere can pick up an atomic electron and emit in the He ii bound-bound spectrum before it stops. The Extreme-ultraviolet Variability Experiment (EVE) on board the Solar Dynamics Observatory (SDO) gives us our first chance to search for this effect systematically. The Orrall-Zirker mechanism has great importance for flare physics because of the essential roles that particle acceleration plays; this mechanism is one of the few proposed that would allow remote sensing of primary accelerated particles below a few MeV/nucleon. We study ten events in total, including the gamma-ray events SOL2010-06-12 (M2.0) and SOL2011-02-24 (M3.5) (the latter a limb flare), seven X-class flares, and one prominent M-class event that produced solar energetic...

  20. Estimation of the {alpha} particles and neutron distribution generated during a fusion reaction; Evaluation de la distribution des particules {alpha} et des neutrons issus de la reaction de fusion

    Energy Technology Data Exchange (ETDEWEB)

    Dellacherie, S.

    1997-12-01

    The respective distributions (or density probabilities) of {alpha} particles and neutrons have been modeled using a Monte-Carlo method for the thermonuclear fusion reaction D + T {yields} {alpha} + n + 17.6 MeV. (N.T.).

  1. Complex aberrations in lymphocytes exposed to mixed beams of (241)Am alpha particles and X-rays.

    Science.gov (United States)

    Staaf, Elina; Deperas-Kaminska, Marta; Brehwens, Karl; Haghdoost, Siamak; Czub, Joanna; Wojcik, Andrzej

    2013-08-30

    Modern radiotherapy treatment modalities are associated with undesired out-of-field exposure to complex mixed beams of high and low energy transfer (LET) radiation that can give rise to secondary cancers. The biological effectiveness of mixed beams is not known. The aim of the investigation was the analysis of chromosomal damage in human peripheral blood lymphocytes (PBL) exposed to a mixed beam of X-rays and alpha particles. Using a dedicated exposure facility PBL were exposed to increasing doses of alpha particles (from (241)Am), X-rays and a mixture of both. Chromosomal aberrations were analysed in chromosomes 2, 8 and 14 using fluorescence in situ hybridisation. The found and expected frequencies of simple and complex aberrations were compared. Simple aberrations showed linear dose-response relationships with doses. A higher than expected frequency of simple aberrations was only observed after the highest mixed beam dose. A linear-quadratic dose response curve for complex aberrations was observed after mixed-beam exposure. Higher than expected frequencies of complex aberrations were observed for the two highest doses. Both the linear-quadratic dose-response relationship and the calculation of expected frequencies show that exposure of PBL to mixed beams of high and low LET radiation leads to a higher than expected frequency of complex-type aberrations. Because chromosomal changes are associated with cancer induction this result may imply that the cancer risk of exposure to mixed beams in radiation oncology may be higher than expected based on the additive action of the individual dose components.

  2. Evaluate an impact of incident alpha particle and gamma ray on human blood components: A comparison study

    Energy Technology Data Exchange (ETDEWEB)

    Ismail, Asaad H.; Yaba, Sardar P.; Ismail, Haider J. [Medical Physics Research Group, Physics Department, Education College, Salahaddin University-Erbil, Iraqi Kurdistan (Iraq)

    2015-07-01

    An impact of alpha and gamma irradiation on human blood components have been evaluated and compared for healthy blood samples (male and females). Irradiation dose and time of irradiation calibrated and considered as a main comparison factors. Density of blood components measured for each in vitro irradiation before and after irradiation for males and females. Survey radiation dosimeter (Inspector Exp) and nuclear track detectors type CR-39 used to evaluate exposure dose rate and incident density of alpha particles, respectively. Experiment results verified that the irradiation of blood makes ionizing of blood components, either alpha or gamma irradiation dose, and the impacts of ionizing radiation were relativity for WBC, RBC, and PLT. Limited irradiation doses of 1-5 μSv/hr considered as a low radiation dose of alpha and gamma radiation sources ({sup 226}Ra, and {sup 137}Cs). Density of alpha particles accumulated on the blood surface was 34 (alpha particle/cm{sup 2}) for selected dose of incident alpha particle. Optimum value of irradiation dose and time of irradiation were 5 μSv/hr and 4 second for males and females. On the other hands, the values of irradiation dose and time of irradiation were 2.1 μSv/hr and 2 second for males and females for gamma irradiation. Thus, present results demonstrated that densities of RBC and WBC cells are capable of inducing reproduction in vitro for both type of irradiation. (authors)

  3. Differential Velocity between Solar Wind Protons and Alpha Particles in Pressure Balance Structures

    Science.gov (United States)

    Yamauchi, Yohei; Suess, Steven T.; Steinberg, John T.; Sakurai, Takashi

    2004-01-01

    Pressure balance structures (PBSs) are a common high-plasma beta feature in high-latitude, high-speed solar wind. They have been proposed as remnants of coronal plumes. If true, they should reflect the observation that plumes are rooted in unipolar magnetic flux concentrations in the photosphere and are heated as oppositely directed flux is advected into and reconnects with the flux concentration. A minimum variance analysis (MVA) of magnetic discontinuities in PBSs showed there is a larger proportion of tangential discontinuities than in the surrounding high-speed wind, supporting the hypothesis that plasmoids or extended current sheets are formed during reconnection at the base of plumes. To further evaluate the character of magnetic field discontinuities in PBSs, differential streaming between alpha particles and protons is analyzed here for the same sample of PBSs used in the MVA. Alpha particles in high-speed wind generally have a higher radial flow speed than protons. However, if the magnetic field is folded back on itself, as in a large-amplitude Alfven wave, alpha particles will locally have a radial flow speed less than protons. This characteristic is used here to distinguish between folded back magnetic fields (which would contain rotational discontinuities) and tangential discontinuities using Ulysses high-latitude, high-speed solar wind data. The analysis indicates that almost all reversals in the radial magnetic field in PBSs are folded back field lines. This is found to also be true outside PBSs, supporting existing results for typical high-speed, high-latitude wind. There remains a small number of cases that appear not to be folds in the magnetic field and which may be flux tubes with both ends rooted in the Sun. The distinct difference in MVA results inside and outside PBSs remains unexplained.

  4. Physical consequences of the alpha/beta rule which accurately calculates particle masses

    Energy Technology Data Exchange (ETDEWEB)

    Greulich, Karl Otto [Fritz Lipmann Institute, Beutenbergstr.11, D07745 Jena (Germany)

    2015-07-01

    Using the fine structure constant α (=1/137.036), the proton vs. electron mass ratio β (= 1836.2) and the integers m and n, the α/β rule: m{sub particle} = α{sup -n} x β m x 27.2 eV/c{sup 2} allows almost exact calculation of particle masses. (K.O.Greulich, DPG Spring meeting 2014, Mainz, T99.4) With n=2, m=0 the electron mass becomes 510.79 keV/c{sup 2} (experimental 511 keV/c{sup 2}) With n=2, m=1 the proton mass is 937.9 MeV/c{sup 2} (literature 938.3 MeV/c{sup 2}). For n=3 and m=1 a particle with 128.6 GeV/c{sup 2} close to the reported Higgs mass, is expected. For n=14 and m=-1 the Planck mass results. The calculated masses for gauge bosons and for quarks have similar accuracy. All masses fit into the same scheme (the alpha/beta rule), indicating that non of these particle masses play an extraordinary role. Particularly, the Higgs Boson, often termed the *God particle* plays in this sense no extraordinary role. In addition, particle masses are intimately correlated with the fine structure constant α. If particle masses have been constant over all times, α must have been constant over these times. In addition, the ionization energy of the hydrogen atom (13.6 eV) needs to have been constant if particle masses have been unchanged or vice versa. In conclusion, the α/β rule needs to be taken into account when cosmological models are developed.

  5. Sensitivity of alpha-particle-driven Alfven eigenmodes to q-profile variation in ITER scenarios

    CERN Document Server

    Rodrigues, P; Fazendeiro, L; Ferreira, J; Coelho, R; Nabais, F; Borba, D; Polevoi, N F Loureiro A R; Pinches, S D; Sharapov, S E

    2016-01-01

    An hybrid ideal-MHD/drift-kinetic approach to assess the stability of alpha-particle-driven Alfven eigenmodes in burning plasmas is used to show that certain foreseen ITER scenarios, namely the $I_\\mathrm{p} = 15$ MA baseline scenario with very low and broad core magnetic shear, are sensitive to small changes in the background magnetic equilibrium. Slight perturbations (of the order of 1%) in the total plasma current are seen to cause large variations in the growth rate, toroidal mode number, and radial location of the most unstable eigenmodes found. The observed sensitivity is shown to proceed from the very low magnetic shear values attained throughout the plasma core.

  6. Photon hormesis deactivates alpha-particle induced bystander effects between zebrafish embryos

    Science.gov (United States)

    Ng, C. Y. P.; Cheng, S. H.; Yu, K. N.

    2017-04-01

    In the present work, we studied the effects of low-dose X-ray photons on the alpha-particle induced bystander effects between embryos of the zebrafish, Danio rerio. The effects on the naive whole embryos were studied through quantification of apoptotic signals (amounts of cells undergoing apoptosis) at 24 h post fertilization (hpf) using vital dye acridine orange staining, followed by counting the stained cells under a fluorescent microscope. We report data showing that embryos at 5 hpf subjected to a 4.4 mGy alpha-particle irradiation could release a stress signal into the medium, which could induce bystander effect in partnered naive embryos sharing the same medium. We also report that the bystander effect was deactivated when the irradiated embryos were subjected to a concomitant irradiation of 10 or 14 mGy of X-rays, but no such deactivation was achieved if the concomitant X-ray dose dropped to 2.5 or 5 mGy. In the present study, the significant drop in the amount of apoptotic signals on the embryos having received 4.4 mGy alpha particles together X-rays irradiation from 2.5 or 5 mGy to 10 or 14 mGy, together with the deactivation of RIBE with concomitant irradiation of 10 or 14 mGy of X-rays supported the participation of photon hormesis with an onset dose between 5 and 10 mGy, which might lead to removal of aberrant cells through early apoptosis or induction of high-fidelity DNA repair. As we found that photons and alpha particles could have opposite biological effects when these were simultaneously irradiated onto living organisms, these ionizing radiations could be viewed as two different environmental stressors, and the resultant effects could be regarded as multiple stressor effects. The present work presented the first study on a multiple stressor effect which occurred on bystander organisms. In other words, this was a non-targeted multiple stressor effect. The photon hormesis could also explain some failed attempts to observe neutron-induced bystander

  7. Laser and alpha particle characterization of floating-base BJT detector

    Energy Technology Data Exchange (ETDEWEB)

    Tyzhnevyi, V., E-mail: tyzhnevyi@disi.unitn.i [Universita di Trento and INFN Trento, Trento (Italy); Batignani, G. [Dipartimento di Fisica, Universita di Pisa and INFN Pisa, Pisa (Italy); Bosisio, L. [Dipartimento di Fisica, Universita di Trieste and INFN Trieste, Trieste (Italy); Dalla Betta, G.-F. [Universita di Trento and INFN Trento, Trento (Italy); Verzellesi, G. [Universita di Modena e Reggio Emilia and INFN Trento, Reggio Emilia (Italy); Zorzi, N. [Fondazione Bruno Kessler (FBK), Trento (Italy)

    2010-05-21

    In this work, we investigate the detection properties of existing prototypes of BJT detectors operated with floating base. We report about results of two functional tests. The charge-collection properties of BJT detectors were evaluated by means of a pulsed laser setup. The response to {alpha}-particles emitted from radioactive {sup 241}Am source are also presented. Experimental results show that current gains of about 450 with response times in the order of 50 {mu}s are preserved even in this non-standard operation mode, in spite of a non-optimized structure.

  8. Mapping alpha-Particle X-Ray Fluorescence Spectrometer (Map-X)

    Science.gov (United States)

    Blake, D. F.; Sarrazin, P.; Bristow, T.

    2014-01-01

    Many planetary surface processes (like physical and chemical weathering, water activity, diagenesis, low-temperature or impact metamorphism, and biogenic activity) leave traces of their actions as features in the size range 10s to 100s of micron. The Mapping alpha-particle X-ray Spectrometer ("Map-X") is intended to provide chemical imaging at 2 orders of magnitude higher spatial resolution than previously flown instruments, yielding elemental chemistry at or below the scale length where many relict physical, chemical, and biological features can be imaged and interpreted in ancient rocks.

  9. Chemistry of Rocks and Soils in Gusev Crater from the Alpha Particle X-ray Spectrometer

    Science.gov (United States)

    Gellert, R.; Rieder, R.; Anderson, R. C.; Brueckner, J.; Clark, B. C.; Dreibus, G.; Economou, T.; Klingelhoefer, G.; Lugmair, G. W.; Ming, D. W.

    2005-01-01

    The alpha particle x-ray spectrometer on the Spirit rover determined major and minor elements of soils and rocks in Gusev crater in order to unravel the crustal evolution of planet Mars. The composition of soils is similar to those at previous landing sites, as a result of global mixing and distribution by dust storms. Rocks (fresh surfaces exposed by the rock abrasion tool) resemble volcanic rocks of primitive basaltic composition with low intrinsic potassium contents. High abundance of bromine (up to 170 parts per million) in rocks may indicate the alteration of surfaces formed during a past period of aqueous activity in Gusev crater.

  10. Detection of alpha particle contamination on ultra low activity-grade integrated circuits

    Directory of Open Access Journals (Sweden)

    Fernandes Ana C.

    2016-01-01

    Full Text Available We propose to apply the superheated droplet detector (SDD technology to the measurement of alpha-particle emissivity on integrated circuits of ultra-low activity grade (< 1α/khcm2 for high reliability applications. This work is based on the SDDs employed within our team to the direct search for dark matter. We describe the modifications in the dark matter SDDs with respect to fabrication, signal analysis and characterization, in order to obtain a device with the adequate detection sensitivity and background noise.

  11. Constraints on uncertainties and their application to the emission probabilities of alpha-particles

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, A.M. (Dept. de Fisica, Univ. de Extremadura, Badajoz (Spain)); Tome, F.V. (Dept. de Fisica, Univ. de Extremadura, Badajoz (Spain)); Diaz Bejarano, J. (Dept. de Fisica, Univ. de Extremadura, Badajoz (Spain))

    1994-03-08

    It often happens that the mean values of certain quantities are subject to constraints as, for example, when a sum is known exactly although the individual contributions have been measured independently and their corresponding uncertainties assigned. In this paper, the influence of a constraint on the final expression of the results is studied in detail, and is illustrated in the alpha-particle emission probabilities for several nuclides from nuclear data tables. A simple rule emerges: If the mean values must add to 100% and if one of the variances is greater than half the sum of all the variances, then the precision in the expression of the results can be improved. (orig.)

  12. Pulse-shape discrimination and energy quenching of alpha particles in Cs$_2$LiLaBr$_6$:Ce$^{3+}$

    CERN Document Server

    Mesick, Katherine E; Stonehill, Laura C

    2016-01-01

    Cs$_2$LiLaBr$_6$:Ce$^{3+}$ (CLLB) is an elpasolite scintillator that offers excellent linearity and gamma-ray energy resolution and sensitivity to thermal neutrons with the ability to perform pulse-shape discrimination (PSD) to distinguish gammas and neutrons. Our investigation of CLLB has indicated the presence of intrinsic radioactive alpha background that we have determined to be from actinium contamination of the lanthanum component. We measured the pulse shapes for gamma, thermal neutron, and alpha events and determined that PSD can be performed to separate the alpha background with a moderate figure of merit of 0.98. We also measured the electron-equivalent-energy of the alpha particles in CLLB and simulated the intrinsic alpha background from $^{227}$Ac to determine the quenching factor of the alphas. A linear quenching relationship $L_{\\alpha} = E_{\\alpha} \\times q + L_0$ was found at alpha particle energies above 5 MeV, with a quenching factor $q = 0.71$ MeVee/MeV and an offset $L_0 = - 1.19$ MeVee.

  13. Utilization of wavelength-shifting fibers coupled to ZnS(Ag) and plastic scintillator for simultaneous detection of alpha/beta particles

    Energy Technology Data Exchange (ETDEWEB)

    Ifergan, Y., E-mail: Yairifergan@gmail.com [Electronics & Control Laboratories, Nuclear Research Center Negev, PO Box 9001, Beer Sheva (Israel); Dadon, S. [Electronics & Control Laboratories, Nuclear Research Center Negev, PO Box 9001, Beer Sheva (Israel); Israelashvili, I. [Physics Department, Nuclear Research Center of the Negev, PO Box 9001, Beer Sheva (Israel); Osovizky, A. [Radiation Detection Department, Rotem Industries Ltd, Beer Sheva (Israel); Gonen, E.; Yehuda-Zada, Y.; Smadja, D. [Electronics & Control Laboratories, Nuclear Research Center Negev, PO Box 9001, Beer Sheva (Israel); Knafo, Y.; Ginzburg, D. [Radiation Detection Department, Rotem Industries Ltd, Beer Sheva (Israel); Kadmon, Y.; Cohen, Y.; Mazor, T. [Electronics & Control Laboratories, Nuclear Research Center Negev, PO Box 9001, Beer Sheva (Israel)

    2015-06-01

    Low level radioactive surface contamination measurements require lightweight, large area and high efficiency detector. In most existing scintillation detectors there is a tradeoff between effective area and scintillation light collection. By using wavelength shifting (WLS) fibers the scintillation light may be collected efficiently also in a large area detector. In this study, WLS fibers were coupled to a beta sensitive plastic scintillator layer and to a alpha sensitive silver-activated zinc sulfide ZnS(Ag) layer for detecting both alpha and beta particles. The WLS fibers collect the scintillation light from the whole detector and transfer it to a single PMT. This first prototype unique configuration enables monitoring radioactive contaminated surfaces by both sides of the detector and provides high gamma rejection. In this paper, the detector structure, as well as the detector’s measured linear response, will be described. The measured detection efficiency of {sup 238}Pu alpha particles (5.5 MeV) is ~63%. The measured detection efficiency for beta particles is ~89% for {sup 90}Sr–{sup 90}Y (average energy of 195.8 keV, 934.8 keV), ~50% for {sup 36}Cl (average energy of 251.3 keV), and 35% for {sup 137}Cs (average energy of 156.8 keV)

  14. Heat transfer in laminar Couette flow laden with rigid spherical particles

    CERN Document Server

    Ardekani, Mehdi Niazi; Picano, Francesco; Brandt, Luca

    2016-01-01

    We study heat transfer in plane Couette flow laden with rigid spherical particles by means of direct numerical simulations using a direct-forcing immersed boundary method to account for the dispersed phase. A volume of fluid approach is employed to solve the temperature field inside and outside of the particles. We focus on the variation of the heat transfer with the particle Reynolds number, total volume fraction (number of particles) and the ratio between the particle and fluid thermal diffusivity, quantified in terms of an effective suspension diffusivity. We show that, when inertia at the particle scale is negligible, the heat transfer increases with respect to the unladen case following an empirical correlation recently proposed. In addition, an average composite diffusivity can be used to predict the effective diffusivity of the suspension the inertialess regime when varying the molecular diffusion in the two phases. At finite particle inertia, however, the heat transfer increase is significantly larger...

  15. Results of the Alpha-Particle-X-Ray Spectrometer on Board of the Mars Exploration Rovers

    Science.gov (United States)

    Geller, R.; Zipfel, J.; Brueckner, J.; Dreibus, G.; Lugmair, G.; Rieder, R.; Waenke, H.; Klingelhoefer, G.; Clark, B. C.; Ming, D. W.

    2005-01-01

    The Mars Exploration Rovers Spirit and Opportunity landed at Gusev crater and Meridiani Planum. The Alpha Particle X-ray Spectrometer (APXS) is part of the instrument suite on both rovers. It is equipped with six 244Cm sources which provide x-ray excitation with alpha-particles (PIXE) and x-ray radiation (XRF). This combination allows x-ray spectroscopy of elements from Na to Br in the energy range of 0.9 to 16 keV. X-ray detectors with a high energy resolution of 160 eV at Fe K allow us to separate even closely spaced energy peaks, such as Na, Mg, Al and Si. The APXS is attached to the rover s arm and provides in-situ measurements of the chemical composition of soils, surfaces of rocks and outcrops and their abraded surfaces. This abstract gives an overview of APXS results obtained during the first year of operation on both landing sites.

  16. Activation cross sections of longer-lived radionuclides produced in germanium by alpha particle irradiation

    Science.gov (United States)

    Takács, S.; Takács, M. P.; Ditrói, F.; Aikawa, M.; Haba, H.; Komori, Y.

    2016-09-01

    The cross sections of alpha particles induced nuclear reactions on natural germanium were investigated by using the standard stacked foil target technique, the activation method and high resolution gamma spectrometry. Targets with thickness of about 1 μm were prepared from natural Ge by vacuum evaporation onto 25 μm thick polyimide (Kapton) backing foils. Stacks were composed of Kapton-Ge-Ge-Kapton sandwich target foils and additional titanium monitor foils with nominal thickness of 11 μm to monitor the beam parameters using the natTi(α,x)51Cr reaction. The irradiations were done with Eα = 20.7 and Eα = 51.25 MeV, Iα = 50 nA alpha particle beams for about 1 h. Direct or cumulative activation cross sections were determined for production of the 72,73,75Se, 71,72,74,76,78As, and 69Ge radionuclides. The obtained experimental cross sections were compared to the results of theoretical calculations taken from the TENDL data library based on the TALYS computer code. A comparison was made with available experimental data measured earlier. Thick target yields were deduced from the experimental cross sections and compared with the data published before.

  17. Selective alpha-particle mediated depletion of tumor vasculature with vascular normalization.

    Directory of Open Access Journals (Sweden)

    Jaspreet Singh Jaggi

    Full Text Available BACKGROUND: Abnormal regulation of angiogenesis in tumors results in the formation of vessels that are necessary for tumor growth, but compromised in structure and function. Abnormal tumor vasculature impairs oxygen and drug delivery and results in radiotherapy and chemotherapy resistance, respectively. Alpha particles are extraordinarily potent, short-ranged radiations with geometry uniquely suitable for selectively killing neovasculature. METHODOLOGY AND PRINCIPAL FINDINGS: Actinium-225 ((225Ac-E4G10, an alpha-emitting antibody construct reactive with the unengaged form of vascular endothelial cadherin, is capable of potent, selective killing of tumor neovascular endothelium and late endothelial progenitors in bone-marrow and blood. No specific normal-tissue uptake of E4G10 was seen by imaging or post-mortem biodistribution studies in mice. In a mouse-model of prostatic carcinoma, (225Ac-E4G10 treatment resulted in inhibition of tumor growth, lower serum prostate specific antigen level and markedly prolonged survival, which was further enhanced by subsequent administration of paclitaxel. Immunohistochemistry revealed lower vessel density and enhanced tumor cell apoptosis in (225Ac-E4G10 treated tumors. Additionally, the residual tumor vasculature appeared normalized as evident by enhanced pericyte coverage following (225Ac-E4G10 therapy. However, no toxicity was observed in vascularized normal organs following (225Ac-E4G10 therapy. CONCLUSIONS: The data suggest that alpha-particle immunotherapy to neovasculature, alone or in combination with sequential chemotherapy, is an effective approach to cancer therapy.

  18. FORTRAN data files transference from VAX/VMS to ALPHA/UNIX; Traspaso de ficheros FORTRAN de datos de VAX/VMS a ALPHA/UNIX

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, E.; Milligen, B. Ph van [CIEMAT (Spain)

    1997-09-01

    Several tools have been developed to access the TJ-IU databases, which currently reside in VAX/VMS servers, from the TJ-II Data Acquisition System DEC ALPHA 8400 server. The TJ-I/TJ-IU databases are not homogeneous and contain several types of data files, namely, SADE, CAMAC and FORTRAN unformatted files. The tools presented in this report allow one to transfer CAMAC and those FORTRAN unformatted files defined herein, from a VAX/VMS server, for data manipulation on the ALPHA/Digital UNIX server. (Author)

  19. Fine structure of histograms of alpha-activity measurements depends on direction of alpha particles flow and the Earth rotation: experiments with collimators

    CERN Document Server

    Shnoll, S E; Berulis, I I; Udaltsova, N V; Rubinstein, I A; Shnoll, Simon E.; Zenchenko, Konstantin I.; Berulis, Iosas I.; Udaltsova, Natalia V.; Rubinstein, Ilia A.

    2004-01-01

    The fine structure of histograms of measurements of 239Pu alpha-activity varies periodically, and the period of these variations is equal to sidereal day (1436 minutes). The periodicity is not observed in the experiments with collimator that restricts the alpha particles flow to be oriented to the Polar Star. Based on this study and other independent data, such as measurements conducted by the Arctic expedition, and similarity of the histograms in processes observed at different locations at the same local time, the conclusion was made, that the fine structure of statistical distributions of the observed processes depends on the celestial sphere.

  20. Charged particle sub-barrier transfer reactions for {sup 16}O + {sup A}Sm and their influence on the fusion cross section

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, P.R.S.; Maciel, A.M.M.; Cabezas, R. [and others

    1995-10-01

    Transfer cross section angular distribution data for the stripping of two protons and one alpha particle are studied for the {sup 16}O + {sup A}Sm systems (A = 144, 148, 150, 152 and 154), at energies slightly lower than the Coulomb barriers and angles up to 0 = 170{degrees}. From a semiclassical formalism, transfer and elastic scattering data, the transfer form factors is derived. For only one of the ten channels studied there are signatures for the interpretation that the transfer reaction mechanism at backward angles, corresponding to small distances, may behave as a multi-step process leading to fusion. Coupled channel calculations including transfer channels are performed for the study of the sub-barrier fusion of these systems. The influence of short distance transfer reactions on the fusion is discussed. For these and other systems, the conclusions from this approach are found t to long range fusion absorptive potentials.

  1. Influence of Mn-dopant on the properties of {alpha}-FeOOH particles precipitated in highly alkaline media

    Energy Technology Data Exchange (ETDEWEB)

    Krehula, Stjepko [Division of Materials Chemistry, Ruder Boskovic Institute, P.O. Box 180, HR-10002 Zagreb (Croatia); Music, Svetozar [Division of Materials Chemistry, Ruder Boskovic Institute, P.O. Box 180, HR-10002 Zagreb (Croatia)]. E-mail: music@irb.hr

    2006-12-21

    The effects of Mn-dopant on the formation of solid solutions {alpha}-(Fe, Mn)OOH in dependence on the initial concentration ratio r = [Mn]/([Mn] + [Fe]), as well as on the size and morphology of the corresponding particles were investigated using Moessbauer and FT-IR spectroscopies, high-resolution scanning electron microscopy (FE SEM) and an energy dispersive X-ray analyser (EDS). The value of the hyperfine magnetic field of 34.9 T, as recorded for the reference {alpha}-FeOOH sample at RT, decreased linearly up to 21.4 T for sample with r = 0.1667. Only a paramagnetic doublet at RT was recorded for sample with r = 0.2308, a ferrite phase was additionally found for r = 0.3333. Fe-OH bending IR bands, {delta} {sub OH} and {gamma} {sub OH}, were influenced by the Mn-substitution as manifested through their gradual shifts. FE SEM micrographs showed a great elongation of the starting acicular particles along the c-axis with an increase in Mn-doping. For r = 0.1667 and 0.2308 star-shaped and dendritic twin {alpha}-(Fe, Mn)OOH particles were observed. The length of these {alpha}-(Fe, Mn)OOH particles decreased, whereas their width increased. The {alpha}-Fe{sub 2}O{sub 3} phase was not detected in any of the samples prepared.

  2. Effect of particle clustering on radiative transfer in turbulent flows

    CERN Document Server

    Liberman, M; Rogachevskii, I; Haugen, N E L

    2016-01-01

    The effect of particle clustering on the radiation penetration length in particle laden turbulent flows is studied using a mean-field approach. Particle clustering in temperature stratified turbulence implies the formation of small-scale clusters with a high concentration of particles, exceeding the mean concentration by a few orders of magnitude. We show that the radiative penetration length increases by several orders of magnitude due to the particle clustering in a turbulent flow. Such strong radiative clearing effect plays a key role in a number of atmospheric and astrophysical phenomena, and can be of fundamental importance for understanding the origin of dust explosions.

  3. Properties of an $\\alpha$ particle in a Bohrium $270$ Nucleus under the Generalized Symmetric Woods-Saxon Potential

    CERN Document Server

    Lütfüoğlu, B C

    2016-01-01

    The energy eigenvalues and the wave functions of an $\\alpha$ particle in a Bohrium $270$ nucleus were calculated by solving Schr\\"odinger equation for Generalized Symmetric Woods-Saxon potential. Using the energy spectrum by excluding and including the quasi-bound eigenvalues, entropy, internal energy, Helmholtz energy, and specific heat, as functions of reduced temperature were calculated. Stability and emission characteristics are interpreted in terms of the wave and thermodynamic functions. The kinetic energy of a decayed $\\alpha$ particle was calculated using the quasi-bound states, which is found close to the experimental value.

  4. Experimental investigations of electron capture from atomic hydrogen and deuterium by alpha particles

    Energy Technology Data Exchange (ETDEWEB)

    Gay, T.J.; Park, J.T.

    1992-01-01

    We report progress made during the period 15 September 1991--14 September 1992 on the project Experimental Investigations of Electron Capture from Atomic Hydrogen and Deuterium by Alpha Particles''. In the past year we have developed reliable, narrow energy spread, high-current sources of He[sup ++] based on direct-current magentron and electron-cyclotron resonance discharges. These sources have been proven on our test bench accelerator which has been upgraded to also allow us to test atomic hydrogen effusive targets. We have thus made substantial progress toward our goal of studying single electron capture from atomic hydrogen by doubly-ionized helium. A research plan for the upcoming year is also presented.

  5. Specific features of reactor or cyclotron {alpha}-particles irradiated beryllium microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Khomutov, A.M. [A.A.Bochvar All-Russia Research Inst. of Inorganic Materials (VNIINM), Moscow (Russian Federation); Gromov, B.F.; Karabanov, V.N. [and others

    1998-01-01

    Studies were carried out into microstructure changes accompanying helium swelling of Be reactor neutron irradiated at 450degC or {alpha}-particles implanted in cyclotron to reach the same volume accumulation of He (6-8 ncm{sup 3} He/cm{sup 3} Be). The microstructures of reactor irradiated and implanted samples were compared after vacuum anneal at 600-800degC up to 50h. The irradiated samples revealed the etchability along the grain boundaries in zones formed by adequately large equilibrium helium pores. The width of the zones increased with the annealing time and after 50h reached 30{mu}. Depleted areas 2-3{mu} dia were observed in some regions of near grain boundary zones. The roles of grain boundaries and manufacturing pores as vacancies` sources and helium sinks are considered. (author)

  6. Measurement and evaluation of the excitation functions for alpha particle induced nuclear reactions on niobium

    CERN Document Server

    Tarkanyi, F; Szelecsenyi, F; Sonck, M; Hermanne, A

    2002-01-01

    Alpha particle induced nuclear reactions were investigated with the stacked foil activation technique on natural niobium targets up to 43 MeV. Excitation functions were measured for the production of sup 9 sup 6 sup m sup g Tc, sup 9 sup 5 sup m Tc, sup 9 sup 5 sup g Tc, sup 9 sup 4 sup g Tc, sup 9 sup 5 sup m sup g Nb and sup 9 sup 2 sup m Nb. Cumulative cross-sections, thick target yields and activation functions were deduced and compared with available literature data. Applications of the excitation functions in the field of thin layer activation techniques and beam monitoring are also discussed.

  7. An alpha particle measurement system using an energetic neutral helium beam in ITER (invited).

    Science.gov (United States)

    Sasao, M; Kisaki, M; Kobuchi, T; Tsumori, K; Tanaka, N; Terai, K; Okamoto, A; Kitajima, S; Kaneko, O; Shinto, K; Wada, M

    2012-02-01

    An energetic helium neutral beam is involved in the beam neutralization measurement system of alpha particles confined in a DT fusion plasma. A full size strong-focusing He(+) ion source (2 A, the beam radius of 11.3 mm, the beam energy less than 20 keV). Present strong-focusing He(+) ion source shows an emittance diagram separated for each beamlet of multiple apertures without phase space mixing, despite the space charge of a beamlet is asymmetric and the beam flow is non-laminar. The emittance of beamlets in the peripheral region was larger than that of center. The heat load to the plasma electrode was studied to estimate the duty factor for the ITER application.

  8. Study of a sealed high gas pressure THGEM detector and response of Alpha particle spectra

    CERN Document Server

    Zhang, Yu-Ning; Liu, Hong-Bang; Xie, Yi-Gang; Lyu, Xiao-Rui; Chen, Shi; Huang, Wen-Qian; Hong, Dao-Jin; Zheng, Yang-Heng

    2016-01-01

    A sealed high gas pressure detector working in pure argon is assembled. It consists of a 5 cm $\\times$ 5 cm PCB THGEM (THick Gaseous Electron Multipliers). The detector structure and experimental setup are described. The performances under high pressure of 2 atm mainly consist in selecting optimal voltages for ionization region and induction region. The dependence of the shape of Alpha particle spectra measured with relative gas gain on gas pressure (1.3 $\\sim$ 2.0 atm) has been studied. The 8 groups of relative gas gain versus working voltage of THGEM expressed by weighting filed $E/P$ are normalized, being consistent with theory. The results show that the air tightness of the chamber is good measured by a sensitive barometer and checked with gas gain. The experimental results are compared with Monte Carlo simulation on energy deposition without gas gain involved.

  9. Gas production due to alpha particle degradation of polyethylene and polyvinylchloride

    Energy Technology Data Exchange (ETDEWEB)

    Reed, D.T.; Hoh, J.; Emery, J.; Okajima, S.; Krause, T.

    1998-07-01

    Alpha particle degradation experiments were performed on polyethylene (PE) and polyvinylchloride (PVC) plastic samples typical of Westinghouse Savannah River Company (WSRC) transuranic (TRU) waste. This was done to evaluate the effects of sealing TRU waste during shipment. Experiments were conducted at three temperatures using low dose rates. Predominant products from both plastics were hydrogen, carbon dioxide, and various organic species, with the addition of hydrochloric acid from PVC. In all experiments, the total pressure decreased. Irradiation at 30 and 60 C and at various dose rates caused small changes for both plastics, but at 100 C coupled thermal-radiolytic effects included discoloration of the material as well as large differences in the gas phase composition.

  10. Ionization and scintillation response of high-pressure xenon gas to alpha particles

    CERN Document Server

    Álvarez, V; Cárcel, S; Cebrián, S; Cervera, A; Conde, C A N; Dafni, T; Díaz, J; Egorov, M; Esteve, R; Evtoukhovitch, P; Fernandes, L M P; Ferrario, P; Ferreira, A L; Freitas, E D C; Gehman, V M; Gil, A; Goldschmidt, A; Gómez, H; Gómez-Cadenas, J J; González-Díaz, D; Gutiérrez, R M; Hauptman, J; Morata, J A Hernando; Herrera, D C; Irastorza, I G; Jinete, M A; Labarga, L; Laing, A; Liubarsky, I; Lopes, J A M; Lorca, D; Losada, M; Luzón, G; Marí, A; Martín-Albo, J; Miller, T; Moiseenko, A; Monrabal, F; Monteiro, C M B; Mora, F J; Moutinho, L M; Vidal, J Muñoz; da Luz, H Natal; Navarro, G; Nebot, M; Nygren, D; Oliveira, C A B; Palma, R; Pérez, J; Aparicio, J L Pérez; Renner, J; Ripoll, L; Rodríguez, A; Rodríguez, J; Santos, F P; Santos, J M F dos; Segui, L; Serra, L; Shuman, D; Simón, A; Sofka, C; Sorel, M; Toledo, J F; Tomás, A; Torrent, J; Tsamalaidze, Z; Vázquez, D; Veloso, J F C A; Webb, R; White, J T; Yahlali, N

    2012-01-01

    High-pressure xenon gas is an attractive detection medium for a variety of applications in fundamental and applied physics. In this paper we study the transport properties of ionization electrons, and the mechanism of electron-ion recombination, in xenon gas at 10 bar pressure. For this purpose, we use a source of alpha particles in the NEXT-DEMO time projection chamber, the large scale prototype of the NEXT-100 neutrinoless double beta decay experiment, in three different drift electric field configurations. Our electron drift velocity and longitudinal diffusion results are similar to expectations based on available electron scattering cross sections on pure xenon, favoring low-diffusion models. In addition, two types of measurements addressing the connection between the ionization and scintillation yields were performed. On the one hand we observe, for the first time in xenon gas, large event-by-event correlated fluctuations between the ionization and scintillation signals, similarly to what has already bee...

  11. Collisional stochastic ripple diffusion of alpha particles and beam ions on TFTR

    Energy Technology Data Exchange (ETDEWEB)

    Redi, M.H.; Zarnstorff, M.C.; White, R.B.; Budny, R.V.; Janos, A.C.; Owens, D.K.; Schivell, J.F.; Scott, S.D.; Zweben, S.J.

    1995-07-01

    Predictions for ripple loss of fast ions from TFTR are investigated with a guiding center code including both collisional and ripple effects. A synergistic enhancement of fast ion diffusion is found for toroidal field ripple with collisions. The total loss is calculated to be roughly twice the sum of ripple and collisional losses calculated separately. Discrepancies between measurements and calculations of plasma beta at low current and large major radius are resolved when both effects are included for neutral beam ions. A 20--30% reduction in alpha particle heating is predicted for q{sub a} = 6--14, R = 2.6 m DT plasmas on TFTR due to first orbit and collisional stochastic ripple diffusion.

  12. Surface-particle-emulsion heat transfer model between fluidized bed and horizontal immersed tube

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A mathematical model, surface-particle-emulsion heat transfer model, is presented by considering voidage variance in emulsion in the vicinity of an immersed surface. Heat transfer near the surface is treated by dispersed particles touching the surface and through the emulsion when the distance from the surface is greater than the diameter of a particle. A film with an adjustable thickness which separates particles from the surface is not introduced in this model. The coverage ratio of particles on the surface is calculated by a stochastic model of particle packing density on a surface. By comparison of theoretical solutions with experimental data from some references, the mathematical model shows better qualitative and quantitative prediction for local heat transfer coefficients around a horizontal immersed tube in a fluidized bed.

  13. Determination of arsenic, antimony, and bismuth in silicon using 200 keV. cap alpha. -particle backscattering

    Energy Technology Data Exchange (ETDEWEB)

    Hnatowicz, V.; Kvitek, J. (Ceskoslovenska Akademie Ved, Rez. Ustav Jaderne Fyziky); Krejci, P.; Rybka, V. (Tesla, Prague (Czechoslovakia)); Pelikan, L. (Technical University of Prague (Czechoslovakia). Dept. of Microelectronics)

    1982-11-16

    Concentration profiles of As, Sb, and Bi implanted into Si are studied using backscattering of the 200 keV ..cap alpha..-particles. A conventional ion implanter serves as a source of analyzing beam and the scattered particles are detected using a silicon surface barrier detector. Measured projected ranges R/sub P/ of implanted atoms are found to be in satisfactory agreement with theoretical predictions.

  14. Astrophysics and particle physics in space with the Alpha Magnetic Spectrometer

    CERN Document Server

    Lamanna, G

    2003-01-01

    The Alpha Magnetic Spectrometer is a high energy particle physics experiment in space scheduled to be installed on the International Space Station (ISS) by 2006 for a three-year mission. After a precursor flight of a prototype detector on board of the NASA Space Shuttle in June 1998, the construction of the detector in its final configuration is started and it will be completed by 2004. The purpose of this experiment is to provide a high statistics measurement of charged particles and nuclei in rigidity range 0.5 GV to few TV and to explore the high-energy (>1 GeV) gamma-ray sky. In this paper we describe the detector layout and present an overview of the main scientific goals both in the domain of astrophysics: cosmic- ray origin, age and propagation and the exploration of the most energetic gamma-ray sources; and in the domain of astroparticle: the antimatter and the dark matter searches. (53 refs).

  15. Effects of clustering on heat transfer in particle-laden turbulence

    Science.gov (United States)

    Pouransari, Hadi; Mani, Ali

    2016-11-01

    Particle-laden flows are ubiquitous in variety of natural and industrial phenomena. Rain droplets in clouds, protoplanetary disks, and combustion chambers are examples in which particles are interacting with a background turbulence. It is well known that interaction of particles and turbulent flow results in preferential concentration. The extent of preferential concentration depends on ratio of particle relaxation time and turbulent eddies time scale.this work, we consider particle-laden turbulent flows, in which particles are heated. This is the case for example in the particle-based solar receivers where particles absorb external radiation and heat the background gas. We use three-dimensional variable density direct numerical simulations for the turbulent flow and Lagrangian point-particle tracking to study the implication of particle clustering in particle-to-gas heat transfer. We investigate variety of non-dimensional numbers including particle Stokes number, Reynolds number, and mass loading ratio. Using our statistical analyses we introduce a model to correct the particle-to-gas heat transfer to account for particle clustering. This can be employed in Reynolds average Navier Stokes (RANS) computations. Supported by DOE under PSAAP2 program at Stanford University.

  16. Values of Particle Size Particle Density & Slurry Viscosity to use in Waste Feed Delivery Transfer System Analysis

    Energy Technology Data Exchange (ETDEWEB)

    JEWETT, J R

    2002-01-30

    Recommended values have been developed for particle size distribution, particle density, and slurry viscosity that maybe used in slurry flow calculations that support the design of the piping system that is being modified to deliver Hanford wastes from the underground storage tanks to the planned Waste Treatment Plant for vitrification. The objective of this document is to provide recommended values for three waste properties to be used in a planned revision of the Waste Feed Delivery Transfer System Analysis. These properties are particle size distribution (PSD), particle density, and slurry viscosity. In this document, the results of laboratory and engineering studies will be collated and summarized to provide a succinct source of physical property data for use in the hydraulic analysis of the transfer system.

  17. Study of the performance of the ATLAS monitored drift tube chambers under the influence of heavily ionizing $\\alpha$-particles

    CERN Document Server

    Sampsonidis, Dimitrios; Liolios, Anastasios; Manolopoulou, Metaxia; Petridou, C

    2004-01-01

    The MDT chambers of the ATLAS Muon Spectrometer will operate in a heavy LHC background environment mainly from photons and neutrons. The ionization produced by neutron recoils is much higher than the one from photons or muons and can be simulated by the use of alpha particles. A systematic study of the behavior of the ATLAS Monitored Drift Tubes (MDTs) under controlled irradiation has been performed. The presence of alpha particles results in the reduction of the gas gain due to space charge effects. The gas gain reduction has been studied in a single tube set up using a well controlled radium (/sup 226/Ra) source in order to enrich the tube gas (Ar/CO/sub 2/) with the alpha emitter /sup 220/Rn and irradiate the tubes internally. The results are confronted with Garfield simulations.

  18. Design of a preamplifier for an alpha particles spectrometer; Diseno de un preamplificador para un espectrometro de particulas alfa

    Energy Technology Data Exchange (ETDEWEB)

    Murillo O, R.; Hernandez D, V. M.; Chacon R, A.; Vega C, H. R., E-mail: fermineutron@yahoo.co [Universidad Autonoma de Zacatecas, Unidades Academicas de Estudios Nucleares e Ingenieria Electrica, Calle Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico)

    2010-09-15

    To detect radiation diverse detector types are used, when these are alpha particles proportional type detectors are used, semiconductor, of scintillation or traces. In this work the design results, the construction and the first tests of a spectrometer (preamplifier) are presented for alpha particles that was designed starting from a Pin type photodiode. The system was designed and simulated with a program for electronic circuits. With the results of the simulation phase was constructed the electronics that is coupled to a spectroscopic amplifier and a multichannel analyzer. The total of the system is evaluated analyzing its performance before a triple source of alphas and that they are produced by two smoke detectors of domestic use. Of the tests phase we find that the system allows to obtain in a multichannel, the pulses height spectrum, with which we calibrate the system. (Author)

  19. Quantum key distribution using vacuum-one-photon qubits: maximum number of transferable bits per particle

    CERN Document Server

    Lee, Su-Yong; Lee, Hai-Woong; Lee, Jae-Weon; Bergou, Janos A

    2009-01-01

    Quantum key distribution schemes which employ encoding on vacuum-one-photon qubits are capable of transferring more information bits per particle than the standard schemes employing polarization or phase coding. We calculate the maximum number of classical bits per particle that can be securely transferred when the key distribution is performed with the BB84 and B92 protocols, respectively, using the vacuum-one-photon qubits. In particular, we show that for a generalized B92 protocol with the vacuum-one-photon qubits, a maximum of two bits per particle can be securely transferred. We also demonstrate the advantage brought about by performing a generalized measurement that is optimized for unambiguous discrimination of the encoded states: the parameter range where the transfer of two bits per particle can be achieved is dramatically enhanced as compared to the corresponding parameter range of projective measurements.

  20. Alpha spectrometric characterization of process-related particle size distributions from active particle sampling at the Los Alamos National Laboratory uranium foundry

    Energy Technology Data Exchange (ETDEWEB)

    Plionis, Alexander A [Los Alamos National Laboratory; Peterson, Dominic S [Los Alamos National Laboratory; Tandon, Lav [Los Alamos National Laboratory; Lamont, Stephen P [Los Alamos National Laboratory

    2009-01-01

    Uranium particles within the respirable size range pose a significant hazard to the health and safety of workers. Significant differences in the deposition and incorporation patterns of aerosols within the respirable range can be identified and integrated into sophisticated health physics models. Data characterizing the uranium particle size distribution resulting from specific foundry-related processes are needed. Using personal air sampling cascade impactors, particles collected from several foundry processes were sorted by activity median aerodynamic diameter onto various Marple substrates. After an initial gravimetric assessment of each impactor stage, the substrates were analyzed by alpha spectrometry to determine the uranium content of each stage. Alpha spectrometry provides rapid nondestructive isotopic data that can distinguish process uranium from natural sources and the degree of uranium contribution to the total accumulated particle load. In addition, the particle size bins utilized by the impactors provide adequate resolution to determine if a process particle size distribution is: lognormal, bimodal, or trimodal. Data on process uranium particle size values and distributions facilitate the development of more sophisticated and accurate models for internal dosimetry, resulting in an improved understanding of foundry worker health and safety.

  1. Convective Heat Transfer Enhancement Using Alternating Magnetic Fields and Particle Laden Fluid Applied to the Microscale

    Science.gov (United States)

    2010-05-11

    oil based suspension in the miniaturized tests. 45 5. Endnotes 1 Incropera ...Microchannels,” Proceedings of ASME Thermal Engineering Summer Heat Transfer Conference. 10 Incropera , F.P., DeWitt, D.P., Bergman, T.L., and Lavine, A.S...Pogrebnyak,, 2002, “Effect of coarse particles on the heat transfer in a particle-laden turbulent boundary layer,” Int. J. Multiph. Flow, 28,12. Incropera

  2. Low doses of alpha particles do not induce sister chromatid exchanges in bystander Chinese hamster cells defective in homologous recombination

    Energy Technology Data Exchange (ETDEWEB)

    Nagasawa, H; Wilson, P F; Chen, D J; Thompson, L H; Bedford, J S; Little, J B

    2007-10-26

    We reported previously that the homologous recombinational repair (HRR)-deficient Chinese hamster mutant cell line irs3 (deficient in the Rad51 paralog Rad51C) showed only a 50% spontaneous frequency of sister chromatid exchange (SCE) as compared to parental wild-type V79 cells. Furthermore, when irradiated with very low doses of alpha particles, SCEs were not induced in irs3 cells, as compared to a prominent bystander effect observed in V79 cells (Nagasawa et al., Radiat. Res. 164, 141-147, 2005). In the present study, we examined additional Chinese hamster cell lines deficient in the Rad51 paralogs Rad51C, Rad51D, Xrcc2, and Xrcc3 as well as another essential HRR protein, Brca2. Spontaneous SCE frequencies in non-irradiated wild-type cell lines CHO, AA8 and V79 were 0.33 SCE/chromosome, whereas two Rad51C-deficient cell lines showed only 0.16 SCE/chromosome. Spontaneous SCE frequencies in cell lines defective in Rad51D, Xrcc2, Xrcc3, and Brca2 ranged from 0.23-0.33 SCE/chromosome, 0-30% lower than wild-type cells. SCEs were induced significantly 20-50% above spontaneous levels in wild-type cells exposed to a mean dose of 1.3 mGy of alpha particles (<1% of nuclei traversed by an alpha particle). However, induction of SCEs above spontaneous levels was minimal or absent after {alpha}-particle irradiation in all of the HRR-deficient cell lines. These data suggest that Brca2 and the Rad51 paralogs contribute to DNA damage repair processes induced in bystander cells (presumably oxidative damage repair in S-phase cells) following irradiation with very low doses of alpha particles.

  3. Computation of Cosmic Ray Ionization and Dose at Mars: a Comparison of HZETRN and Planetocosmics for Proton and Alpha Particles

    Science.gov (United States)

    Gronoff, Guillaume; Norman, Ryan B.; Mertens, Christopher J.

    2014-01-01

    The ability to evaluate the cosmic ray environment at Mars is of interest for future manned exploration. To support exploration, tools must be developed to accurately access the radiation environment in both free space and on planetary surfaces. The primary tool NASA uses to quantify radiation exposure behind shielding materials is the space radiation transport code, HZETRN. In order to build confidence in HZETRN, code benchmarking against Monte Carlo radiation transport codes is often used. This work compares the dose calculations at Mars by HZETRN and the Geant4 application Planetocosmics. The dose at ground and the energy deposited in the atmosphere by galactic cosmic ray protons and alpha particles has been calculated for the Curiosity landing conditions. In addition, this work has considered Solar Energetic Particle events, allowing for the comparison of varying input radiation environments. The results for protons and alpha particles show very good agreement between HZETRN and Planetocosmics.

  4. Alpha-Calcitonin Gene-Related Peptide Can Reverse The Catabolic Influence Of UHMWPE Particles On RANKL Expression In Primary Human Osteoblasts

    Directory of Open Access Journals (Sweden)

    Max D. Kauther, Jie Xu, Christian Wedemeyer

    2010-01-01

    Full Text Available Background and purpose: A linkage between the neurotransmitter alpha-calcitonin gene-related peptide (alpha-CGRP and particle-induced osteolysis has been shown previously. The suggested osteoprotective influence of alpha-CGRP on the catabolic effects of ultra-high molecular weight polyethylene (UHMWPE particles is analyzed in this study in primary human osteoblasts. Methods: Primary human osteoblasts were stimulated by UHMWPE particles (cell/particle ratios 1:100 and 1:500 and different doses of alpha-CGRP (10-7 M, 10-9 M, 10-11 M. Receptor activator of nuclear factor-κB ligand (RANKL and osteoprotegerin (OPG mRNA expression and protein levels were measured by RT-PCR and Western blot. Results: Particle stimulation leads to a significant dose-dependent increase of RANKL mRNA in both cell-particle ratios and a significant down-regulation of OPG mRNA in cell-particle concentrations of 1:500. A significant depression of alkaline phosphatase was found due to particle stimulation. Alpha-CGRP in all tested concentrations showed a significant depressive effect on the expression of RANKL mRNA in primary human osteoblasts under particle stimulation. Comparable reactions of RANKL protein levels due to particles and alpha-CGRP were found by Western blot analysis. In cell-particle ratios of 1:100 after 24 hours the osteoprotective influence of alpha-CGRP reversed the catabolic effects of particles on the RANKL expression. Interpretation: The in-vivo use of alpha-CGRP, which leads to down-regulated RANKL in-vitro, might inhibit the catabolic effect of particles in conditions of particle induced osteolysis.

  5. Estimation of Heat Transfer Coefficients for Biomass Particles by Direct Numerical Simulation Using Microstructured Particle Models in the Laminar Regime

    Energy Technology Data Exchange (ETDEWEB)

    Pecha, M. Brennan; Garcia-Perez, Manuel; Foust, Thomas D.; Ciesielski, Peter N.

