WorldWideScience

Sample records for alpha motifs regulate

  1. Human sterile alpha motif domain 9, a novel gene identified as down-regulated in aggressive fibromatosis, is absent in the mouse

    Directory of Open Access Journals (Sweden)

    Bell Sherilyn

    2007-04-01

    Full Text Available Abstract Background Neoplasia can be driven by mutations resulting in dysregulation of transcription. In the mesenchymal neoplasm, aggressive fibromatosis, subtractive hybridization identified sterile alpha motif domain 9 (SAMD9 as a substantially down regulated gene in neoplasia. SAMD9 was recently found to be mutated in normophosphatemic familial tumoral calcinosis. In this study, we studied the gene structure and function of SAMD9, and its paralogous gene, SAMD9L, and examined these in a variety of species. Results SAMD9 is located on human chromosome 7q21.2 with a paralogous gene sterile alpha motif domain 9 like (SAMD9L in the head-to-tail orientation. Although both genes are present in a variety of species, the orthologue for SAMD9 is lost in the mouse lineage due to a unique genomic rearrangement. Both SAMD9 and SAMD9L are ubiquitously expressed in human tissues. SAMD9 is expressed at a lower level in a variety of neoplasms associated with β-catenin stabilization, such as aggressive fibromatosis, breast, and colon cancers. SAMD9 and SAMD9L contain an amino-terminal SAM domain, but the remainder of the predicted protein structure does not exhibit substantial homology to other known protein motifs. The putative protein product of SAMD9 localizes to the cytoplasm. In vitro data shows that SAMD9 negatively regulates cell proliferation. Over expression of SAMD9 in the colon cancer cell line, SW480, reduces the volume of tumors formed when transplanted into immune-deficient mice. Conclusion SAMD9 and SAMD9L are a novel family of genes, which play a role regulating cell proliferation and suppressing the neoplastic phenotype. This is the first report as far as we know about a human gene that exists in rat, but is lost in mouse, due to a mouse specific rearrangement, resulting in the loss of the SAMD9 gene.

  2. Human sterile alpha motif domain 9, a novel gene identified as down-regulated in aggressive fibromatosis, is absent in the mouse.

    Science.gov (United States)

    Li, Catherine F; MacDonald, Jeffrey R; Wei, Robert Y; Ray, Jocelyn; Lau, Kimberly; Kandel, Christopher; Koffman, Rachel; Bell, Sherilyn; Scherer, Stephen W; Alman, Benjamin A

    2007-04-03

    Neoplasia can be driven by mutations resulting in dysregulation of transcription. In the mesenchymal neoplasm, aggressive fibromatosis, subtractive hybridization identified sterile alpha motif domain 9 (SAMD9) as a substantially down regulated gene in neoplasia. SAMD9 was recently found to be mutated in normophosphatemic familial tumoral calcinosis. In this study, we studied the gene structure and function of SAMD9, and its paralogous gene, SAMD9L, and examined these in a variety of species. SAMD9 is located on human chromosome 7q21.2 with a paralogous gene sterile alpha motif domain 9 like (SAMD9L) in the head-to-tail orientation. Although both genes are present in a variety of species, the orthologue for SAMD9 is lost in the mouse lineage due to a unique genomic rearrangement. Both SAMD9 and SAMD9L are ubiquitously expressed in human tissues. SAMD9 is expressed at a lower level in a variety of neoplasms associated with beta-catenin stabilization, such as aggressive fibromatosis, breast, and colon cancers. SAMD9 and SAMD9L contain an amino-terminal SAM domain, but the remainder of the predicted protein structure does not exhibit substantial homology to other known protein motifs. The putative protein product of SAMD9 localizes to the cytoplasm. In vitro data shows that SAMD9 negatively regulates cell proliferation. Over expression of SAMD9 in the colon cancer cell line, SW480, reduces the volume of tumors formed when transplanted into immune-deficient mice. SAMD9 and SAMD9L are a novel family of genes, which play a role regulating cell proliferation and suppressing the neoplastic phenotype. This is the first report as far as we know about a human gene that exists in rat, but is lost in mouse, due to a mouse specific rearrangement, resulting in the loss of the SAMD9 gene.

  3. Cofunctional Subpathways Were Regulated by Transcription Factor with Common Motif, Common Family, or Common Tissue

    Directory of Open Access Journals (Sweden)

    Fei Su

    2015-01-01

    Full Text Available Dissecting the characteristics of the transcription factor (TF regulatory subpathway is helpful for understanding the TF underlying regulatory function in complex biological systems. To gain insight into the influence of TFs on their regulatory subpathways, we constructed a global TF-subpathways network (TSN to analyze systematically the regulatory effect of common-motif, common-family, or common-tissue TFs on subpathways. We performed cluster analysis to show that the common-motif, common-family, or common-tissue TFs that regulated the same pathway classes tended to cluster together and contribute to the same biological function that led to disease initiation and progression. We analyzed the Jaccard coefficient to show that the functional consistency of subpathways regulated by the TF pairs with common motif, common family, or common tissue was significantly greater than the random TF pairs at the subpathway level, pathway level, and pathway class level. For example, HNF4A (hepatocyte nuclear factor 4, alpha and NR1I3 (nuclear receptor subfamily 1, group I, member 3 were a pair of TFs with common motif, common family, and common tissue. They were involved in drug metabolism pathways and were liver-specific factors required for physiological transcription. In short, we inferred that the cofunctional subpathways were regulated by common-motif, common-family, or common-tissue TFs.

  4. Regulation of GPCR Anterograde Trafficking by Molecular Chaperones and Motifs.

    Science.gov (United States)

    Young, Brent; Wertman, Jaime; Dupré, Denis J

    2015-01-01

    G protein-coupled receptors (GPCRs) make up a superfamily of integral membrane proteins that respond to a wide variety of extracellular stimuli, giving them an important role in cell function and survival. They have also proven to be valuable targets in the fight against various diseases. As such, GPCR signal regulation has received considerable attention over the last few decades. With the amplitude of signaling being determined in large part by receptor density at the plasma membrane, several endogenous mechanisms for modulating GPCR expression at the cell surface have come to light. It has been shown that cell surface expression is determined by both exocytic and endocytic processes. However, the body of knowledge surrounding GPCR trafficking from the endoplasmic reticulum to the plasma membrane, commonly known as anterograde trafficking, has considerable room for growth. We focus here on the current paradigms of anterograde GPCR trafficking. We will discuss the regulatory role of both the general and "nonclassical private" chaperone systems in GPCR trafficking as well as conserved motifs that serve as modulators of GPCR export from the endoplasmic reticulum and Golgi apparatus. Together, these topics summarize some of the known mechanisms by which the cell regulates anterograde GPCR trafficking. © 2015 Elsevier Inc. All rights reserved.

  5. Analysis of genomic sequence motifs for deciphering transcription factor binding and transcriptional regulation in eukaryotic cells

    Directory of Open Access Journals (Sweden)

    Valentina eBoeva

    2016-02-01

    Full Text Available Eukaryotic genomes contain a variety of structured patterns: repetitive elements, binding sites of DNA and RNA associated proteins, splice sites and so on. Often, these structured patterns can be formalized as motifs and described using a proper mathematical model such as position weight matrix and IUPAC consensus. Two key tasks are typically carried out for motifs in the context of the analysis of genomic sequences. These are: identification in a set of DNA regions of over-represented motifs from a particular motif database, and de novo discovery of over-represented motifs. Here we describe existing methodology to perform these two tasks for motifs characterizing transcription factor binding. When applied to the output of ChIP-seq and ChIP-exo experiments, or to promoter regions of co-modulated genes, motif analysis techniques allow for the prediction of transcription factor binding events and enable identification of transcriptional regulators and co-regulators. The usefulness of motif analysis is further exemplified in this review by how motif discovery improves peak calling in ChIP-seq and ChIP-exo experiments and, when coupled with information on gene expression, allows insights into physical mechanisms of transcriptional modulation.

  6. A recurring two-hydrogen-bond motif incorporating a serine or threonine residue is found both at alpha-helical N termini and in other situations.

    Science.gov (United States)

    Wan, W Y; Milner-White, E J

    1999-03-12

    Side-chain hydroxyl residues in protein crystal structures often form hydrogen bonds with main-chain atoms. The most common bond arrangement is a four to five residue motif in which a serine or threonine is the first residue forming two characteristic hydrogen bonds to residues ahead of it in sequence. We call them ST-motifs, by analogy with the term Asx-motif we suggested for the related motifs with aspartate and asparagine residues. ST-motifs are common, there being just under one and a half in a typical protein subunit. Asx-motifs are even more common, such that 9 % of the residues of an average protein consist of Asx or ST-motifs. Of the ST-motifs, three-quarters are at helical N termini, and the rest occur by themselves or in conjunction with beta-bulge loops. A third of all alpha-helices have either ST-motifs or Asx-motifs at their N termini. Previous work has emphasised the occurrence of the capping box at alpha-helical N termini, but the capping box occurs in only 5 % of alpha-helical N termini; also, we point out that it can be regarded as a subset of the ST-motif (or, occasionally, of the Asx-motif). By comparing related sequences, the rates which amino acid residues at the first position of ST or Asx-motifs interchange during evolution are examined. Serine threonine, and aspartate asparagine, interchange is rapid; inter-pair exchange is slower, but much faster than exchange with other amino acid residues. This is consistent with the general similarity of ST-motifs and Asx-motifs combined with some subtle structural differences between them that are described. Copyright 1999 Academic Press.

  7. Expression and localization of sterile alpha motif domain containing 5 is associated with cell type and malignancy of biliary tree.

    Directory of Open Access Journals (Sweden)

    Tomoki Yagai

    Full Text Available Cholangiocarcinoma (CC is a type of relatively rare neoplasm in adenocarcinoma. The characteristics of CCs as well as biliary epithelial cells are heterogeneous at the different portion of the biliary tree. There are two candidate stem/progenitor cells of the biliary tree, i.e., biliary tree stem/progenitor cell (BTSC at the peribiliary gland (PBG of large bile ducts and liver stem/progenitor cell (LPC at the canals of Hering of peripheral small bile duct. Although previous reports suggest that intrahepatic CC (ICC can arise from such stem/progenitor cells, the characteristic difference between BTSC and LPC in pathological process needs further investigation, and the etiology of CC remains poorly understood. Here we show that Sterile alpha motif domain containing 5 (SAMD5 is exclusively expressed in PBGs of large bile ducts in normal mice. Using a mouse model of cholestatic liver disease, we demonstrated that SAMD5 expression was upregulated in the large bile duct at the hepatic hilum, the extrahepatic bile duct and PBGs, but not in proliferating intrahepatic ductules, suggesting that SAMD5 is expressed in BTSC but not LPC. Intriguingly, human ICCs and extrahepatic CCs exhibited striking nuclear localization of SAMD5 while the normal hilar large bile duct displayed slight-to-moderate expression in cytoplasm. In vitro experiments using siRNA for SAMD5 revealed that SAMD5 expression was associated with the cell cycle regulation of CC cell lines.SAMD5 is a novel marker for PBG but not LPC in mice. In humans, the expression and location of SAMD5 could become a promising diagnostic marker for the cell type as well as malignancy of bile ducts and CCs.

  8. Anchor residue motifs of HLA class-I-binding peptides analyzed by the direct binding of synthetic peptides to HLA class I alpha chains.

    Science.gov (United States)

    Fruci, D; Rovero, P; Falasca, G; Chersi, A; Sorrentino, R; Butler, R; Tanigaki, N; Tosi, R

    1993-11-01

    The binding characteristics of the primary anchor residue motifs reported for HLA-A2 (A*0201, A*0205) and HLA-B27 (B*2705) alleles were investigated by a direct binding assay of the pertinent synthetic peptides to HLA class I alpha chains derived from a panel of HLA homozygous B-cell lines of various HLA phenotypes, including four A2 subtypes. The assay is based on a serologic detection of the conformational change of HLA class I alpha chains induced by binding to specific peptides in the presence of beta 2m. It is applicable to test a large number of HLA allelic products and synthetic peptides. Assay data confirmed the high allele specificity of the anchor residue motifs tested, but also revealed the intra- and interlocus cross-reactivity of these motifs. In the case of A2 anchor motifs, not only a broad cross-reactivity within the A2 subgroup, but also cross-reactivities with A24, A26, A28, and A29 were observed. With B27 anchor motifs, an interlocus cross-reactivity with A3 and A31 was seen. Several peptides, even though they carried A2 or B27 major anchor residue motifs, failed to bind to the relevant alpha chains, suggesting that the presence of a primary anchor residue motif is necessary for HLA class-I-peptide binding but is not by itself sufficient to guarantee binding.

  9. Plasmodium vivax antigen discovery based on alpha-helical coiled coil protein motif

    DEFF Research Database (Denmark)

    Céspedes, Nora; Habel, Catherine; Lopez-Perez, Mary

    2014-01-01

    Protein α-helical coiled coil structures that elicit antibody responses, which block critical functions of medically important microorganisms, represent a means for vaccine development. By using bioinformatics algorithms, a total of 50 antigens with α-helical coiled coil motifs orthologous to Pla...

  10. Karyopherin Alpha Proteins Regulate Oligodendrocyte Differentiation.

    Directory of Open Access Journals (Sweden)

    Benjamin M Laitman

    Full Text Available Proper regulation of the coordinated transcriptional program that drives oligodendrocyte (OL differentiation is essential for central nervous system myelin formation and repair. Nuclear import, mediated in part by a group of karyopherin alpha (Kpna proteins, regulates transcription factor access to the genome. Understanding how canonical nuclear import functions to control genomic access in OL differentiation may aid in the creation of novel therapeutics to stimulate myelination and remyelination. Here, we show that members of the Kpna family regulate OL differentiation, and may play distinct roles downstream of different pro-myelinating stimuli. Multiple family members are expressed in OLs, and their pharmacologic inactivation dose-dependently decreases the rate of differentiation. Additionally, upon differentiation, the three major Kpna subtypes (P/α2, Q/α3, S/α1 display differential responses to the pro-myelinating cues T3 and CNTF. Most notably, the Q/α3 karyopherin Kpna4 is strongly upregulated by CNTF treatment both compared with T3 treatment and other Kpna responses. Kpna4 inactivation results in inhibition of CNTF-induced OL differentiation, in the absence of changes in proliferation or viability. Collectively, these findings suggest that canonical nuclear import is an integral component of OL differentiation, and that specific Kpnas may serve vital and distinct functions downstream of different pro-myelinating cues.

  11. Cellular microRNAs up-regulate transcription via interaction with promoter TATA-box motifs.

    Science.gov (United States)

    Zhang, Yijun; Fan, Miaomiao; Zhang, Xue; Huang, Feng; Wu, Kang; Zhang, Junsong; Liu, Jun; Huang, Zhuoqiong; Luo, Haihua; Tao, Liang; Zhang, Hui

    2014-12-01

    The TATA box represents one of the most prevalent core promoters where the pre-initiation complexes (PICs) for gene transcription are assembled. This assembly is crucial for transcription initiation and well regulated. Here we show that some cellular microRNAs (miRNAs) are associated with RNA polymerase II (Pol II) and TATA box-binding protein (TBP) in human peripheral blood mononuclear cells (PBMCs). Among them, let-7i sequence specifically binds to the TATA-box motif of interleukin-2 (IL-2) gene and elevates IL-2 mRNA and protein production in CD4(+) T-lymphocytes in vitro and in vivo. Through direct interaction with the TATA-box motif, let-7i facilitates the PIC assembly and transcription initiation of IL-2 promoter. Several other cellular miRNAs, such as mir-138, mir-92a or mir-181d, also enhance the promoter activities via binding to the TATA-box motifs of insulin, calcitonin or c-myc, respectively. In agreement with the finding that an HIV-1-encoded miRNA could enhance viral replication through targeting the viral promoter TATA-box motif, our data demonstrate that the interaction with core transcription machinery is a novel mechanism for miRNAs to regulate gene expression. © 2014 Zhang et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  12. How to find a leucine in a haystack? Structure, ligand recognition and regulation of leucine-aspartic acid (LD) motifs

    KAUST Repository

    Alam, Tanvir

    2014-05-29

    LD motifs (leucine-aspartic acidmotifs) are short helical protein-protein interaction motifs that have emerged as key players in connecting cell adhesion with cell motility and survival. LD motifs are required for embryogenesis, wound healing and the evolution of multicellularity. LD motifs also play roles in disease, such as in cancer metastasis or viral infection. First described in the paxillin family of scaffolding proteins, LD motifs and similar acidic LXXLL interaction motifs have been discovered in several other proteins, whereas 16 proteins have been reported to contain LDBDs (LD motif-binding domains). Collectively, structural and functional analyses have revealed a surprising multivalency in LD motif interactions and a wide diversity in LDBD architectures. In the present review, we summarize the molecular basis for function, regulation and selectivity of LD motif interactions that has emerged from more than a decade of research. This overview highlights the intricate multi-level regulation and the inherently noisy and heterogeneous nature of signalling through short protein-protein interaction motifs. © 2014 Biochemical Society.

  13. Feedback loops and reciprocal regulation: recurring motifs in the systems biology of the cell cycle

    OpenAIRE

    Ferrell, James E.

    2013-01-01

    The study of eukaryotic cell cycle regulation over the last several decades has led to a remarkably detailed understanding of the complex regulatory system that drives this fundamental process. This allows us to now look for recurring motifs in the regulatory system. Among these are negative feedback loops, which underpin checkpoints and generate cell cycle oscillations; positive feedback loops, which promote oscillations and make cell cycle transitions switch-like and unidirectional; and rec...

  14. TCR-induced Akt serine 473 phosphorylation is regulated by protein kinase C-alpha

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Lifen [Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan (China); Section of Nephrology, Department of Medicine, The University of Chicago, Chicago, IL 60637 (United States); The Committees on Immunology, The University of Chicago, Chicago, IL 60637 (United States); Qiao, Guilin; Ying, Haiyan [Section of Nephrology, Department of Medicine, The University of Chicago, Chicago, IL 60637 (United States); The Committees on Immunology, The University of Chicago, Chicago, IL 60637 (United States); Zhang, Jian, E-mail: jzhang@medicine.bsd.uchicago.edu [Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan (China); Section of Nephrology, Department of Medicine, The University of Chicago, Chicago, IL 60637 (United States); The Committees on Immunology, The University of Chicago, Chicago, IL 60637 (United States); The Committees on Molecular Medicine, The University of Chicago, Chicago, IL 60637 (United States); Yin, Fei, E-mail: yf2323@hotmail.com [Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan (China)

    2010-09-10

    Research highlights: {yields} Conventional PKC positively regulates TCR-induced phosphorylation of Akt. {yields} PKC-alpha is the PDK-2 responsible for phosphorylating Akt at Ser{sup 473} upon TCR stimulation. {yields} Knockdown of PKC-alpha decreases TCR-induced Akt phosphorylation. -- Abstract: Akt signaling plays a central role in T cell functions, such as proliferation, apoptosis, and regulatory T cell development. Phosphorylation at Ser{sup 473} in the hydrophobic motif, along with Thr{sup 308} in its activation loop, is considered necessary for Akt function. It is widely accepted that phosphoinositide-dependent kinase 1 (PDK-1) phosphorylates Akt at Thr{sup 308}, but the kinase(s) responsible for phosphorylating Akt at Ser{sup 473} (PDK-2) remains elusive. The existence of PDK-2 is considered to be specific to cell type and stimulus. PDK-2 in T cells in response to TCR stimulation has not been clearly defined. In this study, we found that conventional PKC positively regulated TCR-induced Akt Ser{sup 473} phosphorylation. PKC-alpha purified from T cells can phosphorylate Akt at Ser{sup 473} in vitro upon TCR stimulation. Knockdown of PKC-alpha in T-cell-line Jurkat cells reduced TCR-induced phosphorylation of Akt as well as its downstream targets. Thus our results suggest that PKC-alpha is a candidate for PDK-2 in T cells upon TCR stimulation.

  15. Plasmodium vivax antigen discovery based on alpha-helical coiled coil protein motif.

    Directory of Open Access Journals (Sweden)

    Nora Céspedes

    Full Text Available Protein α-helical coiled coil structures that elicit antibody responses, which block critical functions of medically important microorganisms, represent a means for vaccine development. By using bioinformatics algorithms, a total of 50 antigens with α-helical coiled coil motifs orthologous to Plasmodium falciparum were identified in the P. vivax genome. The peptides identified in silico were chemically synthesized; circular dichroism studies indicated partial or high α-helical content. Antigenicity was evaluated using human sera samples from malaria-endemic areas of Colombia and Papua New Guinea. Eight of these fragments were selected and used to assess immunogenicity in BALB/c mice. ELISA assays indicated strong reactivity of serum samples from individuals residing in malaria-endemic regions and sera of immunized mice, with the α-helical coiled coil structures. In addition, ex vivo production of IFN-γ by murine mononuclear cells confirmed the immunogenicity of these structures and the presence of T-cell epitopes in the peptide sequences. Moreover, sera of mice immunized with four of the eight antigens recognized native proteins on blood-stage P. vivax parasites, and antigenic cross-reactivity with three of the peptides was observed when reacted with both the P. falciparum orthologous fragments and whole parasites. Results here point to the α-helical coiled coil peptides as possible P. vivax malaria vaccine candidates as were observed for P. falciparum. Fragments selected here warrant further study in humans and non-human primate models to assess their protective efficacy as single components or assembled as hybrid linear epitopes.

  16. Alpha1 and Alpha2 Integrins Mediate Invasive Activity of Mouse Mammary Carcinoma Cells through Regulation of Stromelysin-1 Expression

    Energy Technology Data Exchange (ETDEWEB)

    Lochter, Andre; Navre, Marc; Werb, Zena; Bissell, Mina J

    1998-06-29

    Tumor cell invasion relies on cell migration and extracellular matrix proteolysis. We investigated the contribution of different integrins to the invasive activity of mouse mammary carcinoma cells. Antibodies against integrin subunits {alpha}6 and {beta}1, but not against {alpha}1 and {alpha}2, inhibited cell locomotion on a reconstituted basement membrane in two-dimensional cell migration assays, whereas antibodies against {beta}1, but not against a6 or {alpha}2, interfered with cell adhesion to basement membrane constituents. Blocking antibodies against {alpha}1 integrins impaired only cell adhesion to type IV collagen. Antibodies against {alpha}1, {alpha}2, {alpha}6, and {beta}1, but not {alpha}5, integrin subunits reduced invasion of a reconstituted basement membrane. Integrins {alpha}1 and {alpha}2, which contributed only marginally to motility and adhesion, regulated proteinase production. Antibodies against {alpha}1 and {alpha}2, but not {alpha}6 and {beta}1, integrin subunits inhibited both transcription and protein expression of the matrix metalloproteinase stromelysin-1. Inhibition of tumor cell invasion by antibodies against {alpha}1 and {alpha}2 was reversed by addition of recombinant stromelysin-1. In contrast, stromelysin-1 could not rescue invasion inhibited by anti-{alpha}6 antibodies. Our data indicate that {alpha}1 and {alpha}2 integrins confer invasive behavior by regulating stromelysin-1 expression, whereas {alpha}6 integrins regulate cell motility. These results provide new insights into the specific functions of integrins during tumor cell invasion.

  17. Distinct C/EBPalpha motifs regulate lipogenic and gluconeogenic gene expression in vivo

    DEFF Research Database (Denmark)

    Pedersen, Thomas A; Bereshchenko, Oxana; Garcia-Silva, Susana

    2007-01-01

    gluconeogenesis and lipogenesis. In vivo deletion of a proline-histidine rich domain (PHR), dephosphorylated at S193 by insulin signaling, dysregulated genes involved in the generation of acetyl-CoA and NADPH for triglyceride synthesis and led to increased hepatic lipogenesis. These promoters bound SREBP-1....../EBPalpha phosphorylation as a PGC-1alpha-independent mechanism for regulating hepatic gluconeogenesis....

  18. An Alpha Motif at Tas3C Terminus Mediates RITS Cis Spreading and Promotes Heterochromatic Gene Silencing

    Energy Technology Data Exchange (ETDEWEB)

    Li, H.; Motamedi, M; Yip, C; Wang, Z; Walz, T; Patel, D; Moazed, D

    2009-01-01

    RNA interference (RNAi) plays a pivotal role in the formation of heterochromatin at the fission yeast centromeres. The RNA-induced transcriptional silencing (RITS) complex, composed of heterochromatic small interfering RNAs (siRNAs), the siRNA-binding protein Ago1, the chromodomain protein Chp1, and the Ago1/Chp1-interacting protein Tas3, provides a physical tether between the RNAi and heterochromatin assembly pathways. Here, we report the structural and functional characterization of a C-terminal Tas3 {alpha}-helical motif (TAM), which self-associates into a helical polymer and is required for cis spreading of RITS in centromeric DNA regions. Site-directed mutations of key residues within the hydrophobic monomer-monomer interface disrupt Tas3-TAM polymeric self-association in vitro and result in loss of gene silencing, spreading of RITS, and a dramatic reduction in centromeric siRNAs in vivo. These results demonstrate that, in addition to the chromodomain of Chp1 and siRNA-loaded Ago1, Tas3 self-association is required for RITS spreading and efficient heterochromatic gene silencing at centromeric repeat regions.

  19. Interaction of activator of G-protein signaling 3 (AGS3) with LKB1, a serine/threonine kinase involved in cell polarity and cell cycle progression: phosphorylation of the G-protein regulatory (GPR) motif as a regulatory mechanism for the interaction of GPR motifs with Gi alpha.

    Science.gov (United States)

    Blumer, Joe B; Bernard, Michael L; Peterson, Yuri K; Nezu, Jun-ichi; Chung, Peter; Dunican, Dara J; Knoblich, Juergen A; Lanier, Stephen M

    2003-06-27

    Activator of G-protein signaling 3 (AGS3) has a modular domain structure consisting of seven tetratricopeptide repeats (TPRs) and four G-protein regulatory (GPR) motifs. Each GPR motif binds to the alpha subunit of Gi/Go (Gialpha > Goalpha) stabilizing the GDP-bound conformation of Galpha and apparently competing with Gbetagamma for GalphaGDP binding. As an initial approach to identify regulatory mechanisms for AGS3-G-protein interactions, a yeast two-hybrid screen was initiated using the TPR and linker region of AGS3 as bait. This screen identified the serine/threonine kinase LKB1, which is involved in the regulation of cell cycle progression and polarity. Protein interaction assays in mammalian systems using transfected cells or brain lysate indicated the regulated formation of a protein complex consisting of LKB1, AGS3, and G-proteins. The interaction between AGS3 and LKB1 was also observed with orthologous proteins in Drosophila where both proteins are involved in cell polarity. LKB1 immunoprecipitates from COS7 cells transfected with LKB1 phosphorylated the GPR domains of AGS3 and the related protein LGN but not the AGS3-TPR domain. GPR domain phosphorylation was completely blocked by a consensus GPR motif peptide, and placement of a phosphate moiety within a consensus GPR motif reduced the ability of the peptide to interact with G-proteins. These data suggest that phosphorylation of GPR domains may be a general mechanism regulating the interaction of GPR-containing proteins with G-proteins. Such a mechanism may be of particular note in regard to localized signal processing in the plasma membrane involving G-protein subunits and/or intracellular functions regulated by heterotrimeric G-proteins that occur independently of a typical G-protein-coupled receptor.

  20. Identification of the sorting signal motif within pro-opiomelanocortin for the regulated secretory pathway

    DEFF Research Database (Denmark)

    Cool, D R; Fenger, M; Snell, C R

    1995-01-01

    amino acid residues (Asp10-Leu11-Glu14-Leu1). Thus the sorting signal for POMC to the regulated secretory pathway appears to be encoded by a specific conformational motif comprised of a 13-amino acid amphipathic loop structure stabilized by a disulfide bridge, located at the NH2 terminus of the molecule.......The NH2-terminal region of pro-opiomelanocortin (POMC) is highly conserved across species, having two disulfide bridges that cause the formation of an amphipathic hairpin loop structure between the 2nd and 3rd cysteine residues (Cys8 to Cys20). The role that the NH2-terminal region of pro......-opiomelanocortin plays in acting as a molecular sorting signal for the regulated secretory pathway was investigated by using site-directed mutagenesis either to disrupt one or more of the disulfide bridges or to delete the amphipathic loop entirely. When POMC was expressed in Neuro-2a cells, ACTH immunoreactive material...

  1. A natural grouping of motifs with an aspartate or asparagine residue forming two hydrogen bonds to residues ahead in sequence: their occurrence at alpha-helical N termini and in other situations.

    Science.gov (United States)

    Wan, W Y; Milner-White, E J

    1999-03-12

    Examination of the ways side-chain carboxylate and amide groups in high-resolution protein crystal structures form hydrogen bonds with main-chain atoms reveals that the most common category is a two-hydrogen-bond four to five residue motif with an aspartate or asparagine (Asx) at the first residue, for which we propose the name Asx-motif. Similar motifs with glutamate or glutamine residues at that position are rare. Asx-motifs occur typically as (1) a common feature of the N termini of alpha-helices called the Asx N-cap motif; (2) an independent motif, usually a beta-turn with an appropriately hydrogen-bonded Asx as the first residue; and (3) a motif incorporated in a beta-bulge loop. Asx-motifs are common, there being just under two-and-a-half in an average-sized protein subunit; of these, about 55 % are Asx N-cap motifs. Because they occur often in many situations, it seems that these motifs have an inherent propensity to form on their own rather than just being a feature stabilised at the end of a helix. Asx-motifs also occur in functionally interesting situations in aspartyl proteases, citrate synthase, EF hands, haemoglobins, lipocalins, glutathione reductase and the alpha/beta hydrolases. Copyright 1999 Academic Press.

  2. Pancreatic insulin content regulation by the estrogen receptor ER alpha.

    Directory of Open Access Journals (Sweden)

    Paloma Alonso-Magdalena

    Full Text Available The function of pancreatic beta-cells is the synthesis and release of insulin, the main hormone involved in blood glucose homeostasis. Estrogen receptors, ER alpha and ER beta, are important molecules involved in glucose metabolism, yet their role in pancreatic beta-cell physiology is still greatly unknown. In this report we show that both ER alpha and ER beta are present in pancreatic beta-cells. Long term exposure to physiological concentrations of 17beta-estradiol (E2 increased beta-cell insulin content, insulin gene expression and insulin release, yet pancreatic beta-cell mass was unaltered. The up-regulation of pancreatic beta-cell insulin content was imitated by environmentally relevant doses of the widespread endocrine disruptor Bisphenol-A (BPA. The use of ER alpha and ER beta agonists as well as ER alphaKO and ER betaKO mice suggests that the estrogen receptor involved is ER alpha. The up-regulation of pancreatic insulin content by ER alpha activation involves ERK1/2. These data may be important to explain the actions of E2 and environmental estrogens in endocrine pancreatic function and blood glucose homeostasis.

  3. Involvement of the clock gene Rev-erb alpha in the regulation of glucagon secretion in pancreatic alpha-cells.

    Directory of Open Access Journals (Sweden)

    Elaine Vieira

    Full Text Available Disruption of pancreatic clock genes impairs pancreatic beta-cell function, leading to the onset of diabetes. Despite the importance of pancreatic alpha-cells in the regulation of glucose homeostasis and in diabetes pathophysiology, nothing is known about the role of clock genes in these cells. Here, we identify the clock gene Rev-erb alpha as a new intracellular regulator of glucagon secretion. Rev-erb alpha down-regulation by siRNA (60-70% inhibition in alphaTC1-9 cells inhibited low-glucose induced glucagon secretion (p<0.05 and led to a decrease in key genes of the exocytotic machinery. The Rev-erb alpha agonist GSK4112 increased glucagon secretion (1.6 fold and intracellular calcium signals in alphaTC1-9 cells and mouse primary alpha-cells, whereas the Rev-erb alpha antagonist SR8278 produced the opposite effect. At 0.5 mM glucose, alphaTC1-9 cells exhibited intrinsic circadian Rev-erb alpha expression oscillations that were inhibited by 11 mM glucose. In mouse primary alpha-cells, glucose induced similar effects (p<0.001. High glucose inhibited key genes controlled by AMPK such as Nampt, Sirt1 and PGC-1 alpha in alphaTC1-9 cells (p<0.05. AMPK activation by metformin completely reversed the inhibitory effect of glucose on Nampt-Sirt1-PGC-1 alpha and Rev-erb alpha. Nampt inhibition decreased Sirt1, PGC-1 alpha and Rev-erb alpha mRNA expression (p<0.01 and glucagon release (p<0.05. These findings identify Rev-erb alpha as a new intracellular regulator of glucagon secretion via AMPK/Nampt/Sirt1 pathway.

  4. Lamin A reassembly at the end of mitosis is regulated by its SUMO-interacting motif

    International Nuclear Information System (INIS)

    Moriuchi, Takanobu; Kuroda, Masaki; Kusumoto, Fumiya; Osumi, Takashi; Hirose, Fumiko

    2016-01-01

    Modification of proteins with small ubiquitin-related modifier (SUMO; SUMOylation) is involved in the regulation of various biological processes. Recent studies have demonstrated that noncovalent associations between SUMOylated proteins and co-operative proteins containing SUMO-interacting motifs (SIMs) are important for the spatiotemporal organization of many protein complexes. In this study, we demonstrate that interactions between lamin A, a major component of the nuclear lamina, and SUMO isoforms are dependent on one of the four SIMs (SIM3) resided in lamin A polypeptide in vitro. Live cell imaging and immunofluorescence staining showed that SIM3 is required for accumulation of lamin A on the chromosomes during telophase, and subsequent evaluation of a panel of deletion mutants determined that a 156-amino acid region spanning the carboxyl-terminal Ig-fold domain of lamin A is sufficient for this accumulation. Notably, mutation of SIM3 abrogated the dephosphorylation of mitosis-specific phosphorylation at Ser-22 of lamin A, which normally occurs during telophase, and the subsequent nuclear lamina reorganization. Furthermore, expression of a conjugation-defective SUMO2 mutant, which was previously shown to inhibit endogenous SUMOylation in a dominant-negative manner, also impaired the accumulation of wild type lamin A on telophase chromosomes. These findings suggest that interactions between SIM3 of lamin A and a putative SUMO2-modified protein plays an important role in the reorganization of the nuclear lamina at the end of mitosis. - Highlights: • Lamin A interacts with SUMO2 via a SUMO-interacting motif (SIM) in the Ig domain. • SIM3 of lamin A is responsible for chromosomal accumulation during telophase. • A 156-aa region spanning the Ig domain is sufficient for chromosomal accumulation. • Accumulation of lamin A is required for timely dephosphorylation on chromosomes. • A putative SUMO2-modified protein may mediate chromosomal accumulation of lamin

  5. Lamin A reassembly at the end of mitosis is regulated by its SUMO-interacting motif

    Energy Technology Data Exchange (ETDEWEB)

    Moriuchi, Takanobu; Kuroda, Masaki; Kusumoto, Fumiya; Osumi, Takashi; Hirose, Fumiko, E-mail: fhirose@sci.u-hyogo.ac.jp

    2016-03-01

    Modification of proteins with small ubiquitin-related modifier (SUMO; SUMOylation) is involved in the regulation of various biological processes. Recent studies have demonstrated that noncovalent associations between SUMOylated proteins and co-operative proteins containing SUMO-interacting motifs (SIMs) are important for the spatiotemporal organization of many protein complexes. In this study, we demonstrate that interactions between lamin A, a major component of the nuclear lamina, and SUMO isoforms are dependent on one of the four SIMs (SIM3) resided in lamin A polypeptide in vitro. Live cell imaging and immunofluorescence staining showed that SIM3 is required for accumulation of lamin A on the chromosomes during telophase, and subsequent evaluation of a panel of deletion mutants determined that a 156-amino acid region spanning the carboxyl-terminal Ig-fold domain of lamin A is sufficient for this accumulation. Notably, mutation of SIM3 abrogated the dephosphorylation of mitosis-specific phosphorylation at Ser-22 of lamin A, which normally occurs during telophase, and the subsequent nuclear lamina reorganization. Furthermore, expression of a conjugation-defective SUMO2 mutant, which was previously shown to inhibit endogenous SUMOylation in a dominant-negative manner, also impaired the accumulation of wild type lamin A on telophase chromosomes. These findings suggest that interactions between SIM3 of lamin A and a putative SUMO2-modified protein plays an important role in the reorganization of the nuclear lamina at the end of mitosis. - Highlights: • Lamin A interacts with SUMO2 via a SUMO-interacting motif (SIM) in the Ig domain. • SIM3 of lamin A is responsible for chromosomal accumulation during telophase. • A 156-aa region spanning the Ig domain is sufficient for chromosomal accumulation. • Accumulation of lamin A is required for timely dephosphorylation on chromosomes. • A putative SUMO2-modified protein may mediate chromosomal accumulation of lamin

  6. Lamin A reassembly at the end of mitosis is regulated by its SUMO-interacting motif.

    Science.gov (United States)

    Moriuchi, Takanobu; Kuroda, Masaki; Kusumoto, Fumiya; Osumi, Takashi; Hirose, Fumiko

    2016-03-01

    Modification of proteins with small ubiquitin-related modifier (SUMO; SUMOylation) is involved in the regulation of various biological processes. Recent studies have demonstrated that noncovalent associations between SUMOylated proteins and co-operative proteins containing SUMO-interacting motifs (SIMs) are important for the spatiotemporal organization of many protein complexes. In this study, we demonstrate that interactions between lamin A, a major component of the nuclear lamina, and SUMO isoforms are dependent on one of the four SIMs (SIM3) resided in lamin A polypeptide in vitro. Live cell imaging and immunofluorescence staining showed that SIM3 is required for accumulation of lamin A on the chromosomes during telophase, and subsequent evaluation of a panel of deletion mutants determined that a 156-amino acid region spanning the carboxyl-terminal Ig-fold domain of lamin A is sufficient for this accumulation. Notably, mutation of SIM3 abrogated the dephosphorylation of mitosis-specific phosphorylation at Ser-22 of lamin A, which normally occurs during telophase, and the subsequent nuclear lamina reorganization. Furthermore, expression of a conjugation-defective SUMO2 mutant, which was previously shown to inhibit endogenous SUMOylation in a dominant-negative manner, also impaired the accumulation of wild type lamin A on telophase chromosomes. These findings suggest that interactions between SIM3 of lamin A and a putative SUMO2-modified protein plays an important role in the reorganization of the nuclear lamina at the end of mitosis. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Motif analysis unveils the possible co-regulation of chloroplast genes and nuclear genes encoding chloroplast proteins.

    Science.gov (United States)

    Wang, Ying; Ding, Jun; Daniell, Henry; Hu, Haiyan; Li, Xiaoman

    2012-09-01

    Chloroplasts play critical roles in land plant cells. Despite their importance and the availability of at least 200 sequenced chloroplast genomes, the number of known DNA regulatory sequences in chloroplast genomes are limited. In this paper, we designed computational methods to systematically study putative DNA regulatory sequences in intergenic regions near chloroplast genes in seven plant species and in promoter sequences of nuclear genes in Arabidopsis and rice. We found that -35/-10 elements alone cannot explain the transcriptional regulation of chloroplast genes. We also concluded that there are unlikely motifs shared by intergenic sequences of most of chloroplast genes, indicating that these genes are regulated differently. Finally and surprisingly, we found five conserved motifs, each of which occurs in no more than six chloroplast intergenic sequences, are significantly shared by promoters of nuclear-genes encoding chloroplast proteins. By integrating information from gene function annotation, protein subcellular localization analyses, protein-protein interaction data, and gene expression data, we further showed support of the functionality of these conserved motifs. Our study implies the existence of unknown nuclear-encoded transcription factors that regulate both chloroplast genes and nuclear genes encoding chloroplast protein, which sheds light on the understanding of the transcriptional regulation of chloroplast genes.

  8. The ABBA motif binds APC/C activators and is shared by APC/C substrates and regulators.

    Science.gov (United States)

    Di Fiore, Barbara; Davey, Norman E; Hagting, Anja; Izawa, Daisuke; Mansfeld, Jörg; Gibson, Toby J; Pines, Jonathon

    2015-02-09

    The anaphase-promoting complex or cyclosome (APC/C) is the ubiquitin ligase that regulates mitosis by targeting specific proteins for degradation at specific times under the control of the spindle assembly checkpoint (SAC). How the APC/C recognizes its different substrates is a key problem in the control of cell division. Here, we have identified the ABBA motif in cyclin A, BUBR1, BUB1, and Acm1, and we show that it binds to the APC/C coactivator CDC20. The ABBA motif in cyclin A is required for its proper degradation in prometaphase through competing with BUBR1 for the same site on CDC20. Moreover, the ABBA motifs in BUBR1 and BUB1 are necessary for the SAC to work at full strength and to recruit CDC20 to kinetochores. Thus, we have identified a conserved motif integral to the proper control of mitosis that connects APC/C substrate recognition with the SAC. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. CD3 gamma contains a phosphoserine-dependent di-leucine motif involved in down-regulation of the T cell receptor

    DEFF Research Database (Denmark)

    Dietrich, J; Hou, X; Wegener, A M

    1994-01-01

    -regulation of the TCR. Furthermore, analysis of a series of CD3 gamma truncation mutants indicated that in addition to S126 phosphorylation a motif C-terminal of S126 was required for TCR down-regulation. Point mutation analyses confirmed this observation and demonstrated that a membrane-proximal di-leucine motif (L131......, indicating that the TCR was down-regulated by endocytosis via clathrin coated pits. Based on the present results and previously published observations on intracellular receptor sorting, a general model for intracellular sorting of receptors containing di-leucine- or tyrosine-based motifs is proposed....

  10. The LSD1-Type Zinc Finger Motifs of Pisum sativa LSD1 Are a Novel Nuclear Localization Signal and Interact with Importin Alpha

    OpenAIRE

    He, Shanping; Huang, Kuowei; Zhang, Xu; Yu, Xiangchun; Huang, Ping; An, Chengcai

    2011-01-01

    BACKGROUND: Genetic studies of the Arabidopsis mutant lsd1 highlight the important role of LSD1 in the negative regulation of plant programmed cell death (PCD). Arabidopsis thaliana LSD1 (AtLSD1) contains three LSD1-type zinc finger motifs, which are involved in the protein-protein interaction. METHODOLOGY/PRINCIPAL FINDINGS: To further understand the function of LSD1, we have analyzed cellular localization and functional localization domains of Pisum sativa LSD1 (PsLSD1), which is a homolog ...

  11. Nicotine enhances expression of the alpha 3, alpha 4, alpha 5, and alpha 7 nicotinic receptors modulating calcium metabolism and regulating adhesion and motility of respiratory epithelial cells.

    Science.gov (United States)

    Zia, S; Ndoye, A; Nguyen, V T; Grando, S A

    1997-09-01

    The purpose of this study was to investigate the possibility of direct toxic effects of nicotine (Nic) on human bronchial epithelial cells (BEC) suggested by our previous findings of functional nicotinic acetylcholine receptors (nAChRs) in the epithelial cells lining mucocutaneous membranes. We now demonstrate for the first time that human and murine BEC both in vivo and in vitro express functional nAChRs, and that classic alpha 3, alpha 4, alpha 5 and alpha 7 subunits can contribute to formation of these acetylcholine-gated ion channels. In human bronchial and mouse lung tissues, and in cultures of human BEC, the nAChRs were visualized by subunit-specific antibodies on the cell membranes, particularly at the sites of cell-to-cell contacts. The epithelial cells of submucosal glands abundantly expressed alpha 7 nAChRs. Smoking significantly (p epithelial nAChRs apparently involve regulation of cell-to-cell communications, adhesion and motility, because Mec caused rapid and profound changes in these cell functions which were reversible by Nic. An over exposure of BEC to Nic, however, produced an antagonist-like effect, suggesting that the pathobiological effects of Nic toxicity might result from both activation of nAChR channels and nAChR desensitization. We conclude that medical consequences of smoking can be mediated by direct toxic effects of inhaled Nic on the respiratory tissues wherein Nic specifically binds to and activates the nicotinic ion channels present on the cell surfaces of BEC. We believe that outside the neural system Nic interferes with functioning of non-neuronal cholinergic networks by displacing from nAChR its natural ligand acetylcholine which acts as a local hormone or cytokine in a variety of non-neuronal locations.

  12. Hypothalamic PGC-1 alpha Protects Against High-Fat Diet Exposure by Regulating ER alpha

    NARCIS (Netherlands)

    Morselli, Eugenia; Fuente-Martin, Esther; Finan, Brian; Kim, Min; Frank, Aaron; Garcia-Caceres, Cristina; Navas, Carlos Rodriguez; Gordillo, Ruth; Neinast, Michael; Kalainayakan, Sarada P.; Li, Dan L.; Gao, Yuanqing; Yi, Chun-Xia; Hahner, Lisa; Palmer, Biff F.; Tschöp, Matthias H.; Clegg, Deborah J.

    2014-01-01

    High-fat diets (HFDs) lead to obesity and inflammation in the central nervous system (CNS). Estrogens and estrogen receptor alpha (ER alpha) protect premenopausal females from the metabolic complications of inflammation and obesity-related disease. Here, we demonstrate that hypothalamic PGC-1 alpha

  13. Analysis of a cAMP regulated coactivator family reveals an alternative phosphorylation motif for AMPK family members.

    Science.gov (United States)

    Sonntag, Tim; Moresco, James J; Vaughan, Joan M; Matsumura, Shigenobu; Yates, John R; Montminy, Marc

    2017-01-01

    The second messenger cAMP stimulates cellular gene expression via the PKA-mediated phosphorylation of the transcription factor CREB and through dephosphorylation of the cAMP-responsive transcriptional coactivators (CRTCs). Under basal conditions, CRTCs are phosphorylated by members of the AMPK family of Ser/Thr kinases and sequestered in the cytoplasm via a phosphorylation-dependent association with 14-3-3 proteins. Increases in cAMP promote the dephosphorylation and nuclear translocation of CRTCs, where they bind to CREB and stimulate relevant target genes. Although they share considerable sequence homology, members of the CRTC family exert non-overlapping effects on cellular gene expression through as yet unidentified mechanisms. Here we show that the three CRTCs exhibit distinct patterns of 14-3-3 binding at three conserved sites corresponding to S70, S171, and S275 (in CRTC2). S171 functions as the gatekeeper site for 14-3-3 binding; it acts cooperatively with S275 in stabilizing this interaction following its phosphorylation by the cAMP-responsive SIK and the cAMP-nonresponsive MARK kinases. Although S171 contains a consensus recognition site for phosphorylation by AMPK family members, S70 and S275 carry variant motifs (MNTGGS275LPDL), lacking basic residues that are otherwise critical for SIK/MARK recognition as well as 14-3-3 binding. Correspondingly, the activity of these motifs differs between CRTC family members. As the variant (SLPDL) motif is present and apparently phosphorylated in other mammalian proteins, our studies suggest that the regulation of cellular targets by AMPK family members is more extensive than previously appreciated.

  14. TC-motifs at the TATA-box expected position in plant genes: a novel class of motifs involved in the transcription regulation.

    Science.gov (United States)

    Bernard, Virginie; Brunaud, Véronique; Lecharny, Alain

    2010-03-12

    The TATA-box and TATA-variants are regulatory elements involved in the formation of a transcription initiation complex. Both have been conserved throughout evolution in a restricted region close to the Transcription Start Site (TSS). However, less than half of the genes in model organisms studied so far have been found to contain either one of these elements. Indeed different core-promoter elements are involved in the recruitment of the TATA-box-binding protein. Here we assessed the possibility of identifying novel functional motifs in plant genes, sharing the TATA-box topological constraints. We developed an ab-initio approach considering the preferential location of motifs relative to the TSS. We identified motifs observed at the TATA-box expected location and conserved in both Arabidopsis thaliana and Oryza sativa promoters. We identified TC-elements within non-TA-rich promoters 30 bases upstream of the TSS. As with the TATA-box and TATA-variant sequences, it was possible to construct a unique distance graph with the TC-element sequences. The structural and functional features of TC-element-containing genes were distinct from those of TATA-box- or TATA-variant-containing genes. Arabidopsis thaliana transcriptome analysis revealed that TATA-box-containing genes were generally those showing relatively high levels of expression and that TC-element-containing genes were generally those expressed in specific conditions. Our observations suggest that the TC-elements might constitute a class of novel regulatory elements participating towards the complex modulation of gene expression in plants.

  15. A Pyranose-2-Phosphate Motif Is Responsible for Both Antibiotic Import and Quorum-Sensing Regulation in Agrobacterium tumefaciens.

    Science.gov (United States)

    El Sahili, Abbas; Li, Si-Zhe; Lang, Julien; Virus, Cornelia; Planamente, Sara; Ahmar, Mohammed; Guimaraes, Beatriz G; Aumont-Nicaise, Magali; Vigouroux, Armelle; Soulère, Laurent; Reader, John; Queneau, Yves; Faure, Denis; Moréra, Solange

    2015-08-01

    Periplasmic binding proteins (PBPs) in association with ABC transporters select and import a wide variety of ligands into bacterial cytoplasm. They can also take up toxic molecules, as observed in the case of the phytopathogen Agrobacterium tumefaciens strain C58. This organism contains a PBP called AccA that mediates the import of the antibiotic agrocin 84, as well as the opine agrocinopine A that acts as both a nutrient and a signalling molecule for the dissemination of virulence genes through quorum-sensing. Here, we characterized the binding mode of AccA using purified agrocin 84 and synthetic agrocinopine A by X-ray crystallography at very high resolution and performed affinity measurements. Structural and affinity analyses revealed that AccA recognizes an uncommon and specific motif, a pyranose-2-phosphate moiety which is present in both imported molecules via the L-arabinopyranose moiety in agrocinopine A and the D-glucopyranose moiety in agrocin 84. We hypothesized that AccA is a gateway allowing the import of any compound possessing a pyranose-2-phosphate motif at one end. This was structurally and functionally confirmed by experiments using four synthetic compounds: agrocinopine 3'-O-benzoate, L-arabinose-2-isopropylphosphate, L-arabinose-2-phosphate and D-glucose-2-phosphate. By combining affinity measurements and in vivo assays, we demonstrated that both L-arabinose-2-phosphate and D-glucose-2-phosphate, which are the AccF mediated degradation products of agrocinopine A and agrocin 84 respectively, interact with the master transcriptional regulator AccR and activate the quorum-sensing signal synthesis and Ti plasmid transfer in A. tumefaciens C58. Our findings shed light on the role of agrocinopine and antibiotic agrocin 84 on quorum-sensing regulation in A. tumefaciens and reveal how the PBP AccA acts as vehicle for the importation of both molecules by means of a key-recognition motif. It also opens future possibilities for the rational design of

  16. Cloning of a yeast alpha-amylase promoter and its regulated heterologous expression

    Science.gov (United States)

    Gao, Johnway [Richland, WA; Skeen, Rodney S [Pendleton, OR; Hooker, Brian S [Kennewick, WA; Anderson, Daniel B [Pasco, WA

    2003-04-01

    The present invention provides the promoter clone discovery of an alpha-amylase gene of a starch utilizing yeast strain Schwanniomyces castellii. The isolated alpha-amylase promoter is an inducible promoter, which can regulate strong gene expression in starch culture medium.

  17. Effect of plant growth regulators on production of alpha-linolenic ...

    Indian Academy of Sciences (India)

    Sujana Kokkiligadda

    2017-10-05

    Oct 5, 2017 ... fatty acid–alpha-linolenic acid and grows fast, was con- sidered to study the effect of plant growth regulators on the yield of alpha-linolenic acid .... softener agents, dispersing agents and food packaging. It is also used to manufacture pharmaceuticals as nutritional supplements and as an emollient and ...

  18. Regulation of synaptic inhibition by phospho-dependent binding of the AP2 complex to a YECL motif in the GABAA receptor γ2 subunit

    Science.gov (United States)

    Kittler, Josef T.; Chen, Guojun; Kukhtina, Viktoria; Vahedi-Faridi, Ardeschir; Gu, Zhenglin; Tretter, Verena; Smith, Katharine R.; McAinsh, Kristina; Arancibia-Carcamo, I. Lorena; Saenger, Wolfram; Haucke, Volker; Yan, Zhen; Moss, Stephen J.

    2008-01-01

    The regulation of the number of γ2-subunit-containing GABAA receptors (GABAARs) present at synapses is critical for correct synaptic inhibition and animal behavior. This regulation occurs, in part, by the controlled removal of receptors from the membrane in clathrin-coated vesicles, but it remains unclear how clathrin recruitment to surface γ2-subunit-containing GABAARs is regulated. Here, we identify a γ2-subunit-specific Yxxφ-type-binding motif for the clathrin adaptor protein, AP2, which is located within a site for γ2-subunit tyrosine phosphorylation. Blocking GABAAR-AP2 interactions via this motif increases synaptic responses within minutes. Crystallographic and biochemical studies reveal that phosphorylation of the Yxxφ motif inhibits AP2 binding, leading to increased surface receptor number. In addition, the crystal structure provides an explanation for the high affinity of this motif for AP2 and suggests that γ2-subunit-containing heteromeric GABAARs may be internalized as dimers or multimers. These data define a mechanism for tyrosine kinase regulation of GABAAR surface levels and synaptic inhibition. PMID:18305175

  19. Regulation of synaptic inhibition by phospho-dependent binding of the AP2 complex to a YECL motif in the GABAA receptor gamma2 subunit.

    Science.gov (United States)

    Kittler, Josef T; Chen, Guojun; Kukhtina, Viktoria; Vahedi-Faridi, Ardeschir; Gu, Zhenglin; Tretter, Verena; Smith, Katharine R; McAinsh, Kristina; Arancibia-Carcamo, I Lorena; Saenger, Wolfram; Haucke, Volker; Yan, Zhen; Moss, Stephen J

    2008-03-04

    The regulation of the number of gamma2-subunit-containing GABA(A) receptors (GABA(A)Rs) present at synapses is critical for correct synaptic inhibition and animal behavior. This regulation occurs, in part, by the controlled removal of receptors from the membrane in clathrin-coated vesicles, but it remains unclear how clathrin recruitment to surface gamma2-subunit-containing GABA(A)Rs is regulated. Here, we identify a gamma2-subunit-specific Yxxvarphi-type-binding motif for the clathrin adaptor protein, AP2, which is located within a site for gamma2-subunit tyrosine phosphorylation. Blocking GABA(A)R-AP2 interactions via this motif increases synaptic responses within minutes. Crystallographic and biochemical studies reveal that phosphorylation of the Yxxvarphi motif inhibits AP2 binding, leading to increased surface receptor number. In addition, the crystal structure provides an explanation for the high affinity of this motif for AP2 and suggests that gamma2-subunit-containing heteromeric GABA(A)Rs may be internalized as dimers or multimers. These data define a mechanism for tyrosine kinase regulation of GABA(A)R surface levels and synaptic inhibition.

  20. CREB inhibits AP-2alpha expression to regulate the malignant phenotype of melanoma.

    Directory of Open Access Journals (Sweden)

    Vladislava O Melnikova

    2010-08-01

    Full Text Available The loss of AP-2alpha and increased activity of cAMP-responsive element binding (CREB protein are two hallmarks of malignant progression of cutaneous melanoma. However, the molecular mechanism responsible for the loss of AP-2alpha during melanoma progression remains unknown.Herein, we demonstrate that both inhibition of PKA-dependent CREB phosphorylation, as well as silencing of CREB expression by shRNA, restored AP-2alpha protein expression in two metastatic melanoma cell lines. Moreover, rescue of CREB expression in CREB-silenced cell lines downregulates expression of AP-2alpha. Loss of AP-2alpha expression in metastatic melanoma occurs via a dual mechanism involving binding of CREB to the AP-2alpha promoter and CREB-induced overexpression of another oncogenic transcription factor, E2F-1. Upregulation of AP-2alpha expression following CREB silencing increases endogenous p21(Waf1 and decreases MCAM/MUC18, both known to be downstream target genes of AP-2alpha involved in melanoma progression.Since AP-2alpha regulates several genes associated with the metastatic potential of melanoma including c-KIT, VEGF, PAR-1, MCAM/MUC18, and p21(Waf1, our data identified CREB as a major regulator of the malignant melanoma phenotype.

  1. Regulation of protein kinase CK1alphaLS by dephosphorylation in response to hydrogen peroxide.

    Science.gov (United States)

    Bedri, Shahinaz; Cizek, Stephanie M; Rastarhuyeva, Iryna; Stone, James R

    2007-10-15

    Low levels of hydrogen peroxide (H(2)O(2)) are mitogenic to mammalian cells and stimulate the hyperphosphorylation of heterogeneous nuclear ribonucleoprotein C (hnRNP-C) by protein kinase CK1alpha. However, the mechanisms by which CK1alpha is regulated have been unclear. Here it is demonstrated that low levels of H(2)O(2) stimulate the rapid dephosphorylation of CK1alphaLS, a nuclear splice form of CK1alpha. Furthermore, it is demonstrated that either treatment of endothelial cells with H(2)O(2), or dephosphorylation of CK1alphaLS in vitro enhances the association of CK1alphaLS with hnRNP-C. In addition, dephosphorylation of CK1alphaLS in vitro enhances the kinase's ability to phosphorylate hnRNP-C. While CK1alpha appears to be present in all metazoans, analysis of CK1alpha genomic sequences from several species reveals that the alternatively spliced nuclear localizing L-insert is unique to vertebrates, as is the case for hnRNP-C. These observations indicate that CK1alphaLS and hnRNP-C represent conserved components of a vertebrate-specific H(2)O(2)-responsive nuclear signaling pathway.

  2. Chemokine (C-C motif ligand 20, a potential biomarker for Graves' disease, is regulated by osteopontin.

    Directory of Open Access Journals (Sweden)

    Xiaoli Li

    Full Text Available CONTEXT: Graves' disease (GD is a common autoimmune disease involving the thyroid gland. The altered balance of pro- and anti-inflammatory cytokines plays an important role in the pathogenesis of GD. Chemokine (C-C motif ligand 20 (CCL20 is important for interleukin-17 (IL-17 signal activation and a potent chemoattractant for Th17 cells. Meanwhile, Osteopontin (OPN, a broadly expressed pleiotropic cytokine, has been implicated in GD through inducing Th1-involved response to enhance the production of proinflammatory cytokines and chemokines, but little is known about the role of OPN in regulating CCL20 and IL-17 signaling. OBJECTIVE: This study sought to explore the possibility of CCL20 level as a biomarker for GD, as well as investigate the role of OPN in regulating CCL20 production. METHODS: Fifty untreated GD patients, fifteen euthyroid GD patients, twelve TRAb-negative GD patients and thirty-five healthy control donors were recruited. OPN, CCL20 and other clinical GD diagnosis parameters were measured. CD4+T cells were isolated from peripheral blood mononuclear cells (PBMCs using antibody-coated magnetic beads. Enzyme-linked immune-sorbent assay and quantitative polymerase chain reaction were used to determine CCL20 expression level. RESULTS: We found that the plasma CCL20 level was enhanced in GD patients and decreased in euthyroid and TRAb-negative GD patients. In addition, CCL20 level correlated with GD clinical diagnostic parameters and plasma OPN level. Moreover, we demonstrated that recombinant OPN and plasma from untreated GD patients increased the expression of CCL20 in CD4+T cells, which could be blocked by OPN antibody. Furthermore, we found that the effect of OPN on CCL20 expression was mediated by β3 integrin receptor, IL-17, NF-κB and MAPK pathways. CONCLUSIONS: These results demonstrated that CCL20 might serve as a biomarker for GD and suggested the possible role of OPN in induction of CCL20 expression.

  3. A PDZ-Like Motif in the Biliary Transporter ABCB4 Interacts with the Scaffold Protein EBP50 and Regulates ABCB4 Cell Surface Expression.

    Directory of Open Access Journals (Sweden)

    Quitterie Venot

    Full Text Available ABCB4/MDR3, a member of the ABC superfamily, is an ATP-dependent phosphatidylcholine translocator expressed at the canalicular membrane of hepatocytes. Defects in the ABCB4 gene are associated with rare biliary diseases. It is essential to understand the mechanisms of its canalicular membrane expression in particular for the development of new therapies. The stability of several ABC transporters is regulated through their binding to PDZ (PSD95/DglA/ZO-1 domain-containing proteins. ABCB4 protein ends by the sequence glutamine-asparagine-leucine (QNL, which shows some similarity to PDZ-binding motifs. The aim of our study was to assess the potential role of the QNL motif on the surface expression of ABCB4 and to determine if PDZ domain-containing proteins are involved. We found that truncation of the QNL motif decreased the stability of ABCB4 in HepG2-transfected cells. The deleted mutant ABCB4-ΔQNL also displayed accelerated endocytosis. EBP50, a PDZ protein highly expressed in the liver, strongly colocalized and coimmunoprecipitated with ABCB4, and this interaction required the QNL motif. Down-regulation of EBP50 by siRNA or by expression of an EBP50 dominant-negative mutant caused a significant decrease in the level of ABCB4 protein expression, and in the amount of ABCB4 localized at the canalicular membrane. Interaction of ABCB4 with EBP50 through its PDZ-like motif plays a critical role in the regulation of ABCB4 expression and stability at the canalicular plasma membrane.

  4. Role of the ERC motif in the proximal part of the second intracellular loop and the C-terminal domain of the human prostaglandin F2alpha receptor (hFP-R) in G-protein coupling control.

    Science.gov (United States)

    Pathe-Neuschäfer-Rube, Andrea; Neuschäfer-Rube, Frank; Püschel, Gerhard P

    2005-05-15

    The human FP-R (F2alpha prostaglandin receptor) is a Gq-coupled heptahelical ectoreceptor, which is of significant medical interest, since it is a potential target for the treatment of glaucoma and preterm labour. On agonist exposure, it mediates an increase in intracellular inositol phosphate formation. Little is known about the structures that govern the agonist-dependent receptor activation. In other prostanoid receptors, the C-terminal domain has been inferred in the control of agonist-dependent receptor activation. A DRY motif at the beginning of the second intracellular loop is highly conserved throughout the G-protein-coupled receptor family and appears to be crucial for controlling agonist-dependent receptor activation. It is replaced by an ERC motif in the FP-R and no evidence for the relevance of this motif in ligand-dependent activation of prostanoid receptors has been provided so far. The aim of the present study was to elucidate the potential role of the C-terminal domain and the ERC motif in agonist-controlled intracellular signalling in FP-R mutants generated by site-directed mutagenesis. It was found that substitution of the acidic Glu(132) in the ERC motif by a threonine residue led to full constitutive activation, whereas truncation of the receptor's C-terminal domain led to partial constitutive activation of all three intracellular signal pathways that had previously been shown to be activated by the FP-R, i.e. inositol trisphosphate formation, focal adhesion kinase activation and T-cell factor signalling. Inositol trisphosphate formation and focal adhesion kinase phosphorylation were further enhanced by ligand binding in cells expressing the truncation mutant but not the E132T (Glu132-->Thr) mutant. Thus C-terminal truncation appeared to result in a receptor with partial constitutive activation, whereas substitution of Glu132 by threonine apparently resulted in a receptor with full constitutive activity.

  5. [Prediction of Promoter Motifs in Virophages].

    Science.gov (United States)

    Gong, Chaowen; Zhou, Xuewen; Pan, Yingjie; Wang, Yongjie

    2015-07-01

    Virophages have crucial roles in ecosystems and are the transport vectors of genetic materials. To shed light on regulation and control mechanisms in virophage--host systems as well as evolution between virophages and their hosts, the promoter motifs of virophages were predicted on the upstream regions of start codons using an analytical tool for prediction of promoter motifs: Multiple EM for Motif Elicitation. Seventeen potential promoter motifs were identified based on the E-value, location, number and length of promoters in genomes. Sputnik and zamilon motif 2 with AT-rich regions were distributed widely on genomes, suggesting that these motifs may be associated with regulation of the expression of various genes. Motifs containing the TCTA box were predicted to be late promoter motif in mavirus; motifs containing the ATCT box were the potential late promoter motif in the Ace Lake mavirus . AT-rich regions were identified on motif 2 in the Organic Lake virophage, motif 3 in Yellowstone Lake virophage (YSLV)1 and 2, motif 1 in YSLV3, and motif 1 and 2 in YSLV4, respectively. AT-rich regions were distributed widely on the genomes of virophages. All of these motifs may be promoter motifs of virophages. Our results provide insights into further exploration of temporal expression of genes in virophages as well as associations between virophages and giant viruses.

  6. Hydrophobic motif site-phosphorylated protein kinase CβII between mTORC2 and Akt regulates high glucose-induced mesangial cell hypertrophy.

    Science.gov (United States)

    Das, Falguni; Ghosh-Choudhury, Nandini; Mariappan, Meenalakshmi M; Kasinath, Balakuntalam S; Choudhury, Goutam Ghosh

    2016-04-01

    PKCβII controls the pathologic features of diabetic nephropathy, including glomerular mesangial cell hypertrophy. PKCβII contains the COOH-terminal hydrophobic motif site Ser-660. Whether this hydrophobic motif phosphorylation contributes to high glucose-induced mesangial cell hypertrophy has not been determined. Here we show that, in mesangial cells, high glucose increased phosphorylation of PKCβII at Ser-660 in a phosphatidylinositol 3-kinase (PI3-kinase)-dependent manner. Using siRNAs to downregulate PKCβII, dominant negative PKCβII, and PKCβII hydrophobic motif phosphorylation-deficient mutant, we found that PKCβII regulates activation of mechanistic target of rapamycin complex 1 (mTORC1) and mesangial cell hypertrophy by high glucose. PKCβII via its phosphorylation at Ser-660 regulated phosphorylation of Akt at both catalytic loop and hydrophobic motif sites, resulting in phosphorylation and inactivation of its substrate PRAS40. Specific inhibition of mTORC2 increased mTORC1 activity and induced mesangial cell hypertrophy. In contrast, inhibition of mTORC2 decreased the phosphorylation of PKCβII and Akt, leading to inhibition of PRAS40 phosphorylation and mTORC1 activity and prevented mesangial cell hypertrophy in response to high glucose; expression of constitutively active Akt or mTORC1 restored mesangial cell hypertrophy. Moreover, constitutively active PKCβII reversed the inhibition of high glucose-stimulated Akt phosphorylation and mesangial cell hypertrophy induced by suppression of mTORC2. Finally, using renal cortexes from type 1 diabetic mice, we found that increased phosphorylation of PKCβII at Ser-660 was associated with enhanced Akt phosphorylation and mTORC1 activation. Collectively, our findings identify a signaling route connecting PI3-kinase to mTORC2 to phosphorylate PKCβII at the hydrophobic motif site necessary for Akt phosphorylation and mTORC1 activation, leading to mesangial cell hypertrophy.

  7. Hydrophobic motif site-phosphorylated protein kinase CβII between mTORC2 and Akt regulates high glucose-induced mesangial cell hypertrophy

    Science.gov (United States)

    Das, Falguni; Mariappan, Meenalakshmi M.; Kasinath, Balakuntalam S.; Choudhury, Goutam Ghosh

    2016-01-01

    PKCβII controls the pathologic features of diabetic nephropathy, including glomerular mesangial cell hypertrophy. PKCβII contains the COOH-terminal hydrophobic motif site Ser-660. Whether this hydrophobic motif phosphorylation contributes to high glucose-induced mesangial cell hypertrophy has not been determined. Here we show that, in mesangial cells, high glucose increased phosphorylation of PKCβII at Ser-660 in a phosphatidylinositol 3-kinase (PI3-kinase)-dependent manner. Using siRNAs to downregulate PKCβII, dominant negative PKCβII, and PKCβII hydrophobic motif phosphorylation-deficient mutant, we found that PKCβII regulates activation of mechanistic target of rapamycin complex 1 (mTORC1) and mesangial cell hypertrophy by high glucose. PKCβII via its phosphorylation at Ser-660 regulated phosphorylation of Akt at both catalytic loop and hydrophobic motif sites, resulting in phosphorylation and inactivation of its substrate PRAS40. Specific inhibition of mTORC2 increased mTORC1 activity and induced mesangial cell hypertrophy. In contrast, inhibition of mTORC2 decreased the phosphorylation of PKCβII and Akt, leading to inhibition of PRAS40 phosphorylation and mTORC1 activity and prevented mesangial cell hypertrophy in response to high glucose; expression of constitutively active Akt or mTORC1 restored mesangial cell hypertrophy. Moreover, constitutively active PKCβII reversed the inhibition of high glucose-stimulated Akt phosphorylation and mesangial cell hypertrophy induced by suppression of mTORC2. Finally, using renal cortexes from type 1 diabetic mice, we found that increased phosphorylation of PKCβII at Ser-660 was associated with enhanced Akt phosphorylation and mTORC1 activation. Collectively, our findings identify a signaling route connecting PI3-kinase to mTORC2 to phosphorylate PKCβII at the hydrophobic motif site necessary for Akt phosphorylation and mTORC1 activation, leading to mesangial cell hypertrophy. PMID:26739493

  8. A transmembrane polar interaction is involved in the functional regulation of integrin alpha L beta 2.

    Science.gov (United States)

    Vararattanavech, Ardcharaporn; Chng, Choon-Peng; Parthasarathy, Krupakar; Tang, Xiao-Yan; Torres, Jaume; Tan, Suet-Mien

    2010-05-14

    Integrins are heterodimeric transmembrane (TM) receptors formed by noncovalent associations of alpha and beta subunits. Each subunit contains a single alpha-helical TM domain. Inside-out activation of an integrin involves the separation of its cytoplasmic tails, leading to disruption of alphabeta TM packing. The leukocyte integrin alpha L beta 2 is required for leukocyte adhesion, migration, proliferation, cytotoxic function, and antigen presentation. In this study, we show by mutagenesis experiments that the packing of alpha L beta 2 TMs is consistent with that of the integrin alpha IIb beta 3 TMs. However, molecular dynamics simulations of alpha L beta 2 TMs in lipids predicted a polar interaction involving the side chains of alpha L Ser1071 and beta2 Thr686 in the outer-membrane association clasp (OMC). This is supported by carbonyl vibrational shifts observed in isotope-labeled alpha L beta 2 TM peptides that were incorporated into lipid bilayers. Molecular dynamics studies simulating the separation of alpha L beta 2 tails showed the presence of polar interaction during the initial perturbation of the inner-membrane association clasp. When the TMs underwent further separation, the polar interaction was disrupted. OMC polar interaction is important in regulating the functions of beta2 integrins because mutations that disrupt the OMC polar interaction generated constitutively activated alpha L beta 2, alpha M beta 2, and alpha X beta 2 in 293T transfectants. We also show that the expression of mutant beta2 Thr686Gly in beta2-deficient T cells rescued cell adhesion to intercellular adhesion molecule 1, but the cells showed overt elongated morphologies in response to chemokine stromal-cell-derived factor 1 alpha treatment as compared to wild-type beta2-expressing cells. These two TM polar residues are totally conserved in other members of the beta2 integrins in humans and across different species. Our results provide an example of the stabilizing effect of polar

  9. An Essential Role for the Glut1 PDZ-Binding Motif in Growth Factor Regulation of Glut1 Degradation and Trafficking

    OpenAIRE

    Wieman, Heather L.; Horn, Sarah R.; Jacobs, Sarah R.; Altman, Brian J.; Kornbluth, Sally; Rathmell, Jeffrey C.

    2009-01-01

    Cell surface localization of the glucose transporter, Glut1, is a cytokine-controlled process essential to support the metabolism and survival of hematopoietic cells. Molecular mechanisms that regulate Glut1 trafficking, however, are not certain. Here we show a C-terminal PDZ-binding motif in Glut1 is critical to promote maximal cytokine-stimulated Glut1 cell surface localization and prevent Glut1 lysosomal degradation in the absence of growth factor. Disruption of this PDZ-binding sequence t...

  10. Genome-wide prediction and functional validation of promoter motifs regulating gene expression in spore and infection stages of Phytophthora infestans.

    Science.gov (United States)

    Roy, Sourav; Kagda, Meenakshi; Judelson, Howard S

    2013-03-01

    Most eukaryotic pathogens have complex life cycles in which gene expression networks orchestrate the formation of cells specialized for dissemination or host colonization. In the oomycete Phytophthora infestans, the potato late blight pathogen, major shifts in mRNA profiles during developmental transitions were identified using microarrays. We used those data with search algorithms to discover about 100 motifs that are over-represented in promoters of genes up-regulated in hyphae, sporangia, sporangia undergoing zoosporogenesis, swimming zoospores, or germinated cysts forming appressoria (infection structures). Most of the putative stage-specific transcription factor binding sites (TFBSs) thus identified had features typical of TFBSs such as position or orientation bias, palindromy, and conservation in related species. Each of six motifs tested in P. infestans transformants using the GUS reporter gene conferred the expected stage-specific expression pattern, and several were shown to bind nuclear proteins in gel-shift assays. Motifs linked to the appressoria-forming stage, including a functionally validated TFBS, were over-represented in promoters of genes encoding effectors and other pathogenesis-related proteins. To understand how promoter and genome architecture influence expression, we also mapped transcription patterns to the P. infestans genome assembly. Adjacent genes were not typically induced in the same stage, including genes transcribed in opposite directions from small intergenic regions, but co-regulated gene pairs occurred more than expected by random chance. These data help illuminate the processes regulating development and pathogenesis, and will enable future attempts to purify the cognate transcription factors.

  11. Transcriptional regulation of PP2A-A alpha is mediated by multiple factors including AP-2alpha, CREB, ETS-1, and SP-1.

    Directory of Open Access Journals (Sweden)

    He-Ge Chen

    2009-09-01

    Full Text Available Protein phosphatases-2A (PP-2A is a major serine/threonine phosphatase and accounts for more than 50% serine/threonine phosphatase activity in eukaryotes. The holoenzyme of PP-2A consists of the scaffold A subunit, the catalytic C subunit and the regulatory B subunit. The scaffold subunits, PP2A-A alpha/beta, provide a platform for both C and B subunits to bind, thus playing a crucial role in providing specific PP-2A activity. Mutation of the two genes encoding PP2A-A alpha/beta leads to carcinogenesis and likely other human diseases. Regulation of these genes by various factors, both extracellular and intracellular, remains largely unknown. In the present study, we have conducted functional dissection of the promoter of the mouse PP2A-A alpha gene. Our results demonstrate that the proximal promoter of the mouse PP2A-A alpha gene contains numerous cis-elements for the binding of CREB, ETS-1, AP-2 alpha, SP-1 besides the putative TFIIB binding site (BRE and the downstream promoter element (DPE. Gel mobility shifting assays revealed that CREB, ETS-1, AP-2 alpha, and SP-1 all bind to PP2A-A alpha gene promoter. In vitro mutagenesis and reporter gene activity assays reveal that while SP-1 displays negative regulation, CREB, ETS-1 and AP-2A alpha all positively regulate the promoter of the PP2A-A alpha gene. ChIP assays further confirm that all the above transcription factors participate the regulation of PP2A-A alpha gene promoter. Together, our results reveal that multiple transcription factors regulate the PP2A-A alpha gene.

  12. Septal innervation regulates the function of alpha7 nicotinic receptors in CA1 hippocampal interneurons.

    Science.gov (United States)

    Thinschmidt, Jeffrey S; Frazier, Charles J; King, Michael A; Meyer, Edwin M; Papke, Roger L

    2005-10-01

    The hippocampus receives substantial input from the medial septum/diagonal band of broca (MS/DB) via the fibria-fornix (FF). Projections from the MS/DB innervate hippocampal interneurons that express alpha7 nicotinic receptors and regulate excitation in principal cell populations. In the present report we used stereotaxic surgery, whole-cell patch clamping, and immunohistochemical techniques to evaluate the effects of FF and MS/DB lesions on alpha7 nicotinic receptors in stratum radiatum interneurons. Focal somatic application of ACh (1 mM) evoked methyllycaconitine (MLA)-sensitive currents that were markedly reduced following aspirative lesions of the FF. Reductions in current amplitudes were prevented or restored to levels not significantly different from controls following in vivo treatment with the alpha7-selective agonist GTS-21, and GTS-21 treatment did not change current amplitudes measured in tissue from unlesioned animals. MS/DB injections of the selective cholinergic neurotoxin 192 IgG-saporin did not affect alpha7 receptor currents, although MS/DB ChAT and hippocampal AChE immunolabeling were significantly reduced. In contrast, kainic acid lesions of the MS/DB, potentially more selective for GABAergic projection neurons, produced significant reductions in current amplitudes. These findings are the first to show functional changes in alpha7 receptors following hippocampal denervation and suggest that MS/DB hippocampal innervation regulates functional aspects of hippocampal alpha7 receptors. The results confirm hippocampal alpha7 nicotinic receptors as viable therapeutic targets in diseases that involve degradation of the septohippocampal pathway and may indicate that GABAergic MS/DB hippocampal input plays a more substantial role in the regulation of alpha7 nicotinic receptor function than MS/DB hippocampal cholinergic input.

  13. A natural variant of the cysteine protease virulence factor of group A Streptococcus with an arginine-glycine-aspartic acid (RGD) motif preferentially binds human integrins alphavbeta3 and alphaIIbbeta3.

    Science.gov (United States)

    Stockbauer, K E; Magoun, L; Liu, M; Burns, E H; Gubba, S; Renish, S; Pan, X; Bodary, S C; Baker, E; Coburn, J; Leong, J M; Musser, J M

    1999-01-05

    The human pathogenic bacterium group A Streptococcus produces an extracellular cysteine protease [streptococcal pyrogenic exotoxin B (SpeB)] that is a critical virulence factor for invasive disease episodes. Sequence analysis of the speB gene from 200 group A Streptococcus isolates collected worldwide identified three main mature SpeB (mSpeB) variants. One of these variants (mSpeB2) contains an Arg-Gly-Asp (RGD) sequence, a tripeptide motif that is commonly recognized by integrin receptors. mSpeB2 is made by all isolates of the unusually virulent serotype M1 and several other geographically widespread clones that frequently cause invasive infections. Only the mSpeB2 variant bound to transfected cells expressing integrin alphavbeta3 (also known as the vitronectin receptor) or alphaIIbbeta3 (platelet glycoprotein IIb-IIIa), and binding was blocked by a mAb that recognizes the streptococcal protease RGD motif region. In addition, mSpeB2 bound purified platelet integrin alphaIIbbeta3. Defined beta3 mutants that are altered for fibrinogen binding were defective for SpeB binding. Synthetic peptides with the mSpeB2 RGD motif, but not the RSD sequence present in other mSpeB variants, blocked binding of mSpeB2 to transfected cells expressing alphavbeta3 and caused detachment of cultured human umbilical vein endothelial cells. The results (i) identify a Gram-positive virulence factor that directly binds integrins, (ii) identify naturally occurring variants of a documented Gram-positive virulence factor with biomedically relevant differences in their interactions with host cells, and (iii) add to the theme that subtle natural variation in microbial virulence factor structure alters the character of host-pathogen interactions.

