WorldWideScience

Sample records for alloys beam welding

  1. A Review: Welding Of Dissimilar Metal Alloys by Laser Beam Welding & Friction Stir Welding Techniques

    Directory of Open Access Journals (Sweden)

    Ms. Deepika Harwani

    2014-12-01

    Full Text Available Welding of dissimilar metals has attracted attention of the researchers worldwide, owing to its many advantages and challenges. There is no denial in the fact that dissimilar welded joints offer more flexibility in the design and production of the commercial and industrial components. Many welding techniques have been analyzed to join dissimilar metal combinations. The objective of this paper is to review two such techniques – Laser welding and Friction stir welding. Laser beam welding, a high power density and low energy-input process, employs a laser beam to produce welds of dissimilar materials. Friction stir welding, a solid-state joining process, is also successfully used in dissimilar welding applications like aerospace and ship building industries. This paper summarizes the trends and advances of these two welding processes in the field of dissimilar welding. Future aspects of the study are also discussed.

  2. Study on the effect of welding current during laser beam-resistance seam welding of aluminum alloy 5052

    Institute of Scientific and Technical Information of China (English)

    Li Yongqiang; Zhao Xihua; Zhao He; Cao Haipeng; Zhao Huanling

    2008-01-01

    The effect of welding current on the weld shape and tensile shear load during laser beam-resistance seam welding (LB-RSW) of aluminum alloy 5052 is studied. Experimental results show that the penetration depth, weld width,tensile shear load and the ratio of penetration depth to weld width of LB-RSW are bigger than those of laser beam welding(LBW) under the same conditions and the former three parameters increase as welding current rises. The weld shape of LB-RSW below 5 kA welding current is nearly the same as that of LBW. The weld morphology is protuberant under the condition of 5 kA welding current and 0.8 m/min welding speed. Furthermore, the microstructure of the weld seam of LB-RSW is coarser than that of LBW.

  3. Butt weld of aluminum alloy plates 6063 and LY12 by laser beam

    Science.gov (United States)

    Xia, Jin'an; Cheng, Zhaogu; Xu, Guoliang; Li, Xianqin

    2000-02-01

    By means of a transverse flow 5 kW CO2 laser with low- order mode laser beam output, 1 - 4 mm thick aluminum alloy plates 6063 and LY12 were successfully butt welded. The result shows that the butt weldability and the weld quality of the aluminum alloy plates are mainly dependent on incident laser power density, laser beam defocused distance and shielding gas. The relationship between the weld quality of the aluminum alloy plates and the welding parameters is discussed. The macrostructure and microstructure of the welded seams are analyzed. The mechanical properties of the welded seams are discussed.

  4. Electrochemical Testing of Gas Tungsten Arc Welded and Reduced Pressure Electron Beam Welded Alloy 22

    Energy Technology Data Exchange (ETDEWEB)

    Day, S D; Wong, F M G; Gordon, S R; Wong, L L; Rebak, R B

    2003-09-07

    Alloy 22 (N06022) is the material selected for the fabrication of the outer shell of the nuclear waste containers for the Yucca Mountain high-level nuclear waste repository site. A key technical issue in the Yucca Mountain waste package program has been the integrity of container weld joints. The currently selected welding process for fabricating and sealing the containers is the traditional gas tungsten arc welding (GTAW) or TIG method. An appealing faster alternative technique is reduced pressure electron beam (RPEB) welding. Standard electrochemical tests were carried on GTAW and RPEB welds as well as on base metal to determine their relative corrosion behavior in SCW at 90 C (alkaline), 1 M HCl at 60 C (acidic) and 1 M NaCl at 90 C (neutral) solutions. Results show that for all practical purposes, the three tested materials had the electrochemical behavior in the three tested solutions.

  5. Equalization of Ti-6Al-4 V alloy welded joint by scanning electron beam welding

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    The equalization of Ti-6Al-4V alloy welded joint with base metal on corrosion resistance, strength and ductility was studied. The solidification microstructure is transformed from 650 μm columnar grains to 100 μm equiaxed grains by scanning electron beam welding. The anodic polarization curve of 150 μm equiaxed grains coincides with that of base metal. Equal corrosion resistance between weld metal and base metal was ob tained. Uniform microstructure and solutedistribution are the basis of equalization. Corrosion rate of weld with 150 μm equiaxed grains is the lowest, 2.45 times lower than that of 650 μm columnar grains. Weld strength is 98% as much as that of base metal, yield-strength ratio is 99.5%, which is 3.6% higher than that of base metal.

  6. Joint performance of CO2 laser beam welding 5083-H321 aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    Qi Junfeng; Zhang Dongyun; Xiao Rongshi; Chen Kai; Zuo Tiechuan

    2007-01-01

    Laser beam welding of aluminum alloys is expected to offer good mechanical properties of welded joints. In this experimental work reported, CO2 laser beam autogenous welding and wire feed welding are conducted on 4mm thick 5083-H321 aluminum alloy sheets at different welding variables. The mechanical properties and microstructure characteristics of the welds are evaluated through tensile tests, micro-hardness tests, optical microscopy and scanning electron microscopy (SEM). Experimental results indicate that both the tensile strength and hardness of laser beam welds are affected by the constitution of filler material, except the yield strength. The soften region of laser beam welds is not in the heat-affected zone (HAZ). The tensile fracture of laser beam welded specimens takes place in the weld zone and close to the weld boundary because of different filler materials. Some pores are found on the fracture face, including hydrogen porosities and blow holes, but these pores have no influence on the tensile strength of laser beam welds. Tensile strength values of laser beam welds with filler wire are up to 345.57MPa, 93% of base material values, and yield strengths of laser beam welds are equivalent to those of base metal (264.50MPa).

  7. Experimental and simulation study on the microstructure of TA15 titanium alloy laser beam welded joints

    Science.gov (United States)

    Zhan, Xiaohong; Peng, Qingyu; Wei, Yanhong; Ou, Wenmin

    2017-09-01

    Laser beam welding technique offers obvious advantages over other fusion welding processes in terms of joining titanium alloy. The microstructure of welded seam and heat affected zone resulted from diverse welding speeds and laser powers were investigated after simulating welding heat treatment. The analysis of the thermal transport properties successfully explained the morphology. Optimal process parameters were obtained. The simulation results were consistent with the corresponding experimental observations.