    2017-01-03

    Direct numerical simulation of convective heat transfer from hot gas to isolated biomass particle models with realistic morphology and explicit microstructure was performed over a range of conditions with laminar flow of hot gas (500 degrees C). Steady-state results demonstrated that convective interfacial heat transfer is dependent on the wood species. The computed heat transfer coefficients were shown to vary between the pine and aspen models by nearly 20%. These differences are attributed to the species-specific variations in the exterior surface morphology of the biomass particles. We also quantify variations in heat transfer experienced by the particle when positioned in different orientations with respect to the direction of fluid flow. These results are compared to previously reported heat transfer coefficient correlations in the range of 0.1 < Pr < 1.5 and 10 < Re < 500. Comparison of these simulation results to correlations commonly used in the literature (Gunn, Ranz-Marshall, and Bird-Stewart-Lightfoot) shows that the Ranz-Marshall (sphere) correlation gave the closest h values to our steady-state simulations for both wood species, though no existing correlation was within 20% of both species at all conditions studied. In general, this work exemplifies the fact that all biomass feedstocks are not created equal, and that their species-specific characteristics must be appreciated in order to facilitate accurate simulations of conversion processes.

  6. Immuno-vectorization of radioelements emitters of alpha particles: a new therapy in cancerology; Immunovectorisation de radioelements emetteurs de particules alpha: une nouvelle voie therapeutique en cancerologie

    Energy Technology Data Exchange (ETDEWEB)

    Bourgeois, M

    2007-05-15

    The radio-immunotherapy is an anti cancerous therapy which consists in vectorising with immuno-specific agents very radio toxic radioelements on tumors or in their environment to destroy them. The first part of this report presents the different characteristics of antibodies as well as their means of production under monoclonal shapes specifically steered against a tumoral antigen of interest. The second part of this report replaces the importance of the immunological vectors in the context of the nuclear medicine. It is notably described that the different methods which allow to radio-label the vector, as well as the different ways of optimization which were envisaged to improve the targeting of radioelements on a tumor. These different developments allow to define the potential place of the alpha radio-immunotherapy in treatments and so re-place the interest of the experimental part. If the radio-immunotherapy, using beta emitters isotopes as the {sup 131}iodine or the{sup 90}yttrium, is today current in anti cancerous therapy, it finds limits because of the disintegration characteristics of the isotopes it uses. Indeed, compared with alpha particles, the beta particles deposit less energy by unit of length in the crossed material.The experimental part of this report aims at studying the feasibility of the coupling between an immunological vector and an alpha emitter isotope.The different tests led on the bismuth 213, the bismuth 212, the lead 212 and the astatine 211 demonstrated that the fixation of these radionuclides was possible. This research theme is strengthened by the construction in Nantes of a cyclotron with high energy ( A.R.R.O.N.A.X.) and the optimization of the obtained promising results should allow a therapeutic use in oncology of the alpha radio-immunotherapy. (N.C.)

  7. Electron transfer across {alpha}-helical peptides: Potential influence of molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Himadri S. [Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan, S7N 5C9 (Canada); Kraatz, Heinz-Bernhard [Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan, S7N 5C9 (Canada)], E-mail: kraatz@skyway.usask.ca

    2006-07-11

    Three hydrophobic leucine-rich peptides Fc18L, Ac18L and 18LAc were prepared. These peptides are equipped with a cystein sulfhydryl group which enables the formation of thin films on gold surfaces. Using these peptides, two types of films of {alpha}-helical peptides have been prepared, in which the redox-active peptide Fc18L is diluted by Ac18L (SAM1) or by a mixture of Ac18L and 18LAc (SAM2). In SAM1, the dipole moments of the peptides are aligned in the same direction, whereas in SAM2, they are opposite. Reflection absorption infrared spectroscopy (RAIRS) revealed that the peptides are more vertically oriented in SAM2 compared to those in SAM1. The interaction among the macroscopic helix dipoles gives tighter packing of the peptides in SAM2. Importantly, the electron transfer properties in the two films are significantly different, which is rationalized by differences in the molecular dynamics of the two films.

  8. Schottky barrier detectors on 4H-SiC n-type epitaxial layer for alpha particles

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhuri, S.K.; Krishna, R.M.; Zavalla, K.J. [Department of Electrical Engineering, University of South Carolina, Columbia, SC 29208 (United States); Mandal, K.C., E-mail: mandalk@cec.sc.edu [Department of Electrical Engineering, University of South Carolina, Columbia, SC 29208 (United States)

    2013-02-11

    Schottky barrier detectors have been fabricated on 50 μm n-type 4H-SiC epitaxial layers grown on 360 μm SiC substrates by depositing ∼10 nm nickel contact. Current–voltage (I–V) and capacitance–voltage (C–V) measurements were carried out to investigate the Schottky barrier properties. The detectors were evaluated for alpha particle detection using a {sup 241}Am alpha source. An energy resolution of ∼2.7% was obtained with a reverse bias of 100 V for 5.48 MeV alpha particles. The measured charge collection efficiency (CCE) was seen to vary as a function of bias voltage following a minority carrier diffusion model. Using this model, a diffusion length of∼3.5 μm for holes was numerically calculated from the CCE vs. bias voltage plot. Rise-time measurements of digitally recorded charge pulses for the 5.48 MeV alpha particles showed a presence of two sets of events having different rise-times at a higher bias of 200 V. A biparametric correlation scheme was successfully implemented for the first time to visualize the correlated pulse-height distribution of the events with different rise-times. Using the rise-time measurements and the biparametric plots, the observed variation of energy resolution with applied bias was explained.

  9. Development of thin foil Faraday collector as a lost alpha particle diagnostic for high yield D-T tokamak fusion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Van Belle, P.; Jarvis, O.N.; Sadler, G.J. [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Cecil, F.E. [Colorado School of Mines, Golden, CO (United States)

    1994-07-01

    Alpha particle confinement is necessary for ignition of a D-T tokamak fusion plasma and for first wall protection. Due to high radiation backgrounds and temperatures, scintillators and semiconductor detectors may not be used to study alpha particles which are lost to the first wall during the D-T programs on JET and ITER. An alternative method of charged particle spectrometry capable of operation in these harsh environments, is proposed: it consists of thin foils of electrically isolated conductors with the flux of alpha particles determined by the positive current flowing from the foils. 2 refs., 3 figs.

  10. Formation of the isomeric pair 194Irm,g in interactions of [alpha] particles with 192Os

    OpenAIRE

    Uddin, M. S.; Sudár Sándor (1946-) (fizikus); Qaim, Syed M.

    2011-01-01

    Cross sections were measured by the activation technique for the nuclear processes Os-192(alpha,d+pn+np)Ir-194(m,g) up to alpha-particle energies of 39 MeV. From the measured data the isomeric cross-section ratio was deduced as a function of projectile energy. The present experimental data as well as those for the Pt-194(n,p)Ir-194(m,g) reaction, given in the literature, were compared with the results of nuclear model calculations using the code TALYS, which combines the statistical, precompo...

  11. Alpha particle spectroscopy for CR-39 detector utilizing matrix of energy equations

    Energy Technology Data Exchange (ETDEWEB)

    Awad, E.M. [Department of General Sciences, Yanbu Industrial College, PO Box 30436, Madinat Yanbu Al-Sinaiya (Saudi Arabia); Physics Department, Faculty of Science, Menofia University, Shebin El-Koom (Egypt)], E-mail: ayawad@yahoo.com; Soliman, A.A. [Department of Mathematics, Faculty of Education (AL-Arish), Suez Canal University, AL-Arish 45111 (Egypt); Department of Mathematics, Teacher' s College (Bisha), King Khalid University, Bisha, PO Box 551 (Saudi Arabia)], E-mail: asoliman_99@yahoo.com; Rammah, Y.S. [Physics Department, Faculty of Science, Menofia University, Shebin El-Koom (Egypt)

    2007-10-01

    A method for determining alpha-particle energy using CR-39 detector by utilizing matrix of energy equation was described. The matrix was composed from two axes; the track minor axis (m) and diameter of etched out track end (d) axis of some selected elliptical tracks. The energy E in (m,d) coordinate was approximated by matrix of energy equations given by: E{sub k}={sigma}{sub i,j=0}{sup 2}a{sub ij}d{sub k}{sup i}m{sub k}{sup j}, which was identified using two different approaches. First, i and j were treated as power exponents for d and m. The adjusting parameters values a{sub ij} were obtained and the energy of a given track was deduced directly from it. Second, i and j were treated as indices of some chosen tracks that were fitted to obtain iso-energy curves that were superimposed on m-d scatter plot as calibration curves. The energy between any two successive iso-energy curves in this case was assumed varied linearly with d for a given m. The energy matrix in both cases was solved numerically. Results of the two approaches were compared.

  12. The Alpha Particle X-Ray Spectrometer (APXS): Results from Gusev Crater and Calibration Report

    Science.gov (United States)

    Gellert, R.; Rieder, R.; Brueckner, J.; Clark, B.; Dreibus, G.; Klingelhoefer, G.; Lugmair, G.; Ming, D.; Waenke, H.; Yen, A.; Zipfel, J.; Squyres, S.

    2006-01-01

    The chemical composition of rocks and soils on Mars analyzed during the Mars Exploration Rover Spirit Mission was determined by X-ray analyses with the Alpha Particle X-Ray Spectrometer (APXS). Details of the data analysis method and the instrument calibration are presented. Measurements performed on Mars to address geometry effects and background contributions are shown. Cross calibration measurements among several instrument sensors and sources are discussed. An unintentional swap of the two flight instruments is evaluated. New concentration data acquired during the first 470 sols of rover Spirit in Gusev Crater are presented. There are two geological regions, the Gusev plains and the Columbia Hills. The plains contain soils that are very similar to previous landing sites on Mars. A meteoritic component in the soil is identified. Rocks in the plains revealed thin weathering rinds. The underlying abraded rock was classified as primitive basalt. One of these rocks contained significant Br that is probably associated with vein-filling material of different composition. One of the trenches showed large subsurface enrichments of Mg, S, and Br. Disturbed soils and rocks in the Columbia Hills revealed different elemental compositions. These rocks are significantly weathered and enriched in mobile elements, such as P, S, Cl, or Br. Even abraded rock surfaces have high Br concentrations. Thus, in contrast to the rocks and soils in the Gusev Plains, the Columbia Hills material shows more significant evidence of ancient aqueous alteration.

  13. Thorium and actinium polyphosphonate compounds as bone-seeking alpha particle-emitting agents.

    Science.gov (United States)

    Henriksen, Gjermund; Bruland, Oyvind S; Larsen, Roy H

    2004-01-01

    The present study explores the use of alpha-particle-emitting, bone-seeking agents as candidates for targeted radiotherapy. Actinium and thorium 1,4,7,10 tetraazacyclododecane N,N',N'',N''' 1,4,7,10-tetra(methylene) phosphonic acid (DOTMP) and thorium-diethylene triamine N,N',N'' penta(methylene) phosphonic acid (DTMP) were prepared and their biodistribution evaluated in conventional Balb/C mice at four hours after injection. All three bone-seeking agents showed a high uptake in bone and a low uptake in soft tissues. Among the soft tissue organs, only kidney had a relatively high uptake. The femur/kidney ratios for 227Th-DTMP, 228-Ac-DOTMP and 227Th-DOTMP were 14.2, 7.6 and 6.0, respectively. A higher liver uptake of 228Ac-DOTMP was seen than for 227Th-DTMP and 227Th-DOTMP. This suggests that some demetallation of the 228Ac-DOTMP complex had occurred. The results indicate that 225Ac-DOTMP, 227Th-DOTMP and 227Th-DTMP have promising properties as potential therapeutic bone-seeking agents.

  14. Prompt detection of alpha particles from 210Po: another clue to the origin of rock varnish?

    Science.gov (United States)

    Hodge, Vernon F; Farmer, Dennis E; Diaz, Tammy; Orndorff, Richard L

    2005-01-01

    Alpha particles have been measured coming from the surfaces of rocks covered with dark red-brown rock varnish, as well as rocks that appear to have little, if any, varnish. A pronounced peak at 5.3 MeV indicates the presence of 210Po, a short-lived natural-radioactive element. Surface activities for 33 samples range from 0.008 Bq/cm2 to 0.065 Bq/cm2. It is estimated that this nuclide is concentrated 10(11) times in these paper-thin coatings above its concentration in ground-level air. Gamma rays from the decay of 137Cs, a product of testing nuclear weapons some 50 years ago, were also detected. Analysis of samples of varnish stripped from the rock revealed traces of 239,240Pu and 238Pu. The presence of all of these isotopes strongly supports the theory that varnish films derive their building blocks from the atmosphere and, with time, all rocks in arid environments will become coated.

  15. Diffusion of Active Particles With Stochastic Torques Modeled as $\\alpha$-Stable Noise

    CERN Document Server

    Noetel, Joerg; Schimansky-Geier, Lutz

    2016-01-01

    We investigate the stochastic dynamics of an active particle moving at a constant speed under the influence of a fluctuating torque. In our model the angular velocity is generated by a constant torque and random fluctuations described as a L\\'evy-stable noise. Two situations are investigated. First, we study white L\\'evy noise where the constant speed and the angular noise generate a persistent motion characterized by the persistence time $\\tau_D$. At this time scale the crossover from ballistic to normal diffusive behavior is observed. The corresponding diffusion coefficient can be obtained analytically for the whole class of symmetric $\\alpha$-stable noises. As typical for models with noise-driven angular dynamics, the diffusion coefficient depends non-monotonously on the angular noise intensity. As second example, we study angular noise as described by an Ornstein-Uhlenbeck process with correlation time $\\tau_c$ driven by the Cauchy white noise. We discuss the asymptotic diffusive properties of this model ...

  16. Heat transfer including radiation and slag particles evolution in MHD channel-I

    Energy Technology Data Exchange (ETDEWEB)

    Im, K H; Ahluwalia, R K

    1980-01-01

    Accurate estimates of convective and radiative heat transfer in the magnetohydrodynamic channel are provided. Calculations performed for a base load-size channel indicate that heat transfer by gas radiation almost equals that by convection for smooth walls, and amounts to 70% as much as the convective heat transfer for rough walls. Carbon dioxide, water vapor, and potassium atoms are the principal participating gases. The evolution of slag particles by homogeneous nucleation and condensation is also investigated. The particle-size spectrum so computed is later utilized to analyze the radiation enhancement by slag particles in the MHD diffuser. The impact of the slag particle spectrum on the selection of a workable and design of an efficient seed collection system is discussed.

  17. Effect of particle loading on heat transfer enhancement in a gas-solid suspension cross flow

    Institute of Scientific and Technical Information of China (English)

    周劲松; 骆仲泱; 高翔; 倪明江; 岑可法

    2002-01-01

    Heat transfer between gas-solid multiphase flow and tubes occurs in m a ny industry processes, such as circulating fluidized bed process, pneumatic conv eying process, chemical process, drying process, etc. This paper focuses on the influence of the presence of particles on the heat transfer between a tube and g as-solid suspension. The presence of particles causes positive enhancement of h e at transfer in the case of high solid loading ratio, but heat transfer reduction has been found for in the case of very low solid loading ratio (Ms of les s than 0.05 kg/kg). A useful correlation incorporating solid loading ratio, particle s ize and flow Reynolds number was derived from experimental data. In addition, th e k-ε two-equation model and the Fluctuation-Spectrum- Random-Trajecto ry Model ( FSRT Model) are used to simulate the flow field and heat transfer of the gas-ph a se and the solid-phase, respectively. Through coupling of the two phases the mo d el can predict the local and total heat transfer characteristics of tube in gas - solid cross flow. For the total heat transfer enhancement due to particles loadi ng the model predictions agreed well with experimental data.

  18. Nanocrystalline particle coatings on alpha-alumina powders by a carbonate precipitation and thermal-assisted combustion route.

    Science.gov (United States)

    Kim, Sang Woo; Jung, Young Mi

    2007-11-01

    We have suggested ultrafine particle coating processes for preparing nanocrystalline particle coated alpha-alumina powders by a carbonate precipitation and thermal-assisted combustion route, which is environmentally friendly. The nanometric ammonium aluminum carbonate hydroxide (AACH) as a precursor for coating of alumina was produced from precipitation reaction of ammonium aluminum sulfate and ammonium hydrogen carbonate. The synthetic crystalline size and morphology were greatly dependent on pH and temperature. By adding ammonium aluminum sulfate solution dispersed the alpha-alumina core particle in the ammonium hydrogen carbonate aqueous solution, nanometric AACH with a size of 5 nm was tightly bonded and uniformly coated on the core powder due to formation of surface complexes by the adsorption of carbonates, hydroxyl and ammonia groups on the surface of aluminum oxide. The synthetic precursor rapidly converted to amorphous- and y-alumina phase without significant change in the morphological features through decomposition of surface complexes and thermal-assisted phase transformation. As a result, the nanocrystalline polymorphic particle coated alpha-alumina core powders with highly uniform distribution were prepared from the route of carbonate precipitation and thermal-assisted combustion.

  19. Double, Rydberg and charge transfer excitations from pairing matrix fluctuation and particle-particle random phase approximation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yang [Department of Chemistry, Duke University, Durham, North Carolina 27708 (United States); Aggelen, Helen van [Department of Chemistry, Duke University, Durham, North Carolina 27708 (United States); Department of Inorganic and Physical Chemistry, Ghent University, 9000 Ghent (Belgium); Yang, Weitao, E-mail: weitao.yang@duke.edu [Department of Chemistry and Department of Physics, Duke University, Durham, North Carolina 27708 (United States)

    2013-12-14

    Double, Rydberg, and charge transfer (CT) excitations have been great challenges for time-dependent density functional theory (TDDFT). Starting from an (N ± 2)-electron single-determinant reference, we investigate excitations for the N-electron system through the pairing matrix fluctuation, which contains information on two-electron addition/removal processes. We adopt the particle-particle random phase approximation (pp-RPA) and the particle-particle Tamm-Dancoff approximation (pp-TDA) to approximate the pairing matrix fluctuation and then determine excitation energies by the differences of two-electron addition/removal energies. This approach captures all types of interesting excitations: single and double excitations are described accurately, Rydberg excitations are in good agreement with experimental data and CT excitations display correct 1/R dependence. Furthermore, the pp-RPA and the pp-TDA have a computational cost similar to TDDFT and consequently are promising for practical calculations.

  20. Double, Rydberg and charge transfer excitations from pairing matrix fluctuation and particle-particle random phase approximation.

    Science.gov (United States)

    Yang, Yang; van Aggelen, Helen; Yang, Weitao

    2013-12-14

    Double, Rydberg, and charge transfer (CT) excitations have been great challenges for time-dependent density functional theory (TDDFT). Starting from an (N ± 2)-electron single-determinant reference, we investigate excitations for the N-electron system through the pairing matrix fluctuation, which contains information on two-electron addition/removal processes. We adopt the particle-particle random phase approximation (pp-RPA) and the particle-particle Tamm-Dancoff approximation (pp-TDA) to approximate the pairing matrix fluctuation and then determine excitation energies by the differences of two-electron addition/removal energies. This approach captures all types of interesting excitations: single and double excitations are described accurately, Rydberg excitations are in good agreement with experimental data and CT excitations display correct 1/R dependence. Furthermore, the pp-RPA and the pp-TDA have a computational cost similar to TDDFT and consequently are promising for practical calculations.

  1. How changing the particle structure can speed up protein mass transfer kinetics in liquid chromatography.

    Science.gov (United States)

    Gritti, Fabrice; Horvath, Krisztian; Guiochon, Georges

    2012-11-01

    The mass transfer kinetics of a few compounds (uracil, 112 Da), insulin (5.5 kDa), lysozyme (13.4 kDa), and bovine serum albumin (BSA, 67 kDa) in columns packed with several types of spherical particles was investigated under non-retained conditions, in order to eliminate the poorly known contribution of surface diffusion to overall sample diffusivity across the porous particles in RPLC. Diffusivity across particles is then minimum. Based on the porosity of the particles accessible to analytes, it was accurately estimated from the elution times, the internal obstruction factor (using Pismen correlation), and the hindrance diffusion factor (using Renkin correlation). The columns used were packed with fully porous particles 2.5 μm Luna-C(18) 100 Å, core-shell particles 2.6 μm Kinetex-C(18) 100 Å, 3.6 μm Aeris Widepore-C(18) 200 Å, and prototype 2.7 μm core-shell particles (made of two concentric porous shells with 100 and 300 Å average pore size, respectively), and with 3.3 μm non-porous silica particles. The results demonstrate that the porous particle structure and the solid-liquid mass transfer resistance have practically no effect on the column efficiency for small molecules. For them, the column performance depends principally on eddy dispersion (packing homogeneity), to a lesser degree on longitudinal diffusion (effective sample diffusivity along the packed bed), and only slightly on the solid-liquid mass transfer resistance (sample diffusivity across the particle). In contrast, for proteins, this third HETP contribution, hence the porous particle structure, together with eddy dispersion govern the kinetic performance of columns. Mass transfer kinetics of proteins was observed to be fastest for columns packed with core-shell particles having either a large core-to-particle ratio or having a second, external, shell made of a thin porous layer with large mesopores (200-300 Å) and a high porosity (~/=0.5-0.7). The structure of this external shell seems

  2. Effects of temperature and emulsifier concentration on alpha-tocopherol distribution in a stirred, fluid, emulsion. Thermodynamics of alpha-tocopherol transfer between the oil and interfacial regions.

    Science.gov (United States)

    Pastoriza-Gallego, María José; Sánchez-Paz, Verónica; Losada-Barreiro, Sonia; Bravo-Díaz, Carlos; Gunaseelan, K; Romsted, Laurence S

    2009-03-03

    The combined linear sweep voltammetry (LSV)/pseudophase kinetic model method was used to obtain the first estimates of the free energies, enthalpy, and entropies of transfer of alpha-tocopherol (TOC) between the oil and interfacial regions of fluid, opaque, emulsions of n-octane, acidic water, and the nonionic surfactant hexaethyleneglycol mono dodecyl ether (C12E6) from the temperature dependence of TOC's partition constant. Determining structure-reactivity relationships for chemical reactions in emulsions is difficult because traditional methods for monitoring reactions are unsuitable and because the partitioning of reactive components between the oil, interfacial, and aqueous regions of opaque emulsions are difficult to measure. The dependence of the observed rate constant, k(obs), for the reaction of an arenediazonium probe, 16-ArN2+, with TOC was determined as a function of C12E6 volume fraction. The pseudophase kinetic model was used to estimate the interfacial rate constant, k1, and the partition constants of antioxidants between the oil and interfacial, Po(I), regions in the emulsion from k(obs) versus phiI profiles. The thermodynamic parameters of transfer from the oil to the interfacial region at a series of temperatures were respectively obtained from the PoI values (deltaGT0,O-->I), by the van't Hoff method (deltaHT0,O-->I), and from the Gibbs equation (deltaST0,O-->I). The free energy of transfer is spontaneous, and a large positive entropy of transfer dominates a positive enthalpy of transfer, indicating that the TOC headgroup disrupts the structure of the interfacial region in its immediate vicinity upon transfer from n-octane. The methods described here are applicable to any bimolecular reaction in emulsions in which one of the reactants is restricted to the interfacial region and the rate of its reaction with a second component can be monitored electrochemically.

  3. Effect of particle loading on heat transfer enhancement in a gas-solid suspension cross flow

    Institute of Scientific and Technical Information of China (English)

    周劲松; 骆仲泱; 高翔; 倪明江; 岑可法

    2002-01-01

    Heat transfer between gas-solid multiphase flow and tubes occurs in many industry processes, such as circulating fluidized bed process, pneumatic conveying process, chemical process, drying process, etc. (This paper focuses on the influence of the presence of particles on the heat transfer between a tube and gas-solid sus-pension. The presence of particles causes positive enhancement of heat transfer in the case of high solid loading ratio, but heat transfer reduction has been found for in the case of very low soliding ratio (Ms of less than 0.05 kg/kg). A usefial correlation ineorpomting solid lolling ratio, particle size and flow Reytmlds number was derived from experimental data. In addition, the κ-ε two-equation model and the Fluctuation-Spectrum-Random-Trajectory Model (FSRT Model) are used to simulate the flow field and heat transit of the gas-phase and the solid-phase, respectively. Through coupling of the two phases the model can predict the local and total heat transfer characteristics of tube in gas-solid cross flow. For the total heat transfer enhancement due to particles loading the model predictions agreed well wih experimental data.

  4. Sensitivity of alpha-particle-driven Alfvén eigenmodes to q-profile variation in ITER scenarios

    Science.gov (United States)

    Rodrigues, P.; Figueiredo, A. C. A.; Borba, D.; Coelho, R.; Fazendeiro, L.; Ferreira, J.; Loureiro, N. F.; Nabais, F.; Pinches, S. D.; Polevoi, A. R.; Sharapov, S. E.

    2016-11-01

    A perturbative hybrid ideal-MHD/drift-kinetic approach to assess the stability of alpha-particle-driven Alfvén eigenmodes in burning plasmas is used to show that certain foreseen ITER scenarios, namely the {{I}\\text{p}}=15 MA baseline scenario with very low and broad core magnetic shear, are sensitive to small changes in the background magnetic equilibrium. Slight variations (of the order of 1% ) of the safety-factor value on axis are seen to cause large changes in the growth rate, toroidal mode number, and radial location of the most unstable eigenmodes found. The observed sensitivity is shown to proceed from the very low magnetic shear values attained throughout the plasma core, raising issues about reliable predictions of alpha-particle transport in burning plasmas.

  5. Forced Convective Heat Transfer in a Plate Channel Filled with Solid Particles

    Institute of Scientific and Technical Information of China (English)

    Pei-XueJiang; Ze-PeiRen; 等

    1996-01-01

    A numerical study of fluid flow and convective heat transfer in a plate channel filled with solid(metallic)perticles is presented in this paper,The study uses the thermal equilibrium model and a newly developed numerical model which does not assume idealized local thermal equilibrium between the solid particles and the fluid.The numerical simulation results are compared with the experimental data in reference[2].The paper investigates the effects of the assumption of local thermal equilibrium versus non-thermal equilibrium,the thermal conductivity of the solid particles and the particle diameter on convective heat transfer.For the conditions studied.the convective heat transfer and the temperature filed assuming local thermal equilibrium are much different from that for the non-thermal equilibrium assumption when the difference between the solid and fluid thermal conductivities is large,The relative values of the thermal conductivities of the solid particles and the fluid also have a profound effect on the temperature distribution in the channel.The pressure drop decreases as the particle diameter increases and the convective heat transfer coefficient may decrease of increase as the particle diameter increasws depending on the values of ε,λs,λf,λd,αu,ρu.

  6. Nanodosimetry and nanodosimetric-based models of radiation action for radon alpha particles. Progress report, July 1990--June 1992

    Energy Technology Data Exchange (ETDEWEB)

    Zaider, M.

    1992-12-31

    We report on a theory for describing the biological effects of ionizing radiation in particular radon {alpha} particles. Behind this approach is the recognition that biological effects such as chromosome aberrations, cellular transformation, cellular inactivation, etc, are the result of a hierarchic sequence of radiation effects. We indicate how to treat each of the individual processes in this sequence, and also how to relate one effect to the hierarchically superior one.

  7. Effect of Alpha-Particle Energies on CR-39 Line-Shape Parameters using Positron Annihilation Technique

    Directory of Open Access Journals (Sweden)

    Lotfy Y. A.

    2006-07-01

    Full Text Available Polyally diglycol carbonate "CR-39" is widely used as etched track type particle detector. Doppler broadening positron annihilation (DBPAT provides direct information about core and valance electrons in (CR-39 due to radiation effects. It provides a non-destructive and non-interfering probe having a detecting efficiency. This paper reports the effect of irradiation alpha-particle intensity emitted from 241-Am (5.486 MeV source on the line shape S- and W-parameters for CR-39 samples. Modification of the CR-39 samples due to irradiation were studied using X-ray diffraction (XRD and scanning electron microscopy (SEM techniques.

  8. Automated Grouping of Opportunity Rover Alpha Particle X-Ray Spectrometer Compositional Data

    Science.gov (United States)

    VanBommel, S. J.; Gellert, R.; Clark, B. C.; Ming, D. W.; Mittlefehldt, D. W.; Schroder, C.; Yen, A. S.

    2016-01-01

    The Alpha Particle X-ray Spectrometer (APXS) conducts high-precision in situ measurements of rocks and soils on both active NASA Mars rovers. Since 2004 the rover Opportunity has acquired around 440 unique APXS measurements, including a wide variety of compositions, during its 42+ kilometers traverse across several geological formations. Here we discuss an analytical comparison algorithm providing a means to cluster samples due to compositional similarity and the resulting automated classification scheme. Due to the inherent variance of elements in the APXS data set, each element has an associated weight that is inversely proportional to the variance. Thus, the more consistent the abundance of an element in the data set, the more it contributes to the classification. All 16 elements standard to the APXS data set are considered. Careful attention is also given to the errors associated with the composition measured by the APXS - larger uncertainties reduce the weighting of the element accordingly. The comparison of two targets, i and j, generates a similarity score, S(sub ij). This score is immediately comparable to an average ratio across all elements if one assumes standard weighted uncertainty. The algorithm facilitates the classification of APXS targets by chemistry alone - independent of target appearance and geological context which can be added later as a consistency check. For the N targets considered, a N by N hollow matrix, S, is generated where S = S(sup T). The average relation score, S(sub av), for target N(sub i) is simply the average of column i of S. A large S(sub av) is indicative of a unique sample. In such an instance any targets with a low comparison score can be classified alike. The threshold between classes requires careful consideration. Applying the algorithm to recent Marathon Valley targets indicates similarities with Burns formation and average-Mars-like rocks encountered earlier at Endeavour Crater as well as a new class of felsic rocks.

  9. Calibration of a Thomson parabola ion spectrometer and Fujifilm imaging plate detectors for protons, deuterons, and alpha particles

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, C. G.; Canfield, M. J.; Graeper, G. B.; Lombardo, A. T.; Stillman, C. R.; Padalino, S. J. [Physics Department, SUNY Geneseo, Geneseo, New York 14454 (United States); Fiksel, G.; Stoeckl, C.; Mileham, C.; Sangster, T. C. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Sinenian, N.; Frenje, J. A. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2011-07-15

    A Thomson parabola ion spectrometer has been designed for use at the Multiterawatt (MTW) laser facility at the Laboratory for Laser Energetics (LLE) at University of Rochester. This device uses parallel electric and magnetic fields to deflect particles of a given mass-to-charge ratio onto parabolic curves on the detector plane. Once calibrated, the position of the ions on the detector plane can be used to determine the particle energy. The position dispersion of both the electric and magnetic fields of the Thomson parabola was measured using monoenergetic proton and alpha particle beams from the SUNY Geneseo 1.7 MV tandem Pelletron accelerator. The sensitivity of Fujifilm BAS-TR imaging plates, used as a detector in the Thomson parabola, was also measured as a function of the incident particle energy over the range from 0.6 MeV to 3.4 MeV for protons and deuterons and from 0.9 MeV to 5.4 MeV for alpha particles. The device was used to measure the energy spectrum of laser-produced protons at MTW.

  10. Dependence of alpha particle track diameter on the free volume holes size using positron annihilation lifetime technique

    Science.gov (United States)

    El-Gamal, S.; Abdalla, Ayman M.; Abdel-Hady, E. E.

    2015-09-01

    The alpha particle track diameter dependence of the free volume holes size (Vf) in DAM-ADC and CR-39 nuclear track detectors was investigated using positron annihilation lifetime technique. The effect of temperature on the alpha particle track diameter and free volume were also investigated in the T-range (RT-130 °C). The obtained results revealed that the values of ortho-positronium lifetime τ3 and Vf increases while I3 slightly increases as T increases for the two detectors. The values of τ3, Vf and I3 are higher in CR-39 than DAM-ADC. The interpretation of obtained results is based on the fact that increasing T leads to significant enhancement of thermal expansion of the polymer matrix and consequently Vf increases. The track diameter increases as T increases. This can be explained by the fact that the increase in T increases the crystal size and Vf in the polymer. A relationship between Vf and the alpha particle track diameter was obtained. Moreover results of detector irradiation, along with free volume evaluation are addressed and thoroughly discussed.

  11. Construction of an Alpha Particle Spark Detector and Fusor for research in plasma physics and radiation detection

    Science.gov (United States)

    Akinsulire, Olorunsola; Fils-Aime, Fabrice; Hecla, Jake; Short, Michael; White, Anne

    2016-10-01

    This project delves into the realms of plasma physics and nuclear engineering by exploring systems used to generate plasmas and detect radiation. Basic plasma processes can be explored using inertial electrostatic confinement, in a device commonly called a ``fusor''. The fusor will generate neutrons and x-rays. The breakdown of air within a spark gap can be achieved with alpha particles and the avalanche effect; and constitutes an Alpha Particle Spark Detector (APSD), relevant for studies of basic nuclear processes and detectors. In the fusor, preliminary data was collected on breakdown voltage versus pressure in an air plasma to see how well the current system and geometry match up with expectations for the Paschen curve. A stable plasma was observed, at voltages roughly consistent with expectations, and it was concluded that a more controlled gas introduction system is needed to maintain a steady plasma over wider pressure ranges, and will allow for introduction of D2 gas for the study of neutron and x-ray producing plasmas. This poster will discuss the design, construction, and initial operation of the Alpha Particle Spark Detector and the fusor as part of an Undergraduate Research Opportunity (UROP) project. MIT UROP Program and the NSE department.

  12. Dependence of alpha particle track diameter on the free volume holes size using positron annihilation lifetime technique

    Energy Technology Data Exchange (ETDEWEB)

    El-Gamal, S. [Physics Department, Faculty of Education, Ain Shams University, Roxy, 11711 Cairo (Egypt); Abdalla, Ayman M., E-mail: aymanabdalla62@hotmail.com [Physics Department, Faculty of Arts and Sciences, Najran University, Najran (Saudi Arabia); Centre for Advanced Materials and Nano-Engineering, Najran University, Najran 11001 (Saudi Arabia); Abdel-Hady, E.E. [Physics Department, Faculty of Science, Minia University, BO 61519, Minia (Egypt)

    2015-09-15

    The alpha particle track diameter dependence of the free volume holes size (V{sub f}) in DAM–ADC and CR-39 nuclear track detectors was investigated using positron annihilation lifetime technique. The effect of temperature on the alpha particle track diameter and free volume were also investigated in the T-range (RT-130 °C). The obtained results revealed that the values of ortho-positronium lifetime τ{sub 3} and V{sub f} increases while I{sub 3} slightly increases as T increases for the two detectors. The values of τ{sub 3}, V{sub f} and I{sub 3} are higher in CR-39 than DAM–ADC. The interpretation of obtained results is based on the fact that increasing T leads to significant enhancement of thermal expansion of the polymer matrix and consequently V{sub f} increases. The track diameter increases as T increases. This can be explained by the fact that the increase in T increases the crystal size and V{sub f} in the polymer. A relationship between V{sub f} and the alpha particle track diameter was obtained. Moreover results of detector irradiation, along with free volume evaluation are addressed and thoroughly discussed.

  13. A polymorphic variant in the human electron transfer flavoprotein alpha-chain (alpha-T171) displays decreased thermal stability and is overrepresented in very-long-chain acyl-CoA dehydrogenase-deficient patients with mild childhood presentation

    DEFF Research Database (Denmark)

    Bross, P; Pedersen, P; Nyholm, M;

    1999-01-01

    The consequences of two amino acid polymorphisms of human electron transfer flavoprotein (alpha-T/I171 in the alpha-subunit and beta-M/T154 in the beta-subunit) on the thermal stability of the enzyme are described. The alpha-T171 variant displayed a significantly decreased thermal stability...... thermal stability) was significantly overrepresented. Subgrouping of the VLCAD patients into three phenotypic classes (severe childhood, mild childhood, and adult presentation) revealed that the overrepresentation of the alpha-T171 variant was significant only in patients with mild childhood presentation...

  14. Particle shape effect on heat transfer performance in an oscillating heat pipe

    Directory of Open Access Journals (Sweden)

    Chen Hsiu-hung

    2011-01-01

    Full Text Available Abstract The effect of alumina nanoparticles on the heat transfer performance of an oscillating heat pipe (OHP was investigated experimentally. A binary mixture of ethylene glycol (EG and deionized water (50/50 by volume was used as the base fluid for the OHP. Four types of nanoparticles with shapes of platelet, blade, cylinder, and brick were studied, respectively. Experimental results show that the alumina nanoparticles added in the OHP significantly affect the heat transfer performance and it depends on the particle shape and volume fraction. When the OHP was charged with EG and cylinder-like alumina nanoparticles, the OHP can achieve the best heat transfer performance among four types of particles investigated herein. In addition, even though previous research found that these alumina nanofluids were not beneficial in laminar or turbulent flow mode, they can enhance the heat transfer performance of an OHP.

  15. Deceleration of Alpha Particles in the Solar Wind by Instabilities and the Rotational Force: Implications for Heating, Azimuthal Flow, and the Parker Spiral Magnetic Field

    CERN Document Server

    Verscharen, Daniel; Bourouaine, Sofiane; Hollweg, Joseph V

    2014-01-01

    Protons and alpha particles in the fast solar wind are only weakly collisional and exhibit a number of non-equilibrium features, including relative drifts between particle species. Two non-collisional mechanisms have been proposed for limiting differential flow between alpha particles and protons: plasma instabilities and the rotational force. Both mechanisms decelerate the alpha particles. In this paper, we derive an analytic expression for the rate $Q_{\\mathrm{flow}}$ at which energy is released by alpha-particle deceleration, accounting for azimuthal flow and conservation of total momentum. We find that $Q_{\\mathrm{flow}} > 0 $ at $r r_{\\mathrm{crit}}$. We compare the value of $Q_{\\mathrm{flow}}$ at $r< r_{\\mathrm{crit}}$ with empirical heating rates for protons and alpha particles, denoted $Q_{\\mathrm{p}}$ and $Q_{\\alpha}$, deduced from in-situ measurements of fast-wind streams from the Helios and Ulysses spacecraft. We find that $Q_{\\mathrm{flow}}$ exceeds $Q_{\\alpha}$ at $r < 1\\,\\mathrm{AU}$, $Q_{...

  16. Thermo-mechanical modeling of turbulent heat transfer in gas-solid flows including particle collisions

    Energy Technology Data Exchange (ETDEWEB)

    Mansoori, Zohreh; Saffar-Avval, Majid; Basirat-Tabrizi, Hassan; Ahmadi, Goodarz; Lain, Santiago

    2002-12-01

    A thermo-mechanical turbulence model is developed and used for predicting heat transfer in a gas-solid flow through a vertical pipe with constant wall heat flux. The new four-way interaction model makes use of the thermal k{sub {theta}}-{tau}{sub {theta}} equations, in addition to the hydrodynamic k-{tau} transport, and accounts for the particle-particle and particle-wall collisions through a Eulerian/Lagrangian formulation. The simulation results indicate that the level of thermal turbulence intensity and the heat transfer are strongly affected by the particle collisions. Inter-particle collisions attenuate the thermal turbulence intensity near the wall but somewhat amplify the temperature fluctuations in the pipe core region. The hydrodynamic-to-thermal times-scale ratio and the turbulent Prandtl number in the region near the wall increase due to the inter-particle collisions. The results also show that the use of a constant or the single-phase gas turbulent Prandtl number produces error in the thermal eddy diffusivity and thermal turbulent intensity fields. Simulation results also indicate that the inter-particle contact heat conduction during collision has no significant effect in the range of Reynolds number and particle diameter studied.

  17. Time-differential observation of alpha -particle perturbed angular distribution; g-factor measurements for /sup 217/Ac/sup gs/ and /sup 217/Ac/sup m/

    CERN Document Server

    Maier, K H; Grawe, H; Kluge, H

    1981-01-01

    The g-factor measurements of the ground state and an isomeric level in /sup 217/Ac using the DPAD method with alpha -decay are described. The results of gamma -ray g-factor measurements for the isomer and a tentative decay scheme produced by alpha - gamma and gamma - gamma coincidence experiments are also presented. An analysis of the alpha - particle angular distributions suggests that nuclear deformation affects the observed anisotropy. (13 refs).

  18. A systematics of optical model compound nucleus formation cross sections for neutrons, proton, deuteron, {sup 3}He and alpha particle incidents

    Energy Technology Data Exchange (ETDEWEB)

    Murata, Toru [AITEL Corporation, Tokyo (Japan)

    2000-03-01

    Simple formulae to reproduce the optical model compound nucleus formation cross sections for neutron, proton, deuteron, triton, {sup 3}He and alpha particles are presented for target nuclei of light to medium weight mass region. (author)

  19. Momentum, heat, and mass transfer analogy for vertical hydraulic transport of inert particles

    Directory of Open Access Journals (Sweden)

    Jaćimovski Darko R.

    2014-01-01

    Full Text Available Wall-to-bed momentum, heat and mass transfer in vertical liquid-solids flow, as well as in single phase flow, were studied. The aim of this investigation was to establish the analogy among those phenomena. Also, effect of particles concentration on momentum, heat and mass transfer was studied. The experiments in hydraulic transport were performed in a 25.4 mm I.D. cooper tube equipped with a steam jacket, using spherical glass particles of 1.94 mm in diameter and water as a transport fluid. The segment of the transport tube used for mass transfer measurements was inside coated with benzoic acid. In the hydraulic transport two characteristic flow regimes were observed: turbulent and parallel particle flow regime. The transition between two characteristic regimes (γ*=0, occurs at a critical voidage ε≈0.85. The vertical two-phase flow was considered as the pseudofluid, and modified mixture-wall friction coefficient (fw and modified mixture Reynolds number (Rem were introduced for explanation of this system. Experimental data show that the wall-to-bed momentum, heat and mass transfer coefficients, in vertical flow of pseudofluid, for the turbulent regime are significantly higher than in parallel regime. Wall-to-bed, mass and heat transfer coefficients in hydraulic transport of particles were much higher then in single-phase flow for lower Reynolds numbers (Re15000, there was not significant difference. The experimental data for wall-to-bed momentum, heat and mass transfer in vertical flow of pseudofluid in parallel particle flow regime, show existing analogy among these three phenomena. [Projekat Ministarstva nauke Republike Srbije, br. 172022

  20. Plasma—Particle Transfer Process with Phase—Change and Chemistry Effects

    Institute of Scientific and Technical Information of China (English)

    WangBoyi; TianWendong; 等

    1998-01-01

    A numerical model is proposed to analyze mass,momentum,and energy transfer between plasma and particles in d.c.arc-heated and confined-jet reactors at atmospheric pressure.It emphasizes the phase change and thermal chemistry of particles and includes some other effects such as flow turbulence,gas compressibility and temperature-dependence of the transport properties under the plasma condition Example calculations for plasma-dissociated zirocn process indicate the influences of reactor operation parameters on the plasma jet and particle behavior.

  1. An octahedral deformation with six alpha particles at the Z = 12 system, Mg nuclides: Third nucleons, Alpharons

    CERN Document Server

    Moon, Chang-Bum

    2016-01-01

    We suggest that the emergence of a large deformation in the magnesium, Mg, nuclides, especially at the Z = 12, N = 12, should be associated with an octahedral deformed shape. Within the framework of molecular geometrical symmetry, we find a possibility that the Z = 12, N = 12 system would form an octahedral structure consisting of six points of alpha(4He) particles, yielding the ground collectivity. With this point of view, we draw the following serial molecular structures; the Z = 10, N = 10, 20Ne, corresponds to a hexahedral, the Z = 8, N = 8, 16O, does to a tetrahedral, and the Z = 6, N = 6, 12C, does to a trigonal symmetry. Moreover, the Z = 2, N = 2, 4He(alpha), fits into a tetrahedral symmetry with four points of nucleons; two protons and two neutrons. The enhanced deformation at Z = 12 with N > 20 would be explained by a deformed shape related to an Ethene(Ethylene)-like skeleton with six alpha particles. The deformation at Z = 10, with N = 10 and 12, can be interpreted as being attributed to a hexahed...

  2. Humidity influenced capacitance and resistance of an Al/DNA/Al Schottky diode irradiated by alpha particles

    Science.gov (United States)

    Al-Ta'Ii, Hassan Maktuff Jaber; Amin, Yusoff Mohd; Periasamy, Vengadesh

    2016-05-01

    Deoxyribonucleic acid or DNA based sensors, especially as humidity and alpha particle sensors have become quite popular in recent times due to flexible and highly optimizable nature of this fundamental biomaterial. Application of DNA electronics allow for more sensitive, accurate and effective sensors to be developed and fabricated. In this work, we examined the effect of different humidity conditions on the capacitive and resistive response of Aluminum (Al)/DNA/Al Schottky barrier structure when bombarded by time-dependent dosages of alpha particles. Based on current-voltage profiles, which demonstrated rectifying behaviours, Schottky diode parameters such as ideality factor, barrier height and series resistance was calculated. Results observed generally pointed towards a decrease in the resistance value from the pristine to the radiated structures. It was also demonstrated that under the effect of humidity, the capacitance of the DNA thin film increased from 0.05894 to 92.736 nF, with rising relative humidity level. We also observed the occurrence of the hypersensitivity phenomena after alpha irradiation between 2 to 4 min by observing a drop in the series resistance, crucial in the study of DNA damage and repair mechanisms. These observations may also suggest the exciting possibility of utilizing Al/DNA/Al Schottky diodes as potentially sensitive humidity sensors.

  3. The emission probabilities of long range alpha particles from even-even 244-252Cm isotopes

    CERN Document Server

    Santhosh, K P; Priyanka, B

    2014-01-01

    The alpha accompanied cold ternary fission of even-even 244Cm, 246Cm, 248Cm, 250Cm and 252Cm isotopes have been studied by taking the interacting barrier as the sum of Coulomb and proximity potential with the fragments in equatorial configuration. The favorable fragment combinations are obtained from the cold reaction valley plot and by calculating the relative yield for the charge minimized fragments. In the alpha accompanied ternary fission of 244Cm isotope, the highest yield is found for the fragment combination 110Ru+4He+130Sn, which possess near doubly magic nuclei 130Sn. For the ternary fission of 246Cm, 248Cm, 250Cm and 252Cm isotopes with 4He as light charged particle, the highest yield is obtained for the fragment combination with doubly magic nuclei 132Sn as the heavier fragment. The emission probabilities and kinetic energies of long range alpha particle have been computed for the 242,244,246,248Cm isotopes and are found to be in good agreement with the experimental data. The relative yields for th...

  4. Conformational analysis of a Chlamydia-specific disaccharide {alpha}-Kdo-(2{sup {yields}}8)-{alpha}-Kdo-(2{sup {yields}}O)-allyl in aqueous solution and bound to a monoclonal antibody: Observation of intermolecular transfer NOEs

    Energy Technology Data Exchange (ETDEWEB)

    Sokolowski, Tobias; Haselhorst, Thomas; Scheffler, Karoline [Medizinische Universitaet, Institut fuer Chemie (Germany); Weisemann, Ruediger [Bruker Analytik GmbH, Silberstreifen (Germany); Kosma, Paul [Institut fuer Chemie der Universitaet fuer Bodenkultur Wien (Austria); Brade, Helmut; Brade, Lore [Forschungszentrum Borstel, Zentrum fuer Medizin und Biowissenschaften Parkallee 22 (Germany); Peters, Thomas [Medizinische Universitaet, Institut fuer Chemie (Germany)

    1998-07-15

    The disaccharide {alpha}-Kdo-(2{sup {yields}}8)-{alpha}-Kdo (Kdo: 3-deoxy-d-manno-oct-2-ulosonic acid) represents a genus-specific epitope of the lipopolysaccharide of the obligate intracellular human pathogen Chlamydia. The conformation of the synthetically derived disaccharide {alpha}-Kdo-(2{sup {yields}}8)-{alpha}-Kdo-(2{sup {yields}}O)-allyl was studied in aqueous solution, and complexed to a monoclonal antibody S25-2. Various NMR experiments based on the detection of NOEs (or transfer NOEs) and ROEs (or transfer ROEs) were performed. A major problem was the extensive overlap of almost all {sup 1}H NMR signals of {alpha}-Kdo-(2{sup {yields}}8)-{alpha}-Kdo-(2{sup {yields}}O)-allyl. To overcome this difficulty, HMQC-NOESY and HMQC-trNOESY experiments were employed. Spin diffusion effects were identified using trROESY experiments, QUIET-trNOESY experiments and MINSY experiments. It was found that protein protons contribute to the observed spin diffusion effects. At 800 MHz, intermolecular trNOEs were observed between ligand protons and aromatic protons in the antibody binding site. From NMR experiments and Metropolis Monte Carlo simulations, it was concluded that {alpha}-Kdo-(2{sup {yields}}8)-{alpha}-Kdo-(2{sup {yields}}O)-allyl in aqueous solution exists as a complex conformational mixture. Upon binding to the monoclonal antibody S25-2, only a limited range of conformations is available to {alpha}-Kdo-(2{sup {yields}}8)-{alpha}-Kdo-(2{sup {yields}}O)-allyl. These possible bound conformations were derived from a distance geometry analysis using transfer NOEs as experimental constraints. It is clear that a conformation is selected which lies within a part of the conformational space that is highly populated in solution. This conformational space also includes the conformation found in the crystal structure. Our results provide a basis for modeling studies of the antibody-disaccharide complex.

  5. From Mirrors to Windows: Lyman-Alpha Radiative Transfer in a Very Clumpy Medium

    CERN Document Server

    Gronke, Max; McCourt, Michael; Oh, S Peng

    2016-01-01

    Lyman-Alpha (Ly$\\alpha$) is the strongest emission line in the Universe and is frequently used to detect and study the most distant galaxies. Because Lya is a resonant line, photons typically scatter prior to escaping; this scattering process complicates the interpretation of Ly$\\alpha$ spectra, but also encodes a wealth of information about the structure and kinematics of neutral gas in the galaxy. Modeling the Ly$\\alpha$ line therefore allows us to study tiny-scale features of the gas, even in the most distant galaxies. Curiously, observed Ly$\\alpha$ spectra can be modeled successfully with very simple, homogeneous geometries (such as an expanding, spherical shell), whereas more realistic, multiphase geometries often fail to reproduce the observed spectra. This seems paradoxical since the gas in galaxies is known to be multiphase. In this Letter, we show that spectra emerging from extremely clumpy geometries with many clouds along the line of sight converge to the predictions from simplified, homogeneous mo...

  6. FLOW BEHAVIOR AND MASS TRANSFER IN THREE-PHASE EXTERNAL-LOOP AIRLIFT REACTORS WITH LARGE PARTICLES

    Institute of Scientific and Technical Information of China (English)

    Malin; Liu; Tongwang; Zhang; Tiefeng; Wang; Jinfu; Wang; Yong; Jin

    2006-01-01

    The flow behavior and mass transfer in a three-phase external-loop airlift reactor can be improved by adding large particles. The mass transfer and liquid dispersion behavior for a three-phase external-loop reactor with large particles are studied in terms of the effect of the diameter and loading of the large particles on the liquid dispersion coefficient and mass transfer coefficient. The results showed that increasing the diameter or loading of the large particles tend to decrease dispersion and intensify mass transfer, and that an increase in the diameter of the large particles remarkably decreases the particle loop rate, while the effect of fine particles is much less notable.

  7. The implications of particle energy and acidic media on gross alpha and gross beta determination using liquid scintillation

    Energy Technology Data Exchange (ETDEWEB)

    Zapata-Garcia, D. [Laboratori de Radiologia Ambiental (LRA), Departament de Quimica Analitica, Universitat de Barcelona, Marti i Franques, 1-11 Planta 3, E-08028 Barcelona (Spain); Llaurado, M., E-mail: montse.llaurado@ub.edu [Laboratori de Radiologia Ambiental (LRA), Departament de Quimica Analitica, Universitat de Barcelona, Marti i Franques, 1-11 Planta 3, E-08028 Barcelona (Spain); Rauret, G. [Laboratori de Radiologia Ambiental (LRA), Departament de Quimica Analitica, Universitat de Barcelona, Marti i Franques, 1-11 Planta 3, E-08028 Barcelona (Spain)

    2012-04-15

    The interaction of humans with radioactivity present in the environment from natural and artificial sources necessitates an evaluation of its risk on human health. Gross alpha and gross beta activities can provide a rapid evaluation of the radioactive content of a sample and can be simultaneously determined by using liquid scintillation counters. However, calibration of the liquid scintillation counter is required and is affected by many factors, such as particle energy and the acidity of the media. This study investigates what effect the particle energy used for calibration has on misclassification and how to account for this misclassification in routine measurements. The variability in measurement produced by the final pH, as well as any acids used in sample treatment, was also studied. These results showed that the most commonly used acid for these types of analyses, HNO{sub 3}, produced a high amount of misclassifications at very low pH. The results improved when HCl was used to adjust the sample to low pH. - Highlights: Black-Right-Pointing-Pointer We study the effect of alpha and beta energies on PSA optimisation. Black-Right-Pointing-Pointer The optimum PSA shifts to higher values as the alpha energy increases. Beta energies do not affect it. Black-Right-Pointing-Pointer We study the effect of pH on the simultaneous determination of gross alpha/beta activities. Black-Right-Pointing-Pointer HNO{sub 3} produces a high amount of misclassification at very low pH. Black-Right-Pointing-Pointer The results improve when HCl is used to adjust the sample to low pH.

