WorldWideScience

Sample records for alpha fine structure

  1. A simple approach to $\\alpha$-decay fine structure

    CERN Document Server

    Delion, D S; Liotta, R J; Wyss, R

    2016-01-01

    We propose a simple method to evaluate $\\alpha$-transition rates to low-lying excited states in even-even nuclei. For this a realistic $\\alpha$-daughter double folding interaction is approximated by a parabola in the region where the decay process takes place. This allows us to evaluate the penetration probability analytically. The main experimental features of branching ratios to excited states are reproduced by this simple approach.

  2. Fine structure in the alpha decay of {sup 224} U

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Martens, A.; Hauschild, K.; Rezynkina, K. [CNRS-IN2P3, CSNSM, Universite Paris Sud, Orsay (France); Dorvaux, O.; Gall, B.; Dechery, F.; Faure, H. [CNRS-IN2P3, IPHC, Universite de Strasbourg, Strasbourg (France); Yeremin, A.V.; Chelnokov, M.L.; Chepigin, V.I.; Isaev, A.V.; Izosimov, I.N.; Katrasev, D.E.; Kuznetsov, A.N.; Kuznetsova, A.A.; Malyshev, O.N.; Popeko, A.G.; Sokol, E.A.; Svirikhin, A.I. [JINR, FLNR, Dubna (Russian Federation); Piot, J. [CNRS-IN2P3, GANIL, CEA-DSM, Caen (France); Rubert, J. [CNRS-IN2P3, IPHC, Universite de Strasbourg, Strasbourg (France); CNRS-IN2P3, LPSC, Universite Grenoble-Alpes, Grenoble (France)

    2014-08-15

    {sup 224}U nuclei were populated in fusion-evaporation reactions using a {sup 206}Pb target and an intense {sup 22}Ne beam. Fusion-evaporation residues were separated by the new separator SHELS at the FLNR, Dubna and implanted into a large-area double-sided silicon strip detector. Position- and time-correlated alpha decays were used to identify evaporation residues. A new α -decay line at 8095(11) keV was observed in this work and assigned as the decay from {sup 224}U to the first excited 2{sup +} in the daughter nucleus {sup 220}Th. Coincident photons were also observed allowing to unambiguously determine the excitation energy of the first excited 2{sup +} state in {sup 220}Th to be 386.5(1) keV and not 373.3(1)keV as previously reported. The half-life of {sup 224}U was measured to be 396(17)μs. (orig.)

  3. Calibration issues in estimating variability of the fine structure constant (alpha) with cosmic time

    CERN Document Server

    Centurión, Miriam; Levshakov, Sergei

    2009-01-01

    Laser Comb Wavelength calibration shows that the ThAr one is locally unreliable with possible deviations of up to 100 m/s within one order range, while delivering an overall 1 m/s accuracy (Wilken et al 2009). Such deviation corresponds to delta alpha/alpha ~ 7E-6 for a FeII-MgII pair. Comparison of line shifts among the 5 FeII lines, with almost identical sensitivity to fine structure constant changes, offers a clean way to directly test the presence of possible local wavelength calibration errors of whatever origin. We analyzed 5 absorption systems, with zabs ranging from 1.15 to 2.19 towards 3 bright QSOs. The results show that while some lines are aligned within 20 m/s, others reveal large deviations reaching 200 m/s or higher and corresponding to a delta alpha/alpha > 1E-5 level. The origin of these deviations is not clearly identified but could be related to the adaptation of wavelength calibration to CCD manufacturing irregularities. These results suggest that to draw conclusions from delta alpha/alpha...

  4. Does the fine structure constant vary? A third quasar absorption sample consistent with varying alpha

    CERN Document Server

    Webb, J K; Flambaum, V V; Curran, S J

    2003-01-01

    We report preliminary results from a third sample of quasar absorption line spectra from the Keck telescope which has been studied to search for any possible variation of the fine structure constant, alpha. This third sample, which is larger than the sum of the two previously published samples, shows the same effect, and also gives, as do the previous two samples, a significant result. The combined sample yields a highly significant effect, da/a = (alpha_z - alpha_0)/alpha_0 = -0.57 +/- 0.10 x 10^{-5}, averaged over the redshift range 0.2 < z < 3.7. We include a brief discussion of small-scale kinematic structure in quasar absorbing clouds. However, kinematics are unlikely to impact significantly on the averaged non-zero da/a above, and we have so far been unable to identify any systematic effect which can explain it. New measurements of quasar spectra obtained using independent instrumentation and telescopes are required to properly check the Keck results.

  5. The fine structure constant alpha: relevant for a model of a self-propelling photon and for particle masses

    Science.gov (United States)

    Greulich, Karl O.

    2015-09-01

    A model for a self propelling (i.e. massless) photon1 is based on oscillations of a pair of charges amounting to elementary charge divided by SQRT alpha, where alpha is the fine structure (Sommerfeld) constant. When one assumes a similar model for particles that do have rest mas (i.e. which are non- self propelling), alpha plays also a role in the rest masses of elementary particles. Indeed all fundamental elementary particle masses can be described by the alpha / beta rule2 --> m(particle) = alpha-n * betam* 27.2 eV /c2 where beta is the proton to electron mass ratio 183612 and n= 0….14, m= -1,0 or Thus, photons and particle masses are intimately related to the fine structure constant. If the latter would not have been strictly constant throughout all times, this would have had consequences for the nature of light and for all masses including those of elementary particles.

  6. The Fine-structure Constant as a Probe of Chemical Evolution and AGB Nucleosynthesis in Damped Lyman-alpha Systems

    CERN Document Server

    Ashenfelter, T P; Olive, Keith A; Ashenfelter, Timothy P.; Mathews, Grant J.; Olive, Keith A.

    2004-01-01

    Evidence from a large sample of quasar absorption-line spectra in damped Lyman-alpha systems has suggested a possible time variation of the fine structure constant alpha. The most statistically significant portion of this sample involves the comparison of Mg and Fe wavelength shifts using the many-multiplet (MM) method. However, the sensitivity of this method to the abundance of heavy isotopes, especially Mg, is enough to imitate an apparent variation in alpha in the redshift range 0.5 < z < 1.8. We implement recent yields of intermediate mass (IM) stars into a chemical evolution model and show that the ensuing isotope distribution of Mg can account for the observed variation in alpha. As such, these observations of quasar absorption spectra can be used to probe the nucleosynthetic history of low-metallicity damped Lyman-$\\alpha$ systems in the redshift range 0.5 < z < 1.8. This analysis, in conjunction with other abundance measurements of low-metallicity systems, reinforces the mounting evidence ...

  7. Search for shape coexistence in {sup 188,190}Pb via fine structure in the alpha decay of {sup 192,194}Po

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, I.; Davids, C.; Janssens, R.V.F. [and others

    1995-08-01

    The interaction between coexisting shapes in nuclei near closed shells was of great interest in the past decade. Excited 0{sup +} states at low energy can often be identified as the bandheads of structures with differing shapes built on those states, These structures were identified in {sup 190-198}Pb via beta decay and alpha decay {open_quotes}fine structure{close_quotes} studies. Coexistence of different shapes in Pb nuclei was predicted by Nilsson-Strutinsky calculations, in which both the oblate and prolate minima were predicted to have excitation energies near 1 MeV. It was our intention to continue the systematic study of the Pb nuclides by searching for excited O{sup +} states in {sup 188}Pb by observing the fine structure in the alpha decay of {sup 192}Po.

  8. Unique Physically Anchored Cryptographic Theoretical Calculation of the Fine-Structure Constant {\\alpha} Matching both the g/2 and Interferometric High-Precision Measurements

    CERN Document Server

    Rhodes, Charles Kirkham

    2010-01-01

    The fine-structure constant {\\alpha}, the dimensionless number that represents the strength of electromagnetic coupling in the limit of sufficiently low energy interactions, is the crucial fundamental physical parameter that governs a nearly limitless range of phenomena involving the interaction of radiation with materials. Ideally, the apparatus of physical theory should be competent to provide a calculational procedure that yields a quantitatively correct value for {\\alpha} and the physical basis for its computation. This study presents the first demonstration of an observationally anchored theoretical procedure that predicts a unique value for {\\alpha} that stands in full agreement with the best (~370 ppt) high-precision experimental determinations. In a directly connected cryptographic computation, the method that gives these results also yields the magnitude of the cosmological constant {\\Omega}{\\Lambda} in conformance with the observational data and the condition of perfect flatness ({\\Omega}{\\Lambda} +...

  9. Proposal for a New Test of the Time Independence Of The Fine Structure Constant, alpha, Using Orthogonally Polarised Whispering Gallery Modes in a Single Sapphire Resonator

    CERN Document Server

    Tobar, M E; Tobar, Michael Edmund; Hartnett, John Gideon

    2003-01-01

    A new experiment to test for the time independence of the fine structure constant, alpha, is proposed. The experiment utilizes orthogonally polarized Transverse Electric and Transverse Magnetic Whispering Gallery Modes in a single sapphire resonator tuned to similar frequencies. When configured as a dual mode sapphire clock, we show that the anisotropy of sapphire makes it is possible to undertake a sensitive measurement from the beat frequency between the two modes. At infrared frequencies this is possible due to the different effect of the lowest phonon frequency on the two orthogonally polarized modes. At microwave frequencies we show that the phonon effect is too small. We show that the Electron Spin Resonance of paramagnetic impurities (such as Cr3+) in the lattice effects only one polarization with an alpha^6 dependence. This enables an enhancement of the sensitivity to temporal changes in a at microwave frequencies.

  10. Determination of the fine-structure constant {alpha} by measuring the quotient of the Planck constant and the neutron mass

    Energy Technology Data Exchange (ETDEWEB)

    Krueger, E.; Nistler, W.; Weirauch, W. [Physikalisch-Technische Bundesanstalt, Braunschweig (Germany)

    1997-04-01

    Using a special high-precision apparatus at ILL the quotient h/m{sub n} (h Planck constant, m{sub n} neutron mass) has been measured. The value measured for h/m{sub n} leads to {alpha}{sup -1} = 137.03601082(524) (relative uncertainty: 3.9{center_dot}10{sup -8}) It was the first time that this fundamental constant has been determined by means of neutrons. The experiment, which had been running since 1981 in a preliminary version and since 1987 in the final version, which was finished in December 1996, is described. (author).

  11. Gravitational Interactions and Fine-Structure Constant

    CERN Document Server

    Jentschura, U D; Nandori, I

    2015-01-01

    Electromagnetic and gravitational central-field problems are studied with relativistic quantum mechanics on curved space-time backgrounds. Corrections to the transition current are identified. Analogies of the gravitational and electromagnetic spectra suggest the definition of a gravitational fine-structure constant. The electromagnetic and gravitational coupling constants enter the Einstein-Hilbert-Maxwell Lagrangian. We postulate that the variational principle holds with regard to a global dilation transformation of the space-time coordinates. The variation suggests is consistent with a functional relationship of the form alpha_QED being proportional to alpha_G^(1/2), where alpha_QED is the electrodynamic fine-structure constant, and alpha_G its gravitational analogue.

  12. Varying fine-structure and gravitational constants

    International Nuclear Information System (INIS)

    A simple relation between the time-dependent fine-structure and gravitational constants of alpha/alpha2 approx G/G is derived from the hypothesis that both of these fundamental constants are related to the more fundamental length scale of nature as in he unified pregauge and pregeometric theory of all fundamental forces. From the latest observation of alpha/alpha = (-1.91 ± 0.54) centre dot 10-15yr-1 by Webb et al., it leads to the prediction of G/G = (-0.154 ± 0.044) centre dot 10-12yr-1, which is not only consistent with the most precise limit of G/G = (-0.6 ± 2.0) centre dot 10-12yr-1 by Thorsett but also feasible for future experimental tests

  13. The Fine Structure Constant and Habitable Planets

    CERN Document Server

    Sandora, McCullen

    2016-01-01

    We use the existence of habitable planets to impose anthropic requirements on the fine structure constant, $\\alpha$. To this effect, we present two considerations that restrict its value to be very near the one observed. The first, that the end product of stellar fusion is iron and not one of its neighboring elements, restricts $\\alpha^{-1}$ to be $145\\pm 50$. The second, that radiogenic heat in the Earth's interior remains adequately productive for billions of years, restricts it to be $145\\pm9$. A connection with the grand unified theory window is discussed, effectively providing a route to probe ultra-high energy physics with upcoming advances in planetary science.

  14. Fine Structure Constant: Theme With Variations

    CERN Document Server

    Bezerra, V B; Muniz, C R; Tahim, M O; Vieira, H S

    2016-01-01

    In this paper, we study the spatial variation of the fine structure constant $\\alpha$ due to the presence of a static and spherically symmetric gravitational source. The procedure consists of calculating the solution including the energy eigenvalues of a massive scalar field around that source, considering the weak-field regimen, which yields the gravitational analog of the atomic Bohr levels. From this result, we obtain several values for the effective $\\alpha$ by considering some scenarios of semi-classical and quantum gravities. Constraints on the parameters of the involved theories are calculated from astrophysical observations of the white dwarf emission spectra. Such constraints are compared with those ones obtained in the literature.

  15. Cosmological Constant, Fine Structure Constant and Beyond

    CERN Document Server

    Wei, Hao; Li, Hong-Yu; Xue, Dong-Ze

    2016-01-01

    In this work, we consider the cosmological constant model $\\Lambda\\propto\\alpha^{-6}$, which is well motivated from three independent approaches. As is well known, the evidence of varying fine structure constant $\\alpha$ was found in 1998. If $\\Lambda\\propto\\alpha^{-6}$ is right, it means that the cosmological constant $\\Lambda$ should be also varying. In this work, we try to develop a suitable framework to model this varying cosmological constant $\\Lambda\\propto\\alpha^{-6}$, in which we view it from an interacting vacuum energy perspective. We propose two types of models to describe the evolutions of $\\Lambda$ and $\\alpha$. Then, we consider the observational constraints on these models, by using the 293 $\\Delta\\alpha/\\alpha$ data from the absorption systems in the spectra of distant quasars, and the data of type Ia supernovae (SNIa), cosmic microwave background (CMB), baryon acoustic oscillation (BAO). We find that the model parameters can be tightly constrained to the narrow ranges of ${\\cal O}(10^{-5})$ t...

  16. Variation of the fine structure constant

    CERN Document Server

    Lipovka, Anton A

    2016-01-01

    In present paper we evaluate the fine structure constant variation which should take place as the Universe is expanded and its curvature is changed adiabatically. This changing of the fine structure constant is attributed to the energy lost by physical system (consist of baryonic component and electromagnetic field) due to expansion of our Universe. Obtained ratio (d alpha)/alpha = 1. 10{-18} (per second) is only five times smaller than actually reported experimental limit on this value. For this reason this variation can probably be measured within a couple of years. To argue the correctness of our approach we calculate the Planck constant as adiabatic invariant of electromagnetic field, from geometry of our Universe in the framework of the pseudo- Riemannian geometry. Finally we discuss the double clock experiment based on Al+ and Hg+ clocks carried out by T. Rosenband et al. (Science 2008). We show that in this particular case there is an error in method and this way the fine structure constant variation c...

  17. Further Evidence for Cosmological Evolution of the Fine Structure Constant

    CERN Document Server

    Webb, J K; Flambaum, V V; Dzuba, V A; Barrow, John D; Churchill, C W; Prochaska, J X; Wolfe, A M

    2001-01-01

    We summarise the results of a search for time variability of the fine structure constant, alpha, using absorption systems in the spectra of distant quasars. Three large optical datasets and two 21cm/mm absorption systems provide four independent samples, spanning approximately 23% to 87% of the age of the universe. Each sample yields a negative Delta(alpha)/alpha (smaller alpha in the past) and the whole optical sample shows a 4-sigma deviation: Delta(alpha)/alpha = -0.72 +/- 0.18 x 10^{-5} over the redshift range 0.5 < z < 3.5. A comprehensive search for systematic effects reveals none which can explain our results. The only potentially significant systematic effects push Delta(alpha)/alpha towards positive values, i.e. our results would become more significant were we to correct for them.

  18. The fine structure constant and numerical alchemy

    CERN Document Server

    Dattoli, Giuseppe

    2010-01-01

    We comment on past and more recent efforts to derive a formula yielding the fine structure constant in terms of integers and transcendent numbers. We analyse these "exoteric" attitudes and describe the myths regarding {\\alpha}, which seems to have very ancient roots, tracing back to Cabbala and to medieval alchemic conceptions. We discuss the obsession for this constant developed by Pauli and the cultural "environment" in which such an "obsession" grew. We also derive a simple formula for {\\alpha} in terms of two numbers {\\pi} and 137 only. The formula we propose reproduces the experimental values up to the last significant digit, it has not any physical motivation and is the result of an alchemic combination of numbers. We make a comparison with other existing formulae, discuss the relevant limits of validity by comparison with the experimental values and discuss a criterion to recover a physical meaning, if existing, from their mathematical properties.

  19. Observations of substorm fine structure

    Directory of Open Access Journals (Sweden)

    L. L. Lazutin

    Full Text Available Particle and magnetic field measurements on the CRRES satellite were used, together with geosynchronous satellites and ground-based observations, to investigate the fine structure of a magnetospheric substorm on February 9, 1991. Using the variations in the electron fluxes, the substorm activity was divided into several intensifications lasting about 3–15 minutes each. The two main features of the data were: (1 the intensifications showed internal fine structure in the time scale of about 2 minutes or less. We call these shorter periods activations. Energetic electrons and protons at the closest geosynchronous spacecraft (1990 095 were found to have comparable activation structure. (2 The energetic (>69 keV proton injections were delayed with respect to electron injections, and actually coincided in time with the end of the intensifications and partial returns to locally more stretched field line configuration. We propose that the energetic protons could be able to control the dynamics of the system locally be quenching the ongoing intensification and possibly preparing the final large-scale poleward movement of the activity. It was also shown that these protons originated from the same intensification as the preceeding electrons. Therefore, the substorm instability responsible for the intensifications could introduce a negative feedback loop into the system, creating the observed fine structure with the intensification time scales.

    Key words. Magnetospheric Physics (Storms and substorms.

  20. Topological quantization in units of the fine structure constant

    OpenAIRE

    Maciejko, Joseph; Qi, Xiao-Liang; Drew, H. Dennis; Zhang, Shou-Cheng

    2010-01-01

    Fundamental topological phenomena in condensed matter physics are associated with a quantized electromagnetic response in units of fundamental constants. Recently, it has been predicted theoretically that the time-reversal invariant topological insulator in three dimensions exhibits a topological magnetoelectric effect quantized in units of the fine structure constant $\\alpha=e^2/\\hbar c$. In this work, we propose an optical experiment to directly measure this topological quantization phenome...

  1. Regular Changes in the Fine Structure of Histograms Revealed in the Experiments with Collimators which Isolate Beams of Alpha-Particles Flying at Certain Directions

    Directory of Open Access Journals (Sweden)

    Shnoll S. E.

    2009-04-01

    Full Text Available As was shown in the works of 1951–1983, the fine structure of distributions of the re- sults of measurements of processes of diverse nature is not casual. The changes in the shape of histograms corresponding to the distributions were called “macroscopic fluctu- ations”. The universal character of the phenomenon and its independence of the nature of the process studied were demonstrated for various processes: biochemical and chem- ical reactions, movement of latex particles in the electric field, proton transverse relax- ation in the inhomogeneous magnetic field, discharge in the neon-tube RC-generator and radioactive decay of various - and -isotopes. Since 1982, the main object chosen to study macroscopic fluctuations has been -decay. The choice was based on the pro- cess being a priori independent of trivial factors and the possibility to conduct continu- ous long-term automatic measurements while storing the results in a computer archive (database. Started in 1982, these measurements have been carrying on, as unceasingly as possible, until now. Since July 2000, the measurements are conducted using devices designed by one of the coauthors of this review, I. A. Rubinstein. Application of these devices (especially, detectors with collimators which isolate beams of -particles fly- ing at certain directions, along with the use of Edwin Pozharsky’s computer program, which eases histogram comparing by the expert, has allowed us to reveal a number of fundamentally new regularities. In the review, we describe these regularities, device constructions, and the methods of measurement and analysis of the results obtained.

  2. Atomic Clocks and Variations of the FIne Structure Constant

    Science.gov (United States)

    Prestage, John D.; Tjoelker, Robert L.; Maleki, Lute

    1995-01-01

    We describe a new test for possible variations of the fine structure constant alpha by comparisons of rates between clocks based on hyperfine transitions in alkali atoms with different atomic number Z. H-maser, Cs, and Hg(+) clocks have a different dependence on alpha via relativistic contributions of order (Z-alpha)(sup 2). Recent H-maser vs Hg(+) clock comparison data improve laboratory limits on a time variation by 100-fold to give dot-alpha less than or equal to 3.7 x 10(exp -14)/yr. Future laser cooled clocks (Be(+), Rb, Cs, Hg(+), etc.), when compared, will yield the most sensitive of all tests for dot-alpha/alpha.

  3. Further Evidence for Cosmological Evolution of the Fine Structure Constant

    Energy Technology Data Exchange (ETDEWEB)

    Webb, J. K.; Murphy, M. T.; Flambaum, V. V.; Dzuba, V. A.; Barrow, J. D.; Churchill, C. W.; Prochaska, J. X.; Wolfe, A. M.

    2001-08-27

    We describe the results of a search for time variability of the fine structure constant {alpha} using absorption systems in the spectra of distant quasars. Three large optical data sets and two 21 cm and mm absorption systems provide four independent samples, spanning {approx}23% to 87% of the age of the universe. Each sample yields a smaller {alpha} in the past and the optical sample shows a 4{sigma} deviation: {Delta}{alpha}/{alpha}=-0.72{+-}0.18 x 10{sup -5} over the redshift range 0.5alpha}/{alpha} towards positive values; i.e., our results would become more significant were we to correct for them.

  4. Constraints on the time variation of the fine structure constant by the 5-year WMAP data

    CERN Document Server

    Nakashima, Masahiro; Yokoyama, Jun'ichi

    2008-01-01

    The constraints on the time variation of the fine structure constant at recombination epoch relative to its present value, $\\Delta\\alpha/\\alpha \\equiv (\\alpha_{\\mathrm{rec}} - \\alpha_{\\mathrm{now}})/\\alpha_{\\mathrm{now}}$, are obtained from the analysis of the 5-year WMAP cosmic microwave background data. As a result of Markov-Chain Monte-Carlo analysis, it is found that, contrary to the analysis based on the previous WMAP data, the mean value of $\\Delta\\alpha/\\alpha=-0.0009$ does not change significantly whether we use the Hubble Space Telescope (HST) measurement of the Hubble parameter as a prior or not. The resultant 95% confidence ranges of $\\Delta\\alpha/\\alpha$ are $-0.028 < \\Delta\\alpha/\\alpha < 0.026$ with HST prior and $-0.050 < \\Delta\\alpha/\\alpha < 0.042$ without HST prior.

  5. Fine-structure constant variability surprises for laboratory atomic spectroscopy and cosmological evolution of quasar spectra

    CERN Document Server

    Bekenstein, J D

    2003-01-01

    Calculation of the Dirac hydrogen atom spectrum in the framework of dynamical fine structure constant (alpha) variability discloses a small departure in the laboratory from Sommerfeld's formula for the fine structure shifts, possibly measurable today. And for a distant object in the universe, the wavelength shift of a spectral line specifically ascribable to cosmological alpha variation is found to depend differently on the quantum numbers than in the conventional view. This last result clashes with the conventional wisdom that an atom's spectrum can change with cosmological time only through evolution of the alpha parameter in the energy eigenvalue formula, and thus impacts on the Webb group's analysis of fine structure intervals in quasar absorption lines (which has been claimed to disclose cosmological alpha evolution). In particular, analyzing together a mix of quasar absorption lines from different fine structure multiplets can bias estimates of cosmological alpha variability.

  6. The Ecosphere and the Value of the Electromagnetic Fine Structure Constant

    OpenAIRE

    Kozlowski, M.; Marciak-Kozlowska, J.

    2003-01-01

    Following the coincidence A x atomic year ~ Earth year (s), (A = Avogardo number, atomic year=a_B/alpha c, a_B=Bohr radius, alpha= fine structure constant, c=light velocity) and considering the "niche" for alpha, i.e. 180^{-1}

  7. Estimating the experimental value of the electromagnetic fine structure constant {alpha}-bar {sub 0}=1/137.036 using the Leech lattice in conjunction with the monster group and Spher's kissing number in 24 dimensions

    Energy Technology Data Exchange (ETDEWEB)

    El Naschie, M.S. [King Abdul Aziz City of Science and Technology, Riyadh (Saudi Arabia)

    2007-04-15

    We start with various observations regarding the kissing number in the 24-dimensional Leech lattice N{sub {tau}}{sup (24)}=196560 as well as the j-function coefficient b=196884 and the minimal dimension in which the monster group can act D{sub m}=196883. Subsequently based on the previous results and earlier numerical experiments, we use a quibic potential to derive a quadratic equationx{sup 2}+12820x-(N{sub {tau}}{sup (24)}/10)=0where 128=spin 7=(2){sup 7}, 10=D{sup (10)} and N{sub {tau}}{sup (24)}=196560 are the spin representation, the super string dimension and the Leech kissing number, respectively. It is found that the only positive solution of this equation isx{sub 1}=137.036={alpha}-bar {sub 0}which is the accurate experimental value of inverse of the electromagnetic fine structure constant. This remarkable result is interpreted in terms of the connection between the Moonshine conjecture and string theory as well as the E-infinity relation between the kissing number in 10 dimensions K{sub {tau}}{sup (10)}=336 and the degrees of freedom of Klein's modular space dim {gamma}(7)=336.

  8. Measurement of the Running of the Fine-Structure Constant

    CERN Document Server

    Acciarri, M; Adriani, O; Aguilar-Benítez, M; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alviggi, M G; Ambrosi, G; Anderhub, H; Andreev, V P; Angelescu, T; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Baksay, L; Balandras, A; Ball, R C; Banerjee, S; Banerjee, Sw; Barczyk, A; Barillère, R; Barone, L; Bartalini, P; Basile, M; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Bellucci, L; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Bhattacharya, S; Biasini, M; Biland, A; Blaising, J J; Blyth, S C; Bobbink, Gerjan J; Böhm, A; Boldizsar, L; Borgia, B; Bourilkov, D; Bourquin, Maurice; Braccini, S; Branson, J G; Brigljevic, V; Brochu, F; Buffini, A; Buijs, A; Burger, J D; Burger, W J; Button, A M; Cai, X D; Campanelli, M; Capell, M; Cara Romeo, G; Carlino, G; Cartacci, A M; Casaus, J; Castellini, G; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada-Canales, M; Cesaroni, F; Chamizo-Llatas, M; Chang, Y H; Chaturvedi, U K; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chiefari, G; Cifarelli, Luisa; Cindolo, F; Civinini, C; Clare, I; Clare, R; Coignet, G; Colijn, A P; Colino, N; Costantini, S; Cotorobai, F; Cozzoni, B; de la Cruz, B; Csilling, Akos; Cucciarelli, S; Dai, T S; van Dalen, J A; D'Alessandro, R; De Asmundis, R; Déglon, P L; Degré, A; Deiters, K; Della Volpe, D; Denes, P; De Notaristefani, F; De Salvo, A; Diemoz, M; Van Dierendonck, D N; Di Lodovico, F; Dionisi, C; Dittmar, Michael; Dominguez, A; Doria, A; Dova, M T; Duchesneau, D; Dufournaud, D; Duinker, P; Durán, I; El-Mamouni, H; Engler, A; Eppling, F J; Erné, F C; Extermann, Pierre; Fabre, M; Faccini, R; Falagán, M A; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, Marta; Ferguson, T; Ferroni, F; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, Frank; Fisher, P H; Fisk, I; Forconi, G; Fredj, L; Freudenreich, Klaus; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gataullin, M; Gau, S S; Gentile, S; Gheordanescu, N; Giagu, S; Gong, Z F; Grenier, G; Grimm, O; Grünewald, M W; Guida, M; van Gulik, R; Gupta, V K; Gurtu, A; Gutay, L J; Haas, D; Hasan, A; Hatzifotiadou, D; Hebbeker, T; Hervé, A; Hidas, P; Hirschfelder, J; Hirstius, A; Hofer, H; Holzner, G; Hoorani, H; Hou, S R; Iashvili, I; Jin, B N; Jones, L W; de Jong, P; Josa-Mutuberria, I; Khan, R A; Kaur, M; Kienzle-Focacci, M N; Kim, D; Kim, D H; Kim, J K; Kim, S C; Kirkby, Jasper; Kiss, D; Kittel, E W; Klimentov, A; König, A C; Kopp, A; Koutsenko, V F; Kräber, M H; Krämer, R W; Krenz, W; Krüger, A; Kunin, A; Ladrón de Guevara, P; Laktineh, I; Landi, G; Lassila-Perini, K M; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Lee, H J; Le Goff, J M; Leiste, R; Leonardi, E; Levchenko, P M; Li Chuan; Likhoded, S A; Lin, C H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lü, Y S; Lübelsmeyer, K; Luci, C; Luckey, D; Lugnier, L; Luminari, L; Lustermann, W; Ma Wen Gan; Maity, M; Malgeri, L; Malinin, A; Maña, C; Mangeol, D J J; Marchesini, P A; Marian, G; Martin, J P; Marzano, F; Massaro, G G G; Mazumdar, K; McNeil, R R; Mele, S; Merola, L; Meschini, M; Metzger, W J; Von der Mey, M; Mihul, A; Milcent, H; Mirabelli, G; Mnich, J; Mohanty, G B; Molnár, P; Monteleoni, B; Moulik, T; Muanza, G S; Muheim, F; Muijs, A J M; Musy, M; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Niessen, T; Nisati, A; Nowak, H; Oh, Yu D; Organtini, G; Oulianov, A; Palomares, C; Pandoulas, D; Paoletti, S; Paolucci, P; Paramatti, R; Park, H K; Park, I H; Pascale, G; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, Felicitas; Pedace, M; Pensotti, S; Perret-Gallix, D; Petersen, B; Piccolo, D; Pierella, F; Pieri, M; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Postema, H; Pothier, J; Produit, N; Prokofev, D; Prokofiev, D O; Quartieri, J; Rahal-Callot, G; Rahaman, M A; Raics, P; Raja, N; Ramelli, R; Rancoita, P G; Raspereza, A V; Raven, G; Razis, P A; Ren, D; Rescigno, M; Reucroft, S; Van Rhee, T; Riemann, S; Riles, K; Robohm, A; Rodin, J; Roe, B P; Romero, L; Rosca, A; Rosier-Lees, S; Rubio, Juan Antonio; Ruschmeier, D; Rykaczewski, H; Saremi, S; Sarkar, S; Salicio, J; Sánchez, E; Sanders, M P; Sarakinos, M E; Schäfer, C; Shchegelskii, V; Schmidt-Kärst, S; Schmitz, D; Schopper, Herwig Franz; Schotanus, D J; Schwering, G; Sciacca, C; Sciarrino, D; Seganti, A; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shumilov, E; Shvorob, A V; Siedenburg, T; Son, D; Smith, B; Spillantini, P; Steuer, M; Stickland, D P; Stone, A; Stone, H; Stoyanov, B; Strässner, A; Sudhakar, K; Sultanov, G G; Sun, L Z; Suter, H; Swain, J D; Szillási, Z; Sztaricskai, T; Tang, X W; Tauscher, Ludwig; Taylor, L; Timmermans, C; Ting, Samuel C C; Ting, S M; Tonwar, S C; Tóth, J; Tully, C; Tung, K L; Uchida, Y; Ulbricht, J; Valente, E; Vesztergombi, G; Vetlitskii, I; Vicinanza, D; Viertel, Gert M; Villa, S; Vivargent, M; Vlachos, S; Vodopyanov, I; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Vorvolakos, A; Wadhwa, M; Wallraff, W; Wang, M; Wang, X L; Wang, Z M; Weber, A; Weber, M; Wienemann, P; Wilkens, H; Wu, S X; Wynhoff, S; Xia, L; Xu, Z Z; Yang, B Z; Yang, C G; Yang, H J; Yang, M; Ye, J B; Yeh, S C; Zalite, A; Zalite, Yu; Zhang, Z P; Zhu, G Y; Zhu, R Y; Zichichi, A; Zilizi, G; Zöller, M

    2000-01-01

    Small-angle Bhabha scattering data recorded at the Z resonance and large-angleBhabha scattering data recorded at $\\sqrt{s} = 189$ \\textrm{Ge\\kern -0.1em V} bythe L3 detector at LEP are used to measure the running of the effective fine-structure constant for spacelike momentum transfers. The results are\\begin{eqnarray*} \\alpha^{-1}(-2.1 \\mathrm{Ge\\kern -0.1em V}^{2}) - \\alpha^{-1}(-6.25 \\mathrm{Ge\\kern -0.1em V}^{2}) & = & 0.78 \\pm 0.26 \\\\ \\alpha^{-1}(-12.25 \\mathrm{Ge\\kern -0.1em V}^{2}) - \\alpha^{-1}(-3434 \\mathrm{Ge\\kern -0.1em V}^{2}) & = & 3.80 \\pm 1.29, \\\\\\end{eqnarray*}in agreement with theoretical predictions.

  9. Clusters of galaxies and variation of the fine structure constant

    CERN Document Server

    Galli, Silvia

    2012-01-01

    We propose a new method to probe for variations in the fine structure constant alpha using clusters of galaxies, opening up a window on a new redshift range for such constraints. Hot clusters shine in the X-ray mainly due to bremsstrahlung, while they leave an imprint on the CMB frequency spectrum through the Sunyaev-Zel'dovich effect. These two physical processes can be characterized by the integrated Comptonization parameter Y_SZ DA^2 and its X-ray counterpart, the Y_X parameter. The ratio of these two quantities is expected to be constant from numerical simulations and current observations. We show that this fact can be exploited to constrain alpha, as the ratio of the two parameters depends on the fine structure constant as alpha^{3.5}. We determine current constraints from a combination of Planck SZ and XMM-Newton data, testing different models of variation of alpha. When fitting for a constant value of alpha, we find that current constraints are at the 1% level, comparable with current CMB constraints. ...

  10. Galaxy clusters, type Ia supernovae and the fine structure constant

    CERN Document Server

    Holanda, R F L; Colaço, L R; Alcaniz, J S; Landau, S J

    2016-01-01

    As is well known, measurements of the Sunyaev-Zeldovich effect can be combined with observations of the X-ray surface brightness of galaxy clusters to estimate the angular diameter distance to these structures. In this paper, we show that this technique depends on the fine structure constant, $\\alpha$. Therefore, if $\\alpha$ is a time-dependent quantity, e.g., $\\alpha=\\alpha_0 \\phi(z)$, where $\\phi$ is a function of redshift, we argue that current data do not provide the real angular diameter distance, $D_{\\rm{A}}(z)$, to the cluster but instead $D_A^{data}(z) = \\phi(z)^2 D_{\\rm{A}}(z)$. We use this result to derive constraints on a possible variation of $\\alpha$ for a class of dilaton runaway models considering a sample of 25 measurements of $D_A^{data}(z)$ in redshift range $0.023 < z < 0.784$ and estimates of $D_{\\rm{A}}(z)$ from current type Ia supernovae observations. We find no significant indication of variation of $\\alpha$ with the present data.

  11. Time Variation of the Fine Structure Constant Driven by Quintessence

    CERN Document Server

    Anchordoqui, L A; Anchordoqui, Luis; Goldberg, Haim

    2003-01-01

    There are indications from the study of quasar absorption spectra that the fine structure constant $\\alpha$ may have been measurably smaller for redshifts $z>2.$ Analyses of other data ($^{149}$Sm fission rate for the Oklo natural reactor, variation of $^{187}$Re $\\beta$-decay rate in meteorite studies, atomic clock measurements) which probe variations of $\\alpha$ in the more recent past imply much smaller deviations from its present value. In this work we tie the variation of $\\alpha$ to the evolution of the quintessence field proposed by Albrecht and Skordis, and show that agreement with all these data, as well as consistency with WMAP observations, can be achieved for a range of parameters. Some definite predictions follow for upcoming space missions searching for violations of the equivalence principle.

  12. Varying Fine Structure Constant and Black Hole Physics

    CERN Document Server

    Das, S; Das, Saurya; Kunstatter, Gabor

    2003-01-01

    Recent astrophysical observations suggest that the fine structure constant $\\alpha=e^2/\\hbar c$ may be slowly increasing with time. This may be due to an increase of $e$ or a decrease of $c$, or both. In this article, we argue from model independent considerations that this variation should be considered adiabatic. Then, we examine in detail the consequences of such an adiabatic variation in the context of a specific model of quantized charged black holes. We find that the second law of black hole thermodynamics is obeyed, regardless of the origin of the variation, and that interesting constraints arise on the charge and mass of black holes. Finally, we estimate the work done on a black hole of mass $M$ due to the $\\alpha$ variation.

  13. The Fine Structure Lines of Hydrogen in HII Regions

    CERN Document Server

    Dennison, B; Minter, A H; Dennison, Brian; Minter, Anthony H.

    2005-01-01

    The 2s_{1/2} state of hydrogen is metastable and overpopulated in HII regions. In addition, the 2p states may be pumped by ambient Lyman-alpha radiation. Fine structure transitions between these states may be observable in HII regions at 1.1 GHz (2s_{1/2}-2p_{1/2}) and/or 9.9 GHz (2s_{1/2}-2p_{3/2}), although the details of absorption versus emission are determined by the relative populations of the 2s and 2p states. The n=2 level populations are solved with a parameterization that allows for Lyman-alpha pumping of the 2p states. The density of Lyman-alpha photons is set by their creation rate, easily determined from the recombination rate, and their removal rate. Here we suggest that the dominant removal mechanism of Lyman-alpha radiation in HII regions is absorption by dust. This circumvents the need to solve the Lyman-alpha transfer problem, and provides an upper limit to the rate at which the 2p states are populated by Lyman-alpha photons. In virtually all cases of interest, the 2p states are predominantl...

  14. Habitable sphere and fine structure constant

    CERN Document Server

    Kozlovskii, Miroslaw P; Kozlowski, Miroslaw; Marciak-Kozlowska, Janina

    2005-01-01

    Future space missions, TPF and Darwin will focus on searches of signatures of life on extrasolar planets. In this paper we look for model independ definition of the habitable zone. It will be shown that the radius of the habitable sphere depends only on the constants of the Nature. Key words: Habitable sphere, fine structure constant.

  15. Topological Quantization in Units of the Fine Structure Constant

    Energy Technology Data Exchange (ETDEWEB)

    Maciejko, Joseph; /Stanford U., Phys. Dept. /Stanford U., Materials Sci. Dept. /SLAC; Qi, Xiao-Liang; /Station Q, UCSB /Stanford U., Phys. Dept. /Stanford U., Materials Sci. Dept. /SLAC; Drew, H.Dennis; /Maryland U.; Zhang, Shou-Cheng; /Stanford U., Phys. Dept. /Stanford U., Materials Sci. Dept. /SLAC

    2011-11-11

    Fundamental topological phenomena in condensed matter physics are associated with a quantized electromagnetic response in units of fundamental constants. Recently, it has been predicted theoretically that the time-reversal invariant topological insulator in three dimensions exhibits a topological magnetoelectric effect quantized in units of the fine structure constant {alpha} = e{sup 2}/{h_bar}c. In this Letter, we propose an optical experiment to directly measure this topological quantization phenomenon, independent of material details. Our proposal also provides a way to measure the half-quantized Hall conductances on the two surfaces of the topological insulator independently of each other.

  16. Fine-structure constant constraints on dark energy

    CERN Document Server

    Martins, C J A P

    2015-01-01

    We use astrophysical and atomic clock tests of the stability of the fine-structure constant $\\alpha$, together with Type Ia supernova and Hubble parameter data, to constrain the simplest class of dynamical dark energy models where the same degree of freedom is assumed to provide both the dark energy and (through a dimensionless coupling, $\\zeta$, to the electromagnetic sector) the $\\alpha$ variation. We show how current data tightly constrains a combination of $\\zeta$ and the dark energy equation of state $w_0$. At the $95\\%$ confidence level and marginalizing over $w_0$ we find $|\\zeta|<5\\times10^{-6}$, with the atomic clock tests dominating the constraints. The forthcoming generation of high-resolution ultra-stable spectrographs will enable significantly tighter constraints.

  17. Effect of fine structure on precise diagnostics

    International Nuclear Information System (INIS)

    Nowadays, in order to do effective spectroscopy, several experimental conditions force us to describe very precisely the emitter atom. For example, in a tokamak, the cold peripheral plasma emits intense spectral line from hydrogen isotopes broadened by Zeeman and Doppler effect. Under such conditions of low temperatures, we have to take care if fine structure modifies and/or broadens the spectrum. Moreover, under some conditions encountered in Motional Stark effect spectroscopy, asymmetries in the observed spectra could be explained by fine structure effects. Our team has developed since several years a numerical code able to calculate line shape emitted by any kind of atoms perturbed by electric and magnetic fields. This permits to us to explore very large conditions of plasmas. In this poster we will investigate the effect of fine structure on the spectroscopy of deuterium in tokamak edge plasma conditions, as well as in the case of Motional Stark effect. We will consider a wide range of temperatures varying from a few eV to 104 eV, and magnetic field between 0 to 5 Teslas. (author)

  18. Time Variation of the Fine Structure Constant in the Spacetime of a Domain Wall

    CERN Document Server

    Campanelli, L; Tedesco, L

    2005-01-01

    The gravitational field produced by a domain wall acts as a medium with spacetime-dependent permittivity \\epsilon. Therefore, the fine structure constant \\alpha = e^2/4 \\pi \\epsilon will be a time-dependent function at fixed position. The most stringent constraint on the time-variation of \\alpha comes from the natural reactor Oklo and gives |\\dot{\\alpha}/\\alpha| < few 10^{-17} yr^{-1}. This limit constrains the tension of a cosmic domain wall to be less than \\sigma \\lesssim 10^{-2} MeV^3, and then represents the most severe limit on the energy density of a cosmic wall stretching our Universe.

  19. Evolution of the fine-structure constant in runaway dilaton models

    CERN Document Server

    Martins, C J A P; Martinelli, M; Calabrese, E; Pandolfi, S

    2015-01-01

    We study the detailed evolution of the fine-structure constant $\\alpha$ in the string-inspired runaway dilaton class of models of Damour, Piazza and Veneziano. We provide constraints on this scenario using the most recent $\\alpha$ measurements and discuss ways to distinguish it from alternative models for varying $\\alpha$. For model parameters which saturate bounds from current observations, the redshift drift signal can differ considerably from that of the canonical $\\Lambda$CDM paradigm at high redshifts. Measurements of this signal by the forthcoming European Extremely Large Telescope (E-ELT), together with more sensitive $\\alpha$ measurements, will thus dramatically constrain these scenarios.

  20. A five dimensional model of varying effective gravitational and fine structure constants

    Science.gov (United States)

    Mbelek, J. P.; Lachièze-Rey, M.

    2003-01-01

    We explore the possibility that the reported time variation of the fine structure constant alpha is due to a coupling between electromagnetism and gravitation. We predict such a coupling from a very simple effective theory of physical interactions, under the form of an improved version of the Kaluza-Klein theory. We show that it precisely leads to a variation of the effective fine structure constant with cosmic conditions, and thus with cosmic time. The comparison with the recent data from distant quasars absorption line spectra gives a good agreement; moreover, this may reconcile the claimed results on alpha with the upper limit from the Oklo naturel Uranium fission reactor.

  1. Lower bound on the value of the fine-structure constant

    CERN Document Server

    Hod, Shahar

    2010-01-01

    Recently, we have proposed the existence of a universal relation between the maximal electric charge and total mass of any weakly self-gravitating object: $Z\\leq Z^*={\\alpha}^{-1/3}A^{2/3}$, where $Z$ is the number of protons, $A$ is the total baryon (mass) number, and $\\alpha=e^2/\\hbar c$ is the fine-structure constant. Motivated by this novel bound, we explore the $(Z,A)$-relation of atomic nuclei as deduced from the Weizs\\"acker semi-empirical mass formula. It is shown that {\\it all} nuclei, including the meta-stable maximally charged ones, conform to the upper bound. Moreover, we suggest that the new charge-mass bound places an interesting constraint on the value of the fine-structure constant: $\\alpha\\gtrsim 1/323$.

  2. The fine structure constant and habitable planets

    Science.gov (United States)

    Sandora, McCullen

    2016-08-01

    We use the existence of habitable planets to impose anthropic requirements on the fine structure constant, α. To this effect, we present two considerations that restrict its value to be very near the one observed. The first, that the end product of stellar fusion is iron and not one of its neighboring elements, restricts α‑1 to be 145± 50. The second, that radiogenic heat in the Earth's interior remains adequately productive for billions of years, restricts it to be 145±9. A connection with the grand unified theory window is discussed, effectively providing a route to probe ultra-high energy physics with upcoming advances in planetary science.

  3. The fine structure constant and habitable planets

    Science.gov (United States)

    Sandora, McCullen

    2016-08-01

    We use the existence of habitable planets to impose anthropic requirements on the fine structure constant, α. To this effect, we present two considerations that restrict its value to be very near the one observed. The first, that the end product of stellar fusion is iron and not one of its neighboring elements, restricts α-1 to be 145± 50. The second, that radiogenic heat in the Earth's interior remains adequately productive for billions of years, restricts it to be 145±9. A connection with the grand unified theory window is discussed, effectively providing a route to probe ultra-high energy physics with upcoming advances in planetary science.

  4. The fine structure of the ionosphere

    DEFF Research Database (Denmark)

    D'Angelo, N.; Michelsen, Poul

    1967-01-01

    We consider in this note the excitation of ion-acoustic waves by vertical gradients of density in the ionosphere. The conclusion is reached that the fine structure of the ionosphere is probably affected by the resulting instability, as comparison with observations seems to indicate. Recently, Liu......' is its height gradients, and nu is the ion-neutral collision frequency. We have examined the stability of the ionosphere against growth of low-frequency quasielectrostatic waves, taking into account the compressibility of the plasma....

  5. Molecular Eigensolution Symmetry Analysis and Fine Structure

    Directory of Open Access Journals (Sweden)

    William G. Harter

    2013-01-01

    Full Text Available Spectra of high-symmetry molecules contain fine and superfine level cluster structure related to J-tunneling between hills and valleys on rovibronic energy surfaces (RES. Such graphic visualizations help disentangle multi-level dynamics, selection rules, and state mixing effects including widespread violation of nuclear spin symmetry species. A review of RES analysis compares it to that of potential energy surfaces (PES used in Born-Oppenheimer approximations. Both take advantage of adiabatic coupling in order to visualize Hamiltonian eigensolutions. RES of symmetric and D2 asymmetric top rank-2-tensor Hamiltonians are compared with Oh spherical top rank-4-tensor fine-structure clusters of 6-fold and 8-fold tunneling multiplets. Then extreme 12-fold and 24-fold multiplets are analyzed by RES plots of higher rank tensor Hamiltonians. Such extreme clustering is rare in fundamental bands but prevalent in hot bands, and analysis of its superfine structure requires more efficient labeling and a more powerful group theory. This is introduced using elementary examples involving two groups of order-6 (C6 and D3~C3v, then applied to families of Oh clusters in SF6 spectra and to extreme clusters.

  6. Angle-resolved photoemission extended fine structure

    International Nuclear Information System (INIS)

    Measurements of the Angle-Resolved Photoemission Extended Fine Structure (ARPEFS) from the S(1s) core level of a c(2 x 2)S/Ni(001) are analyzed to determine the spacing between the S overlayer and the first and second Ni layers. ARPEFS is a type of photoelectron diffraction measurement in which the photoelectron kinetic energy is swept typically from 100 to 600 eV. By using this wide range of intermediate energies we add high precision and theoretical simplification to the advantages of the photoelectron diffraction technique for determining surface structures. We report developments in the theory of photoelectron scattering in the intermediate energy range, measurement of the experimental photoemission spectra, their reduction to ARPEFS, and the surface structure determination from the ARPEFS by combined Fourier and multiple-scattering analyses. 202 refs., 67 figs., 2 tabs

  7. Magnetic Tension of Sunspot Fine Structures

    CERN Document Server

    Venkatakrishnan, P

    2010-01-01

    The equilibrium structure of sunspots depends critically on its magnetic topology and is dominated by magnetic forces. Tension force is one component of the Lorentz force which balances the gradient of magnetic pressure in force-free configurations. We employ the tension term of the Lorentz force to clarify the structure of sunspot features like penumbral filaments, umbral light bridges and outer penumbral fine structures. We compute vertical component of tension term of Lorentz force over two active regions namely NOAA AR 10933 and NOAA AR 10930 observed on 05 January 2007 and 12 December 2006 respectively. The former is a simple while latter is a complex active region with highly sheared polarity inversion line (PIL). The vector magnetograms used are obtained from Hinode(SOT/SP). We find an inhomogeneous distribution of tension with both positive and negative signs in various features of the sunspots. The existence of positive tension at locations of lower field strength and higher inclination is compatible...

  8. Varying Fine-Structure Constant and the Cosmological Constant Problem

    CERN Document Server

    Fujii, Y

    2003-01-01

    We start with a brief account of the latest analysis of the Oklo phenomenon providing the still most stringent constraint on time-variability of the fine- structure constant $\\alpha$. Comparing this with the recent result from the measurement of distant QSO's appears to indicate a non-uniform time-dependence, which we argue to be related to another recent finding of the accelerating universe. This view is implemented in terms of the scalar-tensor theory, applied specifically to the small but nonzero cosmological constant. Our detailed calculation shows that these two phenomena can be understood in terms of a common origin, a particular behavior of the scalar field, dilaton. We also sketch how this theoretical approach makes it appropriate to revisit non- Newtonian gravity featuring small violation of Weak Equivalence Principle at medium distances.

  9. Oklo Constraint on the Time-Variability of the Fine-Structure Constant

    CERN Document Server

    Fujii, Y

    2003-01-01

    The Oklo phenomenon, natural fission reactors which had taken place in Gabon about 2 billion years ago, porvides one of the most stringent constraints on the possible time-variability of the fine-structure constant $\\alpha$. We first review briefly what it is and how reliable it is in constraining $\\alpha$. We then compare the result with a more recent result on the nonzero change of $\\alpha$ obtained from the observation of the QSO absoorption lines. We suggest a possible way to make these results consistent with each other in terms of the behavior of a scalar field which is expected to be responsible for the accelaration of the universe.

  10. Fine structure constant variation or spacetime anisotropy?

    International Nuclear Information System (INIS)

    Recent observations on the quasar absorption spectra supply evidence for the variation of the fine structure constant α. In this paper, we propose another interpretation of the observational data on the quasar absorption spectra: a scenario with spacetime inhomogeneity and anisotropy. Maybe the spacetime is characterized by the Finsler geometry instead of the Riemann one. The Finsler geometry admits fewer symmetries than the Riemann geometry does. We investigate the Finslerian geodesic equations in the Randers spacetime (a special Finsler spacetime). It is found that the cosmological redshift in this spacetime deviates from the one in general relativity. The modification term to the redshift could be generally revealed as a monopole plus dipole function of spacetime locations and directions. We suggest that this modification corresponds to the spatial monopole and dipole of α variation in the quasar absorption spectra. (orig.)

  11. Bloch oscillations of ultracold atoms and measurement of the fine structure constant; Oscillations de Bloch d'atomes ultrafroids et mesure de la constante de structure fine

    Energy Technology Data Exchange (ETDEWEB)

    Clade, P

    2005-10-15

    From a measurement of the recoil velocity of an atom absorbing a photon, it is possible to deduce a determination of the ratio h/m between the Planck constant and the mass of the atoms and then to deduce a value of the fine structure constant alpha. To do this measurement, we use the technique of Bloch oscillations, which allows us to transfer a large number of recoils to atoms. A velocity sensor, based on velocity selective Raman transition, enables us to measure the momentum transferred to the atoms. A measurement with a statistical uncertainty of 4.4 10{sup -9}, in conjunction with a careful study of systematic effects (5 10{sup -9}), has led us to a determination of alpha with an uncertainty of 6.7 10{sup -9}: {alpha}{sup -1}(Rb) = 137.03599878 (91). This uncertainty is similar to the uncertainty of the best determinations of alpha based on atom interferometry. (author)

  12. Markov Chain Monte Carlo methods applied to measuring the fine structure constant from quasar spectroscopy

    CERN Document Server

    King, Julian A; Webb, John K; Murphy, Michael T

    2009-01-01

    Recent attempts to constrain cosmological variation in the fine structure constant, alpha, using quasar absorption lines have yielded two statistical samples which initially appear to be inconsistent. One of these samples was subsequently demonstrated to not pass consistency tests; it appears that the optimisation algorithm used to fit the model to the spectra failed. Nevertheless, the results of the other hinge on the robustness of the spectral fitting program VPFIT, which has been tested through simulation but not through direct exploration of the likelihood function. We present the application of Markov Chain Monte Carlo (MCMC) methods to this problem, and demonstrate that VPFIT produces similar values and uncertainties for (Delta alpha)/(alpha), the fractional change in the fine structure constant, as our MCMC algorithm, and thus that VPFIT is reliable.

  13. Fine structure of charge exchange lines observed in laboratory plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Ida, K.; Nishimura, S. [National Inst. for Fusion Science, Nagoya (Japan); Kondo, K.

    1997-01-01

    The influence of the fine structure of charge exchange lines appears only at the plasma edge or in the recombining phase where the ion temperature is low enough. The observed spectra in Li III and C VI are consistent with the sum of fine-structure components populated by statistical weights (assuming complete l-mixing) not by direct charge exchange cross sections. Some discrepancy was observed in the intensity ratio of fine-structure components between the observation and calculation for C VI in the recombining phase. The fine-structure of charge exchange lines gives an apparent Doppler shift in plasma rotation velocity measurement using charge exchange spectroscopy. (author)

  14. Implications of a Time-Varying Fine Structure Constant

    CERN Document Server

    Alfonso-Faus, A

    2002-01-01

    Much work has been done after the possibility of a fine structure constant being time-varying. It has been taken as an indication of a time-varying speed of light. Here we prove that this is not the case. We prove that the speed of light may or may not vary with time, independently of the fine structure constant being constant or not. Time variations of the speed of light, if present, have to be derived by some other means and not from the fine structure constant. No implications based on the possible variations of the fine structure constant can be imposed on the speed of light.

  15. An Einstein-Cartan Fine Structure Constant Definition

    Directory of Open Access Journals (Sweden)

    Stone R. A. Jr.

    2010-01-01

    Full Text Available The fine structure constant definition given in Stone R.A. Jr. Progress in Physics, 2010, v.1, 11-13 is compared to an Einstein-Cartan fine structure constant definition. It is shown that the Einstein-Cartan definition produces the correct pure theory value, just not the measure value. To produce the measured value, the pure theory Einstein-Cartan fine structure constant requires only the new variables and spin coupling of the fine structure constant definition in [1].

  16. Fine velocity structures collisional dissipation in plasmas

    Science.gov (United States)

    Pezzi, Oreste; Valentini, Francesco; Veltri, Pierluigi

    2016-04-01

    In a weakly collisional plasma, such as the solar wind, collisions are usually considered far too weak to produce any significant effect on the plasma dynamics [1]. However, the estimation of collisionality is often based on the restrictive assumption that the particle velocity distribution function (VDF) shape is close to Maxwellian [2]. On the other hand, in situ spacecraft measurements in the solar wind [3], as well as kinetic numerical experiments [4], indicate that marked non-Maxwellian features develop in the three-dimensional VDFs, (temperature anisotropies, generation of particle beams, ring-like modulations etc.) as a result of the kinetic turbulent cascade of energy towards short spatial scales. Therefore, since collisional effects are proportional to the velocity gradients of the VDF, the collisionless hypothesis may fail locally in velocity space. Here, the existence of several characteristic times during the collisional relaxation of fine velocity structures is investigated by means of Eulerian numerical simulations of a spatially homogeneous force-free weakly collisional plasma. The effect of smoothing out velocity gradients on the evolution of global quantities, such as temperature and entropy, is discussed, suggesting that plasma collisionality can increase locally due to the velocity space deformation of the particle velocity distribution. In particular, by means of Eulerian simulations of collisional relaxation of a spatially homogeneous force-free plasma, in which collisions among particles of the same species are modeled through the complete Landau operator, we show that the system entropy growth occurs over several time scales, inversely proportional to the steepness of the velocity gradients in the VDF. We report clear evidences that fine velocity structures are dissipated by collisions in a time much shorter than global non-Maxwellian features, like, for example, temperature anisotropies. Moreover we indicate that, if small-scale structures

  17. A five dimensional model of varying effective gravitational and fine structure constants

    CERN Document Server

    Mbelek, J P

    2003-01-01

    We explore the possibility that the reported time variation of the fine structure constant $\\alpha$ is due to a coupling between electromagnetism and gravitation. We consider the coupling predicted by a very simple {\\sl effective} theory of physical interactions, under the form of an improved version of the Kaluza-Klein theory. We show that it is precisely expressed by a variation of the effective fine structure constant with cosmic conditions, and thus with cosmic time. We compare the predicted variation with the recent data from distant quasars absorption line spectra: we find a good agreement, which moreover reconcile the claimed results on $\\alpha$ with the upper limit from the Oklo naturel Uranium fission reactor.

  18. A new analysis of fine-structure constant measurements and modelling errors from quasar absorption lines

    OpenAIRE

    Wilczynska, Michael R.; Webb, John K.; King, Julian A.; Murphy, Michael T.; Bainbridge, Matthew B.; Flambaum, Victor V.

    2015-01-01

    We present an analysis of 23 absorption systems along the lines of sight towards 18 quasars in the redshift range of $0.4 \\leq z_{abs} \\leq 2.3$ observed on the Very Large Telescope (VLT) using the Ultraviolet and Visual Echelle Spectrograph (UVES). Considering both statistical and systematic error contributions we find a robust estimate of the weighted mean deviation of the fine-structure constant from its current, laboratory value of $\\Delta\\alpha/\\alpha=\\left(0.22\\pm0.23\\right)\\times10^{-5...

  19. A Note on Transfinite M Theory and the Fine Structure Constant

    CERN Document Server

    Castro, C

    2001-01-01

    In this short note, using notions from $p$-Adic QFT and $p$-branes, we derive the transfinite M $theoretical$ corrections $(\\alpha_M)^{-1} = 100 + 61 \\phi$ to El Naschie's inverse fine structure constant value $(\\alpha_{HS})^{-1}= 100 + 60\\phi$ which was based on a transfinite Heterotic string theory ormalism . $\\phi$ is the Golden Mean $0.6180339...$. Our results are consistent with recent Astrophysical observations of he Boomerang and Maxima experiments, with previous results based on the four dimensional gravitational conformal anomaly calculations and with an enhanced hierarchy of the number of lines on Del Pezzo surfaces.

  20. Re/Os constraint on the time-variability of the fine-structure constant

    CERN Document Server

    Fujii, Y; Fujii, Yasunori; Iwamoto, Akira

    2003-01-01

    We argue that the accuracy by which the isochron parameters of the decay $^{187}{\\rm Re}\\to ^{187}{\\rm Os}$ are determined by dating iron meteorites may not directly constrain the possible time-dependence of the decay rate and hence of the fine-structure constant $\\alpha$. From this point of view, some of the attempts to analyze the Oklo constraint and the results of the QSO absorption lines are re-examined.

  1. Constraining the Variation in Fine-Structure Constant Using SDSS DR8 QSO Spectra

    CERN Document Server

    Rahmani, H; Srianand, R

    2013-01-01

    We report a robust constrain on the possible variation of fine-structure constant, alpha = e^2/(hbar*c), obtained using O III 4959,5007, nebular emission lines from QSOs. We find Delta-alpha/alpha=-(2.1 +/- 1.6) x 10^(-5) based on a well selected sample of 2347 QSOs from Sloan Digital Sky Survey Data Release 8 with 0.02 < z < 0.74. Our result is consistent with a non-varying alpha at a level of 2 x 10^(-5) over approximately 7 Gyr. This is the largest sample of extragalactic objects yet used to constrain the variation of alpha. While this constraint is not as stringent as those determined using many-multiplet method it is free from various systematic effects. A factor of ~ 4 improvement in Delta-alpha/alpha achieved here compared to the previous study (Bahcall et al. 2004) is just consistent with what is expected based on a factor of 14 times bigger sample used here. This suggests that errors are mainly dominated by the statistical uncertainty. We also find the ratio of transition probabilities correspo...

  2. The Oklo bound on the time variation of the fine-structure constant revisited

    CERN Document Server

    Damour, Thibault Marie Alban Guillaume; Damour, Thibault; Dyson, Freeman

    1996-01-01

    It has been pointed out by Shlyakhter that data from the natural fission reactors which operated about two billion years ago at Oklo (Gabon) had the potential of providing an extremely tight bound on the variability of the fine-structure constant alpha. We revisit the derivation of such a bound by: (i) reanalyzing a large selection of published rare-earth data from Oklo, (ii) critically taking into account the very large uncertainty of the temperature at which the reactors operated, and (iii) connecting in a new way (using isotope shift measurements) the Oklo-derived constraint on a possible shift of thermal neutron-capture resonances with a bound on the time variation of alpha. Our final (95% C.L.) results are: -0.9 \\times 10^{-7} <(alpha^{Oklo} - alpha^{now})/alpha <1.2\\times 10^{-7} and -6.7 \\times 10^{-17} {yr}^{-1} < {\\dot alpha}^{averaged}/alpha <5.0\\times10^{-17} {yr}^{-1}.

  3. Atomic fine structure in a space of constant curvature

    Energy Technology Data Exchange (ETDEWEB)

    Bessis, N.; Bessis, G.; Shamseddine, R. (Lyon-1 Univ., 69 - Villeurbanne (France))

    1982-10-01

    As a contribution to a tentative formulation of atomic physics in a curved space, the determination of atomic fine structure energies in a space of constant curvature is investigated. Starting from the Dirac equation in a curved space-time, the analogue of the Pauli equation in a general coordinate system is derived. The theoretical curvature induced shifts and splittings of the fine structure energy levels are put in evidence and examined for the particular case of the hydrogenic n=2 levels.

  4. Fundamental Nature of the Fine-Structure Constant

    OpenAIRE

    Sherbon, Michael A.

    2014-01-01

    Arnold Sommerfeld introduced the fine-structure constant that determines the strength of the electromagnetic interaction. Following Sommerfeld, Wolfgang Pauli left several clues to calculating the fine-structure constant with his research on Johannes Kepler's view of nature and Pythagorean geometry. The Laplace limit of Kepler's equation in classical mechanics, the Bohr-Sommerfeld model of the hydrogen atom and Julian Schwinger's research enable a calculation of the electron magne...

  5. Atomic fine structure in a space of constant curvature

    International Nuclear Information System (INIS)

    As a contribution to a tentative formulation of atomic physics in a curved space, the determination of atomic fine structure energies in a space of constant curvature is investigated. Starting from the Dirac equation in a curved space-time, the analogue of the Pauli equation in a general coordinate system is derived. The theoretical curvature induced shifts and splittings of the fine structure energy levels are put in evidence and examined for the particular case of the hydrogenic n=2 levels. (author)

  6. 3-Space In-Flow Theory of Gravity: Boreholes, Blackholes and the Fine Structure Constant

    Directory of Open Access Journals (Sweden)

    Cahill R. T.

    2006-04-01

    Full Text Available A theory of 3-space explains the phenomenon of gravity as arising from the time-dependence and inhomogeneity of the differential flow of this 3-space. The emergent theory of gravity has two gravitational constants: G - Newton's constant, and a dimensionless constant alpha. Various experiments and astronomical observations have shown that alpha is the fine structure constant ~1/137. Here we analyse the Greenland Ice Shelf and Nevada Test Site borehole g anomalies, and confirm with increased precision this value of alpha. This and other successful tests of this theory of gravity, including the supermassive black holes in globular clusters and galaxies, and the "dark-matter" effect in spiral galaxies, shows the validity of this theory of gravity. This success implies that the non-relativistic Newtonian gravity was fundamentally flawed from the beginning, and that this flaw was inherited by the relativistic General Relativity theory of gravity.

  7. Bloch oscillations of ultracold atoms and measurement of the fine structure constant

    International Nuclear Information System (INIS)

    From a measurement of the recoil velocity of an atom absorbing a photon, it is possible to deduce a determination of the ratio h/m between the Planck constant and the mass of the atoms and then to deduce a value of the fine structure constant alpha. To do this measurement, we use the technique of Bloch oscillations, which allows us to transfer a large number of recoils to atoms. A velocity sensor, based on velocity selective Raman transition, enables us to measure the momentum transferred to the atoms. A measurement with a statistical uncertainty of 4.4 10-9, in conjunction with a careful study of systematic effects (5 10-9), has led us to a determination of alpha with an uncertainty of 6.7 10-9: α-1(Rb) = 137.03599878 (91). This uncertainty is similar to the uncertainty of the best determinations of alpha based on atom interferometry. (author)

  8. The variation of the fine structure constant: testing the dipole model with thermonuclear supernovae

    CERN Document Server

    Kraiselburd, Lucila; Negrelli, Carolina; Berro, Enrique García

    2014-01-01

    The large-number hypothesis conjectures that fundamental constants may vary. Accordingly, the spacetime variation of fundamental constants has been an active subject of research for decades. Recently, using data obtained with large telescopes a phenomenological model in which the fine structure constant might vary spatially has been proposed. We test whether this hypothetical spatial variation of {\\alpha}, which follows a dipole law, is compatible with the data of distant thermonuclear supernovae. Unlike previous works, in our calculations we consider not only the variation of the luminosity distance when a varying {\\alpha} is adopted, but we also take into account the variation of the peak luminosity of Type Ia supernovae resulting from a variation of {\\alpha}. This is done using an empirical relation for the peak bolometric magnitude of thermonuclear supernovae that correctly reproduces the results of detailed numerical simulations. We find that there is no significant difference between the several phenome...

  9. 3-Space In-Flow Theory of Gravity: Boreholes, Blackholes and the Fine Structure Constant

    CERN Document Server

    Cahill, R T

    2006-01-01

    A theory of 3-space explains the phenomenon of gravity as arising from the time-dependence and inhomogeneity of the differential flow of this 3-space. The emergent theory of gravity has two gravitational constants: G - Newton's constant, and a dimensionless constant - alpha. Various experiments and astronomical observations have shown that alpha is the fine structure constant 1/137. Here we analyse the Greenland Ice Shelf and Nevada Test Site borehole g anomalies, and confirm with increased precision this value of alpha. This and other successful tests of this theory of gravity, including the supermassive black holes in globular clusters and galaxies, and the `dark-matter' effect in spiral galaxies, demonstrates the validity of this theory of gravity. This success implies that Newtonian gravity was fundamentally flawed from the beginning.

  10. On the variation of the fine-structure constant in Friedmann Universes

    CERN Document Server

    Sumner, W Q

    2005-01-01

    The fine-structure constant alpha does not vary as Friedmann Universes evolve, a conclusion based on assessments of quantum mechanics and electrodynamics. alpha = e^2/(4pi epsilon hbar c), where e is the charge of the electron, epsilon is vacuum permittivity, c is the speed of light, and hbar is Planck's constant divided by 2pi. This inquiry was motivated by Schrodinger's (1939) prediction that all quantum wave functions coevolve with Friedmann geometry and a similar prediction by Sumner (1994) for vacuum permittivity. The functional form of variations in quantum wave functions found by Schrodinger is enough to show that alpha does not vary. Electrodynamics also predicts that alpha does not vary. Evolutionary changes in c exactly cancel those in vacuum permittivity and other factors in alpha do not change. Since alpha appears in all first-order perturbation formulas for atomic energy levels, comparisons of the atomic spectra of distant atoms with those in laboratories provide an experimental measure of this p...