  14. Down-regulating alpha-galactosidase enhances freezing tolerance in transgenic petunia.

    Science.gov (United States)

    Pennycooke, Joyce C; Jones, Michelle L; Stushnoff, Cecil

    2003-10-01

    Alpha-galactosidase (alpha-Gal; EC 3.2.1.22) is involved in many aspects of plant metabolism, including hydrolysis of the alpha-1,6 linkage of raffinose oligosaccharides during deacclimation. To examine the relationship between endogenous sugars and freezing stress, the expression of alpha-Gal was modified in transgenic petunia (Petunia x hybrida cv Mitchell). The tomato (Lycopersicon esculentum) Lea-Gal gene under the control of the Figwort Mosaic Virus promoter was introduced into petunia in the sense and antisense orientations using Agrobacterium tumefaciens-mediated transformation. RNA gel blots confirmed that alpha-Gal transcripts were reduced in antisense lines compared with wild type, whereas sense plants had increased accumulation of alpha-Gal mRNAs. alpha-Gal activity followed a similar trend, with reduced activity in antisense lines and increased activity in all sense lines evaluated. Raffinose content of nonacclimated antisense plants increased 12- to 22-fold compared with wild type, and 22- to 53-fold after cold acclimation. Based upon electrolyte leakage tests, freezing tolerance of the antisense lines increased from -4 degrees C for cold-acclimated wild-type plants to -8 degrees C for the most tolerant antisense line. Down-regulating alpha-Gal in petunia results in an increase in freezing tolerance at the whole-plant level in nonacclimated and cold-acclimated plants, whereas overexpression of the alpha-Gal gene caused a decrease in endogenous raffinose and impaired freezing tolerance. These results suggest that engineering raffinose metabolism by transformation with alpha-Gal provides an additional method for improving the freezing tolerance of plants.

  15. P70S6K 1 regulation of angiogenesis through VEGF and HIF-1{alpha} expression

    Energy Technology Data Exchange (ETDEWEB)

    Bian, Chuan-Xiu; Shi, Zhumei [Department of Pathology, Cancer Center, Nanjing Medical University, Nanjing 210029 (China); Meng, Qiao; Jiang, Yue; Liu, Ling-Zhi [Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107 (United States); Jiang, Bing-Hua, E-mail: binghjiang@yahoo.com [Department of Pathology, Cancer Center, Nanjing Medical University, Nanjing 210029 (China); Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107 (United States)

    2010-07-30

    Research highlights: {yields} P70S6K1 regulates VEGF expression; {yields} P70S6K1 induces transcriptional activation through HIF-1{alpha} binding site; {yields} P70S6K1 regulates HIF-1{alpha}, but not HIF-1{beta} protein expression; {yields} P70S6K1 mediates tumor growth and angiogenesis through HIF-1{alpha} and VEGF expression. -- Abstract: The 70 kDa ribosomal S6 kinase 1 (p70S6K1), a downstream target of phosphoinositide 3-kinase (PI3K) and ERK mitogen-activated protein kinase (MAPK), is an important regulator of cell cycle progression, and cell proliferation. Recent studies indicated an important role of p70S6K1 in PTEN-negative and AKT-overexpressing tumors. However, the mechanism of p70S6K1 in tumor angiogenesis remains to be elucidated. In this study, we specifically inhibited p70S6K1 activity in ovarian cancer cells using vector-based small interfering RNA (siRNA) against p70S6K1. We found that knockdown of p70S6K1 significantly decreased VEGF protein expression and VEGF transcriptional activation through the HIF-1{alpha} binding site at its enhancer region. The expression of p70S6K1 siRNA specifically inhibited HIF-1{alpha}, but not HIF-1{beta} protein expression. We also found that p70S6K1 down-regulation inhibited ovarian tumor growth and angiogenesis, and decreased cell proliferation and levels of VEGF and HIF-1{alpha} expression in tumor tissues. Our results suggest that p70S6K1 is required for tumor growth and angiogenesis through HIF-1{alpha} and VEGF expression, providing a molecular mechanism of human ovarian cancer mediated by p70S6K1 signaling.

  16. Developmental regulation of expression of the alpha 1 and alpha 2 subunits mRNAs of the voltage-dependent calcium channel in a differentiating myogenic cell line.

    Science.gov (United States)

    Varadi, G; Orlowski, J; Schwartz, A

    1989-07-03

    The voltage-dependent calcium channel (VDCC) in skeletal muscle probably plays a key role in transducing membrane charge movement to the calcium release channel. We report here that the expression of VDCC alpha 1 and alpha 2 mRNAs is developmentally regulated in differentiating C2C12 myogenic cells. The alpha 1 mRNA is not detectable in the myoblast form of C2C12 cells while its expression is induced 20-fold in differentiated myotubes. In contrast, the alpha 2 mRNA is weakly expressed in myoblasts but is also induced upon myogenic differentiation.

  17. CD151 accelerates breast cancer by regulating alpha 6 integrin function, signaling, and molecular organization.

    Science.gov (United States)

    Yang, Xiuwei H; Richardson, Andrea L; Torres-Arzayus, Maria I; Zhou, Pengcheng; Sharma, Chandan; Kazarov, Alexander R; Andzelm, Milena M; Strominger, Jack L; Brown, Myles; Hemler, Martin E

    2008-05-01

    CD151, a master regulator of laminin-binding integrins (alpha(6)beta(4), alpha(6)beta(1), and alpha(3)beta(1)), assembles these integrins into complexes called tetraspanin-enriched microdomains. CD151 protein expression is elevated in 31% of human breast cancers and is even more elevated in high-grade (40%) and estrogen receptor-negative (45%) subtypes. The latter includes triple-negative (estrogen receptor, progesterone receptor, and HER2 negative) basal-like tumors. CD151 ablation markedly reduced basal-like mammary cell migration, invasion, spreading, and signaling (through FAK, Rac1, and lck) while disrupting epidermal growth factor receptor (EGFR)-alpha(6) integrin collaboration. Underlying these defects, CD151 ablation redistributed alpha(6)beta(4) integrins subcellularly and severed molecular links between integrins and tetraspanin-enriched microdomains. In a prototypical basal-like mammary tumor line, CD151 ablation notably delayed tumor progression in ectopic and orthotopic xenograft models. These results (a) establish that CD151-alpha(6) integrin complexes play a functional role in basal-like mammary tumor progression; (b) emphasize that alpha(6) integrins function via CD151 linkage in the context of tetraspanin-enriched microdomains; and (c) point to potential relevance of CD151 as a high-priority therapeutic target, with relative selectivity (compared with laminin-binding integrins) for pathologic rather than normal physiology.

  18. The CD3 gamma leucine-based receptor-sorting motif is required for efficient ligand-mediated TCR down-regulation

    DEFF Research Database (Denmark)

    von Essen, Marina; Menné, Charlotte; Nielsen, Bodil L

    2002-01-01

    . The other pathway is dependent on protein kinase C (PKC)-mediated activation of the CD3 gamma di-leucine-based receptor-sorting motif. Previous studies have failed to demonstrate a connection between ligand- and PKC-induced TCR down-regulation. Thus, although an apparent paradox, the dogma has been...... that ligand- and PKC-induced TCR down-regulations are not interrelated. By analyses of a newly developed CD3 gamma-negative T cell variant, freshly isolated and PHA-activated PBMC, and a mouse T cell line, we challenged this dogma and demonstrate in this work that PKC activation and the CD3 gamma di-leucine...

  19. The diversity and evolution of cell cycle regulation in alpha-proteobacteria: a comparative genomic analysis

    Directory of Open Access Journals (Sweden)

    Mengoni Alessio

    2010-04-01

    Full Text Available Abstract Background In the bacterium Caulobacter crescentus, CtrA coordinates DNA replication, cell division, and polar morphogenesis and is considered the cell cycle master regulator. CtrA activity varies during cell cycle progression and is modulated by phosphorylation, proteolysis and transcriptional control. In a phosphorylated state, CtrA binds specific DNA sequences, regulates the expression of genes involved in cell cycle progression and silences the origin of replication. Although the circuitry regulating CtrA is known in molecular detail in Caulobacter, its conservation and functionality in the other alpha-proteobacteria are still poorly understood. Results Orthologs of Caulobacter factors involved in the regulation of CtrA were systematically scanned in genomes of alpha-proteobacteria. In particular, orthologous genes of the divL-cckA-chpT-ctrA phosphorelay, the divJ-pleC-divK two-component system, the cpdR-rcdA-clpPX proteolysis system, the methyltransferase ccrM and transcriptional regulators dnaA and gcrA were identified in representative genomes of alpha-proteobacteria. CtrA, DnaA and GcrA binding sites and CcrM putative methylation sites were predicted in promoter regions of all these factors and functions controlled by CtrA in all alphas were predicted. Conclusions The regulatory cell cycle architecture was identified in all representative alpha-proteobacteria, revealing a high diversification of circuits but also a conservation of logical features. An evolutionary model was proposed where ancient alphas already possessed all modules found in Caulobacter arranged in a variety of connections. Two schemes appeared to evolve: a complex circuit in Caulobacterales and Rhizobiales and a simpler one found in Rhodobacterales.

  20. Ciliary dyslexia candidate genes DYX1C1 and DCDC2 are regulated by Regulatory Factor X (RFX) transcription factors through X-box promoter motifs.

    Science.gov (United States)

    Tammimies, Kristiina; Bieder, Andrea; Lauter, Gilbert; Sugiaman-Trapman, Debora; Torchet, Rachel; Hokkanen, Marie-Estelle; Burghoorn, Jan; Castrén, Eero; Kere, Juha; Tapia-Páez, Isabel; Swoboda, Peter

    2016-10-01

    DYX1C1, DCDC2, and KIAA0319 are three of the most replicated dyslexia candidate genes (DCGs). Recently, these DCGs were implicated in functions at the cilium. Here, we investigate the regulation of these DCGs by Regulatory Factor X transcription factors (RFX TFs), a gene family known for transcriptionally regulating ciliary genes. We identify conserved X-box motifs in the promoter regions of DYX1C1, DCDC2, and KIAA0319 and demonstrate their functionality, as well as the ability to recruit RFX TFs using reporter gene and electrophoretic mobility shift assays. Furthermore, we uncover a complex regulation pattern between RFX1, RFX2, and RFX3 and their significant effect on modifying the endogenous expression of DYX1C1 and DCDC2 in a human retinal pigmented epithelial cell line immortalized with hTERT (hTERT-RPE1). In addition, induction of ciliogenesis increases the expression of RFX TFs and DCGs. At the protein level, we show that endogenous DYX1C1 localizes to the base of the cilium, whereas DCDC2 localizes along the entire axoneme of the cilium, thereby validating earlier localization studies using overexpression models. Our results corroborate the emerging role of DCGs in ciliary function and characterize functional noncoding elements, X-box promoter motifs, in DCG promoter regions, which thus can be targeted for mutation screening in dyslexia and ciliopathies associated with these genes.-Tammimies, K., Bieder, A., Lauter, G., Sugiaman-Trapman, D., Torchet, R., Hokkanen, M.-E., Burghoorn, J., Castrén, E., Kere, J., Tapia-Páez, I., Swoboda, P. Ciliary dyslexia candidate genes DYX1C1 and DCDC2 are regulated by Regulatory Factor (RF) X transcription factors through X-box promoter motifs. © The Author(s).

  1. Thrombopoietin (TPO) regulates HIF-1alpha levels through generation of mitochondrial reactive oxygen species.

    Science.gov (United States)

    Yoshida, Kozue; Kirito, Keita; Yongzhen, Hu; Ozawa, Keiya; Kaushansky, Kenneth; Komatsu, Norio

    2008-07-01

    Hypoxia inducible factor (HIF)-1 is a master transcriptional regulator mediating the cellular adaptation to hypoxia. In addition, HIF-1 is also vital for the development of hematopoietic stem cells (HSCs). In a previous study we found that thrombopoietin (TPO), an important and non-redundant cytokine for HSC maintenance and expansion, induces HIF-1alpha expression in HSCs by enhancing the stability of HIF-1alpha under normoxic conditions. However, the molecular mechanisms of these effects are not yet fully understood. In this study, we explored the mechanisms and found that TPO-induced mitochondrial reactive oxygen species (ROS) played a crucial role in stabilization of HIF-1. Both ROS scavengers and inhibitors of mitochondrial electron transport completely blocked HIF-1alpha induction by TPO in UT-7/TPO cells and in primary immature mouse bone marrow cells. We also found that TPO-induced HIF-1alpha induction was tightly coupled with glucose metabolism. Inhibition of glucose transporter or glycolytic enzyme blocked HIF-1alpha elevation of TPO. These results indicate that TPO induces HIF-1alpha expression in a manner very similar to that of hypoxia.

  2. The Caenorhabditis elegans Elongator complex regulates neuronal alpha-tubulin acetylation.

    Directory of Open Access Journals (Sweden)

    Jachen A Solinger

    2010-01-01

    Full Text Available Although acetylated alpha-tubulin is known to be a marker of stable microtubules in neurons, precise factors that regulate alpha-tubulin acetylation are, to date, largely unknown. Therefore, a genetic screen was employed in the nematode Caenorhabditis elegans that identified the Elongator complex as a possible regulator of alpha-tubulin acetylation. Detailed characterization of mutant animals revealed that the acetyltransferase activity of the Elongator is indeed required for correct acetylation of microtubules and for neuronal development. Moreover, the velocity of vesicles on microtubules was affected by mutations in Elongator. Elongator mutants also displayed defects in neurotransmitter levels. Furthermore, acetylation of alpha-tubulin was shown to act as a novel signal for the fine-tuning of microtubules dynamics by modulating alpha-tubulin turnover, which in turn affected neuronal shape. Given that mutations in the acetyltransferase subunit of the Elongator (Elp3 and in a scaffold subunit (Elp1 have previously been linked to human neurodegenerative diseases, namely Amyotrophic Lateral Sclerosis and Familial Dysautonomia respectively highlights the importance of this work and offers new insights to understand their etiology.

  3. BACE1 protein endocytosis and trafficking are differentially regulated by ubiquitination at lysine 501 and the Di-leucine motif in the carboxyl terminus.

    Science.gov (United States)

    Kang, Eugene L; Biscaro, Barbara; Piazza, Fabrizio; Tesco, Giuseppina

    2012-12-14

    β-Site amyloid precursor protein-cleaving enzyme (BACE1) is a membrane-tethered member of the aspartyl proteases that has been identified as β-secretase. BACE1 is targeted through the secretory pathway to the plasma membrane and then is internalized to endosomes. Sorting of membrane proteins to the endosomes and lysosomes is regulated by the interaction of signals present in their carboxyl-terminal fragment with specific trafficking molecules. The BACE1 carboxyl-terminal fragment contains a di-leucine sorting signal ((495)DDISLL(500)) and a ubiquitination site at Lys-501. Here, we report that lack of ubiquitination at Lys-501 (BACE1K501R) does not affect the rate of endocytosis but produces BACE1 stabilization and accumulation of BACE1 in early and late endosomes/lysosomes as well as at the cell membrane. In contrast, the disruption of the di-leucine motif (BACE1LLAA) greatly impairs BACE1 endocytosis and produces a delayed retrograde transport of BACE1 to the trans-Golgi network (TGN) and a delayed delivery of BACE1 to the lysosomes, thus decreasing its degradation. Moreover, the combination of the lack of ubiquitination at Lys-501 and the disruption of the di-leucine motif (BACE1LLAA/KR) produces additive effects on BACE1 stabilization and defective internalization. Finally, BACE1LLAA/KR accumulates in the TGN, while its levels are decreased in EEA1-positive compartments indicating that both ubiquitination at Lys-501 and the di-leucine motif are necessary for the trafficking of BACE1 from the TGN to early endosomes. Our studies have elucidated a differential role for the di-leucine motif and ubiquitination at Lys-501 in BACE1 endocytosis, trafficking, and degradation and suggest the involvement of multiple adaptor molecules.

  4. BACE1 Protein Endocytosis and Trafficking Are Differentially Regulated by Ubiquitination at Lysine 501 and the Di-leucine Motif in the Carboxyl Terminus*

    Science.gov (United States)

    Kang, Eugene L.; Biscaro, Barbara; Piazza, Fabrizio; Tesco, Giuseppina

    2012-01-01

    β-Site amyloid precursor protein-cleaving enzyme (BACE1) is a membrane-tethered member of the aspartyl proteases that has been identified as β-secretase. BACE1 is targeted through the secretory pathway to the plasma membrane and then is internalized to endosomes. Sorting of membrane proteins to the endosomes and lysosomes is regulated by the interaction of signals present in their carboxyl-terminal fragment with specific trafficking molecules. The BACE1 carboxyl-terminal fragment contains a di-leucine sorting signal (495DDISLL500) and a ubiquitination site at Lys-501. Here, we report that lack of ubiquitination at Lys-501 (BACE1K501R) does not affect the rate of endocytosis but produces BACE1 stabilization and accumulation of BACE1 in early and late endosomes/lysosomes as well as at the cell membrane. In contrast, the disruption of the di-leucine motif (BACE1LLAA) greatly impairs BACE1 endocytosis and produces a delayed retrograde transport of BACE1 to the trans-Golgi network (TGN) and a delayed delivery of BACE1 to the lysosomes, thus decreasing its degradation. Moreover, the combination of the lack of ubiquitination at Lys-501 and the disruption of the di-leucine motif (BACE1LLAA/KR) produces additive effects on BACE1 stabilization and defective internalization. Finally, BACE1LLAA/KR accumulates in the TGN, while its levels are decreased in EEA1-positive compartments indicating that both ubiquitination at Lys-501 and the di-leucine motif are necessary for the trafficking of BACE1 from the TGN to early endosomes. Our studies have elucidated a differential role for the di-leucine motif and ubiquitination at Lys-501 in BACE1 endocytosis, trafficking, and degradation and suggest the involvement of multiple adaptor molecules. PMID:23109336

  5. Genome-wide prediction and functional validation of promoter motifs regulating gene expression in spore and infection stages of Phytophthora infestans.

    Directory of Open Access Journals (Sweden)

    Sourav Roy

    2013-03-01

    Full Text Available Most eukaryotic pathogens have complex life cycles in which gene expression networks orchestrate the formation of cells specialized for dissemination or host colonization. In the oomycete Phytophthora infestans, the potato late blight pathogen, major shifts in mRNA profiles during developmental transitions were identified using microarrays. We used those data with search algorithms to discover about 100 motifs that are over-represented in promoters of genes up-regulated in hyphae, sporangia, sporangia undergoing zoosporogenesis, swimming zoospores, or germinated cysts forming appressoria (infection structures. Most of the putative stage-specific transcription factor binding sites (TFBSs thus identified had features typical of TFBSs such as position or orientation bias, palindromy, and conservation in related species. Each of six motifs tested in P. infestans transformants using the GUS reporter gene conferred the expected stage-specific expression pattern, and several were shown to bind nuclear proteins in gel-shift assays. Motifs linked to the appressoria-forming stage, including a functionally validated TFBS, were over-represented in promoters of genes encoding effectors and other pathogenesis-related proteins. To understand how promoter and genome architecture influence expression, we also mapped transcription patterns to the P. infestans genome assembly. Adjacent genes were not typically induced in the same stage, including genes transcribed in opposite directions from small intergenic regions, but co-regulated gene pairs occurred more than expected by random chance. These data help illuminate the processes regulating development and pathogenesis, and will enable future attempts to purify the cognate transcription factors.

  6. Transgenic up-regulation of alpha-CaMKII in forebrain leads to increased anxiety-like behaviors and aggression

    Directory of Open Access Journals (Sweden)

    Hasegawa Shunsuke

    2009-03-01

    Full Text Available Abstract Background Previous studies have demonstrated essential roles for alpha-calcium/calmodulin-dependent protein kinase II (alpha-CaMKII in learning, memory and long-term potentiation (LTP. However, previous studies have also shown that alpha-CaMKII (+/- heterozygous knockout mice display a dramatic decrease in anxiety-like and fearful behaviors, and an increase in defensive aggression. These findings indicated that alpha-CaMKII is important not only for learning and memory but also for emotional behaviors. In this study, to understand the roles of alpha-CaMKII in emotional behavior, we generated transgenic mice overexpressing alpha-CaMKII in the forebrain and analyzed their behavioral phenotypes. Results We generated transgenic mice overexpressing alpha-CaMKII in the forebrain under the control of the alpha-CaMKII promoter. In contrast to alpha-CaMKII (+/- heterozygous knockout mice, alpha-CaMKII overexpressing mice display an increase in anxiety-like behaviors in open field, elevated zero maze, light-dark transition and social interaction tests, and a decrease in locomotor activity in their home cages and novel environments; these phenotypes were the opposite to those observed in alpha-CaMKII (+/- heterozygous knockout mice. In addition, similarly with alpha-CaMKII (+/- heterozygous knockout mice, alpha-CaMKII overexpressing mice display an increase in aggression. However, in contrast to the increase in defensive aggression observed in alpha-CaMKII (+/- heterozygous knockout mice, alpha-CaMKII overexpressing mice display an increase in offensive aggression. Conclusion Up-regulation of alpha-CaMKII expression in the forebrain leads to an increase in anxiety-like behaviors and offensive aggression. From the comparisons with previous findings, we suggest that the expression levels of alpha-CaMKII are associated with the state of emotion; the expression level of alpha-CaMKII positively correlates with the anxiety state and strongly affects

  7. Three non-aspartate amino acid mutations in the ComA Response regulator receiver motif severely decrease surfactin production, competence development and spore formation in Bacillus subtilis.

    Science.gov (United States)

    Wang, Xiaoyu; Luo, Chuping; Liu, Youzhou; Nie, Yafeng; Liu, Yongfeng; Zhang, Rongsheng; Chen, Zhiyi

    2010-02-01

    Bacillus subtilis strains produce a broad spectrum of bioactive peptides. The lipopeptide surfactin belongs to one wellknown class, which includes amphiphilic membrane-active biosurfactants and peptide antibiotics. Both the srfA promoter and the ComP-ComA signal transduction system are an important part of the factor that results in the production of surfactin. Bs-M49, obtained by means of low-energy ion implantation in wild-type Bs-916, produced significantly lower levels of surfactin, and had no obvious effects against R. solani. Occasionally, we found strain Bs- M49 decreased spore formation and the development of competence. Blast comparison of the sequences from Bs- 916 and M49 indicate that there is no difference in the srfA operon promoter PsrfA, but there are differences in the coding sequence of the comA gene. These differences result in three missense mutations within the M49 ComA protein. RT-PCR analyses results showed that the expression levels of selected genes involved in competence and sporulation in both the wild-type Bs-916 and mutant M49 strains were significantly different. When we integrated the comA ORF into the chromosome of M49 at the amyE locus, M49 restored hemolytic activity and antifungal activity. Then, HPLC analyses results also showed the comA-complemented strain had a similar ability to produce surfactin with wild-type strain Bs-916. These data suggested that the mutation of three key amino acids in ComA greatly affected the biological activity of Bacillus subtilis. ComA protein 3D structure prediction and motif search prediction indicated that ComA has two obvious motifs common to response regulator proteins, which are the Nterminal response regulator receiver motif and the Cterminal helix-turn-helix motif. The three residues in the ComA N-terminal portion may be involved in phosphorylation activation mechanism. These structural prediction results implicate that three mutated residues in the ComA protein may play an important role in

  8. alpha-MSH and its receptors in regulation of tumor necrosis factor-alpha production by human monocyte/macrophages.

    Science.gov (United States)

    Taherzadeh, S; Sharma, S; Chhajlani, V; Gantz, I; Rajora, N; Demitri, M T; Kelly, L; Zhao, H; Ichiyama, T; Catania, A; Lipton, J M

    1999-05-01

    The hypothesis that macrophages contain an autocrine circuit based on melanocortin [ACTH and alpha-melanocyte-stimulating hormone (alpha-MSH)] peptides has major implications for neuroimmunomodulation research and inflammation therapy. To test this hypothesis, cells of the THP-1 human monocyte/macrophage line were stimulated with lipopolysaccharide (LPS) in the presence and absence of alpha-MSH. The inflammatory cytokine tumor necrosis factor (TNF)-alpha was inhibited in relation to alpha-MSH concentration. Similar inhibitory effects on TNF-alpha were observed with ACTH peptides that contain the alpha-MSH amino acid sequence and act on melanocortin receptors. Nuclease protection assays indicated that expression of the human melanocortin-1 receptor subtype (hMC-1R) occurs in THP-1 cells; Southern blots of RT-PCR product revealed that additional subtypes, hMC-3R and hMC-5R, also occur. Incubation of resting macrophages with antibody to hMC-1R increased TNF-alpha concentration; the antibody also markedly reduced the inhibitory influence of alpha-MSH on TNF-alpha in macrophages treated with LPS. These results in cells known to produce alpha-MSH at rest and to increase secretion of the peptide when challenged are consistent with an endogenous regulatory circuit based on melanocortin peptides and their receptors. Targeting of this neuroimmunomodulatory circuit in inflammatory diseases in which myelomonocytic cells are prominent should be beneficial.

  9. Recombinant human growth-regulated oncogene-alpha induces T lymphocyte chemotaxis. A process regulated via IL-8 receptors by IFN-gamma, TNF-alpha, IL-4, IL-10, and IL-13

    DEFF Research Database (Denmark)

    Jinquan, T; Frydenberg, Jane; Mukaida, N

    1995-01-01

    receptors on the cells. This process can be augmented by IFN-gamma and TNF-alpha, and inhibited by IL-4, IL-10, and IL-13. In addition, we also document that on T lymphocytes there exist IL-8 receptors that can be up-regulated by IFN-gamma, TNF-alpha, and IL-2. Our results demonstrate that rhGRO-alpha gene...

  10. Adenovirus E4-ORF3-dependent relocalization of TIF1{alpha} and TIF1{gamma} relies on access to the Coiled-Coil motif

    Energy Technology Data Exchange (ETDEWEB)

    Vink, Elizabeth I. [Department of Molecular Genetics and Microbiology, School of Medicine, Stony Brook University, Stony Brook, NY 11794 (United States); Yondola, Mark A. [Department of Microbiology, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029 (United States); Wu, Kai [Department of Molecular Genetics and Microbiology, School of Medicine, Stony Brook University, Stony Brook, NY 11794 (United States); Hearing, Patrick, E-mail: phearing@ms.cc.sunysb.edu [Department of Molecular Genetics and Microbiology, School of Medicine, Stony Brook University, Stony Brook, NY 11794 (United States)

    2012-01-20

    The adenovirus E4-ORF3 protein promotes viral replication by relocalizing cellular proteins into nuclear track structures, interfering with potential anti-viral activities. E4-ORF3 targets transcriptional intermediary factor 1 alpha (TIF1{alpha}), but not homologous TIF1{beta}. Here, we introduce TIF1{gamma} as a novel E4-ORF3-interacting partner. E4-ORF3 relocalizes endogenous TIF1{gamma} in virus-infected cells in vivo and binds to TIF1{gamma} in vitro. We used the homologous nature, yet differing binding capabilities, of these proteins to study how E4-ORF3 targets proteins for track localization. We mapped the ability of E4-ORF3 to interact with specific TIF1 subdomains, demonstrating that E4-ORF3 interacts with the Coiled-Coil domains of TIF1{alpha}, TIF1{beta}, and TIF1{gamma}, and that the C-terminal half of TIF1{beta} interferes with this interaction. The results of E4-ORF3-directed TIF1 protein relocalization assays performed in vivo were verified using coimmunoprecipitation assays in vitro. These results suggest that E4-ORF3 targets proteins for relocalization through a loosely homologous sequence dependent on accessibility.

  11. The NAP motif of activity-dependent neuroprotective protein (ADNP) regulates dendritic spines through microtubule end binding proteins.

    Science.gov (United States)

    Oz, S; Kapitansky, O; Ivashco-Pachima, Y; Malishkevich, A; Giladi, E; Skalka, N; Rosin-Arbesfeld, R; Mittelman, L; Segev, O; Hirsch, J A; Gozes, I

    2014-10-01

    The NAP motif of activity-dependent neuroprotective protein (ADNP) enhanced memory scores in patients suffering from mild cognitive impairment and protected activities of daily living in schizophrenia patients, while fortifying microtubule (MT)-dependent axonal transport, in mice and flies. The question is how does NAP fortify MTs? Our sequence analysis identified the MT end-binding protein (EB1)-interacting motif SxIP (SIP, Ser-Ile-Pro) in ADNP/NAP and showed specific SxIP binding sites in all members of the EB protein family (EB1-3). Others found that EB1 enhancement of neurite outgrowth is attenuated by EB2, while EB3 interacts with postsynaptic density protein 95 (PSD-95) to modulate dendritic plasticity. Here, NAP increased PSD-95 expression in dendritic spines, which was inhibited by EB3 silencing. EB1 or EB3, but not EB2 silencing inhibited NAP-mediated cell protection, which reflected NAP binding specificity. NAPVSKIPQ (SxIP=SKIP), but not NAPVAAAAQ mimicked NAP activity. ADNP, essential for neuronal differentiation and brain formation in mouse, a member of the SWI/SNF chromatin remodeling complex and a major protein mutated in autism and deregulated in schizophrenia in men, showed similar EB interactions, which were enhanced by NAP treatment. The newly identified shared MT target of NAP/ADNP is directly implicated in synaptic plasticity, explaining the breadth and efficiency of neuroprotective/neurotrophic capacities.

  12. Thiamine-repressible genes in Schizosaccharomyces pombe are regulated by a Cys6 zinc-finger motif-containing protein.

    Science.gov (United States)

    Fankhauser, H; Schweingruber, M E

    1994-09-15

    Our previous genetic data indicate that the product of the Schizosaccharomyces pombe thi1 gene acts as an activator of several thiamine-repressible genes which are involved in the control of thiamine metabolism [Schweingruber et al., Genetics 130 (1992) 445-449; Zurlinden and Schweingruber, Gene 117 (1992) 141-143]. In this communication, we report the cloning and sequencing of thi1 and show that it carries an open reading frame which translates into a 775-amino-acid protein with the characteristics of a Cys6 zinc-finger-motif-containing transcription factor, as typified by Saccharomyces cerevisae GAL4. We, therefore, suggest that the thi1-encoded protein binds to upstream activator sequences of thiamine-repressible genes.

  13. The role of p38alpha in Schwann cells in regulating peripheral nerve myelination and repair.

    Science.gov (United States)

    Roberts, Sheridan L; Dun, Xin-Peng; Dee, Gemma; Gray, Bethany; Mindos, Thomas; Parkinson, David B

    2017-04-01

    Myelination in the peripheral nervous system (PNS) is controlled by both positive and negative regulators within Schwann cells to ensure timely onset and correct myelin thickness for saltatory conduction by neurons. Transcription factors such as Sox10, octamer-binding transcription factor 6 (Oct6) and Krox20 form a positive regulatory network, whereas negative regulators such as cJun and Sox2 oppose myelination in Schwann cells. The role of the p38 MAPK pathway has been studied in PNS myelination, but its precise function remains unclear, with both positive and negative effects of p38 activity reported upon both myelination and processes of nerve repair. To clarify the role of p38 MAPK in the PNS, we have analysed mice with a Schwann cell-specific ablation of the major p38 isoform, p38alpha. In line with previous findings of an inhibitory role for p38 MAPK, we observe acceleration of post-natal myelination in p38alpha null nerves, a delay in myelin down-regulation following injury, together with a small increase in levels of re-myelination following injury. Finally we explored roles for p38alpha in controlling axonal regeneration and functional repair following PNS injury and observe that loss of p38alpha function in Schwann cells does not appear to affect these processes as previously reported. These studies therefore provide further proof for a role of p38 MAPK signalling in the control of myelination by Schwann cells in the PNS, but do not show an apparent role for signalling by this MAP kinase in Schwann cells controlling other elements of Wallerian degeneration and functional repair following injury. Cover Image for this issue: doi: 10.1111/jnc.13793. © 2016 International Society for Neurochemistry.

  14. Regulation of the alpha-glucuronidase-encoding gene ( aguA) from Aspergillus niger.

    Science.gov (United States)

    de Vries, R P; van de Vondervoort, P J I; Hendriks, L; van de Belt, M; Visser, J

    2002-09-01

    The alpha-glucuronidase gene aguA from Aspergillus niger was cloned and characterised. Analysis of the promoter region of aguA revealed the presence of four putative binding sites for the major carbon catabolite repressor protein CREA and one putative binding site for the transcriptional activator XLNR. In addition, a sequence motif was detected which differed only in the last nucleotide from the XLNR consensus site. A construct in which part of the aguA coding region was deleted still resulted in production of a stable mRNA upon transformation of A. niger. The putative XLNR binding sites and two of the putative CREA binding sites were mutated individually in this construct and the effects on expression were examined in A. niger transformants. Northern analysis of the transformants revealed that the consensus XLNR site is not actually functional in the aguA promoter, whereas the sequence that diverges from the consensus at a single position is functional. This indicates that XLNR is also able to bind to the sequence GGCTAG, and the XLNR binding site consensus should therefore be changed to GGCTAR. Both CREA sites are functional, indicating that CREA has a strong influence on aguA expression. A detailed expression analysis of aguA in four genetic backgrounds revealed a second regulatory system involved in activation of aguA gene expression. This system responds to the presence of glucuronic and galacturonic acids, and is not dependent on XLNR.

  15. Robustness and backbone motif of a cancer network regulated by miR-17-92 cluster during the G1/S transition.

    Directory of Open Access Journals (Sweden)

    Lijian Yang

    Full Text Available Based on interactions among transcription factors, oncogenes, tumor suppressors and microRNAs, a Boolean model of cancer network regulated by miR-17-92 cluster is constructed, and the network is associated with the control of G1/S transition in the mammalian cell cycle. The robustness properties of this regulatory network are investigated by virtue of the Boolean network theory. It is found that, during G1/S transition in the cell cycle process, the regulatory networks are robustly constructed, and the robustness property is largely preserved with respect to small perturbations to the network. By using the unique process-based approach, the structure of this network is analyzed. It is shown that the network can be decomposed into a backbone motif which provides the main biological functions, and a remaining motif which makes the regulatory system more stable. The critical role of miR-17-92 in suppressing the G1/S cell cycle checkpoint and increasing the uncontrolled proliferation of the cancer cells by targeting a genetic network of interacting proteins is displayed with our model.

  16. The Role and Regulation of TNF-Alpha in Normal Rat Mammary Gland During Development and in Breast Cancer

    National Research Council Canada - National Science Library

    Varela, Linda

    1998-01-01

    The pleiotropic cytokine tumor necrosis factor-alpha (TNF) has previously been shown to regulate both the proliferation and differentiation of normal rat mammary epithelial cells (MEC) in primary culture...

  17. MeCP2 involvement in the regulation of neuronal alpha-tubulin production.

    Science.gov (United States)

    Abuhatzira, Liron; Shemer, Ruth; Razin, Aharon

    2009-04-15

    Rett syndrome (RTT) is a severe neurodevelopmental disorder caused by a dominant mutation in the X-linked methyl CpG binding protein 2 (MeCP2) gene. Neuroanatomically, RTT is characterized by a reduction in dendritic arborization and perikaryal size in the brain. MECP2 binds methylated promoters and facilitates assembly of a multiprotein repressor complex that includes Sin3A and the histone deacetylases HDAC1/HDAC2. MeCP2 has recently been found to be downregulated in autistic spectrum disorders such as Angelman syndrome (AS) and RTT, which share some phenotypic manifestations. We have conducted expression analysis of cytoskeleton-related genes in brain tissue of RTT and AS patients. Striking examples of genes with reduced expression were TUBA1B and TUBA3 that encode the ubiquitous alpha-tubulin and the neuronal specific alpha-tubulin, respectively. In accordance with the downregulation of expression of these genes, we have observed a reduction in the level of the corresponding protein product-tyrosinated alpha-tubulin. Low levels of alpha-tubulin and deteriorated cell morphology were also observed in MeCP2(-/y) MEF cells. The effects of MeCP2 deficiency in these cells were completely reversed by introducing and expressing the human MeCP2 gene. These results imply that MeCP2 is involved in the regulation of neuronal alpha-tubulin and add molecular evidence that reversal of the effects of MeCP2 deficiency is achievable. This raises hopes for a cure of Rett syndrome and related MeCP2 deficiency disorders of the autistic spectrum.

  18. [Regulation of ursolic acid on TNF-alpha and collagen in silicotic rats].

    Science.gov (United States)

    Peng, Haibing; Cao, Fuyuan; Wang, Jianxing; Zhao, Xia; Han, Shuying

    2014-07-01

    To explore the regulation of ursolic acid on the expressions of TNF-alpha and collagen on Silicotic Rats. Seventy-five Wistar rats (class SPF) were divided into there groups according to the randomized block design, namely, control, model, ursolic acid groups with twenty-five rats in each group. SiO2 powders (250 mg/kg) were douched in the trachea of rat to make the silicotic model in model and ursolic acid groups. Ursolic acid (40 mg/kg) was injected into stomach cavity in ursolic acid group from the second day of SiO2, while the rats in control group were given sodium chloride in the same condition for 28 consecutive days. All rats were put to death on the 7th,14th and 28th day. TNF-alpha contents in serum were detected by ELISA. Total collagen contents in lung tissue were determined by hydroxyproline kits. Collagen I and III in lung tissue were investigated by western blot technique. After four weeks of intervention, the contents of TNF-alpha in serum of the model group had rised, showing statistically significant difference in each time compared to those of the control group (P Ursolic acid had depressant effect on the contents of TNF-alpha (P content of total collagen was significantly improved in model group (P ursolic acid depressed the expression of total collagen protein compared to those of the model group (P ursolic acid and model groups were similar with the total collagen. Ursolic acid could decrease the expressions of TNF-alpha and collagen in the process of silicosis fibrosis.

  19. The nuclear receptor ROR(alpha) exerts a bi-directional regulation of IL-6 in resting and reactive astrocytes.

    Science.gov (United States)

    Journiac, Nathalie; Jolly, Sarah; Jarvis, Christopher; Gautheron, Vanessa; Rogard, Monique; Trembleau, Alain; Blondeau, Jean-Paul; Mariani, Jean; Vernet-der Garabedian, Béatrice

    2009-12-15

    Astrocytes and one of their products, IL-6, not only support neurons but also mediate inflammation in the brain. Retinoid-related orphan receptor-alpha (RORalpha) transcription factor has related roles, being neuro-protective and, in peripheral tissues, anti-inflammatory. We examined the relation of ROR(alpha) to astrocytes and IL-6 using normal and ROR(alpha) loss-of-function mutant mice. We have shown ROR(alpha) expression in astrocytes and its up-regulation by pro-inflammatory cytokines. We have also demonstrated that ROR(alpha) directly trans-activates the Il-6 gene. We suggest that this direct control is necessary to maintain IL-6 basal level in the brain and may be a link between the neuro-supportive roles of ROR(alpha), IL-6, and astrocytes. Furthermore, after inflammatory stimulation, the absence of ROR(alpha) results in excessive IL-6 up-regulation, indicating that ROR(alpha) exerts an indirect repression probably via the inhibition of the NF-kappaB signaling. Thus, our findings indicate that ROR(alpha) is a pluripotent molecular player in constitutive and adaptive astrocyte physiology.

  20. Identification and validation of the pathways and functions regulated by the orphan nuclear receptor, ROR alpha1, in skeletal muscle.

    Science.gov (United States)

    Raichur, S; Fitzsimmons, R L; Myers, S A; Pearen, M A; Lau, P; Eriksson, N; Wang, S M; Muscat, G E O

    2010-07-01

    The retinoic acid receptor-related orphan receptor (ROR) alpha has been demonstrated to regulate lipid metabolism. We were interested in the ROR alpha 1 dependent physiological functions in skeletal muscle. This major mass organ accounts for approximately 40% of the total body mass and significant levels of lipid catabolism, glucose disposal and energy expenditure. We utilized the strategy of targeted muscle-specific expression of a truncated (dominant negative) ROR alpha 1 Delta DE in transgenic mice to investigate ROR alpha 1 signaling in this tissue. Expression profiling and pathway analysis indicated that ROR alpha influenced genes involved in: (i) lipid and carbohydrate metabolism, cardiovascular and metabolic disease; (ii) LXR nuclear receptor signaling and (iii) Akt and AMPK signaling. This analysis was validated by quantitative PCR analysis using TaqMan low-density arrays, coupled to statistical analysis (with Empirical Bayes and Benjamini-Hochberg). Moreover, westerns and metabolic profiling were utilized to validate the genes, proteins and pathways (lipogenic, Akt, AMPK and fatty acid oxidation) involved in the regulation of metabolism by ROR alpha 1. The identified genes and pathways were in concordance with the demonstration of hyperglycemia, glucose intolerance, attenuated insulin-stimulated phosphorylation of Akt and impaired glucose uptake in the transgenic heterozygous Tg-ROR alpha 1 Delta DE animals. In conclusion, we propose that ROR alpha 1 is involved in regulating the Akt2-AMPK signaling pathways in the context of lipid homeostasis in skeletal muscle.

  1. The alpha3 laminin subunit, alpha6beta4 and alpha3beta1 integrin coordinately regulate wound healing in cultured epithelial cells and in the skin

    DEFF Research Database (Denmark)

    Goldfinger, L E; Hopkinson, S B; deHart, G W

    1999-01-01

    . In these cells, integrin alpha3beta1 occasionally colocalizes with the staining generated by the 12C4 antibody but alpha6beta4 integrin does not. In wounded MCF-10A cell cultures, the 12C4 antibody stains the extracellular matrix beneath those cells at the very edge of the cellular sheet that moves to cover......Previously, we demonstrated that proteolytic processing within the globular domain of the alpha3 subunit of laminin-5 (LN5) converts LN5 from a cell motility-inducing factor to a protein complex that can trigger the formation of hemidesmosomes, certain cell-matrix attachment sites found...... in epithelial cells. We have prepared a monoclonal antibody (12C4) whose epitope is located toward the carboxy terminus of the globular domain of the alpha3 laminin subunit. This epitope is lost from the alpha3 subunit as a consequence of proteolytic processing. Antibody 12C4 stains throughout the matrix...

  2. Coupled regulation by the juxtamembrane and sterile α motif (SAM) linker is a hallmark of Ephrin tyrosine kinase evolution.

    Science.gov (United States)

    Kwon, Annie; John, Mihir; Ruan, Zheng; Kannan, Natarajan

    2018-02-12

    Ephrin (Eph) receptor tyrosine kinases have evolutionarily diverged from other tyrosine kinases to respond to specific activation and regulatory signals that requires close coupling of kinase catalytic and regulatory functions. However, the evolutionary basis for such functional coupling is not fully understood. We employed an evolutionary systems approach involving statistical mining of large sequence and structural datasets to define the hallmarks of Eph kinase evolution and functional specialization. We find that some of the most distinguishing Eph- specific residues structurally tether the flanking juxtamembrane and sterile α motif (SAM) linker regions to the kinase domain, and substitutions of these residues in EphA3 result in faster kinase activation. We report for the first time that the SAM domain linker is functionally coupled to the juxtamembrane through co-conserved residues in the kinase domain, and that together these residues provide a structural framework for coupling catalytic and regulatory functions. The unique organization of Eph-specific tethering networks and the identification of other Eph-specific sequence features of unknown functions provide new hypotheses for future functional studies and new clues to disease mutations altering Eph kinase-specific functions. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Structure and sequence motifs of siRNA linked with in vitro down-regulation of morbillivirus gene expression.

    Science.gov (United States)

    de Almeida, Renata Servan; Keita, Djénéba; Libeau, Geneviève; Albina, Emmanuel

    2008-07-01

    The most challenging task in RNA interference is the design of active small interfering RNA (siRNA) sequences. Numerous strategies have been published to select siRNA. They have proved effective in some applications but have failed in many others. Nonetheless, all existing guidelines have been devised to select effective siRNAs targeting human or murine genes. They may not be appropriate to select functional sequences that target genes from other organisms like viruses. In this study, we have analyzed 62 siRNA duplexes of 19 bases targeting three genes of three morbilliviruses. In those duplexes, we have checked which features are associated with siRNA functionality. Our results suggest that the intramolecular secondary structure of the targeted mRNA contributes to siRNA efficiency. We also confirm that the presence of at least the sequence motifs U13, A or U19, as well as the absence of G13, cooperate to increase siRNA knockdown rates. Additionally, we observe that G11 is linked with siRNA efficacy. We believe that an algorithm based on these findings may help in the selection of functional siRNA sequences directed against viral genes.

  4. Palmitoylation of TNF alpha is involved in the regulation of TNF receptor 1 signalling.

    Science.gov (United States)

    Poggi, Marjorie; Kara, Imène; Brunel, Jean-Michel; Landrier, Jean-François; Govers, Roland; Bonardo, Bernadette; Fluhrer, Regina; Haass, Christian; Alessi, Marie-Christine; Peiretti, Franck

    2013-03-01

    The pleiotropic pro-inflammatory cytokine tumour necrosis factor alpha (TNF) is synthesised as a transmembrane protein that is subject to palmitoylation. In this study, the roles of this acylation on TNF-mediated biological effects were investigated. We found that the lipid raft partitioning of TNF is regulated by its palmitoylation. Furthermore, we demonstrated that this palmitoylation process interferes with the cleavage/degradation of TNF intracellular fragments but is not involved in the regulation of its ectodomain shedding. Moreover, we found that the palmitoylation of TNF hinders the binding of soluble TNF to TNFR1 and regulates the integration/retention of TNFR1 into lipid rafts. Finally, we demonstrate that the transmembrane forms of wild-type and palmitoylation-defective TNF interact differently with TNFR1 and regulate NFκB activity, Erk1/2 phosphorylation and interleukin-6 synthesis differently, strongly suggesting that palmitoylation of TNF is involved in the regulation of TNFR1 signalling. An evidence for the physiological intervention of this regulation is provided by the fact that, in macrophages, the binding of endogenous soluble TNF to TNFR1 is enhanced by inhibition of palmitoylation. Therefore, our data introduce the new concept that palmitoylation of TNF is one of the means by which TNF-producing cells regulate their sensitivity to soluble TNF. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. MotifMark: Finding regulatory motifs in DNA sequences.

    Science.gov (United States)

    Hassanzadeh, Hamid Reza; Kolhe, Pushkar; Isbell, Charles L; Wang, May D

    2017-07-01

    The interaction between proteins and DNA is a key driving force in a significant number of biological processes such as transcriptional regulation, repair, recombination, splicing, and DNA modification. The identification of DNA-binding sites and the specificity of target proteins in binding to these regions are two important steps in understanding the mechanisms of these biological activities. A number of high-throughput technologies have recently emerged that try to quantify the affinity between proteins and DNA motifs. Despite their success, these technologies have their own limitations and fall short in precise characterization of motifs, and as a result, require further downstream analysis to extract useful and interpretable information from a haystack of noisy and inaccurate data. Here we propose MotifMark, a new algorithm based on graph theory and machine learning, that can find binding sites on candidate probes and rank their specificity in regard to the underlying transcription factor. We developed a pipeline to analyze experimental data derived from compact universal protein binding microarrays and benchmarked it against two of the most accurate motif search methods. Our results indicate that MotifMark can be a viable alternative technique for prediction of motif from protein binding microarrays and possibly other related high-throughput techniques.

  6. The alpha3 laminin subunit, alpha6beta4 and alpha3beta1 integrin coordinately regulate wound healing in cultured epithelial cells and in the skin

    DEFF Research Database (Denmark)

    Goldfinger, L E; Hopkinson, S B; deHart, G W

    1999-01-01

    Previously, we demonstrated that proteolytic processing within the globular domain of the alpha3 subunit of laminin-5 (LN5) converts LN5 from a cell motility-inducing factor to a protein complex that can trigger the formation of hemidesmosomes, certain cell-matrix attachment sites found in epithe......-inhibiting antibodies, we provide evidence that LN5 and its two integrin receptors (alpha6beta4 and alpha3beta1) appear necessary for wound healing to occur in MCF-10A cell culture wounds. We propose a model for healing of wounded epithelial tissues based on these results....... in epithelial cells. We have prepared a monoclonal antibody (12C4) whose epitope is located toward the carboxy terminus of the globular domain of the alpha3 laminin subunit. This epitope is lost from the alpha3 subunit as a consequence of proteolytic processing. Antibody 12C4 stains throughout the matrix...... the wound site. A similar phenomenon is observed in human skin wounds, since we also detect expression of the unprocessed alpha3 laminin subunit at the leading tip of the sheet of epidermal cells that epithelializes skin wounds in vivo. In addition, using alpha3 laminin subunit and integrin function...

  7. Long Non-Coding RNA HOTAIR Promotes Cell Migration and Invasion via Down-Regulation of RNA Binding Motif Protein 38 in Hepatocellular Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    Chaofeng Ding

    2014-03-01

    Full Text Available Long non-coding RNA HOTAIR exerts regulatory functions in various biological processes in cancer cells, such as proliferation, apoptosis, mobility, and invasion. We previously found that HOX transcript antisense RNA (HOTAIR is a negative prognostic factor and exhibits oncogenic activity in hepatocellular carcinoma (HCC. In this study, we aimed to investigate the role and molecular mechanism of HOTAIR in promoting HCC cell migration and invasion. Firstly, we profiled its gene expression pattern by microarray analysis of HOTAIR loss in Bel-7402 HCC cell line. The results showed that 129 genes were significantly down-regulated, while 167 genes were significantly up-regulated (fold change >2, p < 0.05. Bioinformatics analysis indicated that RNA binding proteins were involved in this biological process. HOTAIR suppression using RNAi strategy with HepG2 and Bel-7402 cells increased the mRNA and protein expression levels of RNA binding motif protein 38 (RBM38. Moreover, the expression levels of RBM38 in HCC specimens were significantly lower than paired adjacent noncancerous tissues. In addition, knockdown of HOTAIR resulted in a decrease of cell migration and invasion, which could be specifically rescued by down-regulation of RBM38. Taken together, HOTAIR could promote migration and invasion of HCC cells by inhibiting RBM38, which indicated critical roles of HOTAIR and RBM38 in HCC progression.

  8. Regulation of human sterol 27-hydroxylase gene (CYP27A1) by bile acids and hepatocyte nuclear factor 4alpha (HNF4alpha).

    Science.gov (United States)

    Chen, Wenling; Chiang, John Y L

    2003-08-14

    Mitochondrial sterol 27-hydroxylase (CYP27A1) catalyses sterol side-chain oxidation of bile acid synthesis from cholesterol, and the first reaction of the acidic bile acid biosynthetic pathway. Hydrophobic bile acids suppress human CYP27A1 gene reporter activity when assayed in human hepatocellular blastoma HepG2 cells. Bile acids also inhibit CYP27A1 reporter activity in human embryonic kidney 293 cells. A putative bile acid response element (BARE) was mapped to a region downstream of nt -147 of the human CYP27A1 gene, within which a binding site for a liver-specific nuclear receptor, HNF4alpha, is identified. HNF4alpha strongly stimulates CYP27A1 gene transcription and mutation of its binding site markedly reduced promoter activity. Results suggest that human CYP27A1 gene transcription is suppressed by bile acids and HNF4alpha plays a pivotal role in transcriptional regulation of this gene.

  9. Collagen-IV and laminin-1 regulate estrogen receptor alpha expression and function in mouse mammary epithelial cells.

    Science.gov (United States)

    Novaro, Virginia; Roskelley, Calvin D; Bissell, Mina J

    2003-07-15

    The expression level and functional activity of estrogen receptor alpha is an important determinant of breast physiology and breast cancer treatment. However, it has been difficult to identify the signals that regulate estrogen receptor because cultured mammary epithelial cells generally do not respond to estrogenic signals. Here, we use a combination of two- and three-dimensional culture systems to dissect the extracellular signals that control endogenous estrogen receptor alpha. Its expression was greatly reduced when primary mammary epithelial cells were placed on tissue culture plastic; however, the presence of a reconstituted basement membrane in combination with lactogenic hormones partially prevented this decrease. Estrogen receptor alpha expression in primary mammary fibroblasts was not altered by these culture conditions, indicating that its regulation is cell type specific. Moreover, estrogen receptor-dependent reporter gene expression, as well as estrogen receptor alpha levels, were increased threefold in a functionally normal mammary epithelial cell line when reconstituted basement membrane was added to the medium. This regulatory effect of reconstituted basement membrane was reproduced by two of its components, collagen-IV and laminin-1, and it was blocked by antibodies against alpha2, alpha6 and beta1 integrin subunits. Our results indicate that integrin-mediated response to specific basement membrane components, rather than cell rounding or cell growth arrest induced by reconstituted basement membrane, is critical in the regulation of estrogen receptor alpha expression and function in mammary epithelial cells.

  10. D-Glucosamine down-regulates HIF-1{alpha} through inhibition of protein translation in DU145 prostate cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jee-Young; Park, Jong-Wook; Suh, Seong-Il [Chronic Disease Research Center, School of Medicine, Keimyung University, 194 Dongsan-Dong, Jung-Gu, Daegu 700-712 (Korea, Republic of); Baek, Won-Ki, E-mail: wonki@dsmc.or.kr [Chronic Disease Research Center, School of Medicine, Keimyung University, 194 Dongsan-Dong, Jung-Gu, Daegu 700-712 (Korea, Republic of)

    2009-04-24

    D-Glucosamine has been reported to inhibit proliferation of cancer cells in culture and in vivo. In this study we report a novel response to D-glucosamine involving the translation regulation of hypoxia inducible factor (HIF)-1{alpha} expression. D-Glucosamine caused a decreased expression of HIF-1{alpha} under normoxic and hypoxic conditions without affecting HIF-1{alpha} mRNA expression in DU145 prostate cancer cells. D-Glucosamine inhibited HIF-1{alpha} accumulation induced by proteasome inhibitor MG132 and prolyl hydroxylase inhibitor DMOG suggesting D-glucosamine reduces HIF-1{alpha} protein expression through proteasome-independent pathway. Metabolic labeling assays indicated that D-glucosamine inhibits translation of HIF-1{alpha} protein. In addition, D-glucosamine inhibited HIF-1{alpha} expression induced by serum stimulation in parallel with inhibition of p70S6K suggesting D-glucosamine inhibits growth factor-induced HIF-1{alpha} expression, at least in part, through p70S6K inhibition. Taken together, these results suggest that D-glucosamine inhibits HIF-1{alpha} expression through inhibiting protein translation and provide new insight into a potential mechanism of the anticancer properties of D-glucosamine.

  11. A specific A/T polymorphism in Western tyrosine phosphorylation B-motifs regulates Helicobacter pylori CagA epithelial cell interactions.

    Directory of Open Access Journals (Sweden)

    Xue-Song Zhang

    2015-02-01

    Full Text Available Helicobacter pylori persistently colonizes the human stomach, with mixed roles in human health. The CagA protein, a key host-interaction factor, is translocated by a type IV secretion system into host epithelial cells, where its EPIYA tyrosine phosphorylation motifs (TPMs are recognized by host cell kinases, leading to multiple host cell signaling cascades. The CagA TPMs have been described as type A, B, C or D, each with a specific conserved amino acid sequence surrounding EPIYA. Database searching revealed strong non-random distribution of the B-motifs (including EPIYA and EPIYT in Western H. pylori isolates. In silico analysis of Western H. pylori CagA sequences provided evidence that the EPIYT B-TPMs are significantly less associated with gastric cancer than the EPIYA B-TPMs. By generating and using a phosphorylated CagA B-TPM-specific antibody, we demonstrated the phosphorylated state of the CagA B-TPM EPIYT during H. pylori co-culture with host cells. We also showed that within host cells, CagA interaction with phosphoinositol 3-kinase (PI3-kinase was B-TPM tyrosine-phosphorylation-dependent, and the recombinant CagA with EPIYT B-TPM had higher affinity to PI3-kinase and enhanced induction of AKT than the isogenic CagA with EPIYA B-TPM. Structural modeling of the CagA B-TPM motif bound to PI3-kinase indicated that the threonine residue at the pY+1 position forms a side-chain hydrogen bond to N-417 of PI3-kinase, which cannot be formed by alanine. During co-culture with AGS cells, an H. pylori strain with a CagA EPIYT B-TPM had significantly attenuated induction of interleukin-8 and hummingbird phenotype, compared to the isogenic strain with B-TPM EPIYA. These results suggest that the A/T polymorphisms could regulate CagA activity through interfering with host signaling pathways related to carcinogenesis, thus influencing cancer risk.

  12. A Specific A/T Polymorphism in Western Tyrosine Phosphorylation B-Motifs Regulates Helicobacter pylori CagA Epithelial Cell Interactions

    Science.gov (United States)

    Zhang, Xue-Song; Tegtmeyer, Nicole; Traube, Leah; Jindal, Shawn; Perez-Perez, Guillermo; Sticht, Heinrich; Backert, Steffen; Blaser, Martin J.

    2015-01-01

    Helicobacter pylori persistently colonizes the human stomach, with mixed roles in human health. The CagA protein, a key host-interaction factor, is translocated by a type IV secretion system into host epithelial cells, where its EPIYA tyrosine phosphorylation motifs (TPMs) are recognized by host cell kinases, leading to multiple host cell signaling cascades. The CagA TPMs have been described as type A, B, C or D, each with a specific conserved amino acid sequence surrounding EPIYA. Database searching revealed strong non-random distribution of the B-motifs (including EPIYA and EPIYT) in Western H. pylori isolates. In silico analysis of Western H. pylori CagA sequences provided evidence that the EPIYT B-TPMs are significantly less associated with gastric cancer than the EPIYA B-TPMs. By generating and using a phosphorylated CagA B-TPM-specific antibody, we demonstrated the phosphorylated state of the CagA B-TPM EPIYT during H. pylori co-culture with host cells. We also showed that within host cells, CagA interaction with phosphoinositol 3-kinase (PI3-kinase) was B-TPM tyrosine-phosphorylation-dependent, and the recombinant CagA with EPIYT B-TPM had higher affinity to PI3-kinase and enhanced induction of AKT than the isogenic CagA with EPIYA B-TPM. Structural modeling of the CagA B-TPM motif bound to PI3-kinase indicated that the threonine residue at the pY+1 position forms a side-chain hydrogen bond to N-417 of PI3-kinase, which cannot be formed by alanine. During co-culture with AGS cells, an H. pylori strain with a CagA EPIYT B-TPM had significantly attenuated induction of interleukin-8 and hummingbird phenotype, compared to the isogenic strain with B-TPM EPIYA. These results suggest that the A/T polymorphisms could regulate CagA activity through interfering with host signaling pathways related to carcinogenesis, thus influencing cancer risk. PMID:25646814

  13. PGC-1{beta} regulates mouse carnitine-acylcarnitine translocase through estrogen-related receptor {alpha}

    Energy Technology Data Exchange (ETDEWEB)

    Gacias, Mar; Perez-Marti, Albert; Pujol-Vidal, Magdalena; Marrero, Pedro F. [Department of Biochemistry and Molecular Biology, School of Pharmacy and the Institute of Biomedicine of the University of Barcelona (IBUB) (Spain); Haro, Diego, E-mail: dharo@ub.edu [Department of Biochemistry and Molecular Biology, School of Pharmacy and the Institute of Biomedicine of the University of Barcelona (IBUB) (Spain); Relat, Joana [Department of Biochemistry and Molecular Biology, School of Pharmacy and the Institute of Biomedicine of the University of Barcelona (IBUB) (Spain)

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer The Cact gene is induced in mouse skeletal muscle after 24 h of fasting. Black-Right-Pointing-Pointer The Cact gene contains a functional consensus sequence for ERR. Black-Right-Pointing-Pointer This sequence binds ERR{alpha} both in vivo and in vitro. Black-Right-Pointing-Pointer This ERRE is required for the activation of Cact expression by the PGC-1/ERR axis. Black-Right-Pointing-Pointer Our results add Cact as a genuine gene target of these transcriptional regulators. -- Abstract: Carnitine/acylcarnitine translocase (CACT) is a mitochondrial-membrane carrier proteins that mediates the transport of acylcarnitines into the mitochondrial matrix for their oxidation by the mitochondrial fatty acid-oxidation pathway. CACT deficiency causes a variety of pathological conditions, such as hypoketotic hypoglycemia, cardiac arrest, hepatomegaly, hepatic dysfunction and muscle weakness, and it can be fatal in newborns and infants. Here we report that expression of the Cact gene is induced in mouse skeletal muscle after 24 h of fasting. To gain insight into the control of Cact gene expression, we examine the transcriptional regulation of the mouse Cact gene. We show that the 5 Prime -flanking region of this gene is transcriptionally active and contains a consensus sequence for the estrogen-related receptor (ERR), a member of the nuclear receptor family of transcription factors. This sequence binds ERR{alpha}in vivo and in vitro and is required for the activation of Cact expression by the peroxisome proliferator-activated receptor gamma coactivator (PGC)-1/ERR axis. We also demonstrate that XTC790, the inverse agonist of ERR{alpha}, specifically blocks Cact activation by PGC-1{beta} in C2C12 cells.

  14. Pengembangan Motif Batik Khas Bali

    Directory of Open Access Journals (Sweden)

    Irfa'ina Rohana Salma

    2016-04-01

    Full Text Available ABSTRAKIndustri batik berkembang pesat di Bali, namun motif-motif batiknya tidak mencerminkan identitas khas daerah. Oleh karena itu perlu diciptakan desain motif batik khas Bali yang sumber inspirasinya digali budaya dan alam Bali. Tujuan penelitian dan penciptaan seni ini adalah untuk menghasilkan motif batik yang mempunyai bentuk  unik dan karakteristik sehingga dapat mencerminkan budaya dan alam Bali. Metode yang digunakan yaitu pengumpulan data, perancangan motif, perwujudan menjadi batik, serta uji estetikanya. Dari penciptaan seni ini berhasil diciptakan 5 motif batik yaitu: (1 Motif Jepun Alit; (2 Motif Jepun Ageng; (3 Motif Sekar Jagad Bali; (4 Motif Teratai Banji; dan (5 Motif Poleng Biru. Berdasarkan hasil penilaian “Selera Estetika” diketahui bahwa motif yang paling banyak disukai adalah Motif Jepun Alit, Motif Sekar Jagad Bali,  dan Motif Teratai Banji. Kata kunci: Motif Jepun Alit, Motif Jepun Ageng, Motif Sekar Jagad Bali, Motif Teratai Banji, Motif Poleng Biru ABSTRACT Batik industry is growing rapidly in Bali, but its batik motifs do not reflect the typical regional identities. Therefore, it is necessary to create a distinctive design motif source of Bali excavated  from the repertoire of traditional Balinese arts and culture. The purpose of this research and its art creation is to produce batik motifs that have a unique shape and characteristics  to reflect the Balinese culture and natural surroundings. The method used by gathering and collecting data, designing motifs to  become the embodiment of batik. From the creation of this art had been created 5 motifs, namely: (1 Motif Jepun Alit; (2 Motif Jepun Ageng; (3 Motif Sekar Jagad Bali; (4 Motif Teratai Banji; and (5 Motif Poleng Biru. Based on the results of aesthetical assessment known that the most preferred motif are  Motif Jepun Alit, Motif Sekar Jagad Bali, and Motif Teratai Banji. Key words: Motif Jepun Alit, Motif Jepun Ageng, Motif Sekar Jagad Bali, Motif

  15. Identification of promoter motifs regulating ZmeIF4E expression level involved in maize rough dwarf disease resistance in maize (Zea Mays L.).

    Science.gov (United States)

    Shi, Liyu; Weng, Jianfeng; Liu, Changlin; Song, Xinyuan; Miao, Hongqin; Hao, Zhuanfang; Xie, Chuanxiao; Li, Mingshun; Zhang, Degui; Bai, Li; Pan, Guangtang; Li, Xinhai; Zhang, Shihuang

    2013-04-01

    Maize rough dwarf disease (MRDD, a viral disease) results in significant grain yield losses, while genetic basis of which is largely unknown. Based on comparative genomics, eukaryotic translation initiation factor 4E (eIF4E) was considered as a candidate gene for MRDD resistance, validation of which will help to understand the possible genetic mechanism of this disease. ZmeIF4E (orthologs of eIF4E gene in maize) encodes a protein of 218 amino acids, harboring five exons and no variation in the cDNA sequence is identified between the resistant inbred line, X178 and susceptible one, Ye478. ZmeIF4E expression was different in the two lines plants treated with three plant hormones, ethylene, salicylic acid, and jasmonates at V3 developmental stage, suggesting that ZmeIF4E is more likely to be involved in the regulation of defense gene expression and induction of local and systemic resistance. Moreover, four cis-acting elements related to plant defense responses, including DOFCOREZM, EECCRCAH1, GT1GAMSCAM4, and GT1CONSENSUS were detected in ZmeIF4E promoter for harboring sequence variation in the two lines. Association analysis with 163 inbred lines revealed that one SNP in EECCRCAH1 is significantly associated with CSI of MRDD in two environments, which explained 3.33 and 9.04 % of phenotypic variation, respectively. Meanwhile, one SNP in GT-1 motif was found to affect MRDD resistance only in one of the two environments, which explained 5.17 % of phenotypic variation. Collectively, regulatory motifs respectively harboring the two significant SNPs in ZmeIF4E promoter could be involved in the defense process of maize after viral infection. These results contribute to understand maize defense mechanisms against maize rough dwarf virus.

  16. Arabidopsis AtbHLH112 regulates the expression of genes involved in abiotic stress tolerance by binding to their E-box and GCG-box motifs.

    Science.gov (United States)

    Liu, Yujia; Ji, Xiaoyu; Nie, Xianguang; Qu, Min; Zheng, Lei; Tan, Zilong; Zhao, Huimin; Huo, Lin; Liu, Shengnan; Zhang, Bing; Wang, Yucheng

    2015-08-01

    Plant basic helix-loop-helix (bHLH) transcription factors play essential roles in abiotic stress tolerance. However, most bHLHs have not been functionally characterized. Here, we characterized the functional role of a bHLH transcription factor from Arabidopsis, AtbHLH112, in response to abiotic stress. AtbHLH112 is a nuclear-localized protein, and its nuclear localization is induced by salt, drought and abscisic acid (ABA). In addition, AtbHLH112 serves as a transcriptional activator, with the activation domain located at its N-terminus. In addition to binding to the E-box motifs of stress-responsive genes, AtbHLH112 binds to a novel motif with the sequence 'GG[GT]CC[GT][GA][TA]C' (GCG-box). Gain- and loss-of-function analyses showed that the transcript level of AtbHLH112 is positively correlated with salt and drought tolerance. AtbHLH112 mediates stress tolerance by increasing the expression of P5CS genes and reducing the expression of P5CDH and ProDH genes to increase proline levels. AtbHLH112 also increases the expression of POD and SOD genes to improve reactive oxygen species (ROS) scavenging ability. We present a model suggesting that AtbHLH112 is a transcriptional activator that regulates the expression of genes via binding to their GCG- or E-boxes to mediate physiological responses, including proline biosynthesis and ROS scavenging pathways, to enhance stress tolerance. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  17. Structural Fine-Tuning of MIT-Interacting Motif 2 (MIM2) and Allosteric Regulation of ESCRT-III by Vps4 in Yeast.

    Science.gov (United States)

    Kojima, Rieko; Obita, Takayuki; Onoue, Kousuke; Mizuguchi, Mineyuki

    2016-06-05

    The endosomal sorting complex required for transport (ESCRT) facilitates roles in membrane remodeling, such as multivesicular body biogenesis, enveloped virus budding and cell division. In yeast, Vps4 plays a crucial role in intraluminal vesicle formation by disassembling ESCRT proteins. Vps4 is recruited by ESCRT-III proteins to the endosomal membrane through the interaction between the microtubule interacting and trafficking (MIT) domain of Vps4 and the C-terminal MIT-interacting motif (MIM) of ESCRT-III proteins. Here, we have determined the crystal structure of Vps4-MIT in a complex with Vps20, a member of ESCRT-III, and revealed that Vps20 adopts a unique MIM2 conformation. Based on structural comparisons with other known MIM2s, we have refined the consensus sequence of MIM2. We have shown that another ESCRT-III protein, Ist1, binds to Vps4-MIT via its C-terminal MIM1 with higher affinity than Vps2, but lacks MIM2 by surface plasmon resonance. Surprisingly, the Ist1 MIM1 competed with the MIM2 of Vfa1, a regulator of Vps4, for binding to Vps4-MIT, even though these MIMs bind in non-overlapping sites on the MIT. These findings provide insight into the allosteric recognition of MIMs of ESCRT-III by Vps4 and also the regulation of ESCRT machinery at the last step of membrane remodeling. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Oxidised LDL internalisation by the LOX-1 scavenger receptor is dependent on a novel cytoplasmic motif and is regulated by dynamin-2.

    Science.gov (United States)

    Murphy, Jane E; Vohra, Ravinder S; Dunn, Sarah; Holloway, Zoe G; Monaco, Anthony P; Homer-Vanniasinkam, Shervanthi; Walker, John H; Ponnambalam, Sreenivasan

    2008-07-01

    The LOX-1 scavenger receptor recognises pro-atherogenic oxidised low-density lipoprotein (OxLDL) particles and is implicated in atherosclerotic plaque formation, but this mechanism is not well understood. Here we show evidence for a novel clathrin-independent and cytosolic-signal-dependent pathway that regulates LOX-1-mediated OxLDL internalisation. Cell surface labelling in the absence or presence of OxLDL ligand showed that LOX-1 is constitutively internalised from the plasma membrane and its half-life is not altered upon ligand binding and trafficking. We show that LOX-1-mediated OxLDL uptake is disrupted by overexpression of dominant-negative dynamin-2 but unaffected by CHC17 or mu2 (AP2) depletion. Site-directed mutagenesis revealed a conserved and novel cytoplasmic tripeptide motif (DDL) that regulates LOX-1-mediated endocytosis of OxLDL. Taken together, these findings indicate that LOX-1 is internalised by a clathrin-independent and dynamin-2-dependent pathway and is thus likely to mediate OxLDL trafficking in vascular tissues.

  19. Estrogen receptor alpha is cell cycle-regulated and regulates the cell cycle in a ligand-dependent fashion.

    Science.gov (United States)

    JavanMoghadam, Sonia; Weihua, Zhang; Hunt, Kelly K; Keyomarsi, Khandan

    2016-06-17

    Estrogen receptor alpha (ERα) has been implicated in several cell cycle regulatory events and is an important predictive marker of disease outcome in breast cancer patients. Here, we aimed to elucidate the mechanism through which ERα influences proliferation in breast cancer cells. Our results show that ERα protein is cell cycle-regulated in human breast cancer cells and that the presence of 17-β-estradiol (E2) in the culture medium shortened the cell cycle significantly (by 4.5 hours, P fashion. These results provide the rationale for an effective treatment strategy that includes a cell cycle inhibitor in combination with a drug that lowers estrogen levels, such as an aromatase inhibitor, and an antiestrogen that does not result in the degradation of ERα, such as tamoxifen.

  20. Genetic analysis of beta1 integrin "activation motifs" in mice

    DEFF Research Database (Denmark)

    Czuchra, Aleksandra; Meyer, Hannelore; Legate, Kyle R

    2006-01-01

    Akey feature of integrins is their ability to regulate the affinity for ligands, a process termed integrin activation. The final step in integrin activation is talin binding to the NPXY motif of the integrin beta cytoplasmic domains. Talin binding disrupts the salt bridge between the alpha....../beta tails, leading to tail separation and integrin activation. We analyzed mice in which we mutated the tyrosines of the beta1 tail and the membrane-proximal aspartic acid required for the salt bridge. Tyrosine-to-alanine substitutions abolished beta1 integrin functions and led to a beta1 integrin...... and the membrane-proximal salt bridge between alpha and beta1 tails have no apparent function under physiological conditions in vivo....

  1. Homeobox A7 stimulates breast cancer cell proliferation by up-regulating estrogen receptor-alpha

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yu [Department of Reproductive Endocrinology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou 310006 (China); Department of Obstetrics and Gynaecology, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4 (Canada); Cheng, Jung-Chien [Department of Obstetrics and Gynaecology, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4 (Canada); Huang, He-Feng, E-mail: huanghefg@hotmail.com [Department of Reproductive Endocrinology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou 310006 (China); Leung, Peter C.K., E-mail: peter.leung@ubc.ca [Department of Reproductive Endocrinology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou 310006 (China); Department of Obstetrics and Gynaecology, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4 (Canada)

    2013-11-01

    Highlights: •HOXA7 regulates MCF7 cell proliferation. •HOXA7 up-regulates ERα expression. •HOXA7 mediates estrogen-induced MCF7 cell proliferation. -- Abstract: Breast cancer is the most common hormone-dependent malignancy in women. Homeobox (HOX) transcription factors regulate many cellular functions, including cell migration, proliferation and differentiation. The aberrant expression of HOX genes has been reported to be associated with human reproductive cancers. Estradiol (E2) and its nuclear receptors, estrogen receptor (ER)-alpha and ER-beta, are known to play critical roles in the regulation of breast cancer cell growth. However, an understanding of the potential relationship between HOXA7 and ER in breast cancer cells is limited. In this study, our results demonstrate that knockdown of HOXA7 in MCF7 cells significantly decreased cell proliferation and ERα expression. In addition, HOXA7 knockdown attenuated E2-induced cell proliferation as well as progesterone receptor (PR) expression. The stimulatory effects of E2 on cell proliferation and PR expression were abolished by co-treatment with ICI 182780, a selective ERα antagonist. In contrast, overexpression of HOXA7 significantly stimulated cell proliferation and ERα expression. Moreover, E2-induced cell proliferation, as well as PR expression, was enhanced by the overexpression of HOXA7. Neither knockdown nor overexpression of HOXA7 affected the ER-beta levels. Our results demonstrate a novel mechanistic role for HOXA7 in modulating breast cancer cell proliferation via regulation of ERα expression. This finding contributes to our understanding of the role HOXA7 plays in regulating the proliferation of ER-positive cancer cells.

  2. Homeobox A7 stimulates breast cancer cell proliferation by up-regulating estrogen receptor-alpha

    International Nuclear Information System (INIS)

    Zhang, Yu; Cheng, Jung-Chien; Huang, He-Feng; Leung, Peter C.K.

    2013-01-01

    Highlights: •HOXA7 regulates MCF7 cell proliferation. •HOXA7 up-regulates ERα expression. •HOXA7 mediates estrogen-induced MCF7 cell proliferation. -- Abstract: Breast cancer is the most common hormone-dependent malignancy in women. Homeobox (HOX) transcription factors regulate many cellular functions, including cell migration, proliferation and differentiation. The aberrant expression of HOX genes has been reported to be associated with human reproductive cancers. Estradiol (E2) and its nuclear receptors, estrogen receptor (ER)-alpha and ER-beta, are known to play critical roles in the regulation of breast cancer cell growth. However, an understanding of the potential relationship between HOXA7 and ER in breast cancer cells is limited. In this study, our results demonstrate that knockdown of HOXA7 in MCF7 cells significantly decreased cell proliferation and ERα expression. In addition, HOXA7 knockdown attenuated E2-induced cell proliferation as well as progesterone receptor (PR) expression. The stimulatory effects of E2 on cell proliferation and PR expression were abolished by co-treatment with ICI 182780, a selective ERα antagonist. In contrast, overexpression of HOXA7 significantly stimulated cell proliferation and ERα expression. Moreover, E2-induced cell proliferation, as well as PR expression, was enhanced by the overexpression of HOXA7. Neither knockdown nor overexpression of HOXA7 affected the ER-beta levels. Our results demonstrate a novel mechanistic role for HOXA7 in modulating breast cancer cell proliferation via regulation of ERα expression. This finding contributes to our understanding of the role HOXA7 plays in regulating the proliferation of ER-positive cancer cells

  3. Soluble alpha-APP (sAPPalpha regulates CDK5 expression and activity in neurons.

    Directory of Open Access Journals (Sweden)

    Daniela Hartl

    Full Text Available A growing body of evidence suggests a role for soluble alpha-amyloid precursor protein (sAPPalpha in pathomechanisms of Alzheimer disease (AD. This cleavage product of APP was identified to have neurotrophic properties. However, it remained enigmatic what proteins, targeted by sAPPalpha, might be involved in such neuroprotective actions. Here, we used high-resolution two-dimensional polyacrylamide gel electrophoresis to analyze proteome changes downstream of sAPPalpha in neurons. We present evidence that sAPPalpha regulates expression and activity of CDK5, a kinase that plays an important role in AD pathology. We also identified the cytoprotective chaperone ORP150 to be induced by sAPPalpha as part of this protective response. Finally, we present functional evidence that the sAPPalpha receptor SORLA is essential to mediate such molecular functions of sAPPalpha in neurons.

  4. Tumor necrosis factor-alpha regulates the Hypocretin system via mRNA degradation and ubiquitination.

    Science.gov (United States)

    Zhan, Shuqin; Cai, Guo-Qiang; Zheng, Anni; Wang, Yuping; Jia, Jianping; Fang, Haotian; Yang, Youfeng; Hu, Meng; Ding, Qiang

    2011-04-01

    Recent studies recognize that Hypocretin system (also known as Orexin) plays a critical role in sleep/wake disorders and feeding behaviors. However, little is known about the regulation of the Hypocretin system. It is also known that tumor necrosis factor alpha (TNF-α) is involved in the regulation of sleep/wake cycle. Here, we test our hypothesis that the Hypocretin system is regulated by TNF-α. Prepro-Hypocretin and Hypocretin receptor 2 (HcrtR2) can be detected at a very low level in rat B35 neuroblastoma cells. In response to TNF-α, Prepro-Hypocretin mRNA and protein levels are down-regulated, and also HcrtR2 protein level is down-regulated in B35 cells. To investigate the mechanism, exogenous rat Prepro-Hypocretin and rat HcrtR2 were overexpressed in B35 cells. In response to TNF-α, protein and mRNA of Prepro-Hypocretin are significantly decreased (by 93% and 94%, respectively), and the half-life of Prepro-Hypocretin mRNA is decreased in a time- and dose-dependent manner. The level of HcrtR2 mRNA level is not affected by TNF-α treatment; however, HcrtR2 protein level is significantly decreased (by 86%) through ubiquitination in B35 cells treated with TNF-α. Downregulation of cellular inhibitor of apoptosis protein-1 and -2 (cIAP-1 and -2) abrogates the HcrtR2 ubiquitination induced by TNF-α. The control green fluorescent protein (GFP) expression is not affected by TNF-α treatment. These studies demonstrate that TNF-α can impair the function of the Hypocretin system by reducing the levels of both Prepro-Hypocretin and HcrtR2. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. Tripartite Motif 8 (TRIM8) Positively Regulates Pro-inflammatory Responses in Pseudomonas aeruginosa-Induced Keratitis Through Promoting K63-Linked Polyubiquitination of TAK1 Protein.

    Science.gov (United States)

    Guo, Litao; Dong, Weili; Fu, Xiaoxiao; Lin, Jing; Dong, Zhijun; Tan, Xiaobo; Zhang, Tiemin

    2017-04-01

    Pseudomonas aeruginosa (PA)-induced keratitis is a rapidly progressive ocular infectious disease that often leads to inflammatory epithelial edema, stromal infiltration, tissue destruction, corneal ulceration, and vision loss. In this study, we investigate the role of tripartite motif 8 (TRIM8) in regulating the inflammatory process of PA-induced keratitis. The expression of TRIM8 was increased in mouse corneas and in vitro-cultured macrophages after PA infection. Knockdown of the expression of TRIM8 significantly inhibited the activation of NF-κB signaling and decreased the production of pro-inflammatory cytokines both in vivo and in vitro after infected with PA. Furthermore, we investigated the potential mechanism and we found after PA infection that TRIM8 could promote K63-linked polyubiquitination of transforming growth factor β-activated kinase 1 (TAK1), leading to the activation of TAK1 and enhanced inflammatory responses. Taken together, we demonstrated that TRIM8 has pro-inflammatory effect on PA-induced keratitis and suggest TRIM8 as a potential therapeutic target for keratitis.