  8. A Proposed New "Nano-Particle" Theory of Light Based on Heat Transfer Principles

    Science.gov (United States)

    Das, Ashis

    2004-05-01

    Till date theories of light (visible and other radiations over electromagnetic scale) are divided into two classes viz. particle and wave theory. A particle on the classical view is a concentration of energy and other properties in space and time, whereas a wave is spread out over a larger region of space and time. It is generally understood that particle theory talks about corpuscles of finite measurable mass whereas wave theory is about packets of massless energy. This paper is a summary of thoughts collected so far on building a only - particle theory of light or other radiations assuming the Universe to be filled with "nano-particles" or very small particles and large particles. Although revolutionary and very thought provoking and unbelievably challenging the collected pointers outlined in this account appear very logical and mathematically sound although experiments are required to give this theory a firm basis for wide spread recognition in scientific forums. The major support for nano-particle theory comes from the observation of a term called "radiation pressure" which incorporates a sense of impact or pressure and therefore a force and so some particle impact although very feeble compared to normal large particle impact yielding noticeable effect on most pressure gauges measuring this. Similar feeble impact effects are possible in other phenomena like current, magnetic field etc. whose measurement will require very sensitive instruments. In this paper, I have explained that common method of estimation of momentum and heat transfer applied to very small mass nano-particles can explain at least three major phenomena of visble light viz. rectilinear propagation, reflection and refraction. Other phenomena such as diffraction, interference, polarization, diffusion etc will be presented in a future paper. This presentation is meant for collecting wide readership views to approve or deny this explanation of only particle theory after famous Compton scattering

  9. Effects of Complex Symmetry-Breakings on Alpha Particle Power Loads on First Wall Structures and Equilibrium in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Shinohara, K. [Japan Atomic Energy Agency (JAEA), Naka; Kurki-Suonio, T. [Aalto University, Finland; Spong, Donald A [ORNL; Asunta, O. [Aalto University, Finland; Tani, K. [Japan Atomic Energy Agency (JAEA), Naka; Strumberger, E. [Max Planck Institute for Plasma Physics, Garching, Germany; Briguglio, S. [EURATOM / ENEA, Italy; Koskela, T. [Aalto University, Finland; Vlad, G. [EURATOM / ENEA, Italy; Günter, S. [Max-Planck Institute, Garching, Germany; Kramer, G. [Princeton Plasma Physics Laboratory (PPPL); Putvinski, S. [ITER Organization, Cadarache, France; Hamamatsu, K. [Japan Atomic Energy Agency (JAEA), Naka

    2011-01-01

    Within the ITPA Topical Group on Energetic Particles, we have investigated the impact that various mechanisms breaking the tokamak axisymmetry can have on the fusion alpha particle confinement in ITER as well as on the wall power loads due to these alphas. In addition to the well-known TF ripple, the 3D effect due to ferromagnetic materials (in ferritic inserts and test blanket modules) and ELM mitigation coils are included in these mechanisms. ITER scenario 4 was chosen since, due to its lower plasma current, it is more vulnerable for various off-normal features. First, the validity of using a 2D equilibrium was investigated: a 3D equilibrium was reconstructed using the VMEC code, and it was verified that no 3D equilibrium reconstruction is needed but it is sufficient to add the vacuum field perturbations onto an axisymmetric equilibrium. Then the alpha particle confinement was studied using three independent codes, ASCOT, DELTA5D and F3D OFMC, all of which assume MHD quiescent background plasma and no anomalous diffusion. All the codes gave a loss power fraction of about 0.2%. The distribution of the peak power load was found to depend on the first wall shape. We also made the first attempt to accommodate the effect of fast-ion-related MHD on the wall loads in ITER using the HMGC and ASCOT codes. The power flux to the wall was found to increase due to the redistribution of fast ions by the MHD activity. Furthermore, the effect of the ELM mitigation field on the fast-ion confinement was addressed by simulating NBI ions with the F3D OFMC code. The loss power fraction of NBI ions was found to increase from 0.3% without the ELM mitigation field to 4-5% with the ELM mitigation field.

  10. Response of Ni/4H-SiC Schottky barrier diodes to alpha-particle irradiation at different fluences

    Energy Technology Data Exchange (ETDEWEB)

    Omotoso, E., E-mail: ezekiel.omotoso@up.ac.za [Department of Physics, University of Pretoria, Private Bag X20, Hatfield 0028 (South Africa); Departments of Physics, Obafemi Awolowo University, Ile-Ife 220005 (Nigeria); Meyer, W.E.; Auret, F.D.; Diale, M.; Ngoepe, P.N.M. [Department of Physics, University of Pretoria, Private Bag X20, Hatfield 0028 (South Africa)

    2016-01-01

    Irradiation experiments have been carried out on 1.9×10{sup 16} cm{sup −3} nitrogen-doped 4H-SiC at room temperature using 5.4 MeV alpha-particle irradiation over a fluence ranges from 2.6×10{sup 10} to 9.2×10{sup 11} cm{sup −2}. Current–voltage (I–V), capacitance–voltage (C–V) and deep level transient spectroscopy (DLTS) measurements have been carried out to study the change in characteristics of the devices and free carrier removal rate due to alpha-particle irradiation, respectively. As radiation fluence increases, the ideality factors increased from 1.20 to 1.85 but the Schottky barrier height (SBH{sub I–V}) decreased from 1.47 to 1.34 eV. Free carrier concentration, N{sub d} decreased with increasing fluence from 1.7×10{sup 16} to 1.1×10{sup 16} cm{sup −2} at approximately 0.70 μm depth. The reduction in N{sub d} shows that defects were induced during the irradiation and have effect on compensating the free carrier. The free carrier removal rate was estimated to be 6480±70 cm{sup −1}. Alpha-particle irradiation introduced two electron traps (E{sub 0.39} and E{sub 0.62}), with activation energies of 0.39±0.03 eV and 0.62±0.08 eV, respectively. The E{sub 0.39} as attribute related to silicon or carbon vacancy, while the E{sub 0.62} has the attribute of Z{sub 1}/Z{sub 2}.

  11. Modelling TF ripple loss of alpha particles in TFTR DT experiments

    Energy Technology Data Exchange (ETDEWEB)

    Redi, M.H.; Budny, R.V.; Darrow, D.S. [and others

    1995-07-01

    Modelling of TF ripple loss of alphas in DT experiments on TFTR now includes neoclassical calculations of first orbit loss, stochastic ripple diffusion, ripple trapping and collisional effects. A rapid way to simulate experiment has been developed which uses a simple stochastic domain model for TF ripple loss within the TRANSP analysis code, with the ripple diffusion threshold evaluated by comparison with more accurate but computationally expensive Hamiltonian coordinate guiding center code simulations. Typical TF collisional ripple loss predictions are 6-10% loss of alphas for TFTR D-T experiments at I{sub p} = 1.0-2.0 MA and R = 2.52 m.

  12. Prerainbow Oscillations in $^3$He Scattering from the Hoyle State of $^{12}$c and Alpha Particle Condensation

    CERN Document Server

    Ohkubo, S

    2011-01-01

    $^3$He+$^{12}$C scattering is studied in a coupled channel method by using a double folding model with microscopic wave functions of $^{12}$C. Experimental angular distributions in elastic and inelastic scattering to the $2^+$ (4.44 MeV), 0$^+_2$ (7.65 MeV) and 3$^-$ (9.63 MeV) states of $^{12}$C are well reproduced. It is found that the Airy minimum of the prerainbow oscillations for the Hoyle state is considerably shifted to a larger angle due to its dilute density distribution compared with that of the normal ground state in agreement with the idea of $\\alpha$ particle condensation.

  13. A Comparitive Assessement of Cytokine Expression in Human-Derived Cell Lines Exposed to Alpha Particles and X-Rays

    Directory of Open Access Journals (Sweden)

    Vinita Chauhan

    2012-01-01

    Full Text Available Alpha- (α- particle radiation exposure has been linked to the development of lung cancer and has been identified as a radiation type likely to be employed in radiological dispersal devices. Currently, there exists a knowledge gap concerning cytokine modulations associated with exposure to α-particles. Bio-plex technology was employed to investigate changes in proinflammatory cytokines in two human-derived cell lines. Cells were irradiated at a dose of 1.5 Gy to either α-particles or X-rays at equivalent dose rates. The two cell lines exhibited a unique pattern of cytokine expression and the response varied with radiation type. Of the 27 cytokines assessed, only vascular endothelin growth factor (VEGF was observed to be modulated in both cell lines solely after α-particle exposure, and the expression of VEGF was shown to be dose responsive. These results suggest that certain proinflammatory cytokines may be involved in the biological effects related to α- particle exposure and the responses are cell type and radiation type specific.

  14. Very High Efficiency, Miniaturized, Long-Lived Alpha Particle Power Source Using Diamond Devices for Extreme Space Environments

    Science.gov (United States)

    Kolawa, Elizabeth A. (Inventor); Patel, Jagdishbhai U. (Inventor); Fleurial, Jean-Pierre (Inventor)

    2004-01-01

    A power source that converts a-particle energy into electricity by coulomb collision in doped diamond films is described. Alpha particle decay from curium-244 creates electron-hole pairs by free- ing electrons and holes inside the crystal lattice in N- and P-doped diamond films. Ohmic contacts provide electrical connection to an electronic device. Due to the built-in electric field at the rectifying junction across the hT- and P-doped diamond films, the free electrons are constrained to traveling in generally one direction. This one direction then supplies electrons in a manner similar to that of a battery. The radioactive curium layer may be disposed on diamond films for even distribution of a-particle radiation. The resulting power source may be mounted on a diamond substrate that serves to insulate structures below the diamond substrate from a-particle emission. Additional insulation or isolation may be provided in order to prevent damage from a-particle collision. N-doped silicon may be used instead of N-doped diamond.

  15. Tube array heat transfer in fluidized beds; a study of particle size effects

    Energy Technology Data Exchange (ETDEWEB)

    Chung, T.Y.; Welty, J.R. (Oregon State Univ., Corvallis, OR (USA). Dept. of Mechanical Engineering)

    1989-07-01

    Experiments were performed with an array of horizontal tubes, arranged in a regular equilateral triangular pattern, immersed in a fluidized bed operating at 812 {Kappa}. Data are reported for heat transfer between the bed and a centrally-located tube in the array. Both total and radiative heat transfer rates were measured for superficial velocities spanning the range from packed bed conditions to over twice the minimum fluidization velocity. Results are presented for five different-size particles. Local heat transfer values, measured around the tube periphery, and integrated averages are reported for all test conditions. Comparisons are also made between the heat transfer behavior of a tube in an array and that for a single tube in a hot fluidized bed under the same overall operating conditions. The results of this comparison suggests that the two mechanisms, gas convection and radiation, are competing effects.

  16. Deep ocean nutrients imply large latitudinal variation in particle transfer efficiency

    Science.gov (United States)

    Weber, Thomas; Cram, Jacob A.; Leung, Shirley W.; DeVries, Timothy; Deutsch, Curtis

    2016-08-01

    The “transfer efficiency” of sinking organic particles through the mesopelagic zone and into the deep ocean is a critical determinant of the atmosphere-ocean partition of carbon dioxide (CO2). Our ability to detect large-scale spatial variations in transfer efficiency is limited by the scarcity and uncertainties of particle flux data. Here we reconstruct deep ocean particle fluxes by diagnosing the rate of nutrient accumulation along transport pathways in a data-constrained ocean circulation model. Combined with estimates of organic matter export from the surface, these diagnosed fluxes reveal a global pattern of transfer efficiency to 1,000 m that is high (˜25%) at high latitudes and low (˜5%) in subtropical gyres, with intermediate values in the tropics. This pattern is well correlated with spatial variations in phytoplankton community structure and the export of ballast minerals, which control the size and density of sinking particles. These findings accentuate the importance of high-latitude oceans in sequestering carbon over long timescales, and highlight potential impacts on remineralization depth as phytoplankton communities respond to a warming climate.

  17. Effect of Solid Particle Properties on Heat Transfer and Pressure Drop in Packed Duct

    Directory of Open Access Journals (Sweden)

    Muthanna L. Abdulla

    2013-01-01

    Full Text Available This work examines numerically the effects of particle size, particle thermal conductivity and inlet velocity of forced convection heat transfer in uniformly heated packed duct. Four packing material (Aluminum, Alumina, Glass and Nylon with range of thermal conductivity (from200 W/m.K for Aluminum to 0.23 W/m.K for Nylon, four particle diameters (1, 3, 5 and 7 cm, inlet velocity ( 0.07, 0.19 and 0.32 m/s and constant heat flux ( 1000, 2000 and 3000 W/ m 2 were investigated. Results showed that heat transfer (average Nusselt number Nuav increased with increasing packing conductivity; inlet velocity and heat flux, but decreased with increasing particle size.Also, Aluminum average Nusselt number is about (0.85,2.2 and 3.1 times than Alumina, glass and Nylon respectively. From optimization between heat transfer and pressure drop through packed duct, it is found thatfinest ratio (Nuav / ?p equal to (19.12 at (Dp = 7 cm, inlet velocity = 0.07 m/ s and 3000 W/m2 heat flux with Aluminum as packing material.

  18. Two-flux method for radiation heat transfer in anisotropic gas-particles media

    Institute of Scientific and Technical Information of China (English)

    WANG Fei; CEN Kefa; T. Girasole; A. Garo; G. Gréhan; YAN Jianhua

    2004-01-01

    Two-flux method can be used, as a simplification for the radiative heat transfer, to predict heat flux in a slab consisting of gas and particles. In the original two-flux method (Schuster, 1905 and Schwarzschild, 1906), the radiation field was assumed to be isotropic. But for gas-particles mixture in combustion environments, the scatterings of particles are usually anisotropic, and the original two-flux method gives critical errors when ignoring this anisotropy. In the present paper, a multilayer four-flux model developed by Rozé et al. (2001) is extended to calculate the radiation heat flux in a slab containing participating particles and gas mixture. The analytic resolution of the radiative transfer equation in the framework of a two-flux approach is presented. The average crossing parameter ε And the forward scattering ratio ζ are defined to describe the anisotropy of the radiative field. To validate the model, the radiation transfer in a slab has been computed. Comparisons with the exact analytical result of Modest (1993) and the original two-flux model show the exactness and the improvement. The emissivity of a slab containing flyash/CO2/H2O mixture is obtained using the new model. The result is identical with that of Goodwin (1989).

  19. Deep ocean nutrients imply large latitudinal variation in particle transfer efficiency.

    Science.gov (United States)

    Weber, Thomas; Cram, Jacob A; Leung, Shirley W; DeVries, Timothy; Deutsch, Curtis

    2016-08-01

    The "transfer efficiency" of sinking organic particles through the mesopelagic zone and into the deep ocean is a critical determinant of the atmosphere-ocean partition of carbon dioxide (CO2). Our ability to detect large-scale spatial variations in transfer efficiency is limited by the scarcity and uncertainties of particle flux data. Here we reconstruct deep ocean particle fluxes by diagnosing the rate of nutrient accumulation along transport pathways in a data-constrained ocean circulation model. Combined with estimates of organic matter export from the surface, these diagnosed fluxes reveal a global pattern of transfer efficiency to 1,000 m that is high (∼25%) at high latitudes and low (∼5%) in subtropical gyres, with intermediate values in the tropics. This pattern is well correlated with spatial variations in phytoplankton community structure and the export of ballast minerals, which control the size and density of sinking particles. These findings accentuate the importance of high-latitude oceans in sequestering carbon over long timescales, and highlight potential impacts on remineralization depth as phytoplankton communities respond to a warming climate.

  20. Deep ocean nutrients imply large latitudinal variation in particle transfer efficiency

    Science.gov (United States)

    Weber, Thomas; Cram, Jacob A.; Leung, Shirley W.; DeVries, Timothy; Deutsch, Curtis

    2016-01-01

    The “transfer efficiency” of sinking organic particles through the mesopelagic zone and into the deep ocean is a critical determinant of the atmosphere−ocean partition of carbon dioxide (CO2). Our ability to detect large-scale spatial variations in transfer efficiency is limited by the scarcity and uncertainties of particle flux data. Here we reconstruct deep ocean particle fluxes by diagnosing the rate of nutrient accumulation along transport pathways in a data-constrained ocean circulation model. Combined with estimates of organic matter export from the surface, these diagnosed fluxes reveal a global pattern of transfer efficiency to 1,000 m that is high (∼25%) at high latitudes and low (∼5%) in subtropical gyres, with intermediate values in the tropics. This pattern is well correlated with spatial variations in phytoplankton community structure and the export of ballast minerals, which control the size and density of sinking particles. These findings accentuate the importance of high-latitude oceans in sequestering carbon over long timescales, and highlight potential impacts on remineralization depth as phytoplankton communities respond to a warming climate. PMID:27457946

  1. Determination of the area density and composition of alloy film using dual alpha particle energy loss

    Science.gov (United States)

    Ma, Xiaojun; Li, Bo; Gao, Dangzhong; Xu, Jiayun; Tang, Yongjian

    2017-02-01

    A novel method based on dual α-particles energy loss (DAEL) is proposed for measuring the area density and composition of binary alloy films. In order to obtain a dual-energy α-particles source, an ingenious design that utilizes the transmitted α-particles traveling the thin film as a new α-particles source is presented. Using the DAEL technique, the area density and composition of Au/Cu film are determined accurately with an uncertainty of better than 10%. Finally, some measures for improving the combined uncertainty are discussed.

  2. An optimized surface plasmon photovoltaic structure using energy transfer between discrete nano-particles.

    Science.gov (United States)

    Lin, Albert; Fu, Sze-Ming; Chung, Yen-Kai; Lai, Shih-Yun; Tseng, Chi-Wei

    2013-01-14

    Surface plasmon enhancement has been proposed as a way to achieve higher absorption for thin-film photovoltaics, where surface plasmon polariton(SPP) and localized surface plasmon (LSP) are shown to provide dense near field and far field light scattering. Here it is shown that controlled far-field light scattering can be achieved using successive coupling between surface plasmonic (SP) nano-particles. Through genetic algorithm (GA) optimization, energy transfer between discrete nano-particles (ETDNP) is identified, which enhances solar cell efficiency. The optimized energy transfer structure acts like lumped-element transmission line and can properly alter the direction of photon flow. Increased in-plane component of wavevector is thus achieved and photon path length is extended. In addition, Wood-Rayleigh anomaly, at which transmission minimum occurs, is avoided through GA optimization. Optimized energy transfer structure provides 46.95% improvement over baseline planar cell. It achieves larger angular scattering capability compared to conventional surface plasmon polariton back reflector structure and index-guided structure due to SP energy transfer through mode coupling. Via SP mediated energy transfer, an alternative way to control the light flow inside thin-film is proposed, which can be more efficient than conventional index-guided mode using total internal reflection (TIR).

  3. Fluidized bed spray granulation: analysis of heat and mass transfers and dynamic particle populations

    Directory of Open Access Journals (Sweden)

    S. Heinrich

    2005-06-01

    Full Text Available A model was developed taking into consideration the heat and mass transfer processes in liquid-sprayed fluidized beds. Such fluidized beds (FB are used for granulation, coating and agglomeration. Conclusions are drawn on the relevance of particle dispersion, spraying and drying to temperature and concentrations distributions. In extension, the model was coupled with a population balance model to describe the particle size distribution and the seeds formation for continuous external FBSG (fluidized bed spray granulation with non-classifying product discharge and a screening and milling unit in the seeds recycle. The effects of seeds formation on the stability of the process is discussed.

  4. Comprehensive evaluation of the linear stability of Alfv\\'en eigenmodes driven by alpha particles in an ITER baseline scenario

    CERN Document Server

    Figueiredo, A C A; Borba, D; Coelho, R; Fazendeiro, L; Ferreira, J; Loureiro, N F; Nabais, F; Pinches, S D; Polevoi, A R; Sharapov, S E

    2016-01-01

    The linear stability of Alfv\\'en eigenmodes in the presence of fusion-born alpha particles is thoroughly assessed for two variants of an ITER baseline scenario, which differ significantly in their core and pedestal temperatures. A systematic approach is used that considers all possible eigenmodes for a given magnetic equilibrium and determines their growth rates due to alpha-particle drive and Landau damping on fuel ions, helium ashes and electrons. This extensive stability study is efficiently conducted through the use of a specialized workflow that profits from the performance of the hybrid MHD drift-kinetic code $\\mbox{CASTOR-K}$ (Borba D. and Kerner W. 1999 J. Comput. Phys. ${\\bf 153}$ 101; Nabais F. ${\\it et\\,al}$ 2015 Plasma Sci. Technol. ${\\bf 17}$ 89), which can rapidly evaluate the linear growth rate of an eigenmode. It is found that the fastest growing instabilities in the aforementioned ITER scenario are core-localized, low-shear toroidal Alfv\\'en eigenmodes. The largest growth-rates occur in the s...

  5. Clustering Pre-equilibrium Model Analysis for Nucleon-induced Alpha-particle Spectra up to 200 MeV

    Directory of Open Access Journals (Sweden)

    Watanabe Y.

    2012-02-01

    Full Text Available The clustering exciton model of Iwamoto and Harada is applied to the analysis of pre-equilibrium (N, xα energy spectra for medium-to-heavy nuclei up to 200 MeV. In this work, we calculate alpha-particle formation factors without any approximations that appear in the original model. The clustering process is also considered in both the primary and second pre-equilibrium emissions. We optimize the exciton and the clustering model parameters simultaneously by looking at the experimental (N, xN and (N, xα energy spectra. The experimental alpha-particle spectra are well reproduced with a unique set of clustering model parameters, which is independent of incident neutrons/protons. The present analysis also implies that the clustering model parameter is not so different between the medium and heavy nuclei. Our calculations reproduce experimental data generally well up to the incident energy of ~150 MeV, but underestimations are seen above this energy.

  6. Fabrication of substrates with curvature for cell cultivation by alpha-particle irradiation and chemical etching of PADC films

    Energy Technology Data Exchange (ETDEWEB)

    Ng, C.K.M.; Tjhin, V.T. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong); Lin, A.C.C.; Cheng, J.P.; Cheng, S.H. [Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong); Yu, K.N., E-mail: peter.yu@cityu.edu.hk [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong (Hong Kong)

    2012-05-01

    In the present paper, we developed a microfabrication technology to generate cell-culture substrates with identical chemistry and well-defined curvature. Micrometer-sized pits with curved surfaces were created on a two-dimensional surface of a polymer known as polyallyldiglycol carbonate (PADC). A PADC film was first irradiated by alpha particles and then chemically etched under specific conditions to generate pits with well-defined curvature at the incident positions of the alpha particles. The surface with these pits was employed as a model system for studying the effects of substrate curvature on cell behavior. As an application, the present work studied mechanosensing of substrate curvature by epithelial cells (HeLa cells) through regulation of microtubule (MT) dynamics. We used end-binding protein 3-green fluorescent protein (EB3-GFP) as a marker of MT growth to show that epithelial cells having migrated into the pits with curved surfaces had significantly smaller MT growth speeds than those having stayed on flat surfaces without the pits.

  7. Determination by transfer reaction of alpha widths in fluorine for astrophysical interest; Determination par reaction de transfert de largeurs alpha dans le fluor 19. Applications a l'astrophysique

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira Santos, F. de

    1995-04-15

    The nucleosynthesis of fluorine is not known. Several astrophysical models predict the alpha radiative capture onto N{sup 15} as the main fluorine production reaction. In the expression of the reaction rate, one parameter is missing: the alpha width of the resonance on the E = 4.377 MeV level in fluorine. A direct measurement is excluded due to the very low cross-section expected. We have determined this alpha width using a transfer reaction followed by analyses with FR-DWBA (Finite Range Distorted Wave Born Approximation) in a simple cluster alpha model. This experiment was carried out with a Li{sup 7} beam with E = 28 MeV onto a N{sup 15} gas target. The 16 first levels were studied. Spectroscopic factors were extracted for most of them. Alpha widths for unbound levels were determined. Many alpha width were compared with known values from direct reaction and the differences lie within the uncertainty range (factor 2). The alpha width for the E = 4.377 MeV level was determined ({gamma}{sub {alpha}} = 1.5*10{sup -15} MeV), its value is about 60 times weaker than the used value. The influence of our new rate was studied in AGB (Asymptotic Giant Branch) stars during thermal pulses. In this model the alteration is sensitive. (author)

  8. About the effectiveness of spectrometry in alpha-activity monitoring of industrial air-borne particles

    Energy Technology Data Exchange (ETDEWEB)

    Domnikov, V.N.; Saltykov, L.S.; Slusarenko, L.I.; Shevchenko, S.V. E-mail: shevsv@i.kiev.ua

    2001-10-01

    The maximum-likelihood method (MLM) is applied for the analysis of the background compensation problem when using alpha-spectrometry to measure the transuranium radionuclide (TRU) content in thick aerosol samples. It is shown, that the uncertainty of the measurement results has a rather small dependence on the digit capacity of the analog to digital converter (ADC). For the total TRU alpha-activity measurement a 7-bit conversion in the energy range up to 9-10 MeV is sufficient to evaluate the background parameters in the energy region of interest (ROI). Background compensation is also made by subtraction of the estimated total background from the sum of counts measured in the ROI.

  9. The impact of mass transfer limitations on size distributions of particle associated SVOCs in outdoor and indoor environments

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Cong; Zhang, Yinping [Department of Building Science, Tsinghua University, Beijing (China); Weschler, Charles J., E-mail: weschlch@rwjms.rutgers.edu [Department of Building Science, Tsinghua University, Beijing (China); Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ (United States); International Center for Indoor Environment and Energy, Technical University of Denmark, Lyngby (Denmark)

    2014-11-01

    Semi-volatile organic compounds (SVOCs) partition between the gas phase and airborne particles. The size distribution of particle-associated SVOCs impacts their fate in outdoor and indoor environments, as well as human exposure to these compounds and subsequent health risks. Allen et al. (1996) previously proposed that the rate of mass transfer can impact polycyclic aromatic hydrocarbon (PAH) partitioning among different sized particles, especially for time scales relevant to urban aerosols. The present study quantitatively builds on this idea, presenting a model that incorporates dynamic SVOC/particle interaction and applying this model to typical outdoor and indoor scenarios. The model indicates that the impact of mass transfer limitations on the size distribution of a particle-associated SVOC can be evaluated by the ratio of the time to achieve gas–particle equilibrium relative to the residence time of particles. The higher this ratio, the greater the influence of mass transfer limitations on the size distribution of particle-associated SVOCs. The influence of such constraints is largest on the fraction of particle-associated SVOCs in the coarse mode (> 2 μm). Predictions from the model have been found to be in reasonable agreement with size distributions measured for PAHs at roadside and suburban locations in Japan. The model also quantitatively explains shifts in the size distributions of particle associated SVOCs compared to those for particle mass, and the manner in which these shifts vary with temperature and an SVOC's molecular weight. - Highlights: • Rate of mass transfer can impact SVOC partitioning among different sized particles. • Model was developed that incorporates dynamic SVOC/particle sorption. • Key parameters: mass-transfer coefficients, partition coefficient, residence time • Model explains observed SVOC size distribution shifts with temperature and MW. • Largest impact of mass transfer constraints: SVOC sorption to coarse

  10. Bibliography of electron transfer in heavy particle collisions, 1950--1975

    Energy Technology Data Exchange (ETDEWEB)

    Hawthorne, S.W.; Barnett, C.F.; Crandall, D.H.; Gilbody, H.B.; Kirkpatrick, M.I.; McDaniel, E.; Phaneuf, R.A.; Thomas, E.W. (eds.)

    1979-02-01

    This annotated bibliography lists published work on electron transfer in heavy particle collisions for the period 1950 to 1975. Sources include scientific journals, abstract compilations, conference proceedings, books, and reports. The bibliography is arranged alphabetically by author. Each entry indicates whether the work was experimental or theoretical, what energy range was covered, and what reactants were investigated. Following the bibliographical listing are indexes of reactants and authors.

  11. X-ray luminescence spectra of graded-gap Al xGa 1- xAs structures irradiated by alpha particle

    Science.gov (United States)

    Šilėnas, A.; Požela, J.; Požela, K.; Jucienė, V.; Dapkus, L.

    2011-12-01

    The influence of 241Am alpha particle irradiation on X-ray luminescence spectra of the graded-gap AlxGa1-xAs structures of different thicknesses is investigated. It is observed that the integral X-ray luminescence intensity of nonirradiated thin (15 μm) structure is 1.4 times less than that in the thick (32 μm) structure, and this difference increases to 3 times after 3×1010 cm-2 dose of irradiation by alpha particle. The X-ray luminescence intensity of the energy hνFgg is responsible of that large difference, because it shifts the X-ray generated carriers to the narrow-gap surface with great nonradiative surface recombination rate. The alpha particle irradiation increases nonradiative recombination rate and causes a decrease of the X-ray luminescence intensity of all spectra lines in the thin (15 μm) detector. The most significant drop in X-ray luminescence efficiency is observed from the region at narrow-gap surface after the initial stage (109 cm-2 dose) of alpha particle irradiation. In the 32 μm thick detector, the luminescence intensity of the energy hν=1.8 eV does not change up to 2×1010 cm-2 of alpha particle irradiation dose. That means the high irradiation hardness of the thick graded-gap X-ray detector with optical response.

  12. Alpha-synuclein cell-to-cell transfer and seeding in grafted dopaminergic neurons in vivo.

    Directory of Open Access Journals (Sweden)

    Elodie Angot

    Full Text Available Several people with Parkinson's disease have been treated with intrastriatal grafts of fetal dopaminergic neurons. Following autopsy, 10-22 years after surgery, some of the grafted neurons contained Lewy bodies similar to those observed in the host brain. Numerous studies have attempted to explain these findings in cell and animal models. In cell culture, α-synuclein has been found to transfer from one cell to another, via mechanisms that include exosomal transport and endocytosis, and in certain cases seed aggregation in the recipient cell. In animal models, transfer of α-synuclein from host brain cells to grafted neurons has been shown, but the reported frequency of the event has been relatively low and little is known about the underlying mechanisms as well as the fate of the transferred α-synuclein. We now demonstrate frequent transfer of α-synuclein from a rat brain engineered to overexpress human α-synuclein to grafted dopaminergic neurons. Further, we show that this model can be used to explore mechanisms underlying cell-to-cell transfer of α-synuclein. Thus, we present evidence both for the involvement of endocytosis in α-synuclein uptake in vivo, and for seeding of aggregation of endogenous α-synuclein in the recipient neuron by the transferred α-synuclein. Finally, we show that, at least in a subset of the studied cells, the transmitted α-synuclein is sensitive to proteinase K. Our new model system could be used to test compounds that inhibit cell-to-cell transfer of α-synuclein and therefore might retard progression of Parkinson neuropathology.

  13. Gas Flow, Particle Acceleration, and Heat Transfer in Cold Spray: A review

    Science.gov (United States)

    Yin, Shuo; Meyer, Morten; Li, Wenya; Liao, Hanlin; Lupoi, Rocco

    2016-06-01

    Cold spraying is increasingly attracting attentions from both scientific and industrial communities due to its unique `low-temperature' coating build-up process and its potential applications in the additive manufacturing across a variety of industries. The existing studies mainly focused on the following subjects: particle acceleration and heating, coating build-up, coating formation mechanism, coating properties, and coating applications, among which particle acceleration and heating can be regarded as the premise of the other subjects because it directly determines whether particles have sufficient energy to deposit and form the coating. Investigations on particle acceleration and heating behavior in cold spraying have been widely conducted both numerically and experimentally over decades, where many valuable conclusions were drawn. However, existing literature on this topic is vast; a systematical summery and review work is still lack so far. Besides, some curtail issues involved in modeling and experiments are still not quite clear, which needs to be further clarified. Hence, a comprehensive summary and review of the literature are very necessary. In this paper, the gas flow, particle acceleration, and heat transfer behavior in the cold spray process are systematically reviewed. Firstly, a brief introduction is given to introduce the early analytical models for predicting the gas flow and particle velocity in cold spraying. Subsequently, special attention is directed towards the application of computational fluid dynamics technique for cold spray modeling. Finally, the experimental observations and measurements in cold spraying are summarized.

  14. Radiation Heat Transfer in Particle-Laden Gaseous Flame: Flame Acceleration and Triggering Detonation

    CERN Document Server

    Liberman, M A; Kiverin, A D

    2015-01-01

    In this study we examine influence of the radiation heat transfer on the combustion regimes in the mixture, formed by suspension of fine inert particles in hydrogen gas. The gaseous phase is assumed to be transparent for the thermal radiation, while the radiant heat absorbed by the particles is then lost by conduction to the surrounding gas. The particles and gas ahead of the flame is assumed to be heated by radiation from the original flame. It is shown that the maximum temperature increase due to the radiation preheating becomes larger for a flame with lower velocity. For a flame with small enough velocity temperature of the radiation preheating may exceed the crossover temperature, so that the radiation heat transfer may become a dominant mechanism of the flame propagation. In the case of non-uniform distribution of particles, the temperature gradient formed due to the radiation preheating can initiate either deflagration or detonation ahead of the original flame via the Zel'dovich's gradient mechanism. Th...

  15. Magnetic dynamics of small alpha-Fe2O3 and NiO particles

    DEFF Research Database (Denmark)

    Lefmann, K.; Bødker, Franz; Hansen, Mikkel Fougt;

    1999-01-01

    We have studied the magnetic dynamics in nanocrystalline samples of alpha-Fe2O3 (hematite) and NiO by inelastic neutron scattering. By measuring around the structural and the antiferromagnetic reflections, we have probed uniform and staggered magnetic oscillations, respectively. In the hematite...... as a sign of superparamagnetic relaxation. Studies of the antiferromagnetic signal from NiO also show evidence of collective magnetic excitations, but with a higher energy of the precession state than for hematite. The inelastic signal at the structural reflection of NiO presents evidence for uniform...

  16. K-shell X-ray production cross sections of Ni induced by protons, alpha-particles, and He{sup +}

    Energy Technology Data Exchange (ETDEWEB)

    Bertol, A.P.L. [Programa de Pós-graduação em Física, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Hinrichs, R. [Programa de Pós-graduação em Física, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Instituto de Geociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Vasconcellos, M.A.Z., E-mail: marcos@if.ufrgs.br [Programa de Pós-graduação em Física, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Instituto de Física, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil)

    2015-11-15

    The proton, alpha-particle, and He{sup +} induced X-ray emissions of Ni were measured on mono-elemental thin films in order to obtain the K-shell X-ray production cross section in the energy range of 0.7–2.0 MeV for protons, 4.0–6.5 MeV for alpha-particles, and 3.0–4.0 MeV for He{sup +}. The proton-induced X-ray production cross section for Ni agreed well with the theoretical values, endorsing the quality of the measurements. The X-ray production cross section induced with alpha-particles is in good agreement with ECPSSR theory in the complete range of energies, while for He{sup +} that quantity is systematically below. K{sub β}/K{sub α} ratios were evaluated and compared with experimental and theoretical values.

  17. Genomic Profiling of a Human Leukemic Monocytic Cell-Line (THP-1 Exposed to Alpha Particle Radiation

    Directory of Open Access Journals (Sweden)

    Vinita Chauhan

    2012-01-01

    Full Text Available This study examined alpha (α- particle radiation effects on global changes in gene expression in human leukemic monocytic cells (THP-1 for the purposes of mining for candidate biomarkers that could be used for the development of a biological assessment tool. THP-1 cells were exposed to α-particle radiation at a dose range of 0 to 1.5 Gy. Twenty-four hours and three days after exposure gene expression was monitored using microarray technology. A total of 16 genes were dose responsive and classified as early onset due to their expression 24 h after exposure. Forty-eight transcripts were dose responsive and classified as late-onset as they were expressed 72 h after exposure. Among these genes, 6 genes were time and dose responsive and validated further using alternate technology. These transcripts were upregulated and associated with biological processes related to immune function, organelle stability and cell signalling/communication. This panel of genes merits further validation to determine if they are strong candidate biomarkers indicative of α-particle exposure.

  18. Spectroscopy of particle-phonon coupled states in $^{133}$Sb by the cluster transfer reaction of $^{132}$Sn on $^{7}$Li

    CERN Multimedia

    We propose to investigate, with MINIBALL coupled to T-REX, the one-valence-proton $^{133}$Sb nucleus by the cluster transfer reaction of $^{132}$Sn on $^{7}$Li. The excited $^{133}$Sb will be populated by transfer of a triton into $^{132}$Sn, followed by the emission of an $\\alpha$-particle (detected in T-REX) and 2 neutrons. The aim of the experiment is to locate states arising from the coupling of the valence proton of $^{133}$Sb to the collective low-lying phonon excitations of $^{132}$Sn (in particular the 3$^−$). According to calculations in the weak-coupling approach, these states lie in the 4$\\, - \\,$5 MeV excitation energy region and in the spin interval 1/2$\\, - \\,$ 19/2, i.e., in the region populated by the cluster transfer reaction. The results will be used to perform advanced tests of different types of nuclear interactions, usually employed in the description of particle-phonon coupled excitations. States arising from couplings of the proton with simpler core excitations, involving few nucleons...

  19. The relationship between internally deposited alpha-particle radiation and subsite-specific liver cancer and liver cirrhosis. An analysis of published data

    Energy Technology Data Exchange (ETDEWEB)

    Sharp, G.B. [Radiation Effects Research Foundation, Hiroshima (Japan)

    2002-12-01

    Chronic exposure to high linear energy transfer (LET) radiation has been shown to cause liver cancer in humans based on studies of patients who received Thorotrast, a colloidal suspension of thorium dioxide formerly used as a radiological contrast agent, and on studies of Russian nuclear weapons workers exposed to internally ingested plutonium. Risk estimates for these exposures and specific subtypes of liver cancer have not been previously reported. Combining published data with tumor registry data pertinent to the Thorotrast cohorts in Germany, Denmark, Portugal, and Japan and to Russian workers, we generally found significantly elevated risks of three major histologic types of liver tumors: hepatocellular carcinoma (HCC), cholangiocarcinoma (CC), and hemangiosarcoma (HS) for Thorotrast exposures. In contrast, HS was the only liver tumor significantly associated with the lower {alpha}-particle doses experienced by the Russian workers. Excess cases per 1,000 persons exposed to Thorotrast were similar for the three liver cancer subtypes but lower for plutonium exposure. Odds ratios (OR) of HS and CC for Thorotrast were from 26 to 789 and from 1 to 31 times higher than those for HCC, respectively. ORs of liver cirrhosis for Thorotrast exposure ranged from 2.7 (95% confidence interval (CI): 2.2-3.4) to 6.7 (5.1-8.7). (author)

  20. Characteristics of the photelectromagnetic effect and properties of recombination centers in germanium single crystals irradiated with. cap alpha. particles

    Energy Technology Data Exchange (ETDEWEB)

    Babichenko, V.S.; Kikoin, L.I.; Lazarev, S.D.; Rzhanov, A.E.; Filippov, V.I.

    1984-01-01

    The spatial distribution of defects created in Ge crystals by irradiation with 40-MeV ..cap alpha.. particles was investigated. The distribution of the defects acting as recombination centers had a decisive influence on the diffusion-recombination processes in this semiconductor. The carrier-capture cross section of the recombination centers (sigmaapprox.10/sup -15/ cm/sup 2/) was determined. A concept of a recombination wall, which appeared in the region of a maximum of the radiation defect concentration, was introduced. The experimental data were compared with theoretical representations. This comparison demonstrated that an investigation of the photoelectromagnetic effect could give information both on the nature of the spatial distribution of radiation defects and on the recombination parameters of an irradiated semiconductor.

  1. Special features of photoelectromagnetic effect and properties of recombination centers in germanium single crystals irradiated by. cap alpha. particles

    Energy Technology Data Exchange (ETDEWEB)

    Babichenko, V.S.; Kikoin, L.I.; Lazarev, S.D.; Rzhanov, A.E.; Filippov, V.I.

    1984-01-01

    Results of studies on a spatial distribution of defects arising in Ge crystals following ..cap alpha..-particle (40 MeV) irradiation are given. The distribution of defects playing the role of recombination centres is shown to produce the definite effect on diffusion-recombination processes in semiconductors. The carrier capture cross section on recombination centres is determined to be sigma approximately 10/sup -15/ cm/sup -2/. A representation of recombination wall appearing in the vicinity of radiation defect concentration peak is introduced. The experimental data are compared with the developed theoretical representations. It is shown that studies on the photoelectromagnetic effect can give information both on the pattern of radiation defect spatial distribution and recombination parameters of irradiated semiconductors.

  2. On resonant destabilization of toroidal Alfven eigenmodes by circulating and trapped energetic ions/alpha particles in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Biglari, H.; Zonca, F.; Chen, L.

    1991-10-01

    Toroidal Alfven eigenmodes are shown to be resonantly destabilized by both circulating and trapped energetic ions/alpha particles. In particular, the energetic circulating ions are shown to resonate with the mode not only at the Alfven speed ({upsilon}{sub A}), but also one-third of this speed, while resonances exist between trapped energetic ions and the wave when {upsilon} = {upsilon}{sub A}/21{epsilon}{sup {1/2}} (l=integer, {epsilon}=r/R is the local inverse aspect ratio), although the instability becomes weaker for resonances other than the fundamental. The oft-quoted criterion that instability requires super-Alfvenic ion velocities is thus sufficient but not necessary. 14 refs.

  3. Scope and mechanism of carbohydrase action. Stereocomplementary hydrolytic and glucosyl-transferring actions of glucoamylase and glucodextranase with alpha- and beta-D-glucosyl fluoride.

    Science.gov (United States)

    Kitahata, S; Brewer, C F; Genghof, D S; Sawai, T; Hehre, E J

    1981-06-25

    Rhizopus niveus glucoamylase and Arthrobacter globiformis glucodextranase, which catalyze the hydrolysis of starch and dextrans, respectively, to form D-glucose of inverted (beta) configuration, were found to convert both alpha- and beta-D-glucosyl fluoride to beta-D-glucose and hydrogen fluoride. Each enzyme directly hydrolyzes alpha-D-glucosyl fluoride but utilizes th beta-anomer in reactions that require 2 molecules of substrate and yield glucosyl transfer products which are then rapidly hydrolyzed to form beta-D-glucose. Various D-glucopyranosyl compounds serve as acceptors for such reactions. Mixtures of beta-D-glucosyl fluoride and methyl-alpha-D-glucopyranoside[14C], incubated with either enzyme, yielded both methyl-alpha-D-glucopyranosyl-(1 leads to 4)-alpha-D-[14C]glucopyranoside and methyl-alpha-D-glucopyranosyl-(1 leads to 6)-alpha-D-[14C]glucopyranoside. Glucoamylase produced more of the alpha-maltoside; glucodextranase produced more of the alpha-isomaltoside. Thus, both "exo-alpha-glucan hydrolases" emerge as glucosylases that catalyze stereospecifically complementary hydrolytic and transglucosylative reactions with glucosyl donors of opposite configuration. These reactions not only provide a new view of the catalytic capabilities of these supposedly strict hydrolases; they also furnish a basis for defining a detailed mechanism for catalysis. Present results, together with those of several recent studies from this laboratory (especially similar findings obtained with beta-amylase acting on alpha- and beta-maltosyl fluoride (Hehre, E. J., Brewer, C. F., and Genghof, D. S. (1979) J. Biol. Chem. 254, 5942-5950), provide strong new evidence for the functional flexibility of the catalytic groups of carbohydrases.

  4. Cross section measurement of alpha particle induced nuclear reactions on natural cadmium up to 52 MeV

    CERN Document Server

    Ditrói, F; Haba, H; Komori, Y; Aikawa, M

    2016-01-01

    Cross sections of alpha particle induced nuclear reactions have been measured on thin natural cadmium targets foils in the energy range from 11 to 51.2 MeV. This work was a part of our systematic study on excitation functions of light ion induced nuclear reactions on different target materials. Regarding the cross sections, the alpha induced reactions are not deeply enough investigated. Some of the produced isotopes are of medical interest, others have application in research and industry. The radioisotope $^{117m}$Sn is a very important theranostic (therapeutic + diagnostic) radioisotope, so special care was taken to the results for that isotope. The well-established stacked foil technique followed by gamma-spectrometry with HPGe gamma spectrometers were used. The target and monitor foils in the stack were commercial high purity metal foils. From the irradiated targets $^{117m}$Sn, $^{113}$Sn, $^{110}$Sn, $^{117m,g}$In, $^{116m}$In, $^{115m}$In, $^{114m}$In, $^{113m}$In, $^{111}$In, $^{110m,g}$In, $^{109m}$I...

  5. Systematics in back-angle alpha-particle scattering: Sc, Ti, V, and Cr isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Eberhard, K.A.; Wit, M.; Schiele, J.; Trombik, W.; Zipper, W.; Schiffer, J.P.

    1976-12-01

    Elastic ..cap alpha..-scattering cross sections from /sup 45/Sc, /sup 49/,/sup 50/Ti, /sup 50/,/sup 52/,/sup 53/Cr and /sup 50/,/sup 51/V have been measured between 140degree and 180degree at a bombarding energy of E/sub b/(lab) = 25 MeV. All angular distributions are similar and show no evidence of an anomalous backward enhancement. No evidence for a spin dependence of the cross section within experimental uncertainties, is found for these nuclei, where the spins range from I = 0 (/sup 50/Ti, /sup 50/Cr) to I = 6 (/sup 50/V). Back-angle integrated cross sections (140degree--180degree) are compared with neighbor target nuclei between A approx. = 40 and A approx. = 60. (AIP)

  6. Optimizing the Delivery of Short-Lived Alpha Particle-Emitting Isotopes to Solid Tumors

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Gregory P.

    2004-11-24

    The underlying hypothesis of this project was that optimal alpha emitter-based radioimmunotherapy (RAIT) could be achieved by pairing the physical half-life of the radioisotope to the biological half-life of the targeting vehicle. The project had two specific aims. The first aim was to create and optimize the therapeutic efficacy of 211At-SAPS-C6.5 diabody conjugates. The second aim was to develop bispecific-targeting strategies that increase the specificity and efficacy of alpha-emitter-based RAIT. In the performance of the first aim, we created 211At-SAPS-C6.5 diabody conjugates that specifically targeted the HER2 tumor associated antigen. In evaluating these immunoconjugates we determined that they were capable of efficient tumor targeting and therapeutic efficacy of established human tumor xenografts growing in immunodeficient mice. We also determined that therapeutic doses were associated with late renal toxicity, likely due to the role of the kidneys in the systemic elimination o f these agents. We are currently performing more studies focused on better understanding the observed toxicity. In the second aim, we successfully generated bispecific single-chain Fv (bs-scFv) molecules that co-targeted HER2 and HER3 or HER2 and HER4. The in vitro kinetics and in vivo tumor-targeting properties of these molecules were evaluated. These studies revealed that the bs-scFv molecules selectively localized in vitro on tumor cells that expressed both antigens and were capable of effective tumor localization in in vivo studies.

  7. The structure of {sup 113}Sn from proton and alpha-particle induced reactions

    Energy Technology Data Exchange (ETDEWEB)

    Kaeubler, L. [Technische Univ. Dresden (Germany). Inst. fuer Kern- und Teilchenphysik]|[FZ Rossendorf, Institut fuer Kern- und Hadronenphysik, Postfach 510119, D-01314 Dresden (Germany); Lobach, Y.N. [Institute for Nuclear Research of the Ukrainian Academy of Science, pr. Nauki 47, 252028 Kiev (Ukraine); Trishin, V.V. [Institute for Nuclear Research of the Ukrainian Academy of Science, pr. Nauki 47, 252028 Kiev (Ukraine); Pasternak, A.A. [Physico-Technical Institute ``A. F. Joffe``, Cyclotron Laboratory, ul. Politechnitscheskaja 26, 194021 St.Petersburg (Russian Federation); Kudojarov, M.F. [Physico-Technical Institute ``A. F. Joffe``, Cyclotron Laboratory, ul. Politechnitscheskaja 26, 194021 St.Petersburg (Russian Federation); Prade, H. [FZ Rossendorf, Institut fuer Kern- und Hadronenphysik, Postfach 510119, D-01314 Dresden (Germany); Reif, J. [FZ Rossendorf, Institut fuer Kern- und Hadronenphysik, Postfach 510119, D-01314 Dresden (Germany); Schwengner, R. [FZ Rossendorf, Institut fuer Kern- und Hadronenphysik, Postfach 510119, D-01314 Dresden (Germany); Winter, G. [FZ Rossendorf, Institut fuer Kern- und Hadronenphysik, Postfach 510119, D-01314 Dresden (Germany); Blomqvist, J. [Royal Institute of Technology, Physics Department, Frescati, Frescativaegen 24, S-10405 Stockholm (Sweden); Doering, J. [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States)

    1997-08-01

    The results of in-beam investigations of {sup 113}Sn using the (p,n), (p,3n), ({alpha},n) and ({alpha},2n) reactions are summarized. Excited states have been identified until E{sub x}=4715 MeV and J{sup {pi}}=(27/2{sup -}). For a large number of levels mean lifetimes {tau} have been determined with the DSA method. For the J{sup {pi}}=25/2{sup +} state at E{sub x}=4059 MeV, {tau}=1.0(4) ns has been measured with the {gamma}-RF method. The experimental results are compared with the predictions of shell-model calculations. Most of the positive-parity states may be considered as one- or three-quasiparticle neutron excitations of the 2d{sub 5/2}, 1g{sub 7/2}, 3s{sub 1/2} and 2d{sub 3/2} shells, the negative-parity states as the coupling of one 1h{sub 11/2} neutron to the two- or four-quasiparticle neutron excitations in the even-mass {sup 112}Sn core. For the 25/2{sup +} isomer the three-quasiparticle neutron configuration {nu}(h{sup 2}{sub 11/2} g{sup -1}{sub 7/2}) has been proposed on the basis of a shell-model analysis using the mass-formula formalism. The experimentally observed yrast states in {sup 113}{sub 50}Sn{sub 63} are compared with the corresponding states in the valence mirror nucleus {sup 145}{sub 63}Eu{sub 82} giving remarkable similarities although the parameters for the shell-model calculations differ considerably. The analysis of nearest-neighbour spacing distributions of experimentally obtained 5/2{sup +} states in {sup 113}Sn does not allow definite conclusions about regularity or chaos. (orig.). With 9 figs., 2 tabs.

  8. Study of pure and Pb{sup 2+} ions doped CsI crystals under alpha particles excitations

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Maria da Conceicao Costa; Madi Filho, Tufic; Hamada, Margarida Mizue, E-mail: macoper@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    Scintillation crystals have been used in various fields, such as high energy physics, nuclear instrumentation, radiation measurements, medical imaging, nuclear tomography, astrophysics and other fields of science and engineering. For these applications, the development of good performance scintillation crystals is required. Scintillation crystals based on cesium iodide (CsI) matrix are matters with relatively low hygroscope, easy handling and low cost, characteristics that favor their use as radiation detectors. In this work, pure CsI crystal and lead doped CsI crystals were grown using the Bridgman vertical technique. The concentration of the lead doping element (Pb) was studied in the range of 10{sup -2} M to 5x10{sup -4} M. The distribution of the doping element in the crystalline volume was determined by flame atomic absorption. The CsI:Pb crystal with nominal concentration of 10{sup -3} M was cut into 14 slices of 6 mm. The results show a higher concentration at the top of the crystal with a decrease in the initial phase of growth. The dopant concentration of Pb showed good uniformity from the slice 2 to the slice 12: the region is, therefore, suitable for use as radiation detector. The luminescence emission of these crystals were measured. A predominant luminescence band near 450 nm and a single broad band around 320 nm were found with the addition of the Pb{sup 2+} ions. Analyses were carried out to evaluate the developed scintillators, concerning alpha particles. The resolution of 5.6% was obtained for the CsI:Pb 5x10{sup -4} M crystal, when excited with alpha particles from a {sup 241}Am source, with energy of 5.54 MeV. (author)

  9. Heat Transfer to a Particle Exposed to a Rarefied Plasma with a Great Temperature Gradient

    Institute of Scientific and Technical Information of China (English)

    XiChen; XinTao

    1993-01-01

    A kinetic-theory analysis is presented concerning the heat transfer from a rarefiled plasma to a spherical particle for the extreme case of free-molecule regime and thin phasma sheath.A great temperature gradient is assumed to exist in the plasma,and thus a non-Maxwellian velocity distribution function is employed for each of the gas species.Analytical results show that the existence of a temperature in employed for each of the gas species,Analytical results show that the existence of a temperature gradient in the plasma causes a nonuniform distribution of the local heat flux density on the sphere surface,while the total heat flux to the whole particle is independent of the temperature gradient.The nonuniformity of the local heat flux distributioln is small even for the case with a temperature gradient as great as 106 K/m,but it may significantly enhance the thermophoretic force on an evaporating particle,Heat transfer is mainly caused by atome at low gas temperatures with negligible ionization degree,while it can be attributed to ions and electrons at high plasma temperatures.