  11. Constraining the Variation of the Fine Structure Constant with Observations of Narrow Quasar Absorption Lines

    CERN Document Server

    Songaila, A

    2014-01-01

    The unequivocal demonstration of temporal or spatial variability in a fundamental constant of nature would be of enormous significance. Recent attempts to measure the variability of the fine structure constant, alpha, over cosmological time, using high resolution spectra of high redshift quasars observed with 10m class telescopes, have produced conflicting results. We used the Many Multiplet (MM) method with Mg II and Fe II lines on very high signal-to-noise, high resolution (R = 72,000) Keck HIRES spectra of eight narrow quasar absorption systems and show, using careful wavelength calibrations, that the systematic wavelength errors are too large for previous observations to have had the sensitivity to detect such variation using this technique. We find no significant change in alpha, Delta(alpha)/alpha =(0.00 +/- 0.24) x 10^(-5), in the redshift range z=0.7-1.5. We also show that the scatter in measurements of Delta(alpha)/alpha arising from line selection can be considerably larger than assigned statistical...

  12. Bound on the variation in the fine structure constant implied by Oklo data

    CERN Document Server

    Hamdan, Leila

    2015-01-01

    Dynamical models of dark energy can imply that the fine structure constant $\\alpha$ varies over cosmological time scales. Data on shifts in resonance energies $E_r$ from the Oklo natural fission reactor have been used to place restrictive bounds on the change in $\\alpha$ over the last 1.8 billion years. We review the uncertainties in these analyses, focussing on corrections to the standard estimate of $k_\\alpha\\!=\\!\\alpha\\,dE_r/d\\alpha$ due to Damour and Dyson. Guided, in part, by the best practice for assessing systematic errors in theoretical estimates spelt out by Dobaczewski et al. [in J. Phys. G: Nucl. Part. Phys. 41, 074001 (2014)], we compute these corrections in a variety of models tuned to reproduce existing nuclear data. Although the net correction is uncertain to within a factor of 2 or 3, it constitutes at most no more than 25% of the Damour-Dyson estimate of $k_\\alpha$. Making similar allowances for the uncertainties in the modeling of the operation of the Oklo reactors, we conclude that the rela...

  13. Structure in the Lyman-Alpha Forest

    CERN Document Server

    Liske, J

    1997-01-01

    The spatial distribution of Ly-alpha forest absorption systems toward a group of 8, closely spaced QSOs has been analysed and evidence for large scale structure has been found at = 2.8. Our technique is based on the first and second moments of the transmission probability density function which is capable of identifying and assessing the significance of regions of over- or underdense Ly-alpha absorption. The data has revealed at least two interesting features. 1. An overdense structure at z = 2.27 which extends at least over ~8 h^{-1} comoving Mpc (q_0 = 0.5) in the plane of the sky. Metal absorption lines have been found at the same redshift and thus a cluster or proto-cluster of galaxies seems to have been discovered. 2. A void at z = 2.97, extending over ~20 h^{-1} comoving Mpc in the plane of the sky, possibly caused by a locally increased UV ionising flux due to a foreground QSO.

  14. Fine Structure of Regenerated Silk Fibroin Solids

    Institute of Scientific and Technical Information of China (English)

    LI Ming-zhong; WU Zheng-yu; Norihiko Minoura; YAN Hao-jing

    2002-01-01

    The fibronin solids (membrane and gel) were prepared from regenerated silk fibroin solution in different ways. The structure of the fibroin solids and its change during storage were studied. The results indicated that the structure of fibroin membraneair-dried at 30℃ or freeze dried at a freezing temperature of - 20 - - 4℃ was the coexistence of amporphous and silk I structure. The amorphous region could partly be transformed into silk I structure under room temperature and humidity. The structure of porous silk fibroin membrane was the coexistence of amorphous and small part of silk Ⅱ, if the aqueous fibroin was freeze dried within the temperature range of - 80℃ to - 20℃, and the amorphous partly transformed into silk I during storage. Thestructure of fibroin gel naturally forming when kept at room temperature was coexistent of amorphous and silk Ⅱ. The content of Gly and ala was high in the surface membrane of aqueous fibroin and its structure was mostly silk I and silk Ⅱ with high crystallinity.

  15. Control of single quantum dot emission characteristics and fine structure by lateral electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Ulrich, S.M.; Hafenbrak, R.; Michler, P. [Institut fuer Halbleiteroptik und Funktionelle Grenzflaechen, Universiaet Stuttgart (Germany); Vogel, M.M. [Institut fuer Halbleiteroptik und Funktionelle Grenzflaechen, Universiaet Stuttgart (Germany); Institut fuer Strahlwerkzeuge, Universitaet Stuttgart (Germany); Wang, L. [Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany); Rastelli, A.; Schmidt, O.G. [Insitute for Integrative Nanosciences, IFW Dresden (Germany)

    2009-02-15

    The spontaneous emission characteristics of individual self-assembled (In,Ga)As/GaAs quantum dots have been investigated under the application of a tunable electric field in the lateral growth plane. For the neutral excitonic and bi-excitonic as well as a singly-charged (trionic) QD carrier configuration, similar quantum-confined Stark effects could be observed, thus enabling a direct and comparative determination of corresponding polarizability values {alpha}. In addition we have applied a refined detection technique of high-resolution Fabry-Perot interferometry on single QDs to investigate the anisotropy-induced excitonic fine structure and to monitor its tunability under a lateral electric field. Whereas most quantum dots reveal an oscillatory-type modulation and partial reduction in fine structure under the applied field, we also demonstrate the case of a selected QD where the initial fine structure could even be reversibly tuned down to zero. This fine structure tunability of single QDs represents an essential prerequisite for the realization of individually controlled entangled photon sources in the future. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Was the fine-structure constant variable over cosmological time?

    International Nuclear Information System (INIS)

    Cosmological variation of the fine-structure constant (α) dependent on the redshifts of quasars. Using the emission (absorption) systems in the spectra of distant quasars, we investigate the effects of the cosmology variability in the value of the fine-structure constant (α) dependent on the redshifts of quasars during the evolution of Universe. We obtain optical spectra of fine-structure transitions in [Ne-III], [Ne-V], [O-III], [O-I], and [S-II] multiplets from a sample of 14 Seyfert 1.5 galaxies in the low-z range. 0.035 2(t)/α2(0) = (0.999965 ± 0.00005529). (authors)

  17. Helium 23P Fine Structure Measurement in a Discharge Cell

    Science.gov (United States)

    Zelevinsky, T.; Farkas, D.; Gabrielse, G.

    2005-12-01

    A precise measurement of helium 23P fine structure was carried out in a discharge cell using Doppler-free laser spectroscopy. It is the only known experiment to directly measure all three fine structure intervals at a 1 kHz level of accuracy. The 23P1 - 23P2 interval value agrees with other experiments but disagrees with theoretical predictions of two-electron QED. When this disagreement is resolved, the 23P0 - 23P1 interval measurement reported here will allow a determination of the fine structure constant to 14 parts in 109, surpassing the precision of the well known QED-independent quantum Hall effect and Josephson effect determinations. The discharge cell is shown to be advantageous in the study and correction of systematic frequency shifts related to light pressure, and the use of the cell ensures that the possible systematic errors are substantially different from those reported in other experiments.

  18. Fine structure of helium and light helium-like ions

    OpenAIRE

    Pachucki, Krzysztof; Yerokhin, Vladimir A.

    2010-01-01

    Calculational results are presented for the fine-structure splitting of the 2^3P state of helium and helium-like ions with the nuclear charge Z up to 10. Theoretical predictions are in agreement with the latest experimental results for the helium fine-structure intervals as well as with the most of the experimental data available for light helium-like ions. Comparing the theoretical value of the 2^3P_0-2^3P_1 interval in helium with the experimental result [T. Zelevinsky et al. Phys. Rev. Let...

  19. Spectral fine structure effects on material and doppler reactivity worth

    International Nuclear Information System (INIS)

    New formulations concerning the fine structure effects on the reactivity worth of resonances are developed and conclusions are derived following the extension to more general types of perturbations which include: the removal of resonance material at finite temperatures and the temperature variation of part of the resonance material. It is concluded that the flux method can overpredict the reactivity worth of resonance materials more than anticipated. Calculations on the Doppler worth were carried out; the results can be useful for asessing the contribution of the fine structure effects to the large discrepancy that exists between the calculated and measured small sample Doppler worths. (B.G.)

  20. Cosmological Variation of the Fine Structure Constant from an Ultra-Light Scalar Field: The Effects of Mass

    CERN Document Server

    Gardner, C L

    2003-01-01

    Cosmological variation of the fine structure constant $\\alpha$ due to the evolution of a spatially homogeneous ultra-light scalar field ($m \\sim H_0$) during the matter and $\\Lambda$ dominated eras is analyzed. Agreement of $\\Delta \\alpha/\\alpha$ with the value suggested by recent observations of quasar absorption lines is obtained by adjusting a single parameter, the coupling of the scalar field to matter. Asymptotically $\\alpha(t)$ in this model goes to a constant value $\\bar{\\alpha} \\approx \\alpha_0$ in the early radiation and the late $\\Lambda$ dominated eras. The coupling of the scalar field to (nonrelativistic) matter drives $\\alpha$ slightly away from $\\bar{\\alpha}$ in the epochs when the density of matter is important. Simultaneous agreement with the more restrictive bounds on the variation $|\\Delta \\alpha/\\alpha|$ from the Oklo natural fission reactor and from meteorite samples can be achieved if the mass of the scalar field is on the order of 0.5--0.6 $\\bar{H}$, where $\\bar{H} = \\Omega_\\Lambda^{1/2}...

  1. Oscillatory behavior of chromospheric fine structures in a network and a semi-active regions

    CERN Document Server

    Bostanci, Z F; Al, N

    2014-01-01

    In the present work, we study the periodicities of oscillations in dark fine structures using observations of a network and a semi-active region close to the solar disk center. We simultaneously obtained spatially high resolution time series of white light images and narrow band images in the H$\\alpha$ line using the 2D G\\"ottingen spectrometer, which were based on two Fabry-Perot interferometers and mounted in the VTT/Observatorio del Teide/Tenerife. During the observations, the H$\\alpha$ line was scanned at 18 wavelength positions with steps of 125 m\\AA. We computed series of Doppler and intensity images by subtraction and addition of the H$\\alpha$ $\\pm$ 0.3 \\AA\\ and $\\pm$ 0.7 \\AA\\ pairs, sampling the upper chromosphere and the upper photosphere, respectively. Then we obtained power, coherence and phase difference spectra by performing a wavelet analysis to the Doppler fluctuations. Here, we present comparative results of oscillatory properties of dark fine structures seen in a network and a semi-active reg...

  2. The variation of the fine-structure constant from disformal couplings

    CERN Document Server

    van de Bruck, Carsten; Nunes, Nelson J

    2015-01-01

    We study a theory in which the electromagnetic field is disformally coupled to a scalar field, in addition to a usual non-minimal electromagnetic coupling. We show that disformal couplings modify the expression for the fine-structure constant, alpha. As a result, the theory we consider can explain the non-zero reported variation in the evolution of alpha by purely considering disformal couplings. We also find that if matter and photons are coupled in the same way to the scalar field, disformal couplings itself do not lead to a variation of the fine-structure constant. A number of scenarios are discussed consistent with the current astrophysical, geochemical, laboratory and the cosmic microwave background radiation constraints on the cosmological evolution of alpha. The models presented are also consistent with the current type Ia supernovae constraints on the effective dark energy equation of state. We find that the Oklo bound in particular puts strong constraints on the model parameters. From our numerical r...

  3. Binding energy and fine structure of the He- ion

    Institute of Scientific and Technical Information of China (English)

    ZHUO; Lin; ZHU; Jing-jing; GOU; Bing-cong

    2007-01-01

    The variational method using a multiconfiguration wavefunction is carried out on the core-excited state 1s2s2p 4P0 for helium negative ion, including mass polarization and relativistic corrections. Binding energy and fine structure are reported. The results are compared with other theoretical and experimental date in the literature.

  4. The Fine Structure of Equity-Index Option Dynamics

    DEFF Research Database (Denmark)

    Andersen, Torben G.; Bondarenko, Oleg; Todorov, Viktor;

    We analyze the high-frequency dynamics of S&P 500 equity-index option prices by constructing an assortment of implied volatility measures. This allows us to infer the underlying fine structure behind the innovations in the latent state variables driving the movements of the volatility surface. In...

  5. Relativistic corrections in atoms and space-time variation of the fine structure constant

    Energy Technology Data Exchange (ETDEWEB)

    Dzuba, V.A.; Flambaum, V.V.; Murphy, M.T.; Webb, J.K. [School of Physics, Univ. of New South Wales, Sydney, NSW (Australia)

    2001-07-01

    Comparison of quasar absorption line spectra with laboratory spectra provides the best probe for variability of the fine structure constant, {alpha}=e{sup 2}/{Dirac_h}c, over cosmological time-scales. We have demonstrated that high sensitivity to the variation of a can be obtained from a comparison of the spectra of heavy and light atoms and have obtained an order of magnitude gain in precision over previous methods. Our new data hint that a was smaller at earlier epochs. Careful searches have so far not revealed any spurious e.ect that can explain the observations.

  6. Time Evolution of the Fine Structure Constant in a Two-Field Quintessence Model

    CERN Document Server

    Bento, M C; Santos, N M C

    2004-01-01

    We examine the variation of the fine structure constant in the context of a two-field quintessence model. We find that, for solutions that lead to a transient late period of accelerated expansion, it is possible to fit the data arising from quasar spectra and comply with the bounds on the variation of $\\alpha$ from the Oklo reactor, meteorite analysis, atomic clock measurements, Cosmic Microwave Background Radiation and Big Bang Nucleosynthesis. That is more difficult if we consider solutions corresponding to a late period of permanent accelerated expansion.

  7. Fine-structure Constant, Anomalous Magnetic Moment, Relativity Factor and the Golden Ratio that Divides the Bohr Radius

    OpenAIRE

    Heyrovska, R.; Narayan, S

    2005-01-01

    Sommerfeld introduced the fine-structure constant into physics, while he was taking into account the relativistic effects in the theory of the hydrogen atom. Ever since, it has puzzled many scientists like Eddington, Dirac, Feynman and others. Here the mysterious fine-structure constant, alpha = (Compton wavelength/de Broglie wavelength) = 1/137.036 = 2.627/360 is interpreted based on the finding that it is close to 2.618/360 = 1/137.508, where the Compton wavelength for hydrogen is a distanc...

  8. Theory of the Lamb shift and Fine Structure in $\\boldsymbol{(\\mu{}^{4}\\mathrm{He})^{+}}$

    CERN Document Server

    Diepold, Marc; Franke, Beatrice; Antognini, Aldo; Kottmann, Franz; Pohl, Randolf

    2016-01-01

    An up to date review of the theoretical contributions to the $2S\\rightarrow{}2P$ Lamb shift and the fine structure of the $2P$-state in the $(\\mu^4\\mathrm{He})^+$ ion is given. This summary will serve as the basis for the extraction of the alpha particle charge radius from the muonic helium Lamb shift measurements at the Paul Scherrer Institute Switzerland. Individual theoretical contributions needed for a charge radius extraction were compared and compiled into a consistent summary using the already established framework we used for muonic hydrogen and deuterium. The influence of the alpha particle charge distribution on the elastic two-photon exchange is studied to rule out possible model dependencies of the energy levels on the electric form factor of the nucleus.

  9. Possible evidence for a variable fine structure constant from QSO absorption lines systematic errors

    CERN Document Server

    Murphy, M T; Flambaum, V V; Churchill, C W; Prochaska, J X

    2001-01-01

    Comparison of quasar absorption spectra with laboratory spectra allow us to probe possible variations in the fundamental constants over cosmological time-scales. In a companion paper we present an analysis of Keck/HIRES spectra and report possible evidence suggesting that the fine structure constant, alpha, may have been smaller in the past: da/a = (-0.72 +/- 0.18) * 10^{-5} over the redshift range 0.5 < z < 3.5. In this paper we describe a comprehensive investigation into possible systematic effects. Most of these do not significantly influence our results. When we correct for those which do produce a significant systematic effect in the data, the deviation of da/a from zero becomes more significant. We are lead increasingly to the interpretation that alpha was slightly smaller in the past.

  10. A new analysis of fine-structure constant measurements and modelling errors from quasar absorption lines

    CERN Document Server

    Wilczynska, Michael R; King, Julian A; Murphy, Michael T; Bainbridge, Matthew B; Flambaum, Victor V

    2015-01-01

    We present an analysis of 23 absorption systems along the lines of sight towards 18 quasars in the redshift range of $0.4 \\leq z_{abs} \\leq 2.3$ observed on the Very Large Telescope (VLT) using the Ultraviolet and Visual Echelle Spectrograph (UVES). Considering both statistical and systematic error contributions we find a robust estimate of the weighted mean deviation of the fine-structure constant from its current, laboratory value of $\\Delta\\alpha/\\alpha=\\left(0.22\\pm0.23\\right)\\times10^{-5}$, consistent with the dipole variation reported in Webb et al. and King et al. This paper also examines modelling methodologies and systematic effects. In particular we focus on the consequences of fitting quasar absorption systems with too few absorbing components and of selectively fitting only the stronger components in an absorption complex. We show that using insufficient continuum regions around an absorption complex causes a significant increase in the scatter of a sample of $\\Delta\\alpha/\\alpha$ measurements, th...

  11. Electron excitation rates among fine structure levels in O III

    International Nuclear Information System (INIS)

    Electron collision strengths have been calculated for 146 transitions among the fine-structure levels in O III using a suitable transformation of LS coupling reactance matrix elements computed with the R-matrix method. These have been obtained at a fine energy grid in an energy region below 5.16 Ry and are found to be varying with electron energy, exhibiting a complicated resonance structure in almost the entire energy range. These have been averaged over a Maxwellian distribution of electron energies to get the effective collision strengths which are very simply related to the excitation and the de-excitation rate coefficients. The results are tabulated in a temperature region below 60,000 K. These are the first extensive results in the literature and are believed to be highly useful for astrophysical plasma diagnostics

  12. Photoreceptor fine structure in the bobtail goanna (Tiliqua rugosa)

    OpenAIRE

    Braekevelt, Charlie R.

    1989-01-01

    The fine structure of the retinal photoreceptors has been studied by light and electron microscopy in the bobtail goanna (Tiliqua rugosa) an Australian diurna1 lizard. The photoreceptors in this species are readily divisible into rods or cones based on morphological criteria. Single cones are the dominate cell type with a cone:rod ratio of about 80: 1. No multiple photoreceptors were present nor was a photoreceptor mosiac observed. Cones are large cells with a ...

  13. Subcortical representation of speech fine structure relates to reading ability

    OpenAIRE

    Hornickel, Jane; Anderson, Samira; Skoe, Erika; Yi, Han-Gyol; Kraus, Nina

    2012-01-01

    Impaired perception of consonants by poor readers is reflected in poor subcortical encoding of speech timing and harmonics. We assessed auditory brainstem representation of higher harmonics within a consonant-vowel formant transition to identify relationships between speech fine structure and reading. Responses were analyzed in three ways: a single stimulus polarity, adding responses to inverted polarities (emphasizing low harmonics), and subtracting responses to inverted polarities (emphasiz...

  14. Quintessential Nature of the Fine-Structure Constant

    OpenAIRE

    Sherbon, Michael A.

    2015-01-01

    7 pages International audience An introduction is given to the geometry and harmonics of the Golden Apex in the Great Pyramid, with the metaphysical and mathematical determination of the fine-structure constant of electromagnetic interactions. Newton's gravitational constant is also presented in harmonic form and other fundamental physical constants are then found related to the quintessential geometry of the Golden Apex in the Great Pyramid.

  15. Limits on variations of the fine-structure constant with gravitational potential from white-dwarf spectra

    CERN Document Server

    Berengut, J C; Ong, A; Webb, J K; Barrow, John D; Barstow, M A; Preval, S P; Holberg, J B

    2013-01-01

    We propose a new probe of the variation of the fine structure constant, alpha, in a strong gravitational field using metal lines in the spectra of white dwarf stars. Comparison of laboratory spectra with far-UV astronomical spectra from the white dwarf star G191-B2B recorded by the Hubble Space Telescope Imaging Spectrograph gives limits on the fractional variation of alpha of (Delta alpha/alpha)=(4.2 +- 1.6)x10^(-5) and (-6.1 +- 5.8)x10^(-5) from Fe V and Ni V spectra, respectively, at a dimensionless gravitational potential relative to Earth of (Delta phi) ~ 5x10^(-5). With better determinations of the laboratory wavelengths of the lines employed these results could be improved by up to two orders of magnitude.

  16. Precise limits on cosmological variability of the fine-structure constant with zinc and chromium quasar absorption lines

    CERN Document Server

    Murphy, Michael T; Prochaska, J Xavier

    2016-01-01

    The strongest transitions of Zn and CrII are the most sensitive to relative variations in the fine-structure constant ($\\Delta\\alpha/\\alpha$) among the transitions commonly observed in quasar absorption spectra. They also lie within just 40 \\AA\\ of each other (rest frame), so they are resistant to the main systematic error affecting most previous measurements of $\\Delta\\alpha/\\alpha$: long-range distortions of the wavelength calibration. While Zn and CrII absorption is normally very weak in quasar spectra, we obtained high signal-to-noise, high-resolution echelle spectra from the Keck and Very Large Telescopes of 9 rare systems where it is strong enough to constrain $\\Delta\\alpha/\\alpha$ from these species alone. These provide 12 independent measurements (3 quasars were observed with both telescopes) at redshifts 1.0--2.4, 11 of which pass stringent reliability criteria. These 11 are all consistent with $\\Delta\\alpha/\\alpha=0$ within their individual uncertainties of 3.5--13 parts per million (ppm), with a we...

  17. Relativistic effects in Sr, Dy, YbII and YbIII and search for variation of the fine structure constant

    CERN Document Server

    Dzuba, V A; Marchenko, M V

    2003-01-01

    A possibility for fundamental constants to vary in time is suggested by theories unifying gravity with other interactions. In this article we examine proposals to use optical transitions of Sr, Dy, YbII and YbIII for the search of the time variation of the fine structure constant $\\alpha$. Frequencies of atomic transitions are calculated using relativistic Hartree-Fock method and configuration interaction technique. The effect of variation of $\\alpha$ on the frequencies is studied by varying $\\alpha$ in computer codes. Accuracy of measurements needed to improve current best limit on the time variation of $\\alpha$ is discussed.

  18. What could the value of the cosmological constant tell us about the future variation of the fine structure constant?

    CERN Document Server

    Romano, Antonio Enea

    2014-01-01

    Motivated by reported claims of the measurements of a variation of the fine structure constant $\\alpha$ we consider a theory where the electric charge, and consequently $\\alpha$, is not a constant but depends on the Ricci scalar $R$. %We then show how this can be considered a particular case of the Bekenstein theory in which there is no need to %introduce an additional kinetic term for the scalar field associated to the electric charge, since the Einstein's% %equations are sufficient to determine the geometry and, consequently the Ricci scalar. We then study the cosmological implications of this theory, considering in particular the effects of dark energy and of a cosmological constant on the evolution of $\\alpha$. Some low-red shift expressions for the variation of $\\alpha(z)$ are derived, showing the effects of the equation of state of dark energy on $\\alpha$ and observing how future measurements of the variation of the fine structure constant could be used to determine indirectly the equation of state of d...

  19. Solar chromospheric fine scale structures: dynamics and energetics

    Science.gov (United States)

    Tziotziou, K.

    2012-01-01

    The solar chromosphere is a very inhomogeneous and dynamic layer of the solar atmosphere that exhibits several phenomena on a wide range of spatial and temporal scales. High-resolution and long-duration observations, employing mostly lines, such as Halpha, the Ca II infrared lines and the Ca II H and K lines, obtained both from ground-based telescope facilities (e.g. DST, VTT, THEMIS, SST, DOT), as well as state-of-the-art satellites (e.g. SOHO, TRACE, HINODE) reveal an incredibly rich, dynamic and highly structured chromospheric environment. What is known in literature as the chromospheric fine-scale structure mainly consists of small fibrilar-like features that connect various parts of quiet/active regions or span across the chromospheric network cell interiors, showing a large diversity of both physical and dynamic characteristics. The highly dynamic, fine-scale chromospheric structures are mostly governed by flows which reflect the complex geometry and dynamics of the local magnetic field and play an important role in the propagation and dissipation of waves. A comprehensive study of these structures requires deep understanding of the physical processes involved and investigation of their intricate link with structures/processes at lower photospheric levels. Furthermore, due to their large number present on the solar surface, it is essential to investigate their impact on the mass and energy transport to higher atmospheric layers through processes such as magnetic reconnection and propagation of waves. The in-depth study of all aforementioned characteristics and processes, with the further addition of non-LTE physics, as well as the use of three-dimensional numerical simulations poses a fascinating challenge for both theory and numerical modeling of chromospheric fine-scale structures.

  20. The fine structure of capillaries and small arteries.

    Science.gov (United States)

    MOORE, D H; RUSKA, H

    1957-05-25

    Details of capillary endothelia of the mammalian heart are described and compared with capillaries of other organs and tissues. Continuous invagination and pinching off of the plasma membrane to form small vesicles which move across the cytoplasm are suggested as constituting a means of active and selective transmission through capillary walls (12). This might be designated as cytopempsis (transmission by cell). The fine structure of the different layers in the walls of small heart arteries is demonstrated. Endothelial protrusions extend through windows of the elestica interna to make direct contact with smooth muscle plasma membranes. The elastica interna appears to vary greatly in both thickness and density, and probably restricts filtration, diffusion, and osmosis to such an extent that windows and the transport mechanisms described (cytopempsis) are necessary for the functional integrity of the smooth muscle layer. The contractile material consists of very fine, poorly oriented filaments. PMID:13438930

  1. Study of the inner structure of fine coal filter cake

    Energy Technology Data Exchange (ETDEWEB)

    Shi Chang-sheng; Xie Guang-yuan; Zhang Yue-qiu [China University of Mining & Technology, Xuzhou (China). School of Environmental Sciences and Spatial Informatics

    2006-07-01

    The dewatering of fine coal in coal processing is very important. Based on the theories of dewatering, the inner structure of the filter cake was analyzed using the scanning-electron microscope. The porosity, the maximal diameter of voids and the average area of voids were analyzed in detail. Genuine causes influencing final moisture of the cake were identified. The results show that the porosity of the filter cake increased from 3.87 % to 15.46 % with the increasing of size of fine coal from 0.045 mm to 0.5 mm, and the average area of the void increased from 2.14{mu}m{sup 2} to 8.24 {mu}m{sup 2}. 8 refs., 8 figs., 5 tabs.

  2. The fine structure of the Saturnian ring system

    International Nuclear Information System (INIS)

    A dust disc within a planetary magnetosphere constitutes a novel type of dust-ring current. Such an azimuthal current carrying dust disc is subject to the dusty plasma analog of the well known finite-resistivity 'tearing' mode instability in regular plasma current sheets, at long wavelengths. It is proposed that the presently observed fine ringlet structure of the Saturnian ring system is a relic of this process operating at cosmogonic times and breaking up the initial proto-ring (which may be regarded as an admixture of fine dust and plasma) into an ensemble of thin ringlets. It is shown that this instability developes at a rate that is many orders of magnitude faster than any other known instability, when the disc thickness reaches a value that is comparable to its present observed value. (Auth.)

  3. The fine structure line deficit in S 140

    CERN Document Server

    Ossenkopf, Volker; Okada, Yoko; Mookerjea, Bhaswati; van der Tak, Floris F S; Simon, Robert; Pütz, Patrick; Güsten, Rolf

    2015-01-01

    We try to understand the gas heating and cooling in the S 140 star forming region by spatially and spectrally resolving the distribution of the main cooling lines with GREAT/SOFIA. We mapped the fine structure lines of [OI] (63 {\\mu}m) and [CII] (158 {\\mu}m) and the rotational transitions of CO 13-12 and 16-15 with GREAT/SOFIA and analyzed the spatial and velocity structure to assign the emission to individual heating sources. We measure the optical depth of the [CII] line and perform radiative transfer computations for all observed transitions. By comparing the line intensities with the far-infrared continuum we can assess the total cooling budget and measure the gas heating efficiency. The main emission of fine structure lines in S 140 stems from a 8.3'' region close to the infrared source IRS 2 that is not prominent at any other wavelength. It can be explained by a photon-dominated region (PDR) structure around the embedded cluster if we assume that the [OI] line intensity is reduced by a factor seven due ...

  4. Alpha Decay, Shell Structure, and New Elements

    Institute of Scientific and Technical Information of China (English)

    PENZhong-Zhou; TAIFei; SHENWen-Qing

    2003-01-01

    We systematically analyze the experimental data of alpha decay in even-even heavy nuclei far from stability and find that the Geiger-Nuttall law brea~s for an isotopic chain when its neutron number is across a marc number or there is a deformed subshell. This break can be used to identify new magic numbers of superheavy nuclei. It is also discovered that there is a new linear relation between the logarithm of half-life and the reciprocal of the square root of decay energy for N = 126 and N = 152 isotones. It could be a new law of alpha decay for nuclei with magic neutron numbers but the physics behind it is to be explored. The significance of these researches for the search of new elements is discussed.

  5. Alpha Decay, Shell Structure, and New Elements

    Institute of Scientific and Technical Information of China (English)

    REN Zhong-Zhou; TAI Fei; SHEN Wen-Qing

    2003-01-01

    We systematically analyze the experimental data of alpha decay in even-even heavy nuclei far from stabilityand find that the Geiger-Nuttall law breaks for an isotopic chain when its neutron number is across a magic numberor there is a deformed subshell. This break can be used to identify new magic numbers of superheavy nuclei. It is alsodiscovered that there is a new linear relation between the logarithm of half-life and the reciprocal of the square root ofdecay energy for N = 126 and N = 152 isotones. It could be a new law of alpha decay for nuclei with magic neutronnumbers but the physics behind it is to be explored. The significance of these researches for the search of new elementsis discussed.

  6. Structural transformation of finely dispersed, various rank anthracite during graphitization

    Energy Technology Data Exchange (ETDEWEB)

    Chuparova, L.D.; Yurkovskii, I.M.; Ivanov, V.P.; Kirilin, N.S.

    1987-09-01

    Investigates effect of dispersity, rank and petrographic composition on structural transformation of anthracite during high temperature treatment (1600-2500 C). Discusses tests made on 3 types of vitrainized anthracite (low, medium and high degree of metamorphism) obtained from Donbass mines and on samples of fusainized anthracite from the Gorlovsk basin. Establishes that vitrainized high and medium metamorphic grade anthracite might have components that do not graphitize. States that fine comminution of anthracite results in transformation of componental composition and that the effect of mineral additives on anthracite graphitization rises with increase in degree of comminution. 3 refs.

  7. Distortion product otoacoustic emission fine structure of symphony orchestra musicians

    DEFF Research Database (Denmark)

    Reuter, Karen; Hammershøi, Dorte

    Otoacoustic emissions (OAE) are sounds produced by the healthy inner ear. They can be measured as low-level signals in the ear canal and are used to monitor the functioning of outer hair cells.Several studies indicate that OAE might be a more sensitive measure to detect early noise-induced hearing...... losses than puretone audiometry. The distortion product otoacoustic emission (DPOAE) fine structure is obtained when the ear is stimulated by dual tone stimuli using a high frequency resolution. It is characterized by quasi-periodic variations across frequency, as it can be observed in the hearing...

  8. Distortion product otoacoustic emission fine structure of symphony orchestra musicians

    DEFF Research Database (Denmark)

    Reuter, Karen; Hammershøi, Dorte

    2006-01-01

    Otoacoustic emissions (OAE) are sounds produced by the healthy inner ear. They can be measured as low-level signals in the ear canal and are used to monitor the functioning of outer hair cells. Many studies indicate that OAE might be a more sensitive measure to detect early noise-induced haring...... losses than pure-tone audiometry. The distortion product otoacoustic emission (DPOAE) fine structure is obtained when the ear is stiumulated by dual tone stimuli using a high frequency resolution. It is characterized by quasi-periodic variations across frequency, as it can be observed in the hearing...

  9. A simple cosmology with a varying fine structure constant

    International Nuclear Information System (INIS)

    We investigate the cosmological consequences of a theory in which the electric charge e can vary. In this theory the fine structure 'constant', α, remains almost constant in the radiation era, undergoes a small increase in the matter era, but approaches a constant value when the universe starts accelerating because of a positive cosmological constant. This model satisfies geonuclear, nucleosynthesis, and cosmic microwave background constraints on time variation in α , while fitting the observed accelerating Universe and evidence for small α variations in quasar spectra. It also places specific restrictions on the nature of the dark matter. Further tests, involving stellar spectra and Eoetvoes experiments, are proposed

  10. Urban, Forest, and Agricultural AIS Data: Fine Spectral Structure

    Science.gov (United States)

    Vanderbilt, V. C.

    1985-01-01

    Spectra acquired by the Airborne Imaging Spectrometer (AIS) near Lafayette, IN, Ely, MN, and over the Stanford University campus, CA were analyzed for fine spectral structure using two techniques: the ratio of radiance of a ground target to the radiance of a standard and also the correlation coefficient of radiances at adjacent wavelengths. The results show ramp like features in the ratios. These features are due to the biochemical composition of the leaf and to the optical scattering properties of its cuticle. The size and shape of the ramps vary with ground cover.

  11. Further evidence for a variable fine-structure constant from Keck/HIRES QSO absorption spectra

    CERN Document Server

    Murphy, M T; Flambaum, V V

    2003-01-01

    [Abridged] We previously presented evidence for a varying fine-structure constant, alpha, in two independent samples of Keck/HIRES QSO spectra. Here we present a detailed many-multiplet analysis of a third Keck/HIRES sample containing 78 absorption systems. We also re-analyse the previous samples, providing a total of 128 absorption systems over the redshift range 0.2alpha, yet they also give consistent results. We identify additional random errors in 22 high-z systems characterized by transitions with a large dynamic range in apparent optical depth. Increasing the statistical errors on da/a for these systems gives our fiducial result, a weighted mean da/a=(-0.543+/-0.116)x10^-5, representing 4.7-sigma evidence for a smaller weighted mean alpha in the absorption clouds. Assuming that da/a=0 at z_abs=0, the da...

  12. Variation of the fine structure constant and the electron mass at early Universe

    CERN Document Server

    Scóccola, Claudia G

    2009-01-01

    In this thesis, we focus on the study of the variation of the electron mass $m_e$, and the fine structure constant $\\alpha$, at different cosmic times. We analyze the details of the recombination physics, including helium recombination, in order to find the dependences of the physical quantities on the fundamental constants. Using up-to-date CMB data, and the final 2dFGRS power spectrum, we set limits to the possible variation of the constants at recombination. We analyze the variation of $\\alpha$ and $m_e$ independently, and the case in which both variations are allowed, fitting also a set of cosmological parameters. We find a fenomenological relationship between the variation of $\\alpha$ and the variation of $m_e$, between decoupling and present time. We analyze the Barrow-Magueijo fenomenological model, which propose a variation in the electron mass induced by changes in a space-time scalar field. We present improved solutions and we estimate the model parameters using bounds on the variation of the electr...

  13. Possible evidence for a variable fine structure constant from QSO absorption lines motivations, analysis and results

    CERN Document Server

    Murphy, M T; Flambaum, V V; Dzuba, V A; Churchill, C W; Prochaska, J X; Barrow, John D; Wolfe, A M

    2001-01-01

    An experimental search for variation in the fundamental coupling constants is strongly motivated by modern high-energy physics theories. Comparison of quasar absorption line spectra with laboratory spectra provides a sensitive probe for variability of the fine structure constant, alpha, over cosmological time-scales. We have previously developed and applied a new method providing an order of magnitude gain in precision over previous optical astrophysical constraints. Here we extend that work by including new quasar spectra of damped Lyman-alpha absorption systems. We also re-analyse our previous lower redshift data and confirm our initial results. The constraints on alpha come from simultaneous fitting of absorption lines of subsets of the following species: Mg I, Mg II, Al II, Al III, Si II, Cr II, Fe II, Ni II and Zn II. We present a detailed description of our methods and results based on an analysis of 49 quasar absorption systems (towards 28 QSOs) covering the redshift range 0.5 < z < 3.5. There is...

  14. QED Based Calculation of the Fine Structure Constant

    Energy Technology Data Exchange (ETDEWEB)

    Lestone, John Paul [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-10-13

    Quantum electrodynamics is complex and its associated mathematics can appear overwhelming for those not trained in this field. Here, semi-classical approaches are used to obtain a more intuitive feel for what causes electrostatics, and the anomalous magnetic moment of the electron. These intuitive arguments lead to a possible answer to the question of the nature of charge. Virtual photons, with a reduced wavelength of λ, are assumed to interact with isolated electrons with a cross section of πλ2. This interaction is assumed to generate time-reversed virtual photons that are capable of seeking out and interacting with other electrons. This exchange of virtual photons between particles is assumed to generate and define the strength of electromagnetism. With the inclusion of near-field effects the model presented here gives a fine structure constant of ~1/137 and an anomalous magnetic moment of the electron of ~0.00116. These calculations support the possibility that near-field corrections are the key to understanding the numerical value of the dimensionless fine structure constant.

  15. Black Holes and Quantum Theory: The Fine Structure Constant Connection

    Directory of Open Access Journals (Sweden)

    Cahill R. T.

    2006-10-01

    Full Text Available The new dynamical theory of space is further confirmed by showing that the effective “black hole” masses M BH in 19 spherical star systems, from globular clusters to galaxies, with masses M , satisfy the prediction that M BH = α 2 M , where α is the fine structure constant. As well the necessary and unique generalisations of the Schr ̈ odinger and Dirac equations permit the first derivation of gravity from a deeper theory, showing that gravity is a quantum effect of quantum matter interacting with the dynamical space. As well the necessary generalisation of Maxwell’s equations displays the observed light bending effects. Finally it is shown from the generalised Dirac equation where the spacetime mathematical formalism, and the accompanying geodesic prescription for matter trajectories, comes from. The new theory of space is non-local and we see many parallels between this and quantum theory, in addition to the fine structure constant manifesting in both, so supporting the argument that space is a quantum foam system, as implied by the deeper information-theoretic theory known as Process Physics. The spatial dynamics also provides an explanation for the “dark matter” effect and as well the non-locality of the dynamics provides a mechanism for generating the uniformity of the universe, so explaining the cosmological horizon problem.

  16. Herschel Galactic plane survey of [NII] fine structure emission

    CERN Document Server

    Goldsmith, Paul F; Langer, William D; Pineda, Jorge L

    2015-01-01

    We present the first large scale high angular resolution survey of ionized nitrogen in the Galactic Plane through emission of its two fine structure transitions ([NII]) at 122 $\\mu$m and 205 $\\mu$m. The observations were largely obtained with the PACS instrument onboard the Herschel Space Observatory. The lines-of-sight were in the Galactic plane, following those of the Herschel OTKP project GOT C+. Both lines are reliably detected at the 10$^{-8}$ - 10$^{-7}$ $W$m$^{-2}$sr$^{-1}$ level over the range -60$^{o}$ $\\leq$ $l$ $\\leq$ 60$^{o}$. The $rms$ of the intensity among the 25 PACS spaxels of a given pointing is typically less than one third of the mean intensity, showing that the emission is extended. [NII] is produced in gas in which hydrogen is ionized, and collisional excitation is by electrons. The ratio of the two fine structure transitions provides a direct measurement of the electron density, yielding $n(e)$ largely in the range 10 to 50 cm$^{-3}$ with an average value of 29 cm$^{-3}$ and N$^+$ colum...

  17. The structure of rotational bands in alpha-cluster nuclei

    Directory of Open Access Journals (Sweden)

    Bijker Roelof

    2015-01-01

    Full Text Available In this contribution, I discuss an algebraic treatment of alpha-cluster nuclei based on the introduction of a spectrum generating algebra for the relative motion of the alpha-clusters. Particular attention is paid to the discrete symmetry of the geometric arrangement of the α-particles, and the consequences for the structure of the rotational bands in the 12C and 16O nuclei.

  18. Precision test of many-body QED in the Be$^{+} 2p$ fine structure doublet using short-lived isotopes

    CERN Document Server

    Nörtershäuser, Wilfried; Krieger, Andreas; Pachucki, Krzysztof; Puchalski, Mariusz; Blaum, Klaus; Bissell, Mark L; Frömmgen, Nadja; Hammen, Michael; Kowalska, Magdalena; Krämer, Jörg; Kreim, Kim; Neugart, Rainer; Neyens, Gerda; Sánchez, Rodolfo; Yordanov, Deyan T

    2015-01-01

    Absolute transition frequencies of the $2s\\; ^2{\\rm S}_{1/2} \\rightarrow 2p\\;^2\\mathrm{P}_{1/2,3/2}$ transitions in Be$^+$ were measured for the isotopes $^{7,9-12}$Be. The fine structure splitting of the $2p$ state and its isotope dependence are extracted and compared to results of \\textit{ab initio} calculations using explicitly correlated basis functions, including relativistic and quantum electrodynamics effects at the order of $m \\alpha^6$ and $m \\alpha^7 \\ln \\alpha$. Accuracy has been improved in both the theory and experiment by 2 orders of magnitude, and good agreement is observed. This represents one of the most accurate tests of quantum electrodynamics for many-electron systems, being insensitive to nuclear uncertainties.

  19. The fine-structure constant a new observational limit on its cosmological variation and some theoretical consequences

    CERN Document Server

    Ivanchik, A V; Varshalovich, D A

    1999-01-01

    Endeavours of the unification of the four fundamental interactions have resulted in a development of theories having cosmological solutions in which low-energy limits of fundamental physical constants vary with time. The validity of such theoretical models should be checked by comparison of the theoretical predictions with observational and experimental bounds on possible time-dependences of the fundamental constants. Based on high-resolution measurements of quasar spectra, we obtain the following direct limits on the average rate of the cosmological time variation of the fine-structure constant limit, and |\\dot{\\alpha}/\\alpha| < 3.1 \\times 10^{-14} yr^{-1} is the most conservative limit. Analogous estimates published previously, as well as other contemporary tests for possible variations of \\alpha (those based on the "Oklo phenomenon", on the primordial nucleosynthesis models, and others) are discussed and compared with the present upper limit. We argue that the present result is the most conservative one...

  20. Dark energy and Equivalence Principle constraints from astrophysical tests of the stability of the fine-structure constant

    CERN Document Server

    Martins, C J A P; Alves, R F C; Pino, M; Rocha, C I S A; von Wietersheim, M

    2015-01-01

    Astrophysical tests of the stability of fundamental couplings, such as the fine-structure constant $\\alpha$, are becoming an increasingly powerful probe of new physics. Here we discuss how these measurements, combined with local atomic clock tests and Type Ia supernova and Hubble parameter data, constrain the simplest class of dynamical dark energy models where the same degree of freedom is assumed to provide both the dark energy and (through a dimensionless coupling, $\\zeta$, to the electromagnetic sector) the $\\alpha$ variation. Specifically, current data tightly constrains a combination of $\\zeta$ and the present dark energy equation of state $w_0$. Moreover, in these models the new degree of freedom inevitably couples to nucleons (through the $\\alpha$ dependence of their masses) and leads to violations of the Weak Equivalence Principle. We obtain indirect bounds on the E\\"otv\\"os parameter $\\eta$ that are typically stronger than the current direct ones. We discuss the model-dependence of our results and b...

  1. Impact of long-range wavelength-scale distortion on fine-structure constant measurements.

    Science.gov (United States)

    Dumont, Vincent; Webb, John Kelvin

    2015-08-01

    New ideas in unification theories suggest space-time variations of dimensionless physical constants may exist and that they might be within reach of current instrumental precision available from the world's best observatories. State-of-the-art observations already hint at such an effect. If confirmed, fundamental revisions in standard physics would be required.Accurate calibrations are of course crucial in searches for space-time variations of dimensionless physical constants using spectroscopic observations from the world's best observatories. Several recent studies reveal wavelength distortions in optical echelle spectrographs. These are not yet understood and they have not yet been measured using the actual science data used to derive constraints on space-time variation of alpha (critical since they appear to vary with time). In this work we study the impact of such distortions on measurements of the fine structure constant, alpha, observed at high redshift using high-resolution quasar spectroscopy.We have carried out extensive high-performance computing calculations that quantify the effect accurately for the first time, using the same quasar spectra used to measure alpha at high redshift. The spectra we use were obtained using the Keck telescope in Hawaii and the European Southern Observatory's VLT.We explain the detailed methodologies required, using instrumental configuration information from each wavelength setting used in forming a final summed spectrum. Our results show that whilst long-range wavelength-scale distortions do exist, and hence contribute an additional systematic error, these systematics (measured directly from the science exposures themselves) are small and unlikely to explain the spatial variations alpha of reported recently.

  2. High-precision limit on variation in the fine-structure constant from a single quasar absorption system

    CERN Document Server

    Kotuš, Srđan M; Carswell, Robert F

    2016-01-01

    The brightest southern quasar above redshift $z=1$, HE 0515$-$4414, with its strong intervening metal absorption-line system at $z_{abs}=1.1508$, provides a unique opportunity to precisely measure or limit relative variations in the fine-structure constant ($\\Delta\\alpha/\\alpha$). A variation of just $\\sim$3 parts per million (ppm) would produce detectable velocity shifts between its many strong metal transitions. Using new and archival observations from the Ultraviolet and Visual Echelle Spectrograph (UVES) we obtain an extremely high signal-to-noise ratio spectrum (peaking at S/N $\\approx250$ pix$^{-1}$). This provides the most precise measurement of $\\Delta\\alpha/\\alpha$ from a single absorption system to date, $\\Delta\\alpha/\\alpha=-1.42\\pm0.55_{\\rm stat}\\pm0.65_{\\rm sys}$ ppm, comparable with the precision from previous, large samples of $\\sim$150 absorbers. The largest systematic error in all (but one) previous similar measurements, including the large samples, was long-range distortions in the wavelengt...

  3. Fine-structure energy levels and lifetimes in Br XXIV

    Energy Technology Data Exchange (ETDEWEB)

    Tayal, Vikas; Gupta, G P [Department of Physics, SD (Postgraduate) College, Muzaffarnagar, UP (India)

    2005-11-28

    We have performed large-scale CIV3 calculations of excitation energies from the ground state for 48 fine-structure levels as well as of oscillator strengths and radiative decay rates for all electric-dipole-allowed and intercombination transitions among the (1s{sup 2}2s{sup 2}2p{sup 6})3s{sup 2}({sup 1}S), 3s3p({sup 1,3}P{sup o}), 3s3d({sup 1,3}D), 3s4s({sup 1,3}S), 3s4p({sup 1,3}P{sup o}), 3s4d({sup 1,3}D), 3s4f({sup 1,3}F{sup o}), 3p{sup 2}({sup 1}S, {sup 3}P, {sup 1}D), 3p3d({sup 1,3}P{sup o}, {sup 1,3}D{sup o}, {sup 1,3}F{sup o}), 3p4s({sup 1,3}P{sup o}) and 3d{sup 2}({sup 1}S, {sup 3}P, {sup 1}D) states of Br XXIV. These states are represented by extensive configuration-interaction (CI) wavefunctions obtained using the CIV3 computer code of Hibbert. The relativistic effects in intermediate coupling are incorporated by means of the Breit-Pauli Hamiltonian which consists of the non-relativistic term plus the one-body mass correction, Darwin term, and spin-orbit, spin-other-orbit and spin-spin operators. Small adjustments to the diagonal elements of the Hamiltonian matrices have been made so that the energy splittings are as close as possible to the experimental values. Our calculated excitation energies, including their ordering, are in excellent agreement with the available experimental results except that the levels {sup 1}D{sub 2} and {sup 3}P{sub 2} belonging to the same configuration 3p{sup 2} interchanged their positions compared to the experiment. This interchange in our calculation is discussed and explained through eigenvector compositions of the two levels. From our radiative decay rates, we have calculated radiative lifetimes of some fine-structure levels. Our calculated lifetimes of the levels 3s3p({sup 3}P{sub 1}) and 3s3p({sup 1}P{sub 1}) are found to be in good agreement with the experimental and other theoretical results. In this calculation we also predict new data for several fine-structure levels where no other theoretical and experimental

  4. Understanding Physical Conditions in High Redshift Galaxies through C I Fine Structure Lines: Data and Methodology

    CERN Document Server

    Jorgenson, Regina A; Prochaska, J Xavier

    2010-01-01

    We probe the physical conditions in high redshift galaxies, specifically, the Damped Lyman-alpha Systems (DLAs) using neutral carbon (CI) fine structure lines and molecular hydrogen (H2). We report five new detections of CI and analyze the CI in an additional 2 DLAs with previously published data. We also present one new detection of H2 in a DLA. We present a new method of analysis that simultaneously constrains \\emph{both} the volume density and the temperature of the gas, as opposed to previous studies that a priori assumed a gas temperature. We use only the column density of CI measured in the fine structure states and the assumption of ionization equilibrium in order to constrain the physical conditions in the gas. We present a sample of 11 CI velocity components in 6 DLAs and compare their properties to those derived by the global CII* technique. The resulting median values for this sample are: = 69 cm^{-3}, = 50 K, and = 3.86 cm^{-3} K, with standard deviations, sigma_{n(HI)} = 134 cm^{-3}, sigma_T =...

  5. Nonlinear Electrodynamics Analysis Of The Fine Structure Constant

    Science.gov (United States)

    Mbelek, Jean Paul

    2010-10-01

    It has been claimed that during the late time history of our universe, the fine structure constant, α, has been increasing [1],[2]. However, other teams has claimed a discordant result [3],[4]. Also, the current precision of laboratory tests is not sufficient to either comfort or reject any of these astronomical observations. Here we suggest that a nonlinear electrodynamics (NLED) interaction of photons with the weak local background magnetic fields of a gas cloud absorber can reconcile the null result of refs.[3] and [4] with the negative variation found by refs. [2] and [1] and also to find a bridge with the positive variation found later by Levshakov et al.. [5]-[7]. Moreover, NLED photon propagation in a vacuum permeated by a background magnetic field is actually in full agreement with constraints from Oklo natural reactor data.

  6. Time variation of the fine structure constant driven by quintessence

    Science.gov (United States)

    Anchordoqui, Luis; Goldberg, Haim

    2003-10-01

    There are indications from the study of quasar absorption spectra that the fine structure constant α may have been measurably smaller for redshifts z>2. Analyses of other data (149Sm fission rate for the Oklo natural reactor, variation of 187Re β-decay rate in meteorite studies, atomic clock measurements) which probe variations of α in the more recent past imply much smaller deviations from its present value. In this work we tie the variation of α to the evolution of the quintessence field proposed by Albrecht and Skordis, and show that agreement with all these data, as well as consistency with Wilkinson Microwave Anisotropy Probe observations, can be achieved for a range of parameters. Some definite predictions follow for upcoming space missions searching for violations of the equivalence principle.

  7. Varying Fine-Structure Constant and the Cosmological Constant Problem

    Science.gov (United States)

    Fujii, Yasunori

    We start with a brief account of the latest analysis of the Oklo phenomenon providing the still most stringent constraint on time variability of the fine-structure constant α. Comparing this with the recent result from the measurement of distant QSO's appears to indicate a non-uniform time-dependence, which we argue to be related to another recent finding of the accelerating universe. This view is implemented in terms of the scalar-tensor theory, applied specifically to the small but nonzero cosmological constant. Our detailed calculation shows that these two phenomena can be understood in terms of a common origin, a particular behavior of the scalar field, dilaton. We also sketch how this theoretical approach makes it appropriate to revisit non-Newtonian gravity featuring small violation of Weak Equivalence Principle at medium distances.

  8. Behavioral Measures of Monaural Temporal Fine Structure Processing

    DEFF Research Database (Denmark)

    Santurette, Sébastien; Dau, Torsten

    Deficits in temporal fine structure (TFS) processing found in hearing-impaired listeners have been shown to correlate poorly to audibility and frequency selectivity, despite adverse effects on speech perception in noise. This underlines the need for an independent measure of TFS processing when...... characterizing hearing impairment. Estimating the acuity of monaural TFS processing in humans however remains a challenge. One suggested measure is based on the ability of listeners to detect a pitch shift between harmonic (H) and inharmonic (I) complex tones with unresolved components (e.g. Moore et al., JASA...... and spectral resolution, for the low pitch evoked by high-frequency complex tones. The aim was to estimate the efficiency of monaural TFS cues as a function of the stimulus center frequency Fc and its ratio N to the stimulus envelope repetition rate. A pitch-matching paradigm was used, such that changes...

  9. Fine structure of flare ribbons and evolution of electric currents

    CERN Document Server

    Sharykin, I N

    2014-01-01

    Emission of solar flares across the electromagnetic spectrum is often observed in the form of two expanding ribbons. The standard flare model explains the flare ribbons as footpoints of magnetic arcades, emitting due to interaction of energetic particles with the chromospheric plasma. However, the physics of this interaction and properties of the accelerated particles are still unknown. We present results of multiwavelength observations of C2.1 flare of August 15, 2013, observed with New Solar Telescope (NST) of Big Bear Solar Observatory, Solar Dynamics Observatory (SDO), GOES and FERMI spacecraft. The observations reveal previously unresolved sub-arcsecond structure of the flare ribbons in regions of strong magnetic field consisting from numerous small-scale bright knots. We observe red-blue asymmetry of H alpha flare ribbons with a width as small as 100 km. We discuss the relationship between the ribbons and vertical electric currents estimated from vector magnetograms, and show that Joule heating can be r...

  10. A heterogeneity test for fine-scale genetic structure.

    Science.gov (United States)

    Smouse, Peter E; Peakall, Rod; Gonzales, Eva

    2008-07-01

    For organisms with limited vagility and/or occupying patchy habitats, we often encounter nonrandom patterns of genetic affinity over relatively small spatial scales, labelled fine-scale genetic structure. Both the extent and decay rate of that pattern can be expected to depend on numerous interesting demographic, ecological, historical, and mating system factors, and it would be useful to be able to compare different situations. There is, however, no heterogeneity test currently available for fine-scale genetic structure that would provide us with any guidance on whether the differences we encounter are statistically credible. Here, we develop a general nonparametric heterogeneity test, elaborating on standard autocorrelation methods for pairs of individuals. We first develop a 'pooled within-population' correlogram, where the distance classes (lags) can be defined as functions of distance. Using that pooled correlogram as our null-hypothesis reference frame, we then develop a heterogeneity test of the autocorrelations among different populations, lag-by-lag. From these single-lag tests, we construct an analogous test of heterogeneity for multilag correlograms. We illustrate with a pair of biological examples, one involving the Australian bush rat, the other involving toadshade trillium. The Australian bush rat has limited vagility, and sometimes occupies patchy habitat. We show that the autocorrelation pattern diverges somewhat between continuous and patchy habitat types. For toadshade trillium, clonal replication in Piedmont populations substantially increases autocorrelation for short lags, but clonal replication is less pronounced in mountain populations. Removal of clonal replicates reduces the autocorrelation for short lags and reverses the sign of the difference between mountain and Piedmont correlograms.

  11. Stellar Helium Burning in Other Universes: A solution to the triple alpha fine-tuning problem

    CERN Document Server

    Adams, Fred C

    2016-01-01

    Motivated by the possible existence of other universes, with different values for the fundamental constants, this paper considers stellar models in universes where $^8$Be is stable. Many previous authors have noted that stars in our universe would have difficulty producing carbon and other heavy elements in the absence of the well-known $^{12}$C resonance at 7.6 MeV. This resonance is necessary because $^8$Be is unstable in our universe, so that carbon must be produced via the triple alpha reaction to achieve the requisite abundance. Although a moderate change in the energy of the resonance (200 -- 300 keV) will indeed affect carbon production, an even smaller change in the binding energy of beryllium ($\\sim100$ keV) would allow $^8$Be to be stable. A stable isotope with $A=8$ would obviate the need for the triple alpha process in general, and the $^{12}$C resonance in particular, for carbon production. This paper explores the possibility that $^8$Be can be stable in other universes. Simple nuclear considerat...

  12. Alpha complexes in protein structure prediction

    DEFF Research Database (Denmark)

    Winter, Pawel; Fonseca, Rasmus

    2015-01-01

    Reducing the computational effort and increasing the accuracy of potential energy functions is of utmost importance in modeling biological systems, for instance in protein structure prediction, docking or design. Evaluating interactions between nonbonded atoms is the bottleneck of such computatio...

  13. Fine-structure constant constraints on dark energy: II. Extending the parameter space

    CERN Document Server

    Martins, C J A P; Carreira, P; Gusart, A; López, J; Rocha, C I S A

    2016-01-01

    Astrophysical tests of the stability of fundamental couplings, such as the fine-structure constant $\\alpha$, are a powerful probe of new physics. Recently these measurements, combined with local atomic clock tests and Type Ia supernova and Hubble parameter data, were used to constrain the simplest class of dynamical dark energy models where the same degree of freedom is assumed to provide both the dark energy and (through a dimensionless coupling, $\\zeta$, to the electromagnetic sector) the $\\alpha$ variation. One caveat of these analyses was that it was based on fiducial models where the dark energy equation of state was described by a single parameter (effectively its present day value, $w_0$). Here we relax this assumption and study broader dark energy model classes, including the Chevallier-Polarski-Linder and Early Dark Energy parametrizations. Even in these extended cases we find that the current data constrains the coupling $\\zeta$ at the $10^{-6}$ level and $w_0$ to a few percent (marginalizing over o...

  14. FINE STRUCTURES AND OVERLYING LOOPS OF CONFINED SOLAR FLARES

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shuhong; Zhang, Jun [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Xiang, Yongyuan, E-mail: shuhongyang@nao.cas.cn [Fuxian Solar Observatory, Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011 (China)

    2014-10-01

    Using the Hα observations from the New Vacuum Solar Telescope at the Fuxian Solar Observatory, we focus on the fine structures of three confined flares and the issue why all the three flares are confined instead of eruptive. All the three confined flares take place successively at the same location and have similar morphologies, so can be termed homologous confined flares. In the simultaneous images obtained by the Solar Dynamics Observatory, many large-scale coronal loops above the confined flares are clearly observed in multi-wavelengths. At the pre-flare stage, two dipoles emerge near the negative sunspot, and the dipolar patches are connected by small loops appearing as arch-shaped Hα fibrils. There exists a reconnection between the small loops, and thus the Hα fibrils change their configuration. The reconnection also occurs between a set of emerging Hα fibrils and a set of pre-existing large loops, which are rooted in the negative sunspot, a nearby positive patch, and some remote positive faculae, forming a typical three-legged structure. During the flare processes, the overlying loops, some of which are tracked by activated dark materials, do not break out. These direct observations may illustrate the physical mechanism of confined flares, i.e., magnetic reconnection between the emerging loops and the pre-existing loops triggers flares and the overlying loops prevent the flares from being eruptive.

  15. Fine structure of the Mn acceptor in GaAs

    Science.gov (United States)

    Krainov, I. V.; Debus, J.; Averkiev, N. S.; Dimitriev, G. S.; Sapega, V. F.; Lähderanta, E.

    2016-06-01

    We reveal the electronic level structure of the Mn acceptor, which consists of a valence-band hole bound to an Mn2 + ion, in presence of applied uniaxial stress and an external magnetic field in bulk GaAs. Resonant spin-flip Raman scattering is used to measure the g factor of the AMn0 center in the ground and excited states with the total angular momenta F =1 and F =2 and characterize the optical selection rules of the spin-flip transitions between these Mn-acceptor states. We determine the random stress fields near the Mn acceptor, the constant of the antiferromagnetic exchange interaction between the valence-band holes and the electrons of the inner Mn2 + shell as well as the deformation potential for the exchange energy. The p -d exchange energy, in particular, decreases significantly with increasing compressive stress. By combining the experimental Raman study with the developed theoretical model on the scattering efficiency, in which also the random local and external uniaxial stresses and magnetic field are considered, the fine structure of the Mn acceptor is determined in full detail.

  16. Possible link between the changing fine-structure constant and the accelerating universe via scalar-tensor theory

    CERN Document Server

    Fujii, Y

    2002-01-01

    In 1976, Shlyakhter showed that the Sm data from Oklo results in the upper bound on the time-variability of the fine-structure constant: $|\\dot{\\alpha}/\\alpha| \\lsim 10^{-17}{\\rm y}^{-1}$, which has ever been the most stringent bound. Since the details have never been published, however, we recently re-analyzed the latest data according to Shlyakhter's recipe. We nearly re-confirmed his result. To be more precise, however, the Sm data gives either an upper-bound or an "evidence" for a changing $\\alpha$: $\\dot{\\alpha}/\\alpha = -(0.44 \\pm 0.04)\\times 10^{-16}{\\rm y}^{-1}$. A remark is made to a similar re-analysis due to Damour and Dyson. We also compare our result with a recent "evidence" due to Webb et al, obtained from distant QSO's. We point out a possible connection between this time-dependence and the behavior of a scalar field supposed to be responsible for the acceleration of the universe, also revealed recently.

  17. Alpha Cluster Structure in 16O

    Directory of Open Access Journals (Sweden)

    Rodrigues Márcia Regina Dias

    2014-03-01

    Full Text Available The main purpose of the present work is the investigation of the α-cluster phenomenon in 16O. The 12C(6Li,d16O reaction was measured at a bombarding energy of 25.5 MeV employing the São Paulo Pelletron-Enge-Spectrograph facility and the nuclear emulsion detection technique. Resonant states around 4α threshold were measured and an energy resolution of 15 keV allows to define states previously unresolved. The angular distributions of the absolute cross sections were determined in a range of 4-40 degree in the center of mass system. The upper limit for the resonance widths was obtained, indicating that the a cluster structure information in this region should be revised.

  18. Determination of the fine structure constant based on BLOCH oscillations of ultracold atoms in a vertical optical lattice.

    Science.gov (United States)

    Cladé, Pierre; de Mirandes, Estefania; Cadoret, Malo; Guellati-Khélifa, Saïda; Schwob, Catherine; Nez, François; Julien, Lucile; Biraben, François

    2006-01-27

    We report an accurate measurement of the recoil velocity of 87Rb atoms based on Bloch oscillations in a vertical accelerated optical lattice. We transfer about 900 recoil momenta with an efficiency of 99.97% per recoil. A set of 72 measurements of the recoil velocity, each one with a relative uncertainty of about 33 ppb in 20 min integration time, leads to a determination of the fine structure constant with a statistical relative uncertainty of 4.4 ppb. The detailed analysis of the different systematic errors yields to a relative uncertainty of 6.7 ppb. The deduced value of alpha-1 is 137.035 998 78(91).

  19. Combination of BLOCH oscillations with a Ramsey-Bordé interferometer: new determination of the fine structure constant.

    Science.gov (United States)

    Cadoret, Malo; de Mirandes, Estefania; Cladé, Pierre; Guellati-Khélifa, Saïda; Schwob, Catherine; Nez, François; Julien, Lucile; Biraben, François

    2008-12-01

    We report a new experimental scheme which combines atom interferometry with Bloch oscillations to provide a new measurement of the ratio h/mRb. By using Bloch oscillations, we impart to the atoms up to 1600 recoil momenta and thus we improve the accuracy on the recoil velocity measurement. The deduced value of h/mRb leads to a new determination of the fine structure constant alpha(-1) =137.03599945 (62) with a relative uncertainty of 4.6 x 10(-9). The comparison of this result with the value deduced from the measurement of the electron anomaly provides the most stringent test of QED.

  20. Bumblebee Homing: The Fine Structure of Head Turning Movements.

    Directory of Open Access Journals (Sweden)

    Norbert Boeddeker

    Full Text Available Changes in flight direction in flying insects are largely due to roll, yaw and pitch rotations of their body. Head orientation is stabilized for most of the time by counter rotation. Here, we use high-speed video to analyse head- and body-movements of the bumblebee Bombus terrestris while approaching and departing from a food source located between three landmarks in an indoor flight-arena. The flight paths consist of almost straight flight segments that are interspersed with rapid turns. These short and fast yaw turns ("saccades" are usually accompanied by even faster head yaw turns that change gaze direction. Since a large part of image rotation is thereby reduced to brief instants of time, this behavioural pattern facilitates depth perception from visual motion parallax during the intersaccadic intervals. The detailed analysis of the fine structure of the bees' head turning movements shows that the time course of single head saccades is very stereotypical. We find a consistent relationship between the duration, peak velocity and amplitude of saccadic head movements, which in its main characteristics resembles the so-called "saccadic main sequence" in humans. The fact that bumblebee head saccades are highly stereotyped as in humans, may hint at a common principle, where fast and precise motor control is used to reliably reduce the time during which the retinal images moves.

  1. Fine structure of Pn velocity beneath Sichuan-Yunnan region

    Institute of Scientific and Technical Information of China (English)

    黄金莉; 宋晓东; 汪素云

    2003-01-01

    We use 23298 Pn arrival-time data from Chinese national and provincial earthquake bulletins to invert fine structure of Pn velocity and anisotropy at the top of the mantle beneath the Sichuan-Yunnan and its adjacent region. The results suggest that the Pn velocity in this region shows significant lateral variation; the Pn velocity varies from 7.7 to 8.3 km/s. The Pn-velocity variation correlates well with the tectonic activity and heat flow of the region. Low Pn velocity is observed in southwest Yunnan , Tengchong volcano area, and the Panxi tectonic area. These areas have very active seismicity and tectonic activity with high surface heat flow. On the other hand, high Pn velocity is observed in some stable regions, such as the central region of the Yangtze Platform; the most pronounced high velocity area is located in the Sichuan Basin, south of Chengdu. Pn anisotropy shows a complex pattern of regional deformation. The Pn fast direction shows a prominent clockwise rotation pattern from east of the Tibetan block to the Sichuan-Yunnan diamond block to southwest Yunnan, which may be related to southeastward escape of the Tibetan Plateau material due to the collision of the Indian Plate to the Eurasia Plate. Thus there appears to be strong correlation between the crustal deformation and the upper mantle structure in the region. The delay times of events and stations show that the crust thickness decreases from the Tibetan Plateau to eastern China, which is consistent with the results from deep seismic sounding.

  2. Structural Effects of Oncogenic PI3K alpha Mutations

    Energy Technology Data Exchange (ETDEWEB)

    S Gabelli; C Huang; D Mandelker; O Schmidt-Kittler; B Vogelstein; L Amzel

    2011-12-31

    Physiological activation of PI3K{alpha} is brought about by the release of the inhibition by p85 when the nSH2 binds the phosphorylated tyrosine of activated receptors or their substrates. Oncogenic mutations of PI3K{alpha} result in a constitutively activated enzyme that triggers downstream pathways that increase tumor aggressiveness and survival. Structural information suggests that some mutations also activate the enzyme by releasing p85 inhibition. Other mutations work by different mechanisms. For example, the most common mutation, His1047Arg, causes a conformational change that increases membrane association resulting in greater accessibility to the substrate, an integral membrane component. These effects are examples of the subtle structural changes that result in increased activity. The structures of these and other mutants are providing the basis for the design of isozyme-specific, mutation-specific inhibitors for individualized cancer therapies.

  3. Attempts at a determination of the fine-structure constant from first principles: A brief historical overview

    CERN Document Server

    Jentschura, U D

    2014-01-01

    It has been a notably elusive task to find a remotely sensical ansatz for a calculation of Sommerfeld's electrodynamic fine-structure constant alpha_QED ~ 1/137.036 based on first principles. However, this has not prevented a number of researchers to invest considerable effort into the problem, despite the formidable challenges, and a number of attempts have been recorded in the literature. Here, we review a possible approach based on the quantum electrodynamic (QED) beta function, and on algebraic identities relating alpha_QED to invariant properties of "internal" symmetry groups, as well as attempts to relate the strength of the electromagnetic interaction to the natural cut-off scale for other gauge theories. Conjectures based on both classical as well as quantum-field theoretical considerations are discussed. We point out apparent strengths and weaknesses of the most prominent attempts that were recorded in the literature. This includes possible connections to scaling properties of the Einstein-Maxwell La...