  8. Electrochemical Testing of Gas Tungsten ARC Welded and Reduced Pressure Electron Beam Welded Alloy 22

    Energy Technology Data Exchange (ETDEWEB)

    S. Daniel Day; Frank M.G. Wong; Steven R. Gordon; Lana L. Wong; Raul B. Rebak

    2006-05-08

    Alloy 22 (N06022) is the material selected for the fabrication of the outer shell of the nuclear waste containers for the Yucca Mountain high-level nuclear waste repository site. A key technical issue in the waste package program has been the integrity of the container weld joints. The currently selected welding process for fabricating and sealing the containers is the traditional gas tungsten arc welding (GTAW) or TIC method. An appealing faster alternative technique is reduced pressure electron beam (RPEB) welding. It was of interest to compare the corrosion properties of specimens prepared using both types of welding techniques. Standard electrochemical tests were carried on GTAW and RPEB welds as well as on base metal (non-welded) to determine their relative corrosion behavior in simulated concentrated water (SCW) at 90 C (alkaline), 1 M HCI at 60 C (acidic) and 1 M NaCl at 90 C (neutral) solutions. Results show that for all practical purposes, the three tested materials had the same electrochemical behavior in the three tested electrolytes.

  9. Characteristics of laser beam welds of age-hardenable 6061-T6 aluminum alloy

    Science.gov (United States)

    Hirose, Akio; Kobayashi, Kojiro F.

    2003-03-01

    Laser beam welding is attractive for joining age-hardenable aluminum alloys, because its low over-all heat input results in a narrow weld heat affected zone (HAZ), where softening caused by dissolution of age precipitates occurs. In the present work, 1mm-thick 6061-T6 aluminum alloy plates were welded using a 2.5 kW CO2 laser and it was experimentally proved that the width of the softened region in the laser beam weld was less than 1/7 that of a TIG weld. Moreover the hardness in the softened region of the laser beam weld was found to be almost fully recovered to the base metal hardness by applying a post-weld aging treatment at 443 K for 28.8 ks without solution annealing unlike the TIG weld. These results characterize the advantage of laser beam welding in joining of the age-hardenable aluminum alloy as compared with the conventional arc welding. The hardness distributions in the HAZ were theoretically evaluated based on kinetic equations describing the dissolution of hardening β' (Mg2Si) precipitates and the precipitation of non-hardening β' (Mg2Si) precipitates during the weld thermal cycles to quantitatively prove above mentioned advantageous characteristics of laser beam welding.

  10. Microstructures and fatigue properties of electron beam welds with beam oscillation for heavy section TC4-DT alloy

    Institute of Scientific and Technical Information of China (English)

    Fu Pengfei; Mao Zhiyong; Zuo Congjin; Wang Yajun; Wang Chunming

    2014-01-01

    With the development of the manufacturing technology, electron beam welding (EBW) is capable of producing titanium alloy large parts in aero fields. To increase the applications and improve the properties, EBW with beam oscillation was investigated on TC4-DT alloy with 50 mm thickness. We detected the welding samples by X-ray NDT, observed the microstructures of the welds, and tested the fatigue properties of the joints. The results showed that EBW with beam oscillation improved the weld morphology as well as welding quality, and the microstructure homo-geneity of the welds and HAZ along the weld penetration were also improved. The fatigue proper-ties of the joints with beam oscillation were more excellent than those of conventional EBW, even equal to those of the base metal under high stresses. The influences of the processing and the micro-structure on the properties with beam oscillation were discussed.

  11. Effect of electron beam welding on the microstructure and mechanical properties of nickel alloys

    OpenAIRE

    Øien, Vegard

    2014-01-01

    The effect of electron beam welding on the precipitation strengthened Ni-base superalloys Inconel 718 and Custom Age 625 PLUS have been investigated. Solidification of the weld metal in these alloys terminates in a eutectic formation of γ/Laves in the interdendritic constituents. The formation is associated with the strong segregation behavior of the alloying element Nb during solidification. Post-weld heat treatments in the form of solution annealing and age hardening are normally used to di...

  12. Laser Beam Welding of Aluminum Alloys Under the Influence of an Electromagnetic Field

    Science.gov (United States)

    Schneider, A.; Avilov, V.; Gumenyuk, A.; Rethmeier, M.

    During laser beam welding of aluminum alloys an electromagnetic field may favour pore outgassing through the top oxide layer. High frequencies cause a small penetration depth and thus exert a stabilizing effect on the weld surface. The point at which the laser beam between the two magnetic poles hits the workpiece surface is crucial to the influence of the magnetic field on the weld surface roughness. Using analyzed parameters for different laser points of application cause a change in weld surface roughness could be observed. The weld surface roughness could be reduced by 50%. The outgassing effect in terms of a reduction of pores could be observed for all parameter sets investigated.

  13. Bending Properties and Fracture Behavior of Ti-23Al-17Nb Alloy Laser Beam Welding Joints

    Institute of Scientific and Technical Information of China (English)

    WANG Guoqing; WU Aiping; ZOU Guisheng; ZHAO Yue; CHEN Qiang; REN Jialie

    2009-01-01

    Ti-23Al-17Nb alloy is an important high temperature structural material used in the space and aerospace fields. Welding of this alloy is an indispensable processing method, so the microstructures and mechanical properties of these welded joints must be studied to improve the welds. Longitudinal three-point bending tests were conducted to measure the bending ductility of laser beam welded joints. The crack dis-tribution and fracture surface were investigated to further analyze the fracture behavior. The results indicate that the bending ductility decreases as the heat input by the laser beam welding increases. The crack in-ducing strain reaches 4.24%, while the fracturing strain exceeds 5% when the heat input is below 316 J/cm. If the columnar crystal grain of the weld metal exhibits a uniform orientation, the bending ductility is worse. The fractography analysis shows that the cracking propagates transgranularly and the fracture surface has a cleavage mode.