  10. Investigation of Chemical-Vapour-Deposition Diamond Alpha-Particle Detectors

    Institute of Scientific and Technical Information of China (English)

    GU Bei-Bei; WANG Lin-Jun; ZHANG Ming-Long; XIA Yi-Ben

    2004-01-01

    Diamond films with [100] texture were prepared by a hot-filament chemical vapour deposition technique to fabricate particle detectors. The response of detectors to 5.5 MeV 241 Am particles is studied. The photocurrent increases linearly and then levels off with voltage, and 7hA is obtained at bias voltage of 100 V. The timedependent photocurrent initially increases rapidly and then tends to reach saturation. Furthermore, a little increase of the dark-current after irradiation can be accounted for by the release of the charges captured by the trapping centres at low energy levels during irradiation. An obvious peak of the pulse height distribution can be observed, associated with the energy of 5.5 MeV.

  11. "Hairy" Poly(3-hexylthiophene) Particles Prepared via Surface-Initiated Kumada Catalyst-Transfer Polycondensation

    DEFF Research Database (Denmark)

    Senkovskyy, Volodymyr; Tkachov, Roman; Beryozkina, Tetyana;

    2009-01-01

    Herein, we present a new paradigm in the engineering of nanostructured hybrids between conjugated polymer and inorganic materials via a chain-growth surface-initiated Kumada catalyst-transfer polycondensation (SI-KCTP) from particles. Poly(3-hexylthiophene), P3HT, a benchmark material for organic...... to the untethered counterparts (red shift and vibronic fine structure in absorption and fluorescence spectra), as a result of efficient planarization and chain-aggregation. These effects are observed in solvents that are normally recognized as good solvents for P3HT (e.g., tetrahydrofurane). We attribute...

  12. The effect of charge mixture ratio and particle size on igniter plume heat transfer characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Evans, N.A.; Brezowski, C.F.

    1990-01-01

    Investigation of the heat transfer characteristics of igniter output plumes, first reported at the Fourteenth International Pyrotechnics Seminar in 1989, has continued, using two types of igniter to determine the effect of charge mixture ratio and fuel particle size on performance. While both of these igniters had the same metallic closure disc (scored Hastelloy with a capture cone), the bridgewire sensitizer (or ignition mixture) was barium styphnate for one type, and a particular blend of fine particle titanium/potassium perchlorate ( PB'') for the other type. The output mixture for both types was titanium/potassium perchlorate; two mixture ratios (33/67 and 41/59), and two titanium particle sizes (2 and 8 {mu}m) were used. The results show that, for both types of igniter, the coarse particle size titanium produced the best performance. The overall best performance was obtained from the igniter using the PB'' ignition mixture and an output charge of 41/59 titanium/potassium perchlorate. 2 refs., 6 figs., 1 tab.

  13. Microdosimetry of alpha particles for simple and 3D voxelised geometries using MCNPX and Geant4 Monte Carlo codes.

    Science.gov (United States)

    Elbast, M; Saudo, A; Franck, D; Petitot, F; Desbrée, A

    2012-07-01

    Microdosimetry using Monte Carlo simulation is a suitable technique to describe the stochastic nature of energy deposition by alpha particle at cellular level. Because of its short range, the energy imparted by this particle to the targets is highly non-uniform. Thus, to achieve accurate dosimetric results, the modelling of the geometry should be as realistic as possible. The objectives of the present study were to validate the use of the MCNPX and Geant4 Monte Carlo codes for microdosimetric studies using simple and three-dimensional voxelised geometry and to study their limit of validity in this last case. To that aim, the specific energy (z) deposited in the cell nucleus, the single-hit density of specific energy f(1)(z) and the mean-specific energy were calculated. Results show a good agreement when compared with the literature using simple geometry. The maximum percentage difference found is MCNPX for calculation time is 10 times higher with Geant4 than MCNPX code in the same conditions.

  14. Heat and Mass Transfer during Chemical Vapor Deposition on the Particle Surface Subjected to Nanosecond Laser Heating

    CERN Document Server

    Peng, Quan; He, Yaling; Mao, Yijin

    2016-01-01

    A thermal model of chemical vapor deposition of titanium nitride (TiN) on the spherical particle surface under irradiation by a nanosecond laser pulse is presented in this paper. Heat and mass transfer on a single spherical metal powder particle surface subjected to temporal Gaussian heat flux is investigated analytically. The chemical reaction on the particle surface and the mass transfer in the gas phase are also considered. The surface temperature, thermal penetration depth, and deposited film thickness under different laser fluence, pulse width, initial particle temperature, and particle radius are investigated. The effect of total pressure in the reaction chamber on deposition rate is studied as well. The particle-level model presented in this paper is an important step toward development of multiscale model of LCVI.

  15. Evidence of DNA double strand breaks formation in Escherichia coli bacteria exposed to alpha particles of different LET assessed by the SOS response.

    Science.gov (United States)

    Serment-Guerrero, Jorge; Breña-Valle, Matilde; Aguilar-Moreno, Magdalena; Balcázar, Miguel

    2012-12-01

    Ionizing radiation produces a plethora of lesion upon DNA which sometimes is generated among a relatively small region due to clustered energy deposition events, the so called locally multiply damaged sites that could change to DSB. Such clustered damages are more likely to occur in high LET radiation exposures. The effect of alpha particles of different LET was evaluated on the bacterium Escherichia coli either by survival properties or the SOS response activity. Alpha radiation and LET distribution was controlled by means of Nuclear Track Detectors. The results suggest that alpha particles produce two types of lesion: lethal lesions and SOS inducing-mutagenic, a proportion that varies depending on the LET values. The SOS response as a sensitive parameter to assess RBE is mentioned.

  16. Heat transfer in supersonic dusty-gas flow past a blunt body with inertial particle deposition effect

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Heat transfer in a supersonic steady flow of a dilute dusty-gas past a sphere is considered at large and moderate Reynolds numbers. For the regime of inertial particle deposition on the frontal surface of the body, a parametric study of maximum increase in the particle-induced heat flux at the stagnation point is performed over a wide range of the Reynolds number, the particle inertia parameter, the ratio of the phase specific heats, and the body surface temperature.

  17. Backscattering by Non-spherical Natural Particles: Instrument Development, IOP’s, and Implications for Radiative Transfer

    Science.gov (United States)

    2016-06-07

    Backscattering by Non-spherical Natural Particles: Instrument Development, IOP’s, and Implications for Radiative Transfer Yogesh Agrawal... natural particles from a standpoint of measuring size-distribution; (ii) Understand how the properties of particles (composition, shape, and internal...applied to predicting light propagation in the sea by providing as input, the new estimates of IOP’s. This work is relevant to ONR’s Sensor and

  18. X-ray production cross-sections measurements for high-energy alpha particle beams: New dedicated set-up and first results with aluminum

    Science.gov (United States)

    Dupuis, T.; Chêne, G.; Mathis, F.; Marchal, A.; Garnir, H.-P.; Strivay, D.

    2011-12-01

    The "IPNAS" laboratory, in collaboration with the "Centre Européen d'Archéométrie" is partly focused on material analysis by means of IBA techniques: PIXE, PIGE and RBS. A new transport beam line has been developed at our CGR-520 MeV cyclotron to analyze Cultural Heritage objects using these techniques. This facility allows us to produce proton and alpha particle beams with energies up to 20 MeV. A vacuum chamber dedicated to X-ray production and Non-Rutherford cross-section measurements has been recently constructed. After determination of the chamber's geometry for X-ray detection using thin foils of several elements (11 ⩽ Z ⩽ 82) and 3 MeV proton beams, the measurement of the X-ray production cross-sections in the 6-12 MeV energy range has started using alpha particle beams on light element targets. These experiments contribute to the filling a serious lack of experimental values for alpha particles of this particular energy range in databases. The recent decision to focus our work on the alpha particle interaction with light elements was taken because of the high interest of the low Z elements in the field of archaeometry.

  19. X-ray production cross-sections measurements for high-energy alpha particle beams: New dedicated set-up and first results with aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Dupuis, T., E-mail: T.Dupuis@ulg.ac.be [Centre Europeen d' Archeometrie, Atomique et Spectroscopie, Universite de Liege, Sart Tilman B15, B-4000 Liege (Belgium); Institut de Physique Nucleaire, Atomique et Spectroscopie, Universite de Liege, Sart Tilman B15, B-4000 Liege (Belgium); Chene, G., E-mail: Gregoire.Chene@ulg.ac.be [Centre Europeen d' Archeometrie, Atomique et Spectroscopie, Universite de Liege, Sart Tilman B15, B-4000 Liege (Belgium); Institut de Physique Nucleaire, Atomique et Spectroscopie, Universite de Liege, Sart Tilman B15, B-4000 Liege (Belgium); Mathis, F., E-mail: Francois.Mathis@ulg.ac.be [Centre Europeen d' Archeometrie, Atomique et Spectroscopie, Universite de Liege, Sart Tilman B15, B-4000 Liege (Belgium); Institut de Physique Nucleaire, Atomique et Spectroscopie, Universite de Liege, Sart Tilman B15, B-4000 Liege (Belgium); and others

    2011-12-15

    The 'IPNAS' laboratory, in collaboration with the 'Centre Europeen d'Archeometrie' is partly focused on material analysis by means of IBA techniques: PIXE, PIGE and RBS. A new transport beam line has been developed at our CGR-520 MeV cyclotron to analyze Cultural Heritage objects using these techniques. This facility allows us to produce proton and alpha particle beams with energies up to 20 MeV. A vacuum chamber dedicated to X-ray production and Non-Rutherford cross-section measurements has been recently constructed. After determination of the chamber's geometry for X-ray detection using thin foils of several elements (11 Less-Than-Or-Slanted-Equal-To Z Less-Than-Or-Slanted-Equal-To 82) and 3 MeV proton beams, the measurement of the X-ray production cross-sections in the 6-12 MeV energy range has started using alpha particle beams on light element targets. These experiments contribute to the filling a serious lack of experimental values for alpha particles of this particular energy range in databases. The recent decision to focus our work on the alpha particle interaction with light elements was taken because of the high interest of the low Z elements in the field of archaeometry.

  20. Quantum design using a multiple internal reflections method in a study of fusion processes in the capture of alpha-particles by nuclei

    CERN Document Server

    Maydanyuk, Sergei P; Belchikov, Sergei V

    2015-01-01

    A high precision method to determine fusion in the capture of $\\alpha$-particles by nuclei is presented. For $\\alpha$-capture by $^{40}{\\rm Ca}$ and $^{44}{\\rm Ca}$, such an approach gives (1) the parameters of the $\\alpha$--nucleus potential and (2) fusion probabilities. This method found new parametrization and fusion probabilities and decreased the error by $41.72$ times for $\\alpha + ^{40}{\\rm Ca}$ and $34.06$ times for $\\alpha + ^{44}{\\rm Ca}$ in a description of experimental data in comparison with existing results. We show that the sharp angular momentum cutoff proposed by Glas and Mosel is a rough approximation, Wong's formula and the Hill-Wheeler approach determine the penetrability of the barrier without a correct consideration of the barrier shape, and the WKB approach gives reduced fusion probabilities. Based on our fusion probability formula, we explain the difference between experimental cross-sections for $\\alpha + ^{40}{\\rm Ca}$ and $\\alpha + ^{44}{\\rm Ca}$, which is connected with the theory ...

  1. Analytical Investigations of Kinetic and Heat Transfer in Slow Pyrolysis of a Biomass Particle

    Directory of Open Access Journals (Sweden)

    S.J Ojolo

    2013-06-01

    Full Text Available The utilization of biomass for heat and power generation has aroused the interest of most researchers especially those of energy .In converting solid fuel to a usable form of energy,pyrolysis plays an integral role. Understanding this very important phenomenon in the thermochemical conversion processes and representing it with appropriate mathematical models is vital in the design of pyrolysis reactors and biomass gasifiers. Therefore, this study presents analytical solutions to the kinetic and the heat transfer equations that describe the slow pyrolysis of a biomass particle. The effects of Biot number, temperature and residence time on biomass particle decomposition were studied. The results from the proposed analytical models are in good agreement with the reported experimental results. The developed analytical solutions to the heat transfer equations which have been stated to be “analytically involved” showed average percentageerror and standard deviations 0.439 and 0.103 from the experimental results respectively as compared with previous model in literature which gives average percentage error and standard deviations 0.75 and 0.106 from the experimental results respectively. This work is of great importance in the design of some pyrolysis reactors/units and in the optimal design of the biomass gasifiers.

  2. Time-dependent quantum wave packet dynamics to study charge transfer in heavy particle collisions

    Science.gov (United States)

    Zhang, Song Bin; Wu, Yong; Wang, Jian Guo

    2016-12-01

    The method of time-dependent quantum wave packet dynamics has been successfully extended to study the charge transfer/exchange process in low energy two-body heavy particle collisions. The collision process is described by coupled-channel equations with diabatic potentials and (radial and rotational) couplings. The time-dependent coupled equations are propagated with the multiconfiguration time-dependent Hartree method and the modulo squares of S-matrix is extracted from the wave packet by the flux operator with complex absorbing potential (FCAP) method. The calculations of the charge transfer process 12Σ+ H-(1s2) +Li(1 s22 s ) →22Σ+ /32 Σ+ /12 Π H(1 s ) +Li-(1s 22 s 2 l ) (l =s ,p ) at the incident energy of about [0.3, 1.3] eV are illustrated as an example. It shows that the calculated reaction probabilities by the present FCAP reproduce that of quantum-mechanical molecular-orbital close-coupling very well, including the peak structures contributed by the resonances. Since time-dependent external interactions can be directly included in the present FCAP calculations, the successful implementation of FCAP provides us a powerful potential tool to study the quantum control of heavy particle collisions by lasers in the near future.

  3. Alpha-tocopherol transfer protein disruption confers resistance to malarial infection in mice

    Directory of Open Access Journals (Sweden)

    Takeya Motohiro

    2010-04-01

    Full Text Available Abstract Background Various factors impact the severity of malaria, including the nutritional status of the host. Vitamin E, an intra and extracellular anti-oxidant, is one such nutrient whose absence was shown previously to negatively affect Plasmodium development. However, mechanisms of this Plasmodium inhibition, in addition to means by which to exploit this finding as a therapeutic strategy, remain unclear. Methods α-TTP knockout mice were infected with Plasmodium berghei NK65 or Plasmodium yoelii XL-17, parasitaemia, survival rate were monitored. In one part of the experiments mice were fed with a supplemented diet of vitamin E and then infected. In addition, parasite DNA damage was monitored by means of comet assay and 8-OHdG test. Moreover, infected mice were treated with chloroquine and parasitaemia and survival rate were monitored. Results Inhibition of α-tocopherol transfer protein (α-TTP, a determinant of vitamin E concentration in circulation, confers resistance to malarial infection as a result of oxidative damage to the parasites. Furthermore, in combination with the anti-malarial drug chloroquine results were even more dramatic. Conclusion Considering that these knockout mice lack observable negative impacts typical of vitamin E deficiency, these results suggest that inhibition of α-TTP activity in the liver may be a useful strategy in the prevention and treatment of malaria infection. Moreover, a combined strategy of α-TTP inhibition and chloroquine treatment might be effective against drug resistant parasites.

  4. Two-flux method for radiation heat transfer in anisotropic gas-particles media

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    , 26: 1649-1660.[14]Goodwin, D. G., Infrared optical constants of coal slags, Ph.D Thesis, Stanford University, HTGL Report T-255, 1986.[15]Liu, F. S., Swithenbank, J., The effects of particle size distribution and refractive index on fly-ash radiative properties using a simplified approach, International Journal of Heat and Mass Transfer, 1993, 36(7): 1905-1912.[16]Grosshandler, W. L., RADCAL: a Narrow-band Model for Radiation Calculations in a Combustion Environment, Gaithersburg, MD: National Institute of Standards and Technology, 1993.

  5. Mass transfer from the wall of a column to the fluid in a fluidized bed of inert spherical particles

    Directory of Open Access Journals (Sweden)

    Brzić Danica V.

    2004-01-01

    Full Text Available Mass transfer in fluidized beds is an important operation for separation processes. Two effects can be achieved by using fluidized beds in mass transfer processes increasing interface area and relative movement between the phases. These effects are both desirable because they lead to greater process rates. This paper presents an experimental investigation regarding mass transfer from the wall of a column to the fluid in a fluidized bed of inert spherical particles. The experiments were conducted in column 40 mm in diameter with spherical particles 0,8-3 mm in diameter and water as one fluidizing fluid. The method of dissolution of benzoic acid was used to provide very low mass flux. The average wall-to-fluid mass transfer coefficients were determined for two systems: single-phase fluid flow and a fluidized bed of inert particles The measurements encompassed a Reynolds number range from 100-4000 for single-phase flow and 600-4000 in fluidized beds. The mass transfer coefficients for both systems were calculated from weight loss of benzoic acid. The effects of superficial liquid velocity and particle diameter on the mass transfer coefficient were investigated. It was found that mass transfer was more intensive in the fluidized bed in comparison with single phase flow. The best conditions for mass transfer were reached at a minimum fluidization velocity, when the mass transfer coefficient had the greatest value. The experimental data were correlated in the form: jd = f(Re, where jd is the dimensionless mass transfer factor and Re the Reynolds number.

  6. Dynamic Force Reduction and Heat Transfer Improvement for Horizontal Tubes in Large-Particle Gas-Fluidized Beds

    Institute of Scientific and Technical Information of China (English)

    Yusumi Nagahashi; John R.Grace; Kok-Seng Lim; Yutaka Asako

    2008-01-01

    The effects of tube bank configuration on forces and heat transfer were investigated for both two-dimensional and three-dimensional gas fluidized beds. Effective dynamic forces and heat transfer coefficients were measured for several tube bank configurations, and it was found that the average forces ate smaller than for a single tube. The heat transfer coefficient can be increased by providing sufficient space for particles to descend around both sides of the tube bank. The results provide useful guidelines for optimizing the configuration of tube banks to achieve high heat transfer coefficients while reducing tube erosion due to dynamic forces.

  7. Alpha particle spectroscopy — A useful tool for the investigation of spent nuclear fuel from high temperature gas-cooled reactors

    Science.gov (United States)

    Helmbold, M.

    1984-06-01

    For more than a decade, alpha particle spectrometry of spent nuclear fuel has been used at the Kernforschungsanlage Jülich (KFA) in the field of research for the German high temperature reactor (HTR). Techniques used for the preparation of samples for alpha spectrometry have included deposition from aqueous solutions of spent fuel, annealing of fuel particles in an oven and the evaporation of fuel material by a laser beam. The resulting sources are very thin but of low activity and the alpha spectrometry data obtained from them must be evaluated with sophisticated computer codes to achieve the required accuracy. Measurements have been made on high and low enriched uranium fuel and on a variety of parameters relevant to the fuel cycle. In this paper the source preparation and data evaluation techniques will be discussed together with the results obtained to data, i.e. production of alpha active actinide isotopes, correlations between actinide isotopes and fission products, build up and transmutation of actinides during burn-up of HTR fuel, diffusion coefficients of actinides for fuel particle kernels and coating materials. All these KFA results have helped to establish the basis for the design, licensing and operation of HTR power plants, including reprocessing and waste management.

  8. Heat transfer from a horizontal finned tube bundle in bubbling fluidized beds of small and large particles

    Energy Technology Data Exchange (ETDEWEB)

    Devaru, C.B. [Jayachamaraja College of Engineering, Mysore (India). Dept. of Mechanical Engineering; Kolar, A.K. [Indian Inst. of Technology, Madras (India). Dept. of Mechanical Engineering

    1995-12-31

    Steady state average heat transfer coefficient measurements were made by the local thermal simulation technique in a cold, square, bubbling air-fluidized bed (0.305 m x 0.305 m) with immersed horizontal finned tube bundles (in-line and staggered) with integral 60{degree} V-thread. Studies were conducted using beds of small (average particle diameter less than 1 mm) sand particles and of large (average particle diameter greater thin 1 mm) particles (raagi, mustard, millet and coriander). The fin pitch varied from 0.8 to 5.0 mm and the fin height varied from 0.69 to 4.4 mm. The tube pitch ratios used were 1.75 and 3.5. The influence of bed particle diameter, fluidizing velocity, fin pitch, and tube pitch ratio on average heat transfer coefficient was studied. Fin pitch and bed particle diameter are the most significant parameters affecting heat transfer coefficient within the range of experimental conditions. Bed pressure drop depends only on static bed height. New direct correlations, incorporating easily measurable quantities, for average heat transfer coefficient for finned tube bundles (in-line and staggered) are proposed.

  9. Design of a neutron-TPC prototype and its performance evaluation based on an alpha-particle test

    Science.gov (United States)

    Huang, Meng; Li, Yu-Lan; Niu, Li-Bo; Li, Jin; Deng, Zhi; He, Li; Zhang, Hong-Yan; Cheng, Xiao-Lei; Fu, Jian-Qiang; Li, Yuan-Jing

    2015-08-01

    A neutron-TPC (nTPC) is being developed for use as a fast neutron spectrometer in the fields of nuclear physics, nuclear reactor operation monitoring, and thermo-nuclear fusion plasma diagnostics. An nTPC prototype based on a GEM-TPC (Time Projection Chamber with Gas Electron Multiplier amplification) has been assembled and tested using argon-hydrocarbon mixture as the working gas. By measuring the energy deposition of the recoil proton in the sensitive volume and the angle of the proton track, the incident neutron energy can be deduced. A Monte Carlo simulation was carried out to analyze the parameters affecting the energy resolution of the nTPC, and gave an optimized resolution under ideal conditions. An alpha particle experiment was performed to verify its feasibility, and to characterize its performance, including energy resolution and spatial resolution. Based on the experimental measurement and analysis, the energy resolution (FWHM) of the nTPC prototype is predicted to be better than 3.2% for 5 MeV incident neutrons, meeting the performance requirement (FWHM<5%) for the nTPC prototype.

  10. Local equilibria and state transfer of charged classical particles on a helix in an electric field

    CERN Document Server

    Plettenberg, J; Zampetaki, A V; Schmelcher, P

    2016-01-01

    We explore the effects of a homogeneous external electric field on the static properties and dynamical behavior of two charged particles confined to a helix. In contrast to the field-free setup which provides a separation of the center-of-mass and relative motion, the existence of an external force perpendicular to the helix axis couples the center-of-mass to the relative degree of freedom leading to equilibria with a localized center of mass. By tuning the external field various fixed points are created and/or annihilated through different bifurcation scenarios. We provide a detailed analysis of these bifurcations based on which we demonstrate a robust state transfer between essentially arbitrary equilibrium configurations of the two charges that can be induced by making the external force time-dependent.

  11. Influence of colloidal particle transfer on the quality of self-assembling colloidal photonic crystal under confined condition

    Institute of Scientific and Technical Information of China (English)

    赵永强; 李娟; 刘秋艳; 董文钧; 陈本永; 李超荣

    2015-01-01

    The relationship between colloidal particle transfer and quality of colloidal photonic crystal (CPC) is investigated by comparing colloidal particle self-assembling under the vertical channel (VC) and horizontal channel (HC) conditions. Both the theoretical analyses and the experimental measurements indicate that crystal quality depends on the stability of mass transfer. For the VC, colloidal particle transfer takes place in a stable laminar flow, which is conducive to forming high-quality crystal. In contrast, it happens in an unstable turbulent flow for the HC. Crystals with cracks and uneven surface formed under the HC condition can be seen from the images of field emission scanning electron microscope (SEM) and three-dimensional (3D) laser scanning microscope (LSM), respectively.

  12. Effects of Alpha Particle and Proton Beam Irradiation as Putative Cross-Talk between A549 Cancer Cells and the Endothelial Cells in a Co-Culture System

    Directory of Open Access Journals (Sweden)

    Hélène Riquier

    2015-03-01

    Full Text Available Background: High-LET ion irradiation is being more and more often used to control tumors in patients. Given that tumors are now considered as complex organs composed of multiple cell types that can influence radiosensitivity, we investigated the effects of proton and alpha particle irradiation on the possible radioprotective cross-talk between cancer and endothelial cells. Materials and Methods: We designed new irradiation chambers that allow co-culture study of cells irradiated with a particle beam. A549 lung carcinoma cells and endothelial cells (EC were exposed to 1.5 Gy of proton beam or 1 and 2 Gy of alpha particles. Cell responses were studied by clonogenic assays and cell cycle was analyzed by flow cytometry. Gene expression studies were performed using Taqman low density array and by RT-qPCR. Results: A549 cells and EC displayed similar survival fraction and they had similar cell cycle distribution when irradiated alone or in co-culture. Both types of irradiation induced the overexpression of genes involved in cell growth, inflammation and angiogenesis. Conclusions: We set up new irradiation chamber in which two cell types were irradiated together with a particle beam. We could not show that tumor cells and endothelial cells were able to protect each other from particle irradiation. Gene expression changes were observed after particle irradiation that could suggest a possible radioprotective inter-cellular communication between the two cell types but further investigations are needed to confirm these results.

  13. Effects of Alpha Particle and Proton Beam Irradiation as Putative Cross-Talk between A549 Cancer Cells and the Endothelial Cells in a Co-Culture System

    Science.gov (United States)

    Riquier, Hélène; Abel, Denis; Wera, Anne-Catherine; Heuskin, Anne-Catherine; Genard, Géraldine; Lucas, Stéphane; Michiels, Carine

    2015-01-01

    Background: High-LET ion irradiation is being more and more often used to control tumors in patients. Given that tumors are now considered as complex organs composed of multiple cell types that can influence radiosensitivity, we investigated the effects of proton and alpha particle irradiation on the possible radioprotective cross-talk between cancer and endothelial cells. Materials and Methods: We designed new irradiation chambers that allow co-culture study of cells irradiated with a particle beam. A549 lung carcinoma cells and endothelial cells (EC) were exposed to 1.5 Gy of proton beam or 1 and 2 Gy of alpha particles. Cell responses were studied by clonogenic assays and cell cycle was analyzed by flow cytometry. Gene expression studies were performed using Taqman low density array and by RT-qPCR. Results: A549 cells and EC displayed similar survival fraction and they had similar cell cycle distribution when irradiated alone or in co-culture. Both types of irradiation induced the overexpression of genes involved in cell growth, inflammation and angiogenesis. Conclusions: We set up new irradiation chamber in which two cell types were irradiated together with a particle beam. We could not show that tumor cells and endothelial cells were able to protect each other from particle irradiation. Gene expression changes were observed after particle irradiation that could suggest a possible radioprotective inter-cellular communication between the two cell types but further investigations are needed to confirm these results. PMID:25794049

  14. Effects of Alpha Particle and Proton Beam Irradiation as Putative Cross-Talk between A549 Cancer Cells and the Endothelial Cells in a Co-Culture System

    Energy Technology Data Exchange (ETDEWEB)

    Riquier, Hélène; Abel, Denis [URBC-NARILIS, University of Namur, 61 rue de Bruxelles, Namur 5000 (Belgium); Wera, Anne-Catherine; Heuskin, Anne-Catherine [LARN-PMR, NARILIS, University of Namur, Namur 5000 (Belgium); Genard, Géraldine [URBC-NARILIS, University of Namur, 61 rue de Bruxelles, Namur 5000 (Belgium); Lucas, Stéphane [LARN-PMR, NARILIS, University of Namur, Namur 5000 (Belgium); Michiels, Carine, E-mail: carine.michiels@unamur.be [URBC-NARILIS, University of Namur, 61 rue de Bruxelles, Namur 5000 (Belgium)

    2015-03-18

    Background: High-LET ion irradiation is being more and more often used to control tumors in patients. Given that tumors are now considered as complex organs composed of multiple cell types that can influence radiosensitivity, we investigated the effects of proton and alpha particle irradiation on the possible radioprotective cross-talk between cancer and endothelial cells. Materials and Methods: We designed new irradiation chambers that allow co-culture study of cells irradiated with a particle beam. A549 lung carcinoma cells and endothelial cells (EC) were exposed to 1.5 Gy of proton beam or 1 and 2 Gy of alpha particles. Cell responses were studied by clonogenic assays and cell cycle was analyzed by flow cytometry. Gene expression studies were performed using Taqman low density array and by RT-qPCR. Results: A549 cells and EC displayed similar survival fraction and they had similar cell cycle distribution when irradiated alone or in co-culture. Both types of irradiation induced the overexpression of genes involved in cell growth, inflammation and angiogenesis. Conclusions: We set up new irradiation chamber in which two cell types were irradiated together with a particle beam. We could not show that tumor cells and endothelial cells were able to protect each other from particle irradiation. Gene expression changes were observed after particle irradiation that could suggest a possible radioprotective inter-cellular communication between the two cell types but further investigations are needed to confirm these results.

  15. Cellular and molecular analysis of mutagenesis induced by charged particles of defined linear energy transfer

    Science.gov (United States)

    Zhu, L. X.; Waldren, C. A.; Vannias, D.; Hei, T. K.; Chatterjee, A. (Principal Investigator)

    1996-01-01

    Mutation induction by charged particles of defined linear energy transfer (LET) and gamma rays was scored using human-hamster hybrid AL cells. The LET values for charged particles accelerated at the Radiological Research Accelerator Facility ranged from 10 keV/microm protons to 150 keV/microm 4He ions. The induced mutant fractions at both the S1 and HGPRT loci were dependent on the dose and LET. In addition, for each dose examined, the mutant yield at the S1 locus was 30-60 fold higher than at the corresponding HGPRT locus. To determine whether the mutation spectrum was comparably dependent on dose and LET, independent S1- and HGPRT- mutants induced by 150 keV/microm 4He ions and gamma rays were isolated, and their DNA was analyzed by both Southern blotting and multiplex PCR methods. While the majority of radiation-induced mutants showed deletions of varying sizes, the relative percentage of large deletions was found to be related to both the dose and LET of the radiation examined. Using a mutation system that can detect multilocus changes, results of the present study show that radiation-induced chromosomal loss can be in the millions of base pairs.

  16. Transfer of spin squeezing and particle entanglement between atoms and photons in coupled cavities via two-photon exchange

    OpenAIRE

    Hardal, Ali Ümit Cemal; Müstecaplıoğlu, Özgür E.

    2012-01-01

    Transfer of spin squeezing and particle entanglement between atoms and photons in coupled cavities via two-photon exchange Ali Ü. C. Hardal and Özgür E. Müstecaplıoğlu* Department of Physics, Koç University, Sarıyer, Istanbul 34450, Turkey *Corresponding author: Received March 15, 2012; revised May 19, 2012; accepted May 20, 2012; posted May 22, 2012 (Doc. ID 164811); published June 27, 2012 We examine transfer of particle entanglement and spin sque...

  17. Study of Nano Particles for Enhanced Heat Transfer Characteristics of Base Fluids for Cool Thermal Energy System

    Directory of Open Access Journals (Sweden)

    Promit Choudhury

    2014-04-01

    Full Text Available Reliable heat transfer is very crucial for heat demand and supply related applications where the optimum demand is not met. Cool thermal energy systems are the units which find application in conditioning and preserving items. A colloidal mixture of nano particles in a base fluid tremendously enhances the heat transfer characteristics of the original base fluid and is ideally suited for practical application due to its marvelous characteristics.

  18. Numerical Study on the Mixed Convection Heat Transfer between a Sphere Particle and High Pressure Water in Pseudocritical Zone

    Directory of Open Access Journals (Sweden)

    Liping Wei

    2013-01-01

    Full Text Available Mixed convection heat transfer between supercritical water and particles is a major basic problem in supercritical water fluidized bed reactor, but little work focused on this new area in the past. In this paper, a numerical model fully accounting for thermophysical property variation has been established to investigate heat transfer between supercritical water and a single spherical particle under gravity. Flow field, temperature field and Nusselt number are analyzed based on the simulation results. Results show that buoyancy force has a remarkable effect on flow and heat transfer process. When the direction of gravity and flow are opposite, the gravity enhances the heat transfer before the separation point and inhibits the heat transfer after the separation point. When gravity is incorporated in calculation, a higher temperature gradient and a thinner boundary layer in the vicinity of the particle surface are observed before separation point, and the situations are just the reverse after separation point. Variation of specific heat and conductivity plays a main role in determination of heat transfer coefficient.

  19. Combined application of alpha-track and fission-track techniques for detection of plutonium particles in environmental samples prior to isotopic measurement using thermo-ionization mass spectrometry.

    Science.gov (United States)

    Lee, Chi-Gyu; Suzuki, Daisuke; Esaka, Fumitaka; Magara, Masaaki; Kimura, Takaumi

    2011-07-15

    The fission track technique is a sensitive detection method for particles which contain radio-nuclides like (235)U or (239)Pu. However, when the sample is a mixture of plutonium and uranium, discrimination between uranium particles and plutonium particles is difficult using this technique. In this study, we developed a method for detecting plutonium particles in a sample mixture of plutonium and uranium particles using alpha track and fission track techniques. The specific radioactivity (Bq/g) for alpha decay of plutonium is several orders of magnitude higher than that of uranium, indicating that the formation of the alpha track due to alpha decay of uranium can be disregarded under suitable conditions. While alpha tracks in addition to fission tracks were detected in a plutonium particle, only fission tracks were detected in a uranium particle, thereby making the alpha tracks an indicator for detecting particles containing plutonium. In addition, it was confirmed that there is a linear relationship between the numbers of alpha tracks produced by plutonium particles made of plutonium certified standard material and the ion intensities of the various plutonium isotopes measured by thermo-ionization mass spectrometry. Using this correlation, the accuracy in isotope ratios, signal intensity and measurement errors is presumable from the number of alpha tracks prior to the isotope ratio measurements by thermal ionization mass spectrometry. It is expected that this method will become an effective tool for plutonium particle analysis. The particles used in this study had sizes between 0.3 and 2.0 μm.

  20. ITER Plasma at Ion Cyclotron Frequency Domain: The Fusion Alpha Particles Diagnostics Based on the Stimulated Raman Scattering of Fast Magnetosonic Wave off High Harmonic Ion Bernstein Modes

    Science.gov (United States)

    Stefan, V. Alexander

    2014-10-01

    A novel method for alpha particle diagnostics is proposed. The theory of stimulated Raman scattering, SRS, of the fast wave and ion Bernstein mode, IBM, turbulence in multi-ion species plasmas, (Stefan University Press, La Jolla, CA, 2008). is utilized for the diagnostics of fast ions, (4)He (+2), in ITER plasmas. Nonlinear Landau damping of the IBM on fast ions near the plasma edge leads to the space-time changes in the turbulence level, (inverse alpha particle channeling). The space-time monitoring of the IBM turbulence via the SRS techniques may prove efficient for the real time study of the fast ion velocity distribution function, spatial distribution, and transport. Supported by Nikola Tesla Labs., La Jolla, CA 92037.

  1. Observation of alpha particle loss from JET plasmas during ion cyclotron resonance frequency heating using a thin foil Faraday cup detector array

    Energy Technology Data Exchange (ETDEWEB)

    Darrow, D. S. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Cecil, F. E. [Physics Department, Colorado School of Mines, Golden, Colorado 80401 (United States); Kiptily, V.; Fullard, K.; Horton, A. [Culham Centre for Fusion Energy, Euratom/CCFE Fusion Assoc., Abingdon, Oxon OX14 3DB (United Kingdom); Murari, A. [Consorzio RFX-Associazione EURATOM ENEA per la Fusione, I-35127 Padova (Italy); Collaboration: JET EFDA Contributors

    2010-10-15

    The loss of MeV alpha particles from JET plasmas has been measured with a set of thin foil Faraday cup detectors during third harmonic heating of helium neutral beam ions. Tail temperatures of {approx}2 MeV have been observed, with radial scrape off lengths of a few centimeters. Operational experience from this system indicates that such detectors are potentially feasible for future large tokamaks, but careful attention to screening rf and MHD induced noise is essential.

  2. Electrical characterization of deep levels created by bombarding nitrogen-doped 4H-SiC with alpha-particle irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Omotoso, Ezekiel, E-mail: ezekiel.omotoso@up.ac.za [Department of Physics, University of Pretoria, Private Bag X20, Hatfield 0028 (South Africa); Departments of Physics, Obafemi Awolowo University, Ile-Ife 220005 (Nigeria); Meyer, Walter E., E-mail: wmeyer@up.ac.za [Department of Physics, University of Pretoria, Private Bag X20, Hatfield 0028 (South Africa); Auret, F. Danie; Paradzah, Alexander T.; Legodi, Matshisa J. [Department of Physics, University of Pretoria, Private Bag X20, Hatfield 0028 (South Africa)

    2016-03-15

    Deep-level transient spectroscopy (DLTS) and Laplace-DLTS were used to investigate the effect of alpha-particle irradiation on the electrical properties of nitrogen-doped 4H-SiC. The samples were bombarded with alpha-particles at room temperature (300 K) using an americium-241 ({sup 241}Am) radionuclide source. DLTS revealed the presence of four deep levels in the as-grown samples, E{sub 0.09}, E{sub 0.11}, E{sub 0.16} and E{sub 0.65}. After irradiation with a fluence of 4.1 × 10{sup 10} alpha-particles-cm{sup −2}, DLTS measurements indicated the presence of two new deep levels, E{sub 0.39} and E{sub 0.62} with energy levels, E{sub C} – 0.39 eV and E{sub C} – 0.62 eV, with an apparent capture cross sections of 2 × 10{sup −16} and 2 × 10{sup −14} cm{sup 2}, respectively. Furthermore, irradiation with fluence of 8.9 × 10{sup 10} alpha-particles-cm{sup −2} resulted in the disappearance of shallow defects due to a lowering of the Fermi level. These defects re-appeared after annealing at 300 °C for 20 min. Defects, E{sub 0.39} and E{sub 0.42} with close emission rates were attributed to silicon or carbon vacancy and could only be separated by using high resolution Laplace-DLTS. The DLTS peaks at E{sub C} – (0.55–0.70) eV (known as Z{sub 1}/Z{sub 2}) were attributed to an isolated carbon vacancy (V{sub C}).

  3. Stopping of 0.3-1.2 MeV/u protons and alpha particles in Si

    Energy Technology Data Exchange (ETDEWEB)

    Abdesselam, M. [USTHB, Faculte de Physique, B.P. 32, El Alia, 16111 Bab Ezzouar, Algiers (Algeria); Ouichaoui, S. [USTHB, Faculte de Physique, B.P. 32, El Alia, 16111 Bab Ezzouar, Algiers (Algeria)], E-mail: souichaoui@gmail.com; Azzouz, M.; Chami, A.C. [USTHB, Faculte de Physique, B.P. 32, El Alia, 16111 Bab Ezzouar, Algiers (Algeria); Siad, M. [CRNA/COMENA, 02 Bb Frantz Fanon BP Alger-gare, Algiers (Algeria)

    2008-09-15

    The stopping cross sections {epsilon}(E) of silicon for protons and alpha particles have been measured over the velocity range 0.3-1.2 MeV/u from a Si//SiO{sub 2}//Si (SIMOX) target using the Rutherford backscattering spectrometry (RBS) with special emphasis put on experimental aspects. A detection geometry coupling simultaneously two solid-state Si detectors placed at 165 deg. and 150 deg. relative to each side of the incident beam direction was used to measure the energies of the scattered ions and determine their energy losses within the stopping medium. In this way, the basic energy parameter, E{sub x,} at the Si/SiO{sub 2} interface for a given incident energy E{sub 0} is the same for ions backscattered in the two directions off both the Si and O target elements, and systematic uncertainties in the {epsilon}(E) data mainly originating from the target thickness are significantly minimized. A powerful computer code has been elaborated for extracting the relevant {epsilon}(E) experimental data and the associated overall uncertainty that amounts to less than 3%. The measured {epsilon}(E) data sets were found to be in fair agreement with Paul's compilation and with values calculated by the SRIM 06 computer code. In the case of {sup 4}He{sup +} ions, experimental data for the {gamma} effective charge parameter have been deduced by scaling the measured stopping cross sections to those of protons crossing the same target with the same velocity, and compared to the predictions of the SRIM 06 computer code. It is found that the {gamma}-parameter values generated by the latter code slightly deviate from experiment over the velocity region around the stopping cross section maximum where strong charge exchanges usually 0011occ.

  4. A Critical Review of Alpha Radionuclide Therapy: How to Deal with Recoiling Daughters?

    NARCIS (Netherlands)

    De Kruijff, R.M.; Wolterbeek, H.T.; Denkova, A.G.

    2015-01-01

    This review presents an overview of the successes and challenges currently faced in alpha radionuclide therapy. Alpha particles have an advantage in killing tumour cells as compared to beta or gamma radiation due to their short penetration depth and high linear energy transfer (LET). Touching briefl

  5. Comprehensive evaluation of the linear stability of Alfvén eigenmodes driven by alpha particles in an ITER baseline scenario

    Science.gov (United States)

    Figueiredo, A. C. A.; Rodrigues, P.; Borba, D.; Coelho, R.; Fazendeiro, L.; Ferreira, J.; Loureiro, N. F.; Nabais, F.; Pinches, S. D.; Polevoi, A. R.; Sharapov, S. E.

    2016-07-01

    The linear stability of Alfvén eigenmodes in the presence of fusion-born alpha particles is thoroughly assessed for two variants of an ITER baseline scenario, which differ significantly in their core and pedestal temperatures. A systematic approach based on CASTOR-K (Borba and Kerner 1999 J. Comput. Phys. 153 101; Nabais et al 2015 Plasma Sci. Technol. 17 89) is used that considers all possible eigenmodes for a given magnetic equilibrium and determines their growth rates due to alpha-particle drive and Landau damping on fuel ions, helium ashes and electrons. It is found that the fastest growing instabilities in the aforementioned ITER scenario are core-localized, low-shear toroidal Alfvén eigenmodes. The largest growth-rates occur in the scenario variant with higher core temperatures, which has the highest alpha-particle density and density gradient, for eigenmodes with toroidal mode numbers n≈ 30 . Although these eigenmodes suffer significant radiative damping, which is also evaluated, their growth rates remain larger than those of the most unstable eigenmodes found in the variant of the ITER baseline scenario with lower core temperatures, which have n≈ 15 and are not affected by radiative damping.

  6. Predictive nonlinear studies of TAE-induced alpha-particle transport in the Q  =  10 ITER baseline scenario

    Science.gov (United States)

    Fitzgerald, M.; Sharapov, S. E.; Rodrigues, P.; Borba, D.

    2016-11-01

    We use the HAGIS code to compute the nonlinear stability of the Q  =  10 ITER baseline scenario to toroidal Alfvén eigenmodes (TAE) and the subsequent effects of these modes on fusion alpha-particle redistribution. Our calculations build upon an earlier linear stability survey (Rodrigues et al 2015 Nucl. Fusion 55 083003) which provides accurate values of bulk ion, impurity ion and electron thermal Landau damping for our HAGIS calculations. Nonlinear calculations of up to 129 coupled TAEs with toroidal mode numbers in the range n  =  1-35 have been performed. The effects of frequency sweeping were also included to examine possible phase space hole and clump convective transport. We find that even parity core localised modes are dominant (expected from linear theory), and that linearly stable global modes are destabilised nonlinearly. Landau damping is found to be important in reducing saturation amplitudes of coupled modes to below δ {{B}r}/{{B}0}˜ 3× {{10}-4} . For these amplitudes, stochastic transport of alpha-particles occurs in a narrow region where predominantly core localised modes are found, implying the formation of a transport barrier at r/a≈ 0.5 , beyond which, the weakly driven global modes are found. We find that for flat q profiles in this baseline scenario, alpha particle transport losses and redistribution by TAEs is minimal.

  7. The impact of mass transfer limitations on size distributions of particle associated SVOCs in outdoor and indoor environments

    DEFF Research Database (Denmark)

    Liu, Cong; Zhang, Yinping; Weschler, Charles J.

    2014-01-01

    ) previously proposed that the rate of mass transfer can impact polycyclic aromatic hydrocarbon (PAH) partitioning among different sized particles, especially for time scales relevant to urban aerosols. The present study quantitatively builds on this idea, presenting a model that incorporates dynamic SVOC...... to be in reasonable agreement with size distributions measured for PAHs at roadside and suburban locations in Japan. The model also quantitatively explains shifts in the size distributions of particle associated SVOCs compared to those for particle mass, and the manner in which these shifts vary with temperature...

  8. An investigation into the fluidization and heat transfer of low density particles in a fluidized bed with applications

    Science.gov (United States)

    Modlin, J. M.

    1985-05-01

    The lack of reliable data on the fluidization and heat transfer characteristics of low density particles in a fluidized bed has prompted an experimental and analytical investigation into this subject. Seven groups of particles ranging in diameter from 0.25 mm to 2.0 mm and density from 2.5 to 32 pcf have been successfully fluidized and shown to be generally well predicted by classical fluidization and fluidized bed heat transfer theory. Two other groups of particles, also in this approximate range of particle diameter and density, are, however, unable to be fluidized due to significant inter-particle and static electric attractions. Using the experimental data and results as a basis of analysis, two application of low density particle fluidization in a building efficient energy management program are discussed. A fluidized bed can be incorporated into the wall cavity of a building for use as either a collector of solar energy or as a heat exchange medium in a building space heating/cooling program. As a solar collector, it is shown that the low density particle fluidized bed would thermally perform between comparable conventional liquid and air-cooled flat plate solar collectors. It would require less water pumping power and plumbing than the liquid collector and less air pumping power than the air collector.

  9. Coupling effect between film boiling heat transfer and evaporation drag around a hot-particle in cold liquid

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-Yan; YANG Yan-Hua; XU Ji-Jun

    2003-01-01

    Extremely rapid evaporation could occur when high-temperature particles contact withlow-temperature liquid. This kind of phenomenon is associated with the engineering safety and the problems inhigh-transient multi-phase fluid and heat transfer. The aim of our study was to design and build an observable ex-periment facility. The first series of experiments were performed by pouring one or six high-temperature particles intoa low saturated temperature liquid pool. The particle's falling-down speed was recorded by a high-speed camera, thuswe can find the special resistant feature of the moving high-temperature particles, which is induced by the high-speedevaporation surrounding the particles. The study has experimentally verified the theory of evaporation drag model.

  10. Detection of {alpha} particles using semiconductors. Application to the control of plutonium extraction; Detection des particules {alpha} par semiconducteurs application au controle de l'extraction du plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Tanguy, J. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1968-03-01

    A study is made of a particles produced by thick sources, using either diffused junction or surface barrier semiconductor detectors for controlling continuously the plutonium extraction process. For this, a presenting apparatus is described in which the solutions to be analyzed flow in contact with the detector protected by a thin mica membrane. A method is described which gives a precise recording of the spectra and which thus allows the separation of two or more {alpha} emitters present in the same solution. This method has been applied to the measurement of {sup 239}Pu in the the presence of {sup 241}Am with an accuracy of {+-}5 per cent. In the second part of the report is considered the detection of plutonium in solutions of {beta} - {gamma} emitting fission products. Pile-up is reduced by using a fast amplification chain associated to totally depleted thin detectors. Under these conditions a few mg of {sup 239}Pu can be detected in solutions of fission products having an activity of 100 curies/liter. A method is given for discriminating {alpha} and {beta} particles, it is based on the difference in the collection times for the charges liberated by these particles in the detector. (author) [French] On etudie la detection de particules {alpha} issues de sources epaisses par detecteurs semiconducteurs a jonction diffusee ou a barriere de surface pour le controle continu du procede d'extraction du plutonium. A cet effet on decrit un appareil presentateur dans lequel les solutions a analyser circulent au contact du detecteur protege par une membrane mince de mica. On decrit une methode qui permet par le trace precis des spectres de separer deux ou plusieurs emetteurs {alpha} presents dans une meme solution. Cette methode a ete appliquee a la mesure du {sup 239}Pu en presence de {sup 241}Am avec une precision de {+-} 5 pour cent. Dans la deuxieme partie on traite de la detection du plutonium dans des solutions de produits de fission emetteurs {beta} and {gamma

  11. Mathematical Simulation of Heat Transfer in Heterogenous Forest Fuel Layer Influenced by Heated Up to High Temperatures Steel Particle

    Directory of Open Access Journals (Sweden)

    Baranovskiy Nikolay V.

    2014-01-01

    Full Text Available Heterogeneity of forest fuel layer renders the important influence on forest fire occurrence processes. One of sources of the raised temperature on forested territories is metal particles heated up to high temperatures. Such particles can be formed as a result of welding of metals on forested territories. The present paper represents the heat transfer research in forest fuel at the influence of metal particle heated up to high temperatures. The heterogonous forest fuel layer with inclusions of small wooden branches and chips is considered. Such object research is urgent especially at fire forecasting on forest cutting. The technology of mathematical simulation is used. The two-dimensional problem of heat transfer in forest fuel layer structure with wood inclusions is solved.

  12. Study of Heat Transfer with Nonlinear Thermal Radiation on Sinusoidal Motion of Magnetic Solid Particles in a Dusty Fluid

    Science.gov (United States)

    Bhatti, M. M.; Zeeshan, A.; Ellahi, R.

    2016-09-01

    In this article, heat transfer with nonlinear thermal radiation on sinusoidal motion of magnetic solid particles in a dust Jeffrey fluid has been studied. The effects of Magnetohydrodynamic (MHD) and hall current are also taken under consideration. The governing equation of motion and energy equation are modelled with help of Ohms law for fluid and dust phases. The solutions of the resulting ordinary coupled partial differential equations are solved analytically. The impact of all the physical parameters of interest such as Hartmann number, slip parameter, Hall parameter, radiation parameter, Prandtl number, Eckert number and particle volume fraction are demonstrated mathematically and graphically. Trapping mechanism is also discussed in detail by drawing contour lines. The present analysis affirms many interesting behaviours, which permit further study on solid particles motion with heat and mass transfer.

  13. Förster energy-transfer studies between Trp residues of alpha1-acid glycoprotein (orosomucoid) and the glycosylation site of the protein.

    Science.gov (United States)

    Albani, Jihad R

    2003-10-10

    Energy-transfer studies between Trp residues of alpha(1)-acid glycoprotein and the fluorescent probe Calcofluor White were performed. Calcofluor White interacts with carbohydrate residues of the protein, while the three Trp residues are located at the surface (Trp-160) and in hydrophobic domains of the protein (Trp-25 and Trp-122). Binding of Calcofluor to the protein induces a decrease in the fluorescence intensity of the Trp residues accompanied by an increase of that of Calcofluor White. Efficiency (E) of Trp fluorescence quenching was determined to be equal to 45%, and the Förster distance R(o), at which the efficiency of energy transfer is 50%, was calculated to be 18.13 A. This low distance and the value of the efficiency clearly indicate that energy transfer between Trp residues and Calcofluor White is weak.

  14. Heat Transfer Simulation for Optimization and Treatment Planning of Magnetic Hyperthermia Using Magnetic Particle Imaging

    CERN Document Server

    Banura, Natsuo; Nishimoto, Kohei; Murase, Kenya

    2016-01-01

    This study was undertaken to develop a system for heat transfer simulation for optimization and treatment planning of magnetic hyperthermia treatment (MHT) using magnetic particle imaging (MPI). First, we performed phantom experiments to obtain the regression equation between the MPI pixel value and the specific absorption rate (SAR) of magnetic nanoparticles (MNPs), from which the MPI pixel value was converted to the SAR value in the simulation. Second, we generated the geometries for use in the simulation by processing X-ray computed tomography (CT) and MPI images of tumor-bearing mice injected intratumorally with MNPs (Resovist). The geometries and MPI images were then imported into software based on a finite element method (COMSOL Multiphysics) to compute the time-dependent temperature distribution for 20 min after the start of MHT. There was an excellent correlation between the MPI pixel value and the SAR value (r = 0.956). There was good agreement between the time course of the temperature rise in the t...

  15. Selected proteins of "prostasome-like particles" from epididymal cauda fluid are transferred to epididymal caput spermatozoa in bull.