  4. Artificial intelligence applied to the automatic analysis of absorption spectra. Objective measurement of the fine structure constant

    CERN Document Server

    Bainbridge, Matthew B

    2016-01-01

    A new and fully-automated method is presented for the analysis of high-resolution absorption spectra (GVPFIT). The method has broad application but here we apply it specifically to the problem of measuring the fine structure constant at high redshift. For this we need objectivity and reproducibility. GVPFIT is also motivated by the importance of obtaining a large statistical sample of measurements of $\\Delta\\alpha/\\alpha$. Interactive analyses are both time consuming and complex and automation makes obtaining a large sample feasible. Three numerical methods are unified into one artificial intelligence process: a genetic algorithm that emulates the Darwinian processes of reproduction, mutation and selection, non-linear least-squares with parameter constraints (VPFIT), and Bayesian model averaging. In contrast to previous methodologies, which relied on a particular solution as being the most likely model, GVPFIT plus Bayesian model averaging derives results from a large set of models, and helps overcome systema...

  5. A cis-proline in alpha-hemoglobin stabilizing protein directs the structural reorganization of alpha-hemoglobin.

    Science.gov (United States)

    Gell, David A; Feng, Liang; Zhou, Suiping; Jeffrey, Philip D; Bendak, Katerina; Gow, Andrew; Weiss, Mitchell J; Shi, Yigong; Mackay, Joel P

    2009-10-23

    alpha-Hemoglobin (alphaHb) stabilizing protein (AHSP) is expressed in erythropoietic tissues as an accessory factor in hemoglobin synthesis. AHSP forms a specific complex with alphaHb and suppresses the heme-catalyzed evolution of reactive oxygen species by converting alphaHb to a conformation in which the heme is coordinated at both axial positions by histidine side chains (bis-histidyl coordination). Currently, the detailed mechanism by which AHSP induces structural changes in alphaHb has not been determined. Here, we present x-ray crystallography, NMR spectroscopy, and mutagenesis data that identify, for the first time, the importance of an evolutionarily conserved proline, Pro(30), in loop 1 of AHSP. Mutation of Pro(30) to a variety of residue types results in reduced ability to convert alphaHb. In complex with alphaHb, AHSP Pro(30) adopts a cis-peptidyl conformation and makes contact with the N terminus of helix G in alphaHb. Mutations that stabilize the cis-peptidyl conformation of free AHSP, also enhance the alphaHb conversion activity. These findings suggest that AHSP loop 1 can transmit structural changes to the heme pocket of alphaHb, and, more generally, highlight the importance of cis-peptidyl prolyl residues in defining the conformation of regulatory protein loops.

  6. METHODS OF RECEIVING OF FINE-GRAINED STRUCTURE OF CASTINGS AT CRYSTALLIZATION

    Directory of Open Access Journals (Sweden)

    N. K. Tolochko

    2012-01-01

    Full Text Available The article deals with methods for fine-grained structure of ingots during crystallization depending on the used foundry technologies. It is shown that by using modern scientific and technological advances may improve the traditional and the development of new casting processes, providing production of cast parts with over fine-grained structure and enhanced properties.

  7. Changes in the Fine Structure of Stochastic Distributions as a Consequence of Space-Time Fluctuations

    Directory of Open Access Journals (Sweden)

    Shnoll S. E.

    2006-04-01

    Full Text Available This is a survey of the fine structure stochastic distributions in measurements obtained by me over 50 years. It is shown: (1 The forms of the histograms obtained at each geographic point (at each given moment of time are similar with high probability, even if we register phenomena of completely different nature --- from biochemical reactions to the noise in a gravitational antenna, or alpha-decay. (2 The forms of the histograms change with time. The iterations of the same form have the periods of the stellar day (1.436 min, the solar day (1.440 min, the calendar year (365 solar days, and the sidereal year (365 solar days plus 6 hours and 9 min. (3 At the same instants of the local time, at different geographic points, the forms of the histograms are the same, with high probability. (4 The forms of the histograms depend on the locations of the Moon and the Sun with respect to the horizon. (5 All the facts are proof of the dependance of the form of the histograms on the location of the measured objects with respect to stars, the Sun, and the Moon. (6 At the instants of New Moon and the maxima of solar eclipses there are specific forms of the histograms. (7 It is probable that the observed correlations are not connected to flow power changes (the changes of the gravity force --- we did not find the appropriate periods in changes in histogram form. (8 A sharp anisotropy of space was discovered, registered by alpha-decay detectors armed with collimators. Observations at 54 North (the collimator was pointed at the Pole Star showed no day-long periods, as was also the case for observations at 82 North, near the Pole. Histograms obtained by observations with an Easterly-directed collimator were determined every 718 minutes (half stellar day and with observations using a Westerly-directed collimator. (9 Collimators rotating counter-clockwise, in parallel with the celestial equator, gave the probability of changes in histograms as the number of the

  8. Atomic transition frequencies, isotope shifts, and sensitivity to variation of the fine structure constant for studies of quasar absorption spectra

    CERN Document Server

    Berengut, J C; Flambaum, V V; King, J A; Kozlov, M G; Murphy, M T; Webb, J K

    2010-01-01

    Theories unifying gravity with other interactions suggest spatial and temporal variation of fundamental "constants" in the Universe. A change in the fine structure constant, alpha, could be detected via shifts in the frequencies of atomic transitions in quasar absorption systems. Recent studies using 140 absorption systems from the Keck telescope and 153 from the Very Large Telescope, suggest that alpha varies spatially. That is, in one direction on the sky alpha seems to have been smaller at the time of absorption, while in the opposite direction it seems to have been larger. To continue this study we need accurate laboratory measurements of atomic transition frequencies. The aim of this paper is to provide a compilation of transitions of importance to the search for alpha variation. They are E1 transitions to the ground state in several different atoms and ions, with wavelengths ranging from around 900 - 6000 A, and require an accuracy of better than 10^{-4} A. We discuss isotope shift measurements that are...

  9. On variations in the fine-structure constant and limits on AGB pollution of quasar absorption systems

    CERN Document Server

    Fenner, Y; Gibson, B K

    2005-01-01

    At redshifts z_abs < 2, quasar absorption-line constraints on space-time variations in the fine-structure constant, alpha, rely on the comparison of MgII and FeII transition wavelengths. One potentially important uncertainty is the relative abundance of Mg isotopes in the absorbers which, if different from solar, can cause spurious shifts in the measured wavelengths and, therefore, alpha. Here we explore chemical evolution models with enhanced populations of intermediate-mass (IM) stars which, in their asymptotic giant branch (AGB) phase, are thought to be the dominant factories for heavy Mg isotopes at the low metallicities typical of quasar absorption systems. By design, these models partially explain recent Keck/HIRES evidence for a smaller alpha in z_abs < 2 absorption clouds than on Earth. However, such models also over-produce N, violating observed abundance trends in high-z_abs damped Lyman-alpha systems (DLAs). Our results do not support the recent claim of Ashenfelter, Mathews & Olive (2004...

  10. Alpha-resonance structure in $^{11}$C studied via resonant scattering of $^{7}$Be+$\\alpha$ and $^{7}$Be($\\alpha$, $p$) reaction

    CERN Document Server

    Yamaguchi, H; Wakabayashi, Y; Kubono, S; Hashimoto, T; Hayakawa, S; Kawabata, T; Iwasa, N; Teranishi, T; Kwon, Y K; Binh, D N; Khiem, L H; Duy, N N

    2012-01-01

    The resonance structure in $^{11}$C is particularly of interest with regard to the astrophysical $^{7}$Be($\\alpha$, $\\gamma$) reaction, relevant at high temperature, and to the $\\alpha$-cluster structure in $^{11}$C. The measurement was to determine unknown resonance parameters for the high excited states of $^{11}$C. In particular, the $\\alpha$ decay width can be useful information to discuss $\\alpha$ cluster structure in $^{11}$C. New measurements of the $^{7}$Be+$\\alpha$ resonant scattering and the $^{7}$Be($\\alpha$, $p$)$^{10}$B reaction in inverse kinematics were performed for center-of-mass energy up to 5.5 MeV, and the resonances at excitation energies of 8.9--12.7 MeV in the compound $^{11}$C nucleus were studied. Inelastic scattering of $^{7}$Be+$\\alpha$ and the $^{7}$Be($\\alpha$, $p_1$)$^{10}$B$^*$ reaction were also studied with a simultaneous $\\gamma$-ray measurement. The measurements were performed at the low-energy RI beam facility CRIB (CNS Radioactive Ion Beam separator) of the Center for Nucl...

  11. Simple surface structure determination from Fourier transforms of angle-resolved photoemission extended fine structure

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Y. [Pennsylvania State Univ., University Park, PA (United States)]|[Lawrence Berkeley Lab., CA (United States); Shirley, D.A. [Pennsylvania State Univ., University Park, PA (United States)

    1995-02-01

    The authors show by Fourier analyses of experimental data, with no further treatment, that the positions of all the strong peaks in Fourier transforms of angle-resolved photoemission extended fine structure (ARPEFS) from adsorbed surfaces can be explicitly predicted from a trial structure with an accuracy of about {+-} 0.3 {angstrom} based on a single-scattering cluster model together with the concept of a strong backscattering cone, and without any additional analysis. This characteristic of ARPEFS Fourier transforms can be developed as a simple method for determining the structures of adsorbed surfaces to an accuracy of about {+-} 0.1 {angstrom}.

  12. Fine Resolution Termohaline Structure Of The Yuctatan Coastal Sea

    Science.gov (United States)

    Marino-Tapia, I.; Enriquez-Ortiz, C.; Capurro, L.; Euan-Avila, J.

    2007-05-01

    In the Yucatan peninsula there are a variety processes that drastically affect the thermohaline structure of the coastal seas. Some of these include hyperhaline lagoons that export salt to the ocean, upwelling events that propagate to the coast, persistent submarine groundwater discharges, and very high evaporation rates caused by the intense solar radiation. On July 2006 a fine resolution oceanographic campaign was performed on the Yucatan coast to study the detailed structure of thermohaline processes and currents from the shore to the 10 m isobath. A total of sixty nine transects that cover the entire northern stretch of the Yucatan coast were made. The transects extend seven kilometers in the offshore direction and have an alongshore spacing of 5 km. The temperature and salinity characteristics of the water column were monitored with a SEABIRD SBE 19 CTD performing profiles every 500 m along each transect. Ocean currents were measures along the same transect using a 1.5 MHz Acoustic Doppler Profiler (Sontek). The results clearly show the effects of coastal lagoons on the adjoining sea, with net salt export associated with hyperhaline lagoons (e.g. Ria Lagartos) or more estuarine influence of lagoons such as Celestun, where groundwater discharges play the role of rivers on the estuary. An assessment of this influence on the coastal ocean will be presented. It is well known the meteor impact at the end of the Cretacic era at Chicxulub, Yucatan, generated a crater with multiple rings which is evident from horizontal gravity gradients of the Yucatan mainland, and that associated with the outer ring there is a high concentration of cenotes (sinkholes) (Pope et al. 1991; Hildebrand, et al. 1995). It has also been shown that groundwater flows along this cenote ring towards the ocean, and the zones where the ring intersects the coast (Celestun and Dzilam Bravo) have impressive geologic features known as `submarine water springs' where freshwater springs as a fountain

  13. Relative importance of temporal envelope and fine structure in lexical-tone perception (L)

    Science.gov (United States)

    Xu, Li; Pfingst, Bryan E.

    2003-12-01

    The relative importance of temporal envelope and fine structure in speech and music perception was investigated by Smith et al. [Nature (London) 416, 87-90 (2002)] using ``auditory chimera'' in which the envelope from one sound was paired with the fine structure of another. Smith et al. found that, when 4 to 16 frequency bands were used, recognition of English speech was dominated by the envelope, whereas recognition of melody was dominated by the fine structure. In the present study, Mandarin Chinese monosyllables were divided into 4, 8, or 16 frequency bands and the fine structure and envelope of one tone pattern were exchanged with those of another tone pattern of the same monosyllable. Five normal-hearing native Mandarin Chinese speakers completed a four-alternative forced-choice tone-identification task. In the vast majority of trials, subjects based their identification of the monosyllables on the fine structure rather than the envelope. Thus, the relative importance of envelope and fine structure for lexical-tone perception resembled that for melody recognition rather than that for English speech recognition. Delivering fine-structure information in cochlear implant stimulation could be particularly beneficial for lexical-tone perception.

  14. Assembly and Structure of alpha-helical Peptide Films on Hydrophobic Fluorocarbon Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Weidner, T.; Samual, N; McCrea, K; Gamble, L; Ward, R; Castner, D

    2010-01-01

    The structure, orientation, and formation of amphiphilic {alpha}-helix model peptide films on fluorocarbon surfaces has been monitored with sum frequency generation (SFG) vibrational spectroscopy, near-edge x-ray absorption fine structure (NEXAFS) spectroscopy, and x-ray photoelectron spectroscopy (XPS). The {alpha}-helix peptide is a 14-mer of hydrophilic lysine and hydrophobic leucine residues with a hydrophobic periodicity of 3.5. This periodicity yields a rigid amphiphilic peptide with leucine and lysine side chains located on opposite sides. XPS composition analysis confirms the formation of a peptide film that covers about 75% of the surface. NEXAFS data are consistent with chemically intact adsorption of the peptides. A weak linear dichroism of the amide {pi}* is likely due to the broad distribution of amide bond orientations inherent to the {alpha}-helical secondary structure. SFG spectra exhibit strong peaks near 2865 and 2935 cm{sup -1} related to aligned leucine side chains interacting with the hydrophobic surface. Water modes near 3200 and 3400 cm{sup -1} indicate ordering of water molecules in the adsorbed-peptide fluorocarbon surface interfacial region. Amide I peaks observed near 1655 cm{sup -1} confirm that the secondary structure is preserved in the adsorbed peptide. A kinetic study of the film formation process using XPS and SFG showed rapid adsorption of the peptides followed by a longer assembly process. Peptide SFG spectra taken at the air-buffer interface showed features related to well-ordered peptide films. Moving samples through the buffer surface led to the transfer of ordered peptide films onto the substrates.

  15. Theoretical Study of Relativistic Retardation Effects: the Abnormal Fine Structure of O Ⅱ

    Institute of Scientific and Technical Information of China (English)

    CHEN Shao-Hao; HAN Xiao-Ying; WANG Xiao-Lu; LI Ji

    2007-01-01

    Using multi-configuration Dirac-Fock and relativistic configuration interaction methods with high-order corrections, we report our precise calculation results of the fine-structure energy levels of the ground-state configuration of OⅡ(1s22s22p3). Our calculated fine-structure splittings of 2D3/2,5/2 and 2P1/2,3/2 are abnormal. We elucidate that the transverse (Breit) interaction, i.e. relativistic retardation effect, plays an important role for the abnormal fine-structure splittings. Our calculation results are in good agreement with experimental measurements.

  16. Alpha-cluster structure and density wave in oblate nuclei

    CERN Document Server

    Kanada-En'yo, Yoshiko

    2011-01-01

    Pentagon and triangle shapes in Si-28 and C-12 are discussed in relation with nuclear density wave. In the antisymmetrized molecular dynamics calculations, the $K^\\pi=5^-$ band in Si-28 and the $K^\\pi=3^-$ band in C-12 are described by the pentagon and triangle shapes, respectively. These negative-parity bands can be interpreted as the parity partners of the $K^\\pi=0^+$ ground bands and they are constructed from the parity-asymmetric-intrinsic states. The pentagon and the triangle shapes originate in 7alpha and 3alpha cluster structures, respectively. In a mean-field picture, they are described also by the static one-dimensional density wave at the edge of the oblate states. In analysis with ideal alpha cluster models using Brink-Bloch cluster wave functions and that with a simplified model, we show that the static edge density wave for the pentagon and triangle shapes can be understood by spontaneous breaking of axial symmetry, i.e., the instability of the oblate states with respect to the edge density wave....

  17. Distortion product otoacoustic emission fine structure as an early hearing loss predictor

    DEFF Research Database (Denmark)

    Reuter, Karen; Hammershøi, Dorte

    2006-01-01

    Otoacoustic emissions (OAEs) are a promising method to monitor early noise-induced hearing losses. When distortion product otoacoustic emissions (DPOAEs) are obtained with a high-frequency resolution, a ripple structure across frequency can be seen, called DPOAE fine structure. In this study DPOAE...... fine structures are obtained from 74 normal-hearing humans using primary levels of L1/L2=65/45 dB. The subjects belong to groups with different ages and exposure histories. A classification algorithm is developed, which quantifies the fine structure by the parameter's ripple place, ripple width, ripple...... and vary from subject to subject within groups. The results do not indicate that the DPOAE fine structure alters with the state of hearing, as it is suggested in the literature. The data analysis is still in process at this stage.  ...

  18. Structure, stability and folding of the alpha-helix.

    Science.gov (United States)

    Doig, A J; Andrew, C D; Cochran, D A; Hughes, E; Penel, S; Sun, J K; Stapley, B J; Clarke, D T; Jones, G R

    2001-01-01

    Pauling first described the alpha-helix nearly 50 years ago, yet new features of its structure continue to be discovered, using peptide model systems, site-directed mutagenesis, advances in theory, the expansion of the Protein Data Bank and new experimental techniques. Helical peptides in solution form a vast number of structures, including fully helical, fully coiled and partly helical. To interpret peptide results quantitatively it is essential to use a helix/coil model that includes the stabilities of all these conformations. Our models now include terms for helix interiors, capping, side-chain interactions, N-termini and 3(10)-helices. The first three amino acids in a helix (N1, N2 and N3) and the preceding N-cap are unique, as their amide NH groups do not participate in backbone hydrogen bonding. We surveyed their structures in proteins and measured their amino acid preferences. The results are predominantly rationalized by hydrogen bonding to the free NH groups. Stabilizing side-chain-side-chain energies, including hydrophobic interactions, hydrogen bonding and polar/non-polar interactions, were measured accurately in helical peptides. Helices in proteins show a preference for having approximately an integral number of turns so that their N- and C-caps lie on the same side. There are also strong periodic trends in the likelihood of terminating a helix with a Schellman or alpha L C-cap motif. The kinetics of alpha-helix folding have been studied with stopped-flow deep ultraviolet circular dichroism using synchrotron radiation as the light source; this gives a far superior signal-to-noise ratio than a conventional instrument. We find that poly(Glu), poly(Lys) and alanine-based peptides fold in milliseconds, with longer peptides showing a transient overshoot in helix content.

  19. Limits on the time variation of the electromagnetic fine-structure constant in the low energy limit from absorption lines in the spectra of distant quasars

    CERN Document Server

    Srianand, R; Petitjean, P; Aracil, B; Srianand, Raghunathan; Chand, Hum; Petitjean, Patrick; Aracil, Bastien

    2004-01-01

    Most of the successful physical theories rely on the constancy of few fundamental quantities (such as the speed of light, $c$, the fine-structure constant, \\alpha, the proton to electron mass ratio, \\mu, etc), and constraining the possible time variations of these fundamental quantities is an important step toward a complete physical theory. Time variation of \\alpha can be accurately probed using absorption lines seen in the spectra of distant quasars. Here, we present the results of a detailed many-multiplet analysis performed on a new sample of Mg II systems observed in high quality quasar spectra obtained using the Very Large Telescope. The weighted mean value of the variation in \\alpha derived from our analysis over the redshift range 0.4alpha/\\alpha = (-0.06+/-0.06) x 10^{-5}. The median redshift of our sample (z=1.55) corresponds to a look-back time of 9.7 Gyr in the most favored cosmological model today. This gives a 3\\sigma limit, -2.5 x 10^{-16} yr^-1 <(\\Delta\\alpha/\\alpha\\D...

  20. Does over-exposure modify the fine structure of distortion product otoacoustic emissions?

    DEFF Research Database (Denmark)

    Reuter, Karen; Hammershøi, Dorte

    2008-01-01

    It is investigated, whether the pattern of distortion product otoacoustic emission (DPOAE) fine structure (quasi-periodic variations across frequency) is altered by an acoustical over-exposure. DPOAE fine structures are determined in 16 normal-hearing humans using a high frequency-resolution and ......It is investigated, whether the pattern of distortion product otoacoustic emission (DPOAE) fine structure (quasi-periodic variations across frequency) is altered by an acoustical over-exposure. DPOAE fine structures are determined in 16 normal-hearing humans using a high frequency......-resolution and primary levels of L1/L2=65/45 dB. DPOAEs are measured both before and after the subjects are monaurally exposed to a 1 kHz tone lasting for 3 min at an equivalent threshold sound pressure level of 105.5 dB. After the exposure the DPOAE levels are shifted to lower values and recover to the initial levels...

  1. The influence of high-energy ion implantation on Al alloys fine structure and microhardness

    International Nuclear Information System (INIS)

    The microhardness and fine structure of Al alloys (D16 and Al Mn), implanted with 245 MeV krypton ions to doses of 1013 and 1014 cm-2 have been investigated. The implantation results in the un hardening of dispersion hardening D16 alloy and the hardening of thermally unharden able Al Mn alloy. The change in fine structure parameters of Al matrix of implanted alloys is in good agreement with the change in their microhardness

  2. Fine structure of phonon replicas in a tunnel spectrum of a GaAs quantum well

    OpenAIRE

    Krishtop, V. G.; Popov, V. G.; Henini, M.; Krupko, Yu.; Portal, J. -C.

    2014-01-01

    A fine structure of phonon replicas in the current-voltage characteristic of a resonant-tunneling diode has been investigated experimentally. A detailed study of the diode I-V curves in magnetic fields of different orientations has allowed to determine the origin of the features in the fine structure. The voltage positions of the features are shown to coincide with calculated that in the frame of two models: LO-phonon assisted tunneling and resonant tunneling of polarons.

  3. alpha-Globin genes: thalassemic and structural alterations in a Brazilian population

    Directory of Open Access Journals (Sweden)

    M.R.S.C. Wenning

    2000-09-01

    Full Text Available Seven unrelated patients with hemoglobin (Hb H disease and 27 individuals with alpha-chain structural alterations were studied to identify the alpha-globin gene mutations present in the population of Southeast Brazil. The -alpha3.7, --MED and -(alpha20.5 deletions were investigated by PCR, whereas non-deletional alpha-thalassemia (alphaHphalpha, alphaNcoIalpha, aaNcoI, alphaIcalpha and alphaTSaudialpha was screened with restriction enzymes and by nested PCR. Structural alterations were identified by direct DNA sequencing. Of the seven patients with Hb H disease, all of Italian descent, two had the -(alpha20.5/-alpha3.7 genotype, one had the --MED/-alpha3.7 genotype, one had the --MED/alphaHphalpha genotype and three showed interaction of the -alpha3.7 deletion with an unusual, unidentified form of non-deletional alpha-thalassemia [-alpha3.7/(aaT]. Among the 27 patients with structural alterations, 15 (of Italian descent had Hb Hasharon (alpha47Asp->His associated with the -alpha3.7 deletion, 4 (of Italian descent were heterozygous for Hb J-Rovigo (alpha53Ala->Asp, 4 (3 Blacks and 1 Caucasian were heterozygous for Hb Stanleyville-II (alpha78Asn->Lys associated with the alpha+-thalassemia, 1 (Black was heterozygous for Hb G-Pest (alpha74Asp->Asn, 1 (Caucasian was heterozygous for Hb Kurosaki (alpha7Lys->Glu, 1 (Caucasian was heterozygous for Hb Westmead (alpha122His->Gln, and 1 (Caucasian was the carrier of a novel silent variant (Hb Campinas, alpha26Ala->Val. Most of the mutations found reflected the Mediterranean and African origins of the population. Hbs G-Pest and Kurosaki, very rare, and Hb Westmead, common in southern China, were initially described in individuals of ethnic origin differing from those of the carriers reported in the present study and are the first cases to be reported in the Brazilian population.

  4. Structural and evolutionary analysis of the two chimpanzee alpha-globin mRNAs.

    OpenAIRE

    Liebhaber, S A; Begley, K A

    1983-01-01

    Two distinct alpha-globin mRNAs were detected in chimpanzee reticulocyte mRNA using a primer extension assay. DNA copies of these two mRNAs were cloned in the bacterial plasmid pBR322, and their sequence was determined. The two alpha-globin mRNAs have obvious structural homology to the two human alpha-globin mRNAs, alpha 1 and alpha 2. Comparison of the two chimpanzee alpha-globin mRNAs to each other and to their corresponding human counterparts revealed evidence of a recent gene conversion i...

  5. Structure of Oxidized Alpha-Haemoglobin Bound to AHSP Reveals a Protective Mechanism for HAEM

    Energy Technology Data Exchange (ETDEWEB)

    Feng,L.; Zhou, S.; Gu, L.; Gell, D.; MacKay, J.; Weiss, M.; Gow, A.; Shi, Y.

    2005-01-01

    The synthesis of hemoglobin A (HbA) is exquisitely coordinated during erythrocyte development to prevent damaging effects from individual {alpha}- and {beta}-subunits. The {alpha}-hemoglobin-stabilizing protein (AHSP) binds {alpha}-hemoglobin ({alpha}Hb), inhibits the ability of {alpha}Hb to generate reactive oxygen species and prevents its precipitation on exposure to oxidant stress. The structure of AHSP bound to ferrous {alpha}Hb is thought to represent a transitional complex through which {alpha}Hb is converted to a non-reactive, hexacoordinate ferric form. Here we report the crystal structure of this ferric {alpha}Hb-AHSP complex at 2.4 Angstrom resolution. Our findings reveal a striking bis-histidyl configuration in which both the proximal and the distal histidines coordinate the haem iron atom. To attain this unusual conformation, segments of {alpha}Hb undergo drastic structural rearrangements, including the repositioning of several {alpha}-helices. Moreover, conversion to the ferric bis-histidine configuration strongly and specifically inhibits redox chemistry catalysis and haem loss from {alpha}Hb. The observed structural changes, which impair the chemical reactivity of haem iron, explain how AHSP stabilizes {alpha}Hb and prevents its damaging effects in cells.

  6. Fine-tuning structural RNA alignments in the twilight zone

    Directory of Open Access Journals (Sweden)

    Schirmer Stefanie

    2010-04-01

    Full Text Available Abstract Background A widely used method to find conserved secondary structure in RNA is to first construct a multiple sequence alignment, and then fold the alignment, optimizing a score based on thermodynamics and covariance. This method works best around 75% sequence similarity. However, in a "twilight zone" below 55% similarity, the sequence alignment tends to obscure the covariance signal used in the second phase. Therefore, while the overall shape of the consensus structure may still be found, the degree of conservation cannot be estimated reliably. Results Based on a combination of available methods, we present a method named planACstar for improving structure conservation in structural alignments in the twilight zone. After constructing a consensus structure by alignment folding, planACstar abandons the original sequence alignment, refolds the sequences individually, but consistent with the consensus, aligns the structures, irrespective of sequence, by a pure structure alignment method, and derives an improved sequence alignment from the alignment of structures, to be re-submitted to alignment folding, etc.. This circle may be iterated as long as structural conservation improves, but normally, one step suffices. Conclusions Employing the tools ClustalW, RNAalifold, and RNAforester, we find that for sequences with 30-55% sequence identity, structural conservation can be improved by 10% on average, with a large variation, measured in terms of RNAalifold's own criterion, the structure conservation index.

  7. Fine- and hyperfine-structure effects in molecular photoionization: I. General theory and direct photoionization

    CERN Document Server

    Germann, Matthias

    2016-01-01

    We develop a model for predicting fine- and hyperfine intensities in the direct photoionization of molecules based on the separability of electron and nuclear spin states from vibrational-electronic states. Using spherical tensor algebra, we derive highly symmetrized forms of the squared photoionization dipole matrix elements from which which we derive the salient selection and propensity rules for fine- and hyperfine resolved photoionizing transitions. Our theoretical results are validated by the analysis of the fine-structure resolved photoelectron spectrum of O$_2$ (reported by H. Palm and F. Merkt, Phys. Rev. Lett. 81, 1385 (1998)) and are used for predicting hyperfine populations of molecular ions produced by photoionization.

  8. Fine- and hyperfine-structure effects in molecular photoionization. I. General theory and direct photoionization.

    Science.gov (United States)

    Germann, Matthias; Willitsch, Stefan

    2016-07-28

    We develop a model for predicting fine- and hyperfine intensities in the direct photoionization of molecules based on the separability of electron and nuclear spin states from vibrational-electronic states. Using spherical tensor algebra, we derive highly symmetrized forms of the squared photoionization dipole matrix elements from which we derive the salient selection and propensity rules for fine- and hyperfine resolved photoionizing transitions. Our theoretical results are validated by the analysis of the fine-structure resolved photoelectron spectrum of O2 reported by Palm and Merkt [Phys. Rev. Lett. 81, 1385 (1998)] and are used for predicting hyperfine populations of molecular ions produced by photoionization. PMID:27475368

  9. An Action-Based Fine-Grained Access Control Mechanism for Structured Documents and Its Application

    Directory of Open Access Journals (Sweden)

    Mang Su

    2014-01-01

    Full Text Available This paper presents an action-based fine-grained access control mechanism for structured documents. Firstly, we define a describing model for structured documents and analyze the application scenarios. The describing model could support the permission management on chapters, pages, sections, words, and pictures of structured documents. Secondly, based on the action-based access control (ABAC model, we propose a fine-grained control protocol for structured documents by introducing temporal state and environmental state. The protocol covering different stages from document creation, to permission specification and usage control are given by using the Z-notation. Finally, we give the implementation of our mechanism and make the comparisons between the existing methods and our mechanism. The result shows that our mechanism could provide the better solution of fine-grained access control for structured documents in complicated networks. Moreover, it is more flexible and practical.

  10. Superdeformation and alpha - cluster structure in 35Cl

    CERN Document Server

    Bisoi, Abhijit; Sarkar, S; Ray, S; Basu, M Roy; Kanjilal, Debasmita; Nag, Somnath; Kumar, K Selva; Goswami, A; Madhavan, N; Muralithar, S; Bhowmik, R K

    2013-01-01

    A superdeformed (SD) band has been identified in a non - alpha - conjugate nucleus 35Cl. It crosses the negative parity ground band above 11/2- and becomes the yrast at 15/2-. Lifetimes of all relevant states have been measured to follow the evolution of collectivity. Enhanced B(E2), B(E1) values as well as energetics provide evidences for superdeformation and existence of parity doublet cluster structure in an odd-A nucleus for the first time in A = 40 region. Large scale shell model calculations assign (sd)16(pf)3 as the origin of these states. Calculated spectroscopic factors correlate the SD states in 35Cl to those in 36Ar.

  11. Microstructure evolution and mechanical properties of eutectoid steel with ultrafine or fine (ferrite+cementite) structure

    International Nuclear Information System (INIS)

    Eutectoid steel with the ultrafine or fine-grained ferrite (α)+cementite (θ) particles structure was formed by hot deformation of undercooled austenite at 0.1 s−1 or 5 s−1 at 650 °C using a Gleeble 1500 hot simulator and subsequent annealing. The microstructural evolution of fine (α+θ) structure was investigated by means of a scanning electronic microscope, electron backscattered diffraction and transmission electron microscope, and the mechanical properties of fine (α+θ) steel were analyzed in comparison with that of ultrafine (α+θ) steel. The results show that only dynamic transformation of undercooled austenite into proeutectoid ferrite occurs during hot deformation at 650 °C at 5 s−1. During water quenching, lamellar pearlite with small colony sizes is formed and the average size of pearlite colonies decreases with increasing the strain. By subsequent annealing at 650 °C for 30 min, the spheroidization of lamellar pearlite takes place, resulting in the formation of fine (α+θ) structure consisting of ferrite matrix with the average size of about 4.9 μm and fine cementite particles mainly within ferrite grains. In comparison with ultrafine (α+θ) steel consisting of ferrite matrix with the average size of about 1.8 μm and relatively large cementite particles mostly located at grain boundaries, the yield strength, tensile strength, uniform elongation, total elongation and work-hardening capability of fine (α+θ) steel improve markedly

  12. Fine-structure Constant, Anomalous Magnetic Moment, Relativity Factor and the Golden Ratio that Divides the Bohr Radius

    CERN Document Server

    Heyrovska, R

    2005-01-01

    Sommerfeld introduced the fine-structure constant into physics, while he was taking into account the relativistic effects in the theory of the hydrogen atom. Ever since, it has puzzled many scientists like Eddington, Dirac, Feynman and others. Here the mysterious fine-structure constant, alpha = (Compton wavelength/de Broglie wavelength) = 1/137.036 = 2.627/360 is interpreted based on the finding that it is close to 2.618/360 = 1/137.508, where the Compton wavelength for hydrogen is a distance equivalent to an arc length on the circumference (given by the de Broglie wavelength) of a circle with the Bohr radius and 2.618 is the square of the Golden ratio, which was recently shown to divide the Bohr radius into two Golden sections at the point of electrical neutrality. From the data for the electron (e) and proton (p) g-factors, it is found that (137.508 - 137.036)= 0.472 = [g(p) - g(e)]/[g(p) + g(e)] (= 2/cube of the Golden ratio), and that (2.627 - 2.618)/360 = (small part of the Compton wavelength correspond...

  13. Program package for semi-empirical analysis of the fine- and hyperfine structure of complex atoms

    International Nuclear Information System (INIS)

    The experimental work combined with semi-empirical calculations is a very efficient tool for the investigations of the fine- and hyperfine structure of the complex atoms. We present a set of programs for the analysis of the fine- and hyperfine structure. The input data for the calculations are: the fine structure energy levels, the gJ-factors and the hyperfine structure (hfs) A and B constants of experimentally observed levels. The programs are used for the analysis of electron systems containing any number of configurations up to four open shells. In the energy matrix generated, all kinds of electrostatic, magnetic and correlated electrostatic and magnetic interaction, up to second order perturbation theory, were included. As a result, we obtain predicted energy values for all the levels of the system considered, their exact spectroscopic description and also gJ-factors and hfs A and B constants

  14. The fine structure of niobium condensates deposited from ion-atomic fluxes in helium atmosphere

    International Nuclear Information System (INIS)

    Helium gas influence on the structural characteristics of niobium coatings deposited by low-energy metallic Nb ion-stoic fluxes in He atmosphere is investigated. It is shown that He implantation in Nb films during condensation is accompanied with the decreasing of the mean size of condensate grains. At the same time, He atoms modify no physical processes of the fine structure formation. Using thermodesorption spectroscopy we have determined that He atoms mainly belong to vacancy/vacancy-solute complexes in Nb coatings. Our conclusion is that such complexes play a dominant role in formation of the fine structure of vacuum coatings deposited from ion-atomic fluxes

  15. Fine structures in the atmosphere above a sunspot umbra

    CERN Document Server

    Bharti, L; Solanki, S K

    2013-01-01

    We present simultaneous photospheric and chromospheric observations of the trailing sunspot in NOAA 10904, obtained with the Swedish Solar Telescope (SST) La Palma, Canary Islands. Time series of high resolution \\ion{Ca}{ii}\\,$H$ images show transient jet-like structures in sunspot umbrae are elongated, which we call umbral microjets. These jets are directed roughly parallel to nearby penumbral microjets, suggesting that they are aligned with the background magnetic field. In general, first a bright dot-like structure appears, from which a jet later emerges, although some jets appear without an associated chromospheric dot. Bright photospheric umbral dots are associated with umbral microjets arising in the outer umbra. Nevertheless, a one-to-one correspondence between jet-like events and underlying umbral dots is not seen. They are typically less than 1\\arcsec ~long and less than 0\\farcs3 wide. The typical lifetime of umbral microjets is around one minute. The brightness of these structures increases from the...

  16. 3$\\alpha$-cluster structure and monopole transition in $^{12}$C and $^{14}$C

    CERN Document Server

    Yoshida, Yuta

    2016-01-01

    3$\\alpha$-cluster structures and monopole transitions of $0^+$ states in $^{12}$C and $^{14}$C were investigated with $3\\alpha$- and $^{10}$Be+$\\alpha$-cluster models. A gas-like $3\\alpha$ state and a bending-chain $3\\alpha$ state were obtained in the $0^+_2$ and $0^+_3$ states of $^{12}$C, respectively. In $^{14}$C, a linear-chain 3$\\alpha$ structure is found in the $0^+_4$ state near the $^{10}$Be+$\\alpha$ threshold, but a cluster gas-like state does not appear because valence neutrons attract $\\alpha$ clusters and suppress spatial development of 3$\\alpha$ clustering. It was found that the linear-chain state in $^{14}$C is stabilized against the bending and $\\alpha$ escaping modes by valence neutrons. The monopole transition strengths in $^{12}$C are enhanced by $3\\alpha$-cluster developing, whereas, those in $^{14}$C are not enhanced so much because of the tight binding of $\\alpha$ clusters by valence neutrons.

  17. Structure and diversity of the TCR alpha-chain in a teleost fish.

    Science.gov (United States)

    Partula, S; de Guerra, A; Fellah, J S; Charlemagne, J

    1996-07-01

    T cell receptor beta-chain genes are well characterized in representatives of most vertebrate phyla, from sharks to mammals, but the molecular structure of complete TCR alpha-chains has not yet been established in cold-blooded vertebrates. We used a PCR approach to isolate cDNAs encoding putative teleost fish (Oncorhynchus mykiss, rainbow trout) TCR alpha-chains. Eight V alpha segments were identified, belonging to six different families, and the best amino acid sequence identity scores for these trout V alpha were all provided by mammalian V alpha or V delta sequences. Twenty-four (60.1 %) of the 39 analyzed V alpha segments belong to the V alpha 2 family, which has limited homology with mammalian V alpha/delta sequences and with the human V pre-B sequence. A total of 32 different J alpha segments were identified from 40 J alpha regions sequenced, suggesting that a large repertoire of J alpha segments is a characteristic of most vertebrates. The structural properties of the TCR alpha-chain complementarity-determining region 3 loop are well conserved between trout and mammals, suggesting that this region has been under continuous selective pressure in jawed vertebrate evolution. The trout C alpha segment has conserved N-terminal and transmembrane domains, but the C alpha intercysteine distance contains only 40 residues, significantly smaller as compared with mammals (49-56 residues). The conserved features of teleost fish TCR beta- and alpha-chains with their mammalian equivalents suggest that TCR-alpha beta receptors were still present in the common Devonian ancestors of modern teleost fish and mammals, about 450 million years ago. PMID:8683116

  18. Barley alpha-amylase/subtilisin inhibitor: structure, biophysics and protein engineering

    DEFF Research Database (Denmark)

    Nielsen, P.K.; Bønsager, Birgit Christine; Fukuda, Kenji;

    2004-01-01

    Bifunctional alpha-amylase/subtilisin inhibitors have been implicated in plant defence and regulation of endogenous alpha-amylase action. The barley alpha-amylase/subtilisin inhibitor (BASI) inhibits the barley alpha-amylase 2 (AMY2) and subtilisin-type serine proteases. BASI belongs to the Kunitz...... Ca2+-modulated kinetics of the AMY2/BASl interaction and found that the complex formation involves minimal structural changes. The modulation of the interaction by calcium ions makes it unique among the currently known binding mechanisms of proteinaceous alpha-amylase inhibitors....

  19. Distortion product otoacoustic emission fine-structure: An insight into the ear asymmetries

    Directory of Open Access Journals (Sweden)

    Bhamini Sharma

    2014-01-01

    Full Text Available Context: Use of distortion product otoacoustic emission (DPOAE as a measure of hearing sensitivity is common in clinical practice. However, use of a more informative DPOAE fine-structure has been limited due to non-reliability of DPOAE fine-structure. Aim: The current study was aimed at testing the interaural differences between the DPOAE fine-structure across three age groups. Settings and Design: Acoustically treated room with a calibrated dual channel audiometer (Orbiter 922 along with TDH-39 headphones and B-71 bone vibrator. GSI Tympstar was used for tympanometry and acoustic reflex measurements while ′ILO V6′ OAE analyzer was used for recording of DPOAE and DPOAE fine-structure. Material and Methods : A total of 98 subjects with normal peripheral hearing sensitivity were tested for DPOAE fine-structure. The three age groups consisted of young (8-18 years; n = 50, middle aged (30-40 years; n = 30, and elderly (50-60 years; n = 18. DPOAE fine-structure was studied at 8 points per octave on a total of 25 frequencies from 1000 to 8000 Hz. Statistical Analysis Used: Repeated measure analysis of variance. Results: There was a significant difference (P < 0.05 in the amplitudes at frequencies between 2000 and 3000 Hz. This was evident irrespective of the age groups. There was also a decrease in DPOAE amplitude in elderly group. Conclusions: Interaural asymmetry can be attributed as a reason to these findings and it occurred mostly in the speech perception frequencies. Reduced amplitude of DPAOE in the elderly group can be attributed to presbycusis.

  20. Fine structure of the pygmy dipole resonance in (136)Xe.

    Science.gov (United States)

    Savran, D; Fritzsche, M; Hasper, J; Lindenberg, K; Müller, S; Ponomarev, V Yu; Sonnabend, K; Zilges, A

    2008-06-13

    The photoresponse of the semimagic N=82 nucleus (136)Xe was measured up to the neutron separation energy S(n) using the (gamma, gamma') reaction. A concentration of strong dipole excitations is observed well below S(n) showing a fragmented resonancelike structure. Microscopic calculations in the quasiparticle phonon model including complex configurations of up to three phonons agree well with the experimental data in the total integrated strength, in the shape and the fragmentation of the resonance, which allows us to draw conclusions on the damping mechanism of the pygmy dipole resonance.

  1. British Industries Collaborative Exponential Programme, Vol. III: Fine structure experiments, miscellaneous exponential experiments

    International Nuclear Information System (INIS)

    The results are given of measurements of neutron flux fine structure in graphite lattices containing a wide range of uranium metal and uranium oxide fuel elements. In the ease of the metal fuel elements the observed fine structure parameters are correlated with theory. The remainder of the volume deals largely with investigations carried out in the BICEP exponential stacks. These include measurements of neutron diffusion area in graphite, and of buckling and flux distribution in an assembly containing a superlattice of empty channels. A correlation with theory of measurements of migration area asymmetry in uranium-graphite lattices is also given. (author)

  2. Precision Measurement of the Three 23PJ Helium Fine Structure Intervals

    Science.gov (United States)

    Zelevinsky, T.; Farkas, D.; Gabrielse, G.

    2005-11-01

    The three 23P fine structure intervals of He4 are measured at an improved accuracy that is sufficient to test two-electron QED theory and to determine the fine structure constant α to 14 parts in 109. The more accurate determination of α, to a precision higher than attained with the quantum Hall and Josephson effects, awaits the reconciliation of two inconsistent theoretical calculations now being compared term by term. A low pressure helium discharge presents experimental uncertainties quite different than for earlier measurements and allows direct measurements of light pressure shifts.

  3. Searching for variations in the fine-structure constant and the proton-to-electron mass ratio using quasar absorption lines

    CERN Document Server

    King, Julian A

    2012-01-01

    (abridged) Quasar absorption lines provide a precise test of the assumed constancy of the fundamental constants of physics. We have investigated potential changes in the fine-structure constant, alpha, and the proton-to-electron mass ratio, mu. The many-multiplet method allows one to use optical fine-structure transitions to constrain (Delta alpha)/alpha at better than the 10^(-5) level. We present a new analysis of 154 quasar absorbers with 0.2 1.6 sub-samples independently yield consistent estimates of the dipole direction, which suggests that the effect is not caused by telescope systematics. We consider a number of systematic effects and show that they are unable to explain the observed dipole effect. We have used spectra of the quasars Q0405-443, Q0347-383 and Q0528-250 from VLT/UVES to investigate the absorbers at z=2.595, 3.025 and 2.811 in these spectra respectively. We find that (Delta mu)/mu=(10.1 +/- 6.6) x 10^(-6), (8.2 +/- 7.5) x 10^(-6) and (-1.4 +/- 3.9) x 10^(-6) in these absorbers respectivel...

  4. Improved community structure detection using a modified fine tuning strategy

    CERN Document Server

    Sun, Yudong; Josic, Kresimir; Bassler, Kevin E

    2009-01-01

    The community structure of a complex network can be determined by finding the partitioning of its nodes that maximizes modularity. Many of the proposed algorithms for doing this work by recursively bisecting the network. We show that this unduely constrains their results, leading to a bias in the size of the communities they find and limiting their effectivness. To solve this problem, we propose adding a step to the existing algorithms that does not increase the order of their computational complexity. We show that, if this step is combined with a commonly used method, the identified constraint and resulting bias are removed, and its ability to find the optimal partitioning is improved. The effectiveness of this combined algorithm is also demonstrated by using it on real-world example networks. For a number of these examples, it achieves the best results of any known algorithm.

  5. FINE STRUCTURE OF FLARE RIBBONS AND EVOLUTION OF ELECTRIC CURRENTS

    International Nuclear Information System (INIS)

    Emission of solar flares across the electromagnetic spectrum is often observed in the form of two expanding ribbons. The standard flare model explains flare ribbons as footpoints of magnetic arcades, emitting due to interaction of energetic particles with the chromospheric plasma. However, the physics of this interaction and properties of the accelerated particles are still unknown. We present results of multiwavelength observations of the C2.1 flare of 2013 August 15, observed with the New Solar Telescope of the Big Bear Solar Observatory, and the Solar Dynamics Observatory, GOES, and Fermi spacecraft. The observations reveal previously unresolved sub-arcsecond structure of flare ribbons in regions of strong magnetic field consisting from numerous small-scale bright knots. We observe a red-blue asymmetry of Hα flare ribbons with a width as small as ∼100 km. We discuss the relationship between the ribbons and vertical electric currents estimated from vector magnetograms, and show that Joule heating can be responsible for energization of Hα knots in the ribbons

  6. Partial primary structure of human pregnancy zone protein: extensive sequence homology with human alpha 2-macroglobulin

    DEFF Research Database (Denmark)

    Sottrup-Jensen, Lars; Folkersen, J; Kristensen, Torsten;

    1984-01-01

    Human pregnancy zone protein (PZP) is a major pregnancy-associated protein. Its quaternary structure (two covalently bound 180-kDa subunits, which are further non-covalently assembled into a tetramer of 720 kDa) is similar to that of human alpha 2-macroglobulin (alpha 2M). Here we show, from...... is 68%, indicating a close evolutionary relationship between PZP and alpha 2M. Although the function of PZP in pregnancy is largely unknown, its close structural relationship to alpha 2M suggests analogous proteinase binding properties and a potential for being taken up in cells by receptor...

  7. Fine structure of bat deep posterior lingual glands (von Ebner's)

    Science.gov (United States)

    Azzali, G; Gatti, R; Bucci, G; Orlandini, G

    1989-10-01

    We studied the morphology and ultrastructure of the bat (Pipistrellus k.k. and Rhinolophus f.e.) deep posterior lingual glands (Ebner's glands) during hibernation, summer and after stimulation with pilocarpine. Ebner's glands are formed by serous tubulo-alveolar adenomeres and by an excretory system organized in intercalated ducts, long excretory ducts and a main excretory duct. The latter opens in the vallum which surrounds the circumvallate papillae and in the groove of the foliate papillae. The secretory cells, which lack basal folds, show abundant and dense granules (PAS+, Alcian blue -), microvilli (scarce during hibernation), a Golgi apparatus (well developed during summer and after stimulation with pilocarpine), a large nucleus and RER cisternae stacked at the basal pole. Centrioles, lipid droplets, heterogeneous bodies (in content and density, probably lipofuscin bodies), lysosomal multivesicular bodies and large, dense granules with a microcrystalline structure were also encountered. The lateral membranes of adjacent cells are joined by desmosomes; their interdigitations are neither numerous nor prominent during summer. Microfilaments, often gathered in small bundles, lie in the lateral, peripheral cytoplasm without any relation with desmosomes. In summer and particularly after stimulation with pilocarpine, the apical pole of the secretory cells is characterized by many long microvilli, pedunculated hyaloplasmic protrusions and secretory granules. During hibernation the lumen is filled with secretory material. Myoepithelial cells are arranged among secretory cells or between them and the basal lamina. The short intercalated ducts show similarities with the analogous ducts of the parotid gland. Striated ducts are absent. Excretory ducts are endowed with: a) an inner layer of cuboidal cells characterized by poorly developed cytoplasmic organelles, rare dense granules and a few small microvilli; b) an outer layer of basal cells lying on the basal lamina

  8. Ab initio self-consistent x-ray absorption fine structure analysis for metalloproteins.

    Science.gov (United States)

    Dimakis, Nicholas; Bunker, Grant

    2006-12-01

    X-ray absorption fine structure is a powerful tool for probing the structures of metals in proteins in both crystalline and noncrystalline environments. Until recently, a fundamental problem in biological XAFS has been that ad hoc assumptions must be made concerning the vibrational properties of the amino acid residues that are coordinated to the metal to fit the data. Here, an automatic procedure for accurate structural determination of active sites of metalloproteins is presented. It is based on direct multiple-scattering simulation of experimental X-ray absorption fine structure spectra combining electron multiple scattering calculations with density functional theory calculations of vibrational modes of amino acid residues and the genetic algorithm differential evolution to determine a global minimum in the space of fitting parameters. Structure determination of the metalloprotein active site is obtained through a self-consistent iterative procedure with only minimal initial information.

  9. Local Fine Structural Insight into Mechanism of Electrochemical Passivation of Titanium.

    Science.gov (United States)

    Wang, Lu; Yu, Hongying; Wang, Ke; Xu, Haisong; Wang, Shaoyang; Sun, Dongbai

    2016-07-20

    Electrochemically formed passive film on titanium in 1.0 M H2SO4 solution and its thickness, composition, chemical state, and local fine structure are examined by Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), and X-ray absorption fine structure. AES analysis reveals that the thickness and composition of oxide film are proportional to the reciprocal of current density in potentiodynamic polarization. XPS depth profiles of the chemical states of titanium exhibit the coexistence of various valences cations in the surface. Quantitative X-ray absorption near edge structure analysis of the local electronic structure of the topmost surface (∼5.0 nm) shows that the ratio of [TiO2]/[Ti2O3] is consistent with that of passivation/dissolution of electrochemical activity. Theoretical calculation and analysis of extended X-ray absorption fine structure spectra at Ti K-edge indicate that both the structures of passivation and dissolution are distorted caused by the appearance of two different sites of Ti-O and Ti-Ti. And the bound water in the topmost surface plays a vital role in structural disorder confirmed by XPS. Overall, the increase of average Ti-O coordination causes the electrochemical passivation, and the dissolution is due to the decrease of average Ti-Ti coordination. The structural variations of passivation in coordination number and interatomic distance are in good agreement with the prediction of point defect model. PMID:27355902

  10. Fine-structure energy levels, oscillator strengths and lifetimes in Cu XVIII

    International Nuclear Information System (INIS)

    We have performed large-scale CIV3 (Configuration Interaction Version 3) calculations of excitation energies from ground states for 141 fine-structure levels as well as of oscillator strengths and radiative decay rates for all electric-dipole-allowed and intercombination transitions among the levels of the (1s22s22p6) 3l2, 3l3l' and 3l4l configurations of Cu XVIII. These states are represented by very extensive configuration-interaction (CI) wavefunctions obtained using the CIV3 computer code of Hibbert. The important relativistic effects are included through the Breit-Pauli approximation. In order to keep our calculated energy splittings as close as possible to the experimental values, we have made small adjustments to the diagonal elements of the Hamiltonian matrices. Since mixing among several fine-structure levels is found to be very strong, it becomes difficult to identify these uniquely. Our excitation energies, including their ordering, are in excellent agreement (better than 1.0%) with the available experimental results. From our calculated radiative decay rates, we have also calculated radiative lifetimes of the fine-structure levels. Our calculated oscillator strengths and radiative decay rates are found to be in good agreement with other theoretical results, while the lifetimes agree very well with the experimental values (wherever available). In this calculation, we also predict new data for several fine-structure levels where no other theoretical and experimental results are available.

  11. MULTIPLET FINE-STRUCTURE IN THE PHOTOEMISSION OF THE GADOLINIUM AND TERBIUM 5P LEVELS

    NARCIS (Netherlands)

    THOLE, BT; WANG, XD; HARMON, BN; LI, DQ; DOWBEN, PA

    1993-01-01

    Fine structure is observed in the photoemission of the gadolinium and terbium 5p levels. The 5p levels are split into multiplets due to spin-orbit splitting and to Coulomb and exchange interactions with the f shell. The calculated theoretical spectra are in good agreement with the experimental resul

  12. Temporal integration near threshold fine structure - The role of cochlear processing

    DEFF Research Database (Denmark)

    Epp, Bastian; Mauermann, Manfred; Verhey, Jesko L.

    The hearing thresholds of normal hearing listeners often show quasi-periodic variations when measured with a high frequency resolution. This hearing threshold fine structure is related to other frequency specific variations in the perception of sound such as loudness and amplitude modulated tones...

  13. Generalized Ramsauer-Townsend effect in extended x-ray-absorption fine structure

    International Nuclear Information System (INIS)

    Theoretical backscattering amplitude and phase functions, B(k) and phi(k), used in extended x-ray-absorption fine structure (EXAFS) studies show strong features in their k dependence which can be identified as a ''generalized Ramsauer-Townsend effect.'' This effect is studied in detail for elements with atomic number 78≤Z≤90

  14. The Fine Structures of Three Symmetric Latin Squares with Even Orders

    Institute of Scientific and Technical Information of China (English)

    Er Qiang FENG; Yan Xun CHANG

    2011-01-01

    Denote by SFin(v) the set of all integer pairs (t, s) for which there exist three symmetric Latin squares of order v on the same set having fine structure (t, s). We completely determine the set SFin(2n) for any integer n ≥ 5.

  15. The role of adiabaticity in alkali atom-fine structure mixing

    Science.gov (United States)

    Eshel, Ben; Weeks, David E.; Perram, Glen P.

    2014-02-01

    Fine-structure mixing cross-sections for the alkalis in collisions with the rare gases are reviewed. Included in the review are all the rare gases in collisions with all of the first excited state of the alkalis, the second excited state for K, Rb and Cs and the third excited state for Rb and Cs. The cross-sections are converted to probabilities for energy transfer using a quantum-defect calculated cross-section and are then presented as a function of adiabaticity. The data shows a clear decreasing trend with adiabaticity but secondary factors prevent the probabilities from decreasing as quickly as expected. Polarizability is introduced as a proxy for the secondary influences on the data as it increases with both rare gas partner and alkali excited state. The polarizability is shown to cause the probability of fine structure transition to be higher than expected. An empirical model is introduced and fit to the data. Future work will develop a model using time-independent perturbation theory in order to further develop a physical rational for the dependence of fine structure cross sections on adiabaticity and to further understand the secondary influences on the probability for fine structure transition.

  16. Fine-structure energy levels, oscillator strengths and lifetimes in Co-XV

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, G.P. [S. D. (Postgraduate) College, Muzaffarnagar, 251 001, India, affiliated to Chowdhary Charan Singh Univ., Dept. of Physics, Meerut (India); Msezane, A.Z. [Clark Atlanta Univ., Dept. of Physics and Center for Theoretical Studies of Physical Systems, Atlanta, Georgia (United States)

    2008-09-15

    The study of Al-like spectra of ions of the elements of the iron group has received a great deal of attention because they are of particular interest in controlled thermonuclear fusion. Excitation energies from ground state for 97 fine-structure levels as well as oscillator strengths and radiative decay rates for all electric-dipole-allowed and intercombination transitions among the fine-structure levels of the terms belonging to the (1s{sup 2}2s{sup 2}2p{sup 6})3s{sup 2}3p,3s3p{sup 2},3s{sup 2}3d, 3p{sup 3}, 3s3p3d, 3p{sup 2}3d, 3s3d{sup 2},3s{sup 2}4s,3s{sup 2}4p,3s{sup 2}4d,3s{sup 2}4f, and 3s3p4s configurations of Co XV are calculated, using extensive configuration-interaction (CI) wave functions, obtained with the CIV3 computer code of Hibbert. The important relativistic effects in intermediate coupling are included through the Breit-Pauli approximation via spin-orbit, spin-other-orbit, spin-spin, Darwin and mass correction terms. Small adjustments to the diagonal elements of the Hamiltonian matrices have been made. Our calculated excitation energies, including their ordering, are in excellent agreement with the experimental results and the experimentally compiled energy values of the National Institute for Standards and Technology (NIST) wherever available. The mixing among several fine-structure levels is found to be very strong, with most of the strongly mixed levels belonging to the (1s{sup 2}2s{sup 2}2p{sup 6})3p{sup 2}3d and 3s3d{sup 2} configurations. The strong mixing among several fine-structure levels makes it very difficult to identify them uniquely. Perhaps, that may be the reason for the lack of both experimental and theoretical results for these levels. We believe that our extensive calculated values can guide experimentalists in identifying the fine-structure levels in their future work. From our radiative decay rates we have also calculated radiative lifetimes of some fine-structure levels. In this calculation we also predict new data for

  17. Fine-structure energy levels, oscillator strengths and lifetimes in Co-XV

    International Nuclear Information System (INIS)

    The study of Al-like spectra of ions of the elements of the iron group has received a great deal of attention because they are of particular interest in controlled thermonuclear fusion. Excitation energies from ground state for 97 fine-structure levels as well as oscillator strengths and radiative decay rates for all electric-dipole-allowed and intercombination transitions among the fine-structure levels of the terms belonging to the (1s22s22p6)3s23p,3s3p2,3s23d, 3p3, 3s3p3d, 3p23d, 3s3d2,3s24s,3s24p,3s24d,3s24f, and 3s3p4s configurations of Co XV are calculated, using extensive configuration-interaction (CI) wave functions, obtained with the CIV3 computer code of Hibbert. The important relativistic effects in intermediate coupling are included through the Breit-Pauli approximation via spin-orbit, spin-other-orbit, spin-spin, Darwin and mass correction terms. Small adjustments to the diagonal elements of the Hamiltonian matrices have been made. Our calculated excitation energies, including their ordering, are in excellent agreement with the experimental results and the experimentally compiled energy values of the National Institute for Standards and Technology (NIST) wherever available. The mixing among several fine-structure levels is found to be very strong, with most of the strongly mixed levels belonging to the (1s22s22p6)3p23d and 3s3d2 configurations. The strong mixing among several fine-structure levels makes it very difficult to identify them uniquely. Perhaps, that may be the reason for the lack of both experimental and theoretical results for these levels. We believe that our extensive calculated values can guide experimentalists in identifying the fine-structure levels in their future work. From our radiative decay rates we have also calculated radiative lifetimes of some fine-structure levels. In this calculation we also predict new data for several fine-structure levels where no other theoretical and/or experimental results are available. (authors)

  18. Comment on "Limits on the Time Variation of the Electromagnetic Fine-Structure Constant in the Low Energy Limit from Absorption Lines in the Spectra of Distant Quasars"

    CERN Document Server

    Murphy, Michael T; Flambaum, Victor V

    2007-01-01

    In their Letter [Phys. Rev. Lett. 92, 121302 (2004)] (also [Astron. Astrophys. 417, 853 (2004)]), Srianand et al. analysed optical spectra of heavy-element species in 23 absorption systems along background quasar sight-lines, reporting limits on relative variations in the fine-structure constant: da/a=(-0.06+/-0.06) x 10^{-5}. Here we demonstrate basic flaws in their analysis, using the same data and absorption profile fits, which led to spurious values of da/a and significantly underestimated uncertainties. We conclude that these data and fits offer no stringent test of previous evidence for a varying alpha.

  19. Sensitive search for the temporal variation of the fine structure constant using radio-frequency E1 transitions in atomic dysprosium

    CERN Document Server

    Nguyen, A T; Lamoreaux, S K; Torgerson, J R

    2003-01-01

    It has been proposed that the radio-frequency electric-dipole (E1) transition between two nearly degenerate opposite-parity states in atomic dysprosium should be highly sensitive to possible temporal variation of the fine structure constant ($\\alpha$) [V. A. Dzuba, V. V. Flambaum, and J. K. Webb, Phys. Rev. A {\\bf 59}, 230 (1999)]. We discuss here an experimental realization of the proposed search, which involves monitoring the E1 transition frequency over a period of time using direct frequency counting techniques. We estimate that a statistical sensitivity of $|\\adota| \\sim 10^{-18}$/yr may be achieved and discuss possible systematic effects in such a measurement.

  20. Laboratory-based recording of holographic fine structure in X-ray absorption anisotropy using polycapillary optics

    Energy Technology Data Exchange (ETDEWEB)

    Dabrowski, K.M. [Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Krakow (Poland); Korecki, P., E-mail: pawel.korecki@uj.edu.pl [Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Krakow (Poland)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer Holographic fine structures in X-ray absorption recorded using a tabletop setup. Black-Right-Pointing-Pointer Setup based on polycapillary collimating optics and an HOPG crystal. Black-Right-Pointing-Pointer Demonstration of element sensitivity by detection of X-ray fluorescence. Black-Right-Pointing-Pointer Potential of laboratory-based experiments for heavily doped crystals and thin films. - Abstract: A tabletop setup composed of a collimating polycapillary optics and a highly oriented pyrolytic graphite monochromator (HOPG) was characterized and used for recording two-dimensional maps of X-ray absorption anisotropy (XAA). XAA originates from interference of X-rays directly inside the sample. Depending on experimental conditions, fine structures in XAA can be interpreted in terms of X-ray holograms or X-ray standing waves and can be used for an element selective atomic-resolved structural analysis. The implementation of polycapillary optics resulted in a two-order of magnitude gain in the radiant intensity (photons/s/solid angle) as compared to a system without optics and enabled efficient recording of XAA with a resolution of 0.15 Degree-Sign for Mo K{alpha} radiation. Element sensitivity was demonstrated by acquisition of distinct XAA signals for Ga and As atoms in a GaAs (1 1 1) wafer by using X-ray fluorescence as a secondary signal. These results indicate the possibility of performing laboratory-based XAA experiments for heavily doped single crystals or thin films. So far, because of the weak holographic modulation of XAA, such experiments could be only performed using synchrotron radiation.

  1. Fine-structure energy levels, oscillator strengths and lifetimes in Cu XVI

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, G P [Department of Physics, S D (Postgraduate) College, Muzaffarnagar-251 001 (Affiliated to Chowdhary Charan Singh University, Meerut-250 004) (India); Msezane, A Z, E-mail: g_p_gupta1@yahoo.co.in [Department of Physics and Center for Theoretical Studies of Physical Systems, Clark Atlanta University, Atlanta, GA 30314 (United States)

    2011-05-01

    We have performed large-scale CIV3 calculations of excitation energies from ground state for 69 fine-structure levels as well as of oscillator strengths and radiative decay rates for all electric-dipole-allowed and intercombination transitions among the fine-structure levels of the terms belonging to the (1s{sup 2}2s{sup 2}2p{sup 6})3s{sup 2}3p{sup 2}, 3s3p{sup 3}, 3p{sup 4}, 3s{sup 2}3p3d, 3s{sup 2}3p4s, 3s{sup 2}3p4p, 3s{sup 2}3p4d, and 3s{sup 2}3p4f configurations of Cu XVI. These states are represented by very extensive configuration-interaction (CI) wave functions obtained with the computer code CIV3 of Hibbert. The important relativistic effects in intermediate coupling are incorporated by means of the Breit-Pauli Hamiltonian. Small adjustments to the diagonal elements of the Hamiltonian matrices have been made so that the energy splittings are as close as possible to the energy values of those from the National Institute for Standards and Technology. The mixing among several fine-structure levels is found to be very strong. From our radiative decay rates we have also calculated radiative lifetimes of the fine-structure levels. Our calculated lifetime for the high spin level 3s3p{sup 3}({sup 5}S{sub 2}) is found to be in excellent agreement with the experimental value of Trabert et al (1988 J. Opt. Soc. Am. B 5 2173). In this calculation, we also predict new data for several fine-structure levels where no other theoretical and/or experimental results are available.

  2. Fine-structure energy levels, oscillator strengths and lifetimes in Cu XVI

    International Nuclear Information System (INIS)

    We have performed large-scale CIV3 calculations of excitation energies from ground state for 69 fine-structure levels as well as of oscillator strengths and radiative decay rates for all electric-dipole-allowed and intercombination transitions among the fine-structure levels of the terms belonging to the (1s22s22p6)3s23p2, 3s3p3, 3p4, 3s23p3d, 3s23p4s, 3s23p4p, 3s23p4d, and 3s23p4f configurations of Cu XVI. These states are represented by very extensive configuration-interaction (CI) wave functions obtained with the computer code CIV3 of Hibbert. The important relativistic effects in intermediate coupling are incorporated by means of the Breit-Pauli Hamiltonian. Small adjustments to the diagonal elements of the Hamiltonian matrices have been made so that the energy splittings are as close as possible to the energy values of those from the National Institute for Standards and Technology. The mixing among several fine-structure levels is found to be very strong. From our radiative decay rates we have also calculated radiative lifetimes of the fine-structure levels. Our calculated lifetime for the high spin level 3s3p3(5S2) is found to be in excellent agreement with the experimental value of Trabert et al (1988 J. Opt. Soc. Am. B 5 2173). In this calculation, we also predict new data for several fine-structure levels where no other theoretical and/or experimental results are available.

  3. Identification of three critical regions within mouse interleukin 2 by fine structural deletion analysis.

    OpenAIRE

    Zurawski, S M; Zurawski, G

    1988-01-01

    We have analyzed structure--function relationships of the protein hormone murine interleukin 2 by fine structural deletion mapping. A total of 130 deletion mutant proteins, together with some substitution and insertion mutant proteins, was expressed in Escherichia coli and analyzed for their ability to sustain the proliferation of a cloned murine T cell line. This analysis has permitted a functional map of the protein to be drawn and classifies five segments of the protein, which together con...

  4. Determining the velocity fine structure by a laser anemometer with fixed orientation

    Energy Technology Data Exchange (ETDEWEB)

    Kristensen, Leif; Kirkegaard, P.; Mikkelsen, Torben

    2011-02-15

    We have studied the velocity structure functions and spectra which can be determined by a CW-laser anemometer and a (pulsed) lidar anemometer. We have found useful theoretical expressions for both types of anemometers and compared their filtering of the along-beam turbulent velocity. The purpose has been to establish a basis for remote determining of turbulence fine-structure in terms of the rate of dissipation of specific kinetic energy in the atmospheric boundary layer. (Author)

  5. Scattering pulse of label free fine structure cells to determine the size scale of scattering structures

    Science.gov (United States)

    Zhang, Lu; Chen, Xingyu; Zhang, Zhenxi; Chen, Wei; Zhao, Hong; Zhao, Xin; Li, Kaixing; Yuan, Li

    2016-04-01

    Scattering pulse is sensitive to the morphology and components of each single label-free cell. The most direct detection result, label free cell's scattering pulse is studied in this paper as a novel trait to recognize large malignant cells from small normal cells. A set of intrinsic scattering pulse calculation method is figured out, which combines both hydraulic focusing theory and small particle's scattering principle. Based on the scattering detection angle ranges of widely used flow cytometry, the scattering pulses formed by cell scattering energy in forward scattering angle 2°-5° and side scattering angle 80°-110° are discussed. Combining the analysis of cell's illuminating light energy, the peak, area, and full width at half maximum (FWHM) of label free cells' scattering pulses for fine structure cells with diameter 1-20 μm are studied to extract the interrelations of scattering pulse's features and cell's morphology. The theoretical and experimental results show that cell's diameter and FWHM of its scattering pulse agree with approximate linear distribution; the peak and area of scattering pulse do not always increase with cell's diameter becoming larger, but when cell's diameter is less than about 16 μm the monotone increasing relation of scattering pulse peak or area with cell's diameter can be obtained. This relationship between the features of scattering pulse and cell's size is potentially a useful but very simple criterion to distinguishing malignant and normal cells by their sizes and morphologies in label free cells clinical examinations.