  14. Residual stress analysis of 7075 aluminum alloy after vacuum electron beam welding

    Institute of Scientific and Technical Information of China (English)

    Chen Furong; Xie Ruijun; Guo Guifang

    2007-01-01

    The residual stresses distribution of 7075 aluminum alloy in vacuum electron beam welding joint was numerically simulated using nonlinear finite element method. The result shows that the longitudinal residual stress is tension stress along weld center and the stress peak value appears in the middle of the welded seam; the transversal residual stress is compression stress; the residual stress in thickness direction is very small.

  15. Optimization of welding parameters of Ti6Al4V alloy using electron beam

    Directory of Open Access Journals (Sweden)

    Petr Havlík

    2016-06-01

    Full Text Available Titanium alloys and their weld joints find wide application, in particular in the aircraft, automotive and chemical industries, because of their outstanding specific strength and corrosion resistance. The high reactivity of these alloys and the strong degradation effect of elements contained in the atmosphere (H, N and O make it necessary for these alloys to be welded in protective atmospheres or in vacuum. From this viewpoint, Electron Beam Welding is an advantageous welding technology, especially in large series production. In the literature, there is sufficient information about the effect of the basic welding parameters, namely accelerating voltage, current and welding speed, on the properties of welded joints. In the paper, the effects of the spot diameter and beam focusing on the penetration depth and the weld shape in the Ti6Al4V alloy are studied. The results obtained are complemented by an analysis of the microstructure and microhardness measurements across the welds.

  16. Experimental Evaluation and Characterization of Electron Beam Welding of 2219 AL-Alloy

    Directory of Open Access Journals (Sweden)

    Mohamed Sobih

    2016-01-01

    Full Text Available Aiming to reduce the weight of components, thus allowing a profit in terms of energy saving, automotive industry as well as aircraft industry extensively uses aluminum alloys. The most widely used joining technology in aircraft industry is riveting, while welding seems to be used in the car industry in the case of aluminum alloys. However, welding technology is characterized by many defects, such as gas porosity; oxide inclusions; solidification cracking (hot tearing; and reduced strength in both the weld and the heat affected zones which could limit its development. Many techniques are used for aluminum alloys welding, among them is electron beam welding (EBW, which has unique advantages over other traditional fusion welding methods due to high-energy density, deep penetration, large depth-to-width ratio, and small heat affected zone. The welding parameters that yield to optimal weld joint have been previously obtained. These optimal parameters were validated by welding a specimen using these parameters. To evaluate this optimal weld joint, complete, microstructural observations and characterization have been carried out using scanning electron microscopy, optical microscopy, and energy dispersive X-ray analysis. This evaluation leads to description and quantification of the solidification process within this weld joint.

  17. High-cycle Fatigue Properties of Alloy718 Base Metal and Electron Beam Welded Joint

    Science.gov (United States)

    Ono, Yoshinori; Yuri, Tetsumi; Nagashima, Nobuo; Sumiyoshi, Hideshi; Ogata, Toshio; Nagao, Naoki

    High-cycle fatigue properties of Alloy 718 plate and its electron beam (EB) welded joint were investigated at 293 K and 77 K under uniaxial loading. At 293 K, the high-cycle fatigue strength of the EB welded joint with the post heat treatment exhibited somewhat lower values than that of the base metal. The fatigue strengths of both samples basically increased at 77 K. However, in longer life region, the EB welded joint fractured from a blow hole formed in the welded zone, resulting in almost the same fatigue strength at 107 cycles as that at 293 K.

  18. Effects on mechanical properties in electron beam welding of TC4 alloy by laser shock processing

    Institute of Scientific and Technical Information of China (English)

    LU Jinzhong; ZHANG Yongkang; KONG Dejun; REN Xudong; GE Tao; ZOU Shikun

    2007-01-01

    The surface of TC4 titanium alloy welding line by electron beam welding (EBW) was processed by high power Q-switched and repetition-rate Nd: glass laser. Effects of laser power and spot diameter on residual stress and microhardness of the TC4 alloy welding line by laser shock processing (LSP) have been analyzed. Results show that residual stresses almost do not change as laser poweris 45.9 J,spot diameter is φ9 mm; While laser power is 45.9 J, spot diameter less than φ3 mm, the distribution of residual stress in welding line occurs obvious variation, which residual stress increase obviously with spot diameter decrease. When power density is bigger than 1.8×1010W/cm2, residual stresses of electron beam welding line occur change by LSP,which improve obviously residual stress distribution; while laser power is bigger than 1.2×1010W/cm2, the surface micro-hardness of electron beam welding line occurs change by LSP, which improve obviously micro-hardness distribution. Mechanical properties of TC4 titanium alloy welding line will be improved by LSP, which provides experimental foundation for further controlling the distributions of residual stress and micro-hardness during laser shock processing.

  19. Influence of the Local Chemical Composition on the Mechanical Properties of Laser Beam Welded Al-Li Alloys

    Science.gov (United States)

    Enz, Josephin; Riekehr, Stefan; Ventzke, Volker; Kashaev, Nikolai

    The increasing interest of the aircraft industry in reduction of structural weight of aircrafts has resulted in the development of lightweight and high-strength Al-Li alloys as well as in the introduction of laser beam welding to the manufacturing process. The objective of this study is the investigation of the influence of variations in the chemical composition on local mechanical properties, like micro-hardness and micro-tensile strength, of CO 2 laser beam welded skin-stringer joints made from AA2196 and AA2198. Additionally the influence of the welding process on weld chemistry is studied in view of the improvement of the weld quality.