    Science.gov (United States)

    Frenette, Gilles; Lessard, Carl; Sullivan, Robert

    2002-07-01

    During epididymal transit, spermatozoa acquire selected proteins secreted by epithelial cells. We recently showed that P25b, a protein with predictive properties for bull fertility, is transferred from prostasome-like particles present in the cauda epididymal fluid (PLPCd) to the sperm surface. To further characterize the interactions between PLPCd and epididymal spermatozoa, PLPCd were prepared by ultracentrifugation of bull epididymal fluid, then surface-exposed proteins were biotinylated and coincubated in different conditions with caput epididymal spermatozoa. Western blot analysis revealed that only selected proteins are transferred from PLPCd to spermatozoa. MALDI-TOF analysis revealed that these transferred proteins are closely related. The pattern of distribution of the PLPCd transferred varied from one sperm cell to the other, with a bias toward the acrosomal cap. This transfer appeared to be temperature sensitive, being more efficient at 32-37 degrees C than at 22 degrees C. Transfer of PLPCd proteins to spermatozoa was also pH dependant, the optimal pH for transfer being 6.0-6.5. The effect of divalent cations on PLPCd protein transfer to caput spermatozoa was investigated. Whereas Mg(2+) and Ca(2+) have no effect on the amount of proteins remaining associated with spermatozoa following coincubation, Zn(2+) had a beneficial effect. These results are discussed with regard to the function of PLPCd in epididymal sperm maturation.

  16. Assessing the Role of Particles in Radiative Heat Transfer during Oxy-Combustion of Coal and Biomass Blends

    Directory of Open Access Journals (Sweden)

    Gautham Krishnamoorthy

    2015-01-01

    Full Text Available This study assesses the required fidelities in modeling particle radiative properties and particle size distributions (PSDs of combusting particles in Computational Fluid Dynamics (CFD investigations of radiative heat transfer during oxy-combustion of coal and biomass blends. Simulations of air and oxy-combustion of coal/biomass blends in a 0.5 MW combustion test facility were carried out and compared against recent measurements of incident radiative fluxes. The prediction variations to the combusting particle radiative properties, particle swelling during devolatilization, scattering phase function, biomass devolatilization models, and the resolution (diameter intervals employed in the fuel PSD were assessed. While the wall incident radiative flux predictions compared reasonably well with the experimental measurements, accounting for the variations in the fuel, char and ash radiative properties were deemed to be important as they strongly influenced the incident radiative fluxes and the temperature predictions in these strongly radiating flames. In addition, particle swelling and the diameter intervals also influenced the incident radiative fluxes primarily by impacting the particle extinction coefficients. This study highlights the necessity for careful selection of particle radiative property, and diameter interval parameters and the need for fuel fragmentation models to adequately predict the fly ash PSD in CFD simulations of coal/biomass combustion.

  17. Recoil proton, alpha particle, and heavy ion impacts on microdosimetry and RBE of fast neutrons: analysis of kerma spectra calculated by Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Pignol, J.-P. [Toronto-Sunnybrook Regional Cancer Centre, Radiotherapy Dept., Toronto, Ontario (Canada); Slabbert, J. [National Accelerator Centre, Faure (South Africa)

    2001-02-01

    Fast neutrons (FN) have a higher radio-biological effectiveness (RBE) compared with photons, however the mechanism of this increase remains a controversial issue. RBE variations are seen among various FN facilities and at the same facility when different tissue depths or thicknesses of hardening filters are used. These variations lead to uncertainties in dose reporting as well as in the comparisons of clinical results. Besides radiobiology and microdosimetry, another powerful method for the characterization of FN beams is the calculation of total proton and heavy ion kerma spectra. FLUKA and MCNP Monte Carlo code were used to simulate these kerma spectra following a set of microdosimetry measurements performed at the National Accelerator Centre. The calculated spectra confirmed major classical statements: RBE increase is linked to both slow energy protons and alpha particles yielded by (n,{alpha}) reactions on carbon and oxygen nuclei. The slow energy protons are produced by neutrons having an energy between 10 keV and 10 MeV, while the alpha particles are produced by neutrons having an energy between 10 keV and 15 MeV. Looking at the heavy ion kerma from <15 MeV and the proton kerma from neutrons <10 MeV, it is possible to anticipate y* and RBE trends. (author)

  18. Recoil proton, alpha particle, and heavy ion impacts on microdosimetry and RBE of fast neutrons: analysis of kerma spectra calculated by Monte Carlo simulation.

    Science.gov (United States)

    Pignol, J P; Slabbert, J

    2001-02-01

    Fast neutrons (FN) have a higher radio-biological effectiveness (RBE) compared with photons, however the mechanism of this increase remains a controversial issue. RBE variations are seen among various FN facilities and at the same facility when different tissue depths or thicknesses of hardening filters are used. These variations lead to uncertainties in dose reporting as well as in the comparisons of clinical results. Besides radiobiology and microdosimetry, another powerful method for the characterization of FN beams is the calculation of total proton and heavy ion kerma spectra. FLUKA and MCNP Monte Carlo code were used to simulate these kerma spectra following a set of microdosimetry measurements performed at the National Accelerator Centre. The calculated spectra confirmed major classical statements: RBE increase is linked to both slow energy protons and alpha particles yielded by (n,alpha) reactions on carbon and oxygen nuclei. The slow energy protons are produced by neutrons having an energy between 10 keV and 10 MeV, while the alpha particles are produced by neutrons having an energy between 10 keV and 15 MeV. Looking at the heavy ion kerma from neutrons <10 MeV, it is possible to anticipate y* and RBE trends.

  19. Comparison of cytotoxic and genotoxic effects of plutonium-239 alpha particles and mobile phone GSM 900 radiation in the Allium cepa test.

    Science.gov (United States)

    Pesnya, Dmitry S; Romanovsky, Anton V

    2013-01-20

    The goal of this study was to compare the cytotoxic and genotoxic effects of plutonium-239 alpha particles and GSM 900 modulated mobile phone (model Sony Ericsson K550i) radiation in the Allium cepa test. Three groups of bulbs were exposed to mobile phone radiation during 0 (sham), 3 and 9h. A positive control group was treated during 20min with plutonium-239 alpha-radiation. Mitotic abnormalities, chromosome aberrations, micronuclei and mitotic index were analyzed. Exposure to alpha-radiation from plutonium-239 and exposure to modulated radiation from mobile phone during 3 and 9h significantly increased the mitotic index. GSM 900 mobile phone radiation as well as alpha-radiation from plutonium-239 induced both clastogenic and aneugenic effects. However, the aneugenic activity of mobile phone radiation was more pronounced. After 9h of exposure to mobile phone radiation, polyploid cells, three-groups metaphases, amitoses and some unspecified abnormalities were detected, which were not registered in the other experimental groups. Importantly, GSM 900 mobile phone radiation increased the mitotic index, the frequency of mitotic and chromosome abnormalities, and the micronucleus frequency in a time-dependent manner. Due to its sensitivity, the A. cepa test can be recommended as a useful cytogenetic assay to assess cytotoxic and genotoxic effects of radiofrequency electromagnetic fields.

  20. Effects of alpha-calcitonin gene-related peptide on osteoprotegerin and receptor activator of nuclear factor-κB ligand expression in MG-63 osteoblast-like cells exposed to polyethylene particles

    Directory of Open Access Journals (Sweden)

    Kauther Max D

    2010-11-01

    Full Text Available Abstract Background Recent studies demonstrated an impact of the nervous system on particle-induced osteolysis, the major cause of aseptic loosening of joint replacements. Methods In this study of MG-63 osteoblast-like cells we analyzed the influence of ultra-high molecular weight polyethylene (UHMWPE particles and the neurotransmitter alpha-calcitonin gene-related peptide (CGRP on the osteoprotegerin/receptor activator of nuclear factor-κB ligand/receptor activator of nuclear factorκB (OPG/RANKL/RANK system. MG-63 cells were stimulated by different UHMWPE particle concentrations (1:100, 1:500 and different doses of alpha-CGRP (10-7 M, 10-9 M, 10-11 M. RANKL and OPG mRNA expression and protein levels were measured by RT-PCR and Western blot. Results Increasing particle concentrations caused an up-regulation of RANKL after 72 hours. Alpha-CGRP showed a dose-independent depressive effect on particle-induced expression of RANKL mRNA in both cell-particle ratios. RANKL gene transcripts were significantly (P -7 M lead to an up-regulation of OPG protein. Conclusion In conclusion, a possible osteoprotective influence of the neurotransmitter alpha-CGRP on particle stimulated osteoblast-like cells could be shown. Alpha-CGRP might be important for bone metabolism under conditions of particle-induced osteolysis.

  1. Prediction and rational correlation of thermophoretically reduced particle mass transfer to hot surfaces across laminar or turbulent forced-convection gas boundary layers

    Science.gov (United States)

    Gokoglu, Suleyman A.; Rosner, Daniel E.

    1986-01-01

    A formulation previously developed to predict and correlate the thermophoretically-augmented submicron particle mass transfer rate to cold surfaces is found to account for the thermophoretically reduced particle mass transfer rate to overheated surfaces such that thermophoresis brings about a 10-decade reduction below the convective mass transfer rate expected by pure Brownian diffusion and convection alone. Thermophoretic blowing is shown to produce effects on particle concentration boundary-layer (BL) structure and wall mass transfer rates similar to those produced by real blowing through a porous wall. The applicability of the correlations to developing BL-situations is demonstrated by a numerical example relevant to wet-steam technology.

  2. Preparation of thin {alpha}-particle sources using poly-pyrrole films functionalized by a chelating agent; Preparation de sources minces d'emetteurs alpha a l'aide de films de polypyrrole fonctionnalises par un ligand chelatant

    Energy Technology Data Exchange (ETDEWEB)

    Mariet, C. [CEA Saclay, INSTN, Institut National des Sciences et Techniques Nucleaires, 91 - Gif-sur-Yvette (France); Universite Pierre et Marie Curie, 75 - Paris (France)

    2000-07-01

    This work takes place in the scope of analysis of the {alpha}-particle emitting elements U, Pu and Am present in compound environmental matrix like sols and sediments. The samples diversity and above all the {alpha}-ray characteristics require the analyst to implement a sequence of chemical steps in which the more restricting is the actinides concentration in a uniform and thin layer en allowing an accurately measure of alpha activity. On this account, we studied a new technique for radioactive sources preparation based on tow steps: preparation of a thin film as source support; incorporation of radioactive elements by a chelating extraction mechanism. The thin films were obtained through electro-polymerization of pyrrole monomer functionalized by an chelating ligand able to extract actinides from concentrated acidic solutions. Polymerization conditions of this monomer were perfected, then obtained films were characterized from a physico-chemical point of view. We point out their extracting properties were comparable to (retention capacity, distribution coefficient) to those of usual ion-exchange resins. The underscore of uranyl and americium nitrate complexes formed in the thin layer allowed to calculate the extraction constants in case acid extraction is negligible. Thanks to this results, the values of the coefficients distribution D{sub U} and D{sub Am} could be provided for all nitric solutions in which acid extraction is negligible. Optimal actinides retention conditions in the polymer were defined and used to settle a protocol for plutonium analysis in environmental samples. (author)

  3. Relative drifts and temperature anisotropies of protons and $\\alpha$ particles in the expanding solar wind -- 2.5D hybrid simulations

    CERN Document Server

    Maneva, Y G; Viñas, A

    2014-01-01

    We perform 2.5D hybrid simulations to investigate the origin and evolution of relative drift speeds between protons and $\\alpha$ particles in the collisionless turbulent low-$\\beta$ solar wind plasma. We study the generation of differential streaming by wave-particle interactions and absorption of turbulent wave spectra. Next we focus on the role of the relative drifts for the turbulent heating and acceleration of ions in the collisionless fast solar wind streams. The energy source is given by an initial broad-band spectrum of parallel propagating Alfv\\'en-cyclotron waves, which co-exists with the plasma and is self-consistently coupled to the perpendicular ion bulk velocities. We include the effect of a gradual solar wind expansion, which cools and decelerates the minor ions. This paper for the first time considers the combined effect of self-consistently initialized dispersive turbulent Alfv\\'enic spectra with differentially streaming protons and $\\alpha$ particles in the expanding solar wind outflows withi...

  4. Comparisons of particles thermal behavior between Fe-base alloy and boron carbide during plasma transferred-arc powder surfacing

    Institute of Scientific and Technical Information of China (English)

    王惜宝

    2003-01-01

    Comparisons of particle's thermal behavior between Fe-base alloy and boron carbide in plasma transferred-arc (PTA) space was made based on theoretical evaluation results in this article. It was found that most of the Fe base particles would be fully melted while they transporting through the central plasma field with 200 A surfacing currents. And the particles with a diameter less than 0.5×10-4 m might be fully evaporated. However, for the boron carbide (B4C) particles, only the one with a diameter less than 0.5×10-4 m could be melted in the same PTA space. Most of B4C particles are only preheated at its solid state when they were fed through the central field of PTA plasma when the surfacing current is equal to or less than 200 A. When the arc current was smaller than100 A, only the particles smaller than 0.5×10-4 m could be melted in the PTA space for the Fe-base alloy. Almost none of the discussed B4C particles could be melted in the 100 A PTA space.

  5. Latitudinal and radial variation of >2 GeV/n protons and alpha-particles at solar maximum: ULYSSES COSPIN/KET and neutron monitor network observations

    Directory of Open Access Journals (Sweden)

    A. V. Belov

    Full Text Available Ulysses, launched in October 1990, began its second out-of-ecliptic orbit in September 1997. In 2000/2001 the spacecraft passed from the south to the north polar regions of the Sun in the inner heliosphere. In contrast to the first rapid pole to pole passage in 1994/1995 close to solar minimum, Ulysses experiences now solar maximum conditions. The Kiel Electron Telescope (KET measures also protons and alpha-particles in the energy range from 5 MeV/n to >2 GeV/n. To derive radial and latitudinal gradients for >2 GeV/n protons and alpha-particles, data from the Chicago instrument on board IMP-8 and the neutron monitor network have been used to determine the corresponding time profiles at Earth. We obtain a spatial distribution at solar maximum which differs greatly from the solar minimum distribution. A steady-state approximation, which was characterized by a small radial and significant latitudinal gradient at solar minimum, was interchanged with a highly variable one with a large radial and a small – consistent with zero – latitudinal gradient. A significant deviation from a spherically symmetric cosmic ray distribution following the reversal of the solar magnetic field in 2000/2001 has not been observed yet. A small deviation has only been observed at northern polar regions, showing an excess of particles instead of the expected depression. This indicates that the reconfiguration of the heliospheric magnetic field, caused by the reappearance of the northern polar coronal hole, starts dominating the modulation of galactic cosmic rays already at solar maximum.

    Key words. Interplanetary physics (cosmic rays; energetic particles – Space plasma physics (charged particle motion and acceleration

  6. Evaporative CO2 heat transfer measurements for cooling systems of particle physics detectors

    NARCIS (Netherlands)

    Colijn, A.P.; Verlaat, B.

    2010-01-01

    A major challenge in particle physics detectors is to transport the heat developed in their electronics to the outside world. Particle detectors require a minimum of material in order not to disturb accurate measurements of particle trajectories. CO2 has superior behavior in small diameter - low mat

  7. Simulations of alpha particle ripple loss on CFETR%CFETR阿尔法粒子波纹损失的数值模拟

    Institute of Scientific and Technical Information of China (English)

    郝保龙; 吴斌; 王进芳; 李昊; 胡纯栋

    2016-01-01

    使用导心轨道程序ORBIT,在平衡程序EFIT给出的中国聚变工程实验堆(CFETR)平衡位型下,结合不同的阿尔法(α)粒子分布模型,计算了氘氚聚变产生的α粒子波纹损失情况。计算结果表明:在不考虑锯齿模不稳定性的α粒子分布下,ITER-like和super-X位型下的α粒子波纹损失份额为0.1%,snowflake位型在0.4%,反磁剪切位形在0.6%;在较平缓的α粒子分布下,损失份额增大,损失的高能量α粒子有局域性。%The fusion-produced alpha particle ripple loss on Chinese fusion engineering test reactor (CFETR) was simulated with orbit following Monte Carlo code ORBIT, under the plasma equilibrium flux surfaces generated by the equilibrium code EFIT and different alpha model source profile. The prediction of the pre-sawtooth peaked profile particle loss for the steady state phases was 0.1% to 0.4% under the normal shear configuration. Simulation of reversed magnetic shear case predicted that the alpha particle loss was near 0.6%. The ripple loss fraction was very localized and predicted to increase several times with flat source profile or sawtooth-broadened profile.

  8. Understanding of the mechanical and structural changes induced by alpha particles and heavy ions in the French simulated nuclear waste glass

    Science.gov (United States)

    Karakurt, G.; Abdelouas, A.; Guin, J.-P.; Nivard, M.; Sauvage, T.; Paris, M.; Bardeau, J.-F.

    2016-07-01

    Borosilicate glasses are considered for the long-term confinement of high-level nuclear wastes. External irradiations with 1 MeV He+ ions and 7 MeV Au5+ ions were performed to simulate effects produced by alpha particles and by recoil nuclei in the simulated SON68 nuclear waste glass. To better understand the structural modifications, irradiations were also carried out on a 6-oxides borosilicate glass, a simplified version of the SON68 glass (ISG glass). The mechanical and macroscopic properties of the glasses were studied as function of the deposited electronic and nuclear energies. Alpha particles and gold ions induced a volume change up to -0.7% and -2.7%, respectively, depending on the glass composition. Nano-indentations tests were used to determine the mechanical properties of the irradiated glasses. A decrease of about -22% to -38% of the hardness and a decrease of the reduced Young's modulus by -8% were measured after irradiations. The evolution of the glass structure was studied by Raman spectroscopy, and also 11B and 27Al Nuclear Magnetic Resonance (MAS-NMR) on a 20 MeV Kr irradiated ISG glass powder. A decrease of the silica network connectivity after irradiation with alpha particles and gold ions is deduced from the structural changes observations. NMR spectra revealed a partial conversion of BO4 to BO3 units but also a formation of AlO5 and AlO6 species after irradiation with Kr ions. The relationships between the mechanical and structural changes are also discussed.

  9. Ab initio alpha-alpha scattering

    CERN Document Server

    Elhatisari, Serdar; Rupak, Gautam; Epelbaum, Evgeny; Krebs, Hermann; Lähde, Timo A; Luu, Thomas; Meißner, Ulf-G

    2015-01-01

    Processes involving alpha particles and alpha-like nuclei comprise a major part of stellar nucleosynthesis and hypothesized mechanisms for thermonuclear supernovae. In an effort towards understanding alpha processes from first principles, we describe in this letter the first ab initio calculation of alpha-alpha scattering. We use lattice effective field theory to describe the low-energy interactions of nucleons and apply a technique called the adiabatic projection method to reduce the eight-body system to an effective two-cluster system. We find good agreement between lattice results and experimental phase shifts for S-wave and D-wave scattering. The computational scaling with particle number suggests that alpha processes involving heavier nuclei are also within reach in the near future.

  10. Design of a Fast Neutral He Beam System for Feasibility Study of Charge-Exchange Alpha-Particle Diagnostics in a Thermonuclear Fusion Reactor

    CERN Document Server

    Shinto, Katsuhiro; Kitajima, Sumio; Kiyama, Satoru; Nishiura, Masaki; Sasao, Mamiko; Sugawara, Hiroshi; Takenaga, Mahoko; Takeuchi, Shu; Wada, Motoi

    2005-01-01

    For alpha-particle diagnostics in a thermonuclear fusion reactor, neutralization using a fast (~2 MeV) neutral He beam produced by the spontaneous electron detachment of a He- is considered most promising. However, the beam transport of produced fast neutral He has not been studied, because of difficulty for producing high-brightness He- beam. Double-charge-exchange He- sources and simple beam transport systems were developed and their results were reported in the PAC99* and other papers.** To accelerate an intense He- beam and verify the production of the fast neutral He beam, a new test stand has been designed. It consists of a multi-cusp He+

  11. Transfer-matrix study of a hard-square lattice gas with two kinds of particles and density anomaly.

    Science.gov (United States)

    Oliveira, Tiago J; Stilck, Jürgen F

    2015-09-01

    Using transfer matrix and finite-size scaling methods, we study the thermodynamic behavior of a lattice gas with two kinds of particles on the square lattice. Only excluded volume interactions are considered, so that the model is athermal. Large particles exclude the site they occupy and its four first neighbors, while small particles exclude only their site. Two thermodynamic phases are found: a disordered phase where large particles occupy both sublattices with the same probability and an ordered phase where one of the two sublattices is preferentially occupied by them. The transition between these phases is continuous at small concentrations of the small particles and discontinuous at larger concentrations, both transitions are separated by a tricritical point. Estimates of the central charge suggest that the critical line is in the Ising universality class, while the tricritical point has tricritical Ising (Blume-Emery-Griffiths) exponents. The isobaric curves of the total density as functions of the fugacity of small or large particles display a minimum in the disordered phase.

  12. Cholesteryl ester transfer protein, low density lipoprotein particle size and intima media thickness in patients with coronary heart disease.

    Science.gov (United States)

    Tosheska, Katerina; Labudovic, Danica; Jovanova, Silvana; Jaglikovski, Branko; Alabakovska, Sonja

    2011-08-01

    Cholesteryl ester transfer protein (CETP) plays a key role in reverse cholesterol transport and high density lipoprotein (HDL) metabolism. Predominance of small, dense LDL particles is associated with an increased risk of atherosclerosis and coronary heart disease (CHD).The aim of the study was to determine the potential relationship between the CETP concentration and low density lipoprotein (LDL) particle size and their association with intima media thickness (IMT) in patients with CHD. Lipid parameters, CETP concentration and LDL particle size were determined in 100 healthy subjects (control group) and in 100 patients with CHD, aged 43 to 77 years. Plasma CETP concentrations were measured by an enzyme-linked immuno-sorbent assay with two different monoclonal antibodies. LDL subclasses were separated by nondenaturing polyacrilamide 3-31% gradient gel electrophoresis. CETP concentration was higher in patients compared to controls (2.02 ± 0.75 mg/ml vs. 1.74 ± 0.63 mg/ml, p<0.01). Mean LDL particle size (nm) was significantly smaller in patients than in controls (24.5 ± 1.1 vs. 26.1 ± 0.9; p<0.001). There was no relation between LDL particle size and CETP concentration (r=-0.1807, p=0.072). Age, diastolic blood pressure, CETP concentration and LDL particle size were independent factors for determing IMT by multiple linear regression analysis. They accounted for 35.2 % of the observed variability in IMT. CETP is not an independent contributor of LDL particle size. CETP might play a role in determining lipoprotein distributions, but did not seem to be the sole factor in the formation of small LDL particles.

  13. Increased large VLDL particles confer elevated cholesteryl ester transfer in diabetes

    NARCIS (Netherlands)

    Dullaart, Robin P. F.; de Vries, Rindert; Kwakernaak, Arjan J.; Perton, Frank; Dallinga-Thie, Geesje M.

    2015-01-01

    BackgroundPlasma cholesteryl ester transfer (CET), reflecting transfer of cholesteryl esters from high density lipoproteins (HDL) towards apolipoprotein B-containing lipoproteins, may promote atherosclerosis development, and is elevated in Type 2 diabetes mellitus (T2DM). We determined the extent to

  14. Non-linearity issues and multiple ionization satellites in the PIXE portion of spectra from the Mars alpha particle X-ray spectrometer

    Science.gov (United States)

    Campbell, John L.; Heirwegh, Christopher M.; Ganly, Brianna

    2016-09-01

    Spectra from the laboratory and flight versions of the Curiosity rover's alpha particle X-ray spectrometer were fitted with an in-house version of GUPIX, revealing departures from linear behavior of the energy-channel relationships in the low X-ray energy region where alpha particle PIXE is the dominant excitation mechanism. The apparent energy shifts for the lightest elements present were attributed in part to multiple ionization satellites and in part to issues within the detector and/or the pulse processing chain. No specific issue was identified, but the second of these options was considered to be the more probable. Approximate corrections were derived and then applied within the GUAPX code which is designed specifically for quantitative evaluation of APXS spectra. The quality of fit was significantly improved. The peak areas of the light elements Na, Mg, Al and Si were changed by only a few percent in most spectra. The changes for elements with higher atomic number were generally smaller, with a few exceptions. Overall, the percentage peak area changes are much smaller than the overall uncertainties in derived concentrations, which are largely attributable to the effects of rock heterogeneity. The magnitude of the satellite contributions suggests the need to incorporate these routinely in accelerator-based PIXE using helium beams.

  15. Features of the gas discharge in the narrow gap micro-pattern gas detectors (MPGD) at a high level of alpha-particles background

    CERN Document Server

    Razin, V I

    2010-01-01

    In given article preliminary results of the research of the electron multiplication in MPGD are presented at a high level of alpha-particles background. This work has expanded borders of understanding of the streamer mode nature. It is seen as a complex from electrostatic and electromagnetic interactions which begin with appearance of the precursor in plasma state. In an inter-electrode gap the plasma oscillations occur, accompanied by longitudinal elastic waves of ionization, which can reach the cathode surface with induced negative charge. With the release of this charge due to previously established conducting channel there is a strong current pulse, accompanied by the emission due to recombination of positive and negative ions and a thin cord or streamer derive. In the aim of the MPGD protection from the spark breakdown at a high level of the alpha-particle background the next gas composition from a buffer, cooling and electronegative components are offered: 70% He +28% CF4 +2% SF6.

  16. A DLTS and RBS analysis of the angular dependence of defects introduced in Si during ion beam channelling using 435keV alpha-particles

    Science.gov (United States)

    Deenapanray, P. N. K.; Ridgway, M. C.; Auret, F. D.; Friedland, E.

    1998-03-01

    It is generally assumed that ion beams (IBs) used during channelling experiments create little damage when incident along a direction of low crystallographic index of a crystal lattice. We have employed deep level transient spectroscopy (DLTS) to characterise the defects produced by 435 keV alpha-particles in a Si lattice incident along the axis ( α = 0°) as well as at small angles ( α ≤ 7°) with respect to this direction. The commonly observed high energy (MeV) alpha-particle-induced point defects (VO and VSb pairs and the two charge states of the divacancy, V 2) could be observed for angles of incidence as small as 0.35°. The concentration of the primary defects was observed to decrease for α ≥ 2.45°. Furthermore, isochronal annealing experiments showed that a DLTS defect peak which is superimposed on the V2{=}/{-}, and observed predominantly for α ≥ 2.45°, could be a V-related defect. Current-voltage ( I- V) and capacitance-voltage ( C- V) measurements also showed that Schottky barrier diodes (SBDs) fabricated on the exposed samples became less rectifying with increasing angle of incidence.

  17. Operational parameters and their influence on particle-side mass transfer resistance in a packed bed bioreactor.

    Science.gov (United States)

    Hussain, Amir; Kangwa, Martin; Yumnam, Nivedita; Fernandez-Lahore, Marcelo

    2015-12-01

    The influence of internal mass transfer on productivity as well as the performance of packed bed bioreactor was determined by varying a number of parameters; chitosan coating, flow rate, glucose concentration and particle size. Saccharomyces cerevisiae cells were immobilized in chitosan and non-chitosan coated alginate beads to demonstrate the effect on particle side mass transfer on substrate consumption time, lag phase and ethanol production. The results indicate that chitosan coating, beads size, glucose concentration and flow rate have a significant effect on lag phase duration. The duration of lag phase for different size of beads (0.8, 2 and 4 mm) decreases by increasing flow rate and by decreasing the size of beads. Moreover, longer lag phase were found at higher glucose medium concentration and also with chitosan coated beads. It was observed that by increasing flow rates; lag phase and glucose consumption time decreased. The reason is due to the reduction of external (fluid side) mass transfer as a result of increase in flow rate as glucose is easily transported to the surface of the beads. Varying the size of beads is an additional factor: as it reduces the internal (particle side) mass transfer by reducing the size of beads. The reason behind this is the distance for reactants to reach active site of catalyst (cells) and the thickness of fluid created layer around alginate beads is reduced. The optimum combination of parameters consisting of smaller beads size (0.8 mm), higher flow rate of 90 ml/min and glucose concentration of 10 g/l were found to be the maximum condition for ethanol production.

  18. Scale-up impacts on mass transfer and bioremediation of suspended naphthalene particles in bead mill bioreactors.

    Science.gov (United States)

    Wang, Yuching; Riess, Ryan; Nemati, Mehdi; Hill, Gordon; Headley, John

    2008-11-01

    Scale-up effects on mass transfer and bioremediation of suspended naphthalene particles have been studied in 20 and 58L bead mill bioreactors and compared to data generated earlier with a laboratory scaled bioreactor. The bead mill bioreactor performance with respect to naphthalene mass transfer rate was dependent on the size and loading of the inert particles, as well as the rotational speed of the roller apparatus. The optimum operating conditions were found to be 15mm glass beads at a loading of 50% (total volume of particles/working volume of bioreactor: v/v%) and a bioreactor rotational speed of 50rpm. The highest naphthalene mass transfer coefficients obtained in the large scale system under these optimum conditions (19.6 and 22.4h(-1) for 20 and 58L vessels, respectively) were higher than those determined previously in a 2.5L bead mill bioreactor (0.7h(-1)). The acute toxicity tests indicated that the bioreactor effluent was less toxic than the untreated naphthalene suspension. Biodegradation rates obtained in these large scale bead mill bioreactors under optimum conditions (36-37.4mgL(-1)h(-1)) were higher than those achieved in the control bioreactors of similar sizes (11.4 and 11.6mgL(-1)h(-1)) but were slower than those previously determined in a 2.5L bead mill bioreactor (59-61.5mgL(-1)h(-1)). The limitation of oxygen in the large scale systems and damage of the bacterial cells due to the crushing effects of the large beads are likely contributing factors in the lower observed biodegradation rates. The optimum conditions with respect to naphthalene mass transfer might not necessarily translate to optimum performance with regard to bioremediation.

  19. Gas-saturated solution process to obtain microcomposite particles of alpha lipoic acid/hydrogenated colza oil in supercritical carbon dioxide.

    Science.gov (United States)

    Mishima, Kenji; Honjo, Masatoshi; Sharmin, Tanjina; Ito, Shota; Kawakami, Ryo; Kato, Takafumi; Misumi, Makoto; Suetsugu, Tadashi; Orii, Hideaki; Kawano, Hiroyuki; Irie, Keiichi; Sano, Kazunori; Mishima, Kenichi; Harada, Takunori; Ouchi, Mikio

    2016-09-01

    Alpha lipoic acid (ALA), an active substance in anti-aging products and dietary supplements, need to be masked with an edible polymer to obscure its unpleasant taste. However, the high viscosity of the ALA molecules prevents them from forming microcomposites with masking materials even in supercritical carbon dioxide (scCO2). Therefore, the purpose of this study was to investigate and develop a novel production method for microcomposite particles for ALA in hydrogenated colza oil (HCO). Microcomposite particles of ALA/HCO were prepared by using a novel gas-saturated solution (PGSS) process in which the solid-dispersion method is used along with stepwise temperature control (PGSS-STC). Its high viscosity prevents the formation of microcomposites in the conventional PGSS process even under strong agitation. Here, we disperse the solid particles of ALA and HCO in scCO2 at low temperatures and change the temperature stepwise in order to mix the melted ALA and HCO in scCO2. As a result, a homogeneous dispersion of the droplets of ALA in melted HCO saturated with CO2 is obtained at high temperatures. After the rapid expansion of the saturated solution through a nozzle, microcomposite particles of ALA/HCO several micrometers in diameter are obtained.

  20. Measurement of the OXYGEN-17(PROTON, Alpha Particle) Nitrogen -14 Cross Section at Stellar Energies (proton Energies, Resonant Reaction)

    Science.gov (United States)

    Blackmon, Jeffery Curtis

    The isotopic abundance ratio 16O/17O has been shown to be a good probe of mass flow and mixing in stars. This ratio is sensitive to the depth of convective mixing which occurs on the giant branch and to the amount of nonconvective mixing occurring on the main sequence. The interpretation of recent observations of this ratio in red giants is limited by a large uncertainty in the value of the 17O(p, alpha)14N reaction rate. This reaction rate is dominated at stellar energies by a resonance at E_{rm x} = 5673 keV in the compound nucleus 18 F, whose strength was previously uncertain. We have carried out a measurement of the ^ {17}O(p,alpha)^{14 }N cross section at proton energies of 75 keV and 65 keV. Thick, high-purity rm Ta_2O _5 targets enriched to 77% ^ {17}O were used in conjunction with beam currents of 0.45 mA and large-solid-angle detectors. The background for the experiment was measured using targets of natural isotopic composition. The resonance peak was observed in the data collected at 75 keV, and we determined the proton width of the 5673 keV state to be 22 +/- 4 neV. This implies a rate for the 17O(p,alpha)^ {14}N reaction that is ten times greater than the typical rates used previously in stellar models.

  1. Low-Order Modeling of Internal Heat Transfer in Biomass Particle Pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Wiggins, Gavin M.; Ciesielski, Peter N.; Daw, C. Stuart

    2016-06-16

    We present a computationally efficient, one-dimensional simulation methodology for biomass particle heating under conditions typical of fast pyrolysis. Our methodology is based on identifying the rate limiting geometric and structural factors for conductive heat transport in biomass particle models with realistic morphology to develop low-order approximations that behave appropriately. Comparisons of transient temperature trends predicted by our one-dimensional method with three-dimensional simulations of woody biomass particles reveal good agreement, if the appropriate equivalent spherical diameter and bulk thermal properties are used. We conclude that, for particle sizes and heating regimes typical of fast pyrolysis, it is possible to simulate biomass particle heating with reasonable accuracy and minimal computational overhead, even when variable size, aspherical shape, anisotropic conductivity, and complex, species-specific internal pore geometry are incorporated.

  2. Final Technical Report: Using Solid Particles as Heat Transfer Fluid for use in Concentrating Solar Power (CSP) Plants

    Energy Technology Data Exchange (ETDEWEB)

    Lattanzi, Aaron [Univ. of Colorado, Boulder, CO (United States); Hrenya, Christine [Univ. of Colorado, Boulder, CO (United States)

    2016-03-31

    In today’s industrial economy, energy consumption has never been higher. Over the last 15 years the US alone has consumed an average of nearly 100 quadrillion BTUs per year [21]. A need for clean and renewable energy sources has become quite apparent. The SunShot Initiative is an ambitious effort taken on by the United States Department of Energy that targets the development of solar energy that is cost-competitive with other methods for generating electricity. Specifically, this work is concerned with the development of concentrating solar power plants (CSPs) with granular media as the heat transfer fluid (HTF) from the solar receiver. Unfortunately, the prediction of heat transfer in multiphase flows is not well understood. For this reason, our aim is to fundamentally advance the understanding of multiphase heat transfer, particularly in gas-solid flows, while providing quantitative input for the design of a near black body receiver (NBB) that uses solid grains (like sand) as the HTF. Over the course of this three-year project, a wide variety of contributions have been made to advance the state-of-the art description for non-radiative heat transfer in dense, gas-solid systems. Comparisons between a state-of-the-art continuum heat transfer model and discrete element method (DEM) simulations have been drawn. The results of these comparisons brought to light the limitations of the continuum model due to inherent assumptions in its derivation. A new continuum model was then developed for heat transfer at a solid boundary by rigorously accounting for the most dominant non-radiative heat transfer mechanism (particle-fluid-wall conduction). The new model is shown to be in excellent agreement with DEM data and captures the dependence of heat transfer on particle size, a dependency that previous continuum models were not capable of. DEM and the new continuum model were then employed to model heat transfer in a variety of receiver geometries. The results provided crucial

  3. Theoretical analysis of kinetic isotope effects on proton transfer reactions between substituted alpha-methoxystyrenes and substituted acetic acids.

    Science.gov (United States)

    Wong, Kin-Yiu; Richard, John P; Gao, Jiali

    2009-10-01

    Primary kinetic isotope effects (KIEs) on a series of carboxylic acid-catalyzed protonation reactions of aryl-substituted alpha-methoxystyrenes (X-1) to form oxocarbenium ions have been computed using the second-order Kleinert variational perturbation theory (KP2) in the framework of Feynman path integrals (PI) along with the potential energy surface obtained at the B3LYP/6-31+G(d,p) level. Good agreement with the experimental data was obtained, demonstrating that this novel computational approach for computing KIEs of organic reactions is a viable alternative to the traditional method employing Bigeleisen equation and harmonic vibrational frequencies. Although tunneling makes relatively small contributions to the lowering of the free energy barriers for the carboxylic acid catalyzed protonation reaction, it is necessary to include tunneling contributions to obtain quantitative estimates of the KIEs. Consideration of anharmonicity can further improve the calculated KIEs for the protonation of substituted alpha-methoxystyrenes by chloroacetic acid, but for the reactions of the parent and 4-NO(2) substituted alpha-methoxystyrene with substituted carboxylic acids, the correction of anharmonicity overestimates the computed KIEs for strong acid catalysts. In agreement with experimental findings, the largest KIEs are found in nearly ergoneutral reactions, DeltaG(o) approximately 0, where the transition structures are nearly symmetric and the reaction barriers are relatively low. Furthermore, the optimized transition structures are strongly dependent on the free energy for the formation of the carbocation intermediate, that is, the driving force DeltaG(o), along with a good correlation of Hammond shift in the transition state structure.

  4. CFD simulation of the effect of particle size on the nanofluids convective heat transfer in the developed region in a circular tube.

    Science.gov (United States)

    Davarnejad, Reza; Barati, Sara; Kooshki, Maryam

    2013-12-01

    The CFD simulation of heat transfer characteristics of a nanofluid in a circular tube under constant heat flux was considered using Fluent software (version 6.3.26) in the laminar flow. Al2O3 nanoparticles in water with concentrations of 0.5%, 1.0%, 1.5%, 2% and 2.5% were used in this simulation. All of the thermo-physical properties of nanofluids were assumed to be temperature independent. Two particle sizes with average size of 20 and 50 nm were used in this research. It was concluded that heat transfer coefficient increased by increasing the Reynolds number and the concentration of nanoparticles. The maximum convective heat transfer coefficient was observed at the highest concentration of nano-particles in water (2.5%). Furthermore, the two nanofluids showed higher heat transfer than the base fluid (water) although the nanofluid with particles size of 20 nm had the highest heat transfer coefficient.

  5. Heat-transfer characteristics of flowing and stationary particle-bed-type fusion-reactor blankets

    Energy Technology Data Exchange (ETDEWEB)

    Nietert, R.E.

    1983-02-01

    The following five appendices are included: (1) physical properties of materials, (2) thermal entrance length Nusselt number variations, (3) stationary particle bed temperature variations, (4) falling bed experimental data and calculations, and (5) stationary bed experimental data and calculations. (MOW)

  6. Virus-Like Particles That Can Deliver Proteins and RNA | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    The present invention describes novel virus-like particles (VLPs) that are capable of binding to and replicating within a target mammalian cell, including human cells. The claimed VLPs are safer than viral delivery because they are incapable of re-infecting target cells. The National Cancer Institute's Protein Expression Laboratory seeks parties interested in licensing the novel delivery of RNA to mammalian cells using virus-like particles.

  7. Evaluation of procedures for determination of Ra-226 in water by alpha-particle spectrometry with emphasis on the recovery.

    Science.gov (United States)

    Benedik, L; Repinc, U; Strok, M

    2010-01-01

    Radium-226 is one of the best known long-lived alpha-emitters abundantly present in the environment. The determination of radium isotopes in environmental samples usually requires a demanding chemical separation before measurement and quantification. Each step in the chemical separation process can involve losses of the analyte, therefore it is of vital importance that the recovery of the whole radiochemical procedure is evaluated. The emphasis of the work presented was determination of the chemical recovery using the different yield tracers Ra-223, Ra-225 and Ba-133.

  8. Order-{alpha}{sub s}{sup 2} corrections to one-particle inclusive processes in DIS

    Energy Technology Data Exchange (ETDEWEB)

    Daleo, A. E-mail: daleo@fisica.unlp.edu.ar; Garcia Canal, C.A.; Sassot, R

    2003-07-07

    We analyze the order-{alpha}{sub s}{sup 2} QCD corrections to semi-inclusive deep inelastic scattering and present results for processes initiated by a gluon. We focus in the most singular pieces of these corrections in order to obtain the hitherto unknown NLO evolution kernels relevant for the non-homogeneous QCD scale dependence of these cross sections, and to check explicitly factorization at this order. In so doing we discuss the prescription of overlapping singularities in more than one variable.

  9. Radiative transfer equation and direct simulation prediction of reflection and absorption by particle deposits

    Science.gov (United States)

    Ramezan pour, Bahareh; Mackowski, Daniel W.

    2017-03-01

    Two methods for computing the normal incidence absorptance and hemispherical reflectance from plane parallel layers of wavelength-sized spherical particles are presented. The first method is based on an exact superposition solution to Maxwell's time harmonic wave equations for a system of randomly-positioned spherical particles excited by an incident plane wave. The second method is based upon the scalar radiative transport equation (RTE) applied to a plane parallel medium. Comparisons are made using five values of particle refractive index, sphere size parameters ranging from 1 to 4, and particle volume concentrations ranging from 0.05 to 0.4. The results indicate that the multiple sphere T matrix method (MSTM) and RTE predictions of hemispherical reflectance and absorptance converge when particle volume fraction becomes small. At higher volume fractions the RTE can yield results for hemispherical reflectance that, depending on the particle size and refractive index, significantly depart from the exact predictions. On the other hand, RTE and MSTM predictions of absorptance have a much closer agreement which is largely independent of the sphere optical properties and volume concentration.

  10. A Computationally-Efficient Kinetic Approach for Gas/Particle Mass Transfer Treatments: Development, Testing, and 3-D Application

    Science.gov (United States)

    Hu, X.; Zhang, Y.

    2007-05-01

    The Weather Research and Forecast/Chemistry Model (WRF/Chem) that simulates chemistry simultaneously with meteorology has recently been developed for real-time forecasting by the U.S. National Center for Atmospheric Research (NCAR) and National Oceanic & Atmospheric Administration (NOAA). As one of the six air quality models, WRF/Chem with a modal aerosol module has been applied for ozone and PM2.5 ensemble forecasts over eastern North America as part of the 2004 New England Air Quality Study (NEAQS) program (NEAQS-2004). Significant differences exist in the partitioning of volatile species (e.g., ammonium and nitrate) simulated by the six models. Model biases are partially attributed to the equilibrium assumption used in the gas/particles mass transfer approach in some models. Development of a more accurate, yet computationally- efficient gas/particle mass transfer approach for three-dimensional (3-D) applications, in particular, real-time forecasting, is therefore warranted. Model of Aerosol Dynamics, Reaction, Ionization, and Dissolution (MADRID) has been implemented into WRF/Chem (referred to as WRF/Chem-MADRID). WRF/Chem-MADRID offers three gas/particle partitioning treatments: equilibrium, kinetic, and hybrid approaches. The equilibrium approach is computationally-efficient and commonly used in 3-D air quality models but less accurate under certain conditions (e.g., in the presence of coarse, reactive particles such as PM containing sea-salts in the coastal areas). The kinetic approach is accurate but computationally-expensive, limiting its 3-D applications. The hybrid approach attempts to provide a compromise between merits and drawbacks of the two approaches by treating fine PM (typically MADRID has recently been developed for 3-D applications based on an Analytical Predictor of Condensation (referred to as kinetic/APC). In this study, WRF/Chem-MADRID with the kinetic/APC approach will be further evaluated along with the equilibrium and hybrid approaches

  11. Transfer and Detection of barstar Gene to Maize Inbred Line 18-599 (White) by Particle Bombardment

    Institute of Scientific and Technical Information of China (English)

    SUN Qing-quan; ZHANG Ying; RONG Ting-zhao; DONG Shu-ting; ZUO Zhen-peng

    2007-01-01

    In China, the purity of maize hybrid strain is discomforting to the development of seed industrialization. Finding a new method for reproduction of maize hybrid strain is necessary. In this study, using particle bombardment, barstar gene was transferred into maize inbred line 18-599 (White), which is an antiviral and high quality maize inbred line. By molecular detection of the anther of transgenic maize, two plants transferred with barstar gene were gained in this study, which are two restorer lines. The two plants showed normal male spike, and lively microspores. But the capacity of the two restorer lines should be studied in the future. The aim of this study is to find a new method of reproduction of maize hybrid strain using engineering restorer lines and engineering sterility lines by gene engineering technology.

  12. Studying fluid-to-particle heat transfer coefficients in vessel cooking processes using potatoes as measuring devices

    DEFF Research Database (Denmark)

    Feyissa, Aberham Hailu; Christensen, Martin Gram; Pedersen, Søren Juhl

    2015-01-01

    This paper presents and demonstrates a novel idea of using spherical potatoes as a dispensable, cheap device for determining the fluid-to-particle heat transfer coefficient, hfp in vessel cooking processes. The transmission of heat through the potato can be traced by measuring the distance from...... the surface to the gelatinization front, which is easy to identify visually. Knowing this distance, the gelatinization temperature, the period of immersion, and the average radius of the potato, the heat transfer coefficient can be calculated. Either a numerical model based on the Finite Element Method (FEM......) or an analytical solution of the Fourier equation can be applied for the calculation. The gelatinization temperature of the potatoes used was determined to be 67°C by a direct temperature measurement and by visual inspection of the progression of the gelatinization front. A sensitivity analysis demonstrates...

  13. Heat transfer partitioning model of film boiling of particle cluster in a liquid pool: implementation in a CFD code

    Science.gov (United States)

    Mahapatra, Pallab S.; Ghosh, Koushik; Manna, Nirmal K.

    2015-08-01

    In the present work an effective heat transfer partitioning model of three phase (particles, liquid and vapour) flow and thermal interaction have been developed by a multi-fluid approach under film boiling condition. The in-house multiphase flow code is based on finite volume method of discretization and SIMPLE-based pressure correction algorithm. From consideration of mass, momentum and energy balance across the liquid-vapour interface, the vapour bubble generated from the vapour film have been modeled and incorporated in the code. Different interaction terms between each phase are incorporated depending upon the flow regime. The code is validated with in-house and available experimental results. Finally the effect of relevant parameters on void generation under film boiling condition of particles is estimated.

  14. ADSORPTION DYNAMICS OF MACROPOROUS POLYMERIC ADSORBENT 1.The Studies on the Particle Diffusion Mass—Transfer Process

    Institute of Scientific and Technical Information of China (English)

    WANGChunhong; XUMingcheng; 等

    2000-01-01

    The adsorption dynamics for phenol in aqueous solution of the adsorbent based on polystyrene was studied.In order to distinguish with the Boyd quasi-homogeneous model of the inner structure of ion-exchanger,the particle diffusion model including surface diffustion model and porediffusion model was suggested which is suitable to the macroporous adsorbent.The diffusiondetermination step of the adsorption pocess was established and the effective diffusion coefficient was also determined.The influence of surface diffusion and pore difusion on the particle diffusion rate was investigated qualitatively.All of these were very important to improve the structure of the macroporous adsorbent in order to improve the mass-transfer rate.

  15. Natural COnvective Heat and Mass Transfer on a Vertical Heated Plate for Water Flow Containing Metal Corrosion Particles

    Institute of Scientific and Technical Information of China (English)

    Pei-xueJiang; Ze-peiRen; 等

    1992-01-01

    Corrosion products of structural materials when contained in water usually are in two states:soluble state and colloidal particles with dimeter about 10-3-10-1um,Deposits of such corrosion products on tube surfaces under high pressure will jeopardize the operating economy of power plant equipment and even esult in accidents.A numerical study is reported in this paper of the natural convective heat and mass transfer on a vertical heated plate subject to the flrst or mixed kind of boundary conditions for high-pressure water(P=17MPa) containing metal corrosion products with consideration of varialbe thermophysical properties.

  16. Heat and mass transfer in a coal-water fuel particle at the stage of "thermal" treatment

    Science.gov (United States)

    Salomatov, V. V.; Syrodoy, S. V.; Kuznetsov, G. V.

    2016-07-01

    The problem of heat and mass transfer has been solved numerically under the conditions of coal-water fuel particle ignition. The concurrent processes of evaporation, filtration of steam, thermal decomposition of the organic part of coal, thermal and chemical interaction of steam and coke carbon, and oxidation of products of their reaction and volatiles by the external oxidizer have been taken into account. The scales of influence of individual thermophysical and thermochemical properties of coals on the characteristics and conditions of ignition of coal-water slurry have been determined.

  17. Organotypic tissue culture of adult rodent retina followed by particle-mediated acute gene transfer in vitro.

    Directory of Open Access Journals (Sweden)

    Satoru Moritoh

    Full Text Available BACKGROUND: Organotypic tissue culture of adult rodent retina with an acute gene transfer that enables the efficient introduction of variable transgenes would greatly facilitate studies into retinas of adult rodents as animal models. However, it has been a difficult challenge to culture adult rodent retina. The purpose of this present study was to develop organotypic tissue culture of adult rodent retina followed by particle-mediated acute gene transfer in vitro. METHODOLOGY/PRINCIPAL FINDINGS: We established an interphase organotypic tissue culture for adult rat retinas (>P35 of age which was optimized from that used for adult rabbit retinas. We implemented three optimizations: a greater volume of Ames' medium (>26 mL per retina, a higher speed (constant 55 rpm of agitation by rotary shaker, and a greater concentration (10% of horse serum in the medium. We also successfully applied this method to adult mouse retina (>P35 of age. The organotypic tissue culture allowed us to keep adult rodent retina morphologically and structurally intact for at least 4 days. However, mouse retinas showed less viability after 4-day culture. Electrophysiologically, ganglion cells in cultured rat retina were able to generate action potentials, but exhibited less reliable light responses. After transfection of EGFP plasmids by particle-mediated acute gene transfer, we observed EGFP-expressing retinal ganglion cells as early as 1 day of culture. We also introduced polarized-targeting fusion proteins such as PSD95-GFP and melanopsin-EYFP (hOPN4-EYFP into rat retinal ganglion cells. These fusion proteins were successfully transferred into appropriate locations on individual retinal neurons. CONCLUSIONS/SIGNIFICANCE: This organotypic culture method is largely applicable to rat retinas, but it can be also applied to mouse retinas with a caveat regarding cell viability. This method is quite flexible for use in acute gene transfection in adult rodent retina, replacing

  18. Measurement and Modeling of Resistivity as a Microscale Tool to Quantify the Volume Fraction of Lenticular (alpha)' Particles in a Partially Transformed (delta)-phase Pu-Ga Matrix

    Energy Technology Data Exchange (ETDEWEB)

    Haslam, J J; Wall, M A; Johnson, D L; Mayhall, D J; Schwartz, A J

    2005-07-13

    We have measured and modeled the change in electrical resistivity due to partial transformation to the martensitic {alpha}{prime}-phase in a {delta}-phase Pu-Ga matrix. The primary objective is to relate the change in resistance, measured with a 4-probe technique during the transformation, to the volume fraction of the {alpha}{prime} phase created in the microstructure. Analysis by finite element methods suggests that considerable differences in the resistivity may be anticipated depending on the orientational and morphological configurations of the {alpha}{prime} particles. Finite element analysis of the computed resistance of an assembly of lenticular shaped particles indicates that series resistor or parallel resistor approximations are inaccurate and can lead to an underestimation of the predicted amount of {alpha}{prime} in the sample by 15% or more. Comparison of the resistivity of a simulated network of partially transformed grains or portions of grains suggests that a correction to the measured resistivity allows quantification of the amount of {alpha}{prime} phase in the microstructure with minimal consideration of how the {alpha}{prime} morphology may evolve. It is found that the average of the series and parallel resistor approximations provide the most accurate relationship between the measured resistivity and the amount of {alpha}{prime} phase. The methods described here are applicable to any evolving two-phase microstructure in which the resistance difference between the two phases is measurable.

  19. Beta-D-glucosyl and alpha-D-galactosyl Yariv reagents: syntheses from p-nitrophenyl-D-glycosides by transfer reduction using ammonium formate.