  6. Structure of GrlR and the Implication of its EDED Motif in Mediating the Regulation of Type III Secretion System in EHEC

    Energy Technology Data Exchange (ETDEWEB)

    Jobichen,C.; Li, M.; Yerushalmi, G.; Tan, Y.; Mok, Y.; Rosenshine, I.; Leung, K.; Sivaraman, J.

    2007-01-01

    Enterohemorrhagic Escherichia coli (EHEC) is a common cause of severe hemorrhagic colitis. EHEC's virulence is dependent upon a type III secretion system (TTSS) encoded by 41 genes. These genes are organized in several operons clustered in the locus of enterocyte effacement. Most of the locus of enterocyte effacement genes, including grlA and grlR, are positively regulated by Ler, and Ler expression is positively and negatively modulated by GrlA and GrlR, respectively. However, the molecular basis for the GrlA and GrlR activity is still elusive. We have determined the crystal structure of GrlR at 1.9 Angstroms resolution. It consists of a typical {beta}-barrel fold with eight {beta}-strands containing an internal hydrophobic cavity and a plug-like loop on one side of the barrel. Strong hydrophobic interactions between the two {beta}-barrels maintain the dimeric architecture of GrlR. Furthermore, a unique surface-exposed EDED (Glu-Asp-Glu-Asp) motif is identified to be critical for GrlA-GrlR interaction and for the repressive activity of GrlR. This study contributes a novel molecular insight into the mechanism of GrlR function.

  7. Structure of GrlR and the implication of its EDED motif in mediating the regulation of type III secretion system in EHEC.

    Directory of Open Access Journals (Sweden)

    Chacko Jobichen

    2007-05-01

    Full Text Available Enterohemorrhagic Escherichia coli (EHEC is a common cause of severe hemorrhagic colitis. EHEC's virulence is dependent upon a type III secretion system (TTSS encoded by 41 genes. These genes are organized in several operons clustered in the locus of enterocyte effacement. Most of the locus of enterocyte effacement genes, including grlA and grlR, are positively regulated by Ler, and Ler expression is positively and negatively modulated by GrlA and GrlR, respectively. However, the molecular basis for the GrlA and GrlR activity is still elusive. We have determined the crystal structure of GrlR at 1.9 A resolution. It consists of a typical beta-barrel fold with eight beta-strands containing an internal hydrophobic cavity and a plug-like loop on one side of the barrel. Strong hydrophobic interactions between the two beta-barrels maintain the dimeric architecture of GrlR. Furthermore, a unique surface-exposed EDED (Glu-Asp-Glu-Asp motif is identified to be critical for GrlA-GrlR interaction and for the repressive activity of GrlR. This study contributes a novel molecular insight into the mechanism of GrlR function.

  8. Swimming Exercise Alleviated Insulin Resistance by Regulating Tripartite Motif Family Protein 72 Expression and AKT Signal Pathway in Sprague-Dawley Rats Fed with High-Fat Diet

    Directory of Open Access Journals (Sweden)

    Jie Qi

    2016-01-01

    Full Text Available We aimed to investigate whether swimming exercise could improve insulin resistance (IR by regulating tripartite motif family protein 72 (TRIM72 expression and AKT signal pathway in rats fed with high-fat diet. Five-week-old rats were classified into 3 groups: standard diet as control (CON, high-fat diet (HFD, and HFD plus swimming exercise (Ex-HFD. After 8 weeks, glucose infusion rate (GIR, markers of oxidative stress, mRNA and protein expression of TRIM72, protein of IRS, p-AKTSer473, and AKT were determined in quadriceps muscles. Compared with HFD, the GIR, muscle SOD, and GSH-Px were significantly increased (p<0.05, resp., whereas muscle MDA and 8-OHdG levels were significantly decreased (p<0.05 and p<0.01 in Ex-HFD. Expression levels of TRIM72 mRNA and protein in muscles were significantly reduced (p<0.05 and p<0.01, whereas protein expression levels of IRS-1, p-AKTSer473, and AKT were significantly increased in Ex-HFD compared with HFD (p<0.01, p<0.01, and p<0.05. These results suggest that an 8-week swimming exercise improves HFD-induced insulin resistance maybe through a reduction of TRIM72 in skeletal muscle and enhancement of AKT signal transduction.

  9. Role of the SUMO-interacting motif in HIPK2 targeting to the PML nuclear bodies and regulation of p53

    International Nuclear Information System (INIS)

    Sung, Ki Sa; Lee, Yun-Ah; Kim, Eui Tae; Lee, Seung-Rock; Ahn, Jin-Hyun; Choi, Cheol Yong

    2011-01-01

    Homeodomain-interacting protein kinase 2 (HIPK2) is a key regulator of various transcription factors including p53 and CtBP in the DNA damage signaling pathway. PML-nuclear body (NB) is required for HIPK2-mediated p53 phosphorylation at Ser46 and induction of apoptosis. Although PML-NB targeting of HIPK2 has been shown, much is not clear about the molecular mechanism of HIPK2 recruitment to PML-NBs. Here we show that HIPK2 colocalizes specifically with PML-I and PML-IV. Mutational analysis showed that HIPK2 recruitment to PML-IV-NBs is mediated by the SUMO-interaction motifs (SIMs) of both PML-IV and HIPK2. Wild-type HIPK2 associated with SUMO-conjugated PML-IV at a higher affinity than with un-conjugated PML-IV, while the association of a HIPK2 SIM mutant with SUMO-modified PML-IV was impaired. In colony formation assays, HIPK2 strongly suppressed cell proliferation, but HIPK2 SIM mutants did not. In addition, activation and phosphorylation of p53 at the Ser46 residue were impaired by HIPK2 SIM mutants. These results suggest that SIM-mediated HIPK2 targeting to PML-NBs is crucial for HIPK2-mediated p53 activation and induction of apoptosis.

  10. OsCCD1, a novel small calcium-binding protein with one EF-hand motif, positively regulates osmotic and salt tolerance in rice.

    Science.gov (United States)

    Jing, Pei; Zou, Juanzi; Kong, Lin; Hu, Shiqi; Wang, Biying; Yang, Jun; Xie, Guosheng

    2016-06-01

    Calcium-binding proteins play key roles in the signal transduction in the growth and stress response in eukaryotes. However, a subfamily of proteins with one EF-hand motif has not been fully studied in higher plants. Here, a novel small calcium-binding protein with a C-terminal centrin-like domain (CCD1) in rice, OsCCD1, was characterized to show high similarity with a TaCCD1 in wheat. As a result, OsCCD1 can bind Ca(2+) in the in vitro EMSA and the fluorescence staining calcium-binding assays. Transient expression of green fluorescent protein (GFP)-tagged OsCCD1 in rice protoplasts showed that OsCCD1 was localized in the nucleus and cytosol of rice cells. OsCCD1 transcript levels were transiently induced by osmotic stress and salt stress through the calcium-mediated ABA signal. The rice seedlings of T-DNA mutant lines showed significantly less tolerance to osmotic and salt stresses than wild type plants (psalt stresses than wild type plants (psalt stresses. In sum, OsCCD1 gene probably affects the DREB2B and its downstream genes to positively regulate osmotic and salt tolerance in rice seedlings. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Thyroid hormone coordinately regulates Na sup + -K sup + -ATPase. alpha. - and. beta. -subunit mRNA levels in kidney

    Energy Technology Data Exchange (ETDEWEB)

    McDonough, A.A.; Brown, T.A.; Horowitz, B.; Chiu, R.; Schlotterbeck, J.; Bowen, J.; Schmitt, C.A. (Univ. of Southern California School of Medicine, Los Angeles (USA))

    1988-02-01

    Synthesis of the sodium pump, Na{sup +}-K{sup +}-ATPase, is regulated by thyroid hormone in responsive tissues. The purpose of this study was to determine if triiodothyronine (T{sub 3}) regulates the concentration of the mRNAs coding for the two enzyme subunits, {alpha} and {beta}, and the time course of the response. A single dose of T{sub 3} was administered to hypothyroid rats that were killed at various times after injection. In the kidney cortexes of the T{sub 3}-injected animals, as well as hypothyroid and euthyroid rats, {alpha}- and {beta}-mRNA concentrations were measured by dot blot using cDNAs corresponding to the two mRNAs; {alpha}-subunit abundance was measured by Western blot using antibodies to the enzyme, and Na{sup +}-K{sup +}-ATPase activity was measured enzymatically. {alpha}- and {beta}-mRNAs increased coordinately to 1.6-fold over hypothyroid levels by 12 h after T{sub 3}. The authors conclude that T{sub 3} regulates Na{sup +}-K{sup +}-ATPase synthesis and activity by coordinately increasing the mRNAs of both the {alpha}- and {beta}-subunits of the enzyme.

  12. FastMotif: spectral sequence motif discovery.

    Science.gov (United States)

    Colombo, Nicoló; Vlassis, Nikos

    2015-08-15

    Sequence discovery tools play a central role in several fields of computational biology. In the framework of Transcription Factor binding studies, most of the existing motif finding algorithms are computationally demanding, and they may not be able to support the increasingly large datasets produced by modern high-throughput sequencing technologies. We present FastMotif, a new motif discovery algorithm that is built on a recent machine learning technique referred to as Method of Moments. Based on spectral decompositions, our method is robust to model misspecifications and is not prone to locally optimal solutions. We obtain an algorithm that is extremely fast and designed for the analysis of big sequencing data. On HT-Selex data, FastMotif extracts motif profiles that match those computed by various state-of-the-art algorithms, but one order of magnitude faster. We provide a theoretical and numerical analysis of the algorithm's robustness and discuss its sensitivity with respect to the free parameters. The Matlab code of FastMotif is available from http://lcsb-portal.uni.lu/bioinformatics. vlassis@adobe.com Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  13. Helping Students Understand Gene Regulation with Online Tools: A Review of MEME and Melina II, Motif Discovery Tools for Active Learning in Biology

    Directory of Open Access Journals (Sweden)

    David Treves

    2012-08-01

    Full Text Available Review of: MEME and Melina II, which are two free and easy-to-use online motif discovery tools that can be employed to actively engage students in learning about gene regulatory elements.

  14. The adaptor protein alpha-syntrophin regulates adipocyte lipid droplet growth

    Energy Technology Data Exchange (ETDEWEB)

    Eisinger, Kristina; Rein-Fischboeck, Lisa; Pohl, Rebekka; Meier, Elisabeth M.; Krautbauer, Sabrina; Buechler, Christa, E-mail: christa.buechler@klinik.uni-regensburg.de

    2016-07-01

    The scaffold protein alpha-syntrophin (SNTA) regulates lipolysis indicating a role in lipid homeostasis. Adipocytes are the main lipid storage cells in the body, and here, the function of SNTA has been analyzed in 3T3-L1 cells. SNTA is expressed in preadipocytes and is induced early during adipogenesis. Knock-down of SNTA in preadipocytes increases their proliferation. Proteins which are induced during adipogenesis like adiponectin and caveolin-1, and the inflammatory cytokine IL-6 are at normal levels in the mature cells differentiated from preadipocytes with low SNTA. This suggests that SNTA does neither affect differentiation nor inflammation. Expression of proteins with a role in cholesterol and triglyceride homeostasis is unchanged. Consequently, basal and epinephrine induced lipolysis as well as insulin stimulated phosphorylation of Akt and ERK1/2 are normal. Importantly, adipocytes with low SNTA form smaller lipid droplets and store less triglycerides. Stearoyl-CoA reductase and MnSOD are reduced upon SNTA knock-down but do not contribute to lower lipid levels. Oleate uptake is even increased in cells with SNTA knock-down. In summary, current data show that SNTA is involved in the expansion of lipid droplets independent of adipogenesis. Enhanced preadipocyte proliferation and capacity to store surplus fatty acids may protect adipocytes with low SNTA from lipotoxicity in obesity. - Highlights: • Alpha-syntrophin (SNTA) is expressed in 3T3-L1adipocytes. • SNTA knock-down in preadipocytes has no effect on adipogenesis. • Mature 3T3-L1 differentiated from cells with low SNTA form small lipid droplets. • SCD1 and MnSOD are reduced in adipocytes with low SNTA. • SCD1 knock-down does not alter triglyceride levels.

  15. Thalamic involvement in the regulation of alpha EEG activity in psychiatric patients

    International Nuclear Information System (INIS)

    Shirazi, S.P.; Pakula, J.; Young, I.J.; Crayton, J.W.; Konopka, L.M.; Rybak, M.

    2002-01-01

    1. This correlation involved: right thalamus and FP2 (r=0.587, p=0.021); F8 (r=0.777, p=0.001) electrode positions (right frontal lobe). No significant correlations were identified in the analysis of Gr 2. Conclusions: The current study provides evidence of a relationship between decreased right thalamic activity as in Gr 1, and right anterior quadrant alpha power activity. Frontal alpha activity is associated with a clinical presentation of depressive symptoms, ADHD, or an amotivational syndrome. This data support a role for thalamic activity in the regulating of frontal lobe electrical activity. It is not clear why such a relationship does not exist in Gr 2

  16. Co-ordinate transcriptional regulation of dopamine synthesis genes by alpha-synuclein in human neuroblastoma cell lines.

    Science.gov (United States)

    Baptista, Melisa J; O'Farrell, Casey; Daya, Sneha; Ahmad, Rili; Miller, David W; Hardy, John; Farrer, Matthew J; Cookson, Mark R

    2003-05-01

    Abnormal accumulation of alpha-synuclein in Lewy bodies is a neuropathological hallmark of both sporadic and familial Parkinson's disease (PD). Although mutations in alpha-synuclein have been identified in autosomal dominant PD, the mechanism by which dopaminergic cell death occurs remains unknown. We investigated transcriptional changes in neuroblastoma cell lines transfected with either normal or mutant (A30P or A53T) alpha-synuclein using microarrays, with confirmation of selected genes by quantitative RT-PCR. Gene products whose expression was found to be significantly altered included members of diverse functional groups such as stress response, transcription regulators, apoptosis-inducing molecules, transcription factors and membrane-bound proteins. We also found evidence of altered expression of dihydropteridine reductase, which indirectly regulates the synthesis of dopamine. Because of the importance of dopamine in PD, we investigated the expression of all the known genes in dopamine synthesis. We found co-ordinated downregulation of mRNA for GTP cyclohydrolase, sepiapterin reductase (SR), tyrosine hydroxylase (TH) and aromatic acid decarboxylase by wild-type but not mutant alpha-synuclein. These were confirmed at the protein level for SR and TH. Reduced expression of the orphan nuclear receptor Nurr1 was also noted, suggesting that the co-ordinate regulation of dopamine synthesis is regulated through this transcription factor.

  17. Matrix metalloproteinase-12 gene regulation by a PPAR alpha agonist in human monocyte-derived macrophages

    International Nuclear Information System (INIS)

    Souissi, Imen Jguirim; Billiet, Ludivine; Cuaz-Perolin, Clarisse; Slimane, Mohamed-Naceur; Rouis, Mustapha

    2008-01-01

    MMP-12, a macrophage-specific matrix metalloproteinase with large substrate specificity, has been reported to be highly expressed in mice, rabbits and human atherosclerotic lesions. Increased MMP-12 from inflammatory macrophages is associated with several degenerative diseases such as atherosclerosis. In this manuscript, we show that IL-1β, a proinflammatory cytokine found in atherosclerotic plaques, increases both mRNA and protein levels of MMP-12 in human monocyte-derived macrophages (HMDM). Since peroxisome proliferator-activated receptors (PPARs), such as PPARα and PPARγ, are expressed in macrophages and because PPAR activation exerts an anti-inflammatory effect on vascular cells, we have investigated the effect of PPARα and γ isoforms on MMP-12 regulation in HMDM. Our results show that MMP-12 expression (mRNA and protein) is down regulated in IL-1β-treated macrophages only in the presence of a specific PPARα agonist, GW647, in a dose-dependent manner. In contrast, this inhibitory effect was abolished in IL-1β-stimulated peritoneal macrophages isolated from PPARα -/- mice and treated with the PPARα agonist, GW647. Moreover, reporter gene transfection experiments using different MMP-12 promoter constructs showed a reduction of the promoter activities by ∼ 50% in IL-1β-stimulated PPARα-pre-treated cells. However, MMP-12 promoter analysis did not reveal the presence of a PPRE response element. The IL-1β effect is known to be mediated through the AP-1 binding site. Mutation of the AP-1 site, located at - 81 in the MMP-12 promoter region relative to the transcription start site, followed by transfection analysis, gel shift and ChIP experiments revealed that the inhibitory effect was the consequence of the protein-protein interaction between GW 647-activated PPARα and c-Fos or c-Jun transcription factors, leading to inhibition of their binding to the AP-1 motif. These studies suggest that PPARα agonists may be used therapeutically, not only for lipid

  18. CREM alpha regulates IL-21 expression by direct and indirect transcriptional mechanisms

    Directory of Open Access Journals (Sweden)

    Kim Ohl

    2016-12-01

    Full Text Available The cAMP responsive element modulator alpha (CREMα plays a role in autoimmunity and in particular in systemic lupus erythematosus. CREMα negatively regulates IL-2 transcription and activates IL-17 expression by direct transcriptional mechanisms. To understand the role of CREM in autoimmunity we recently generated a mouse with a transgenic overexpression of CREMα selectively in T cells. This mouse is characterized by enhanced IL-17 and IL-21 expression. We herein dissect the transcriptional mechanisms of enhanced IL-21 transcription in these mice. T cells of CREMα transgenic mice display an enhanced binding of CREMα to the CD3 ζ chain promoter resulting in decreased CD3 ζ chain expression. This is accompanied by a decreased excitation threshold and enhanced Ca2+ influx resulting in Il-21 promoter activation upon T cell stimulation. Furthermore, CREMα directly binds to a CRE half-site within the Il-21 promoter which also results in enhanced promoter activity shown by promoter reporter assays. IL-21 transcription is critical for IL-17 generation in these mice, since IL-21 receptor blockade downregulates IL-17 transcription to wildtype levels. Finally, this is of functional relevance since CREMα transgenic mice display enhanced disease activity in dextrane sodium sulfate induced colitis accompanied by higher local IL-21 expression.Thus we describe 2 novel mechanisms of CREMα dependent IL-21 transcription. Since T cells of SLE patients are characterized by enhanced IL-21 transcription this might also be of functional relevance in humans.

  19. Brain alpha-amylase - a novel energy regulator important in Alzheimer disease?

    Science.gov (United States)

    Byman, Elin; Schultz, Nina; Fex, Malin; Wennström, Malin

    2018-02-27

    Reduced glucose metabolism and formation of polyglucosan bodies (PGB) are, beside amyloid beta plaques and neurofibrillary tangles, well-known pathological findings associated with Alzheimer's disease (AD). Since both glucose availability and PGB are regulated by enzymatic degradation of glycogen, we hypothesize that dysfunctional glycogen degradation is a critical event in AD progression. We therefore investigated whether alpha (α)-amylase, an enzyme known to efficiently degrade polysaccharides in the gastrointestinal tract, is expressed in the hippocampal CA1/subiculum and if the expression is altered in AD patients. Using immunohistochemical staining techniques, we show the presence of the α-amylase isotypes AMY1A and AMY2A in neuronal dendritic spines, pericytes and astrocytes. Moreover, AD patients showed reduced gene expression of α-amylase, but conversely increased protein levels of α-amylase as well as increased activity of the enzyme compared to non-demented controls. Lastly, we observed increased, albeit not significant, load of periodic acid-Schiff positive PGB in the brain of AD patients, which correlated with increased α-amylase activity. These findings show that α-amylase is expressed and active in the human brain, and suggest the enzyme to be affected, alternatively play a role, in the neurodegenerative Alzheimer's disease pathology. This article is protected by copyright. All rights reserved. © 2018 International Society of Neuropathology.

  20. Subclassification of release-regulating alpha 2-autoreceptors in human brain cortex.

    Science.gov (United States)

    Raiteri, M.; Bonanno, G.; Maura, G.; Pende, M.; Andrioli, G. C.; Ruelle, A.

    1992-01-01

    1. Release-regulating alpha 2-autoreceptors in human brain were characterized pharmacologically in cortical slices from patients undergoing neurosurgery to remove subcortical tumours; the slices were prelabelled with [3H]-noradrenaline ([3H]-NA) and stimulated electrically (3 Hz, 2 ms, 24 mA) under superfusion conditions. 2. The stimulus-evoked tritium overflow was almost totally Ca(2+)-dependent and tetrodotoxin-sensitive. 3. Clonidine and oxymetazoline 0.01 to 1 microM inhibited in a concentration-dependent manner the evoked overflow of tritium. The two drugs were equipotent (EC50 = 0.03 microM) and their maximal effect was approx. 45%. Phenylephrine and methoxamine, up to 1 microM, did not affect tritium overflow. 4. Yohimbine (0.01-0.1 microM) shifted the concentration-response curve of clonidine to the right. The calculated pA2 value was 8.29. 5. Prazosin and 2-[2-[4-(o-methoxyphenyl)piperazine-1-yl]ethyl]-4,4- dimethyl-1,3(2H,4H)-isoquinolinedione (AR-C 239), tested at 0.3 microM, did not modify the concentration-response curve of clonidine. 6. The effect of clonidine was antagonized by (+)-mianserin (pA2 = 7.74), but not by up to 0.3 microM of the (-)-enantiomer. The concentration-response curve of clonidine was shifted to the right by the novel alpha 2-adrenoceptor antagonist, 5-chloro-4-(1-butyl-1,2,5,6-tetrahydropyridin-3-yl)-thiazole-2-ami ne (Z)-2-butenedioate (1:1) salt (ORG 20350) (pA2 = 7.55). 7. Yohimbine, (+)-mianserin and ORG 20350, but not prazosin and (-)-mianserin, increased the electrically-evoked tritium overflow, suggesting that autoreceptors may be tonically activated by endogenous NA. 8. Desipramine (1 microM) increased evoked tritium overflow from human cortex slices.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1361400

  1. Regulation of miR-200c by nuclear receptors PPAR{alpha}, LRH-1 and SHP

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuxia; Yang, Zhihong [Department of Medicine, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84132 (United States); Department of Oncological Science, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84132 (United States); Whitby, Richard [Department of Chemistry, University of Southampton, Southampton, Hants SO17 1BJ (United Kingdom); Wang, Li, E-mail: l.wang@hsc.utah.edu [Department of Medicine, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84132 (United States); Department of Oncological Science, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84132 (United States)

    2011-12-09

    Highlights: Black-Right-Pointing-Pointer Knockdown of PPAR{alpha} and LRH-1 abolishes miR-200c inhibition of HCC cell migration. Black-Right-Pointing-Pointer SHP represses miR-200c expression via inhibition of the activity of PPAR{alpha} and LRH-1. Black-Right-Pointing-Pointer RJW100 exhibits strong ability to downregulate ZEB1 and ZEB2 proteins. -- Abstract: We investigated regulation of miR-200c expression by nuclear receptors. Ectopic expression of miR-200c inhibited MHCC97H cell migration, which was abrogated by the synergistic effects of PPAR{alpha} and LRH-1 siRNAs. The expression of miR-200c was decreased by PPAR{alpha}/LRH-1 siRNAs and increased by SHP siRNAs, and overexpression of the receptors reversed the effects of their respective siRNAs. SHP siRNAs also drastically enhanced the ability of the LRH-1 agonist RJW100 to induce miR-200c and downregulate ZEB1 and ZEB2 proteins. Co-expression of PPAR{alpha} and LRH-1 moderately transactivated the miR-200c promoter, which was repressed by SHP co-expression. RJW100 caused strong activation of the miR-200c promoter. This is the first report to demonstrate that miR-200c expression is controlled by nuclear receptors.

  2. Autocrine regulation of cell proliferation by estrogen receptor-alpha in estrogen receptor-alpha-positive breast cancer cell lines

    Directory of Open Access Journals (Sweden)

    Pan Zhongzong

    2009-01-01

    Full Text Available Abstract Background Estrogen receptor-α (ERα is essential for mammary gland development and is a major oncogene in breast cancer. Since ERα is not colocalized with the cell proliferation marker Ki-67 in the normal mammary glands and the majority of primary breast tumors, it is generally believed that paracrine regulation is involved in ERα mediated cell proliferation. In the paracrine model, ERα-positive cells don't proliferate but will release some paracrine growth factors to stimulate the neighboring cells to proliferate. In a subpopulation of cancer cells in some primary breast tumors, however, ERα does colocalize with the cell proliferation marker Ki-67, suggesting an autocrine regulation by ERα in some primary breast tumors. Methods Colocalization of ERα with Ki-67 in ERα-positive breast cancer cell lines (MCF-7, T47D, and ZR75-1 was evaluated by immunofluorescent staining. Cell cycle phase dependent expression of ERα was determined by co-immunofluorescent staining of ERα and the major cyclins (D, E, A, B, and by flow cytometry analysis of ERαhigh cells. To further confirm the autocrine action of ERα, MCF-7 cells were growth arrested by ICI182780 treatment, followed by treatment with EGFR inhibitor, before estrogen stimulation and analyses for colocalization of Ki-67 and ERα and cell cycle progression. Results Colocalization of ERα with Ki-67 was present in all three ERα-positive breast cancer cell lines. Unlike that in the normal mammary glands and the majority of primary breast tumors, ERα is highly expressed throughout the cell cycle in MCF-7 cells. Without E2 stimulation, MCF-7 cells released from ICI182780 treatment remain at G1 phase. E2 stimulation of ICI182780 treated cells, however, promotes the expression and colocalization of ERα and Ki-67 as well as the cell cycle progressing through the S and G2/M phases. Inhibition of EGFR signaling does not inhibit the autocrine action of ERα. Conclusion Our data indicate

  3. Phosphoinositide binding regulates alpha-actinin CH2 domain structure: analysis by hydrogen/deuterium exchange mass spectrometry.

    Science.gov (United States)

    Full, Stephen J; Deinzer, Max L; Ho, P Shing; Greenwood, Jeffrey A

    2007-12-01

    alpha-Actinin is an actin bundling protein that regulates cell adhesion by directly linking actin filaments to integrin adhesion receptors. Phosphatidylinositol (4,5)-diphosphate (PtdIns (4,5)-P(2)) and phosphatidylinositol (3,4,5)-triphosphate (PtdIns (3,4,5)-P(3)) bind to the calponin homology 2 domain of alpha-actinin, regulating its interactions with actin filaments and integrin receptors. In this study, we examine the mechanism by which phosphoinositide binding regulates alpha-actinin function using mass spectrometry to monitor hydrogen-deuterium (H/D) exchange within the calponin homology 2 domain. The overall level of H/D exchange for the entire protein showed that PtdIns (3,4,5)-P(3) binding alters the structure of the calponin homology 2 domain increasing deuterium incorporation, whereas PtdIns (4,5)-P(2) induces changes in the structure decreasing deuterium incorporation. Analysis of peptic fragments from the calponin homology 2 domain showed decreased local H/D exchange within the loop region preceding helix F with both phosphoinositides. However, the binding of PtdIns (3,4,5)-P(3) also induced increased exchange within helix E. This suggests that the phosphate groups on the fourth and fifth position of the inositol head group of the phosphoinositides constrict the calponin homology 2 domain, thereby altering the orientation of actin binding sequence 3 and decreasing the affinity of alpha-actinin for filamentous actin. In contrast, the phosphate group on the third position of the inositol head group of PtdIns (3,4,5)-P(3) perturbs the calponin homology 2 domain, altering the interaction between the N and C terminus of the full-length alpha-actinin antiparallel homodimer, thereby disrupting bundling activity and interaction with integrin receptors.

  4. The conserved dileucine- and tyrosine-based motifs in MLV and MPMV envelope glycoproteins are both important to regulate a common Env intracellular trafficking

    Directory of Open Access Journals (Sweden)

    Lopez-Vergès Sandra

    2006-09-01

    Full Text Available Abstract Background Retrovirus particles emerge from the assembly of two structural protein components, Gag that is translated as a soluble protein in the cytoplasm of the host cells, and Env, a type I transmembrane protein. Because both components are translated in different intracellular compartments, elucidating the mechanisms of retrovirus assembly thus requires the study of their intracellular trafficking. Results We used a CD25 (Tac chimera-based approach to study the trafficking of Moloney murine leukemia virus and Mason-Pfizer monkey virus Env proteins. We found that the cytoplasmic tails (CTs of both Env conserved two major signals that control a complex intracellular trafficking. A dileucine-based motif controls the sorting of the chimeras from the trans-Golgi network (TGN toward endosomal compartments. Env proteins then follow a retrograde transport to the TGN due to the action of a tyrosine-based motif. Mutation of either motif induces the mis-localization of the chimeric proteins and both motifs are found to mediate interactions of the viral CTs with clathrin adaptors. Conclusion This data reveals the unexpected complexity of the intracellular trafficking of retrovirus Env proteins that cycle between the TGN and endosomes. Given that Gag proteins hijack endosomal host proteins, our work suggests that the endosomal pathway may be used by retroviruses to ensure proper encountering of viral structural Gag and Env proteins in cells, an essential step of virus assembly.

  5. Glial and Neuronal Protein Tyrosine Phosphatase Alpha (PTPα) Regulate Oligodendrocyte Differentiation and Myelination.

    Science.gov (United States)

    Shih, Yuda; Ly, Philip T T; Wang, Jing; Pallen, Catherine J

    2017-08-01

    CNS myelination defects occur in mice deficient in receptor-like protein tyrosine phosphatase alpha (PTPα). Here, we investigated the role of PTPα in oligodendrocyte differentiation and myelination using cells and tissues from wild-type (WT) and PTPα knockout (KO) mice. PTPα promoted the timely differentiation of neural stem cell-derived oligodendrocyte progenitor cells (OPCs). Compared to WT OPCs, KO OPC cultures had more NG2+ progenitors, fewer myelin basic protein (MBP)+ oligodendrocytes, and reduced morphological complexity. In longer co-cultures with WT neurons, more KO than WT OPCs remained NG2+ and while equivalent MBP+ populations of WT and KO cells formed, the reduced area occupied by the MBP+ KO cells suggested that their morphological maturation was impeded. These defects were associated with reduced myelin formation in KO OPC/WT neuron co-cultures. Myelin formation was also impaired when WT OPCs were co-cultured with KO neurons, revealing a novel role for neuronal PTPα in myelination. Canonical Wnt/β-catenin signaling is an important regulator of OPC differentiation and myelination. Wnt signaling activity was not dysregulated in OPCs lacking PTPα, but suppression of Wnt signaling by the small molecule XAV939 remediated defects in KO oligodendrocyte differentiation and enhanced myelin formation by KO oligodendrocytes. However, the myelin segments that formed were significantly shorter than those produced by WT oligodendrocytes, raising the possibility of a role for glial PTPα in myelin extension distinct from its pro-differentiating actions. Altogether, this study reveals PTPα as a molecular coordinator of oligodendroglial and neuronal signals that controls multiple aspects of oligodendrocyte development and myelination.

  6. Developmental regulation of {beta}-hexosaminidase {alpha}- and {beta}-subunit gene expression in the rat reproductive system

    Energy Technology Data Exchange (ETDEWEB)

    Trasler, J.M.; Wakamatsu, N.; Gravel, R.A.; Benoit, G. [McGill-Montreal Chilrden`s Hospital Research Institute, Quebec (Canada)

    1994-09-01

    {beta}-Hexosaminidase is an essential lysosomal enzyme whose absence in man results in a group of disorders, the G{sub M2} gangliosidoses. Enzyme activity for {beta}-hexosaminidase is many fold higher in the epididymis than in other tissues, is present in sperm and is postulated to be required for mammalian fertilization. To better understand how {beta}-hexosaminidase is regulated in the reproductive system, we quantitated the mRNA expression of the {alpha}- and {beta}-subunits (Hex {alpha} and Hex {beta}) of the enzyme in the developing rat testis and epididymis. Hex {alpha} mRNA was differentially expressed and abundant in adult rat testis and epididymis, 13- and 2-fold brain levels, respectively. In contrast, Hex {beta} mRNA levels in the testis and epididymis were .3- and 5-fold brain levels. Within the epididymis both Hex {alpha} and Hex {beta} mRNA concentrations were highest in the corpus, 1.5-fold and 9-fold initial segment values, respectively. During testis development from 7-91 days of age, testis levels of Hex {alpha} mRNA increased 10-fold and coincided with the appearance of spermatocytes and spermatids in the epithelium. In isolated male germ cells, Hex {alpha} expression was most abundant in haploid round spermatids. Hex {alpha} mRNA was undetectable after hypophysectomy and returned to normal after testosterone administration and the return of advanced germ cells to the testis. Hex {beta} mRNA was expressed at constant low levels throughout testis development. In the caput-corpus and cauda regions of the epididymis Hex {alpha} mRNA levels increased 2-fold between 14 and 91 days; during the same developmental period epididymal Hex {beta} mRNA levels increased dramatically, by 10-20 fold. In summary, Hex {alpha} and Hex {beta} mRNAs are differentially and developmentally expressed at high levels in the rat testis and epididymis and augur for an important role for {beta}-hexosaminidase in normal male reproductive function.

  7. Reciprocal signals between microglia and neurons regulate alpha-synuclein secretion by exophagy through a neuronal cJU-N-Nterminal kinase-signaling axis

    DEFF Research Database (Denmark)

    Christensen, Dan Ploug; Ejlerskov, Patrick; Rasmussen, Izabela

    2016-01-01

    Background: Secretion of proteopathic alpha-synuclein (alpha-SNC) species from neurons is a suspected driving force in the propagation of Parkinson's disease (PD). We have previously implicated exophagy, the exocytosis of autophagosomes, as a dominant mechanism of alpha-SNC secretion...... in monoculture to TNF alpha, a classical pro-inflammatory mediator of activated microglia, is sufficient to increase alpha-SNC secretion in a mechanism dependent on JNK2 or JNK3. In continuation hereof, we show that also IFN beta and TGF beta increase the release of alpha-SNC from PC12 neurons. Conclusions: We...... implicate stress kinases of the JNK family in the regulation of exophagy and release of alpha-SNC following endogenous or exogenous stimulation. In a wider scope, our results imply that microglia not only inflict bystander damage to neurons in late phases of inflammatory brain disease but may also be active...

  8. Effect of decoyinine on the regulation of alpha-amylase synthesis in Bacillus subtilis.

    OpenAIRE

    Nicholson, W L; Chambliss, G H

    1987-01-01

    Decoyinine, an inhibitor of GMP synthetase, allows sporulation in Bacillus subtilis to initiate and proceed under otherwise catabolite-repressing conditions. The effect of decoyinine on alpha-amylase synthesis in B. subtilis, an event which exhibits regulatory features resembling sporulation initiation, was examined. Decoyinine did not overcome catabolite repression of alpha-amylase synthesis in a wild-type strain of B. subtilis but did cause premature and enhanced synthesis in a mutant strai...

  9. Differential regulation of proteoglycan 4 metabolism in cartilage by IL-1alpha, IGF-I, and TGF-beta1.

    Science.gov (United States)

    Schmidt, T A; Gastelum, N S; Han, E H; Nugent-Derfus, G E; Schumacher, B L; Sah, R L

    2008-01-01

    To determine (1) if interleukin-1 alpha (IL-1alpha), insulin like growth factor I (IGF-I), and transforming growth factor-beta 1 (TGF-beta1) regulate proteoglycan 4 (PRG4) metabolism in articular cartilage, in terms of chondrocytes expressing PRG4 and PRG4 bound at the articular surface, and (2) if these features of cartilage PRG4 metabolism correlate with its secretion. Articular cartilage explants were harvested and cultured for 6 days with or without 10% fetal bovine serum (FBS), alone, or with the addition of 10ng/ml IL-1alpha, 300ng/ml IGF-I, or 10ng/ml TGF-beta1. PRG4 expression by chondrocytes in the cartilage disks was assessed by immunohistochemistry (IHC). PRG4 bound to the articular surface of disks was quantified by extraction and enzyme-linked immunosorbent assay (ELISA). PRG4 secreted into culture medium was quantified by ELISA and characterized by Western Blot. PRG4 expression by chondrocytes near the articular surface was markedly decreased by IL-1alpha, stimulated by TGF-beta1, and not affected by IGF-I. The level of PRG4 accumulation in the culture medium was correlated with the number of chondrocytes expressing PRG4. The amount of PRG4 bound at the articular surface was modulated by incubation in medium including FBS, but did not correlate with levels of PRG4 secretion. Cartilage secretion of PRG4 is highly regulated by certain cytokines and growth factors, in part through alteration of the number of PRG4-secreting chondrocytes near the articular surface. The biochemical milieu may regulate the PRG4 content of synovial fluid during cartilage injury or repair.

  10. Bayesian centroid estimation for motif discovery.

    Science.gov (United States)

    Carvalho, Luis

    2013-01-01

    Biological sequences may contain patterns that signal important biomolecular functions; a classical example is regulation of gene expression by transcription factors that bind to specific patterns in genomic promoter regions. In motif discovery we are given a set of sequences that share a common motif and aim to identify not only the motif composition, but also the binding sites in each sequence of the set. We propose a new centroid estimator that arises from a refined and meaningful loss function for binding site inference. We discuss the main advantages of centroid estimation for motif discovery, including computational convenience, and how its principled derivation offers further insights about the posterior distribution of binding site configurations. We also illustrate, using simulated and real datasets, that the centroid estimator can differ from the traditional maximum a posteriori or maximum likelihood estimators.

  11. Bayesian centroid estimation for motif discovery.

    Directory of Open Access Journals (Sweden)

    Luis Carvalho

    Full Text Available Biological sequences may contain patterns that signal important biomolecular functions; a classical example is regulation of gene expression by transcription factors that bind to specific patterns in genomic promoter regions. In motif discovery we are given a set of sequences that share a common motif and aim to identify not only the motif composition, but also the binding sites in each sequence of the set. We propose a new centroid estimator that arises from a refined and meaningful loss function for binding site inference. We discuss the main advantages of centroid estimation for motif discovery, including computational convenience, and how its principled derivation offers further insights about the posterior distribution of binding site configurations. We also illustrate, using simulated and real datasets, that the centroid estimator can differ from the traditional maximum a posteriori or maximum likelihood estimators.

  12. Redundant ERF-VII Transcription Factors Bind to an Evolutionarily Conserved cis-Motif to Regulate Hypoxia-Responsive Gene Expression in Arabidopsis

    Science.gov (United States)

    Gasch, Philipp; Fundinger, Moritz; Müller, Jana T.; Lee, Travis; Mustroph, Angelika

    2016-01-01

    The response of Arabidopsis thaliana to low-oxygen stress (hypoxia), such as during shoot submergence or root waterlogging, includes increasing the levels of ∼50 hypoxia-responsive gene transcripts, many of which encode enzymes associated with anaerobic metabolism. Upregulation of over half of these mRNAs involves stabilization of five group VII ethylene response factor (ERF-VII) transcription factors, which are routinely degraded via the N-end rule pathway of proteolysis in an oxygen- and nitric oxide-dependent manner. Despite their importance, neither the quantitative contribution of individual ERF-VIIs nor the cis-regulatory elements they govern are well understood. Here, using single- and double-null mutants, the constitutively synthesized ERF-VIIs RELATED TO APETALA2.2 (RAP2.2) and RAP2.12 are shown to act redundantly as principle activators of hypoxia-responsive genes; constitutively expressed RAP2.3 contributes to this redundancy, whereas the hypoxia-induced HYPOXIA RESPONSIVE ERF1 (HRE1) and HRE2 play minor roles. An evolutionarily conserved 12-bp cis-regulatory motif that binds to and is sufficient for activation by RAP2.2 and RAP2.12 is identified through a comparative phylogenetic motif search, promoter dissection, yeast one-hybrid assays, and chromatin immunopurification. This motif, designated the hypoxia-responsive promoter element, is enriched in promoters of hypoxia-responsive genes in multiple species. PMID:26668304

  13. Does a cdc2 kinase-like recognition motif on the core protein of hepadnaviruses regulate assembly and disintegration of capsids?

    Science.gov (United States)

    Barrasa, M I; Guo, J T; Saputelli, J; Mason, W S; Seeger, C

    2001-02-01

    Hepadnaviruses are enveloped viruses, each with a DNA genome packaged in an icosahedral nucleocapsid, which is the site of viral DNA synthesis. In the presence of envelope proteins, DNA-containing nucleocapsids are assembled into virions and secreted, but in the absence of these proteins, nucleocapsids deliver viral DNA into the cell nucleus. Presumably, this step is identical to the delivery of viral DNA during the initiation of an infection. Unfortunately, the mechanisms triggering the disintegration of subviral core particles and delivery of viral DNA into the nucleus are not yet understood. We now report the identification of a sequence motif resembling a serine- or threonine-proline kinase recognition site in the core protein at a location that is required for the assembly of core polypeptides into capsids. Using duck hepatitis B virus, we demonstrated that mutations at this sequence motif can have profound consequences for RNA packaging, DNA replication, and core protein stability. Furthermore, we found a mutant with a conditional phenotype that depended on the cell type used for virus replication. Our results support the hypothesis predicting that this motif plays a role in assembly and disassembly of viral capsids.

  14. Large-scale discovery of promoter motifs in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Thomas A Down

    2007-01-01

    Full Text Available A key step in understanding gene regulation is to identify the repertoire of transcription factor binding motifs (TFBMs that form the building blocks of promoters and other regulatory elements. Identifying these experimentally is very laborious, and the number of TFBMs discovered remains relatively small, especially when compared with the hundreds of transcription factor genes predicted in metazoan genomes. We have used a recently developed statistical motif discovery approach, NestedMICA, to detect candidate TFBMs from a large set of Drosophila melanogaster promoter regions. Of the 120 motifs inferred in our initial analysis, 25 were statistically significant matches to previously reported motifs, while 87 appeared to be novel. Analysis of sequence conservation and motif positioning suggested that the great majority of these discovered motifs are predictive of functional elements in the genome. Many motifs showed associations with specific patterns of gene expression in the D. melanogaster embryo, and we were able to obtain confident annotation of expression patterns for 25 of our motifs, including eight of the novel motifs. The motifs are available through Tiffin, a new database of DNA sequence motifs. We have discovered many new motifs that are overrepresented in D. melanogaster promoter regions, and offer several independent lines of evidence that these are novel TFBMs. Our motif dictionary provides a solid foundation for further investigation of regulatory elements in Drosophila, and demonstrates techniques that should be applicable in other species. We suggest that further improvements in computational motif discovery should narrow the gap between the set of known motifs and the total number of transcription factors in metazoan genomes.

  15. Effect of plant growth regulators on production of alpha-linolenic ...

    Indian Academy of Sciences (India)

    Sujana Kokkiligadda

    2017-10-05

    Oct 5, 2017 ... acids that is used in treating nervous system disorders, rheumatoid arthritis, renal problems and diabetes [1, 2]. It is ... fatty acid–alpha-linolenic acid and grows fast, was con- sidered to study the effect of plant growth .... softener agents, dispersing agents and food packaging. It is also used to manufacture ...

  16. Nephrin phosphorylation regulates podocyte adhesion through the PINCH-1-ILK-alpha-parvin complex

    NARCIS (Netherlands)

    Zha, Dongqing; Chen, Cheng; Liang, Wei; Chen, Xinghua; Ma, Tean; Yang, Hongxia; van Goor, Harry; Ding, Guohua

    2013-01-01

    Nephrin, a structural molecule, is also a signaling molecule after phosphorylation. Inhibition of nephrin phosphorylation is correlated with podocyte injury. The PINCH-1-ILK-alpha-parvin (PIP) complex plays a crucial role in cell adhesion and cytoskeleton formation. We hypothesized that nephrin

  17. PANP is a novel O-glycosylated PILR{alpha} ligand expressed in neural tissues

    Energy Technology Data Exchange (ETDEWEB)

    Kogure, Amane [Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871 (Japan); Laboratory of Immunochemistry, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871 (Japan); Shiratori, Ikuo [Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871 (Japan); Wang, Jing [Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871 (Japan); Laboratory of Immunochemistry, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871 (Japan); Lanier, Lewis L. [Department of Microbiology and Immunology and the Cancer Research Institute, University of California San Francisco, San Francisco, CA 94143 (United States); Arase, Hisashi, E-mail: arase@biken.osaka-u.ac.jp [Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871 (Japan); Laboratory of Immunochemistry, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871 (Japan); JST CREST, Saitama 332-0012 (Japan)

    2011-02-18

    Research highlights: {yields} A Novel molecule, PANP, was identified to be a PILR{alpha} ligand. {yields} Sialylated O-glycan structures on PANP were required for PILR{alpha} recognition. {yields} Transcription of PANP was mainly observed in neural tissues. {yields} PANP seems to be involved in immune regulation as a ligand for PILR{alpha}. -- Abstract: PILR{alpha} is an immune inhibitory receptor possessing an immunoreceptor tyrosine-based inhibitory motif (ITIM) in its cytoplasmic domain enabling it to deliver inhibitory signals. Binding of PILR{alpha} to its ligand CD99 is involved in immune regulation; however, whether there are other PILR{alpha} ligands in addition to CD99 is not known. Here, we report that a novel molecule, PILR-associating neural protein (PANP), acts as an additional ligand for PILR{alpha}. Transcription of PANP was mainly observed in neural tissues. PILR{alpha}-Ig fusion protein bound cells transfected with PANP and the transfectants stimulated PILR{alpha} reporter cells. Specific O-glycan structures on PANP were found to be required for PILR recognition of this ligand. These results suggest that PANP is involved in immune regulation as a ligand of the PILR{alpha}.

  18. Functional characterization of variations on regulatory motifs.

    Directory of Open Access Journals (Sweden)

    Michal Lapidot

    2008-03-01

    Full Text Available Transcription factors (TFs regulate gene expression through specific interactions with short promoter elements. The same regulatory protein may recognize a variety of related sequences. Moreover, once they are detected it is hard to predict whether highly similar sequence motifs will be recognized by the same TF and regulate similar gene expression patterns, or serve as binding sites for distinct regulatory factors. We developed computational measures to assess the functional implications of variations on regulatory motifs and to compare the functions of related sites. We have developed computational means for estimating the functional outcome of substituting a single position within a binding site and applied them to a collection of putative regulatory motifs. We predict the effects of nucleotide variations within motifs on gene expression patterns. In cases where such predictions could be compared to suitable published experimental evidence, we found very good agreement. We further accumulated statistics from multiple substitutions across various binding sites in an attempt to deduce general properties that characterize nucleotide substitutions that are more likely to alter expression. We found that substitutions involving Adenine are more likely to retain the expression pattern and that substitutions involving Guanine are more likely to alter expression compared to the rest of the substitutions. Our results should facilitate the prediction of the expression outcomes of binding site variations. One typical important implication is expected to be the ability to predict the phenotypic effect of variation in regulatory motifs in promoters.

  19. [Personal motif in art].

    Science.gov (United States)

    Gerevich, József

    2015-01-01

    One of the basic questions of the art psychology is whether a personal motif is to be found behind works of art and if so, how openly or indirectly it appears in the work itself. Analysis of examples and documents from the fine arts and literature allow us to conclude that the personal motif that can be identified by the viewer through symbols, at times easily at others with more difficulty, gives an emotional plus to the artistic product. The personal motif may be found in traumatic experiences, in communication to the model or with other emotionally important persons (mourning, disappointment, revenge, hatred, rivalry, revolt etc.), in self-searching, or self-analysis. The emotions are expressed in artistic activity either directly or indirectly. The intention nourished by the artist's identity (Kunstwollen) may stand in the way of spontaneous self-expression, channelling it into hidden paths. Under the influence of certain circumstances, the artist may arouse in the viewer, consciously or unconsciously, an illusionary, misleading image of himself. An examination of the personal motif is one of the important research areas of art therapy.

  20. Artin t-Motifs

    OpenAIRE

    Taelman, Lenny

    2008-01-01

    We show that analytically trivial t-motifs satisfy a Tannakian duality, without restrictions on the base field, save for that it be of generic characteristic. We show that the group of components of the t-motivic Galois group coincides with the absolute Galois group of the base field.

  1. Synergistic effect of interleukin 1 alpha on nontypeable Haemophilus influenzae-induced up-regulation of human beta-defensin 2 in middle ear epithelial cells

    Directory of Open Access Journals (Sweden)

    Park Raekil

    2006-01-01

    Full Text Available Abstract Background We recently showed that beta-defensins have antimicrobial activity against nontypeable Haemophilus influenzae (NTHi and that interleukin 1 alpha (IL-1 alpha up-regulates the transcription of beta-defensin 2 (DEFB4 according to new nomenclature of the Human Genome Organization in human middle ear epithelial cells via a Src-dependent Raf-MEK1/2-ERK signaling pathway. Based on these observations, we investigated if human middle ear epithelial cells could release IL-1 alpha upon exposure to a lysate of NTHi and if this cytokine could have a synergistic effect on beta-defensin 2 up-regulation by the bacterial components. Methods The studies described herein were carried out using epithelial cell lines as well as a murine model of acute otitis media (OM. Human cytokine macroarray analysis was performed to detect the released cytokines in response to NTHi exposure. Real time quantitative PCR was done to compare the induction of IL-1 alpha or beta-defensin 2 mRNAs and to identify the signaling pathways involved. Direct activation of the beta-defensin 2 promoter was monitored using a beta-defensin 2 promoter-Luciferase construct. An IL-1 alpha blocking antibody was used to demonstrate the direct involvement of this cytokine on DEFB4 induction. Results Middle ear epithelial cells released IL-1 alpha when stimulated by NTHi components and this cytokine acted in an autocrine/paracrine synergistic manner with NTHi to up-regulate beta-defensin 2. This synergistic effect of IL-1 alpha on NTHi-induced beta-defensin 2 up-regulation appeared to be mediated by the p38 MAP kinase pathway. Conclusion We demonstrate that IL-1 alpha is secreted by middle ear epithelial cells upon exposure to NTHi components and that it can synergistically act with certain of these molecules to up-regulate beta-defensin 2 via the p38 MAP kinase pathway.

  2. Association of apoptosis with the inhibition of extracellular signal-regulated protein kinase activity in the tumor necrosis factor alpha-resistant ovarian carcinoma cell line UCI 101.

    Science.gov (United States)

    Yazlovitskaya, E M; Pelling, J C; Persons, D L

    1999-05-01

    Tumor necrosis factor-alpha (TNF alpha) can function as both an autocrine and a paracrine growth factor and may therefore play a role in ovarian tumor progression. TNF alpha initiates multiple cellular responses, many of which are mediated through the mitogen-activated protein kinase pathways, which transduce signals from the TNF alpha receptors through the cytoplasm to the nucleus, resulting in regulation of gene expression. We examined the role of c-jun N-terminal kinase 1 (JNK1) and extracellular signal-regulated protein kinase (ERK) 1 and 2 in the cellular growth response to TNF alpha in the ovarian carcinoma cell line UCI 101. JNK1 activity was increased to a maximum level ninefold above the basal level after 10-20 min of treatment with 10 ng/mL TNF alpha. A maximum threefold induction of ERK1/2 activity was observed after 1 min of treatment. At concentrations up to 100 ng/mL, TNF alpha had neither a stimulatory nor an inhibitory effect on growth of UCI 101 cells. However, inhibition of TNF alpha-induced ERK1/2 activity by the MAP/ERK kinase 1 inhibitor PD 98059 resulted in 60% inhibition of cell growth in TNF alpha-treated UCI 101 cells. This decrease in cell growth was accompanied by apoptosis, as demonstrated by the presence of a 180-bp DNA ladder. Thus, the inhibition of TNF alpha-induced ERK1/2 activity was associated with induction of apoptosis in the TNF alpha-resistant cell line UCI 101. Inhibition of TNF alpha-induced ERK1/2 activity was accompanied by a subsequent transient increase in TNF alpha-induced JNK1 activity. The significance of this increase with respect to apoptosis induction remains to be determined. These findings demonstrated that ERK1/2 activity can modulate cellular sensitivity to TNF alpha and suggested that the balance between the levels of ERK1/2 and JNK1 activation may be critical in the cellular growth response to TNF alpha.

  3. Orientation of the calcium channel beta relative to the alpha(12.2 subunit is critical for its regulation of channel activity.

    Directory of Open Access Journals (Sweden)

    Iuliia Vitko

    Full Text Available BACKGROUND: The Ca(vbeta subunits of high voltage-activated Ca(2+ channels control the trafficking and biophysical properties of the alpha(1 subunit. The Ca(vbeta-alpha(1 interaction site has been mapped by crystallographic studies. Nevertheless, how this interaction leads to channel regulation has not been determined. One hypothesis is that betas regulate channel gating by modulating movements of IS6. A key requirement for this direct-coupling model is that the linker connecting IS6 to the alpha-interaction domain (AID be a rigid structure. METHODOLOGY/PRINCIPAL FINDINGS: The present study tests this hypothesis by altering the flexibility and orientation of this region in alpha(12.2, then testing for Ca(vbeta regulation using whole cell patch clamp electrophysiology. Flexibility was induced by replacement of the middle six amino acids of the IS6-AID linker with glycine (PG6. This mutation abolished beta2a and beta3 subunits ability to shift the voltage dependence of activation and inactivation, and the ability of beta2a to produce non-inactivating currents. Orientation of Ca(vbeta with respect to alpha(12.2 was altered by deletion of 1, 2, or 3 amino acids from the IS6-AID linker (Bdel1, Bdel2, Bdel3, respectively. Again, the ability of Ca(vbeta subunits to regulate these biophysical properties were totally abolished in the Bdel1 and Bdel3 mutants. Functional regulation by Ca(vbeta subunits was rescued in the Bdel2 mutant, indicating that this part of the linker forms beta-sheet. The orientation of beta with respect to alpha was confirmed by the bimolecular fluorescence complementation assay. CONCLUSIONS/SIGNIFICANCE: These results show that the orientation of the Ca(vbeta subunit relative to the alpha(12.2 subunit is critical, and suggests additional points of contact between these subunits are required for Ca(vbeta to regulate channel activity.

  4. Transcriptional Regulation of Apolipoprotein A5 Gene Expression by the Nuclear Receptor ROR alpha

    International Nuclear Information System (INIS)

    Genoux, Annelise; Dehondt, Helene; Helleboid-Chapman, Audrey; Duhem, Christian; Hum, Dean W.; Martin, Genevieve; Pennacchio, Len; Staels, Bart; Fruchart-Najib, Jamila; Fruchart, Jean-Charles

    2004-01-01

    Apolipoprotein A5 has recently been identified as a crucial determinant of plasma triglyceride levels. Our results showed that RORa up-regulates human APOA5 but has no effect on mouse apoa5 promoter. These data suggest an additional important physiological role for RORa in the regulation of genes involved in plasma triglyceride homeostasis in human and probably in the development of atherosclerosis

  5. Transcriptional Regulation of Apolipoprotein A5 Gene Expression by the Nuclear Receptor ROR alpha

    Energy Technology Data Exchange (ETDEWEB)

    Genoux, Annelise; Dehondt, Helene; Helleboid-Chapman, Audrey; Duhem, Christian; Hum, Dean W.; Martin, Genevieve; Pennacchio, Len; Staels, Bart; Fruchart-Najib, Jamila; Fruchart, Jean-Charles

    2004-10-01

    Apolipoprotein A5 has recently been identified as a crucial determinant of plasma triglyceride levels. Our results showed that RORa up-regulates human APOA5 but has no effect on mouse apoa5 promoter. These data suggest an additional important physiological role for RORa in the regulation of genes involved in plasma triglyceride homeostasis in human and probably in the development of atherosclerosis

  6. Estrogen inhibits RANKL-stimulated osteoclastic differentiation of human monocytes through estrogen and RANKL-regulated interaction of estrogen receptor-{alpha} with BCAR1 and Traf6

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Lisa J., E-mail: robinsonlj@msx.upmc.edu [Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Yaroslavskiy, Beatrice B.; Griswold, Reed D.; Zadorozny, Eva V.; Guo, Lida; Tourkova, Irina L. [Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Blair, Harry C. [Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Veteran' s Affairs Medical Center, Pittsburgh, PA 15243 (United States)

    2009-04-15

    The effects of estrogen on osteoclast survival and differentiation were studied using CD14-selected mononuclear osteoclast precursors from peripheral blood. Estradiol at {approx} 1 nM reduced RANKL-dependent osteoclast differentiation by 40-50%. Osteoclast differentiation was suppressed 14 days after addition of RANKL even when estradiol was withdrawn after 18 h. In CD14+ cells apoptosis was rare and was not augmented by RANKL or by 17-{beta}-estradiol. Estrogen receptor-{alpha} (ER{alpha}) expression was strongly down-regulated by RANKL, whether or not estradiol was present. Mature human osteoclasts thus cannot respond to estrogen via ER{alpha}. However, ER{alpha} was present in CD14+ osteoclast progenitors, and a scaffolding protein, BCAR1, which binds ER{alpha} in the presence of estrogen, was abundant. Immunoprecipitation showed rapid ({approx} 5 min) estrogen-dependent formation of ER{alpha}-BCAR1 complexes, which were increased by RANKL co-treatment. The RANKL-signaling intermediate Traf6, which regulates NF-{kappa}B activity, precipitated with this complex. Reduction of NF-{kappa}B nuclear localization occurred within 30 min of RANKL stimulation, and estradiol inhibited the phosphorylation of I{kappa}B in response to RANKL. Inhibition by estradiol was abolished by siRNA knockdown of BCAR1. We conclude that estrogen directly, but only partially, curtails human osteoclast formation. This effect requires BCAR1 and involves a non-genomic interaction with ER{alpha}.

  7. In vitro expression of the alpha-smooth muscle actin isoform by rat lung mesenchymal cells: regulation by culture condition and transforming growth factor-beta.

    Science.gov (United States)

    Mitchell, J J; Woodcock-Mitchell, J L; Perry, L; Zhao, J; Low, R B; Baldor, L; Absher, P M

    1993-07-01

    alpha-Smooth muscle actin (alpha SM actin)-containing cells recently have been demonstrated in intraalveolar lesions in both rat and human tissues following lung injury. In order to develop model systems for the study of such cells, we examined cultured lung cell lines for this phenotype. The adult rat lung fibroblast-like "RL" cell lines were found to express alpha SM actin mRNA and protein and to organize this actin into stress fiber-like structures. Immunocytochemical staining of subclones of the RL87 line demonstrated the presence in the cultures of at least four cell phenotypes, one that fails to express alpha SM actin and three distinct morphologic types that do express alpha SM actin. The proportion of cellular actin that is the alpha-isoform was modulated by the culture conditions. RL cells growing at low density expressed minimal alpha SM actin. On reaching confluent densities, however, alpha SM actin increased to at least 20% of the total actin content. This effect, combined with the observation that the most immunoreactive cells were those that displayed overlapping cell processes in culture, suggests that cell-cell contact may be involved in actin isoform regulation in these cells. Similar to the response of some smooth muscle cell lines, alpha SM actin expression in RL cells also was promoted by conditions, e.g., maintenance in low serum medium, which minimize cell division. alpha SM actin expression was modulated in RL cells by the growth factor transforming growth factor-beta. Addition of this cytokine to growing cells substantially elevated the proportion of alpha SM actin protein.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. The MHC motif viewer

    DEFF Research Database (Denmark)

    Rapin, Nicolas Philippe Jean-Pierre; Hoof, Ilka; Lund, Ole

    2010-01-01

    In vertebrates, the onset of cellular immune reactions is controlled by presentation of peptides in complex with major histocompatibility complex (MHC) molecules to T cell receptors. In humans, MHCs are called human leukocyte antigens (HLAs). Different MHC molecules present different subsets...... of peptides, and knowledge of their binding specificities is important for understanding differences in the immune response between individuals. Algorithms predicting which peptides bind a given MHC molecule have recently been developed with high prediction accuracy. The utility of these algorithms...... is hampered by the lack of tools for browsing and comparing specificity of these molecules. We have developed a Web server, MHC Motif Viewer, which allows the display of the binding motif for MHC class I proteins for human, chimpanzee, rhesus monkey, mouse, and swine, as well as HLA-DR protein sequences...

  9. MHC motif viewer

    DEFF Research Database (Denmark)

    Rapin, Nicolas Philippe Jean-Pierre; Hoof, Ilka; Lund, Ole

    2008-01-01

    In vertebrates, the major histocompatibility complex (MHC) presents peptides to the immune system. In humans, MHCs are called human leukocyte antigens (HLAs), and some of the loci encoding them are the most polymorphic in the human genome. Different MHC molecules present different subsets...... of peptides, and knowledge of their binding specificities is important for understanding the differences in the immune response between individuals. Knowledge of motifs may be used to identify epitopes, to understand the MHC restriction of epitopes, and to compare the specificities of different MHC molecules....... Algorithms that predict which peptides MHC molecules bind have recently been developed and cover many different alleles, but the utility of these algorithms is hampered by the lack of tools for browsing and comparing the specificity of these molecules. We have, therefore, developed a web server, MHC motif...

  10. Role of alpha1- and alpha2-adrenoceptors in the regulation of locomotion and spatial behavior in the active place avoidance task: A dose–response study

    Czech Academy of Sciences Publication Activity Database

    Stuchlík, Aleš; Valeš, Karel

    2008-01-01

    Roč. 433, č. 3 (2008), s. 235-240 ISSN 0304-3940 R&D Projects: GA ČR(CZ) GA309/07/0341; GA MZd(CZ) NR9178; GA MŠk(CZ) 1M0517; GA MŠk(CZ) LC554 Institutional research plan: CEZ:AV0Z50110509 Keywords : alpha1- alpha2 adrenoceptors * avoidance * memory Subject RIV: FH - Neurology Impact factor: 2.200, year: 2008

  11. Brain alpha-amylase - a novel energy regulator important in Alzheimer disease?

    NARCIS (Netherlands)

    Byman, Elin; Schultz, Nina; Huitinga, I.; Fex, Malin; Wennström, Malin

    2018-01-01

    Reduced glucose metabolism and formation of polyglucosan bodies (PGB) are, beside amyloid beta plaques and neurofibrillary tangles, well-known pathological findings associated with Alzheimer's disease (AD). Since both glucose availability and PGB are regulated by enzymatic degradation of glycogen,

  12. Identification in a pseudoknot of a U.G motif essential for the regulation of the expression of ribosomal protein S15.

    Science.gov (United States)

    Bénard, L; Mathy, N; Grunberg-Manago, M; Ehresmann, B; Ehresmann, C; Portier, C

    1998-03-03

    The ribosomal protein S15 from Escherichia coli binds to a pseudoknot in its own messenger. This interaction is an essential step in the mechanism of S15 translational autoregulation. In a previous study, a recognition determinant for S15 autoregulation, involving a U.G wobble pair, was located in the center of stem I of the pseudoknot. In this study, an extensive mutagenesis analysis has been conducted in and around this U.G pair by comparing the effects of these mutations on the expression level of S15. The results show that the U.G wobble pair cannot be substituted by A.G, C.A, A.C, G.U, or C.G without loss of the autocontrol. In addition, the base pair C.G, adjacent to the 5' side of U, cannot be flipped or changed to another complementary base pair without also inducing derepression of translation. A unique motif, made of only two adjacent base pairs, U.G/C.G, is essential for S15 autoregulation and is presumably involved in direct recognition by the S15 protein.

  13. Identification in a pseudoknot of a U⋅G motif essential for the regulation of the expression of ribosomal protein S15

    Science.gov (United States)

    Bénard, Lionel; Mathy, Nathalie; Grunberg-Manago, Marianne; Ehresmann, Bernard; Ehresmann, Chantal; Portier, Claude

    1998-01-01

    The ribosomal protein S15 from Escherichia coli binds to a pseudoknot in its own messenger. This interaction is an essential step in the mechanism of S15 translational autoregulation. In a previous study, a recognition determinant for S15 autoregulation, involving a U⋅G wobble pair, was located in the center of stem I of the pseudoknot. In this study, an extensive mutagenesis analysis has been conducted in and around this U⋅G pair by comparing the effects of these mutations on the expression level of S15. The results show that the U⋅G wobble pair cannot be substituted by A⋅G, C⋅A, A⋅C, G⋅U, or C⋅G without loss of the autocontrol. In addition, the base pair C⋅G, adjacent to the 5′ side of U, cannot be flipped or changed to another complementary base pair without also inducing derepression of translation. A unique motif, made of only two adjacent base pairs, U⋅G/C⋅G, is essential for S15 autoregulation and is presumably involved in direct recognition by the S15 protein. PMID:9482926

  14. Alpha- and beta-adrenoceptor cross-talk in the regulation of glycogenolysis in dog and guinea-pig liver.

    Science.gov (United States)

    Maroto, R; Calvo, S; Sancho, C; Esquerro, E

    1992-01-01

    The dog liver glycogenolytic response to isoprenaline (EC50 = 3 x 10(-9) M) was selectively blocked by 10(-5) M of practolol, but not by butoxamine. In contrast, the glycogenolytic response to isoprenaline (EC50 = 3 x 10(-7) M) was inhibited by 10(-6) M of butoxamine, but not by practolol, in the guinea-pig liver. This suggests that, in the dog, the isoprenaline response is dominated by beta 1-adrenoceptors, while in the guinea-pig beta 2-receptors control such response. Glucose release from dog and guinea-pig liver slices was also stimulated by amidephrine (EC50 = 10(-6) M in the dog and 4 x 10(-5) M in the guinea-pig). Both prazosin and yohimbine blocked this response. The effectiveness of clonidine as a glucose-mobilizing agent could only be established in the dog liver. Prazosin showed greater activity than yohimbine in antagonizing the response to both agonists. In the dog, low concentrations of alpha-adrenoceptor agonists (10(-9) M), that failed to modify the basal glucose release per se, selectively depressed the isoprenaline response. Prazosin, but not yohimbine, reversed this inhibitory effect. It is concluded that glucose release from the dog liver is regulated by two opposite mechanisms that seem to be associated to alpha 1-adrenoceptors (inhibitory) and to beta 1-adrenoceptors (stimulatory).

  15. Regulation of ionizing radiation-induced adhesion of breast cancer cells to fibronectin by alpha5beta1 integrin.

    Science.gov (United States)

    Lee, Shin Hee; Cheng, Huiwen; Yuan, Ye; Wu, Shiyong

    2014-06-01

    Ionizing radiation (IR) is commonly used for cancer therapy, however, its potential influence on cancer metastatic potential remains controversial. In this study, we elucidated the role of integrins in regulation of IR-altered adhesion between breast cancer cells and extracellular matrix (ECM) proteins, which is a key step in the initial phase of metastasis. Our data suggest that the extent of effect that ionizing radiation had on cell adhesion depended on the genetic background of the breast cancer cells. Ionizing radiation was a better adhesion inducer for p53-mutated cells, such as MDA-MB-231 cells, than for p53 wild-type cells, such as MCF-7 cells. While IR-induced adhesions between MDA-MB-231 cells to fibronectin, laminin, collagen I and collagen IV, only blocking of the adhesion between α5β1 integrin and fibronectin using anti-α5β1 integrin antibody could completely inhibit the radiation-induced adhesion of the cells. A soluble Arg-Gly-Asp peptide, the binding motif for fibronectin binding integrins, could also reduce the adhesion of the cells to fibronectin with or without ionizing radiation exposure. The inhibition of the cell-fibronectin interaction also affected, but did not always correlate with, transwell migration of the cancer cells. In addition, our data showed that the total expression of α5 integrin and surface expression of α5β1 integrin were increased in the cells treated with ionizing radiation. The increased surface expression of α5β1 integrin, along with the adhesion between the cells and fibronectin, could be inhibited by both ataxia telangiectasia mutated (ATM) and Rad3-related (ATR) kinase inhibitors. These results suggested that ATM/ATR-mediated surface expression of α5β1 integrin might play a central role in regulation of ionizing radiation-altered adhesion.

  16. Regulation of PGE2 signaling pathways and TNF-alpha signaling pathways on the function of bone marrow-derived dendritic cells and the effects of CP-25.

    Science.gov (United States)

    Li, Ying; Sheng, Kangliang; Chen, Jingyu; Wu, Yujing; Zhang, Feng; Chang, Yan; Wu, Huaxun; Fu, Jingjing; Zhang, Lingling; Wei, Wei

    2015-12-15

    This study was to investigate PGE2 and TNF-alpha signaling pathway involving in the maturation and activation of bone marrow dendritic cells (DCs) and the effect of CP-25. Bone marrow DCs were isolated and stimulated by PGE2 and TNF-alpha respectively. The markers of maturation and activation expressed on DCs, such as CD40, CD80, CD83, CD86, MHC-II, and the ability of antigen uptake of DCs were analyzed by flow cytometry. The proliferation of T cells co-cultured with DCs, the signaling pathways of PGE2-EP4-cAMP and TNF-alpha-TRADD-TRAF2-NF-κB in DCs were analyzed. The results showed that both PGE2 and TNF-alpha up-regulated the expressions of CD40, CD80, CD83, CD86, and MHC-II, decreased the antigen uptake of DCs, and DCs stimulated by PGE2 or TNF-alpha could increase T cell proliferation. CP-25 (10(-5), 10(-6), and 10(-7)mol/l) decreased significantly the expressions of CD40, CD80, CD83, CD86 and MHC-II, increased the antigen uptake of DCs, and suppressed T cell proliferation induced by DCs. PGE2 increased the expressions of EP4, NF-κB and down-regulated cAMP level of DCs. TNF-alpha could also up-regulate TNFR1, TRADD, TRAF2, and NF-κB expression of DCs. CP-25 (10(-5), 10(-6), and 10(-7)mol/l) decreased the expressions of EP4 and NF-κB, increased cAMP level in DCs stimulated by PGE2. CP-25 (10(-5), 10(-6), and 10(-7)mol/l) also could down-regulate significantly TNFR1, TRADD, TRAF2, and NF-κB expression in DCs stimulated by TNF-alpha. These results demonstrate that PGE2 and TNF-alpha could enhance DCs functions by mediating PGE2-EP4-cAMP pathway, TNF-alpha-TNFR1-TRADD-TRAF2-NF-κB pathway respectively. CP-25 might inhibit the function of DCs through regulating PGE2-EP4-cAMP and TNF-alpha-TNFR1-TRADD-TRAF2-NF-κB pathways. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Adenylyl cyclase alpha and cAMP signaling mediate Plasmodium sporozoite apical regulated exocytosis and hepatocyte infection.

    Directory of Open Access Journals (Sweden)

    Takeshi Ono

    2008-02-01

    Full Text Available Malaria starts with the infection of the liver of the host by Plasmodium sporozoites, the parasite form transmitted by infected mosquitoes. Sporozoites migrate through several hepatocytes by breaching their plasma membranes before finally infecting one with the formation of an internalization vacuole. Migration through host cells induces apical regulated exocytosis in sporozoites. Here we show that apical regulated exocytosis is induced by increases in cAMP in sporozoites of rodent (P. yoelii and P. berghei and human (P. falciparum Plasmodium species. We have generated P. berghei parasites deficient in adenylyl cyclase alpha (ACalpha, a gene containing regions with high homology to adenylyl cyclases. PbACalpha-deficient sporozoites do not exocytose in response to migration through host cells and present more than 50% impaired hepatocyte infectivity in vivo. These effects are specific to ACalpha, as re-introduction of ACalpha in deficient parasites resulted in complete recovery of exocytosis and infection. Our findings indicate that ACalpha and increases in cAMP levels are required for sporozoite apical regulated exocytosis, which is involved in sporozoite infection of hepatocytes.

  18. Mitotic control of human papillomavirus genome-containing cells is regulated by the function of the PDZ-binding motif of the E6 oncoprotein

    Science.gov (United States)

    Marsh, Elizabeth K.; Delury, Craig P.; Davies, Nicholas J.; Weston, Christopher J.; Miah, Mohammed A.L.; Banks, Lawrence; Parish, Joanna L.

    2017-01-01

    The function of a conserved PDS95/DLG1/ZO1 (PDZ) binding motif (E6 PBM) at the C-termini of E6 oncoproteins of high-risk human papillomavirus (HPV) types contributes to the development of HPV-associated malignancies. Here, using a primary human keratinocyte-based model of the high-risk HPV18 life cycle, we identify a novel link between the E6 PBM and mitotic stability. In cultures containing a mutant genome in which the E6 PBM was deleted there was an increase in the frequency of abnormal mitoses, including multinucleation, compared to cells harboring the wild type HPV18 genome. The loss of the E6 PBM was associated with a significant increase in the frequency of mitotic spindle defects associated with anaphase and telophase. Furthermore, cells carrying this mutant genome had increased chromosome segregation defects and they also exhibited greater levels of genomic instability, as shown by an elevated level of centromere-positive micronuclei. In wild type HPV18 genome-containing organotypic cultures, the majority of mitotic cells reside in the suprabasal layers, in keeping with the hyperplastic morphology of the structures. However, in mutant genome-containing structures a greater proportion of mitotic cells were retained in the basal layer, which were often of undefined polarity, thus correlating with their reduced thickness. We conclude that the ability of E6 to target cellular PDZ proteins plays a critical role in maintaining mitotic stability of HPV infected cells, ensuring stable episome persistence and vegetative amplification. PMID:28061478

  19. Mitotic control of human papillomavirus genome-containing cells is regulated by the function of the PDZ-binding motif of the E6 oncoprotein.

    Science.gov (United States)

    Marsh, Elizabeth K; Delury, Craig P; Davies, Nicholas J; Weston, Christopher J; Miah, Mohammed A L; Banks, Lawrence; Parish, Joanna L; Higgs, Martin R; Roberts, Sally

    2017-03-21

    The function of a conserved PDS95/DLG1/ZO1 (PDZ) binding motif (E6 PBM) at the C-termini of E6 oncoproteins of high-risk human papillomavirus (HPV) types contributes to the development of HPV-associated malignancies. Here, using a primary human keratinocyte-based model of the high-risk HPV18 life cycle, we identify a novel link between the E6 PBM and mitotic stability. In cultures containing a mutant genome in which the E6 PBM was deleted there was an increase in the frequency of abnormal mitoses, including multinucleation, compared to cells harboring the wild type HPV18 genome. The loss of the E6 PBM was associated with a significant increase in the frequency of mitotic spindle defects associated with anaphase and telophase. Furthermore, cells carrying this mutant genome had increased chromosome segregation defects and they also exhibited greater levels of genomic instability, as shown by an elevated level of centromere-positive micronuclei. In wild type HPV18 genome-containing organotypic cultures, the majority of mitotic cells reside in the suprabasal layers, in keeping with the hyperplastic morphology of the structures. However, in mutant genome-containing structures a greater proportion of mitotic cells were retained in the basal layer, which were often of undefined polarity, thus correlating with their reduced thickness. We conclude that the ability of E6 to target cellular PDZ proteins plays a critical role in maintaining mitotic stability of HPV infected cells, ensuring stable episome persistence and vegetative amplification.

  20. SVIP regulates Z variant alpha-1 antitrypsin retro-translocation by inhibiting ubiquitin ligase gp78.

    Directory of Open Access Journals (Sweden)

    Nazli Khodayari

    Full Text Available Alpha-1 antitrypsin deficiency (AATD is an inherited disorder characterized by early-onset emphysema and liver disease. The most common disease-causing mutation is a single amino acid substitution (Glu/Lys at amino acid 342 of the mature protein, resulting in disruption of the 290-342 salt bridge (an electrophoretic abnormality defining the mutation [Z allele, or ZAAT], protein misfolding, polymerization, and accumulation in the endoplasmic reticulum of hepatocytes and monocytes. The Z allele causes a toxic gain of function, and the E3 ubiquitin ligase gp78 promotes degradation and increased solubility of endogenous ZAAT. We hypothesized that the accumulation of ZAAT is influenced by modulation of gp78 E3 ligase and SVIP (small VCP-interacting protein interaction with p97/VCP in ZAAT-expressing hepatocytes. We showed that the SVIP inhibitory effect on ERAD due to overexpression causes the accumulation of ZAAT in a human Z hepatocyte-like cell line (AT01. Overexpression of gp78, as well as SVIP suppression, induces gp78-VCP/p97 interaction in AT01 cells. This interaction leads to retro-translocation of ZAAT and reduction of the SVIP inhibitory role in ERAD. In this context, overexpression of gp78 or SVIP suppression may eliminate the toxic gain of function associated with polymerization of ZAAT, thus providing a potential new therapeutic approach to the treatment of AATD.

  1. Differential regulation of human IL-7 receptor alpha expression by IL-7 and TCR signaling

    NARCIS (Netherlands)

    Alves, Nuno L.; van Leeuwen, Ester M. M.; Derks, Ingrid A. M.; van Lier, René A. W.

    2008-01-01

    IL-7Ralpha is essential for the development and homeostatic maintenance of mature T cells. Studies in humans and mice have shown that IL-7Ralpha expression is reduced by its cognate cytokine, IL-7, and Ag, suggesting that active regulation of IL-7 responsiveness is necessary to balance T cell

  2. Motif Participation by Genes in E. coli Transcriptional Networks

    Directory of Open Access Journals (Sweden)

    Michael eMayo

    2012-09-01

    Full Text Available Motifs are patterns of recurring connections among the genes of genetic networks that occur more frequently than would be expected from randomized networks with the same degree sequence. Although the abundance of certain three-node motifs, such as the feed-forward loop, is positively correlated with a networks’ ability to tolerate moderate disruptions to gene expression, little is known regarding the connectivity of individual genes participating in multiple motifs. Using the transcriptional network of the bacterium Escherichia coli, we investigate this feature by reconstructing the distribution of genes participating in feed-forward loop motifs from its largest connected network component. We contrast these motif participation distributions with those obtained from model networks built using the preferential attachment mechanism employed by many biological and man-made networks. We report that, although some of these model networks support a motif participation distribution that appears qualitatively similar to that obtained from the bacterium Escherichia coli, the probability for a node to support a feed-forward loop motif may instead be strongly influenced by only a few master transcriptional regulators within the network. From these analyses we conclude that such master regulators may be a crucial ingredient to describe coupling among feed-forward loop motifs in transcriptional regulatory networks.

  3. Estrogen Receptor Alpha (ESR1-Dependent Regulation of the Mouse Oviductal Transcriptome.

    Directory of Open Access Journals (Sweden)

    Katheryn L Cerny

    Full Text Available Estrogen receptor-α (ESR1 is an important transcriptional regulator in the mammalian oviduct, however ESR1-dependent regulation of the transcriptome of this organ is not well defined, especially at the genomic level. The objective of this study was therefore to investigate estradiol- and ESR1-dependent regulation of the transcriptome of the oviduct using transgenic mice, both with (ESR1KO and without (wild-type, WT a global deletion of ESR1. Oviducts were collected from ESR1KO and WT littermates at 23 days of age, or ESR1KO and WT mice were treated with 5 IU PMSG to stimulate follicular development and the production of ovarian estradiol, and the oviducts collected 48 h later. RNA extracted from whole oviducts was hybridized to Affymetrix Genechip Mouse Genome 430-2.0 arrays (n = 3 arrays per genotype and treatment or reverse transcribed to cDNA for analysis of the expression of selected mRNAs by real-time PCR. Following microarray analysis, a statistical two-way ANOVA and pairwise comparison (LSD test revealed 2428 differentially expressed transcripts (DEG's, P < 0.01. Genotype affected the expression of 2215 genes, treatment (PMSG affected the expression of 465 genes, and genotype x treatment affected the expression of 438 genes. With the goal of determining estradiol/ESR1-regulated function, gene ontology (GO and bioinformatic pathway analyses were performed on DEG's in the oviducts of PMSG-treated ESR1KO versus PMSG-treated WT mice. Significantly enriched GO molecular function categories included binding and catalytic activity. Significantly enriched GO cellular component categories indicated the extracellular region. Significantly enriched GO biological process categories involved a single organism, modulation of a measurable attribute and developmental processes. Bioinformatic analysis revealed ESR1-regulation of the immune response within the oviduct as the primary canonical pathway. In summary, a transcriptomal profile of estradiol- and

  4. Cyclic nucleotides differentially regulate the synthesis of tumour necrosis factor-alpha and interleukin-1 beta by human mononuclear cells

    NARCIS (Netherlands)

    Endres, S; Fülle, H J; Sinha, B; Stoll, D; Dinarello, C A; Gerzer, R; Weber, P.C.