  20. NUMERICAL ANALYSIS OF RESIDUAL STRESSES IN TITANIUM ALLOY DURING ELECTRON BEAM LOCAL POST-WELD HEAT TREATMENT

    Institute of Scientific and Technical Information of China (English)

    Chen Furong; Huo Lixing; Zhang Yufeng; Liu Fangjun; Chen Gang

    2005-01-01

    The distributions of temperature and residual stresses in thin plates of BT20 titanium alloy are numerically analyzed by three-dimensional finite element software during electron beam welding and electron beam local post-weld heat treatment (EBLPWHT). Combined with numerical calculating results, the effects of different EBLPWHT mode and parameters, including heat treating position,heating width and heating time, on the distribution of welding residual stresses are analyzed. The results show that, the residual tensile stresses in weld center can be largely decreased when the weld is heat treated at back preface of the plate. The numerical results also indicated that the magnitude of the residual longitudinal stresses of the weld and the zone vicinity of the weld is decreased, and the range of the residual longitudinal stresses is increased along with the increase of heating width and heating time.

  1. Comparison of single-beam and dual-beam laser welding of Ti-22Al-25Nb/TA15 dissimilar titanium alloys

    Science.gov (United States)

    Shen, Junqi; Li, Bo; Hu, Shengsun; Zhang, Hao; Bu, Xianzheng

    2017-08-01

    Laser beam welding (LBW) was used to join Ti-22Al-25Nb/TA15 dissimilar titanium alloys. The microstructure and mechanical properties of the welded joints under single and dual beam welding were analyzed and compared. In the mode of single laser beam, the fusion zone only consisted of B2 phase because of existence of β-phase stabilizer and rapid cooling rate of LBW. However, O phase was formed in the fusion zone while applying dual-beam laser welding due to decrease of the cooling rate. The microhardness distribution of the welded joint in dual-beam welding mode was consistent with that in single mode, but the hardness of the weld under dual laser beam was higher than that of single laser beam. In room-temperature tensile tests, the fractures all occurred in the weld, but the morphology exhibited a quasi-cleavage feature in single mode while the morphology was dimple fracture in the mode of dual laser beam. The tensile strength and elongation were both increased under dual-beam laser welding compared with those under single-beam laser welding.

  2. Reduced Pressure Electron Beam Welding Evaluation Activities on a Ni-Cr-Mo Alloy for Nuclear Waste Packages

    Energy Technology Data Exchange (ETDEWEB)

    Wong, F; Punshon, C; Dorsch, T; Fielding, P; Richard, D; Yang, N; Hill, M; DeWald, A; Rebak, R; Day, S; Wong, L; Torres, S; McGregor, M; Hackel, L; Chen, H-L; Rankin, J

    2003-09-11

    The current waste package design for the proposed repository at Yucca Mountain Nevada, USA, employs gas tungsten arc welding (GTAW) in fabricating the waste packages. While GTAW is widely used in industry for many applications, it requires multiple weld passes. By comparison, single-pass welding methods inherently use lower heat input than multi-pass welding methods which results in lower levels of weld distortion and also narrower regions of residual stresses at the weld TWI Ltd. has developed a Reduced Pressure Electron Beam (RPEB) welding process which allows EB welding in a reduced pressure environment ({le} 1 mbar). As it is a single-pass welding technique, use of RPEB welding could (1) achieve a comparable or better materials performance and (2) lead to potential cost savings in the waste package manufacturing as compared to GTAW. Results will be presented on the initial evaluation of the RPEB welding on a Ni-Cr-Mo alloy (a candidate alloy for the Yucca Mountain waste packages) in the areas of (a) design and manufacturing simplifications, (b) material performance and (c) weld reliability.

  3. Effects of zonal heat treatment on residual stresses and mechanical properties of electron beam welded TC4 alloy plates

    Institute of Scientific and Technical Information of China (English)

    HU Mei-juan; LIU Jin-he

    2009-01-01

    Zonal heat treatment(ZHT) was conducted in situ to 14.5 mm-thick TC4 alloy plates by means of defocused electron beam after welding. The effects of ZHT on residual stresses, microstructures and mechanical properties of electron beam welded joints were investigated. Experimental results show residual stresses after welding are mostly relieved through ZHT, and the maximum values of longitudinal tensile stress and transverse compressive stress reduce by 76% and 65%, respectively. The tensile strength and ductility of welded joint after ZHT at slow scanning velocity are improved because of the reduction of residual stress and the microstructural changes of the base and weld metal. ZHT at fast scanning velocity is detrimental to the ductility of welded joint, which is resulted from insufficiently coarsened alpha phase in the fusion zone and the appearance of martensite in the base metal.

  4. Fusion zone microstructure and porosity in electron beam welds of an α+β titanium alloy

    Science.gov (United States)

    Mohandas, T.; Banerjee, D.; Kutumba Rao, V. V.

    1999-03-01

    The effect of electron beam welding parameters on fusion zone (FZ) microstructure and porosity in a Ti -6.8 Al -3.42 Mo -1.9 Zr -0.21 Si alloy (Russian designation VT 9) has been investigated. It has been observed that the FZ grain width increased continuously with increase in heat input when the base metal was in the β heat-treated condition, while in the α+β heat-treated base metal welds, the FZ grain width increased only after a threshold energy input. The difference is attributed to both the weld thermal cycle and the pinning effect of equiaxed primary alpha on grain growth in the heat-affected zone (HAZ) of α+β heat-treated base metal. Postweld heat treatment (PWHT) in the subtransus and supertransus regions did not alter the columnar grain morphology in the FZ, possibly due to the lack of enough driving force for the formation of new grains by the breaking up of the columnar grains and grain boundary movement for grain growth. As the PWHTs were conducted in a furnace, the role of thermal gradients can be ruled out. Intragranular microstructure in the aswelded condition consisted of hexagonal martensite. The scale of the martensite laths depended on welding speed. The highest porosity was observed at intermediate welding speeds. At low speeds, a majority of pores formed at the fusion boundary, while at high speeds, occurrence of porosity was maximum at the weld center. The trends on porosity can be explained on the basis of solubility of hydrogen in titanium as a function of temperature and the influence of weld thermal cycle on nucleation, growth, and escape of hydrogen gas bubbles. The porosity at slow welding speeds is low because sufficient time exists for the nucleation, growth, and escape of hydrogen gas bubbles, while insufficient time exists for the nucleation of gas bubbles at high welding speeds. The effect of pickling of joint surface, vacuum annealing of the base metal, and successive remelting of the weld metal has also been investigated.