    Science.gov (United States)

    Basile, Dominick V; Ganjian, Iraj

    2004-12-15

    Yariv beta-D-glucosyl (4a) and Yariv alpha-d-galactosyl (4b) reagents are multivalent phenylglycosides. The beta-D-glucosyl reagent is considered diagnostic for arabinogalactan proteins (AGPs) to which it can reversibly bind, stain, and precipitate. The alpha-D-galactosyl reagent does not bind AGPs and is used as a control. In a new strategy, we accomplished the large scale synthesis of the Yariv reagents in one continuous step by a transfer reduction method and without a need for any specialized apparatus. As the starting material, p-nitrophenyl-D-glycosides (1) were reduced to p-aminophenyl-D-glycosides (2) using ammonium formate as the hydrogen donor. The excess formate was converted to formic acid and ammonia, which then were removed from the reaction by simple distillation. Without isolation, p-aminophenyl-D-glycosides were diazotized (3) and coupled to phloroglucinol to give the Yariv reagents in approximately 40% yield. AGPs are a major component of gum arabic, an emulsifying agent widely used in the food and pharmaceutical industries. Increasing interest in AGPs prompted the development of a relatively easy and inexpensive method for the synthesis of these reagents.

  20. Three-dimensional radiative transfer simulations of the scattering polarization of the hydrogen Ly$\\alpha$ line in a MHD model of the chromosphere-corona transition region

    CERN Document Server

    Stepan, Jiri; Leenaarts, Jorrit; Carlsson, Mats

    2015-01-01

    Probing the magnetism of the upper solar chromosphere requires measuring and modeling the scattering polarization produced by anisotropic radiation pumping in UV spectral lines. Here we apply PORTA (a novel radiative transfer code) to investigate the hydrogen Ly$\\alpha$ line in a 3D model of the solar atmosphere resulting from a state of the art MHD simulation. At full spatial resolution the linear polarization signals are very significant all over the solar disk, with a large fraction of the field of view showing line-center amplitudes well above the 1% level. Via the Hanle effect the line-center polarization signals are sensitive to the magnetic field of the model's transition region, even when its mean field strength is only 15 G. The breaking of the axial symmetry of the radiation field produces significant forward-scattering polarization in Ly$\\alpha$, without the need of an inclined magnetic field. Interestingly, the Hanle effect tends to decrease such forward-scattering polarization signals in most of ...

  1. Lead sources and transfer in the coastal Mediterranean: evidence from stable lead isotopes in marine particles

    Science.gov (United States)

    Alleman, L. Y.; Hamelin, B.; Véron, A. J.; Miquel, J.-C.; Heussner, S.

    Time series of settling and suspended particles have been collected by sediment traps and in situ pumps respectively, under contrasted hydrographic conditions in the Gulf of Lions and the Ligurian Sea, northwestern Mediterranean. Lead concentrations measured in sediment trap samples vary from 41±7 ppm in the Ligurian Sea to 58±10 ppm in the Gulf of Lions. These concentrations, 2-10 times lower than those measured previously in the Gulf of Lions, reflect the reduction of lead fallout from gasoline during the last decade. While atmospheric lead still originates mainly from anthropogenic emissions (automotive and industrial exhausts), stable lead isotopes demonstrate that anthropogenic and lithogenic lead are in similar proportions in the marine particles from the northwestern Mediterranean. Sequential extraction analyses performed on trap samples suggest that the isotopic variations can be explained by a three-component mixing between anthropogenic, natural soluble, and natural refractory sources. In the suspended particulate matter from the Gulf of Lions, lead concentrations range from 0.2 to 30 ng/ l, with isotopic compositions comparable to those of the settling particles ( 206Pb/ 207Pb from 1.165 to 1.178). This indicates a common origin in these two types of particles, probably mainly controlled by the Rhône River discharge and by resuspension processes on the continental shelf. By contrast, lead concentrations are lower in the suspended matter samples from the Ligurian Sea (0.5 to 1.7 ng/ l). In this case, the isotopic signature (1.165±0.002) is in equilibrium with the dissolved fraction, as previously found in other oligotrophic sites in the open ocean, where the suspended particles are mainly of biological origin and lead essentially authigenic in these particles.

  2. The RBE of 3.4 MeV alpha-particles and 0.565 MeV neutrons relative to 60Co gamma-rays for neoplastic transformation of human hybrid cells and the impact of culture conditions.

    Science.gov (United States)

    Frankenberg-Schwager, M; Spieren, S; Pralle, E; Giesen, U; Brede, H J; Thiemig, M; Frankenberg, D

    2010-01-01

    The neoplastic transformation of human hybrid CGL1 cells is affected by perturbations from external influences such as serum batch and concentration, the number of medium changes during the 21-day expression period and cell seeding density. Nevertheless, for doses up to 1.5 Gy, published transformation frequencies for low linear energy transfer (LET) radiations (gamma-rays, MeV electrons or photons) are in good agreement, whereas for higher doses larger variations are reported. The (60)Co gamma-ray data here for doses up to 1.5 Gy, using a low-yield serum batch and only one medium change, are in agreement with published frequencies of neoplastic transformation of human hybrid cells. For 3.4 MeV alpha-particles (LET = 124 keV/mum) and 0.565 MeV monoenergetic neutrons relative to low doses of (60)Co gamma-rays, a maximum relative biological effectiveness (RBE(M)) of 2.8 +/- 0.2 and 1.5 +/- 0.2, respectively, was calculated. Surprisingly, at higher doses of (60)Co gamma-rays lower frequencies of neoplastic transformation were observed. This non-monotonic dose relationship for neoplastic transformation by (60)Co gamma-rays is likely due to the lack of a G2/M arrest observed at low doses resulting in higher transformation frequencies per dose, whereas the lower frequencies per dose observed for higher doses are likely related to the induction of a G2/M arrest.

  3. Experimental investigations of electron capture from atomic hydrogen and deuterium by alpha particles. Annual progress report, 15 September 1991--14 September 1992

    Energy Technology Data Exchange (ETDEWEB)

    Gay, T.J.; Park, J.T.

    1992-11-01

    We report progress made during the period 15 September 1991--14 September 1992 on the project ``Experimental Investigations of Electron Capture from Atomic Hydrogen and Deuterium by Alpha Particles``. In the past year we have developed reliable, narrow energy spread, high-current sources of He{sup ++} based on direct-current magentron and electron-cyclotron resonance discharges. These sources have been proven on our test bench accelerator which has been upgraded to also allow us to test atomic hydrogen effusive targets. We have thus made substantial progress toward our goal of studying single electron capture from atomic hydrogen by doubly-ionized helium. A research plan for the upcoming year is also presented.

  4. Two Years of Chemical Sampling on Meridiani Planum by the Alpha Particle X-Ray Spectrometer Onboard the Mars Exploration Rover Opportunity

    Science.gov (United States)

    Bruckner, J.; Gellert, R.; Clark, B.C.; Dreibus, G.; Rieder, R.; Wanke, H.; d'Uston, C.; Economou, T.; Klingelhofer, G.; Lugmair, G.; Ming, D.W.; Squyres, S.W.; Yen, A.; Zipfel, J.

    2006-01-01

    For over two terrestrial years, the Mars Exploration Rover Opportunity has been exploring the martian surface at Meridiani Planum using the Athena instrument payload [1], including the Alpha Particle X-Ray Spectrometer (APXS). The APXS has a small sensor head that is mounted on the robotic arm of the rover. The chemistry, mineralogy and morphology of selected samples were investigated by the APXS along with the Moessbauer Spectrometer (MB) and the Microscopic Imager (MI). The Rock Abrasion Tool (RAT) provided the possibility to dust and/or abrade rock surfaces down to several millimeters to expose fresh material for analysis. We report here on APXS data gathered along the nearly 6-kilometers long traverse in craters and plains of Meridiani.

  5. Ionization signals from electrons and alpha-particles in mixtures of liquid Argon and Nitrogen - perspectives on protons for Gamma Resonant Nuclear Absorption applications

    CERN Document Server

    Zeller, M; Delaquis, S; Ereditato, A; Janos, S; Kreslo, I; Messina, M; Moser, U; Rossi, B

    2010-01-01

    In this paper we report on a detailed study of ionization signals produced by Compton electrons and alpha-particles in a Time Projection Chamber (TPC) flled with different mixtures of liquid Argon and Nitrogen. The measurements were carried out with Nitrogen concentrations up to 15% and a drift electric feld in the range 0-50 kV/cm. A prediction for proton ionization signals is made by means of interpolation. This study has been conducted in view of the possible use of liquid Ar-N2 TPCs for the detection of gamma-rays in the resonant band of the Nitrogen absorption spectrum, a promising technology for security and medical applications.

  6. Particle-in-cell simulations of an alpha channeling scenario: electron current drive arising from lower hybrid drift instability of fusion-born ions

    Science.gov (United States)

    Cook, James; Chapman, Sandra; Dendy, Richard

    2010-11-01

    Particle-in-cell (PIC) simulations of fusion-born protons in deuterium plasmas demonstrate a key alpha channeling phenomenon for tokamak fusion plasmas. We focus on obliquely propagating modes at the plasma edge, excited by centrally born fusion products on banana orbits, known to be responsible for observations of ion cyclotron emission in JET and TFTR. A fully self-consistent electromagnetic 1D3V PIC code evolves a ring-beam distribution of 3MeV protons in a 10keV thermal deuterium-electron plasma with realistic mass ratio. A collective instability occurs, giving rise to electromagnetic field activity in the lower hybrid range of frequencies. Waves spontaneously excited by this lower hybrid drift instability undergo Landau damping on resonant electrons, drawing out an asymmetric tail in the distribution of electron parallel velocities, which constitutes a net current. These simulations demonstrate a key building block of some alpha channeling scenarios: the direct collisionless coupling of fusion product energy into a form which can help sustain the equilibrium of the tokamak.

  7. Laser assisted {alpha} decay

    Energy Technology Data Exchange (ETDEWEB)

    Castaneda Cortes, Hector Mauricio

    2012-02-01

    Excited or short-lived nuclei often decay by emitting alpha particles that are assumed to be preformed inside the nucleus and confined in the nuclear potential well. In this picture, {alpha} decay refers to the tunneling of the alpha particle through the potential barrier. In this thesis we investigate for the first time how strong laser fields can assist the tunneling of the alpha particle and thus influence the nuclear decay. Generally speaking, laser-assisted {alpha} decay can be described as laser-assisted tunneling of a quasistationary state, i.e, a slowly decaying state. Our theoretical treatment is developed starting from the complex trajectory formulation of the well-known strong-field approximation used to describe laser-induced ionization. We extend this formulation and develop a method to treat the decay of quasistationary states. The effect of both static and optical and X-ray monochromatic fields on the lifetimes and {alpha}-particle emission spectra are investigated for a number of {alpha}-emitting nuclei. We find that even at strong intensities, the laser-induced acceleration of the {alpha} decay is negligible, ranging from a relative modification in the decay rate of 10{sup -3} for static fields of electric field strengths of 10{sup 15} V/m, to 10{sup -8} for strong optical fields with intensities of 10{sup 22} W/cm{sup 2}, and to 10{sup -6} for strong X-ray fields with laser intensities around 10{sup 24} W/cm{sup 2}. However, the effect of the external field is visible in the spectrum of emitted alpha particles, leading in the case of optical fields even to rescattering phenomena for intensities approaching 6 x 10{sup 22} W/cm{sup 2}. The dynamics of the alpha particle in laser fields of intensities below the rescattering limit is investigated.

  8. A novel solution for reducing the transfer of particles and gases among adjacent apartments

    DEFF Research Database (Denmark)

    Iqbal, Ahsan; Afshari, Alireza

    2016-01-01

    A unique type of fabric membrane has been developed by a Swedish company. That membrane is design to trap the emission from surfaces. To test the performance of the said membrane for trapping particles and gases, a study was conducted by the Danish Building Research Institute (SBi). The study...

  9. Irreversible three-heat-source refrigerator with heat transfer law of Q{alpha}{delta}(T{sup -1}) and its performance optimization based on ECOP criterion

    Energy Technology Data Exchange (ETDEWEB)

    Ngouateu Wouagfack, Paiguy Armand [University of Dschang, L2MSP, Department of Physics, PO Box 67, Dschang (Cameroon); Tchinda, Rene [University of Dschang, LISIE, University Institute of Technology Fotso Victor, PO Box 134, Bandjoun (Cameroon)

    2011-11-15

    The new thermo-ecological optimization of an absorption system for cooling applications operating between three temperature levels with the linear phenomenological heat transfer law of Q{alpha}{delta}(T{sup -} {sup 1}) has been performed by taking account the losses of heat resistance, internal irreversibility and leakage. The considered objective function is the ecological coefficient of performance (ECOP) and is defined as the cooling load per unit loss rate of availability. The comparative analysis with the ecological optimization criterion (E) defined in the literature and also with the cooling load optimization criterion (R) has been carried out to prove the utility of the new thermo-ecological optimization criterion (ECOP) for three-heat-source refrigerators with linear phenomenological heat transfer law. The results show that the three-heat-source refrigeration cycle working at maximum ECOP conditions has a significant advantage in terms of entropy production rate and coefficient of performance over the maximum E and maximum R conditions. The obtained results may provide a general theoretical tool for the thermo-ecological design of absorption refrigerator. (orig.)

  10. The study by means of a photomultiplier of the scintillations produced by {alpha} particles striking a zinc sulphide screen; Etude, au photomultiplicateur, des scintillations produites par les particules {alpha} dans un ecran de sulfure de zinc. Application a la numeration precise des particules {alpha}

    Energy Technology Data Exchange (ETDEWEB)

    Anthony, J.P. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1955-06-15

    The object of the study is the accurate counting of {alpha} particles by p-m. detection of their scintillations upon impact with a zinc sulphide screen. The main advantage of the method is the extreme simplicity of the electronics used: the possibility of obtaining a utilizable pulse from the p-m. (EMI5311) without any amplification, and in linear response, is demonstrated. The scintillation produced by an impact on Zn-S has also been studied experimentally. The decrease of light intensity in relation to time may be interpreted by the exponential relation: I = I{sub 0} exp (-t / {tau}) whereby {tau} = (39 {+-} 0,1) 10{sup -6} s. The relation between scintillation intensity and remaining trajectory after travel through a given air-space has also been determined. Possible suitable applications of this method of {alpha} counting are those where good stability and low background are necessary. Results stated bear on air contamination studies, isotopic composition variation measurement of uranium, bismuth content measurement in alloys by irradiation of specimens in a thermal neutron flux and {alpha} count on the Po formed. (author) [French] Ce travail est consacre a l'etude de la numeration precise des particules {alpha} par detection au photomultiplicateur des scintillations produites par ces particules dans un ecran de sulfure de zinc. Le principal avantage de cette methode reside dans l'extreme simplicite de l'appareillage electronique; il est en effet montre qu'il est possible, tout en convoyant une reponse lineaire, d'obtenir du photomultiplicateur (EMI5311) un signal electrique utilisable sans aucune amplification. La scintillation produite par l'impact des particules {alpha} sur un ecran de Zn-S est etudiee experimentalement. La decroissance de l'intensite lumineuse en fonction du temps est interpretable par la relation exponentielle I = I{sub 0} exp (-t / {tau}) avec {tau} = (39 {+-} 0,1) 10{sup -6} s. La relation entre l

  11. Dexamethasone/1alpha-25-dihydroxyvitamin D3-treated dendritic cells suppress colitis in the SCID T-cell transfer model

    DEFF Research Database (Denmark)

    Pedersen, Anders Elm; Schmidt, Esben Gjerløff Wedebye; Gad, Monika

    2008-01-01

    severe combined immunodeficient (SCID) mice adoptively transferred with CD4(+) CD25(-) T cells from the development of wasting disease and colitis. We therefore established an in vitro test that could predict the in vivo function of DCs and improve strategies for the preparation of immunomodulatory DCs...... in this model. Based on these in vitro findings, we here evaluate three methods for DC generation including short-term and long-term IL-10 exposure or DC exposure to dexamethasone in combination with vitamin D3 (Dex/D3). All DCs resulted in lower CD4(+) CD25(-) T-cell enteroantigen-specific responses in vitro...

  12. Spin angular momentum transfer from TEM(00) focused Gaussian beams to negative refractive index spherical particles.

    Science.gov (United States)

    Ambrosio, Leonardo A; Hernández-Figueroa, Hugo E

    2011-08-01

    We investigate optical torques over absorbent negative refractive index spherical scatterers under the influence of linear and circularly polarized TEM(00) focused Gaussian beams, in the framework of the generalized Lorenz-Mie theory with the integral localized approximation. The fundamental differences between optical torques due to spin angular momentum transfer in positive and negative refractive index optical trapping are outlined, revealing the effect of the Mie scattering coefficients in one of the most fundamental properties in optical trapping systems.

  13. Energy resolution of alpha particles in a microbulk Micromegas detector at high pressure Argon and Xenon mixtures

    CERN Document Server

    Dafni, T; Giomataris, Yu; Gorodetzky, Ph; Iguaz, F; Irastorza, I G; Salin, P; Tomas, A

    2009-01-01

    The latest Micromesh Gas Amplification Structures (Micromegas) are achieving outstanding energy resolution for low energy photons, with values as low as 11\\% FWHM for the 5.9 keV line of $^{55}$Fe in argon/isobutane mixtures at atmospheric pressure. At higher energies (MeV scale), these measurements are more complicated due to the difficulty in confining the events in the chamber, although there is no fundamental reason why resolutions of 1\\% FWHM or below could not be reached. There is much motivation to demonstrate experimentally this fact in Xe mixtures due to the possible application of Micromegas readouts to the Double Beta Decay search of $^{136}$Xe, or in other experiments needing calorimetry and topology in the same detector. In this paper, we report on systematic measurements of energy resolution with state-of-the-art Micromegas using a 5.5 MeV alpha source in high pressure Ar/isobutane mixtures. Values as low as 1.8\\% FWHM have been obtained, with possible evidence that better resolutions are achiev...

  14. Preparation and optimization of CdWO4-polymer nano-composite film as an alpha particle counter

    Science.gov (United States)

    Ziluei, Hossein; Azimirad, Rouhollah; Mojtahedzadeh Larijani, Majid; Ziaie, Farhoud

    2017-04-01

    In this research work, CdWO4/polymer composite films with different thicknesses were prepared using Poly-methyl acrylate polymer and synthesized CdWO4 powder. The CdWO4 powder was synthesized by a simple co-precipitation method in the laboratory. X-ray diffraction, photoluminescence, Fourier transformed infrared spectroscopy and energy-dispersive X-ray spectroscopy proved that the CdWO4 powder was successfully prepared. Moreover, photoluminescence analysis showed that adding polymer does not change the emission peak of CdWO4. Also, the responses of all samples were measured using an 241Am alpha source with 1860 Bq activity. Results showed that the sample having thickness of 177 mg/cm2 has the best counting efficiency (over 2π geometry) among the others. The efficiency measurement was further evaluated using a 230Th source whose activity is 190.7 Bq. It revealed that the counting efficiency of this sample for both 241Am and 230Th was nearly equal.

  15. Reduction in biomass burning aerosol light absorption upon humidification: Roles of inorganically-induced hygroscopicity, particle collapse, and photoacoustic heat and mass transfer

    Energy Technology Data Exchange (ETDEWEB)

    lewis, Kristen A.; Arnott, W. P.; Moosmuller, H.; Chakrabarti, Raj; Carrico, Christian M.; Kreidenweis, Sonia M.; Day, Derek E.; Malm, William C.; Laskin, Alexander; Jimenez, Jose L.; Ulbrich, Ingrid M.; Huffman, John A.; Onasch, Timothy B.; Trimborn, Achim; Liu, Li; Mishchenko, M.

    2009-11-27

    Smoke particle emissions from the combustion of biomass fuels typical for the western and southeastern United States were studied and compared under high humidity and ambient conditions in the laboratory. The fuels used are Montana ponderosa pine (Pinus ponderosa), southern California chamise (Adenostoma fasciculatum), and Florida saw palmetto (Serenoa repens). Information on the non-refractory chemical composition of biomass burning aerosol from each fuel was obtained with an aerosol mass spectrometer and through estimation of the black carbon concentration from light absorption measurements at 870 nm. Changes in the optical and physical particle properties under high humidity conditions were observed for hygroscopic smoke particles containing substantial inorganic mass fractions that were emitted from combustion of chamise and palmetto fuels. Light scattering cross sections increased under high humidity for these particles, consistent with the hygroscopic growth measured for 100 nm particles in HTDMA measurements. Photoacoustic measurements of aerosol light absorption coefficients reveal a 20% reduction with increasing relative humidity, contrary to the expectation of light absorption enhancement by the liquid coating taken up by hygroscopic particles. This reduction is hypothesized to arise from two mechanisms: 1. Shielding of inner monomers after particle consolidation or collapse with water uptake; 2. The contribution of mass transfer through evaporation and condensation at high relative humidity to the usual heat transfer pathway for energy release by laser heated particles in the photoacoustic measurement of aerosol light absorption. The mass transfer contribution is used to evaluate the fraction of aerosol surface covered with liquid water solution as a function of RH.

  16. Coefficient of solid-gas heat transfer in particle fixed bed; Coeficiente de transferencia de calor gas-solido em leito fixo de particulas

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes Filho, Francisco

    1991-03-01

    The work presents a study on heat transfer between gas and solid phases for fixed beds in the absence of mass transfer and chemical reactions. Mathematical models presented in the literature were analyzed concerning to the assumptions made on axial dispersion in the fluid phase and interparticle thermal conductivity. Heat transfer coefficients and their dependency on flow conditions, particles and packed bed characteristics were experimentally determined through the solution of the previous mathematical models. Pressure drop behaviour for the packed beds used for the heat transfer study was also included. (author) 32 refs., 12 figs.

  17. Ionization Cluster Size Distributions Created by Low Energy Electrons and Alpha Particles in Nanometric Track Segment in Gases

    CERN Document Server

    Bantsar, Aliaksandr

    2012-01-01

    The interaction of ionizing radiation with nanometric targets is a field of interest for many branches of science such as: radiology, oncology, radiation protection and nanoelectronics. A new experimental technique known as nanodosimetry has been developed for the qualitative as well as quantitative description of these types of interactions. The work presented here is a contribution to this development, namely by further improvement of the new experimental technique called the Jet Counter, originally developed at the Andrzej So{\\l}tan Institute for Nuclear Studies. The Jet Counter is a unique device in the world for studying the interaction of low energy electrons with nanometer targets in the range 2-10 nm (in unit density). The basic experimental result is the frequency distribution of ionization cluster size produced by ionizing particles in a gaseous (nitrogen or propane) nanometric track segment. The first experimental data on the frequency distribution of ionization cluster size produced by low energy ...

  18. alpha-dl-Difluoromethylornithine, a Specific, Irreversible Inhibitor of Putrescine Biosynthesis, Induces a Phenotype in Tobacco Similar to That Ascribed to the Root-Inducing, Left-Hand Transferred DNA of Agrobacterium rhizogenes.

    Science.gov (United States)

    Burtin, D; Martin-Tanguy, J; Tepfer, D

    1991-02-01

    alpha-dl-Difluoromethylarginine (DFMA) and alpha-dl-difluoromethylornithine (DFMO), specific irreversible inhibitors of putrescine biosynthesis were applied to Nicotiana tabacum var. Xanthi nc during floral induction. DFMO, but not DFMA, induced a phenotype in tobacco that resembles the transformed phenotype attributed to the root-inducing, left-hand, transferred DNA of Agrobacterium rhizogenes, including wrinkled leaves, shortened internodes, reduced apical dominance, and retarded flowering. Similar treatment of transformed plants (T phenotype) accentuated their phenotypic abnormalities. Cyclohexylammonium and methylglyoxal bis (guanylhydrazone), inhibitors of spermidine and spermine biosynthesis, produced reproductive abnormalities, but did not clearly mimic the transformed phenotype. This work strengthens the previously reported correlation between the degree of expression of the transformed phenotype due to the root-inducing, left-hand, transferred DNA and inhibition of polyamine accumulation, strongly suggesting that genes carried by the root-inducing, transferred DNA may act through interference with polyamine production via the ornithine pathway.

  19. Non-invasive Bioluminescence Imaging of Myoblast-Mediated Hypoxia-Inducible Factor-1 Alpha Gene Transfer

    Science.gov (United States)

    Gheysens, Olivier; Chen, Ian Y.; Rodriguez-Porcel, Martin; Chan, Carmel; Rasooly, Julia; Vaerenberg, Caroline; Paulmurugan, Ramasamy; Willmann, Juergen K.; Deroose, Christophe; Wu, Joseph; Gambhir, Sanjiv S.

    2011-01-01

    Purpose We tested a novel imaging strategy, in which both the survival of transplanted myoblasts and their therapeutic transgene expression, a recombinant hypoxia-inducible factor-1α (HIF-1α-VP2), can be monitored using firefly luciferase (fluc) and Renilla luciferase (hrl) bioluminescence reporter genes, respectively. Procedures The plasmid pUbi-hrl-pUbi-HIF-1α-VP2, which expresses both hrl and HIF-1α-VP2 using two ubiquitin promoters, was characterized in vitro. C2c12 myoblasts stably expressing fluc and transiently transfected with pUbi-hrl-pUbi-HIF-1α-VP2 were injected into the mouse hindlimb. Both hrl and fluc expression were monitored using bioluminescence imaging (BLI). Results Strong correlations existed between the expression of hRL and each of HIF-1α-VP2, VEGF, and PlGF (r2>0.83, r2>0.82, and r2>0.97, respectively). In vivo, both transplanted cells and HIF-1α-VP2 transgene expression were successfully imaged using BLI. Conclusions An objective evaluation of myoblast-mediated gene transfer in living mice can be performed by monitoring both the survival and the transgene expression of transplanted myoblasts using the techniques developed herein. PMID:21267661

  20. Effects of thermophoresis particle deposition and of the thermal conductivity in a porous plate with dissipative heat and mass transfer

    Institute of Scientific and Technical Information of China (English)

    Joaquín Zueco; O. Anwar Bég; L.M. López-Ochoa

    2011-01-01

    Network simulation method (NSM) is used to solve the laminar heat and mass transfer of an electricallyconducting, heat generating/absorbing fluid past a perforated horizontal surface in the presence of viscous and Joule heating problem. The governing partial differential equations are non-dimensionalized and transformed into a system of nonlinear ordinary differential similarity equations, in a single independent variable, η. The resulting coupled, nonlinear equations are solved under appropriate transformed boundary conditions. Computations are performed for a wide range of the governing flow parameters, viz Prandtl number, thermophoretic coefficient (a function of Knudsen number), thermal conductivity parameter, wall transpiration parameter and Schmidt number. The numerical details are discussed with relevant applications. The present problem finds applications in optical fiber fabrication, aerosol filter precipitators, particle deposition on hydronautical blades, semiconductor wafer design, thermo-electronics and problems including nuclear reactor safety.

  1. Particle number fluctuations and correlations in transfer reactions obtained using the Balian-Veneroni variational principle

    CERN Document Server

    Simenel, Cédric

    2010-01-01

    The Balian-Veneroni (BV) variational principle, which optimizes the evolution of the state according to the relevant observable in a given variational space, is used at the mean-field level to determine the particle number fluctuations in fragments of many-body systems. For fermions, the numerical evaluation of such fluctuations requires the use of a time-dependent Hartree-Fock (TDHF) code. Proton, neutron and total nucleon number fluctuations in fragments produced in collisions of two $^{40}$Ca nuclei are computed for a large range of angular momenta at a center of mass energy $E_{cm}=128$ MeV, well above the fusion barrier. For deep-inelastic collisions, the fluctuations calculated from the BV variational principle are much larger than standard TDHF results. For the first time, a good reproduction of mass and charge experimental fluctuations is obtained, and the correlations between proton and neutron numbers are determined, within a quantum microscopic approach.

  2. A fast Eulerian multiphase flow model for volcanic ash plumes: turbulence, heat transfer and particle non-equilibrium dynamics.

    Science.gov (United States)

    Cerminara, Matteo; Esposti Ongaro, Tomaso; Carlo Berselli, Luigi

    2014-05-01

    We have developed a compressible multiphase flow model to simulate the three-dimensional dynamics of turbulent volcanic ash plumes. The model describes the eruptive mixture as a polydisperse fluid, composed of different types of gases and particles, treated as interpenetrating Eulerian phases. Solid phases represent the discrete ash classes into which the total granulometric spectrum is discretized, and can differ by size and density. The model is designed to quickly and accurately resolve important physical phenomena in the dynamics of volcanic ash plumes. In particular, it can simulate turbulent mixing (driving atmospheric entrainment and controlling the heat transfer), thermal expansion (controlling the plume buoyancy), the interaction between solid particles and volcanic gas (including kinetic non-equilibrium effects) and the effects of compressibility (over-pressured eruptions and infrasonic measurements). The model is based on the turbulent dispersed multiphase flow theory for dilute flows (volume concentration <0.001, implying that averaged inter-particle distance is larger than 10 diameters) where particle collisions are neglected. Moreover, in order to speed up the code without losing accuracy, we make the hypothesis of fine particles (Stokes number <0.2 , i.e., volcanic ash particles finer then a millimeter), so that we are able to consider non-equilibrium effects only at the first order. We adopt LES formalism (which is preferable in transient regimes) for compressible flows to model the non-linear coupling between turbulent scales and the effect of sub-grid turbulence on the large-scale dynamics. A three-dimensional numerical code has been developed basing on the OpenFOAM computational framework, a CFD open source parallel software package. Numerical benchmarks demonstrate that the model is able to capture important non-equilibrium phenomena in gas-particle mixtures, such as particle clustering and ejection from large-eddy turbulent structures, as well

  3. Calibrating cosmological radiative transfer simulations with Lyman alpha forest data: Evidence for large spatial UV background fluctuations at z ~ 5.6 - 5.8 due to rare bright sources

    CERN Document Server

    Chardin, Jonathan; Aubert, Dominique; Puchwein, Ewald

    2015-01-01

    We calibrate here cosmological radiative transfer simulation with ATON/RAMSES with a range of measurements of the Lyman alpha opacity from QSO absorption spectra. We find the Lyman alpha opacity to be very sensitive to the exact timing of hydrogen reionisation. Models reproducing the measured evolution of the mean photoionisation rate and average mean free path reach overlap at z ~ 7 and predict an accelerated evolution of the Lyman alpha opacity at z > 6 consistent with the rapidly evolving luminosity function of Lyman alpha emitters in this redshift range. Similar to "optically thin" simulations our full radiative transfer simulations fail, however, to reproduce the high-opacity tail of the Lyman alpha opacity PDF at z > 5. We argue that this is due to spatial UV fluctuations in the post-overlap phase of reionisation on substantially larger scales than predicted by our source model, where the ionising emissivity is dominated by large numbers of sub-L* galaxies. We further argue that this suggests a signific...

  4. Retrovirus-mediated gene transfer of the cytokine genes interleukin-1beta and tumor necrosis factor-alpha into human neuroblastoma cells: consequences for cell line behavior and immunomodulatory properties.

    Science.gov (United States)

    Coze, C; Leimig, T; Jimeno, M T; Mannoni, P

    2001-03-01

    We have investigated the value of a gene therapy approach for neuroblastoma (NB), based on retroviral transduction of the IL-1beta or TNF-alpha cytokine genes into human NB lines. Secretion of the corresponding cytokine, was demonstrated in all lines, although with considerable quantitative variations. Cytokine gene expression significantly reduced the proliferation index (p = 0.0001); this effect was associated with either terminal neuronal (one TNF-alpha line) or fibroblast-like differentiation (two IL-1beta lines), leading to growth arrest after a few weeks. Cell surface levels of CD54 and HLA class II remained unaffected, but HLA class I (p < 0.001) and CD58 expression (p = 0.01) increased on SKNSH after TNF-alpha gene transfer. Mononuclear cells from normal allogeneic donors cocultured with both IL-1beta (p < 0.001) and TNF-alpha lines (p < 0.01), showed a significant increase in the proportion of activated T cells (CD3+DR+); however, their cytotoxicity and proliferation rate remained unchanged. Immunotherapy of neuroblastoma will require identification of transduced lines in which cytokine secretion induces phenotypic changes in such a way as to augment their likely immunomodulatory properties without impeding cell growth. Because of the limited efficacy of IL-1beta or TNF-alpha gene transfer alone, further studies should focus on combination with other immunomodulatory agents, to improve their potential efficacy in neuroblastoma.

  5. Abnormal promoter methylation of multiple genes in the malignant transformed PEP2D cells induced by alpha particles exposure

    Institute of Scientific and Technical Information of China (English)

    LiP; SuiJL

    2002-01-01

    The 5' promoter regions of some genes contain CpG-rich areas,known as CpG islands,Methylation of the cytosine in these dinuleotides has important regulatory effects on gene expression.The functional significance of promoter hypermethylation would play the same roles in carcinogenesis as gene mutations.The promoter methylations p14ARF,p16INK4a,MGMT,GSTP1,BUB3 and DAPK genes were analyzed with methylation specific PCR(MSP) in the transformed human bronchial epithelial cells(BEP2D) induced by α-particles.The results indicated that p14ARF gene was not methylated in BEP2D cells,but was methylated in the malignant transformed BERP35T-1 cells,and the level of its transcription was depressed remarkable in the latter.However p16INK4a gene,which shares two exons with p14ARF gene,was not methylated.MGMT gene was methylated in both BEP2D and BERP35T-1.DAPK gene was partially methylated in BEP2D cells and methylated completely in BERP35T1.GSTP1 was not methylated in BEP2D cells and was methylated partly in BERP35T-1.BUB3 gene was not methylated in BEP2D as well as BERP35T1 cells and was further proved by sequencing analysis.

  6. Validity of intra-particle models of mass transfer kinetics in the analysis of a fin-tube type adsorption bed

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sang Woo; Ahn, Sang Hyeok; Chung, Jae Dong [Sejong University, Seoul (Korea, Republic of); Kwon, Oh Kyung [Korea Institute of Industrial Technology, Chonan (Korea, Republic of)

    2014-05-15

    This study presents a numerical investigation of the heat and mass transfer kinetics of a fin-tube type adsorption bed using a two dimensional numerical model with silica-gel/water as the adsorbent and refrigerant pair. The performance is strongly affected by the heat and mass transfer in the adsorption bed, but the details of the mass transfer kinetics remain unclear. The validity of intra-particle models used to simulate mass transfer kinetics such as the equilibrium, LDF, and solid-diffusion models are examined, and the valid ranges of the diffusion ratio for each model are proposed. An intra-particle diffusion model should be carefully implemented; otherwise, seriously distorted results may be produced, i.e., over-estimation for the equilibrium model and under estimation for the LDF model.

  7. Two-source emission of relativistic alpha particles in 16O-Em interactions at 3.7 A GeV

    Institute of Scientific and Technical Information of China (English)

    Song Fu; Zhang Dong-Hai; Li Jun-Sheng

    2005-01-01

    The emission of alpha projectile fragments has been studied in 16O-emulsion interactions at 3.7 A GeV. The angular distributions of relativistic alphas cannot be explained by a clean-cut participant-spectator model. Therefore it is assumed that alphas originate from two distinct sources differing in their temperatures.

  8. Heat transfer analysis on peristaltically induced motion of particle-fluid suspension with variable viscosity: Clot blood model.

    Science.gov (United States)

    Bhatti, M M; Zeeshan, A; Ellahi, R

    2016-12-01

    In this article, heat transfer analysis on clot blood model of the particle-fluid suspension through a non-uniform annulus has been investigated. The blood propagating along the whole length of the annulus was induced by peristaltic motion. The effects of variable viscosity and slip condition are also taken into account. The governing flow problem is modeled using lubrication approach by taking the assumption of long wavelength and creeping flow regime. The resulting equation for fluid phase and particle phase is solved analytically and closed form solutions are obtained. The physical impact of all the emerging parameters is discussed mathematically and graphically. Particularly, we considered the effects of particle volume fraction, slip parameter, the maximum height of clot, viscosity parameter, average volume flow rate, Prandtl number, Eckert number and fluid parameter on temperature profile, pressure rise and friction forces for outer and inner tube. Numerical computations have been used to determine the behavior of pressure rise and friction along the whole length of the annulus. The present study is also presented for an endoscope as a special case of our study. It is observed that greater influence of clot tends to rise the pressure rise significantly. It is also found that temperature profile increases due to the enhancement in Prandtl number, Eckert number, and fluid parameter. The present study reveals that friction forces for outer tube have higher magnitude as compared to the friction forces for an inner tube. In fact, the results for present study can also be reduced to the Newtonian fluid by taking ζ → ∞.

  9. Fokker-Planck Equation for Boltzmann-type and Active Particles transfer probability approach

    CERN Document Server

    Trigger, S A

    2002-01-01

    Fokker-Planck equation with the velocity-dependent coefficients is considered for various isotropic systems on the basis of probability transition (PT) approach. This method provides the self-consistent and universal description of friction and diffusion for Brownian particles. Renormalization of the friction coefficient is shown to occur for two dimensional (2-D) and three dimensional (3-D) cases, due to the tensorial character of diffusion. The specific forms of PT are calculated for the Boltzmann-type of collisions and for the absorption-type of collisions (the later are typical for dusty plasmas and some other systems). Validity of the Einstein's relation for the Boltzmann-type collisions is proved for the velocity-dependent friction and diffusion coefficients. For non-Boltzmann collisions, such as, e.g., absorption collisions, the Einstein relation is violated, although some other relations (determined by the structure of PT) can exist. The collecting part of the ion drag force in a dusty plasma, arising...

  10. Structural basis of carbohydrate transfer activity by human UDP-GalNAc: polypeptide alpha-N-acetylgalactosaminyltransferase (pp-GalNAc-T10).

    Science.gov (United States)

    Kubota, Tomomi; Shiba, Tomoo; Sugioka, Shigemi; Furukawa, Sanae; Sawaki, Hiromichi; Kato, Ryuich; Wakatsuki, Soichi; Narimatsu, Hisashi

    2006-06-01

    Mucin-type O-glycans are important carbohydrate chains involved in differentiation and malignant transformation. Biosynthesis of the O-glycan is initiated by the transfer of N-acetylgalactosamine (GalNAc) which is catalyzed by UDP-GalNAc:polypeptide alpha-N-acetylgalactosaminyltransferases (pp-GalNAc-Ts). Here we present crystal structures of the pp-GalNAc-T10 isozyme, which has specificity for glycosylated peptides, in complex with the hydrolyzed donor substrate UDP-GalNAc and in complex with GalNAc-serine. A structural comparison with uncomplexed pp-GalNAc-T1 suggests that substantial conformational changes occur in two loops near the catalytic center upon donor substrate binding, and that a distinct interdomain arrangement between the catalytic and lectin domains forms a narrow cleft for acceptor substrates. The distance between the catalytic center and the carbohydrate-binding site on the lectin beta sub-domain influences the position of GalNAc glycosylation on GalNAc-glycosylated peptide substrates. A chimeric enzyme in which the two domains of pp-GalNAc-T10 are connected by a linker from pp-GalNAc-T1 acquires activity toward non-glycosylated acceptors, identifying a potential mechanism for generating the various acceptor specificities in different isozymes to produce a wide range of O-glycans.

  11. Alpha Thalassemia

    Science.gov (United States)

    Alpha Thalassemia Physicians often mistake alpha thalassemia trait for iron deficiency anemia and incorrectly prescribe iron supplements that have no effect 1 on the anemia. αα αα Normal alpha ...

  12. Evidence of extranuclear cell sensitivity to alpha-particle radiation using a microdosimetric model. I. Presentation and validation of a microdosimetric model.

    Science.gov (United States)

    Chouin, N; Bernardeau, K; Davodeau, F; Chérel, M; Faivre-Chauvet, A; Bourgeois, M; Apostolidis, C; Morgenstern, A; Lisbona, A; Bardiès, M

    2009-06-01

    A microdosimetric model that makes it possible to consider the numerous biological and physical parameters of cellular alpha-particle irradiation by radiolabeled mAbs was developed. It allows for the calculation of single-hit and multi-hit distributions of specific energy within a cell nucleus or a whole cell in any irradiation configuration. Cells are considered either to be isolated or to be packed in a monolayer or a spheroid. The method of calculating energy deposits is analytical and is based on the continuous-slowing-down approximation. A model of cell survival, calculated from the microdosimetric spectra and the microdosimetric radiosensitivity, z(0), was also developed. The algorithm of calculations was validated by comparison with two general Monte Carlo codes: MCNPX and Geant4. Microdosimetric spectra determined by these three codes showed good agreement for numerous geometrical configurations. The analytical method was far more efficient in terms of calculation time: A gain of more than 1000 was observed when using our model compared with Monte Carlo calculations. Good agreements were also observed with previously published results.

  13. Excitation function of the alpha particle induced nuclear reactions on enriched 116Cd, production of the theranostic isotope 117mSn

    Science.gov (United States)

    Ditrói, F.; Takács, S.; Haba, H.; Komori, Y.; Aikawa, M.; Szűcs, Z.; Saito, M.

    2016-10-01

    117mSn is one of the radioisotopes can be beneficially produced through alpha particle irradiation. The targets were prepared by deposition of 116Cd metal onto high purity 12 μm thick Cu backing. The average deposited thickness was 21.9 μm. The beam energy was thoroughly measured by Time of Flight (TOF) methods and proved to be 51.2 MeV. For the experiment the well-established stacked foil technique was used. In addition to the Cd targets, Ti foils were also inserted into the stacks for energy and intensity monitoring. The Cu backings were also used for monitoring and as recoil catcher of the reaction products from the cadmium layer. The activities of the irradiated foils were measured with HPGe detector for gamma-ray spectrometry and cross section values were determined. As a result excitation functions for the formation of 117mSn, 117m,gIn, 116mIn, 115mIn and 115m,gCd from enriched 116Cd were deduced and compared with the available literature data and with the results of the nuclear reaction model code calculations EMPIRE 3.2 and TALYS 1.8. Yield curves were also deduced for the measured nuclear reactions and compared with the literature.

  14. Excitation function of the alpha particle induced nuclear reactions on enriched $^{116}$Cd, production of the theranostic isotope $^{117m}$Sn

    CERN Document Server

    Ditrói, F; Haba, H; Komori, Y; Aikawa, M; Szűcs, Z; Saito, M

    2016-01-01

    $^{117m}$Sn is one of the radioisotopes can be beneficially produced through alpha particle irradiation. The targets were prepared by deposition of $^{116}$Cd metal onto high purity 12 $\\mu$m thick Cu backing. The average deposited thickness was 21.9 $\\mu$m. The beam energy was thoroughly measured by Time of Flight (TOF) methods and proved to be 51.2 MeV. For the experiment the well-established stacked foil technique was used. In addition to the Cd targets, Ti foils were also inserted into the stacks for energy and intensity monitoring. The Cu backings were also used for monitoring and as recoil catcher of the reaction products from the cadmium layer. The activities of the irradiated foils were measured with HPGe detector for gamma-ray spectrometry and cross section values were determined. As a result excitation functions for the formation of $^{117m}$Sn, $^{117m,g}$In, $^{116m}$In, $^{115m}$In and $^{115m,g}$Cd from enriched $^{116}$Cd were deduced and compared with the available literature data and with the...

  15. Evaluation of nuclear reaction cross section data for the production of (87)Y and (88)Y via proton, deuteron and alpha-particle induced transmutations.

    Science.gov (United States)

    Zaneb, H; Hussain, M; Amjad, N; Qaim, S M

    2016-06-01

    Proton, deuteron and alpha-particle induced reactions on (87,88)Sr, (nat)Zr and (85)Rb targets were evaluated for the production of (87,88)Y. The literature data were compared with nuclear model calculations using the codes ALICE-IPPE, TALYS 1.6 and EMPIRE 3.2. The evaluated cross sections were generated; therefrom thick target yields of (87,88)Y were calculated. Analysis of radio-yttrium impurities and yield showed that the (87)Sr(p, n)(87)Y and (88)Sr(p, n)(88)Y reactions are the best routes for the production of (87)Y and (88)Y respectively. The calculated yield for the (87)Sr(p, n)(87)Y reaction is 104 MBq/μAh in the energy range of 14→2.7MeV. Similarly, the calculated yield for the (88)Sr(p, n)(88)Y reaction is 3.2 MBq/μAh in the energy range of 15→7MeV.

  16. Effects of 5.4 MeV alpha-particle irradiation on the electrical properties of nickel Schottky diodes on 4H–SiC

    Energy Technology Data Exchange (ETDEWEB)

    Omotoso, E. [Department of Physics, University of Pretoria, Private Bag X20, Hatfield 0028 (South Africa); Department of Physics, Obafemi Awolowo University, Ile-Ife 220005 (Nigeria); Meyer, W.E.; Auret, F.D.; Paradzah, A.T.; Diale, M.; Coelho, S.M.M.; Janse van Rensburg, P.J.; Ngoepe, P.N.M. [Department of Physics, University of Pretoria, Private Bag X20, Hatfield 0028 (South Africa)

    2015-12-15

    Current–voltage, capacitance–voltage and conventional deep level transient spectroscopy at temperature ranges from 40 to 300 K have been employed to study the influence of alpha-particle irradiation from an {sup 241}Am source on Ni/4H–SiC Schottky contacts. The nickel Schottky barrier diodes were resistively evaporated on n-type 4H–SiC samples of doping density of 7.1 × 10{sup 15} cm{sup −3}. It was observed that radiation damage caused an increase in ideality factors of the samples from 1.04 to 1.07, an increase in Schottky barrier height from 1.25 to 1.31 eV, an increase in series resistance from 48 to 270 Ω but a decrease in saturation current density from 55 to 9 × 10{sup −12} A m{sup −2} from I–V plots at 300 K. The free carrier concentration of the sample decreased slightly after irradiation. Conventional DLTS showed peaks due to four deep levels for as-grown and five deep levels after irradiation. The Richardson constant, as determined from a modified Richardson plot assuming a Gaussian distribution of barrier heights for the as-grown and irradiated samples were 133 and 151 A cm{sup −2} K{sup −2}, respectively. These values are similar to literature values.

  17. Stopping power and energy loss straggling of thin Formvar foil for 0.3-2.7 MeV protons and alpha particles

    Science.gov (United States)

    Mammeri, S.; Ammi, H.; Dib, A.; Pineda-Vargas, C. A.; Ourabah, S.; Msimanga, M.; Chekirine, M.; Guesmia, A.

    2012-12-01

    Stopping power and energy loss straggling data for protons (1H+) and alpha particles (4He+) crossing Formvar thin polymeric foils (thickness of ˜0.3 μm) have been measured in the energy range (0.3-2.7) MeV by using the indirect transmission technique. The determined stopping power data were compared to SRIM-2010, PSTAR or ASTAR calculation codes and then analyzed in term of the modified Bethe-Bloch theory to extract the target mean excitation and ionization potential . A resulting value of ≈(69.2±1.8) eV was deduced from proton stopping data. The measured straggling data were corrected from surface roughness effects due to target thickness inhomogeneity observed by the atomic force microscopy (AFM) technique. The obtained data were then compared to derived straggling values by Bohr's and Bethe-Livingston's classical theories or by Yang's empirical formula. A deviation of ˜40%-80% from the Bohr's straggling value has been observed for all reported energies, suggesting that the Bohr theory cannot be correctly applied to describe the electronic energy loss straggling process with the used low thickness of Formvar foil. The inner-shell contribution of target electrons to energy loss process is also advanced to explain the observed deviation from experiment in case of He+ ions. Finally, the reliability of Bragg's additivity rule was discussed in case of stopping power and straggling results.

  18. Electrical characterization of 5.4 MeV alpha-particle irradiated 4H-SiC with low doping density

    Energy Technology Data Exchange (ETDEWEB)

    Paradzah, A.T.; Auret, F.D.; Legodi, M.J.; Omotoso, E.; Diale, M.

    2015-09-01

    Nickel Schottky diodes were fabricated on 4H-SiC. The diodes had excellent current rectification with about ten orders of magnitude between −50 V and +2 V. The ideality factor was obtained as 1.05 which signifies the dominance of the thermionic emission process in charge transport across the barrier. Deep level transient spectroscopy revealed the presence of four deep level defects in the 30–350 K temperature range. The diodes were then irradiated with 5.4 MeV alpha particles up to fluence of 2.6 × 10{sup 10} cm{sup −2}. Current–voltage and capacitance–voltage measurements revealed degraded diode characteristics after irradiation. DLTS revealed the presence of three more energy levels with activation enthalpies of 0.42 eV, 0.62 eV and 0.76 eV below the conduction band. These levels were however only realized after annealing the irradiated sample at 200 °C and they annealed out at 400 °C. The defect depth concentration was determined for some of the observed defects.

  19. Computational investigation of longitudinal diffusion, eddy dispersion, and trans-particle mass transfer in bulk, random packings of core-shell particles with varied shell thickness and shell diffusion coefficient.

    Science.gov (United States)

    Daneyko, Anton; Hlushkou, Dzmitry; Baranau, Vasili; Khirevich, Siarhei; Seidel-Morgenstern, Andreas; Tallarek, Ulrich

    2015-08-14

    In recent years, chromatographic columns packed with core-shell particles have been widely used for efficient and fast separations at comparatively low operating pressure. However, the influence of the porous shell properties on the mass transfer kinetics in core-shell packings is still not fully understood. We report on results obtained with a modeling approach to simulate three-dimensional advective-diffusive transport in bulk random packings of monosized core-shell particles, covering a range of reduced mobile phase flow velocities from 0.5 up to 1000. The impact of the effective diffusivity of analyte molecules in the porous shell and the shell thickness on the resulting plate height was investigated. An extension of Giddings' theory of coupled eddy dispersion to account for retention of analyte molecules due to stagnant regions in porous shells with zero mobile phase flow velocity is presented. The plate height equation involving a modified eddy dispersion term excellently describes simulated data obtained for particle-packings with varied shell thickness and shell diffusion coefficient. It is confirmed that the model of trans-particle mass transfer resistance of core-shell particles by Kaczmarski and Guiochon [42] is applicable up to a constant factor. We analyze individual contributions to the plate height from different mass transfer mechanisms in dependence of the shell parameters. The simulations demonstrate that a reduction of plate height in packings of core-shell relative to fully porous particles arises mainly due to reduced trans-particle mass transfer resistance and transchannel eddy dispersion.

  20. Alpha voltaic batteries and methods thereof

    Science.gov (United States)

    Raffaelle, Ryne P. (Inventor); Jenkins, Phillip (Inventor); Wilt, David (Inventor); Scheiman, David (Inventor); Chubb, Donald (Inventor); Castro, Stephanie (Inventor)

    2011-01-01

    An alpha voltaic battery includes at least one layer of a semiconductor material comprising at least one p/n junction, at least one absorption and conversion layer on the at least one layer of semiconductor layer, and at least one alpha particle emitter. The absorption and conversion layer prevents at least a portion of alpha particles from the alpha particle emitter from damaging the p/n junction in the layer of semiconductor material. The absorption and conversion layer also converts at least a portion of energy from the alpha particles into electron-hole pairs for collection by the one p/n junction in the layer of semiconductor material.

  1. Wave-particle Interactions In Rotating Mirrors

    Energy Technology Data Exchange (ETDEWEB)

    Abraham J. Fetterman and Nathaniel J. Fisch

    2011-01-11

    Wave-particle interactions in E×B rotating plasmas feature an unusual effect: particles are diffused by waves in both potential energy and kinetic energy. This wave-particle interaction generalizes the alpha channeling effect, in which radio frequency waves are used to remove alpha particles collisionlessly at low energy. In rotating plasmas, the alpha particles may be removed at low energy through the loss cone, and the energy lost may be transferred to the radial electric field. This eliminates the need for electrodes in the mirror throat, which have presented serious technical issues in past rotating plasma devices. A particularly simple way to achieve this effect is to use a high azimuthal mode number perturbation on the magnetic field. Rotation can also be sustained by waves in plasmas without a kinetic energy source. This type of wave has been considered for plasma centrifuges used for isotope separation. Energy may also be transferred from the electric field to particles or waves, which may be useful for ion heating and energy generation.

  2. Reduction in biomass burning aerosol light absorption upon humidification: roles of inorganically-induced hygroscopicity, particle collapse, and photoacoustic heat and mass transfer

    Directory of Open Access Journals (Sweden)

    K. A. Lewis

    2009-07-01

    Full Text Available Smoke particle emissions from the combustion of biomass fuels typical for the western and southeastern United States were studied and compared under high humidity and ambient conditions in the laboratory. The fuels used are Montana ponderosa pine (Pinus ponderosa, southern California chamise (Adenostoma fasciculatum, and Florida saw palmetto (Serenoa repens. Information on the non-refractory chemical composition of biomass burning aerosol from each fuel was obtained with an aerosol mass spectrometer and through estimation of the black carbon concentration from light absorption measurements at 870 nm. Changes in the optical and physical particle properties under high humidity conditions were observed for hygroscopic smoke particles containing substantial inorganic mass fractions that were emitted from combustion of chamise and palmetto fuels. Light scattering cross sections increased under high humidity for these particles, consistent with the hygroscopic growth measured for 100 nm particles in HTDMA measurements. Photoacoustic measurements of aerosol light absorption coefficients reveal a 20% reduction with increasing relative humidity, contrary to the expectation of light absorption enhancement by the liquid coating taken up by hygroscopic particles. This reduction is hypothesized to arise from two mechanisms: 1. Shielding of inner monomers after particle consolidation or collapse with water uptake; 2. The contribution of mass transfer through evaporation and condensation at high relative humidity to the usual heat transfer pathway for energy release by laser-heated particles in the photoacoustic measurement of aerosol light absorption. The mass transfer contribution is used to evaluate the fraction of aerosol surface covered with liquid water solution as a function of RH.