  6. Les structures fines de l'\\'{e}lectromagn\\'{e}tisme classique et de la relativit\\'{e} restreinte (The fine structures of Classical Electromagnetism and Special Relativity)

    CERN Document Server

    Pierseaux, Y; Pierseaux, Yves; Rousseaux, Germain

    2006-01-01

    One of us (Y.P.) has shown the existence of a longitudinal component in the propagation of light waves on the basis of the kinematics underlying Poincar\\'{e}'s ellipse. We show how this statement agrees with the electromagnetic theory. We recall that the second of us supports the existence of a "fine structure" of Electromagnetism that is, the co-existence of two theories, one based on the fields (Heaviside-Hertz) and the other on the potentials (Riemann-Lorenz). The existence of two different kinematics (the "fine structure" of Special Relativity : Einstein or Poincar\\'{e}) corresponds to these two formulations of Classical Electromagnetism. With this goal in mind, we prove the relativistic covariance of the Helmholtz decomposition of the vector potential. This one translates into a generalized compensation for all directions of propagation, on the basis of the tangent to Poincar\\'{e}'s ellipse, between the scalar potential and the longitudinal component of the vector potential. The adoption by Poincar\\'{e} ...

  7. Crystal structure of porcine reproductive and respiratory syndrome virus leader protease Nsp1alpha.

    Science.gov (United States)

    Sun, Yuna; Xue, Fei; Guo, Yu; Ma, Ming; Hao, Ning; Zhang, Xuejun C; Lou, Zhiyong; Li, Xuemei; Rao, Zihe

    2009-11-01

    Porcine reproductive and respiratory syndrome (PRRS) virus (PRRSV), a positive-strand RNA virus that belongs to the Arteriviridae family of Nidovirales, has been identified as the causative agent of PRRS. Nsp1alpha is the amino (N)-terminal protein in a polyprotein encoded by the PRRSV genome and is reported to be crucial for subgenomic mRNA synthesis, presumably by serving as a transcription factor. Before functioning in transcription, nsp1alpha proteolytically releases itself from nsp1beta. However, the structural basis for the self-releasing and biological functions of nsp1alpha remains elusive. Here we report the crystal structure of nsp1alpha of PRRSV (strain XH-GD) in its naturally self-processed form. Nsp1alpha contains a ZF domain (which may be required for its biological function), a papain-like cysteine protease (PCP) domain with a zinc ion unexpectedly bound at the active site (which is essential for proteolytic self-release of nsp1alpha), and a carboxyl-terminal extension (which occupies the substrate binding site of the PCP domain). Furthermore, we determined the exact location of the nsp1alpha self-processing site at Cys-Ala-Met180 downward arrowAla-Asp-Val by use of crystallographic data and N-terminal amino acid sequencing. The crystal structure also suggested an in cis self-processing mechanism for nsp1alpha. Furthermore, nsp1alpha appears to have a dimeric architecture both in solution and as a crystal, with a hydrophilic groove on the molecular surface that may be related to nsp1alpha's biological function. Compared with existing structure and function data, our results suggest that PRRSV nsp1alpha functions differently from other reported viral leader proteases, such as that of foot-and-mouth disease. PMID:19706710

  8. Fine Structure Zonal Flow Excitation by Beta-induced Alfven Eigenmode

    CERN Document Server

    Qiu, Zhiyong; Zonca, Fulvio

    2016-01-01

    Nonlinear excitation of low frequency zonal structure (LFZS) by beta-induced Alfven eigenmode (BAE) is investigated using nonlinear gyrokinetic theory. It is found that electrostatic zonal flow (ZF), rather than zonal current, is preferentially excited by finite amplitude BAE. In addition to the well-known meso-scale radial envelope structure, ZF is also found to exhibit fine radial structure due to the localization of BAE with respect to mode rational surfaces. Specifically, the zonal electric field has an even mode structure at the rational surface where radial envelope peaks.

  9. Electronic fine structure and recombination dynamics in single InAs quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Seguin, R.

    2008-01-28

    In the work at hand single InAs/GaAs quantum dots (QDs) are examined via cathodoluminescence spectroscopy. A thorough analysis of the spectra leads to an unambiguous assignment of the lines to the decay of specific excitonic complexes. A special aspect of the Coulomb interaction, the exchange interaction, gives rise to a fine structure in the initial and final states of an excitonic decay. This leads to a fine structure in the emission spectra that again is unique for every excitonic complex. The exchange interaction is discussed in great detail in this work.QDs of different sizes are investigated and the influence on the electronic properties is monitored. Additionally, the structure is modified ex situ by a thermal annealing process. The changes of the spectra under different annealing temperatures are traced. Finally, recombination dynamics of different excitonic complexes are examined by performing time-resolved cathodoluminescence spectroscopy. (orig.)

  10. Electronic fine structure and recombination dynamics in single InAs quantum dots

    International Nuclear Information System (INIS)

    In the work at hand single InAs/GaAs quantum dots (QDs) are examined via cathodoluminescence spectroscopy. A thorough analysis of the spectra leads to an unambiguous assignment of the lines to the decay of specific excitonic complexes. A special aspect of the Coulomb interaction, the exchange interaction, gives rise to a fine structure in the initial and final states of an excitonic decay. This leads to a fine structure in the emission spectra that again is unique for every excitonic complex. The exchange interaction is discussed in great detail in this work.QDs of different sizes are investigated and the influence on the electronic properties is monitored. Additionally, the structure is modified ex situ by a thermal annealing process. The changes of the spectra under different annealing temperatures are traced. Finally, recombination dynamics of different excitonic complexes are examined by performing time-resolved cathodoluminescence spectroscopy. (orig.)

  11. Diffraction Anomalous Fine Structure study and atomistic simulation of Ge/Si nanoislands

    Energy Technology Data Exchange (ETDEWEB)

    Katcho, N.A. [Instituto de Quimica Fisica Rocasolano, IQFR-CSIC, c. Serrano 119, 28006 Madrid (Spain); ICMA, Dep. Fisica de la Materia Condensada, CSIC-Universidad de Zaragoza (Spain); Richard, M.-I. [Aix-Marseille Universite, IM2NP-CNRS, Faculte des Sciences et Techniques, F-13397 Marseille Cedex (France); Proietti, M.G., E-mail: proietti@unizar.es [ICMA, Dep. Fisica de la Materia Condensada, CSIC-Universidad de Zaragoza (Spain); Renevier, H., E-mail: hubert.renevier@grenoble-inp.fr [LMGP, Grenoble INP - Minatec, Grenoble (France); Leclere, C. [LMGP, Grenoble INP - Minatec, Grenoble (France); Favre-Nicolin, V. [CEA-UJF, INAC, SP2M, Grenoble (France); Zhang, J.J.; Bauer, G. [Institut fuer Halbleiter - und Festkoerperphysik, Johannes Kepler Universitaet Linz (Austria)

    2012-08-01

    We applied Grazing Incidence Diffraction Anomalous Fine Structure to the study of the structure of Ge dome-shaped nanoislands, grown by Molecular Beam Epitaxy on Si (0 0 1) substrates at a temperature of 650 Degree-Sign C. We determined the vertical composition of the islands showing the presence of a strong Ge/Si intermixing that is nearly constant from bottom to top. In particular, an abrupt change is found at the substrate interface where the composition switches from pure Si to Ge{sub 0.6}Si{sub 0.4}. The analysis of the Diffraction Anomalous Fine Structure oscillations of the spectra is crucial to obtain the true composition profile. We performed atomistic simulations to investigate the role of the strained substrate underneath the dome on the diffraction results and to quantify the resolution of our method. Anomalous Diffraction spectra and Diffraction Anomalous Fine Structure oscillations have been simulated for a real size and real shape cluster including faceting, giving a more detailed data interpretation and understanding of the Ge-Si intermixing mechanism.

  12. Complete study of excitonic fine-structure splitting in GaN/AlN quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Hoenig, Gerald; Winkelnkemper, Momme; Schliwa, Andrei; Hoffmann, Axel; Bimberg, Dieter [Institut fuer Festkoerperphysik, Technische Universitaet Berlin (Germany); Kindel, Christian [Institut fuer Festkoerperphysik, Technische Universitaet Berlin (Germany); Research Center for Advanced Science and Technology, University of Tokyo (Japan); Kako, Satoshi [Institute for Nano Quantum Information Electronics, University of Tokyo (Japan); Kawano, Takeshi; Oishi, Hiroaki [Research Center for Advanced Science and Technology, University of Tokyo (Japan); Arakawa, Yasuhiko [Research Center for Advanced Science and Technology, University of Tokyo (Japan); Institute for Nano Quantum Information Electronics, University of Tokyo (Japan); Institute of Industrial Science, University of Tokyo, Komaba, Meguro, Tokyo (Japan)

    2010-07-01

    A detailed understanding of the excitonic fine structure in quantum dots (QDs) is indispensable for their use in quantum cryptography devices. While the fine structure in As-based QDs has been studied extensively, there is a lack of such investigations for N-based QDs, which might operate at room temperature. We present the first complete study of excitonic fine-structure splitting (FSS) in GaN/AlN QDs. Our experimental studies reveal a huge FSS of up to 7 meV with a strong dependence on the emission energy inverse to that in As-based QDs. Our theoretical studies, performed with a configuration-interaction method based on realistic 8-band-k.p Hartree-Fock states, confirm the experimental results and identify the origin of FSS as lattice strain induced. Based on our results it is possible to induce a strain gradient (by micro mechanic techniques or structuring methods), which will reduce the FSS to zero for the emission of entangled photon pairs.

  13. Precision Measurements: Testing the Time Variation of the Fine Structure Constant

    Science.gov (United States)

    Lamoreaux, Steve

    2004-05-01

    Often, precision measurements from diverse fields can be used to learn new facts about the universe. The usual definition of "precision" is based on improvements over previous measurements. A review of the present state of knowledge regarding the possible time variation of the fine structure constant α will be presented; "precise" data from natural phenomena, which include an apparent shift in the red-shift-scaled fine structure in the absorption spectra of quasar light, and the isotopic abundances in the fission products of a prehistoric natural reactor in Oklo, Gabon. Prospects to improve the accuracy for the constancy of α with laboratory experiments will be discussed. Our two experimental investigations currently being developed are based on optical spectroscopy of trapped ions and on radiofrequency spectroscopy of an atomic dysprosium beam. A sensitivity of dotα/α≈ 10-18/yr is anticipated. Because this accuracy exceeds that by which the second is defined, these measurements will necessarily be differential.

  14. Markov Chain Monte Carlo methods applied to measuring the fine structure constant from quasar spectroscopy

    Science.gov (United States)

    King, Julian; Mortlock, Daniel; Webb, John; Murphy, Michael

    2010-11-01

    Recent attempts to constrain cosmological variation in the fine structure constant, α, using quasar absorption lines have yielded two statistical samples which initially appear to be inconsistent. One of these samples was subsequently demonstrated to not pass consistency tests; it appears that the optimisation algorithm used to fit the model to the spectra failed. Nevertheless, the results of the other hinge on the robustness of the spectral fitting program VPFIT, which has been tested through simulation but not through direct exploration of the likelihood function. We present the application of Markov Chain Monte Carlo (MCMC) methods to this problem, and demonstrate that VPFIT produces similar values and uncertainties for Δα/α, the fractional change in the fine structure constant, as our MCMC algorithm, and thus that VPFIT is reliable.

  15. Special Features of Polarization-Induced Relaxation in Structurally Disordered Finely Dispersed Systems

    Science.gov (United States)

    Shcherbachenko, L. A.; Tanaev, A. B.; Bezrukova, Ya. V.; Ezhova, L. I.; Baryshnikov, D. S.; Marchuk, S. D.; Berezovskii, P. P.

    2015-04-01

    Dielectric characteristics of finely dispersed hydrated natural coal from the Krasnoyarsk Strip Mine are measured in wide ranges of external measuring electric field frequencies, environmental temperatures, and humidities. The frequency, temperature, and concentration dispersions of the dielectric permittivity are revealed for the examined structures. An analysis of the results obtained demonstrates that a cluster layer of the polar aqueous matrix characterized by rigid fixing of water molecules is formed at the interphase boundaries of the examined system. It is demonstrated that this layer plays the role of the potential barrier that complicates transitions for both free water molecules and surface active dispersed coals oriented by the electric field. This layer can increase the electric strength of the examined disordered finely dispersed structures.

  16. Changes in the fine structure of stochastic distributions as a consequence of space-time fluctuations

    CERN Document Server

    Shnoll, S E

    2006-01-01

    Earlier we showed that the fine structure of the spectrum of amplitude variations in the results of measurements of the processes of different nature (in other words, the fine structure of the dispersion of results or the pattern of the corresponding histograms) is subject to macroscopic fluctuations, changing regularly with time. These changes indicate that the dispersion of results that remains after all artifacts are excluded inevitably accompanies any measurements and reflects very basic features of our world. In our research, we have come to the conclusion that this dispersion of results is the effect of space-time fluctuations, which, in their turn, are caused by the movement of the measured object in an anisotropic gravitational field. Among other things, this conclusion means that the examination of the detailed pattern of distributions obtained from the results of measurement of the dynamics of processes of different nature discovers laws, which cannot be revealed with traditional methods for the ana...

  17. Number Archetypes and “Background” Control Theory Concerning the Fine Structure Constant

    Directory of Open Access Journals (Sweden)

    Péter Várlaki

    2008-05-01

    Full Text Available In this paper we analyze in detail the central role of number ‘137’, the so-calledFine Structure Constant in the collaboration of Pauli and Jung. First, we present the fascinationor the obsession of Pauli for the interpretation of number ‘137’. Second, we treat thespontaneous messages originating from unconscious concerning number ‘137’ in the wellknowndreams of Pauli. We restrict our investigations to the dreams containing the especiallyimportant formulae of Fine Structure Constant (4π3 + π2 + π, and also that containingthe so-called background models of mathematical control systems. Third, we shortlymention four of the numerous synchronicities arising during the Pauli–Jung collaboration.

  18. Topological map of the Hofstadter butterfly: Fine structure of Chern numbers and Van Hove singularities

    Science.gov (United States)

    Naumis, Gerardo G.

    2016-04-01

    The Hofstadter butterfly is a quantum fractal with a highly complex nested set of gaps, where each gap represents a quantum Hall state whose quantized conductivity is characterized by topological invariants known as the Chern numbers. Here we obtain simple rules to determine the Chern numbers at all scales in the butterfly fractal and lay out a very detailed topological map of the butterfly by using a method used to describe quasicrystals: the cut and projection method. Our study reveals the existence of a set of critical points that separates orderly patterns of both positive and negative Cherns that appear as a fine structure in the butterfly. This fine structure can be understood as a small tilting of the projection subspace in the cut and projection method and by using a Chern meeting formula. Finally, we prove that the critical points are identified with the Van Hove singularities that exist at every band center in the butterfly landscape.

  19. Fine Structure of the R Absorption Lines of Cr3+ in Antiferromagnetic Dysprosium Aluminum Garnet

    Science.gov (United States)

    Aoyagi, Kiyoshi; Kajiura, Masako; Sugano, Satoru

    1981-11-01

    The absorption spectrum of a Cr3+ ion in an antiferromagnetic disprosium aluminum garnet with the Néel temperature TN of 2.5 K, is measured in the red region between 1.7 K and 4.2 K. It is shown that the fine structure of the R1 and R2 lines at 1.7 K can be explained by using an effective Hamiltonian for the t2g3 2E excited state of Cr3+ in the surrounding of the ordered Dy3+ spins. The gross feature of the observed temperature dependence of the fine structure is shown to be reproduced by assuming appropriate exchange interactions of Cr3+ with Dy3+.

  20. How strongly does dating meteorites constrain the time-dependence of the fine-structure constant?

    CERN Document Server

    Fujii, Y; Fujii, Yasunori; Iwamoto, Akira

    2005-01-01

    We review our argument on the nature of the so-called meteorite constraint on the possible time-dependence of the fine-structure constant, emphasizing that dating meteorites at the present time is different in principle from searching directly for the traces in the past, as in the Oklo phenomenon and the QSO absorption lines. In the related literature, we still find some arguments not necessarily consistent with this difference to be taken properly into account. This does not imply that any of the model-dependent approaches are useless in practice, though we cannot help guessing that dating meteorites is no match for the Oklo and the QSO in probing time-dependence of the fine-structure constant, at this moment. Some of the relevance to the QSO data particularly in terms of the scalar field will be discussed.

  1. How Strongly does Dating Meteorites Constrain the Time-Dependence of the Fine-Structure Constant?

    Science.gov (United States)

    Fujii, Yasunori; Iwamoto, Akira

    We review our argument on the nature of the so-called meteorite constraint on the possible time-dependence of the fine-structure constant, emphasizing that dating meteorites at the present time is different in principle from searching directly for the traces in the past, as in the Oklo phenomenon and the QSO absorption lines. In the related literature, we still find some arguments not necessarily consistent with this difference to be taken properly into account. It does not immediately follow that any model-dependent approaches are useless in practice, though we cannot help suspecting that dating meteorites is no match for the Oklo and the QSO in probing the time-variability of the fine-structure constant, at this moment. Some of the relevance to the QSO data particularly in terms of the scalar field will be discussed.

  2. Constraints on field theoretical models for variation of the fine structure constant

    Science.gov (United States)

    Steinhardt, Charles L.

    2005-02-01

    Recent theoretical ideas and observational claims suggest that the fine structure constant α may be variable. We examine a spectrum of models in which α is a function of a scalar field. Specifically, we consider three scenarios: oscillating α, monotonic time variation of α, and time-independent α that is spatially varying. We examine the constraints imposed upon these theories by cosmological observations, particle detector experiments, and “fifth force” experiments. These constraints are very strong on models involving oscillation but cannot compete with bounds from the Oklo subnuclear reactor on models with monotonic timelike variation of α. One particular model with spatial variation is consistent with all current experimental and observational measurements, including those from two seemingly conflicting measurements of the fine structure constant using the many multiplet method on absorption lines.

  3. Measuring the fine structure constant with Bragg diffraction and Bloch oscillations

    Science.gov (United States)

    Yu, Chenghui; Estey, Brian; Parker, Richard; Dudley, Jordan; Müller, Holger

    2016-05-01

    We have demonstrated a new scheme for atom interferometry based on large-momentum-transfer Bragg beam splitters and Bloch oscillations. In this new scheme, we have achieved a resolution of δα / α =0.25ppb in the fine structure constant measurement, which gives up to 4.4 million radians of phase difference between freely evolving matter waves. We have suppressed many systematic effects known in most atom interferometers with Raman beam splitters such as light shift, Zeeman effect shift as well as vibration. We have also simulated multi-atom Bragg diffraction to understand sub-ppb systematic effects, and implemented spatial filtering to further suppress systematic effects. We present our recent progress toward a measurement of the fine structure constant, which will provide a stringent test of the standard model of particle physics.

  4. Measuring h /mCs and the Fine Structure Constant with Bragg Diffraction and Bloch Oscillations

    Science.gov (United States)

    Parker, Richard

    2016-05-01

    We have demonstrated a new scheme for atom interferometry based on large-momentum-transfer Bragg beam splitters and Bloch oscillations. In this new scheme, we have achieved a resolution of δα / α =0.25ppb in the fine structure constant measurement, which gives up to 4.4 million radians of phase difference between freely evolving matter waves. We suppress many systematic effects, e.g., Zeeman shifts and effects from Earth's gravity and vibrations, use Bloch oscillations to increase the signal and reduce the diffraction phase, simulate multi-atom Bragg diffraction to understand sub-ppb systematic effects, and implement spatial filtering to further suppress systematic effects. We present our recent progress toward a measurement of the fine structure constant, which will provide a stringent test of the standard model of particle physics.

  5. Constraint on the time variation of the fine-structure constant with the SDSS-III/BOSS DR12 quasar sample

    CERN Document Server

    Albareti, Franco D; Gutiérrez, Carlos M; Prada, Francisco; Pâris, Isabelle; Schlegel, David; López-Corredoira, Martín; Schneider, Donald P; Manchado, Arturo; García-Hernández, D A; Petitjean, Patrick; Ge, Jian

    2015-01-01

    From the Sloan Digital Sky Survey Data Release 12, which covers the full Baryonic Oscillation Spectroscopic Survey (BOSS) footprint, we investigate the possible variation of the fine-structure constant over cosmological time scales. We analyze the largest quasar sample considered so far in the literature, which contains 10,363 spectra with $z<1$. All the BOSS quasar spectra are selected from a visually inspected quasar catalog. We apply the emission line method on the [O III] doublet (4960, 5008 A) and obtain $\\Delta\\alpha/\\alpha= \\left(1.4 \\pm 2.3\\right)\\times10^{-5}$ for the relative variation of the fine-structure constant. We also investigate the possible sources of systematics: misidentification of the lines, sky OH lines, H$\\beta$ and broad line contamination, optimal wavelength range for the Gaussian fits, chosen polynomial order for the continuum spectrum, signal-to-noise ratio and good quality of the fits. The uncertainty of the measurement is dominated by the sky subtraction. The results presente...

  6. Photoconductivity measurement of polymers by x-ray absorption fine structure

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Photoconductivity spectra measurement of polymers at x-ray energies around the Zn and Co K edges,shows obvious x-ray absorption fine structure oscillations.The photoconductivity spectra obtained for gapped and sandwiched electrode geometric samples,indicate that the shape of photoconductivity spectrum depends on the electrode configuration of the samples.The thickness of the conduction layer can be estimated from the photoconductivity spectrum.

  7. Fusion reaction yield in focused discharges with variable energy and plasma fine structure

    International Nuclear Information System (INIS)

    The same linear correlation between the distribution parameters (ΔT and Max ΔV) of the radial current density J between electrodes and the fusion reaction yield per pulse, Y, in the plasma focus (PF) pinch was quantitatively determined from different PF machines. Contact prints of current-sheath fragments (CSF) ejected from the pinch are obtained from 2.5-MeV-D+ ions. CSF's show the same submillimetric fine structure of the pinch. (author) 3 refs., 2 tabs

  8. Fine Structure of Hydrogen Bond in Cholic Acid Revealed by 2DIR Spectroscopy

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Based on cryogenic FT-IR spectroscopic studies of hydrogen bonds in cholic acid, two-dimensional FT-IR spectroscopy was applied to enhance our understanding of the hydrogen bonds of cholic acid. Fine spectral structures were revealed by asynchronous 2D FT-IR spectra. The co-relationship among various bands was discussed according to the synchronous 2D FT-IR spectrum.

  9. Fine-structure energy levels, oscillator strengths and lifetimes in Mn XIII

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, G P [Department of Physics, S. D. Postgraduate College - Affiliated to Chowdhary Charan Singh University, Meerut-250 004, Muzaffarnagar-251 001 (India); Msezane, A Z [Department of Physics and Center for Theoretical Studies of Physical Systems, Clark Atlanta University, Atlanta, GA 30314 (United States)

    2007-09-15

    We have performed large scale CIV3 calculations of excitation energies from ground state for 98 fine-structure levels as well as of oscillator strengths and radiative decay rates for all electric-dipole-allowed and intercombination transitions among the fine-structure levels of the terms belonging to the (1s{sup 2}2s{sup 2} 2p{sup 6})3s{sup 2} 3p, 3s3p{sup 2}, 3s{sup 2}3d, 3p{sup 3}, 3s3p3d, 3p{sup 2} 3d, 3s3d{sup 2}, 3s{sup 2} 4s, 3s{sup 2} 4p, 3s{sup 2}4d, 3s{sup 2} 4f and 3s3p4s configurations of Al-like manganese. These states are represented by very extensive configuration-interaction (CI) wavefunctions obtained with the CIV3 computer code of Hibbert. The important relativistic effects in intermediate coupling are incorporated by means of the Breit-Pauli Hamiltonian. In order to keep our calculated energy splittings as close as possible to the experimental values, we have made small adjustments to the diagonal elements of the Hamiltonian matrices. Our calculated excitation energies, including their ordering, are in excellent agreement with the available experimental results. From our radiative decay rates, we have also calculated radiative lifetimes of some fine-structure levels. Differences between our calculated lifetimes and those of Froese Fisher et al (2006 At. Data Nucl. Data Tables 92 607) for several fine-structure levels are discussed.

  10. Fine-structure energy levels, oscillator strengths and lifetimes in Cu XVIII

    Energy Technology Data Exchange (ETDEWEB)

    Tayal, Vikas [Department of Physics, Dronacharya College of Engineering (Affiliated to Uttar Pradesh Technical University, Lucknow), Greater Noida (UP), 201 308 (India); Gupta, G P [Department of Physics, S D (Postgraduate) College (Affiliated with Choudhary Charan Singh University, Meerut), Muzaffarnagar - UP, 251 001 (India)], E-mail: tayalvikas11@rediffmail.com

    2009-11-15

    We have performed large-scale CIV3 (Configuration Interaction Version 3) calculations of excitation energies from ground states for 141 fine-structure levels as well as of oscillator strengths and radiative decay rates for all electric-dipole-allowed and intercombination transitions among the levels of the (1s{sup 2}2s{sup 2}2p{sup 6}) 3l{sup 2}, 3l3l' and 3l4l configurations of Cu XVIII. These states are represented by very extensive configuration-interaction (CI) wavefunctions obtained using the CIV3 computer code of Hibbert. The important relativistic effects are included through the Breit-Pauli approximation. In order to keep our calculated energy splittings as close as possible to the experimental values, we have made small adjustments to the diagonal elements of the Hamiltonian matrices. Since mixing among several fine-structure levels is found to be very strong, it becomes difficult to identify these uniquely. Our excitation energies, including their ordering, are in excellent agreement (better than 1.0%) with the available experimental results. From our calculated radiative decay rates, we have also calculated radiative lifetimes of the fine-structure levels. Our calculated oscillator strengths and radiative decay rates are found to be in good agreement with other theoretical results, while the lifetimes agree very well with the experimental values (wherever available). In this calculation, we also predict new data for several fine-structure levels where no other theoretical and experimental results are available.

  11. Fine defective structure of silicon carbide powders obtained from different starting materials

    Directory of Open Access Journals (Sweden)

    Tomila T.V.

    2006-01-01

    Full Text Available The fine defective structure of silicon carbide powders obtained from silicic acid-saccharose, aerosil-saccharose, aerosil-carbon black, and hydrated cellulose-silicic acid gel systems was investigated. The relation between IR absorption characteristics and the microstructure of SiC particles obtained from different starting materials was established. The numerical relationship between the lattice parameter a and the frequency νTO is presented.

  12. Fine defective structure of silicon carbide powders obtained from different starting materials

    OpenAIRE

    Tomila T.V.; Vlasova M.V.; Kakazey M.G.; Vyshnyakova K.L.; Ragulya A.V.; Pereselentseva L.N.

    2006-01-01

    The fine defective structure of silicon carbide powders obtained from silicic acid-saccharose, aerosil-saccharose, aerosil-carbon black, and hydrated cellulose-silicic acid gel systems was investigated. The relation between IR absorption characteristics and the microstructure of SiC particles obtained from different starting materials was established. The numerical relationship between the lattice parameter a and the frequency νTO is presented.

  13. Fine structure DPOAEs in normal hearing consanguineous parents of congenitally hearing impaired siblings (probable carriers

    Directory of Open Access Journals (Sweden)

    Megha Sasidharan

    2013-01-01

    Full Text Available Background: This study examines the concealed phenotypic variations in carriers of non-syndromic recessive hearing loss, using fine structure distortion product otoacoustic emissions (DPOAEs. As genetic tests were not feasible to validate the recessive trait in the participants, an inclusion criterion was followed, where in normal hearing parents with two or more hearing-impaired children and a positive consanguinity were assumed to be probable carriers. Materials and Methods: The amplitude of fine structure DPOAEs from 27 ears of probable carriers was compared with 62 normal control ears. The primaries were presented at 65/55dBSPL, maintaining a frequency ratio of 1.2, covering 20 points per octave across 1-4 kHz. A comparison between the octaves 1-2 kHz and 2-4 kHz was also made in all the participants to observe if the deviant functioning of the hair cells predominated the higher or the lower frequencies. Results: The overall fine structure amplitude was significantly reduced in the probable carrier group across the frequencies. There was a significant difference between 1-2 kHz and 2-4 kHz in both non-carriers and probable carriers. The higher frequencies had a lower amplitude and the lower frequencies had a higher amplitude. The probable carrier group had a relatively significant amplitude reduction in the higher octave when compared to the control group. Conclusion: Carriers of hearing loss do exhibit subtle functional changes in the ear, in spite of having a normal hearing sensitivity. This study throws light on the scope of fine structure emissions to emerge as a very good diagnostic tool in the field of audiology.

  14. Atomic oxygen fine-structure splittings with tunable far-infrared spectroscopy

    Science.gov (United States)

    Zink, Lyndon R.; Evenson, Kenneth M.; Matsushima, Fusakazu; Nelis, Thomas; Robinson, Ruth L.

    1991-01-01

    Fine-structure splittings of atomic oxygen (O-16) in the ground state have been accurately measured using a tunable far-infrared spectrometer. The 3P0-3pl splitting is 2,060,069.09 (10) MHz, and the 3Pl-3P2 splitting is 4,744,777.49 (16) MHz. These frequencies are important for measuring atomic oxygen concentration in earth's atmosphere and the interstellar medium.

  15. INJECTION-BASED STABILIZATION OF PERVIOUS SOILS, CONCRETE AND MASONRY STRUCTURES USING PARTICULARLY FINELY DISPERSED BINDERS

    OpenAIRE

    Kharchenko Igor Yakovlevich; Bazhenov Marat Ildarovich

    2012-01-01

    The authors consider the problem of maintenance of buildings and structures of architectural merit. Expedient resolution of this problem consists in the application of a mineral hydraulic binder that has a particularly fine, gradually and smoothly changing granulometric composition and explicit and steady chemical and mineral composition. The above binder is recovered as a result of the air separation of Portland cement. The above binder comprises Portland clinker, furnace slag, ...

  16. Energies, fine structures and transition wavelengths of the core-excited states in Be * ions

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The fine structures of doubly excited resonances of lithium-like beryllium are calculated using the saddle-point and saddle-point complex-rotation methods. A restricted variational method is used to obtain a more accurate value for the nonrelativistic energy. Relativistic and mass polarization corrections to the resonance energy are included. Transition wavelengths are also calculated and compared with other theories and experimental results.

  17. Re/Os Constraint on the Time Variability of the Fine-Structure Constant

    Science.gov (United States)

    Fujii, Yasunori; Iwamoto, Akira

    2003-12-01

    We argue that the accuracy by which the isochron parameters of the decay 187Re→187Os are determined by dating iron meteorites may constrain the possible time dependence of the decay rate and hence of the fine-structure constant α, not directly but only in a model-dependent manner. From this point of view, some of the attempts to analyze the Oklo constraint and the results of the quasistellar-object absorption lines are reexamined.

  18. Cosmological implications in electrodynamics due to variations of the fine structure constant

    CERN Document Server

    Martínez-Ledesma, J L

    2002-01-01

    Astronomical observations are strongly suggesting that the fine structure constant varies cosmologically. We present an analysis on the consequences that this variations might induce on the electromagnetic field as a whole. We show that under this circumstances the electrodynamics in vacuum of the universe are described by two fields, the ``standard'' Maxwell's field and a new scalar field. We provide a generalized Lorentz force which can be used to test our results experimentally.

  19. The Structure of Neurexin 1[alpha] Reveals Features Promoting a Role as Synaptic Organizer

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Fang; Venugopal, Vandavasi; Murray, Beverly; Rudenko, Gabby (Michigan)

    2014-10-02

    {alpha}-Neurexins are essential synaptic adhesion molecules implicated in autism spectrum disorder and schizophrenia. The {alpha}-neurexin extracellular domain consists of six LNS domains interspersed by three EGF-like repeats and interacts with many different proteins in the synaptic cleft. To understand how {alpha}-neurexins might function as synaptic organizers, we solved the structure of the neurexin 1{alpha} extracellular domain (n1{alpha}) to 2.65 {angstrom}. The L-shaped molecule can be divided into a flexible repeat I (LNS1-EGF-A-LNS2), a rigid horseshoe-shaped repeat II (LNS3-EGF-B-LNS4) with structural similarity to so-called reelin repeats, and an extended repeat III (LNS5-EGF-B-LNS6) with controlled flexibility. A 2.95 {angstrom} structure of n1{alpha} carrying splice insert SS3 in LNS4 reveals that SS3 protrudes as a loop and does not alter the rigid arrangement of repeat II. The global architecture imposed by conserved structural features enables {alpha}-neurexins to recruit and organize proteins in distinct and variable ways, influenced by splicing, thereby promoting synaptic function.

  20. Structure of. cap alpha. -phase in two-phase titanium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gridnev, V.N.; Ivasishin, O.M.; Svechnikov, V.L. (AN Ukrainskoj SSR, Kiev. Inst. Metallofiziki)

    1982-08-01

    The structure of ..cap alpha..-phase in ..beta..-annealed titanium alloys VT 6 and VT 23 and its changes on heating up to ..cap alpha..+..beta.. ..-->.. ..beta.. transformation temperatures with accelerated cooling is studied. An assumption is made that the observed peculiarities of the residual ..cap alpha..-phase structure in alloys after such treatment are the consequence of the relaxation of interphase stresses resulting from a partial polymorphic transformation while the relaxation mechanism is determined by the alloying degree and initial alloy morphology.

  1. Structural studies of molecular and metallic overlayers using angle- resolved photoemission extended fine structure

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Z.

    1992-10-01

    Angle-resolved photoemission extended fine structure (ARPEFS) was used to study molecular and metallic overlayers on metal surfaces through analysis of p2mg(2[times]1)CO/Ni(110) and the p(2[times]2)K/Ni(111) adsorption. For the dense p2mg(2[times]1)CO/Ni(110) surface layer, photoemission intensities from C 1s level were measured in three directions at photoelectron kinetic energies 60-400 eV. Using multiple-scattering spherical-wave (MSSW) modeling, it was found that CO molecules are adsorbed on short-bridge sites, with adjacent CO along the [110] direction displaced alternatively in opposite directions towards the [001] azimuths to form a zigzag chain geometry. The tilt angle is 16[plus minus]2[degree] from the surface normal for the direction linking the C atom and the center of the Ni bridge. The carbon C-Ni interatomic distance was determined to be 1.94[plus minus]0.02[Angstrom]. The first- to second-layer spacing of Ni is 1.27[plus minus]0.04[Angstrom], up from 1.10[Angstrom] for the clean Ni(110) surface, but close to the 1.25[Angstrom] Ni interlayer spacing in the bulk. The C-O bond length and tilt angle were varied within small ranges (1.10--1.20[Angstrom] and 15--23[degrees]) in our MSSW simulations. Best agreement between experiment and simulations was achieved at 1.16[Angstrom] and 19[degrees]. This yields an O-O distance of 2.95[Angstrom] for the two nearest CO molecules, (van der Waals' radius [approximately] 1.5 [Angstrom] for oxygen). Two different partial-wave phase-shifts were used in MSSW, and structural results from both are in very good agreement. For the p(2[times]2)K/Ni(111) overlayer, ARPEFS [chi](k) curves from K 1s level measured along [111] and [771] at 130K showed that the K atoms are preferentially adsorbed on the atop sites, in agreement with a LEED study of the same system.

  2. Structural studies of molecular and metallic overlayers using angle- resolved photoemission extended fine structure

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Z.

    1992-10-01

    Angle-resolved photoemission extended fine structure (ARPEFS) was used to study molecular and metallic overlayers on metal surfaces through analysis of p2mg(2{times}1)CO/Ni(110) and the p(2{times}2)K/Ni(111) adsorption. For the dense p2mg(2{times}1)CO/Ni(110) surface layer, photoemission intensities from C 1s level were measured in three directions at photoelectron kinetic energies 60-400 eV. Using multiple-scattering spherical-wave (MSSW) modeling, it was found that CO molecules are adsorbed on short-bridge sites, with adjacent CO along the [110] direction displaced alternatively in opposite directions towards the [001] azimuths to form a zigzag chain geometry. The tilt angle is 16{plus_minus}2{degree} from the surface normal for the direction linking the C atom and the center of the Ni bridge. The carbon C-Ni interatomic distance was determined to be 1.94{plus_minus}0.02{Angstrom}. The first- to second-layer spacing of Ni is 1.27{plus_minus}0.04{Angstrom}, up from 1.10{Angstrom} for the clean Ni(110) surface, but close to the 1.25{Angstrom} Ni interlayer spacing in the bulk. The C-O bond length and tilt angle were varied within small ranges (1.10--1.20{Angstrom} and 15--23{degrees}) in our MSSW simulations. Best agreement between experiment and simulations was achieved at 1.16{Angstrom} and 19{degrees}. This yields an O-O distance of 2.95{Angstrom} for the two nearest CO molecules, (van der Waals` radius {approximately} 1.5 {Angstrom} for oxygen). Two different partial-wave phase-shifts were used in MSSW, and structural results from both are in very good agreement. For the p(2{times}2)K/Ni(111) overlayer, ARPEFS {chi}(k) curves from K 1s level measured along [111] and [771] at 130K showed that the K atoms are preferentially adsorbed on the atop sites, in agreement with a LEED study of the same system.

  3. Structural and Biophysical Studies of the Human IL-7/IL-7R[alpha] Complex

    Energy Technology Data Exchange (ETDEWEB)

    McElroy, Craig A.; Dohm, Julie A.; Walsh, Scott T.R.; (OSU); (UPENN)

    2009-03-06

    IL-7 and IL-7R{alpha} bind the {gamma}{sub c} receptor, forming a complex crucial to several signaling cascades leading to the development and homeostasis of T and B cells. We report that the IL-7R{alpha} ectodomain uses glycosylation to modulate its binding constants to IL-7, unlike the other receptors in the {gamma}{sub c} family. IL-7 binds glycosylated IL-7R{alpha} 300-fold more tightly than unglycosylated IL-7R{alpha}, and the enhanced affinity is attributed primarily to an accelerated on rate. Structural comparison of IL-7 in complex to both forms of IL-7R{alpha} reveals that glycosylation does not participate directly in the binding interface. The SCID mutations of IL-7R{alpha} locate outside the binding interface with IL-7, suggesting that the expressed mutations cause protein folding defects in IL-7R{alpha}. The IL-7/IL-7R{alpha} structures provide a window into the molecular recognition events of the IL-7 signaling cascade and provide sites to target for designing new therapeutics to treat IL-7-related diseases.

  4. Structure of alpha-glycerophosphate Oxidase from Streptococcus sp.: a Template for the Mitochondrial alpha-glycerophosphate Dehydrogenase

    Energy Technology Data Exchange (ETDEWEB)

    T Colussi; D Parsonage; W Boles; T Matsuoka; T Mallett; P Karplus; A Claiborne

    2011-12-31

    The FAD-dependent {alpha}-glycerophosphate oxidase (GlpO) from Enterococcus casseliflavus and Streptococcus sp. was originally studied as a soluble flavoprotein oxidase; surprisingly, the GlpO sequence is 30-43% identical to those of the {alpha}-glycerophosphate dehydrogenases (GlpDs) from mitochondrial and bacterial sources. The structure of a deletion mutant of Streptococcus sp. GlpO (GlpO{Delta}, lacking a 50-residue insert that includes a flexible surface region) has been determined using multiwavelength anomalous dispersion data and refined at 2.3 {angstrom} resolution. Using the GlpO{Delta} structure as a search model, we have also determined the intact GlpO structure, as refined at 2.4 {angstrom} resolution. The first two domains of the GlpO fold are most closely related to those of the flavoprotein glycine oxidase, where they function in FAD binding and substrate binding, respectively; the GlpO C-terminal domain consists of two helix bundles and is not closely related to any known structure. The flexible surface region in intact GlpO corresponds to a segment of missing electron density that links the substrate-binding domain to a {beta}{beta}{alpha} element of the FAD-binding domain. In accordance with earlier biochemical studies (stabilizations of the covalent FAD-N5-sulfite adduct and p-quinonoid form of 8-mercapto-FAD), Ile430-N, Thr431-N, and Thr431-OG are hydrogen bonded to FAD-O2{alpha} in GlpO{Delta}, stabilizing the negative charge in these two modified flavins and facilitating transfer of a hydride to FAD-N5 (from Glp) as well. Active-site overlays with the glycine oxidase-N-acetylglycine and d-amino acid oxidase-d-alanine complexes demonstrate that Arg346 of GlpO{Delta} is structurally equivalent to Arg302 and Arg285, respectively; in both cases, these residues interact directly with the amino acid substrate or inhibitor carboxylate. The structural and functional divergence between GlpO and the bacterial and mitochondrial GlpDs is also discussed.

  5. Correlation effects on fine-structure energy levels, oscillator strengths and lifetimes in Ca VII

    Energy Technology Data Exchange (ETDEWEB)

    Tayal, Vikas [Department of Physics, Dronacharya College of Engineering, Greater Noida (UP) (Affiliated to Uttar Pradesh Technical University, Lucknow) (India); Gupta, G P [Department of Physics, S. D. (Postgraduate) College, Muzaffarnagar (UP), Affiliated to Choudhary Charan Singh University, Meerut - 250 004 (India); Sharma, M K [Department of Physics, Krishna Institute of Engineering and Technology, Ghaziabad (UP) (Affiliated to Uttar Pradesh Technical University, Lucknow) (India)

    2009-11-01

    Energy levels, oscillator strengths, and transition probabilities for transitions among the fine-structure levels of the terms belonging to the 3s{sup 2}3p{sup 2}, 3s3p{sup 3}, 3s{sup 2}3p3d, 3p{sup 4}, 3s{sup 2}3p4s, 3s{sup 2}3p4p, 3s{sup 2}3p4d, and 3s{sup 2}3p4f configurations of Si-like Calcium are calculated using extensive configuration-interaction (CI) wave functions obtained with the CIV3 computer code of Hibbert. The relativistic effects in intermediate coupling are incorporated by means of the Breit-Pauli Hamiltonian. The energy splitting of 70 fine-structure levels, oscillator strengths and transition probabilities for electric-dipole-allowed and intercombination transitions and, also the lifetimes of fine-structure levels are presented and compared with available experimental and other theoretical results.

  6. Fine-structure energy levels, radiative rates and lifetimes in Fe XIII

    International Nuclear Information System (INIS)

    Energy levels and radiative rates for transition among the fine-structure levels of the terms belonging to the 3s23p2, 3s3p3,3s23p3d, 3p4, 3s3p23d, 3s23d2, 3p23d2, 3p33d, 3s3p3d2, 3s23p4s, 3s23p4p, 3s23p4d, 3s23p4f and 3s3p24s configurations of Si-like Iron are calculated through the CIV3 computer code using extensive configuration-interaction (CI) wavefunctions. The important relativistic effects are included through the Breit-Pauli approximation. The energy splitting of 390 fine-structure levels, oscillator strengths and radiative rates for electric-dipole-allowed and intercombination transitions and, also the lifetimes of fine-structure levels are presented and compared with available experimental and other theoretical results.

  7. Strong limit on the spatial and temporal variations of the fine-structure constant

    Science.gov (United States)

    Le, T. D.

    2016-10-01

    Observed spectra of quasars provide a powerful tool to test the possible spatial and temporal variations of the fine-structure constant α = e 2/ћc over the history of the Universe. It is demonstrated that high sensitivity to the variation of α can be obtained from a comparison of the spectra of quasars and laboratories. We reported a new constraint on the variation of the fine-structure constant based on the analysis of the optical spectra of the fine-structure transitions in [NeIII], [NeV], [OIII], [OI] and [SII] multiplets from 14 Seyfert 1.5 galaxies. The weighted mean value of the α-variation derived from our analysis over the redshift range 0.035 < z < 0.281 Δα/α= (4.50 +/- 5.53) \\times 10-5. This result presents strong limit improvements on the constraint on Δα/α compared to the published in the literature

  8. Multipoint MMS observations of fine-scale SAPS structure in the inner magnetosphere

    Science.gov (United States)

    Erickson, P. J.; Matsui, H.; Foster, J. C.; Torbert, R. B.; Ergun, R. E.; Khotyaintsev, Yu. V.; Lindqvist, P.-A.; Argall, M. R.; Farrugia, C. J.; Paulson, K. W.; Strangeway, R. J.; Magnes, W.

    2016-07-01

    We present detailed observations of dynamic, fine-scale inner magnetosphere-ionosphere coupling at ˜3.9 RE in the Region 2 Birkeland field-aligned current (FAC). We find that observed electrodynamic spatial/temporal scales are primarily characteristic of magnetically mapped ionospheric structure. On 15 September 2015, conjugate Magnetospheric Multiscale (MMS) spacecraft and Millstone Hill radar observations show plasmasphere boundary region subauroral polarization stream (SAPS) electric fields at L = 4.0-4.2 near 21 MLT. MMS observations reveal high-altitude ˜1 mV/m fine-scale radial and azimuthal electric field perturbations over ≤0.15 L with high spatial coherence over ≥2-3 min and show outward motion within a broader FAC of ˜0.12 μA/m2. Our analysis shows that MMS electric field fluctuations are most likely reflective of SAPS ionospheric structure at scales of ˜22 km and with ionospheric closure of small-scale filamentary FAC perturbations. The results highlight the ionosphere's importance in regulating fine-scale magnetosphere-ionosphere structure.

  9. Crystal structures of truncated alphaA and alphaB crystallins reveal structural mechanisms of polydispersity important for eye lens function

    Energy Technology Data Exchange (ETDEWEB)

    Laganowsky, Arthur; Benesch, Justin L.P.; Landau, Meytal; Ding, Linlin; Sawaya, Michael R.; Cascio, Duilio; Huang, Qingling; Robinson, Carol V.; Horwitz, Joseph; Eisenberg, David (UCLA); (Oxford); (HHMI)

    2010-08-23

    Small heat shock proteins alphaA and alphaB crystallin form highly polydisperse oligomers that frustrate protein aggregation, crystallization, and amyloid formation. Here, we present the crystal structures of truncated forms of bovine alphaA crystallin (AAC{sub 59-163}) and human alphaB crystallin (ABC{sub 68-162}), both containing the C-terminal extension that functions in chaperone action and oligomeric assembly. In both structures, the C-terminal extensions swap into neighboring molecules, creating runaway domain swaps. This interface, termed DS, enables crystallin polydispersity because the C-terminal extension is palindromic and thereby allows the formation of equivalent residue interactions in both directions. That is, we observe that the extension binds in opposite directions at the DS interfaces of AAC{sub 59-163} and ABC{sub 68-162}. A second dimeric interface, termed AP, also enables polydispersity by forming an antiparallel beta sheet with three distinct registration shifts. These two polymorphic interfaces enforce polydispersity of alpha crystallin. This evolved polydispersity suggests molecular mechanisms for chaperone action and for prevention of crystallization, both necessary for transparency of eye lenses.

  10. Evolution of nuclear retinoic acid receptor alpha (RARα) phosphorylation sites. Serine gain provides fine-tuned regulation.

    Science.gov (United States)

    Samarut, Eric; Amal, Ismail; Markov, Gabriel V; Stote, Roland; Dejaegere, Annick; Laudet, Vincent; Rochette-Egly, Cécile

    2011-07-01

    The human nuclear retinoic acid (RA) receptor alpha (hRARα) is a ligand-dependent transcriptional regulator, which is controlled by a phosphorylation cascade. The cascade starts with the RA-induced phosphorylation of a serine residue located in the ligand-binding domain, S(LBD), allowing the recruitment of the cdk7/cyclin H/MAT1 subcomplex of TFIIH through the docking of cyclin H. It ends by the subsequent phosphorylation by cdk7 of an other serine located in the N-terminal domain, S(NTD). Here, we show that this cascade relies on an increase in the flexibility of the domain involved in cyclin H binding, subsequently to the phosphorylation of S(LBD). Owing to the functional importance of RARα in several vertebrate species, we investigated whether the phosphorylation cascade was conserved in zebrafish (Danio rerio), which expresses two RARα genes: RARα-A and RARα-B. We found that in zebrafish RARαs, S(LBD) is absent, whereas S(NTD) is conserved and phosphorylated. Therefore, we analyzed the pattern of conservation of the phosphorylation sites and traced back their evolution. We found that S(LBD) is most often absent outside mammalian RARα and appears late during vertebrate evolution. In contrast, S(NTD) is conserved, indicating that the phosphorylation of this functional site has been under ancient high selection constraint. This suggests that, during evolution, different regulatory circuits control RARα activity. PMID:21297158

  11. The Ly<alpha> and Ly profiles in solar prominences and prominence fine structure

    CERN Document Server

    Vial, J -C; Ajabshirizadeh, A

    2007-01-01

    We present the first combined Ly and Ly profiles in solar prominences obtained by the SOHO/SUMER instrument and discuss their important spatial variability with respect to predictions from 1D and multithread models.

  12. Fine-scale spatial genetic structure of eight tropical tree species as analysed by RAPDs.

    Science.gov (United States)

    Degen, B; Caron, H; Bandou, E; Maggia, L; Chevallier, M H; Leveau, A; Kremer, A

    2001-10-01

    The fine-scale spatial genetic structure of eight tropical tree species (Chrysophyllum sanguinolentum, Carapa procera, Dicorynia guianensis, Eperua grandiflora, Moronobea coccinea, Symphonia globulifera, Virola michelii, Vouacapoua americana) was studied in populations that were part of a silvicultural trial in French Guiana. The species analysed have different spatial distribution, sexual system, pollen and seed dispersal agents, flowering phenology and environmental demands. The spatial position of trees and a RAPD data set for each species were combined using a multivariate genetic distance method to estimate spatial genetic structure. A significant spatial genetic structure was found for four of the eight species. In contrast to most observations in temperate forests, where spatial structure is not usually detected at distances greater than 50 m, significant genetic structure was found at distances up to 300 m. The relationships between spatial genetic structure and life history characteristics are discussed. PMID:11737299

  13. Quad-plane stereoscopic PIV for fine-scale structure measurements in turbulence

    Science.gov (United States)

    Naka, Y.; Tomita, K.; Shimura, M.; Fukushima, N.; Tanahashi, M.; Miyauchi, T.

    2016-05-01

    The fine-scale structure in turbulence is investigated by quad-plane stereoscopic particle image velocimetry (QPSPIV). The quad-plane consists of two each of different polarizations and wavelengths, and it provides three velocity components at four independent parallel planes. Measurements have been undertaken in the developed region of a turbulent round jet with a spatial resolution sufficient to capture the small-scale structures. The advantage of the QPSPIV is presented in terms of the spectral response in the evaluation of the out-of-plane velocity gradient. The full velocity gradient tensor is computed with a fourth-order finite difference scheme in the out-of-plane direction as well as the in-plane directions. The turbulence quantities, such as the vorticity components, the energy dissipation rate and the second and third invariants of the velocity gradient tensor, are computed according to their faithful definitions. The coherent fine-scale eddies are extracted from the present QPSPIV data. The probability density functions of the diameter and the maximum azimuthal velocity of the extracted eddies exhibit their peak at approximately 8η and 1.5u_k, respectively, where η and u_k are the Kolmogorov length and velocity. These values agree well with the data in the literature. The phase-averaged distributions of turbulence quantities around the coherent fine-scale eddy indicate an apparent elliptic feature around the axis. Furthermore, the state of the strain rate exerting the eddy is quantified from the phase-averaged distributions of eigenvalues of the strain rate tensor and the alignment of the corresponding eigenvectors against the axis. The present study gives a solid experimental support of the coherent fine-scale structures in turbulence, and the technique can be applied to various flow fields and to the higher Reynolds number condition.

  14. Structures of multi-branched dextrins produced by saccharifyiing alpha-amylase from starch.

    Science.gov (United States)

    Umeki, K; Yamamoto, T

    1975-11-01

    From the digest of beta-limit dextrin (prepared from glutinous rice starch) with saccharifying alpha-amylase of Bacillus subtilis [EC 3.2.1.1] (BSA), two extensibely branched dextrins consisting of nine (No. 6, Fig. 1) and ten (No 7, Fig.1) glucose units were isolated by paper chromatography. Structural analysis using various enzymes revealed that No. 6 and No. 7 were both mixtures of four triply branched dextrins. They had structures which were built up with 63-alpha-glucosylmaltotriose and/or 62-alpha-glucosylmaltose as a linking unit. However, the branching configuration and the minimum alpha-1, 4-glucosidic linkages existing between two branches followed one of the three structures shown below: (see article). PMID:814118

  15. Atomic calculations and search for variation of the fine-structure constant in quasar absorption spectra

    Science.gov (United States)

    Dzuba, V. A.; Flambaum, V. V.

    A brief review of the search for variation of the fine structure constant in quasar absorption spectra is presented. Special consideration is given to the role of atomic calculations in the analysis of the observed data. A range of methods which allow to perform calculations for atoms or ions with different electron structure and which cover practically all periodic table of elements is discussed. Critical compilation of the results of the calculations as well as a review of the most recent results of the analysis are presented.

  16. Fine structure of 25 extragalactic radio sources. [interferometric observations of quasars

    Science.gov (United States)

    Wittels, J. J.; Knight, C. A.; Shapiro, I. I.; Hinteregger, H. F.; Rogers, A. E. E.; Whitney, A. R.; Clark, T. A.; Hutton, L. K.; Marandino, G. E.; Niell, A. E.

    1975-01-01

    Interferometric observations taken at 7.8 GHz (gamma approximately = 3.8 cm) with five pairings of antennae of 25 extragalactic radio sources between April, 1972 and May, 1973 are reported. These sources exhibit a broad variety of fine structure from very simple to complex. The total flux and the correlated flux of some of the sources underwent large changes in a few weeks, while the structure and total power of others remained constant during the entire period of observation. Some aspects of the data processing and a discussion of errors are presented. Numerous figures are provided and explained. The individual radio sources are described in detail.

  17. Atomic calculations and search for variation of the fine structure constant in quasar absorption spectra

    CERN Document Server

    Dzuba, V A

    2008-01-01

    A brief review of the search for variation of the fine structure constant in quasar absorption spectra is presented. Special consideration is given to the role of atomic calculations in the analysis of the observed data. A range of methods which allow to perform calculations for atoms or ions with different electron structure and which cover practically all periodic table of elements is discussed. Critical compilation of the results of the calculations as well as a review of the most recent results of the analysis are presented.

  18. Emission wavelength tuning of fluorescence by fine structural control of optical metamaterials with Fano resonance

    Science.gov (United States)

    Moritake, Y.; Kanamori, Y.; Hane, K.

    2016-09-01

    We demonstrated fine emission wavelength tuning of quantum dot (QD) fluorescence by fine structural control of optical metamaterials with Fano resonance. An asymmetric-double-bar (ADB), which was composed of only two bars with slightly different bar lengths, was used to obtain Fano resonance in the optical region. By changing the short bar length of ADB structures with high dimensional accuracy in the order of 10 nm, resonant wavelengths of Fano resonance were controlled from 1296 to 1416 nm. Fluorescence of QDs embedded in a polymer layer on ADB metamaterials were modified due to coupling to Fano resonance and fine tuning from 1350 to 1376 nm was observed. Wavelength tuning of modified fluorescence was reproduced by analysis using absorption peaks of Fano resonance. Tuning range of modified fluorescence became narrow, which was interpreted by a simple Gaussian model and resulted from comparable FWHM in QD fluorescence and Fano resonant peaks. The results will help the design and fabrication of metamaterial devices with fluorophores such as light sources and biomarkers.

  19. Emission wavelength tuning of fluorescence by fine structural control of optical metamaterials with Fano resonance.

    Science.gov (United States)

    Moritake, Y; Kanamori, Y; Hane, K

    2016-09-13

    We demonstrated fine emission wavelength tuning of quantum dot (QD) fluorescence by fine structural control of optical metamaterials with Fano resonance. An asymmetric-double-bar (ADB), which was composed of only two bars with slightly different bar lengths, was used to obtain Fano resonance in the optical region. By changing the short bar length of ADB structures with high dimensional accuracy in the order of 10 nm, resonant wavelengths of Fano resonance were controlled from 1296 to 1416 nm. Fluorescence of QDs embedded in a polymer layer on ADB metamaterials were modified due to coupling to Fano resonance and fine tuning from 1350 to 1376 nm was observed. Wavelength tuning of modified fluorescence was reproduced by analysis using absorption peaks of Fano resonance. Tuning range of modified fluorescence became narrow, which was interpreted by a simple Gaussian model and resulted from comparable FWHM in QD fluorescence and Fano resonant peaks. The results will help the design and fabrication of metamaterial devices with fluorophores such as light sources and biomarkers.

  20. Pulsed EM Field Response of a Thin, High-Contrast, Finely Layered Structure With Dielectric and Conductive Properties

    NARCIS (Netherlands)

    De Hoop, A.T.; Jiang, L.

    2009-01-01

    The response of a thin, high-contrast, finely layered structure with dielectric and conductive properties to an incident, pulsed, electromagnetic field is investigated theoretically. The fine layering causes the standard spatial discretization techniques to solve Maxwell's equations numerically to b

  1. 3-cm Fine Structure Masers: A Unique Signature of Supermassive Black Hole Formation via Direct Collapse in the Early Universe

    CERN Document Server

    Dijkstra, Mark; Loeb, Abraham

    2016-01-01

    The direct collapse black hole (DCBH) scenario describes the isothermal collapse of a pristine gas cloud directly into a massive, M_BH=10^4-10^6 M_sun black hole. In this paper we show that large HI column densities of primordial gas at T~10^4 K with low molecular abundance - which represent key aspects of the DCBH scenario - provide optimal conditions for pumping of the 2p-level of atomic hydrogen by trapped Lyman alpha (Lya) photons. This Lya pumping mechanism gives rise to inverted level population of the 2s_1/2-2p_3/2 transition, and therefore to stimulated fine structure emission at 3.04 cm (rest-frame). We show that simplified models of the DCBH scenario amplify the CMB by up to a factor of 10^5, above which the maser saturates. Hyperfine splitting of the 3-cm transition gives rise to a characteristic broad (FWHM ~ tens of MHz in the observers frame) asymmetric line profile. This signal subtends an angular scale of ~ 1-10 mas, which translates to a flux of ~ 0.3-3 microJy, which is detectable with ultra...

  2. Structure-function of human 3 alpha-hydroxysteroid dehydrogenases: genes and proteins.

    Science.gov (United States)

    Penning, T M; Jin, Y; Steckelbroeck, S; Lanisnik Rizner, T; Lewis, M

    2004-02-27

    Four soluble human 3 alpha-hydroxysteroid dehydrogenase (HSD) isoforms exist which are aldo-keto reductase (AKR) superfamily members. They share 86% sequence identity and correspond to: AKR1C1 (20 alpha(3 alpha)-HSD); AKR1C2 (type 3 3 alpha-HSD and bile-acid binding protein); AKR1C3 (type 2 3 alpha-HSD and type 5 17 beta-HSD); and AKR1C4 (type 1 3 alpha-HSD). Each of the homogeneous recombinant enzymes are plastic and display 3-, 17- and 20-ketosteroid reductase and 3 alpha- 17 beta- and 20 alpha-hydroxysteroid oxidase activities with different k(cat)/K(m) ratios in vitro. The crystal structure of the AKR1C2.NADP(+).ursodeoxycholate complex provides an explanation for this functional plasticity. Ursodeoxycholate is bound backwards (D-ring in the A-ring position) and upside down (beta-face of steroid inverted) relative to the position of 3-ketosteroids in the related rat liver 3 alpha-HSD (AKR1C9) structure. Transient transfection indicates that in COS-1 cells, AKR1C enzymes function as ketosteroid reductases due to potent inhibition of their oxidase activity by NADPH. By acting as ketosteroid reductases they may regulate the occupancy of the androgen, estrogen and progesterone receptors. RT-PCR showed that AKRs are discretely localized. AKR1C4 is virtually liver specific, while AKR1C2 and AKR1C3 are dominantly expressed in prostate and mammary gland. AKR1C genes are highly conserved in structure and may be transcriptionally regulated by steroid hormones and stress. PMID:15026176

  3. Searching for variations in the fine-structure constant and the proton-to-electron mass ratio using quasar absorption lines

    Science.gov (United States)

    King, Julian A.

    2012-02-01

    (abridged) Quasar absorption lines provide a precise test of the assumed constancy of the fundamental constants of physics. We have investigated potential changes in the fine-structure constant, alpha, and the proton-to-electron mass ratio, mu. The many-multiplet method allows one to use optical fine-structure transitions to constrain (Delta alpha)/alpha at better than the 10^(-5) level. We present a new analysis of 154 quasar absorbers with 0.2 1.6 sub-samples independently yield consistent estimates of the dipole direction, which suggests that the effect is not caused by telescope systematics. We consider a number of systematic effects and show that they are unable to explain the observed dipole effect. We have used spectra of the quasars Q0405-443, Q0347-383 and Q0528-250 from VLT/UVES to investigate the absorbers at z=2.595, 3.025 and 2.811 in these spectra respectively. We find that (Delta mu)/mu=(10.1 +/- 6.6) x 10^(-6), (8.2 +/- 7.5) x 10^(-6) and (-1.4 +/- 3.9) x 10^(-6) in these absorbers respectively. A second spectrum of Q0528-250 provides an additional constraint of (Delta mu)/mu=(0.2 +/- 3.2_stat +/- 1.9_sys) x 10^(-6). The weighted mean of these values yields (Delta mu)/mu=(1.7 +/- 2.4) x 10^(-6), the most precise constraint on evolution in mu at z>1.

  4. Partial primary structure of human pregnancy zone protein: extensive sequence homology with human alpha 2-macroglobulin.

    OpenAIRE

    Sottrup-Jensen, L; Folkersen, J; T. Kristensen; Tack, B F

    1984-01-01

    Human pregnancy zone protein (PZP) is a major pregnancy-associated protein. Its quaternary structure (two covalently bound 180-kDa subunits, which are further non-covalently assembled into a tetramer of 720 kDa) is similar to that of human alpha 2-macroglobulin (alpha 2M). Here we show, from the results of complete or partial sequence determination of a random selection of 38 tryptic peptides covering 685 residues of the subunit of PZP, that PZP and alpha 2M indeed are extensively homologous....

  5. Simplicial edge representation of protein structures and alpha contact potential with confidence measure

    CERN Document Server

    Li, X; Liang, J; Li, Xiang; Hu, Changyu; Liang, Jie

    2003-01-01

    Protein representation and potential function are essential ingredients for studying proteins folding and protein prediction. We introduce a novel geometric representation of contact interactions using the edge simplices from alpha shape of protein structure. This representation can eliminate implausible neighbors not in physical contact, and can avoid spurious contact between two residues when a third residue is between them. We develop statistical alpha contact potential. A studentized bootstrap method is then introduced for assessing the 95% confidence intervals for each of the 210 parameters. We found with confidence that there is significant long range propensity (>30 residues apart) for hydrophobic interactions. We test alpha contact potential for native structure discrimination using several decoy sets, and found it often has comparable performance with atom-based potentials requiring more parameters. We also show that alpha contact potential has better performance than potential defined by cut-off dis...

  6. Accurate Electron Affinity of Iron and Fine Structures of Negative Iron ions

    Science.gov (United States)

    Chen, Xiaolin; Luo, Zhihong; Li, Jiaming; Ning, Chuangang

    2016-05-01

    Ionization potential (IP) is defined as the amount of energy required to remove the most loosely bound electron of an atom, while electron affinity (EA) is defined as the amount of energy released when an electron is attached to a neutral atom. Both IP and EA are critical for understanding chemical properties of an element. In contrast to accurate IPs and structures of neutral atoms, EAs and structures of negative ions are relatively unexplored, especially for the transition metal anions. Here, we report the accurate EA value of Fe and fine structures of Fe‑ using the slow electron velocity imaging method. These measurements yield a very accurate EA value of Fe, 1235.93(28) cm‑1 or 153.236(34) meV. The fine structures of Fe‑ were also successfully resolved. The present work provides a reliable benchmark for theoretical calculations, and also paves the way for improving the EA measurements of other transition metal atoms to the sub cm‑1 accuracy.

  7. Structural changes in fine-grained high-temperature steels under the influence of temperature stress

    International Nuclear Information System (INIS)

    Fine-grained high-temperature steels have gained great importance as materials for reactor pressure vessels. Alloying with small additions of carbide-forming elements does not only preserve the fine grain but also helps to achieve a certain retention of hardness which improves the high-temperature strength of these steels. During welding, a narrow zone of the basic material is heated over the transition temperature. The result is a coarse-grained, austenitic structure. In order to find out whether such structural changes caused by welding may damage the material during heat treatment or operation, the mechanical properties of some types of structures were tested with regard to their strength, their notched bar impact strength, and their creep rupture strength, and the findings were interpreted with the aid of scans of the surfaces of fracture and electron microscope pictures of the microstructure. The results show that the toughness of the structure of a heat influence region of the steels investigated would decrease further at operating temperatures above 2000C and below the appropriate tempering temperature if the additional heat treatment in the tempering temperature region after welding were omitted. The toughness of the heat influence region is increased by annealing to such a degree that it almost reaches that of the basic material. (GSCH)

  8. Lack of sex-biased dispersal promotes fine-scale genetic structure in alpine ungulates

    Science.gov (United States)

    Roffler, Gretchen H.; Talbot, Sandra L.; Luikart, Gordon; Sage, George K.; Pilgrim, Kristy L.; Adams, Layne G.; Schwartz, Michael K.

    2014-01-01

    Identifying patterns of fine-scale genetic structure in natural populations can advance understanding of critical ecological processes such as dispersal and gene flow across heterogeneous landscapes. Alpine ungulates generally exhibit high levels of genetic structure due to female philopatry and patchy configuration of mountain habitats. We assessed the spatial scale of genetic structure and the amount of gene flow in 301 Dall’s sheep (Ovis dalli dalli) at the landscape level using 15 nuclear microsatellites and 473 base pairs of the mitochondrial (mtDNA) control region. Dall’s sheep exhibited significant genetic structure within contiguous mountain ranges, but mtDNA structure occurred at a broader geographic scale than nuclear DNA within the study area, and mtDNA structure for other North American mountain sheep populations. No evidence of male-mediated gene flow or greater philopatry of females was observed; there was little difference between markers with different modes of inheritance (pairwise nuclear DNA F ST = 0.004–0.325; mtDNA F ST = 0.009–0.544), and males were no more likely than females to be recent immigrants. Historical patterns based on mtDNA indicate separate northern and southern lineages and a pattern of expansion following regional glacial retreat. Boundaries of genetic clusters aligned geographically with prominent mountain ranges, icefields, and major river valleys based on Bayesian and hierarchical modeling of microsatellite and mtDNA data. Our results suggest that fine-scale genetic structure in Dall’s sheep is influenced by limited dispersal, and structure may be weaker in populations occurring near ancestral levels of density and distribution in continuous habitats compared to other alpine ungulates that have experienced declines and marked habitat fragmentation.