  5. INVESTIGATION OF LASER BEAM WELDING PROCESS OF AZ61 MAGNESIUM-BASED ALLOY

    Institute of Scientific and Technical Information of China (English)

    H.Y. Wang; Z.J. Li

    2006-01-01

    Laser welding process of AZ61 magnesium alloys is investigated using a special CO2 laser experimental system. The effect of processing parameters including laser power, welding speed,and protection gas flow at the top and bottom is researched The results show that an ideal weld bead can be formed by choosing the processing parameters properly. An optimized parameter range is obtained by a large number of experiments. Among them, laser power and welding speed are the two main parameters that determine the weld width and dimensions. The protect gas flow rate has a slight effect on the weld width, but it directly effects the surface color of the weld. The test results for typical welds indicate that the microhardness and tensile strength of the weld zone are better than that of the base metal. A fine-grained weld region has been observed and no obvious heat-affected zone is found. The weld zone mainly consists of small α-Mg phase, (α +Al12Mg17), and other eutectic phases. The small grains and the eutectic phases in the joint are believed to play an important role in the increase of the strength of welds for AZ61 magnesium alloys.

  6. Phase Transformation and Residual Stress in a Laser Beam Spot-Welded TiAl-Based Alloy

    Science.gov (United States)

    Liu, Jie; Staron, Peter; Riekehr, Stefan; Stark, Andreas; Schell, Norbert; Huber, Norbert; Schreyer, Andreas; Müller, Martin; Kashaev, Nikolai

    2016-12-01

    The microstructure, chemical composition, residual stress, and lattice parameter evolution of the welding zone (WZ) and heat-affected zone (HAZ) of a laser-beam-welded TiAl-based alloy were investigated. It was found that both α 2 and γ phases remain highly restrained in the WZ edge, and the stresses are relieved in the HAZ. A grain refinement mechanism is proposed, which works by heating the material to the β or α + β phase field for a short time. The lamellar colonies are refined by the Nb-enriched segregations.

  7. Laser beam welding of high strength aluminium-lithium alloys; Laserstrahlschweissen von hochfesten Aluminium-Lithium Legierungen

    Energy Technology Data Exchange (ETDEWEB)

    Enz, Josephin

    2012-07-01

    The present development in aircraft industry determined by the demand for a higher cost-effectiveness. Laser beam welding is one of the most promising joining technologies for the application in the aircraft industry through the considerable reduction of the production costs. Furthermore the weight of an aircraft structure can be reduced by the use of light and high strength aluminium alloys. This paper deals with the development of a process for the laser beam welding of a skin-stringer-joint where the Al-Li-alloy AA2196 is used as stringer material and the Al-Li-alloy AA2198 is used as skin and stringer material. By the use of design of experiments the optimal welding process parameters for different material combinations were determined which will be used for the welding of a 5-stringer panel. Therefore the weld seams of the joints were tested for irregularities and microstructural characteristics. In addition several mechanical tests were performed, which define the quality of the welded joint. Furthermore the influence of the oxide layer and the welding preparation on the welding performance was investigated. (orig.) [German] Die derzeitigen Entwicklungen im Flugzeugbau werden durch die allgemeine Forderung nach einer Steigerung der Wirtschaftlichkeit bestimmt. Das Laserstrahlschweissen ist dabei eines der vielversprechendsten Fuegeverfahren fuer die Anwendung im Flugzeugbau durch das die Herstellungskosten deutlich reduziert werden koennen. Zudem kann durch die Verwendung von leichten und hochfesten Aluminium-Legierungen das Gewicht einer Flugzeugstruktur zusaetzlich reduziert werden. Die vorliegende Arbeit befasst sich mit der Entwicklung eines Prozesses zum Laserstrahlschweissen einer Skin-Stringer-Verbindung aus den Aluminium-Lithium-Legierungen AA2196 (als Stringer-Werkstoff) und AA2198 (als Skin- und Stringer-Werkstoff). Unter Verwendung der statistischen Versuchsplanung wurden die optimalen Einstellungen der Schweissprozessparameter fuer die

  8. Influences of size and position of defects on the fatigue life of electron beam welded-aluminum alloy joints

    Institute of Scientific and Technical Information of China (English)

    LU Li; ZHAO Haiyan; CAI Zhipeng; CUI Xiaofang

    2007-01-01

    Defects such as pores influence the fatigue life of electron beam-welded aluminum alloy joints. In this paper,the influences of pore size and position on the fatigue life of aluminum overlap joint are studied. A finite element model (FEM), combined with experimental data, is established to evaluate the fatigue life of overlap joints. By employing this FE model, the effects of pore size and position on fatigue lives of overlap joints are investigated and discussed. From the present study, when pore position is closer to the weld bead tip or the faying surface, the fatigue life decreases. Also, there is a critical size for the pore; when the pore size is larger than the critical value, the fatigue strength decreases sharply.

  9. Impact properties of electron beam welds of V–4Ti–4Cr alloys NIFS-HEAT-2 and CEA-J57

    Energy Technology Data Exchange (ETDEWEB)

    Tsisar, Valentyn, E-mail: valentyn_tsisar@ipm.lviv.ua [National Institute for Fusion Science (NIFS), 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Physical–Mechanical Institute of National Academy of Sciences of Ukraine (PhMI NASU), 5 Naukova Street, 79601 Lviv (Ukraine); Karlsruhe Institute of Technology (KIT), Institute for Applied Materials – Material Process Technology (IAM-WPT), Hermann-von-Helmholtz-Platz, 1, 76344 Eggenstein-Leopoldshafen (Germany); Nagasaka, Takuya [National Institute for Fusion Science (NIFS), 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Le Flem, Marion [CEA, DEN, DMN, SRMA, F-91191 Gif Sur Yvette (France); Yeliseyeva, Olga [Physical–Mechanical Institute of National Academy of Sciences of Ukraine (PhMI NASU), 5 Naukova Street, 79601 Lviv (Ukraine); Konys, Jürgen [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials – Material Process Technology (IAM-WPT), Hermann-von-Helmholtz-Platz, 1, 76344 Eggenstein-Leopoldshafen (Germany); Muroga, Takeo [National Institute for Fusion Science (NIFS), 322-6 Oroshi, Toki, Gifu 509-5292 (Japan)