    Recent reports have shown that phosphodiesterase (PDE) inhibitors suppress production of tumour necrosis factor-alpha (TNF-alpha) in mouse macrophages. In the present study we show that theophylline, pentoxifylline and 3-isobutyl-1-methylxanthine markedly suppress the lipopolysaccharide

  5. CD36 is essential for regulation of the host innate response to Staphylococcus aureus alpha-toxin-mediated dermonecrosis

    Science.gov (United States)

    Castleman, Moriah J.; Febbraio, Maria; Hall, Pamela R.

    2015-01-01

    Staphylococcus aureus is the primary cause of skin and skin structure infections (SSSI) in the USA. Alpha-hemolysin (Hla), a pore-forming toxin secreted by S. aureus and a major contributor to tissue necrosis, prompts recruitment of neutrophils critical for host defense against S. aureus infections. However, the failure to clear apoptotic neutrophils can result in damage to host tissues, suggesting that mechanisms of neutrophil clearance are essential to limiting Hla-mediated dermonecrosis. We hypothesized that CD36, a scavenger receptor which facilitates recognition of apoptosing cells, would play a significant role in regulating Hla-mediated inflammation and tissue injury during S. aureus SSSI. Here we show that CD36 on macrophages negatively regulates dermonecrosis caused by Hla-producing S. aureus. This regulation is independent of bacterial burden, as CD36 also limits dermonecrosis caused by intoxication with sterile bacterial supernatant or purified Hla. Dermonecrotic lesions of supernatant intoxicated CD36−/− mice are significantly larger, with increased neutrophil accumulation and IL-1β expression, compared to CD36+/+ (wild-type) mice. Neutrophil depletion of CD36−/− mice prevents this phenotype, demonstrating the contribution of neutrophils to tissue injury in this model. Furthermore, administration of CD36+/+, but not CD36−/−, macrophages near the site of intoxication reduces dermonecrosis, IL-1β production and neutrophil accumulation to levels seen in wild-type mice. This therapeutic effect is reversed by inhibiting actin polymerization in the CD36+/+ macrophages, supporting a mechanism of action whereby CD36-dependent macrophage phagocytosis of apoptotic neutrophils regulates Hla-mediated dermonecrosis. Together, these data demonstrate that CD36 is essential for controlling the host innate response to S. aureus skin infection. PMID:26223653

  6. Emotion regulation and positive affect in the context of salivary alpha-amylase response to pain in children with cancer.

    Science.gov (United States)

    Jenkins, Brooke N; Granger, Douglas A; Roemer, Ryan J; Martinez, Ariana; Torres, Tara K; Fortier, Michelle A

    2018-01-19

    Children with cancer routinely undergo painful medical procedures invoking strong physiological stress responses. Resilience to this pain may be conferred through resources such as emotion regulation strategies and positive affect. This study measured dispositional positive affect in children with cancer (N = 73) and randomly assigned participants to one of three emotion regulation strategy conditions (distraction, reappraisal, or reassurance). Children applied their assigned strategy during an experimental pain procedure (the cold pressor task [CPT]) and provided saliva samples before, immediately after, and 15 min after the CPT. Saliva samples were later assayed for salivary alpha amylase (sAA)-a surrogate marker for autonomic/sympathetic nervous system activity and regulation. Children in the reassurance group had sAA levels that continued to rise after completion of the CPT compared to children in the distraction (b = -1.68, P = 0.021) and reappraisal conditions (b = -1.24, P = 0.084). Furthermore, dispositional positive affect moderated the effect of condition such that children in the reassurance group with lower levels of positive affect had sAA levels that continued to rise after completion of the CPT (dy/dx = 1.56, P = 0.027), whereas children in the reassurance condition with higher levels of positive affect did not exhibit this rise (P > 0.05). Specific emotion regulation strategies, such as distraction and reappraisal, may attenuate the stress response to pain in pediatric patients with cancer, and positive affect may confer resilience in response to pain even with use of less effective coping strategies such as reassurance. © 2018 Wiley Periodicals, Inc.

  7. Positional bias of general and tissue-specific regulatory motifs in mouse gene promoters

    Directory of Open Access Journals (Sweden)

    Farré Domènec

    2007-12-01

    Full Text Available Abstract Background The arrangement of regulatory motifs in gene promoters, or promoter architecture, is the result of mutation and selection processes that have operated over many millions of years. In mammals, tissue-specific transcriptional regulation is related to the presence of specific protein-interacting DNA motifs in gene promoters. However, little is known about the relative location and spacing of these motifs. To fill this gap, we have performed a systematic search for motifs that show significant bias at specific promoter locations in a large collection of housekeeping and tissue-specific genes. Results We observe that promoters driving housekeeping gene expression are enriched in particular motifs with strong positional bias, such as YY1, which are of little relevance in promoters driving tissue-specific expression. We also identify a large number of motifs that show positional bias in genes expressed in a highly tissue-specific manner. They include well-known tissue-specific motifs, such as HNF1 and HNF4 motifs in liver, kidney and small intestine, or RFX motifs in testis, as well as many potentially novel regulatory motifs. Based on this analysis, we provide predictions for 559 tissue-specific motifs in mouse gene promoters. Conclusion The study shows that motif positional bias is an important feature of mammalian proximal promoters and that it affects both general and tissue-specific motifs. Motif positional constraints define very distinct promoter architectures depending on breadth of expression and type of tissue.

  8. MiRNA-Based Regulation of Hemostatic Factors through Hepatic Nuclear Factor-4 Alpha.

    Directory of Open Access Journals (Sweden)

    Salam Salloum-Asfar

    Full Text Available MiRNAs have been reported as CIS-acting elements of several hemostatic factors, however, their mechanism as TRANS-acting elements mediated by a transcription factor is little known and could have important effects. HNF4α has a direct and important role in the regulation of multiple hepatic coagulation genes. Previous in vitro studies have demonstrated that miR-24-3p and miR-34a-5p regulate HNF4A expression. Here we aimed to investigate the molecular mechanisms of miR-24 and miR-34a on coagulation through HNF4A. Transfections with miR-24 and miR-34a in HepG2 cells decreased not only HNF4A but also F10, F12, SERPINC1, PROS1, PROC, and PROZ transcripts levels. Positive and significant correlations were observed between levels of HNF4A and several hemostatic factors (F5, F8, F9, F11, F12, SERPINC1, PROC, and PROS1 in human liver samples (N = 104. However, miR-24 and miR-34a levels of the low (10th and high (90th percentiles of those liver samples were inversely correlated with HNF4A and almost all hemostatic factors expression levels. These outcomes suggest that miR-24 and miR-34a might be two indirect elements of regulation of several hemostatic factors. Additionally, variations in miRNA expression profiles could justify, at least in part, changes in HNF4A expression levels and its downstream targets of coagulation.

  9. The role and regulation of the peroxisome proliferator activated receptor alpha in human liver.

    Science.gov (United States)

    Kersten, Sander; Stienstra, Rinke

    2017-05-01

    The peroxisome proliferator-activated receptor α (PPARα) is a ligand-activated transcription factor that is abundantly expressed in liver. PPARα is activated by fatty acids and various other lipid species, as well as by a class of chemicals referred to as peroxisome proliferators. Studies in mice have shown that PPARα serves as the master regulator of hepatic lipid metabolism during fasting. In addition, PPARα suppresses inflammation and the acute phase response. Comparatively little is known about PPARα in human liver. Here, an overview is provided of the role and regulation of PPARα in human liver. The main outcomes are: 1) the level of PPARA mRNA expression in human and mouse liver is similar. 2) Expression of PPARA in human liver is reduced in patients with non-alcoholic steatohepatitis or infected with the hepatitis C virus. 3) PPARα in human liver is able to effectively induce the expression of numerous genes involved in numerous lipid metabolic pathways, including microsomal, peroxisomal and mitochondrial fatty acid oxidation, fatty acid binding and activation, fatty acid elongation and desaturation, synthesis and breakdown of triglycerides and lipid droplets, lipoprotein metabolism, gluconeogenesis, bile acid metabolism, and various other metabolic pathways and genes. 4) PPARα activation in human liver causes the down-regulation of a large number of genes involved in various immunity-related pathways. 5) Peroxisome proliferators do not promote tumour formation in human liver as opposed to mouse liver because of structural and functional differences between human and mouse PPARα. 6) In addition to helping to correct dyslipidemia, PPARα agonists may hold promise as a therapy for patients with cholestatic liver diseases, non-alcoholic fatty liver disease, and/or type 2 diabetes. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  10. Regulation of alpha1 Na/K-ATPase expression by cholesterol.

    Science.gov (United States)

    Chen, Yiliang; Li, Xin; Ye, Qiqi; Tian, Jiang; Jing, Runming; Xie, Zijian

    2011-04-29

    We have reported that α1 Na/K-ATPase regulates the trafficking of caveolin-1 and consequently alters cholesterol distribution in the plasma membrane. Here, we report the reciprocal regulation of α1 Na/K-ATPase by cholesterol. Acute exposure of LLC-PK1 cells to methyl β-cyclodextrin led to parallel decreases in cellular cholesterol and the expression of α1 Na/K-ATPase. Cholesterol repletion fully reversed the effect of methyl β-cyclodextrin. Moreover, inhibition of intracellular cholesterol trafficking to the plasma membrane by compound U18666A had the same effect on α1 Na/K-ATPase. Similarly, the expression of α1, but not α2 and α3, Na/K-ATPase was significantly reduced in the target organs of Niemann-Pick type C mice where the intracellular cholesterol trafficking is blocked. Mechanistically, decreases in the plasma membrane cholesterol activated Src kinase and stimulated the endocytosis and degradation of α1 Na/K-ATPase through Src- and ubiquitination-dependent pathways. Thus, the new findings, taken together with what we have already reported, revealed a previously unrecognized feed-forward mechanism by which cells can utilize the Src-dependent interplay among Na/K-ATPase, caveolin-1, and cholesterol to effectively alter the structure and function of the plasma membrane.

  11. Expression and regulation of HIF-1 alpha in macrophages under inflammatory conditions; significant reduction of VEGF by CaMKII inhibitor

    NARCIS (Netherlands)

    Westra, Johanna; Brouwer, Elisabeth; van Roosmalen, Ingrid A. M.; Doornbos-van der Meer, Berber; van Leeuwen, Miek A.; Posthumus, Marcel D.; Kallenberg, Cees G. M.

    2010-01-01

    Background: Macrophages expressing the pro-angiogenic transcription factor hypoxia-inducible factor (HIF)-1alpha have been demonstrated in rheumatoid arthritis (RA) in the synovial tissue. Aim of the present study was to investigate intracellular signal transduction regulation of pro-inflammatory

  12. Interferon beta 1, an intermediate in the tumor necrosis factor alpha- induced increased MHC class I expression and an autocrine regulator of the constitutive MHC class I expression

    OpenAIRE

    1987-01-01

    In conclusion, our observations indicate that the constitutive MHC class I expression is regulated by autocrine production of IFN-beta 1. TNF-alpha acts as an enhancer of the autocrine production of IFN-beta 1, and consequently as an enhancer of the MHC class I expression and viral protection.

  13. The limits of de novo DNA motif discovery.

    Directory of Open Access Journals (Sweden)

    David Simcha

    Full Text Available A major challenge in molecular biology is reverse-engineering the cis-regulatory logic that plays a major role in the control of gene expression. This program includes searching through DNA sequences to identify "motifs" that serve as the binding sites for transcription factors or, more generally, are predictive of gene expression across cellular conditions. Several approaches have been proposed for de novo motif discovery-searching sequences without prior knowledge of binding sites or nucleotide patterns. However, unbiased validation is not straightforward. We consider two approaches to unbiased validation of discovered motifs: testing the statistical significance of a motif using a DNA "background" sequence model to represent the null hypothesis and measuring performance in predicting membership in gene clusters. We demonstrate that the background models typically used are "too null," resulting in overly optimistic assessments of significance, and argue that performance in predicting TF binding or expression patterns from DNA motifs should be assessed by held-out data, as in predictive learning. Applying this criterion to common motif discovery methods resulted in universally poor performance, although there is a marked improvement when motifs are statistically significant against real background sequences. Moreover, on synthetic data where "ground truth" is known, discriminative performance of all algorithms is far below the theoretical upper bound, with pronounced "over-fitting" in training. A key conclusion from this work is that the failure of de novo discovery approaches to accurately identify motifs is basically due to statistical intractability resulting from the fixed size of co-regulated gene clusters, and thus such failures do not necessarily provide evidence that unfound motifs are not active biologically. Consequently, the use of prior knowledge to enhance motif discovery is not just advantageous but necessary. An implementation of

  14. Conserved ABC Transport System Regulated by the General Stress Response Pathways of Alpha- and Gammaproteobacteria

    Energy Technology Data Exchange (ETDEWEB)

    Herrou, Julien; Willett, Jonathan W.; Czyż, Daniel M.; Babnigg, Gyorgy; Kim, Youngchang; Crosson, Sean; Stock, Ann M.

    2016-12-19

    ABSTRACT

    Brucella abortusσE1is an EcfG family sigma factor that regulates the transcription of dozens of genes in response to diverse stress conditions and is required for maintenance of chronic infection in a mouse model. A putative ATP-binding cassette transporter operon,bab1_0223-bab1_0226, is among the most highly activated gene sets in the σE1regulon. The proteins encoded by the operon resemble quaternary ammonium-compatible solute importers but are most similar in sequence to the broadly conserved YehZYXW system, which remains largely uncharacterized. Transcription ofyehZYXWis activated by the general stress sigma factor σSinEnterobacteriaceae, which suggests a functional role for this transport system in bacterial stress response across the classesAlphaproteobacteriaandGammaproteobacteria. We present evidence thatB. abortusYehZYXW does not function as an importer of known compatible solutes under physiological conditions and does not contribute to the virulence defect of a σE1-null strain. The solein vitrophenotype associated with genetic disruption of this putative transport system is reduced growth in the presence of high Li+ion concentrations. A crystal structure ofB. abortusYehZ revealed a class II periplasmic binding protein fold with significant structural homology toArchaeoglobus fulgidusProX, which binds glycine betaine. However, the structure

  15. Differential regulation of wild-type and mutant alpha-synuclein binding to synaptic membranes by cytosolic factors

    Directory of Open Access Journals (Sweden)

    Figeys Daniel

    2008-09-01

    Full Text Available Abstract Background Alpha-Synuclein (α-syn, a 140 amino acid protein associated with presynaptic membranes in brain, is a major constituent of Lewy bodies in Parkinson's disease (PD. Three missense mutations (A30P, A53T and E46K in the α-syn gene are associated with rare autosomal dominant forms of familial PD. However, the regulation of α-syn's cellular localization in neurons and the effects of the PD-linked mutations are poorly understood. Results In the present study, we analysed the ability of cytosolic factors to regulate α-syn binding to synaptic membranes. We show that co-incubation with brain cytosol significantly increases the membrane binding of normal and PD-linked mutant α-syn. To characterize cytosolic factor(s that modulate α-syn binding properties, we investigated the ability of proteins, lipids, ATP and calcium to modulate α-syn membrane interactions. We report that lipids and ATP are two of the principal cytosolic components that modulate Wt and A53T α-syn binding to the synaptic membrane. We further show that 1-O-hexadecyl-2-acetyl-sn-glycero-3-phosphocholine (C16:0 PAF is one of the principal lipids found in complex with cytosolic proteins and is required to enhance α-syn interaction with synaptic membrane. In addition, the impaired membrane binding observed for A30P α-syn was significantly mitigated by the presence of protease-sensitive factors in brain cytosol. Conclusion These findings suggest that endogenous brain cytosolic factors regulate Wt and mutant α-syn membrane binding, and could represent potential targets to influence α-syn solubility in brain.

  16. Andrographolide attenuates LPS-stimulated up-regulation of C-C and C-X-C motif chemokines in rodent cortex and primary astrocytes.

    Science.gov (United States)

    Wong, Siew Ying; Tan, Michelle G K; Banks, William A; Wong, W S Fred; Wong, Peter T-H; Lai, Mitchell K P

    2016-02-09

    Andrographolide is the major bioactive compound isolated from Andrographis paniculata, a native South Asian herb used medicinally for its anti-inflammatory properties. In this study, we aimed to assess andrographolide's potential utility as an anti-neuroinflammatory therapeutic. The effects of andrographolide on lipopolysaccharide (LPS)-induced chemokine up-regulation both in mouse cortex and in cultured primary astrocytes were measured, including cytokine profiling, gene expression, and, in cultured astrocytes, activation of putative signaling regulators. Orally administered andrographolide significantly attenuated mouse cortical chemokine levels from the C-C and C-X-C subfamilies. Similarly, andrographolide abrogated a range of LPS-induced chemokines as well as tumor necrosis factor (TNF)-α in astrocytes. In astrocytes, the inhibitory actions of andrographolide on chemokine and TNF-α up-regulation appeared to be mediated by nuclear factor-κB (NF-κB) or c-Jun N-terminal kinase (JNK) activation. These results suggest that andrographolide may be useful as a therapeutic for neuroinflammatory diseases, especially those characterized by chemokine dysregulation.

  17. ATP and MO25alpha regulate the conformational state of the STRADalpha pseudokinase and activation of the LKB1 tumour suppressor.

    Science.gov (United States)

    Zeqiraj, Elton; Filippi, Beatrice Maria; Goldie, Simon; Navratilova, Iva; Boudeau, Jérôme; Deak, Maria; Alessi, Dario R; van Aalten, Daan M F

    2009-06-09

    Pseudokinases lack essential residues for kinase activity, yet are emerging as important regulators of signal transduction networks. The pseudokinase STRAD activates the LKB1 tumour suppressor by forming a heterotrimeric complex with LKB1 and the scaffolding protein MO25. Here, we describe the structure of STRADalpha in complex with MO25alpha. The structure reveals an intricate web of interactions between STRADalpha and MO25alpha involving the alphaC-helix of STRADalpha, reminiscent of the mechanism by which CDK2 interacts with cyclin A. Surprisingly, STRADalpha binds ATP and displays a closed conformation and an ordered activation loop, typical of active protein kinases. Inactivity is accounted for by nonconservative substitution of almost all essential catalytic residues. We demonstrate that binding of ATP enhances the affinity of STRADalpha for MO25alpha, and conversely, binding of MO25alpha promotes interaction of STRADalpha with ATP. Mutagenesis studies reveal that association of STRADalpha with either ATP or MO25alpha is essential for LKB1 activation. We conclude that ATP and MO25alpha cooperate to maintain STRADalpha in an "active" closed conformation required for LKB1 activation. It has recently been demonstrated that a mutation in human STRADalpha that truncates a C-terminal region of the pseudokinase domain leads to the polyhydramnios, megalencephaly, symptomatic epilepsy (PMSE) syndrome. We demonstrate this mutation destabilizes STRADalpha and prevents association with LKB1. In summary, our findings describe one of the first structures of a genuinely inactive pseudokinase. The ability of STRADalpha to activate LKB1 is dependent on a closed "active" conformation, aided by ATP and MO25alpha binding. Thus, the function of STRADalpha is mediated through an active kinase conformation rather than kinase activity. It is possible that other pseudokinases exert their function through nucleotide binding and active conformations.

  18. ATP and MO25alpha regulate the conformational state of the STRADalpha pseudokinase and activation of the LKB1 tumour suppressor.

    Directory of Open Access Journals (Sweden)

    Elton Zeqiraj

    2009-06-01

    Full Text Available Pseudokinases lack essential residues for kinase activity, yet are emerging as important regulators of signal transduction networks. The pseudokinase STRAD activates the LKB1 tumour suppressor by forming a heterotrimeric complex with LKB1 and the scaffolding protein MO25. Here, we describe the structure of STRADalpha in complex with MO25alpha. The structure reveals an intricate web of interactions between STRADalpha and MO25alpha involving the alphaC-helix of STRADalpha, reminiscent of the mechanism by which CDK2 interacts with cyclin A. Surprisingly, STRADalpha binds ATP and displays a closed conformation and an ordered activation loop, typical of active protein kinases. Inactivity is accounted for by nonconservative substitution of almost all essential catalytic residues. We demonstrate that binding of ATP enhances the affinity of STRADalpha for MO25alpha, and conversely, binding of MO25alpha promotes interaction of STRADalpha with ATP. Mutagenesis studies reveal that association of STRADalpha with either ATP or MO25alpha is essential for LKB1 activation. We conclude that ATP and MO25alpha cooperate to maintain STRADalpha in an "active" closed conformation required for LKB1 activation. It has recently been demonstrated that a mutation in human STRADalpha that truncates a C-terminal region of the pseudokinase domain leads to the polyhydramnios, megalencephaly, symptomatic epilepsy (PMSE syndrome. We demonstrate this mutation destabilizes STRADalpha and prevents association with LKB1. In summary, our findings describe one of the first structures of a genuinely inactive pseudokinase. The ability of STRADalpha to activate LKB1 is dependent on a closed "active" conformation, aided by ATP and MO25alpha binding. Thus, the function of STRADalpha is mediated through an active kinase conformation rather than kinase activity. It is possible that other pseudokinases exert their function through nucleotide binding and active conformations.

  19. Identification and characterization of an alternative promoter of the human PGC-1{alpha} gene

    Energy Technology Data Exchange (ETDEWEB)

    Yoshioka, Toyo; Inagaki, Kenjiro [Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017 (Japan); Noguchi, Tetsuya, E-mail: noguchi@med.kobe-u.ac.jp [Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017 (Japan); Sakai, Mashito; Ogawa, Wataru; Hosooka, Tetsuya [Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017 (Japan); Iguchi, Haruhisa; Watanabe, Eijiro; Matsuki, Yasushi; Hiramatsu, Ryuji [Genomic Science Laboratories, DainipponSumitomo Pharma Co. Ltd., 4-2-1 Takatsukasa, Takarazuka 665-8555 (Japan); Kasuga, Masato [Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017 (Japan); Research Institute, International Medical Center of Japan, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655 (Japan)

    2009-04-17

    The transcriptional regulator peroxisome proliferator-activated receptor-{gamma} coactivator-1{alpha} (PGC-1{alpha}) controls mitochondrial biogenesis and energy homeostasis. Although physical exercise induces PGC-1{alpha} expression in muscle, the underlying mechanism of this effect has remained incompletely understood. We recently identified a novel muscle-enriched isoform of PGC-1{alpha} transcript (designated PGC-1{alpha}-b) that is derived from a previously unidentified first exon. We have now cloned and characterized the human PGC-1{alpha}-b promoter. The muscle-specific transcription factors MyoD and MRF4 transactivated this promoter through interaction with a proximal E-box motif. Furthermore, either forced expression of Ca{sup 2+}- and calmodulin-dependent protein kinase IV (CaMKIV), calcineurin A, or the p38 mitogen-activated protein kinase (p38 MAPK) kinase MKK6 or the intracellular accumulation of cAMP activated the PGC-1{alpha}-b promoter in cultured myoblasts through recruitment of cAMP response element (CRE)-binding protein (CREB) to a putative CRE located downstream of the E-box. Our results thus reveal a potential molecular basis for isoform-specific regulation of PGC-1{alpha} expression in contracting muscle.

  20. Comparative analysis of the ATRX promoter and 5' regulatory region reveals conserved regulatory elements which are linked to roles in neurodevelopment, alpha-globin regulation and testicular function

    Directory of Open Access Journals (Sweden)

    Argentaro Anthony

    2011-06-01

    Full Text Available Abstract Background ATRX is a tightly-regulated multifunctional protein with crucial roles in mammalian development. Mutations in the ATRX gene cause ATR-X syndrome, an X-linked recessive developmental disorder resulting in severe mental retardation and mild alpha-thalassemia with facial, skeletal and genital abnormalities. Although ubiquitously expressed the clinical features of the syndrome indicate that ATRX is not likely to be a global regulator of gene expression but involved in regulating specific target genes. The regulation of ATRX expression is not well understood and this is reflected by the current lack of identified upstream regulators. The availability of genomic data from a range of species and the very highly conserved 5' regulatory regions of the ATRX gene has allowed us to investigate putative transcription factor binding sites (TFBSs in evolutionarily conserved regions of the mammalian ATRX promoter. Results We identified 12 highly conserved TFBSs of key gene regulators involved in biologically relevant processes such as neural and testis development and alpha-globin regulation. Conclusions Our results reveal potentially important regulatory elements in the ATRX gene which may lead to the identification of upstream regulators of ATRX and aid in the understanding of the molecular mechanisms that underlie ATR-X syndrome.

  1. Cell Cycle Checkpoint Proteins p21 and Hus1 Regulating Intercellular Signaling Induced By Alpha Particle Irradiation

    Science.gov (United States)

    Wu, Lijun; Zhao, Ye; Wang, Jun; Hang, Haiying

    In recent years, the attentions for radiation induced bystander effects (RIBE) have been paid on the intercellular signaling events connecting the irradiated and non-irradiated cells. p21 is a member of the Cip/Kip family and plays essential roles in cell cycle progression arrest after cellular irradiation. DNA damage checkpoint protein Hus1 is a member of the Rad9-Rad1-Hus1 complex and functions as scaffold at the damage sites to facilitate the activation of downstream effectors. Using the medium trasfer method and the cells of MEF, MEF (p21-/-), MEF (p21-/-Hus1-/-) as either medium donor or receptor cells, it was found that with 5cGy alpha particle irradiation, the bystander cells showed a significant induction of -H2AX for normal MEFs (p¡0.05). However, the absence of p21 resulted in deficiency in inducing bystander effects. Further results indicated p21 affected the intercellular DNA damage signaling mainly through disrupting the production or release of the damage signals from irradiated cells. When Hus1 and p21 were both knocked out, an obvious induction of -H2AX recurred in bystander cells and the induction of -H2AX was GJIC (gap junction-mediated intercellular communication) dependent, indicating the interrelationship between p21 and Hus1 regulated the production and relay of DNA damage signals from irradiated cells to non-irradiated bystander cells.

  2. Three new alpha1-antitrypsin deficiency variants help to define a C-terminal region regulating conformational change and polymerization.

    Directory of Open Access Journals (Sweden)

    Anna M Fra

    Full Text Available Alpha1-antitrypsin (AAT deficiency is a hereditary disorder associated with reduced AAT plasma levels, predisposing adults to pulmonary emphysema. The most common genetic AAT variants found in patients are the mildly deficient S and the severely deficient Z alleles, but several other pathogenic rare alleles have been reported. While the plasma AAT deficiency is a common trait of the disease, only a few AAT variants, including the prototypic Z AAT and some rare variants, form cytotoxic polymers in the endoplasmic reticulum of hepatocytes and predispose to liver disease. Here we report the identification of three new rare AAT variants associated to reduced plasma levels and characterize their molecular behaviour in cellular models. The variants, called Mpisa (Lys259Ile, Etaurisano (Lys368Glu and Yorzinuovi (Pro391His, showed reduced secretion compared to control M AAT, and accumulated to different extents in the cells as ordered polymeric structures resembling those formed by the Z variant. Structural analysis of the mutations showed that they may facilitate polymerization both by loosening 'latch' interactions constraining the AAT reactive loop and through effects on core packing. In conclusion, the new AAT deficiency variants, besides increasing the risk of lung disease, may predispose to liver disease, particularly if associated with the common Z variant. The new mutations cluster structurally, thus defining a region of the AAT molecule critical for regulating its conformational state.

  3. Nuclear and Membrane Actions of Estrogen Receptor Alpha: Contribution to the Regulation of Energy and Glucose Homeostasis.

    Science.gov (United States)

    Guillaume, Maeva; Montagner, Alexandra; Fontaine, Coralie; Lenfant, Françoise; Arnal, Jean-François; Gourdy, Pierre

    2017-01-01

    Estrogen receptor alpha (ERα) has been demonstrated to play a key role in reproduction but also to exert numerous functions in nonreproductive tissues. Accordingly, ERα is now recognized as a key regulator of energy homeostasis and glucose metabolism and mediates the protective effects of estrogens against obesity and type 2 diabetes. This chapter attempts to summarize our current understanding of the mechanisms of ERα activation and their involvement in the modulation of energy balance and glucose metabolism. We first focus on the experimental studies that constitute the basis of the understanding of ERα as a nuclear receptor and more specifically on the key roles played by its two activation functions (AFs). We depict the consequences of the selective inactivation of these AFs in mouse models, which further underline the prominent role of nuclear ERα in the prevention of obesity and diabetes, as on the reproductive tract and the vascular system. Besides these nuclear actions, a fraction of ERα is associated with the plasma membrane and activates nonnuclear signaling from this site. Such rapid effects, called membrane-initiated steroid signals (MISS), have been characterized in a variety of cell lines and in particular in endothelial cells. The development of selective pharmacological tools that specifically activate MISS as well as the generation of mice expressing an ERα protein impeded for membrane localization has just begun to unravel the physiological role of MISS in vivo and their contribution to ERα-mediated metabolic protection. Finally, we discuss novel perspectives for the design of tissue-selective ER modulators.

  4. Antioxidants Abrogate Alpha-Tocopherylquinone-Mediated Down-Regulation of the Androgen Receptor in Androgen-Responsive Prostate Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Alexandra M Fajardo

    Full Text Available Tocopherylquinone (TQ, the oxidation product of alpha-tocopherol (AT, is a bioactive molecule with distinct properties from AT. In this study, AT and TQ are investigated for their comparative effects on growth and androgenic activity in prostate cancer cells. TQ potently inhibited the growth of androgen-responsive prostate cancer cell lines (e.g., LAPC4 and LNCaP cells, whereas the growth of androgen-independent prostate cancer cells (e.g., DU145 cells was not affected by TQ. Due to the growth inhibitory effects induced by TQ on androgen-responsive cells, the anti-androgenic properties of TQ were examined. TQ inhibited the androgen-induced activation of an androgen-responsive reporter and inhibited the release of prostate specific antigen from LNCaP cells. TQ pretreatment was also found to inhibit AR activation as measured using the Multifunctional Androgen Receptor Screening assay. Furthermore, TQ decreased androgen-responsive gene expression, including TM4SF1, KLK2, and PSA over 5-fold, whereas AT did not affect the expression of androgen-responsive genes. Of importance, the antiandrogenic effects of TQ on prostate cancer cells were found to result from androgen receptor protein down-regulation produced by TQ that was not observed with AT treatment. Moreover, none of the androgenic endpoints assessed were affected by AT. The down-regulation of androgen receptor protein by TQ was abrogated by co-treatment with antioxidants. Overall, the biological actions of TQ were found to be distinct from AT, where TQ was found to be a potent inhibitor of cell growth and androgenic activity in androgen-responsive prostate cancer cells.

  5. Addition of interferon-alpha to a standard maturation cocktail induces CD38 up-regulation and increases dendritic cell function

    DEFF Research Database (Denmark)

    Trepiakas, Redas; Pedersen, Anders Elm; Met, Ozcan

    2009-01-01

    and PGE(2) used for generating standard DCs (sDC). Several studies indicate that IFN-alpha might also be important for DC differentiation and maturation. In this study, we tested the effect of IFN-alpha alone or as addition to the gold standard sDC cocktail. We observed that maturation by IFN-alpha......Monocyte-derived dendritic cells (DCs) are used as adjuvant cells in cancer immunotherapy and have shown promising results. In order to obtain full functional capacity, these DCs need to be maturated, and the current "gold standard" for this process is maturation with TNF-alpha, IL-1beta, IL-6...... differs from sDC maturation: The major phenotypic change after IFN-alpha maturation was dose-dependent up-regulation of CD38 but not CD83, while sDCs expressed the opposite profile with low CD38 and high CD83 expression. Similarly, maturation by Poly I:C leads to CD38high, CD83low DCs indicating...

  6. The lipid kinase phosphatidylinositol-4 kinase III alpha regulates the phosphorylation status of hepatitis C virus NS5A.

    Directory of Open Access Journals (Sweden)

    Simon Reiss

    2013-05-01

    Full Text Available The lipid kinase phosphatidylinositol 4-kinase III alpha (PI4KIIIα is an essential host factor of hepatitis C virus (HCV replication. PI4KIIIα catalyzes the synthesis of phosphatidylinositol 4-phosphate (PI4P accumulating in HCV replicating cells due to enzyme activation resulting from its interaction with nonstructural protein 5A (NS5A. This study describes the interaction between PI4KIIIα and NS5A and its mechanistic role in viral RNA replication. We mapped the NS5A sequence involved in PI4KIIIα interaction to the carboxyterminal end of domain 1 and identified a highly conserved PI4KIIIα functional interaction site (PFIS encompassing seven amino acids, which are essential for viral RNA replication. Mutations within this region were also impaired in NS5A-PI4KIIIα binding, reduced PI4P levels and altered the morphology of viral replication sites, reminiscent to the phenotype observed by silencing of PI4KIIIα. Interestingly, abrogation of RNA replication caused by mutations in the PFIS correlated with increased levels of hyperphosphorylated NS5A (p58, indicating that PI4KIIIα affects the phosphorylation status of NS5A. RNAi-mediated knockdown of PI4KIIIα or pharmacological ablation of kinase activity led to a relative increase of p58. In contrast, overexpression of enzymatically active PI4KIIIα increased relative abundance of basally phosphorylated NS5A (p56. PI4KIIIα therefore regulates the phosphorylation status of NS5A and viral RNA replication by favoring p56 or repressing p58 synthesis. Replication deficiencies of PFIS mutants in NS5A could not be rescued by increasing PI4P levels, but by supplying functional NS5A, supporting an essential role of PI4KIIIα in HCV replication regulating NS5A phosphorylation, thereby modulating the morphology of viral replication sites. In conclusion, we demonstrate that PI4KIIIα activity affects the NS5A phosphorylation status. Our results highlight the importance of PI4KIIIα in the morphogenesis

  7. The conserved basic residues and the charged amino acid residues at the α-helix of the zinc finger motif regulate the nuclear transport activity of triple C2H2 zinc finger proteins

    Science.gov (United States)

    Lin, Chih-Ying

    2018-01-01

    Zinc finger (ZF) motifs on proteins are frequently recognized as a structure for DNA binding. Accumulated reports indicate that ZF motifs contain nuclear localization signal (NLS) to facilitate the transport of ZF proteins into nucleus. We investigated the critical factors that facilitate the nuclear transport of triple C2H2 ZF proteins. Three conserved basic residues (hot spots) were identified among the ZF sequences of triple C2H2 ZF proteins that reportedly have NLS function. Additional basic residues can be found on the α-helix of the ZFs. Using the ZF domain (ZFD) of Egr-1 as a template, various mutants were constructed and expressed in cells. The nuclear transport activity of various mutants was estimated by analyzing the proportion of protein localized in the nucleus. Mutation at any hot spot of the Egr-1 ZFs reduced the nuclear transport activity. Changes of the basic residues at the α-helical region of the second ZF (ZF2) of the Egr-1 ZFD abolished the NLS activity. However, this activity can be restored by substituting the acidic residues at the homologous positions of ZF1 or ZF3 with basic residues. The restored activity dropped again when the hot spots at ZF1 or the basic residues in the α-helix of ZF3 were mutated. The variations in nuclear transport activity are linked directly to the binding activity of the ZF proteins with importins. This study was extended to other triple C2H2 ZF proteins. SP1 and KLF families, similar to Egr-1, have charged amino acid residues at the second (α2) and the third (α3) positions of the α-helix. Replacing the amino acids at α2 and α3 with acidic residues reduced the NLS activity of the SP1 and KLF6 ZFD. The reduced activity can be restored by substituting the α3 with histidine at any SP1 and KLF6 ZFD. The results show again the interchangeable role of ZFs and charge residues in the α-helix in regulating the NLS activity of triple C2H2 ZF proteins. PMID:29381770

  8. The conserved basic residues and the charged amino acid residues at the α-helix of the zinc finger motif regulate the nuclear transport activity of triple C2H2 zinc finger proteins.

    Science.gov (United States)

    Lin, Chih-Ying; Lin, Lih-Yuan

    2018-01-01

    Zinc finger (ZF) motifs on proteins are frequently recognized as a structure for DNA binding. Accumulated reports indicate that ZF motifs contain nuclear localization signal (NLS) to facilitate the transport of ZF proteins into nucleus. We investigated the critical factors that facilitate the nuclear transport of triple C2H2 ZF proteins. Three conserved basic residues (hot spots) were identified among the ZF sequences of triple C2H2 ZF proteins that reportedly have NLS function. Additional basic residues can be found on the α-helix of the ZFs. Using the ZF domain (ZFD) of Egr-1 as a template, various mutants were constructed and expressed in cells. The nuclear transport activity of various mutants was estimated by analyzing the proportion of protein localized in the nucleus. Mutation at any hot spot of the Egr-1 ZFs reduced the nuclear transport activity. Changes of the basic residues at the α-helical region of the second ZF (ZF2) of the Egr-1 ZFD abolished the NLS activity. However, this activity can be restored by substituting the acidic residues at the homologous positions of ZF1 or ZF3 with basic residues. The restored activity dropped again when the hot spots at ZF1 or the basic residues in the α-helix of ZF3 were mutated. The variations in nuclear transport activity are linked directly to the binding activity of the ZF proteins with importins. This study was extended to other triple C2H2 ZF proteins. SP1 and KLF families, similar to Egr-1, have charged amino acid residues at the second (α2) and the third (α3) positions of the α-helix. Replacing the amino acids at α2 and α3 with acidic residues reduced the NLS activity of the SP1 and KLF6 ZFD. The reduced activity can be restored by substituting the α3 with histidine at any SP1 and KLF6 ZFD. The results show again the interchangeable role of ZFs and charge residues in the α-helix in regulating the NLS activity of triple C2H2 ZF proteins.

  9. Human EGF-derived direct and reverse short linear motifs: conformational dynamics insight into the receptor-binding residues.

    Science.gov (United States)

    Moldogazieva, Nurbubu T; Shaitan, Konstantin V; Antonov, Mikhail Yu; Mokhosoev, Innokenty M; Levtsova, Olga V; Terentiev, Alexander A

    2018-04-01

    Short linear motifs (SLiMs) have been recognized to perform diverse functions in a variety of regulatory proteins through the involvement in protein-protein interactions, signal transduction, cell cycle regulation, protein secretion, etc. However, detailed molecular mechanisms underlying their functions including roles of definite amino acid residues remain obscure. In our previous studies, we demonstrated that conformational dynamics of amino acid residues in oligopeptides derived from regulatory proteins such as alpha-fetoprotein (AFP), carcino-embryonic antigen (CEA), and pregnancy specific β1-glycoproteins (PSGs) contributes greatly to their biological activities. In the present work, we revealed the 22-member linear modules composed of direct and reverse AFP 14-20 -like heptapeptide motifs linked by CxxGY/FxGx consensus motif within epidermal growth factor (EGF), growth factors of EGF family and numerous regulatory proteins containing EGF-like modules. We showed, first, the existence of similarity in amino acid signatures of both direct and reverse motifs in terms of their physicochemical properties. Second, molecular dynamics (MD) simulation study demonstrated that key receptor-binding residues in human EGF in the aligned positions of the direct and reverse motifs may have similar distribution of conformational probability densities and dynamic behavior despite their distinct physicochemical properties. Third, we found that the length of a polypeptide chain (from 7 to 53 residues) has no effect, while disulfide bridging and backbone direction significantly influence the conformational distribution and dynamics of the residues. Our data may contribute to the atomic level structure-function analysis and protein structure decoding; additionally, they may provide a basis for novel protein/peptide engineering and peptide-mimetic drug design.

  10. Toxic effects of zearalenone and alpha-zearalenol on the regulation of steroidogenesis and testosterone production in mouse Leydig cells.

    Science.gov (United States)

    Yang, Jianying; Zhang, Yongfa; Wang, Yongqiang; Cui, Sheng

    2007-06-01

    Zearalenone (ZEA) and its derivative alpha-zearalenol (alpha-ZOL) are produced by fungi of the genus Fusarium and, after ingestion via contaminated cereals, may lead to animal fertility disturbances and other reproductive pathologies. The previous study demonstrated the toxic effects of ZEA and alpha-ZOL through disturbances in male fertility and other reproductive pathologies in mice. In this study, we further examined the direct biological effects of ZEA and alpha-ZOL on steroidogenesis production, primarily in Leydig cells of mice. Mature mouse Leydig cells were purified by Percoll gradient centrifugation and the cell purity was determined by 3beta-hydroxysteroid dehydrogenase (3beta-HSD) staining. To examine ZEA and alpha-ZOL-induced biological consequences, we measured testosterone secretion and transcription level of 3 key steroidogenic enzymes including 3beta-HSD-1, P450scc and StAR, in ZEA and alpha-ZOL/human chorionicgonadotropin (hCG) co-treated cells. Our results showed that ZEA and alpha-ZOL (10(-4) M, 10(-6) M and 10(-8) M) significantly suppressed hCG (10 ng/ml)-induced testosterone secretion. The suppressive effect is correlated with a decrease in the level of transcription of 3beta-HSD-1, P450scc, and StAR (P<0.05).

  11. DMINDA: an integrated web server for DNA motif identification and analyses.

    Science.gov (United States)

    Ma, Qin; Zhang, Hanyuan; Mao, Xizeng; Zhou, Chuan; Liu, Bingqiang; Chen, Xin; Xu, Ying

    2014-07-01

    DMINDA (DNA motif identification and analyses) is an integrated web server for DNA motif identification and analyses, which is accessible at http://csbl.bmb.uga.edu/DMINDA/. This web site is freely available to all users and there is no login requirement. This server provides a suite of cis-regulatory motif analysis functions on DNA sequences, which are important to elucidation of the mechanisms of transcriptional regulation: (i) de novo motif finding for a given set of promoter sequences along with statistical scores for the predicted motifs derived based on information extracted from a control set, (ii) scanning motif instances of a query motif in provided genomic sequences, (iii) motif comparison and clustering of identified motifs, and (iv) co-occurrence analyses of query motifs in given promoter sequences. The server is powered by a backend computer cluster with over 150 computing nodes, and is particularly useful for motif prediction and analyses in prokaryotic genomes. We believe that DMINDA, as a new and comprehensive web server for cis-regulatory motif finding and analyses, will benefit the genomic research community in general and prokaryotic genome researchers in particular. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  12. Casein kinase 1 alpha regulates chromosome congression and separation during mouse oocyte meiotic maturation and early embryo development.

    Directory of Open Access Journals (Sweden)

    Lu Wang

    Full Text Available Casein kinase I alpha (CK1α is a member of serine/threonine protein kinase, generally present in all eukaryotes. In mammals, CK1α regulates the transition from interphase to metaphase in mitosis. However, little is known about its role in meiosis. Here we examined Ck1α mRNA and protein expression, as well as its subcellular localization in mouse oocytes from germinal vesicle to the late 1-cell stage. Our results showed that the expression level of CK1α was increased in metaphase. Immunostaining results showed that CK1α colocalized with condensed chromosomes during oocyte meiotic maturation and early embryo development. We used the loss-of-function approach by employing CK1α specific morpholino injection to block the function of CK1α. This functional blocking leads to failure of polar body 1 (PB1 extrusion, chromosome misalignment and MII plate incrassation. We further found that D4476, a specific and efficient CK1 inhibitor, decreased the rate of PB1 extrusion. Moreover, D4476 resulted in giant polar body extrusion, oocyte pro-MI arrest, chromosome congression failure and impairment of embryo developmental potential. In addition, we employed pyrvinium pamoate (PP, an allosteric activator of CK1α, to enhance CK1α activity in oocytes. Supplementation of PP induced oocyte meiotic maturation failure, severe congression abnormalities and misalignment of chromosomes. Taken together, our study for the first time demonstrates that CK1α is required for chromosome alignment and segregation during oocyte meiotic maturation and early embryo development.

  13. Aortic barodenervation up-regulates {alpha}{sub 2}-adrenoceptors in the nucleus tractus solitarius and rostral ventrolateral medulla: an autoradiographic study

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Rahman, A.A.; El-Mas, M.M. [Department of Pharmacology, School of Medicine, East Carolina, University Greenville, NC (United States)

    1997-05-12

    medulla (350{+-}67 vs 194{+-}35 fmol/mg protein) compared with sham-operated rats; no significant changes occurred in the rostral nucleus tractus solitarius. The affinity of {alpha}{sub 2} binding sites was not changed by aortic barodenervation in any of the three brain regions.These findings suggest that attenuation of baroreflexes produced by aortic barodenervation coincides with up-regulation of {alpha}{sub 2}-adrenoceptors in brainstem areas that play critical roles in the control of cardiovascular functions. (Copyright (c) 1997 Elsevier Science B.V., Amsterdam. All rights reserved.)

  14. Annotating RNA motifs in sequences and alignments.

    Science.gov (United States)

    Gardner, Paul P; Eldai, Hisham

    2015-01-01

    RNA performs a diverse array of important functions across all cellular life. These functions include important roles in translation, building translational machinery and maturing messenger RNA. More recent discoveries include the miRNAs and bacterial sRNAs that regulate gene expression, the thermosensors, riboswitches and other cis-regulatory elements that help prokaryotes sense their environment and eukaryotic piRNAs that suppress transposition. However, there can be a long period between the initial discovery of a RNA and determining its function. We present a bioinformatic approach to characterize RNA motifs, which are critical components of many RNA structure-function relationships. These motifs can, in some instances, provide researchers with functional hypotheses for uncharacterized RNAs. Moreover, we introduce a new profile-based database of RNA motifs--RMfam--and illustrate some applications for investigating the evolution and functional characterization of RNA. All the data and scripts associated with this work are available from: https://github.com/ppgardne/RMfam. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  15. A Role for the Androgen Metabolite, 5alpha androstane, 3beta, 17beta Diol (3b-DIol in the regulation of the hypothalamo-pituitary-adrenal axis.

    Directory of Open Access Journals (Sweden)

    Robert James Handa

    2011-11-01

    Full Text Available Activation of the hypothalamo-pituitary-adrenal (HPA axis is a basic reaction of animals to environmental perturbations that threaten homeostasis. These responses are ultimately regulated by neurons residing within the paraventricular nucleus of the hypothalamus (PVN. Within the PVN, corticotropin-releasing hormone (CRH, vasopressin (AVP and oxytocin (OT expressing neurons are critical as they can regulate both neuroendocrine and autonomic responses. Estradiol (E2 and testosterone (T are well known reproductive hormones, however, they have also been shown to modulate stress reactivity. In rodent models, evidence shows that under some conditions E2 enhances stress activated ACTH and corticosterone secretion. In contrast, T decreases the gain of the HPA axis. The modulatory role of testosterone was originally thought to be via 5 alpha reduction to the potent androgen, dihydrotestosterone, whereas E2 effects were thought to be mediated by both estrogen receptors alpha (ERα and beta (ERβ. However, DHT has been shown to be metabolized to the ERβ agonist, 5alpha- androstane 3beta,17beta diol (3b-Diol. The actions of 3β-Diol on the HPA axis are mediated by ERbeta which inhibits the PVN response to stressors. In gonadectomized rats, ERbeta agonists reduce CORT and ACTH responses to restraint stress, an effect that is also present in wild-type but not ERbeta knockout mice. The neurobiological mechanisms underlying the actions of ERbeta to alter HPA reactivity are not currently known. CRH, AVP and OT have all been shown to be regulated by estradiol and recent studies indicate an important role of ERbeta in these regulatory processes. Moreover, activation of the CRH and AVP promoters have been shown by 3β-Diol binding to ERbeta and this is thought to be through alternate pathways of gene regulation. Based on available data, a novel and important role for 3beta Diol in the regulation of the HPA axis is suggested.

  16. Motif discovery in ranked lists of sequences

    DEFF Research Database (Denmark)

    Nielsen, Morten Muhlig; Tataru, Paula; Madsen, Tobias

    2016-01-01

    a growing need for motif analysis methods that can exploit this coupled data structure and be tailored for specific biological questions. Here, we present an exploratory motif analysis tool, Regmex (REGular expression Motif EXplorer), which offers several methods to evaluate the correlation of motifs....... These features make Regmex well suited for a range of biological sequence analysis problems related to motif discovery, exemplified by microRNA seed enrichment, but also including enrichment problems involving complex motifs and combinations of motifs. We demonstrate a number of usage scenarios that take...

  17. Down-regulation of monocyte functions by treatment of healthy adults with 1 alpha,25 dihydroxyvitamin D3

    DEFF Research Database (Denmark)

    Müller, K; Gram, J; Bollerslev, J

    1991-01-01

    A number of in vitro studies suggest an immunoregulatory role of 1 alpha,25 Dihydroxyvitamin D3 (1,25-(OH)2D3). The hormone inhibits production of interleukin-2 and immunoglobulin, and it blocks lymphocyte proliferation. Diverse effects on monocyte functions have been reported. However......, immunological effects of 1,25-(OH)2D3 have not been substantiated in vivo. Six healthy male volunteers, aged 28-45 yr, were treated orally with 1,25-(OH)2D3 (tabl. Rocaltrol), 1 microgram twice daily for 7 days. Blood and urine samples were collected before and 7 days after initiation of treatment. Blood...... mononuclear cells from individuals treated with 1,25-(OH)2D3 showed a significantly reduced production of both interleukin-1 alpha (45%) and tumor necrosis factor-alpha (58%) (both measured by ELISA). Interleukin-6, production, measured by the B9 cell assay, was reduced in five individuals (78...

  18. Effects of the mycotoxins alpha- and beta-zearalenol on regulation of progesterone synthesis in cultured granulosa cells from porcine ovaries.

    Science.gov (United States)

    Tiemann, U; Tomek, W; Schneider, F; Vanselow, J

    2003-01-01

    Mycotoxins as contaminants of animal food can impair fertility and can cause abnormal fetal development in farm animals. Therefore, the present study has investigated whether derivatives of the mycotoxin zearalenone, alpha-zearalenol (alpha-ZOL) and beta-zearalenol (beta-ZOL), influence progesterone synthesis via cytochrome p450 side chain cleavage enzyme (p450scc) and 3beta-hydroxysteroid dehydrogenase/isomerase (3beta-HSD) in cultured porcine granulosa cells. Both enzymes are essential for the conversion of cholesterol to progesterone. No differences in basal progesterone levels and numbers of viable cell were observed between untreated granulosa cells and those treated with alpha- or beta-ZOL (15 and 30 microM). FSH (0.01 microg/ml) or forskolin (10 microM) enhanced the basal progesterone secretion in the absence of mycotoxins. The addition of alpha- or beta-ZOL (7.5, 15 and 30 microM) to cultures stimulated with FSH (0.01 microg) or forskolin (10 microM) reduced progesterone synthesis and the levels of p450scc and 3beta-HSD transcripts in a dose-dependent manner (P<0.05). The enzymatic activity of 3beta-HSD and the abundance of p450scc protein were also reduced by these mycotoxins. In conclusion, effects of mycotoxins on FSH receptor-dependent and receptor-independent pathways indicate that adenylate cyclase activity and/or regulatory pathways further downstream are targets of mycotoxin actions. The apparent dose-dependent reduction of p450scc and 3beta-HSD transcripts implies an effect of alpha- and beta-ZOL on transcriptional regulation of these enzymes.

  19. Nkx6.1 and nkx6.2 regulate alpha- and beta-cell formation in zebrafish by acting on pancreatic endocrine progenitor cells.

    Science.gov (United States)

    Binot, A-C; Manfroid, I; Flasse, L; Winandy, M; Motte, P; Martial, J A; Peers, B; Voz, M L

    2010-04-15

    In mice, the Nkx6 genes are crucial to alpha- and beta-cell differentiation, but the molecular mechanisms by which they regulate pancreatic subtype specification remain elusive. Here it is shown that in zebrafish, nkx6.1 and nkx6.2 are co-expressed at early stages in the first pancreatic endocrine progenitors, but that their expression domains gradually segregate into different layers, nkx6.1 being expressed ventrally with respect to the forming islet while nkx6.2 is expressed mainly in beta-cells. Knockdown of nkx6.2 or nkx6.1 expression leads to nearly complete loss of alpha-cells but has no effect on beta-, delta-, or epsilon-cells. In contrast, nkx6.1/nkx6.2 double knockdown leads additionally to a drastic reduction of beta-cells. Synergy between the effects of nkx6.1 and nkx6.2 knockdown on both beta- and alpha-cell differentiation suggests that nkx6.1 and nkx6.2 have the same biological activity, the required total nkx6 threshold being higher for alpha-cell than for beta-cell differentiation. Finally, we demonstrate that the nkx6 act on the establishment of the pancreatic endocrine progenitor pool whose size is correlated with the total nkx6 expression level. On the basis of our data, we propose a model in which nkx6.1 and nkx6.2, by allowing the establishment of the endocrine progenitor pool, control alpha- and beta-cell differentiation. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  20. [IMPACT OF INDIVIDUAL PERSONALITY FEATURES ON ABILITY TO VOLUNTARY REGULATION OF EXPRESSION EEG ALPHA AND BETA FREQUENCIES].

    Science.gov (United States)

    Aslanyan, E V; Kiroy, V N; Stoletniy, A S; Lazurenko, D M; Bahtin, O M; Minyaeva, N R; Kiroy, R I

    2015-05-01

    The ability to voluntary control severity of alpha- and beta-2 frequency bands in the parietal and frontal cortical areas was investigated at 17 volunteers using biofeedback. The impact of different personality traits on the effectiveness of control was evaluated. According to the data, it was easier task to decrease expression beta-2 frequency in the frontal cortex than to decline the power of alpha frequency in the parietal cortex. The effectiveness of voluntary control of brain activity is influenced by personality features as extraversion, psychoticism, neuroticism, mobility and steadiness of nerve processes, level of person anxiety.

  1. Small yet effective: The Ethylene-responsive element binding factor-associated Amphiphilic Repression (EAR) motif

    OpenAIRE

    Kagale, Sateesh; Rozwadowski, Kevin

    2010-01-01

    The Ethylene-responsive element binding factor-associated Amphiphilic Repression (EAR) motif is a small yet distinct regulatory motif that is conserved in many plant transcriptional regulator (TR) proteins associated with diverse biological functions. We have previously established a list of high-confidence Arabidopsis EAR repressors, the EAR repressome, comprising 219 TRs belonging to 21 different TR families. This class of proteins and the sequence context of the EAR motif exhibited a high ...

  2. Peroxisome Proliferator-Activated Receptor-alpha Is a Functional Target of p63 in Adult Human Keratinocytes

    DEFF Research Database (Denmark)

    Pozzi, Silvia; Boergesen, Michael; Sinha, Satrajit

    2009-01-01

    of a recognizable p63-binding motif, suggesting that it acts through interactions with other transcription factors (TFs). Distinct PPARalpha transcripts are differentially regulated by p63, indicating a bimodal action in promoter and/or transcription start specification. PPARalpha repression is consistent with lack...... of expression in the interfollicular epidermis under physiological conditions. Furthermore, we show that PPARalpha is a negative regulator of DeltaNp63alpha levels and that it also binds to a functional region of the DeltaNp63 promoter that lacks PPRE motifs. Therefore, the reciprocal regulation is exerted...... either through binding to non-consensus sites or through interactions with other DNA-bound TFs. In conclusion, our data establish a link between two TFs intimately involved in the maintenance of skin homeostatic conditions.Journal of Investigative Dermatology advance online publication, 21 May 2009; doi...

  3. Unravelling daily human mobility motifs.

    Science.gov (United States)

    Schneider, Christian M; Belik, Vitaly; Couronné, Thomas; Smoreda, Zbigniew; González, Marta C

    2013-07-06

    Human mobility is differentiated by time scales. While the mechanism for long time scales has been studied, the underlying mechanism on the daily scale is still unrevealed. Here, we uncover the mechanism responsible for the daily mobility patterns by analysing the temporal and spatial trajectories of thousands of persons as individual networks. Using the concept of motifs from network theory, we find only 17 unique networks are present in daily mobility and they follow simple rules. These networks, called here motifs, are sufficient to capture up to 90 per cent of the population in surveys and mobile phone datasets for different countries. Each individual exhibits a characteristic motif, which seems to be stable over several months. Consequently, daily human mobility can be reproduced by an analytically tractable framework for Markov chains by modelling periods of high-frequency trips followed by periods of lower activity as the key ingredient.

  4. Down-regulation of monocyte functions by treatment of healthy adults with 1 alpha,25 dihydroxyvitamin D3

    DEFF Research Database (Denmark)

    Müller, K; Gram, J; Bollerslev, J

    1991-01-01

    A number of in vitro studies suggest an immunoregulatory role of 1 alpha,25 Dihydroxyvitamin D3 (1,25-(OH)2D3). The hormone inhibits production of interleukin-2 and immunoglobulin, and it blocks lymphocyte proliferation. Diverse effects on monocyte functions have been reported. However, immunolog...

  5. Activity of interferon alpha, interleukin 6 and insulin in the regulation of differentiation in A549 alveolar carcinoma cells.

    Science.gov (United States)

    McCormick, C; Freshney, R I; Speirs, V

    1995-02-01

    The differentiation of A549, a human tumour cell line from type II pneumocytes, can be induced by a crude fibroblast-derived factor (FDF) isolated from the conditioned medium of glucocorticoid-treated lung fibroblasts. In the present report, we have used alkaline phosphatase as a differentiation marker to investigate the activity of a number of growth factors as potential candidates for this paracrine activity. This showed that insulin, interleukin 6 (IL-6), and interferon alpha (IFN-alpha) could simulate the activity of conditioned medium. Their effects were dexamethasone (DX) dependent, additive and reversible with a half-life of 1 week. Transforming growth factor alpha and beta, IL-1 alpha and epidermal growth factor, were all inhibitory, and inhibition was opposed, partially or completely, by DX. The most potent inducer was IL-6, but as DX was shown to decrease the concentration of IL-6 in lung fibroblast-conditioned medium it seems an unlikely candidate for FDF. Unlike FDF, all of the positive-acting factors were shown to induce plasminogen activator. FDF has also been shown to be active in the absence of DX. This suggests that differentiation-inducing activity may be present in several paracrine factors, but that so far a candidate for FDF has not been identified.

  6. Importance of Alpha-adrenergic Receptor Subtypes in Regulating of Airways Tonus at Patients with Bronchial Asthma.

    Science.gov (United States)

    Islami, Pellumb; Ilazi, Ali; Jakupi, Arianit; Bexheti, Sadi; Islami, Hilmi

    2014-06-01

    In this work, effect of Tamsulosin hydrochloride as antagonist of alpha1A and alpha1B- adrenergic receptor and effect of Salbutamol as agonist of beta2- adrenergic receptor in patients with bronchial asthma and increased bronchial reactibility was studied. Parameters of the lung function are determined by Body plethysmography. Raw and ITGV were registered and specific resistance (SRaw) was also calculated. Tamsulosin was administered in per os way as a preparation in the form of the capsules with a brand name of "Prolosin", producer: Niche Generics Limited, Hitchin, Herts. Results gained from this research show that blockage of alpha1A and alpha1B- adrenergic receptor with Tamsulosin hydrochloride (0.4 mg and 0.8 mg in per os way) has not changed significantly (p > 0.1) the bronchomotor tonus of tracheobronchial tree in comparison to the inhalation of Salbutamol as agonist of beta2- adrenergic receptor (2 inh. x 0.2 mg), (p mechanism which causes reaction in patients with increased bronchial reactibility, in comparison to agonists of beta2 - adrenergic receptor which emphasizes their significant action in the reduction of specific resistance of airways.

  7. GABA regulates the rat hypothalamic-pituitary-adrenocortical axis via different GABA-A receptor alpha-subtypes

    DEFF Research Database (Denmark)

    Mikkelsen, Jens D; Bundzikova, Jana; Larsen, Marianne Hald

    2008-01-01

    dependent on the composition of the GABA-A receptor subunits through which they act. We show here that positive modulators of alpha(1)-subtype containing GABA-A receptors with zolpidem (10 mg/kg) increase HPA activity in terms of increase in plasma corticosterone and induction of Fos in the PVN, whereas...

  8. alpha2 adrenoceptors are involved in the regulation of the gripping-induced immobility episodes in taiep rats.

    Science.gov (United States)

    Eguibar, José R; Cortés, Ma Del Carmen; Valencia, Jaime; Arias-Montaño, José A

    2006-10-01

    In 1989 Holmgren et al. (Holmgren et al. 1989 Lab Anim Sci 39:226-228) described a new mutant rat that developed a progressive motor disturbance during its lifespan. The syndrome is characterized by a tremor in the hind limbs followed by ataxia, episodes of tonic immobility, epilepsy, and paralysis. The acronym of these symptoms (taiep) became the name of this autosomic, recessive mutant rat. The taiep rats are neurological mutant animals with a hypomyelination, followed by a progressive demyelination process. At 7-8 months of age, taiep rats develop immobility episodes (IEs) characterized by a cortical desynchronization, associated with the theta rhythm in the hippocampus and changes of the nucal electromyogram (EMG), whose pattern is like rapid-eye-movement (REM) sleep. These rats also show an altered sleep pattern with an equal REM sleep distribution. This study analyzed therole of alpha(2) adrenoceptors in the expression of gripping-induced IEs in 8-month-old male taiep rats. The alpha(2) adrenoceptor agonists clonidine and xylacine increased the frequency of gripping-induced IEs whereas the alpha(2) antagonists yohimbine and idazoxandecreased or prevented such episodes. These findings correlate with the pharmacological observations in narcoleptic dogs and humans in which alpha(2) adrenergic mechanisms are involved in the modulation of cataplexy. Unexpectedly, the repetitive administration of clonidine resulted in jumping behavior, indicative of phasic activation of extensor musculature. Taken together, our results show that alpha(2) adrenoceptors are involved in the modulation in gripping-induced IEs and after the administration of several doses of clonidine produced phasic motor activation.

  9. Prostate-derived sterile 20-like kinase 1-alpha induces apoptosis. JNK- and caspase-dependent nuclear localization is a requirement for membrane blebbing.

    Science.gov (United States)

    Zihni, Ceniz; Mitsopoulos, Costas; Tavares, Ignatius A; Baum, Buzz; Ridley, Anne J; Morris, Jonathan D H

    2007-03-02

    We have demonstrated previously that full-length prostate-derived sterile 20-like kinase 1-alpha (PSK1-alpha) binds to microtubules via its C terminus and regulates their organization and stability independently of its catalytic activity. Here we have shown that apoptotic and microtubule-disrupting agents promote catalytic activation, C-terminal cleavage, and nuclear translocation of endogenous phosphoserine 181 PSK1-alpha and activated N-terminal PSK1-alpha-induced apoptosis. PSK1-alpha, unlike its novel isoform PSK1-beta, stimulated the c-Jun N-terminal kinase (JNK) pathway, and the nuclear localization of PSK1-alpha and its induction of cell contraction, membrane blebbing, and apoptotic body formation were dependent on JNK activity. PSK1-alpha was also a caspase substrate, and the broad spectrum caspase inhibitor benzyloxycarbonyl-VAD-fluoromethyl ketone or mutation of a putative caspase recognition motif ((916)DPGD(919)) blocked nuclear localization of PSK1-alpha and its induction of membrane blebs. Additional inhibition of caspase 9 was needed to prevent cell contraction. PSK1-alpha is therefore a bifunctional kinase that associates with microtubules, and JNK- and caspase-mediated removal of its C-terminal microtubule-binding domain permits nuclear translocation of the N-terminal region of PSK1-alpha and its induction of apoptosis.

  10. Motif signatures of transcribed enhancers

    KAUST Repository

    Kleftogiannis, Dimitrios

    2017-09-14

    In mammalian cells, transcribed enhancers (TrEn) play important roles in the initiation of gene expression and maintenance of gene expression levels in spatiotemporal manner. One of the most challenging questions in biology today is how the genomic characteristics of enhancers relate to enhancer activities. This is particularly critical, as several recent studies have linked enhancer sequence motifs to specific functional roles. To date, only a limited number of enhancer sequence characteristics have been investigated, leaving space for exploring the enhancers genomic code in a more systematic way. To address this problem, we developed a novel computational method, TELS, aimed at identifying predictive cell type/tissue specific motif signatures. We used TELS to compile a comprehensive catalog of motif signatures for all known TrEn identified by the FANTOM5 consortium across 112 human primary cells and tissues. Our results confirm that distinct cell type/tissue specific motif signatures characterize TrEn. These signatures allow discriminating successfully a) TrEn from random controls, proxy of non-enhancer activity, and b) cell type/tissue specific TrEn from enhancers expressed and transcribed in different cell types/tissues. TELS codes and datasets are publicly available at http://www.cbrc.kaust.edu.sa/TELS.

  11. DNA regulatory motif selection based on support vector machine ...

    African Journals Online (AJOL)

    Conserved DNA sequences are essential to investigate the regulation and expression of nearby genes. The conserved regions can interact with certain proteins and can potentially determine the transcription speed and amount of the corresponding mRNA in gene replication process. In this paper, motifs of coexpressed ...

  12. Identification of a novel human glucagon receptor promoter: regulation by cAMP and PGC-1alpha

    DEFF Research Database (Denmark)

    Mortensen, Ole Hartvig; Dichmann, Darwin Sorento; Abrahamsen, Niels

    2007-01-01

    the promoter regions of the human glucagon receptor gene. Primer extension studies yielded multiple products in both liver and pancreas, corresponding to transcription start sites situated at -166 and -477 relative to the start of translation, indicating two putative promoters. Both transcription start sites...... between 1051 and 1016 base pairs upstream of the transcription start site, which contains several putative cAMP responsive elements. Expression of peroxisome proliferator-activated receptor gamma coactivator 1alpha (PGC-1alpha), known to be upregulated in the liver by fasting, was found to abolish the c......AMP-dependent downregulation of glucagon receptor mRNA expression in vitro, whereas overexpression of PGC-1beta had no effect....

  13. A Role for Protein Phosphatase 2A in Regulating p38 Mitogen Activated Protein Kinase Activation and Tumor Necrosis Factor-Alpha Expression during Influenza Virus Infection

    Directory of Open Access Journals (Sweden)

    Anna H. Y. Law

    2013-04-01

    Full Text Available Influenza viruses of avian origin continue to pose pandemic threats to human health. Some of the H5N1 and H9N2 virus subtypes induce markedly elevated cytokine levels when compared with the seasonal H1N1 virus. We previously showed that H5N1/97 hyperinduces tumor necrosis factor (TNF-alpha through p38 mitogen activated protein kinase (MAPK. However, the detailed mechanisms of p38MAPK activation and TNF-alpha hyperinduction following influenza virus infections are not known. Negative feedback regulations of cytokine expression play important roles in avoiding overwhelming production of proinflammatory cytokines. Here we hypothesize that protein phosphatases are involved in the regulation of cytokine expressions during influenza virus infection. We investigated the roles of protein phosphatases including MAPK phosphatase-1 (MKP-1 and protein phosphatase type 2A (PP2A in modulating p38MAPK activation and downstream TNF-alpha expressions in primary human monocyte-derived macrophages (PBMac infected with H9N2/G1 or H1N1 influenza virus. We demonstrate that H9N2/G1 virus activated p38MAPK and hyperinduced TNF-alpha production in PBMac when compared with H1N1 virus. H9N2/G1 induced PP2A activity in PBMac and, with the treatment of a PP2A inhibitor, p38MAPK phosphorylation and TNF-alpha production were further increased in the virus-infected macrophages. However, H9N2/G1 did not induce the expression of PP2A indicating that the activation of PP2A is not mediated by p38MAPK in virus-infected PBMac. On the other hand, PP2A may not be the targets of H9N2/G1 in the upstream of p38MAPK signaling pathways since H1N1 also induced PP2A activation in primary macrophages. Our results may provide new insights into the control of cytokine dysregulation.

  14. Importance of the alphaC-helix in the cyclic nucleotide binding domain for the stable channel regulation and function of cyclic nucleotide gated ion channels in Arabidopsis.

    Science.gov (United States)

    Chin, Kimberley; Moeder, Wolfgang; Abdel-Hamid, Huda; Shahinas, Dea; Gupta, Deepali; Yoshioka, Keiko

    2010-05-01

    The involvement of cyclic nucleotide gated ion channels (CNGCs) in the signal transduction of animal light and odorant perception is well documented. Although plant CNGCs have recently been revealed to mediate multiple stress responses and developmental pathways, studies that aim to elucidate their structural and regulatory properties are still very much in their infancy. The structure-function relationship of plant CNGCs was investigated here by using the chimeric Arabidopsis AtCNGC11/12 gene that induces multiple defence responses in the Arabidopsis mutant constitutive expresser of PR genes 22 (cpr22) for the identification of functionally essential residues. A genetic screen for mutants that suppress cpr22-conferred phenotypes identified over 20 novel mutant alleles in AtCNGC11/12. One of these mutants, suppressor S58 possesses a single amino acid substitution, arginine 557 to cysteine, in the alphaC-helix of the cyclic nucleotide-binding domain (CNBD). The suppressor S58 lost all cpr22 related phenotypes, such as spontaneous cell death formation under ambient temperature conditions. However, these phenotypes were recovered at 16 degrees C suggesting that the stability of channel function is affected by temperature. In silico modelling and site-directed mutagenesis analyses suggest that arginine 557 in the alphaC-helix of the CNBD is important for channel regulation, but not for basic function. Furthermore, another suppressor mutant, S136 that lacks the entire alphaC-helix due to a premature stop codon, lost channel function completely. Our data presented here indicate that the alphaC-helix is functionally important in plant CNGCs.

  15. Identification of putative regulatory motifs in the upstream regions of co-expressed functional groups of genes in Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Joshi NV

    2009-01-01

    Full Text Available Abstract Background Regulation of gene expression in Plasmodium falciparum (Pf remains poorly understood. While over half the genes are estimated to be regulated at the transcriptional level, few regulatory motifs and transcription regulators have been found. Results The study seeks to identify putative regulatory motifs in the upstream regions of 13 functional groups of genes expressed in the intraerythrocytic developmental cycle of Pf. Three motif-discovery programs were used for the purpose, and motifs were searched for only on the gene coding strand. Four motifs – the 'G-rich', the 'C-rich', the 'TGTG' and the 'CACA' motifs – were identified, and zero to all four of these occur in the 13 sets of upstream regions. The 'CACA motif' was absent in functional groups expressed during the ring to early trophozoite transition. For functional groups expressed in each transition, the motifs tended to be similar. Upstream motifs in some functional groups showed 'positional conservation' by occurring at similar positions relative to the translational start site (TLS; this increases their significance as regulatory motifs. In the ribonucleotide synthesis, mitochondrial, proteasome and organellar translation machinery genes, G-rich, C-rich, CACA and TGTG motifs, respectively, occur with striking positional conservation. In the organellar translation machinery group, G-rich motifs occur close to the TLS. The same motifs were sometimes identified for multiple functional groups; differences in location and abundance of the motifs appear to ensure different modes of action. Conclusion The identification of positionally conserved over-represented upstream motifs throws light on putative regulatory elements for transcription in Pf.

  16. Tyrosine phosphatases epsilon and alpha perform specific and overlapping functions in regulation of voltage-gated potassium channels in Schwann cells

    DEFF Research Database (Denmark)

    Tiran, Zohar; Peretz, Asher; Sines, Tal

    2006-01-01

    Tyrosine phosphatases (PTPs) epsilon and alpha are closely related and share several molecular functions, such as regulation of Src family kinases and voltage-gated potassium (Kv) channels. Functional interrelationships between PTPepsilon and PTPalpha and the mechanisms by which they regulate K......+ channels and Src were analyzed in vivo in mice lacking either or both PTPs. Lack of either PTP increases Kv channel activity and phosphorylation in Schwann cells, indicating these PTPs inhibit Kv current amplitude in vivo. Open probability and unitary conductance of Kv channels are unchanged, suggesting...... an effect on channel number or organization. PTPalpha inhibits Kv channels more strongly than PTPepsilon; this correlates with constitutive association of PTPalpha with Kv2.1, driven by membranal localization of PTPalpha. PTPalpha, but not PTPepsilon, activates Src in sciatic nerve extracts, suggesting Src...

  17. How curved membranes recruit amphipathic helices and protein anchoring motifs.

    Science.gov (United States)

    Hatzakis, Nikos S; Bhatia, Vikram K; Larsen, Jannik; Madsen, Kenneth L; Bolinger, Pierre-Yves; Kunding, Andreas H; Castillo, John; Gether, Ulrik; Hedegård, Per; Stamou, Dimitrios

    2009-11-01

    Lipids and several specialized proteins are thought to be able to sense the curvature of membranes (MC). Here we used quantitative fluorescence microscopy to measure curvature-selective binding of amphipathic motifs on single liposomes 50-700 nm in diameter. Our results revealed that sensing is predominantly mediated by a higher density of binding sites on curved membranes instead of higher affinity. We proposed a model based on curvature-induced defects in lipid packing that related these findings to lipid sorting and accurately predicted the existence of a new ubiquitous class of curvature sensors: membrane-anchored proteins. The fact that unrelated structural motifs such as alpha-helices and alkyl chains sense MC led us to propose that MC sensing is a generic property of curved membranes rather than a property of the anchoring molecules. We therefore anticipate that MC will promote the redistribution of proteins that are anchored in membranes through other types of hydrophobic moieties.

  18. Protein kinase C (PKC) alpha and PKC theta are the major PKC isotypes involved in TCR down-regulation

    DEFF Research Database (Denmark)

    von Essen, Marina; Nielsen, Martin W; Bonefeld, Charlotte M

    2006-01-01

    of this study was to identify the PKC isotype(s) involved in TCR down-regulation and to elucidate the mechanism by which they induce TCR down-regulation. To accomplish this, we studied TCR down-regulation in the human T cell line Jurkat, in primary human T cells, or in the mouse T cell line DO11.10 in which we...

  19. Time-regulated drug delivery system based on coaxially incorporated platelet alpha-granules for biomedical use

    Czech Academy of Sciences Publication Activity Database

    Buzgo, Matej; Jakubová, Radka; Míčková, Andrea; Rampichová, Michala; Prosecká, Eva; Kochová, P.; Lukáš, D.; Amler, Evžen

    2013-01-01

    Roč. 8, č. 7 (2013), s. 1137-1154 ISSN 1743-5889 R&D Projects: GA ČR GAP304/10/1307 Grant - others:GA UK(CZ) 330611; GA UK(CZ) 384311; GA UK(CZ) 626012; GA MŠk(CZ) ME10145; GA MZd(CZ) NT12156 Institutional research plan: CEZ:AV0Z50390703; CEZ:AV0Z50390512 Keywords : Core-shell nanofibers * alpha granules * cartilage tissue engineering Subject RIV: FP - Other Medical Disciplines Impact factor: 5.824, year: 2013

  20. CP-25, a Novel Anti-inflammatory and Immunomodulatory Drug, Inhibits the Functions of Activated Human B Cells through Regulating BAFF and TNF-alpha Signaling and Comparative Efficacy with Biological Agents

    Directory of Open Access Journals (Sweden)

    Feng Zhang

    2017-12-01

    Full Text Available Paeoniflorin-6′-O-benzene sulfonate (code: CP-25 was the chemistry structural modifications of Paeoniflorin (Pae. CP-25 inhibited B cells proliferation stimulated by B cell activating factor belonging to the TNF family (BAFF or Tumor necrosis factor alpha (TNF-alpha. CP-25, Rituximab and Etanercept reduced the percentage and numbers of CD19+ B cells, CD19+CD20+ B cells, CD19+CD27+ B cells and CD19+CD20+CD27+ B cells induced by BAFF or TNF-alpha. There was significant difference between CP-25 and Rituximab or CP-25 and Etanercept. CP-25 down-regulated the high expression of BAFFR, BCMA, and TACI stimulated by BAFF or TNF-alpha. The effects of Rituximab and Etanercept on BAFFR or BCMA were stronger than that of CP-25. CP-25, Rituximab and Etanercept down-regulated significantly the expression of TNFR1 and TNFR2 on B cell stimulated by BAFF or TNF-alpha. CP-25, Rituximab and Etanercept down-regulated the expression of MKK3, P-p38, P-p65, TRAF2, and p52 in B cells stimulated by BAFF and the expression of TRAF2 and P-p65 in B cells stimulated by TNF-alpha. These results suggest that CP-25 regulated moderately activated B cells function by regulating the classical and alternative NF-κB signaling pathway mediated by BAFF and TNF-alpha-TRAF2-NF-κB signaling pathway. This study suggests that CP-25 may be a promising anti-inflammatory immune and soft regulation drug.

  1. CP-25, a Novel Anti-inflammatory and Immunomodulatory Drug, Inhibits the Functions of Activated Human B Cells through Regulating BAFF and TNF-alpha Signaling and Comparative Efficacy with Biological Agents.

    Science.gov (United States)

    Zhang, Feng; Shu, Jin-Ling; Li, Ying; Wu, Yu-Jing; Zhang, Xian-Zheng; Han, Le; Tang, Xiao-Yu; Wang, Chen; Wang, Qing-Tong; Chen, Jing-Yu; Chang, Yan; Wu, Hua-Xun; Zhang, Ling-Ling; Wei, Wei

    2017-01-01

    Paeoniflorin-6'- O -benzene sulfonate (code: CP-25) was the chemistry structural modifications of Paeoniflorin (Pae). CP-25 inhibited B cells proliferation stimulated by B cell activating factor belonging to the TNF family (BAFF) or Tumor necrosis factor alpha (TNF-alpha). CP-25, Rituximab and Etanercept reduced the percentage and numbers of CD19 + B cells, CD19 + CD20 + B cells, CD19 + CD27 + B cells and CD19 + CD20 + CD27 + B cells induced by BAFF or TNF-alpha. There was significant difference between CP-25 and Rituximab or CP-25 and Etanercept. CP-25 down-regulated the high expression of BAFFR, BCMA, and TACI stimulated by BAFF or TNF-alpha. The effects of Rituximab and Etanercept on BAFFR or BCMA were stronger than that of CP-25. CP-25, Rituximab and Etanercept down-regulated significantly the expression of TNFR1 and TNFR2 on B cell stimulated by BAFF or TNF-alpha. CP-25, Rituximab and Etanercept down-regulated the expression of MKK3, P-p38, P-p65, TRAF2, and p52 in B cells stimulated by BAFF and the expression of TRAF2 and P-p65 in B cells stimulated by TNF-alpha. These results suggest that CP-25 regulated moderately activated B cells function by regulating the classical and alternative NF-κB signaling pathway mediated by BAFF and TNF-alpha-TRAF2-NF-κB signaling pathway. This study suggests that CP-25 may be a promising anti-inflammatory immune and soft regulation drug.