  9. Structure and function of small heat shock/alpha-crystallin proteins: established concepts and emerging ideas.

    Science.gov (United States)

    MacRae, T H

    2000-06-01

    Small heat shock/alpha-crystallin proteins are defined by conserved sequence of approximately 90 amino acid residues, termed the alpha-crystallin domain, which is bounded by variable amino- and carboxy-terminal extensions. These proteins form oligomers, most of uncertain quaternary structure, and oligomerization is prerequisite to their function as molecular chaperones. Sequence modelling and physical analyses show that the secondary structure of small heat shock/alpha-crystallin proteins is predominately beta-pleated sheet. Crystallography, site-directed spin-labelling and yeast two-hybrid selection demonstrate regions of secondary structure within the alpha-crystallin domain that interact during oligomer assembly, a process also dependent on the amino terminus. Oligomers are dynamic, exhibiting subunit exchange and organizational plasticity, perhaps leading to functional diversity. Exposure of hydrophobic residues by structural modification facilitates chaperoning where denaturing proteins in the molten globule state associate with oligomers. The flexible carboxy-terminal extension contributes to chaperone activity by enhancing the solubility of small heat shock/alpha-crystallin proteins. Site-directed mutagenesis has yielded proteins where the effect of the change on structure and function depends upon the residue modified, the organism under study and the analytical techniques used. Most revealing, substitution of a conserved arginine residue within the alpha-crystallin domain has a major impact on quaternary structure and chaperone action probably through realignment of beta-sheets. These mutations are linked to inherited diseases. Oligomer size is regulated by a stress-responsive cascade including MAPKAP kinase 2/3 and p38. Phosphorylation of small heat shock/alpha-crystallin proteins has important consequences within stressed cells, especially for microfilaments.

  10. Boron carbide: Consistency of components, lattice parameters, fine structure and chemical composition makes the complex structure reasonable

    Science.gov (United States)

    Werheit, Helmut

    2016-10-01

    The complex, highly distorted structure of boron carbide is composed of B12 and B11C icosahedra and CBC, CBB and B□B linear elements, whose concentration depends on the chemical composition each. These concentrations are shown to be consistent with lattice parameters, fine structure data and chemical composition. The respective impacts on lattice parameters are estimated and discussed. Considering the contributions of the different structural components to the energy of the overall structure makes the structure and its variation within the homogeneity range reasonable; in particular that of B4.3C representing the carbon-rich limit of the homogeneity range. Replacing in B4.3C virtually the B□B components by CBC yields the hypothetical moderately distorted B4.0C (structure formula (B11C)CBC). The reduction of lattice parameters related is compatible with recently reported uncommonly prepared single crystals, whose compositions deviate from B4.3C.

  11. INFLUENCE OF FINE-DISPERSED BORON CARBIDE ON THE STRUCTURE AND CHARACTERISTICS OF IRON-BORON ALLOY

    Directory of Open Access Journals (Sweden)

    N. F. Nevar

    2010-01-01

    Full Text Available The influence of boron carbide as fine-dispersed material input into the melt on structure morphology, founding, technological and exploitation characterisstics of cast iron-boron material is shown.

  12. Tuning Photoluminescence Energy and Fine Structure Splitting in Single Quantum Dots by Uniaxial Stress

    Institute of Scientific and Technical Information of China (English)

    DOU Xiu-Ming; SUN Bao-Quan; WANG Bao-Rui; MA Shan-Shan; ZHOU Rong; HUANG She-Song; NI Hai-Qiao; NIU Zhi-Chuan

    2008-01-01

    @@ We report a photoluminescence (PL) energy red-shift of single quantum dots(QDs)by applying an in-plane compressive uniaxial stress along the[110]direction at a liquid nitrogen temperature.Uniaxial stress has an effect not only on the confinement potential in the growth direction which results in the PL shift,but also on the cylindrical symmetry of QDs which can be reflected by the change of the full width at half maximum of PL peak.This implies that uniaxial stress has an important role in tuning PL energy and fine structure splitting of QDs.

  13. Anisotropic Beam Model for the Spectral Observations of Radio Burst Fine Structures on 1998 April 15

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A fine structure consisting of three almost equidistant frequency bands was observed in the high frequency part of a solar burst on 1998 April 15 by the spectrometer of Beijing Astronomical Observatory in the range 2.6-3.8 GHz. A model for this event based on beam-anisotropic instability in the solar corona is presented. Longitudinal plasma waves are excited at cyclotron resonance and then transformed into radio emission at their second harmonic. The model is in accordance with the observations if we suppose a magnetic field strength in the region of emission generation of about 200 G.

  14. Time Variation of the Fine Structure Constant in the Spacetime of a Cosmic Domain Wall

    Science.gov (United States)

    Campanelli, L.; Cea, P.; Tedesco, L.

    The gravitational field produced by a domain wall acts as a medium with spacetime-dependent permittivity ɛ. Therefore, the fine structure constant α=e2/4πɛ will be a time-dependent function at fixed position. The most stringent constraint on the time-variation of α comes from the natural reactor Oklo and gives |˙ α /α | < few × 10-17 yr-1. This limit constrains the tension of a cosmic domain wall to be less than σ ≲ 10-2 MeV3, and then represents the most severe limit on the energy density of a cosmic wall stretching our Universe.

  15. Chemical evolution of Mg isotopes versus the time variation of the fine structure constant

    International Nuclear Information System (INIS)

    We show that the synthesis of Mg25,26 at the base of the convective envelope in low-metallicity asymptotic giant branch stars can produce the isotopic ratios needed to explain the low-z subset (with z<1.8) of the many-multiplet data from quasar absorption systems without invoking a time variation of the fine structure constant. This is supported by observations of high abundances of the neutron-rich Mg isotopes in metal-poor globular-cluster stars. We conclude that the quasar absorption spectra may be providing interesting information on the nucleosynthetic history of such systems

  16. Fusion reaction yield in focused discharges with variable energy and plasma fine structure

    Energy Technology Data Exchange (ETDEWEB)

    Bortolotti, A.; Brzosko, J.S.; Chiara, P. De; Kilic, H.; Mezzetti, F.; Nardi, V.; Powell, C.; Wang, J. [Stevens Inst. of Tech., Hoboken, NJ (United States)]|[Ferrara Univ. (Italy)

    1992-12-31

    The same linear correlation between the distribution parameters ({Delta}T and Max {Delta}V) of the radial current density J between electrodes and the fusion reaction yield per pulse, Y, in the plasma focus (PF) pinch was quantitatively determined from different PF machines. Contact prints of current-sheath fragments (CSF) ejected from the pinch are obtained from 2.5-MeV-D{sup +} ions. CSF`s show the same submillimetric fine structure of the pinch. (author) 3 refs., 2 tabs.

  17. On the relationship between multi-channel envelope and temporal fine structure

    DEFF Research Database (Denmark)

    Søndergaard, Peter Lempel; Decorsiere, Remi Julien Blaise; Dau, Torsten

    2011-01-01

    The envelope of a signal is broadly defined as the slow changes in time of the signal, where as the temporal fine structure (TFS) are the fast changes in time, i.e. the carrier wave(s) of the signal. The focus of this paper is on envelope and TFS in multi-channel systems. We discuss the difference...... providing an increasingly better approximation to the auditory system. A corollary from these results is that it is not possible to generate a test signal containing contradictory information in its multi-channel envelope and TFS....

  18. Calculation of the fine structure of the level in Rydberg state of lithium

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The level shift and level formula of lithium atom in Rydberg states are achieved by means of the calculation of polarization of the atomic core (including the contribution of dipole moment, quadrupole moment and octupole moment);meanwhile, the effect of relativity theory, the orbital angular momentum L and the spin angular momentum S coupling (LS coupling), and high order correction of the effective potential are considered. The some fine structures (N=5~12,L=4~9,J=L±1/2) and the corresponding level intervals in Rydberg states can be calculated by the above-mentioned level formula and compared with correlated experimental data.

  19. Prospect of China's Auroral Fine-structure Imaging System (CAFIS) at Zhongshan station in Antarctica

    Institute of Scientific and Technical Information of China (English)

    LIU Shun-lin; HAN De-sheng; HU Hong-qiao; HUANG De-hong; ZHANG Bei-chen; YANG Hui-gen

    2008-01-01

    A new auroral imaging system is reported which is planned to be deployed at Zhongshan Station in Antarctica in the end of 2009. The system will focus on study of optical auroras in small scales and be called China' s Auroral Fine-structure Imaging System (CAFIS). The project of CAFIS is carried out by support of 'the tenth five-year plan for capacity building' of China. CAFIS will be a powerful groundbased platform for aurora observational experiments. Composing and advantages of CAFIS are introduced in this brief report. Some potential study topics involved CAFIS are also considered.

  20. Electron-impact fine-structure transitions in Cu XX from its ground state

    International Nuclear Information System (INIS)

    The R-matrix method is used to calculate collision strengths for electron-impact excitation of Cu XX from its ground state. Configuration interaction wavefunctions are used to represent the lowest 15 LS coupled states which are retained in the R-matrix expansion. Effective collisions strengths are calculated for transitions from the ground state to fine-structure levels of the excited states by employing a transformation of the LS coupled reactance matrices, and by assuming a Maxwellian distribution for the incident electron. This is the first detailed calculation on this ion in which the effects of exchange, channel couplings and short-range correlation effects are taken into account. (author)

  1. Fine-scale spatial genetic structure in a multi-oak-species (Quercus spp.) forest

    OpenAIRE

    Curtu AL; Craciunesc I; Enescu CM; Vidalis A; Sofletea N

    2015-01-01

    Patterns of fine-scale spatial distribution of multilocus genotypes can provide valuable insights into the biology of forest tree species. Here we tested for the existence of spatial genetic structure (SGS) in a four-oak-species forest with contrasting species abundances and hybridization rates. A total of 483 adult trees were mapped over 8.6 ha and genotyped using 10 highly polymorphic genomic regions. A weak but significant SGS was observed in each of the four oak species, with Quercus frai...

  2. Extended X-ray absorption fine structure investigation of nitrogen stabilized expanded austenite

    DEFF Research Database (Denmark)

    Oddershede, Jette; Christiansen, Thomas; Ståhl, Kenny;

    2010-01-01

    the N atoms remaining in the solid state after H2-reduction are trapped by Cr atoms. Quantitative interpretation in terms of the local distortions around Cr atoms and their N coordination number reveals that no Cr–N clusters or CrN platelets are present.......As-delivered austenitic stainless steel and nitrogen stabilized expanded austenite, both fully nitrided and denitrided (in H2), were investigated with Cr, Fe and Ni extended X-ray absorption fine structure. The data shows pronounced short-range ordering of Cr and N. For the denitrided specimen...

  3. Oklo Constraint on the Time-Variabilityof the Fine-Structure Constant

    Science.gov (United States)

    Fujii, Yasunori

    The Oklo phenomenon, natural fission reactors which had taken place in Gabon about 2 billion years ago, provides one of the most stringent constraints on the possible time-variability of the fine-structure constant . We first review briefly what it is and how reliable it is in constraining . We then compare the result with a more recent result on the nonzero change of obtained from the observation of the QSO absorption lines. We suggest a possible way to make these results consistent with each other in terms of the behavior of a scalar field which is expected to be responsible for the acceleration of the universe.

  4. Variation of the fine-structure constant from the de Sitter invariant special relativity

    Institute of Scientific and Technical Information of China (English)

    CHEN Shao-Xia; XIAO Neng-Chao; YAN Mu-Lin

    2008-01-01

    We discuss the variation of the fine-structure constant,α.There are obvious discrepancies among the results of α-variation from recent Quasi-stellar observation experiments and from the Oklo uranium mine analysis.We use dS Sitter invariant Special Relativity (SRc,R) and Dirac large number hypothesis to discuss this puzzle,and present a possible solution to the disagreement.By means of the observational data and the discussions presented in this paper,we estimate the radius of the Universe in SRc,R which is about ~2(√5)×1011l.y.

  5. Time evolution of the fine structure constant in a two-field quintessence model

    Science.gov (United States)

    Bento, M. C.; Bertolami, O.; Santos, N. M.

    2004-11-01

    We examine the variation of the fine structure constant in the context of a two-field quintessence model. We find that, for solutions that lead to a transient late period of accelerated expansion, it is possible to fit the data arising from quasar spectra and comply with the bounds on the variation of α from the Oklo reactor, meteorite analysis, atomic clock measurements, cosmic microwave background radiation, and big bang nucleosynthesis. That is more difficult if we consider solutions corresponding to a late period of permanent accelerated expansion.

  6. Evolution of the fine-structure constant in runaway dilaton models

    Directory of Open Access Journals (Sweden)

    C.J.A.P. Martins

    2015-04-01

    Full Text Available We study the detailed evolution of the fine-structure constant α in the string-inspired runaway dilaton class of models of Damour, Piazza and Veneziano. We provide constraints on this scenario using the most recent α measurements and discuss ways to distinguish it from alternative models for varying α. For model parameters which saturate bounds from current observations, the redshift drift signal can differ considerably from that of the canonical ΛCDM paradigm at high redshifts. Measurements of this signal by the forthcoming European Extremely Large Telescope (E-ELT, together with more sensitive α measurements, will thus dramatically constrain these scenarios.

  7. Fine structure in 14C emission from 223Ra and 224Ra

    International Nuclear Information System (INIS)

    The measurement of the energy spectrum of 14C nuclei emitted in the spontaneous radioactivity of 223Ra and 224Ra has been carried out, using thin and intense sources (480 MBq for 223Ra and 3550 MBq for 224Ra). The sources were obtained by implanting mass-separated beams into Al and vitreous C catchers. The measurement was performed with a superconducting solenoidal spectrometer. Our discovery, previously reported, of fine structure in the energy spectrum of 14C emission from 223Ra, which is analogous to the one known for α emission, is confirmed. Only 13% of the branching ratio in 14C decay leads to the ground state of the residual nucleus, while 81% to the first excited state. For 14C emission from 224Ra, a lower limit of 2 for the hindrance factor has been measured for the transition to the first excited state in the residual nucleus. Also, a precise identification in Z with an ExΔE telescope has been performed for the radiation from the 223Ra source. Our measurements of fine structure in 14C emissions open this field to nuclear structure studies

  8. Position-sensitive change in the transition metal L-edge fine structures

    Energy Technology Data Exchange (ETDEWEB)

    Gulec, Ahmet; Phillips, Patrick J.; Klie, Robert F. [Department of Physics, University of Illinois at Chicago, Chicago, Illinois 60607 (United States)

    2015-10-05

    Studying the structure and composition of solid-state materials on the atomic scale has become nearly routine in transmission electron microscopy with the development of novel electron optics and electron sources. In particular, with spatial resolutions better than 0.1 nm and energy resolution smaller than 100 meV, the stoichiometry, bonding, and coordination can now be examined on similar scales. Aberration-corrected scanning transmission electron microscopy and electron energy-loss spectroscopy (EELS) have played a crucial role in identifying charge ordering, valence, and as spin state transitions in transition metal perovskite oxides. In this letter, we investigate the effects of ever-decreasing electron-probe sizes on the measured near-edge fine-structure of the transition metal core-loss edge using EELS. We find that for certain transition metal perovskites, the position of the electron probe with respect to the atomic column is crucial in determining the correct valence state. Several reasons for the observed position-sensitive EELS fine-structure are discussed.

  9. Microwave burst with fine spectral structures in a solar flare on 2011 August 9

    CERN Document Server

    Tan, Baolin; Liu, Yuying; 10.1051/eas/1255035

    2012-01-01

    On August 9, 2011, there was an X6.9 flare event occurred near the west limb of solar disk. From the observation obtained by the spectrometer of the Chinese Solar Broadband Radio Spectrometer in Huairou (SBRS/Huairou) around the flare, we find that this powerful flare has only a short-duration microwave burst of about only 5 minutes, and during the short-duration microwave burst, there are several kinds of fine structures on the spectrogram. These fine structures include very short-period pulsations, millisecond spike bursts, and type III bursts. The most interesting is that almost all of the pulses of very short-period pulsation (VSP) are structured by clusters of millisecond timescales of spike bursts or type III bursts. And there exists three different kinds of frequency drift rates in the VSP: the frequency drift rates with absolute value of about 55 - 130 MHz s^{-1} in the pulse groups, the frequency drift rates with absolute value of about 2.91 - 16.9 GHz s^{-1} on each individual pulse, and the frequen...

  10. Fine and superfine structure of Decameter-Hectometer type II burst on 2011 June 7

    CERN Document Server

    Dorovskyy, V V; Konovalenko, A A; Brazhenko, A I; Panchenko, M; Poedts, S; Mykhaylov, V A

    2015-01-01

    The characteristics of the type II bursts with herringbone structure observed both by ground based radio telescopes (UTR-2, URAN-2) and spaceborn spectrometers (STEREO A-B) are discussed. The burst was recorded on 7 June, 2011 in the frequency band 3--33~MHz. It was characterized by extremely rich fine structure. The statistical analysis of more than 300 herringbone sub-bursts constituting the burst was performed separately for the positively (reverse) and negatively (forward) drifting sub-bursts. The sense and the degree of circular polarization of the herringbone sub-bursts were measured in the respectively wide frequency band (16--32~MHz). A second order fine frequency structure of the herringbone sub-bursts was firstly observed and processed. Using STEREO COR1 (A,B) and SOHO LASCO C2 images the direction and radial speed of the CME responsible for the studied type II burst were determined. The possible location of the type II burst source on the flank of the shock was found.

  11. Application of Bloch oscillations and atomic interferometry for the measurement of the h/m ratio and the determination of the fine structure constant

    International Nuclear Information System (INIS)

    It is possible to determine the h/mRb ratio between the Planck constant and the mass of the atoms, and then to deduce a value of the fine structure constant alpha, from the accurate measurement of the recoil velocity of an atom absorbing a photon. To perform this measurement we combine the high efficiency of Bloch oscillations with the high sensitivity of a Ramsey-Borde interferometer. The Bloch oscillations technic allows us to transfer a large number of recoils to the atoms (up to 1600 recoil momenta). An interferometric Ramsey-Borde velocity sensor, based on velocity selective Raman transitions, allows us to measure the momentum transferred to the atoms. A measurement with a statistical uncertainty of 3 ppb (3*10-9), in conjunction with a careful study of systematic effects (3.4 ppb), lead us to a determination of alpha with a relative uncertainty of 4.8 ppb. The value of α-1 is 137.03599887(65). It is the best determination of alpha, independent from quantum electrodynamics

  12. Magnetic properties and fine structure of Fe-Co alloys with vanadium and chromium additions

    Energy Technology Data Exchange (ETDEWEB)

    Dzhavadov, D.M.; Tyapkin, Yu.D. (Tsentral' nyj Nauchno-Issledovatel' skij Inst. Chernoj Metallurgii, Moscow (USSR))

    1982-11-01

    Magnetic properties of alloys iron-cobalt, iron-cobalt-vanadium, iron-cobalt-chromium have been investigated. Measurements of permeability, coercive force Hsub(c), B/sub 25/ and B/sub 100/ magnetic saturation on alloy samples on which electrical resistance previously is measured and fine crystalline structure is studied by the methods of transmission electron microscopy, diffusion scattering of X rays and electrons and NGR. Comparison of properties and structure makes possible to bind Hsub(c), B permeability values with such structure features as a long-range order of B2 type, short-range decomposition order and Cottrell clouds formation in vanadium containing alloys and a complex short-range order in chromium-containing alloys.

  13. Gaussian Beam Tunneling through a Gyrotropic-Nihility Finely-Stratified Structure

    CERN Document Server

    Tuz, Vladimir R

    2014-01-01

    The three-dimensional Gaussian beam transmission through a ferrite-semiconductor finely-stratified structure being under an action of an external static magnetic field in the Faraday geometry is considered. The beam field is represented by an angular continuous spectrum of plane waves. In the long-wavelength limit, the studied structure is described as a gyroelectromagnetic medium defined by the effective permittivity and effective permeability tensors. The investigations are carried out in the frequency band where the real parts of the on-diagonal elements of both effective permittivity and effective permeability tensors are close to zero while the off-diagonal ones are non-zero. In this frequency band the studied structure is referred to a gyrotropic-nihility medium. It is found out that a Gaussian beam keeps its parameters unchanged (beam width and shape) when passing through the layer of such a medium except of a portion of the absorbed energy.

  14. He I vector magnetic field maps of a sunspot and its superpenumbral fine-structure

    CERN Document Server

    Schad, T A; Lin, H; Tritschler, A

    2015-01-01

    Advanced inversions of high-resolution spectropolarimetric observations of the He I triplet at 1083 nm are used to generate unique maps of the chromospheric magnetic field vector across a sunspot and its superpenumbral canopy. The observations were acquired by the Facility Infrared Spectropolarimeter (FIRS) at the Dunn Solar Telescope (DST) on 29 January 2012. Multiple atmospheric models are employed in the inversions, as superpenumbral Stokes profiles are dominated by atomic-level polarization while sunspot profiles are Zeeman-dominated but also exhibit signatures perhaps induced by symmetry breaking effects of the radiation field incident on the chromospheric material. We derive the equilibrium magnetic structure of a sunspot in the chromosphere, and further show that the superpenumbral magnetic field does not appear finely structured, unlike the observed intensity structure. This suggests fibrils are not concentrations of magnetic flux but rather distinguished by individualized thermalization. We also dire...

  15. Revised structure of a homonojirimycin isomer from Aglaonema treubii: first example of a naturally occurring alpha-homoallonojirimycin.

    Science.gov (United States)

    Martin, O R; Compain, P; Kizu, H; Asano, N

    1999-11-01

    The structure of a homonojirimycin isomer isolated from Aglaonema treublii and originally proposed as alpha-3,4-di-epi-homonojirimycin was revised to alpha-4-epi-homonojirimycin 3 ("alpha-homoallonojirimycin") on the basis of NMR analysis and synthetic studies. Its activity as a glycosidase inhibitor is compared to that of other homonojirimycin isomers.

  16. Fine structure of Tibetan kefir grains and their yeast distribution, diversity, and shift.

    Directory of Open Access Journals (Sweden)

    Man Lu

    Full Text Available Tibetan kefir grains (TKGs, a kind of natural starter for fermented milk in Tibet, China, host various microorganisms of lactic acid bacteria, yeasts, and occasionally acetic acid bacteria in a polysaccharide/protein matrix. In the present study, the fine structure of TKGs was studied to shed light on this unusual symbiosis with stereomicroscopy and thin sections. The results reveal that TKGs consist of numerous small grain units, which are characterized by a hollow globular structure with a diameter between 2.0 and 9.0 mm and a wall thickness of approximately 200 µm. A polyhedron-like net structure, formed mainly by the bacteria, was observed in the wall of the grain units, which has not been reported previously to our knowledge. Towards the inside of the grain unit, the polyhedron-like net structures became gradually larger in diameter and fewer in number. Such fine structures may play a crucial role in the stability of the grains. Subsequently, the distribution, diversity, and shift of yeasts in TKGs were investigated based on thin section, scanning electron microscopy, cloning and sequencing of D1/D2 of the 26S rRNA gene, real-time quantitative PCR, and in situ hybridization with specific fluorescence-labeled oligonucleotide probes. These show that (i yeasts appear to localize on the outer surface of the grains and grow normally together to form colonies embedded in the bacterial community; (ii the diversity of yeasts is relatively low on genus level with three dominant species--Saccharomyces cerevisiae, Kluyveromyces marxianus, and Yarrowia lipolytica; (iii S. cerevisiae is the stable predominant yeast species, while the composition of Kluyveromyces and Yarrowia are subject to change over time. Our results indicate that TKGs are relatively stable in structure, and culture conditions to some extent shape the microbial community and interaction in kefir grains. These findings pave the way for further study of the specific symbiotic

  17. Fine-scale genetic structure arises during range expansion of an invasive gecko.

    Directory of Open Access Journals (Sweden)

    Kristen Harfmann Short

    Full Text Available Processes of range expansion are increasingly important in light of current concerns about invasive species and range shifts due to climate change. Theoretical studies suggest that genetic structuring may occur during range expansion. Ephemeral genetic structure can have important evolutionary implications, such as propagating genetic changes along the wave front of expansion, yet few studies have shown evidence of such structure. We tested the hypothesis that genetic structure arises during range expansion in Hemidactylus mabouia, a nocturnal African gecko recently introduced to Florida, USA. Twelve highly variable microsatellite loci were used to screen 418 individuals collected from 43 locations from four sampling sites across Florida, representing a gradient from earlier (∼1990s to very recent colonization. We found earlier colonized locations had little detectable genetic structure and higher allelic richness than more recently colonized locations. Genetic structuring was pronounced among locations at spatial scales of tens to hundreds of meters near the leading edge of range expansion. Despite the rapid pace of range expansion in this introduced gecko, dispersal is limited among many suitable habitat patches. Fine-scale genetic structure is likely the result of founder effects during colonization of suitable habitat patches. It may be obscured over time and by scale-dependent modes of dispersal. Further studies are needed to determine if such genetic structure affects adaptation and trait evolution in range expansions and range shifts.

  18. The Behaviour of Varying-Alpha Cosmologies

    CERN Document Server

    Barrow, John D; Magueijo, J

    2002-01-01

    We determine the behaviour of a time-varying fine structure 'constant' $\\alpha (t)$ during the early and late phases of universes dominated by the kinetic energy of changing $\\alpha (t)$, radiation, dust, curvature, and lambda, respectively. We show that after leaving an initial vacuum-dominated phase during which $\\alpha$ increases, $\\alpha$ remains constant in universes like our own during the radiation era, and then increases slowly, proportional to a logarithm of cosmic time, during the dust era. If the universe becomes dominated by negative curvature or a positive cosmological constant then $\\alpha$ tends rapidly to a constant value. The effect of an early period of de Sitter or power-law inflation is to drive $\\alpha$ to a constant value. Various cosmological consequences of these results are discussed with reference to recent observational studies of the value of $\\alpha$ from quasar absorption spectra and to the existence of life in expanding universes.

  19. Fine-scale population genetic structure in a fission-fusion society.

    Science.gov (United States)

    Archie, Elizabeth A; Maldonado, Jésus E; Hollister-Smith, Julie A; Poole, Joyce H; Moss, Cynthia J; Fleischer, Robert C; Alberts, Susan C

    2008-06-01

    Nonrandom patterns of mating and dispersal create fine-scale genetic structure in natural populations - especially of social mammals - with important evolutionary and conservation genetic consequences. Such structure is well-characterized for typical mammalian societies; that is, societies where social group composition is stable, dispersal is male-biased, and males form permanent breeding associations in just one or a few social groups over the course of their lives. However, genetic structure is not well understood for social mammals that differ from this pattern, including elephants. In elephant societies, social groups fission and fuse, and males never form permanent breeding associations with female groups. Here, we combine 33 years of behavioural observations with genetic information for 545 African elephants (Loxodonta africana), to investigate how mating and dispersal behaviours structure genetic variation between social groups and across age classes. We found that, like most social mammals, female matrilocality in elephants creates co-ancestry within core social groups and significant genetic differentiation between groups (Phi(ST) = 0.058). However, unlike typical social mammals, male elephants do not bias reproduction towards a limited subset of social groups, and instead breed randomly across the population. As a result, reproductively dominant males mediate gene flow between core groups, which creates cohorts of similar-aged paternal relatives across the population. Because poaching tends to eliminate the oldest elephants from populations, illegal hunting and poaching are likely to erode fine-scale genetic structure. We discuss our results and their evolutionary and conservation genetic implications in the context of other social mammals.

  20. Sensitivity to temporal fine structure and hearing-aid outcomes in older adults

    Directory of Open Access Journals (Sweden)

    Elvira ePerez Vallejos

    2014-02-01

    Full Text Available Objective: to investigate the effect of sensitivity to temporal fine structure on subjective measures of hearing aid outcome.Design: Prior to receiving hearing aids, participants completed a test to assess sensitivity to temporal fine structure (TFS, the Glasgow Hearing Aid Benefit Profile (GHABP, and the Speech, Spatial and Qualities of hearing (SSQ-A. Follow-up appointments, comprised the GHABP, the SSQ-B , and the International Outcome Inventory for Hearing Aid Outcomes (IOI-HA.Study sample: 75 adults were recruited from direct referral clinics. Results: Two thirds of participants were found to have good sensitivity to TFS; listeners with good sensitivity to TFS rated their hearing abilities higher at pre-fitting (SSQ-A than those with poor sensitivity to TFS. At follow-up, participants with good sensitivity to TFS showed a small improvement on SSQ-B over listeners with poor sensitivity to TFS. Conclusions: The clinical identification of a patient’s ability to process TFS information at an early stage in the treatment pathway could prove useful in managing expectations about hearing aid outcomes.

  1. Neon Fine-Structure Line Emission By X-ray Irradiated Protoplanetary Disks

    CERN Document Server

    Glassgold, A E; Igea, J; Glassgold, Alfred E.; Najita, Joan R.; Igea, Javier

    2006-01-01

    Using a thermal-chemical model for the generic T-Tauri disk of D'Alessio et al. (1999), we estimate the strength of the fine-structure emission lines of NeII and NeIII at 12.81 and 15.55 microns that arise from the warm atmosphere of the disk exposed to hard stellar X-rays. The Ne ions are produced by the absorption of keV X-rays from the K shell of neutral Ne, followed by the Auger ejection of several additional electrons. The recombination cascade of the Ne ions is slow because of weak charge transfer with atomic hydrogen in the case of Ne2+ and by essentially no charge transfer for Ne+. For a distance of 140pc, the 12.81 micron line of Ne II has a flux of 1e-14 erg/cm2s, which should be observable with the Spitzer Infrared Spectrometer and suitable ground based instrumentation. The detection of these fine-structure lines would clearly demonstrate the effects of X-rays on the physical and chemical properties of the disks of young stellar objects and provide a diagnostic of the warm gas in protoplanetary dis...

  2. Fine structure of uterus and non-functioning paruterine organ in Orthoskrjabinia junlanae (Cestoda, Cyclophyllidea).

    Science.gov (United States)

    Korneva, Janetta V; Kornienko, Svetlana A; Jones, Malcolm K

    2016-06-01

    Some cyclophyllidean cestodes provide protection for their eggs in the external environment by providing them with additional protective layers around the egg membranes. In attempting to examine such adaptations, the microanatomy and fine structure of the uterus of pregravid and gravid proglottids of the cyclophyllidean cestode Orthoskrjabinia junlanae, a parasite of mammals that inhabit a terrestrial but moist environment, were studied. In the initial stages of uterine development, developing embryos locate freely in the lumen of a saccate uterus that later partitions into chambers. Each chamber that forms encloses several embryos. The chambers are surrounded by muscle cells that synthesize extracellular matrix actively. The paruterine organs consist of stacks of flattened long outgrowths of muscular cells, interspersed with small lipid droplets. In the gravid proglottids, the size of paruterine organ increases and consists of flattened basal and small rounded apical parts separated by constrictions. The fine structure of the organ wall remains the same: sparse nuclei and stacks of flattened cytoplasmic outgrowths but internal invaginations or lumen in the paruterine organ are absent. Completely developed eggs remain localized in the uterus. Based on the comparative morpho-functional analysis of uterine and paruterine organs and uterine capsules in cestodes, we conclude that these non-functioning paruterine organ in O. junlanae is an example of an atavism. We postulate that the life cycle of the parasite, which infects mammals living in wet habitats, where threats of desiccation of parasite ova is reduced, has favoured a reversion to a more ancestral form of uterine development. PMID:26997340

  3. On the fine structure of the sunspot penumbrae. II. The nature of the Evershed flow

    CERN Document Server

    Borrero, J M; Solanki, S K; Collados, M

    2005-01-01

    We investigate the fine structure of the sunspot penumbra by means of a model that allows for a flux tube in horizontal pressure balance with the magnetic background atmosphere in which it is embedded. We apply this model to spectropolarimetric observations of two neutral iron lines at 1.56 $\\mu$m and invert several radial cuts in the penumbra of the same sunspot at two different heliocentric angles. In the inner part of the penumbra we find hot flux tubes that are somewhat inclined to the horizontal. They become gradually more horizontal and cooler with increasing radial distance. This is accompanied by an increase in the velocity of the plasma and a decrease of the gas pressure difference between flux tube and the background component. At large radial distances the flow speed exceeds the critical speed and evidence is found for the formation of a shock front. These results are in good agreement with simulations of the penumbral fine structure and provide strong support for the siphon flow as the physical me...

  4. Fine structure of a resonantly excited p -shell exciton in a CdTe quantum dot

    Science.gov (United States)

    Smoleński, T.; Kazimierczuk, T.; Goryca, M.; Wojnar, P.; Kossacki, P.

    2016-05-01

    We present a polarization-resolved photoluminescence excitation study of the absorption spectrum of a p -shell neutral exciton in a single CdTe/ZnTe quantum dot. We find that the fine structure of the p -shell exciton is completely analogous to the fine structure of the s -shell exciton, including the selection rules and the effects of a magnetic field applied in Faraday and Voigt configurations. The energy spectrum of the p -shell exciton is found to be well described by introducing respective isotropic and anisotropic constants of the exchange interaction between a p -shell electron and a p -shell hole. The typical values of these exchange constants averaged over several randomly selected quantum dots yield δ0p p=(0.92 ±0.16 ) meV and δ1p p=(0.58 ±0.25 ) meV. Additionally, we demonstrate that the nonresonant relaxation of the p -shell exciton conserves the exciton spin to a very high degree for both bright and dark exciton configurations.

  5. Constraining spatial variations of the fine structure constant using clusters of galaxies and Planck data

    CERN Document Server

    de Martino, I; Ebeling, H; Kocevski, D

    2016-01-01

    We propose an improved methodology to constrain spatial variations of the fine structure constant using clusters of galaxies. We use the {\\it Planck} 2013 data to measure the thermal Sunyaev-Zeldovich effect at the location of 618 X-ray selected clusters. We then use a Monte Carlo Markov Chain algorithm to obtain the temperature of the Cosmic Microwave Background at the location of each galaxy cluster. When fitting three different phenomenological parameterizations allowing for monopole and dipole amplitudes in the value of the fine structure constant we improve the results of earlier analysis involving clusters and CMB power spectrum, and we also found that the best-fit direction of a hypothetical dipole is compatible with the direction of other known anomalies. Although the constraining power of our current datasets do not allow us to test the indications of a dipole obtained though high-resolution optical/UV spectroscopy, our results do highlight that clusters of galaxies will be a very powerful tool to pr...

  6. Fine structure of the topological defect core: Disclination in lyotropic chromonic liquid crystal

    Science.gov (United States)

    Zhou, Shuang; Shiyanovskii, Sergij; Park, Heung-Shik; Kim, Young-Ki; Hearn, Tristan; Reichel, Lothar; Lavrentovich, Oleg

    Topological defects represent an important concept in many branches of modern physics ranging from cosmology and optics to hard and soft matter. One of the most difficult problems is the fine structure of the so-called core region of defects, where the deformations of the order parameter are so strong that the phenomenological description valid in the far field becomes invalid. Experimental exploration of the fine core structure is usually hindered by the small size (atomic/molecular level) of the core, where optical or even electron microscopy techniques are invalid. In this work, we take advantage of the peculiar nature of the so-called lyotropic chromonic liquid crystals (LCLC) of a nematic type that carry disclinations with a core extending over macroscopic distances (tens of micrometers), large enough to explore their spatial variation by optical and electron microscopy. We demonstrate that the director and the scalar order parameter (associated with the degree of orientational order) show a profound change in the core region. In particular, as one approaches the center of the defect, the azimuthal dependency of the director field changes dramatically and the scalar order parameter shows a strong dependence on the strength of splay and bend deformations. This work is supported by NSF Grant DMS-1434185.

  7. The variation of the fine-structure constant from disformal couplings

    Science.gov (United States)

    van de Bruck, Carsten; Mifsud, Jurgen; Nunes, Nelson J.

    2015-12-01

    We study a theory in which the electromagnetic field is disformally coupled to a scalar field, in addition to a usual non-minimal electromagnetic coupling. We show that disformal couplings modify the expression for the fine-structure constant, α. As a result, the theory we consider can explain the non-zero reported variation in the evolution of α by purely considering disformal couplings. We also find that if matter and photons are coupled in the same way to the scalar field, disformal couplings itself do not lead to a variation of the fine-structure constant. A number of scenarios are discussed consistent with the current astrophysical, geochemical, laboratory and the cosmic microwave background radiation constraints on the cosmological evolution of α. The models presented are also consistent with the current type Ia supernovae constraints on the effective dark energy equation of state. We find that the Oklo bound in particular puts strong constraints on the model parameters. From our numerical results, we find that the introduction of a non-minimal electromagnetic coupling enhances the cosmological variation in α. Better constrained data is expected to be reported by ALMA and with the forthcoming generation of high-resolution ultra-stable spectrographs such as PEPSI, ESPRESSO, and ELT-HIRES. Furthermore, an expected increase in the sensitivity of molecular and nuclear clocks will put a more stringent constraint on the theory.

  8. The Fine-Structure of the Net-Circular Polarization in a Sunspot Penumbra

    CERN Document Server

    Tritschler, A; Schlichenmaier, R; Hagenaar, H J

    2007-01-01

    We present novel evidence for a fine structure observed in the net-circular polarization (NCP) of a sunspot penumbra based on spectropolarimetric measurements utilizing the Zeeman sensitive FeI 630.2 nm line. For the first time we detect a filamentary organized fine structure of the NCP on spatial scales that are similar to the inhomogeneities found in the penumbral flow field. We also observe an additional property of the visible NCP, a zero-crossing of the NCP in the outer parts of the center-side penumbra, which has not been recognized before. In order to interprete the observations we solve the radiative transfer equations for polarized light in a model penumbra with embedded magnetic flux tubes. We demonstrate that the observed zero-crossing of the NCP can be explained by an increased magnetic field strength inside magnetic flux tubes in the outer penumbra combined with a decreased magnetic field strength in the background field. Our results strongly support the concept of the uncombed penumbra.

  9. Crystal and molecular structure of tert.-butyloxycarbonyl-L-hydroxy-prolyl-alpha-aminoisobutyryl-alpha-aminoisobutyryl-L-phenylalaninol.

    Science.gov (United States)

    Van Roey, P; Smith, G D; Balasubramanian, T M; Redlinski, A S; Marshall, G R

    1982-05-01

    The crystal structure of the synthetic tetrapeptide, Boc-Hyp-Aib-Aib-Phol, an analogue of the C-terminal tetrapeptide in the antibiotic antiamoebin I, was determined as part of a study of the conformation of peptaibophol antibiotics. The crystals are orthorhombic, space group P212121, with cell parameters a = 16.576 (1) A, b = 17.657 (1) A, c = 10.435 (1) A, V = 3053.9 (2) A3, Z = 4, Dc = 1.163 g.cm-3. The three amino acids from a single turn of a 3 10-helix, stabilized by two intramolecular hydrogen bonds. The Aib residues adopt the usual conformation in the region between the 3 10- and alpha-helices. The terminal hydroxy methyl group of the phenylalaninol residue is disordered. The position of the benzyl side chain of the amino alcohol relative to the backbone corresponds to a conformation also observed in phenylalanine residues. PMID:7118420

  10. Unresolved fine-scale structure in solar coronal loop-tops

    CERN Document Server

    Scullion, Eamon; Wedemeyer, Sven; Antolin, Patrick

    2014-01-01

    New and advanced space-based observing facilities continue to lower the resolution limit and detect solar coronal loops in greater detail. We continue to discover even finer sub-structures within coronal loop cross sections, in order to understand the nature of the solar corona. Here, we push this lower limit further to search for the finest coronal loop sub-structures, through taking advantage of the resolving power of the Swedish 1- m Solar Telescope (SST) / CRisp Imaging Spectro-Polarimeter (CRISP), together with co-observations from the Solar Dynamics Observatory (SDO) / Atmospheric Image Assembly (AIA). High resolution imaging of the chromospheric H-alpha 656.28 nm spectral line core and wings can, under certain circumstances, allow one to deduce the topology of the local magnetic environment of the solar atmosphere where its observed. Here, we study post-flare coronal loops, which become filled with evaporated chromosphere that rapidly condenses into chromospheric clumps of plasma (detectable in H-alpha...

  11. Local structure of NiAl compounds investigated by extended X-ray absorption fine-structure spectroscopy.

    Science.gov (United States)

    Tian, J S; Han, G M; Wei, H; Jin, T; Dargusch, M S

    2012-07-01

    The local structures of pure NiAl and Ti-, Co-doped NiAl compounds have been obtained utilizing extended X-ray absorption fine-structure (EXAFS) spectroscopy. The results provide experimental evidence that Ni antisite defects exist in the Ni-rich NiAl compounds. The site preference of Ti and Co has been confirmed. Ti occupies the Al sublattice, while Co occupies the Ni sublattice. The structure parameters obtained by EXAFS were consistent with the X-ray diffraction results. Owing to the precipitation of α-Cr, the local structure of NiAl-Cr has not been obtained, making the site preference of Cr unclear. PMID:22713881

  12. MHD wave modes resolved in fine-scale chromospheric magnetic structures

    CERN Document Server

    Verth, G

    2015-01-01

    Within the last decade, due to significant improvements in the spatial and temporal resolution of chromospheric data, magnetohydrodynamic (MHD) wave studies in this fascinating region of the Sun's atmosphere have risen to the forefront of solar physics research. In this review we begin by reviewing the challenges and debates that have manifested in relation to MHD wave mode identification in fine-scale chromospheric magnetic structures, including spicules, fibrils and mottles. Next we go on to discuss how the process of accurately identifying MHD wave modes also has a crucial role to play in estimating their wave energy flux. This is of cardinal importance for estimating what the possible contribution of MHD waves is to solar atmospheric heating. Finally, we detail how such advances in chromospheric MHD wave studies have also allowed us, for the first time, to implement cutting-edge magnetoseismological techniques that provide new insight into the sub-resolution plasma structuring of the lower solar atmospher...

  13. Fine structures of organic photovoltaic thin films probed by frequency-shift electrostatic force microscopy

    Science.gov (United States)

    Araki, Kento; Ie, Yutaka; Aso, Yoshio; Matsumoto, Takuya

    2016-07-01

    The localized charge and electrostatic properties of organic photovoltaic thin films are predominating factors for controlling energy conversion efficiency. The surface potential and electrostatic structures of organic photovoltaic thin films were investigated by frequency shift mode Kelvin force microscopy (KFM) and electrostatic force microscopy (EFM). The KFM images of a poly[2-methoxy-5-(3‧,7‧-dimethyloctyloxy)-1,4-phenylene vinylene]/phenyl-C61-butyric-acid-methyl ester (PCBM) blend thin film reveals that the PCBM domains precipitate as the topmost layer on the thin films. We find fine structures that were not observed in the topography and KFM images. The bias dependence of the EFM images suggests that the EFM contrast reflects the field-induced polarization, indicating the presence of charge trapping sites.

  14. High-sensitivity x-ray absorption fine structure investigation of arsenic shallow implant in silicon

    International Nuclear Information System (INIS)

    High-sensitivity fluorescence-yield x-ray absorption fine structure spectroscopy (XAFS) has been investigated to characterize the local structure around arsenic shallow implant in silicon. Fluorescence-yield XAFS experiments were performed using a high-brilliance synchrotron radiation beam from an in-vacuum-type undulator in a third-generation light source. In addition to investigating the efficiency of high-brilliance undulator x-rays during the fluorescence-yield XAFS measurements, we compared the analytical performance of both the wavelength dispersive spectrometer (WDS) and the energy dispersive spectrometer (EDS) based on the silicon drift detector (SDD). It was confirmed that the WDS reduces the influence of scattering background due to the high spectral resolution. Another advantage of the WDS is high counting rate measurements. It was found that fluorescence-yield XAFS using undulator x-rays combined with the WDS permits superior sensitivity measurements.

  15. Fine structure in the cosmic ray spectrum: Further analysis and the next step

    Science.gov (United States)

    Erlykin, A. D.; Wolfendale, A. W.

    2012-01-01

    An analysis is made of the fine structure in the cosmic ray energy spectrum: new facets of present observations and their interpretation and the next step. It is argued that less than about 10% of the intensity of the helium 'peak' at the knee at ≈5 PeV is due to just a few sources (SNR) other than the single source. The apparent concavity in the rigidity spectra of protons and helium nuclei which have maximum curvature at about 200 GV is confirmed by a joint analysis of the PAMELA, CREAM and ATIC experiments. The spectra of heavier nuclei also show remarkable structure in the form of 'ankles' at several hundred GeV/nucleon. Possible mechanisms are discussed. The search for 'pulsar peaks' has not yet proved successful.

  16. Fine structure in the cosmic ray spectrum: Further analysis and the next step

    CERN Document Server

    Erlykin, A D

    2011-01-01

    An analysis is made of the fine structure in the cosmic ray energy spectrum: new facets of present observations and their interpretation and the next step. It is argued that less than about 10% of the intensity of the helium `peak' at the knee at $\\simeq 5PeV$ is due to just a few sources (SNR) other than the single source. The apparent concavity in the rigidity spectra of protons and helium nuclei which have maximum curvature at about 200 GV is confirmed by a joint analysis of the PAMELA, CREAM and ATIC experiments. The spectra of heavier nuclei also show remarkable structure in the form of `ankles' at several hundred GeV/nucleon. Possible mechanisms are discussed. The search for `pulsar peaks' has not yet proved successful.

  17. Fine structure and optical properties of biological polarizers in crustaceans and cephalopods

    Science.gov (United States)

    Chiou, Tsyr-Huei; Caldwell, Roy L.; Hanlon, Roger T.; Cronin, Thomas W.

    2008-04-01

    The lighting of the underwater environment is constantly changing due to attenuation by water, scattering by suspended particles, as well as the refraction and reflection caused by the surface waves. These factors pose a great challenge for marine animals which communicate through visual signals, especially those based on color. To escape this problem, certain cephalopod mollusks and stomatopod crustaceans utilize the polarization properties of light. While the mechanisms behind the polarization vision of these two animal groups are similar, several distinctive types of polarizers (i.e. the structure producing the signal) have been found in these animals. To gain a better knowledge of how these polarizers function, we studied the relationships between fine structures and optical properties of four types of polarizers found in cephalopods and stomatopods. Although all the polarizers share a somewhat similar spectral range, around 450- 550 nm, the reflectance properties of the signals and the mechanisms used to produce them have dramatic differences. In cephalopods, stack-plates polarizers produce the polarization patterns found on the arms and around their eyes. In stomatopods, we have found one type of beam-splitting polarizer based on photonic structures and two absorptive polarizer types based on dichroic molecules. These stomatopod polarizers may be found on various appendages, and on the cuticle covering dorsal or lateral sides of the animal. Since the efficiencies of all these polarizer types are somewhat sensitive to the change of illumination and viewing angle, how these animals compensate with different behaviors or fine structural features of the polarizer also varies.

  18. Microsatellite analyses reveal fine-scale genetic structure in grey mouse lemurs (Microcebus murinus).

    Science.gov (United States)

    Fredsted, T; Pertoldi, C; Schierup, M H; Kappeler, P M

    2005-07-01

    Information on genetic structure can be used to complement direct inferences on social systems and behaviour. We studied the genetic structure of the solitary grey mouse lemur (Microcebus murinus), a small, nocturnal primate endemic to western Madagascar, with the aim of getting further insight on its breeding structure. Tissue samples from 167 grey mouse lemurs in an area covering 12.3 km2 in Kirindy Forest were obtained from trapping. The capture data indicated a noncontinuous distribution of individuals in the study area. Using 10 microsatellite markers, significant genetic differentiation in the study area was demonstrated and dispersal was found to be significantly male biased. Furthermore, we observed an overall excess of homozygotes in the total population (F(IT) = 0.131), which we interpret as caused by fine-scale structure with breeding occurring in small units. Evidence for a clumped distribution of identical homozygotes was found, supporting the notion that dispersal distance for breeding was shorter than that for foraging, i.e. the breeding neighbourhood size is smaller than the foraging neighbourhood size. In conclusion, we found a more complex population structure than what has been previously reported in studies performed on smaller spatial scales. The noncontinuous distribution of individuals and the effects of social variables on the genetic structure have implications for the interpretation of social organization and the planning of conservation activities that may apply to other solitary and endangered mammals as well.

  19. Structure of (alpha + beta)-titanium alloys subjected to laser heating

    Energy Technology Data Exchange (ETDEWEB)

    Ivasishin, O.M.; Markovskii, P.E.; Svechnikov, V.L.; Krasavin, A.P.; Oshkaderov, S.P. (Institut Metallofiziki, Kiev (Ukrainian SSR))

    1990-02-01

    The structure of surface layers formed in the industrial (alpha + beta)-titanium alloys subjected to pulse-laser treatment with energy density of 5 J/mm is examined. It is shown that as the temperature in the alloys increases, the following sequence of processes occurs: nondiffusion alpha-to-beta transformation; the diffusion redistribution of alloying components in the chemically inhomogeneous beta-phase; and melting and homogenization of the melt. The effect of the initial state of alloys and elastic stresses on the final structure is examined. It is established that the laser treatment with melting, combined with subsequent annealing in the (alpha + beta) region, makes it possible to create the dispersed high-strength state in the surface layer. 11 refs.

  20. Weighted difference of g-factors of light Li-like and H-like ions for an improved determination of the fine-structure constant

    CERN Document Server

    Yerokhin, V A; Harman, Z; Tupitsyn, I I; Keitel, C H

    2016-01-01

    A weighted difference of the $g$-factors of the Li- and H-like ion of the same element is studied and optimized in order to maximize the cancellation of nuclear effects. To this end, a detailed theoretical investigation is performed for the finite nuclear size correction to the one-electron $g$-factor, the one- and two-photon exchange effects, and the QED effects. The coefficients of the $Z\\alpha$ expansion of these corrections are determined, which allows us to set up the optimal definition of the weighted difference. It is demonstrated that, for moderately light elements, such weighted difference is nearly free from uncertainties associated with nuclear effects and can be utilized to extract the fine-structure constant from bound-electron $g$-factor experiments with an accuracy competitive with or better than its current literature value.

  1. Pulsed EM Field Response of a Thin, High-Contrast, Finely Layered Structure With Dielectric and Conductive Properties

    OpenAIRE

    De Hoop, A.T.; Jiang, L.

    2009-01-01

    The response of a thin, high-contrast, finely layered structure with dielectric and conductive properties to an incident, pulsed, electromagnetic field is investigated theoretically. The fine layering causes the standard spatial discretization techniques to solve Maxwell's equations numerically to be practically inapplicable. To overcome this difficulty, an approximate method is proposed that models the interaction of the layer with an incident electromagnetic field via a boundary condition t...

  2. Primary structure of human alpha 2-macroglobulin. V. The complete structure

    DEFF Research Database (Denmark)

    Sottrup-Jensen, Lars; Stepanik, Terrence M; Kristensen, Torsten;

    1984-01-01

    in the activation cleavage area (the "bait" region) are located in the sequence: -Arg681-Val-Gly-Phe-Tyr-Glu-. The molecular weight of the unmodified alpha 2-macroglobulin subunit is 160,837 and approximately 179,000, including the carbohydrate groups. The presence of possible internal homologies within the alpha 2......-macroglobulin subunit is discussed. A comparison of stretches of sequences from alpha 2-macroglobulin with partial sequence data for complement components C3 and C4 indicates that these proteins are evolutionary related. The properties of alpha 2-macroglobulin are discussed within the context of proteolytically...

  3. The Effects of Instrumental Elliptical Polarization on Stellar Point Spread Function Fine Structure

    Science.gov (United States)

    Carson, Joseph C.; Kern, Brian D.; Breckinridge, James B.; Trauger, John T.

    2005-01-01

    We present procedures and preliminary results from a study on the effects of instrumental polarization on the fine structure of the stellar point spread function (PSF). These effects are important to understand because the the aberration caused by instrumental polarization on an otherwise diffraction-limited will likely have have severe consequences for extreme high contrast imaging systems such as NASA's planned Terrestrial Planet Finder (TPF) mission and the proposed NASA Eclipse mission. The report here, describing our efforts to examine these effects, includes two parts: 1) a numerical analysis of the effect of metallic reflection, with some polarization-specific retardation, on a spherical wavefront; 2) an experimental approach for observing this effect, along with some preliminary laboratory results. While the experimental phase of this study requires more fine-tuning to produce meaningful results, the numerical analysis indicates that the inclusion of polarization-specific phase effects (retardation) results in a point spread function (PSF) aberration more severe than the amplitude (reflectivity) effects previously recorded in the literature.

  4. Outlier SNP markers reveal fine-scale genetic structuring across European hake populations (Merluccius merluccius).

    Science.gov (United States)

    Milano, Ilaria; Babbucci, Massimiliano; Cariani, Alessia; Atanassova, Miroslava; Bekkevold, Dorte; Carvalho, Gary R; Espiñeira, Montserrat; Fiorentino, Fabio; Garofalo, Germana; Geffen, Audrey J; Hansen, Jakob H; Helyar, Sarah J; Nielsen, Einar E; Ogden, Rob; Patarnello, Tomaso; Stagioni, Marco; Tinti, Fausto; Bargelloni, Luca

    2014-01-01

    Shallow population structure is generally reported for most marine fish and explained as a consequence of high dispersal, connectivity and large population size. Targeted gene analyses and more recently genome-wide studies have challenged such view, suggesting that adaptive divergence might occur even when neutral markers provide genetic homogeneity across populations. Here, 381 SNPs located in transcribed regions were used to assess large- and fine-scale population structure in the European hake (Merluccius merluccius), a widely distributed demersal species of high priority for the European fishery. Analysis of 850 individuals from 19 locations across the entire distribution range showed evidence for several outlier loci, with significantly higher resolving power. While 299 putatively neutral SNPs confirmed the genetic break between basins (F(CT) = 0.016) and weak differentiation within basins, outlier loci revealed a dramatic divergence between Atlantic and Mediterranean populations (F(CT) range 0.275-0.705) and fine-scale significant population structure. Outlier loci separated North Sea and Northern Portugal populations from all other Atlantic samples and revealed a strong differentiation among Western, Central and Eastern Mediterranean geographical samples. Significant correlation of allele frequencies at outlier loci with seawater surface temperature and salinity supported the hypothesis that populations might be adapted to local conditions. Such evidence highlights the importance of integrating information from neutral and adaptive evolutionary patterns towards a better assessment of genetic diversity. Accordingly, the generated outlier SNP data could be used for tackling illegal practices in hake fishing and commercialization as well as to develop explicit spatial models for defining management units and stock boundaries.

  5. Properties and Modeling of Unresolved Fine Structure Loops Observed in the Solar Transition Region by IRIS

    Science.gov (United States)

    Brooks, David H.; Reep, Jeffrey W.; Warren, Harry P.

    2016-08-01

    Recent observations from the Interface Region Imaging Spectrograph (IRIS) have discovered a new class of numerous low-lying dynamic loop structures, and it has been argued that they are the long-postulated unresolved fine structures (UFSs) that dominate the emission of the solar transition region. In this letter, we combine IRIS measurements of the properties of a sample of 108 UFSs (intensities, lengths, widths, lifetimes) with one-dimensional non-equilibrium ionization simulations, using the HYDRAD hydrodynamic model to examine whether the UFSs are now truly spatially resolved in the sense of being individual structures rather than being composed of multiple magnetic threads. We find that a simulation of an impulsively heated single strand can reproduce most of the observed properties, suggesting that the UFSs may be resolved, and the distribution of UFS widths implies that they are structured on a spatial scale of 133 km on average. Spatial scales of a few hundred kilometers appear to be typical for a range of chromospheric and coronal structures, and we conjecture that this could be an important clue for understanding the coronal heating process.

  6. Fine Structure ENA Sources Beyond the Termination Shock: Observational Constraints and Detection Limits

    Science.gov (United States)

    Demajistre, R.; Janzen, P. H.; Allegrini, F.; Dayeh, M. A.; McComas, D. J.; Schwadron, N.

    2015-12-01

    High spatial resolution maps from the IBEX mission (McComas et al, Science, 2009) suggest the presence of "fine structure" in the signal from beyond the termination shock. That is, areas of enhanced ENA emission that span less than a degree in the IBEX sky map. If confirmed, this would suggest very concentrated areas of emission from sources with scales of a few AU embedded in the outer heliosphere (or proportionally larger if they are located beyond the heliopause). This, in turn, would require the presence of unanticipated structures (plasma or neutral) beyond the termination shock for which the physics is poorly defined. It is therefore crucial to confirm the presence of these structures through careful analysis, or to establish the detection limits if the data taken to date is not sufficient for such a confirmation. In this work, we use 5 years worth of IBEX data to examine the statistical significance of these enhancements. We examine correlations in time, ENA energy and coincidence type for evidence of these small-scale spatial structures. Then, using the known spatial response of the IBEX instrument, establish the conditions under which such structure, if present, would be detectable. This detection threshold analysis is fully applicable future measurements, such as those planned for IMAP.

  7. Fine-structure energy levels and radiative decay rates in Al-like vanadium

    International Nuclear Information System (INIS)

    Large-scale calculations of excitation energies from ground state for 97 fine-structure levels as well as of oscillator strengths and radiative decay rates for all electric-dipole-allowed and intercombination transitions among the (1s22s22p6)3s23p(2P0), 3s3p2(2S,2P,2D,4P), 3s23d(2D), 3p3(4S0,2P0,2D0), 3s3p(3P0)3d(2P0,2D0,2F0,4P0,4D0,4F0), 3s3p(1P0)3d(2P0,2D0,2F0), 3p2(1S)3d(2D), 3p2(1D)3d(2S,2P,2D,2F,2G), 3p2(3P)3d(2P,2D,2F,4P,4D,4F), 3s3d2(2S,2P,2D,2F,2G,4P,4F), 3s24s(2S), 3s24p(2P0), 3s24d(2D), 3s24f(2F0), 3s3p(3P0)4s(2P0,4P0) and 3s3p(1P0)4s(2P0) states of V XI are performed using extensive configuration-interaction (CI) wavefunctions. The calculations used the CIV3 computer code of Hibbert. The important relativistic effects in intermediate coupling are incorporated by means of the Breit-Pauli Hamiltonian. In order to keep our calculated energy splittings as close as possible to the National Institute of Standard and Technology (NIST) values, we have made small adjustments to the diagonal elements of the Hamiltonian matrices. Our calculated excitation energies, including their ordering, are in excellent agreement with the available NIST results. From our radiative decay rates, we have also calculated radiative lifetimes of some fine-structure levels. Generally, very good agreement between our calculated lifetimes and those from sophisticated calculation is realized for many fine-structure levels. However, a few significant differences are noted and discussed.

  8. Structural and functional characterization of two alpha-synuclein strains

    Science.gov (United States)

    Bousset, Luc; Pieri, Laura; Ruiz-Arlandis, Gemma; Gath, Julia; Jensen, Poul Henning; Habenstein, Birgit; Madiona, Karine; Olieric, Vincent; Böckmann, Anja; Meier, Beat H.; Melki, Ronald

    2013-10-01

    α-synuclein aggregation is implicated in a variety of diseases including Parkinson’s disease, dementia with Lewy bodies, pure autonomic failure and multiple system atrophy. The association of protein aggregates made of a single protein with a variety of clinical phenotypes has been explained for prion diseases by the existence of different strains that propagate through the infection pathway. Here we structurally and functionally characterize two polymorphs of α-synuclein. We present evidence that the two forms indeed fulfil the molecular criteria to be identified as two strains of α-synuclein. Specifically, we show that the two strains have different structures, levels of toxicity, and in vitro and in vivo seeding and propagation properties. Such strain differences may account for differences in disease progression in different individuals/cell types and/or types of synucleinopathies.

  9. Crystal Structure of the alpha6beta6 Holoenzyme of propionyl-coenzyme A Carboxylase

    Energy Technology Data Exchange (ETDEWEB)

    Huang, C.; Sadre-Bazzaz, K; Shen, Y; Deng, B; Zhou, Z; Tong, L

    2010-01-01

    Propionyl-coenzyme A carboxylase (PCC), a mitochondrial biotin-dependent enzyme, is essential for the catabolism of the amino acids Thr, Val, Ile and Met, cholesterol and fatty acids with an odd number of carbon atoms. Deficiencies in PCC activity in humans are linked to the disease propionic acidaemia, an autosomal recessive disorder that can be fatal in infants. The holoenzyme of PCC is an {alpha}{sub 6}{beta}{sub 6} dodecamer, with a molecular mass of 750 kDa. The {alpha}-subunit contains the biotin carboxylase (BC) and biotin carboxyl carrier protein (BCCP) domains, whereas the {beta}-subunit supplies the carboxyltransferase (CT) activity. Here we report the crystal structure at 3.2-{angstrom} resolution of a bacterial PCC {alpha}{sub 6}{beta}{sub 6} holoenzyme as well as cryo-electron microscopy (cryo-EM) reconstruction at 15-{angstrom} resolution demonstrating a similar structure for human PCC. The structure defines the overall architecture of PCC and reveals unexpectedly that the {alpha}-subunits are arranged as monomers in the holoenzyme, decorating a central {beta}{sub 6} hexamer. A hitherto unrecognized domain in the {alpha}-subunit, formed by residues between the BC and BCCP domains, is crucial for interactions with the {beta}-subunit. We have named it the BT domain. The structure reveals for the first time the relative positions of the BC and CT active sites in the holoenzyme. They are separated by approximately 55 {angstrom}, indicating that the entire BCCP domain must translocate during catalysis. The BCCP domain is located in the active site of the {beta}-subunit in the current structure, providing insight for its involvement in the CT reaction. The structural information establishes a molecular basis for understanding the large collection of disease-causing mutations in PCC and is relevant for the holoenzymes of other biotin-dependent carboxylases, including 3-methylcrotonyl-CoA carboxylase (MCC) and eukaryotic acetyl-CoA carboxylase (ACC).

  10. Atlas of fine structures of dynamic spectra of solar type IV-dm and some type II radio bursts

    International Nuclear Information System (INIS)

    The author presents an atlas of spectral fine structures of solar radio bursts of types IV and II around 1 m wavelength, as obtained with a multichannel spectrograph at Dwingeloo. The structures form largely a collection of observations of these events during late 1968 through 1974, thus covering almost entirely the declining branch of solar cycle 20. The spectrograph has an extra enhanced contrast output with properties quite different from those of the commonly used swept frequency spectrographs. The corresponding instrumental characteristics and effects are discussed. A classification of fine structures and an analysis of their statistical properties and of those of the pertinent radio events are also given. (Auth.)

  11. Observation of Fine Lung Structure by Ultrahigh-Resolution Optical Coherence Tomography Using 800, 1060, and 1300 nm Supercontinua

    Science.gov (United States)

    Ishida, Shutaro; Nishizawa, Norihiko; Kitatsuji, Masashi; Ohshima, Hiroyoshi; Hasegawa, Yoshinori; Matsushima, Miyoko; Kawabe, Tsutomu

    2012-04-01

    Cross-sectional imaging of isolated rat lungs was demonstrated by ultrahigh-resolution optical coherence tomography using supercontinua at 800, 1060, and 1300 nm wavelengths. The detailed structure of the trachea, including cartilage, mucosa, and annular ligaments, were observed clearly. In the imaging of visceral pleura and alveoli, when phosphate-buffered saline was instilled into the lung, the penetration depth of imaging was improved, and clear images of the fine structure of the lung, including alveoli, were observed owing to the index-matching effect. The wavelength dependence of the light source was discussed for the observation of fine structure and imaging contrast.

  12. Fine structure of inelastic electron scattering cross-section spectra for MN

    Science.gov (United States)

    Parshin, A. S.; Igumenov, A. Yu; Mikhlin, Yu L.; Pchelyakov, O. P.; Zhigalov, V. S.

    2016-04-01

    The comparative analysis of the reflection electron energy loss spectra and the inelastic electron scattering cross-section spectra for Mn was carried out. It is shown that inelastic electron scattering cross-section spectra have certain advantages in the study of the interaction of electrons with the substance as compared to the electron energy loss spectra. The inelastic electron scattering cross section spectra fine structure was analysed by fitting the experimental spectra using the 3 parameters Lorentzian-type formula of Tougaard. This method was used for the quantitative analysis of the contributions of various loss processes in the inelastic electron scattering cross section spectra, determination of the loss peaks energies and origin.

  13. Dust-cloud structures behind a shock wave moving over a deposited layer of fine particles

    Institute of Scientific and Technical Information of China (English)

    WANG Boyi; XIONG Yi; CHEN Qian; A.N. OSIPTSOV

    2005-01-01

    The present paper investigates dispersed-phase flow structures of a dust cloud induced by a normal shock wave moving at a constant speed over a flat surface deposited with fine particles. In the shock-fitted coordinates, the general equations of dusty-gas boundary layer flows are formulated within the framework of a multi-fluid model and parametric numerical studies of the carrier- and dispersedphase flow fields are performed. The problem associated with crossing particle trajectories and the formation of local particle accumulation regions are solved by using the full Lagrangian method for the dispersed phase. The basic features of the near-wall two-phase flow under consideration including the role of Saffman force in the particle entrainment and the development of discontinuities or singularities in the particle density profiles are discussed. The effects associated with account of the non-uniformity of particle size and the finiteness of the particle Knudsen numbers are studied in detail.

  14. Automated fine structure image analysis method for discrimination of diabetic retinopathy stage using conjunctival microvasculature images

    Science.gov (United States)

    Khansari, Maziyar M; O’Neill, William; Penn, Richard; Chau, Felix; Blair, Norman P; Shahidi, Mahnaz

    2016-01-01

    The conjunctiva is a densely vascularized mucus membrane covering the sclera of the eye with a unique advantage of accessibility for direct visualization and non-invasive imaging. The purpose of this study is to apply an automated quantitative method for discrimination of different stages of diabetic retinopathy (DR) using conjunctival microvasculature images. Fine structural analysis of conjunctival microvasculature images was performed by ordinary least square regression and Fisher linear discriminant analysis. Conjunctival images between groups of non-diabetic and diabetic subjects at different stages of DR were discriminated. The automated method’s discriminate rates were higher than those determined by human observers. The method allowed sensitive and rapid discrimination by assessment of conjunctival microvasculature images and can be potentially useful for DR screening and monitoring. PMID:27446692

  15. 3-Space In-Flow Theory of Gravity: Boreholes, Blackholes and the Fine Structure Constant

    Directory of Open Access Journals (Sweden)

    Cahill R. T.

    2006-04-01

    Full Text Available A theory of 3-space explains the phenomenon of gravity as arising from the time-dependence and inhomogeneity of the differential flow of this 3-space. The emergent theory of gravity has two gravitational constants: GN — Newton’s constant, and a dimensionless constant α. Various experiments and astronomical observations have shown that α is the fine structure constant ≈ 1/137. Here we analyse the Greenland Ice Shelf and Nevada Test Site borehole g anomalies, and confirm with increased precision this value of α. This and other successful tests of this theory of gravity, including the supermassive black holes in globular clusters and galaxies, and the “dark-matter” effect in spiral galaxies, shows the validity of this theory of gravity. This success implies that the non-relativistic Newtonian gravity was fundamentally flawed from the beginning, and that this flaw was inherited by the relativistic General Relativity theory of gravity.

  16. Damping Properties vs. Structure Fineness of the High-zinc Aluminum Alloys

    Directory of Open Access Journals (Sweden)

    W.K. Krajewski

    2012-09-01

    Full Text Available The subject of this study is the presentation of relation between the degree of structure fineness and ultrasonic wave dampingcoefficient for the high-zinc aluminium alloys represented in this study by the sand mould cast alloy Al - 20 wt% Zn (AlZn20. Thestudied alloy was refined with a modifying (Al,Zn-Ti3 ternary master alloy, introducing Ti in the amount of 400 pm into metal. Based on the analysis of the initial and modified alloy macrostructure images and ultrasonic testing, it was found that the addition of (Al,Zn-Ti3 master alloy, alongside a significant fragmentation of grains, does not reduce the coefficient of ultrasonic waves with a frequency of 1 MHz.

  17. Representations of U(2∞ and the Value of the Fine Structure Constant

    Directory of Open Access Journals (Sweden)

    William H. Klink

    2005-12-01

    Full Text Available A relativistic quantum mechanics is formulated in which all of the interactions are in the four-momentum operator and Lorentz transformations are kinematic. Interactions are introduced through vertices, which are bilinear in fermion and antifermion creation and annihilation operators, and linear in boson creation and annihilation operators. The fermion-antifermion operators generate a unitary Lie algebra, whose representations are fixed by a first order Casimir operator (corresponding to baryon number or charge. Eigenvectors and eigenvalues of the four-momentum operator are analyzed and exact solutions in the strong coupling limit are sketched. A simple model shows how the fine structure constant might be determined for the QED vertex.