    2014-10-15

    Highlights: • Electron beam welding was applied for V–4Ti–4Cr alloys NIFS-HEAT-2 and CEA-J57. • Weld metal showed superior impact properties in comparison with base metal. • Expected shift in DBTT to higher temperatures does not take place. - Abstract: The Charpy impact properties and microstructure of bead-on-plate electron beam welds of V–4Ti–4Cr alloys NIFS-HEAT-2 (NH-2) and CEA-J57 (J57) were investigated. Weld metal of both grades demonstrated increase in hardness (HV{sub 100} ∼ 180) in comparison with base metal (HV{sub 100} ∼ 135) due to decomposition of Ti–C,O,N precipitates followed by the solid-solution hardening of V-matrix with oxygen. Hardness decreases gradually from the weld metal through the heat affected zone toward the base metal indicating partial decomposition of precipitation bands from the side of heat affected zone directly adjoining weld metal. The latter consists of columnar crystallites (grains) possessing with inner dendritic structure and elongated from the center of weld belt in the direction of heat removal. Thickness of weld metal does not exceed 1 mm while heat affected zone is about 3 mm thick. Absorbed energies of weld metal are superior in comparison with base metal for both grades (NH-2 and J57) while the fracture mode is mainly ductile in the temperature range of impact test from 17 to −196 °C.

  10. Effects of the heterogeneity in the electron beam welded joint on fatigue crack growth in Ti-6Al-4V alloy

    Energy Technology Data Exchange (ETDEWEB)

    Li Xingzhi [State Key Laboratory of Material Processing and Die Mould Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); Hu Shubing, E-mail: hushubing@163.com [State Key Laboratory of Material Processing and Die Mould Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); Xiao Jianzhong; Ji Longbo [State Key Laboratory of Material Processing and Die Mould Technology, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2011-11-25

    Highlights: {yields} The heterogeneity in electron beam welded joint was defined and described. {yields} The fatigue crack growth rates (FCGR) in different zones. {yields} The fatigue crack growth rate in different thicknesses of the welded joint. {yields} The effect of heterogeneity on the FCGR was discussed from the microstructure by SEM and TEM. {yields} The fatigue crack growth rate was closely related to the heterogeneity. - Abstract: The heterogeneity of electron beam (EB)-welded joints in thick Ti-6Al-4V alloy plates is defined and described. The microstructure, hardness, and fatigue crack growth rate (FCGR) in the fuse zone (FZ) and the heat-affected zone (HAZ) of thick Ti-6Al-4V alloy EB-welded joint are studied using a new testing and interception method. The fatigue fractographs, crack growth paths and the microscopic deformation are observed through scanning and transmission electron microscopy. The effect mechanism of heterogeneity in the electron beam weld joint to FCGRs is discussed. The results reveal that FCGR is higher in the HAZ than in the FZ, mainly because of the effect of heterogeneity I of the welded joint. Heterogeneity II increases from the top to the root of the welding seam while the size of the {alpha}' phase decreases. Consequently, FCGR is higher at the root of the welding seam. Heterogeneity in the joint is found to greatly influence the FCGR.

  11. Definition of Beam Diameter for Electron Beam Welding

    Energy Technology Data Exchange (ETDEWEB)

    Burgardt, Paul [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pierce, Stanley W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dvornak, Matthew John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-11

    It is useful to characterize the dimensions of the electron beam during process development for electron beam welding applications. Analysis of the behavior of electron beam welds is simplest when a single number can be assigned to the beam properties that describes the size of the beam spot; this value we generically call the “beam diameter”. This approach has worked well for most applications and electron beam welding machines with the weld dimensions (width and depth) correlating well with the beam diameter. However, in recent weld development for a refractory alloy, Ta-10W, welded with a low voltage electron beam machine (LVEB), it was found that the weld dimensions (weld penetration and weld width) did not correlate well with the beam diameter and especially with the experimentally determined sharp focus point. These data suggest that the presently used definition of beam diameter may not be optimal for all applications. The possible reasons for this discrepancy and a suggested possible alternative diameter definition is the subject of this paper.

  12. Effect of Prior and Post-Weld Heat Treatment on Electron Beam Weldments of (α + β) Titanium alloy Ti-5Al-3Mo-1.5V

    Science.gov (United States)

    Anil Kumar, V.; Gupta, R. K.; Manwatkar, Sushant K.; Ramkumar, P.; Venkitakrishnan, P. V.

    2016-06-01

    Titanium alloy Ti5Al3Mo1.5V is used in the fabrication of critical engine components for space applications. Double vacuum arc re-melted and (α + β) forged blocks were sliced into 10-mm-thick plates and subjected to electron beam welding (EBW) with five different variants of prior and post-weld heat treatment conditions. Effects of various heat treatment conditions on the mechanical properties of the weldments have been studied. The welded coupons were characterized for microstructure, mechanical properties, and fracture analysis. An optimized heat treatment and welding sequence has been suggested. Weld efficiency of 90% could be achieved. Weldment has shown optimum properties in solution treated and aged condition. Heat-affected zone adjacent to weld fusion line is found to have lowest hardness in all conditions.

  13. Tensile Strength of Welded Joint of 1Cr18Ni9 Stainless Steel and Nb-1Zr Alloy Jointed by Electron Beam Self-material Brazing

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Compared with Nb-1Zr alloy stainless steels have a quite difference in melting point, thermalphysical and electromagnetism properties etc.. Therefore, it is very difficulty to joint by melting weldingmethod. Electron beam self-brazing method is an accepted method to use for this kind of welding. Make

  14. Laser-TIG Welding of Titanium Alloys

    Science.gov (United States)

    Turichin, G.; Tsibulsky, I.; Somonov, V.; Kuznetsov, M.; Akhmetov, A.