  2. MotifMap-RNA: a genome-wide map of RBP binding sites.

    Science.gov (United States)

    Liu, Yu; Sun, Sha; Bredy, Timothy; Wood, Marcelo; Spitale, Robert C; Baldi, Pierre

    2017-07-01

    RNA plays a critical role in gene expression and its regulation. RNA binding proteins (RBPs), in turn, are important regulators of RNA. Thanks to the availability of large scale data for RBP binding motifs and in vivo binding sites results in the form of eCLIP experiments, it is now possible to computationally predict RBP binding sites across the whole genome. We describe MotifMap-RNA, an extension of MotifMap which predicts binding sites for RBP motifs across human and mouse genomes and allows large scale querying of predicted binding sites. The data and corresponding web server are available from: http://motifmap-rna.ics.uci.edu/ as part of the MotifMap web portal. rspitale@uci.edu or pfbaldi@uci.edu. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  3. Unravelling daily human mobility motifs

    OpenAIRE

    Schneider, Christian M.; Belik, Vitaly; Couronné, Thomas; Smoreda, Zbigniew; González, Marta C.

    2013-01-01

    Human mobility is differentiated by time scales. While the mechanism for long time scales has been studied, the underlying mechanism on the daily scale is still unrevealed. Here, we uncover the mechanism responsible for the daily mobility patterns by analysing the temporal and spatial trajectories of thousands of persons as individual networks. Using the concept of motifs from network theory, we find only 17 unique networks are present in daily mobility and they follow simple rules. These net...

  4. Acetylsalicylic acid regulates MMP-2 activity and inhibits colorectal invasion of murine B16F0 melanoma cells in C57BL/6J mice: effects of prostaglandin F(2)alpha.

    Science.gov (United States)

    Tsai, Chin-Shaw Stella; Luo, Shue-Fen; Ning, Chung-Chu; Lin, Chien-Liang; Jiang, Ming-Chung; Liao, Ching-Fong

    2009-08-01

    Epidemiological studies indicate that acetylsalicylic acid may reduce the risk of mortality due to colon cancers. Metastasis is the major cause of cancer death. Matrix metalloproteinases (MMPs) play important roles in tumor invasion regulation, and prostaglandin F(2)alpha (PGF(2)alpha) is a key stimulator of MMP production. Thus, we investigated whether acetylsalicylic acid regulated MMP activity and the invasion of cancer cells and whether PGF(2)alpha attenuated acetylsalicylic acid-inhibited invasion of cancer cells. Gelatin-based zymography assays showed that acetylsalicylic acid inhibited the MMP-2 activity of B16F0 melanoma cells. Matrigel-based chemoinvasion assays showed that acetylsalicylic acid inhibited the invasion of B16F0 cells. Acetylsalicylic acid can inhibit PGF(2)alpha synthesis and PGF(2)alpha is a key stimulator of MMP-2 production. Our data showed that PGF(2)alpha treatment attenuated the acetylsalicylic acid-inhibited invasion of B16F0 cells. In animal experiments, acetylsalicylic acid reduced colorectal metastasis of B16F0 cells in C57BL/6J mice by 44%. Our results suggest that PGF(2)alpha is a therapeutic target for metastasis inhibition and acetylsalicylic acid may possess anti-metastasis ability.

  5. WordSpy: identifying transcription factor binding motifs by building a dictionary and learning a grammar.

    Science.gov (United States)

    Wang, Guandong; Yu, Taotao; Zhang, Weixiong

    2005-07-01

    Transcription factor (TF) binding sites or motifs (TFBMs) are functional cis-regulatory DNA sequences that play an essential role in gene transcriptional regulation. Although many experimental and computational methods have been developed, finding TFBMs remains a challenging problem. We propose and develop a novel dictionary based motif finding algorithm, which we call WordSpy. One significant feature of WordSpy is the combination of a word counting method and a statistical model which consists of a dictionary of motifs and a grammar specifying their usage. The algorithm is suitable for genome-wide motif finding; it is capable of discovering hundreds of motifs from a large set of promoters in a single run. We further enhance WordSpy by applying gene expression information to separate true TFBMs from spurious ones, and by incorporating negative sequences to identify discriminative motifs. In addition, we also use randomly selected promoters from the genome to evaluate the significance of the discovered motifs. The output from WordSpy consists of an ordered list of putative motifs and a set of regulatory sequences with motif binding sites highlighted. The web server of WordSpy is available at http://cic.cs.wustl.edu/wordspy.

  6. Kopi dan Kakao dalam Kreasi Motif Batik Khas Jember

    Directory of Open Access Journals (Sweden)

    Irfa'ina Rohana Salma

    2015-06-01

    Full Text Available ABSTRAK Batik Jember selama ini identik dengan motif daun tembakau. Visualisasi daun tembakau dalam motif Batik Jember cukup lemah, yaitu kurang berkarakter karena motif yang muncul adalah seperti gambar daun pada umumnya. Oleh karena itu perlu diciptakan desain motif batik khas Jember yang sumber inspirasinya digali dari kekayaan alam lainnya dari Jember yang mempunyai bentuk spesifik dan karakteristik sehingga identitas motif bisa didapatkan dengan lebih kuat. Hasil alam khas Jember tersebut adalah kopi dan kakao. Tujuan penciptaan seni ini adalah untuk menghasilkan motif batik  baru yang mempunyai ciri khas Jember. Metode yang digunakan yaitu pengumpulan data, pengamatan mendalam terhadap objek penciptaan, pengkajian sumber inspirasi, pembuatan desain motif, dan perwujudan menjadi batik. Dari penciptaan seni ini berhasil dikreasikan 6 (enam motif batik yaitu: (1 Motif Uwoh Kopi; (2 Motif Godong Kopi;  (3 Motif Ceplok Kakao; (4 Motif Kakao Raja; (5 Motif Kakao Biru; dan (6 Motif Wiji Mukti. Berdasarkan hasil penilaian “Selera Estetika” diketahui bahwa motif yang paling banyak disukai adalah Motif Uwoh Kopi dan Motif Kakao Raja. Kata kunci: Motif Woh Kopi, Motif Godong Kopi, Motif Ceplok Kakao, Motif Kakao Raja, Motif Kakao Biru, Motif Wiji Mukti ABSTRACTBatik Jember is synonymous with tobacco leaf motif. Tobacco leaf shape is quite weak in the visual appearance characterized as that motif emerges like a picture of leaves in general. Therefore, it is necessary to create a distinctive design motif extracted from other natural resources of Jember that have specific shapes and characteristics that can be obtained as the stronger motif identity. The typical natural resources from Jember are coffee and cocoa. The purpose of the creation of this art is to produce the unique, creative and innovative batik and have specific characteristics of Jember. The method used are data collection, observation of the object, reviewing inspiration sources

  7. Genome-wide conserved consensus transcription factor binding motifs are hyper-methylated

    Directory of Open Access Journals (Sweden)

    Down Thomas A

    2010-09-01

    Full Text Available Abstract Background DNA methylation can regulate gene expression by modulating the interaction between DNA and proteins or protein complexes. Conserved consensus motifs exist across the human genome ("predicted transcription factor binding sites": "predicted TFBS" but the large majority of these are proven by chromatin immunoprecipitation and high throughput sequencing (ChIP-seq not to be biological transcription factor binding sites ("empirical TFBS". We hypothesize that DNA methylation at conserved consensus motifs prevents promiscuous or disorderly transcription factor binding. Results Using genome-wide methylation maps of the human heart and sperm, we found that all conserved consensus motifs as well as the subset of those that reside outside CpG islands have an aggregate profile of hyper-methylation. In contrast, empirical TFBS with conserved consensus motifs have a profile of hypo-methylation. 40% of empirical TFBS with conserved consensus motifs resided in CpG islands whereas only 7% of all conserved consensus motifs were in CpG islands. Finally we further identified a minority subset of TF whose profiles are either hypo-methylated or neutral at their respective conserved consensus motifs implicating that these TF may be responsible for establishing or maintaining an un-methylated DNA state, or whose binding is not regulated by DNA methylation. Conclusions Our analysis supports the hypothesis that at least for a subset of TF, empirical binding to conserved consensus motifs genome-wide may be controlled by DNA methylation.

  8. Aggregation of topological motifs in the Escherichia coli transcriptional regulatory network

    Directory of Open Access Journals (Sweden)

    Barabási Albert-László

    2004-01-01

    Full Text Available Abstract Background Transcriptional regulation of cellular functions is carried out through a complex network of interactions among transcription factors and the promoter regions of genes and operons regulated by them.To better understand the system-level function of such networks simplification of their architecture was previously achieved by identifying the motifs present in the network, which are small, overrepresented, topologically distinct regulatory interaction patterns (subgraphs. However, the interaction of such motifs with each other, and their form of integration into the full network has not been previously examined. Results By studying the transcriptional regulatory network of the bacterium, Escherichia coli, we demonstrate that the two previously identified motif types in the network (i.e., feed-forward loops and bi-fan motifs do not exist in isolation, but rather aggregate into homologous motif clusters that largely overlap with known biological functions. Moreover, these clusters further coalesce into a supercluster, thus establishing distinct topological hierarchies that show global statistical properties similar to the whole network. Targeted removal of motif links disintegrates the network into small, isolated clusters, while random disruptions of equal number of links do not cause such an effect. Conclusion Individual motifs aggregate into homologous motif clusters and a supercluster forming the backbone of the E. coli transcriptional regulatory network and play a central role in defining its global topological organization.

  9. The E3 Ubiquitin Ligase- and Protein Phosphatase 2A (PP2A)-binding Domains of the Alpha4 Protein Are Both Required for Alpha4 to Inhibit PP2A Degradation

    Energy Technology Data Exchange (ETDEWEB)

    LeNoue-Newton, Michele; Watkins, Guy R.; Zou, Ping; Germane, Katherine L.; McCorvey, Lisa R.; Wadzinski, Brian E.; Spiller, Benjamin W. (Vanderbilt)

    2012-04-30

    Protein phosphatase 2A (PP2A) is regulated through a variety of mechanisms, including post-translational modifications and association with regulatory proteins. Alpha4 is one such regulatory protein that binds the PP2A catalytic subunit (PP2Ac) and protects it from polyubiquitination and degradation. Alpha4 is a multidomain protein with a C-terminal domain that binds Mid1, a putative E3 ubiquitin ligase, and an N-terminal domain containing the PP2Ac-binding site. In this work, we present the structure of the N-terminal domain of mammalian Alpha4 determined by x-ray crystallography and use double electron-electron resonance spectroscopy to show that it is a flexible tetratricopeptide repeat-like protein. Structurally, Alpha4 differs from its yeast homolog, Tap42, in two important ways: (1) the position of the helix containing the PP2Ac-binding residues is in a more open conformation, showing flexibility in this region; and (2) Alpha4 contains a ubiquitin-interacting motif. The effects of wild-type and mutant Alpha4 on PP2Ac ubiquitination and stability were examined in mammalian cells by performing tandem ubiquitin-binding entity precipitations and cycloheximide chase experiments. Our results reveal that both the C-terminal Mid1-binding domain and the PP2Ac-binding determinants are required for Alpha4-mediated protection of PP2Ac from polyubiquitination and degradation.

  10. An unusual helix turn helix motif in the catalytic core of HIV-1 integrase binds viral DNA and LEDGF.

    Directory of Open Access Journals (Sweden)

    Hayate Merad

    Full Text Available BACKGROUND: Integrase (IN of the type 1 human immunodeficiency virus (HIV-1 catalyzes the integration of viral DNA into host cellular DNA. We identified a bi-helix motif (residues 149-186 in the crystal structure of the catalytic core (CC of the IN-Phe185Lys variant that consists of the alpha(4 and alpha(5 helices connected by a 3 to 5-residue turn. The motif is embedded in a large array of interactions that stabilize the monomer and the dimer. PRINCIPAL FINDINGS: We describe the conformational and binding properties of the corresponding synthetic peptide. This displays features of the protein motif structure thanks to the mutual intramolecular interactions of the alpha(4 and alpha(5 helices that maintain the fold. The main properties are the binding to: 1- the processing-attachment site at the LTR (long terminal repeat ends of virus DNA with a K(d (dissociation constant in the sub-micromolar range; 2- the whole IN enzyme; and 3- the IN binding domain (IBD but not the IBD-Asp366Asn variant of LEDGF (lens epidermal derived growth factor lacking the essential Asp366 residue. In our motif, in contrast to the conventional HTH (helix-turn-helix, it is the N terminal helix (alpha(4 which has the role of DNA recognition helix, while the C terminal helix (alpha(5 would rather contribute to the motif stabilization by interactions with the alpha(4 helix. CONCLUSION: The motif, termed HTHi (i, for inverted emerges as a central piece of the IN structure and function. It could therefore represent an attractive target in the search for inhibitors working at the DNA-IN, IN-IN and IN-LEDGF interfaces.

  11. Selection against spurious promoter motifs correlates withtranslational efficiency across bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Froula, Jeffrey L.; Francino, M. Pilar

    2007-05-01

    Because binding of RNAP to misplaced sites could compromise the efficiency of transcription, natural selection for the optimization of gene expression should regulate the distribution of DNA motifs capable of RNAP-binding across the genome. Here we analyze the distribution of the -10 promoter motifs that bind the {sigma}{sup 70} subunit of RNAP in 42 bacterial genomes. We show that selection on these motifs operates across the genome, maintaining an over-representation of -10 motifs in regulatory sequences while eliminating them from the nonfunctional and, in most cases, from the protein coding regions. In some genomes, however, -10 sites are over-represented in the coding sequences; these sites could induce pauses effecting regulatory roles throughout the length of a transcriptional unit. For nonfunctional sequences, the extent of motif under-representation varies across genomes in a manner that broadly correlates with the number of tRNA genes, a good indicator of translational speed and growth rate. This suggests that minimizing the time invested in gene transcription is an important selective pressure against spurious binding. However, selection against spurious binding is detectable in the reduced genomes of host-restricted bacteria that grow at slow rates, indicating that components of efficiency other than speed may also be important. Minimizing the number of RNAP molecules per cell required for transcription, and the corresponding energetic expense, may be most relevant in slow growers. These results indicate that genome-level properties affecting the efficiency of transcription and translation can respond in an integrated manner to optimize gene expression. The detection of selection against promoter motifs in nonfunctional regions also implies that no sequence may evolve free of selective constraints, at least in the relatively small and unstructured genomes of bacteria.

  12. Differential regulation of HIF-1α and HIF-2α in neuroblastoma: Estrogen-related receptor alpha (ERRα) regulates HIF2A transcription and correlates to poor outcome

    Energy Technology Data Exchange (ETDEWEB)

    Hamidian, Arash; Stedingk, Kristoffer von; Munksgaard Thorén, Matilda; Mohlin, Sofie; Påhlman, Sven, E-mail: sven.pahlman@med.lu.se

    2015-06-05

    Hypoxia-inducible factors (HIFs) are differentially regulated in tumor cells. While the current paradigm supports post-translational regulation of the HIF-α subunits, we recently showed that hypoxic HIF-2α is also transcriptionally regulated via insulin-like growth factor (IGF)-II in the childhood tumor neuroblastoma. Here, we demonstrate that transcriptional regulation of HIF-2α seems to be restricted to neural cell-derived tumors, while HIF-1α is canonically regulated at the post-translational level uniformly across different tumor forms. Enhanced expression of HIF2A mRNA at hypoxia is due to de novo transcription rather than increased mRNA stability, and chemical stabilization of the HIF-α proteins at oxygen-rich conditions unexpectedly leads to increased HIF2A transcription. The enhanced HIF2A levels do not seem to be dependent on active HIF-1. Using a transcriptome array approach, we identified members of the Peroxisome proliferator-activated receptor gamma coactivator (PGC)/Estrogen-related receptor (ERR) complex families as potential regulators of HIF2A. Knockdown or inhibition of one of the members, ERRα, leads to decreased expression of HIF2A, and high expression of the ERRα gene ESRRA correlates with poor overall and progression-free survival in a clinical neuroblastoma material consisting of 88 tumors. Thus, targeting of ERRα and pathways regulating transcriptional HIF-2α are promising therapeutic avenues in neuroblastoma. - Highlights: • Transcriptional control of HIF-2α is restricted to neural cell-derived tumors. • Enhanced transcription of HIF2A is not due to increased mRNA stability. • Chemical stabilization of the HIF-α subunits leads to increased HIF2A transcription. • ERRα regulates HIF2A mRNA expression in neuroblastoma. • High expression of ESRRA correlates to poor outcome in neuroblastoma.

  13. A p300 and SIRT1 Regulated Acetylation Switch of C/EBP alpha Controls Mitochondrial Function

    NARCIS (Netherlands)

    Zaini, Mohamad A.; Mueller, Christine; de Jong, Tristan V.; Ackermann, Tobias; Hartleben, Goetz; Kortman, Gertrud; Guehrs, Karl-Heinz; Fusetti, Fabrizia; Kraemer, Oliver H.; Guryev, Victor; Calkhoven, Cornelis F.

    2018-01-01

    Cellular metabolism is a tightly controlled process in which the cell adapts fluxes through metabolic pathways in response to changes in nutrient supply. Among the transcription factors that regulate gene expression and thereby cause changes in cellular metabolism is the basic leucine-zipper (bZIP)

  14. rMotifGen: random motif generator for DNA and protein sequences

    Directory of Open Access Journals (Sweden)

    Hardin C Timothy

    2007-08-01

    Full Text Available Abstract Background Detection of short, subtle conserved motif regions within a set of related DNA or amino acid sequences can lead to discoveries about important regulatory domains such as transcription factor and DNA binding sites as well as conserved protein domains. In order to help assess motif detection algorithms on motifs with varying properties and levels of conservation, we have developed a computational tool, rMotifGen, with the sole purpose of generating a number of random DNA or protein sequences containing short sequence motifs. Each motif consensus can be user-defined, randomly generated, or created from a position-specific scoring matrix (PSSM. Insertions and mutations within these motifs are created according to user-defined parameters and substitution matrices. The resulting sequences can be helpful in mutational simulations and in testing the limits of motif detection algorithms. Results Two implementations of rMotifGen have been created, one providing a graphical user interface (GUI for random motif construction, and the other serving as a command line interface. The second implementation has the added advantages of platform independence and being able to be called in a batch mode. rMotifGen was used to construct sample sets of sequences containing DNA motifs and amino acid motifs that were then tested against the Gibbs sampler and MEME packages. Conclusion rMotifGen provides an efficient and convenient method for creating random DNA or amino acid sequences with a variable number of motifs, where the instance of each motif can be incorporated using a position-specific scoring matrix (PSSM or by creating an instance mutated from its corresponding consensus using an evolutionary model based on substitution matrices. rMotifGen is freely available at: http://bioinformatics.louisville.edu/brg/rMotifGen/.

  15. cWords - systematic microRNA regulatory motif discovery from mRNA expression data

    DEFF Research Database (Denmark)

    Rasmussen, Simon Horskjær; Jacobsen, Anders; Krogh, Anders

    2013-01-01

    BACKGROUND:Post-transcriptional regulation of gene expression by small RNAs and RNA binding proteins is of fundamental importance in development of complex organisms, and dysregulation of regulatory RNAs can influence onset, progression and potentially be target for treatment of many diseases. Post...... increasingly important tools for the identification of post-transcriptional regulatory motifs and the inference of the regulators and their targets. RESULTS:cWords is a method designed for regulatory motif discovery in differential case-control mRNA expression datasets. We have improved the algorithms......-transcriptional regulation by small RNAs is mediated through partial complementary binding to messenger RNAs leaving nucleotide signatures or motifs throughout the entire transcriptome. Computational methods for discovery and analysis of sequence motifs in high-throughput mRNA expression profiling experiments are becoming...

  16. A Conserved Motif Provides Binding Specificity to the PP2A-B56 Phosphatase

    DEFF Research Database (Denmark)

    Hertz, Emil Peter Thrane; Kruse, Thomas; Davey, Norman E

    2016-01-01

    -exposed pocket on PP2A regulatory B56 subunits binds to a consensus sequence on interacting proteins, which we term the LxxIxE motif. The composition of the motif modulates the affinity for B56, which in turn determines the phosphorylation status of associated substrates. Phosphorylation of amino acid residues......Dynamic protein phosphorylation is a fundamental mechanism regulating biological processes in all organisms. Protein phosphatase 2A (PP2A) is the main source of phosphatase activity in the cell, but the molecular details of substrate recognition are unknown. Here, we report that a conserved surface...... within the motif increases B56 binding, allowing integration of kinase and phosphatase activity. We identify conserved LxxIxE motifs in essential proteins throughout the eukaryotic domain of life and in human viruses, suggesting that the motifs are required for basic cellular function. Our study provides...

  17. Macro- and micromechanical remodelling in the fish atrium is associated with regulation of collagen 1 alpha 3 chain expression.

    Science.gov (United States)

    Keen, Adam N; Fenna, Andrew J; McConnell, James C; Sherratt, Michael J; Gardner, Peter; Shiels, Holly A

    2018-03-28

    Numerous pathologies lead to remodelling of the mammalian ventricle, often associated with fibrosis. Recent work in fish has shown that fibrotic remodelling of the ventricle is 'reversible', changing seasonally as temperature-induced changes in blood viscosity alter haemodynamic load on the heart. The atrial response to varying haemodynamic load is less understood in mammals and completely unexplored in non-mammalian vertebrates. To investigate atrial remodelling, rainbow trout were chronically cooled (from 10 ± 1 to 5 ± 1 °C) and chronically warmed (from 10 ± 1 to 18 ± 1 °C) for a minimum of 8 weeks. We assessed the functional effects on compliance using ex vivo heart preparations and atomic force microscopy nano-indentation and found chronic cold increased passive stiffness of the whole atrium and micromechanical stiffness of tissue sections. We then performed histological, biochemical and molecular assays to probe the mechanisms underlying functional remodelling of the atrial tissue. We found cooling resulted in collagen deposition which was associated with an upregulation of collagen-promoting genes, including the fish-specific collagen I alpha 3 chain, and a reduction in gelatinase activity of collagen-degrading matrix metalloproteinases (MMPs). Finally, we found that cooling reduced mRNA expression of cardiac growth factors and hypertrophic markers. Following long-term warming, there was an opposing response to that seen with cooling; however, these changes were more moderate. Our findings suggest that chronic cooling causes atrial dilation and increased myocardial stiffness in trout atria analogous to pathological states defined by changes in preload or afterload of the mammalian atria. The reversal of this phenotype following chronic warming is particularly interesting as it suggests that typically pathological features of mammalian atrial remodelling may oscillate seasonally in the fish, revealing a more dynamic and plastic atrial

  18. daf-31 encodes the catalytic subunit of N alpha-acetyltransferase that regulates Caenorhabditis elegans development, metabolism and adult lifespan.

    Directory of Open Access Journals (Sweden)

    Di Chen

    2014-10-01

    Full Text Available The Caenorhabditis elegans dauer larva is a facultative state of diapause. Mutations affecting dauer signal transduction and morphogenesis have been reported. Of these, most that result in constitutive formation of dauer larvae are temperature-sensitive (ts. The daf-31 mutant was isolated in genetic screens looking for novel and underrepresented classes of mutants that form dauer and dauer-like larvae non-conditionally. Dauer-like larvae are arrested in development and have some, but not all, of the normal dauer characteristics. We show here that daf-31 mutants form dauer-like larvae under starvation conditions but are sensitive to SDS treatment. Moreover, metabolism is shifted to fat accumulation in daf-31 mutants. We cloned the daf-31 gene and it encodes an ortholog of the arrest-defective-1 protein (ARD1 that is the catalytic subunit of the major N alpha-acetyltransferase (NatA. A daf-31 promoter::GFP reporter gene indicates daf-31 is expressed in multiple tissues including neurons, pharynx, intestine and hypodermal cells. Interestingly, overexpression of daf-31 enhances the longevity phenotype of daf-2 mutants, which is dependent on the forkhead transcription factor (FOXO DAF-16. We demonstrate that overexpression of daf-31 stimulates the transcriptional activity of DAF-16 without influencing its subcellular localization. These data reveal an essential role of NatA in controlling C. elegans life history and also a novel interaction between ARD1 and FOXO transcription factors, which may contribute to understanding the function of ARD1 in mammals.

  19. daf-31 encodes the catalytic subunit of N alpha-acetyltransferase that regulates Caenorhabditis elegans development, metabolism and adult lifespan.

    Science.gov (United States)

    Chen, Di; Zhang, Jiuli; Minnerly, Justin; Kaul, Tiffany; Riddle, Donald L; Jia, Kailiang

    2014-10-01

    The Caenorhabditis elegans dauer larva is a facultative state of diapause. Mutations affecting dauer signal transduction and morphogenesis have been reported. Of these, most that result in constitutive formation of dauer larvae are temperature-sensitive (ts). The daf-31 mutant was isolated in genetic screens looking for novel and underrepresented classes of mutants that form dauer and dauer-like larvae non-conditionally. Dauer-like larvae are arrested in development and have some, but not all, of the normal dauer characteristics. We show here that daf-31 mutants form dauer-like larvae under starvation conditions but are sensitive to SDS treatment. Moreover, metabolism is shifted to fat accumulation in daf-31 mutants. We cloned the daf-31 gene and it encodes an ortholog of the arrest-defective-1 protein (ARD1) that is the catalytic subunit of the major N alpha-acetyltransferase (NatA). A daf-31 promoter::GFP reporter gene indicates daf-31 is expressed in multiple tissues including neurons, pharynx, intestine and hypodermal cells. Interestingly, overexpression of daf-31 enhances the longevity phenotype of daf-2 mutants, which is dependent on the forkhead transcription factor (FOXO) DAF-16. We demonstrate that overexpression of daf-31 stimulates the transcriptional activity of DAF-16 without influencing its subcellular localization. These data reveal an essential role of NatA in controlling C. elegans life history and also a novel interaction between ARD1 and FOXO transcription factors, which may contribute to understanding the function of ARD1 in mammals.

  20. Regulation of Mammary Stem Cell Quiescence via Post-Translational Modification of DeltaNp63alpha

    Science.gov (United States)

    2012-12-01

    This document is the Annual Summary Report on the training grant awarded to Andrew DeCastro entitled Regulation of Mammary Stem Cell Quiescence via...screen) mediated phosphorylation of deltaNPdelta3 on stem cell behavior and mitotic activity. Task 1 aims to determine the effects of wild-type, phospho...ablative and phospho-mimetic alleles of deltaNP63delta phosphorylation on stem cell behavior in vitro. Thus far, we demonstrate that stem cell enriched

  1. Differences between Mice and Humans in Regulation and the Molecular Network of Collagen, Type III, Alpha-1 at the Gene Expression Level: Obstacles that Translational Research Must Overcome

    Directory of Open Access Journals (Sweden)

    Lishi Wang

    2015-07-01

    Full Text Available Collagen, type III, alpha-1 (COL3A1 is essential for normal collagen I fibrillogenesis in many organs. There are differences in phenotypes of mutations in the COL3A1 gene in humans and mutations in mice. In order to investigate whether the regulation and gene network of COL3A1 is the same in healthy populations of mice and humans, we compared the quantitative trait loci (QTL that regulate the expression level of COL3A1 and the gene network of COL3A1 pathways between humans and mice using whole genome expression profiles. Our results showed that, for the regulation of expression of Col3a1 in mice, an eQTL on chromosome (Chr 12 regulates the expression of Col3a1. However, expression of genes in the syntenic region on human Chr 7 has no association with the expression level of COL3A1. For the gene network comparison, we identified 44 top genes whose expression levels are strongly associated with that of Col3a1 in mice. We next identified 41 genes strongly associated with the expression level of COL3A1 in humans. There are a few but significant differences in the COL3A1 gene network between humans and mice. Several genes showed opposite association with expression of COL3A1. These genes are known to play important roles in development and function of the extracellular matrix of the lung. Difference in the molecular pathway of key genes in the COL3A1 gene network in humans and mice suggest caution should be used in extrapolating results from models of human lung diseases in mice to clinical lung diseases in humans. These differences may influence the efficacy of drugs in humans whose development employed mouse models.

  2. Yes-associated protein/TEA domain family member and hepatocyte nuclear factor 4-alpha (HNF4α) repress reciprocally to regulate hepatocarcinogenesis in rats and mice.

    Science.gov (United States)

    Cai, Wang-Yu; Lin, Ling-Yun; Hao, Han; Zhang, Sai-Man; Ma, Fei; Hong, Xin-Xin; Zhang, Hui; Liu, Qing-Feng; Ye, Guo-Dong; Sun, Guang-Bin; Liu, Yun-Jia; Li, Sheng-Nan; Xie, Yuan-Yuan; Cai, Jian-Chun; Li, Bo-An

    2017-04-01

    Great progress has been achieved in the study of Hippo signaling in regulating tumorigenesis; however, the downstream molecular events that mediate this process have not been completely defined. Moreover, regulation of Hippo signaling during tumorigenesis in hepatocellular carcinoma (HCC) remains largely unknown. In the present study, we systematically investigated the relationship between Yes-associated protein/TEA domain family member (YAP-TEAD) and hepatocyte nuclear factor 4-alpha (HNF4α) in the hepatocarcinogenesis of HCC cells. Our results indicated that HNF4α expression was negatively regulated by YAP1 in HCC cells by a ubiquitin proteasome pathway. By contrast, HNF4α was found to directly associate with TEAD4 to compete with YAP1 for binding to TEAD4, thus inhibiting the transcriptional activity of YAP-TEAD and expression of their target genes. Moreover, overexpression of HNF4α was found to significantly compromise YAP-TEAD-induced HCC cell proliferation and stem cell expansion. Finally, we documented the regulatory mechanism between YAP-TEAD and HNF4α in rat and mouse tumor models, which confirmed our in vitro results. There is a double-negative feedback mechanism that controls TEAD-YAP and HNF4α expression in vitro and in vivo, thereby regulating cellular proliferation and differentiation. Given that YAP acts as a dominant oncogene in HCC and plays a crucial role in stem cell homeostasis and tissue regeneration, manipulating the interaction between YAP, TEADs, and HNF4α may provide a new approach for HCC treatment and regenerative medicine. (Hepatology 2017;65:1206-1221). © 2016 by the American Association for the Study of Liver Diseases.

  3. Fitness for synchronization of network motifs

    DEFF Research Database (Denmark)

    Vega, Y.M.; Vázquez-Prada, M.; Pacheco, A.F.

    2004-01-01

    We study the synchronization of Kuramoto's oscillators in small parts of networks known as motifs. We first report on the system dynamics for the case of a scale-free network and show the existence of a non-trivial critical point. We compute the probability that network motifs synchronize, and fi...... that the fitness for synchronization correlates well with motifs interconnectedness and structural complexity. Possible implications for present debates about network evolution in biological and other systems are discussed....

  4. DMPD: The interferon-alpha/beta system in antiviral responses: a multimodal machineryof gene regulation by the IRF family of transcription factors. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 11790540 The interferon-alpha/beta system in antiviral responses: a multimodal mach...l. 2002 Feb;14(1):111-6. (.png) (.svg) (.html) (.csml) Show The interferon-alpha/beta system in antiviral responses: a multimoda...ion factors. PubmedID 11790540 Title The interferon-alpha/beta system in antiviral responses: a multimodal m

  5. Romance of the three kingdoms: RORgammat allies with HIF1alpha against FoxP3 in regulating T cell metabolism and differentiation.

    Science.gov (United States)

    Tsun, Andy; Chen, Zuojia; Li, Bin

    2011-10-01

    Regulatory T (Treg) cells play an essential role in immune homeostasis by controlling the function of various immune effector cells, including RAR-related orphan receptor gammat(+) (RORγt(+)) T helper 17 (Th17) cells. Foekhead box P(3) (FoxP(3)) is the master regulator of Treg cell function, while RORγt is the key transcription factor for the induction of the interleukin (IL)-17 family of cytokines during Th17 cell differentiation. FoxP3 can directly interact with and negatively regulate the function of RORγt, to determine the balance between induced Treg (iTreg) and Th17 cell polarization. Two recent independent studies from the Pan and Chi Labs have shown how hypoxia-inducible factor 1 alpha (HIF1α) is able to tip the balance of T cell differentiation toward the Th17 lineage by responding to the local changes in metabolic shift or an increase in proinflammatory mediators in the microenvironment. By allying with HIF1α, RORγt wins the fight against FoxP3 and Treg cell commitment.

  6. Dienogest inhibits C-C motif chemokine ligand 20 expression in human endometriotic epithelial cells.

    Science.gov (United States)

    Mita, Shizuka; Nakakuki, Masanori; Ichioka, Masayuki; Shimizu, Yutaka; Hashiba, Masamichi; Miyazaki, Hiroyasu; Kyo, Satoru

    2017-07-01

    C-C motif chemokine ligand 20 is thought to contribute to the development of endometriosis by recruiting Th17 lymphocytes into endometriotic foci. The present study investigated the effects of dienogest, a progesterone receptor agonist used to treat endometriosis, on C-C motif chemokine ligand 20 expression by endometriotic cells. Effects of dienogest on mRNA expression and protein secretion of C-C motif chemokine ligand 20 induced by interleukin 1β were assessed in three immortalized endometriotic epithelial cell lines, parental cells (EMosis-CC/TERT1), and stably expressing human progesterone receptor isoform A (EMosis-CC/TERT1/PRA+) or isoform B (EMosis-CC/TERT1/PRA-/PRB+). Dienogest markedly inhibited interleukin 1β-stimulated C-C motif chemokine ligand 20 mRNA expression and protein secretion in EMosis-CC/TERT1/PRA-/PRB+, which was abrogated by the progesterone receptor antagonist RU486. In EMosis-CC/TERT1/PRA+, dienogest slightly inhibited C-C motif chemokine ligand 20 mRNA and protein. In EMosis-CC/TERT1, dienogest slightly inhibited C-C motif chemokine ligand 20 mRNA, but had no effect on C-C motif chemokine ligand 20 protein. Dienogest inhibited interleukin 1β-induced up-regulation of C-C motif chemokine ligand 20 in endometriotic epithelial cells, mainly mediated by progesterone receptor B. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Evolutionary dynamics of a conserved sequence motif in the ribosomal genes of the ciliate Paramecium

    Directory of Open Access Journals (Sweden)

    Lynch Michael

    2010-05-01

    Full Text Available Abstract Background In protozoa, the identification of preserved motifs by comparative genomics is often impeded by difficulties to generate reliable alignments for non-coding sequences. Moreover, the evolutionary dynamics of regulatory elements in 3' untranslated regions (both in protozoa and metazoa remains a virtually unexplored issue. Results By screening Paramecium tetraurelia's 3' untranslated regions for 8-mers that were previously found to be preserved in mammalian 3' UTRs, we detect and characterize a motif that is distinctly conserved in the ribosomal genes of this ciliate. The motif appears to be conserved across Paramecium aurelia species but is absent from the ribosomal genes of four additional non-Paramecium species surveyed, including another ciliate, Tetrahymena thermophila. Motif-free ribosomal genes retain fewer paralogs in the genome and appear to be lost more rapidly relative to motif-containing genes. Features associated with the discovered preserved motif are consistent with this 8-mer playing a role in post-transcriptional regulation. Conclusions Our observations 1 shed light on the evolution of a putative regulatory motif across large phylogenetic distances; 2 are expected to facilitate the understanding of the modulation of ribosomal genes expression in Paramecium; and 3 reveal a largely unexplored--and presumably not restricted to Paramecium--association between the presence/absence of a DNA motif and the evolutionary fate of its host genes.

  8. Evolutionary dynamics of a conserved sequence motif in the ribosomal genes of the ciliate Paramecium.

    Science.gov (United States)

    Catania, Francesco; Lynch, Michael

    2010-05-04

    In protozoa, the identification of preserved motifs by comparative genomics is often impeded by difficulties to generate reliable alignments for non-coding sequences. Moreover, the evolutionary dynamics of regulatory elements in 3' untranslated regions (both in protozoa and metazoa) remains a virtually unexplored issue. By screening Paramecium tetraurelia's 3' untranslated regions for 8-mers that were previously found to be preserved in mammalian 3' UTRs, we detect and characterize a motif that is distinctly conserved in the ribosomal genes of this ciliate. The motif appears to be conserved across Paramecium aurelia species but is absent from the ribosomal genes of four additional non-Paramecium species surveyed, including another ciliate, Tetrahymena thermophila. Motif-free ribosomal genes retain fewer paralogs in the genome and appear to be lost more rapidly relative to motif-containing genes. Features associated with the discovered preserved motif are consistent with this 8-mer playing a role in post-transcriptional regulation. Our observations 1) shed light on the evolution of a putative regulatory motif across large phylogenetic distances; 2) are expected to facilitate the understanding of the modulation of ribosomal genes expression in Paramecium; and 3) reveal a largely unexplored--and presumably not restricted to Paramecium--association between the presence/absence of a DNA motif and the evolutionary fate of its host genes.

  9. A survey of motif finding Web tools for detecting binding site motifs in ChIP-Seq data.

    Science.gov (United States)

    Tran, Ngoc Tam L; Huang, Chun-Hsi

    2014-02-20

    ChIP-Seq (chromatin immunoprecipitation sequencing) has provided the advantage for finding motifs as ChIP-Seq experiments narrow down the motif finding to binding site locations. Recent motif finding tools facilitate the motif detection by providing user-friendly Web interface. In this work, we reviewed nine motif finding Web tools that are capable for detecting binding site motifs in ChIP-Seq data. We showed each motif finding Web tool has its own advantages for detecting motifs that other tools may not discover. We recommended the users to use multiple motif finding Web tools that implement different algorithms for obtaining significant motifs, overlapping resemble motifs, and non-overlapping motifs. Finally, we provided our suggestions for future development of motif finding Web tool that better assists researchers for finding motifs in ChIP-Seq data.

  10. Tumor necrosis factor-alpha and apoptosis signal-regulating kinase 1 control reactive oxygen species release, mitochondrial autophagy, and c-Jun N-terminal kinase/p38 phosphorylation during necrotizing enterocolitis.

    Science.gov (United States)

    Baregamian, Naira; Song, Jun; Bailey, C Eric; Papaconstantinou, John; Evers, B Mark; Chung, Dai H

    2009-01-01

    Oxidative stress and inflammation may contribute to the disruption of the protective gut barrier through various mechanisms; mitochondrial dysfunction resulting from inflammatory and oxidative injury may potentially be a significant source of apoptosis during necrotizing enterocolitis (NEC). Tumor necrosis factor (TNF)-alpha is thought to generate reactive oxygen species (ROS) and activate the apoptosis signal-regulating kinase 1 (ASK1)-c-Jun N-terminal kinase (JNK)/p38 pathway. Hence, the focus of our study was to examine the effects of TNF-alpha/ROS on mitochondrial function, ASK1-JNK/p38 cascade activation in intestinal epithelial cells during NEC. We found (a) abundant tissue TNF-alpha and ASK1 expression throughout all layers of the intestine in neonates with NEC, suggesting that TNF-alpha/ASK1 may be a potential source (indicators) of intestinal injury in neonates with NEC; (b) TNF-alpha-induced rapid and transient activation of JNK/p38 apoptotic signaling in all cell lines suggests that this may be an important molecular characteristic of NEC; (c) TNF-alpha-induced rapid and transient ROS production in RIE-1 cells indicates that mitochondria are the predominant source of ROS, demonstrated by significantly attenuated response in mitochondrial DNA-depleted (RIE-1-rho) intestinal epithelial cells; (d) further studies with mitochondria-targeted antioxidant PBN supported our hypothesis that effective mitochondrial ROS trapping is protective against TNF-alpha/ROS-induced intestinal epithelial cell injury; (e) TNF-alpha induces significant mitochondrial dysfunction in intestinal epithelial cells, resulting in increased production of mtROS, drop in mitochondrial membrane potential (MMP) and decreased oxygen consumption; (f) although the significance of mitochondrial autophagy in NEC has not been unequivocally shown, our studies provide a strong preliminary indication that TNF-alpha/ROS-induced mitochondrial autophagy may play a role in NEC, and this process is a

  11. Phosphorylation of the retinoic acid receptor alpha induces a mechanical allosteric regulation and changes in internal dynamics.

    Directory of Open Access Journals (Sweden)

    Yassmine Chebaro

    2013-04-01

    Full Text Available Nuclear receptor proteins constitute a superfamily of proteins that function as ligand dependent transcription factors. They are implicated in the transcriptional cascades underlying many physiological phenomena, such as embryogenesis, cell growth and differentiation, and apoptosis, making them one of the major signal transduction paradigms in metazoans. Regulation of these receptors occurs through the binding of hormones, and in the case of the retinoic acid receptor (RAR, through the binding of retinoic acid (RA. In addition to this canonical scenario of RAR activity, recent discoveries have shown that RAR regulation also occurs as a result of phosphorylation. In fact, RA induces non-genomic effects, such as the activation of kinase signaling pathways, resulting in the phosphorylation of several targets including RARs themselves. In the case of RARα, phosphorylation of Ser369 located in loop L9-10 of the ligand-binding domain leads to an increase in the affinity for the protein cyclin H, which is part of the Cdk-activating kinase complex of the general transcription factor TFIIH. The cyclin H binding site in RARα is situated more than 40 Å from the phosphorylated serine. Using molecular dynamics simulations of the unphosphorylated and phosphorylated forms of the receptor RARα, we analyzed the structural implications of receptor phosphorylation, which led to the identification of a structural mechanism for the allosteric coupling between the two remote sites of interest. The results show that phosphorylation leads to a reorganization of a local salt bridge network, which induces changes in helix extension and orientation that affects the cyclin H binding site. This results in changes in conformation and flexibility of the latter. The high conservation of the residues implicated in this signal transduction suggests a mechanism that could be applied to other nuclear receptor proteins.

  12. The Caenorhabditis elegans HNF4alpha Homolog, NHR-31, mediates excretory tube growth and function through coordinate regulation of the vacuolar ATPase.

    Directory of Open Access Journals (Sweden)

    Annett Hahn-Windgassen

    2009-07-01

    Full Text Available Nuclear receptors of the Hepatocyte Nuclear Factor-4 (HNF4 subtype have been linked to a host of developmental and metabolic functions in animals ranging from worms to humans; however, the full spectrum of physiological activities carried out by this nuclear receptor subfamily is far from established. We have found that the Caenorhabditis elegans nuclear receptor NHR-31, a homolog of mammalian HNF4 receptors, is required for controlling the growth and function of the nematode excretory cell, a multi-branched tubular cell that acts as the C. elegans renal system. Larval specific RNAi knockdown of nhr-31 led to significant structural abnormalities along the length of the excretory cell canal, including numerous regions of uncontrolled growth at sites near to and distant from the cell nucleus. nhr-31 RNAi animals were sensitive to acute challenge with ionic stress, implying that the osmoregulatory function of the excretory cell was also compromised. Gene expression profiling revealed a surprisingly specific role for nhr-31 in the control of multiple genes that encode subunits of the vacuolar ATPase (vATPase. RNAi of these vATPase genes resulted in excretory cell defects similar to those observed in nhr-31 RNAi animals, demonstrating that the influence of nhr-31 on excretory cell growth is mediated, at least in part, through coordinate regulation of the vATPase. Sequence analysis revealed a stunning enrichment of HNF4alpha type binding sites in the promoters of both C. elegans and mouse vATPase genes, arguing that coordinate regulation of the vATPase by HNF4 receptors is likely to be conserved in mammals. Our study establishes a new pathway for regulation of excretory cell growth and reveals a novel role for HNF4-type nuclear receptors in the development and function of a renal system.

  13. The Caenorhabditis elegans HNF4alpha Homolog, NHR-31, mediates excretory tube growth and function through coordinate regulation of the vacuolar ATPase.

    Science.gov (United States)

    Hahn-Windgassen, Annett; Van Gilst, Marc R

    2009-07-01

    Nuclear receptors of the Hepatocyte Nuclear Factor-4 (HNF4) subtype have been linked to a host of developmental and metabolic functions in animals ranging from worms to humans; however, the full spectrum of physiological activities carried out by this nuclear receptor subfamily is far from established. We have found that the Caenorhabditis elegans nuclear receptor NHR-31, a homolog of mammalian HNF4 receptors, is required for controlling the growth and function of the nematode excretory cell, a multi-branched tubular cell that acts as the C. elegans renal system. Larval specific RNAi knockdown of nhr-31 led to significant structural abnormalities along the length of the excretory cell canal, including numerous regions of uncontrolled growth at sites near to and distant from the cell nucleus. nhr-31 RNAi animals were sensitive to acute challenge with ionic stress, implying that the osmoregulatory function of the excretory cell was also compromised. Gene expression profiling revealed a surprisingly specific role for nhr-31 in the control of multiple genes that encode subunits of the vacuolar ATPase (vATPase). RNAi of these vATPase genes resulted in excretory cell defects similar to those observed in nhr-31 RNAi animals, demonstrating that the influence of nhr-31 on excretory cell growth is mediated, at least in part, through coordinate regulation of the vATPase. Sequence analysis revealed a stunning enrichment of HNF4alpha type binding sites in the promoters of both C. elegans and mouse vATPase genes, arguing that coordinate regulation of the vATPase by HNF4 receptors is likely to be conserved in mammals. Our study establishes a new pathway for regulation of excretory cell growth and reveals a novel role for HNF4-type nuclear receptors in the development and function of a renal system.

  14. Tristetraprolin Down-Regulation Contributes to Persistent TNF-Alpha Expression Induced by Cigarette Smoke Extract through a Post-Transcriptional Mechanism

    Science.gov (United States)

    Cheng, Ming-Liang; Zhang, Quan; Mu, Mao; Li, Hong; Luo, Yuan; Liang, Yue-Dong; Luo, Xin-Hua; Gao, Chang-Qing; Jackson, Patricia L.; Wells, J. Michael; Zhou, Yong; Hu, Meng; Cai, Guoqiang; Thannickal, Victor J.; Steele, Chad; Blalock, J. Edwin; Han, Xiaosi; Chen, Ching-Yi; Ding, Qiang

    2016-01-01

    Rationale Tumor necrosis factor-alpha (TNF-α) is a potent pro-inflammatory mediator and its expression is up-regulated in chronic obstructive pulmonary disease (COPD). Tristetraprolin (TTP) is implicated in regulation of TNF-α expression; however, whether TTP is involved in cigarette smoke-induced TNF-α expression has not been determined. Methods TTP expression was examined by western blot analysis in murine alveolar macrophages and alveolar epithelial cells challenged without or with cigarette smoke extract (CSE). TNF-α mRNA stability, and the decay of TNF-α mRNA, were determined by real-time quantitative RT-PCR. TNF-α protein levels were examined at the same time in these cells. To identify the molecular mechanism involved, a construct expressing the human beta-globin reporter mRNA containing the TNF-α 3’-untranslated region was generated to characterize the TTP targeted site within TNF-α mRNA. Results CSE induced TTP down-regulation in alveolar macrophages and alveolar epithelial cells. Reduced TTP expression resulted in significantly increased TNF-α mRNA stability. Importantly, increased TNF-α mRNA stability due to impaired TTP function resulted in significantly increased TNF-α levels in these cells. Forced TTP expression abrogated the increased TNF-α mRNA stability and expression induced by CSE. By using the globin reporter construct containing TNF-α mRNA 3’-untranslated region, the data indicate that TTP directly targets the adenine- and uridine-rich region (ARE) of TNF-α mRNA and negatively regulates TNF-α expression at the post-transcriptional level. Conclusion The data demonstrate that cigarette smoke exposure reduces TTP expression and impairs TTP function, resulting in significantly increased TNF-α mRNA stability and excessive TNF-α expression in alveolar macrophages and epithelial cells. The data suggest that TTP is a novel post-transcriptional regulator and limits excessive TNF-α expression and inflammatory response induced by

  15. Regulation of steroid 5-{alpha} reductase type 2 (Srd5a2) by sterol regulatory element binding proteins and statin

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Young-Kyo [Department of Molecular Biology and Biochemistry, 3244 McGaugh Hall, University of California, UC Irvine, Irvine, CA 92697-3900 (United States); Zhu, Bing [Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0144 (United States); Jeon, Tae-Il [Department of Molecular Biology and Biochemistry, 3244 McGaugh Hall, University of California, UC Irvine, Irvine, CA 92697-3900 (United States); Osborne, Timothy F., E-mail: tfosborn@uci.edu [Department of Molecular Biology and Biochemistry, 3244 McGaugh Hall, University of California, UC Irvine, Irvine, CA 92697-3900 (United States)

    2009-11-01

    In this study, we show that sterol regulatory element binding proteins (SREBPs) regulate expression of Srd5a2, an enzyme that catalyzes the irreversible conversion of testosterone to dihydroxytestosterone in the male reproductive tract and is highly expressed in androgen-sensitive tissues such as the prostate and skin. We show that Srd5a2 is induced in livers and prostate from mice fed a chow diet supplemented with lovastatin plus ezitimibe (L/E), which increases the activity of nuclear SREBP-2. The three fold increase in Srd5a2 mRNA mediated by L/E treatment was accompanied by the induction of SREBP-2 binding to the Srd5a2 promoter detected by a ChIP-chip assay in liver. We identified a SREBP-2 responsive region within the first 300 upstream bases of the mouse Srd5a2 promoter by co-transfection assays which contain a site that bound SREBP-2 in vitro by an EMSA. Srd5a2 protein was also induced in cells over-expressing SREBP-2 in culture. The induction of Srd5a2 through SREBP-2 provides a mechanistic explanation for why even though statin therapy is effective in reducing cholesterol levels in treating hypercholesterolemia it does not compromise androgen production in clinical studies.

  16. SMG1 identified as a regulator of Parkinson's disease-associated alpha-synuclein through siRNA screening.

    Directory of Open Access Journals (Sweden)

    Adrienne Henderson-Smith

    Full Text Available Synucleinopathies are a broad class of neurodegenerative disorders characterized by the presence of intracellular protein aggregates containing α-synuclein protein. The aggregated α-synuclein protein is hyperphosphorylated on serine 129 (S129 compared to the unaggregated form of the protein. While the precise functional consequences of S129 hyperphosphorylation are still being clarified, numerous in vitro and in vivo studies suggest that S129 phosphorylation is an early event in α-synuclein dysfunction and aggregation. Identifying the kinases and phosphatases that regulate this critical phosphorylation event may ultimately prove beneficial by allowing pharmacological mitigation of synuclein dysfunction and toxicity in Parkinson's disease and other synucleinopathies. We report here the development of a high-content, fluorescence-based assay to quantitate levels of total and S129 phosphorylated α-synuclein protein. We have applied this assay to conduct high-throughput loss-of-function screens with siRNA libraries targeting 711 known and predicted human kinases and 206 phosphatases. Specifically, knockdown of the phosphatidylinositol 3-kinase related kinase SMG1 resulted in significant increases in the expression of pS129 phosphorylated α-synuclein (p-syn. Moreover, SMG1 protein levels were significantly reduced in brain regions with high p-syn levels in both dementia with Lewy bodies (DLB and Parkinson's disease with dementia (PDD. These findings suggest that SMG1 may play an important role in increased α-synuclein pathology during the course of PDD, DLB, and possibly other synucleinopathies.

  17. The Verrucomicrobia LexA-binding Motif: Insights into the Evolutionary Dynamics of the SOS Response

    Directory of Open Access Journals (Sweden)

    Ivan Erill

    2016-07-01

    Full Text Available The SOS response is the primary bacterial mechanism to address DNA damage, coordinating multiple cellular processes that include DNA repair, cell division and translesion synthesis. In contrast to other regulatory systems, the composition of the SOS genetic network and the binding motif of its transcriptional repressor, LexA, have been shown to vary greatly across bacterial clades, making it an ideal system to study the co-evolution of transcription factors and their regulons. Leveraging comparative genomics approaches and prior knowledge on the core SOS regulon, here we define the binding motif of the Verrucomicrobia, a recently described phylum of emerging interest due to its association with eukaryotic hosts. Site directed mutagenesis of the Verrucomicrobium spinosum recA promoter confirms that LexA binds a 14 bp palindromic motif with consensus sequence TGTTC-N4-GAACA. Computational analyses suggest that recognition of this novel motif is determined primarily by changes in base-contacting residues of the third alpha helix of the LexA helix-turn-helix DNA binding motif. In conjunction with comparative genomics analysis of the LexA regulon in the Verrucomicrobia phylum, electrophoretic shift assays reveal that LexA binds to operators in the promoter region of DNA repair genes and a mutagenesis cassette in this organism, and identify previously unreported components of the SOS response. The identification of tandem LexA-binding sites generating instances of other LexA-binding motifs in the lexA gene promoter of Verrucomicrobia species leads us to postulate a novel mechanism for LexA-binding motif evolution. This model, based on gene duplication, successfully addresses outstanding questions in the intricate co-evolution of the LexA protein, its binding motif and the regulatory network it controls.

  18. MOCCS: Clarifying DNA-binding motif ambiguity using ChIP-Seq data.

    Science.gov (United States)

    Ozaki, Haruka; Iwasaki, Wataru

    2016-08-01

    As a key mechanism of gene regulation, transcription factors (TFs) bind to DNA by recognizing specific short sequence patterns that are called DNA-binding motifs. A single TF can accept ambiguity within its DNA-binding motifs, which comprise both canonical (typical) and non-canonical motifs. Clarification of such DNA-binding motif ambiguity is crucial for revealing gene regulatory networks and evaluating mutations in cis-regulatory elements. Although chromatin immunoprecipitation sequencing (ChIP-seq) now provides abundant data on the genomic sequences to which a given TF binds, existing motif discovery methods are unable to directly answer whether a given TF can bind to a specific DNA-binding motif. Here, we report a method for clarifying the DNA-binding motif ambiguity, MOCCS. Given ChIP-Seq data of any TF, MOCCS comprehensively analyzes and describes every k-mer to which that TF binds. Analysis of simulated datasets revealed that MOCCS is applicable to various ChIP-Seq datasets, requiring only a few minutes per dataset. Application to the ENCODE ChIP-Seq datasets proved that MOCCS directly evaluates whether a given TF binds to each DNA-binding motif, even if known position weight matrix models do not provide sufficient information on DNA-binding motif ambiguity. Furthermore, users are not required to provide numerous parameters or background genomic sequence models that are typically unavailable. MOCCS is implemented in Perl and R and is freely available via https://github.com/yuifu/moccs. By complementing existing motif-discovery software, MOCCS will contribute to the basic understanding of how the genome controls diverse cellular processes via DNA-protein interactions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. MotifNet: a web-server for network motif analysis.

    Science.gov (United States)

    Smoly, Ilan Y; Lerman, Eugene; Ziv-Ukelson, Michal; Yeger-Lotem, Esti

    2017-06-15

    Network motifs are small topological patterns that recur in a network significantly more often than expected by chance. Their identification emerged as a powerful approach for uncovering the design principles underlying complex networks. However, available tools for network motif analysis typically require download and execution of computationally intensive software on a local computer. We present MotifNet, the first open-access web-server for network motif analysis. MotifNet allows researchers to analyze integrated networks, where nodes and edges may be labeled, and to search for motifs of up to eight nodes. The output motifs are presented graphically and the user can interactively filter them by their significance, number of instances, node and edge labels, and node identities, and view their instances. MotifNet also allows the user to distinguish between motifs that are centered on specific nodes and motifs that recur in distinct parts of the network. MotifNet is freely available at http://netbio.bgu.ac.il/motifnet . The website was implemented using ReactJs and supports all major browsers. The server interface was implemented in Python with data stored on a MySQL database. estiyl@bgu.ac.il or michaluz@cs.bgu.ac.il. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  20. Down-regulation of hypoxia-inducible factor-1 alpha and vascular endothelial growth factor by HEXIM1 attenuates myocardial angiogenesis in hypoxic mice.

    Science.gov (United States)

    Yoshikawa, Noritada; Shimizu, Noriaki; Ojima, Hidenori; Kobayashi, Hiroshi; Hosono, Osamu; Tanaka, Hirotoshi

    2014-10-24

    Pulmonary hypertension (PH) sustains elevation of pulmonary vascular resistance and ultimately leads to right ventricular (RV) hypertrophy and failure and death. Recently, proangiogenic factors hypoxia-inducible factor-1 alpha (HIF-1α) and vascular endothelial growth factor (VEGF) have been known to promote left ventricular myocardial angiogenesis and lead to cardiac hypertrophy, and this would be involved in RV hypertrophy of PH patients. Previously, we revealed that overexpression of HEXIM1 prevents endothelin-1-induced cardiomyocyte hypertrophy and hypertrophic genes expression, and that cardiomyocyte-specific HEXIM1 transgenic mice ameliorates RV hypertrophy in hypoxia-induced PH model. Given these results, here we analyzed the effect of HEXIM1 on the expression of HIF-1α and VEGF and on myocardial angiogenesis of RV in PH. We revealed that overexpression of HEXIM1 prevented hypoxia-induced expression of HIF-1α protein and its target genes including VEGF in the cultured cardiac myocytes and fibroblasts, and that cardiomyocyte-specific HEXIM1 transgenic mice repressed RV myocardial angiogenesis in hypoxia-induced PH model. Thus, we conclude that HEXIM1 could prevent RV hypertrophy, at least in part, via suppression of myocardial angiogenesis through down-regulation of HIF-1α and VEGF in the myocardium under hypoxic condition. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Hypoxia-inducible factor 1-alpha up-regulates the expression of phospholipase D2 in colon cancer cells under hypoxic conditions.

    Science.gov (United States)

    Liu, Maoxi; Du, Kunli; Fu, Zhongxue; Zhang, Shouru; Wu, Xingye

    2015-01-01

    Hypoxia is a common characteristic of solid tumors. Recent studies confirmed that phospholipase D2 (PLD2) plays significant roles in cancer progression. In this study, correlation between the expression of PLD2 and the change in the protein level of hypoxia-inducible factor 1-alpha (HIF1-α) was studied. Thirty human colon cancer tissues were examined for the expression of HIF1-α and PLD2 protein, and mRNA levels. SW480 and SW620 cells were exposed to normoxia (20 %) or hypoxia (Hypoxic stress induced PLD2 mRNA and protein expression in SW480 and SW620 cells. Cells transfected with HIF1-α siRNA showed attenuation of hypoxia stress-induced PLD2 expression. In vivo growth decreased in response to HIF1-α and PLD2 inhibition. These results suggest that PLD2 expression in colon cancer cells is up-regulated via HIF1-α in response to hypoxic stress and underscores the crucial role of HIF1-α-induced PLD2 in tumor growth.

  2. Interaction of Src and Alpha-V Integrin Regulates Fibroblast Migration and Modulates Lung Fibrosis in A Preclinical Model of Lung Fibrosis

    Science.gov (United States)

    Lu, Yin-Ying; Zhao, Xue-Ke; Yu, Lei; Qi, Fei; Zhai, Bing; Gao, Chang-Qing; Ding, Qiang

    2017-01-01

    Src kinase is known to regulate fibroblast migration. However, the contribution of integrin and Src kinase interaction to lung fibrosis has not been mechanistically investigated. Our data demonstrate that integrin alpha v (αV) recruited Src kinase and that leads to subsequent Src activation in fibroblasts plated on fibrotic matrix, osteopontin. Src interaction with integrin αV is required for integrin αV-mediated Src activation, and the subsequent fibroblast migration. The study identified that β5 and β3 are the major integrins for this effect on osteopontin. In contrast, integrins β1, β6, and β8 did not have a critical role in this phenomenon. Importantly, Src inhibitor significantly reduces fibroblast migration stimulated by PDGF-BB and reduced in vivo lung fibrosis in mice. Src inhibitor reduced Src activation and blocked the signaling transduction by integrin αV, inhibited migration signaling pathways and reduced extracellular matrix protein production, and blocked myofibroblast differentiation in vivo in mouse lung tissues. The present study supports that the interaction of Src Kinase and integrins plays a critical role in the development of lung fibrosis and the signaling involved may present a novel opportunity to target deadly fibrotic diseases. PMID:28397850

  3. An exegesis of IAPs: salvation and surprises from BIR motifs.

    Science.gov (United States)

    Miller, L K

    1999-08-01

    The BIR (baculovirus IAP repeat) motif is a conserved sequence of approximately 70 amino acids that was identified originally in the 'inhibitor of apoptosis' (IAP) family of proteins. BIR-containing proteins (BIRPs) are found in viruses, yeast and metazoans. Recent genetic analysis of a nematode BIRP demonstrated an essential role in cytokinesis instead of apoptosis. It is likely that BIRs originated in eukaryotes to serve a role in cytokinesis and/or mitotic spindle function during cell division and that, with gene duplication, the more recent adaptation of some BIRPs to the regulation of apoptosis was possible. IAPs interact with a variety of proteins, including members of the caspase protease family. This article discusses current research on the structure and function of the BIR motifs and how it could provide insight into the function of BIRPs in cell division.

  4. MotifLab: a tools and data integration workbench for motif discovery and regulatory sequence analysis.

    Science.gov (United States)

    Klepper, Kjetil; Drabløs, Finn

    2013-01-16

    Traditional methods for computational motif discovery often suffer from poor performance. In particular, methods that search for sequence matches to known binding motifs tend to predict many non-functional binding sites because they fail to take into consideration the biological state of the cell. In recent years, genome-wide studies have generated a lot of data that has the potential to improve our ability to identify functional motifs and binding sites, such as information about chromatin accessibility and epigenetic states in different cell types. However, it is not always trivial to make use of this data in combination with existing motif discovery tools, especially for researchers who are not skilled in bioinformatics programming. Here we present MotifLab, a general workbench for analysing regulatory sequence regions and discovering transcription factor binding sites and cis-regulatory modules. MotifLab supports comprehensive motif discovery and analysis by allowing users to integrate several popular motif discovery tools as well as different kinds of additional information, including phylogenetic conservation, epigenetic marks, DNase hypersensitive sites, ChIP-Seq data, positional binding preferences of transcription factors, transcription factor interactions and gene expression. MotifLab offers several data-processing operations that can be used to create, manipulate and analyse data objects, and complete analysis workflows can be constructed and automatically executed within MotifLab, including graphical presentation of the results. We have developed MotifLab as a flexible workbench for motif analysis in a genomic context. The flexibility and effectiveness of this workbench has been demonstrated on selected test cases, in particular two previously published benchmark data sets for single motifs and modules, and a realistic example of genes responding to treatment with forskolin. MotifLab is freely available at http://www.motiflab.org.

  5. Single promoters as regulatory network motifs

    Science.gov (United States)

    Zopf, Christopher; Maheshri, Narendra

    2012-02-01

    At eukaryotic promoters, chromatin can influence the relationship between a gene's expression and transcription factor (TF) activity. This additional complexity might allow single promoters to exhibit dynamical behavior commonly attributed to regulatory motifs involving multiple genes. We investigate the role of promoter chromatin architecture in the kinetics of gene activation using a previously described set of promoter variants based on the phosphate-regulated PHO5 promoter in S. cerevisiae. Accurate quantitative measurement of transcription activation kinetics is facilitated by a controllable and observable TF input to a promoter of interest leading to an observable expression output in single cells. We find the particular architecture of these promoters can result in a significant delay in activation, filtering of noisy TF signals, and a memory of previous activation -- dynamical behaviors reminiscent of a feed-forward loop but only requiring a single promoter. We suggest this is a consequence of chromatin transactions at the promoter, likely passing through a long-lived ``primed'' state between its inactive and competent states. Finally, we show our experimental setup can be generalized as a ``gene oscilloscope'' to probe the kinetics of heterologous promoter architectures.

  6. Cinnamon extract attenuates TNF-alpha-induced intestinal lipoprotein ApoB48 overproduction by regulating inflammatory, insulin, and lipoprotein pathways in enterocytes

    Science.gov (United States)

    We evaluated whether a water extract of cinnamon (CE = Cinnulin PF®) attenuates the dyslipidemia induced by TNF-alpha in Triton WR-1339-treated hamsters, and whether CE inhibited the over-secretion of apoB48-induced by TNF-alpha in enterocytes in a 35S-labelling study. In vivo, oral treatment with C...

  7. Hunting Motifs in Situla Art

    Directory of Open Access Journals (Sweden)

    Andrej Preložnik

    2013-07-01

    Full Text Available Situla art developed as an echo of the toreutic style which had spread from the Near East through the Phoenicians, Greeks and Etruscans as far as the Veneti, Raeti, Histri, and their eastern neighbours in the region of Dolenjska (Lower Carniola. An Early Iron Age phenomenon (c. 600—300 BC, it rep- resents the major and most arresting form of the contemporary visual arts in an area stretching from the foot of the Apennines in the south to the Drava and Sava rivers in the east. Indeed, individual pieces have found their way across the Alpine passes and all the way north to the Danube. In the world and art of the situlae, a prominent role is accorded to ani- mals. They are displayed in numerous representations of human activities on artefacts crafted in the classic situla style – that is, between the late 6th  and early 5th centuries BC – as passive participants (e.g. in pageants or in harness or as an active element of the situla narrative. The most typical example of the latter is the hunting scene. Today we know at least four objects decorat- ed exclusively with hunting themes, and a number of situlae and other larger vessels where hunting scenes are embedded in composite narratives. All this suggests a popularity unparallelled by any other genre. Clearly recognisable are various hunting techniques and weapons, each associated with a particu- lar type of game (Fig. 1. The chase of a stag with javelin, horse and hound is depicted on the long- familiar and repeatedly published fibula of Zagorje (Fig. 2. It displays a hound mauling the stag’s back and a hunter on horseback pursuing a hind, her neck already pierced by the javelin. To judge by the (so far unnoticed shaft end un- der the stag’s muzzle, the hunter would have been brandishing a second jave- lin as well, like the warrior of the Vače fibula or the rider of the Nesactium situla, presumably himself a hunter. Many parallels to his motif are known from Greece, Etruria, and

  8. Nitric oxide enhances the sensitivity of alpaca melanocytes to respond to {alpha}-melanocyte-stimulating hormone by up-regulating melanocortin-1 receptor

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Yanjun; Cao, Jing; Wang, Haidong; Zhang, Jie; Zhu, Zhiwei; Bai, Rui; Hao, HuanQing; He, Xiaoyan; Fan, Ruiwen [College of Animal Science and Technology, Shanxi Agricultural University, 030801 Taigu, Shanxi (China); Dong, Changsheng, E-mail: cs_dong@sxau.edu.cn [College of Animal Science and Technology, Shanxi Agricultural University, 030801 Taigu, Shanxi (China)

    2010-06-11

    Nitric oxide (NO) and {alpha}-melanocyte-stimulating hormone ({alpha}-MSH) have been correlated with the synthesis of melanin. The NO-dependent signaling of cellular response to activate the hypothalamopituitary proopiomelanocortin system, thereby enhances the hypophysial secretion of {alpha}-MSH to stimulate {alpha}-MSH-receptor responsive cells. In this study we investigated whether an NO-induced pathway can enhance the ability of the melanocyte to respond to {alpha}-MSH on melanogenesis in alpaca skin melanocytes in vitro. It is important for us to know how to enhance the coat color of alpaca. We set up three groups for experiments using the third passage number of alpaca melanocytes: the control cultures were allowed a total of 5 days growth; the UV group cultures like the control group but the melanocytes were then irradiated everyday (once) with 312 mJ/cm{sup 2} of UVB; the UV + L-NAME group is the same as group UV but has the addition of 300 {mu}M L-NAME (every 6 h). To determine the inhibited effect of NO produce, NO produces were measured. To determine the effect of the NO to the key protein and gene of {alpha}-MSH pathway on melanogenesis, the key gene and protein of the {alpha}-MSH pathway were measured by quantitative real-time PCR and Western immunoblotting. The results provide exciting new evidence that NO can enhance {alpha}-MSH pathway in alpaca skin melanocytes by elevated MC1R. And we suggest that the NO pathway may more rapidly cause the synthesis of melanin in alpaca skin under UV, which at that time elevates the expression of MC1R and stimulates the keratinocytes to secrete {alpha}-MSH to enhance the {alpha}-MSH pathway on melanogenesis. This process will be of considerable interest in future studies.

  9. Buffett's Alpha

    DEFF Research Database (Denmark)

    Frazzini, Andrea; Kabiller, David; Heje Pedersen, Lasse

    Berkshire Hathaway has realized a Sharpe ratio of 0.76, higher than any other stock or mutual fund with a history of more than 30 years, and Berkshire has a significant alpha to traditional risk factors. However, we find that the alpha becomes insignificant when controlling for exposures to Betting-Against-Beta...... in publicly traded stocks versus wholly-owned private companies, we find that the former performs the best, suggesting that Buffett's returns are more due to stock selection than to his effect on management. These results have broad implications for market efficiency and the implementability of academic...

  10. Identification of common motifs in unaligned DNA sequences: application to Escherichia coli Lrp regulon.

    Science.gov (United States)

    Fraenkel, Y M; Mandel, Y; Friedberg, D; Margalit, H

    1995-08-01

    We describe a relatively simple method for the identification of common motifs in DNA sequences that are known to share a common function. The input sequences are unaligned and there is no information regarding the position or orientation of the motif. Often such data exists for protein-binding regions, where genetic or molecular information that defines the binding region is available, but the specific recognition site within it is unknown. The method is based on the principle of 'divide and conquer'; we first search for dominant submotifs and then build full-length motifs around them. This method has several useful features: (i) it screens all submotifs so that the results are independent of the sequence order in the data; (ii) it allows the submotifs to contain spacers; (iii) it identifies an existing motif even if the data contains 'noise'; (iv) its running time depends linearly on the total length of the input. The method is demonstrated on two groups of protein-binding sequences: a well-studied group of known CRP-binding sequences, and a relatively newly identified group of genes known to be regulated by Lrp. The Lrp motif that we identify, based on 23 gene sequences, is similar to a previously identified motif based on a smaller data set, and to a consensus sequence of experimentally defined binding sites. Individual Lrp sites are evaluated and compared in regard to their regulation mode.

  11. 1-alpha,25-Dihydroxyvitamin D3up-regulates the expression of 2 types of human intestinal alkaline phosphatase alternative splicing variants in Caco-2 cells and may be an important regulator of their expression in gut homeostasis.

    Science.gov (United States)

    Noda, Seiko; Yamada, Asako; Nakaoka, Kanae; Goseki-Sone, Masae

    2017-10-01

    Vitamin D insufficiency is associated with a greater risk of osteoporosis and also influences skeletal muscle functions, differentiation, and development. The principal function of vitamin D in calcium homeostasis is to increase the absorption of calcium from the intestine, and the level of alkaline phosphatase (ALP) activity, a differentiation marker for intestinal epithelial cells, is regulated by vitamin D. Intestinal-type ALP is expressed at a high concentration in the brush border membrane of intestinal epithelial cells, and is known to be affected by several kinds of nutrients. Recent reviews have highlighted the importance of intestinal-type ALP in gut homeostasis. Intestinal-type ALP controls bacterial endotoxin-induced inflammation by dephosphorylating lipopolysaccharide and is a gut mucosal defense factor. In this study, we investigated the influence of vitamin D on the expression of 2 types of alternative mRNA variants encoding the human alkaline phosphatase, intestinal (ALPI) gene in human Caco-2 cells as an in vitro model of the small intestinal epithelium. After treatment with 1-alpha,25-dihydroxyvitamin D 3 , the biologically active form of vitamin D 3 , there were significant increases in the ALP activities of Caco-2 cells. Inhibitor and thermal inactivation experiments showed that the increased ALP had properties of intestinal-type ALP. Reverse transcription-polymerase chain reaction analysis revealed that expression of the 2 types of alternative mRNA variants from the ALPI gene was markedly enhanced by vitamin D in Caco-2 cells. In conclusion, these findings agree with the hypothesis: vitamin D up-regulated the expression of 2 types of human intestinal alkaline phosphatase alternative splicing variants in Caco-2 cells; vitamin D may be an important regulator of ALPI gene expression in gut homeostasis. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Miz-1 activates gene expression via a novel consensus DNA binding motif.

    Directory of Open Access Journals (Sweden)

    Bonnie L Barrilleaux

    Full Text Available The transcription factor Miz-1 can either activate or repress gene expression in concert with binding partners including the Myc oncoprotein. The genomic binding of Miz-1 includes both core promoters and more distal sites, but the preferred DNA binding motif of Miz-1 has been unclear. We used a high-throughput in vitro technique, Bind-n-Seq, to identify two Miz-1 consensus DNA binding motif sequences--ATCGGTAATC and ATCGAT (Mizm1 and Mizm2--bound by full-length Miz-1 and its zinc finger domain, respectively. We validated these sequences directly as high affinity Miz-1 binding motifs. Competition assays using mutant probes indicated that the binding affinity of Miz-1 for Mizm1 and Mizm2 is highly sequence-specific. Miz-1 strongly activates gene expression through the motifs in a Myc-independent manner. MEME-ChIP analysis of Miz-1 ChIP-seq data in two different cell types reveals a long motif with a central core sequence highly similar to the Mizm1 motif identified by Bind-n-Seq, validating the in vivo relevance of the findings. Miz-1 ChIP-seq peaks containing the long motif are predominantly located outside of proximal promoter regions, in contrast to peaks without the motif, which are highly concentrated within 1.5 kb of the nearest transcription start site. Overall, our results indicate that Miz-1 may be directed in vivo to the novel motif sequences we have identified, where it can recruit its specific binding partners to control gene expression and ultimately regulate cell fate.

  13. Identification of a putative nuclear export signal motif in human NANOG homeobox domain

    International Nuclear Information System (INIS)

    Park, Sung-Won; Do, Hyun-Jin; Huh, Sun-Hyung; Sung, Boreum; Uhm, Sang-Jun; Song, Hyuk; Kim, Nam-Hyung; Kim, Jae-Hwan

    2012-01-01

    Highlights: ► We found the putative nuclear export signal motif within human NANOG homeodomain. ► Leucine-rich residues are important for human NANOG homeodomain nuclear export. ► CRM1-specific inhibitor LMB blocked the potent human NANOG NES-mediated nuclear export. -- Abstract: NANOG is a homeobox-containing transcription factor that plays an important role in pluripotent stem cells and tumorigenic cells. To understand how nuclear localization of human NANOG is regulated, the NANOG sequence was examined and a leucine-rich nuclear export signal (NES) motif ( 125 MQELSNILNL 134 ) was found in the homeodomain (HD). To functionally validate the putative NES motif, deletion and site-directed mutants were fused to an EGFP expression vector and transfected into COS-7 cells, and the localization of the proteins was examined. While hNANOG HD exclusively localized to the nucleus, a mutant with both NLSs deleted and only the putative NES motif contained (hNANOG HD-ΔNLSs) was predominantly cytoplasmic, as observed by nucleo/cytoplasmic fractionation and Western blot analysis as well as confocal microscopy. Furthermore, site-directed mutagenesis of the putative NES motif in a partial hNANOG HD only containing either one of the two NLS motifs led to localization in the nucleus, suggesting that the NES motif may play a functional role in nuclear export. Furthermore, CRM1-specific nuclear export inhibitor LMB blocked the hNANOG potent NES-mediated export, suggesting that the leucine-rich motif may function in CRM1-mediated nuclear export of hNANOG. Collectively, a NES motif is present in the hNANOG HD and may be functionally involved in CRM1-mediated nuclear export pathway.

  14. ssHMM: extracting intuitive sequence-structure motifs from high-throughput RNA-binding protein data.

    Science.gov (United States)

    Heller, David; Krestel, Ralf; Ohler, Uwe; Vingron, Martin; Marsico, Annalisa

    2017-11-02

    RNA-binding proteins (RBPs) play an important role in RNA post-transcriptional regulation and recognize target RNAs via sequence-structure motifs. The extent to which RNA structure influences protein binding in the presence or absence of a sequence motif is still poorly understood. Existing RNA motif finders either take the structure of the RNA only partially into account, or employ models which are not directly interpretable as sequence-structure motifs. We developed ssHMM, an RNA motif finder based on a hidden Markov model (HMM) and Gibbs sampling which fully captures the relationship between RNA sequence and secondary structure preference of a given RBP. Compared to previous methods which output separate logos for sequence and structure, it directly produces a combined sequence-structure motif when trained on a large set of sequences. ssHMM's model is visualized intuitively as a graph and facilitates biological interpretation. ssHMM can be used to find novel bona fide sequence-structure motifs of uncharacterized RBPs, such as the one presented here for the YY1 protein. ssHMM reaches a high motif recovery rate on synthetic data, it recovers known RBP motifs from CLIP-Seq data, and scales linearly on the input size, being considerably faster than MEMERIS and RNAcontext on large datasets while being on par with GraphProt. It is freely available on Github and as a Docker image. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  15. The position of the Gly-xxx-Gly motif in transmembrane segments modulates dimer affinity.

    Science.gov (United States)

    Johnson, Rachel M; Rath, Arianna; Deber, Charles M

    2006-12-01

    Although the intrinsic low solubility of membrane proteins presents challenges to their high-resolution structure determination, insight into the amino acid sequence features and forces that stabilize their folds has been provided through study of sequence-dependent helix-helix interactions between single transmembrane (TM) helices. While the stability of helix-helix partnerships mediated by the Gly-xxx-Gly (GG4) motif is known to be generally modulated by distal interfacial residues, it has not been established whether the position of this motif, with respect to the ends of a given TM segment, affects dimer affinity. Here we examine the relationship between motif position and affinity in the homodimers of 2 single-spanning membrane protein TM sequences: glycophorin A (GpA) and bacteriophage M13 coat protein (MCP). Using the TOXCAT assay for dimer affinity on a series of GpA and MCP TM segments that have been modified with either 4 Leu residues at each end or with 8 Leu residues at the N-terminal end, we show that in each protein, centrally located GG4 motifs are capable of stronger helix-helix interactions than those proximal to TM helix ends, even when surrounding interfacial residues are maintained. The relative importance of GG4 motifs in stabilizing helix-helix interactions therefore must be considered not only in its specific residue context but also in terms of the location of the interactive surface relative to the N and C termini of alpha-helical TM segments.

  16. A novel swarm intelligence algorithm for finding DNA motifs.

    Science.gov (United States)

    Lei, Chengwei; Ruan, Jianhua

    2009-01-01

    Discovering DNA motifs from co-expressed or co-regulated genes is an important step towards deciphering complex gene regulatory networks and understanding gene functions. Despite significant improvement in the last decade, it still remains one of the most challenging problems in computational molecular biology. In this work, we propose a novel motif finding algorithm that finds consensus patterns using a population-based stochastic optimisation technique called Particle Swarm Optimisation (PSO), which has been shown to be effective in optimising difficult multidimensional problems in continuous domains. We propose to use a word dissimilarity graph to remap the neighborhood structure of the solution space of DNA motifs, and propose a modification of the naive PSO algorithm to accommodate discrete variables. In order to improve efficiency, we also propose several strategies for escaping from local optima and for automatically determining the termination criteria. Experimental results on simulated challenge problems show that our method is both more efficient and more accurate than several existing algorithms. Applications to several sets of real promoter sequences also show that our approach is able to detect known transcription factor binding sites, and outperforms two of the most popular existing algorithms.

  17. Insertion of tetracysteine motifs into dopamine transporter extracellular domains.

    Directory of Open Access Journals (Sweden)

    Deanna M Navaroli

    Full Text Available The neuronal dopamine transporter (DAT is a major determinant of extracellular dopamine (DA levels and is the primary target for a variety of addictive and therapeutic psychoactive drugs. DAT is acutely regulated by protein kinase C (PKC activation and amphetamine exposure, both of which modulate DAT surface expression by endocytic trafficking. In order to use live imaging approaches to study DAT endocytosis, methods are needed to exclusively label the DAT surface pool. The use of membrane impermeant, sulfonated biarsenic dyes holds potential as one such approach, and requires introduction of an extracellular tetracysteine motif (tetraCys; CCPGCC to facilitate dye binding. In the current study, we took advantage of intrinsic proline-glycine (Pro-Gly dipeptides encoded in predicted DAT extracellular domains to introduce tetraCys motifs into DAT extracellular loops 2, 3, and 4. [(3H]DA uptake studies, surface biotinylation and fluorescence microscopy in PC12 cells indicate that tetraCys insertion into the DAT second extracellular loop results in a functional transporter that maintains PKC-mediated downregulation. Introduction of tetraCys into extracellular loops 3 and 4 yielded DATs with severely compromised function that failed to mature and traffic to the cell surface. This is the first demonstration of successful introduction of a tetracysteine motif into a DAT extracellular domain, and may hold promise for use of biarsenic dyes in live DAT imaging studies.