  18. Automatic detection and high resolution fine structure analysis of conic X-ray diffraction lines

    Energy Technology Data Exchange (ETDEWEB)

    Bauch, J.; Henschel, F. [TU Dresden, Institut fuer Werkstoffwissenschaft, 01069 Dresden (Germany); Schulze, M. [TU Dresden, Institut fuer Photogrammetrie und Fernerkundung, 01069 Dresden (Germany)

    2011-05-15

    The presented method demonstrates a first step in the development of a high resolution ''Residual stress microscope'' and facilitates through the implementation of largely automated procedures a fast detection of diffraction lines in the form of conic sections. It has been implemented for, but is not exclusively used for the Kossel technique and the ''X-ray Rotation-Tilt Method'' (XRT). The resulting multifaceted evaluable data base of many X-ray diffraction radiographies can be used not only for the systematic analysis of anomalies in diffraction lines (reflection fine structure), but also for direct calculation and output of precision residual stress tensors. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. Fine structure of the isoscalar giant quadrupole resonance in 28Si and 27Al

    Science.gov (United States)

    Usman, I. T.; Buthelezi, Z.; Carter, J.; Cooper, G. R. J.; Fearick, R. W.; Förtsch, S. V.; Fujita, H.; Fujita, Y.; von Neumann-Cosel, P.; Neveling, R.; Papakonstantinou, P.; Pysmenetska, I.; Richter, A.; Roth, R.; Sideras-Haddad, E.; Smit, F. D.

    2016-08-01

    The isoscalar giant quadrupole resonance in 28Si and 27Al has been investigated with high-energy-resolution proton inelastic scattering at Ep=200 MeV and at scattering angles close to the maximum of Δ L =2 angular distributions with the K600 magnetic spectrometer of iThemba LABS, South Africa. Characteristic scales are extracted from the observed fine structure with a wavelet analysis and compared for 28Si with random-phase approximation and second random phase approximation calculations with an interaction derived from the Argonne V18 potential by a unitary transformation. A recent extension of the method to deformed nuclei provides the best description of the data, suggesting the significance of Landau damping.

  20. The fine structure splitting of the level of lithium in Rydberg states

    Institute of Scientific and Technical Information of China (English)

    胡先权; 胡文江; 孔春阳

    2002-01-01

    The Hamiltonian of the four-body problem for a lithium atom is expanded in series. The level shift and levelformula of a lithium atom in Rydberg states are achieved by means of the calculation of polarization of the atomic core(including the contribution of dipole, quadrupole and octupole components). We also consider the effect of relativitytheory, the orbital angular momentum L and the spin angular momentum S coupling scheme (LS coupling) and high-order correction of the effective potential to the level shift. The fine structure splitting (N=5-12, L=4-9, J=L±l/2)and level intervals in B ydberg states have been calculated by the above-mentioned formula and compared with recentexperimental data.

  1. Fine structure cross sections from reactance matrices - a more versatile development of the program JAJOM

    International Nuclear Information System (INIS)

    Results from calculations with LS-coupled wave functions (reactance matrices and term coupling coefficients) are used to compute collision strengths for transitions between fine structure levels. The imput is carefully checked. The algebraic transformation uses Racah algebra, the coefficients are computed as required. An optional further transformation to allow for intermediate coupling in the target requires term coupling coefficients to be supplied by the user. The collision strength are computed using either of two formulae, corresponding to weak or strong coupling respectively. This version of JAJOM is very flexible. Using the prepocessor included with this deck machine dependent features, array lengths, and mode of operation are all inserted according to the user's requirements. (Auth.)

  2. Study on Fine Structure of Gas Atomized LaNi5-based Alloys

    Institute of Scientific and Technical Information of China (English)

    Hai JING; Hong GUO; Shuguang ZHANG; Zili MA; Shaoming ZHANG

    2003-01-01

    The fine structure of hydrogen storage alloy powders MINi4.3-xCoxMn0.4Al0.3(x=0.75, 0.45, 0.10; MI: La-rich mischmetal) prepared by rapidly solidifying gas atomization was investigated using a Rietveld analysis method. Two setsof CaCu5-type crystal constants were observed in the studied alloys and one set was larger than the other. Withdecreasing powder radius the solidification rate of powder increased, and so did the percentage of a particle partwith larger crystal constants. The reason why there were two sets of crystal constants might be the difference ofsolidification rate between the outside and inside of a particle.

  3. Fine structures in Fe3Al alloy layer of a new hot dip aluminized steel

    Indian Academy of Sciences (India)

    Li Yajiang; Wang Juan; Zhang Yonglan; X Holly

    2002-12-01

    The fine structure in the Fe–Al alloy layer of a new hot dip aluminized steel (HDA) was examined by means of X-ray diffractometry (XRD), electron diffraction technique, etc. The test results indicated that the Fe–Al alloy layer of the new aluminized steel mainly composed of Fe3Al, FeAl and -Fe (Al) solid solution. There was no brittle phase containing higher aluminum content, such as FeAl3 (59.18% Al) and Fe2Al7 (62.93% Al). The tiny cracks and embrittlement, formerly caused by these brittle phases in the conventional aluminum-coated steel, were effectively eliminated. There was no microscopic defect (such as tiny cracks, pores or loose layer) in the coating. This is favourable to resist high temperature oxidation and corrosion of the aluminized steel.

  4. Possible evidence for a variable fine-structure constant from QSO absorption lines: systematic errors

    Science.gov (United States)

    Murphy, M. T.; Webb, J. K.; Flambaum, V. V.; Churchill, C. W.; Prochaska, J. X.

    2001-11-01

    Comparison of quasar (QSO) absorption spectra with laboratory spectra allows us to probe possible variations in the fundamental constants over cosmological time-scales. In a companion paper we present an analysis of Keck/HIRES spectra and report possible evidence suggesting that the fine-structure constant, α, may have been smaller in the past: [formmu2]Δα/α=(-0.72+/-0.18)×10-5 over the redshift range [formmu3]0.5

  5. New determination of the fine structure constant and test of the quantum electrodynamics.

    Science.gov (United States)

    Bouchendira, Rym; Cladé, Pierre; Guellati-Khélifa, Saïda; Nez, François; Biraben, François

    2011-02-25

    We report a new measurement of the ratio h/m(Rb) between the Planck constant and the mass of (87)Rb atom. A new value of the fine structure constant is deduced, α(-1)=137.035999037(91) with a relative uncertainty of 6.6×10(-10). Using this determination, we obtain a theoretical value of the electron anomaly a(e)=0.00115965218113(84), which is in agreement with the experimental measurement of Gabrielse [a(e)=0.00115965218073(28)]. The comparison of these values provides the most stringent test of the QED. Moreover, the precision is large enough to verify for the first time the muonic and hadronic contributions to this anomaly.

  6. Engineering quantum dots for electrical control of the fine structure splitting

    Science.gov (United States)

    Pooley, M. A.; Bennett, A. J.; Farrer, I.; Ritchie, D. A.; Shields, A. J.

    2013-07-01

    We have studied the variation in fine-structure splitting (FSS) under application of vertical electric field in a range of quantum dots grown by different methods. In each sample, we confirm that this energy splitting changes linearly over the field range we can access. We conclude that this linear tuning is a general feature of self-assembled quantum dots, observed under different growth conditions, emission wavelengths, and in different material systems. Statistical measurements of characteristic parameters such as emission energy, Stark shift, and FSS tuning are presented which may provide a guide for future attempts to increase the yield of quantum dots that can be tuned to a minimal value of FSS with vertical electric field.

  7. Mechanical Behavior of Agave Americana L. Fibres: Correlation Between Fine Structure and Mechanical Properties

    Science.gov (United States)

    Msahli, S.; Chaabouni, Y.; Sakli, F.; Drean, J. Y.

    In this study, results of a mechanical behavior study of fibres extracted from the agave Americana L. plant, the most abundant variety in Tunisia, are presented. These results deal with the principal and mechanical characteristics of these fibres which are the elongation at break, the elasticity modulus and the rupture facture. These results permitted to situate these fibres, compared to the other textile fibres, as materials that can be used in technical applications such as reinforcing composites or geotextile. In order to understand the mechanical properties of these fibres, a correlation study between the properties already cited and the fine structure was done. The obtained results showed that the mechanical properties of agave Americana L. fibres are closely related to the individual fibers deformations and to the natural matrix (lignin and gums) that links these elementary fibres.

  8. Measurement of isotope shifts, fine and hyperfine structure splittings of the lithium D lines

    International Nuclear Information System (INIS)

    The lithium D lines were studied using a diode laser that was frequency modulated by an electro-optic modulator, to excite an atomic beam. The transmission of part of the laser beam through an etalon was monitored to correct for the nonlinearity of the laser scan. The results for the 6,7Li 2S1/2 and 2P1/2 hyperfine splittings agree very well with the best existing data while those for the D1 isotope shift and 6,7Li fine structure splittings disagree significantly from data obtained by a previous laser atomic beam experiment. Our result for the D1 isotope shift is very close to the latest value computed using Hylleraas variational theory. (authors)

  9. Extended x-ray absorption fine structure investigation of annealed carbon expanded austenite

    DEFF Research Database (Denmark)

    Oddershede, Jette; Christiansen, Thomas L.; Somers, Marcel A. J.;

    2012-01-01

    Carbon expanded austenite synthesized through carburizing of austenitic stainless steel powder at 380°C was annealed at 470°C and investigated with extended X-ray absorption fine structure (EXAFS) and synchrotron powder diffraction (SPD). SPD showed that the samples consisted of carbon expanded......-carburized in a temperature regime around 470°C. The surface zone is converted into carbon expanded austenite; the high interstitial content of carbon dissolved in the surface results in highly favorable materials properties. In the present article the local atomic environment of (annealed) carbon expanded austenite...... was investigated with EXAFS. Copyright © 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim....

  10. Variation of the fine-structure constant from the de Sitter invariant special relativity

    Science.gov (United States)

    Chen, Shao-Xia; Xiao, Neng-Chao; Yan, Mu-Lin

    2008-08-01

    We discuss the variation of the fine-structure constant, α. There are obvious discrepancies among the results of α-variation from recent Quasi-stellar observation experiments and from the Oklo uranium mine analysis. We use dS Sitter invariant Special Relativity (Script SScript Rc,R) and Dirac large number hypothesis to discuss this puzzle, and present a possible solution to the disagreement. By means of the observational data and the discussions presented in this paper, we estimate the radius of the Universe in Script SScript Rc,R which is about ~2√5×1011l.y. Supported by National Natural Science Foundation of China (90403021) and PhD Program Funds of Education Ministry of China (20020358040)

  11. Single shot near edge x-ray absorption fine structure spectroscopy in the laboratory

    Science.gov (United States)

    Mantouvalou, I.; Witte, K.; Martyanov, W.; Jonas, A.; Grötzsch, D.; Streeck, C.; Löchel, H.; Rudolph, I.; Erko, A.; Stiel, H.; Kanngießer, B.

    2016-05-01

    With the help of adapted off-axis reflection zone plates, near edge X-ray absorption fine structure spectra at the C and N K-absorption edge have been recorded using a single 1.2 ns long soft X-ray pulse. The transmission experiments were performed with a laser-produced plasma source in the laboratory rendering time resolved measurements feasible independent on large scale facilities. A resolving power of E/ΔE ˜ 950 at the respective edges could be demonstrated. A comparison of single shot spectra with those collected with longer measuring time proves that all features of the used reference samples (silicon nitrate and polyimide) can be resolved in 1.2 ns. Hence, investigations of radiation sensitive biological specimen become possible due to the high efficiency of the optical elements enabling low dose experiments.

  12. The Young Modulus of Black Strings and the Fine Structure of Blackfolds

    CERN Document Server

    Armas, Jay; Harmark, Troels; Obers, Niels A

    2011-01-01

    We explore corrections in the blackfold approach, which is a worldvolume theory capturing the dynamics of thin black branes. The corrections probe the fine structure of the branes, going beyond the approximation in which they are infinitely thin, and account for the dipole moment of worldvolume stress-energy as well as the internal spin degrees of freedom. We show that the dipole correction is induced elastically by bending a black brane. We argue that the long-wavelength transport coefficient capturing this response is a relativistic generalization of the Young modulus of elastic materials and we compute it analytically. Using this we draw predictions for black rings in dimensions greater than six. Furthermore, we employ our corrected blackfold equations to various multi-spinning black hole configurations in the blackfold limit, finding perfect agreement with known analytic solutions.

  13. Constraints on a possible variation of the fine structure constant from galaxy cluster data

    Science.gov (United States)

    Holanda, R. F. L.; Landau, S. J.; Alcaniz, J. S.; Sánchez G., I. E.; Busti, V. C.

    2016-05-01

    We propose a new method to probe a possible time evolution of the fine structure constant α from X-ray and Sunyaev-Zel'dovich measurements of the gas mass fraction (fgas) in galaxy clusters. Taking into account a direct relation between variations of α and violations of the distance-duality relation, we discuss constraints on α for a class of dilaton runaway models. Although not yet competitive with bounds from high-z quasar absorption systems, our constraints, considering a sample of 29 measurements of fgas, in the redshift interval 0.14 intermediate redshifts. Furthermore, current and planned surveys will provide a larger amount of data and thus allow to improve the limits on α variation obtained in the present analysis.

  14. Near-Edge X-ray Absorption Fine Structure Spectroscopy of Diamondoid Thiol Monolayers on Gold

    Energy Technology Data Exchange (ETDEWEB)

    Willey, T M; Fabbri, J; Lee, J I; Schreiner, P; Fokin, A A; Tkachenko, B A; Fokina, N A; Dahl, J; Carlson, B; Vance, A L; Yang, W; Terminello, L J; van Buuren, T; Melosh, N

    2007-11-27

    Diamondoids, hydrocarbon molecules with cubic-diamond-cage structures, have unique properties with potential value for nanotechnology. The availability and ability to selectively functionalize this special class of nanodiamond materials opens new possibilities for surface-modification, for high-efficiency field emitters in molecular electronics, as seed crystals for diamond growth, or as robust mechanical coatings. The properties of self-assembled monolayers (SAMs) of diamondoids are thus of fundamental interest for a variety of emerging applications. This paper presents the effects of thiol substitution position and polymantane order on diamondoid SAMs on gold using near-edge X-ray absorption fine structure spectroscopy (NEXAFS) and X-ray photoelectron spectroscopy (XPS). A framework to determine both molecular tilt and twist through NEXAFS is presented and reveals highly ordered diamondoid SAMs, with the molecular orientation controlled by the thiol location. C 1s and S 2p binding energies are lower in adamantane thiol than alkane thiols on gold by 0.67 {+-} 0.05 eV and 0.16 {+-} 0.04 eV respectively. These binding energies vary with diamondoid monolayer structure and thiol substitution position, consistent with different amounts of steric strain and electronic interaction with the substrate. This work demonstrates control over the assembly, in particular the orientational and electronic structure, providing a flexible design of surface properties with this exciting new class of diamond clusters.

  15. Properties and Modeling of Unresolved Fine Structure Loops Observed by IRIS

    CERN Document Server

    Brooks, David H; Warren, Harry P

    2016-01-01

    Recent observations from the Interface Region Imaging Spectrograph (IRIS) have discovered a new class of numerous low-lying dynamic loop structures, and it has been argued that they are the long-postulated unresolved fine structures (UFS) that dominate the emission of the solar transition region. In this letter, we combine IRIS measurements of the properties of a sample of 108 UFS (intensities, lengths, widths, lifetimes) with 1-D non-equilibrium ionization simulations using the HYDRAD hydrodynamic model to examine whether the UFS are now truly spatially resolved in the sense of being individual structures rather than composed of multiple magnetic threads. We find that a simulation of an impulsively heated single strand can reproduce most of the observed properties suggesting that the UFS may be resolved, and the distribution of UFS widths implies that they are structured on a spatial scale of 133km on average. Spatial scales of a few hundred km appear to be typical for a range of chromospheric and coronal st...

  16. Fine-structure energy levels, radiative rates and lifetimes in Si-like nickel

    International Nuclear Information System (INIS)

    Large scale CIV3 calculations of excitation energies from ground state as well as of oscillator strengths and radiative decay rates for all electric-dipole-allowed and intercombination transitions among the fine-structure levels of the terms belonging to the (1s22s22p6)3s23p2, 3s3p3, 3p4, 3s23p3d, 3s23p4s, 3s23p4p, 3s23p4d and 3s23p4f configurations of Ni XV, are performed using very extensive configuration-interaction wave functions. The relativistic effects in intermediate coupling are incorporated by means of the Breit-Pauli Hamiltonian. In order to keep our calculated energy splittings as close as possible to the National Institute of Standard and Technology (NIST) values, we have made small adjustments to the diagonal elements of the Hamiltonian matrices. Our calculated excitation energies, including their ordering, are in excellent agreement with the available NIST results. From our radiative decay rates we have also calculated radiative lifetimes of the fine-structure levels. It is noted that our calculated radiative rates show significant disagreement (23-30%) with those calculated by Ishikawa and Vilkas (2002 Phys. Scr. 65 219) for the transitions involving the 3s3p3(5S2) level. For this high spin level 3s3p3(5S2) our calculated lifetime is found to be in excellent agreement with the experimental value of Träbert et al (1989 Z. Phys. D 11 207). In this calculation, we also predict many additional new and accurate data for various optically allowed and intercombination transitions to complete the void in the existing data. (paper)

  17. Spectral fine structure of the atomic ground states based on full relativistic theory

    Institute of Scientific and Technical Information of China (English)

    Zhenghe Zhu; Yongjian Tang

    2011-01-01

    @@ We focus on the full relativistic quantum mechanical calculations from boron to fluorine atoms with electronic configuration of 1s22s22pn (n = 1, 2, 3, 4, and 5), where 1s22s2 is the closed shell and 2pn is the open shell. Their active electrons in the open shell occupy all the six spinors as far as possible.Therefore, we suggest a new rule called "maximum probability" for the full symmetry group relativistic theory. Furthermore, the spectral fine structure of the atomic ground states based on the full relativistic theory and their intervals of L-S splitting are all reasonable. It is impossible to calculate the L-S splitting through non-relativistic quantum mechanics. The relativistic effect of atomic mass is increased significantly by about 12 folds from boron atom to fluorine atom.%We focus on the full relativistic quantum mechanical calculations from boron to fluorine atoms with electronic configuration of 1s22s22pn (n = 1, 2, 3, 4, and 5), where 1s22s2 is the closed shell and 2pn is the open shell. Their active electrons in the open shell occupy all the six spinors as far as possible.Therefore, we suggest a new rule called "maximum probability" for the full symmetry group relativistic theory. Furthermore, the spectral fine structure of the atomic ground states based on the full relativistic theory and their intervals of L-S splitting are all reasonable. It is impossible to calculate the L-S splitting through non-relativistic quantum mechanics. The relativistic effect of atomic mass is increased significantly by about 12 folds from boron atom to fluorine atom.

  18. A study of fine structure of diffuse aurora with ALIS-FAST measurements

    Directory of Open Access Journals (Sweden)

    T. Sergienko

    2008-10-01

    Full Text Available We present results of an investigation of the fine structure of the night sector diffuse auroral zone, observed simultaneously with optical instruments (ALIS from the ground and the FAST electron spectrometer from space 16 February 1997. Both the optical and particle data show that the diffuse auroral zone consisted of two regions. The equatorward part of the diffuse aurora was occupied by a pattern of regular, parallel auroral stripes. The auroral stripes were significantly brighter than the background luminosity, had widths of approximately 5 km and moved southward with a velocity of about 100 m/s. The second region, located between the region with auroral stripes and the discrete auroral arcs to the north, was filled with weak and almost homogeneous luminosity, against which short-lived auroral rays and small patches appeared chaotically. From analysis of the electron differential fluxes corresponding to the different regions of the diffuse aurora and based on existing theories of the scattering process we conclude the following: Strong pitch angle diffusion by electron cyclotron harmonic waves (ECH of plasma sheet electrons in the energy range from a few hundred eV to 3–4 keV was responsible for the electron precipitation, that produced the background luminosity within the whole diffuse zone. The fine structure, represented by the auroral stripes, was created by precipitation of electrons above 3–4 keV as a result of pitch angle diffusion into the loss cone by whistler mode waves. A so called "internal gravity wave" (Safargaleev and Maltsev, 1986 may explain the formation of the regular spatial pattern formed by the auroral stripes in the equatorward part of the diffuse auroral zone.

  19. [Histochemical findings of and fine structural changes in motor endplates in diseases with neuromuscular transmission abnormalities].

    Science.gov (United States)

    Yoshimura, Toshiro; Motomura, Masakatsu; Tsujihata, Mitsuhiro

    2011-07-01

    We herein review the histochemical findings and fine structural changes of motor endplates associated with diseases causing neuromuscular transmission abnormalities. In anti-acetylcholine receptor (AChR) antibody-positive myasthenia gravis (MG), type 2 fiber atrophy is observed, and the motor endplates show a reduction in the nerve terminal area, simplification of the postsynaptic membrane, decreased number of acetylcholine receptors, and deposition of immune complexes. In anti-MuSK antibody-positive MG, the fine structure shows a decrease in the postsynaptic membrane length, but the secondary synaptic cleft is preserved. There is no decrease in the number of AChRs, and there are no deposits of immune complexes at the motor endplates. Patients with Lambert-Eaton myasthenic syndrome show type 2 fiber atrophy, their motor endplates show a decrease in both the mean postsynaptic area and postsynaptic membrane length in the brachial biceps muscle. Congenital myasthenic syndrome with episodic apnea is characterized only by small-sized synaptic vesicles; the postsynaptic area is preserved. In subjects with congenital myasthenic syndrome with acetylcholinesterase deficiency, quantitative electron microscopy reveals a significant decrease in the nerve terminal size and presynaptic membrane length; further, the Schwann cell processes extend into the primary synaptic cleft, and partially or completely occlude the presynaptic membrane. The postsynaptic folds are degenerated, and associated with pinocytotic vesicles and labyrinthine membranous networks. Patients with slow-channel congenital myasthenia syndrome show type 1 fiber predominance, and their junctional folds are typically degenerated with widened synaptic space and loss of AChRs. Patients with AChR deficiency syndrome caused by recessive mutations in AChR subunits also show type 1 fiber predominance, and while most junctional folds are normal, some are simplified and have smaller than normal endplates. Rapsin and Mu

  20. Cultural transmission of tool use combined with habitat specializations leads to fine-scale genetic structure in bottlenose dolphins

    NARCIS (Netherlands)

    Kopps, Anna M.; Ackermann, Corinne Y.; Sherwin, William B.; Allen, Simon J.; Bejder, Lars; Kruetzen, Michael

    2014-01-01

    Socially learned behaviours leading to genetic population structure have rarely been described outside humans. Here, we provide evidence of fine-scale genetic structure that has probably arisen based on socially transmitted behaviours in bottlenose dolphins (Tursiops sp.) in western Shark Bay, Weste

  1. Alpha-synuclein gene structure,evolution,and protein aggregation

    Institute of Scientific and Technical Information of China (English)

    Lili Xiong; Peng Zhao; Zhiyun Guo; Jianhua Zhang; Diqiang Li; Canquan Mao

    2010-01-01

    α-synuclein,a member of the synuclein family,is predominately expressed in brain tissues,where it is the major component of Lewy bodies,the major hallmark of Parkinson's disease.We analyzed the phylogenetics,gene structure,and effects of different forms of α-synuclein on in vitro protein aggregation.The synuclein phylogenetic tree showed that sequences could be classified into α,β,and γ protein groups.The orthologous gene α-,β-and γ-synuclein showed similar evolutionary distance to the paralogous gene α-,β-and γ-synuclein.Bioinformatics analysis suggests that the amino-acid sequence of human α-synuclein can be divided into three regions: N-terminal amphipathic region(1-60),central hydrophobic non-amyloid beta component segment(61-95),and the C-terminal acidic part(96-140).The mutant site of A30P is at the second exon of α-synuclein,whereas E46K is located at the third exon of α-synuclein.α-synuclein alternative splicing results in four isomers,and five exons,all of which participate in protein coding,comprising 140 amino acids to produce the major α-synuclein in vivo.The threeα-synuclein isoforms are products of alternative splicing,α-synuclein 126,112 and 98.We also review the genetic and cellular factors that affect the aggregation of α-synuclein and compounds that inhibit aggregation.A better understanding of α-synuclein sequences,structure,and function may allow better targeted therapy and diagnosis of α-synuclein in Parkinson's disease and other neurodegenerative diseases.

  2. Can a many-nucleon structure be visible in bremsstrahlung emission during $\\alpha$ decay?

    CERN Document Server

    Maydanyuk, Sergei P; Zou, Li-Ping

    2015-01-01

    We analyze if the nucleon structure of the $\\alpha$ decaying nucleus can be visible in the experimental bremsstrahlung spectra of the emitted photons which accompany such a decay. We develop a new formalism of the bremsstrahlung model taking into account distribution of nucleons in the $\\alpha$ decaying nuclear system. We conclude the following: (1) After inclusion of the nucleon structure into the model the calculated bremsstrahlung spectrum is changed very slowly for a majority of the $\\alpha$ decaying nuclei. However, we have observed that visible changes really exist for the $^{106}{\\rm Te}$ nucleus ($Q_{\\alpha}=4.29$ MeV, $T_{1/2}$=70 mks) even for the energy of the emitted photons up to 1 MeV. This nucleus is a good candidate for future experimental study of this task. (2) Inclusion of the nucleon structure into the model increases the bremsstrahlung probability of the emitted photons. (3) We find the following tendencies for obtaining the nuclei, which have bremsstrahlung spectra more sensitive to the ...

  3. Deformation mechanisms leading to auxetic behaviour in the {alpha}-cristobalite and {alpha}-quartz structures of both silica and germania

    Energy Technology Data Exchange (ETDEWEB)

    Alderson, A [Centre for Materials Research and Innovation, University of Bolton, Deane Road, Bolton BL3 5AB (United Kingdom); Evans, K E [Advanced Technologies Research Institute, School of Engineering, Computing and Mathematics, University of Exeter, North Park Road, Exeter EX4 4QF (United Kingdom)], E-mail: A.Alderson@bolton.ac.uk

    2009-01-14

    Analytical expressions have been developed in which the elastic behaviour of the {alpha}-quartz and {alpha}-cristobalite molecular tetrahedral frameworks of both silica and germania are modelled by rotation, or dilation or concurrent rotation and dilation of the tetrahedra. Rotation and dilation of the tetrahedra both produce negative Poisson's ratios (auxetic behaviour), whereas both positive and negative values are possible when these mechanisms act concurrently. Concurrent rotation and dilation of the tetrahedra reproduces with remarkable accuracy both the positive and negative {nu}{sub 31} Poisson's ratios observed for silica {alpha}-quartz and {alpha}-cristobalite, respectively, when loaded in the x{sub 3} direction. A parametric fit of the concurrent model to the germania {alpha}-quartz experimental {nu}{sub 31} Poisson's ratio is used to predict {nu}{sub 31} for germania {alpha}-cristobalite, for which no experimental value exists. This is predicted to be +0.007. Strain-dependent {nu}{sub 31} trends, due to concurrent rotation and dilation in the silica structures, are in broad agreement with those predicted from pair-potential calculations, although significant differences do occur in the absolute values. With the model of concurrent dilation and rotation of the tetrahedra we predict that an alternative uniaxial stress ({sigma}{sub 3})-induced phase exists for both silica, {alpha}-quartz and {alpha}-cristobalite, and germania, {alpha}-cristobalite, having geometries in reasonable agreement with {beta}-quartz and idealized {beta}-cristobalite, respectively.

  4. Structures and properties of Fe-C fine particles prepared by AC arc discharge

    Science.gov (United States)

    Li, Jian; Liu, Cunye; Zhao, Baogang; Lin, Yaoqiang; Deng, Zhaojing

    1999-05-01

    Fe-C fine particles are produced by an alternating arc discharge between iron and carbon electrodes in an Ar gas atmosphere at pressures of 8, 14 and 18 kPa. The crystal structure, morphology and surface composition have been studied, respectively, by X-ray diffraction, transmission electron microscopy, selected area electron diffraction and X-ray photoelectron spectroscopy. Magnetic properties and Curie temperatures have also been determined by a vibrating sample magnetometer. Results show that the particles are of two different crystal structures, one is hexagonal FeC and the other is cubic iron. The iron particles have a multi-layered structure composed of an α-Fe core wrapped by Fe 3O 4, FeO and FeO(OH) shells. It is found that the compositions and the specific saturation magnetization of the Fe-C particles prepared in different pressures of Ar gas are not the same, but their Curie temperatures are all 580±5°C.

  5. Active region fine structure observed at 0.08 arcsec resolution

    CERN Document Server

    Schlichenmaier, R; Hoch, S; Soltau, D; Berkefeld, T; Schmidt, D; Schmidt, W; Denker, C; Balthasar, H; Hofmann, A; Strassmeier, K G; Staude, J; Feller, A; Lagg, A; Solanki, S K; Collados, M; Sigwarth, M; Volkmer, R; Waldmann, T; Kneer, F; Nicklas, H; Sobotka, M

    2016-01-01

    The various mechanisms of magneto-convective energy transport determines the structure of sunspots and active regions. We characterise the appearance of light bridges and other fine structure details and elaborate on their magneto-convective nature. We present speckle-reconstructed images taken with the broad band imager at the 1.5 m GREGOR telescope in the 486nm and 589nm bands. We estimate the spatial resolution from the noise characteristics of the image bursts and obtain 0.08" at 589nm. We describe structure details in individual best images as well as the temporal evolution of selected features. We find branched dark lanes extending along thin (~1") light bridges in sunspots at various heliocentric angles. In thick (~2") light bridges the branches are disconnected from the central lane and have a `Y' shape with a bright grain toward the umbra. The images reveal that light bridges exist on varying intensity levels and that their small-scale features evolve on time scales of minutes. Faint light bridges sh...

  6. Fine fragmentation distribution from structural reactive material casings under explosive loading

    Science.gov (United States)

    Wilson, William; Zhang, Fan; Kim, Kibong

    2015-06-01

    Structural reactive material (SRM) can be used for explosive casings to provide additional blast energy. SRM fragments can react either promptly or after impact with nearby structure. Better understanding of fine fragment distributions from SRM casings is important for optimization of initiation and reaction of the SRM fragments. Key to this is knowledge of the initial fragmentation character before it has been altered by early reaction or by subsequent impact with surrounding structure. The study must be conducted beyond critical charge diameter to minimize effects of the expansion wave on fragment sizes. The collection and analysis of fragment distribution down to 40 micron size from thick SRM casings are therefore investigated in a 1.18 m diameter, 2.1 m3 closed cylindrical chamber filled with artificially-made pure snow packed to density 0.35 g/cm3. The snow quenches early reaction of SRM fragments and soft-catches the fragments before impact with the chamber walls. A 100 g cylindrical C-4 explosive charge is used, packed in a 3.3 cm inner diameter SRM casing, with length-to-diameter ratio of L/d = 2, and casing-to-explosive mass ratio of M/C = 1.75. Three types of SRM are investigated, including a baseline of Aluminum 6061 for comparison. The cased charge is suspended in an argon filled cavity, 20 cm in diameter and 40 cm long, within the snow filed chamber.

  7. Fine structure and functional comments of mouthparts in Platypus cylindrus (Col., Curculionidae: Platypodinae).

    Science.gov (United States)

    Belhoucine, Latifa; Bouhraoua, Rachid T; Prats, Eva; Pulade-Villar, Juli

    2013-02-01

    Oak pinhole borer, Platypus cylindrus is seen in recent years as one of the biggest enemies directly involved in the observed decline of cork oak in Mediterranean forests with all the economic implications. As an ambrosia beetle, it has developed its effective drilling mouthpart enough to make tunnels in hardwood of the tree. The fine structural aspects of the mouthpart using the field emission scanning electron microscopy are analyzed about 23 adults collected in galleries of infested cork oak trees (Quercus suber) in a littoral forest of northwest Algeria. These adults are preserved in alcohol 70%, cleaned and coated with gold. The mouthparts of this beetle consist commonly of a labrum, a pair of mandibles, a pair of maxillae and the labium but with adapted structure to excavate galleries in the hardwood. In this role is also involved the first pair of legs. The function that present the different structures related to the construction of the tunnels is discussed. Both of maxillary and labial palpi direct the food to the mouth and hold it while the mandibles chew the food. The distal ends of these palpi are flattened and have shovel-like setae. Females have larger maxillary palpi than males and this is related to the particular biology of each sex.

  8. Fine structure of the isoscalar giant quadrupole resonance from high-resolution inelastic proton scattering experiments

    International Nuclear Information System (INIS)

    In the present work the phenomenon of fine structure in the region of the isoscalar giant quadrupole resonance in a number of heavy and medium-heavy nuclei is systematically investigated for the first time. High energy-resolution inelastic proton scattering experiments were carried out in September-October 2001 and in October 2003 at the iThemba LABS cyclotron facility in South Africa with an incident proton energy of 200 MeV. The obtained data with the energy resolution of triangle E58Ni,89Y,90Zr,120Sn,142Nd,166Er,208Pb), thereby establishing the global character of this phenomenon. Fine structure can be described using characteristic energy scales, appearing as a result of the decay of collective modes towards the compound nucleus through a hierarchy of couplings to complex degrees of freedom. For the extraction of the characteristic energy scales from the spectra an entropy index method and a novel technique based on the wavelet analysis are utilized. The global analysis of available data shows the presence of three groups of scales, according to their values. To the first group belong the scales with the values around and below 100 keV, which were detected in all the nuclei studied. The second group contains intermediate scales in the range of 100 keV to 1 MeV. These scales show large variations depending on the nuclear structure of the nucleus. The largest scales above 1 MeV are classified to the third group, describing the global structure of the resonance (the width). The interpretation of the observed scales is realized via the comparison with microscopic model calculations including the coupling of the initial one-particle-one-hole excitations to more complex configurations. A qualitative agreement of the experimentally observed scales with those obtained from the theoretical predictions supports the suggestion of the origin of fine structure from the coupling to the two-particle-two-hole states. However, quantitatively, large deviations are observed for

  9. Observation of the fine structure for rovibronic spectral lines in visible part of emission spectra of $D_2$

    CERN Document Server

    Lavrov, B P; Zhukov, A S

    2011-01-01

    For the first time the fine structure of rovibronic spectral lines in visible part of emission spectra of $D_2$ molecule has been observed. Observed splitting in visible doublets is about 0.2 cm$^{-1}$ in good accordance with previous observations in the infrared part of the spectrum ($a^3\\Sigma_g^+ \\to c^3\\Pi_u$ electronic transition) by means of FTIR and laser spectroscopy. Relative intensities of the fine structure components are in agreement with our calculations of adiabatic line strengths for Hund's case "b" coupling scheme.

  10. Cluster model calculation of N near K-edge energy-loss fine structures in hexagonal GaN crystal

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A cluster model is used to calculate electron energy-loss fine structures in crystal. The multiple-scattering self-consistent-field method is employed in the calculation. Our theoretical results of N near K-edge energy loss fine structures in hexagonal GaN crystal are in good agreement with the experimental spectra. Future possible experiments in energy-filtered transmission electron microscopy (EFTEM) are discussed and proposed because our theoretical work can provide clear assignments for transmitted electrons with different energy losses.

  11. Unresolved fine-scale structure in solar coronal loop-tops

    Energy Technology Data Exchange (ETDEWEB)

    Scullion, E.; Van der Voort, L. Rouppe; Wedemeyer, S. [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029, Blindern, NO-0315 Oslo (Norway); Antolin, P., E-mail: scullie@tcd.ie [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2014-12-10

    New and advanced space-based observing facilities continue to lower the resolution limit and detect solar coronal loops in greater detail. We continue to discover even finer substructures within coronal loop cross-sections, in order to understand the nature of the solar corona. Here, we push this lower limit further to search for the finest coronal loop substructures, through taking advantage of the resolving power of the Swedish 1 m Solar Telescope/CRisp Imaging Spectro-Polarimeter (CRISP), together with co-observations from the Solar Dynamics Observatory/Atmospheric Image Assembly (AIA). High-resolution imaging of the chromospheric Hα 656.28 nm spectral line core and wings can, under certain circumstances, allow one to deduce the topology of the local magnetic environment of the solar atmosphere where its observed. Here, we study post-flare coronal loops, which become filled with evaporated chromosphere that rapidly condenses into chromospheric clumps of plasma (detectable in Hα) known as a coronal rain, to investigate their fine-scale structure. We identify, through analysis of three data sets, large-scale catastrophic cooling in coronal loop-tops and the existence of multi-thermal, multi-stranded substructures. Many cool strands even extend fully intact from loop-top to footpoint. We discover that coronal loop fine-scale strands can appear bunched with as many as eight parallel strands within an AIA coronal loop cross-section. The strand number density versus cross-sectional width distribution, as detected by CRISP within AIA-defined coronal loops, most likely peaks at well below 100 km, and currently, 69% of the substructure strands are statistically unresolved in AIA coronal loops.

  12. Regulation of the demographic structure in isomorphic biphasic life cycles at the spatial fine scale.

    Directory of Open Access Journals (Sweden)

    Vasco Manuel Nobre de Carvalho da Silva Vieira

    Full Text Available Isomorphic biphasic algal life cycles often occur in the environment at ploidy abundance ratios (Haploid:Diploid different from 1. Its spatial variability occurs within populations related to intertidal height and hydrodynamic stress, possibly reflecting the niche partitioning driven by their diverging adaptation to the environment argued necessary for their prevalence (evolutionary stability. Demographic models based in matrix algebra were developed to investigate which vital rates may efficiently generate an H:D variability at a fine spatial resolution. It was also taken into account time variation and type of life strategy. Ploidy dissimilarities in fecundity rates set an H:D spatial structure miss-fitting the ploidy fitness ratio. The same happened with ploidy dissimilarities in ramet growth whenever reproductive output dominated the population demography. Only through ploidy dissimilarities in looping rates (stasis, breakage and clonal growth did the life cycle respond to a spatially heterogeneous environment efficiently creating a niche partition. Marginal locations were more sensitive than central locations. Related results have been obtained experimentally and numerically for widely different life cycles from the plant and animal kingdoms. Spore dispersal smoothed the effects of ploidy dissimilarities in fertility and enhanced the effects of ploidy dissimilarities looping rates. Ploidy dissimilarities in spore dispersal could also create the necessary niche partition, both over the space and time dimensions, even in spatial homogeneous environments and without the need for conditional differentiation of the ramets. Fine scale spatial variability may be the key for the prevalence of isomorphic biphasic life cycles, which has been neglected so far.

  13. Determining Orientational Structure of Diamondoid Thiols Attached to Silver Using Near Edge X-ray Absorption Fine Structure Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Willey, T M; Lee, J I; Fabbri, J D; Wang, D; Nielsen, M; Randel, J C; Schreiner, P R; Fokin, A A; Tkachenko, B A; Fokina, N A; Dahl, J P; Carlson, R K; Terminello, L J; Melosh, N A; van Buuren, T

    2008-10-07

    Near-edge x-ray absorption fine structure spectroscopy (NEXAFS) is a powerful tool for determination of molecular orientation in self-assembled monolayers and other surface-attached molecules. A general framework for using NEXAFS to simultaneously determine molecular tilt and twist of rigid molecules attached to surfaces is presented. This framework is applied to self-assembled monolayers of higher diamondoid, hydrocarbon molecules with cubic-diamond-cage structures. Diamondoid monolayers chemisorbed on metal substrates are known to exhibit interesting electronic and surface properties. This work compares molecular orientation in monolayers prepared on silver substrates using two different thiol positional isomers of [121]tetramantane, and thiols derived from two different pentamantane structural isomers, [1212]pentamantane and [1(2,3)4]pentamantane. The observed differences in monolayer structure demonstrate the utility and limitations of NEXAFS spectroscopy and the framework. The results also demonstrate the ability to control diamondoid assembly, in particular the molecular orientational structure, providing a flexible platform for the modification of surface properties with this exciting new class of nanodiamond materials.

  14. Metapopulation structure and fine-scaled genetic structuring in crop-wild hybrid weed beets

    OpenAIRE

    Arnaud, J-F; Cuguen, J.; Fénart, S

    2011-01-01

    This study explores the microspatial and temporal genetic variation in crop-wild hybrid weed beets that emerged from the seed bank in a cultivated field surveyed over two successive years. We demonstrate the occurrence of demes highly genetically differentiated, kin-structured, characterized by moderate effective population sizes, differing in propensity for selfing, and arising from nonrandom genetic subsets of the seed bank. Only one deme identified in the first survey year significantly co...

  15. Rotational and Fine Structure of Pseudo-Jahn Molecules with C_1 Symmetry

    Science.gov (United States)

    Liu, Jinjun

    2016-06-01

    It has been found in our previous works that rotational and fine-structure analysis of spectra involving nearly degenerate electronic states may aid in interpretation and analysis of the vibronic structure, specifically in the case of pseudo-Jahn-Teller (pJT) molecules with C_s symmetry. The spectral analysis of pJT derivatives (isopropoxy and cyclohexoxy of a prototypical JT molecule (the methoxy radical) allowed for quantitative determination of various contributions to the energy separation between the nearly degenerate electronic states, including the relativistic spin-orbit (SO) effect, the electrostatic interaction, and their zero-point energy difference. These states are coupled by SO and Coriolis interactions, which can also be determined accurately in rotational and fine structure analysis. Most recently, the spectroscopic model for rotational analysis of pJT molecules has been extended for analysis of molecules with C_1 symmetry, i.e., no symmetry. This model includes the six independently determinable components of the spin-rotation (SR) tensor and the three components of the SO and Coriolis interactions. It has been employed to simulate and fit high-resolution laser-induced fluorescence (LIF) spectra of jet-cooled alkoxy radicals with C_1 symmetry, including the 2-hexoxy and the 2-pentoxy radicals, as well as previously recorded LIF spectrum of the trans-conformer (defined by its OCCC dihedral angle) of the 2-butoxy radical. Although the LIF spectra can be reproduced by using either the SR constants or SO and Coriolis constants, the latter simulation offers results that are physically more meaningful whereas the SR constants have to be regarded as effective constants. Furthermore, we will review the SO and Coriolis constants of alkoxy radicals that have been investigated, starting from the well-studied methoxy radical (CH_3O). J. Liu, D. Melnik, and T. A. Miller, J. Chem. Phys. 139, 094308 (2013) J. Liu and T. A. Miller, J. Phys. Chem. A 118, 11871

  16. Varying Alpha

    CERN Document Server

    Barrow, John D

    2009-01-01

    We review properties of cosmological theories for the variation of the fine structure 'constant'. We highlight some general features of the cosmological models that exist in these theories with reference to recent quasar data that are consistent with time-variation in the fine structure 'constant' since a redshift of 3.5.

  17. Fine-scale genetic structure of grape phylloxera from the roots and leaves of Vitis.

    Science.gov (United States)

    Corrie, A M; Hoffmann, A A

    2004-02-01

    Patterns of variation at microsatellite loci suggest that root populations of the pest grape phylloxera (Daktulosphaira vitifoliae) are largely parthenogenetic in Australian vineyards. To investigate reproduction in leaf galling phylloxera and the association between these individuals and phylloxera on roots, we examined in detail genetic variation in phylloxera from a vineyard block. Some genotypes found on leaf galls within this block were not present on roots, whereas others spanned both zones. There was no evidence that genotypes on roots were the product of sexual reproduction in leaf galls. mtDNA variation was not associated with the location of the phylloxera clones. The spatial distribution of genotypes within a root population was further investigated by intensively sampling phylloxera from another vineyard block. Join-count spatial autocorrelation statistics were used to explore fine-scale spatial structure. Clones were nonrandomly distributed within the block and there was evidence that the distribution of clones followed rows. These findings suggest firstly that there is limited dispersal of root and leaf feeding phylloxera, and secondly that factors, other than vine host, are likely to be important and contribute to clonal structure within populations. PMID:14679391

  18. Molecular characterization of brominated persistent pollutants using extended X-ray absorption fine structure (EXAFS) spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bergknut, Magnus; Skyllberg, Ulf [Swedish University of Agricultural Sciences (SLU), Department of Forest Ecology and Management, Umeaa (Sweden); Persson, Per [Umeaa University, Department of Chemistry, Umeaa (Sweden)

    2008-02-15

    X-ray absorption fine structure (EXAFS) spectroscopy spectra were collected for three brominated persistent pollutants: 6-bromo-2,4,5-trichlorophenol (BrTriClP), pentabromophenol (PentaBrP) and 3,3',5,5'-tetrabromobisphenol A (TBBA). The substances were selected to be symmetrical (BrTriClP and TBBA) or asymmetrical (PentaBrP) with respect to the atomic Br positions and to differ in the number of bromine and other halide atoms, as well as their relative positions. The asymmetrical PentaBrP was modelled with special detail as not all bromine atoms have identical coordination environments. The studied substances displayed unique EXAFS spectra, which could be used to determine the molecular structure in fair detail. We conclude that EXAFS spectroscopy is a suitable technique for molecular characterization of the comparatively complex molecules within the class of compounds of brominated organic persistent pollutants. A detailed understanding of the EXAFS spectra of the pure compounds opens up possibilities to study the interactions with soil and sediment matrices by means of EXAFS spectroscopy. (orig.)

  19. Fine resolution mapping of population age-structures for health and development applications.

    Science.gov (United States)

    Alegana, V A; Atkinson, P M; Pezzulo, C; Sorichetta, A; Weiss, D; Bird, T; Erbach-Schoenberg, E; Tatem, A J

    2015-04-01

    The age-group composition of populations varies considerably across the world, and obtaining accurate, spatially detailed estimates of numbers of children under 5 years is important in designing vaccination strategies, educational planning or maternal healthcare delivery. Traditionally, such estimates are derived from population censuses, but these can often be unreliable, outdated and of coarse resolution for resource-poor settings. Focusing on Nigeria, we use nationally representative household surveys and their cluster locations to predict the proportion of the under-five population in 1 × 1 km using a Bayesian hierarchical spatio-temporal model. Results showed that land cover, travel time to major settlements, night-time lights and vegetation index were good predictors and that accounting for fine-scale variation, rather than assuming a uniform proportion of under 5 year olds can result in significant differences in health metrics. The largest gaps in estimated bednet and vaccination coverage were in Kano, Katsina and Jigawa. Geolocated household surveys are a valuable resource for providing detailed, contemporary and regularly updated population age-structure data in the absence of recent census data. By combining these with covariate layers, age-structure maps of unprecedented detail can be produced to guide the targeting of interventions in resource-poor settings. PMID:25788540

  20. Mineralogical properties and internal structures of individual fine particles of Saharan dust

    Science.gov (United States)

    Jeong, Gi Young; Park, Mi Yeon; Kandler, Konrad; Nousiainen, Timo; Kemppinen, Osku

    2016-10-01

    Mineral dust interacts with incoming/outgoing radiation, gases, other aerosols, and clouds. The assessment of its optical and chemical impacts requires knowledge of the physical and chemical properties of bulk dust and single particles. Despite the existence of a large body of data from field measurements and laboratory analyses, the internal properties of single dust particles have not been defined precisely. Here, we report on the mineralogical organization and internal structures of individual fine ( common particle type was clay-rich agglomerate, dominated by illite-smectite series clay minerals with subordinate kaolinite. Submicron grains of iron (hydr)oxides (goethite and hematite) were commonly dispersed through the clay-rich particles. The median total volume of the iron (hydr)oxide grains included in the dust particles was estimated to be about 1.5 % vol. The average iron content of clay minerals, assuming 14 wt % H2O, was determined to be 5.0 wt %. Coarse mineral cores, several micrometers in size, were coated with thin layers of clay-rich agglomerate. Overall, the dust particles were roughly ellipsoidal, with an average axial ratio of 1.4 : 1.0 : 0.5. The mineralogical and structural properties of single Saharan dust particles provide a basis for the modeling of dust radiative properties. Major iron-bearing minerals, such as illite-smectite series clay minerals and iron (hydr)oxides, were commonly submicron- to nano-sized, possibly enhancing their biogeochemical availability to remote marine ecosystems lacking micronutrients.

  1. Electronic fine structure in the nickel carbide superconductor Th2NiC2

    Science.gov (United States)

    Quan, Y.; Pickett, W. E.

    2013-07-01

    The recently reported nickel carbide superconductor body centered tetragonal I4/mmm Th2NiC2 with Tc=8.5 K increasing to 11.2 K upon alloying Th with Sc is found to have very fine structure in its electronic spectrum, according to density functional based first-principles calculations. The filled Ni 3d band complex is hybridized with C 2p and Th character to and through the Fermi level (EF), and a sharply structured density of states arises only when spin-orbit coupling is included, which splits a zone-center degeneracy, leaving a very flat band edge lying at the Fermi level. The flat part of the band corresponds to an effective mass mz*→∞ with large and negative mx*=my*. Although the region over which the effective mass characterization applies is less than 1% of the zone volume, it supplies on the order of half the states at (or just above) the Fermi level. The observed increase of Tc by hole doping is accounted for if the reference as-synthesized sample is minutely hole doped, which decreases the Fermi level density of states and will provide some stabilization. In this scenario, electron doping will increase the Fermi level density of states and the superconducting critical temperature. Vibrational properties are presented, and enough coupling to the C-Ni-C stretch mode at 70 meV is obtained to imply that superconductivity is electron-phonon mediated.

  2. Evidence for the distortion product frequency place as a source of distribution product otoacoustic emission (DPOAE) fine structure in humans. I. Fine structure and higher-order DPOAE as a function of the frequency ratio f2/f1

    NARCIS (Netherlands)

    Mauermann, M; Uppenkamp, S; van Hengel, PWJ; Kollmeier, B

    1999-01-01

    Critical experiments were performed in order to validate the two-source hypothesis of distortion product otoacoustic emissions (DPOAE) generation. Measurements of the spectral fine structure of DPOAE in response to stimulation with two sinusoids have been:performed with normal-hearing subjects. The

  3. Cultural transmission of tool use combined with habitat specializations leads to fine-scale genetic structure in bottlenose dolphins

    OpenAIRE

    Kopps, Anna M.; Ackermann, Corinne Y.; William B Sherwin; Simon J Allen; Bejder, Lars; Krützen, Michael

    2014-01-01

    Socially learned behaviours leading to genetic population structure have rarely been described outside humans. Here, we provide evidence of fine-scale genetic structure that has probably arisen based on socially transmitted behaviours in bottlenose dolphins (Tursiops sp.) in western Shark Bay, Western Australia. We argue that vertical social transmission in different habitats has led to significant geographical genetic structure of mitochondrial DNA (mtDNA) haplotypes. Dolphins with mtDNA hap...

  4. Metapopulation structure and fine-scaled genetic structuring in crop-wild hybrid weed beets.

    Science.gov (United States)

    Arnaud, J-F; Cuguen, J; Fénart, S

    2011-10-01

    This study explores the microspatial and temporal genetic variation in crop-wild hybrid weed beets that emerged from the seed bank in a cultivated field surveyed over two successive years. We demonstrate the occurrence of demes highly genetically differentiated, kin-structured, characterized by moderate effective population sizes, differing in propensity for selfing, and arising from nonrandom genetic subsets of the seed bank. Only one deme identified in the first survey year significantly contributed to the weed beets that emerged in the second year. Spatial structuring appears to be primarily due to gravity seed dispersal and limited pollen flow among weed beet demes. Within each genetic cluster identified by Bayesian assignments and multivariate analyses, F(IS) estimates and level of biparental inbreeding--revealed by progeny analyses--dropped to non-significant values. This suggests that random mating occurs at the scale of genetically distinct demes over a very short scale. Our results highlight the need to carefully depict genetic discontinuities in weed species, when attempting to describe their local genetic neighborhoods within which genetic drift and selective processes occur.

  5. Metapopulation structure and fine-scaled genetic structuring in crop-wild hybrid weed beets.

    Science.gov (United States)

    Arnaud, J-F; Cuguen, J; Fénart, S

    2011-10-01

    This study explores the microspatial and temporal genetic variation in crop-wild hybrid weed beets that emerged from the seed bank in a cultivated field surveyed over two successive years. We demonstrate the occurrence of demes highly genetically differentiated, kin-structured, characterized by moderate effective population sizes, differing in propensity for selfing, and arising from nonrandom genetic subsets of the seed bank. Only one deme identified in the first survey year significantly contributed to the weed beets that emerged in the second year. Spatial structuring appears to be primarily due to gravity seed dispersal and limited pollen flow among weed beet demes. Within each genetic cluster identified by Bayesian assignments and multivariate analyses, F(IS) estimates and level of biparental inbreeding--revealed by progeny analyses--dropped to non-significant values. This suggests that random mating occurs at the scale of genetically distinct demes over a very short scale. Our results highlight the need to carefully depict genetic discontinuities in weed species, when attempting to describe their local genetic neighborhoods within which genetic drift and selective processes occur. PMID:21448229

  6. FINE STRAND-LIKE STRUCTURE IN THE SOLAR CORONA FROM MAGNETOHYDRODYNAMIC TRANSVERSE OSCILLATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Antolin, P. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Yokoyama, T. [Department of Earth and Planetary Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-0033 (Japan); Van Doorsselaere, T., E-mail: patrick.antolin@nao.ac.jp [Centre for Mathematical Plasma Astrophysics, Department of Mathematics, KU Leuven, Celestijnenlaan 200B, Bus 2400, B-3001 Leuven (Belgium)

    2014-06-01

    Current analytical and numerical modeling suggest the existence of ubiquitous thin current sheets in the corona that could explain the observed heating requirements. On the other hand, new high resolution observations of the corona indicate that its magnetic field may tend to organize itself in fine strand-like structures of few hundred kilometers widths. The link between small structure in models and the observed widths of strand-like structure several orders of magnitude larger is still not clear. A popular theoretical scenario is the nanoflare model, in which each strand is the product of an ensemble of heating events. Here, we suggest an alternative mechanism for strand generation. Through forward modeling of three-dimensional MHD simulations we show that small amplitude transverse MHD waves can lead in a few periods time to strand-like structure in loops in EUV intensity images. Our model is based on previous numerical work showing that transverse MHD oscillations can lead to Kelvin-Helmholtz instabilities that deform the cross-sectional area of loops. While previous work has focused on large amplitude oscillations, here we show that the instability can occur even for low wave amplitudes for long and thin loops, matching those presently observed in the corona. We show that the vortices generated from the instability are velocity sheared regions with enhanced emissivity hosting current sheets. Strands result as a complex combination of the vortices and the line-of-sight angle, last for timescales of a period, and can be observed for spatial resolutions of a tenth of loop radius.

  7. Benthic biofilm structure controls the deposition-resuspension dynamics of fine clay particles

    Science.gov (United States)

    Hunter, W. R.; Roche, K. R.; Drummond, J. D.; Boano, F.; Packman, A. I.; Battin, T. J.

    2015-12-01

    In fluvial ecosystems the alternation of deposition and resuspension of particles represents an important pathway for the downstream translocation of microbes and organic matter. Such particles can originate from algae and microbes, the spontaneous auto-aggregation of organic macromolecules (e.g., "river sown"), terrestrial detritus (traditionally classified as "particulate organic matter"), and erosive mineral and organo-mineral particles. The transport and retention of particles in headwater streams is associated with biofilms, which are surface-attached microbial communities. Whilst biofilm-particle interactions have been studied in bulk, a mechanistic understanding of these processes is lacking. Parallel macroscale/microscale observations are required to unravel the complex feedbacks between biofilm structure, coverage and the dynamics of deposition and resuspension. We used recirculating flume mesocosms to test how changes in biofilm structure affected the deposition and resuspension of clay-sized (Biofilms were grown in replicate 3-m-long recirculating flumes over variable lengths of time (0, 14, 21, 28, and 35) days. Fixed doses of fluorescent clay-sized particles were introduced to each flume and their deposition was traced over 30 minutes. A flood event was then simulated via a step increase in flowrate to quantify particle resuspension. 3D Optical Coherence Tomography was used to determine roughness, areal coverage and height of biofilms in each flume. From these measurements we characterised particle deposition and resuspension rates, using continuous time random walk modelling techniques, which we then tested as responses to changes in biofilm coverage and structure under both base-flow and flood-flow scenarios. Our results suggest that biofilm structural complexity is a primary control upon the retention and downstream transport of fine particles in stream mesocosms.

  8. Crystal Structure of the Nonerythroid [alpha]-Spectrin Tetramerization Site Reveals Differences between Erythroid and Nonerythroid Spectrin Tetramer Formation

    Energy Technology Data Exchange (ETDEWEB)

    Mehboob, Shahila; Song, Yuanli; Witek, Marta; Long, Fei; Santarsiero, Bernard D.; Johnson, Michael E.; Fung, Leslie W.-M. (UIC)

    2010-06-21

    We have solved the crystal structure of a segment of nonerythroid {alpha}-spectrin ({alpha}II) consisting of the first 147 residues to a resolution of 2.3 {angstrom}. We find that the structure of this segment is generally similar to a corresponding segment from erythroid {alpha}-spectrin ({alpha}I) but exhibits unique differences with functional significance. Specific features include the following: (i) an irregular and frayed first helix (Helix C{prime}); (ii) a helical conformation in the junction region connecting Helix C{prime} with the first structural domain (D1); (iii) a long A1B1 loop in D1; and (iv) specific inter-helix hydrogen bonds/salt bridges that stabilize D1. Our findings suggest that the hydrogen bond networks contribute to structural domain stability, and thus rigidity, in {alpha}II, and the lack of such hydrogen bond networks in {alpha}I leads to flexibility in {alpha}I. We have previously shown the junction region connecting Helix C{prime} to D1 to be unstructured in {alpha}I (Park, S., Caffrey, M. S., Johnson, M. E., and Fung, L. W. (2003) J. Biol. Chem. 278, 21837-21844) and now find it to be helical in {alpha}II, an important difference for {alpha}-spectrin association with {beta}-spectrin in forming tetramers. Homology modeling and molecular dynamics simulation studies of the structure of the tetramerization site, a triple helical bundle of partial domain helices, show that mutations in {alpha}-spectrin will affect Helix C{prime} structural flexibility and/or the junction region conformation and may alter the equilibrium between spectrin dimers and tetramers in cells. Mutations leading to reduced levels of functional tetramers in cells may potentially lead to abnormal neuronal functions.

  9. Fine-structure energy levels and radiative decay rates in Al-like vanadium

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, G P [Department of Physics, S D (Postgraduate) College, Muzaffarnagar-251 001 (Affiliated to Chowdhary Charan Singh University, Meerut - 250 004) (India); Msezane, A Z [Department of Physics and Center for Theoretical Studies of Physical Systems, Clark Atlanta University, Atlanta, GA 30314 (United States)], E-mail: g_p_gupta1@yahoo.co.in

    2010-04-15

    Large-scale calculations of excitation energies from ground state for 97 fine-structure levels as well as of oscillator strengths and radiative decay rates for all electric-dipole-allowed and intercombination transitions among the (1s{sup 2}2s{sup 2}2p{sup 6})3s{sup 2}3p({sup 2}P{sup 0}), 3s3p{sup 2}({sup 2}S,{sup 2}P,{sup 2}D,{sup 4}P), 3s{sup 2}3d({sup 2}D), 3p{sup 3}({sup 4}S{sup 0},{sup 2}P{sup 0},{sup 2}D{sup 0}), 3s3p({sup 3}P{sup 0})3d({sup 2}P{sup 0},{sup 2}D{sup 0},{sup 2}F{sup 0},{sup 4}P{sup 0},{sup 4}D{sup 0},{sup 4}F{sup 0}), 3s3p({sup 1}P{sup 0})3d({sup 2}P{sup 0},{sup 2}D{sup 0},{sup 2}F{sup 0}), 3p{sup 2}({sup 1}S)3d({sup 2}D), 3p{sup 2}({sup 1}D)3d({sup 2}S,{sup 2}P,{sup 2}D,{sup 2}F,{sup 2}G), 3p{sup 2}({sup 3}P)3d({sup 2}P,{sup 2}D,{sup 2}F,{sup 4}P,{sup 4}D,{sup 4}F), 3s3d{sup 2}({sup 2}S,{sup 2}P,{sup 2}D,{sup 2}F,{sup 2}G,{sup 4}P,{sup 4}F), 3s{sup 2}4s({sup 2}S), 3s{sup 2}4p({sup 2}P{sup 0}), 3s{sup 2}4d({sup 2}D), 3s{sup 2}4f({sup 2}F{sup 0}), 3s3p({sup 3}P{sup 0})4s({sup 2}P{sup 0},{sup 4}P{sup 0}) and 3s3p({sup 1}P{sup 0})4s({sup 2}P{sup 0}) states of V XI are performed using extensive configuration-interaction (CI) wavefunctions. The calculations used the CIV3 computer code of Hibbert. The important relativistic effects in intermediate coupling are incorporated by means of the Breit-Pauli Hamiltonian. In order to keep our calculated energy splittings as close as possible to the National Institute of Standard and Technology (NIST) values, we have made small adjustments to the diagonal elements of the Hamiltonian matrices. Our calculated excitation energies, including their ordering, are in excellent agreement with the available NIST results. From our radiative decay rates, we have also calculated radiative lifetimes of some fine-structure levels. Generally, very good agreement between our calculated lifetimes and those from sophisticated calculation is realized for many fine-structure levels. However, a few significant differences are

  10. Novel laboratory methods for determining the fine scale electrical resistivity structure of core

    Science.gov (United States)

    Haslam, E. P.; Gunn, D. A.; Jackson, P. D.; Lovell, M. A.; Aydin, A.; Prance, R. J.; Watson, P.

    2014-12-01

    High-resolution electrical resistivity measurements are made on saturated rocks using novel laboratory instrumentation and multiple electrical voltage measurements involving in principle a four-point electrode measurement but with a single, moving electrode. Flat, rectangular core samples are scanned by varying the electrode position over a range of hundreds of millimetres with an accuracy of a tenth of a millimetre. Two approaches are tested involving a contact electrode and a non-contact electrode arrangement. The first galvanic method uses balanced cycle switching of a floating direct current (DC) source to minimise charge polarisation effects masking the resistivity distribution related to fine scale structure. These contacting electrode measurements are made with high common mode noise rejection via differential amplification with respect to a reference point within the current flow path. A computer based multifunction data acquisition system logs the current through the sample and voltages along equipotentials from which the resistivity measurements are derived. Multiple measurements are combined to create images of the surface resistivity structure, with variable spatial resolution controlled by the electrode spacing. Fine scale sedimentary features and open fractures in saturated rocks are interpreted from the measurements with reference to established relationships between electrical resistivity and porosity. Our results successfully characterise grainfall lamination and sandflow cross-stratification in a brine saturated, dune bedded core sample representative of a southern North Sea reservoir sandstone, studied using the system in constant current, variable voltage mode. In contrast, in a low porosity marble, identification of open fracture porosity against a background very low matrix porosity is achieved using the constant voltage, variable current mode. This new system is limited by the diameter of the electrode that for practical reasons can only be

  11. Changes in the Fine Structure of Stochastic Distributions as a Consequence of Space-Time Fluctuations

    Directory of Open Access Journals (Sweden)

    Shnoll S. E.

    2006-04-01

    Full Text Available This is a survey of the fine structure stochastic distributions in measurements obtained by me over 50 years. It is shown: (1 The forms of the histograms obtained at each geographic point (at each given moment of time are similar with high probability, even if we register phenomena of completely different nature — from biochemical reactions to the noise in a gravitational antenna, or α-decay. (2 The forms of the histograms change with time. The iterations of the same form have the periods of the stellar day (1.436 min, the solar day (1.440 min, the calendar year (365 solar days, and the sidereal year (365 solar days plus 6 hours and 9 min. (3 At the same instants of the local time, at different geographic points, the forms of the histograms are the same, with high probability. (4 The forms of the histograms depend on the locations of the Moon and the Sun with respect to the horizon. (5 All the facts are proof of the dependance of the form of the histograms on the location of the measured objects with respect to stars, the Sun, and the Moon. (6 At the instants of New Moon and the maxima of solar eclipses there are specific forms of the histograms. (7 It is probable that the observed correlations are not connected to flow power changes (the changes of the gravity force — we did not find the appropriate periods in changes in histogram form. (8 A sharp anisotropy of space was discovered, registered by α-decay detectors armed with collimators. Observations at 54◦ North (the collimator was pointed at the Pole Star showed no day-long periods, as was also the case for observations at 82◦ North, near the Pole. Histograms obtained by observations with an Easterly-directed collimator were determined every 718 minutes (half stellar day and with observations using a Westerly-directed collimator. (9 Collimators rotating counter-clockwise, in parallel with the celestial equator, gave the probability of changes in histograms as the number of the

  12. Periodicity extraction in the anuran auditory nerve. II: Phase and temporal fine structure.

    Science.gov (United States)

    Simmons, A M; Reese, G; Ferragamo, M

    1993-06-01

    Discharge patterns of single eighth nerve fibers in the bullfrog, Rana catesbeiana, were analyzed in response to signals consisting of multiple harmonics of a common, low-amplitude fundamental frequency. The signals were chosen to reflect the frequency and amplitude spectrum of the bullfrog's species-specific advertisement call. The phase spectrum of the signals was manipulated to produce envelopes that varied in their shapes from impulselike (sharp) to noiselike (flattened). Peripheral responses to these signals were analyzed by computing the autocorrelation functions of the spike trains and their power spectra, as well as by constructing period histograms over the time intervals of the low-frequency harmonics. In response to a phase aligned signal with an impulsive envelope, most fibers, regardless of their characteristic frequencies or place of origin within the inner ear, synchronize to the fundamental frequency of the signal. The temporal patterns of fiber discharge to these stimuli are not typically captured by that stimulus harmonic closet to the fiber characteristic frequency, as would be expected from a spectral coding mechanism for periodicity extraction, but instead directly reflect the periodicity of the stimulus envelope. Changing the phase relations between the individual harmonics constituting the signal produces changes in temporal discharge patterns of some fibers by shifting predominant synchronization away from the fundamental frequency to the low-frequency spectral peak in the complex stimuli. The proportion of fibers whose firing is captured by the fundamental frequency decreases as the waveform envelope becomes less impulselike. Fiber characteristic frequency is not highly correlated with the harmonic number to which synchronization is strongest. The higher-harmonic spectral fine structure of the signals is not reflected in fiber temporal response, regardless of the shape of the stimulus envelope, even for those harmonics within the range of

  13. Synthesis and characterization of nitroaromatic peptoids: fine tuning peptoid secondary structure through monomer position and functionality.