    2016-08-01

    The article presents the results of investigation the technological opportunity of laser-TIG welding of titanium alloys. The experimental stand for implementation of process with the capability to feed a filler wire was made. The research of the nature of transfer the filler wire into the welding pool has been demonstrated. The influence of distance between the electrode and the surface of the welded plates on the stability of the arc was shown. The relationship between welding velocity, the position of focal plane of the laser beam and the stability of penetration of plates was determined.

  15. Effect of Li on mechanical and corrosion properties of electron beam welds of V–4Ti–4Cr alloy (NIFS-HEAT-2)

    Energy Technology Data Exchange (ETDEWEB)

    Tsisar, Valentyn, E-mail: valentyn_tsisar@ukr.net [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Physical-Mechanical Institute of NASU, 5 Naukova St., 79601 Lviv (Ukraine); Nagasaka, Takuya; Muroga, Takeo; Miyazawa, Takeshi [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Yeliseyeva, Olga [Physical-Mechanical Institute of NASU, 5 Naukova St., 79601 Lviv (Ukraine)

    2013-11-15

    The 4 mm thick plate of V–4Ti–4Cr alloy (NIFS-HEAT-2) was bead-on-plate welded by electron beam (1.5 kW) under high vacuum atmosphere. The samples were placed in V–5Ti capsule subsequently filled by liquid Li (8 g) in glove box under high-purity He atmosphere in order to avoid contamination of Li by O and/or N. Static corrosion tests were carried out at 700 °C for 500 h utilizing vertical water cooling furnace placed in the same glove box. During the test, liquid Li contacted with recirculating helium which was continuously purified with respect to O (4–30 wppm). After the test, the samples were cleaned against adhered Li in 30%H{sub 2}O{sub 2} at 5 °C in order to avoid hydrogenation of V-alloy. After the welding, the impact properties of the weld metal measured at 77 K remained high enough (9.5 J) while fracture mode was ductile in spite of the solid-solution hardening by O released from Ti–C,O,N precipitates during high temperature electron beam welding. In contrast, impact properties of weld metal degraded after exposure to liquid Li (2.2 J) and post welding heat treatment (1.8 J) both carried out at 973 K. Character of fracture mode also changed to brittle due to the re-precipitation assisted hardening caused by aging effect.

  16. Experimental investigation and metallographic characterization of fiber laser beam welding of Ti-6Al-4V alloy using response surface method

    Science.gov (United States)

    Kumar, Chandan; Das, Manas; Paul, C. P.; Singh, B.

    2017-08-01

    In the present study, experimental investigations of fiber-laser-beam-welding of 5 mm thick Ti-6Al-4V alloy are carried out based on statistical design of experiments. The relationship between the process parameters such as welding power, welding speed, and defocused position of the laser beam with the output responses such as width of the fusion zone, size of the heat affected zone, and fusion zone area are established in terms of regression models. Also, the most significant process parameters and their optimum ranges are identified and their percentage contributions on output responses are calculated. It is observed that welding power and speed plays the major role for full penetration welding. Also, welding power shows direct effect whereas welding speed shows the inverse effect on the output responses. The bead geometry is influenced by the defocused position of the laser beam due to the change in power density on the workpiece surface. However, overall fusion zone area is unaffected. Mechanical characterization of the welded samples such as microstructural analysis, hardness, and tensile tests are conducted. It is noticed that the hardness value of the FZ is higher than the HAZ and BM zone due to the difference in cooling rate during welding which promotes the formation of α‧ martensitic phase in the FZ. Also, an average hardness value in the FZ is compared for two different defocusing positions (i.e. 1 and 2 mm). It is found that hardness value is higher for 1 mm defocused position than 2 mm due the decrement in grain size below a critical range at 2 mm defocused position. The ultimate tensile strength and % elongation of the welded samples are degraded as compared to BM which can be further improved by post heat treatment.

  17. Process Optimization of Dual-Laser Beam Welding of Advanced Al-Li Alloys Through Hot Cracking Susceptibility Modeling

    Science.gov (United States)

    Tian, Yingtao; Robson, Joseph D.; Riekehr, Stefan; Kashaev, Nikolai; Wang, Li; Lowe, Tristan; Karanika, Alexandra

    2016-07-01

    Laser welding of advanced Al-Li alloys has been developed to meet the increasing demand for light-weight and high-strength aerospace structures. However, welding of high-strength Al-Li alloys can be problematic due to the tendency for hot cracking. Finding suitable welding parameters and filler material for this combination currently requires extensive and costly trial and error experimentation. The present work describes a novel coupled model to predict hot crack susceptibility (HCS) in Al-Li welds. Such a model can be used to shortcut the weld development process. The coupled model combines finite element process simulation with a two-level HCS model. The finite element process model predicts thermal field data for the subsequent HCS hot cracking prediction. The model can be used to predict the influences of filler wire composition and welding parameters on HCS. The modeling results have been validated by comparing predictions with results from fully instrumented laser welds performed under a range of process parameters and analyzed using high-resolution X-ray tomography to identify weld defects. It is shown that the model is capable of accurately predicting the thermal field around the weld and the trend of HCS as a function of process parameters.

  18. Welding of Aluminum Alloys to Steels: An Overview

    Science.gov (United States)

    2013-08-01

    alloy /Ag interlayer/steel non-centered electron beam welded joints, Transaction of non- Ferrous Metals Society of China 21 (2011) 2592-2596. [53] K.-J...UNCLASSIFIED: Distribution Statement A. Approved for public release. 1 UNCLASSIFIED Welding of aluminum alloys to steels: an overview M. Mazar...different materials, iron-based alloys and aluminum-based alloys are among the most significant materials that are finding applications on the various

  19. The effect of electron beam welding on the creep rupture properties of a Nb-Zr-C alloy

    Science.gov (United States)

    Moore, T. J.; Titran, R. H.; Grobstein, T. L.