  18. Maternal and fetal mechanisms of B cell regulation during pregnancy: human Chorionic Gonadotropin stimulates B cells to produce IL-10 while alpha-fetoprotein drives them into apoptosis

    Directory of Open Access Journals (Sweden)

    Franziska Fettke

    2016-12-01

    Full Text Available Maternal immune tolerance towards the fetus is an essential requisite for pregnancy. While T cell functions are well documented, little is known about the participation of B cells. We have previously suggested that IL-10 producing B cells are involved in pregnancy tolerance in mice and humans. By employing murine and human systems, we report now that fetal trophoblasts positively regulate the generation of IL-10 producing B cells. We next studied the participation of hormones produced by the placenta as well as the fetal protein alpha-fetoprotein (AFP in B cell modulation. Human Chorionic Gonadotropin (hCG, but not progesterone, estrogen or a combination of both, was able to promote changes in B cell phenotype and boost their IL-10 production, which was abolished after blocking hCG. The hCG-induced B cell phenotype was not associated with augmented galactosylation, sialylation or fucosylation of IgG subclasses in their Fc. In vitro, hCG induced the synthesis of asymmetrically glycosylated antibodies in their Fab region. Interestingly, AFP had dual effects depending on the concentration. At concentrations corresponding to maternal serum levels, it did not modify the phenotype or IL-10 secretion of B cells. At fetal concentrations, however, AFP was able to drive B cells into apoptosis, which may indicate a protective mechanism to avoid maternal B cells to reach the fetus.Our data suggests that the fetus secrete factors that promote a pregnancy-friendly B cell phenotype, unraveling interesting aspects of B cell function and modulation by pregnancy hormones and fetal proteins.

  19. Expression of the GABA(A) receptor alpha6 subunit in cultured cerebellar granule cells is developmentally regulated by activation of GABA(A) receptors

    DEFF Research Database (Denmark)

    Carlson, B X; Belhage, B; Hansen, Gert Helge

    1997-01-01

    Da (alpha6 subunit) radioactive peaks in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). In contrast, THIP-treated granule cells at 8 DIV demonstrated a small but significant decrease from control cultures in the photoincorporation of [3H]Ro15-4513 in the 51-kDa peak; however...... that the major effect of THIP was to increase alpha6 subunit clustering on granule cell bodies as well as neurites, 15-fold and sixfold, respectively. Using in situ hybridization, a small THIP-induced increase in alpha6 mRNA was detected at 4 DIV; however, no effect was apparent at 8 DIV. These data suggest...

  20. Interferon-alpha signalling in bovine adrenal chromaffin cells: involvement of signal-transducer and activator of transcription 1 and 2, extracellular signal-regulated protein kinases 1/2 and serine 31 phosphorylation of tyrosine hydroxylase.

    Science.gov (United States)

    Douglas, S A; Bunn, S J

    2009-03-01

    Adrenal medullary chromaffin cells are an integral part of the neuroendocrine system, playing an important role in the physiological adaptation to stress. In response to a wide variety of stimuli, including acetylcholine released from the splanchnic nerve, hormones such as angiotensin II or paracrine signals such as prostaglandins, chromaffin cells synthesise and secrete catecholamines and a number of biologically active peptides. This adrenal medullary output mediates a complex and diverse stress response. We report that chromaffin cells also respond both acutely and chronically to interferon (IFN)-alpha, thus providing a mechanism of interaction between the immune system and the stress response. Incubation of isolated bovine chromaffin cells maintained in culture, with IFN-alpha resulted in a rapid, transient activation of the extracellular signal-regulated protein kinase (ERK)1/2, which was maximal after 5 min. IFN-alpha mediated activation of ERK1/2 appeared to be responsible for the increased phosphorylation of tyrosine hydroxylase, the rate-limiting enzyme in catecholamine synthesis. This tyrosine hydroxylase phosphorylation was exclusively on serine 31, with no change in the phosphorylation of serine 19 or 40. This increase in the serine 31 phosphorylation of tyrosine hydroxylase was prevented by inhibition of protein kinase C or ERK1/2 activation. Incubation with IFN-alpha also resulted in a time- and concentration-dependent phosphorylation and nuclear translocation of signal transducer and activator of transcription proteins (STAT)1 and 2. This response was maximal after approximately 60 min. Prolonged treatment with IFN-alpha (12-48 h) resulted in increased expression of STAT1 and, to a lesser extent, STAT2. Thus, these findings demonstrate that adrenal medullary chromaffin cells are responsive to IFN-alpha and provide a possible cellular mechanism by which this immune-derived signal can potentially influence and integrate with the stress response.

  1. The alpha7 nicotinic receptor agonist SSR180711 increases activity regulated cytoskeleton protein (Arc) gene expression in the prefrontal cortex of the rat

    DEFF Research Database (Denmark)

    Kristensen, Søren; Thomsen, Morten Skøtt; Hansen, Henrik H

    2007-01-01

    Nicotinic alpha7 acetylcholine receptors (alpha7 nAChR) have been shown to enhance attentional function and aspects of memory function in experimental models and in man. The protein Arc encoded by the effector immediate early gene arc or arg3.1 has been shown to be strongly implicated in long......-term memory function. We have sought to determine if alpha7 nAChR mediate the stimulation of arc gene expression, and if so, where in the brain such activation may occur using semi-quantitative in situ hybridisation. Administration of the novel and selective alpha7 nAChR agonist, SSR180711 (1, 3 and 10 mg...

  2. CXC chemokine receptor 4 expression and stromal cell-derived factor-1alpha-induced chemotaxis in CD4+ T lymphocytes are regulated by interleukin-4 and interleukin-10

    DEFF Research Database (Denmark)

    Jinquan, T; Quan, S; Jacobi, H H

    2000-01-01

    We report that interleukin (IL)-4 and IL-10 can significantly up- or down-regulate CXC chemokine receptor 4 (CXCR4) expression on CD4+ T lymphocytes, respectively. Stromal cell-derived factor-1alpha (SDF-1alpha)-induced CD4+ T-lymphocyte chemotaxis was also correspondingly regulated by IL-4 and IL......-10. IL-4 and IL-10 up- or down-regulated CXCR4 mRNA expression in CD4+ T lymphocytes, respectively, as detected by real-time quantitative reverse transcription-polymerase chain reaction (RT-PCR). Scatchard analysis revealed a type of CXCR4 with affinity (Kd approximately 6.3 nM), and approximately 70....... The regulation of CXCR4 expression in CD4+ T lymphocytes by IL-4 and IL-10 could be blocked by a selective inhibitor of protein kinase (staurosporine) or by a selective inhibitor of cAMP- and cGMP-dependent protein kinase (H-8), indicating that these cytokines regulate CXCR4 on CD4+ T lymphocytes via both c...

  3. Systematic discovery of regulatory motifs in Fusarium graminearum by comparing four Fusarium genomes

    Directory of Open Access Journals (Sweden)

    Kistler Corby

    2010-03-01

    Full Text Available Abstract Background Fusarium graminearum (Fg, a major fungal pathogen of cultivated cereals, is responsible for billions of dollars in agriculture losses. There is a growing interest in understanding the transcriptional regulation of this organism, especially the regulation of genes underlying its pathogenicity. The generation of whole genome sequence assemblies for Fg and three closely related Fusarium species provides a unique opportunity for such a study. Results Applying comparative genomics approaches, we developed a computational pipeline to systematically discover evolutionarily conserved regulatory motifs in the promoter, downstream and the intronic regions of Fg genes, based on the multiple alignments of sequenced Fusarium genomes. Using this method, we discovered 73 candidate regulatory motifs in the promoter regions. Nearly 30% of these motifs are highly enriched in promoter regions of Fg genes that are associated with a specific functional category. Through comparison to Saccharomyces cerevisiae (Sc and Schizosaccharomyces pombe (Sp, we observed conservation of transcription factors (TFs, their binding sites and the target genes regulated by these TFs related to pathways known to respond to stress conditions or phosphate metabolism. In addition, this study revealed 69 and 39 conserved motifs in the downstream regions and the intronic regions, respectively, of Fg genes. The top intronic motif is the splice donor site. For the downstream regions, we noticed an intriguing absence of the mammalian and Sc poly-adenylation signals among the list of conserved motifs. Conclusion This study provides the first comprehensive list of candidate regulatory motifs in Fg, and underscores the power of comparative genomics in revealing functional elements among related genomes. The conservation of regulatory pathways among the Fusarium genomes and the two yeast species reveals their functional significance, and provides new insights in their

  4. Regulation of Class IA PI 3-kinases: C2 domain-iSH2 domain contacts inhibit p85/p110alpha and are disrupted in oncogenic p85 mutants.

    Science.gov (United States)

    Wu, Haiyan; Shekar, S Chandra; Flinn, Rory J; El-Sibai, Mirvat; Jaiswal, Bijay S; Sen, K Ilker; Janakiraman, Vasantharajan; Seshagiri, Somasekar; Gerfen, Gary J; Girvin, Mark E; Backer, Jonathan M

    2009-12-01

    We previously proposed a model of Class IA PI3K regulation in which p85 inhibition of p110alpha requires (i) an inhibitory contact between the p85 nSH2 domain and the p110alpha helical domain, and (ii) a contact between the p85 nSH2 and iSH2 domains that orients the nSH2 so as to inhibit p110alpha. We proposed that oncogenic truncations of p85 fail to inhibit p110 due to a loss of the iSH2-nSH2 contact. However, we now find that within the context of a minimal regulatory fragment of p85 (the nSH2-iSH2 fragment, termed p85ni), the nSH2 domain rotates much more freely (tau(c) approximately 12.7 ns) than it could if it were interacting rigidly with the iSH2 domain. These data are not compatible with our previous model. We therefore tested an alternative model in which oncogenic p85 truncations destabilize an interface between the p110alpha C2 domain (residue N345) and the p85 iSH2 domain (residues D560 and N564). p85ni-D560K/N564K shows reduced inhibition of p110alpha, similar to the truncated p85ni-572(STOP). Conversely, wild-type p85ni poorly inhibits p110alphaN345K. Strikingly, the p110alphaN345K mutant is inhibited to the same extent by the wild-type or truncated p85ni, suggesting that mutation of p110alpha-N345 is not additive with the p85ni-572(STOP) mutation. Similarly, the D560K/N564K mutation is not additive with the p85ni-572(STOP) mutant for downstream signaling or cellular transformation. Thus, our data suggests that mutations at the C2-iSH2 domain contact and truncations of the iSH2 domain, which are found in human tumors, both act by disrupting the C2-iSH2 domain interface.

  5. Analisis Unsur Matematika pada Motif Sulam Usus

    Directory of Open Access Journals (Sweden)

    Fredi Ganda Putra

    2017-12-01

    Full Text Available Based on interviews with researchers sources said that the beginning of the intestine embroidery is an art of genuine crafts. Called the intestine embroidery because this technique is a technique of combining a strand of cloth resembling the intestine formed according to the pattern by means of embroidered using a thread. Intestinal embroidery techniques were originally used to create a cover of the women's customary wardrobe of Lampung or often referred to as bebe. But not many people in Lampung, especially people who live in Lampung are still many who do not know and recognize the intestine embroidery because most only know tapis only characteristic of Lampung, besides that there are other cultural results that is embroidered intestine. There are still many who do not know that the intestine motif there is a knowledge of mathematics. The researcher's problem formulation is whether there are mathematical elements contained in the intestine embroidery motif based on the concept of geometry. The purpose of this study is to determine whether there are elements of mathematics contained in the intestine motif based on the concept of geometry. Subjects in this study consisted of 4 people obtained by purposive sampling technique. From the results of data analysis conducted by using descriptive analysis and discussion as follows: (1 Intestinal embroidery motif contains the meaning of mathematics and culture or often called Etnomatematika. On the meaning of culture there is a link between the embroidery intestine with a culture that has been there before as the existence of cultural linkage between Hindu belief Buddhism and there are similarities of motifs and decorative patterns contained in the motif embroidery intestine with ornamental variety in Indonesia. (2 The relationship between the intestine with mathematical motifs there are elements of mathematics such as geometry elements in the form of geometry of dimension one and dimension two, and the

  6. Global analysis of estrogen receptor beta binding to breast cancer cell genome reveals an extensive interplay with estrogen receptor alpha for target gene regulation

    Directory of Open Access Journals (Sweden)

    Papa Maria

    2011-01-01

    Full Text Available Abstract Background Estrogen receptors alpha (ERα and beta (ERβ are transcription factors (TFs that mediate estrogen signaling and define the hormone-responsive phenotype of breast cancer (BC. The two receptors can be found co-expressed and play specific, often opposite, roles, with ERβ being able to modulate the effects of ERα on gene transcription and cell proliferation. ERβ is frequently lost in BC, where its presence generally correlates with a better prognosis of the disease. The identification of the genomic targets of ERβ in hormone-responsive BC cells is thus a critical step to elucidate the roles of this receptor in estrogen signaling and tumor cell biology. Results Expression of full-length ERβ in hormone-responsive, ERα-positive MCF-7 cells resulted in a marked reduction in cell proliferation in response to estrogen and marked effects on the cell transcriptome. By ChIP-Seq we identified 9702 ERβ and 6024 ERα binding sites in estrogen-stimulated cells, comprising sites occupied by either ERβ, ERα or both ER subtypes. A search for TF binding matrices revealed that the majority of the binding sites identified comprise one or more Estrogen Response Element and the remaining show binding matrixes for other TFs known to mediate ER interaction with chromatin by tethering, including AP2, E2F and SP1. Of 921 genes differentially regulated by estrogen in ERβ+ vs ERβ- cells, 424 showed one or more ERβ site within 10 kb. These putative primary ERβ target genes control cell proliferation, death, differentiation, motility and adhesion, signal transduction and transcription, key cellular processes that might explain the biological and clinical phenotype of tumors expressing this ER subtype. ERβ binding in close proximity of several miRNA genes and in the mitochondrial genome, suggests the possible involvement of this receptor in small non-coding RNA biogenesis and mitochondrial genome functions. Conclusions Results indicate that the

  7. Direct AUC optimization of regulatory motifs.

    Science.gov (United States)

    Zhu, Lin; Zhang, Hong-Bo; Huang, De-Shuang

    2017-07-15

    The discovery of transcription factor binding site (TFBS) motifs is essential for untangling the complex mechanism of genetic variation under different developmental and environmental conditions. Among the huge amount of computational approaches for de novo identification of TFBS motifs, discriminative motif learning (DML) methods have been proven to be promising for harnessing the discovery power of accumulated huge amount of high-throughput binding data. However, they have to sacrifice accuracy for speed and could fail to fully utilize the information of the input sequences. We propose a novel algorithm called CDAUC for optimizing DML-learned motifs based on the area under the receiver-operating characteristic curve (AUC) criterion, which has been widely used in the literature to evaluate the significance of extracted motifs. We show that when the considered AUC loss function is optimized in a coordinate-wise manner, the cost function of each resultant sub-problem is a piece-wise constant function, whose optimal value can be found exactly and efficiently. Further, a key step of each iteration of CDAUC can be efficiently solved as a computational geometry problem. Experimental results on real world high-throughput datasets illustrate that CDAUC outperforms competing methods for refining DML motifs, while being one order of magnitude faster. Meanwhile, preliminary results also show that CDAUC may also be useful for improving the interpretability of convolutional kernels generated by the emerging deep learning approaches for predicting TF sequences specificities. CDAUC is available at: https://drive.google.com/drive/folders/0BxOW5MtIZbJjNFpCeHlBVWJHeW8 . dshuang@tongji.edu.cn. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  8. Regulation of human lung fibroblast C1q-receptors by transforming growth factor-beta and tumor necrosis factor-alpha.

    Science.gov (United States)

    Lurton, J; Soto, H; Narayanan, A S; Raghu, G

    1999-03-01

    Transforming growth factor-beta (TGF-beta) and tumor necrosis factor-alpha (TNF-alpha) are two polypeptide mediators which are believed to play a role in the evolution of idiopathic pulmonary fibrosis (IPF). We have evaluated the effect of these two substances on the expression of receptors for collagen (cC1q-R) and globular (gC1q-R) domains of C1q and on type I collagen in human lung fibroblasts. Two fibroblast subpopulations differing in C1q receptor expression were obtained by culturing human lung explants in medium containing fresh human serum and heated plasma-derived serum and separating them based on C1q binding [Narayanan, Lurton and Raghu: Am J Resp Cell Mol Biol. 1998; 17:84]. The cells, referred to as HH and NL cells, respectively, were exposed to TGF-beta and TNF-alpha in serum-free conditions. The levels of mRNA were assessed by in situ hybridization and Northern analysis, and protein levels compared after SDS-polyacrylamide gel electrophoresis and Western blotting. NL cells exposed to TGF-beta and TNF-alpha contained 1.4 and 1.6 times as much cC1q-R mRNA, respectively, whereas in HH cells cC1q-R mRNA increased 2.0- and 2.4-fold. The gC1q-R mRNA levels increased to a lesser extent in both cells. These increases were not reflected in protein levels of CC1q-R and gC1q-R, which were similar to or less than controls. Both TGF-beta and TNF-alpha also increased procollagen [I] mRNA levels in both cells. Overall, TNF-alpha caused a greater increase and the degree of response by HH fibroblasts to both TGF-beta and TNF-alpha was higher than NL cells. These results indicated that TGF-beta and TNF-alpha upregulate the mRNA levels for cC1q-R and collagen and that they do not affect gC1q-R mRNA levels significantly. They also indicated different subsets of human lung fibroblasts respond differently to inflammatory mediators.

  9. Comprehensive human transcription factor binding site map for combinatory binding motifs discovery.

    Directory of Open Access Journals (Sweden)

    Arnoldo J Müller-Molina

    Full Text Available To know the map between transcription factors (TFs and their binding sites is essential to reverse engineer the regulation process. Only about 10%-20% of the transcription factor binding motifs (TFBMs have been reported. This lack of data hinders understanding gene regulation. To address this drawback, we propose a computational method that exploits never used TF properties to discover the missing TFBMs and their sites in all human gene promoters. The method starts by predicting a dictionary of regulatory "DNA words." From this dictionary, it distills 4098 novel predictions. To disclose the crosstalk between motifs, an additional algorithm extracts TF combinatorial binding patterns creating a collection of TF regulatory syntactic rules. Using these rules, we narrowed down a list of 504 novel motifs that appear frequently in syntax patterns. We tested the predictions against 509 known motifs confirming that our system can reliably predict ab initio motifs with an accuracy of 81%-far higher than previous approaches. We found that on average, 90% of the discovered combinatorial binding patterns target at least 10 genes, suggesting that to control in an independent manner smaller gene sets, supplementary regulatory mechanisms are required. Additionally, we discovered that the new TFBMs and their combinatorial patterns convey biological meaning, targeting TFs and genes related to developmental functions. Thus, among all the possible available targets in the genome, the TFs tend to regulate other TFs and genes involved in developmental functions. We provide a comprehensive resource for regulation analysis that includes a dictionary of "DNA words," newly predicted motifs and their corresponding combinatorial patterns. Combinatorial patterns are a useful filter to discover TFBMs that play a major role in orchestrating other factors and thus, are likely to lock/unlock cellular functional clusters.

  10. GNG Motifs Can Replace a GGG Stretch during G-Quadruplex Formation in a Context Dependent Manner.

    Science.gov (United States)

    Das, Kohal; Srivastava, Mrinal; Raghavan, Sathees C

    2016-01-01

    G-quadruplexes are one of the most commonly studied non-B DNA structures. Generally, these structures are formed using a minimum of 4, three guanine tracts, with connecting loops ranging from one to seven. Recent studies have reported deviation from this general convention. One such deviation is the involvement of bulges in the guanine tracts. In this study, guanines along with bulges, also referred to as GNG motifs have been extensively studied using recently reported HOX11 breakpoint fragile region I as a model template. By strategic mutagenesis approach we show that the contribution from continuous G-tracts may be dispensible during G-quadruplex formation when such motifs are flanked by GNGs. Importantly, the positioning and number of GNG/GNGNG can also influence the formation of G-quadruplexes. Further, we assessed three genomic regions from HIF1 alpha, VEGF and SHOX gene for G-quadruplex formation using GNG motifs. We show that HIF1 alpha sequence harbouring GNG motifs can fold into intramolecular G-quadruplex. In contrast, GNG motifs in mutant VEGF sequence could not participate in structure formation, suggesting that the usage of GNG is context dependent. Importantly, we show that when two continuous stretches of guanines are flanked by two independent GNG motifs in a naturally occurring sequence (SHOX), it can fold into an intramolecular G-quadruplex. Finally, we show the specific binding of G-quadruplex binding protein, Nucleolin and G-quadruplex antibody, BG4 to SHOX G-quadruplex. Overall, our study provides novel insights into the role of GNG motifs in G-quadruplex structure formation which may have both physiological and pathological implications.

  11. GNG Motifs Can Replace a GGG Stretch during G-Quadruplex Formation in a Context Dependent Manner.

    Directory of Open Access Journals (Sweden)

    Kohal Das

    Full Text Available G-quadruplexes are one of the most commonly studied non-B DNA structures. Generally, these structures are formed using a minimum of 4, three guanine tracts, with connecting loops ranging from one to seven. Recent studies have reported deviation from this general convention. One such deviation is the involvement of bulges in the guanine tracts. In this study, guanines along with bulges, also referred to as GNG motifs have been extensively studied using recently reported HOX11 breakpoint fragile region I as a model template. By strategic mutagenesis approach we show that the contribution from continuous G-tracts may be dispensible during G-quadruplex formation when such motifs are flanked by GNGs. Importantly, the positioning and number of GNG/GNGNG can also influence the formation of G-quadruplexes. Further, we assessed three genomic regions from HIF1 alpha, VEGF and SHOX gene for G-quadruplex formation using GNG motifs. We show that HIF1 alpha sequence harbouring GNG motifs can fold into intramolecular G-quadruplex. In contrast, GNG motifs in mutant VEGF sequence could not participate in structure formation, suggesting that the usage of GNG is context dependent. Importantly, we show that when two continuous stretches of guanines are flanked by two independent GNG motifs in a naturally occurring sequence (SHOX, it can fold into an intramolecular G-quadruplex. Finally, we show the specific binding of G-quadruplex binding protein, Nucleolin and G-quadruplex antibody, BG4 to SHOX G-quadruplex. Overall, our study provides novel insights into the role of GNG motifs in G-quadruplex structure formation which may have both physiological and pathological implications.

  12. Influence of the mycotoxins alpha- and beta-zearalenol (ZOL) on regulators of cap-dependent translation control in pig endometrial cells.

    Science.gov (United States)

    Wollenhaupt, K; Jonas, L; Tiemann, U; Tomek, W

    2004-12-01

    The molecular mechanisms that control the mycotoxin-mediated effects in porcine endometrial cells are far from being completely understood. Recent results show that they could inhibit cell proliferation. Therefore, the present study investigated the effects of the mycotoxins alpha-zearalenol (alpha-ZOL) and beta-zearalenol (beta-ZOL) on a cellular level. Mainly, the abundance and phosphorylation state (activity) of the cell cycle-dependent kinases MAPK and Akt (PKB) and their potential targets eIF4E (eukaryotic initiation factor 4E) and 4E-BP1 (4E binding protein, eIF4E repressor protein) were investigated. The results show that alpha-ZOL has apparently only a slight influence on the phosphorylation state of MAP kinases, Akt and on eIF4E and 4E-BP1. In contrast, their phosphorylation was strongly reduced in beta-ZOL-treated cells in a concentration-dependent manner. Therefore, our results indicate that beta-ZOL potentially not only influences transcription but also effects gene expression on translational level. The effect of alpha- and beta-ZOL on endometrial cell proliferation and their toxicology are discussed.

  13. Action of Specific Thyroid Hormone Receptor alpha(1) and beta(1) Antagonists in the Central and Peripheral Regulation of Thyroid Hormone Metabolism in the Rat

    NARCIS (Netherlands)

    van Beeren, Hermina C.; Kwakkel, Joan; Ackermans, Mariëtte T.; Wiersinga, Wilmar M.; Fliers, Eric; Boelen, Anita

    2012-01-01

    Background: The iodine-containing drug amiodarone (Amio) and its noniodine containing analogue dronedarone (Dron) are potent antiarrhythmic drugs. Previous in vivo and in vitro studies have shown that the major metabolite of Amio, desethylamiodarone, acts as a thyroid hormone receptor (TR) alpha(1)

  14. Expression of the GABA(A) receptor alpha6 subunit in cultured cerebellar granule cells is developmentally regulated by activation of GABA(A) receptors

    DEFF Research Database (Denmark)

    Carlson, B X; Belhage, B; Hansen, Gert Helge

    1997-01-01

    Da (alpha6 subunit) radioactive peaks in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). In contrast, THIP-treated granule cells at 8 DIV demonstrated a small but significant decrease from control cultures in the photoincorporation of [3H]Ro15-4513 in the 51-kDa peak; however...... that the major effect of THIP was to increase alpha6 subunit clustering on granule cell bodies as well as neurites, 15-fold and sixfold, respectively. Using in situ hybridization, a small THIP-induced increase in alpha6 mRNA was detected at 4 DIV; however, no effect was apparent at 8 DIV. These data suggest......(A) receptor subunit. Membranes prepared from these cultures were photolabeled with the imidazobenzodiazepine [3H]Ro15-4513. In THIP-treated cultures at 4 days in vitro (DIV), photolabeled [3H]Ro15-4513 binding in membranes was significantly increased for both the 51 kilodalton, kDa, (alpha1 subunit) and 56-k...

  15. Altered regulation of platelet-derived growth factor receptor-alpha gene-transcription in vitro by spina bifida-associated mutant Pax1 proteins

    NARCIS (Netherlands)

    Joosten, P. H.; Hol, F. A.; van Beersum, S. E.; Peters, H.; Hamel, B. C.; Afink, G. B.; van Zoelen, E. J.; Mariman, E. C.

    1998-01-01

    Mouse models show that congenital neural tube defects (NTDs) can occur as a result of mutations in the platelet-derived growth factor receptor-alpha gene (PDGFRalpha). Mice heterozygous for the PDGFRalpha-mutation Patch, and at the same time homozygous for the undulated mutation in the Pax1 gene,

  16. ALPHA-ADRENOCEPTOR REGULATION OF INOSITOL PHOSPHATES, INTERNAL CALCIUM AND MEMBRANE CURRENT IN DDT1 MF-2 SMOOTH-MUSCLE CELLS

    NARCIS (Netherlands)

    NELEMANS, A; HOITING, B; MOLLEMAN, A; DUIN, M; DENHERTOG, A

    1990-01-01

    The effect of alpha-1-adrenoceptor stimulation on inositol phosphates (InsPs), intracellular Ca2+ and membrane current was measured in vas deferens DDT1 MF-2 cells. The InsPs were analyzed after labelling the cells with [H-3]myo-inositol using high performance liquid chromatography and the internal

  17. sup. alpha. N-acetyl derivatives of. beta. -endorphin-(1-31) and -(1-27) regulate the supraspinal antinociceptive activity of different opioids in mice

    Energy Technology Data Exchange (ETDEWEB)

    Garzon, J.; Sanchez-Blazquez, P. (Cajal Institute, Madrid (Spain))

    1991-01-01

    {sup {alpha}}N-acetyl human {beta}-endorphin(1-31) injected icv to mice antagonized the analgesic activity of {beta}-endorphin-(1-31) and morphine whereas the analgesia evoked by DADLE and DAGO was enhanced by this treatment. The modulatory activity of {sup {alpha}}N-acetyl {beta}-endorphin-(1-31) was exhibited at remarkable low doses (fmols) reaching a maximum that persisted even though the dose was increased 100,000 times. The regulatory effect of a single dose of the acetylated neuropeptide lasted for 24h. The activity of {sup {alpha}}N-acetyl human {beta}-endorphin(1-31) was partially retained by the shorter peptide {sup {alpha}}N-acetyl human {beta}-endorphin-(1-27) and to a lesser extent by {beta}-endorphin-(1-27), {beta}-endorphin-(1-31) lacked this regulatory activity on opioid analgesia. Acetylated {beta}-endorphin-(1-31) displayed a biphasic curve when competing with 5 pM ({sup 125}I)-Tyr{sup 27} human {beta}-endorphin-(1-31) specific binding, the first step was abolished with an apparent IC{sub 50} of 0.35 nM, and the rest with an IC{sub 50} of 200 nM. It is suggested that {sup {alpha}}N-acetyl {beta}-endorphin-(1-31) changed the efficiency of the opioid analgesics by acting upon a specific substrate that is functionally coupled to the opioid receptor, presumably the guanine nucleotide binding regulatory proteins G{sub i}/G{sub 0}.

  18. Identifying motifs in folktales using topic models

    NARCIS (Netherlands)

    Karsdorp, F.; Bosch, A.P.J. van den

    2013-01-01

    With the undertake of various folktale digitalization initiatives, the need for computational aids to explore these collections is increasing. In this paper we compare Labeled LDA (L-LDA) to a simple retrieval model on the task of identifying motifs in folktales. We show that both methods are well

  19. Highly scalable Ab initio genomic motif identification

    KAUST Repository

    Marchand, Benoit

    2011-01-01

    We present results of scaling an ab initio motif family identification system, Dragon Motif Finder (DMF), to 65,536 processor cores of IBM Blue Gene/P. DMF seeks groups of mutually similar polynucleotide patterns within a set of genomic sequences and builds various motif families from them. Such information is of relevance to many problems in life sciences. Prior attempts to scale such ab initio motif-finding algorithms achieved limited success. We solve the scalability issues using a combination of mixed-mode MPI-OpenMP parallel programming, master-slave work assignment, multi-level workload distribution, multi-level MPI collectives, and serial optimizations. While the scalability of our algorithm was excellent (94% parallel efficiency on 65,536 cores relative to 256 cores on a modest-size problem), the final speedup with respect to the original serial code exceeded 250,000 when serial optimizations are included. This enabled us to carry out many large-scale ab initio motiffinding simulations in a few hours while the original serial code would have needed decades of execution time. Copyright 2011 ACM.

  20. Mechanism for activation of the growth factor-activated AGC kinases by turn motif phosphorylation

    DEFF Research Database (Denmark)

    Hauge, Camilla; Antal, Torben L; Hirschberg, Daniel

    2007-01-01

    The growth factor/insulin-stimulated AGC kinases share an activation mechanism based on three phosphorylation sites. Of these, only the role of the activation loop phosphate in the kinase domain and the hydrophobic motif (HM) phosphate in a C-terminal tail region are well characterized. We...... investigated the role of the third, so-called turn motif phosphate, also located in the tail, in the AGC kinases PKB, S6K, RSK, MSK, PRK and PKC. We report cooperative action of the HM phosphate and the turn motif phosphate, because it binds a phosphoSer/Thr-binding site above the glycine-rich loop within...... the kinase domain, promoting zipper-like association of the tail with the kinase domain, serving to stabilize the HM in its kinase-activating binding site. We present a molecular model for allosteric activation of AGC kinases by the turn motif phosphate via HM-mediated stabilization of the alphaC helix. In S...

  1. Parallel motif extraction from very long sequences

    KAUST Repository

    Sahli, Majed

    2013-01-01

    Motifs are frequent patterns used to identify biological functionality in genomic sequences, periodicity in time series, or user trends in web logs. In contrast to a lot of existing work that focuses on collections of many short sequences, modern applications require mining of motifs in one very long sequence (i.e., in the order of several gigabytes). For this case, there exist statistical approaches that are fast but inaccurate; or combinatorial methods that are sound and complete. Unfortunately, existing combinatorial methods are serial and very slow. Consequently, they are limited to very short sequences (i.e., a few megabytes), small alphabets (typically 4 symbols for DNA sequences), and restricted types of motifs. This paper presents ACME, a combinatorial method for extracting motifs from a single very long sequence. ACME arranges the search space in contiguous blocks that take advantage of the cache hierarchy in modern architectures, and achieves almost an order of magnitude performance gain in serial execution. It also decomposes the search space in a smart way that allows scalability to thousands of processors with more than 90% speedup. ACME is the only method that: (i) scales to gigabyte-long sequences; (ii) handles large alphabets; (iii) supports interesting types of motifs with minimal additional cost; and (iv) is optimized for a variety of architectures such as multi-core systems, clusters in the cloud, and supercomputers. ACME reduces the extraction time for an exact-length query from 4 hours to 7 minutes on a typical workstation; handles 3 orders of magnitude longer sequences; and scales up to 16, 384 cores on a supercomputer. Copyright is held by the owner/author(s).

  2. DNA motif elucidation using belief propagation

    KAUST Repository

    Wong, Ka-Chun

    2013-06-29

    Protein-binding microarray (PBM) is a high-throughout platform that can measure the DNA-binding preference of a protein in a comprehensive and unbiased manner. A typical PBM experiment can measure binding signal intensities of a protein to all the possible DNA k-mers (k = 8 ?10); such comprehensive binding affinity data usually need to be reduced and represented as motif models before they can be further analyzed and applied. Since proteins can often bind to DNA in multiple modes, one of the major challenges is to decompose the comprehensive affinity data into multimodal motif representations. Here, we describe a new algorithm that uses Hidden Markov Models (HMMs) and can derive precise and multimodal motifs using belief propagations. We describe an HMM-based approach using belief propagations (kmerHMM), which accepts and preprocesses PBM probe raw data into median-binding intensities of individual k-mers. The k-mers are ranked and aligned for training an HMM as the underlying motif representation. Multiple motifs are then extracted from the HMM using belief propagations. Comparisons of kmerHMM with other leading methods on several data sets demonstrated its effectiveness and uniqueness. Especially, it achieved the best performance on more than half of the data sets. In addition, the multiple binding modes derived by kmerHMM are biologically meaningful and will be useful in interpreting other genome-wide data such as those generated from ChIP-seq. The executables and source codes are available at the authors\\' websites: e.g. http://www.cs.toronto.edu/?wkc/kmerHMM. 2013 The Author(s).

  3. Interferon Alpha in Systemic Lupus Erythematosus

    Directory of Open Access Journals (Sweden)

    Timothy B. Niewold

    2010-01-01

    Full Text Available The pleiotropic cytokine interferon alpha is involved in multiple aspects of lupus etiology and pathogenesis. Interferon alpha is important under normal circumstances for antiviral responses and immune activation. However, heightened levels of serum interferon alpha and expression of interferon response genes are common in lupus patients. Lupus-associated autoantibodies can drive the production of interferon alpha and heightened levels of interferon interfere with immune regulation. Several genes in the pathways leading to interferon production or signaling are associated with risk for lupus. Clinical and cellular manifestations of excess interferon alpha in lupus combined with the genetic risk factors associated with interferon make this cytokine a rare bridge between genetic risk and phenotypic effects. Interferon alpha influences the clinical picture of lupus and may represent a therapeutic target. This paper provides an overview of the cellular, genetic, and clinical aspects of interferon alpha in lupus.

  4. Novel human ZAKI-4 isoforms: hormonal and tissue-specific regulation and function as calcineurin inhibitors.

    Science.gov (United States)

    Cao, Xia; Kambe, Fukushi; Miyazaki, Takashi; Sarkar, Devanand; Ohmori, Sachiko; Seo, Hisao

    2002-01-01

    We identified a thyroid hormone [3,5,3'-tri-iodothyronine (T(3))]-responsive gene, ZAKI-4, in cultured human skin fibroblasts. It belongs to a family of genes that encode proteins containing a conserved motif. The motif binds to calcineurin and inhibits its phosphatase activity. In the present study, we have demonstrated three different ZAKI-4 transcripts, alpha, beta1 and beta2, in human brain by 5'- and 3'-RACE (rapid amplification of cDNA ends). The alpha transcript was identical with the one that we originally cloned from human fibroblasts and the other two are novel. The three transcripts are generated by alternative initiation and splicing from a single gene on the short arm of chromosome 6. It is predicted that beta1 and beta2 encode an identical protein product, beta, which differs from alpha in its N-terminus. Since alpha and beta contain an identical C-terminal region harbouring the conserved motif, both isoforms are suggested to inhibit calcineurin activity. Indeed, each isoform associates with calcineurin A and inhibits its activity in a similar manner, suggesting that the difference in N-terminus of each isoform does not affect the inhibitory function on calcineurin. An examination of the expression profile of the three transcripts in 12 human tissues revealed that the alpha transcript is expressed exclusively in the brain, whereas beta transcripts are expressed ubiquitously, most abundantly in brain, heart, skeletal muscle and kidney. It was also demonstrated that human skin fibroblasts express both alpha and beta transcripts, raising the question of which transcript is up-regulated by T(3). It was revealed that T(3) markedly induced the expression of alpha isoform but not of beta. This T(3)-mediated increase in the alpha isoform was associated with a significant decrease in endogenous calcineurin activity. These results suggest that the expression of ZAKI-4 isoforms is subjected to distinct hormonal as well as tissue-specific regulation, constituting

  5. ADAM-9 (MDC-9/meltrin-gamma), a member of the a disintegrin and metalloproteinase family, regulates myeloma-cell-induced interleukin-6 production in osteoblasts by direct interaction with the alpha(v)beta5 integrin.

    Science.gov (United States)

    Karadag, Abdullah; Zhou, Min; Croucher, Peter I

    2006-04-15

    ADAM-9, a member of the a disintegrin and metalloproteinase family, contains both metalloproteinase and disintegrin domains. Myeloma cell lines express ADAM-9; however, its function and role in the pathophysiology of multiple myeloma is unknown. The aim of this study was to establish whether primary myeloma cells express ADAM-9, whether ADAM-9 regulates IL-6 production in human osteoblasts (hOBs), whether ADAM-9 interacts with specific integrin heterodimers, and the identity of downstream signaling pathways. Primary myeloma cells demonstrated increased expression of ADAM-9 (P hOBs (P induction was inhibited by an antibody to the alpha(v)beta5 integrin (P hOBs. Antibodies to ADAM-9 and alpha(v)beta5 integrin inhibited myeloma cell-induced IL-6 production by hOBs (P hOBs (P hOBs by binding the alpha(v)beta5 integrin. This may have important consequences for the growth and survival of myeloma cells in bone.

  6. Amphipathic motifs in BAR domains are essential for membrane curvature sensing

    DEFF Research Database (Denmark)

    Bhatia, Vikram K; Madsen, Kenneth L; Bolinger, Pierre-Yves

    2009-01-01

    BAR (Bin/Amphiphysin/Rvs) domains and amphipathic alpha-helices (AHs) are believed to be sensors of membrane curvature thus facilitating the assembly of protein complexes on curved membranes. Here, we used quantitative fluorescence microscopy to compare the binding of both motifs on single...... nanosized liposomes of different diameters and therefore membrane curvature. Characterization of members of the three BAR domain families showed surprisingly that the crescent-shaped BAR dimer with its positively charged concave face is not able to sense membrane curvature. Mutagenesis on BAR domains showed...... that membrane curvature sensing critically depends on the N-terminal AH and furthermore that BAR domains sense membrane curvature through hydrophobic insertion in lipid packing defects and not through electrostatics. Consequently, amphipathic motifs, such as AHs, that are often associated with BAR domains...

  7. Alpha anomer of 5-aza-2'-deoxycytidine down-regulates hTERT mRNA expression in human leukemia HL-60 cells

    Czech Academy of Sciences Publication Activity Database

    Hájek, Miroslav; Votruba, Ivan; Holý, Antonín; Krečmerová, Marcela; Tloušťová, Eva

    2008-01-01

    Roč. 75, č. 4 (2008), s. 965-972 ISSN 0006-2952 R&D Projects: GA MŠk 1M0508; GA AV ČR 1QS400550501 Institutional research plan: CEZ:AV0Z40550506 Keywords : alpha-5-aza-2'-deoxycytidine * DNA hypomethylation * hTERT * c- myc Subject RIV: CC - Organic Chemistry Impact factor: 4.838, year: 2008

  8. Treatment of THP-1 cells with Uncaria tomentosa extracts differentially regulates the expression if IL-1beta and TNF-alpha.

    Science.gov (United States)

    Allen-Hall, Lisa; Cano, Pablo; Arnason, John T; Rojas, Rosario; Lock, Olga; Lafrenie, Robert M

    2007-01-19

    Uncaria tomentosa, commonly known as cat's claw, is a medicinal plant native to Peru, which has been used for decades in the treatment of various inflammatory disorders. Uncaria tomentosa can be used as an antioxidant, has anti-apoptotic properties, and can enhance DNA repair, however it is best know for its anti-inflammatory properties. Treatment with Uncaria tomentosa extracts inhibits the production of the pro-inflammatory cytokine, TNF-alpha, which is a critical mediator of the immune response. In this paper, we showed that treatment of THP-1 monocyte-like cells with Uncaria tomentosa extracts inhibited the MAP kinase signaling pathway and altered cytokine expression. Using ELISA assays, we showed that treatment with Uncaria tomentosa extracts augmented LPS-dependent expression of IL-1beta by 2.4-fold, while inhibiting the LPS-dependent expression of TNF-alpha by 5.5-fold. We also showed that treatment of LPS-stimulated THP-1 cells with Uncaria tomentosa extracts blocked ERK1/2 and MEK1/2 phosphorylation in a dose-dependent manner. These data demonstrate that treatment of THP-1 cells with Uncaria tomentosa extracts has opposite effects on IL-1beta and TNF-alpha secretion, and that these changes may involve effects on the MAP kinase pathway.

  9. Genome wide identification of regulatory motifs in Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Siggia Eric D

    2003-05-01

    Full Text Available Abstract Background To explain the vastly different phenotypes exhibited by the same organism under different conditions, it is essential that we understand how the organism's genes are coordinately regulated. While there are many excellent tools for predicting sequences encoding proteins or RNA genes, few algorithms exist to predict regulatory sequences on a genome wide scale with no prior information. Results To identify motifs involved in the control of transcription, an algorithm was developed that searches upstream of operons for improbably frequent dimers. The algorithm was applied to the B. subtilis genome, which is predicted to encode for approximately 200 DNA binding proteins. The dimers found to be over-represented could be clustered into 317 distinct groups, each thought to represent a class of motifs uniquely recognized by some transcription factor. For each cluster of dimers, a representative weight matrix was derived and scored over the regions upstream of the operons to predict the sites recognized by the cluster's factor, and a putative regulon of the operons immediately downstream of the sites was inferred. The distribution in number of operons per predicted regulon is comparable to that for well characterized transcription factors. The most highly over-represented dimers matched σA, the T-box, and σW sites. We have evidence to suggest that at least 52 of our clusters of dimers represent actual regulatory motifs, based on the groups' weight matrix matches to experimentally characterized sites, the functional similarity of the component operons of the groups' regulons, and the positional biases of the weight matrix matches. All predictions are assigned a significance value, and thresholds are set to avoid false positives. Where possible, we examine our false negatives, drawing examples from known regulatory motifs and regulons inferred from RNA expression data. Conclusions We have demonstrated that in the case of B. subtilis

  10. MCAST: scanning for cis-regulatory motif clusters.

    Science.gov (United States)

    Grant, Charles E; Johnson, James; Bailey, Timothy L; Noble, William Stafford

    2016-04-15

    Precise regulatory control of genes, particularly in eukaryotes, frequently requires the joint action of multiple sequence-specific transcription factors. A cis-regulatory module (CRM) is a genomic locus that is responsible for gene regulation and that contains multiple transcription factor binding sites in close proximity. Given a collection of known transcription factor binding motifs, many bioinformatics methods have been proposed over the past 15 years for identifying within a genomic sequence candidate CRMs consisting of clusters of those motifs. The MCAST algorithm uses a hidden Markov model with a P-value-based scoring scheme to identify candidate CRMs. Here, we introduce a new version of MCAST that offers improved graphical output, a dynamic background model, statistical confidence estimates based on false discovery rate estimation and, most significantly, the ability to predict CRMs while taking into account epigenomic data such as DNase I sensitivity or histone modification data. We demonstrate the validity of MCAST's statistical confidence estimates and the utility of epigenomic priors in identifying CRMs. MCAST is part of the MEME Suite software toolkit. A web server and source code are available at http://meme-suite.org and http://alternate.meme-suite.org t.bailey@imb.uq.edu.au or william-noble@uw.edu Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. PDL1 Signals through Conserved Sequence Motifs to Overcome Interferon-Mediated Cytotoxicity

    Directory of Open Access Journals (Sweden)

    Maria Gato-Cañas

    2017-08-01

    Full Text Available PDL1 blockade produces remarkable clinical responses, thought to occur by T cell reactivation through prevention of PDL1-PD1 T cell inhibitory interactions. Here, we find that PDL1 cell-intrinsic signaling protects cancer cells from interferon (IFN cytotoxicity and accelerates tumor progression. PDL1 inhibited IFN signal transduction through a conserved class of sequence motifs that mediate crosstalk with IFN signaling. Abrogation of PDL1 expression or antibody-mediated PDL1 blockade strongly sensitized cancer cells to IFN cytotoxicity through a STAT3/caspase-7-dependent pathway. Moreover, somatic mutations found in human carcinomas within these PDL1 sequence motifs disrupted motif regulation, resulting in PDL1 molecules with enhanced protective activities from type I and type II IFN cytotoxicity. Overall, our results reveal a mode of action of PDL1 in cancer cells as a first line of defense against IFN cytotoxicity.

  12. Dragon polya spotter: Predictor of poly(A) motifs within human genomic DNA sequences

    KAUST Repository

    Kalkatawi, Manal M.

    2011-11-15

    Motivation: Recognition of poly(A) signals in mRNA is relatively straightforward due to the presence of easily recognizable polyadenylic acid tail. However, the task of identifying poly(A) motifs in the primary genomic DNA sequence that correspond to poly(A) signals in mRNA is a far more challenging problem. Recognition of poly(A) signals is important for better gene annotation and understanding of the gene regulation mechanisms. In this work, we present one such poly(A) motif prediction method based on properties of human genomic DNA sequence surrounding a poly(A) motif. These properties include thermodynamic, physico-chemical and statistical characteristics. For predictions, we developed Artificial Neural Network and Random Forest models. These models are trained to recognize 12 most common poly(A) motifs in human DNA. Our predictors are available as a free web-based tool accessible at http://cbrc.kaust.edu.sa/dps. Compared with other reported predictors, our models achieve higher sensitivity and specificity and furthermore provide a consistent level of accuracy for 12 poly(A) motif variants. The Author(s) 2011. Published by Oxford University Press. All rights reserved.

  13. MicroRNA mediated network motifs in autoimmune diseases and its crosstalk between genes, functions and pathways.

    Science.gov (United States)

    Prabahar, Archana; Natarajan, Jeyakumar

    2017-01-01

    Autoimmune diseases (AIDs) are incurable but suppressible diseases whose molecular mechanisms are yet to be elucidated. In this work, we selected five systemic autoimmune diseases such as Rheumatoid Arthritis (RA), Type 1 Diabetes (T1D), Inflammatory Bowel Disease (IBD), Autoimmune Thyroid Disease (ATD) and Systemic Lupus Erythematosus (SLE). Heterogeneous data such as miRNA, transcription factor (TF), target genes and protein-protein interactions involved in these AIDs were integrated to understand their roles at different functional levels of miRNA such as transcription initiation, gene regulatory network formation and post transcriptional regulation. To understand the functional characteristics of these complex biological networks, they can be simplified as network motifs (sub networks) and motif-motif interacting pairs (MMIs). The network motif patterns and motif-motif interacting pairs that occur for the selected five diseases were identified. To further understand the functional association between AIDs, functions and pathways were determined using gene set enrichment analysis and five selected immune signaling pathways (ISPs). The crosstalk within AIDs and between the immune signaling pathways (ISPs) could provide novel insights in deciphering disease mechanisms. This study represents the first investigation of miRNA-TF regulatory network for AIDs and its association with ISPs using sub-network motifs. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. A Basic Set of Homeostatic Controller Motifs

    Science.gov (United States)

    Drengstig, T.; Jolma, I.W.; Ni, X.Y.; Thorsen, K.; Xu, X.M.; Ruoff, P.

    2012-01-01

    Adaptation and homeostasis are essential properties of all living systems. However, our knowledge about the reaction kinetic mechanisms leading to robust homeostatic behavior in the presence of environmental perturbations is still poor. Here, we describe, and provide physiological examples of, a set of two-component controller motifs that show robust homeostasis. This basic set of controller motifs, which can be considered as complete, divides into two operational work modes, termed as inflow and outflow control. We show how controller combinations within a cell can integrate uptake and metabolization of a homeostatic controlled species and how pathways can be activated and lead to the formation of alternative products, as observed, for example, in the change of fermentation products by microorganisms when the supply of the carbon source is altered. The antagonistic character of hormonal control systems can be understood by a combination of inflow and outflow controllers. PMID:23199928

  15. Coulomb correction to elastic. alpha. -. alpha. scattering

    Energy Technology Data Exchange (ETDEWEB)

    Bera, P.K.; Jana, A.K.; Haque, N.; Talukdar, B. (Department of Physics, Visva-Bharati University, Santiniketan-731235, West Bengal, India (IN))

    1991-02-01

    The elastic {alpha}-{alpha} scattering is treated within the framework of a generalized phase-function method (GPFM). This generalization consists in absorbing the effect of Coulomb interaction in the comparison functions for developing the phase equation. Based on values of scattering phase shifts computed by the present method, it is concluded that the GPFM provides an uncomplicated approach to rigorous Coulomb correction in the {alpha}-{alpha} scattering.

  16. Dynamic motifs in socio-economic networks

    Science.gov (United States)

    Zhang, Xin; Shao, Shuai; Stanley, H. Eugene; Havlin, Shlomo

    2014-12-01

    Socio-economic networks are of central importance in economic life. We develop a method of identifying and studying motifs in socio-economic networks by focusing on “dynamic motifs,” i.e., evolutionary connection patterns that, because of “node acquaintances” in the network, occur much more frequently than random patterns. We examine two evolving bi-partite networks: i) the world-wide commercial ship chartering market and ii) the ship build-to-order market. We find similar dynamic motifs in both bipartite networks, even though they describe different economic activities. We also find that “influence” and “persistence” are strong factors in the interaction behavior of organizations. When two companies are doing business with the same customer, it is highly probable that another customer who currently only has business relationship with one of these two companies, will become customer of the second in the future. This is the effect of influence. Persistence means that companies with close business ties to customers tend to maintain their relationships over a long period of time.

  17. Intrahepatic expression of interferon alpha & interferon alpha ...

    African Journals Online (AJOL)

    kemrilib

    Alpha m-RNA while 30% only expressed Interferon Alpha Receptor m-RNA. Responders and non-responders to Interferon therapy ... expression of IFN Alpha Receptor mRNA. Regardless of the response to interferon, histological .... generation reverse hybridisation, line probe assay. (Inno-LiPA HCV II; Innogenetics, Ghent,.

  18. Designer interface peptide grafts target estrogen receptor alpha dimerization

    International Nuclear Information System (INIS)

    Chakraborty, S.; Asare, B.K.; Biswas, P.K.; Rajnarayanan, R.V.

    2016-01-01

    The nuclear transcription factor estrogen receptor alpha (ERα), triggered by its cognate ligand estrogen, regulates a variety of cellular signaling events. ERα is expressed in 70% of breast cancers and is a widely validated target for anti-breast cancer drug discovery. Administration of anti-estrogen to block estrogen receptor activation is still a viable anti-breast cancer treatment option but anti-estrogen resistance has been a significant bottle-neck. Dimerization of estrogen receptor is required for ER activation. Blocking ERα dimerization is therefore a complementary and alternative strategy to combat anti-estrogen resistance. Dimer interface peptide “I-box” derived from ER residues 503–518 specifically blocks ER dimerization. Recently using a comprehensive molecular simulation we studied the interaction dynamics of ERα LBDs in a homo-dimer. Based on this study, we identified three interface recognition peptide motifs LDKITDT (ERα residues 479–485), LQQQHQRLAQ (residues 497–506), and LSHIRHMSNK (residues 511–520) and reported the suitability of using LQQQHQRLAQ (ER 497–506) as a template to design inhibitors of ERα dimerization. Stability and self-aggregation of peptide based therapeutics poses a significant bottle-neck to proceed further. In this study utilizing peptide grafted to preserve their pharmacophoric recognition motif and assessed their stability and potential to block ERα mediated activity in silico and in vitro. The Grafted peptides blocked ERα mediated cell proliferation and viability of breast cancer cells but did not alter their apoptotic fate. We believe the structural clues identified in this study can be used to identify novel peptidometics and small molecules that specifically target ER dimer interface generating a new breed of anti-cancer agents. - Highlights: • Designer peptide grafts retain core molecular recognition motif during MD simulations. • Designer peptide grafts with Poly-ALA helix form stable

  19. Designer interface peptide grafts target estrogen receptor alpha dimerization

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, S. [Laboratory of Computational Biophysics & Bioengineering, Department of Physics, Tougaloo College, Tougaloo, MS 39174 (United States); Asare, B.K. [Department of Pharmacology and Toxicology, University of Buffalo, Buffalo, NY 14214 (United States); Biswas, P.K., E-mail: pbiswas@tougaloo.edu [Laboratory of Computational Biophysics & Bioengineering, Department of Physics, Tougaloo College, Tougaloo, MS 39174 (United States); Rajnarayanan, R.V., E-mail: rajendra@buffalo.edu [Department of Pharmacology and Toxicology, University of Buffalo, Buffalo, NY 14214 (United States)

    2016-09-09

    The nuclear transcription factor estrogen receptor alpha (ERα), triggered by its cognate ligand estrogen, regulates a variety of cellular signaling events. ERα is expressed in 70% of breast cancers and is a widely validated target for anti-breast cancer drug discovery. Administration of anti-estrogen to block estrogen receptor activation is still a viable anti-breast cancer treatment option but anti-estrogen resistance has been a significant bottle-neck. Dimerization of estrogen receptor is required for ER activation. Blocking ERα dimerization is therefore a complementary and alternative strategy to combat anti-estrogen resistance. Dimer interface peptide “I-box” derived from ER residues 503–518 specifically blocks ER dimerization. Recently using a comprehensive molecular simulation we studied the interaction dynamics of ERα LBDs in a homo-dimer. Based on this study, we identified three interface recognition peptide motifs LDKITDT (ERα residues 479–485), LQQQHQRLAQ (residues 497–506), and LSHIRHMSNK (residues 511–520) and reported the suitability of using LQQQHQRLAQ (ER 497–506) as a template to design inhibitors of ERα dimerization. Stability and self-aggregation of peptide based therapeutics poses a significant bottle-neck to proceed further. In this study utilizing peptide grafted to preserve their pharmacophoric recognition motif and assessed their stability and potential to block ERα mediated activity in silico and in vitro. The Grafted peptides blocked ERα mediated cell proliferation and viability of breast cancer cells but did not alter their apoptotic fate. We believe the structural clues identified in this study can be used to identify novel peptidometics and small molecules that specifically target ER dimer interface generating a new breed of anti-cancer agents. - Highlights: • Designer peptide grafts retain core molecular recognition motif during MD simulations. • Designer peptide grafts with Poly-ALA helix form stable

  20. Statistics of optimal information flow in ensembles of regulatory motifs

    Science.gov (United States)

    Crisanti, Andrea; De Martino, Andrea; Fiorentino, Jonathan

    2018-02-01

    Genetic regulatory circuits universally cope with different sources of noise that limit their ability to coordinate input and output signals. In many cases, optimal regulatory performance can be thought to correspond to configurations of variables and parameters that maximize the mutual information between inputs and outputs. Since the mid-2000s, such optima have been well characterized in several biologically relevant cases. Here we use methods of statistical field theory to calculate the statistics of the maximal mutual information (the "capacity") achievable by tuning the input variable only in an ensemble of regulatory motifs, such that a single controller regulates N targets. Assuming (i) sufficiently large N , (ii) quenched random kinetic parameters, and (iii) small noise affecting the input-output channels, we can accurately reproduce numerical simulations both for the mean capacity and for the whole distribution. Our results provide insight into the inherent variability in effectiveness occurring in regulatory systems with heterogeneous kinetic parameters.

  1. Statistics of optimal information flow in ensembles of regulatory motifs.

    Science.gov (United States)

    Crisanti, Andrea; De Martino, Andrea; Fiorentino, Jonathan

    2018-02-01

    Genetic regulatory circuits universally cope with different sources of noise that limit their ability to coordinate input and output signals. In many cases, optimal regulatory performance can be thought to correspond to configurations of variables and parameters that maximize the mutual information between inputs and outputs. Since the mid-2000s, such optima have been well characterized in several biologically relevant cases. Here we use methods of statistical field theory to calculate the statistics of the maximal mutual information (the "capacity") achievable by tuning the input variable only in an ensemble of regulatory motifs, such that a single controller regulates N targets. Assuming (i) sufficiently large N, (ii) quenched random kinetic parameters, and (iii) small noise affecting the input-output channels, we can accurately reproduce numerical simulations both for the mean capacity and for the whole distribution. Our results provide insight into the inherent variability in effectiveness occurring in regulatory systems with heterogeneous kinetic parameters.

  2. The EH1 motif in metazoan transcription factors

    Directory of Open Access Journals (Sweden)

    Copley Richard R

    2005-11-01

    Full Text Available Abstract Background The Engrailed Homology 1 (EH1 motif is a small region, believed to have evolved convergently in homeobox and forkhead containing proteins, that interacts with the Drosophila protein groucho (C. elegans unc-37, Human Transducin-like Enhancers of Split. The small size of the motif makes its reliable identification by computational means difficult. I have systematically searched the predicted proteomes of Drosophila, C. elegans and human for further instances of the motif. Results Using motif identification methods and database searching techniques, I delimit which homeobox and forkhead domain containing proteins also have likely EH1 motifs. I show that despite low database search scores, there is a significant association of the motif with transcription factor function. I further show that likely EH1 motifs are found in combination with T-Box, Zinc Finger and Doublesex domains as well as discussing other plausible candidate associations. I identify strong candidate EH1 motifs in basal metazoan phyla. Conclusion Candidate EH1 motifs exist in combination with a variety of transcription factor domains, suggesting that these proteins have repressor functions. The distribution of the EH1 motif is suggestive of convergent evolution, although in many cases, the motif has been conserved throughout bilaterian orthologs. Groucho mediated repression was established prior to the evolution of bilateria.

  3. RNA structural motif recognition based on least-squares distance.

    Science.gov (United States)

    Shen, Ying; Wong, Hau-San; Zhang, Shaohong; Zhang, Lin

    2013-09-01

    RNA structural motifs are recurrent structural elements occurring in RNA molecules. RNA structural motif recognition aims to find RNA substructures that are similar to a query motif, and it is important for RNA structure analysis and RNA function prediction. In view of this, we propose a new method known as RNA Structural Motif Recognition based on Least-Squares distance (LS-RSMR) to effectively recognize RNA structural motifs. A test set consisting of five types of RNA structural motifs occurring in Escherichia coli ribosomal RNA is compiled by us. Experiments are conducted for recognizing these five types of motifs. The experimental results fully reveal the superiority of the proposed LS-RSMR compared with four other state-of-the-art methods.

  4. CONTEMPORARY USAGE OF TRADITIONAL TURKISH MOTIFS IN PRODUCT DESIGNS

    Directory of Open Access Journals (Sweden)

    Tulay Gumuser

    2012-12-01

    Full Text Available The aim of this study is to identify the traditional Turkish motifs and its relations among present industrial designs. Traditional Turkish motifs played a very important role in 16th century onwards. The arts of the Ottoman Empire were used because of their symbolic meanings and unique styles. When we examine these motifs we encounter; Tiger Stripe, Three Spot (Çintemani, Rumi, Hatayi, Penç, Cloud, Crescent, Star, Crown, Hyacinth, Tulip and Carnation motifs. Nowadays, Turkish designers have begun to use these traditional Turkish motifs in their designs so as to create differences and awareness in the world design. The examples of these industrial designs, using the Turkish motifs, have survived and have Ottoman heritage and historical value. In this study, the Turkish motifs will be examined along with their focus on contemporary Turkish industrial designs used today.

  5. Assessing the Exceptionality of Coloured Motifs in Networks

    Directory of Open Access Journals (Sweden)

    Lacroix Vincent

    2009-01-01

    Full Text Available Various methods have been recently employed to characterise the structure of biological networks. In particular, the concept of network motif and the related one of coloured motif have proven useful to model the notion of a functional/evolutionary building block. However, algorithms that enumerate all the motifs of a network may produce a very large output, and methods to decide which motifs should be selected for downstream analysis are needed. A widely used method is to assess if the motif is exceptional, that is, over- or under-represented with respect to a null hypothesis. Much effort has been put in the last thirty years to derive -values for the frequencies of topological motifs, that is, fixed subgraphs. They rely either on (compound Poisson and Gaussian approximations for the motif count distribution in Erdös-Rényi random graphs or on simulations in other models. We focus on a different definition of graph motifs that corresponds to coloured motifs. A coloured motif is a connected subgraph with fixed vertex colours but unspecified topology. Our work is the first analytical attempt to assess the exceptionality of coloured motifs in networks without any simulation. We first establish analytical formulae for the mean and the variance of the count of a coloured motif in an Erdös-Rényi random graph model. Using simulations under this model, we further show that a Pólya-Aeppli distribution better approximates the distribution of the motif count compared to Gaussian or Poisson distributions. The Pólya-Aeppli distribution, and more generally the compound Poisson distributions, are indeed well designed to model counts of clumping events. Altogether, these results enable to derive a -value for a coloured motif, without spending time on simulations.

  6. SNARE motif: A common motif used by pathogens to manipulate membrane fusion

    Science.gov (United States)

    Wesolowski, Jordan

    2010-01-01

    To penetrate host cells through their membranes, pathogens use a variety of molecular components in which the presence of heptad repeat motifs seems to be a prevailing element. Heptad repeats are characterized by a pattern of seven, generally hydrophobic, residues. In order to initiate membrane fusion, viruses use glycoproteins-containing heptad repeats. These proteins are structurally and functionally similar to the SNARE proteins known to be involved in eukaryotic membrane fusion. SNAREs also display a heptad repeat motif called the “SNARE motif”. As bacterial genomes are being sequenced, microorganisms also appear to be carrying membrane proteins resembling eukaryotic SNAREs. This category of SNARE-like proteins might share similar functions and could be used by microorganisms to either promote or block membrane fusion. Such a recurrence across pathogenic organisms suggests that this architectural motif was evolutionarily selected because it most effectively ensures the survival of pathogens within the eukaryotic environment. PMID:21178463

  7. The 2-5A/RNase L/RNase L inhibitor (RLI) [correction of (RNI)] pathway regulates mitochondrial mRNAs stability in interferon alpha-treated H9 cells.

    Science.gov (United States)

    Le Roy, F; Bisbal, C; Silhol, M; Martinand, C; Lebleu, B; Salehzada, T

    2001-12-21

    Interferon alpha (IFNalpha) belongs to a cytokine family that exhibits antiviral properties, immuno-modulating effects, and antiproliferative activity on normal and neoplasic cells in vitro and in vivo. IFNalpha exerts antitumor action by inducing direct cytotoxicity against tumor cells. This toxicity is at least partly due to induction of apoptosis. Although the molecular basis of the inhibition of cell growth by IFNalpha is only partially understood, there is a direct correlation between the sensitivity of cells to the antiproliferative action of IFNalpha and the down-regulation of their mitochondrial mRNAs. Here, we studied the role of the 2-5A/RNase L system and its inhibitor RLI in this regulation of the mitochondrial mRNAs by IFNalpha. We found that a fraction of cellular RNase L and RLI is localized in the mitochondria. Thus, we down-regulated RNase L activity in human H9 cells by stably transfecting (i) RNase L antisense cDNA or (ii) RLI sense cDNA constructions. In contrast to control cells, no post-transcriptional down-regulation of mitochondrial mRNAs and no cell growth inhibition were observed after IFNalpha treatment in these transfectants. These results demonstrate that IFNalpha exerts its antiproliferative effect on H9 cells at least in part via the degradation of mitochondrial mRNAs by RNase L.

  8. Molecular cloning and functional characterization of the human platelet-derived growth factor alpha receptor gene promoter

    NARCIS (Netherlands)

    Afink, G. B.; Nistér, M.; Stassen, B. H.; Joosten, P. H.; Rademakers, P. J.; Bongcam-Rudloff, E.; van Zoelen, E. J.; Mosselman, S.

    1995-01-01

    Expression of the platelet-derived growth factor alpha receptor (PDGF alpha R) is strictly regulated during mammalian development and tumorigenesis. The molecular mechanisms involved in the specific regulation of PDGF alpha R expression are unknown, but transcriptional regulation of the PDGF alpha R

  9. Multilayer motif analysis of brain networks

    Science.gov (United States)

    Battiston, Federico; Nicosia, Vincenzo; Chavez, Mario; Latora, Vito

    2017-04-01

    In the last decade, network science has shed new light both on the structural (anatomical) and on the functional (correlations in the activity) connectivity among the different areas of the human brain. The analysis of brain networks has made possible to detect the central areas of a neural system and to identify its building blocks by looking at overabundant small subgraphs, known as motifs. However, network analysis of the brain has so far mainly focused on anatomical and functional networks as separate entities. The recently developed mathematical framework of multi-layer networks allows us to perform an analysis of the human brain where the structural and functional layers are considered together. In this work, we describe how to classify the subgraphs of a multiplex network, and we extend the motif analysis to networks with an arbitrary number of layers. We then extract multi-layer motifs in brain networks of healthy subjects by considering networks with two layers, anatomical and functional, respectively, obtained from diffusion and functional magnetic resonance imaging. Results indicate that subgraphs in which the presence of a physical connection between brain areas (links at the structural layer) coexists with a non-trivial positive correlation in their activities are statistically overabundant. Finally, we investigate the existence of a reinforcement mechanism between the two layers by looking at how the probability to find a link in one layer depends on the intensity of the connection in the other one. Showing that functional connectivity is non-trivially constrained by the underlying anatomical network, our work contributes to a better understanding of the interplay between the structure and function in the human brain.

  10. UKIRAN KERAWANG ACEH GAYO SEBAGAI INSPIRASI PENCIPTAAN MOTIF BATIK KHAS GAYO

    Directory of Open Access Journals (Sweden)

    Irfa ina Rohana Salma

    2016-12-01

    Full Text Available ABSTRAK Industri batik mulai berkembang di Gayo, tetapi belum memiliki motif batik khas daerah. Oleh karena itu perlu diciptakan motif batik khas Gayo, dengan mengambil inspirasi dari ukiran yang terdapat pada rumah tradisional yang biasa disebut ukiran kerawang Gayo. Tujuan penciptaan seni ini adalah untuk menciptakan motif batik yang memiliki ciri khas Gayo. Metode yang digunakan yaitu eksplorasi ide, perancangan, dan perwujudan menjadi motif batik. Dalam kegiatan ini telah diciptakan enam motif batik khas Gayo yaitu: (1 Motif Ceplok Gayo; (2 Motif Gayo Tegak; (3 Motif Gayo Lurus; (4 Motif Parang Gayo; (5 Motif Gayo Lembut; dan (6 Motif Geometris Gayo. Hasil uji kesukaan terhadap motif kepada lima puluh responden menunjukkan bahwa Motif Ceplok Gayo paling banyak dipilih oleh responden yaitu sebesar 19%, sedangkan Motif Parang Gayo 18%, Motif Gayo Lembut 17%, Motif Geometris Gayo 17%, Motif Gayo Lurus 15% dan Motif Gayo Tegak 14%. Rata-rata motif yang dihasilkan mendapatkan apresiasi yang baik dari responden, sehingga semua motif layak diproduksi sebagai batik khas Gayo.Kata kunci: batik Gayo, Motif Ceplok Gayo, Motif Parang Gayo.ABSTRACTBatik industry began to develop in Gayo, but have not had a typical batik motif itself. Therefore, it is necessary to create batik motifs of Gayo, by taking inspiration from the carvings found in traditional houses commonly called kerawang Gayo. The purpose of this art is to create motifs those have a Gayo characteristic. The method used are the idea exploration, design, and motifs embodiment. In this activity has created six Gayo batik motifs, namely: (1 Motif Ceplok Gayo; (2 Motif Gayo Tegak; (3 Motif GayoLurus; (4 Motif Parang Gayo; (5 Motif Gayo Lembut; dan (6 Motif Geometris Gayo. The test results fondness of the motives to fifty respondents indicated that the Motif Ceplok Gayo most preferred by respondents ie 19%, while Motif Parang Gayo 18%, Motif Gayo Lembut 17%, Motif Geometris Gayo 17%, Motif Gayo

  11. Dynamics of Fibril Growth and Feedback Motifs

    DEFF Research Database (Denmark)

    Cordsen, Pia

    lumped and long, straight fibrils. Previous results on real time observation of fibrils were successfully reproduced using mixed conditions of both sodium dodecyl sulfate and seeds but not when using only one of the two. The dynamics of a three-species network motif, consisting of a predator and two...... which of the two competitors is better and if one of them will become extinct. Further it is found that in the range of coexistence between the two preys, the better one peaks first....

  12. RMOD: a tool for regulatory motif detection in signaling network.

    Directory of Open Access Journals (Sweden)

    Jinki Kim

    Full Text Available Regulatory motifs are patterns of activation and inhibition that appear repeatedly in various signaling networks and that show specific regulatory properties. However, the network structures of regulatory motifs are highly diverse and complex, rendering their identification difficult. Here, we present a RMOD, a web-based system for the identification of regulatory motifs and their properties in signaling networks. RMOD finds various network structures of regulatory motifs by compressing the signaling network and detecting the compressed forms of regulatory motifs. To apply it into a large-scale signaling network, it adopts a new subgraph search algorithm using a novel data structure called path-tree, which is a tree structure composed of isomorphic graphs of query regulatory motifs. This algorithm was evaluated using various sizes of signaling networks generated from the integration of various human signaling pathways and it showed that the speed and scalability of this algorithm outperforms those of other algorithms. RMOD includes interactive analysis and auxiliary tools that make it possible to manipulate the whole processes from building signaling network and query regulatory motifs to analyzing regulatory motifs with graphical illustration and summarized descriptions. As a result, RMOD provides an integrated view of the regulatory motifs and mechanism underlying their regulatory motif activities within the signaling network. RMOD is freely accessible online at the following URL: http://pks.kaist.ac.kr/rmod.

  13. Production of {alpha}-glucosidases by Bacillus sp. strains

    Energy Technology Data Exchange (ETDEWEB)

    Castro, G.R. [Univ. Nacional de Tucuman, Facultad de Bioquimica, Quimica y Farmacia, Catedra de Microbiologia Superior, PROIMI-MIRCEN, Tucuman (Argentina); Baigori, M.D. [Univ. Nacional de Tucuman, Facultad de Bioquimica, Quimica y Farmacia, Catedra de Microbiologia Superior, PROIMI-MIRCEN, Tucuman (Argentina); Sineriz, F. [Univ. Nacional de Tucuman, Facultad de Bioquimica, Quimica y Farmacia, Catedra de Microbiologia Superior, PROIMI-MIRCEN, Tucuman (Argentina)

    1995-12-31

    {alpha}-Glucosidase was detected in four wild-type amylolytic production strains belonging to the Bacillus genus. The strains showed {alpha}-glucosidase activity in extracellular and membrane-bound fractions. Kinetic studies of the {alpha}-glucosidase synthesis in the batch cultures of four strains of the Bacillus genus showed two profiles: partially and totally growth-linked synthesis. The presence of different activities and production profiles of {alpha}-glucosidase in the strains at high or low glucose concentrations in the medium would indicate that {alpha}-glucosidase may have a role in the regulation of the metabolism of {alpha}-polysaccharides. (orig.)

  14. Extracellular Na+ levels regulate formation and activity of the NaX/alpha1-Na+/K+-ATPase complex in neuronal cells.

    Directory of Open Access Journals (Sweden)

    Emmanuelle eBerret

    2014-12-01

    Full Text Available MnPO neurons play a critical role in hydromineral homeostasis regulation by acting as sensors of extracellular sodium concentration ([Na+]out. The mechanism underlying Na+-sensing involves Na+-flow through the NaX channel, directly regulated by the Na+/K+-ATPase α1-isoform which controls Na+-influx by modulating channel permeability. Together, these two partners form a complex involved in the regulation of intracellular sodium ([Na+]in. Here we aim to determine whether environmental changes in Na+ could actively modulate the NaX/Na+/K+-ATPase complex activity.We investigated the complex activity using patch-clamp recordings from rat MnPO neurons and Neuro2a cells. When the rats were fed with a high-salt-diet, or the [Na+] in the culture medium was increased, the activity of the complex was up-regulated. In contrast, drop in environmental [Na+] decreased the activity of the complex. Interestingly under hypernatremic condition, the colocalization rate and protein level of both partners were up-regulated. Under hyponatremic condition, only NaX protein expression was increased and the level of NaX/Na+/K+-ATPase remained unaltered. This unbalance between NaX and Na+/K+-ATPase pump proportion would induce a bigger portion of Na+/K+-ATPase-control-free NaX channel. Thus we suggest that hypernatremic environment increases NaX/Na+/K+-ATPase α1-isoform activity by increasing the number of both partners and their colocalization rate, whereas hyponatremic environment down-regulates complex activity via a decrease in the relative number of NaX channels controlled by the pump.

  15. An Affinity Propagation-Based DNA Motif Discovery Algorithm

    Directory of Open Access Journals (Sweden)

    Chunxiao Sun

    2015-01-01

    Full Text Available The planted (l,d motif search (PMS is one of the fundamental problems in bioinformatics, which plays an important role in locating transcription factor binding sites (TFBSs in DNA sequences. Nowadays, identifying weak motifs and reducing the effect of local optimum are still important but challenging tasks for motif discovery. To solve the tasks, we propose a new algorithm, APMotif, which first applies the Affinity Propagation (AP clustering in DNA sequences to produce informative and good candidate motifs and then employs Expectation Maximization (EM refinement to obtain the optimal motifs from the candidate motifs. Experimental results both on simulated data sets and real biological data sets show that APMotif usually outperforms four other widely used algorithms in terms of high prediction accuracy.

  16. Alpha wastes treatment

    International Nuclear Information System (INIS)

    Thouvenot, P.

    2000-01-01

    Alter 2004, the alpha wastes issued from the Commissariat a l'Energie Atomique installations will be sent to the CEDRA plant. The aims of this installation are decontamination and wastes storage. Because of recent environmental regulations concerning ozone layer depletion, the use of CFC 113 in the decontamination unit, as previously planned, is impossible. Two alternatives processes are studied: the AVD process and an aqueous process including surfactants. Best formulations for both processes are defined issuing degreasing kinetics. It is observed that a good degreasing efficiency is linked to a good decontamination efficiency. Best results are obtained with the aqueous process. Furthermore, from the point of view of an existing waste treatment unit, the aqueous process turns out to be more suitable than the AVD process. (author)

  17. C595 antibody: A potential vector for targeted alpha therapy

    International Nuclear Information System (INIS)

    Perkins, A.C.; Allen, B.J.

    2005-01-01

    Full text: Mucins are high molecular-weight heavily glycosylated glycoproteins with many oligosaccharide side-chains, linked to a protein backbone called apomucin. A total of 19 different mucin genes (MUC1-MUC4, MUC5B, MUC5AC, MUC6-MUC18) have been identified to date. Mucins are present on the surface of most epithelial cells and play a role in their protection and lubrication. In cancer cells the mucin molecule becomes altered, thus representing an important target for diagnosis and therapy. Urinary epithelial mucin1 (MUC1) is found to be frequently up-regulated and abnormally glycosylated in a number of common malignancies, including breast, bladder, colon, ovarian and gastric cancer. The monoclonal antibody C595 is an IgG3 murine MAb raised against the protein core of human MUC1. Epitope mapping has shown that C595 recognizes a tetrapeptide motif (RPAP) within the protein core of MUC1 mucin that contains a large domain of multiples of a highly conserved 20-amino-acid-repeat sequence (PDTRPAPGSTAPPAHGVTSA). This antibody has previously been radiolabelled with 99m Tc and 111 In and used for imaging a range of tumour types including ovary, breast and bladder. The antibody has also been radiolabelled with 67 Cu and 188 Re for the therapy of superficial bladder cancer. More recently we have investigated the pre-clinical use of the C595 antibody for targeted alpha therapy using 213 Bi which emits alpha particles with high linear energy transfer (LET), short range (80 m) radiation and has a short physical half-life of 45.6 minutes. Alpha particles are some 7300 times heavier than beta particles and in theory, following binding of an alpha immunocongugates to the target, a large fraction of the alpha particle energy is delivered to cancer cells, with minimal concomitant radiation of normal tissues. 213 Bi was produced from the 225 Ac/ 213 Bi generator. For antibody conjugation the chelator, cyclic diethylenetriaminepentacetic acid anhydride (DTPA) was used. Initial

  18. Global metabolic profile identifies choline kinase alpha as a key regulator of glutathione-dependent antioxidant cell defense in ovarian carcinoma.

    Science.gov (United States)

    Granata, Anna; Nicoletti, Roberta; Perego, Paola; Iorio, Egidio; Krishnamachary, Balaji; Benigni, Fabio; Ricci, Alessandro; Podo, Franca; Bhujwalla, Zaver M; Canevari, Silvana; Bagnoli, Marina; Mezzanzanica, Delia

    2015-05-10

    Epithelial Ovarian Cancer (EOC) "cholinic phenotype", characterized by increased intracellular phosphocholine content sustained by over-expression/activity of choline kinase-alpha (ChoKα/CHKA), is a metabolic cellular reprogramming involved in chemoresistance with still unknown mechanisms.By stable CHKA silencing and global metabolic profiling here we demonstrate that CHKA knockdown hampers growth capability of EOC cell lines both in vitro and in xenotransplant in vivo models. It also affected antioxidant cellular defenses, decreasing glutathione and cysteine content while increasing intracellular levels of reactive oxygen species, overall sensitizing EOC cells to current chemotherapeutic regimens. Natural recovering of ChoKα expression after its transient silencing rescued the wild-type phenotype, restoring intracellular glutathione content and drug resistance. Rescue and phenocopy of siCHKA-related effects were also obtained by artificial modulation of glutathione levels. The direct relationship among CHKA expression, glutathione intracellular content and drug sensitivity was overall demonstrated in six different EOC cell lines but notably, siCHKA did not affect growth capability, glutathione metabolism and/or drug sensitivity of non-tumoral immortalized ovarian cells. The "cholinic phenotype", by recapitulating EOC addiction to glutathione content for the maintenance of the antioxidant defense, can be therefore considered a unique feature of cancer cells and a suitable target to improve chemotherapeutics efficacy.

  19. Detecting DNA regulatory motifs by incorporating positional trendsin information content

    Energy Technology Data Exchange (ETDEWEB)

    Kechris, Katherina J.; van Zwet, Erik; Bickel, Peter J.; Eisen,Michael B.