    Science.gov (United States)

    Fowler, Sarah A; Luechapanichkul, Rinrada; Blackwell, Helen E

    2009-02-20

    N-substituted glycine oligomers, or peptoids, have emerged as an important class of foldamers for the study of biomolecular interactions and for potential use as therapeutic agents. However, the design of peptoids with well-defined conformations a priori remains a formidable challenge. New approaches are required to address this problem, and the systematic study of the role of individual monomer units in the global peptoid folding process represents one strategy. Here, we report our efforts toward this approach through the design, synthesis, and characterization of peptoids containing nitroaromatic monomer units. This work required the synthesis of a new chiral amine building block, (S)-1-(2-nitrophenyl)ethanamine (s2ne), which could be readily installed into peptoids using standard solid-phase peptoid synthesis techniques. We designed a series of peptoid nonamers that allowed us to probe the effects of this relatively electron-deficient and sterically encumbered alpha-chiral side chain on peptoid structure, namely, the peptoid threaded loop and helix. Circular dichroism spectroscopy of the peptoids revealed that the nitroaromatic monomer has a significant effect on peptoid secondary structure. Specifically, the threaded loop structure was disrupted in a nonamer containing alternating N-(S)-1-phenylethylglycine (Nspe) and Ns2ne monomers, and the major conformation was helical instead. Indeed, placement of a single Ns2ne at the N-terminal position of (Nspe)(9) resulted in a destabilized form of the threaded loop structure relative to the homononamer (Nspe)(9). Conversely, we observed that incorporation of N-(S)-1-(4-nitrophenyl)ethylglycine (Nsnp, a p-nitro monomer) at the N-terminal position stabilized the threaded loop structure relative to (Nspe)(9). Additional experiments revealed that nitroaromatic side chains can influence peptoid nonamer folding by modulating the strength of key intramolecular hydrogen bonds in the peptoid threaded loop structure. Steric

  14. Alpha decay as a probe for the structure of neutron-deficient nuclei

    CERN Document Server

    Qi, Chong

    2016-01-01

    The advent of radioactive ion beam facilities and new detector technologies have opened up new possibilities to investigate the radioactive decays of highly unstable nuclei, in particular the proton emission, $\\alpha$ decay and heavy cluster decays from neutron-deficient (or proton-rich) nuclei around the proton drip line. It turns out that these decay measurements can serve as a unique probe for studying the structure of the nuclei involved. On the theoretical side, the development in nuclear many-body theories and supercomputing facilities have also made it possible to simulate the nuclear clusterization and decays from a microscopic and consistent perspective. In this article we would like to review the current status of these structure and decay studies in heavy nuclei, regarding both experimental and theoretical opportunities. We then discuss in detail the recent progress in our understanding of the nuclear $\\alpha$ formation probabilities in heavy nuclei and their indication on the underlying nuclear st...

  15. A New Catalogue of Fine Structures Superimposed on Solar Microwave Bursts

    Institute of Scientific and Technical Information of China (English)

    Qi-Jun Fu; Yi-Hua Yan; Yu-Ying Liu; Min Wang; Shu-Juan Wang

    2004-01-01

    The 2.6-3.8 GHz, 4.5-7.5 GHz, 5.2-7.6 GHz and 0.7-1.5 GHz component spectrometers of Solar Broadband Radio Spectrometer (SBRS) started routine observations, respectively, in late August 1996, August 1999, August 1999, and June 2000. They just managed to catch the coming 23rd solar active maximum. Consequently, a large amount of microwave burst data with high temporal and high spectral resolution and high sensitivity were obtained. A variety of fine structures (FS)superimposed on microwave bursts have been found. Some of them are known, such as microwave type Ⅲ bursts, microwave spike emission, but these were observed with more detail; some are new. Reported for the first time here are microwave type U bursts with similar spectral morphology to those in decimetric and metric wavelengths, and with outstanding characteristics such as very short durations(tens to hundreds ms), narrow bandwidths, higher frequency drift rates and higher degrees of polarization. Type N and type M bursts were also observed. Detailed zebra pattern and fiber bursts at the high frequency were found. Drifting pulsation structure (DPS) phenomena closely associated with CME are considered to manifest the initial phase of the CME, and quasi-periodic pulsation with periods of tens ms have been recorded. Microwave "patches", unlike those reported previously, were observed with very short durations (about 300 ms), very high flux densities (up to 1000 sfu), very high polarization (about 100% RCP), extremely narrow bandwidths(about 5%), and very high spectral indexes. These cannot be interpreted with the gyrosynchrotron process. A superfine structure in the form of microwave FS (ZPS,type U), consisting of microwave millisecond spike emission (MMS), was also found.

  16. Fine-scale analysis reveals cryptic landscape genetic structure in desert tortoises.

    Directory of Open Access Journals (Sweden)

    Emily K Latch

    Full Text Available Characterizing the effects of landscape features on genetic variation is essential for understanding how landscapes shape patterns of gene flow and spatial genetic structure of populations. Most landscape genetics studies have focused on patterns of gene flow at a regional scale. However, the genetic structure of populations at a local scale may be influenced by a unique suite of landscape variables that have little bearing on connectivity patterns observed at broader spatial scales. We investigated fine-scale spatial patterns of genetic variation and gene flow in relation to features of the landscape in desert tortoise (Gopherus agassizii, using 859 tortoises genotyped at 16 microsatellite loci with associated data on geographic location, sex, elevation, slope, and soil type, and spatial relationship to putative barriers (power lines, roads. We used spatially explicit and non-explicit Bayesian clustering algorithms to partition the sample into discrete clusters, and characterize the relationships between genetic distance and ecological variables to identify factors with the greatest influence on gene flow at a local scale. Desert tortoises exhibit weak genetic structure at a local scale, and we identified two subpopulations across the study area. Although genetic differentiation between the subpopulations was low, our landscape genetic analysis identified both natural (slope and anthropogenic (roads landscape variables that have significantly influenced gene flow within this local population. We show that desert tortoise movements at a local scale are influenced by features of the landscape, and that these features are different than those that influence gene flow at larger scales. Our findings are important for desert tortoise conservation and management, particularly in light of recent translocation efforts in the region. More generally, our results indicate that recent landscape changes can affect gene flow at a local scale and that their

  17. Properties of the prominence magnetic field and plasma distributions as obtained from 3D whole-prominence fine structure modeling

    Science.gov (United States)

    Gunár, S.; Mackay, D. H.

    2016-07-01

    Aims: We analyze distributions of the magnetic field strength and prominence plasma (temperature, pressure, plasma β, and mass) using the 3D whole-prominence fine structure model. Methods: The model combines a 3D magnetic field configuration of an entire prominence, obtained from non-linear force-free field simulations, with a detailed semi-empirically derived description of the prominence plasma. The plasma is located in magnetic dips in hydrostatic equilibrium and is distributed along multiple fine structures within the 3D magnetic model. Results: We show that in the modeled prominence, the variations of the magnetic field strength and its orientation are insignificant on scales comparable to the smallest dimensions of the observed prominence fine structures. We also show the ability of the 3D whole-prominence fine structure model to reveal the distribution of the prominence plasma with respect to its temperature within the prominence volume. This provides new insights into the composition of the prominence-corona transition region. We further demonstrate that the values of the plasma β are small throughout the majority of the modeled prominences when realistic photospheric magnetic flux distributions and prominence plasma parameters are assumed. While this is generally true, we also find that in the region with the deepest magnetic dips, the plasma β may increase towards unity. Finally, we show that the mass of the modeled prominence plasma is in good agreement with the mass of observed non-eruptive prominences.

  18. Fine-scale spatial genetic structure in the frankincense tree Boswellia papyrifera (Del.) Hochst. and implications for conservation

    NARCIS (Netherlands)

    Bekele, Addisalem; Duminil, J.; Wouters, D.; Bongers, F.; Smulders, M.J.M.

    2016-01-01

    The fine-scale genetic structure and how it varies between generations depends on the spatial scale of gene dispersal and other fundamental aspects of species’ biology, such as the mating system. Such knowledge is crucial for the design of genetic conservation strategies. This is particularly rel

  19. Fine structure of the CCl3 UV absorption spectrum and CCl3 kinetics

    DEFF Research Database (Denmark)

    Ellermann, T.

    1992-01-01

    The UV gas-phase spectrum of CCl3 was recorded in the range 220-300 nm using pulse radiolysis of CHCl3/SF6 or CCl4/Ar gas mixtures. The UV spectrum exhibits a pronounced vibrational fine structure which is assigned to transition into the (C2A1'(3s)) Rydberg state. The vibronic progression has a...

  20. Impact energy analysis of quenched and tempered fine grain structural steel specimens after weld thermal cycle simulation

    Directory of Open Access Journals (Sweden)

    M. Dunđer

    2014-10-01

    Full Text Available The paper presents impact energy results of thermal cycle simulated specimens of quenched and tempered fine grain structural steel S960QL. These results are obtained by examining notched Charpy specimens. Upon performed metallographic analysis and measured hardness, total impact energy is separated into ductile and brittle components.

  1. A dynamical model for the penumbral fine structure and the Evershed effect in sunspots

    CERN Document Server

    Schlichenmaier, R; Schmidt, H U

    1998-01-01

    Relying on the assumption that the interchange convection of magnetic flux tubes is the physical cause for the existence of sunspot penumbrae, we propose a model in which the dynamical evolution of a thin magnetic flux tube reproduces the Evershed effect and the penumbral fine structure such as bright and dark filaments and penumbral grains. According to our model, penumbral grains are the manifestation of the footpoints of magnetic flux tubes, along which hot subphotospheric plasma flows upwards with a few km/s. Above the photosphere the hot plasma inside the tube is cooled by radiative losses as it flows horizontally outwards. As long as the flowing plasma is hotter than the surroundings, it constitutes a bright radial filament. The flow confined to a thin elevated channel reaches the temperature equilibrium with the surrounding atmosphere and becomes optically thin near the outer edge of the penumbra. Here, the tube has a height of approximately 100 km above the continuum and the flow velocity reaches up t...

  2. Fine structure and development of the collar enamel in gars ,Lepisosteus oculatus ,Actinopterygii

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The fine structure of collar enamel and the cells constituting the enamel organ during amelogenesis in Lepisosteus oculatus was observed by light,scanning electron and transmission electron microscopy.In the enamel,slender crystals were arranged perpendicular to the surface and the stripes that were parallel to the surface were observed,suggesting that the enamel in Lepisosteus shares common morphological features with that in sarcopterygian fish and amphibians.Ameloblasts containing developed Golgi apparatus,rough endoplasmic reticulum (rER) and secretory granules were found in the secretory stage.In the maturation stage,a ruffled border was not seen at the distal end of the ameloblasts,while many mitochondria and lysosome-like granules were obvious in the distal cytoplasm.The enamel organ consisted of the outer dental epithelial cells,stratum reticulum cells and ameloblasts,but there was no stratum intermedium.It is likely that the ameloblasts have less absorptive function in comparison with the inner dental epithelial cells facing cap enameloid.

  3. Non-linear electrodynamics and the variation of the fine structure constant

    Science.gov (United States)

    Mbelek, Jean Paul; Mosquera Cuesta, Herman J.

    2008-09-01

    It has been claimed that during the late-time history of our Universe, the fine structure constant of electromagnetism, α, has been increasing. The conclusion is achieved after looking at the separation between lines of ions like CIV, MgII, SiII, FeII, among others in the absorption spectra of very distant quasars, and comparing them with their counterparts obtained in the laboratory. However, in the meantime, other teams have claimed either a null result or a decreasing α with respect to the cosmic time. Also, the current precision of laboratory tests does not allow one to either comfort or reject any of these astronomical observations. Here, we suggest that as photons are the sidereal messengers, a non-linear electrodynamics (NLED) description of the interaction of photons with the weak local background magnetic fields of a gas cloud absorber around the emitting quasar can reconcile the Chand et al. and Levshakov et al. findings with the negative variation found by Murphy et al. and Webb et al., and also to find a bridge with the positive variation argued more recently by Levshakov et al. We also show that NLED photon propagation in a vacuum permeated by a background magnetic field presents a full agreement with constraints from Oklo natural reactor data. Finally, we show that NLED may render a null result only in a narrow range of the local background magnetic field which should be the case of both the claims by Chand et al. and by Srianand et al.

  4. Electromagnetic emissions and fine structures observed near main ionospheric trough during geomagnetic storms and their interactions

    Science.gov (United States)

    Przepiórka, Dorota; Marek, Michał; Matyjasiak, Barbara; Rothkaehl, Hanna

    2016-04-01

    Geomagnetic conditions triggered by the solar activity affect the ionosphere, its fine and global structures. Very intense magnetic storms substantially change the plasma density, concentration and circulation. Especially sensitive region is located near auroral oval, where most energy is deposited during geomagnetic storms. In this region and just below it, where the main ionospheric trough is located, we observe enhanced electromagnetic emissions in different frequency ranges. In particular the AKR-like (Auroral Kilometric Radiation) emissions are seen at frequencies of the order of hundreds of kHz in the ionosphere, just below the auroral oval. Analyzing spectrograms from DEMETER mission and comparing them with electron density measurements from DEMETER, we found that AKR-like emissions are seen near poleward wall of the main ionospheric trough, during geomagnetic storms. Main ionospheric trough is known as a turbulent region which properties change as the geomagnetic storm evolves. This work is an attempt to determine how the presence of the different emissions affect main ionospheric trough parameters such as location, width and depth. Data used in this study come from DEMETER and RELEC missions. This work was partly supported by NCN grant Rezonans 2012/07/B/ST9/04414.

  5. A new analysis of fine-structure constant measurements and modelling errors from quasar absorption lines

    Science.gov (United States)

    Wilczynska, Michael R.; Webb, John K.; King, Julian A.; Murphy, Michael T.; Bainbridge, Matthew B.; Flambaum, Victor V.

    2015-12-01

    We present an analysis of 23 absorption systems along the lines of sight towards 18 quasars in the redshift range of 0.4 ≤ zabs ≤ 2.3 observed on the Very Large Telescope (VLT) using the Ultraviolet and Visual Echelle Spectrograph (UVES). Considering both statistical and systematic error contributions we find a robust estimate of the weighted mean deviation of the fine-structure constant from its current, laboratory value of Δα/α = (0.22 ± 0.23) × 10-5, consistent with the dipole variation reported in Webb et al. and King et al. This paper also examines modelling methodologies and systematic effects. In particular, we focus on the consequences of fitting quasar absorption systems with too few absorbing components and of selectively fitting only the stronger components in an absorption complex. We show that using insufficient continuum regions around an absorption complex causes a significant increase in the scatter of a sample of Δα/α measurements, thus unnecessarily reducing the overall precision. We further show that fitting absorption systems with too few velocity components also results in a significant increase in the scatter of Δα/α measurements, and in addition causes Δα/α error estimates to be systematically underestimated. These results thus identify some of the potential pitfalls in analysis techniques and provide a guide for future analyses.

  6. Impact of instrumental systematic errors on fine-structure constant measurements with quasar spectra

    Science.gov (United States)

    Whitmore, Jonathan B.; Murphy, Michael T.

    2015-02-01

    We present a new `supercalibration' technique for measuring systematic distortions in the wavelength scales of high-resolution spectrographs. By comparing spectra of `solar twin' stars or asteroids with a reference laboratory solar spectrum, distortions in the standard thorium-argon calibration can be tracked with ˜10 m s-1 precision over the entire optical wavelength range on scales of both echelle orders (˜50-100 Å) and entire spectrographs arms (˜1000-3000 Å). Using archival spectra from the past 20 yr, we have probed the supercalibration history of the Very Large Telescope-Ultraviolet and Visible Echelle Spectrograph (VLT-UVES) and Keck-High Resolution Echelle Spectrograph (HIRES) spectrographs. We find that systematic errors in their wavelength scales are ubiquitous and substantial, with long-range distortions varying between typically ±200 m s-1 per 1000 Å. We apply a simple model of these distortions to simulated spectra that characterize the large UVES and HIRES quasar samples which previously indicated possible evidence for cosmological variations in the fine-structure constant, α. The spurious deviations in α produced by the model closely match important aspects of the VLT-UVES quasar results at all redshifts and partially explain the HIRES results, though not self-consistently at all redshifts. That is, the apparent ubiquity, size and general characteristics of the distortions are capable of significantly weakening the evidence for variations in α from quasar absorption lines.

  7. The Oklo bound on the time variation of the fine-structure constant revisited

    Science.gov (United States)

    Damour, Thibault; Dyson, Freeman

    1996-02-01

    It has been pointed out by Shlyakhter that data from the natural fission reactors which operated about two billion years ago at Oklo (Gabon) had the potential of providing an extremely tight bound on the variability of the fine-structure constant α. We revisit the derivation of such a bound by (i) reanalyzing a large selection of published rare-earth data from Oklo, (ii) critically taking into account the very large uncertainty of the temperature at which the reactors operated, and (iii) connecting in a new way (using isotope shift measurements) the Oklo-derived constraint on a possible shift of thermal neutron-capture resonances with a bound on the time variation of α. Our final (95% C.L.) results are: -0.9 × 10 -7 < ( αOklo - αnow)/ α < 1.2 × 10 -7 and -6.7 × 10 -17yr-1 < αdotaveraged/α < 5.0 × 10 -17yr-1.

  8. Radio Fiber Fine Structure During the Solar Flare on July 14,2000

    Institute of Scientific and Technical Information of China (English)

    钟晓春; 王蜀娟

    2004-01-01

    On July 14, 2000, a type IV solar radio burst was observed at 10:43-11:00 UT with the 1-2 GHz digital spectrometer of National Astronomical Observatories of China (NAOC). Many fiber fine structures superposed on the type IV burst were detected in the same interval. A theoretical interpretation for the fibers is performed based upon a model of magnetic-mirror loop configuration in the solar corona. In this model, the source of the fiber emission is considered as the ducting of whistler solitons within the magnetic-mirror loop. A quantitative estimation using the observed data indicats that the magnetic field strength of the radio source is about 1.451×10-2≤B0≤2.734×10-2 T, and that a fiber is composed of 4×1015 solitons occupying a volume of about 1.2×108 km3. For the duct through which the whistler solitons passed within the magnetic-mirror loop, its diameter and the length are worked out, namely, d≈120 km and Δr≈104 km, respectively.

  9. Propagation of whistler waves driven by fine structured ion beams in the magnetotail

    Science.gov (United States)

    Burinskaya, T.; Schriver, D.; Ashour-Abdalla, M.

    1994-01-01

    In a previous paper, which examined the propagation of low-frequency whistler waves generated by ion beams in the Earth's plasma sheet boundary layer (PSBL), it was found that whistler waves driven in the PSBL are focused toward the central plasma sheet due to the global magnetotail inhomogeneities; this finding may help explain the observations of magnetic noise bursts in the tail (Burinskaya et al., 1993). In this paper the same phenomenon is examined, but this time a much more realistic model is used for the ion beam in the PSBL. While the PSBL has been modeled as a solid, homogeneous ion beams with a width of one Earth radius, observations and theoretical considerations have shown that PSBL ion beams actually have a decreasing velocity profile toward the plasma sheet and that the density of the beams within the PSBL can vary locally. We consider again the propagation and generation of electromagnetic waves but in the presence of fine structured ion beams in the PSBL. Our results show that whistler waves, generated quasi-parallel to the background magnetic field, can be trapped locally within small spatial regions where the ion beam density is enhanced compared to the density of the adjacent PSBL region. Wave spectra and nonlinear saturation mechanisms are discussed.

  10. Dynamic magnetization models for soft ferromagnetic materials with coarse and fine domain structures

    International Nuclear Information System (INIS)

    We consider dynamic models, both numerical and analytical, that reproduce the magnetization field H(B) and the energy loss in ferromagnetic sheet materials with different domain structures. Conventional non-oriented (NO) and grain-oriented (GO) electrical steels are chosen as typical representatives of fine-domain and coarse-domain materials. The commonly-accepted loss separation procedures in these materials are critically analyzed. The use of a well-known simplified (“classical”) expression for the eddy-current loss is identified as the primary source of mistaken evaluations of excess loss in NO steel, in which the loss components can only be evaluated using the Maxwell (penetration) equation. The situation is quite different in GO steel, in which the loss separation is uncertain, but the total dynamic loss is several times higher than that explained by any version (numerical or analytical) of the classical approach. To illustrate the uncertainty of the loss separation in GO steel, we show that the magnetization field, and thus the total loss, in this material can be represented with equal accuracy using either the existing three-component approach or our proposed two-component technique, which makes no distinction between classical eddy-current and excess fields and losses. - Highlights: • Critical analysis of a ferromagnetic-material loss-separation principle. • This is to warn materials-science engineers about the inaccuracies resulting from this principle. • A transient model having a single dynamic component is proposed

  11. Dynamic magnetization models for soft ferromagnetic materials with coarse and fine domain structures

    Energy Technology Data Exchange (ETDEWEB)

    Zirka, S.E., E-mail: zirka@email.dp.ua [Department of Physics and Technology, Dnepropetrovsk National University, Gagarin 72, 49050 Dnepropetrovsk (Ukraine); Moroz, Y.I. [Department of Physics and Technology, Dnepropetrovsk National University, Gagarin 72, 49050 Dnepropetrovsk (Ukraine); Steentjes, S.; Hameyer, K. [Institute of Electrical Machines, RWTH Aachen University, Schinkelstr. 4, 52056 Aachen (Germany); Chwastek, K. [Faculty of Electrical Engineering, Czestochowa University of Technology, al. AK 17, 42-201 Czestochowa (Poland); Zurek, S. [Megger Instruments Ltd., Archcliffe Road, Dover, Kent, CT17 9EN (United Kingdom); Harrison, R.G. [Department of Electronics, Carleton University, Ottawa, Canada K1S 5B6 (Canada)

    2015-11-15

    We consider dynamic models, both numerical and analytical, that reproduce the magnetization field H(B) and the energy loss in ferromagnetic sheet materials with different domain structures. Conventional non-oriented (NO) and grain-oriented (GO) electrical steels are chosen as typical representatives of fine-domain and coarse-domain materials. The commonly-accepted loss separation procedures in these materials are critically analyzed. The use of a well-known simplified (“classical”) expression for the eddy-current loss is identified as the primary source of mistaken evaluations of excess loss in NO steel, in which the loss components can only be evaluated using the Maxwell (penetration) equation. The situation is quite different in GO steel, in which the loss separation is uncertain, but the total dynamic loss is several times higher than that explained by any version (numerical or analytical) of the classical approach. To illustrate the uncertainty of the loss separation in GO steel, we show that the magnetization field, and thus the total loss, in this material can be represented with equal accuracy using either the existing three-component approach or our proposed two-component technique, which makes no distinction between classical eddy-current and excess fields and losses. - Highlights: • Critical analysis of a ferromagnetic-material loss-separation principle. • This is to warn materials-science engineers about the inaccuracies resulting from this principle. • A transient model having a single dynamic component is proposed.

  12. Preferred Compression Speed for Speech and Music and Its Relationship to Sensitivity to Temporal Fine Structure

    Science.gov (United States)

    Sęk, Aleksander

    2016-01-01

    Multichannel amplitude compression is widely used in hearing aids. The preferred compression speed varies across individuals. Moore (2008) suggested that reduced sensitivity to temporal fine structure (TFS) may be associated with preference for slow compression. This idea was tested using a simulated hearing aid. It was also assessed whether preferences for compression speed depend on the type of stimulus: speech or music. Twenty-two hearing-impaired subjects were tested, and the stimulated hearing aid was fitted individually using the CAM2A method. On each trial, a given segment of speech or music was presented twice. One segment was processed with fast compression and the other with slow compression, and the order was balanced across trials. The subject indicated which segment was preferred and by how much. On average, slow compression was preferred over fast compression, more so for music, but there were distinct individual differences, which were highly correlated for speech and music. Sensitivity to TFS was assessed using the difference limen for frequency at 2000 Hz and by two measures of sensitivity to interaural phase at low frequencies. The results for the difference limens for frequency, but not the measures of sensitivity to interaural phase, supported the suggestion that preference for compression speed is affected by sensitivity to TFS. PMID:27604778

  13. Fine structures in 14C emission of 223Ra and 224Ra

    International Nuclear Information System (INIS)

    The measurement of the energy spectrum of 14C nuclei emitted in the spontaneous radioactivity from 223Ra and 224Ra has been carried out, using thin and intense sources (480 MBq for 223Ra and 3550 MBq for 224Ra). The sources were obtained by implanting mass-separated beams from ISOLDE (CERN) into Al and vitreous C catchers. The measurement was performed with the supraconducting solenoidal spectrometer SOLENO installed at Orsay. The discovery, of a fine structure in the energy spectrum of 14C emission from 223Ra, which is analogous to the one known for α emission, is confirmed. Only 13% of the branching ratio in 14C decay leads to the ground state of the residual nucleus, while 8l% to the first excited state. For 14C emission of 224Ra, a lower limit of 2 for the hindrance factor has been measured for the transition to the first excited state in the residual nucleus. Also, a precise identification in Z with a E·ΔE telescope has been performed for the radiation from the 223Ra source. (author) 22 refs., 11 figs., 1 tab

  14. Upper Chromospheric Magnetic Field of a Sunspot Penumbra: Observations of Fine Structure

    CERN Document Server

    Joshi, J; Solanki, S K; Feller, A; Collados, M; Suárez, D Orozco; Schlichenmaier, R; Franz, M; Balthasar, H; Denker, C; Berkefeld, T; Hofmann, A; Kiess, C; Nicklas, H; Yabar, A Pastor; Rezaei, R; Schmidt, D; Schmidt, W; Sobotka, M; Soltau, D; Staude, J; Strassmeier, K G; Volkmer, R; von der Lühe, O; Waldmann, T

    2016-01-01

    The fine-structure of magnetic field of a sunspot penumbra in the upper chromosphere is to be explored and compared to that in the photosphere. High spatial resolution spectropolarimetric observations were recorded with the 1.5-meter GREGOR telescope using the GREGOR Infrared Spectrograph (GRIS). The observed spectral domain includes the upper chromospheric He I triplet at 1083.0 nm and the photospheric Si I 1082.7 nm and Ca I 1083.3 nm spectral lines. The upper chromospheric magnetic field is obtained by inverting the He I triplet assuming a Milne-Eddington type model atmosphere. A height dependent inversion was applied to the Si I 1082.7 nm and Ca I 1083.3 nm lines to obtain the photospheric magnetic field. We find that the inclination of the magnetic field shows variations in the azimuthal direction both in the photosphere, but also in the upper chromosphere. The chromospheric variations remarkably well coincide with the variations in the inclination of the photospheric field and resemble the well-known sp...

  15. Discovery of Finely Structured Dynamic Solar Corona Observed in the Hi-C Telescope

    Science.gov (United States)

    Winebarger, A.; Cirtain, J.; Golub, L.; DeLuca, E.; Savage, S.; Alexander, C.; Schuler, T.

    2014-01-01

    In the summer of 2012, the High-resolution Coronal Imager (Hi-C) flew aboard a NASA sounding rocket and collected the highest spatial resolution images ever obtained of the solar corona. One of the goals of the Hi-C flight was to characterize the substructure of the solar corona. We therefore examine how the intensity scales from AIA resolution to Hi-C resolution. For each low-resolution pixel, we calculate the standard deviation in the contributing high-resolution pixel intensities and compare that to the expected standard deviation calculated from the noise. If these numbers are approximately equal, the corona can be assumed to be smoothly varying, i.e. have no evidence of substructure in the Hi-C image to within Hi-C's ability to measure it given its throughput and readout noise. A standard deviation much larger than the noise value indicates the presence of substructure. We calculate these values for each low-resolution pixel for each frame of the Hi-C data. On average, 70 percent of the pixels in each Hi-C image show no evidence of substructure. The locations where substructure is prevalent is in the moss regions and in regions of sheared magnetic field. We also find that the level of substructure varies significantly over the roughly 160 s of the Hi-C data analyzed here. This result indicates that the finely structured corona is concentrated in regions of heating and is highly time dependent.

  16. Strain-tuning of the excitonic fine structure splitting in semiconductor quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Plumhof, Johannes D.; Ding, Fei; Herklotz, Andreas; Doerr, Kathrin; Rastelli, Armando; Schmidt, Oliver G. [IFW Dresden, Helmholtzstr. 20, D-01069 Dresden (Germany); Krapek, Vlastimil; Klenovsky, Petr [Institute of Condensed Matter Physics, Masaryk University, Kotlarska 2, 61137 Brno (Czech Republic); Joens, Klaus D.; Hafenbrak, Robert; Michler, Peter [Institut fuer Halbleiteroptik und Funktionelle Grenzflaechen, University of Stuttgart, Allmandring 3, 70569 Stuttgart (Germany)

    2011-07-01

    For the creation of polarization entangled photon pairs from semiconductor quantum dots (QDs) it is important to decrease the fine structure splitting (FSS) of the neutral exciton to energies comparable to the emission linewidth. We employ a piezoelectric actuator (PMN-PT) to manipulate the excitonic emission of GaAs/AlGaAs as well as InGaAs/GaAs QDs embedded in {approx}200 nm thick (Al)GaAs membranes. By attaching the membranes on the PMN-PT we can apply anisotropic strain to the nanostructures. Polarization resolved {mu}-photoluminescence spectroscopy is used to estimate the excitonic FSS as well as the orientation of the linear polarization of the emitted light. The strain makes it possible to manipulate the FSS in a range of 70 {mu} eV. We also observe rotations of up to 70 of the linear polarization of the light emitted by neutral excitons. These effects can be explained as an strain-induced anticrossing of the bright excitonic states.

  17. Excitonic fine structure and binding energies of excitonic complexes in single InAs quantum dashes

    Science.gov (United States)

    Mrowiński, P.; Zieliński, M.; Świderski, M.; Misiewicz, J.; Somers, A.; Reithmaier, J. P.; Höfling, S.; Sek, G.

    2016-09-01

    The fundamental electronic and optical properties of elongated InAs nanostructures embedded in quaternary InGaAlAs barrier are investigated by means of high-resolution optical spectroscopy and many-body atomistic tight-binding theory. These wire-like shaped, self-assembled nanostructures are known as quantum dashes and are typically formed during the molecular beam epitaxial growth on InP substrates. In this paper, we study properties of excitonic complexes confined in quantum dashes emitting in a broad spectral range from below 1.2 to 1.55 μm. We find peculiar trends for the biexciton and negative trion binding energies, with pronounced trion binding in smaller size quantum dashes. These experimental findings are then compared and qualitatively explained by atomistic theory. The theoretical analysis shows a fundamental role of correlation effects for the absolute values of excitonic binding energies. Eventually, we determine the bright exciton fine structure splitting (FSS), where both the experiment and theory predict a broad distribution of the splitting varying from below 50 to almost 180 μeV. We identify several key factors determining the FSS values in such nanostructures, including quantum dash size variation and composition fluctuations.

  18. Fine-scale spatial genetic structure in a multi-oak-species (Quercus spp. forest

    Directory of Open Access Journals (Sweden)

    Curtu AL

    2015-06-01

    Full Text Available Patterns of fine-scale spatial distribution of multilocus genotypes can provide valuable insights into the biology of forest tree species. Here we tested for the existence of spatial genetic structure (SGS in a four-oak-species forest with contrasting species abundances and hybridization rates. A total of 483 adult trees were mapped over 8.6 ha and genotyped using 10 highly polymorphic genomic regions. A weak but significant SGS was observed in each of the four oak species, with Quercus frainetto, the species with the lowest density in the sampling plot, exhibiting the strongest SGS. The values of the Sp statistic were 0.0033, 0.0035, 0.0042, and 0.0098 for Q. petraea, Q. robur, Q. pubescens, and Q. frainetto, respectively. The spatial correlogram of the total population was significantly different when hybrids were removed from the analysis, which suggests that hybridization influenced the SGS. Interspecific SGSs were significantly correlated with the rates of hybridization. Implications of the obtained results for the conservation and management of forest genetic resources are discussed.

  19. All-Optical dc Nanotesla Magnetometry Using Silicon Vacancy Fine Structure in Isotopically Purified Silicon Carbide

    Science.gov (United States)

    Simin, D.; Soltamov, V. A.; Poshakinskiy, A. V.; Anisimov, A. N.; Babunts, R. A.; Tolmachev, D. O.; Mokhov, E. N.; Trupke, M.; Tarasenko, S. A.; Sperlich, A.; Baranov, P. G.; Dyakonov, V.; Astakhov, G. V.

    2016-07-01

    We uncover the fine structure of a silicon vacancy in isotopically purified silicon carbide (4H-28SiC) and reveal not yet considered terms in the spin Hamiltonian, originated from the trigonal pyramidal symmetry of this spin-3 /2 color center. These terms give rise to additional spin transitions, which would be otherwise forbidden, and lead to a level anticrossing in an external magnetic field. We observe a sharp variation of the photoluminescence intensity in the vicinity of this level anticrossing, which can be used for a purely all-optical sensing of the magnetic field. We achieve dc magnetic field sensitivity better than 100 nT /√{Hz } within a volume of 3 ×10-7m m3 at room temperature and demonstrate that this contactless method is robust at high temperatures up to at least 500 K. As our approach does not require application of radio-frequency fields, it is scalable to much larger volumes. For an optimized light-trapping waveguide of 3 mm3 , the projection noise limit is below 100 fT /√{Hz } .

  20. Repetitive Thermomechanical Processing towards Ultra Fine Grain Structure in 301, 304 and 304L Stainless Steels

    Institute of Scientific and Technical Information of China (English)

    A. Momeni; S.M. Abbasi

    2011-01-01

    Thermomechanical processing as a combination of cold rolling and annealing was performed on austenitic stainless steels 301,304 and 304L. Two cold rolling steps each one up to a reduction of 75% were combined with an intermediate annealing at 800℃ for 20 min. The final annealing was performed at.the same temperature and time. Cold rolling contributed to martensite formation at the expense of metastable austenite in the studied materials. Austenite in 301 was found to be less stable than that in 304 and 304L. Hence, higher strength characteristics in the as-quenched 301 stainless steels were attributed to the higher volume fraction of martensite. Both α'-martensite and ε-martensite were found to form as induced by deformation. However, the intensity of ε-martensite increased as the stability of austenite decreased. Annealing after cold rolling led to the reversion of austenite with an ultra fine grained structure in the order of 0.5-1 μm from the strain induced martensite. The final grain size was found to be an inverse function of the amount of strain induced martensite. The thermomechanical processing considerably improved the strength characteristics while the simultaneous decrease of elongation was rather low.

  1. Implication of Spatial and Temporal Variations of the Fine-Structure Constant

    Science.gov (United States)

    Feng, Sze-Shiang; Yan, Mu-Lin

    2016-02-01

    Temporal and spatial variations of fine-structure constant α ≡ e2/hbar c in cosmology have been reported in analysis of combination Keck and VLT data. This paper studies the variations based on consideration of basic spacetime symmetry in physics. Both laboratory α 0 and distant α z are deduced from relativistic spectrum equations of atoms (e.g., hydrogen atom) defined in inertial reference systems. When Einstein's Λ≠0, the metric of local inertial reference systems in SM of cosmology is Beltrami metric instead of Minkowski, and the basic spacetime symmetry has to be de Sitter (dS) group. The corresponding special relativity (SR) is dS-SR. A model based on dS-SR is suggested. Comparing the predictions on α-varying with the data, the parameters are determined. The best-fit dipole mode in α's spatial varying is reproduced by this dS-SR model. α-varyings in whole sky are also studied. The results are generally in agreement with the estimations of observations. The main conclusion is that the phenomenon of α-varying cosmologically with dipole mode dominating is due to the de Sitter (or anti de Sitter) spacetime symmetry with a Minkowski point in an extended special relativity called de Sitter invariant special relativity (dS-SR) developed by Dirac-Inönü-Wigner-Gürsey-Lee-Lu-Zou-Guo.

  2. Helical motions of fine-structure prominence threads observed by Hinode and IRIS

    CERN Document Server

    Okamoto, Takenori J; Tsuneta, Saku

    2016-01-01

    Fine-structure dynamics in solar prominences holds critical clues to understanding their physical nature of significant space-weather implications. We report evidence of rotational motions of horizontal helical threads in two active-region prominences observed by the \\emph{Hinode} and/or \\emph{IRIS} satellites at high resolution. In the first event, we found transverse motions of brightening threads at speeds up to 55~km~s$^{-1}$ seen in the plane of the sky. Such motions appeared as sinusoidal space--time trajectories with a typical period of $\\sim$390~s, which is consistent with plane-of-sky projections of rotational motions. Phase delays at different locations suggest propagation of twists along the threads at phase speeds of 90--270~km~s$^{-1}$. At least 15 episodes of such motions occurred in two days, none associated with any eruption. For these episodes, the plane-of-sky speed is linearly correlated with the vertical travel distance, suggestive of a constant angular speed. In the second event, we found...

  3. Restricted gene flow and fine-scale population structuring in tool using New Caledonian crows

    Science.gov (United States)

    Rutz, C.; Ryder, T. B.; Fleischer, R. C.

    2012-04-01

    New Caledonian crows Corvus moneduloides are the most prolific avian tool users. It has been suggested that some aspects of their complex tool use behaviour are under the influence of cultural processes, involving the social transmission—and perhaps even progressive refinement—of tool designs. Using microsatellite and mt-haplotype profiling of crows from three distinct habitats (dry forest, farmland and beachside habitat), we show that New Caledonian crow populations can exhibit significant fine-scale genetic structuring. Our finding that some sites of genetic and/or cultural isolation of crow groups. Restricted movement of birds between local populations at such small spatial scales, especially across habitat boundaries, illustrates how specific tool designs could be preserved over time, and how tool technologies of different crow groups could diverge due to drift and local selection pressures. Young New Caledonian crows have an unusually long juvenile dependency period, during which they acquire complex tool-related foraging skills. We suggest that the resulting delayed natal dispersal drives population-divergence patterns in this species. Our work provides essential context for future studies that examine the genetic makeup of crow populations across larger geographic areas, including localities with suspected cultural differences in crow tool technologies.

  4. Fine structure and meiotic behaviour of the male multiple sex chromosomes in the genus Alouatta.

    Science.gov (United States)

    Solari, A J; Rahn, M I

    2005-01-01

    The meiotic cytology and fine structure of the sex multiples in males from two species of the genus Alouatta are presented and compared with descriptions from other species of this genus. As shown in pachytene by synaptonemal complex analysis and in metaphase I by spreading, there is a quadrivalent in male meiosis in A. caraya, which is formed by an X(1)X(2)Y(1)Y(2) complex, while in A. palliata there is a trivalent formed by an X(1)X(2)Y(1) complex. Chromosome painting with human probes shows that A. caraya sex multiples share the same components as those of A. seniculus sara and A. seniculus arctoidea. However, as shown here for A. palliata and by others in A. fusca, there are differences among the multiples of some species. It is shown that in this genus there are several varieties of sex multiples that share some features, and that the origin of these multiples is most probably a primitive development in the genus Alouatta. PMID:15545739

  5. Fine structure of the landers fault zone: segmentation and the rupture process.

    Science.gov (United States)

    Li, Y G; Aki, K; Vidale, J E; Lee, W H; Marone, C J

    1994-07-15

    Observations and modeling of 3- to 6-hertz seismic shear waves trapped within the fault zone of the 1992 Landers earthquake series allow the fine structure and continuity of the zone to be evaluated. The fault, to a depth of at least 12 kilometers, is marked by a zone 100 to 200 meters wide where shear velocity is reduced by 30 to 50 percent. This zone forms a seismic waveguide that extends along the southern 30 kilometers of the Landers rupture surface and ends at the fault bend about 18 kilometers north of the main shock epicenter. Another fault plane waveguide, disconnected from the first, exists along the northern rupture surface. These observations, in conjunction with surface slip, detailed seismicity patterns, and the progression of rupture along the fault, suggest that several simple rupture planes were involved in the Landers earthquake and that the inferred rupture front hesitated or slowed at the location where the rupture jumped from one to the next plane. Reduction in rupture velocity can tentatively be attributed to fault plane complexity, and variations in moment release can be attributed to variations in available energy.

  6. Dynamic magnetization models for soft ferromagnetic materials with coarse and fine domain structures

    Science.gov (United States)

    Zirka, S. E.; Moroz, Y. I.; Steentjes, S.; Hameyer, K.; Chwastek, K.; Zurek, S.; Harrison, R. G.

    2015-11-01

    We consider dynamic models, both numerical and analytical, that reproduce the magnetization field H(B) and the energy loss in ferromagnetic sheet materials with different domain structures. Conventional non-oriented (NO) and grain-oriented (GO) electrical steels are chosen as typical representatives of fine-domain and coarse-domain materials. The commonly-accepted loss separation procedures in these materials are critically analyzed. The use of a well-known simplified ("classical") expression for the eddy-current loss is identified as the primary source of mistaken evaluations of excess loss in NO steel, in which the loss components can only be evaluated using the Maxwell (penetration) equation. The situation is quite different in GO steel, in which the loss separation is uncertain, but the total dynamic loss is several times higher than that explained by any version (numerical or analytical) of the classical approach. To illustrate the uncertainty of the loss separation in GO steel, we show that the magnetization field, and thus the total loss, in this material can be represented with equal accuracy using either the existing three-component approach or our proposed two-component technique, which makes no distinction between classical eddy-current and excess fields and losses.

  7. Accelerating universe and the time-dependent fine-structure constant

    Science.gov (United States)

    Fujii, Yasunori

    2010-11-01

    I start with assuming a gravitational scalar field as the dark-energy supposed to be responsible for the accelerating universe. Also from the point of view of unification, a scalar field implies a time-variability of certain “constants” in Nature. In this context I once derived a relation for the time-variability of the fine-structure constant α: Δα/α =ζ Ƶ(α/π) Δσ, where ζ and Ƶ are the constants of the order one, while σ on the right-hand side is the scalar field in action in the accelerating universe. I use the reduced Planckian units with c=ℏ =MP(=(8π G)-1/2)=1. I then compared the dynamics of the accelerating universe, on one hand, and Δα/α derived from the analyses of QSO absorption lines, Oklo phenomenon, also different atomic clocks in the laboratories, on the other hand. I am here going to discuss the theoretical background of the relation, based on the scalar-tensor theory invented first by Jordan in 1955.

  8. Cosmological variation of the fine structure constant from an ultralight scalar field: The effects of mass

    Science.gov (United States)

    Gardner, Carl L.

    2003-08-01

    Cosmological variation of the fine structure constant α due to the evolution of a spatially homogeneous ultralight scalar field (m˜H0) during the matter and Λ dominated eras is analyzed. Agreement of Δα/α with the value suggested by recent observations of quasar absorption lines is obtained by adjusting a single parameter, the coupling of the scalar field to matter. Asymptotically α(t) in this model goes to a constant value α¯≈α0 in the early radiation and the late Λ dominated eras. The coupling of the scalar field to (nonrelativistic) matter drives α slightly away from α¯ in the epochs when the density of matter is important. Simultaneous agreement with the more restrictive bounds on the variation |Δα/α| from the Oklo natural fission reactor and from meteorite samples can be achieved if the mass of the scalar field is on the order of 0.5 0.6 HΛ, where HΛ=Ω1/2ΛH0. Depending on the scalar field mass, α may be slightly smaller or larger than α0 at the times of big bang nucleosynthesis, the emission of the cosmic microwave background, the formation of early solar system meteorites, and the Oklo reactor. The effects on the evolution of α due to nonzero mass for the scalar field are emphasized. An order of magnitude improvement in the laboratory technique could lead to a detection of (α˙/α)0.

  9. Time variation of the fine structure constant α from realistic models of Oklo reactors.

    Science.gov (United States)

    Gould, C. R.; Sharapov, E. I.; Lamoreaux, S. K.

    2006-11-01

    The topic of whether the fundamental constants of nature vary with time has been a subject of great interest since Dirac originally proposed the possibility that GN˜1/tuniverse. Recent observations of absorption spectra lines from distant quasars appeared to indicate a possible increase in the fine structure constant α over ten billion years. Contrarily, analyses of the time evolution of α from Oklo natural nuclear reactor data have yielded inconsistent results, some indicating a decrease over two billion years while others indicated no change. We have used known Oklo reactor epithermal spectral indices as criteria for selecting realistic reactor models. Reactors RZ2 and RZ10 were modeled with MCNP and the resulting neutron spectra were used to calculate the change in the ^149Sm capture cross section as a function of a possible shift in the energy of the 97.3-meV resonance. Our study resolves the contradictory situation with previous Oklo α-results. Our suggested 2 σ bound on a possible time variation of α over two billion years is stringent: -0.11 <=δαα <=0.24, in units of 10-7, but model dependent in that it assumes only α has varied over time.

  10. UVES radial velocity accuracy from asteroid observations. Implications for the fine structure constant variability

    CERN Document Server

    Molaro, P; Monai, S; Centurion, M; Bonifacio, P; D'Odorico, S; Monaco, L

    2007-01-01

    High resolution observations of the asteroids Iris and Juno have been performed by means of the UVES spectrograph at the ESO VLT to obtain the effective accurac y of the spectrograph's radial velocity. The knowledge of this quantity has impo rtant bearings on studies searching for a variability of the fine structure cons tant carried on with this instrument. Asteroids provide a precise radial velocit y reference at the level of 1 m/s which allows instrumental calibration and the recognition of small instrumental drifts and calibration systematics. In particu lar, radial velocity drifts due to non uniform slit illumination and slit optica l misalignment in the two UVES spectrograph arms can be investigated. The positi on of the solar spectrum reflected by the asteroids are compared with the solar wavelength positions or with that of asteroid observations at other epochs or wi th the twilight to asses UVES instrumental accuracy . Radial velocities offsets in the range 10--50 m/s are generally observed likely du...

  11. The running fine structure constant α(E) via the Adler function

    International Nuclear Information System (INIS)

    We present an up-to-date analysis for a precise determination of the effective fine structure constant and discuss the prospects for future improvements. We advocate to use a determination monitored by the Adler function which allows us to exploit perturbative QCD in an optimal well controlled way. Together with a long term program of hadronic cross section measurements at energies up to a few GeV, a determination of α(MZ) at a precision comparable to the one of the Z mass MZ should be feasible. Presently α(E) at E>1 GeV is the least precisely known of the fundamental parameters of the SM. Since, in spite of substantial progress due to new BaBar exclusive data, the region 1.4 to 2.4 GeV remains the most problematic one a major step in the reduction of the uncertainties are expected from VEPP-2000 [B. Khazin, these proceedings; S. Eidelman, Nucl. Phys. Proc. Suppl. 162 (2006) 323] and from a possible 'high-energy' option DAFNE-2 at Frascati [P. Raimondi, these proceedings; G. Venanzoni, Acta Phys. Polon. B 38 (2007) 3421; F. Ambrosino et al., Eur. Phys. J. C 50 (2007) 729]. The up-to-date evaluation reads Δαhad(5)(MZ2)=0.027515±0.000149 or α-1(MZ2)=128.957±0.020

  12. Fine structure of the entanglement entropy in the O(2) model

    Science.gov (United States)

    Yang, Li-Ping; Liu, Yuzhi; Zou, Haiyuan; Xie, Z. Y.; Meurice, Y.

    2016-01-01

    We compare two calculations of the particle density in the superfluid phase of the O(2) model with a chemical potential μ in 1+1 dimensions. The first relies on exact blocking formulas from the Tensor Renormalization Group (TRG) formulation of the transfer matrix. The second is a worm algorithm. We show that the particle number distributions obtained with the two methods agree well. We use the TRG method to calculate the thermal entropy and the entanglement entropy. We describe the particle density, the two entropies and the topology of the world lines as we increase μ to go across the superfluid phase between the first two Mott insulating phases. For a sufficiently large temporal size, this process reveals an interesting fine structure: the average particle number and the winding number of most of the world lines in the Euclidean time direction increase by one unit at a time. At each step, the thermal entropy develops a peak and the entanglement entropy increases until we reach half-filling and then decreases in a way that approximately mirrors the ascent. This suggests an approximate fermionic picture.

  13. Preferred Compression Speed for Speech and Music and Its Relationship to Sensitivity to Temporal Fine Structure.

    Science.gov (United States)

    Moore, Brian C J; Sęk, Aleksander

    2016-01-01

    Multichannel amplitude compression is widely used in hearing aids. The preferred compression speed varies across individuals. Moore (2008) suggested that reduced sensitivity to temporal fine structure (TFS) may be associated with preference for slow compression. This idea was tested using a simulated hearing aid. It was also assessed whether preferences for compression speed depend on the type of stimulus: speech or music. Twenty-two hearing-impaired subjects were tested, and the stimulated hearing aid was fitted individually using the CAM2A method. On each trial, a given segment of speech or music was presented twice. One segment was processed with fast compression and the other with slow compression, and the order was balanced across trials. The subject indicated which segment was preferred and by how much. On average, slow compression was preferred over fast compression, more so for music, but there were distinct individual differences, which were highly correlated for speech and music. Sensitivity to TFS was assessed using the difference limen for frequency at 2000 Hz and by two measures of sensitivity to interaural phase at low frequencies. The results for the difference limens for frequency, but not the measures of sensitivity to interaural phase, supported the suggestion that preference for compression speed is affected by sensitivity to TFS. PMID:27604778

  14. Solution structure of the main alpha-amylase inhibitor from amaranth seeds.

    Science.gov (United States)

    Martins, J C; Enassar, M; Willem, R; Wieruzeski, J M; Lippens, G; Wodak, S J

    2001-04-01

    The most abundant alpha-amylase inhibitor (AAI) present in the seeds of Amaranthus hypochondriacus, a variety of the Mexican crop plant amaranth, is the smallest polypeptide (32 residues) known to inhibit alpha-amylase activity of insect larvae while leaving that of mammals unaffected. In solution, 1H NMR reveals that AAI isolated from amaranth seeds adopts a major trans (70%) and minor cis (30%) conformation, resulting from slow cis-trans isomerization of the Val15-Pro16 peptide bond. Both solution structures have been determined using 2D 1H-NMR spectroscopy and XPLOR followed by restrained energy refinement in the consistent-valence force field. For the major isomer, a total of 563 distance restraints, including 55 medium-range and 173 long-range ones, were available from the NOESY spectra. This rather large number of constraints from a protein of such a small size results from a compact fold, imposed through three disulfide bridges arranged in a cysteine-knot motif. The structure of the minor cis isomer has also been determined using a smaller constraint set. It reveals a different backbone conformation in the Pro10-Pro20 segment, while preserving the overall global fold. The energy-refined ensemble of the major isomer, consisting of 20 low-energy conformers with an average backbone rmsd of 0.29 +/- 0.19 A and no violations larger than 0.4 A, represents a considerable improvement in precision over a previously reported and independently performed calculation on AAI obtained through solid-phase synthesis, which was determined with only half the number of medium-range and long-range restraints reported here, and featured the trans isomer only. The resulting differences in ensemble precision have been quantified locally and globally, indicating that, for regions of the backbone and a good fraction of the side chains, the conformation is better defined in the new solution structure. Structural comparison of the solution structure with the X-ray structure of the

  15. The contribution of visual information to the perception of speech in noise with and without informative temporal fine structure.

    Science.gov (United States)

    Stacey, Paula C; Kitterick, Pádraig T; Morris, Saffron D; Sumner, Christian J

    2016-06-01

    Understanding what is said in demanding listening situations is assisted greatly by looking at the face of a talker. Previous studies have observed that normal-hearing listeners can benefit from this visual information when a talker's voice is presented in background noise. These benefits have also been observed in quiet listening conditions in cochlear-implant users, whose device does not convey the informative temporal fine structure cues in speech, and when normal-hearing individuals listen to speech processed to remove these informative temporal fine structure cues. The current study (1) characterised the benefits of visual information when listening in background noise; and (2) used sine-wave vocoding to compare the size of the visual benefit when speech is presented with or without informative temporal fine structure. The accuracy with which normal-hearing individuals reported words in spoken sentences was assessed across three experiments. The availability of visual information and informative temporal fine structure cues was varied within and across the experiments. The results showed that visual benefit was observed using open- and closed-set tests of speech perception. The size of the benefit increased when informative temporal fine structure cues were removed. This finding suggests that visual information may play an important role in the ability of cochlear-implant users to understand speech in many everyday situations. Models of audio-visual integration were able to account for the additional benefit of visual information when speech was degraded and suggested that auditory and visual information was being integrated in a similar way in all conditions. The modelling results were consistent with the notion that audio-visual benefit is derived from the optimal combination of auditory and visual sensory cues. PMID:27085797

  16. Influence of the geometric structure on the V L3 near edge X-ray absorption fine structure from vanadium phosphorus oxide catalysts

    OpenAIRE

    Hävecker, M.; Knop-Gericke, A.; Mayer, R; Fait, M.; Bluhm, H.; Schlögl, R.

    2002-01-01

    We present the V L3 near edge X-ray absorption fine structure (NEXAFS) of a vanadium phosphorus oxide (VPO) catalyst. The spectrum is related to the V3d-O2p hybridised unoccupied states. The overall peak position at the V L3-absorption edge is determined by the formal oxidation state of the absorbing vanadium atom. Details of the absorption fine structure are influenced by the geometric structure of the compound. Empirically we found a linear relationship between the energy position of severa...

  17. Influence of the geometric structure on the V L3 near edge X-ray absorption fine structure from vanadium phosphorus oxide catalysts

    OpenAIRE

    Hävecker, Michael; Knop-Gericke, Axel; Mayer, Ralf W.; Fait, Martin; Bluhm, Hendrik; Schlögl, Robert

    2002-01-01

    We present the V L3 near edge X-ray absorption fine structure (NEXAFS) of a vanadium phosphorus oxide (VPO) catalyst. The spectrum is related to the V3d-O2p hybridised unoccupied states. The overall peak position at the V L3-absorption edge is determined by the formal oxidation state of the absorbing vanadium atom. Details of the absorption fine structure are influenced by the geometric structure of the compound. Empirically we found a linear relationship between the energy position of severa...

  18. A surface extended X-ray absorption fine structure study of tellurium adsorbed onto Si(100)

    Science.gov (United States)

    Burgess, S. R.; Cowie, B. C. C.; Wilks, S. P.; Dunstan, P. R.; Dunscombe, C. J.; Williams, R. H.

    1996-09-01

    The adsorption of tellurium on Si(100) has been studied using surface extended X-ray adsorption fine structure (SEXAFS) and X-ray standing wave spectroscopy (XSW). This particular system is of interest due to its potential applicability in the surfactant aided growth of CdHgTeCdTeSi(100) based infra-red detectors. The Te/Si(100) structure was generated by depositing a thick layer (˜ 100 Å) of CdTe onto a clean Si (2 × 1) double domain surface, and annealing the sample to 350°C. This resulted is a ˜ 1 ML Te terminated surface where the (2 × 1) reconstruction was lost in favour of a (1 × 1) symmetry. X-ray absorption of the Te L 3 edge ( E = 4341 eV), with a photon energy range of 4440-4700 eV, was probed using a total yield detection scheme. The SEXAFS results indicated that the Te atoms sat in 2-fold bridge sites directly above a fourth layer Si atom. The corresponding bond length was measured to be 2.52 ± 0.05 Å. The XSW measurements of the (400) reflection gave a coherent position of 1.63 ± 0.03 Å and a coherent fraction of 0.65. This is consistent with the breaking of the SiSi dimers and thus could be an example of the phenomena of adsorbate-induced dereconstruction of the surface. These results are compared with those of Bennet et al. who examined a similar system using soft X-ray photoemission (SXPS) and the STM study of Yoshikawa et al.

  19. Development of a two-dimensional imaging system of X-ray absorption fine structure.

    Science.gov (United States)

    Katayama, Misaki; Sumiwaka, Koichi; Hayashi, Kazuhiro; Ozutsumi, Kazuhiko; Ohta, Toshiaki; Inada, Yasuhiro

    2012-09-01

    A two-dimensional imaging system of X-ray absorption fine structure (XAFS) has been developed at beamline BL-4 of the Synchrotron Radiation Center of Ritsumeikan University. The system mainly consists of an ionization chamber for I(0) measurement, a sample stage, and a two-dimensional complementary metal oxide semiconductor (CMOS) image sensor for measuring the transmitted X-ray intensity. The X-ray energy shift in the vertical direction, which originates from the vertical divergence of the X-ray beam on the monochromator surface, is corrected by considering the geometrical configuration of the monochromator. This energy correction improves the energy resolution of the XAFS spectrum because each pixel in the CMOS detector has a very small vertical acceptance of ∼0.5 µrad. A data analysis system has also been developed to automatically determine the energy of the absorption edge. This allows the chemical species to be mapped based on the XANES feature over a wide area of 4.8 mm (H) × 3.6 mm (V) with a resolution of 10 µm × 10 µm. The system has been applied to the chemical state mapping of the Mn species in a LiMn(2)O(4) cathode. The heterogeneous distribution of the Mn oxidation state is demonstrated and is considered to relate to the slow delocalization of Li(+)-defect sites in the spinel crystal structure. The two-dimensional-imaging XAFS system is expected to be a powerful tool for analyzing the spatial distributions of chemical species in many heterogeneous materials such as battery electrodes. PMID:22898951

  20. X-ray absorption fine structure of aged, Pu-doped glass and ceramic waste forms

    Science.gov (United States)

    Hess, N. J.; Weber, W. J.; Conradson, S. D.

    1998-04-01

    X-ray absorption spectroscopic (XAS) studies were performed on three compositionally identical, Pu-doped, borosilicate glasses prepared 15 years ago at different α-activities by varying the 239Pu/ 238Pu isotopic ratio. The resulting α-activities ranged from 1.9×10 7 to 4.2×10 9 Bq/g and have current, accumulated doses between 8.8×10 15 to 1.9×10 18 α-decays/g. Two ceramic, polycrystalline zircon (ZrSiO 4) samples prepared 16 years ago with 10.0 wt% Pu was also investigated. Varying the 239Pu/ 238Pu isotopic ratio in these samples resulted in α-activities of 2.5×10 8 and 5.6×10 10 Bq/g and current, accumulated doses of 1.2×10 17 and 2.8×10 19 α-decays/g. The multicomponent composition of the waste forms permitted XAS investigations at six absorption edges for the borosilicate glass and at three absorption edges for the polycrystalline zircons. For both waste forms, analysis of extended X-ray absorption fine structure (EXAFS) and X-ray absorption near edge structure (XANES) spectra indicates that the local environment around the cations exhibits different degrees of disorder as a result of the accumulated α-decay dose. In general, cations with short cation-oxygen bonds show little effect from self-radiation whereas cations with long cation-oxygen bonds show a greater degree of disorder with accumulated α-decay dose.

  1. Composite fermions and the first-Landau-level fine structure of the fractional quantum Hall effect

    Science.gov (United States)

    Haxton, W. C.; Haxton, Daniel J.

    2016-04-01

    A set of scalar operators, originally introduced in connection with an analytic first-Landau-level (FLL) construction of fractional quantum Hall (FQHE) wave functions for the sphere, are employed in a somewhat different way to generate explicit representations of both hierarchy states (e.g., the series of fillings ν =1 /3 , 2/5, 3/7,⋯) and their conjugates (ν =1 , 2/3, 3/5,⋯) as noninteracting quasielectrons filling fine-structure subshells within the FLL. This yields, for planar and spherical geometries, a quasielectron representation of the incompressible FLL state of filling p /(2 p +1 ) in a magnetic field of strength B that is algebraically identical to the IQHE state of filling ν =p in a magnetic field of strength B /(2 p +1 ) . The construction provides a precise definition of the quasielectron/composite fermion that differs in some respects from common descriptions: they are eigenstates of L ,Lz ; they and the FLL subshells they occupy carry a third index I that is associated with breaking of scalar pairs; they absorb in their internal wave functions one, not two, units of magnetic flux; and they share a common, simple structure as vector products of a spinor creating an electron and one creating magnetic flux. We argue that these properties are a consequence of the breaking of the degeneracy of noninteracting electrons within the FLL by the scale-invariant Coulomb potential. We discuss the sense in which the wave function construction supports basic ideas of both composite fermion and hierarchical descriptions of the FQHE. We describe symmetries of the quasielectrons in the ν =1 /2 limit, where a deep Fermi sea of quasielectrons forms, and the quasielectrons take on Majorana and pseudo-Dirac characters. Finally, we show that the wave functions can be viewed as fermionic excitations of the bosonic half-filled shell, producing at ν =1 /2 an operator that differs from but plays the same role as the Pfaffian.

  2. Fine structures in the optical absorption spectra of photochemical silver in silver halides? A call for further research

    OpenAIRE

    Georgiev, Mladen

    2007-01-01

    A survey is presented of the work done so far to check earlier claims that a fine structure may be observed to occur under certain circumstances in the impurity spectral range of the optical absorption spectra of silver halides following photostimulation in the intrinsic range. This structure, associated with the photochemical formation of silver specks, has been questioned over the years. We now weigh carefully the experimental evidence on the silver halides against a background of similar d...

  3. Structure of the T cell receptor in a Ti alpha V beta 2, alpha V beta 8-positive T cell line

    DEFF Research Database (Denmark)

    Hou, X; Dietrich, J; Kuhlmann, J;

    1994-01-01

    not known; however, it has been suggested that each TcR contains two Ti dimers. To gain insight into the structure of the TcR we constructed a Ti alpha V beta 2, alpha V beta 8-positive T cell line which expressed the endogenous human TiV beta 8 and the transfected mouse TiV beta 2 both in association......The T cell receptor (TcR) is composed of at least six different polypeptide chains consisting of the clonotypic Ti heterodimer (Ti alpha beta or Ti gamma delta) and the noncovalently associated CD3 chains (CD3 gamma delta epsilon zeta). The exact number of subunits constituting the TcR is still...... with the endogenous Ti alpha and CD3 chains at the cell surface. Preclearing experiments with radioiodinated cell lysate prepared with digitonin lysis buffer demonstrated that depleting the lysate of Ti alpha V beta 8 by immunoprecipitation with anti V beta 8 monoclonal antibody (mAb) did not reduce the amount of Ti...

  4. Fine Crustal Structure in the Northwestern Iranian Plateau Revealed by Ambient Noise Tomography

    Science.gov (United States)

    Jiang, Mingming; Chen, Ling; Talebian, Morteza; Ghods, Abdolreza; Ai, Yinshuang; Sobouti, Farhad; He, Yumei; Motaghi, Khalil; Chen, Qi-Fu; Lyv, Yan; Xiao, Wenjiao

    2016-04-01

    Detailed information about the crustal and lithospheric structures is crucial for understanding the geodynamics processes of continental collision and subsequent mountain building. Being at the initial stage of continental collision, the Iranian Plateau has not been well studied due to the lack of high-resolution, robust images of the crustal and lithospheric structures. Along the Zagros Orogen in the NW part of the Iranian Plateau the Arabian Plate has collided with the Eurasian Plate since about 30 Ma ago, whereas in the Makran region to the southeast oceanic subduction underneath the Eurasian Plate is still an ongoing process. For better understanding the geodynamic processes from subduction to collision, we planned to deploy multiple dense seismic arrays sampling regions at different tectonic stages in the Iranian Plateau. Up to now, we have finished the first seismic array observation in NW Iran. Based on the high quality data recorded, we conduct ambient noise tomography to investigate the fine crustal structure of the area from the south of the Zagros to the coast of the Southern Caspian Sea. Our results revel a salient decoupling between the upper crust and lower crust in the Zagros. The upper crust is slow, likely due to the effects of thick sediments, and displays a consistent anisotropy pattern with a NW-SE fast shear-wave direction, which is proximately parallel to the strike of the Zagros Orogen. The middle to lower crust, on the other hand, shows low-to-high velocity variations with depth and anisotropic fabrics trending to NE-SW, which is perpendicular to the strike of the orogen. Combined with the imaging results from receiver functions, we suggest that the collision between the Arabian and Eurasian Plates has caused strong crustal deformation and localized thickening of the lower crust beneath the Zagros. We also find a high velocity anomaly in the lower crust beneath the Alborz Mountain, isolated from the low velocities beneath the central Iran

  5. Quasiparticle band structure for the Hubbard systems: Application to. alpha. -CeAl sub 2

    Energy Technology Data Exchange (ETDEWEB)

    Costa-Quintana, J.; Lopez-Aguilar, F. (Departamento de Fisica, Grupo de Electromagnetismo, Universidad Autonoma de Barcelona, Bellaterra, E-08193 Barcelona, Spain (ES)); Balle, S. (Departament de Fisica, Universitat de les Illes Balears, E-07071 Palma de Mallorca, Spain (ES)); Salvador, R. (Control Data Corporation, TALLAHASSEE, FL (USA) Supercomputer Computations Research Institute, Florida State University, Tallahassee, Florida 32306-4052 (USA))

    1990-04-01

    A self-energy formalism for determining the quasiparticle band structure of the Hubbard systems is deduced. The self-energy is obtained from the dynamically screened Coulomb interaction whose bare value is the correlation energy {ital U}. A method for integrating the Schroedingerlike equation with the self-energy operator is given. The method is applied to the cubic Laves phase of {alpha}-CeAl{sub 2} because it is a clear Hubbard system with a very complex electronic structure and, moreover, this system provides us with sufficient experimental data for testing our method.

  6. Measurement of the 2 sup 2 S sub 1/2 -2 sup 2 P sub 3/2 fine structure interval in muonium

    Energy Technology Data Exchange (ETDEWEB)

    Kettell, S.H.

    1990-08-01

    The (2{sup 2}S{sub 1/2} {minus} 2{sup 2}P{sub 3/2}) fine structure transition in muonium has been observed for the first time. The measured value is 9895 {sub {minus}30}{sup {plus}35}MHz. This measurement, when included with the theoretical value for the 2{sup 2}P{sub 1/2} {minus} 2{sup 2}P{sub 3/2} fine structure interval, gives a value for the Lamb shift (2{sup 2}S{sub 1/2} {minus} 2{sup 2}P{sub 1/2}) independent of previous direct measurements. From the theoretical value for the fine structure interval, 10921.833(3) MHz, the value for the Lamb shift determined from this experiment is 1027{sub {minus}35}{sup {plus}30} MHz and is in agreement with the prediction of quantum electrodynamics (QED) of 1047.5(3) MHz. Previous experimental values for the Lamb shift (2{sup 2}S{sub 1/2} {minus}2{sup 2}P{sub 1/2}) in muonium are 1070{sub {minus}15}{sup {plus} 12} MHz and 1042{sub {minus}23}{sup {plus}21} MHz. Combining this result with these previous results gives a new experimental value of 1058{sub {minus}12}{sup {plus}10} for the Lamb shift in muonium. Muonium, the bound state of two structureless leptons ({mu}{sup +}e{sup {minus}}), is an ideal system for testing bound state QED because of the lack of hadronic structure as exists in the hydrogen system. The measurement makes use of the techniques of atomic beam microwave spectroscopy. Muonium atoms ({mu}{sup +}e{sup {minus}}) in the 2S states are produced by the beam-foil technique at the Clinton P. Anderson Meson Physics Facility with a low momentum, sub-surface muon beam. A variable frequency microwave field is applied to drive the atoms from the 2S to the 2P states, with the subsequent observation of the Lyman alpha photon from the decay of the 2P state to the 1S ground state. The frequency is varied from 9.0--11.0 GHz, driving the F = 0 {yields} F = 1, F = 1, F = 1 and F = 1 {yields} F = 2 transitions.

  7. A unified description for dipoles of the fine-structure constant and SnIa Hubble diagram in Finslerian universe

    International Nuclear Information System (INIS)

    We propose a Finsler spacetime scenario of the anisotropic universe. The Finslerian universe requires both the fine-structure constant and the accelerating cosmic expansion to have a dipole structure and the directions of these two dipoles to be the same. Our numerical results show that the dipole direction of the SnIa Hubble diagram locates at (l,b) = (314.6 circle ± 20.3 circle,-11.5 circle ± 12.1 circle) with magnitude B = (-3.60 ± 1.66) x 10-2. The dipole direction of the fine-structure constant locates at (l,b) = (333.2 circle ± 8.8 circle,-12.7 circle ± 6.3 circle) with magnitude B = (0.97 ± 0.21) x 10-5. The angular separation between the two dipole directions is about 18.2 circle. (orig.)

  8. Modeling of 1—D Lossy Fine Structures Using Transformed—Space Non—Uniform PSTD

    Institute of Scientific and Technical Information of China (English)

    LIQingliang; CHENYinchao

    2003-01-01

    Although the advantages of the pseu-dospectral time domain (PSTD) has been validated in di-verse applications of electromagnetic problems based on a uniform grid, it faces a difficulty when an electromagnetic structure involves highly conductivity due to the Gibbs phenomena. In addition, its efficiency will be greatly re-duced in solving a problem with fine structure, since a denser grid is needed. In this paper, we apply a newly de-veloped transformed-space non-uniform grid PSTD tech-nique (TSNU-PSTD) to handle an application with very fine structure. By using a quadratic interpolation, we transform an non-unlform grid into a uniform one, and then we simply implement the conventional PSTD by only utilizing the standard fast Fourier transform (FFT) to de-rive PSTD update equations.