  3. Reduction in biomass burning aerosol light absorption upon humidification: roles of inorganically-induced hygroscopicity, particle collapse, and photoacoustic heat and mass transfer

    Directory of Open Access Journals (Sweden)

    L. Liu

    2009-11-01

    Full Text Available Smoke particle emissions from the combustion of biomass fuels typical for the western and southeastern United States were studied and compared under high humidity and ambient conditions in the laboratory. The fuels used were Montana ponderosa pine (Pinus ponderosa, southern California chamise (Adenostoma fasciculatum, and Florida saw palmetto (Serenoa repens. Information on the non-refractory chemical composition of biomass burning aerosol from each fuel was obtained with an aerosol mass spectrometer and through estimation of the black carbon concentration from light absorption measurements at 870 nm. Changes in the optical and physical particle properties under high humidity conditions were observed for hygroscopic smoke particles containing substantial inorganic mass fractions that were emitted from combustion of chamise and palmetto fuels. Light scattering cross sections increased under high humidity for these particles, consistent with the hygroscopic growth measured for 100 nm particles in HTDMA measurements. Photoacoustic measurements of aerosol light absorption coefficients revealed a 20% reduction with increasing relative humidity, contrary to the expectation of light absorption enhancement by the liquid coating taken up by hygroscopic particles. This reduction is hypothesized to arise from two mechanisms: (1 shielding of inner monomers after particle consolidation or collapse with water uptake; (2 the lower case contribution of mass transfer through evaporation and condensation at high relative humidity (RH to the usual heat transfer pathway for energy release by laser-heated particles in the photoacoustic measurement of aerosol light absorption. The mass transfer contribution is used to evaluate the fraction of aerosol surface covered with liquid water solution as a function of RH.

  4. Computational study of fluid flow and heat transfer in composite packed beds of spheres with low tube to particle diameter ratio

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jian, E-mail: yangjian81@mail.xjtu.edu.cn [Key Laboratory of Thermo-Fluid Science and Engineering, Ministry of Education, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China); Wu, Jiangquan [CSR Research of Electrical Technology and Material Engineering, Zhuzhou, Hunan 412001 (China); Zhou, Lang; Wang, Qiuwang [Key Laboratory of Thermo-Fluid Science and Engineering, Ministry of Education, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China)

    2016-04-15

    Highlights: • Flow and heat transfer in composite packed beds with low d{sub t}/d{sub pe} are investigated. • The wall effect would be restrained with radially layered composite packing (RLM). • Heat flux and overall heat transfer efficiency can be improved with RLM packing. - Abstract: The effect of the tube wall on the fluid flow and heat transfer would be important in the packed bed with low tube to particle diameter ratio, which may lead to flow and temperature maldistributions inside, and the heat transfer performance may be lowered. In the present paper, the flow and heat transfer performances in both the composite and uniform packed beds of spheres with low tube to particle diameter were numerically investigated, where the composite packing means randomly packing with non-uniform spheres and the uniform packing means randomly packing with uniform spheres, including radially layered composite packing (RLM), axially layered composite packing (ALM), randomly composite packing (RCM) and randomly uniform packing (RPM). Both the composite and uniform packings were generated with discrete element method (DEM), and the influence of the wall effect on the flow and heat transfer in the packed beds were carefully studied and compared with each other. Firstly, it is found that, the wall effect on the velocity and temperature distributions in the randomly packed bed of uniform spheres (RPM) with low tube to particle diameter ratio were obvious. The average velocity of the near-tube-wall region is higher than that of the inner-tube region in the bed. When the tube wall is adiabatic, the average temperature of the near-tube-wall region is lower. With radially layered composite packing method (RLM), smaller pores would be formed close to the tube wall and big flow channels would be formed in the inner-tube region of the bed, which would be benefit to restrain the wall effect and improve heat transfer in the bed with low tube to particle diameter ratio. Furthermore, it

  5. Determination of isoprene and alpha-/beta-pinene oxidation products in boreal forest aerosols from Hyytiälä, Finland: diel variations and possible link with particle formation events.

    Science.gov (United States)

    Kourtchev, I; Ruuskanen, T M; Keronen, P; Sogacheva, L; Dal Maso, M; Reissell, A; Chi, X; Vermeylen, R; Kulmala, M; Maenhaut, W; Claeys, M

    2008-01-01

    Biogenic volatile organic compounds (VOCs), such as isoprene and alpha-/beta-pinene, are photo-oxidized in the atmosphere to non-volatile species resulting in secondary organic aerosol (SOA). The goal of this study was to examine time trends and diel variations of oxidation products of isoprene and alpha-/beta-pinene in order to investigate whether they are linked with meteorological parameters or trace gases. Separate day-night aerosol samples (PM(1)) were collected in a Scots pine dominated forest in southern Finland during 28 July-11 August 2005 and analyzed with gas chromatography/mass spectrometry (GC/MS). In addition, inorganic trace gases (SO(2), CO, NO(x), and O(3)), meteorological parameters, and the particle number concentration were monitored. The median total concentration of terpenoic acids (i.e., pinic acid, norpinic acid, and two novel compounds, 3-hydroxyglutaric acid and 2-hydroxy-4-isopropyladipic acid) was 65 ng m(-3), while that of isoprene oxidation products (i.e., 2-methyltetrols and C(5) alkene triols) was 17.2 ng m(-3). The 2-methyltetrols exhibited day/night variations with maxima during day-time, while alpha-/beta-pinene oxidation products did not show any diel variation. The sampling period was marked by a relatively high condensation sink, caused by pre-existing aerosol particles, and no nucleation events. In general, the concentration trends of the SOA compounds reflected those of the inorganic trace gases, meteorological parameters, and condensation sink. Both the isoprene and alpha-/beta-pinene SOA products were strongly influenced by SO(2), which is consistent with earlier reports that acidity plays a role in SOA formation. The results support previous proposals that oxygenated VOCs contribute to particle growth processes above boreal forest.

  6. α、β粒子在钝化注入平面硅探测器中的脉冲形状分析%Pulse Shape of Alpha and Beta Particles in Passivated Implanted Planer Silicon Detector

    Institute of Scientific and Technical Information of China (English)

    田新; 肖无云; 王善强; 梁卫平

    2011-01-01

    There is a problem of cross counting of alpha and beta when samples are measured sometime. In order to resolve the problem, the article researches into the range of alpha and beta particles in PIPS derectors. The difference in range results in difference in charge collecting time, so the pulse shape is also different. The characters of pulse shape of alpha and beta particles in PIPS derectors are studied. The rise time of voltage signal is surveied and the change of rise time in different bias is analysed. Results of the research provied some useful reference to pulse shape discrimination of alpha and beta particles in PIPS derectors.%利用钝化注入平面硅探测器(PIPS)测量α、β时,某些情况下只通过能量甄别无法区分这两种粒子,而通过脉冲形状甄别的方法可以很好地解决这一问题.通过研究α、β粒子在PIPS中脉冲形状不同的机制,分析了脉冲形状的特征;测量分析了一款PIPS探测器的电压脉冲上升时间及其随偏压的变化;分析得出了对PIPS探测器进行脉冲形状甄别的基本条件,为利用脉冲形状对α、β进行甄别提供了参考.

  7. HIV-1-Induced Small T Cell Syncytia Can Transfer Virus Particles to Target Cells through Transient Contacts

    Directory of Open Access Journals (Sweden)

    Menelaos Symeonides

    2015-12-01

    Full Text Available HIV-1 Env mediates fusion of viral and target cell membranes, but it can also mediate fusion of infected (producer and target cells, thus triggering the formation of multinucleated cells, so-called syncytia. Large, round, immobile syncytia are readily observable in cultures of HIV-1-infected T cells, but these fast growing “fusion sinks” are largely regarded as cell culture artifacts. In contrast, small HIV-1-induced syncytia were seen in the paracortex of peripheral lymph nodes and other secondary lymphoid tissue of HIV-1-positive individuals. Further, recent intravital imaging of lymph nodes in humanized mice early after their infection with HIV-1 demonstrated that a significant fraction of infected cells were highly mobile, small syncytia, suggesting that these entities contribute to virus dissemination. Here, we report that the formation of small, migratory syncytia, for which we provide further quantification in humanized mice, can be recapitulated in vitro if HIV-1-infected T cells are placed into 3D extracellular matrix (ECM hydrogels rather than being kept in traditional suspension culture systems. Intriguingly, live-cell imaging in hydrogels revealed that these syncytia, similar to individual infected cells, can transiently interact with uninfected cells, leading to rapid virus transfer without cell-cell fusion. Infected cells were also observed to deposit large amounts of viral particles into the extracellular space. Altogether, these observations suggest the need to further evaluate the biological significance of small, T cell-based syncytia and to consider the possibility that these entities do indeed contribute to virus spread and pathogenesis.

  8. Pulse-shape discrimination of scintillation from alpha and beta particles with liquid scintillator and Geiger-mode multipixel avalanche diodes

    CERN Document Server

    Kreslo, I; Delaquis, S; Ereditato, A; Janos, S; Messina, M; Moser, U; Rossi, B; Zeller, M

    2011-01-01

    A successfull application of Geiger-mode multipixel avalanche diodes (GMAPDs) for pulse-shape discrimination in alpha-beta spectrometry using organic liquid scintillator is described in this paper. Efficient discrimination of alpha and beta components in the emission of radioactive isotopes is achieved for alpha energies above 0.3 MeV. The ultra-compact design of the scintillating detector helps to efficiently suppress cosmic-ray and ambient radiation background. This approach allows construction of hand-held robust devices for monitoring of radioactive contamination in various environmental conditions.

  9. Plasma Ubiquinone, Alpha-Tocopherol and Cholesterol in Man

    DEFF Research Database (Denmark)

    Karlsson, Jan; Diamant, Bertil; Edlund, Per Olof

    1992-01-01

    Farmakologi, Coenzyme Q10, free cholesterol, vitamin E, antioxidants, Alpha-Tocopherol, vitamin Q, plasma, LDL-particle......Farmakologi, Coenzyme Q10, free cholesterol, vitamin E, antioxidants, Alpha-Tocopherol, vitamin Q, plasma, LDL-particle...

  10. A twin ionization chamber setup as detector for light charged particles with energies around 1 MeV applied to the sup 1 sup 0 B(n, alpha) sup 7 Li reaction

    CERN Document Server

    Göpfert, A; Bax, H

    2000-01-01

    The setup and operating conditions of a gridded twin ionization chamber with sample change facility to study light charged particle properties in the 1 MeV region is described. Detailed studies of different grid geometries in connection with the choice of an eligible counting gas mixture and the applied high voltage have been performed. Due to the high overall amplification of the small electrical chamber signals obtained from such low-energy particles, special filters have been developed in order to increase the signal-to-noise ratio. Timing properties of the chamber signals are discussed in detail. Information available from chamber signals and encoding methods are elucidated by spectra of alpha particles created by sup 2 sup 3 sup 4 sup , sup 2 sup 3 sup 5 U spontaneous alpha decay. The detector permits the independent and simultaneous measurement of energy and angular distribution of particles in both sides of the chamber. Finally, preliminary results and related analysis methods will be presented for the...

  11. $\\alpha$-cluster ANCs for nuclear astrophysics

    CERN Document Server

    Avila, M L; Koshchiy, E; Baby, L T; Belarge, J; Kemper, K W; Kuchera, A N; Santiago-Gonzalez, D

    2014-01-01

    Background. Many important $\\alpha$-particle induced reactions for nuclear astrophysics may only be measured using indirect techniques due to small cross sections at the energy of interest. One of such indirect technique, is to determine the Asymptotic Normalization Coefficients (ANC) for near threshold resonances extracted from sub-Coulomb $\\alpha$-transfer reactions. This approach provides a very valuable tool for studies of astrophysically important reaction rates since the results are practically model independent. However, the validity of the method has not been directly verified. Purpose. The aim of this letter is to verify the technique using the $^{16}$O($^6$Li,$d$)$^{20}$Ne reaction as a benchmark. The $^{20}$Ne nucleus has a well known $1^-$ state at excitation energy of 5.79 MeV with a width of 28 eV. Reproducing the known value with this technique is an ideal opportunity to verify the method. Method. The 1$^-$ state at 5.79 MeV is studied using the $\\alpha$-transfer reaction $^{16}$O($^6$Li,$d$)$^...

  12. Refinement of the $n-\\alpha$ and $p-\\alpha$ fish-bone potential

    CERN Document Server

    Smith, E; Papp, Z

    2012-01-01

    The fishbone potential of composite particles simulates the Pauli effect by nonlocal terms. We determine the $n-\\alpha$ and $p-\\alpha$ fish-bone potential by simultaneously fitting to the experimental phase shifts. We found that with a double Gaussian parametrization of the local potential can describe the $n-\\alpha$ and $p-\\alpha$ phase shifts for all partial waves.

  13. Nature of the pygmy dipole resonance in Ce-140 studied in (alpha, alpha 'gamma) experiments

    NARCIS (Netherlands)

    Savran, D.; Babilon, M.; van den Berg, A. M.; Harakeh, M. N.; Hasper, J.; Matic, A.; Wortche, H. J.; Zilges, A.

    2006-01-01

    A concentration of electric-dipole excitations below the particle threshold, which is frequently denoted as the pygmy dipole resonance, has been studied in the semimagic nucleus Ce-140 in (alpha, alpha(')gamma) experiments at E-alpha=136 MeV. The technique of alpha-gamma coincidence experiments allo

  14. Two alpha, three alpha and multiple heavy-ion radioactivities

    Energy Technology Data Exchange (ETDEWEB)

    Poenaru, D.N.; Ivascu, M. (Institute for Physics and Nuclear Engineering, Bucharest (Romania))

    1985-07-01

    New decay modes by spontaneous emission of two and three ..cap alpha.. particles and two identical or different heavy ions, are predicted. The analytical variant of the superasymmetric fission model is used to estimate the half lives.

  15. Criteria for significance of simultaneous presence of both condensible vapors and aerosol particles on mass transfer (deposition) rates

    Science.gov (United States)

    Gokoglu, S. A.

    1987-01-01

    The simultaneous presence of aerosol particles and condensible vapors in a saturated boundary layer which may affect deposition rates to subcooled surfaces because of vapor-particle interactions is discussed. Scavenging of condensible vapors by aerosol particles may lead to increased particle size and decreased vapor mass fraction, which alters both vapor and particle deposition rates. Particles, if sufficiently concentrated, may also coagulate. Criteria are provided to assess the significance of such phenomena when particles are already present in the mainstream and are not created inside the boundary layer via homogeneous nucleation. It is determined that there is direct proportionality with: (1) the mass concentration of both condensible vapors and aerosol particles; and (2) the square of the boundary layer thickness to particle diameter ratio (delta d sub p) square. Inverse proportionality was found for mainstream to surface temperature difference if thermophoresis dominates particle transport. It is concluded that the square of the boundary layer thickness to particle diameter ratio is the most critical factor to consider in deciding when to neglect vapor-particle interactions.

  16. Treatment of HER2-positive breast carcinomatous meningitis with intrathecal administration of {alpha}-particle-emitting {sup 211}At-labeled trastuzumab

    Energy Technology Data Exchange (ETDEWEB)

    Boskovitz, Abraham; McLendon, Roger E.; Okamura, Tatsunori [Department of Pathology, Duke University Medical Center, Durham, NC 27710 (United States); Sampson, John H. [Department of Surgery, Duke University Medical Center, Durham, NC 27710 (United States); Bigner, Darell D. [Department of Pathology, Duke University Medical Center, Durham, NC 27710 (United States); Zalutsky, Michael R. [Department of Radiology, Duke University Medical Center, Durham, NC 27710 (United States)], E-mail: zalut001@mc.duke.edu

    2009-08-15

    Introduction: Carcinomatous meningitis (CM) is a devastating disease characterized by the dissemination of malignant tumor cells into the subarachnoid space along the brain and spine. Systemic treatment with monoclonal antibody (mAb) trastuzumab can be effective against HER2-positive systemic breast carcinoma but, like other therapies, is ineffective against CM. The goal of this study was to evaluate the therapeutic effect of {alpha}-particle emitting {sup 211}At-labeled trastuzumab following intrathecal administration in a rat model of breast carcinoma CM. Methods: Athymic rats were injected intrathecally with MCF-7/HER2-18 breast carcinoma cells through a surgically implanted indwelling intrathecal catheter. In Experiment 1, animals received 33 or 66 {mu}Ci {sup 211}At-labeled trastuzumab, cold trastuzumab or saline. In Experiment 2, animals were inoculated with a lower tumor burden and received 46 or 92 {mu}Ci {sup 211}At-labeled trastuzumab or saline. In Experiment 3, animals received 28 {mu}Ci {sup 211}At-labeled trastuzumab, 30 {mu}Ci {sup 211}At-labeled TPS3.2 control mAb or saline. Histopathological analysis of the neuroaxis was performed at the end of the study. Results: In Experiment 1, median survival increased from 21 days for the saline and cold trastuzumab groups to 45 and 48 days for 33 and 66 {mu}Ci {sup 211}At-labeled trastuzumab, respectively. In Experiment 2, median survival increased from 23 days for saline controls to 68 and 92 days for 46 and 92 {mu}Ci {sup 211}At-labeled trastuzumab, respectively. In Experiment 3, median survival increased from 20 days to 29 and 36 days for animals treated with {sup 211}At-labeled TPS3.2 and {sup 211}At-labeled trastuzumab, respectively. Long-term survivors were observed exclusively in the {sup 211}At-trastuzumab-treated groups. Conclusion: Intrathecal {sup 211}At-labeled trastuzumab shows promise as a treatment for patients with HER2-positive breast CM.

  17. Assessment of long-term radiotoxicity after treatment with the low-dose-rate alpha-particle-emitting radioimmunoconjugate {sup 227}Th-rituximab

    Energy Technology Data Exchange (ETDEWEB)

    Dahle, Jostein; Heyerdahl, Helen; Hjelmerud, Anne Kristine; Larsen, Roy H. [Oslo University Hospital, Department of Radiation Biology, The Norwegian Radium Hospital, Oslo (Norway); Jonasdottir, Thora J. [Norwegian School of Veterinary Science, Small Animal Section, Department of Companion Animal Clinical Sciences, Oslo (Norway); Nesland, Jahn M. [Oslo University Hospital, Division of Pathology, The Norwegian Radium Hospital, Oslo (Norway); University of Oslo, Faculty Division The Norwegian Radium Hospital, Medical Faculty, Oslo (Norway); Borrebaek, Joergen [Algeta AS, Oslo (Norway)

    2010-01-15

    The anti-CD20 antibody rituximab labelled with the {alpha}-particle-emitting radionuclide {sup 227}Th is of interest as a radiotherapeutic agent for treatment of lymphoma. Complete regression of human lymphoma Raji xenografts in 60% of mice treated with 200 kBq/kg {sup 227}Th-rituximab has been observed. To evaluate possible late side effects of {sup 227}Th-rituximab, the long-term radiotoxicity of this potential radiopharmaceutical was investigated. BALB/c mice were injected with saline, cold rituximab or 50, 200 or 1,000 kBq/kg {sup 227}Th-rituximab and followed for up to 1 year. In addition, nude mice with Raji xenografts treated with various doses of {sup 227}Th-rituximab were also included in the study. Toxicity was evaluated by measurements of mouse body weight, white blood cell (WBC) and platelet counts, serum clinical chemistry parameters and histological examination of tissues. Only the 1,000 kBq/kg dosage resulted in decreased body weight of the BALB/c mice. There was a significant but temporary decrease in WBC and platelet count in mice treated with 400 and 1,000 kBq/kg {sup 227}Th-rituximab. Therefore, the no-observed-adverse-effect level (NOAEL) was 200 kBq/kg. The maximum tolerated activity was between 600 and 1,000 kBq/kg. No significant signs of toxicity were observed in histological sections in any examined tissue. There were significantly (p < 0.05), but transiently, higher concentrations of serum bile acids and aspartate aminotransferase in mice treated with either {sup 227}Th-rituximab or non-labelled antibody when compared with control mice. The maximum tolerated dose to bone marrow was between 2.1 and 3.5 Gy. Therapeutically relevant dose levels of {sup 227}Th-rituximab were well tolerated in mice. Bone marrow suppression, as indicated by decrease in WBC count, was the dose-limiting radiotoxicity. These toxicity data together with anti-tumour activity data in a CD20-positive xenograft mouse model indicate that therapeutic effects could be

  18. A chimeric 18L1-45RG1 virus-like particle vaccine cross-protects against oncogenic alpha-7 human papillomavirus types.

    Directory of Open Access Journals (Sweden)

    Bettina Huber

    Full Text Available Persistent infection with oncogenic human papillomaviruses (HPV types causes all cervical and a subset of other anogenital and oropharyngeal carcinomas. Four high-risk (hr mucosal types HPV16, 18, 45, or 59 cause almost all cervical adenocarcinomas (AC, a subset of cervical cancer (CxC. Although the incidence of cervical squamous cell carcinoma (SCC has dramatically decreased following introduction of Papanicolaou (PAP screening, the proportion of AC has relatively increased. Cervical SCC arise mainly from the ectocervix, whereas AC originate primarily from the endocervical canal, which is less accessible to obtain viable PAP smears. Licensed (bivalent and quadrivalent HPV vaccines comprise virus-like particles (VLP of the most important hr HPV16 and 18, self-assembled from the major capsid protein L1. Due to mainly type-restricted efficacy, both vaccines do not target 13 additional hr mucosal types causing 30% of CxC. The papillomavirus genus alpha species 7 (α7 includes a group of hr types of which HPV18, 45, 59 are proportionally overrepresented in cervical AC and only partially (HPV18 targeted by current vaccines. To target these types, we generated a chimeric vaccine antigen that consists of a cross-neutralizing epitope (homologue of HPV16 RG1 of the L2 minor capsid protein of HPV45 genetically inserted into a surface loop of HPV18 L1 VLP (18L1-45RG1. Vaccination of NZW rabbits with 18L1-45RG1 VLP plus alum-MPL adjuvant induced high-titer neutralizing antibodies against homologous HPV18, that cross-neutralized non-cognate hr α7 types HPV39, 45, 68, but not HPV59, and low risk HPV70 in vitro, and induced a robust L1-specific cellular immune response. Passive immunization protected mice against experimental vaginal challenge with pseudovirions of HPV18, 39, 45 and 68, but not HPV59 or the distantly related α9 type HPV16. 18L1-45RG1 VLP might be combined with our previously described 16L1-16RG1 VLP to develop a second generation bivalent

  19. Millimeter-Scale Chemistry of Observable Endmembers with the Mars Science Laboratory Alpha Particle X-Ray Spectrometer and Mars Hand Lens Imager

    Science.gov (United States)

    VanBommel, Scott; Gellert, Ralf; Thompson, Lucy; Berger, Jeff; Campbell, Iain; Edgett, Ken; McBride, Marie; Minitti, Michelle; Desouza, Elstan; Boyd, Nick

    2016-04-01

    The Alpha Particle X-ray Spectrometer (APXS) is a bulk chemistry instrument conducting high-precision in-situ measurements of Martian rocks and soils onboard both active NASA rovers [1]. Mounted at the end of the Curiosity rover arm, the APXS can conduct multi-spot (raster) investigations in a single morning or evening. Combining APXS raster spectra and Mars Hand Lens Imager (MAHLI) images, a modeled terrain is developed in which the positions of APXS field of views (FOV) can be localized, thereby mitigating arm placement uncertainty. An acquired APXS spectrum is the result of the weighted sum of the signals from within the FOV. The spatial sensitivity of the APXS consists of an off-nadir contribution in addition to a vertical separation (standoff with respect to the APXS detector) contribution [2, 3]. MAHLI images and focus merge (MFM) products facilitate a 3D surface model of the target [4] compensating for the effects of sample relief in an APXS spectrum. Employing a MFM relief map, APXS placement is modeled in three-dimensions, permitting variable APXS docking (standoff, deployment angle). Through minimization, we arrive at millimeter-scale chemistry of veins, diagenetic features and dust-free rock endmembers of Martian targets. Several rasters have been conducted with Curiosity's APXS on Mars including a study of the Garden City outcrop. The area is characterized by its contrasting light and dark veins of cm-scale surface relief. Three-dimensional localization and minimization indicated calcium sulfate as the major component of the light vein while the dark vein is enriched in CaO (without accompanying SO3), MnO, Ni and Zn, with respect to average Mars composition. References: [1] Gellert et al. (2014), LPSC XLV, #1876. [2] VanBommel et al. (2015), LPSC XLVI, #2049. [3] VanBommel et al. (2016), XRS #2681. [4] Edgett et al. (2015), MAHLI Tech Rept 0001. Acknowledgements: The MSL APXS is financed and managed by the Canadian Space Agency (CSA) with Mac

  20. Radiation heat transfer simulation in a window for a small particle solar receiver using the Monte Carlo method

    Science.gov (United States)

    Whitmore, Alexander Jason

    Concentrating solar power systems are currently the predominant solar power technology for generating electricity at the utility scale. The central receiver system, which is a concentrating solar power system, uses a field of mirrors to concentrate solar radiation onto a receiver where a working fluid is heated to drive a turbine. Current central receiver systems operate on a Rankine cycle, which has a large demand for cooling water. This demand for water presents a challenge for the current central receiver systems as the ideal locations for solar power plants have arid climates. An alternative to the current receiver technology is the small particle receiver. The small particle receiver has the potential to produce working fluid temperatures suitable for use in a Brayton cycle which can be more efficient when pressurized to 0.5 MPa. Using a fused quartz window allows solar energy into the receiver while maintaining a pressurized small particle receiver. In this thesis, a detailed numerical investigation for a spectral, three dimensional, cylindrical glass window for a small particle receiver was performed. The window is 1.7 meters in diameter and 0.0254 meters thick. There are three Monte Carlo Ray Trace codes used within this research. The first MCRT code, MIRVAL, was developed by Sandia National Laboratory and modified by a fellow San Diego State University colleague Murat Mecit. This code produces the solar rays on the exterior surface of the window. The second MCRT code was developed by Steve Ruther and Pablo Del Campo. This code models the small particle receiver, which creates the infrared spectral direction flux on the interior surface of the window used in this work. The third MCRT, developed for this work, is used to model radiation heat transfer within the window itself and is coupled to an energy equation solver to produce a temperature distribution. The MCRT program provides a source term to the energy equation. This in turn, produces a new

  1. Alpha Antihydrogen Experiment

    CERN Document Server

    Fujiwara, M C; Ashkezari, M D; Baquero-Ruiz, M; Bertsche, W; Bray, C C; Butler, E; Cesar, C L; Chapman, S; Charlton, M; Cesar, C L; Fajans, J; Friesen, T; Gill, D R; Hangst, J S; Hardy, W N; Hayano, R S; Hayden, M E; Humphries, A J; Hydomako, R; Jonsell, S; Kurchaninov, L; Lambo, R; Madsen, N; Menary, S; Nolan, P; Olchanski, K; Olin, A; Povilus, A; Pusa, P; Robicheaux, F; Sarid, E; Silveira, D M; So, C; Storey, J W; Thompson, R I; van der Werf, D P; Wilding, D; Wurtele, J S; Yamazaki, Y

    2011-01-01

    ALPHA is an experiment at CERN, whose ultimate goal is to perform a precise test of CPT symmetry with trapped antihydrogen atoms. After reviewing the motivations, we discuss our recent progress toward the initial goal of stable trapping of antihydrogen, with some emphasis on particle detection techniques.

  2. Lyman-alpha Emission From Cosmic Structure I: Fluorescence

    CERN Document Server

    Kollmeier, Juna A; Davé, Romeel; Gould, Andrew; Katz, Neal; Miralda-Escudé, Jordi; Weinberg, David H

    2009-01-01

    We present predictions for the fluorescent Lyman-alpha emission signature arising from photoionized, optically thick structures in Smoothed Particle Hydrodynamic (SPH) cosmological simulations of a Lambda-CDM universe using a Monte Carlo Lyman-alpha radiative transfer code. We calculate the expected Lyman-alpha image and 2-dimensional spectra for gas exposed to a uniform ultraviolet ionizing background as well as gas exposed additionally to the photoionizing radiation from a local quasar, after correcting for the self-shielding of hydrogen. As a test of our numerical methods and for application to current observations, we examine simplified analytic structures that are uniformly or anisotropically illuminated. We compare these results with recent observations. We discuss future observing campaigns on large telescopes and realistic strategies for detecting fluorescence owing to the ambient metagalactic ionization and in regions close to bright quasars. While it will take hundreds of hours on the current genera...

  3. Alpha-nucleus potential for alpha-decay and sub-barrier fusion

    CERN Document Server

    Denisov, V Y

    2005-01-01

    The set of parameters for alpha-nucleus potential is derived by using the data for both the alpha-decay half-lives and the fusion cross-sections around the barrier for reactions alpha+40Ca, alpha+59Co, alpha+208Pb. The alpha-decay half-lives are obtained in the framework of a cluster model using the WKB approximation. The evaluated alpha-decay half-lives and the fusion cross-sections agreed well with the data. Fusion reactions between alpha-particle and heavy nuclei can be used for both the formation of very heavy nuclei and spectroscopic studies of the formed compound nuclei.

  4. Alpha-nucleus potential for alpha-decay and sub-barrier fusion

    OpenAIRE

    Denisov, V. Yu.; Ikezoe, H.

    2005-01-01

    The set of parameters for alpha-nucleus potential is derived by using the data for both the alpha-decay half-lives and the fusion cross-sections around the barrier for reactions alpha+40Ca, alpha+59Co, alpha+208Pb. The alpha-decay half-lives are obtained in the framework of a cluster model using the WKB approximation. The evaluated alpha-decay half-lives and the fusion cross-sections agreed well with the data. Fusion reactions between alpha-particle and heavy nuclei can be used for both the f...

  5. Rainfall erosivity in subtropical catchments and implications for erosion and particle-bound contaminant transfer: a case-study of the Fukushima region

    Directory of Open Access Journals (Sweden)

    J. P. Laceby

    2015-07-01

    Full Text Available The Fukushima Dai-ichi nuclear power plant (FDNPP accident in March 2011 resulted in a significant fallout of radiocesium over the Fukushima region. After reaching the soil surface, radiocesium is almost irreversibly bound to fine soil particles. Thereafter, rainfall and snow melt run-off events transfer particle-bound radiocesium downstream. Erosion models, such as the Universal Soil Loss Equation (USLE, depict a proportional relationship between rainfall and soil erosion. As radiocesium is tightly bound to fine soil and sediment particles, characterizing the rainfall regime of the fallout-impacted region is fundamental to modelling and predicting radiocesium migration. Accordingly, monthly and annual rainfall data from ~ 60 meteorological stations within a 100 km radius of the FDNPP were analysed. Monthly rainfall erosivity maps were developed for the Fukushima coastal catchments illustrating the spatial heterogeneity of rainfall erosivity in the region. The mean average rainfall in the Fukushima region was 1387 mm yr−1 (σ 230 with the mean rainfall erosivity being 2785 MJ mm ha−1 yr−1 (σ 1359. The results indicate that the majority of rainfall (60 % and rainfall erosivity (86 % occurs between June and October. During the year, rainfall erosivity evolves positively from northwest to southeast in the eastern part of the prefecture, whereas a positive gradient from north to south occurs in July and August, the most erosive months of the year. During the typhoon season, the coastal plain and eastern mountainous areas of the Fukushima prefecture, including a large part of the contamination plume, are most impacted by erosive events. Understanding these rainfall patterns, particularly their spatial and temporal variation, is fundamental to managing soil and particle-bound radiocesium transfers in the Fukushima region. Moreover, understanding the impact of typhoons is important for managing sediment transfers in subtropical regions impacted

  6. Rainfall erosivity in subtropical catchments and implications for erosion and particle-bound contaminant transfer: a case-study of the Fukushima region

    Science.gov (United States)

    Laceby, J. P.; Chartin, C.; Evrard, O.; Onda, Y.; Garcia-Sanchez, L.; Cerdan, O.

    2015-07-01

    The Fukushima Dai-ichi nuclear power plant (FDNPP) accident in March 2011 resulted in a significant fallout of radiocesium over the Fukushima region. After reaching the soil surface, radiocesium is almost irreversibly bound to fine soil particles. Thereafter, rainfall and snow melt run-off events transfer particle-bound radiocesium downstream. Erosion models, such as the Universal Soil Loss Equation (USLE), depict a proportional relationship between rainfall and soil erosion. As radiocesium is tightly bound to fine soil and sediment particles, characterizing the rainfall regime of the fallout-impacted region is fundamental to modelling and predicting radiocesium migration. Accordingly, monthly and annual rainfall data from ~ 60 meteorological stations within a 100 km radius of the FDNPP were analysed. Monthly rainfall erosivity maps were developed for the Fukushima coastal catchments illustrating the spatial heterogeneity of rainfall erosivity in the region. The mean average rainfall in the Fukushima region was 1387 mm yr-1 (σ 230) with the mean rainfall erosivity being 2785 MJ mm ha-1 yr-1 (σ 1359). The results indicate that the majority of rainfall (60 %) and rainfall erosivity (86 %) occurs between June and October. During the year, rainfall erosivity evolves positively from northwest to southeast in the eastern part of the prefecture, whereas a positive gradient from north to south occurs in July and August, the most erosive months of the year. During the typhoon season, the coastal plain and eastern mountainous areas of the Fukushima prefecture, including a large part of the contamination plume, are most impacted by erosive events. Understanding these rainfall patterns, particularly their spatial and temporal variation, is fundamental to managing soil and particle-bound radiocesium transfers in the Fukushima region. Moreover, understanding the impact of typhoons is important for managing sediment transfers in subtropical regions impacted by cyclonic activity.

  7. Differential transform semi-numerical analysis of biofluid-particle suspension flow and heat transfer in non-Darcian porous media.

    Science.gov (United States)

    Bég, T A; Rashidi, M M; Bég, O Anwar; Rahimzadeh, N

    2013-01-01

    The differential transform method (DTM) is semi-numerical method which is used to study the steady, laminar buoyancy-driven convection heat transfer of a particulate biofluid suspension in a channel containing a porous material. A two-phase continuum model is used. A set of variables is implemented to reduce the ordinary differential equations for momentum and energy conservation (for both phases) to a dimensionless system. DTM solutions are obtained for the dimensionless system under appropriate boundary conditions. We examine the influence of momentum inverse Stokes number (Skm), Darcy number (Da), Forchheimer number (Fs), particle loading parameter (pL), particle-phase wall slip parameter (Ω) and buoyancy parameter (B) on the fluid-phase velocity (U) and particle-phase velocity (Up). Padé approximants are also employed to achieve satisfaction of boundary conditions. Excellent correlation is obtained between the DTM and numerical quadrature solutions. The results indicate that there is a strong decrease in fluid-phase velocities with increasing Darcian (first-order) drag and the second-order Forchheimer drag, and a weaker reduction in particle-phase velocity field. Fluid and particle-phase velocities are also strongly affected with inverse momentum Stokes number. DTM is shown to be a powerful tool providing engineers with an alternative simulation approach to other traditional methods for multi-phase computational biofluid mechanics. The model finds applications in haemotological separation and biotechnological processing.

  8. Wheat IgE-mediated food allergy in European patients: alpha-amylase inhibitors, lipid transfer proteins and low-molecular-weight glutenins

    DEFF Research Database (Denmark)

    Pastorello, Elide A; Farioli, Laura; Conti, Amedeo

    2007-01-01

    /globulin fraction and several low-molecular-weight (LMW) glutenin subunits in the gluten fraction. All these allergens showed heat resistance and lack of cross-reactivity to grass pollen allergens. LTP was a major allergen only in Italian patients. CONCLUSIONS: The alpha-amylase inhibitor was confirmed...

  9. Development of real time detector for fluorescent particles applied to pollutant transfers characterization; Etude d`un dispositif de comptage en continu d`un aerosol fluorescent

    Energy Technology Data Exchange (ETDEWEB)

    Prevost, C. [CEA Saclay, Departement de Prevention et d`Etude des Accidents, 91 - Gif-sur-Yvette (France)]|[Conservatoire National des Arts et Metiers (CNAM), 75 - Paris (France)

    1996-06-01

    The studies on aerosol transfer carried out in the field of staff protection and nuclear plants safety become more and more important. So techniques of pollutants simulation by specific tracers with the same aeraulic behaviour are an interesting tool in order to characterize their transfers. Resorting to aerosols tagged by a fluorescent dye allows to realize different studies in ventilation and filtration field. The feasibility of detection in real time for a particulate tracer is the main aim of this work. The need of such a technique is obvious because it can provide the specific aerosol behaviour. Furthermore, direct measurements in real time are required for model validation in calculation codes: they give the most realistic informations on interaction between contaminant and ventilation air flows. Up to now, the principle of fluorescent aerosol concentration measurement allows only an integral response in a delayed time, by means of sampling on filters and a fluorimetric analysis after a specific conditioning of these filters. In order to have the opportunity to detect in real time specific tracer, we have developed a new monitor able to count these particles on the following basis: fluorescent particles pass through a sampling nozzle up to a measurement chamber specially designed; sheath flow rate is defined to confine the test aerosol in the test aerosol in the sample flow rate at nozzle outlet; the interception of this stream by a highly focused laser beam allows aerosol detection and characterization particle by particle; the signature of a passing aerosol is the burst of photons that occurs when the fluoro-phore contained in the glycerol particle is excited by a light of adapted wavelength; these signals are transmitted to a photodetector by a patented optical arrangement. Then, an acquisition interfaced board connected to a computer, converts them into frequencies histograms. In the end, two kind of results could be provided simultaneously : the

  10. On realistic size equivalence and shape of spheroidal Saharan mineral dust particles applied in solar and thermal radiative transfer calculations

    Directory of Open Access Journals (Sweden)

    S. Otto

    2010-11-01

    Full Text Available Realistic size equivalence and shape of Saharan mineral dust particles are derived from on in-situ particle, lidar and sun photometer measurements during SAMUM-1 in Morocco (19 May 2006, dealing with measured size- and altitude-resolved axis ratio distributions of assumed spheroidal model particles. The data were applied in optical property, radiative effect, forcing and heating effect simulations to quantify the realistic impact of particle non-sphericity. It turned out that volume-to-surface equivalent spheroids with prolate shape are most realistic: particle non-sphericity only slightly affects single scattering albedo and asymmetry parameter but may enhance extinction coefficient by up to 10%. At the bottom of the atmosphere (BOA the Saharan mineral dust always leads to a loss of solar radiation, while the sign of the forcing at the top of the atmosphere (TOA depends on surface albedo: solar cooling/warming over a mean ocean/land surface. In the thermal spectral range the dust inhibits the emission of radiation to space and warms the BOA. The most realistic case of particle non-sphericity causes changes of total (solar plus thermal forcing by 55/5% at the TOA over ocean/land and 15% at the BOA over both land and ocean and enhances total radiative heating within the dust plume by up to 20%. Large dust particles significantly contribute to all the radiative effects reported.

  11. Facile Fabrication of Water Dispersible Latex Particles with Homogeneous or Chain-Segregated Surface from RAFT Polymerization Using a Mixture of Two Macromolecular Chain Transfer Agents.

    Science.gov (United States)

    Sun, Li; Hong, Liangzhi; Wang, Chaoyang

    2016-04-01

    Water dispersible latex particles with randomly mixed shells or chain segregated surface are synthesized from one-pot reversible addition-fragmentation chain transfer heterogeneous polymerization of benzyl methacrylate (BzMA) using a mixture of poly(glycerol monomethacrylate) (PGMA) and poly(2,3-bis(succinyloxy)propyl methacrylate) (PBSPMA) macromolecular chain transfer agents. In methanol, the two in situ synthesized PGMA-b-PBzMA and PBSPMA-b-PBzMA diblock copolymers coaggregate into spherical micelles, which contain PBzMA core and discrete PGMA and PBSPMA nanodomains on the shell. In contrast, in water-methanol mixture (V/V = 9/1), latex particles with homogeneous distribution of PGMA and PBSPMA polymer chains on the shell are obtained. The reasons leading to formation of latex particles with homogenous or chain-segregated surface are discussed, and polymerization kinetics and physical state of PBSPMA in methanol and water-methanol mixtures are ascribed. These polymeric micelles with patterned functional group on the surface are potentially important for application in supracolloidal hierarchical assemblies and catalysis.

  12. On the possibility of two new 'elementary' particles with mass equal to m(k)=1.80339 MeV and m({alpha}-bar{sub gs})=26.180339 MeV

    Energy Technology Data Exchange (ETDEWEB)

    El Naschie, M.S

    2004-05-01

    To sustain the global symplictic structure of the VAK of vacuum fluctuation, transfinite quantities of energy of the order of k=phi{sup 3}(1-phi{sup 3})=0.18033989 MeV and k{sub 0}=phi{sup 5}(1-phi{sup 5})=0.08203939 MeV must be added to it. In the ten dimensional core of the super string space this leads to the formation of particle masses of the order of m(k)=(10)(k)=1.8033989 MeV. Using {epsilon}{sup (}'{infinity}') theory and the M-dualities between high and low energy domains, one could make a second prediction regarding a unification-related particle m({alpha}-bar{sub gs})=10/2(m(k))(phi+1){sup 7}=26.18033989 MeV. The possible experimental ramifications of the theory are also discussed.

  13. Alpha Channeling in Rotating Plasma with Stationary Waves

    Energy Technology Data Exchange (ETDEWEB)

    A. Fetterman and N.J. Fisch

    2010-02-15

    An extension of the alpha channeling effect to supersonically rotating mirrors shows that the rotation itself can be driven using alpha particle energy. Alpha channeling uses radiofrequency waves to remove alpha particles collisionlessly at low energy. We show that stationary magnetic fields with high nθ can be used for this purpose, and simulations show that a large fraction of the alpha energy can be converted to rotation energy.

  14. Some Calculated (p,α Cross-Sections Using the Alpha Particle Knock-On and Triton Pick-Up Reaction Mechanisms: An Optimisation of the Single-Step Feshbach–Kerman–Koonin (FKK Theory

    Directory of Open Access Journals (Sweden)

    Felix S. Olise

    2016-04-01

    Full Text Available The Feshbach–Kerman–Koonin (FKK multi-step direct (MSD theory of pre-equilibrium reactions has been used to compute the single-step cross-sections for some (p,α reactions using the knock-on and pick-up reaction mechanisms at two incident proton energies. For the knock-on mechanism, the reaction was assumed to have taken place by the direct ejection of a preformed alpha cluster in a shell-model state of the target. But the reaction was assumed to have taken place by the pick-up of a preformed triton cluster (also bound in a shell-model state of the target core by the incident proton for the pick-up mechanism. The Yukawa forms of potential were used for the proton-alpha (for the knock-on process and proton-triton (for the pick-up process interaction and several parameter sets for the proton and alpha-particle optical potentials. The calculated cross-sections for both mechanisms gave satisfactory fits to the experimental data. Furthermore, it has been shown that some combinations of the calculated distorted wave Born approximation cross-sections for the two reaction mechanisms in the FKK MSD theory are able to give better fits to the experimental data, especially in terms of range of agreement. In addition, the theory has been observed to be valid over a wider range of energy.

  15. Some calculated (p,α) cross-sections using the alpha particle knock-on and triton pick-up reaction mechanisms: An optimisation of the single-step Feshbach-Kerman-Koonin (FKK) theory

    Energy Technology Data Exchange (ETDEWEB)

    Olise, Felix S.; Ajala, Afis; Olamiyl, Hezekiah B. [Dept. of Physics and Engineering Physics, Obafemi Awolowo University, Ile-Ife (Nigeria)

    2016-04-15

    The Feshbach-Kerman-Koonin (FKK) multi-step direct (MSD) theory of pre-equilibrium reactions has been used to compute the single-step cross-sections for some (p,α) reactions using the knock-on and pick-up reaction mechanisms at two incident proton energies. For the knock-on mechanism, the reaction was assumed to have taken place by the direct ejection of a preformed alpha cluster in a shell-model state of the target. But the reaction was assumed to have taken place by the pick-up of a preformed triton cluster (also bound in a shell-model state of the target core) by the incident proton for the pick-up mechanism. The Yukawa forms of potential were used for the proton-alpha (for the knock-on process) and proton-triton (for the pick-up process) interaction and several parameter sets for the proton and alpha-particle optical potentials. The calculated cross-sections for both mechanisms gave satisfactory fits to the experimental data. Furthermore, it has been shown that some combinations of the calculated distorted wave Born approximation cross-sections for the two reaction mechanisms in the FKK MSD theory are able to give better fits to the experimental data, especially in terms of range of agreement. In addition, the theory has been observed to be valid over a wider range of energy.

  16. An empirical determination of upper operational frequency limits of transferred electron mechanism in bulk GaAs and GaN through ensemble Monte Carlo particle simulations

    Science.gov (United States)

    Francis, S.; van Zyl, R. R.; Perold, W. J.

    2015-08-01

    The ensemble Monte Carlo particle simulation technique is used to determine the upper operational frequency limit of the transferred electron mechanism in bulk GaAs and GaN empirically. This mechanism manifests as a decrease in the average velocity of the electrons in the bulk material with an increase in the electric field bias, which yields the characteristic negative slope in the velocity-field curves of these materials. A novel approach is proposed whereby the hysteresis in the simulated dynamic, high-frequency velocity-field curves is exploited. The upper operational frequency limit supported by the material is defined as that frequency, where the average gradient of the dynamic characteristic curve over a radio frequency cycle approaches zero. Effects of temperature and doping level on the operational frequency limit are reported. The frequency limit thus obtained is also useful to predict the highest fundamental frequency of operation of transferred electron devices, such as Gunn diodes, which are based on materials that support the transferred electron mechanism. Based on the method presented here, the upper operational frequency limits of the transferred electron mechanism in bulk GaAs and GaN are 80 and 255 GHz, respectively, at typical doping levels and operating temperatures of Gunn diodes.

  17. Clouds in the atmospheres of extrasolar planets. IV. On the scattering greenhouse effect of CO2 ice particles: Numerical radiative transfer studies

    CERN Document Server

    Kitzmann, D; Rauer, H

    2013-01-01

    Owing to their wavelengths dependent absorption and scattering properties, clouds have a strong impact on the climate of planetary atmospheres. Especially, the potential greenhouse effect of CO2 ice clouds in the atmospheres of terrestrial extrasolar planets is of particular interest because it might influence the position and thus the extension of the outer boundary of the classic habitable zone around main sequence stars. We study the radiative effects of CO2 ice particles obtained by different numerical treatments to solve the radiative transfer equation. The comparison between the results of a high-order discrete ordinate method and simpler two-stream approaches reveals large deviations in terms of a potential scattering efficiency of the greenhouse effect. The two-stream methods overestimate the transmitted and reflected radiation, thereby yielding a higher scattering greenhouse effect. For the particular case of a cool M-type dwarf the CO2 ice particles show no strong effective scattering greenhouse eff...

  18. $^{24}$Mg($p$, $\\alpha$)$^{21}$Na reaction study for spectroscopy of $^{21}$Na

    CERN Document Server

    Cha, S M; Kim, A; Lee, E J; Ahn, S; Bardayan, D W; Chipps, K A; Cizewski, J A; Howard, M E; Manning, B; O'Malley, P D; Ratkiewicz, A; Strauss, S; Kozub, R L; Matos, M; Pain, S D; Pittman, S T; Smith, M S; Peters, W A

    2015-01-01

    The $^{24}$Mg($p$, $\\alpha$)$^{21}$Na reaction was measured at the Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory in order to better constrain spins and parities of energy levels in $^{21}$Na for the astrophysically important $^{17}$F($\\alpha, p$)$^{20}$Ne reaction rate calculation. 31 MeV proton beams from the 25-MV tandem accelerator and enriched $^{24}$Mg solid targets were used. Recoiling $^{4}$He particles from the $^{24}$Mg($p$, $\\alpha$)$^{21}$Na reaction were detected by a highly segmented silicon detector array which measured the yields of $^{4}$He particles over a range of angles simultaneously. A new level at 6661 $\\pm$ 5 keV was observed in the present work. The extracted angular distributions for the first four levels of $^{21}$Na and Distorted Wave Born Approximation (DWBA) calculations were compared to verify and extract angular momentum transfer.

  19. IL-4 function can be transferred to the IL-2 receptor by tyrosine containing sequences found in the IL-4 receptor alpha chain.

    Science.gov (United States)

    Wang, H Y; Paul, W E; Keegan, A D

    1996-02-01

    IL-4 binds to a cell surface receptor complex that consists of the IL-4 binding protein (IL-4R alpha) and the gamma chain of the IL-2 receptor complex (gamma c). The receptors for IL-4 and IL-2 have several features in common; both use the gamma c as a receptor component, and both activate the Janus kinases JAK-1 and JAK-3. In spite of these similarities, IL-4 evokes specific responses, including the tyrosine phosphorylation of 4PS/IRS-2 and the induction of CD23. To determine whether sequences within the cytoplasmic domain of the IL-4R alpha specify these IL-4-specific responses, we transplanted the insulin IL-4 receptor motif (I4R motif) of the huIL-4R alpha to the cytoplasmic domain of a truncated IL-2R beta. In addition, we transplanted a region that contains peptide sequences shown to block Stat6 binding to DNA. We analyzed the ability of cells expressing these IL-2R-IL-4R chimeric constructs to respond to IL-2. We found that IL-4 function could be transplanted to the IL-2 receptor by these regions and that proliferative and differentiative functions can be induced by different receptor sequences.

  20. Effect of supplementing sows' feed with alpha-tocopherol acetate and vitamin C on transfer of alpha-tocopherol to piglet tissues, colostrum, and milk: aspects of immune status of piglets.

    Science.gov (United States)

    Pinelli-Saavedra, A; Calderón de la Barca, A M; Hernández, J; Valenzuela, R; Scaife, J R

    2008-08-01

    The aim of this study was to investigate the effects of dietary supplementation of sows with alpha-tocopherol acetate (ATA) and vitamin C on deposition of alpha-tocopherol (AT) in piglet lymphoid organs, such as bone marrow, thymus, and spleen at birth and at weaning, as well as on indicators of immune response in piglets. Sows were given the following treatment diets: control, vitamin C 10 g/day, ATA 500 mg/kg feed, and combined vitamins (ATA 500+Vit-C 10). Supplementation with vitamins started at the beginning of pregnancy and lasted until weaning at 21+/-3 days of age. AT was determined in colostrum, milk, piglet plasma (cord blood) and tissues at birth and on day 21. Immunoglobulins were measured in piglet plasma, milk, and colostrum. Lymphocyte proliferation in response to PHA and ConA was determined in sow and piglet blood. ATA supplementation resulted in a significant increase (Ppiglet plasma, liver, thymus, bone marrow, and spleen at weaning. The AT content of colostrum and milk significantly (Ppiglet plasma and tissues at weaning (day 21). Total Ig and IgG concentrations in piglet plasma were significantly increased in piglets given the combined vitamin treatment. No effect of AT supplementation was observed on IgG and IgA in colostrum and milk. In sows, vitamin C given alone significantly increased lymphocyte response to ConA and PHA; whereas, in piglets, there was no significant effect of treatments on lymphocyte response to PHA and ConA.

  1. Study of single particle properties of nuclei in the region of the "island of inversion" by means of neutron-transfer reactions

    CERN Multimedia

    Kruecken, R; Voulot, D

    2007-01-01

    We are aiming at the investigation of single particle properties of neutron-rich nuclei in the region of the "island of inversion" where intruder states from the $\\{fp}$-shell favour deformed ground states instead of the normal spherical $\\textit{sd}$-shell states. As first experiment, we propose to study single particle states in the neutron-rich isotope $^{31}$Mg. The nucleus will be populated by a one-neutron transfer reaction with a $^{30}$Mg beam at 3 MeV/u obtained from REX-ISOLDE impinging on a CD$_{2}$ target. The $\\gamma$-rays will be detected by the MINIBALL array and the particles by a newly built set-up of segmented Si detectors with a angular coverage of nearly 4$\\pi$. Relative spectroscopic factors extracted from the cross sections will enable us to pin down the configurations of the populated states. These will be compared to recent shell model calculations involving new residual interactions. This will shed new light on the evolution of single particle structure leading to the breaking of the ...