    2004-05-04

    On the basis of the observation that conserved positions in transcription factor binding sites are often clustered together, we propose a simple extension to the model-based motif discovery methods. We assign position-specific prior distributions to the frequency parameters of the model, penalizing deviations from a specified conservation profile. Examples with both simulated and real data show that this extension helps discover motifs as the data become noisier or when there is a competing false motif.

  20. MicroRNA Expression Profiling by Bead Array Technology in Human Tumor Cell Lines Treated with Interferon-Alpha-2a

    Directory of Open Access Journals (Sweden)

    Siegrist Fredy

    2009-01-01

    Full Text Available Abstract MicroRNAs are positive and negative regulators of eukaryotic gene expression that modulate transcript abundance by specific binding to sequence motifs located prevalently in the 3' untranslated regions of target messenger RNAs (mRNA. Interferon-alpha-2a (IFNα induces a large set of protein coding genes mediating antiproliferative and antiviral responses. Here we use a global microarray-based microRNA detection platform to identify genes that are induced by IFNα in hepatoma- or melanoma-derived human tumor cell lines. Despite the enormous differences in expression levels between these models, we were able to identify microRNAs that are upregulated by IFNα in both lines suggesting the possibility that interferon-regulated microRNAs are involved in the transcriptional repression of mRNA relevant to cytokine responses.

  1. Microtubular stability affects pVHL-mediated regulation of HIF-1alpha via the p38/MAPK pathway in hypoxic cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Miao Teng

    Full Text Available BACKGROUND: Our previous research found that structural changes of the microtubule network influence glycolysis in cardiomyocytes by regulating the hypoxia-inducible factor (HIF-1α during the early stages of hypoxia. However, little is known about the underlying regulatory mechanism of the changes of HIF-1α caused by microtubule network alternation. The von Hippel-Lindau tumor suppressor protein (pVHL, as a ubiquitin ligase, is best understood as a negative regulator of HIF-1α. METHODOLOGY/PRINCIPAL FINDINGS: In primary rat cardiomyocytes and H9c2 cardiac cells, microtubule-stabilization was achieved by pretreating with paclitaxel or transfection of microtubule-associated protein 4 (MAP4 overexpression plasmids and microtubule-depolymerization was achieved by pretreating with colchicine or transfection of MAP4 siRNA before hypoxia treatment. Recombinant adenovirus vectors for overexpressing pVHL or silencing of pVHL expression were constructed and transfected in primary rat cardiomyocytes and H9c2 cells. With different microtubule-stabilizing and -depolymerizing treaments, we demonstrated that the protein levels of HIF-1α were down-regulated through overexpression of pVHL and were up-regulated through knockdown of pVHL in hypoxic cardiomyocytes. Importantly, microtubular structure breakdown activated p38/MAPK pathway, accompanied with the upregulation of pVHL. In coincidence, we found that SB203580, a p38/MAPK inhibitor decreased pVHL while MKK6 (Glu overexpression increased pVHL in the microtubule network altered-hypoxic cardiomyocytes and H9c2 cells. CONCLUSIONS/SIGNIFICANCE: This study suggests that pVHL plays an important role in the regulation of HIF-1α caused by the changes of microtubular structure and the p38/MAPK pathway participates in the process of pVHL change following microtubule network alteration in hypoxic cardiomyocytes.

  2. A motif-based search in bacterial genomes identifies the ortholog of the small RNA Yfr1 in all lineages of cyanobacteria

    Directory of Open Access Journals (Sweden)

    Axmann Ilka M

    2007-10-01

    Full Text Available Abstract Background Non-coding RNAs (ncRNA are regulators of gene expression in all domains of life. They control growth and differentiation, virulence, motility and various stress responses. The identification of ncRNAs can be a tedious process due to the heterogeneous nature of this molecule class and the missing sequence similarity of orthologs, even among closely related species. The small ncRNA Yfr1 has previously been found in the Prochlorococcus/Synechococcus group of marine cyanobacteria. Results Here we show that screening available genome sequences based on an RNA motif and followed by experimental analysis works successfully in detecting this RNA in all lineages of cyanobacteria. Yfr1 is an abundant ncRNA between 54 and 69 nt in size that is ubiquitous for cyanobacteria except for two low light-adapted strains of Prochlorococcus, MIT 9211 and SS120, in which it must have been lost secondarily. Yfr1 consists of two predicted stem-loop elements separated by an unpaired sequence of 16–20 nucleotides containing the ultraconserved undecanucleotide 5'-ACUCCUCACAC-3'. Conclusion Starting with an ncRNA previously found in a narrow group of cyanobacteria only, we show here the highly specific and sensitive identification of its homologs within all lineages of cyanobacteria, whereas it was not detected within the genome sequences of E. coli and of 7 other eubacteria belonging to the alpha-proteobacteria, chlorobiaceae and spirochaete. The integration of RNA motif prediction into computational pipelines for the detection of ncRNAs in bacteria appears as a promising step to improve the quality of such predictions.

  3. Recursive Alterations of the Relationship between Simple Membrane Geometry and Insertion of Amphiphilic Motifs

    DEFF Research Database (Denmark)

    Madsen, Kenneth Lindegaard; Herlo, Rasmus

    2017-01-01

    The shape and composition of a membrane directly regulate the localization, activity, and signaling properties of membrane associated proteins. Proteins that both sense and generate membrane curvature, e.g., through amphiphilic insertion motifs, potentially engage in recursive binding dynamics......, where the recruitment of the protein itself changes the properties of the membrane substrate. Simple geometric models of membrane curvature interactions already provide prediction tools for experimental observations, however these models are treating curvature sensing and generation as separated...

  4. STEME: a robust, accurate motif finder for large data sets.

    Directory of Open Access Journals (Sweden)

    John E Reid

    Full Text Available Motif finding is a difficult problem that has been studied for over 20 years. Some older popular motif finders are not suitable for analysis of the large data sets generated by next-generation sequencing. We recently published an efficient approximation (STEME to the EM algorithm that is at the core of many motif finders such as MEME. This approximation allows the EM algorithm to be applied to large data sets. In this work we describe several efficient extensions to STEME that are based on the MEME algorithm. Together with the original STEME EM approximation, these extensions make STEME a fully-fledged motif finder with similar properties to MEME. We discuss the difficulty of objectively comparing motif finders. We show that STEME performs comparably to existing prominent discriminative motif finders, DREME and Trawler, on 13 sets of transcription factor binding data in mouse ES cells. We demonstrate the ability of STEME to find long degenerate motifs which these discriminative motif finders do not find. As part of our method, we extend an earlier method due to Nagarajan et al. for the efficient calculation of motif E-values. STEME's source code is available under an open source license and STEME is available via a web interface.

  5. Discovery of stress responsive DNA regulatory motifs in Arabidopsis.

    Science.gov (United States)

    Ma, Shisong; Bachan, Shawn; Porto, Matthew; Bohnert, Hans J; Snyder, Michael; Dinesh-Kumar, Savithramma P

    2012-01-01

    The discovery of DNA regulatory motifs in the sequenced genomes using computational methods remains challenging. Here, we present MotifIndexer--a comprehensive strategy for de novo identification of DNA regulatory motifs at a genome level. Using word-counting methods, we indexed the existence of every 8-mer oligo composed of bases A, C, G, T, r, y, s, w, m, k, n or 12-mer oligo composed of A, C, G, T, n, in the promoters of all predicted genes of Arabidopsis thaliana genome and of selected stress-induced co-expressed genes. From this analysis, we identified number of over-represented motifs. Among these, major critical motifs were identified using a position filter. We used a model based on uniform distribution and the z-scores derived from this model to describe position bias. Interestingly, many motifs showed position bias towards the transcription start site. We extended this model to show biased distribution of motifs in the genomes of both A. thaliana and rice. We also used MotifIndexer to identify conserved motifs in co-expressed gene groups from two Arabidopsis species, A. thaliana and A. lyrata. This new comparative genomics method does not depend on alignments of homologous gene promoter sequences.

  6. Motif content comparison between monocot and dicot species

    Directory of Open Access Journals (Sweden)

    Matyas Cserhati

    2015-03-01

    Full Text Available While a number of DNA sequence motifs have been functionally characterized, the full repertoire of motifs in an organism (the motifome is yet to be characterized. The present study wishes to widen the scope of motif content analysis in different monocot and dicot species that include both rice species, Brachypodium, corn, wheat as monocots and Arabidopsis, Lotus japonica, Medicago truncatula, and Populus tremula as dicots. All possible existing motifs were analyzed in different regions of genomes such as were found in different sets of sequences in these species: the whole genome, core proximal and distal promoters, 5′ and 3′ UTRs, and the 1st introns. Due to the increased number of species involved in this study compared to previous works, species relationships were analyzed based on the similarity of common motif content. Certain secondary structure elements were inferred in the genomes of these species as well as new unknown motifs. The distribution of 20 motifs common to the studied species were found to have a significantly larger occurrence within the promoters and 3′ UTRs of genes, both being regulatory regions. Motifs common to the promoter regions of japonica rice, Brachypodium, and corn were also found in a number of orthologous and paralogous genes. Some of our motifs were found to be complementary to miRNA elements in Brachypodium distachyon and japonica rice.

  7. Chromatin states modify network motifs contributing to cell-specific functions

    Science.gov (United States)

    Zhao, Hongying; Liu, Tingting; Liu, Ling; Zhang, Guanxiong; Pang, Lin; Yu, Fulong; Fan, Huihui; Ping, Yanyan; Wang, Li; Xu, Chaohan; Xiao, Yun; Li, Xia

    2015-01-01

    Epigenetic modification can affect many important biological processes, such as cell proliferation and apoptosis. It can alter chromatin conformation and contribute to gene regulation. To investigate how chromatin states associated with network motifs, we assembled chromatin state-modified regulatory networks by combining 269 ChIP-seq data and chromatin states in four cell types. We found that many chromatin states were significantly associated with network motifs, especially for feedforward loops (FFLs). These distinct chromatin state compositions contribute to different expression levels and translational control of targets in FFLs. Strikingly, the chromatin state-modified FFLs were highly cell-specific and, to a large extent, determined cell-selective functions, such as the embryonic stem cell-specific bivalent modification-related FFL with an important role in poising developmentally important genes for expression. Besides, comparisons of chromatin state-modified FFLs between cancerous/stem and primary cell lines revealed specific type of chromatin state alterations that may act together with motif structural changes cooperatively contribute to cell-to-cell functional differences. Combination of these alterations could be helpful in prioritizing candidate genes. Together, this work highlights that a dynamic epigenetic dimension can help network motifs to control cell-specific functions. PMID:26169043

  8. Phosphoinositide 3-kinase alpha-dependent regulation of branching morphogenesis in murine embryonic lung: evidence for a role in determining morphogenic properties of FGF7.

    Directory of Open Access Journals (Sweden)

    Edward Carter

    Full Text Available Branching morphogenesis is a critical step in the development of many epithelial organs. The phosphoinositide-3-kinase (PI3K pathway has been identified as a central component of this process but the precise role has not been fully established. Herein we sought to determine the role of PI3K in murine lung branching using a series of pharmacological inhibitors directed at this pathway. The pan-class I PI3K inhibitor ZSTK474 greatly enhanced the branching potential of whole murine lung explants as measured by an increase in the number of terminal branches compared with controls over 48 hours. This enhancement of branching was also observed following inhibition of the downstream signalling components of PI3K, Akt and mTOR. Isoform selective inhibitors of PI3K identified that the alpha isoform of PI3K is a key driver in branching morphogenesis. To determine if the effect of PI3K inhibition on branching was specific to the lung epithelium or secondary to an effect on the mesenchyme we assessed the impact of PI3K inhibition in cultures of mesenchyme-free lung epithelium. Isolated lung epithelium cultured with FGF7 formed large cyst-like structures, whereas co-culture with FGF7 and ZSTK474 induced the formation of defined branches with an intact lumen. Together these data suggest a novel role for PI3K in the branching program of the murine embryonic lung contradictory to that reported in other branching organs. Our observations also point towards PI3K acting as a morphogenic switch for FGF7 signalling.

  9. Alpha-mangostin from mangosteen (Garcinia mangostana Linn.) pericarp extract reduces high fat-diet induced hepatic steatosis in rats by regulating mitochondria function and apoptosis

    OpenAIRE

    Tsai, Shin-Yu; Chung, Pei-Chin; Owaga, Eddy E.; Tsai, I-Jong; Wang, Pei-Yuan; Tsai, Jeng-I; Yeh, Tien-Shun; Hsieh, Rong-Hong

    2016-01-01

    Background Non-alcoholic fatty liver disease (NAFLD) is caused by multiple factors including hepatic oxidative stress, lipotoxicity, and mitochondrial dysfunction. Obesity is among the risk factors for NAFLD alongside type 2 diabetes mellitus and hyperlipidemia. ?- mangostin (?-MG) extracts from the pericarps of mangosteen (Garcinia mangostana Linn.) may regulate high fat diet-induced hepatic steatosis; however the underlying mechanisms remain unknown. The aim of this study was to investigate...

  10. Motif-role-fingerprints: the building-blocks of motifs, clustering-coefficients and transitivities in directed networks.

    Science.gov (United States)

    McDonnell, Mark D; Yaveroğlu, Ömer Nebil; Schmerl, Brett A; Iannella, Nicolangelo; Ward, Lawrence M

    2014-01-01

    Complex networks are frequently characterized by metrics for which particular subgraphs are counted. One statistic from this category, which we refer to as motif-role fingerprints, differs from global subgraph counts in that the number of subgraphs in which each node participates is counted. As with global subgraph counts, it can be important to distinguish between motif-role fingerprints that are 'structural' (induced subgraphs) and 'functional' (partial subgraphs). Here we show mathematically that a vector of all functional motif-role fingerprints can readily be obtained from an arbitrary directed adjacency matrix, and then converted to structural motif-role fingerprints by multiplying that vector by a specific invertible conversion matrix. This result demonstrates that a unique structural motif-role fingerprint exists for any given functional motif-role fingerprint. We demonstrate a similar result for the cases of functional and structural motif-fingerprints without node roles, and global subgraph counts that form the basis of standard motif analysis. We also explicitly highlight that motif-role fingerprints are elemental to several popular metrics for quantifying the subgraph structure of directed complex networks, including motif distributions, directed clustering coefficient, and transitivity. The relationships between each of these metrics and motif-role fingerprints also suggest new subtypes of directed clustering coefficients and transitivities. Our results have potential utility in analyzing directed synaptic networks constructed from neuronal connectome data, such as in terms of centrality. Other potential applications include anomaly detection in networks, identification of similar networks and identification of similar nodes within networks. Matlab code for calculating all stated metrics following calculation of functional motif-role fingerprints is provided as S1 Matlab File.

  11. Motif-role-fingerprints: the building-blocks of motifs, clustering-coefficients and transitivities in directed networks.

    Directory of Open Access Journals (Sweden)

    Mark D McDonnell

    Full Text Available Complex networks are frequently characterized by metrics for which particular subgraphs are counted. One statistic from this category, which we refer to as motif-role fingerprints, differs from global subgraph counts in that the number of subgraphs in which each node participates is counted. As with global subgraph counts, it can be important to distinguish between motif-role fingerprints that are 'structural' (induced subgraphs and 'functional' (partial subgraphs. Here we show mathematically that a vector of all functional motif-role fingerprints can readily be obtained from an arbitrary directed adjacency matrix, and then converted to structural motif-role fingerprints by multiplying that vector by a specific invertible conversion matrix. This result demonstrates that a unique structural motif-role fingerprint exists for any given functional motif-role fingerprint. We demonstrate a similar result for the cases of functional and structural motif-fingerprints without node roles, and global subgraph counts that form the basis of standard motif analysis. We also explicitly highlight that motif-role fingerprints are elemental to several popular metrics for quantifying the subgraph structure of directed complex networks, including motif distributions, directed clustering coefficient, and transitivity. The relationships between each of these metrics and motif-role fingerprints also suggest new subtypes of directed clustering coefficients and transitivities. Our results have potential utility in analyzing directed synaptic networks constructed from neuronal connectome data, such as in terms of centrality. Other potential applications include anomaly detection in networks, identification of similar networks and identification of similar nodes within networks. Matlab code for calculating all stated metrics following calculation of functional motif-role fingerprints is provided as S1 Matlab File.

  12. Alpha-actinin is a new type of house dust mite allergen.

    Directory of Open Access Journals (Sweden)

    Su An

    Full Text Available Main indoor allergens for humans are from house dust mites. There are more than 30 allergens in Dermatophagoides farinae but only fourteen allergens have been identified from this mite including Der f 1-3, 6, 7, 10, 11, 13-18, and 22. A native allergen protein (Der f 24, 90 kDa was purified from D. farinae by gel filtration and anionic exchange liquid chromatography combined with IgE immunodetection. Its primary structure was determined by Edman degradation, mass spectrometry analysis and cDNA cloning. Enzyme-linked immunosorbent assay inhibition tests (ELISA-IT, immunoblots, basophil activation test (BAT and skin prick test (SPT were performed to evaluate the allergenicity. It was identified as an alpha (α-actinin containing a CaM-like domain with EF-hand motifs. Der f 24 reacted to sera from 85.4% (35/41 of patients on western blot analysis. It reduced ∼20% sera IgE reactivity to D. farinae extracts on a competitive ELISA. Eighty percent (8/10 of patients with D. farinae allergy showed positive reactions to Der f 24 in skin prick test. The expression of CD63 on basophils from patients was up-regulated by Der f 24 by ∼5.4-fold. Alpha-actinin was identified as a new type of house dust mite allergen. To the best of our knowledge, this is the first report of α-actinin as an allergen.

  13. Estrogen receptor transcription and transactivation: Estrogen receptor alpha and estrogen receptor beta - regulation by selective estrogen receptor modulators and importance in breast cancer

    International Nuclear Information System (INIS)

    S Katzenellenbogen, Benita; A Katzenellenbogen, John

    2000-01-01

    Estrogens display intriguing tissue-selective action that is of great biomedical importance in the development of optimal therapeutics for the prevention and treatment of breast cancer, for menopausal hormone replacement, and for fertility regulation. Certain compounds that act through the estrogen receptor (ER), now referred to as selective estrogen receptor modulators (SERMs), can demonstrate remarkable differences in activity in the various estrogen target tissues, functioning as agonists in some tissues but as antagonists in others. Recent advances elucidating the tripartite nature of the biochemical and molecular actions of estrogens provide a good basis for understanding these tissue-selective actions. As discussed in this thematic review, the development of optimal SERMs should now be viewed in the context of two estrogen receptor subtypes, ERα and ERβ, that have differing affinities and responsiveness to various SERMs, and differing tissue distribution and effectiveness at various gene regulatory sites. Cellular, biochemical, and structural approaches have also shown that the nature of the ligand affects the conformation assumed by the ER-ligand complex, thereby regulating its state of phosphorylation and the recruitment of different coregulator proteins. Growth factors and protein kinases that control the phosphorylation state of the complex also regulate the bioactivity of the ER. These interactions and changes determine the magnitude of the transcriptional response and the potency of different SERMs. As these critical components are becoming increasingly well defined, they provide a sound basis for the development of novel SERMs with optimal profiles of tissue selectivity as medical therapeutic agents

  14. Transnationalism as a motif in family stories.

    Science.gov (United States)

    Stone, Elizabeth; Gomez, Erica; Hotzoglou, Despina; Lipnitsky, Jane Y

    2005-12-01

    Family stories have long been recognized as a vehicle for assessing components of a family's emotional and social life, including the degree to which an immigrant family has been willing to assimilate. Transnationalism, defined as living in one or more cultures and maintaining connections to both, is now increasingly common. A qualitative study of family stories in the family of those who appear completely "American" suggests that an affiliation with one's home country is nevertheless detectable in the stories via motifs such as (1) positively connotated home remedies, (2) continuing denigration of home country "enemies," (3) extensive knowledge of the home country history and politics, (4) praise of endogamy and negative assessment of exogamy, (5) superiority of home country to America, and (6) beauty of home country. Furthermore, an awareness of which model--assimilationist or transnational--governs a family's experience may help clarify a clinician's understanding of a family's strengths, vulnerabilities, and mode of framing their cultural experiences.

  15. Rekayasa Pengembangan Desain Motif Batik Khas Melayu

    Directory of Open Access Journals (Sweden)

    Eustasia Sri Murwati

    2016-04-01

    Full Text Available ABSTRAKPengembangan desain batik melalui rancang bangun perekayasaan desain menurut ragam hias Melayu meliputi pengembangan motif dan proses, termasuk pemilihan komposisi warna. Proses yang sering dilakukan yaitu proses celup, penghilangan lilin dan celup warna tumpangan atau proses colet, celup, penghilangan lilin atau celup kemudian penghilangan lilin yang disebut Batik Kelengan. Setiap pulau di Indonesia mempunyai ciri khas budaya dan kesenian yang dikenal dengan corak/ragam hias khas daerah, juga ornamen yang diminati oleh masyarakat dari daerah tersebut atau dari daerah lain. Kondisi demikian mendorong pertumbuhan industri kerajinan yang memanfaatkan unsur–unsur seni. Adapun motif yang diperoleh adalah: Ayam Berlaga, Bungo Matahari, Kuntum Bersanding, Lancang Kuning, Encong Kerinci, Durian Pecah, Bungo Bintang, Bungo Pauh Kecil, Riang-riang, Bungo Nagaro. Pengembangan desain tersebut dipilih 3 produk terbaik yang dinilai oleh 5 penilai yang ahli di bidang desain batik, yaitu motif Durian Pecah, Ayam Berlaga, dan Bungo Matahari. Rancang bangun diversifikasi desain dengan memanfaatkan unsur–unsur seni dan ketrampilan etnis Melayu yaitu pemilihan ragam hias dan motif batik Melayu untuk diterapkan ke bahan sandang dengan komposisi warna yang menarik, sehingga produk memenuhi selera konsumen. Memperbaiki keberagaman batik dengan meningkatkan desain produk antara lain menuangkan ragam hias Melayu ke dalam proses batik yang menggunakan berbagai macam warna sehingga komposisi warna memadai. Diperoleh hasil produk batik dengan ragam hias Melayu yang berkualitas dan komposisi warna yang sesuai dengan karakter ragam hias Melayu. Rancang bangun desain produk untuk mendapatkan formulasi desain serta kelayakan prosesnya dengan penekanan pada teknologi akrab lingkungan dilaksanakan dengan alternatif pendekatan yaitu penciptaan desain bentuk baru.Kata kunci: desain, batik, rancang bangun, ragam hias, MelayuABSTRACTDevelopment of batik design through

  16. Encoded expansion: an efficient algorithm to discover identical string motifs.

    Science.gov (United States)

    Azmi, Aqil M; Al-Ssulami, Abdulrakeeb

    2014-01-01

    A major task in computational biology is the discovery of short recurring string patterns known as motifs. Most of the schemes to discover motifs are either stochastic or combinatorial in nature. Stochastic approaches do not guarantee finding the correct motifs, while the combinatorial schemes tend to have an exponential time complexity with respect to motif length. To alleviate the cost, the combinatorial approach exploits dynamic data structures such as trees or graphs. Recently (Karci (2009) Efficient automatic exact motif discovery algorithms for biological sequences, Expert Systems with Applications 36:7952-7963) devised a deterministic algorithm that finds all the identical copies of string motifs of all sizes [Formula: see text] in theoretical time complexity of [Formula: see text] and a space complexity of [Formula: see text] where [Formula: see text] is the length of the input sequence and [Formula: see text] is the length of the longest possible string motif. In this paper, we present a significant improvement on Karci's original algorithm. The algorithm that we propose reports all identical string motifs of sizes [Formula: see text] that occur at least [Formula: see text] times. Our algorithm starts with string motifs of size 2, and at each iteration it expands the candidate string motifs by one symbol throwing out those that occur less than [Formula: see text] times in the entire input sequence. We use a simple array and data encoding to achieve theoretical worst-case time complexity of [Formula: see text] and a space complexity of [Formula: see text] Encoding of the substrings can speed up the process of comparison between string motifs. Experimental results on random and real biological sequences confirm that our algorithm has indeed a linear time complexity and it is more scalable in terms of sequence length than the existing algorithms.

  17. Arg-Tyr-Asp (RYD) and Arg-Cys-Asp (RCD) motifs in dendroaspin promote selective inhibition of beta1 and beta3 integrins.

    Science.gov (United States)

    Wattam, B; Shang, D; Rahman, S; Egglezou, S; Scully, M; Kakkar, V; Lu, X

    2001-05-15

    Arg-Gly-Asp (RGD) is a unique minimal integrin-binding sequence that is found within several glycoprotein ligands. This sequence has also been found in snake-venom anti-platelet proteins, including the disintegrins and dendroaspin, a natural variant of short-chain neurotoxins isolated from the venom of Dendroaspis jamesonii. In the present study, the motifs RYD and RCD were introduced into the dendroaspin scaffold to replace RGD. Both motifs in dendroaspin caused inhibition of ADP-induced platelet aggregation with IC(50) values of 200 and 300 nM respectively, similar to that of the wild-type RGD motif (170 nM). In comparison with wild-type dendroaspin, both RYD- and RCD-containing dendroaspins were more selective in the inhibition of the adhesion of K562 cells to laminin rather than to fibrinogen and fibronectin, even though they were 10-30-fold less potent at inhibiting K562 cell (containing alpha(5)beta(1) integrin) adhesion to laminin compared with wild-type. Interestingly, the RYD motif produced a similar IC(50) value to the RGD motif at inhibiting A375-SM cell (beta(3) integrin) adhesion to collagen, whereas the RCD motif was approx. 2-6-fold less potent compared with either RGD or RYD. These findings show that the selectivity of dendroaspin binding to beta(1) and beta(3) integrins can be modulated by the introduction of alternative cell recognition sequences.

  18. The MHC motif viewer: a visualization tool for MHC binding motifs

    DEFF Research Database (Denmark)

    Rapin, Nicolas; Hoof, Ilka; Lund, Ole

    2010-01-01

    In vertebrates, the onset of cellular immune reactions is controlled by presentation of peptides in complex with major histocompatibility complex (MHC) molecules to T cell receptors. In humans, MHCs are called human leukocyte antigens (HLAs). Different MHC molecules present different subsets...... of peptides, and knowledge of their binding specificities is important for understanding differences in the immune response between individuals. Algorithms predicting which peptides bind a given MHC molecule have recently been developed with high prediction accuracy. The utility of these algorithms...... is hampered by the lack of tools for browsing and comparing specificity of these molecules. We have developed a Web server, MHC Motif Viewer, which allows the display of the binding motif for MHC class I proteins for human, chimpanzee, rhesus monkey, mouse, and swine, as well as HLA-DR protein sequences...

  19. Alpha8 Integrin (Itga8 Signalling Attenuates Chronic Renal Interstitial Fibrosis by Reducing Fibroblast Activation, Not by Interfering with Regulation of Cell Turnover.

    Directory of Open Access Journals (Sweden)

    Ines Marek

    Full Text Available The α8 integrin (Itga8 chain contributes to the regulation of cell proliferation and apoptosis in renal glomerular cells. In unilateral ureteral obstruction Itga8 is de novo expressed in the tubulointerstitium and a deficiency of Itga8 results in more severe renal fibrosis after unilateral ureteral obstruction. We hypothesized that the increased tubulointerstitial damage after unilateral ureteral obstruction observed in mice deficient for Itga8 is associated with altered tubulointerstitial cell turnover and apoptotic mechanisms resulting from the lack of Itga8 in cells of the tubulointerstitium. Induction of unilateral ureteral obstruction was achieved by ligation of the right ureter in mice lacking Itga8. Unilateral ureteral obstruction increased proliferation and apoptosis rates of tubuloepithelial and interstitial cells, however, no differences were observed in the tubulointerstitium of mice lacking Itga8 and wild type controls regarding fibroblast or proliferating cell numbers as well as markers of endoplasmic reticulum stress and apoptosis after unilateral ureteral obstruction. In contrast, unilateral ureteral obstruction in mice lacking Itga8 led to more pronounced tubulointerstitial cell activation i.e. to the appearance of more phospho-SMAD2/3-positive cells and more α-smooth muscle actin-positive cells in the tubulointerstitium. Furthermore, a more severe macrophage and T-cell infiltration was observed in these animals compared to controls. Thus, Itga8 seems to attenuate tubulointerstitial fibrosis in unilateral ureteral obstruction not via regulation of cell turnover, but via regulation of TGF-β signalling, fibroblast activation and/or immune cell infiltration.

  20. Increased Set1 binding at the promoter induces aberrant epigenetic alterations and up-regulates cyclic adenosine 5'-monophosphate response element modulator alpha in systemic lupus erythematosus.

    Science.gov (United States)

    Zhang, Qing; Ding, Shu; Zhang, Huilin; Long, Hai; Wu, Haijing; Zhao, Ming; Chan, Vera; Lau, Chak-Sing; Lu, Qianjin

    2016-01-01

    Up-regulated cyclic adenosine 5'-monophosphate response element modulator α (CREMα) which can inhibit IL-2 and induce IL-17A in T cells plays a critical role in the pathogenesis of systemic lupus erythematosus (SLE). This research aimed to investigate the mechanisms regulating CREMα expression in SLE. From the chromatin immunoprecipitation (ChIP) microarray data, we found a sharply increased H3 lysine 4 trimethylation (H3K4me3) amount at the CREMα promoter in SLE CD4+ T cells compared to controls. Then, by ChIP and real-time PCR, we confirmed this result. Moreover, H3K4me3 amount at the promoter was positively correlated with CREMα mRNA level in SLE CD4+ T cells. In addition, a striking increase was observed in SET domain containing 1 (Set1) enrichment, but no marked change in mixed-lineage leukemia 1 (MLL1) enrichment at the CREMα promoter in SLE CD4+ T cells. We also proved Set1 enrichment was positively correlated with both H3K4me3 amount at the CREMα promoter and CREMα mRNA level in SLE CD4+ T cells. Knocking down Set1 with siRNA in SLE CD4+ T cells decreased Set1 and H3K4me3 enrichments, and elevated the levels of DNMT3a and DNA methylation, while the amounts of H3 acetylation (H3ac) and H4 acetylation (H4ac) didn't alter greatly at the CREMα promoter. All these changes inhibited the expression of CREMα, then augmented IL-2 and down-modulated IL-17A productions. Subsequently, we observed that DNA methyltransferase (DNMT) 3a enrichment at the CREMα promoter was down-regulated significantly in SLE CD4+ T cells, and H3K4me3 amount was negatively correlated with both DNA methylation level and DNMT3a enrichment at the CREMα promoter in SLE CD4+ T cells. In SLE CD4+ T cells, increased Set1 enrichment up-regulates H3K4me3 amount at the CREMα promoter, which antagonizes DNMT3a and suppresses DNA methylation within this region. All these factors induce CREMα overexpression, consequently result in IL-2 under-expression and IL-17A overproduction, and

  1. Assessing Local Structure Motifs Using Order Parameters for Motif Recognition, Interstitial Identification, and Diffusion Path Characterization

    Directory of Open Access Journals (Sweden)

    Nils E. R. Zimmermann

    2017-11-01

    Full Text Available Structure–property relationships form the basis of many design rules in materials science, including synthesizability and long-term stability of catalysts, control of electrical and optoelectronic behavior in semiconductors, as well as the capacity of and transport properties in cathode materials for rechargeable batteries. The immediate atomic environments (i.e., the first coordination shells of a few atomic sites are often a key factor in achieving a desired property. Some of the most frequently encountered coordination patterns are tetrahedra, octahedra, body and face-centered cubic as well as hexagonal close packed-like environments. Here, we showcase the usefulness of local order parameters to identify these basic structural motifs in inorganic solid materials by developing classification criteria. We introduce a systematic testing framework, the Einstein crystal test rig, that probes the response of order parameters to distortions in perfect motifs to validate our approach. Subsequently, we highlight three important application cases. First, we map basic crystal structure information of a large materials database in an intuitive manner by screening the Materials Project (MP database (61,422 compounds for element-specific motif distributions. Second, we use the structure-motif recognition capabilities to automatically find interstitials in metals, semiconductor, and insulator materials. Our Interstitialcy Finding Tool (InFiT facilitates high-throughput screenings of defect properties. Third, the order parameters are reliable and compact quantitative structure descriptors for characterizing diffusion hops of intercalants as our example of magnesium in MnO2-spinel indicates. Finally, the tools developed in our work are readily and freely available as software implementations in the pymatgen library, and we expect them to be further applied to machine-learning approaches for emerging applications in materials science.

  2. Secbase: database module to retrieve secondary structure elements with ligand binding motifs.

    Science.gov (United States)

    Koch, Oliver; Cole, Jason; Block, Peter; Klebe, Gerhard

    2009-10-01

    Secbase is presented as a novel extension module of Relibase. It integrates the information about secondary structure elements into the retrieval facilities of Relibase. The data are accessible via the extended Relibase user interface, and integrated retrieval queries can be addressed using an extended version of Reliscript. The primary information about alpha-helices and beta-sheets is used as provided by the PDB. Furthermore, a uniform classification of all turn families, based on recent clustering methods, and a new helix assignment that is based on this turn classification has been included. Algorithms to analyze the geometric features of helices and beta-strands were also implemented. To demonstrate the performance of the Secbase implementation, some application examples are given. They provide new insights into the involvement of secondary structure elements in ligand binding. A survey of water molecules detected next to the N-terminus of helices is analyzed to show their involvement in ligand binding. Additionally, the parallel oriented NH groups at the alpha-helix N-termini provide special binding motifs to bind particular ligand functional groups with two adjacent oxygen atoms, e.g., as found in negatively charged carboxylate or phosphate groups, respectively. The present study also shows that the specific structure of the first turn of alpha-helices provides a suitable explanation for stabilizing charged structures. The magnitude of the overall helix macrodipole seems to have no or only a minor influence on binding. Furthermore, an overview of the involvement of secondary structure elements with the recognition of some important endogenous ligands such as cofactors shows some distinct preference for particular binding motifs and amino acids.

  3. Fine-tuning of T-cell development by the CD3γ di-leucine-based TCR-sorting motif

    DEFF Research Database (Denmark)

    Lauritsen, Jens Peter Holst; Boding, Lasse; Buus, Terkild B

    2015-01-01

    The CD3γ di-leucine-based (diL) receptor-sorting motif plays a central role in TCR down-regulation and in clonal expansion of virus-specific T cells. However, the role of the CD3γ diL motif in T-cell development is not known. In this study, we show that protein kinase C-induced TCR down-regulatio......The CD3γ di-leucine-based (diL) receptor-sorting motif plays a central role in TCR down-regulation and in clonal expansion of virus-specific T cells. However, the role of the CD3γ diL motif in T-cell development is not known. In this study, we show that protein kinase C-induced TCR down...

  4. Fingerprint motifs of phytases | Fan | African Journal of Biotechnology

    African Journals Online (AJOL)

    Among the total of potential 173 phytases gained in 11 plant genomes through MAST, PAPhys are the major phytases, and HAPhys are the minor, and other phytase groups are not found in planta. Keywords: Phytase, fingerprint motif, multiple EM for motif elicitation (MEME), MAST African Journal of Biotechnology Vol.

  5. Functional diversity of CTCFs is encoded in their binding motifs.

    Science.gov (United States)

    Fang, Rongxin; Wang, Chengqi; Skogerbo, Geir; Zhang, Zhihua

    2015-08-28

    The CCCTC-binding factor (CTCF) has diverse regulatory functions. However, the definitive characteristics of the CTCF binding motif required for its functional diversity still remains elusive. Here, we describe a new motif discovery workflow by which we have identified three CTCF binding motif variations with highly divergent functionalities. Supported by transcriptomic, epigenomic and chromatin-interactomic data, we show that the functional diversity of the CTCF binding motifs is strongly associated with their GC content, CpG dinucleotide coverage and relative DNA methylation level at the 12th position of the motifs. Further analysis suggested that the co-localization of cohesin, the key factor in cohesion of sister chromatids, is negatively correlated with the CpG coverage and the relative DNA methylation level at the 12th position. Finally, we present evidences for a hypothetical model in which chromatin interactions between promoters and distal regulatory regions are likely mediated by CTCFs binding to sequences with high CpG. These results demonstrate the existence of definitive CTCF binding motifs corresponding to CTCF's diverse functions, and that the functional diversity of the motifs is strongly associated with genetic and epigenetic features at the 12th position of the motifs.

  6. An Examination of the Festival Motif in Femi Osofisan's Morountodun ...

    African Journals Online (AJOL)

    It is in this context that we closely look at how Femi Osofisan assertively leans on the aesthetic apparatus of the African traditional theatre to create Morountodun. In Morountodun, the rich elements of the traditional theatre are used as motif(s) to create a vintage and delightful play, which is very aesthetic and scintillating, yet ...

  7. Probing structural changes of self assembled i-motif DNA

    KAUST Repository

    Lee, Iljoon

    2015-01-01

    We report an i-motif structural probing system based on Thioflavin T (ThT) as a fluorescent sensor. This probe can discriminate the structural changes of RET and Rb i-motif sequences according to pH change. This journal is

  8. Perceptions of Seshoeshoe fabric, naming and meanings of motifs ...

    African Journals Online (AJOL)

    It was further found that the choice of the fabric has increased in the market due to the wide variety of motifs and colours although the quality of fabric has not improved. There are still problems encountered by dressmakers when handling the fabric. Most participants in the study had a good knowledge of the names of motifs.

  9. Detecting Statistically Significant Communities of Triangle Motifs in Undirected Networks

    Science.gov (United States)

    2016-04-26

    extend the work of Perry et al. [6] by developing a statistical framework that supports the detection of triangle motif- based clusters in complex...priori, the need for triangle motif- based clustering. 2. Developed an algorithm for clustering undirected networks, where the triangle con guration was...13 5 Application to Real Networks 18 5.1 2012 FBS Football Schedule Network

  10. Ancient Writers’ Motifs in Spanish Golden Age Drama

    Directory of Open Access Journals (Sweden)

    Bojana Tomc

    2016-12-01

    Full Text Available In Spanish Golden Age drama we come across all forms of the reception of ancient writers’ motifs: explicit (direct quotation of an ancient author, where the quotation may be more or less complete, or a clear allusion to it, implicit (where there is no explicit mentioning of the ancient source, however certain ancient elements are mentioned such as persons, places, historical circumstances, hidden (where there is no clear hint about a literary intervention in Antiquity or an imitation of the literary excerpt or motif, as well as direct imitation (aemulatio or adaptation (variatio. In the Renaissance and Baroque there are almost no motifs, which could not be taken over from Antiquity without a transformation or innovation. If there is a close correspondence to the ancient motif, it is generally sufficient simply to mention it or employ a side motif as an illustration of a similar situation without elaborating the motif further or weaving it more deeply into the supporting fabric of the dramatic work. The ancient authors who contribute the motifs are numerous and diverse: Vergil, the Roman elegists Propertius in Tibullus, the lyric poet Horace, the comedian Plautus, the stoic philosopher Seneca, the historian Tacitus, the novelist Apuleius, as well as Greek dramatist Aeschylus and stoic philosopher Epictetus. The genres, which are a source for the surviving ancient motifs in the Golden Age in the selected authors, include literary as well as not-literary forms: epic poetry, lyric, dramatics, philosophy and historiography.

  11. Motifs, themes and thematic maps of an integrated Saccharomyces cerevisiae interaction network

    Directory of Open Access Journals (Sweden)

    Andrews Brenda

    2005-06-01

    Full Text Available Abstract Background Large-scale studies have revealed networks of various biological interaction types, such as protein-protein interaction, genetic interaction, transcriptional regulation, sequence homology, and expression correlation. Recurring patterns of interconnection, or 'network motifs', have revealed biological insights for networks containing either one or two types of interaction. Results To study more complex relationships involving multiple biological interaction types, we assembled an integrated Saccharomyces cerevisiae network in which nodes represent genes (or their protein products and differently colored links represent the aforementioned five biological interaction types. We examined three- and four-node interconnection patterns containing multiple interaction types and found many enriched multi-color network motifs. Furthermore, we showed that most of the motifs form 'network themes' – classes of higher-order recurring interconnection patterns that encompass multiple occurrences of network motifs. Network themes can be tied to specific biological phenomena and may represent more fundamental network design principles. Examples of network themes include a pair of protein complexes with many inter-complex genetic interactions – the 'compensatory complexes' theme. Thematic maps – networks rendered in terms of such themes – can simplify an otherwise confusing tangle of biological relationships. We show this by mapping the S. cerevisiae network in terms of two specific network themes. Conclusion Significantly enriched motifs in an integrated S. cerevisiae interaction network are often signatures of network themes, higher-order network structures that correspond to biological phenomena. Representing networks in terms of network themes provides a useful simplification of complex biological relationships.

  12. The DRF motif of CXCR6 as chemokine receptor adaptation to adhesion.

    Directory of Open Access Journals (Sweden)

    Andrea Koenen

    Full Text Available The CXC-chemokine receptor 6 (CXCR6 is a class A GTP-binding protein-coupled receptor (GPCRs that mediates adhesion of leukocytes by interacting with the transmembrane cell surface-expressed chemokine ligand 16 (CXCL16, and also regulates leukocyte migration by interacting with the soluble shed variant of CXCL16. In contrast to virtually all other chemokine receptors with chemotactic activity, CXCR6 carries a DRF motif instead of the typical DRY motif as a key element in receptor activation and G protein coupling. In this work, modeling analyses revealed that the phenylalanine F3.51 in CXCR6 might have impact on intramolecular interactions including hydrogen bonds by this possibly changing receptor function. Initial investigations with embryonic kidney HEK293 cells and further studies with monocytic THP-1 cells showed that mutation of DRF into DRY does not influence ligand binding, receptor internalization, receptor recycling, and protein kinase B (AKT signaling. Adhesion was slightly decreased in a time-dependent manner. However, CXCL16-induced calcium signaling and migration were increased. Vice versa, when the DRY motif of the related receptor CX3CR1 was mutated into DRF the migratory response towards CX3CL1 was diminished, indicating that the presence of a DRF motif generally impairs chemotaxis in chemokine receptors. Transmembrane and soluble CXCL16 play divergent roles in homeostasis, inflammation, and cancer, which can be beneficial or detrimental. Therefore, the DRF motif of CXCR6 may display a receptor adaptation allowing adhesion and cell retention by transmembrane CXCL16 but reducing the chemotactic response to soluble CXCL16. This adaptation may avoid permanent or uncontrolled recruitment of inflammatory cells as well as cancer metastasis.

  13. Microarray analysis of rice d1 (RGA1 mutant reveals the potential role of G-protein alpha subunit in regulating multiple abiotic stresses such as drought, salinity, heat and cold

    Directory of Open Access Journals (Sweden)

    Annie Prasanna Jangam

    2016-01-01

    Full Text Available The genome-wide role of heterotrimeric G-proteins in abiotic stress response in rice has not been examined from a functional genomics perspective, despite the availability of mutants and evidences involving individual genes/processes/stresses. Our rice whole transcriptome microarray analysis (GSE 20925 at NCBI GEO using the G-alpha subunit (RGA1 null mutant (Daikoku 1 or d1 and its corresponding wild type (O. sativa Japonica Nipponbare identified 2270 unique differentially expressed genes (DEGs. Out of them, we mined for all the potentially abiotic stress-responsive genes using Gene Ontology terms, STIFDB2.0 and Rice DB. The first two approaches produced smaller subsets of the 1886 genes found at Rice DB. The GO approach revealed similar regulation of several families of stress-responsive genes in RGA1 mutant. The Genevestigator analysis of the stress-responsive subset of the RGA1-regulated genes from STIFDB revealed cold and drought-responsive clusters. Meta data analysis at Rice DB revealed large stress-response categories such as cold (878 up /810 down, drought (882 up /837 down, heat (913 up /777 down, and salt stress (889 up /841 down. 1498 of them are common to all the four abiotic stresses, followed by fewer genes common to smaller groups of stresses. The RGA1-regulated genes that uniquely respond to individual stresses include 111 in heat stress, 8 each in cold only and drought only stresses and 2 genes in salt stress only. The common DEGs (1498 belong to pathways such as the synthesis of polyamine, glycine-betaine, proline and trehalose. Some of the common DEGs belong to abiotic stress signaling pathways such as calcium-dependent pathway, ABA independent and dependent pathway and MAP kinase pathway in the RGA1 mutant. Gene ontology of the common stress responsive DEGs revealed 62 unique molecular functions such as transporters, enzyme regulators, transferases, hydrolases, carbon and protein metabolism, binding to nucleotides

  14. Up-regulation of alpha-smooth muscle actin in cardiomyocytes from non-hypertrophic and non-failing transgenic mouse hearts expressing N-terminal truncated cardiac troponin I

    Directory of Open Access Journals (Sweden)

    Stephanie Kern

    2014-01-01

    Full Text Available We previously reported that a restrictive N-terminal truncation of cardiac troponin I (cTnI-ND is up-regulated in the heart in adaptation to hemodynamic stresses. Over-expression of cTnI-ND in the hearts of transgenic mice revealed functional benefits such as increased relaxation and myocardial compliance. In the present study, we investigated the subsequent effect on myocardial remodeling. The alpha-smooth muscle actin (α-SMA isoform is normally expressed in differentiating cardiomyocytes and is a marker for myocardial hypertrophy in adult hearts. Our results show that in cTnI-ND transgenic mice of between 2 and 3 months of age (young adults, a significant level of α-SMA is expressed in the heart as compared with wild-type animals. Although blood vessel density was increased in the cTnI-ND heart, the mass of smooth muscle tissue did not correlate with the increased level of α-SMA. Instead, immunocytochemical staining and Western blotting of protein extracts from isolated cardiomyocytes identified cardiomyocytes as the source of increased α-SMA in cTnI-ND hearts. We further found that while a portion of the up-regulated α-SMA protein was incorporated into the sarcomeric thin filaments, the majority of SMA protein was found outside of myofibrils. This distribution pattern suggests dual functions for the up-regulated α-SMA as both a contractile component to affect contractility and as possible effector of early remodeling in non-hypertrophic, non-failing cTnI-ND hearts.

  15. Automatic annotation of protein motif function with Gene Ontology terms

    Directory of Open Access Journals (Sweden)

    Gopalakrishnan Vanathi

    2004-09-01

    Full Text Available Abstract Background Conserved protein sequence motifs are short stretches of amino acid sequence patterns that potentially encode the function of proteins. Several sequence pattern searching algorithms and programs exist foridentifying candidate protein motifs at the whole genome level. However, amuch needed and importanttask is to determine the functions of the newly identified protein motifs. The Gene Ontology (GO project is an endeavor to annotate the function of genes or protein sequences with terms from a dynamic, controlled vocabulary and these annotations serve well as a knowledge base. Results This paperpresents methods to mine the GO knowledge base and use the association between the GO terms assigned to a sequence and the motifs matched by the same sequence as evidence for predicting the functions of novel protein motifs automatically. The task of assigning GO terms to protein motifsis viewed as both a binary classification and information retrieval problem, where PROSITE motifs are used as samples for mode training and functional prediction. The mutual information of a motif and aGO term association isfound to be a very useful feature. We take advantageof the known motifs to train a logistic regression classifier, which allows us to combine mutual information with other frequency-based features and obtain a probability of correctassociation. The trained logistic regression model has intuitively meaningful and logically plausible parameter values, and performs very well empirically according to our evaluation criteria. Conclusions In this research, different methods for automatic annotation of protein motifs have been investigated. Empirical result demonstrated that the methods have a great potential for detecting and augmenting information about thefunctions of newly discovered candidate protein motifs.

  16. The determination of $\\alpha_s$ by the ALPHA collaboration

    CERN Document Server

    Bruno, Mattia

    2016-01-01

    We review the ALPHA collaboration strategy for obtaining the QCD coupling at high scale. In the three-flavor effective theory it avoids the use of perturbation theory at $\\alpha > 0.2$ and at the same time has the physical scales small compared to the cutoff $1/a$ in all stages of the computation. The result $\\Lambda_\\overline{MS}^{(3)}=332(14)$~MeV is translated to $\\alpha_\\overline{MS}(m_Z)=0.1179(10)(2)$ by use of (high order) perturbative relations between the effective theory couplings at the charm and beauty quark "thresholds". The error of this perturbative step is discussed and estimated as $0.0002$.

  17. Protein kinase A-alpha directly phosphorylates FoxO1 in vascular endothelial cells to regulate expression of vascular cellular adhesion molecule-1 mRNA.

    Science.gov (United States)

    Lee, Ji-Won; Chen, Hui; Pullikotil, Philomena; Quon, Michael J

    2011-02-25

    FoxO1, a forkhead box O class transcription factor, is abundant in insulin-responsive tissues. Akt, downstream from phosphatidylinositol 3-kinase in insulin signaling, phosphorylates FoxO1 at Thr(24), Ser(256), and Ser(319), negatively regulating its function. We previously reported that dehydroepiandrosterone-stimulated phosphorylation of FoxO1 in endothelial cells requires cAMP-dependent protein kinase α (PKA-α). Therefore, we hypothesized that FoxO1 is a novel direct substrate for PKA-α. Using an immune complex kinase assay with [γ-(32)P]ATP, purified PKA-α directly phosphorylated wild-type FoxO1 but not FoxO1-AAA (mutant with alanine substitutions at known Akt phosphorylation sites). Phosphorylation of wild-type FoxO1 (but not FoxO1-AAA) was detectable using phospho-specific antibodies. Similar results were obtained using purified GST-FoxO1 protein as the substrate. Thus, FoxO1 is a direct substrate for PKA-α in vitro. In bovine aortic endothelial cells, interaction between endogenous PKA-α and endogenous FoxO1 was detected by co-immunoprecipitation. In human aortic endothelial cells (HAEC), pretreatment with H89 (PKA inhibitor) or siRNA knockdown of PKA-α decreased forskolin- or prostaglandin E(2)-stimulated phosphorylation of FoxO1. In HAEC transfected with a FoxO-promoter luciferase reporter, co-expression of the catalytic domain of PKA-α, catalytically inactive mutant PKA-α, or siRNA against PKA-α caused corresponding increases or decreases in transactivation of the FoxO promoter. Expression of vascular cellular adhesion molecule-1 mRNA, up-regulated by FoxO1 in endothelial cells, was enhanced by siRNA knockdown of PKA-α or treatment of HAEC with the PKA inhibitor H89. Adhesion of monocytes to endothelial cells was enhanced by H89 treatment or overexpression of FoxO1-AAA, similar to effects of TNF-α treatment. We conclude that FoxO1 is a novel physiological substrate for PKA-α in vascular endothelial cells.

  18. Up-regulation of p55 TNF alpha-receptor in dorsal root ganglia neurons following lumbar facet joint injury in rats.

    Science.gov (United States)

    Sakuma, Yoshihiro; Ohtori, Seiji; Miyagi, Masayuki; Ishikawa, Tetsu; Inoue, Gen; Doya, Hideo; Koshi, Takana; Ito, Toshinori; Yamashita, Masaomi; Yamauchi, Kazuyo; Suzuki, Munetaka; Moriya, Hideshige; Takahashi, Kazuhisa

    2007-08-01

    The rat L5/6 facet joint is multisegmentally innervated from the L1 to L6 dorsal root ganglia (DRG). Tumor necrosis factor (TNF) is a known mediator of inflammation. It has been reported that satellite cells are activated, produce TNF and surround DRG neurons innervating L5/6 facet joints after facet injury. In the current study, changes in TNF receptor (p55) expression in DRG neurons innervating the L5/6 facet joint following facet joint injury were investigated in rats using a retrograde neurotransport method followed by immunohistochemistry. Twenty rats were used for this study. Two crystals of Fluorogold (FG; neurotracer) were applied into the L5/6 facet joint. Seven days after surgery, the dorsal portion of the capsule was cut in the injured group (injured group n = 10). No injury was performed in the non-injured group (n = 10). Fourteen days after the first application of FG, bilateral DRGs from T13 to L6 levels were resected and sectioned. They were subsequently processed for p55 immunohistochemistry. The number of FG labeled neurons and number of FG labeled p55-immunoreactive (IR) neurons were counted. FG labeled DRG neurons innervating the L5/6 facet joint were distributed from ipsilateral L1 to L6 levels. Of FG labeled neurons, the ratio of DRG neurons immunoreactive for p55 in the injured group (50%) was significantly higher than that in the non-injured group (13%). The ratio of p55-IR neurons of FG labeled DRG neurons was significantly higher in total L1 and L2 DRGs than that in total L3, 4, 5 and 6 DRGs in the injured group (L1 and 2 DRG, 67%; L3, 4, 5 and 6 DRG, 37%, percentages of the total number of p55-IR neurons at L1 and L2 level or L3-6 level/the total number of FG-labeled neurons at L1 and L2 level or L3-6 level). These data suggest that up-regulation of p55 in DRG neurons may be involved in the sensory transmission from facet joint injury. Regulation of p55 in DRG neurons innervating the facet joint was different between upper DRG innervated

  19. Regulation of the 18 kDa heat shock protein in Mycobacterium ulcerans: an alpha-crystallin orthologue that promotes biofilm formation.

    Science.gov (United States)

    Pidot, Sacha J; Porter, Jessica L; Tobias, Nicholas J; Anderson, Jeffrey; Catmull, Deanne; Seemann, Torsten; Kidd, Stephen; Davies, John K; Reynolds, Eric; Dashper, Stuart; Stinear, Timothy P

    2010-12-01

    Mycobacterium ulcerans is the causative agent of the debilitating skin disease Buruli ulcer, which is most prevalent in Western and Central Africa. M. ulcerans shares >98% DNA sequence identity with Mycobacterium marinum, however, M. marinum produces granulomatous, but not ulcerative, lesions in humans and animals. Here we report the differential expression of a small heat shock protein (Hsp18) between strains of M. ulcerans (Hsp18(+) ) and M. marinum (Hsp18(-) ) and describe the molecular basis for this difference. We show by gene deletion and GFP reporter assays in M. marinum that a divergently transcribed gene called hspR_2, immediately upstream of hsp18, encodes a MerR-like regulatory protein that represses hsp18 transcription while promoting its own expression. Naturally occurring mutations within a 70 bp segment of the 144 bp hspR_2-hsp18 intergenic region among M. ulcerans strains inhibit hspR_2 transcription and explain the Hsp18(+) phenotype. We also propose a biological role for Hsp18, as we show that this protein significantly enhances bacterial attachment or aggregation during biofilm formation. This study has uncovered a new member of the MerR family of transcriptional regulators and suggests that upregulation of hsp18 expression was an important pathoadaptive response in the evolution of M. ulcerans from a M. marinum-like ancestor. © 2010 Blackwell Publishing Ltd.

  20. Xenoestrogens down-regulate aryl-hydrocarbon receptor nuclear translocator 2 mRNA expression in human breast cancer cells via an estrogen receptor alpha-dependent mechanism.

    Science.gov (United States)

    Qin, Xian-Yang; Zaha, Hiroko; Nagano, Reiko; Yoshinaga, Jun; Yonemoto, Junzo; Sone, Hideko

    2011-10-10

    Environmental chemicals with estrogenic activity, known as xenoestrogens, may cause impaired reproductive development and endocrine-related cancers in humans by disrupting endocrine functions. Aryl-hydrocarbon receptor nuclear translocator 2 (ARNT2) is believed to play important roles in a variety of physiological processes, including estrogen signaling pathways, that may be involved in the pathogenesis and therapeutic responses of endocrine-related cancers. However, much of the underlying mechanism remains unknown. In this study, we investigated whether ARNT2 expression is regulated by a range of representative xenoestrogens in human cancer cell lines. Bisphenol A (BPA), benzyl butyl phthalate (BBP), and 1,1,1-trichloro-2,2-bis(2-chlorophenyl-4-chlorophenyl)ethane (o,p'-DDT) were found to be estrogenic toward BG1Luc4E2 cells by an E-CALUX bioassay. ARNT2 expression was downregulated by BPA, BBP, and o,p'-DDT in a dose-dependent manner in estrogen receptor 1 (ESR1)-positive MCF-7 and BG1Luc4E2 cells, but not in estrogen receptor-negative LNCaP cells. The reduction in ARNT2 expression in cells treated with the xenoestrogens was fully recovered by the addition of a specific ESR1 antagonist, MPP. In conclusion, we have shown for the first time that ARNT2 expression is modulated by xenoestrogens by an ESR1-dependent mechanism in MCF-7 breast cancer cells. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  1. Regulation of clock-controlled genes in mammals.

    Directory of Open Access Journals (Sweden)

    Katarzyna Bozek

    Full Text Available The complexity of tissue- and day time-specific regulation of thousands of clock-controlled genes (CCGs suggests that many regulatory mechanisms contribute to the transcriptional output of the circadian clock. We aim to predict these mechanisms using a large scale promoter analysis of CCGs.Our study is based on a meta-analysis of DNA-array data from rodent tissues. We searched in the promoter regions of 2065 CCGs for highly overrepresented transcription factor binding sites. In order to compensate the relatively high GC-content of CCG promoters, a novel background model to avoid a bias towards GC-rich motifs was employed. We found that many of the transcription factors with overrepresented binding sites in CCG promoters exhibit themselves circadian rhythms. Among the predicted factors are known regulators such as CLOCKratioBMAL1, DBP, HLF, E4BP4, CREB, RORalpha and the recently described regulators HSF1, STAT3, SP1 and HNF-4alpha. As additional promising candidates of circadian transcriptional regulators PAX-4, C/EBP, EVI-1, IRF, E2F, AP-1, HIF-1 and NF-Y were identified. Moreover, GC-rich motifs (SP1, EGR, ZF5, AP-2, WT1, NRF-1 and AT-rich motifs (MEF-2, HMGIY, HNF-1, OCT-1 are significantly overrepresented in promoter regions of CCGs. Putative tissue-specific binding sites such as HNF-3 for liver, NKX2.5 for heart or Myogenin for skeletal muscle were found. The regulation of the erythropoietin (Epo gene was analysed, which exhibits many binding sites for circadian regulators. We provide experimental evidence for its circadian regulated expression in the adult murine kidney. Basing on a comprehensive literature search we integrate our predictions into a regulatory network of core clock and clock-controlled genes. Our large scale analysis of the CCG promoters reveals the complexity and extensiveness of the circadian regulation in mammals. Results of this study point to connections of the circadian clock to other functional systems including

  2. Dynamics of Fibril Growth and Feedback Motifs

    DEFF Research Database (Denmark)

    Cordsen, Pia

    in the literature were found, such as length distribution and apparant persistence lengths. It is found that at all concentrations, fibril growth is characterized by Poissonian stop-go dynamics where the fibril either grows (``go'') or does not grow (``stop''). A monomer-trimer model is proposed in which monomers...... chemical reaction rates of the model, and the theoretical and experimental growth probabilities are found to be in good agreement. Speed distributions of fibrils are also analysed and found to be in good agreement with the predictions of the model. Fibrils of the protein alpha-synuclein which are involved...

  3. Perkembangan Motif Sineas Film Indie dalam Menghadapi Industri Film Mainstream

    Directory of Open Access Journals (Sweden)

    Yoppy Ardiyono

    2016-03-01

    Full Text Available The research aims to review to review determine the effect and its impact raised by motive - a motive the ada in the hearts period travel time history of film short against cinematographer-filmmaker as principal especially filmmakers left path (indie. The used platform theory research hearts singer adopts from theory commodification media vincent mosco. Singer helped shift theory understanding the motive filmmakers working hearts differences fundamental basis of political pressure economic happens under with demands regime. The method used is descriptive qualitative research methods. Data collection techniques through observation of the environment of an independent film live and in-depth interviews with speakers including mr. Yang prayer orangutan direct contact 'with realm of research. Coupled with study to review the literature references adding insight research. And that was concluded change appears motif among indie film cinematographer it is true the situation is closely linked to the mainstream industry, konstilasi politics, and the orientation of capitalism. Necessary their one thing is clear and systematic regulation from the government to the future movement of currents sidestream (indie more with good operates professionally arranged, the air so that the contribution of indie cinema film land for progress can feels good to yourself indie filmmakers as well as those of its main industries.

  4. Profile-based short linear protein motif discovery

    Directory of Open Access Journals (Sweden)

    Haslam Niall J

    2012-05-01

    Full Text Available Abstract Background Short linear protein motifs are attracting increasing attention as functionally independent sites, typically 3–10 amino acids in length that are enriched in disordered regions of proteins. Multiple methods have recently been proposed to discover over-represented motifs within a set of proteins based on simple regular expressions. Here, we extend these approaches to profile-based methods, which provide a richer motif representation. Results The profile motif discovery method MEME performed relatively poorly for motifs in disordered regions of proteins. However, when we applied evolutionary weighting to account for redundancy amongst homologous proteins, and masked out poorly conserved regions of disordered proteins, the performance of MEME is equivalent to that of regular expression methods. However, the two approaches returned different subsets within both a benchmark dataset, and a more realistic discovery dataset. Conclusions Profile-based motif discovery methods complement regular expression based methods. Whilst profile-based methods are computationally more intensive, they are likely to discover motifs currently overlooked by regular expression methods.

  5. Recurrent Structural Motifs in Non-Homologous Protein Structures

    Directory of Open Access Journals (Sweden)

    Nicolas Guex

    2013-04-01

    Full Text Available We have extracted an extensive collection of recurrent structural motifs (RSMs, which consist of sequentially non-contiguous structural motifs (4–6 residues, each of which appears with very similar conformation in three or more mutually unrelated protein structures. We find that the proteins in our set are covered to a substantial extent by the recurrent non-contiguous structural motifs, especially the helix and strand regions. Computational alanine scanning calculations indicate that the average folding free energy changes upon alanine mutation for most types of non-alanine residues are higher for amino acids that are present in recurrent structural motifs than for amino acids that are not. The non-alanine amino acids that are most common in the recurrent structural motifs, i.e., phenylalanine, isoleucine, leucine, valine and tyrosine and the less abundant methionine and tryptophan, have the largest folding free energy changes. This indicates that the recurrent structural motifs, as we define them, describe recurrent structural patterns that are important for protein stability. In view of their properties, such structural motifs are potentially useful for inter-residue contact prediction and protein structure refinement.

  6. Parameterized algorithmics for finding connected motifs in biological networks.

    Science.gov (United States)

    Betzler, Nadja; van Bevern, René; Fellows, Michael R; Komusiewicz, Christian; Niedermeier, Rolf

    2011-01-01

    We study the NP-hard LIST-COLORED GRAPH MOTIF problem which, given an undirected list-colored graph G = (V, E) and a multiset M of colors, asks for maximum-cardinality sets S ⊆ V and M' ⊆ M such that G[S] is connected and contains exactly (with respect to multiplicity) the colors in M'. LIST-COLORED GRAPH MOTIF has applications in the analysis of biological networks. We study LIST-COLORED GRAPH MOTIF with respect to three different parameterizations. For the parameters motif size |M| and solution size |S|, we present fixed-parameter algorithms, whereas for the parameter |V| - |M|, we show W[1]-hardness for general instances and achieve fixed-parameter tractability for a special case of LIST-COLORED GRAPH MOTIF. We implemented the fixed-parameter algorithms for parameters |M| and |S|, developed further speed-up heuristics for these algorithms, and applied them in the context of querying protein-interaction networks, demonstrating their usefulness for realistic instances. Furthermore, we show that extending the request for motif connectedness to stronger demands, such as biconnectedness or bridge-connectedness leads to W[1]-hard problems when the parameter is the motif size |M|.

  7. Computational analyses of synergism in small molecular network motifs.

    Directory of Open Access Journals (Sweden)

    Yili Zhang

    2014-03-01

    Full Text Available Cellular functions and responses to stimuli are controlled by complex regulatory networks that comprise a large diversity of molecular components and their interactions. However, achieving an intuitive understanding of the dynamical properties and responses to stimuli of these networks is hampered by their large scale and complexity. To address this issue, analyses of regulatory networks often focus on reduced models that depict distinct, reoccurring connectivity patterns referred to as motifs. Previous modeling studies have begun to characterize the dynamics of small motifs, and to describe ways in which variations in parameters affect their responses to stimuli. The present study investigates how variations in pairs of parameters affect responses in a series of ten common network motifs, identifying concurrent variations that act synergistically (or antagonistically to alter the responses of the motifs to stimuli. Synergism (or antagonism was quantified using degrees of nonlinear blending and additive synergism. Simulations identified concurrent variations that maximized synergism, and examined the ways in which it was affected by stimulus protocols and the architecture of a motif. Only a subset of architectures exhibited synergism following paired changes in parameters. The approach was then applied to a model describing interlocked feedback loops governing the synthesis of the CREB1 and CREB2 transcription factors. The effects of motifs on synergism for this biologically realistic model were consistent with those for the abstract models of single motifs. These results have implications for the rational design of combination drug therapies with the potential for synergistic interactions.

  8. A speedup technique for (l, d-motif finding algorithms

    Directory of Open Access Journals (Sweden)

    Dinh Hieu

    2011-03-01

    Full Text Available Abstract Background The discovery of patterns in DNA, RNA, and protein sequences has led to the solution of many vital biological problems. For instance, the identification of patterns in nucleic acid sequences has resulted in the determination of open reading frames, identification of promoter elements of genes, identification of intron/exon splicing sites, identification of SH RNAs, location of RNA degradation signals, identification of alternative splicing sites, etc. In protein sequences, patterns have proven to be extremely helpful in domain identification, location of protease cleavage sites, identification of signal peptides, protein interactions, determination of protein degradation elements, identification of protein trafficking elements, etc. Motifs are important patterns that are helpful in finding transcriptional regulatory elements, transcription factor binding sites, functional genomics, drug design, etc. As a result, numerous papers have been written to solve the motif search problem. Results Three versions of the motif search problem have been proposed in the literature: Simple Motif Search (SMS, (l, d-motif search (or Planted Motif Search (PMS, and Edit-distance-based Motif Search (EMS. In this paper we focus on PMS. Two kinds of algorithms can be found in the literature for solving the PMS problem: exact and approximate. An exact algorithm identifies the motifs always and an approximate algorithm may fail to identify some or all of the motifs. The exact version of PMS problem has been shown to be NP-hard. Exact algorithms proposed in the literature for PMS take time that is exponential in some of the underlying parameters. In this paper we propose a generic technique that can be used to speedup PMS algorithms. Conclusions We present a speedup technique that can be used on any PMS algorithm. We have tested our speedup technique on a number of algorithms. These experimental results show that our speedup technique is indeed very

  9. Alpha-mangostin from mangosteen (Garcinia mangostana Linn.)pericarp extract reduces high fat-diet induced hepatic steatosis in rats by regulating mitochondria function and apoptosis.

    Science.gov (United States)

    Tsai, Shin-Yu; Chung, Pei-Chin; Owaga, Eddy E; Tsai, I-Jong; Wang, Pei-Yuan; Tsai, Jeng-I; Yeh, Tien-Shun; Hsieh, Rong-Hong

    2016-01-01

    Non-alcoholic fatty liver disease (NAFLD) is caused by multiple factors including hepatic oxidative stress, lipotoxicity, and mitochondrial dysfunction. Obesity is among the risk factors for NAFLD alongside type 2 diabetes mellitus and hyperlipidemia. α- mangostin (α-MG) extracts from the pericarps of mangosteen ( Garcinia mangostana Linn.) may regulate high fat diet-induced hepatic steatosis; however the underlying mechanisms remain unknown. The aim of this study was to investigate the regulatory effect of α-MG on high fat diet-induced hepatic steatosis and the underlying mechanisms related to mitochondrial functionality and apoptosis in vivo and in vitro. Sprague Dawley (SD) rats were fed on either AIM 93-M control diet, a high-fat diet (HFD), or high-fat diet supplemented with 25 mg/day mangosteen pericarp extract (MGE) for 11 weeks. Thereafter, the following were determined: body weight change, plasma free fatty acids, liver triglyceride content, antioxidant enzymes (superoxide dismutase, SOD; glutathione, GSH; glutathione peroxidase, GPx; glutathione reductase GRd; catalase, CAT) and mitochondrial complex enzyme activities. In the in vitro study, primary liver cells were treated with 1 mM free fatty acid (FFA) (palmitate: oleate acid = 2:0.25) to induce steatosis. Thereafter, the effects of α-MG (10 μM, 20 μM, 30 μM) on total and mitochondria ROS (tROS, mitoROS), mitochondria bioenergetic functions, and mitochondrial pathway of apoptosis were examined in the FFA-treated primary liver cells. The MGE group showed significantly decreased plasma free fatty acids and hepatic triglycerides (TG) and thiorbarbituric acid reactive substances (TBARS) levels; increased activities of antioxidant enzymes (SOD, GSH, GPx, GRd, CAT); and enhanced NADH-cytochrome c reductase (NCCR) and succinate-cytochrome c reductase (SCCR) activities in the liver tissue compared with HFD group. In the in vitro study, α-MG significantly increased mitochondrial membrane

  10. A Novel Mechanism in Regulating the Alpha-Subunit of the Epithelial Sodium Channel (α ENaC by the Alternatively Spliced Form α ENaC-b

    Directory of Open Access Journals (Sweden)

    Marlene F. Shehata

    2009-01-01

    Full Text Available Introduction: In Dahl rats’ kidney cortex, the alternatively spliced form of the epithelial sodium channel α subunit (α ENaC-b is the most abundant mRNA transcript (32+/-3 fold α ENaC-wt as was investigated by quantitative RT-PCR analysis. α ENaC-b mRNA levels were significantly higher in Dahl R versus S rats, and were further augmented by high salt diet.Objectives: In the present study, we described the molecular cloning and searched for a possible role of α ENaC-b by testing its potential expression in COS7 cells as well as its impact on α ENaC-wt expression levels when co-expressed in COS7 cells in a dose-dependent manner.Methods: Using RT-PCR strategy, the full-length wildtype α ENaC transcript and the alternatively spliced form α ENaC-b were amplified, sequenced, cloned, subcloned into PCMV-sport6 expression vector, expressed and co-expressed into COS7 cells in a dose-dependent manner. A combination of denaturing and native western blotting techniques was employed to examine the expression of α ENaC-b in vitro, and to determine if an interaction between α ENaC-b and α ENaC-wt occurs in vitro, and finally to demonstrate if degradation of α ENaC-wt protein does occur.Results: α ENaC-b is translated in COS7 cells. Co-expression of α ENaC-b together with α ENaC-wt reduced α ENaC-wt levels in a dose-dependent manner. α ENaC-wt and α ENaC-b appear to form a complex that enhances the degradation of α ENaC-wt.Conclusions: Western blots suggest a novel mechanism in α ENaC regulation whereby α ENaC-b exerts a dominant negative effect on α ENaC-wt expression. This is potentially by sequestering α ENaC-wt, enhancing its proteolytic degradation, and possibly explaining the mechanism of salt-resistance in Dahl R rats.

  11. TFPI alpha and beta regulate mRNAs and microRNAs involved in cancer biology and in the immune system in breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Benedicte Stavik

    Full Text Available Emerging evidence indicate a new role of TFPI in cancer biology. We recently reported that both isoforms of TFPI induced apoptosis and inhibited proliferation of cancer cells. The signaling pathway(s mediating the effects of TFPI is, however, presently still unclear. Our goal was to further investigate the cellular processes affected by TFPI and to get insight into the molecular mechanisms involved in the effects of TFPI, using a global gene expression study approach. TFPIα or TFPIβ cDNA were transfected into SK-BR-3 breast cancer cells for stable overexpression. Global mRNA and microRNA (miRNA expressions were measured and functional annotation of the differentially expressed genes and miRNAs according to gene ontology terms was conducted. Selected results were validated using qRT-PCR and Western blot. A total of 242 and 801 mRNA transcripts and 120 and 46 miRNAs were differentially expressed in cells overexpressing TFPIα or TFPIβ, respectively. Overexpression of either isoform significantly affected the expression of genes involved in cell development (apoptosis, cell movement, migration, invasion, colony formation, growth, and adhesion and immune response. Network analyses revealed biological interactions between these genes and implied that several of the genes may be involved in both processes. The expression profiles also correlated significantly with clinical phenotype and outcome. Functional cluster analyses indicated altered activity of the epidermal growth factor receptor, small GTPases, and the NF-κB and JAK/STAT cascades when TFPI was overexpressed, and increased activity of the transcription factors NF-κB and Elk-1 and phospho-Akt levels was observed. Integrated mRNA-miRNA analyses showed that 19% and 32% of the differentially expressed genes in cells overexpressing TFPIα or TFPIβ, respectively, may have been regulated by miRNAs. Overexpression of TFPI in breast cancer cells affected the expression of mRNAs and mi

  12. TFPI alpha and beta regulate mRNAs and microRNAs involved in cancer biology and in the immune system in breast cancer cells.

    Science.gov (United States)

    Stavik, Benedicte; Skretting, Grethe; Olstad, Ole Kristoffer; Sletten, Marit; Dehli Vigeland, Magnus; Sandset, Per Morten; Iversen, Nina

    2012-01-01

    Emerging evidence indicate a new role of TFPI in cancer biology. We recently reported that both isoforms of TFPI induced apoptosis and inhibited proliferation of cancer cells. The signaling pathway(s) mediating the effects of TFPI is, however, presently still unclear. Our goal was to further investigate the cellular processes affected by TFPI and to get insight into the molecular mechanisms involved in the effects of TFPI, using a global gene expression study approach. TFPIα or TFPIβ cDNA were transfected into SK-BR-3 breast cancer cells for stable overexpression. Global mRNA and microRNA (miRNA) expressions were measured and functional annotation of the differentially expressed genes and miRNAs according to gene ontology terms was conducted. Selected results were validated using qRT-PCR and Western blot. A total of 242 and 801 mRNA transcripts and 120 and 46 miRNAs were differentially expressed in cells overexpressing TFPIα or TFPIβ, respectively. Overexpression of either isoform significantly affected the expression of genes involved in cell development (apoptosis, cell movement, migration, invasion, colony formation, growth, and adhesion) and immune response. Network analyses revealed biological interactions between these genes and implied that several of the genes may be involved in both processes. The expression profiles also correlated significantly with clinical phenotype and outcome. Functional cluster analyses indicated altered activity of the epidermal growth factor receptor, small GTPases, and the NF-κB and JAK/STAT cascades when TFPI was overexpressed, and increased activity of the transcription factors NF-κB and Elk-1 and phospho-Akt levels was observed. Integrated mRNA-miRNA analyses showed that 19% and 32% of the differentially expressed genes in cells overexpressing TFPIα or TFPIβ, respectively, may have been regulated by miRNAs. Overexpression of TFPI in breast cancer cells affected the expression of mRNAs and miRNAs involved in processes

  13. Modeling Small Noncanonical RNA Motifs with the Rosetta FARFAR Server.

    Science.gov (United States)

    Yesselman, Joseph D; Das, Rhiju

    2016-01-01

    Noncanonical RNA motifs help define the vast complexity of RNA structure and function, and in many cases, these loops and junctions are on the order of only ten nucleotides in size. Unfortunately, despite their small size, there is no reliable method to determine the ensemble of lowest energy structures of junctions and loops at atomic accuracy. This chapter outlines straightforward protocols using a webserver for Rosetta Fragment Assembly of RNA with Full Atom Refinement (FARFAR) ( http://rosie.rosettacommons.org/rna_denovo/submit ) to model the 3D structure of small noncanonical RNA motifs for use in visualizing motifs and for further refinement or filtering with experimental data such as NMR chemical shifts.

  14. C4BPAL1, a member of the human regulator of complement activation (RCA) gene cluster that resulted from the duplication of the gene coding for the [alpha]-chain of C4b-binding protein

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Corral, P.; Pardo-Manuel de Villena, F.; Rey-Campos, J.; Rodriguez de Cordoba, S. (Unidad de Immunologia, Madrid (Spain))

    1993-07-01

    The regulator of complement activation (RCA) gene cluster evolved by multiple gene duplications to produce a family of genes coding for proteins that collectively control the activation of the complement system. The authors report here the characterization of C4BPAL1, a member of the human RCA gene cluster that arose from the duplication of the C4BPA gene after the separation of rodent and primate lineages. C4BPAL1 maps 20 kb downstream of the C4BPA gene and is in the same 5[prime] to 3[prime] orientation found for all RCA genes characterized thus far. It includes nine exon-like regions homologous to exons 2-8, 11, and 12 of the C4BPA gene. Analysis of the C4BPAL1 sequence suggests that it is currently a pseudogene in humans. However, comparisons between C4BPAL1 and the human and murine C4BPA genes show sequence conservation, which strongly suggests that, for a long period of time, C4BPAL1 has been a functional gene coding for a protein with structural requirements similar to those of the [alpha]-chain of C4b-binding protein. 50 refs., 5 figs., 1 tab.

  15. Regulated expression of the MRP8 and MRP14 genes in human promyelocytic leukemic HL-60 cell treated with the differentiation-inducing agents mycophenolic acid and 1{alpha},25-Dihydroxyvitamin D{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Warner-Bartnicki, A.L.; Murao, S.; Collart, F.R.; Huberman, E.

    1992-12-31

    The calcium-binding proteins MRP8 and MEP14 are present in mature monomyelocytic cells and are induced during differentiation. Previous studies have demonstrated that the proteins may mediate the growth arrest in differentiating HL-60 cells. We determined the levels of a protein complex (PC) containing MRP8 and MRP14 and investigated the mechanism by which the genes encoding these proteins are regulated in HL-60 cells treated with the differentiation-inducing agent mycophenorc acid (MPA)While the PC was barely detectable in untreated cells, MPA treatment resulted in elevated levels of the PC which were maximal at 3-4 d, and were found to directly parallel gains in the steady-state levels of MRP8 and MRP14 MRNA. Transcription studies with the use of nuclear run-on experiments revealed increased transcription initiation at the MRP8 and MRP14 promoters after MPA treatment. 1{alpha},25-Dihydroxyvitamin D{sub 3}, which induces HL-60 cell differentiation by another mechanism, was also found to increase transcription initiation at the MRP8 and MRP14 promoters. Our results suggest that this initiation is the major control of maturation agent-mediated increases in MRP8 and MRPl4 gene expression, and support a role for the PC in terminal differentiation of human monomyelocytic cells.

  16. Lyman Alpha Control

    CERN Document Server

    Nielsen, Daniel Stefaniak

    2015-01-01

    This document gives an overview of how to operate the Lyman Alpha Control application written in LabVIEW along with things to watch out for. Overview of the LabVIEW code itself as well as the physical wiring of and connections from/to the NI PCI-6229 DAQ box is also included. The Lyman Alpha Control application is the interface between the ALPHA sequencer and the HighFinesse Wavelength Meter as well as the Lyman Alpha laser setup. The application measures the wavelength of the output light from the Lyman Alpha cavity through the Wavelength Meter. The application can use the Wavelength Meter’s PID capabilities to stabilize the Lyman Alpha laser output as well as switch between up to three frequencies.

  17. New ALPHA-2 magnet

    CERN Multimedia

    Anaïs Schaeffer

    2012-01-01

    On 21 June, members of the ALPHA collaboration celebrated the handover of the first solenoid designed for the ALPHA-2 experiment. The magnet has since been successfully installed and is working well.   Khalid Mansoor, Sumera Yamin and Jeffrey Hangst in front of the new ALPHA-2 solenoid. “This was the first of three identical solenoids that will be installed between now and September, as the rest of the ALPHA-2 device is installed and commissioned,” explains ALPHA spokesperson Jeffrey Hangst. “These magnets are designed to allow us to transfer particles - antiprotons, electrons and positrons - between various parts of the new ALPHA-2 device by controlling the transverse size of the particle bunch that is being transferred.” Sumera Yamin and Khalid Mansoor, two Pakistani scientists from the National Centre for Physics in Islamabad, came to CERN in February specifically to design and manufacture these magnets. “We had the chance to work on act...