  9. Constraining the Variation of the Fine-structure Constant with Observations of Narrow Quasar Absorption Lines

    Science.gov (United States)

    Songaila, A.; Cowie, L. L.

    2014-10-01

    The unequivocal demonstration of temporal or spatial variability in a fundamental constant of nature would be of enormous significance. Recent attempts to measure the variability of the fine-structure constant α over cosmological time, using high-resolution spectra of high-redshift quasars observed with 10 m class telescopes, have produced conflicting results. We use the many multiplet (MM) method with Mg II and Fe II lines on very high signal-to-noise, high-resolution (R = 72, 000) Keck HIRES spectra of eight narrow quasar absorption systems. We consider both systematic uncertainties in spectrograph wavelength calibration and also velocity offsets introduced by complex velocity structure in even apparently simple and weak narrow lines and analyze their effect on claimed variations in α. We find no significant change in α, Δα/α = (0.43 ± 0.34) × 10-5, in the redshift range z = 0.7-1.5, where this includes both statistical and systematic errors. We also show that the scatter in measurements of Δα/α arising from absorption line structure can be considerably larger than assigned statistical errors even for apparently simple and narrow absorption systems. We find a null result of Δα/α = (- 0.59 ± 0.55) × 10-5 in a system at z = 1.7382 using lines of Cr II, Zn II, and Mn II, whereas using Cr II and Zn II lines in a system at z = 1.6614 we find a systematic velocity trend that, if interpreted as a shift in α, would correspond to Δα/α = (1.88 ± 0.47) × 10-5, where both results include both statistical and systematic errors. This latter result is almost certainly caused by varying ionic abundances in subcomponents of the line: using Mn II, Ni II, and Cr II in the analysis changes the result to Δα/α = (- 0.47 ± 0.53) × 10-5. Combining the Mg II and Fe II results with estimates based on Mn II, Ni II, and Cr II gives Δα/α = (- 0.01 ± 0.26) × 10-5. We conclude that spectroscopic measurements of quasar absorption lines are not yet capable of

  10. Constraining the variation of the fine-structure constant with observations of narrow quasar absorption lines

    Energy Technology Data Exchange (ETDEWEB)

    Songaila, A.; Cowie, L. L., E-mail: acowie@ifa.hawaii.edu [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States)

    2014-10-01

    The unequivocal demonstration of temporal or spatial variability in a fundamental constant of nature would be of enormous significance. Recent attempts to measure the variability of the fine-structure constant α over cosmological time, using high-resolution spectra of high-redshift quasars observed with 10 m class telescopes, have produced conflicting results. We use the many multiplet (MM) method with Mg II and Fe II lines on very high signal-to-noise, high-resolution (R = 72, 000) Keck HIRES spectra of eight narrow quasar absorption systems. We consider both systematic uncertainties in spectrograph wavelength calibration and also velocity offsets introduced by complex velocity structure in even apparently simple and weak narrow lines and analyze their effect on claimed variations in α. We find no significant change in α, Δα/α = (0.43 ± 0.34) × 10{sup –5}, in the redshift range z = 0.7-1.5, where this includes both statistical and systematic errors. We also show that the scatter in measurements of Δα/α arising from absorption line structure can be considerably larger than assigned statistical errors even for apparently simple and narrow absorption systems. We find a null result of Δα/α = (– 0.59 ± 0.55) × 10{sup –5} in a system at z = 1.7382 using lines of Cr II, Zn II, and Mn II, whereas using Cr II and Zn II lines in a system at z = 1.6614 we find a systematic velocity trend that, if interpreted as a shift in α, would correspond to Δα/α = (1.88 ± 0.47) × 10{sup –5}, where both results include both statistical and systematic errors. This latter result is almost certainly caused by varying ionic abundances in subcomponents of the line: using Mn II, Ni II, and Cr II in the analysis changes the result to Δα/α = (– 0.47 ± 0.53) × 10{sup –5}. Combining the Mg II and Fe II results with estimates based on Mn II, Ni II, and Cr II gives Δα/α = (– 0.01 ± 0.26) × 10{sup –5}. We conclude that spectroscopic measurements of

  11. Constraining the variation of the fine-structure constant with observations of narrow quasar absorption lines

    International Nuclear Information System (INIS)

    The unequivocal demonstration of temporal or spatial variability in a fundamental constant of nature would be of enormous significance. Recent attempts to measure the variability of the fine-structure constant α over cosmological time, using high-resolution spectra of high-redshift quasars observed with 10 m class telescopes, have produced conflicting results. We use the many multiplet (MM) method with Mg II and Fe II lines on very high signal-to-noise, high-resolution (R = 72, 000) Keck HIRES spectra of eight narrow quasar absorption systems. We consider both systematic uncertainties in spectrograph wavelength calibration and also velocity offsets introduced by complex velocity structure in even apparently simple and weak narrow lines and analyze their effect on claimed variations in α. We find no significant change in α, Δα/α = (0.43 ± 0.34) × 10–5, in the redshift range z = 0.7-1.5, where this includes both statistical and systematic errors. We also show that the scatter in measurements of Δα/α arising from absorption line structure can be considerably larger than assigned statistical errors even for apparently simple and narrow absorption systems. We find a null result of Δα/α = (– 0.59 ± 0.55) × 10–5 in a system at z = 1.7382 using lines of Cr II, Zn II, and Mn II, whereas using Cr II and Zn II lines in a system at z = 1.6614 we find a systematic velocity trend that, if interpreted as a shift in α, would correspond to Δα/α = (1.88 ± 0.47) × 10–5, where both results include both statistical and systematic errors. This latter result is almost certainly caused by varying ionic abundances in subcomponents of the line: using Mn II, Ni II, and Cr II in the analysis changes the result to Δα/α = (– 0.47 ± 0.53) × 10–5. Combining the Mg II and Fe II results with estimates based on Mn II, Ni II, and Cr II gives Δα/α = (– 0.01 ± 0.26) × 10–5. We conclude that spectroscopic measurements of quasar absorption lines are not yet

  12. Effects of Age and Hearing Loss on the Processing of Auditory Temporal Fine Structure.

    Science.gov (United States)

    Moore, Brian C J

    2016-01-01

    Within the cochlea, broadband sounds like speech and music are filtered into a series of narrowband signals, each of which can be considered as a relatively slowly varying envelope (ENV) imposed on a rapidly oscillating carrier (the temporal fine structure, TFS). Information about ENV and TFS is conveyed in the timing and short-term rate of nerve spikes in the auditory nerve. There is evidence that both hearing loss and increasing age adversely affect the ability to use TFS information, but in many studies the effects of hearing loss and age have been confounded. This paper summarises evidence from studies that allow some separation of the effects of hearing loss and age. The results suggest that the monaural processing of TFS information, which is important for the perception of pitch and for segregating speech from background sounds, is adversely affected by both hearing loss and increasing age, the former being more important. The monaural processing of ENV information is hardly affected by hearing loss or by increasing age. The binaural processing of TFS information, which is important for sound localisation and the binaural masking level difference, is also adversely affected by both hearing loss and increasing age, but here the latter seems more important. The deterioration of binaural TFS processing with increasing age appears to start relatively early in life. The binaural processing of ENV information also deteriorates somewhat with increasing age. The reduced binaural processing abilities found for older/hearing-impaired listeners may partially account for the difficulties that such listeners experience in situations where the target speech and interfering sounds come from different directions in space, as is common in everyday life. PMID:27080640

  13. Studying the fine structure of coherent echo spectra using data from Irkutsk incoherent scatter radar

    Science.gov (United States)

    Berngardt, O. I.; Potekhin, A. P.

    2009-12-01

    Studying the processes generating different-scale inhomogeneities is one of the challenging problems of ionospheric physics. Plasma instabilities are one of the physical mechanisms by which small-scale inhomogeneities are formed. The main forms of instability in the ionospheric E-layer are two-stream and gradient-drift ones. The inhomogeneities generated by them lead to an abnormally intense radio scattering of different wavelengths (known as coherent echo (CE) or radio aurora) in the E-layer. Therefore, the method of radiowave backscattering is among the widely used methods for studying such inhomogeneities. The CE phenomenon has been investigated most intensely at high and equatorial latitudes, where the conditions for the CE origination are formed rather regularly. For the last decade, CE has also been intensely studied at midlatitudes, where it is observed less frequently and its formation conditions are less known. In 1998-2006, the purposeful studies of the midlatitude CE peculiarities were performed at the Irkutsk incoherent scatter (IS) radar, with a particular emphasis on its coherent properties. It was for the first time found out that the spectra of some data sets had a fine comb-shaped structure, which generated well-known single-humped CE spectra as a result of statistical averaging. In the scope of this study, unique coherent methods for processing individual data sets of CE signals were developed, making it possible to reveal the peculiarities of unaveraged CE-signal spectra. To describe these peculiarities, we proposed a new model of the inhomogeneity spectrum, which is the superposition of the discrete set of spatial harmonics with close wave numbers. The model was shown to adequately describe the scattered signal characteristics observed experimentally.

  14. DISCOVERY OF FINELY STRUCTURED DYNAMIC SOLAR CORONA OBSERVED IN THE Hi-C TELESCOPE

    Energy Technology Data Exchange (ETDEWEB)

    Winebarger, Amy R.; Cirtain, Jonathan; Savage, Sabrina; Alexander, Caroline [NASA Marshall Space Flight Center, ZP 13, Huntsville, AL 35812 (United States); Golub, Leon; DeLuca, Edward [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Schuler, Timothy, E-mail: amy.r.winebarger@nasa.gov [State University of New York College at Buffalo, 1300 Elmwood Avenue, Buffalo, NY 14222 (United States)

    2014-05-20

    In the Summer of 2012, the High-resolution Coronal Imager (Hi-C) flew on board a NASA sounding rocket and collected the highest spatial resolution images ever obtained of the solar corona. One of the goals of the Hi-C flight was to characterize the substructure of the solar corona. We therefore examine how the intensity scales from AIA resolution to Hi-C resolution. For each low-resolution pixel, we calculate the standard deviation in the contributing high-resolution pixel intensities and compare that to the expected standard deviation calculated from the noise. If these numbers are approximately equal, the corona can be assumed to be smoothly varying, i.e., have no evidence of substructure in the Hi-C image to within Hi-C's ability to measure it given its throughput and readout noise. A standard deviation much larger than the noise value indicates the presence of substructure. We calculate these values for each low-resolution pixel for each frame of the Hi-C data. On average, 70% of the pixels in each Hi-C image show no evidence of substructure. The locations where substructure is prevalent is in the moss regions and in regions of sheared magnetic field. We also find that the level of substructure varies significantly over the roughly 160 s of the Hi-C data analyzed here. This result indicates that the finely structured corona is concentrated in regions of heating and is highly time dependent.

  15. DISCOVERY OF FINELY STRUCTURED DYNAMIC SOLAR CORONA OBSERVED IN THE Hi-C TELESCOPE

    International Nuclear Information System (INIS)

    In the Summer of 2012, the High-resolution Coronal Imager (Hi-C) flew on board a NASA sounding rocket and collected the highest spatial resolution images ever obtained of the solar corona. One of the goals of the Hi-C flight was to characterize the substructure of the solar corona. We therefore examine how the intensity scales from AIA resolution to Hi-C resolution. For each low-resolution pixel, we calculate the standard deviation in the contributing high-resolution pixel intensities and compare that to the expected standard deviation calculated from the noise. If these numbers are approximately equal, the corona can be assumed to be smoothly varying, i.e., have no evidence of substructure in the Hi-C image to within Hi-C's ability to measure it given its throughput and readout noise. A standard deviation much larger than the noise value indicates the presence of substructure. We calculate these values for each low-resolution pixel for each frame of the Hi-C data. On average, 70% of the pixels in each Hi-C image show no evidence of substructure. The locations where substructure is prevalent is in the moss regions and in regions of sheared magnetic field. We also find that the level of substructure varies significantly over the roughly 160 s of the Hi-C data analyzed here. This result indicates that the finely structured corona is concentrated in regions of heating and is highly time dependent

  16. The role of fine-scale anatomical structure in the dynamics of reentry in computational models of the rabbit ventricles.

    Science.gov (United States)

    Bishop, Martin J; Plank, Gernot

    2012-09-15

    Fine-scale anatomical structures in the heart may play an important role in sustaining cardiac arrhythmias. However, the extent of this role and how it may differ between species are not fully understood. In this study we used computational modelling to assess the impact of anatomy upon arrhythmia maintenance in the rabbit ventricles. Specifically, we quantified the dynamics of excitation wavefronts during episodes of simulated tachyarrhythmias and fibrillatory arrhythmias, defined as being respectively characterised by relatively low and high spatio-temporal disorganisation.Two computational models were used: a highly anatomically detailed MR-derived rabbit ventricular model (representing vasculature, endocardial structures) and a simplified equivalent model, constructed from the same MR-data but lacking such fine-scale anatomical features. During tachyarrhythmias, anatomically complex and simplified models showed very similar dynamics; however, during fibrillatory arrhythmias, as activation wavelength decreased, the presence of fine-scale anatomical details appeared to marginally increase disorganisation of wavefronts during arrhythmias in the complex model. Although a small amount of clustering of reentrant rotor centres (filaments) around endocardial structures was witnessed in follow-up analysis (which slightly increased during fibrillation as rotor size decreased), this was significantly less than previously reported in large animals. Importantly, no anchoring of reentrant rotors was visibly identifiable in arrhythmia movies. These differences between tachy- and fibrillatory arrhythmias suggest that the relative size of reentrant rotors with respect to anatomical obstacles governs the influence of fine-scale anatomy in the maintenance of ventricular arrhythmias in the rabbit. In conclusion, our simulations suggest that fine-scale anatomical features play little apparent role in the maintenance of tachyarrhythmias in the rabbit ventricles and, contrary to

  17. Synthetic differential emission measure curves of prominence fine structures. II. The SoHO/SUMER prominence of 8 June 2004

    Science.gov (United States)

    Gunár, S.; Parenti, S.; Anzer, U.; Heinzel, P.; Vial, J.-C.

    2011-11-01

    Aims: This study is the first attempt to combine the prominence observations in Lyman, UV, and EUV lines with the determination of the prominence differential emission measure derived using two different techniques, one based on the inversion of the observed UV and EUV lines and the other employing 2D non-LTE prominence fine-structure modeling of the Lyman spectra. Methods: We use a trial-and-error method to derive the 2D multi-thread prominence fine-structure model producing synthetic Lyman spectra in good agreement with the observations. We then employ a numerical method to perform the forward determination of the DEM from 2D multi-thread models and compare the synthetic DEM curves with those derived from observations using inversion techniques. Results: A set of available observations of the June 8, 2004 prominence allows us to determine the range of input parameters, which contains models producing synthetic Lyman spectra in good agreement with the observations. We select three models, which represent this parametric-space area well and compute the synthetic DEM curves for multi-thread realizations of these models. The synthetic DEM curves of selected models are in good agreement with the DEM curves derived from the observations. Conclusions: We show that the evaluation of the prominence fine-structure DEM complements the analysis of the prominence hydrogen Lyman spectra and that its combination with the detailed radiative-transfer modeling of prominence fine structures provides a useful tool for investigating the prominence temperature structure from the cool core to the prominence-corona transition region.

  18. Fine structure of the band-edge excitons and trions in CdSe/CdS core/shell nanocrystals

    Science.gov (United States)

    Shabaev, A.; Rodina, A. V.; Efros, Al. L.

    2012-11-01

    We present a theoretical description of excitons and positively and negatively charged trions in “giant” CdSe/CdS core-shell nanocrystals (NCs). The developed theory provides the parameters describing the fine structure of excitons in CdSe/CdS core/thick shell NCs as a function of the CdSe/CdS conduction band offset and the CdSe core radius. We have also developed a general theory describing the fine structure of positively charged trions created in semiconductor NCs with a degenerate valence band. The calculations take into account the complex structure of the CdSe valence band and interparticle Coulomb and exchange interaction. Presented in this paper are the CdSe core size and CdSe/CdS conduction band offset dependencies (i) of the positively charged trion fine structure, (ii) of the binding energy of the negatively charged trion, and (iii) of the radiative decay time for excitons and trions. The results of theoretical calculations are in qualitative agreement with available experimental data.

  19. Structural complex of sterol 14[alpha]-demethylase (CYP51) with 14[alpha]-methylenecyclopropyl-[delta]7-24, 25-dihydrolanosterol[S

    Energy Technology Data Exchange (ETDEWEB)

    Hargrove, Tatiana Y.; Wawrzak, Zdzislaw; Liu, Jialin; Waterman, Michael R.; Nes, W. David; Lepesheva, Galina I. (Vanderbilt); (TTU); (NWU)

    2012-06-28

    Sterol 14{alpha}-demethylase (CYP51) that catalyzes the removal of the 14{alpha}-methyl group from the sterol nucleus is an essential enzyme in sterol biosynthesis, a primary target for clinical and agricultural antifungal azoles and an emerging target for antitrypanosomal chemotherapy. Here, we present the crystal structure of Trypanosoma (T) brucei CYP51 in complex with the substrate analog 14{alpha}-methylenecyclopropyl-{Delta}7-24,25-dihydrolanosterol (MCP). This sterol binds tightly to all protozoan CYP51s and acts as a competitive inhibitor of F105-containing (plant-like) T. brucei and Leishmania (L) infantum orthologs, but it has a much stronger, mechanism-based inhibitory effect on I105-containing (animal/fungi-like) T. cruzi CYP51. Depicting substrate orientation in the conserved CYP51 binding cavity, the complex specifies the roles of the contact amino acid residues and sheds new light on CYP51 substrate specificity. It also provides an explanation for the effect of MCP on T. cruzi CYP51. Comparison with the ligand-free and azole-bound structures supports the notion of structural rigidity as the characteristic feature of the CYP51 substrate binding cavity, confirming the enzyme as an excellent candidate for structure-directed design of new drugs, including mechanism-based substrate analog inhibitors.

  20. Structural basis of nucleic-acid recognition and double-strand unwinding by the essential neuronal protein Pur-alpha.

    Science.gov (United States)

    Weber, Janine; Bao, Han; Hartlmüller, Christoph; Wang, Zhiqin; Windhager, Almut; Janowski, Robert; Madl, Tobias; Jin, Peng; Niessing, Dierk

    2016-01-01

    The neuronal DNA-/RNA-binding protein Pur-alpha is a transcription regulator and core factor for mRNA localization. Pur-alpha-deficient mice die after birth with pleiotropic neuronal defects. Here, we report the crystal structure of the DNA-/RNA-binding domain of Pur-alpha in complex with ssDNA. It reveals base-specific recognition and offers a molecular explanation for the effect of point mutations in the 5q31.3 microdeletion syndrome. Consistent with the crystal structure, biochemical and NMR data indicate that Pur-alpha binds DNA and RNA in the same way, suggesting binding modes for tri- and hexanucleotide-repeat RNAs in two neurodegenerative RNAopathies. Additionally, structure-based in vitro experiments resolved the molecular mechanism of Pur-alpha's unwindase activity. Complementing in vivo analyses in Drosophila demonstrated the importance of a highly conserved phenylalanine for Pur-alpha's unwinding and neuroprotective function. By uncovering the molecular mechanisms of nucleic-acid binding, this study contributes to understanding the cellular role of Pur-alpha and its implications in neurodegenerative diseases. PMID:26744780

  1. Flare processes evolution and polarization changes of fine structures of solar radio emission in the April 11, 2013 event

    CERN Document Server

    Chernov, Gennady; Tan, Baolin; Yan, Yihua; Tan, Chengming; Fu, Qijun; Karlicky, Marian; Fomichev, Valery

    2015-01-01

    The measurement of positions and sizes of radio sources in the observations of solar radio spectral fine structures in an M6.5 flare on April 11, 2013 were observed simultaneously by several radio instruments at four different observatories: Chinese Solar Broadband Radio Spectrometers at Huairou (SBRS/Huairou), Ondrejov Radio spectrograph in the Czech Republic (ORSC/Ondrejov), Badary Broadband Microwave spectropolarimeter (BMS/Irkutsk), and spectrograph/IZMIRAN (Moscow, Troitsk). The fine structures include microwave zebra patterns (ZP), fast pulsations, and fibers. They were observed during the flare brightening located at the tops of a loop arcade. The dynamics of the polarization was associated with the motion of the flare exciter, which was observed in EUV images at 171A and 131A (SDO/AIA). Combining magnetograms observed by the SDO Helioseismic and Magnetic Imager (HMI) with the homologous assumption of EUV flare brightening and ZP bursts, we deduced that the observed ZPs correspond to the ordinary radio...

  2. Achieving Fine Beta Grain Structure in a Metastable Beta Titanium Alloy Through Multiple Forging-Annealing Cycles

    Science.gov (United States)

    Zafari, Ahmad; Ding, Yunpeng; Cui, Jianzhong; Xia, Kenong

    2016-07-01

    A coarse-grained (order of 1 mm) Ti-5553 metastable beta alloy was subjected to multiple passes of low-temperature forging and multiple forging plus annealing cycles, respectively. In the forging only processing, strain was concentrated in the shear bands formed and accumulated with each forging pass, resulting in a heterogeneous microstructure and eventual cracking along the shear bands. In contrast, the introduction of a short beta annealing after each forging step led to fine recrystallized grains (50 to 100 µm) formed in the shear bands, and a uniformly refined beta grain structure after four cycles. This is attributed to the strengthening effect of the fine grains, causing redistribution of most severe strains to the coarse grain region in the subsequent forging, consistent with the simulated results by finite element analysis. The analyses of the microstructures and simulated strain distributions revealed that the critical strain for recrystallization is between 0.2 and 0.5 and the strain to fracture to be ~0.8 to 0.9. The fine-grained (50 to 100 µm) beta alloy, however, fractured at a much smaller strain of <0.4 during the next forging step, owing to the formation of stress-induced martensitic α″ which is more prevalent in fine grains than in coarse ones.

  3. Spatial hearing benefits demonstrated with presentation of acoustic temporal fine structure cues in bilateral cochlear implant listenersa)

    OpenAIRE

    Churchill, Tyler H.; Kan, Alan; Goupell, Matthew J.; Litovsky, Ruth Y.

    2014-01-01

    Most contemporary cochlear implant (CI) processing strategies discard acoustic temporal fine structure (TFS) information, and this may contribute to the observed deficits in bilateral CI listeners' ability to localize sounds when compared to normal hearing listeners. Additionally, for best speech envelope representation, most contemporary speech processing strategies use high-rate carriers (≥900 Hz) that exceed the limit for interaural pulse timing to provide useful binaural information. Many...

  4. Fine structure of the epidermal Leydig cells in the axolotl Ambystoma mexicanum in relation to their function.

    Science.gov (United States)

    Jarial, M S

    1989-12-01

    The fine structure of the Leydig cells in the epidermis of the strictly aquatic adult axolotl Ambystoma mexicanum resembles that of similar cells in larval salamanders. The major finding of this study is that the mucous secretion of the Leydig cells is released into the intercellular spaces from which it is discharged through pores onto the surface of the epidermis where it forms a mucous layer to protect the skin.

  5. Fine structure characterization of zero-valent iron nanoparticles for decontamination of nitrites and nitrates in wastewater and groundwater

    OpenAIRE

    Kuen-Song Lin et al

    2008-01-01

    The main objectives of the present study were to investigate the chemical reduction of nitrate or nitrite species by zero-valent iron nanoparticle (ZVIN) in aqueous solution and related reaction kinetics or mechanisms using fine structure characterization. This work also exemplifies the utilization of field emission-scanning electron microscope (FE–SEM), transmission electron microscopy (TEM), and x-ray diffraction (XRD) to reveal the speciation and possible reaction pathway in a very complex...

  6. A comparison of fine structures in high-resolution x-ray-absorption spectra of various condensed organic molecules.

    Science.gov (United States)

    Schoell, A; Zou, Y; Huebner, D; Urquhart, S G; Schmidt, Th; Fink, R; Umbach, E

    2005-07-22

    We report on a high-resolution C-K and O-K near-edge x-ray-absorption fine-structure (NEXAFS) study of large aromatic molecules in condensed thin films, namely, anhydrides 1,4,5,8-naphthalene-tetracarboxylic acid dianhydride, 3,4,9,10-perylene-tetracarboxylic acid dianhydride, benzoperylene-(1,2)-dicarboxylic acid anhydride, and 1,8-naphthalene-dicarboxylic acid anhydride and the quinoic acenaphthenequinone. Due to the high-energy resolution of the third-generation synchrotron source BESSY II we observe large differences in the NEXAFS fine structures even for very similar molecules, resulting in a wealth of new information. The rich fine structure can unambiguously be assigned to the coupling of electronic transitions to vibronic excitations. Backed by ab initio calculations we present a detailed analysis of the spectra that allows the complete interpretation of the near-edge features. It also yields information on the vibronic properties in the electronically excited state as well as on the response of the electronic system upon core excitation. The strong differences in the electron-vibron coupling for different molecules are discussed. PMID:16095371

  7. Chemistry as a function of the fine-structure constant and the electron-proton mass ratio

    International Nuclear Information System (INIS)

    In standard computations in theoretical quantum chemistry the accepted values of the fundamental physical constants are assumed. Alternatively, the tools of computational quantum chemistry can be used to investigate hypothetical chemistry that would result from different values of these constants, given the same physical laws. In this work, the dependence of a variety of basic chemical quantities on the values of the fine-structure constant and the electron-proton mass ratio is explored. In chemistry, the accepted values of both constants may be considered small, in the sense that their increase must be substantial to seriously impact bond energies. It is found that if the fine-structure constant were larger, covalent bonds between light atoms would be weaker, and the dipole moment and hydrogen-bonding ability of water would be reduced. Conversely, an increase in the value of the electron-proton mass ratio increases dissociation energies in molecules such as H2, O2, and CO2. Specifically, a sevenfold increase in the fine-structure constant decreases the strength of the O-H bond in the water molecule by 7 kcal mol-1 while reducing its dipole moment by at least 10%, whereas a 100-fold increase in the electron-proton mass ratio increases the same bond energy by 11 kcal mol-1.

  8. On the origin of fine structure in the photoluminescence spectra of the β-sialon:Eu2+ green phosphor

    Directory of Open Access Journals (Sweden)

    Kohsei Takahashi, Ken-ichi Yoshimura, Masamichi Harada, Yoshitaka Tomomura, Takashi Takeda, Rong-Jun Xie and Naoto Hirosaki

    2012-01-01

    Full Text Available The photoluminescence (PL and PL excitation (PLE spectra of Si6−zAlzOzN8−z (β-sialon:Eu2+ phosphors with small z values (z=0.025–0.24 were studied at room temperature and 6 K. The PL and PLE spectra exhibit fine structure with the PL lines being as sharp as 45–55 nm even at room temperature; this fine structure was enhanced by decreasing the z value. These results can be used for expanding the color gamut of liquid crystal displays, particularly in the blue–green region. From low-temperature measurements, the fine PLE structure was ascribed to discrete energy levels of 7FJ states. The 4f65d excited states of Eu2+ are considered to be localized near the 4f orbital. This is because the bonding of Eu2+ with surrounding atoms is ionic rather than covalent. Lattice phonon absorptions were also observed in the PLE spectrum, revealing that the optically active Eu2+ ions are located in the β-sialon crystal. The PL spectrum of the sample with the smallest z value (0.025 consists of a sharp zero-phonon line and lattice phonon replicas, which results in a sharp and asymmetric spectral shape.

  9. Equal channel angular pressing technique for the formation of ultra-fine grained structures

    Directory of Open Access Journals (Sweden)

    Kazeem O. Sanusi

    2012-10-01

    Full Text Available Equal channel angular pressing is one of the techniques in metal forming processes in which an ultra-large plastic strain is imposed on a bulk material in order to make ultra-fine grained and nanocrystalline metals and alloys. The technique is a viable forming procedure to extrude materials by use of specially designed channel dies without substantially changing the geometry by imposing severe plastic deformation. This technique has the potential for high strain rate superplasticity by effective grain refinement to the level of the submicron-scale or nanoscale. Wereview recent work on new trends in equal channel angular pressing techniques and the manufacturing of die-sets used for the processing of metals and alloys. We also experimented on a copper alloy using the equal channel angular pressing technique to examine the microstructural, mechanical and hardness properties of the ultra-fine grained and nanocrystalline materials produced. After deformation, all samples were subjected to a hardness test and the results showed improved mechanical behaviour of the ultra-fine grained copper alloy that was developed. This research provides an opportunity to examine the significance of the equal channel angular pressing process for metals and alloys. That is, these ultra-fine grained materials can be used in the manufacturing of semi-finished products used in the power, aerospace, medical and automotive industries.

  10. Astronomical constraints on the cosmic evolution of the fine structure constant and possible quantum dimensions

    NARCIS (Netherlands)

    Carilli, CL; Menten, KM; Stocke, JT; Perlman, E; Vermeulen, R; Briggs, F; de Bruyn, AG; Conway, J; Moore, CP

    2000-01-01

    We present measurements of absorption by the 21 cm hyperfine transition of neutral hydrogen toward radio sources at substantial look-back times. These data are used in combination with observations of rotational transitions of common interstellar molecules to set limits on the evolution of the fine

  11. Fine structure analysis of biocompatible ceramic materials based hydroxyapatite and metallic biomaterials 316L

    Energy Technology Data Exchange (ETDEWEB)

    Anghelina, F.V.; Ungureanu, D.N.; Bratu, V. [Faculty of Materials Engineering and Mechanics, Valahia University of Targoviste, 18-24 Unirii Bd., 130082 (Romania); Popescu, I.N., E-mail: pinicoleta24@yahoo.com [Faculty of Materials Engineering and Mechanics, Valahia University of Targoviste, 18-24 Unirii Bd., 130082 (Romania); Rusanescu, C.O. [Politehnica University, 060042 Bucharest (Romania)

    2013-11-15

    The aim of this paper was to obtain and characterize (surface morphology and fine structure) two types of materials: Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2} hydroxyapatite powder (HAp) as biocompatible ceramic materials and AISI 316L austenitic stainless steels as metallic biomaterials, which are the components of the metal–ceramic composites used for medical implants in reconstructive surgery and prosthetic treatment. The HAp was synthesized by coprecipitation method, heat treated at 200 °C, 800 °C and 1200 °C for 4 h, analyzed by X-ray diffraction (XRD) and scanning electron microscope (SEM). The stainless steel 316L type was made by casting, annealing and machined with a low speed (100 mm/s) in order to obtain a smooth surface and after that has been studied from residual stresses point of view in three polishing regimes conditions: at low speed polishing (150 rpm), at high speed polishing (1500 rpm) and high speed-vibration contact polishing (1500 rpm) using wide angle X-ray diffractions (WAXD). The chemical compositions of AISI 316 steel samples were measured using a Foundry Master Spectrometer equipped with CCD detector for spectral lines and the sparking spots of AISI 316L samples were analyzed using SEM. By XRD the phases of HAp powders have been identified and also the degree of crystallinity and average size of crystallites, and with SEM, we studied the morphology of the HAp. It has been found from XRD analysis that we obtained HAp with a high degree of crystallinity at 800 °C and 1200 °C, no presence of impurity and from SEM analysis we noticed the influence of heat treatment on the ceramic particles morphology. From the study of residual stress profiles of 316L samples were observed that it differs substantially for different machining regimes and from the SEM analysis of sparking spots we revealed the rough surfaces of stainless steel rods necessary for a better adhesion of HAp on it.

  12. Fine structure analysis of biocompatible ceramic materials based hydroxyapatite and metallic biomaterials 316L

    International Nuclear Information System (INIS)

    The aim of this paper was to obtain and characterize (surface morphology and fine structure) two types of materials: Ca10(PO4)6(OH)2 hydroxyapatite powder (HAp) as biocompatible ceramic materials and AISI 316L austenitic stainless steels as metallic biomaterials, which are the components of the metal–ceramic composites used for medical implants in reconstructive surgery and prosthetic treatment. The HAp was synthesized by coprecipitation method, heat treated at 200 °C, 800 °C and 1200 °C for 4 h, analyzed by X-ray diffraction (XRD) and scanning electron microscope (SEM). The stainless steel 316L type was made by casting, annealing and machined with a low speed (100 mm/s) in order to obtain a smooth surface and after that has been studied from residual stresses point of view in three polishing regimes conditions: at low speed polishing (150 rpm), at high speed polishing (1500 rpm) and high speed-vibration contact polishing (1500 rpm) using wide angle X-ray diffractions (WAXD). The chemical compositions of AISI 316 steel samples were measured using a Foundry Master Spectrometer equipped with CCD detector for spectral lines and the sparking spots of AISI 316L samples were analyzed using SEM. By XRD the phases of HAp powders have been identified and also the degree of crystallinity and average size of crystallites, and with SEM, we studied the morphology of the HAp. It has been found from XRD analysis that we obtained HAp with a high degree of crystallinity at 800 °C and 1200 °C, no presence of impurity and from SEM analysis we noticed the influence of heat treatment on the ceramic particles morphology. From the study of residual stress profiles of 316L samples were observed that it differs substantially for different machining regimes and from the SEM analysis of sparking spots we revealed the rough surfaces of stainless steel rods necessary for a better adhesion of HAp on it.

  13. FAR-INFRARED FINE-STRUCTURE LINE DIAGNOSTICS OF ULTRALUMINOUS INFRARED GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Farrah, D.; Petty, S. M.; Harris, K. [Department of Physics, Virginia Tech, Blacksburg, VA 24061 (United States); Lebouteiller, V.; Spoon, H. W. W. [Cornell University, CRSR, Space Sciences Building, Ithaca, NY 14853 (United States); Bernard-Salas, J.; Pearson, C. [Department of Physics and Astronomy, The Open University, Milton Keynes MK7 6AA (United Kingdom); Rigopoulou, D. [RAL Space, Rutherford Appleton Laboratory, Harwell, Oxford OX11 0QX (United Kingdom); Smith, H. A. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); González-Alfonso, E. [Universidad de Alcalá, Departamento de Física y Matemáticas, Campus Universitario, E-28871 Alcalá de Henares, Madrid (Spain); Clements, D. L. [Physics Department, Imperial College London, Prince Consort Road, London SW7 2AZ (United Kingdom); Efstathiou, A. [School of Sciences, European University Cyprus, Diogenes Street, Engomi, 1516 Nicosia (Cyprus); Cormier, D. [Institut für theoretische Astrophysik, Zentrum für Astronomie der Universität Heidelberg, Albert-Ueberle Str. 2, D-69120 Heidelberg (Germany); Afonso, J. [Centro de Astronomia e Astrofísica da Universidade de Lisboa, Observatório Astronómico de Lisboa, Tapada da Ajuda, 1349-018 Lisbon (Portugal); Hurley, P. [Department of Physics and Astronomy, University of Sussex, Falmer, Brighton BN1 9QH (United Kingdom); Borys, C. [Infrared Processing and Analysis Center, MS220-6, California Institute of Technology, Pasadena, CA 91125 (United States); Verma, A. [Oxford Astrophysics, Denys Wilkinson Building, University of Oxford, Keble Rd, Oxford OX1 3RH (United Kingdom); Cooray, A.; Salvatelli, V. [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States)

    2013-10-10

    We present Herschel observations of 6 fine-structure lines in 25 ultraluminous infrared galaxies at z < 0.27. The lines, [O III]52 μm, [N III]57 μm, [O I]63 μm, [N II]122 μm, [O I]145 μm, and [C II]158 μm, are mostly single Gaussians with widths <600 km s{sup –1} and luminosities of 10{sup 7}-10{sup 9} L{sub ☉}. There are deficits in the [O I]63/L{sub IR}, [N II]/L{sub IR}, [O I]145/L{sub IR}, and [C II]/L{sub IR} ratios compared to lower luminosity systems. The majority of the line deficits are consistent with dustier H II regions, but part of the [C II] deficit may arise from an additional mechanism, plausibly charged dust grains. This is consistent with some of the [C II] originating from photodissociation regions or the interstellar medium (ISM). We derive relations between far-IR line luminosities and both the IR luminosity and star formation rate. We find that [N II] and both [O I] lines are good tracers of the IR luminosity and star formation rate. In contrast, [C II] is a poor tracer of the IR luminosity and star formation rate, and does not improve as a tracer of either quantity if the [C II] deficit is accounted for. The continuum luminosity densities also correlate with the IR luminosity and star formation rate. We derive ranges for the gas density and ultraviolet radiation intensity of 10{sup 1} < n < 10{sup 2.5} and 10{sup 2.2} < G{sub 0} < 10{sup 3.6}, respectively. These ranges depend on optical type, the importance of star formation, and merger stage. We do not find relationships between far-IR line properties and several other parameters: active galactic nucleus (AGN) activity, merger stage, mid-IR excitation, and SMBH mass. We conclude that these far-IR lines arise from gas heated by starlight, and that they are not strongly influenced by AGN activity.

  14. Spatial variation in the fine-structure constant -- new results from VLT/UVES

    CERN Document Server

    King, Julian A; Murphy, Michael T; Flambaum, Victor V; Carswell, Robert F; Bainbridge, Matthew B; Wilczynska, Michael R; Koch, F Elliot

    2012-01-01

    (abridged) We present a new analysis of a large sample of quasar absorption-line spectra obtained using UVES (the Ultraviolet and Visual Echelle Spectrograph) on the VLT (Very Large Telescope) in Chile. In the VLT sample (154 absorbers), we find evidence that alpha increases with increasing cosmological distance from Earth. However, as previously shown, the Keck sample (141 absorbers) provided evidence for a smaller alpha in the distant absorption clouds. Upon combining the samples an apparent variation of alpha across the sky emerges which is well represented by an angular dipole model pointing in the direction RA=(17.3 +/- 1.0) hr, dec. = (-61 +/- 10) deg, with amplitude (0.97 +0.22/-0.20) x 10^(-5). The dipole model is required at the 4.1 sigma statistical significance level over a simple monopole model where alpha is the same across the sky (but possibly different to the current laboratory value). The data sets reveal a number of remarkable consistencies: various data cuts are consistent and there is cons...

  15. Structure and diversity of the T-cell receptor alpha chain in the Mexican axolotl.

    Science.gov (United States)

    Fellah, J S; Kerfourn, F; Dumay, A M; Aubet, G; Charlemagne, J

    1997-01-01

    Polymerase chain reaction was used to isolate cDNA clones encoding putative T-cell receptor (TCR) alpha chains in an amphibian, the Mexican axolotl (Ambystoma mexicanum). Five TCRalpha-V chain-encoding segments were identified, each belonging to a separate family. The best identity scores for these axolotl TCRalpha-V segments were all provided by sequences belonging to the human TCRalpha-V1 family and the mouse TCRalpha-V3 and TCRalpha-V8 families. A total of 14 different TCRA-J segments were identified from 44 TCRA-V/TCRA-J regions sequenced, suggesting that a large repertoire of TCRA-J segments is a characteristic of most vertebrates. The structure of the axolotl CDR3 alpha chain loop is in good agreement with that of mammals, including a majority of small hydrophobic residues at position 92 and of charged, hydrophilic, or polar residues at positions 93 and 94, which are highly variable and correspond to the TCRA-V/J junction. This suggests that some positions of the axolotl CDR3 alpha chain loop are positively selected during T-cell differentiation, particularly around residue 93 that could be selected for its ability to makes contacts with major histocompatibility complex-associated antigenic peptides, as in mammals. The axolotl Calpha domain had the typical structure of mammalian and avian Calpha domains, including the charged residues in the TM segment that are thought to interact with other proteins in the membrane, as well as most of the residues forming the conserved antigen receptor transmembrane motif. PMID:9002443

  16. Crystal Structure of the N-terminal Domain of the Group B Streptococcus Alpha C Protein

    Energy Technology Data Exchange (ETDEWEB)

    Auperin,T.; Bolduc, G.; Baron, M.; Heroux, A.; Filman, D.; Madoff, L.; Hogle, J.

    2005-01-01

    Group B Streptococcus (GBS) is the leading cause of bacterial pneumonia, sepsis, and meningitis among neonates and an important cause of morbidity among pregnant women and immunocompromised adults. Invasive diseases due to GBS are attributed to the ability of the pathogen to translocate across human epithelial surfaces. The alpha C protein (ACP) has been identified as an invasin that plays a role in internalization and translocation of GBS across epithelial cells. The soluble N-terminal domain of ACP (NtACP) blocks the internalization of GBS. We determined the 1.86-{angstrom} resolution crystal structure of NtACP comprising residues Ser{sup 52} through Leu{sup 225} of the full-length ACP. NtACP has two domains, an N-terminal {beta}-sandwich and a C-terminal three-helix bundle. Structural and topological alignments reveal that the {beta}-sandwich shares structural elements with the type III fibronectin fold (FnIII), but includes structural elaborations that make it unique. We have identified a potential integrin-binding motif consisting of Lys-Thr-Asp{sup 146}, Arg{sup 110}, and Asp{sup 118}. A similar arrangement of charged residues has been described in other invasins. ACP shows a heparin binding activity that requires NtACP. We propose a possible heparin-binding site, including one surface of the three-helix bundle, and nearby portions of the sandwich and repeat domains. We have validated this prediction using assays of the heparin binding and cell-adhesion properties of engineered fragments of ACP. This is the first crystal structure of a member of the highly conserved Gram-positive surface alpha-like protein family, and it will enable the internalization mechanism of GBS to be dissected at the atomic level.

  17. Energy, fine structure, hyperfine structure, and radiative transition rates of the high-lying multi-excited states for B-like neon

    Science.gov (United States)

    Zhang, Chun Mei; Chen, Chao; Sun, Yan; Gou, Bing Cong; Shao, Bin

    2015-04-01

    The Rayleigh-Ritz variational method with multiconfiguration interaction wave functions is used to obtain the energies of high-lying multi-excited quartet states 1 s 22 s2 pnl and 1 s 22 p 2 nl 4Pe,o ( n ≥ 2) in B-like neon, including the mass polarization and relativistic corrections. The fine structure and hyperfine structure of the excited quartet states for this system are investigated. Configuration structures of the high-lying multi-excited series are further identified by relativistic corrections and fine structure splittings. The transition rates and wavelengths are also calculated. Calculated wavelengths include the quantum electrodynamic effects. The results are compared with other theoretical and experimental data in the literature.

  18. Breit-Pauli oscillator strengths for transitions among fine-structure levels of Cl I

    Energy Technology Data Exchange (ETDEWEB)

    Oliver, P; Hibbert, A [Department of Applied Mathematics and Theoretical Physics, The Queen' s University of Belfast, Belfast BT7 1NN (United Kingdom)

    2007-07-28

    We have undertaken an extensive calculation to obtain the oscillator strengths for all optically allowed and intercombination E1 transitions in Cl I between the fine-structure levels of the odd-parity configurations 3s{sup 2}3p{sup 5}, 3p{sup 4}({sup 1}D)4p, 3p{sup 4}({sup 3}P)np(4 {<=} n {<=} 5) and the even-parity configurations 3s3p{sup 6}, 3p{sup 4}({sup 3}P, {sup 1}D, {sup 1}S)ns(4 {<=} n {<=} 5), 3p{sup 4}({sup 3}P)6s, 3p{sup 4}({sup 3}P, {sup 1}D)3d, 3p{sup 4}({sup 3}P)4d, within the Breit-Pauli approximation, using the method of interaction of configurations (CI) enveloped in the general atomic structure code CIV3. The CI wavefunctions have been constructed from a common orthogonal set of 23 one-electron functions (OEFs), which have been carefully selected to ensure that the LS dependency of the orbitals and all important correlation effects have been accurately represented. In the LS-coupling regime, the configuration state functions (CSFs) included in the atomic wavefunction expansions were obtained from all single- and double-electron replacements to the OEFs for each symmetry from the orbitals in the set of dominant configurations 3s{sup 2}3p{sup 5}, 3s3p{sup 6}, 3s{sup 2}3p{sup 4}nl. At the LSJ stage we retain only those CSFs with eigenvector components {>=}0.0005 in magnitude. We then make a further ad hoc refinement to the calculation, whereby the diagonal Hamiltonian matrix elements are adjusted so that the theoretical energy differences coincide with the relevant experimental values. Alternative energy level classifications are proposed for a number of heavily mixed J = 5/2 and J = 3/2 levels based on our calculations, and are supported by the experimental measurements of Schectman et al (1993 Astrophys. J. 406 735). Our results are compared with experimental and available theoretical data. We observe excellent agreement in the length and velocity forms of the oscillator strengths, demonstrating a marked improvement over previous work by Ojha and

  19. Effect of polyols on the native structure of {alpha}-chymotrypsin: A comparable study

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Awanish; Attri, Pankaj [Department of Chemistry, University of Delhi, Delhi - 110 007 (India); Venkatesu, Pannuru, E-mail: venkatesup@hotmail.com [Department of Chemistry, University of Delhi, Delhi - 110 007 (India)

    2012-05-20

    Highlights: Black-Right-Pointing-Pointer We have studied stability of {alpha}-chymotrypsin in polyols. Black-Right-Pointing-Pointer We have performed DSC, CD and fluorescence spectroscopy. Black-Right-Pointing-Pointer Our {Delta}G{sub u} of CT in polyol increase as polyol concentration increases. Black-Right-Pointing-Pointer All polyols acted as enhancers for CT stability. Black-Right-Pointing-Pointer Our results show that trehalose is strong stabilizer. - The influence of polyols on the structure and stability of {alpha}-chymotrypsin (CT) have been explored by using differential scanning calorimeter (DSC), circular dichroism (CD) and fluorescence spectroscopy. We have predicted the thermodynamic folding properties (transition temperature (T{sub m}), enthalpy change ({Delta}H), heat capacity change ({Delta}C{sub p}) and Gibbs free energy change ({Delta}G{sub u}) from DSC to understand the clear picture of folding studies of CT. All polyols (trehalose, sucrose, sorbitol, and glycerol) acted as enhancers for CT stability, with varying efficacies and efficiencies. The DSC, CD and fluorescence spectral analysis clearly showed the ability of polyols to protect the native structural conformation of enzyme and preventing the unfolding which occurs in the aqueous media. These results explicitly explain that stabilizing polyols are preferentially excluded from the surface of CT, since water has a higher tendency toward favourable interactions with functional groups of the CT than with polyols.

  20. Investigation into phase composition and fine structure of type Sm(Co, Cu, Fe, Zr)sub(7. 4) magnets

    Energy Technology Data Exchange (ETDEWEB)

    Reznichenko, K.N.; Savich, A.N.; Samartseva, G.P.; Andreeva, A.V.

    The structure and phase composition of the sintered Sm(Cosub(0.67)Fesub(0.21)Cusub(0.10)Zrsub(.0.013))sub(7.4) alloy after homogenization (at 1180 and 1190 deg C) and ageing (at 800-400 deg C) are studied by the methods of microstructural, electronoscopic, X-ray and microsound analyses. It is stated that phase precipitations along the grain boundaries belong in both cases to the 2:17 type compound with the composition slightly differing from the matrix. Cellular decomposition having coarse nature in the homogenized and more fine - in the aged state is observed in the alloy structure.

  1. Displacive phase-transition of cuprite Ag2O revealed by extended x-ray absorption fine structure

    Science.gov (United States)

    Sanson, Andrea

    2016-08-01

    The low-temperature phase-transition of silver oxide (Ag2O) has been investigated by extended x-ray absorption fine structure (EXAFS) spectroscopy as a function of temperature. The thermal evolution of the local structure around Ag atoms has been determined. In particular, below the phase-transition temperature at ∼35 K, a progressive splitting of the Ag-Ag next-nearest-neighbor distances is observed. This definitely supports the idea that the phase-transition of Ag2O is due to displacive disorder of the Ag atoms.

  2. Unprecedented Fine Structure of a Solar Flare Revealed by the 1.6~m New Solar Telescope

    Science.gov (United States)

    Jing, Ju; Xu, Yan; Cao, Wenda; Liu, Chang; Gary, Dale E.; Wang, Haimin

    2016-05-01

    Solar flares signify the sudden release of magnetic energy and are sources of so called space weather. The fine structures (below 500 km) of flares are rarely observed and are accessible to only a few instruments world-wide. Here we present observation of a solar flare using exceptionally high resolution images from the 1.6~m New Solar Telescope (NST) equipped with high order adaptive optics at Big Bear Solar Observatory (BBSO). The observation reveals the process of the flare in unprecedented detail, including the flare ribbon propagating across the sunspots, coronal rain (made of condensing plasma) streaming down along the post-flare loops, and the chromosphere's response to the impact of coronal rain, showing fine-scale brightenings at the footpoints of the falling plasma. Taking advantage of the resolving power of the NST, we measure the cross-sectional widths of flare ribbons, post-flare loops and footpoint brighenings, which generally lie in the range of 80-200 km, well below the resolution of most current instruments used for flare studies. Confining the scale of such fine structure provides an essential piece of information in modeling the energy transport mechanism of flares, which is an important issue in solar and plasma physics.

  3. De novo backbone and sequence design of an idealized alpha/beta-barrel protein: Evidence of stable tertiary structure

    OpenAIRE

    Offredi, Fabrice; Dubail, Fabien; Kischel, Philippe; Sarinski, K.; Stern, A S; Van de Weerdt, Cécile; Hoch, J. C.; Prosperi, Christelle; François, Jean-Marie; Mayo, S. L.; Martial, Joseph

    2003-01-01

    We have designed, synthesized, and characterized a 216 amino acid residue sequence encoding a putative idealized alpha/beta-barrel protein. The design was elaborated in two steps. First, the idealized backbone was defined with geometric parameters representing our target fold: a central eight parallel-stranded beta-sheet surrounded by eight parallel alpha-helices, connected together with short structural turns on both sides of the barrel. An automated sequence selection algorithm, based on th...

  4. Surface structure of CdSe Nanorods revealed by combined X-rayabsorption fine structure measurements and ab-initio calculations

    Energy Technology Data Exchange (ETDEWEB)

    Aruguete, Deborah A.; Marcus, Matthew A.; Li, Liang-shi; Williamson, Andrew; Fakra, Sirine; Gygi, Francois; Galli, Giulia; Alivisatos, A. Paul

    2006-01-27

    We report orientation-specific, surface-sensitive structural characterization of colloidal CdSe nanorods with extended X-ray absorption fine structure spectroscopy and ab-initio density functional theory calculations. Our measurements of crystallographically-aligned CdSe nanorods show that they have reconstructed Cd-rich surfaces. They exhibit orientation-dependent changes in interatomic distances which are qualitatively reproduced by our calculations. These calculations reveal that the measured interatomic distance anisotropy originates from the nanorod surface.

  5. Fine-structure energy levels and lifetimes in Al-like iron and nickel

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, G.P.; Msezane, A.Z. [Department of Physics and Center for Theoretical Studies of Physical Systems, Clark Atlanta University, Atlanta, GA (United States)

    2001-11-14

    Large-scale CIV3 calculations are performed for the excitation energies from the ground state for 53 fine-structure levels as well as for some oscillator strengths and radiative decay rates for electric-dipole-allowed and intercombination transitions among the levels of the terms (1s{sup 2}2s{sup 2}2p{sup 6})3s{sup 2}3p({sup 2}P{sup o}), 3s3p{sup 2}({sup 2}S,{sup 2}P,{sup 2}D,{sup 4}P), 3s{sup 2}3d({sup 2}D), 3p{sup 3}({sup 4}S{sup o}, {sup 2}P{sup o}, {sup 2}D{sup o}), 3s3p({sup 3}P{sup o})3d({sup 2}P{sup o}, {sup 2}D{sup o}, {sup 2}F{sup o}, {sup 4}p{sup o}, {sup 4}D{sup o},{sup 4}F{sup o}), 3s3p({sup 1}P{sup o})3d({sup 2}P{sup o}, {sup 2}D{sup o}, {sup 2}F{sup o}), 3s{sup 2}4s({sup 2}S), 3s{sup 2}4p({sup 2}P{sup o}), 3s{sup 2}4d({sup 2}D), 3s{sup 2}4f({sup 2}F{sup o}), 3s3p({sup 3}P{sup o})4s({sup 2}P{sup o}, {sup 4}P{sup o}) and 3s3p({sup 1}P{sup o})4s({sup 2}P{sup o}) of Fe XIV and Ni XVI. In this calculation, a large number of configurations which include up to n=5 orbitals are used to ensure convergence. The important relativistic effects in intermediate coupling are incorporated by means of the Breit-Pauli Hamiltonian. Our calculated excitation energies, including their ordering, are in excellent agreement with the available experimental results for both Fe XIV and Ni XVI. We also predict new data for Ni XVI for the levels arising from the configurations with n=4 orbitals where there are no theoretical or experimental results available. From our transition probabilities, we have calculated radiative lifetimes of the high-spin levels 3s3p{sup 2} {sup 4}P and 3s3p3d {sup 4}F{sup o}. A large difference in the lifetime (about a factor of four) of the latter level of Fe XIV between our calculated value (using our adjusted energies), on the one hand, and the experimental result of Trabert et al and other theoretical calculations, on the other hand, is explained through subtleties in the energy values. The new predicted lifetime for the 3s3p3d {sup 4}F{sub 3

  6. Bis(alpha-diimine)iron complexes: electronic structure determination by spectroscopy and broken symmetry density functional theoretical calculations.

    Science.gov (United States)

    Muresan, Nicoleta; Lu, Connie C; Ghosh, Meenakshi; Peters, Jonas C; Abe, Megumi; Henling, Lawrence M; Weyhermöller, Thomas; Bill, Eckhard; Wieghardt, Karl

    2008-06-01

    The electronic structure of a family comprising tetrahedral (alpha-diimine)iron dichloride, and tetrahedral bis(alpha-diimine)iron compounds has been investigated by Mossbauer spectroscopy, magnetic susceptibility measurements, and X-ray crystallography. In addition, broken-symmetry density functional theoretical (B3LYP) calculations have been performed. A detailed understanding of the electronic structure of these complexes has been obtained. A paramagnetic (St=2), tetrahedral complex [FeII(4L)2], where (4L)1- represents the diamagnetic monoanion N-tert-butylquinolinylamide, has been synthesized and characterized to serve as a benchmark for a Werner-type complex containing a tetrahedral FeIIN4 geometry and a single high-spin ferrous ion. In contrast to the most commonly used description of the electronic structure of bis(alpha-diimine)iron(0) complexes as low-valent iron(0) species with two neutral alpha-diimine ligands, it is established here that they are, in fact, complexes containing two (alpha-diiminato)1-* pi radical monoanions and a high-spin ferrous ion (in tetrahedral N4 geometry) (SFe=2). Intramolecular antiferromagnetic coupling between the pi radical ligands (Srad=1/2) and the ferrous ion (SFe=2) yields the observed St=1 ground state. The study confirms that alpha-diimines are redox noninnocent ligands with an energetically low-lying antibonding pi* lowest unoccupied molecular orbital which can accept one or two electrons from a transition metal ion. The (alpha-diimine)FeCl2 complexes (St=2) are shown to contain a neutral alpha-diimine ligand, a high spin ferrous ion, and two chloride ligands. PMID:18442239

  7. Structure-based analysis of high pressure adaptation of alpha-actin.

    Science.gov (United States)

    Morita, Takami

    2003-07-25

    Deep-sea fishes occur to depths of several thousand meters, and at these abyssal depths encounter pressures that shallower living fishes cannot tolerate. Tolerance of abyssal pressures by deep-sea fish is likely to depend in part on adaptive modifications of proteins. However, the types of structural modifications to proteins that allow function at high pressure have not been discovered. To elucidate the mechanisms of protein adaptation to high pressure, we cloned the alpha-skeletal actin cDNAs from two abyssal Coryphaenoides species, C. armatus and C. yaquinae, and identified three amino acid substitutions, V54A or L67P, Q137K, and A155S, that distinguish these abyssal actins from orthologs of alpha-actin from non-abyssal Coryphaenoides. These substitutions, Q137K and A155S, prevent the dissociation reactions of ATP and Ca2+ from being influenced by high pressure. In particular, the lysine residue at position 137 results in a much smaller apparent volume change in the Ca2+ dissociation reaction. The V54A or L67P substitution reduces the volume change associated with actin polymerization and has a role in maintaining the DNase I activity of actin at high pressure. Together, these results indicate that a few amino acid substitutions in key functional positions can adaptively alter the pressure sensitivity of a protein. PMID:12740368

  8. Fine refinement of solid state structure of racemic form of phospho-tyrosine employing NMR Crystallography approach.

    Science.gov (United States)

    Paluch, Piotr; Pawlak, Tomasz; Oszajca, Marcin; Lasocha, Wieslaw; Potrzebowski, Marek J

    2015-02-01

    We present step by step facets important in NMR Crystallography strategy employing O-phospho-dl-tyrosine as model sample. The significance of three major techniques being components of this approach: solid state NMR (SS NMR), X-ray diffraction of powdered sample (PXRD) and theoretical calculations (Gauge Invariant Projector Augmented Wave; GIPAW) is discussed. Each experimental technique provides different set of structural constraints. From the PXRD measurement the size of the unit cell, space group and roughly refined molecular structure are established. SS NMR provides information about content of crystallographic asymmetric unit, local geometry, molecular motion in the crystal lattice and hydrogen bonding pattern. GIPAW calculations are employed for validation of quality of elucidation and fine refinement of structure. Crystal and molecular structure of O-phospho-dl-tyrosine solved by NMR Crystallography is deposited at Cambridge Crystallographic Data Center under number CCDC 1005924.

  9. Fine refinement of solid state structure of racemic form of phospho-tyrosine employing NMR Crystallography approach.

    Science.gov (United States)

    Paluch, Piotr; Pawlak, Tomasz; Oszajca, Marcin; Lasocha, Wieslaw; Potrzebowski, Marek J

    2015-02-01

    We present step by step facets important in NMR Crystallography strategy employing O-phospho-dl-tyrosine as model sample. The significance of three major techniques being components of this approach: solid state NMR (SS NMR), X-ray diffraction of powdered sample (PXRD) and theoretical calculations (Gauge Invariant Projector Augmented Wave; GIPAW) is discussed. Each experimental technique provides different set of structural constraints. From the PXRD measurement the size of the unit cell, space group and roughly refined molecular structure are established. SS NMR provides information about content of crystallographic asymmetric unit, local geometry, molecular motion in the crystal lattice and hydrogen bonding pattern. GIPAW calculations are employed for validation of quality of elucidation and fine refinement of structure. Crystal and molecular structure of O-phospho-dl-tyrosine solved by NMR Crystallography is deposited at Cambridge Crystallographic Data Center under number CCDC 1005924. PMID:25240460

  10. Pressure-dependent changes in the structure of the melittin {alpha}-helix determined by NMR

    Energy Technology Data Exchange (ETDEWEB)

    Iwadate, Mitsuo; Asakura, Tetsuo [Tokyo University of Agriculture and Technology, Department of Biotechnology (Japan); Dubovskii, Peter V.; Yamada, Hiroaki; Akasaka, Kazuyuki [Kobe University, Graduate School of Science and Technology and Department of Chemistry of Faculty of Science (Japan); Williamson, Michael P. [University of Sheffield, Department of Molecular Biology and Biotechnology (United Kingdom)

    2001-02-15

    A novel method is described, which uses changes in NMR chemical shifts to characterise the structural change in a protein with pressure. Melittin in methanol is a small {alpha}-helical protein, and its chemical shifts change linearly and reversibly with pressure between 1 and 2000 bar. An improved relationship between structure and HN shift has been calculated, and used to drive a molecular dynamics-based calculation of the change in structure. With pressure, the helix is compressed, with the H-O distance of the NH-O=C hydrogen bonds decreased by 0.021 {+-} 0.039 A, leading to an overall compression along the entire helix of about 0.4 A, corresponding to a static compressibility of 6 x10{sup -6} bar{sup -1}. The backbone dihedral angles {phi} and {psi} are altered by no more than {+-} 3 deg. for most residues with a negative correlation coefficient of -0.85 between {phi}{sub i} and {psi}{sub i-1}, indicating that the local conformation alters to maintain hydrogen bonds in good geometries. The method is shown to be capable of calculating structural change with high precision, and the results agree with structural changes determined using other methodologies.

  11. Fine-structure energy levels, oscillator strengths and lifetimes of chlorine-like chromium

    Indian Academy of Sciences (India)

    Man Mohan; Avnindra K Singh; Alok K S Jha; Narendra Singh

    2005-07-01

    We have done relativistic calculations for the evaluation of energy levels, oscillator strengths, transition probabilities and lifetimes for Cr VIII ion. Use has been made of configuration interaction technique by including Briet–Pauli approximation. The energies of various levels from the ground state to excited levels of 3s3p6, 3s23p43d, 3s23p44s, 3s23p44d of Cr VIII are given in LSJ coupling scheme after fine-tuning and are compared with the experimental results compiled in the NIST Data Base. Many new lines have been predicted which have not appeared so far in the NIST Data.

  12. Method of Making Fine Lithium Iron Phosphate/Carbon-Based Powders with an Olivine Type Structure

    Science.gov (United States)

    Singhal, Amit (Inventor); Dhamne, Abhijeet (Inventor); Skandan, Ganesh (Inventor)

    2008-01-01

    Processes for producing fine LiFePO.sub.4/C and nanostructured LiFe.sub.xM.sub.1-xPO.sub.4/C composite powders, where 1.ltoreq.x.ltoreq.0.1 and M is a metal cation. Electrodes made of either nanostructured LiFe.sub.xM.sub.1-xPO.sub.4 powders or nanostructured LiFe.sub.xM.sub.1-xPO.sub.4/C composite powders exhibit excellent electrochemical properties. That will provide high power density, low cost and environmentally friendly rechargeable Li-ion batteries.

  13. The structure of liquid semiconductors, superionic conductors and glasses by neutron scattering, X-ray diffraction and extended X-ray absorption fine structure

    CERN Document Server

    Buchanan, P

    2001-01-01

    NDIS technique alone. The structure of liquid FeTe sub 2 was determined at the total structure factor level using neutron diffraction in order to estimate the effect of chalcogenide ion size on the structure. The results demonstrate the feasibility of the additional structural determination techniques for disordered materials made possible through the development of third generation X-ray synchrotron sources. A study of the applicability of modern X-ray and neutron scattering techniques to the study of the structure of liquid semiconductors and glasses has been made. The results demonstrate how neutron scattering with isotopic substitution (NDIS), anomalous X-ray scattering and Extended X-ray Absorption Fine Structure (EXAFS) can be successfully used to elucidate the structure of materials that cannot be studied by NDIS alone. The local coordination structure of Ag sub 2 Se in its room temperature, superionic and liquid phases has been determined using the EXAFS technique. This EXAFS data have been combined w...

  14. Structural and compositional changes during isothermal annealing of {alpha}{double_prime}-martensite in Ti-8 wt.% Mo alloy

    Energy Technology Data Exchange (ETDEWEB)

    Ivasishin, O.M.; Ustinov, A.I.; Skorodzievskii, V.S.; Kosenko, M.S.; Matviychuk, Yu.V.; Azamatova, F.I. [Ukrainian Academy of Sciences, Kiev (Ukraine). Inst. for Metal Physics

    1997-09-15

    There are many discrepancies in the literature concerning the structure of martensite in titanium alloys with isomorphous {beta}-stabilizing elements and the mechanism of its decomposition on ageing. It has been proposed that the {alpha}{double_prime}-martensite crystal structure results from the isomorphic decomposition of the hexagonal solid solution during the {beta} {yields} {alpha}{double_prime} martensite transformation. Decomposition begins during cooling (due to relatively high M{sub s} temperature) and continues during ageing. To check this hypothesis, the structural changes in the Ti-8 wt.% Mo alloy during ageing have been studied in this work to establish a correlation between the CI parameters and rhombic distortions of the {alpha}{double_prime}-martensite lattice.

  15. Extended X-ray absorption fine structure studies of Zn2Fe2 hybrid hemoglobins: absence of heme bond length changes in half-ligated species.

    Science.gov (United States)

    Simolo, K; Korszun, Z R; Stucky, G; Moffat, K; McLendon, G; Bunker, G

    1986-07-01

    Metal hybrid hemoglobins, in which Zn(II) replaces Fe(II), have been structurally characterized by extended X-ray absorption structure (EXAFS) studies. Since Zn and Fe have very different K absorption edge energies, the structures of the ligated (Fe) and unligated (Zn) sites could be examined independently within a single molecule that mimics an intermediate ligation state. The observed EXAFS spectra and associated structural parameters are compared among the ligand free (alpha Zn)2(beta Zn)2, half-ligated (alpha FeCO)2(beta Zn)2 and (alpha Zn)2(beta FeCO)2, and fully ligated (alpha FeCO)2(beta FeCO)2 systems.

  16. Atomic sulfur: Frequency measurement of the J = 0 left arrow 1 fine-structure transition at 56.3 microns by laser magnetic resonance

    Science.gov (United States)

    Brown, John M.; Evenson, Kenneth M.; Zink, Lyndon R.

    1994-01-01

    The J = 0 left arrow 1 fine-structure transition in atomic sulfur (S I) in its ground (3)P state has been detected in the laboratory by far-infrared laser magnetic resonance. The fine-structure interval has been measured accurately as 5,322,492.9 +/- 2.8 MHz which corresponds to a wavelength of 56.325572 +/- 0.000030 micrometers.

  17. Statistics of fine dispersion structures events in energetic particle spectra: their origin and role in the outer magnetosphere

    OpenAIRE

    V. N. Lutsenko; E. A. Gavrilova; T. V. Grechko

    2008-01-01

    Fine Dispersion Structures (FDS) in energetic particle spectra in outer magnetosphere were discovered in DOK-2 experiments onboard of Interball-1 and -2 spacecrafts (1995–2000). First results of these studies were published in 2000–2005. It was shown that FDS can be a result of a gradient-curvature drift of ions and electrons around the Earth after their pulse injection from the geotail plasma sheet to some point in the night side of the outer magnetosphere. Since that time hundreds of such e...

  18. Atomic Transition Frequencies, Isotope Shifts, and Sensitivity to Variation of the Fine Structure Constant for Studies of Quasar Absorption Spectra

    Science.gov (United States)

    Berengut, J. C.; Dzuba, V. A.; Flambaum, V. V.; King, J. A.; Kozlov, M. G.; Murphy, M. T.; Webb, J. K.

    Theories unifying gravity with other interactions suggest spatial and temporal variation of fundamental "constants" in the Universe. A change in the fine structure constant, α = {e}2/hslash c , could be detected via shifts in the frequencies of atomic transitions in quasar absorption systems. Recent studies using 140 absorption systems from the Keck telescope and 153 from the Very Large Telescope, suggest that α varies spatially (61). That is, in one direction on the sky α seems to have been smaller at the time of absorption, while in the opposite direction it seems to have been larger.

  19. Effective collision strengths for fine structure transitions from the ground state to n = 3 levels in Ca XI

    International Nuclear Information System (INIS)

    The R-matrix method is used to calculate electron impact collision strength in Ca XI from its ground state. Configuration interactions are used to represent the first fifteen LS coupled states which are retained in the R-matrix expansion. Effective collision strengths are calculated for transitions between the fine structure levels of the ground state and those of the excited states by employing a transformation of the LS-coupled reactance matrices, and by assuming a Maxwellian velocity distribution for the incident electrons. (orig.)

  20. Time-variability of the fine-structure constant expected from the Oklo constraint and the QSO absorption lines

    CERN Document Server

    Fujii, Y

    2003-01-01

    The data from the QSO absorption lines indicating a nonzero time-variability of the fine-structure constant has been re-analyzed on the basis of a "damped-oscillator" fit, as motivated by the same type of behavior of a scalar field, dilaton, which mimics a cosmological constant to understand the accelerating universe. We find nearly as good fit to the latest data as the simple weighted mean. In this way, we offer a way to fit the more stringent result from the Oklo phenomenon, as well.