  2. Probing the nature of particle-core couplings in {sup 49}Ca with {gamma} spectroscopy and heavy-ion transfer reactions

    Energy Technology Data Exchange (ETDEWEB)

    Montanari, D. [Dipartimento di Fisica, University of Milano, Milano (Italy); INFN, Sezione di Milano, Milano (Italy); Leoni, S., E-mail: silvia.leoni@mi.infn.i [Dipartimento di Fisica, University of Milano, Milano (Italy); INFN, Sezione di Milano, Milano (Italy); Mengoni, D. [Dipartimento di Fisica, University of Padova, Padova (Italy); University of the West of Scotland, Paisley (United Kingdom); Benzoni, G.; Blasi, N. [INFN, Sezione di Milano, Milano (Italy); Bocchi, G. [Dipartimento di Fisica, University of Milano, Milano (Italy); Bortignon, P.F.; Bracco, A.; Camera, F.; Colo, G.; Corsi, A.; Crespi, F.C.L. [Dipartimento di Fisica, University of Milano, Milano (Italy); INFN, Sezione di Milano, Milano (Italy); Million, B. [INFN, Sezione di Milano, Milano (Italy); Nicolini, R. [Dipartimento di Fisica, University of Milano, Milano (Italy); INFN, Sezione di Milano, Milano (Italy); Wieland, O. [INFN, Sezione di Milano, Milano (Italy); Valiente-Dobon, J.J.; Corradi, L.; Angelis, G. de; Della Vedova, F.; Fioretto, E. [INFN, Laboratori Nazionali di Legnaro, Padova (Italy)

    2011-03-14

    Neutron rich nuclei around {sup 48}Ca have been measured with the CLARA-PRISMA setup, making use of {sup 48}Ca on {sup 64}Ni binary reactions, at 5.9 MeV/A. Angular distributions of {gamma} rays give evidence, in several transfer channels, for a large spin alignment ({approx}70%) perpendicular to the reaction plane, making it possible to firmly establish spin and parities of the excited states. In the case of {sup 49}Ca, states arising from different types of particle-core couplings are, for the first time, unambiguously identified on basis of angular distribution, polarization and lifetime measurements. Shell model and particle-vibration coupling calculations are used to pin down the nature of the states. Evidence is found for the presence, in the same excitation energy region, of two types of coupled states, i.e. single particle coupled to either {sup 48}Ca or {sup 50}Ca simple configurations, and particle-vibration coupled states based on the 3{sup -} phonon of {sup 48}Ca.

  3. Investigation of double strand breaks induced by alpha particle irradiation using C.N.B.G. microbeam in human keratinocytes; Mise en evidence de cassures double brin de l'ADN induites par irradiation de keratinocytes humains en microfaisceau alpha

    Energy Technology Data Exchange (ETDEWEB)

    Pouthier, Th

    2006-12-15

    To understand the mechanisms of interaction of ionizing radiation with living tissues exposed to low and protracted doses remains a major issue for risk evaluation. The response cannot be found in epidemiological studies because the only available data concern accidental exposures to high doses of radiation. The natural exposure represents the main source of exposure in the daily life, just before the medical sources (radiology, radiotherapy). In addition, this kind of exposure is very difficult to reproduce in vitro by irradiating cell lines. The method per preference is based on random irradiation of cell populations. The mean number of particles having traversed cells is then calculated on the basis of Poisson statistics. In addition to inevitable multiple impacts, the numerous potential intracellular targets (nuclei, cytoplasm), the indirect effects induced by the impact of particles on neighbouring cells or simply the extracellular targets, constitute phenomena that make more complex the interpretation of experimental data. A charged particle microbeam was developed at C.E.N.B.G. to perform the targeted irradiation of individual cells with a targeting precision of a few microns. It is possible to deliver a counted number of alpha particles down to the ultimate dose of one alpha per cell, to target predetermined cells and then to observe the response of the neighbouring cells. This facility has been validated during this work on human keratinocyte cells expressing a recombinant nuclear fluorescent protein (histone H2B-GFP). The combination of ion micro-beams with confocal microscopy and numeric quantitative analysis allowed the measurement of DNA double strand breaks via the phosphorylation of the histone H2A.X in individual cells. The mechanisms of DNA reparation and apoptosis induction were also in the scope of those studies. The experimental results obtained during this thesis validate the methodology we have developed by demonstrating the targeting

  4. Versatile procedure for site-specific grafting of polymer brushes on patchy particles via atom transfer radical polymerization (ATRP)

    NARCIS (Netherlands)

    Van Ravensteijn, Bas G P; Kegel, Willem K.

    2016-01-01

    We report the preparation of chemically anisotropic colloidal dumbbells of which one lobe is functionalized with chemical handles in the form of chlorine groups. The chlorines are easily converted to azides and subsequently to active initiators for Atom Transfer Radical Polymerization (ATRP) by Clic

  5. 4H-SiC肖特基二极管α探测器研究%Study on 4H-SiC Schottky Diode Alpha-particle Detector

    Institute of Scientific and Technical Information of China (English)

    陈雨; 范晓强; 蒋勇; 吴健; 白立新; 柏松; 陈刚; 李理

    2013-01-01

    Silicon carbide (SiC) is a wide bandgap semiconductor material with excellent properties and an excellent medium for detectors. The resolution and relative rise - time of 3 mm × 3 mm 4H - SiC Schottky - diode are investigated with 5.486 MeV 241Am alpha - source. In the vacuum chamber,excellent signals from the SiC detector are observed exposing to alpha particles from 241Am source. The resolution of SiC detector for 5. 486 MeV alpha - particles is 3.4%. As the biased voltages increase, pulse height and relative rise - time from preamplifier FH1047 observed by oscilloscope are saturated to 35. 39 0.21mV and 137. 87 9.44ns, respectively. Well responded signals of SiC detector to alpha particles are observed, indicating that SiC can be used for alpha detection. Combining good resistance to radiation and high temperature, a kind of novel alpha detector and neutron detector with high resolution, fast rise times and high radiation resistance based on SiC Schottky - diode can be developed.%碳化硅(SiC)是一种具有优良物理性能的宽禁带半导体材料,可作为探测器的优良探测介质.用241Am源5.486 MeV的α粒子研究4H-SiC肖特基二极管α探测器的能量分辨率和信号相对上升时间等特性.在真空室中,使SiC探测器暴露在α粒子下,SiC探测器输出良好的响应信号.SiC二极管对5.486 MeVo粒子的能量分辨率最佳可达3.4%;经前置放大器FH1047输出和示波器观测,脉冲幅度随偏压增加而稳定在(35.39±0.21)mV;脉冲上升时间随偏压增加而稳定在(137.87 ±9.44) ns.4H-SiC肖特基二极管对α粒子响应良好,可用于α粒子强度测量.结合SiC耐辐照、耐高温等特性,进一步改进后有望制成分辨率更高、上升时间更快、耐辐照的新型α探测器和中子探测器.

  6. Using Animations in Identifying General Chemistry Students' Misconceptions and Evaluating Their Knowledge Transfer Relating to Particle Position in Physical Changes

    Science.gov (United States)

    Smith, K. Christopher; Villarreal, Savannah

    2015-01-01

    This article reports on the types of views and misconceptions uncovered after assessing 155 freshman general chemistry students on the concept of particle position during the reversible physical change of melting, using the Melting Cycle Instrument, which illustrates particulate-level representations of a melting-freezing cycle. Animations…

  7. Alpha fetoprotein

    Science.gov (United States)

    Fetal alpha globulin; AFP ... Greater than normal levels of AFP may be due to: Cancer in testes , ovaries, biliary (liver secretion) tract, stomach, or pancreas Cirrhosis of the liver Liver cancer ...

  8. Numerical Modeling of Two-Phase Hydromagnetic Flow and Heat Transfer in a Particle-Suspension through a non-Darcian Porous Channel

    Directory of Open Access Journals (Sweden)

    . Dr. S. Rawat

    2014-01-01

    Full Text Available A mathematical model is presented for the steady, two-dimensional magneto-convection heat transfer of a two-phase, electrically-conducting, particle-suspension in a channel containing a non-Darcian porous medium intercalated between two parallel plates, in the presence of a transverse magnetic field. The channel walls are assumed to be isothermal but at different temperatures. The governing equations for the one-dimensional steady flow are formulated following Marble (1970 and extended to include the influence of Darcian porous drag, Forcheimmer quadratic drag, buoyancy effects, Lorentz body force (hydromagnetic retardation force and particle-phase viscous stresses. Special boundary conditions for the particle-phase wall conditions are implemented. The governing coupled, non-linear differential equations are reduced from an (x,y coordinate system to a one-dimensional (y coordinate system. A series of transformations is then employed to non-dimensionalize the model in terms of a single independent variable, , yielding a quartet of coupled ordinary differential equations which are solved numerically using the finite element method, under appropriate transformed boundary conditions. The influence of for example Grashof free convection number (Gr, Hartmann hydromagnetic number (Ha, inverse Stokes number (Skm, Darcy number (Da, Forcheimmer number (Fs,particle loading parameter (PL, buoyancy parameter (B on the fluid-phase velocity and particle-phase velocity are presented graphically. A number of special cases of the transformed model are also studied. The mathematical model finds applications in solar collector devices, electronic fabrication, jet nozzle flows, industrial materials processing transport phenomena, MHD energy generator systems etc.

  9. 基于颗粒尺度的离散颗粒传热模型%Heat transfer model for particles with discrete element method

    Institute of Scientific and Technical Information of China (English)

    卜昌盛; 陈晓平; 刘道银; 段钰锋

    2012-01-01

    颗粒间传热在诸多工业过程中有着十分重要的作用.详细考虑颗粒间传热机理,对颗粒间各传热途径建模,包括颗粒内部导热、颗粒粗糙表面传热、颗粒表面气膜及接触颗粒间隙气膜传热,并与离散颗粒模型(DEM)耦合,建立颗粒尺度下离散颗粒传热模型.以固定床为对象,考察颗粒粒径、颗粒比热容、颗粒热导率及压缩负载对固定床有效传热系数的影响,并将本文计算值和文献的实验值及模型预测值对比,结果表明,该模型可定量预测固定床有效传热系数.本文建立的离散颗粒传热模型为合理预测颗粒体系内的传热提供了一种有效方法.%Heat conduction in granular assemblies plays an important role in industrial applications. In this paper, the details of heat transfer mechanism are considered in particle scale. The conduction resistances of solid interior, rough surface, gas film between solids, and gas-gap between contacted surfaces are modeled and coupled with discrete element method to deduce a heat transfer model. Numerical simulations are performed to investigate the effects of particle diameter, specific thermal capacity, thermal conductivity of particles and compressive load on effective thermal conductivity (ETC) in fixed beds. The predicted ETC is compared with experimental and simulated data in literature, indicating that the presented model can predict ETC satisfactorily, which provides a useful tool for studying heat transfer in particle assemblies.

  10. Recombination and horizontal transfer of nodulation and ACC deaminase (acdS) genes within Alpha- and Betaproteobacteria nodulating legumes of the Cape Fynbos biome.

    Science.gov (United States)

    Lemaire, Benny; Van Cauwenberghe, Jannick; Chimphango, Samson; Stirton, Charles; Honnay, Olivier; Smets, Erik; Muasya, A Muthama

    2015-11-01

    The goal of this work is to study the evolution and the degree of horizontal gene transfer (HGT) within rhizobial genera of both Alphaproteobacteria (Mesorhizobium, Rhizobium) and Betaproteobacteria (Burkholderia), originating from South African Fynbos legumes. By using a phylogenetic approach and comparing multiple chromosomal and symbiosis genes, we revealed conclusive evidence of high degrees of horizontal transfer of nodulation genes among closely related species of both groups of rhizobia, but also among species with distant genetic backgrounds (Rhizobium and Mesorhizobium), underscoring the importance of lateral transfer of symbiosis traits as an important evolutionary force among rhizobia of the Cape Fynbos biome. The extensive exchange of symbiosis genes in the Fynbos is in contrast with a lack of significant events of HGT among Burkholderia symbionts from the South American Cerrado and Caatinga biome. Furthermore, homologous recombination among selected housekeeping genes had a substantial impact on sequence evolution within Burkholderia and Mesorhizobium. Finally, phylogenetic analyses of the non-symbiosis acdS gene in Mesorhizobium, a gene often located on symbiosis islands, revealed distinct relationships compared to the chromosomal and symbiosis genes, suggesting a different evolutionary history and independent events of gene transfer. The observed events of HGT and incongruence between different genes necessitate caution in interpreting topologies from individual data types.

  11. Comparisons of rational engineering correlations of thermophoretically-augmented particle mass transfer with STAN5-predictions for developing boundary layers

    Science.gov (United States)

    Gokoglu, S. A.; Rosner, D. E.

    1984-01-01

    Modification of the code STAN5 to properly include thermophoretic mass transport, and examination of selected test cases developing boundary layers which include variable properties, viscous dissipation, transition to turbulence and transpiration cooling. Under conditions representative of current and projected GT operation, local application of St(M)/St(M),o correlations evidently provides accurate and economical engineering design predictions, especially for suspended particles characterized by Schmidt numbers outside of the heavy vapor range.

  12. Low-loaded Pd/{alpha}-Al{sub 2}O{sub 3} catalysts: Influence of metal particle morphology on hydrogenation of buta-1,3-diene and hydrogenation and isomerization of but-1-ene

    Energy Technology Data Exchange (ETDEWEB)

    Goetz, J.; Touroude, R. [Universite Louis Pasteur, Strasbourg (France); Volpe, M.A. [Planta Piloto de Ingeneria Quimica, Bahia Blanca (Argentina)

    1996-12-01

    Buta-1,3-diene hydrogenation and but-1-ene hydrogenation and isomerization were studied on low-loaded Pd/{alpha}-Al{sub 2}O{sub 3} catalysts (0.1-0.3 wt.%) prepared from palladium acetylacetonate (Pd(C{sub 5}H{sub 7}O{sub 2}){sub 2}). Deuterium tracer study, hydrogen chemisorption, transmission electron microscopy, and X-ray photoelectron spectroscopy analysis were used to establish the relationships between metal-support interactions, particle shapes, and buta-1,3-diene and but-1-ene hydrogenation and isomerization mechanisms. It was found that the hydrogenation reaction rates (turnover frequencies) are similar for buta-1,3-diene and but-1-ene, but 10 times lower for the 0.1% Pd catalyst compared to the 0.3% Pd catalyst. However, the 0.1% Pd catalyst has a high activity for the isomerization reaction which leads to 98% selectivity in isomers for the but-1-ene reaction. This unusual specific activity is explained considering that the 0.1% Pd catalyst contains flat particles in strong interaction with the support, as was deduced from several characterization methods, while the 0.3% Pd catalyst has more rugged bulk type particles after H{sub 2} treatments because they are not interacting with the support. 33 refs., 7 figs., 5 tabs.

  13. Fast HPLC for quality control of Harpagophytum procumbens by using a monolithic silica column: method transfer from conventional particle-based silica column.

    Science.gov (United States)

    Schmidt, Alexander H

    2005-05-06

    The applicability of a monolithic C18-bonded silica column for the rapid HPLC separation of ingredients in medicinal plants and their phytopharmaceutical preparations has been evaluated in the author's laboratory. In this presentation, an existing method for the determination of the iridoid glycoside harpagoside in Harpagophytum procumbens (Devil's Claw) was successfully transferred from a conventional particle-based C18 silica column to a monolithic silica column. The very high porosity of the stationary phase allows chromatography with a much lower backpressure than on conventional columns. Therefore, the flow rate could be easily increased from 0.8 mL/min (particle-based column) to 5 mL/min (monolithic column) and the run-time reduced from 30 to 5 min (that is a reduction about 85% !), without losing any chromatographic resolution of the compound of interest. The amount of harpagoside was measured with the original method on a conventional particle-based silica column and on the adapted method on a monolithic silica column. The statistical mean t-test showed no significant differences of the variances and the means indicating that the fast HPLC method is an acceptable alternative. The shorter analysis time makes the method very valuable for commercial quality control of Harpagophytum extracts and its pharmaceutical preparations.

  14. Study of single particle properties of neutron-rich Na isotopes on the "shore of the island of inversion" by means of neutron-transfer reactions

    CERN Multimedia

    Reiter, P; Blazhev, A A; Riisager, K; Bastin, B; Tengborn, E A; Kruecken, R; Voulot, D; Jeppesen, H B; Hadinia, B; Gernhaeuser, R A; Fynbo, H O U; Georgiev, G P; Habs, D; Fraile prieto, L M; Chapman, R; Nilsson, T; Diriken, J V J; Jenkins, D G; Kroell, T; Leske, J; Huyse, M L; Patronis, N

    We aim at the investigation of single particle properties of neutron-rich Na isotopes around the "shore of the island of inversion". As first experiment of this programme, we propose to study excited states in the isotope $^{29}$Na by a one-neutron transfer reaction with a $^{28}$Na beam at 3 MeV/u obtained from REX-ISOLDE impinging on a CD$_{2}$-target. The $\\gamma$-rays will be detected by the MINIBALL array and the particles by the T-REX array of segmented Si detectors. The main physics aims are to extract from the relative spectroscopic factors information on the configurations contributing to the wave functions of the populated states and, secondly, to identify and characterize negative parity states whose excitation energies reflect directly the N= 28 gap in this region. The results will be compared to recent shell model calculations involving new residual interactions. This will shed new light on the evolution of single particle structure and help to understand the underlying physics relevant for the f...

  15. Spectroscopic strengths for /sup 6/Li-induced alpha-particle transfers on /sup 18/O at 72 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Tanabe, T.; Ogino, K.; Kadota, Y.; Haga, K.; Kitahara, T.; Shiba, T.

    1982-08-01

    The /sup 18/O(/sup 6/Li,d)/sup 22/Ne reaction has been studied at 72-MeV bombarding energy. The angular distributions for transitions to low-lying states in /sup 22/Ne are fitted by exact finite-range distorted-wave Born approximation calculations and yield relative spectroscopic factors in good agreement with theoretical predictions.

  16. Technology Transfer from Particle Physics and Space Research ­ CERN-ESA Stand at Hannover Messe 2014

    CERN Multimedia

    2014-01-01

    In April 2014, for the first time, CERN and ESA took part together to the Hannover Messe, one of the world`s largest industrial fairs (170000 visitors). The stand was organized by the Technology Transfer Offices of the two Organizations as a first visible implementation of a bilateral collaboration agreement recently signed. Several spin-off companies from both Organizations could promote their products on the stand and some very high potential impact technologies were showcased (including for instance the advanced composite materials under development in the frame of EuCARD-2).

  17. Alpha particles at energies of 10 MeV to 1 TeV: conversion coefficients for fluence-to-absorbed dose, effective dose, and gray equivalent, calculated using Monte Carlo radiation transport code MCNPX 2.7.A.

    Science.gov (United States)

    Copeland, Kyle; Parker, Donald E; Friedberg, Wallace

    2010-03-01

    Conversion coefficients have been calculated for fluence to absorbed dose, fluence to effective dose and fluence to gray equivalent, for isotropic exposure to alpha particles in the energy range of 10 MeV to 1 TeV (0.01-1000 GeV). The coefficients were calculated using Monte Carlo transport code MCNPX 2.7.A and BodyBuilder 1.3 anthropomorphic phantoms modified to allow calculation of effective dose to a Reference Person using tissues and tissue weighting factors from 1990 and 2007 recommendations of the International Commission on Radiological Protection (ICRP) and gray equivalent to selected tissues as recommended by the National Council on Radiation Protection and Measurements. Coefficients for effective dose are within 30 % of those calculated using ICRP 1990 recommendations.

  18. Detection of alpha particles by means of zinc sulphide screens. Study of their characteristics; Deteccion de particulas alfa por medio de pantallas de sulfuro de cinc: estudio de sus caracteristicas

    Energy Technology Data Exchange (ETDEWEB)

    Gaeta, R.; Manero, F.

    1959-07-01

    A method of SZn(Ag) screens preparation in order to detect alpha particles is described. The behaviour of the luminophore in a scintillometer is primarily studied and followed by experimental methods in the preparation of screens with the specific qualities required. A sedimentation technic of SZn(Ag) deposition has been employed, and followed by pressing in hot. The variation of impulse size with the massif thickness of luminophore has been studied, and found a maximum value for 6,5 mg/cm{sup 2} in unpressed screens and 6 mg/cm{sup 2} in the pressed ones. The plateau curves present flat areas till 450 volts. The background in source absence is below 0.5 impulse/minute. (Author) 19 refs.

  19. Effects of Low-Dose Alpha-Particle Irradiation in Human Cells: The Role of Induced Genes and the Bystander Effect. Final Technical Report (9/15/1998-5/31/2005)

    Energy Technology Data Exchange (ETDEWEB)

    Little, John B.

    2013-09-17

    This grant was designed to examine the cellular and molecular mechanisms for the bystander effect of radiation (initially described in this laboratory) whereby damage signals are passed from irradiated to non-irradiated cells in a population. These signals induce genetic effects including DNA damage, mutations and chromosomal aberrations in the nonirradiated cells. Experiments were carried out in cultured mammalian cells, primarily human diploid cells, irradiated with alpha particles. This research resulted in 17 publications in the refereed literature and is described in the Progress Report where it is keyed to the publication list. This project was initiated at the Harvard School of Public Health (HSPH) and continued in collaboration with students/fellows at Colorado State University (CSU) and the New Jersey Medical School (NJMS).

  20. Conifer genetic engineering: Particle bombardment and Agrobacterium-mediated gene transfer and its application in future forests

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Many important advances in forest biotechnology have been made. The use of genetic transformation and the applications of transgenic trees in modern forestry is now an important field. Two basic methodologies particle bombardment and Agrobacterium-mediated transformation have been used on conifers. However, routine procedures exist for only a limited number of conifers. As a result only a few species have been successfully transformed into stable transgenic plants. The use of a particle bombardment has been more successful and transgenic plants have been produced in Picea abies, Picea glauca, Picea mariana, and Pinus radiata, although the level of production of stable transgenic plants is lower than that of Agrobacte-rium. At present, breeding programs have been directed toward improving bole shape, growth rate, wood properties, and quality, as well as toward improving root and shoot performance, pest resistance, stress tolerance, herbicide resistance, and ability to resist stresses, which will drive forestry to enter a new era of productivity and quality. This article provides a brief overview of the current state of knowledge on genetic transformation in conifers.

  1. NACA Physicist Studying Alpha Rays

    Science.gov (United States)

    1957-01-01

    NACA Physicits studying Alpha Rays in a continuous cloud chamber. A cloud chamber is used by Lewis scientists to obtain information aimed at minimizing undesirable effects of radiation on nuclear-powered aircraft components. Here, alpha particles from a polonium source emit in a flower-like pattern at the cloud chamber's center. The particles are made visible by means of alcohol vapor diffusing from an area at room temperature to an area at minus -78 deg. Centigrade. Nuclear-powered aircraft were never developed and aircraft nuclear propulsion systems were canceled in the early 1960s.

  2. A self-consistent combined radiative transfer hydrodynamic and particle acceleration model for the X1.0 class flare on March 29, 2014

    Science.gov (United States)

    Rubio da Costa, F.; Kleint, L.; Sainz Dalda, A.; Petrosian, V.; Liu, W.

    2015-12-01

    The X1.0 flare on March 29, 2014 was well observed, covering its emission at several wavelengths from the photosphere to the corona. The RHESSI spectra images allow us to estimate the temporal variation of the electron spectra using regularized inversion techniques. Using this as input for a combined particle acceleration and transport (Stanford-Flare) and radiative transfer hydrodynamic (Radyn) code, we calculate the response of the atmosphere to the electron heating. We will present the evolution of the thermal continuum and several line emissions. Comparing them with GOES soft X-ray and high resolution observations from IRIS, SDO and DST/IBIS allows us to test the basic mechanism(s) of acceleration and to constrain its characteristics. We will also present perspectives on how to apply this methodology and related diagnostics to other flares.

  3. Engineering correlations of variable-property effects on laminar forced convection mass transfer for dilute vapor species and small particles in air

    Science.gov (United States)

    Gokoglu, S. A.; Rosner, D. E.

    1984-01-01

    A simple engineering correlation scheme is developed to predict the variable property effects on dilute species laminar forced convection mass transfer applicable to all vapor molecules or Brownian diffusing small particle, covering the surface to mainstream temperature ratio of 0.25 T sub W/T sub e 4. The accuracy of the correlation is checked against rigorous numerical forced convection laminar boundary layer calculations of flat plate and stagnation point flows of air containing trace species of Na, NaCl, NaOH, Na2SO4, K, KCl, KOH, or K2SO4 vapor species or their clusters. For the cases reported here the correlation had an average absolute error of only 1 percent (maximum 13 percent) as compared to an average absolute error of 18 percent (maximum 54 percent) one would have made by using the constant-property results.

  4. An integrated high-performance beam optics-nuclear processes framework with hybrid transfer map-Monte Carlo particle transport and optimization

    Energy Technology Data Exchange (ETDEWEB)

    Bandura, L., E-mail: bandura@msu.ed [Argonne National Laboratory, Argonne, IL 60439 (United States); Erdelyi, B. [Argonne National Laboratory, Argonne, IL 60439 (United States); Northern Illinois University, DeKalb, IL 60115 (United States); Nolen, J. [Argonne National Laboratory, Argonne, IL 60439 (United States)

    2010-12-01

    An integrated beam optics-nuclear processes framework is essential for accurate simulation of fragment separator beam dynamics. The code COSY INFINITY provides powerful differential algebraic methods for modeling and beam dynamics simulations in absence of beam-material interactions. However, these interactions are key for accurately simulating the dynamics of heavy ion fragmentation and fission. We have developed an extended version of the code that includes these interactions, and a set of new tools that allow efficient and accurate particle transport: by transfer map in vacuum and by Monte Carlo methods in materials. The new framework is presented, along with several examples from a preliminary layout of a fragment separator for a facility for rare isotope beams.

  5. $\\alpha_s$ review (2016)

    CERN Document Server

    d'Enterria, David

    2016-01-01

    The current world-average of the strong coupling at the Z pole mass, $\\alpha_s(m^2_{Z}) = 0.1181 \\pm 0.0013$, is obtained from a comparison of perturbative QCD calculations computed, at least, at next-to-next-to-leading-order accuracy, to a set of 6 groups of experimental observables: (i) lattice QCD "data", (ii) $\\tau$ hadronic decays, (iii) proton structure functions, (iv) event shapes and jet rates in $e^+e^-$ collisions, (v) Z boson hadronic decays, and (vi) top-quark cross sections in p-p collisions. In addition, at least 8 other $\\alpha_s$ extractions, usually with a lower level of theoretical and/or experimental precision today, have been proposed: pion, $\\Upsilon$, W hadronic decays; soft and hard fragmentation functions; jets cross sections in pp, e-p and $\\gamma$-p collisions; and photon F$_2$ structure function in $\\gamma\\,\\gamma$ collisions. These 14 $\\alpha_s$ determinations are reviewed, and the perspectives of reduction of their present uncertainties are discussed.

  6. Effect of viscous dissipation on hydromagnetic fluid flow and heat transfer of nanofluid over an exponentially stretching sheet with fluid-particle suspension

    Directory of Open Access Journals (Sweden)

    M.R. Krishnamurthy

    2015-12-01

    Full Text Available This paper considers the problem of steady, boundary layer flow and heat transfer of a nanofluid with fluid-particle suspension over an exponentially stretching surface in the presence of transverse magnetic field and viscous dissipation. The stretching velocity and wall temperature are assumed to vary according to specific exponential form. The governing equations in partial forms are reduced to a system of coupled non-linear ordinary differential equations using suitable similarity transformations. An effective Runge–Kutta–Fehlberg (RKF-45 is used to solve the obtained differential equations with the help of a symbolic software MAPLE. The effects of flow parameters—such as nanofluid interaction parameter, magnetic parameter, solid volume fraction of nanoparticle parameter, Prandtl number and Eckert number—on the flow field and heat-transfer characteristics were obtained and are tabulated. Useful discussions were carried out with the help of plotted graphs and tables. Under the limiting cases, comparison with the existing results was made and found to be in good agreement. The results demonstrate that the skin friction coefficient increases for both magnetic and solid volume fraction nanoparticle parameters. However, dusty fluid with copper (Cu nanoparticles has the appreciable cooling performance than other fluids.

  7. Energy transfer based photoluminescence spectra of (Tb{sup 3+}+ Sm{sup 3+}):PEO+PVP polymer nano-composites with Ag nano-particles

    Energy Technology Data Exchange (ETDEWEB)

    Naveen Kumar, K., E-mail: knaveenphy@gmail.com; Chandra Babu, B.; Buddhudu, S.

    2015-05-15

    Sm{sup 3+}:PEO+PVP, Sm{sup 3+}+Tb{sup 3+}:PEO+PVP and Sm{sup 3+}+Tb{sup 3+}+Ag NPs:PEO+PVP polymer films have successfully been synthesized by a solution casting method. For these polymer films, their XRD, FTIR and RAMAN spectral profiles have been analyzed. Both absorption and photoluminescence spectra have been measured in evaluating their optical properties. The Sm{sup 3+}:PEO+PVP polymer film has displayed a reddish-orange emission at 600 nm under an UV lamp and its absorption and emission spectra have also been measured to evaluate its optical characteristics. A reddish-orange emission at 600 nm ({sup 4}G{sub 5/2}→ {sup 6}H{sub 7/2}) of Sm{sup 3+} has been measured for which lifetime has also been evaluated suitably. The Photoluminescence efficiency of Sm{sup 3+} ion has been enhanced due to the addition of Tb{sup 3+} by means of an energy transfer process. The energy transfer mechanism, from Tb{sup 3+} to Sm{sup 3+} has been explained. In Ag nano-filler embedded in Tb{sup 3+}+Sm{sup 3+}:PEO+PVP polymer system, a different energy transfer process which exists between Ag nano-particles and Sm{sup 3+} ions also taking place in the polymer matrix has been identified. From these results, these films could be suggested as potential reddish-orange luminescent optical materials.

  8. Trajectories and energy transfer of saltating particles onto rock surfaces : application to abrasion and ventifact formation on Earth and Mars

    Science.gov (United States)

    Bridges, Nathan T.; Phoreman, James; White, Bruce R.; Greeley, Ronald; Eddlemon, Eric E.; Wilson, Gregory R.; Meyer, Christine J.

    2005-01-01

    The interaction between saltating sand grains and rock surfaces is assessed to gauge relative abrasion potential as a function of rock shape, wind speed, grain size, and planetary environment. Many kinetic energy height profiles for impacts exhibit a distinctive increase, or kink, a few centimeters above the surface, consistent with previous field, wind tunnel, and theoretical investigations. The height of the kink observed in natural and wind tunnel settings is greater than predictions by a factor of 2 or more, probably because of enhanced bouncing off hard ground surfaces. Rebounded grains increase the effective flux and relative kinetic energy for intermediate slope angles. Whether abrasion occurs, as opposed to simple grain impact with little or no mass lost from the rock, depends on whether the grain kinetic energy (EG) exceeds a critical value (EC), as well as the flux of grains with energies above EC. The magnitude of abrasion and the shape change of the rock over time depends on this flux and the value of EG > EC. Considering the potential range of particle sizes and wind speeds, the predicted kinetic energies of saltating sand hitting rocks overlap on Earth and Mars. However, when limited to the most likely grain sizes and threshold conditions, our results agree with previous work and show that kinetic energies are about an order of magnitude greater on Mars.

  9. Application of Latex particles in detecting alpha- fetoprotein (AFP)%乳胶粒子法检测甲胎蛋白的应用

    Institute of Scientific and Technical Information of China (English)

    陈浩全; 曾嫚妮

    2012-01-01

    Objective:To evaluate the application value of Latex method in detection of alpha - fetoprotein ( AFP). Methods:Repetitive determination tests within and between batches were done on serum specimens, then the determination results were compared and analyzed by Latex method and electrochemiluminescence assay. Results; The results had no significant difference between Latex method and electrochemiluminescence assay, the recoveries were 95.5% for Latex method and 96.7% for electrochemiluminescence assay. Conclusion; Though electrochemiluminescence assay had high sensitivity and precision, it was not suitable for the wide use due to its high cost in instrument and reagent. Latex method had good correlation with electrochemiluminescence assay, which can be applied widely for its rapidness, stable results and low cost.%目的:评价Latex法检测甲胎蛋白(AFP)的临床应用价值.方法:对血清标本做批内批间重复性测定试验及Latex法与电化学发光法进行对比测定.结果:Latex法与电化学发光法检测AFP结果无显著差异,Latex法与电化学发光法平均回收率分别为95.5%和96.7%.结论:电化学发光法灵敏度、精密度高,但其仪器、试剂价格高,不适于全面推广;Latex法与电化学发光法检测AFP结果无显著差异,相关性好,快速、结果稳定,试剂便宜在全自动生化仪上检测,可广泛应用.

  10. Differential radiosensitivity phenotypes of DNA-PKcs mutations affecting NHEJ and HRR systems following irradiation with gamma-rays or very low fluences of alpha particles.

    Science.gov (United States)

    Lin, Yu-Fen; Nagasawa, Hatsumi; Little, John B; Kato, Takamitsu A; Shih, Hung-Ying; Xie, Xian-Jin; Wilson, Paul F; Brogan, John R; Kurimasa, Akihiro; Chen, David J; Bedford, Joel S; Chen, Benjamin P C

    2014-01-01

    We have examined cell-cycle dependence of chromosomal aberration induction and cell killing after high or low dose-rate γ irradiation in cells bearing DNA-PKcs mutations in the S2056 cluster, the T2609 cluster, or the kinase domain. We also compared sister chromatid exchanges (SCE) production by very low fluences of α-particles in DNA-PKcs mutant cells, and in homologous recombination repair (HRR) mutant cells including Rad51C, Rad51D, and Fancg/xrcc9. Generally, chromosomal aberrations and cell killing by γ-rays were similarly affected by mutations in DNA-PKcs, and these mutant cells were more sensitive in G1 than in S/G2 phase. In G1-irradiated DNA-PKcs mutant cells, both chromosome- and chromatid-type breaks and exchanges were in excess than wild-type cells. For cells irradiated in late S/G2 phase, mutant cells showed very high yields of chromatid breaks compared to wild-type cells. Few exchanges were seen in DNA-PKcs-null, Ku80-null, or DNA-PKcs kinase dead mutants, but exchanges in excess were detected in the S2506 or T2609 cluster mutants. SCE induction by very low doses of α-particles is resulted from bystander effects in cells not traversed by α-particles. SCE seen in wild-type cells was completely abolished in Rad51C- or Rad51D-deficient cells, but near normal in Fancg/xrcc9 cells. In marked contrast, very high levels of SCEs were observed in DNA-PKcs-null, DNA-PKcs kinase-dead and Ku80-null mutants. SCE induction was also abolished in T2609 cluster mutant cells, but was only slightly reduced in the S2056 cluster mutant cells. Since both non-homologous end-joining (NHEJ) and HRR systems utilize initial DNA lesions as a substrate, these results suggest the possibility of a competitive interference phenomenon operating between NHEJ and at least the Rad51C/D components of HRR; the level of interaction between damaged DNA and a particular DNA-PK component may determine the level of interaction of such DNA with a relevant HRR component.

  11. Regular Changes in the Fine Structure of Histograms Revealed in the Experiments with Collimators which Isolate Beams of Alpha-Particles Flying at Certain Directions

    Directory of Open Access Journals (Sweden)

    Shnoll S. E.

    2009-04-01

    Full Text Available As was shown in the works of 1951–1983, the fine structure of distributions of the re- sults of measurements of processes of diverse nature is not casual. The changes in the shape of histograms corresponding to the distributions were called “macroscopic fluctu- ations”. The universal character of the phenomenon and its independence of the nature of the process studied were demonstrated for various processes: biochemical and chem- ical reactions, movement of latex particles in the electric field, proton transverse relax- ation in the inhomogeneous magnetic field, discharge in the neon-tube RC-generator and radioactive decay of various - and -isotopes. Since 1982, the main object chosen to study macroscopic fluctuations has been -decay. The choice was based on the pro- cess being a priori independent of trivial factors and the possibility to conduct continu- ous long-term automatic measurements while storing the results in a computer archive (database. Started in 1982, these measurements have been carrying on, as unceasingly as possible, until now. Since July 2000, the measurements are conducted using devices designed by one of the coauthors of this review, I. A. Rubinstein. Application of these devices (especially, detectors with collimators which isolate beams of -particles fly- ing at certain directions, along with the use of Edwin Pozharsky’s computer program, which eases histogram comparing by the expert, has allowed us to reveal a number of fundamentally new regularities. In the review, we describe these regularities, device constructions, and the methods of measurement and analysis of the results obtained.

  12. Alpha Radiolysis of Nuclear Solvent Extraction Ligands Used for An(III) and Ln(III) Separations

    Energy Technology Data Exchange (ETDEWEB)

    Mezyk, Stephen P. [California State Univ. (CalState), Long Beach, CA (United States); Mincher, Bruce J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Nilsson, Mikael [Univ. of California, Irvine, CA (United States)

    2016-08-01

    This document is the final report for the Nuclear Energy Universities Program (NEUP) grant 10-910 (DE-AC07-05ID14517) “Alpha Radiolysis of Nuclear Solvent Extraction Ligands used for An(III) and Ln(III) Separations”. The goal of this work was to obtain a quantitative understanding of the impacts of both low Linear Energy Transfer (LET, gamma-rays) and high LET (alpha particles) radiation chemistry occurring in future large-scale separations processes. This quantitative understanding of the major radiation effects on diluents and ligands is essential for optimal process implementation, and could result in significant cost savings in the future.

  13. 粒子群优化算法在传递对准中的应用%Application of particle swarm optimization algorithm in transfer alignment

    Institute of Scientific and Technical Information of China (English)

    夏家和; 秦永元; 贾继超

    2009-01-01

    A PSO(particle swarm optimization) algorithm-based transfer alignment method is presented. The transfer alignment requirement and the relation between the master inertial sensors and slave inertial sensors are analyzed. The transfer alignment problem is treated as a parameter optimization problem, and the PSO algorithm-based alignment mathematics model is given. The transfer alignment optimization function is defined, and the PSO algorithm is introduced. The PSO algorithm is employed to search the global minima, then the misalignment can be estimated. The algorithm is validated by simulation. The heading error can be <0.1° under the simulation condition that the gyro's accuracy is 0.1 (°)/h. The algorithm is greatly affected by the maneuver as other alignment methods. Attitude maneuver is usually needed to increase the gyro's signal-to-noise rate.%给出了一种基于粒子群优化算法的捷联惯导传递对准算法.简单分析了传递对准任务要求和主子惯导惯性器件输出之间的关系,将传递对准问题作为参数优化问题进行求解,给出了基于粒子群优化算法进行传递对准的数学模型.定义了传递对准的优化目标函数,介绍了粒子群优化算法及其应用于传递对准的具体算法设置.用粒子群优化算法求解目标函数的最小值,可获得主子惯导之间的失准角,进行一次校正即可完成传递对准过程.通过计算机仿真对算法进行了验证分析,在仿真条件下(陀螺精度为0.1°/h),能达到方位0.1°的精度.与其他对准算法一样,算法受载体机动条件的影响较大,一般需要姿态机动来提高陀螺的信噪比.

  14. Development of heat transfer coefficient model for external heated rotary kiln with low filling large particles%大颗粒低填充率外热式回转窑传热系数模型的构建

    Institute of Scientific and Technical Information of China (English)

    吴静; 李选友; 陈宝明; 高玲; 王瑞雪; 赵改菊; 王成运

    2014-01-01

    Heat transfer coefficient is one of the most crucial parameters in thermal calculation and design for an externally heated rotary kiln. Suitably designed kiln dimensions, structure and operating parameters rely on the accuracy of the employed heat transfer coefficient. For an externally heated kiln, heat transfers from an outside source to inside particles through a wall. Generally, the filling ratio in an externally heated rotary kiln is low. So, the heat transfer mechanism for large particles with a low filling ratio in an externally heated rotary kiln is quite different from that in an internally heated rotary kiln, whose filling ratio is usually more than 15 percent. Despite the existence of some achievements in particles motion behavior and heat transfer mechanisms in an internally heated rotary kiln, so far, there is no reliable heat transfer model to describe the heat transfer process between the kiln’s surface and particles in an externally heated rotary kiln with low filling large particles. As a result, the main approach of heat transfer coefficient determination is still an experimental test. On the basis of heat transfer mechanism analysis, this paper regards the heat transfer process between the kiln’s surface and large particles as consisting of heat conduction between the kiln’s surface and gas film, heat convection between the gas film and particles, and heat radiation between the kiln’s surface and particles. Finally, a mathematical model is created for the prediction of the heat transfer coefficient between the kiln’s surface and large particles. To validate the developed model, a series of experimental tests are performed. Alumina spherical grains with a diameter of 6 mm are used as testing particles. When the filling ratio is 5 percent, the heat transfer coefficients are measured in the range of 220℃-420℃ at 20℃ surface temperature intervals, corresponding to the rotary speeds of 1r/min, 2r/min, and 3r/min, respectively. The

  15. Ion-exchange separation of radioiodine and its application to production of {sup 124}I by alpha particle induced reactions on antimony

    Energy Technology Data Exchange (ETDEWEB)

    Shuza Uddin, Md. [Forschungszentrum Juelich (Germany). Inst. fuer Neurowissenschaften und Medizin, INM-5: Nuklearchemie; Atomic Energy Research Establishment, Inst. of Nuclear Science and Technology, Dhaka (Bangladesh); Qaim, Seyed M.; Spahn, Ingo; Spellerberg, Stefan; Scholten, Bernhard; Coenen, Heinz H. [Forschungszentrum Juelich (Germany). Inst. fuer Neurowissenschaften und Medizin, INM-5: Nuklearchemie; Hermanne, Alex [Vrije Univ. Brussel (Belgium). Cyclotron Lab.; Hossain, Syed Mohammod [Atomic Energy Research Establishment, Inst. of Nuclear Science and Technology, Dhaka (Bangladesh)

    2015-07-01

    The basic parameters related to radiochemical separation of iodine from tellurium and antimony by anion-exchange chromatography using the resin Amberlyst A26 were studied. The separation yield of {sup 124}I amounted to 96% and the decontamination factor from {sup 121}Te and {sup 122}Sb was > 10{sup 4}. The method was applied to the production of {sup 124}I via the {sup 123}Sb(α, 3n) reaction. In an irradiation of 110 mg of {sup nat}Sb{sub 2}O{sub 3} (thickness ∝0.08 g/cm{sup 2}) with 38 MeV α-particles at 1.2 μA beam current for 4 h, corresponding to the beam energy range of E{sub α} = 37 → 27 MeV, the batch yield of {sup 124}I obtained was 12.42 MBq and the {sup 125}I and {sup 126}I impurities amounted to 3.8% and 0.7%, respectively. The experimental batch yield of {sup 124}I amounted to 80% of the theoretically calculated value but the level of the radionuclidic impurities were in agreement with the theoretical values. About 96% of the radioiodine was in the form of iodide and the inactive impurities (Te, Sb, Sn) were below the permissible level. Due to the relatively high level of radionuclidic impurity the {sup 124}I produced would possibly be useful only for restricted local consumption or for animal experiments.

  16. Study of the {sup 18}F(p,{alpha}){sup 15}O reaction by transfer reaction for application to {gamma}-ray emission from Novae; Etude de la reaction {sup 18}F(p,{alpha}){sup 15}O par reaction de transfert pour application a l'emission {gamma} des Novae

    Energy Technology Data Exchange (ETDEWEB)

    Sereville, N. de

    2003-12-15

    The gamma emission from novae at/or below 511 keV is due to the annihilation of the positrons produced in the beta + decay of F{sup 18}. The interpretation of this emission through observations made by the Integral satellite for instance, requires a good knowledge of F{sup 18} nucleosynthesis. The reaction rate of the F{sup 18}(p,{alpha})O{sup 15} is the least known because of 2 resonances corresponding to the levels 6.419 and 6.449 MeV of Ne{sup 19} whose proton widths are completely unknown. We have determined these proton widths via the study of one-nucleon transfer reaction D(F{sup 18},p{alpha})N{sup 15} populating equivalent levels in F{sup 19}. We have used a 14 MeV F{sup 18} radioactive beam on a CD{sub 2} target for inverse kinematics studies and the multi-track silicon detector LEDA. A DWBA (Distorted Wave Bound Approximation) has enabled us to determine the proton width of both resonances and has showed that they have an impact in the calculation of the reaction rate. A thorough study of the remaining uncertainties of the reaction rate has been undertaken, particularly for those concerning interferences between these resonances and a higher resonance of Ne{sup 19}. The reaction rate that we have obtained is very similar to the previous rate used but now it rests on a more solid basis.

  17. Coordination of the Ser2056 and Thr2609 Clusters of DNA-PKcs in Regulating Gamma Rays and Extremely Low Fluencies of Alpha-Particle Irradiation to G0/G1 Phase Cells

    Science.gov (United States)

    Nagasawa, Hatsumi; Lin, Yu-Fen; Kato, Takamitsu A.; Brogan, John R.; Shih, Hung-Ying; Kurimasa, Akihiro; Bedford, Joel S.; Chen, Benjamin P. C.; Little, John B.

    2017-01-01

    The catalytic subunit of DNA dependent protein kinase (DNA-PKcs) and its kinase activity are critical for mediation of non-homologous end-joining (NHEJ) of DNA double-strand breaks (DSB) in mammalian cells after gamma-ray irradiation. Additionally, DNA-PKcs phosphorylations at the T2609 cluster and the S2056 cluster also affect DSB repair and cellular sensitivity to gamma radiation. Previously we reported that phosphorylations within these two regions affect not only NHEJ but also homologous recombination repair (HRR) dependent DSB repair. In this study, we further examine phenotypic effects on cells bearing various combinations of mutations within either or both regions. Effects studied included cell killing as well as chromosomal aberration induction after 0.5–8 Gy gamma-ray irradiation delivered to synchronized cells during the G0/G1 phase of the cell cycle. Blocking phosphorylation within the T2609 cluster was most critical regarding sensitization and depended on the number of available phosphorylation sites. It was also especially interesting that only one substitution of alanine in each of the two clusters separately abolished the restoration of wild-type sensitivity by DNA-PKcs. Similar patterns were seen for induction of chromosomal aberrations, reflecting their connection to cell killing. To study possible change in coordination between HRR and NHEJ directed repair in these DNA-PKcs mutant cell lines, we compared the induction of sister chromatid exchanges (SCEs) by very low fluencies of alpha particles with mutant cells defective in the HRR pathway that is required for induction of SCEs. Levels of true SCEs induced by very low fluence of alpha-particle irradiation normally seen in wild-type cells were only slightly decreased in the S2056 cluster mutants, but were completely abolished in the T2609 cluster mutants and were indistinguishable from levels seen in HRR deficient cells. Again, a single substitution in the S2056 together with a single

  18. Composition, size distribution, optical properties and radiative effects of re-suspended local mineral dust of Rome area by individual-particle microanalysis and radiative transfer modelling

    Directory of Open Access Journals (Sweden)

    A. Pietrodangelo

    2015-05-01

    Full Text Available New information on the PM10 mineral dust from site-specific (Rome area, Latium outcropped rocks, and on the microphysics, optical properties and radiative effects of mineral dust at local level were gained in this work. A multi-disciplinary approach was used, based on individual-particle scanning electron microscopy with X-ray energy-dispersive microanalysis (SEM XEDS, X-ray diffraction (XRD analysis of dust, size distribution of mineral particles, and radiative transfer modelling (RTM.The mineral composition of Rome lithogenic PM10 varies between an end-member dominated by silicate minerals and one exclusively composed of calcite. The first is obtained from volcanic lithotypes, the second from travertine or limestones; lithogenic PM10 with intermediate composition derives mainly from siliciclastic rocks or marlstones of Rome area. Size and mineral species of PM10 particles of silicate-dominated dust types are tuned mainly by weathering and, to lesser extent, by debris formation or crystallization; chemical precipitation of CaCO3 plays a major role in calcite-dominated types. These differences are evidenced by the diversity of volume distributions, within either dust types, or mineral species. Further differences are observed between volume distributions of calcite from travertine (natural source and from road dust (anthropic source, specifically on the width, shape and enrichment of the fine fraction (unimodal at 5 μm a.d. for travertine, bimodal at 3.8 and 1.8 μm a.d. for road dust. Log-normal probability density functions of volcanics and travertine dusts affect differently the single scattering albedo (SSA and the asymmetry parameter (g in the VISible and Near Infrared (NIR regions, depending also on the absorbing/non-absorbing character of volcanics and travertine, respectively. The downward component of the BOA solar irradiance simulated by RTM for a volcanics-rich or travertine-rich atmosphere shows that volcanics contribution to the

  19. Composition, size distribution, optical properties and radiative effects of re-suspended local mineral dust of Rome area by individual-particle microanalysis and radiative transfer modelling

    Science.gov (United States)

    Pietrodangelo, A.; Salzano, R.; Bassani, C.; Pareti, S.; Perrino, C.

    2015-05-01

    New information on the PM10 mineral dust from site-specific (Rome area, Latium) outcropped rocks, and on the microphysics, optical properties and radiative effects of mineral dust at local level were gained in this work. A multi-disciplinary approach was used, based on individual-particle scanning electron microscopy with X-ray energy-dispersive microanalysis (SEM XEDS), X-ray diffraction (XRD) analysis of dust, size distribution of mineral particles, and radiative transfer modelling (RTM).The mineral composition of Rome lithogenic PM10 varies between an end-member dominated by silicate minerals and one exclusively composed of calcite. The first is obtained from volcanic lithotypes, the second from travertine or limestones; lithogenic PM10 with intermediate composition derives mainly from siliciclastic rocks or marlstones of Rome area. Size and mineral species of PM10 particles of silicate-dominated dust types are tuned mainly by weathering and, to lesser extent, by debris formation or crystallization; chemical precipitation of CaCO3 plays a major role in calcite-dominated types. These differences are evidenced by the diversity of volume distributions, within either dust types, or mineral species. Further differences are observed between volume distributions of calcite from travertine (natural source) and from road dust (anthropic source), specifically on the width, shape and enrichment of the fine fraction (unimodal at 5 μm a.d. for travertine, bimodal at 3.8 and 1.8 μm a.d. for road dust). Log-normal probability density functions of volcanics and travertine dusts affect differently the single scattering albedo (SSA) and the asymmetry parameter (g) in the VISible and Near Infrared (NIR) regions, depending also on the absorbing/non-absorbing character of volcanics and travertine, respectively. The downward component of the BOA solar irradiance simulated by RTM for a volcanics-rich or travertine-rich atmosphere shows that volcanics contribution to the solar

  20. First Attempts at Antihydrogen Trapping in ALPHA

    CERN Document Server

    Andresen, G B; Bowe, P D; Bray, C C; Butler, E; Cesar, C L; Chapman, S; Charlton, M; Fajans, J; Funakoshi, R; Gill, D R; Hangst, J S; Hardy, W N; Hayano, R S; Hayden, M E; Humphries, A J; Hydomako, R; Jenkins, M J; Jørgensen, L V; Kurchaninov, L; Lambo, R; Madsen, N; Nolan, P; Olchanski, K; Olin, A; Page, R D; Povilus, A; Pusa, P; Robicheaux, F; Sarid, E; Seif El Nasr, S; Silveira, D M; Storey, J W; Thompson, R I; Van der Werf, D P; Wasilenko, L; Wurtele, J S; Yamazaki, Y; Fujiwara, M C

    2008-01-01

    We discuss aspects of antihydrogen studies, that relate to particle physics ideas and techniques, within the context of the ALPHA experiment at CERN's Antiproton Decelerator facility. We review the fundamental physics motivations for antihydrogen studies, and their potential physics reach. We argue that initial spectroscopy measurements, once antihydrogen is trapped, could provide competitive tests of CPT, possibly probing physics at the Planck Scale. We discuss some of the particle detection techniques used in ALPHA. Preliminary results from commissioning studies of a partial system of the ALPHA Si vertex detector are presented, the results of which highlight the power of annihilation vertex detection capability in antihydrogen studies.