  18. Hypoxia in Tumor Angiogenesis and Metastasis: Evaluation of VEGF and MMP Over-expression and Down-Regulation of HIF-1alpha with RNAi in Hypoxic Tumor Cells

    Science.gov (United States)

    Shah, Shruti

    Background: As tumor mass grows beyond a few millimeters in diameter, the angiogenic "switch" is turned on leading to recruitment of blood vessels from surrounding artery and veins. However, the tumor mass is poorly perfused and there are pockets of hypoxia or lower oxygen concentrations relative to normal tissue. Hypoxia-inducing factor-1a (HIF-1a), a transcription factor, is activated when the oxygen concentration is low. Upon activation of HIF-1a, a number of other genes also turn on that allows the tumor to become more aggressive and resistant to therapy. Purpose: The main objectives of this study were to evaluate the effect of hypoxia-induced HIF-1a followed by over-expression of angiogenic and metastatic markers in tumor cells and down-regulation of HIF-1a using nanoparticle-delivered RNA interference therapy. Methods: Human ovarian (SKOV3) and breast (MDA-MB-231) adenocarcinoma cells were incubated under normoxic and hypoxic conditions. Following hypoxia treatment of the cells, HIF-1α, vascular endothelial growth factor (VEGF), matrix metalloproteinase 2 (MMP-2), and MMP-9 expression was analyzed qualitatively and quantitatively. For intracellular delivery of HIF-1a gene silencing small interfering RNA (siRNA), type B gelatin nanoparticles were fabricated using the solvent displacement method and the surface was modified with poly(ethylene glycol) (PEG, Mol. wt. 2kDa). Cellular uptake and distribution of the nanoparticles was observed with Cy3-siRNA loaded, FITC-conjugated gelatin nanoparticles. Cytotoxicity of the nanoparticle formulations was evaluated in both the cell lines. siRNA was transfected in the gelatin nanoparticles under hypoxic conditions. Total cellular protein and RNA were extracted for analysis of HIF1a, VEGF, MMP-2 and MMP-9 expression. Results: MDA-MB-231 and SKOV3 cells show increased expression of HIF1a under hypoxic conditions compared to baseline levels at normoxic conditions. ELISA and western blots of VEGF, MMP-2 and MMP-9 appear to

  19. A GPR-protein interaction surface of Gi(alpha): implications for the mechanism of GDP-release inhibition.

    Science.gov (United States)

    Natochin, Michael; Gasimov, Karim G; Artemyev, Nikolai O

    2002-01-08

    Proteins containing G-protein regulatory (GPR) motifs represent a novel family of guanine nucleotide dissociation inhibitors (GDIs) for G(alpha) subunits from the Gi family. They selectively interact with the GDP-bound conformation of Gi(alpha) and transducin-alpha (Gt(alpha)), but not with Gs(alpha). A series of chimeric proteins between Gi(alpha)(1) and Gs(alpha) has been constructed to investigate GPR-contact sites on G(alpha) subunits and the mechanism of GPR-protein GDI activity. Analysis of the interaction of two GPR-proteins-AGS3GPR and Pcp2-with the chimeric G(alpha) subunits demonstrated that the GPR-Gi(alpha)(1) interface involves the Gi(alpha)(1) switch regions and Gi(alpha)(1)-144-151, a site within the helical domain. Residues within Gi(alpha)(1)-144-151 form conformation-sensitive contacts with switch III, and may directly interact with a GPR-protein or form a GPR-binding surface jointly with switch III. The helical domain site is critical to the ability of GPR-proteins to act as GDIs. Our data suggest that a mechanism of the GDI activity of GPR-proteins is different from that of GDIs for monomeric GTPases and from the GDI-like activity of G(betagamma) subunits. The GPR-proteins are likely to block a GDP-escape route on G(alpha) subunits.

  20. Targeting functional motifs of a protein family

    Science.gov (United States)

    Bhadola, Pradeep; Deo, Nivedita

    2016-10-01

    The structural organization of a protein family is investigated by devising a method based on the random matrix theory (RMT), which uses the physiochemical properties of the amino acid with multiple sequence alignment. A graphical method to represent protein sequences using physiochemical properties is devised that gives a fast, easy, and informative way of comparing the evolutionary distances between protein sequences. A correlation matrix associated with each property is calculated, where the noise reduction and information filtering is done using RMT involving an ensemble of Wishart matrices. The analysis of the eigenvalue statistics of the correlation matrix for the β -lactamase family shows the universal features as observed in the Gaussian orthogonal ensemble (GOE). The property-based approach captures the short- as well as the long-range correlation (approximately following GOE) between the eigenvalues, whereas the previous approach (treating amino acids as characters) gives the usual short-range correlations, while the long-range correlations are the same as that of an uncorrelated series. The distribution of the eigenvector components for the eigenvalues outside the bulk (RMT bound) deviates significantly from RMT observations and contains important information about the system. The information content of each eigenvector of the correlation matrix is quantified by introducing an entropic estimate, which shows that for the β -lactamase family the smallest eigenvectors (low eigenmodes) are highly localized as well as informative. These small eigenvectors when processed gives clusters involving positions that have well-defined biological and structural importance matching with experiments. The approach is crucial for the recognition of structural motifs as shown in β -lactamase (and other families) and selectively identifies the important positions for targets to deactivate (activate) the enzymatic actions.

  1. ROMANIAN FOLKLORE MOTIFS IN FASHION DESIGN

    Directory of Open Access Journals (Sweden)

    MOCENCO Alexandra

    2014-05-01

    Full Text Available The traditional Romanian costume such as the entire popular art (architecture, woodcarvins, pottery etc. was born and lasted in our country since ancient times. Closely related to human existence, the traditional costume reflected over the years as reflected nowadays, the mentality and artistic conception of the people. Today the traditional Romanian costume became an inspiration source to the wholesale fashion production industry designers, both Romanian and international. Although the contemporary designers are working in accordance with a vision, using a wide area of styles, methods and current technology, they usually return to traditional techniques and ethnic folklore motifs, which converts and resize them, integrating them in their contemporary space. Adrian Oianu is a very appreciated Romanian designer who launched two collections inspired by his native’s country traditional costumes: “Suflecata pan’ la brau” (“Turned up ‘til the belt” and “Bucurie” (“Joy”. Dorin Negrau had as inspiration for his “Lost” collection the traditional costume from the Bihor region. Yves Saint Laurent had a collection inspired by the Romanian traditional flax blouses called “La blouse roumaine”. The paper presents the traditional Romanian values throw fashion collections. The research activity will create innovative concepts to support the garment industry in order to develop their own brand and to bring the design activities in Romania at an international level. The research was conducted during the initial stage of a project, financed through national founds, consisting in a documentary study on ethnographic characteristics of the popular costume from different regions of the country.

  2. Alpha Shapes and Proteins

    DEFF Research Database (Denmark)

    Winter, Pawel; Sterner, Henrik; Sterner, Peter

    2009-01-01

    We provide a unified description of (weighted) alpha shapes, beta shapes and the corresponding simplicialcomplexes. We discuss their applicability to various protein-related problems. We also discuss filtrations of alpha shapes and touch upon related persistence issues.We claim that the full...... potential of alpha-shapes and related geometrical constructs in protein-related problems yet remains to be realized and verified. We suggest parallel algorithms for (weighted) alpha shapes, and we argue that future use of filtrations and kinetic variants for larger proteins will need such implementation....

  3. The regulation of ER export and Golgi retention of ST3Gal5 (GM3/GM4 synthase) and B4GalNAcT1 (GM2/GD2/GA2 synthase) by arginine/lysine-based motif adjacent to the transmembrane domain.

    Science.gov (United States)

    Uemura, Satoshi; Shishido, Fumi; Kashimura, Madoka; Inokuchi, Jin-ichi

    2015-12-01

    In the Golgi maturation model, the Golgi cisternae dynamically mature along a secretory pathway. In this dynamic process, glycosyltransferases are transported from the endoplasmic reticulum (ER) to the Golgi apparatus where they remain and function. The precise mechanism behind this maturation process remains unclear. We investigated two glycosyltransferases, ST3Gal5 (ST3G5) and B4GalNAcT1 (B4GN1), involved in ganglioside synthesis and examined their signal sequences for ER export and Golgi retention. Reports have suggested that the [R/K](X)[R/K] motif functions as an ER exporting signal; however, this signal sequence is insufficient in stably expressed, full-length ST3G5. Through further analysis, we have clarified that the (2)R(3)R(X)(5) (9)K(X)(3) (13)K sequence in ST3G5 is essential for ER export. We have named the sequence the R/K-based motif. On the other hand, for ER export of B4GN1, the homodimer formation in addition to the R/K-based motif is required for ER export suggesting the importance of unidentified lumenal side interaction. We found that ST3G5 R2A/R3A and K9A/K13A mutants localized not only in Golgi apparatus but also in endosomes. Furthermore, the amounts of mature type asparagine-linked (N)-glycans in ST3G5 R2A/R3A and K9A/K13A mutants were decreased compared with those in wild-type proteins, and the stability of the mutants was lower. These results suggest that the R/K-based motif is necessary for the Golgi retention of ST3G5 and that the retention is involved in the maturation of N-glycans and in stability. Thus, several basic amino acids located on the cytoplasmic tail of ST3G5 play important roles in both ER export and Golgi retention. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Dual-specificity tyrosine-phosphorylated and regulated kinase 1A (DYRK1A) interacts with the phytanoyl-CoA alpha-hydroxylase associated protein 1 (PAHX-AP1), a brain specific protein.

    Science.gov (United States)

    Bescond, Marilyne; Rahmani, Zohra

    2005-04-01

    Down syndrome (DS) is the most common genetic defect correlated with mental retardation and delayed development. The specific genes responsible for these phenotypic alterations have not yet been defined. Dyrk1A (dual-specificity tyrosine-phosphorylated and regulated kinase 1A), the human ortholog of the Drosophila minibrain gene (mnb), maps to the Down syndrome critical region of human chromosome 21 and is overexpressed in Down syndrome fetal brain. In Drosophila, minibrain is involved in postembryonic neurogenesis. In human, DYRK1A encodes a serine-threonine kinase but despite its potential involvement in the neurobiological alterations associated with Down syndrome, its physiological function has not yet been defined. To gain some insight into its biological function, we used the yeast two-hybrid approach to identify binding partners of DYRK1A. We found that the C-terminal region of DYRK1A interacts with a brain specific protein, phytanoyl-CoA alpha-hydroxylase-associated protein 1 (PAHX-AP1, also named PHYHIP) which was previously shown to interact with phytanoyl-CoA alpha-hydroxylase (PAHX, also named PHYH), a Refsum disease gene product. This interaction was confirmed by co-immunoprecipitation of PC12 cells co-transfected with DYRK1A and PAHX-AP1. Furthermore, immunofluorescence analysis of PC12 cells co-transfected with both plasmids showed a re-distribution of DYRK1A from the nucleus to the cytoplasm where it co-localized with PAHX-AP1. Finally, in PC12 cells co-transfected with both plasmids, DYRK1A was no longer able to interact with the nuclear transcription factor CREB, thereby confirming that the intracellular localization of DYRK1A was changed from the nucleus to the cytoplasm in the presence of PAHX-AP1. Therefore, these data indicate that by inducing a re-localization of DYRK1A into the cytoplasm, PAHX-AP1 may contribute to new cellular functions of DYRK1A and suggest that PAHX-AP1 may be involved in the development of neurological abnormalities

  5. Review article: The mountain motif in the plot of Matthew

    Directory of Open Access Journals (Sweden)

    Gert J. Volschenk

    2010-09-01

    Full Text Available This article reviewed T.L. Donaldson’s book, Jesus on the mountain: A study in Matthean theology, published in 1985 by JSOT Press, Sheffield, and focused on the mountain motif in the structure and plot of the Gospel of Matthew, in addition to the work of Donaldson on the mountain motif as a literary motif and as theological symbol. The mountain is a primary theological setting for Jesus’ ministry and thus is an important setting, serving as one of the literary devices by which Matthew structured and progressed his narrative. The Zion theological and eschatological significance and Second Temple Judaism serve as the historical and theological background for the mountain motif. The last mountain setting (Mt 28:16–20 is the culmination of the three theological themes in the plot of Matthew, namely Christology, ecclesiology and salvation history.

  6. Targeted Alpha Therapy: From Alpha to Omega

    International Nuclear Information System (INIS)

    Allen, Barry J; Clarke, Raymond; Huang Chenyu

    2013-01-01

    This review covers the broad spectrum of Targeted Alpha Therapy (TAT) research in Australia; from in vitro and in vivo studies to clinical trials. The principle of tumour anti-vascular alpha therapy (TAVAT) is discussed in terms of its validation by Monte Carlo calculations of vascular models and the potential role of biological dosimetry is examined. Summmary of this review is as follows: 1. The essence of TAT 2. Therapeutic objectives 3. TAVAT and Monte Carlo microdosimetry 4. Biological dosimetry 5. Preclinical studies 6. Clinical trials 7. What next? 8. Obstacles. (author)

  7. PDGFR alpha signaling in the primary cilium regulates NHE1-dependent fibroblast migration via coordinated differential activity of MEK1/2-ERK1/2-p90(RSK) and AKT signaling pathways

    DEFF Research Database (Denmark)

    Clement, Ditte L.; Mally, Sabine; Stock, Christian

    2013-01-01

    In fibroblasts, platelet-derived growth factor receptor alpha (PDGFR alpha) is upregulated during growth arrest and compartmentalized to the primary cilium. PDGF-AA mediated activation of the dimerized ciliary receptor produces a phosphorylation cascade through the PI3K-AKT and MEK1/2-ERK1/2 path...

  8. Fasting induces basolateral uptake transporters of the SLC family in the liver via HNF4alpha and PGC1alpha.

    Science.gov (United States)

    Dietrich, Christoph G; Martin, Ina V; Porn, Anne C; Voigt, Sebastian; Gartung, Carsten; Trautwein, Christian; Geier, Andreas

    2007-09-01

    Fasting induces numerous adaptive changes in metabolism by several central signaling pathways, the most important represented by the HNF4alpha/PGC-1alpha-pathway. Because HNF4alpha has been identified as central regulator of basolateral bile acid transporters and a previous study reports increased basolateral bile acid uptake into the liver during fasting, we hypothesized that HNF4alpha is involved in fasting-induced bile acid uptake via upregulation of basolateral bile acid transporters. In rats, mRNA of Ntcp, Oatp1, and Oatp2 were significantly increased after 48 h of fasting. Protein expression as determined by Western blot showed significant increases for all three transporters 72 h after the onset of fasting. Whereas binding activity of HNF1alpha in electrophoretic mobility shift assays remained unchanged, HNF4alpha binding activity to the Ntcp promoter was increased significantly. In line with this result, we found significantly increased mRNA expression of HNF4alpha and PGC-1alpha. Functional studies in HepG2 cells revealed an increased endogenous NTCP mRNA expression upon cotransfection with either HNF4alpha, PGC-1alpha, or a combination of both. We conclude that upregulation of the basolateral bile acid transporters Ntcp, Oatp1, and Oatp2 in fasted rats is mediated via the HNF4alpha/PGC-1alpha pathway.

  9. Interaction of the Spo20 membrane-sensor motif with phosphatidic acid and other anionic lipids, and influence of the membrane environment.

    Directory of Open Access Journals (Sweden)

    Habib Horchani

    Full Text Available The yeast protein Spo20 contains a regulatory amphipathic motif that has been suggested to recognize phosphatidic acid, a lipid involved in signal transduction, lipid metabolism and membrane fusion. We have investigated the interaction of the Spo20 amphipathic motif with lipid membranes using a bioprobe strategy that consists in appending this motif to the end of a long coiled-coil, which can be coupled to a GFP reporter for visualization in cells. The resulting construct is amenable to in vitro and in vivo experiments and allows unbiased comparison between amphipathic helices of different chemistry. In vitro, the Spo20 bioprobe responded to small variations in the amount of phosphatidic acid. However, this response was not specific. The membrane binding of the probe depended on the presence of phosphatidylethanolamine and also integrated the contribution of other anionic lipids, including phosphatidylserine and phosphatidyl-inositol-(4,5bisphosphate. Inverting the sequence of the Spo20 motif neither affected the ability of the probe to interact with anionic liposomes nor did it modify its cellular localization, making a stereo-specific mode of phosphatidic acid recognition unlikely. Nevertheless, the lipid binding properties and the cellular localization of the Spo20 alpha-helix differed markedly from that of another amphipathic motif, Amphipathic Lipid Packing Sensor (ALPS, suggesting that even in the absence of stereo specific interactions, amphipathic helices can act as subcellular membrane targeting determinants in a cellular context.

  10. Complete motif analysis of sequence requirements for translation initiation at non-AUG start codons.

    Science.gov (United States)

    Diaz de Arce, Alexander J; Noderer, William L; Wang, Clifford L

    2018-01-25

    The initiation of mRNA translation from start codons other than AUG was previously believed to be rare and of relatively low impact. More recently, evidence has suggested that as much as half of all translation initiation utilizes non-AUG start codons, codons that deviate from AUG by a single base. Furthermore, non-AUG start codons have been shown to be involved in regulation of expression and disease etiology. Yet the ability to gauge expression based on the sequence of a translation initiation site (start codon and its flanking bases) has been limited. Here we have performed a comprehensive analysis of translation initiation sites that utilize non-AUG start codons. By combining genetic-reporter, cell-sorting, and high-throughput sequencing technologies, we have analyzed the expression associated with all possible variants of the -4 to +4 positions of non-AUG translation initiation site motifs. This complete motif analysis revealed that 1) with the right sequence context, certain non-AUG start codons can generate expression comparable to that of AUG start codons, 2) sequence context affects each non-AUG start codon differently, and 3) initiation at non-AUG start codons is highly sensitive to changes in the flanking sequences. Complete motif analysis has the potential to be a key tool for experimental and diagnostic genomics. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  11. The LisH motif of muskelin is crucial for oligomerization and governs intracellular localization.

    Science.gov (United States)

    Delto, Carolyn F; Heisler, Frank F; Kuper, Jochen; Sander, Bodo; Kneussel, Matthias; Schindelin, Hermann

    2015-02-03

    Neurons regulate the number of surface receptors by balancing the transport to and from the plasma membrane to adjust their signaling properties. The protein muskelin was recently identified as a key factor guiding the transport of α1 subunit-containing GABAA receptors. Here we present the crystal structure of muskelin, comprising its N-terminal discoidin domain and Lis1-homology (LisH) motif. The molecule crystallized as a dimer with the LisH motif exclusively mediating oligomerization. Our subsequent biochemical analyses confirmed that the LisH motif acts as a dimerization element in muskelin. Together with an intermolecular head-to-tail interaction, the LisH-dependent dimerization is required to assemble a muskelin tetramer. Intriguingly, our cellular studies revealed that the loss of this dimerization results in a complete redistribution of muskelin from the cytoplasm to the nucleus and impairs muskelin's function in GABAA receptor transport. These studies demonstrate that the LisH-dependent dimerization is a crucial factor for muskelin function. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. The MutT motif family of nucleotide phosphohydrolases in man and human pathogens (review).

    Science.gov (United States)

    McLennan, A G

    1999-07-01

    Human cells express at least eight members of the MutT motif protein (or nudix hydrolase) family. These enzymes are believed to eliminate toxic nucleotide derivatives from the cell and regulate the levels of important signalling nucleotides and their metabolites. Six have been fully or partially characterized: i) hMTH1 is a nucleoside triphosphatase which restricts AT-->CG transversions by specifically degrading the oxidized nucleotide 8-oxo-dGTP; ii) hAPAH1 preferentially degrades the signalling dinucleotide Ap4A; iii) DIPP is unusual in hydrolysing two seemingly unrelated signalling substrate groups - the dinucleotides Ap6A and Ap5A, and the diphosphoinositol polyphosphates; iv) DIPP2 is closely related to DIPP; v) hYSAH1 is an NDP-sugar hydrolase which prefers ADP-ribose, and vi) hGFG is a protein of unknown function encoded by the antisense transcript of the basic fibroblast growth factor gene. Although not yet associated with known hereditary or acquired disorders, the functional loss of any one of these hydrolases would be expected to be detrimental to cellular function. Furthermore, the ialA invasion gene of Bartonella bacilliformis and other invasive pathogens encodes a MutT motif Ap4A hydrolase while poxviruses express two MutT motif proteins, at least one of which is essential for infectivity. This protein family, therefore, occupies a position of some importance in controlling human health and disease.

  13. Insights into the Activity and Substrate Binding of Xylella fastidiosa Polygalacturonase by Modification of a Unique QMK Amino Acid Motif Using Protein Chimeras.

    Science.gov (United States)

    Warren, Jeremy G; Lincoln, James E; Kirkpatrick, Bruce C

    2015-01-01

    Polygalacturonases (EC 3.2.1.15) catalyze the random hydrolysis of 1, 4-alpha-D-galactosiduronic linkages in pectate and other galacturonans. Xylella fastidiosa possesses a single polygalacturonase gene, pglA (PD1485), and X. fastidiosa mutants deficient in the production of polygalacturonase are non-pathogenic and show a compromised ability to systemically infect grapevines. These results suggested that grapevines expressing sufficient amounts of an inhibitor of X. fastidiosa polygalacturonase might be protected from disease. Previous work in our laboratory and others have tried without success to produce soluble active X. fastidiosa polygalacturonase for use in inhibition assays. In this study, we created two enzymatically active X. fastidiosa / A. vitis polygalacturonase chimeras, AX1A and AX2A to explore the functionality of X. fastidiosa polygalacturonase in vitro. The AX1A chimera was constructed to specifically test if recombinant chimeric protein, produced in Escherichia coli, is soluble and if the X. fastidiosa polygalacturonase catalytic amino acids are able to hydrolyze polygalacturonic acid. The AX2A chimera was constructed to evaluate the ability of a unique QMK motif of X. fastidiosa polygalacturonase, most polygalacturonases have a R(I/L)K motif, to bind to and allow the hydrolysis of polygalacturonic acid. Furthermore, the AX2A chimera was also used to explore what effect modification of the QMK motif of X. fastidiosa polygalacturonase to a conserved RIK motif has on enzymatic activity. These experiments showed that both the AX1A and AX2A polygalacturonase chimeras were soluble and able to hydrolyze the polygalacturonic acid substrate. Additionally, the modification of the QMK motif to the conserved RIK motif eliminated hydrolytic activity, suggesting that the QMK motif is important for the activity of X. fastidiosa polygalacturonase. This result suggests X. fastidiosa polygalacturonase may preferentially hydrolyze a different pectic substrate or

  14. Discovering Multidimensional Motifs in Physiological Signals for Personalized Healthcare

    Science.gov (United States)

    Balasubramanian, Arvind; Wang, Jun; Prabhakaran, Balakrishnan

    2016-01-01

    Personalized diagnosis and therapy requires monitoring patient activity using various body sensors. Sensor data generated during personalized exercises or tasks may be too specific or inadequate to be evaluated using supervised methods such as classification. We propose multidimensional motif (MDM) discovery as a means for patient activity monitoring, since such motifs can capture repeating patterns across multiple dimensions of the data, and can serve as conformance indicators. Previous studies pertaining to mining MDMs have proposed approaches that lack the capability of concurrently processing multiple dimensions, thus limiting their utility in online scenarios. In this paper, we propose an efficient real-time approach to MDM discovery in body sensor generated time series data for monitoring performance of patients during therapy. We present two alternative models for MDMs based on motif co-occurrences and temporal ordering among motifs across multiple dimensions, with detailed formulation of the concepts proposed. The proposed method uses an efficient hashing based record to enable speedy update and retrieval of motif sets, and identification of MDMs. Performance evaluation using synthetic and real body sensor data in unsupervised motif discovery tasks shows that the approach is effective for (a) concurrent processing of multidimensional time series information suitable for real-time applications, (b) finding unknown naturally occurring patterns with minimal delay, and (c) tracking similarities among repetitions, possibly during therapy sessions. PMID:28191269

  15. Efficient motif finding algorithms for large-alphabet inputs

    Directory of Open Access Journals (Sweden)

    Pavlovic Vladimir

    2010-10-01

    Full Text Available Abstract Background We consider the problem of identifying motifs, recurring or conserved patterns, in the biological sequence data sets. To solve this task, we present a new deterministic algorithm for finding patterns that are embedded as exact or inexact instances in all or most of the input strings. Results The proposed algorithm (1 improves search efficiency compared to existing algorithms, and (2 scales well with the size of alphabet. On a synthetic planted DNA motif finding problem our algorithm is over 10× more efficient than MITRA, PMSPrune, and RISOTTO for long motifs. Improvements are orders of magnitude higher in the same setting with large alphabets. On benchmark TF-binding site problems (FNP, CRP, LexA we observed reduction in running time of over 12×, with high detection accuracy. The algorithm was also successful in rapidly identifying protein motifs in Lipocalin, Zinc metallopeptidase, and supersecondary structure motifs for Cadherin and Immunoglobin families. Conclusions Our algorithm reduces computational complexity of the current motif finding algorithms and demonstrate strong running time improvements over existing exact algorithms, especially in important and difficult cases of large-alphabet sequences.

  16. Discovering Motifs in Biological Sequences Using the Micron Automata Processor.

    Science.gov (United States)

    Roy, Indranil; Aluru, Srinivas

    2016-01-01

    Finding approximately conserved sequences, called motifs, across multiple DNA or protein sequences is an important problem in computational biology. In this paper, we consider the (l, d) motif search problem of identifying one or more motifs of length l present in at least q of the n given sequences, with each occurrence differing from the motif in at most d substitutions. The problem is known to be NP-complete, and the largest solved instance reported to date is (26,11). We propose a novel algorithm for the (l,d) motif search problem using streaming execution over a large set of non-deterministic finite automata (NFA). This solution is designed to take advantage of the micron automata processor, a new technology close to deployment that can simultaneously execute multiple NFA in parallel. We demonstrate the capability for solving much larger instances of the (l, d) motif search problem using the resources available within a single automata processor board, by estimating run-times for problem instances (39,18) and (40,17). The paper serves as a useful guide to solving problems using this new accelerator technology.

  17. PISMA: A Visual Representation of Motif Distribution in DNA Sequences

    Directory of Open Access Journals (Sweden)

    Rogelio Alcántara-Silva

    2017-03-01

    Full Text Available Background: Because the graphical presentation and analysis of motif distribution can provide insights for experimental hypothesis, PISMA aims at identifying motifs on DNA sequences, counting and showing them graphically. The motif length ranges from 2 to 10 bases, and the DNA sequences range up to 10 kb. The motif distribution is shown as a bar-code–like, as a gene-map–like, and as a transcript scheme. Results: We obtained graphical schemes of the CpG site distribution from 91 human papillomavirus genomes. Also, we present 2 analyses: one of DNA motifs associated with either methylation-resistant or methylation-sensitive CpG islands and another analysis of motifs associated with exosome RNA secretion. Availability and Implementation: PISMA is developed in Java; it is executable in any type of hardware and in diverse operating systems. PISMA is freely available to noncommercial users. The English version and the User Manual are provided in Supplementary Files 1 and 2, and a Spanish version is available at www.biomedicas.unam.mx/wp-content/software/pisma.zip and www.biomedicas.unam.mx/wp-content/pdf/manual/pisma.pdf .

  18. BEAM web server: a tool for structural RNA motif discovery.

    Science.gov (United States)

    Pietrosanto, Marco; Adinolfi, Marta; Casula, Riccardo; Ausiello, Gabriele; Ferrè, Fabrizio; Helmer-Citterich, Manuela

    2018-03-15

    RNA structural motif finding is a relevant problem that becomes computationally hard when working on high-throughput data (e.g. eCLIP, PAR-CLIP), often represented by thousands of RNA molecules. Currently, the BEAM server is the only web tool capable to handle tens of thousands of RNA in input with a motif discovery procedure that is only limited by the current secondary structure prediction accuracies. The recently developed method BEAM (BEAr Motifs finder) can analyze tens of thousands of RNA molecules and identify RNA secondary structure motifs associated to a measure of their statistical significance. BEAM is extremely fast thanks to the BEAR encoding that transforms each RNA secondary structure in a string of characters. BEAM also exploits the evolutionary knowledge contained in a substitution matrix of secondary structure elements, extracted from the RFAM database of families of homologous RNAs. The BEAM web server has been designed to streamline data pre-processing by automatically handling folding and encoding of RNA sequences, giving users a choice for the preferred folding program. The server provides an intuitive and informative results page with the list of secondary structure motifs identified, the logo of each motif, its significance, graphic representation and information about its position in the RNA molecules sharing it. The web server is freely available at http://beam.uniroma2.it/ and it is implemented in NodeJS and Python with all major browsers supported. marco.pietrosanto@uniroma2.it. Supplementary data are available at Bioinformatics online.

  19. Characterizing Motif Dynamics of Electric Brain Activity Using Symbolic Analysis

    Directory of Open Access Journals (Sweden)

    Massimiliano Zanin

    2014-10-01

    Full Text Available Motifs are small recurring circuits of interactions which constitute the backbone of networked systems. Characterizing motif dynamics is therefore key to understanding the functioning of such systems. Here we propose a method to define and quantify the temporal variability and time scales of electroencephalogram (EEG motifs of resting brain activity. Given a triplet of EEG sensors, links between them are calculated by means of linear correlation; each pattern of links (i.e., each motif is then associated to a symbol, and its appearance frequency is analyzed by means of Shannon entropy. Our results show that each motif becomes observable with different coupling thresholds and evolves at its own time scale, with fronto-temporal sensors emerging at high thresholds and changing at fast time scales, and parietal ones at low thresholds and changing at slower rates. Finally, while motif dynamics differed across individuals, for each subject, it showed robustness across experimental conditions, indicating that it could represent an individual dynamical signature.

  20. Transcriptional Network growing Models using Motif-based Preferential Attachment

    Directory of Open Access Journals (Sweden)

    Ahmed Farouk Abdelzaher

    2015-10-01

    Full Text Available Understanding relationships between architectural properties of gene-regulatory networks (GRNs has been one of the major goals in systems biology and bioinformatics, as it can provide insights into, e.g., disease dynamics and drug development. Such GRNs are characterized by their scale-free degree distributions and existence of network motifs--i.e., small-node subgraphs that occur more abundantly in GRNs than expected from chance alone. Because these transcriptional modules represent ``building blocks'' of complex networks and exhibit a wide range of functional and dynamical properties, they may contribute to the remarkable robustness and dynamical stability associated with the whole of GRNs. Here we developed network-construction models to better understand this relationship, which produce randomized GRNs by using transcriptional motifs as the fundamental growth unit in contrast to other methods that construct similar networks on a node-by-node basis. Because this model produces networks with a prescribed lower bound on the number of choice transcriptional motifs (e.g., downlinks, feed-forward loops, its fidelity to the motif distributions observed in model organisms represents an improvement over existing methods, which we validated by contrasting their resultant motif and degree distributions against existing network-growth models and data from the model organism of the bacterium Escherichia coli. These models may therefore serve as novel testbeds for further elucidating relationships between the topology of transcriptional motifs and network-wide dynamical properties.

  1. Two Important Stamp Motifs in Roman Britain and Thereafter

    Directory of Open Access Journals (Sweden)

    Diana C. Briscoe

    2016-03-01

    Full Text Available Stamped pottery has had a long and varied history in Britain. There have been periods when it flourished and periods when it almost totally disappeared. This article considers two variations of the rosette motif (A 5 and their fortunes from the late Iron Age to the Early Saxon period. Having been of little importance in the Iron Age and early Roman periods, they became some of the most widely used and distributed motifs in the fourth century. By the fifth century, they were still important, but formed a much smaller proportion of the total motifs than in the fourth century. In the vast majority of cases, there is no correlation between the find spots of fourth and fifth century examples. However, I have identified nine locations where one or other of the two motifs have been found on a late Roman site, which lies within a mile of another site with the same motif, but from the post-Roman period. In these rare conjunctions, I believe that ongoing usage of the motif can be demonstrated from Roman to post-Roman times. It is also clear that pot stamp evidence can be vital in identifying these highly unusual locations and pointing other researchers to sites worthy of special attention.

  2. An experimental test of a fundamental food web motif.

    Science.gov (United States)

    Rip, Jason M K; McCann, Kevin S; Lynn, Denis H; Fawcett, Sonia

    2010-06-07

    Large-scale changes to the world's ecosystem are resulting in the deterioration of biostructure-the complex web of species interactions that make up ecological communities. A difficult, yet crucial task is to identify food web structures, or food web motifs, that are the building blocks of this baroque network of interactions. Once identified, these food web motifs can then be examined through experiments and theory to provide mechanistic explanations for how structure governs ecosystem stability. Here, we synthesize recent ecological research to show that generalist consumers coupling resources with different interaction strengths, is one such motif. This motif amazingly occurs across an enormous range of spatial scales, and so acts to distribute coupled weak and strong interactions throughout food webs. We then perform an experiment that illustrates the importance of this motif to ecological stability. We find that weak interactions coupled to strong interactions by generalist consumers dampen strong interaction strengths and increase community stability. This study takes a critical step by isolating a common food web motif and through clear, experimental manipulation, identifies the fundamental stabilizing consequences of this structure for ecological communities.

  3. Alpha1-antitrypsin deficiency

    DEFF Research Database (Denmark)

    Stolk, Jan; Seersholm, Niels; Kalsheker, Noor

    2006-01-01

    The Alpha One International Registry (AIR), a multinational research program focused on alpha1-antitrypsin (AAT) deficiency, was formed in response to a World Health Organization recommendation. Each of the nearly 20 participating countries maintains a national registry of patients with AAT defic...... epidemiology, inflammatory and signalling processes, therapeutic advances, and lung imaging techniques....

  4. Alpha clustering in nuclei

    International Nuclear Information System (INIS)

    Hodgson, P.E.

    1990-01-01

    The effects of nucleon clustering in nuclei are described, with reference to both nuclear structure and nuclear reactions, and the advantages of using the cluster formalism to describe a range of phenomena are discussed. It is shown that bound and scattering alpha-particle states can be described in a unified way using an energy-dependent alpha-nucleus potential. (author)

  5. A 6-Nucleotide Regulatory Motif within the AbcR Small RNAs of Brucella abortus Mediates Host-Pathogen Interactions

    Science.gov (United States)

    Sheehan, Lauren M.

    2017-01-01

    ABSTRACT In Brucella abortus, two small RNAs (sRNAs), AbcR1 and AbcR2, are responsible for regulating transcripts encoding ABC-type transport systems. AbcR1 and AbcR2 are required for Brucella virulence, as a double chromosomal deletion of both sRNAs results in attenuation in mice. Although these sRNAs are responsible for targeting transcripts for degradation, the mechanism utilized by the AbcR sRNAs to regulate mRNA in Brucella has not been described. Here, two motifs (M1 and M2) were identified in AbcR1 and AbcR2, and complementary motif sequences were defined in AbcR-regulated transcripts. Site-directed mutagenesis of M1 or M2 or of both M1 and M2 in the sRNAs revealed transcripts to be targeted by one or both motifs. Electrophoretic mobility shift assays revealed direct, concentration-dependent binding of both AbcR sRNAs to a target mRNA sequence. These experiments genetically and biochemically characterized two indispensable motifs within the AbcR sRNAs that bind to and regulate transcripts. Additionally, cellular and animal models of infection demonstrated that only M2 in the AbcR sRNAs is required for Brucella virulence. Furthermore, one of the M2-regulated targets, BAB2_0612, was found to be critical for the virulence of B. abortus in a mouse model of infection. Although these sRNAs are highly conserved among Alphaproteobacteria, the present report displays how gene regulation mediated by the AbcR sRNAs has diverged to meet the intricate regulatory requirements of each particular organism and its unique biological niche. PMID:28588127

  6. iRegulon: from a gene list to a gene regulatory network using large motif and track collections.

    Directory of Open Access Journals (Sweden)

    Rekin's Janky

    2014-07-01

    Full Text Available Identifying master regulators of biological processes and mapping their downstream gene networks are key challenges in systems biology. We developed a computational method, called iRegulon, to reverse-engineer the transcriptional regulatory network underlying a co-expressed gene set using cis-regulatory sequence analysis. iRegulon implements a genome-wide ranking-and-recovery approach to detect enriched transcription factor motifs and their optimal sets of direct targets. We increase the accuracy of network inference by using very large motif collections of up to ten thousand position weight matrices collected from various species, and linking these to candidate human TFs via a motif2TF procedure. We validate iRegulon on gene sets derived from ENCODE ChIP-seq data with increasing levels of noise, and we compare iRegulon with existing motif discovery methods. Next, we use iRegulon on more challenging types of gene lists, including microRNA target sets, protein-protein interaction networks, and genetic perturbation data. In particular, we over-activate p53 in breast cancer cells, followed by RNA-seq and ChIP-seq, and could identify an extensive up-regulated network controlled directly by p53. Similarly we map a repressive network with no indication of direct p53 regulation but rather an indirect effect via E2F and NFY. Finally, we generalize our computational framework to include regulatory tracks such as ChIP-seq data and show how motif and track discovery can be combined to map functional regulatory interactions among co-expressed genes. iRegulon is available as a Cytoscape plugin from http://iregulon.aertslab.org.

  7. Positive evolutionary selection of an HD motif on Alzheimer precursor protein orthologues suggests a functional role.

    Directory of Open Access Journals (Sweden)

    István Miklós

    2012-02-01

    Full Text Available HD amino acid duplex has been found in the active center of many different enzymes. The dyad plays remarkably different roles in their catalytic processes that usually involve metal coordination. An HD motif is positioned directly on the amyloid beta fragment (Aβ and on the carboxy-terminal region of the extracellular domain (CAED of the human amyloid precursor protein (APP and a taxonomically well defined group of APP orthologues (APPOs. In human Aβ HD is part of a presumed, RGD-like integrin-binding motif RHD; however, neither RHD nor RXD demonstrates reasonable conservation in APPOs. The sequences of CAEDs and the position of the HD are not particularly conserved either, yet we show with a novel statistical method using evolutionary modeling that the presence of HD on CAEDs cannot be the result of neutral evolutionary forces (p<0.0001. The motif is positively selected along the evolutionary process in the majority of APPOs, despite the fact that HD motif is underrepresented in the proteomes of all species of the animal kingdom. Position migration can be explained by high probability occurrence of multiple copies of HD on intermediate sequences, from which only one is kept by selective evolutionary forces, in a similar way as in the case of the "transcription binding site turnover." CAED of all APP orthologues and homologues are predicted to bind metal ions including Amyloid-like protein 1 (APLP1 and Amyloid-like protein 2 (APLP2. Our results suggest that HDs on the CAEDs are most probably key components of metal-binding domains, which facilitate and/or regulate inter- or intra-molecular interactions in a metal ion-dependent or metal ion concentration-dependent manner. The involvement of naturally occurring mutations of HD (Tottori (D7N and English (H6R mutations in early onset Alzheimer's disease gives additional support to our finding that HD has an evolutionary preserved function on APPOs.

  8. Two ovine mitochondrial DNAs harboring a fifth 75/76 bp repeat motif without altered gene expression in Northern Spain.

    Science.gov (United States)

    Lopez-Oceja, A; Gamarra, D; Cardoso, S; Palencia-Madrid, L; Juste, R A; De Pancorbo, M M

    2017-03-01

    The Basque Country is home to the Latxa sheep breed, which is divided in several varieties such as Latxa Black Face (LBKF) and Latxa Blonde Face (LBLF). Mitochondrial DNA control region analysis of 174 male sheep (97 LBKF and 77 LBLF) was performed with the objective of characterizing the maternal lineages of these two varieties that are the basis to produce the cheese with Idiazabal quality label. The percentage of unique haplotypes was 77.32% in LBKF and 67.53% in LBLF. Most of the individuals were classified into B haplogroup (98.85%), while A haplogroup was much less frequent. Two Latxa individuals (one LBKF and one LBLF), both belonging to B haplogroup, displayed an additional 75/76 bp tandem repeat motif. Only 33 other sequences with this repeat motif were found among 11 061 sheep sequences included in the GenBank database. Gene expression was analyzed in peripheral blood leukocytes since the additional 75/76 bp repeat motif falls within ETAS1, a domain with a possible function in regulation of replication and transcription. The mRNA expression from four mitochondrial genes (COI, cyt b, ND1, and ND2) was analyzed in the two individuals of this study with a fifth repeat motif and in four without it. Although lower transcription was observed when the additional 75/76 bp repeat motif was present, no statistically significant differences were observed. Therefore, the variation in the number of the 75/76 repeat motif does not seem to modify the gene expression rate in mitochondrial genes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. In silico study of binding motifs in squalene synthase enzyme of secondary metabolic pathway of solanaceae [corrected].

    Science.gov (United States)

    Sanchita; Singh, Garima; Sharma, Ashok

    2014-11-01

    Solanaceae is an important family with several plants of medicinal importance. These medicinal plants have distinctive pathways for secondary metabolite biosynthesis. In most of the plants, two important compounds, dimethylallyl diphosphate and isopentenyl diphosphate, synthesize isoprenoid or terpenoids. Squalene synthase (SQS) is a key enzyme of the biosynthesis of isoprenoid (farnesyl pyrophosphate (FPP) → squalene). Withania somnifera (ashwagandha), an important medicinal plant of family solanaceae produces withanolides. Withanolides are secondary metabolites synthesized through isoprenoid pathway. In this study, 13 SQS protein sequences from the plants of solanacae family and Arabidopsis thaliana were analyzed. The conserved domains in corresponding sequences were searched. The multiple sequence alignment of conserved domains revealed the important motifs and identified the residue substitution in each motif. Our result further indicated that residue substitution in motifs might not lead to functional variation, although it may affect the binding affinity of Mg(++), FPP and NAD(P)H. In addition, the homology modelling of SQS enzyme of W. somnifera was done for the prediction of three-dimensional structure. Molecular docking study of considered substrates with WsSQS was performed and the docked structure were analyzed further. The docked structures showed binding affinity for motif 2 of WsSQS. Our analysis revealed that 29 residues of motif 2 might be important for catalytic/functional activity of SQS enzyme of W. somnifera. This study may provide an understanding of metabolic pathways responsible for the production of secondary metabolites. The motifs may play a key role in regulating the pathway towards enhanced production of metabolites.

  10. Method for using a yeast alpha-amylase promoter

    Science.gov (United States)

    Gao, Johnway; Skeen, Rodney S.; Hooker, Brian S.; Anderson, Daniel B.

    2003-04-22

    The present invention provides the promoter clone discovery of an alpha-amylase gene of a starch utilizing yeast strain Schwanniomyces castellii. The isolated alpha-amylase promoter is an inducible promoter, which can regulate strong gene expression in starch culture medium.

  11. Genetics Home Reference: alpha thalassemia

    Science.gov (United States)

    ... Facebook Twitter Home Health Conditions Alpha thalassemia Alpha thalassemia Printable PDF Open All Close All Enable Javascript to view the expand/collapse boxes. Description Alpha thalassemia is a blood disorder that reduces the production ...

  12. The Investigation of Promoter Sequences of Marseilleviruses Highlights a Remarkable Abundance of the AAATATTT Motif in Intergenic Regions.

    Science.gov (United States)

    Oliveira, Graziele Pereira; Lima, Maurício Teixeira; Arantes, Thalita Souza; Assis, Felipe Lopes; Rodrigues, Rodrigo Araújo Lima; da Fonseca, Flávio Guimarães; Bonjardim, Cláudio Antônio; Kroon, Erna Geessien; Colson, Philippe; La Scola, Bernard; Abrahão, Jônatas Santos

    2017-11-01

    Viruses display a wide range of genomic profiles and, consequently, a variety of gene expression strategies. Specific sequences associated with transcriptional processes have been described in viruses, and putative promoter motifs have been elucidated for some nucleocytoplasmic large DNA viruses (NCLDV). Among NCLDV, the Marseilleviridae is a well-recognized family because of its genomic mosaicism. The marseilleviruses have an ability to incorporate foreign genes, especially from sympatric organisms inhabiting Acanthamoeba , its main known host. Here, we identified for the first time an eight-nucleotide A/T-rich promoter sequence (AAATATTT) associated with 55% of marseillevirus genes that is conserved in all marseilleviruses lineages, a higher level of conservation than that of any giant virus described to date. We instigated our prediction about the promoter motif by biological assays and by evaluating how single mutations in this octamer can impact gene expression. The investigation of sequences that regulate the expression of genes relative to lateral transfer revealed that the promoter motifs do not appear to be incorporated by marseilleviruses from donor organisms. Indeed, analyses of the intergenic regions that regulate lateral gene transfer-related genes have revealed an independent origin of the marseillevirus intergenic regions that does not match gene-donor organisms. About 50% of AAATATTT motifs spread throughout intergenic regions of the marseilleviruses are present as multiple copies. We believe that such multiple motifs are associated with increased expression of a given gene or are related to incorporation of foreign genes into the mosaic genome of marseilleviruses. IMPORTANCE The marseilleviruses draw attention because of the peculiar features of their genomes; however, little is known about their gene expression patterns or the factors that regulate those expression patterns. The limited published research on the expression patterns of the

  13. Phyloproteomic Analysis of 11780 Six-Residue-Long Motifs Occurrences

    Directory of Open Access Journals (Sweden)

    O. V. Galzitskaya

    2015-01-01

    Full Text Available How is it possible to find good traits for phylogenetic reconstructions? Here, we present a new phyloproteomic criterion that is an occurrence of simple motifs which can be imprints of evolution history. We studied the occurrences of 11780 six-residue-long motifs consisting of two randomly located amino acids in 97 eukaryotic and 25 bacterial proteomes. For all eukaryotic proteomes, with the exception of the Amoebozoa, Stramenopiles, and Diplomonadida kingdoms, the number of proteins containing the motifs from the first group (one of the two amino acids occurs once at the terminal position made about 20%; in the case of motifs from the second (one of two amino acids occurs one time within the pattern and third (the two amino acids occur randomly groups, 30% and 50%, respectively. For bacterial proteomes, this relationship was 10%, 27%, and 63%, respectively. The matrices of correlation coefficients between numbers of proteins where a motif from the set of 11780 motifs appears at least once in 9 kingdoms and 5 phyla of bacteria were calculated. Among the correlation coefficients for eukaryotic proteomes, the correlation between the animal and fungi kingdoms (0.62 is higher than between fungi and plants (0.54. Our study provides support that animals and fungi are sibling kingdoms. Comparison of the frequencies of six-residue-long motifs in different proteomes allows obtaining phylogenetic relationships based on similarities between these frequencies: the Diplomonadida kingdoms are more close to Bacteria than to Eukaryota; Stramenopiles and Amoebozoa are more close to each other than to other kingdoms of Eukaryota.

  14. The PDZ-binding motif of Yes-associated protein is required for its co-activation of TEAD-mediated CTGF transcription and oncogenic cell transforming activity.

    Science.gov (United States)

    Shimomura, Tadanori; Miyamura, Norio; Hata, Shoji; Miura, Ryota; Hirayama, Jun; Nishina, Hiroshi

    2014-01-17

    YAP is a transcriptional co-activator that acts downstream of the Hippo signaling pathway and regulates multiple cellular processes, including proliferation. Hippo pathway-dependent phosphorylation of YAP negatively regulates its function. Conversely, attenuation of Hippo-mediated phosphorylation of YAP increases its ability to stimulate proliferation and eventually induces oncogenic transformation. The C-terminus of YAP contains a highly conserved PDZ-binding motif that regulates YAP's functions in multiple ways. However, to date, the importance of the PDZ-binding motif to the oncogenic cell transforming activity of YAP has not been determined. In this study, we disrupted the PDZ-binding motif in the YAP (5SA) protein, in which the sites normally targeted by Hippo pathway-dependent phosphorylation are mutated. We found that loss of the PDZ-binding motif significantly inhibited the oncogenic transformation of cultured cells induced by YAP (5SA). In addition, the increased nuclear localization of YAP (5SA) and its enhanced activation of TEAD-dependent transcription of the cell proliferation gene CTGF were strongly reduced when the PDZ-binding motif was deleted. Similarly, in mouse liver, deletion of the PDZ-binding motif suppressed nuclear localization of YAP (5SA) and YAP (5SA)-induced CTGF expression. Taken together, our results indicate that the PDZ-binding motif of YAP is critical for YAP-mediated oncogenesis, and that this effect is mediated by YAP's co-activation of TEAD-mediated CTGF transcription. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Genetic evidence that HNF-1alpha-dependent transcriptional control of HNF-4alpha is essential for human pancreatic beta cell function

    DEFF Research Database (Denmark)

    Hansen, Sara K; Párrizas, Marcelina; Jensen, Maria L

    2002-01-01

    , and consequently in reduced HNF-1alpha-dependent activation. These findings provide genetic evidence that HNF-1alpha serves as an upstream regulator of HNF-4alpha and interacts directly with the P2 promoter in human pancreatic cells. Furthermore, they indicate that this regulation is essential to maintain normal...... in human islets and exocrine cells is primarily mediated by the P2 promoter. Furthermore, we describe a G --> A mutation in a conserved nucleotide position of the HNF-1alpha binding site of the P2 promoter, which cosegregates with MODY. The mutation results in decreased affinity for HNF-1alpha...

  16. Recombinant Newcastle disease virus rL-RVG enhances the apoptosis and inhibits the migration of A549 lung adenocarcinoma cells via regulating alpha 7 nicotinic acetylcholine receptors in vitro.

    Science.gov (United States)

    Yan, Yulan; Su, Chunxiang; Hang, Min; Huang, Hua; Zhao, Yinghai; Shao, Xiaomei; Bu, Xuefeng

    2017-10-03

    The aim of this study were to investigate the possible pro-apoptotic mechanisms of the recombinant Newcastle disease virus (NDV) strain rL-RVG, which expresses the rabies virus glycoprotein, in A549 lung adenocarcinoma cells via the regulation of alpha 7 nicotinic acetylcholine receptors (α7 nAChRs) and to analyze the relationships between α7 nAChR expression in lung cancer and the clinical pathological features. α7 nAChR expression in A549, LΑ795, and small-cell lung carcinoma (SCLC) cells, among others, was detected using reverse transcription polymerase chain reaction (RT-PCR). The optimal α7 nAChR antagonist and agonist concentrations for affecting A549 lung adenocarcinoma cells were detected using MTT assays. The α7 nAChR expression in A549 cells after various treatments was assessed by Western blot, immunofluorescence and RT-PCR analyses. Apoptosis in the various groups was also monitored by Western blot and TUNEL assays, followed by the detection of cell migration via transwell and scratch tests. Furthermore, α7 nAChR expression was examined by immunohistochemistry in lung cancer tissue samples from 130 patients and 40 pericancerous tissue samples, and the apoptotis in lung adenocarcinoma tissue was detected by Tunel assay, Then, the expression levels and clinicopathological characteristics were analyzed. Of the A549, LΑ795, SCLC and U251 cell lines, the A549 cells exhibited the highest α7 nAChR expression. The cells infected with rL-RVG exhibited high RVG gene and protein expression. The rL-RVG group exhibited weaker α7 nAChR expression compared with the methyllycaconitine citrate hydrate (MLA, an α7 nAChR antagonist) and NDV groups. At the same time, the MLA and rL-RVG treatments significantly inhibited proliferation and migration and promoted apoptosis in the lung cancer cells (P A549 lung adenocarcinoma cells by regulating α7 nAChR signaling pathways.

  17. Structures of G [alpha [superscript i1

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, Christopher A.; Willard, Francis S.; Jezyk, Mark R.; Fredericks, Zoey; Bodor, Erik T.; Jones, Miller B.; Blaesius, Rainer; Watts, Val J.; Harden, T. Kendall; Sondek, John; Ramer, J. Kevin; Siderovski, David P. (Karo Bio); (UNC); (Purdue)

    2010-07-19

    Heterotrimeric G proteins are molecular switches that regulate numerous signaling pathways involved in cellular physiology. This characteristic is achieved by the adoption of two principal states: an inactive, GDP bound state and an active, GTP bound state. Under basal conditions, G proteins exist in the inactive, GDP bound state; thus, nucleotide exchange is crucial to the onset of signaling. Despite our understanding of G protein signaling pathways, the mechanism of nucleotide exchange remains elusive. We employed phage display technology to identify nucleotide state-dependent G{alpha} binding peptides. Herein, we report a GDP-selective G{alpha} binding peptide, KB-752, that enhances spontaneous nucleotide exchange of G{alpha}{sub i} subunits. Structural determination of the G{alpha}{sub i1}/peptide complex reveals unique changes in the G{alpha} switch regions predicted to enhance nucleotide exchange by creating a GDP dissociation route. Our results cast light onto a potential mechanism by which G{alpha} subunits adopt a conformation suitable for nucleotide exchange.

  18. Regulation by retinoids of luteinizing hormone/chorionic gonadotropin receptor, cholesterol side-chain cleavage cytochrome P-450, 3 beta-hydroxysteroid dehydrogenase/delta (5-4)-isomerase and 17 alpha-hydroxylase/C17-20 lyase cytochrome P-450 messenger ribonucleic acid levels in the K9 mouse Leydig cell line.

    Science.gov (United States)

    Lefèvre, A; Rogier, E; Astraudo, C; Duquenne, C; Finaz, C

    1994-12-01

    Vitamin A is a potent regulator of testicular function. We have reported that retinol (R) and retinoic acid (RA) induced a down regulation of luteinizing hormone/human chorionic gonadotropin (LH/CG) binding sites in K9 Leydig cells. In the present study we evaluated the effect of R and RA on LH/CG receptors, cholesterol side-chain cleavage cytochrome P-450 (P-450 scc), 17 alpha-hydroxylase/C17-20 lyase (P-450 17 alpha) and 3 beta-hydroxysteroid dehydrogenase (3 beta HSD) mRNA levels in K9 mouse Leydig cells. To validate K9 cells as a model for studying Leydig cell steroidogenesis at the molecular level, we first investigated the effect of hCG on mRNA levels of the steroidogenic enzymes. P-450 scc, 3 beta HSD and P-450 17 alpha were expressed constitutively. The addition of 10 ng/ml hCG enhanced mRNA levels for the three genes within 2 h. Maximal accumulation of P-450 scc, P-450 17 alpha and 3 beta HSD mRNA in treated cells represents a 2.5-, 8.5- and 4-fold increase over control values, respectively. P-450 17 alpha expression reached a maximum by 4 h and then declined rapidly to return to control value by 24 h. The pattern of LH/CG receptor mRNAs in K9 cells was very similar to that of MA10 Leydig cells and showed six transcripts of 1.1, 1.6, 1.9, 2.6, 4.2 and 7.0 kb. Treatment of cells with R or RA resulted in a time- and dose-dependent decrease in all six species.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. IQ-motif peptides as novel anti-microbial agents.

    Science.gov (United States)

    McLean, Denise T F; Lundy, Fionnuala T; Timson, David J

    2013-04-01

    The IQ-motif is an amphipathic, often positively charged, α-helical, calmodulin binding sequence found in a number of eukaryote signalling, transport and cytoskeletal proteins. They share common biophysical characteristics with established, cationic α-helical antimicrobial peptides, such as the human cathelicidin LL-37. Therefore, we tested eight peptides encoding the sequences of IQ-motifs derived from the human cytoskeletal scaffolding proteins IQGAP2 and IQGAP3. Some of these peptides were able to inhibit the growth of Escherichia coli and Staphylococcus aureus with minimal inhibitory concentrations (MIC) comparable to LL-37. In addition some IQ-motifs had activity against the fungus Candida albicans. This antimicrobial activity is combined with low haemolytic activity (comparable to, or lower than, that of LL-37). Those IQ-motifs with anti-microbial activity tended to be able to bind to lipopolysaccharide. Some of these were also able to permeabilise the cell membranes of both Gram positive and Gram negative bacteria. These results demonstrate that IQ-motifs are viable lead sequences for the identification and optimisation of novel anti-microbial peptides. Thus, further investigation of the anti-microbial properties of this diverse group of sequences is merited. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  20. Alpha Thalassemia (For Parents)

    Science.gov (United States)

    ... the body has a problem producing alpha globin Beta thalassemia : when the body has a problem producing beta ... Transfusion Blood Test: Hemoglobin Electrophoresis Sickle Cell Disease Beta Thalassemia Blood All About Genetics Prenatal Genetic Counseling Genetic ...

  1. ALPHA-2: the sequel

    CERN Multimedia

    Katarina Anthony

    2012-01-01

    While many experiments are methodically planning for intense works over the long shutdown, there is one experiment that is already working at full steam: ALPHA-2. Its final components arrived last month and will completely replace the previous ALPHA set-up. Unlike its predecessor, this next generation experiment has been specifically designed to measure the properties of antimatter.   The ALPHA team lower the new superconducting solenoid magnet into place. The ALPHA collaboration is working at full speed to complete the ALPHA-2 set-up for mid-November – this will give them a few weeks of running before the AD shutdown on 17 December. “We really want to get some experience with this device this year so that, if we need to make any changes, we will have time during the long shutdown in which to make them,” says Jeffrey Hangst, ALPHA spokesperson. “Rather than starting the 2014 run in the commissioning stage, we will be up and running from the get go.&...

  2. Enteric alpha defensins in norm and pathology

    Directory of Open Access Journals (Sweden)

    Lisitsyn Nikolai A

    2012-01-01

    Full Text Available Abstract Microbes living in the mammalian gut exist in constant contact with immunity system that prevents infection and maintains homeostasis. Enteric alpha defensins play an important role in regulation of bacterial colonization of the gut, as well as in activation of pro- and anti-inflammatory responses of the adaptive immune system cells in lamina propria. This review summarizes currently available data on functions of mammalian enteric alpha defensins in the immune defense and changes in their secretion in intestinal inflammatory diseases and cancer.

  3. Discovering sequence motifs in quantitative and qualitative pepetide data

    DEFF Research Database (Denmark)

    Andreatta, Massimo

    the number of experimental tests needed to identify new epitopes. Taken as a whole, this thesis provides a valuable series of algorithms and tools for the analysis of peptide data, both from the point of view of characterization of sequence motifs and the prediction of protein-peptide interactions....... and interpret such data. The first paper in this thesis presents a new, publicly available method based on artificial neural networks that allows custom analysis of quantitative peptide data. The online NNAlign web-server provides a simple yet powerful tool for the discovery of sequence motifs in large...... with the presence of multiple motifs, due to the experimental setup or the actual poly-specificity of the receptor, in peptide data. A new algorithm, based on Gibbs sampling, identifies multiple specificities by performing two tasks simultaneously: alignment and clustering of peptide data. The method, available...

  4. RANGI: a fast list-colored graph motif finding algorithm.

    Science.gov (United States)

    Rudi, Ali Gholami; Shahrivari, Saeed; Jalili, Saeed; Moghadam Kashani, Zahra Razaghi

    2013-01-01

    Given a multiset of colors as the query and a list-colored graph, i.e., an undirected graph with a set of colors assigned to each of its vertices, in the NP-hard list-colored graph motif problem the goal is to find the largest connected subgraph such that one can select a color from the set of colors assigned to each of its vertices to obtain a subset of the query. This problem was introduced to find functional motifs in biological networks. We present a branch-and-bound algorithm named RANGI for finding and enumerating list-colored graph motifs. As our experimental results show, RANGI's pruning methods and heuristics make it quite fast in practice compared to the algorithms presented in the literature. We also present a parallel version of RANGI that achieves acceptable scalability.

  5. How pathogens use linear motifs to perturb host cell networks

    KAUST Repository

    Via, Allegra

    2015-01-01

    Molecular mimicry is one of the powerful stratagems that pathogens employ to colonise their hosts and take advantage of host cell functions to guarantee their replication and dissemination. In particular, several viruses have evolved the ability to interact with host cell components through protein short linear motifs (SLiMs) that mimic host SLiMs, thus facilitating their internalisation and the manipulation of a wide range of cellular networks. Here we present convincing evidence from the literature that motif mimicry also represents an effective, widespread hijacking strategy in prokaryotic and eukaryotic parasites. Further insights into host motif mimicry would be of great help in the elucidation of the molecular mechanisms behind host cell invasion and the development of anti-infective therapeutic strategies.

  6. Metal-Free Motifs for Solar Fuel Applications

    Science.gov (United States)

    Ilic, Stefan; Zoric, Marija R.; Kadel, Usha Pandey; Huang, Yunjing; Glusac, Ksenija D.

    2017-05-01

    Metal-free motifs, such as graphitic carbon nitride, conjugated polymers, and doped nanostructures, are emerging as a new class of Earth-abundant materials for solar fuel devices. Although these metal-free structures show great potential, detailed mechanistic understanding of their performance remains limited. Here, we review important experimental and theoretical findings relevant to the role of metal-free motifs as either photoelectrodes or electrocatalysts. First, the light-harvesting characteristics of metal-free photoelectrodes (band energetics, exciton binding energies, charge carrier mobilities and lifetimes) are discussed and contrasted with those in traditional inorganic semiconductors (such as Si). Second, the mechanistic insights into the electrocatalytic oxygen reduction and evolution reactions, hydrogen evolution reaction, and carbon dioxide reduction reaction by metal-free motifs are summarized, including experimental surface-sensitive spectroscopy findings, studies on small molecular models, and computational modeling of these chemical transformations.

  7. Expression of triplicated and quadruplicated alpha globin genes in sheep.

    Science.gov (United States)

    Vestri, R; Pieragostini, E; Yang, F; di Gregorio, P; Rando, A; Masina, P

    1991-01-01

    In the sheep alpha alpha alpha globin gene haplotype, the three genes display from the 5' to the 3' end the percentage efficiencies of about 30:14:6, as indicated by the amounts of the three types of alpha chain produced in the alpha alpha alpha/alpha alpha alpha homozygotes. The 3' gene in the alpha alpha alpha alpha haplotype appears to have an efficiency around 1%, as suggested by analysis of one quadruple alpha homozygote. Moreover, the total outputs of the alpha alpha alpha as well as of the alpha alpha alpha alpha haplotypes do not substantially differ from that of the common alpha alpha haplotype.

  8. Genome Analysis of Conserved Dehydrin Motifs in Vascular Plants

    Directory of Open Access Journals (Sweden)

    Ahmad A. Malik

    2017-05-01

    Full Text Available Dehydrins, a large family of abiotic stress proteins, are defined by the presence of a mostly conserved motif known as the K-segment, and may also contain two other conserved motifs known as the Y-segment and S-segment. Using the dehydrin literature, we developed a sequence motif definition of the K-segment, which we used to create a large dataset of dehydrin sequences by searching the Pfam00257 dehydrin dataset and the Phytozome 10 sequences of vascular plants. A comprehensive analysis of these sequences reveals that lysine residues are highly conserved in the K-segment, while the amino acid type is often conserved at other positions. Despite the Y-segment name, the central tyrosine is somewhat conserved, but can be substituted with two other small aromatic amino acids (phenylalanine or histidine. The S-segment contains a series of serine residues, but in some proteins is also preceded by a conserved LHR sequence. In many dehydrins containing all three of these motifs the S-segment is linked to the K-segment by a GXGGRRKK motif (where X can be any amino acid, suggesting a functional linkage between these two motifs. An analysis of the sequences shows that the dehydrin architecture and several biochemical properties (isoelectric point, molecular mass, and hydrophobicity score are dependent on each other, and that some dehydrin architectures are overexpressed during certain abiotic stress, suggesting that they may be optimized for a specific abiotic stress while others are involved in all forms of dehydration stress (drought, cold, and salinity.

  9. Flavonoids-induced accumulation of hypoxia-inducible factor (HIF)-1alpha/2alpha is mediated through chelation of iron.

    Science.gov (United States)

    Park, Sung-Soo; Bae, Insoo; Lee, Yong J

    2008-04-15

    Hypoxia-inducible factor-1 alpha (HIF-1alpha) is the regulatory subunit of the heterodimeric transcription factor HIF-1 that is the key regulator of cellular response to low oxygen tension. Under normoxic conditions, HIF-1alpha is continuously degraded by the ubiquitin-proteasome pathway through pVHL (von Hippel-Lindau tumor suppressor protein). Under hypoxic conditions, HIF-1alpha is stabilized and induces the transcription of HIF-1 target genes. Quercetin, a flavonoid with anti-oxidant, anti-inflammatory, and kinase modulating properties, has been found to induce HIF-1alpha accumulation and VEGF secretion in normoxia. In this study, the molecular mechanisms of quercetin-mediated HIF-1alpha accumulation were investigated. Previous studies have shown that, in addition to being induced by hypoxia, HIF-1alpha can be induced through the phosphatidylinositol 3-kinase (PI3K)/Akt and p53 signaling pathways. But our study revealed, through p53 mutant-type as well as p53 null cell lines, that neither the PI3K/Akt nor the p53 signaling pathway is required for quercetin-induced HIF-1alpha accumulation. And we observed that HIF-1alpha accumulated by quercetin is not ubiquitinated and the interaction of HIF-1alpha with pVHL is reduced, compared with HIF-1alpha accumulated by the proteasome inhibitor MG132. The use of quercetin's analogues showed that only quercetin and galangin induce HIF-1/2alpha accumulation and this effect is completely reversed by additional iron ions. This is because quercetin and galangin are able to chelate cellular iron ions that are cofactors of HIF-1/2alpha proline hydroxylase (PHD). These data suggest that quercetin inhibits the ubiquitination of HIF-1/2alpha in normoxia by hindering PHD through chelating iron ions.

  10. Hypoxic stress up-regulates the expression of Toll-like receptor 4 in macrophages via hypoxia-inducible factor.

    Science.gov (United States)

    Kim, So Young; Choi, Yong Jun; Joung, Sun Myung; Lee, Byung Ho; Jung, Yi-Sook; Lee, Joo Young

    2010-04-01

    Toll-like receptors (TLRs) are germline-encoded innate immune receptors that recognize invading micro-organisms and induce immune and inflammatory responses. Deregulation of TLRs is known to be closely linked to various immune disorders and inflammatory diseases. Cells at sites of inflammation are exposed to hypoxic stress, which further aggravates inflammatory processes. We have examined if hypoxic stress modulates the TLR activity of macrophages. Hypoxia and CoCl(2) (a hypoxia mimetic) enhanced the expression of TLR4 messenger RNA and protein in macrophages (RAW264.7 cells), whereas the messenger RNA of other TLRs was not increased. To determine the underlying mechanism, we investigated the role of hypoxia-inducible factor 1 (HIF-1) in the regulation of TLR4 expression. Knockdown of HIF-1alpha expression by small interfering RNA inhibited hypoxia-induced and CoCl(2)-induced TLR4 expression in macrophages, while over-expression of HIF-1alpha potentiated TLR4 expression. Chromatin immunoprecipitation assays revealed that HIF-1alpha binds to the TLR4 promoter region under hypoxic conditions. In addition, deletion or mutation of a putative HIF-1-binding motif in the TLR4 promoter greatly attenuated HIF-1alpha-induced TLR4 promoter reporter expression. Up-regulation of TLR4 expression by hypoxic stress enhanced the response of macrophages to lipopolysaccharide, resulting in increased expression of cyclooxygenase-2, interleukin-6, regulated on activation normal T cell expressed and secreted, and interferon-inducible protein-10. These results demonstrate that TLR4 expression in macrophages is up-regulated via HIF-1 in response to hypoxic stress, suggesting that hypoxic stress at sites of inflammation enhances susceptibility to subsequent infection and inflammatory signals by up-regulating TLR4.

  11. BlockLogo: Visualization of peptide and sequence motif conservation

    DEFF Research Database (Denmark)

    Olsen, Lars Rønn; Kudahl, Ulrich Johan; Simon, Christian

    2013-01-01

    and B-cell epitopes (both continuous and discontinuous). Our additional example shows a visualization and analysis of structural motifs that determine the specificity of peptide binding to HLA-DR molecules. The BlockLogo server also employs selected experimentally validated prediction algorithms...... to enable on-the-fly prediction of MHC binding affinity to 15 common HLA class I and class II alleles as well as visual analysis of discontinuous epitopes from multiple sequence alignments. It enables the visualization and analysis of structural and functional motifs that are usually described as regular...

  12. BayesMD: flexible biological modeling for motif discovery

    DEFF Research Database (Denmark)

    Tang, Man-Hung Eric; Krogh, Anders; Winther, Ole

    2008-01-01

    We present BayesMD, a Bayesian Motif Discovery model with several new features. Three different types of biological a priori knowledge are built into the framework in a modular fashion. A mixture of Dirichlets is used as prior over nucleotide probabilities in binding sites. It is trained on trans......We present BayesMD, a Bayesian Motif Discovery model with several new features. Three different types of biological a priori knowledge are built into the framework in a modular fashion. A mixture of Dirichlets is used as prior over nucleotide probabilities in binding sites. It is trained...

  13. Fluorescence polarization assays to measure interactions between Gα subunits of heterotrimeric G proteins and regulatory motifs.

    Science.gov (United States)

    Maziarz, Marcin; Garcia-Marcos, Mikel

    2017-01-01

    Fluorescence polarization (FP) is a simple and sensitive method allowing for the quantification of interactions between proteins and fluorescently tagged small molecules like peptides. Heterotrimeric G proteins are critical signal transducing molecules and their activity is controlled by a complex network of regulatory proteins. Some of these regulators have defined short motifs (G proteins and subsequently modulate their activity. For these cases, FP represents a robust and quantitative method to characterize the G protein regulator interaction. Here we describe FP assays in a 384-well plate format to quantify interactions between Gα subunits of heterotrimeric G proteins and peptides corresponding to the Gα binding and activating (GBA) or GoLoco motifs, which are present in some proteins with guanine nucleotide exchange factor (GEF) (e.g., GIV/Girdin) or guanine nucleotide dissociation inhibitor (GDI) (e.g., RGS12) activity, respectively. This assay can be used to determine equilibrium dissociation constants, characterize the impact of single amino acid point mutations on the Gα-peptide interaction, and is suitable for high-throughput screening. © 2017 Elsevier Inc. All rights reserved.

  14. Spectroscopic studies on peptides and proteins with cysteine-containing heme regulatory motifs (HRM).

    Science.gov (United States)

    Schubert, Erik; Florin, Nicole; Duthie, Fraser; Henning Brewitz, H; Kühl, Toni; Imhof, Diana; Hagelueken, Gregor; Schiemann, Olav

    2015-07-01

    The role of heme as a cofactor in enzymatic reactions has been studied for a long time and in great detail. Recently it was discovered that heme can also serve as a signalling molecule in cells but so far only few examples of this regulation have been studied. In order to discover new potentially heme-regulated proteins, we screened protein sequence databases for bacterial proteins that contain sequence features like a Cysteine-Proline (CP) motif, which is known for its heme-binding propensity. Based on this search we synthesized a series of these potential heme regulatory motifs (HRMs). We used cw EPR spectroscopy to investigate whether these sequences do indeed bind to heme and if the spin state of heme is changed upon interaction with the peptides. The corresponding proteins of two potential HRMs, FeoB and GlpF, were expressed and purified and their interaction with heme was studied by cw EPR and UV-Visible (UV-Vis) spectroscopy. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Genome-scale study of the importance of binding site context for transcription factor binding and gene regulation

    Directory of Open Access Journals (Sweden)

    Ronne Hans

    2008-11-01

    Full Text Available Abstract Background The rate of mRNA transcription is controlled by transcription factors that bind to specific DNA motifs in promoter regions upstream of protein coding genes. Recent results indicate that not only the presence of a motif but also motif context (for example the orientation of a motif or its location relative to the coding sequence is important for gene regulation. Results In this study we present ContextFinder, a tool that is specifically aimed at identifying cases where motif context is likely to affect gene regulation. We used ContextFinder to examine the role of motif context in S. cerevisiae both for DNA binding by transcription factors and for effects on gene expression. For DNA binding we found significant patterns of motif location bias, whereas motif orientations did not seem to matter. Motif context appears to affect gene expression even more than it affects DNA binding, as biases in both motif location and orientation were more frequent in promoters of co-expressed genes. We validated our results against data on nucleosome positioning, and found a negative correlation between preferred motif locations and nucleosome occupancy. Conclusion We conclude that the requirement for stable binding of transcription factors to DNA and their subsequent function in gene regulation can impose constraints on motif context.

  16. Conditional overexpression of the wild-type Gs alpha as the gsp oncogene initiates chronic extracellularly regulated kinase 1/2 activation and hormone hypersecretion in pituitary cell lines.

    Science.gov (United States)

    Romano, D; Magalon, K; Pertuit, M; Rasolonjanahary, R; Barlier, A; Enjalbert, A; Gerard, C

    2007-06-01

    In pituitary cells, activation of the cAMP pathway by specific G protein-coupled receptors controls differentiative functions and proliferation. Constitutively active forms of the alpha subunit of the heterotrimeric G(s) protein resulting from mutations at codon 201 or 227 (gsp oncogene) were first identified in 30-40% of human GH-secreting pituitary adenomas. This rate of occurrence suggests that the gsp oncogene is not responsible for initiating the majority of these tumors. Moreover, there is a large overlap between the clinical phenotypes observed in patients with tumors bearing the gsp oncogene and those devoid of this oncogene. To explore the role of G(s)alpha in GH-secreting adenomas, we obtained somatolactotroph GH4C1 cell lines by performing doxycycline-dependent conditional overexpression of the wild-type G(s)alpha protein and expression of the gsp oncogene. Although the resulting adenylyl cyclase and cAMP levels were 10-fold lower in the wild-type G(s)alpha-overexpressing cell line, a sustained MAPK ERK1/2 activation was observed in both cell lines. Overexpression of the wild-type G(s)alpha protein as the gsp oncogene initiated chronic activation of endogenous prolactin synthesis and release, as well as chronic activation of ERK1/2-sensitive human prolactin and GH promoters.

  17. Screening alpha-glucosidase and alpha-amylase inhibitors from natural compounds by molecular docking in silico.

    Science.gov (United States)

    Jhong, Chien-Hung; Riyaphan, Jirawat; Lin, Shih-Hung; Chia, Yi-Chen; Weng, Ching-Feng

    2015-01-01

    The alpha-glucosidase inhibitor is a common oral anti-diabetic drug used for controlling carbohydrates normally converted into simple sugars and absorbed by the intestines. However, some adverse clinical effects have been observed. The present study seeks an alternative drug that can regulate the hyperglycemia by down-regulating alpha-glucosidase and alpha-amylase activity by molecular docking approach to screen the hyperglycemia antagonist against alpha-glucosidase and alpha-amylase activities from the 47 natural compounds. The docking data showed that Curcumin, 16-hydroxy-cleroda-3,13-dine-16,15-olide (16-H), Docosanol, Tetracosanol, Antroquinonol, Berberine, Catechin, Quercetin, Actinodaphnine, and Rutin from 47 natural compounds had binding ability towards alpha-amylase and alpha-glucosidase as well. Curcumin had a better biding ability of alpha-amylase than the other natural compounds. Analyzed alpha-glucosidase activity reveals natural compound inhibitors (below 0.5 mM) are Curcumin, Actinodaphnine, 16-H, Quercetin, Berberine, and Catechin when compared to the commercial drug Acarbose (3 mM). A natural compound with alpha-amylase inhibitors (below 0.5 mM) includes Curcumin, Berberine, Docosanol, 16-H, Actinodaphnine/Tetracosanol, Catechin, and Quercetin when compared to Acarbose (1 mM). When taken together, the implication is that molecular docking is a fast and effective way to screen alpha-glucosidase and alpha-amylase inhibitors as lead compounds of natural sources isolated from medicinal plants. © 2015 International Union of Biochemistry and Molecular Biology.

  18. Characteristics of alpha males in Nepal gray langurs.

    Science.gov (United States)

    Borries, Carola; Perlman, Rachel F; Koenig, Andreas

    2017-07-01

    In species with strong male-male competition, access to females in multimale-multifemale groups is usually regulated via a dominance hierarchy. The highest ranking (alpha) male often has priority of access and sires most offspring. The alpha male can change in three basic ways: (i) a recent immigrant or a resident challenges and becomes the new alpha; (ii) formation of a new group; (iii) succession-becoming alpha after higher ranking males have left. When, in a given primate population, the alpha male changes in different ways, two questions arise: (a) which is the most successful tactic and (b) do male attributes, such as age, aggressiveness or propensity to commit infanticide, affect the outcome? We examined these questions in the seasonally breeding Nepal gray langurs (Semnopithecus schistaceus) at Ramnagar, where new alpha males were either recent immigrants or residents. Success was measured as alpha tenure, residency duration, and the number of offspring sired (paternity exclusion based on DNA analysis, 28 infants). We documented 12 alpha-male tenures across two multimale-multifemale groups between 1991 and 1997. The predominant mode of change was the immigrant tactic. Age had no effect perhaps because alpha males were among the youngest adult males in their group. As expected, infanticidal males performed similarly to non-infanticidal ones. Alpha tenure was highly variable and longer for immigrant alphas and hyper-aggressive ones. However, none of the tactics or attributes examined resulted in significantly longer residencies or more offspring, likely because of the timing of immigrations and stochastic effects (i.e., the number of conceptions occurring per alpha tenure). The influence of female mate choice on male reproductive success requires further investigation. Furthermore, it remains to be examined why resident alpha males-with their presumed better knowledge of their opponents -performed so poorly. Am. J. Primatol. 79:e22437, 2017. © 2015 Wiley

  19. Monte Carlo alpha calculation

    Energy Technology Data Exchange (ETDEWEB)

    Brockway, D.; Soran, P.; Whalen, P.

    1985-01-01

    A Monte Carlo algorithm to efficiently calculate static alpha eigenvalues, N = ne/sup ..cap alpha..t/, for supercritical systems has been developed and tested. A direct Monte Carlo approach to calculating a static alpha is to simply follow the buildup in time of neutrons in a supercritical system and evaluate the logarithmic derivative of the neutron population with respect to time. This procedure is expensive, and the solution is very noisy and almost useless for a system near critical. The modified approach is to convert the time-dependent problem to a static ..cap alpha../sup -/eigenvalue problem and regress ..cap alpha.. on solutions of a/sup -/ k/sup -/eigenvalue problem. In practice, this procedure is much more efficient than the direct calculation, and produces much more accurate results. Because the Monte Carlo codes are intrinsically three-dimensional and use elaborate continuous-energy cross sections, this technique is now used as a standard for evaluating other calculational techniques in odd geometries or with group cross sections.

  20. The Human Papillomavirus E6 PDZ Binding Motif: From Life Cycle to Malignancy

    Directory of Open Access Journals (Sweden)

    Ketaki Ganti

    2015-07-01

    Full Text Available Cancer-causing HPV E6 oncoproteins are characterized by the presence of a PDZ binding motif (PBM at their extreme carboxy terminus. It was long thought that this region of E6 had a sole function to confer interaction with a defined set of cellular substrates. However, more recent studies have shown that the E6 PBM has a complex pattern of regulation, whereby phosphorylation within the PBM can regulate interaction with two classes of cellular proteins: those containing PDZ domains and the members of the 14-3-3 family of proteins. In this review, we explore the roles that the PBM and its ligands play in the virus life cycle, and subsequently how these can inadvertently contribute towards the development of malignancy. We also explore how subtle alterations in cellular signal transduction pathways might result i