    1986-01-01

    Creep rupture tests of electron beam welded PWC-11 sheet were conducted at 1350 K. Full penetration, single pass welds were oriented transverse to the testing direction in 1 mm thick sheet. With this orientation, stress was imposed equally on the base metal, weld metal, and heat-affected zone. Tests were conducted in both the postweld annealed and aged conditions. Unwelded specimens with similar heat treatments were tested for comparative purposes. It was found that the weld region is stronger than the base metal for both the annealed and aged conditions and that the PWC-11 material is stronger in the annealed condition than in the aged condition.

  20. Improving the Mechanical Properties of the Fusion Zone in Electron-Beam Welded Ti-5Al-5Mo-5V-3Cr Alloys

    Science.gov (United States)

    Marvel, Christopher J.; Sabol, Joseph C.; Pasang, Timotius; Watanabe, Masashi; Misiolek, Wojciech Z.

    2017-01-01

    It is well-known that ω-phase precipitates embrittle Ti-5553 alloys and that ω-phase embrittlement can be overcome with appropriate heat treatments. However, the microstructural evolution of electron-beam welded Ti-5553 is not as understood as compared to the cast or wrought material. This study compared the microstructures of as-welded and post-weld heat-treated specimens by scanning and transmission electron microscopy, and similarly compared the localized mechanical behavior of the fusion zones with microhardness testing and digital image correlation coupled tensile testing. The primary observations were that the embrittling ω-phase precipitates formed upon cooling, and could not be fully solutionized in a single-step treatment of 1077 K (804 °C) for 1 hour. It was also discovered that nanoscale α-phase precipitates nucleated after the single-step treatment, although they were small in number and sparsely distributed. However, a two-step heat treatment of 1077 K (804 °C) for 1 hour and 873 K (600 °C) for 4 hours completely solutionized the ω-phase and produced a dense network of 2-μm-wide α-phase plates, which significantly improved the mechanical properties. Overall, this study has shown that post-weld heat treatments improve the strength and ductility of electron-beam welded Ti-5553 alloys by controlling ω- and α-phase evolution.

  1. Improving the Mechanical Properties of the Fusion Zone in Electron-Beam Welded Ti-5Al-5Mo-5V-3Cr Alloys

    Science.gov (United States)

    Marvel, Christopher J.; Sabol, Joseph C.; Pasang, Timotius; Watanabe, Masashi; Misiolek, Wojciech Z.

    2017-04-01

    It is well-known that ω-phase precipitates embrittle Ti-5553 alloys and that ω-phase embrittlement can be overcome with appropriate heat treatments. However, the microstructural evolution of electron-beam welded Ti-5553 is not as understood as compared to the cast or wrought material. This study compared the microstructures of as-welded and post-weld heat-treated specimens by scanning and transmission electron microscopy, and similarly compared the localized mechanical behavior of the fusion zones with microhardness testing and digital image correlation coupled tensile testing. The primary observations were that the embrittling ω-phase precipitates formed upon cooling, and could not be fully solutionized in a single-step treatment of 1077 K (804 °C) for 1 hour. It was also discovered that nanoscale α-phase precipitates nucleated after the single-step treatment, although they were small in number and sparsely distributed. However, a two-step heat treatment of 1077 K (804 °C) for 1 hour and 873 K (600 °C) for 4 hours completely solutionized the ω-phase and produced a dense network of 2- μm-wide α-phase plates, which significantly improved the mechanical properties. Overall, this study has shown that post-weld heat treatments improve the strength and ductility of electron-beam welded Ti-5553 alloys by controlling ω- and α-phase evolution.

  2. Effect of post-weld heat treatment on microstructure, hardness and low-temperature impact toughness of electron beam welds of NIFS-HEAT-2 and CEA-J57 heats of V–4Ti–4Cr alloy

    Directory of Open Access Journals (Sweden)

    V. Tsisar

    2016-12-01

    Full Text Available Bead-on-plate electron beam welding in high vacuum atmosphere was applied to the plates of NIFS-HEAT-2 and CEA-J57 heats of V–4Ti–4Cr alloy. Effect of post-weld heat treatment (PWHT in the temperature range 673–1273K on the hardness, impact toughness at 77K and microstructure of weld metal was investigated. After PWHT at 773K, hardness of weld metal slightly decreases from 180HV100 (as-welded state to ∼170HV100 while absorbed energy increases up to ∼10J showing ductile fracture mode. PWHT at 973K results in re-hardening of weld metal up to ∼180HV100 caused by re-precipitation of Ti–C,O,N precipitates and corresponding decreasing absorbed energy to ∼2J with brittle fracture mode. PWHT in-between 1073–1273K results in gradual recovery of hardness towards values comparable with those of base metal. Impact toughness (77 K of weld metal after PWHT at 1073K is not recovered nether to the value in as-welded state nor to that one of base metal.

  3. Effect of laser beam offset on microstructure and mechanical properties of pulsed laser welded BTi-6431S/TA15 dissimilar titanium alloys

    Science.gov (United States)

    Zhang, Hao; Hu, Shengsun; Shen, Junqi; Li, Dalong; Bu, Xianzheng

    2015-11-01

    Laser beam welding was used to weld dissimilar joints in BTi-6431S/TA15 titanium alloys. The effect of laser beam offset on microstructural characterizations and mechanical properties of the joints were investigated. Microstructural evolution of the joints was characterized by optical microscopy (OM) and X-ray diffraction (XRD). Tensile testing was conducted at room temperature and at 550 °C. The results demonstrated that with the exception of some porosity, a good quality joint could be achieved. Martensite α' and acicular α structures were present in the fusion zone (FZ). The amount of martensite α' present with the -0.2 mm beam offset was less than that with the 0.2 mm beam offset. Acicular α and martensite α' transformations occurred in the high temperature heat-affected zone (HT-HAZ) of both the BTi-6431S and TA15 alloys. In the low-temperature heat-affected zone (LT-HAZ), the BTi-6431S and TA15 alloy microstructures exhibited a mixture of secondary α, primary α, and prior β phases. The microhardness values in the FZ followed the order: -0.2 mm> 0 mm> 0.2 mm. Tensile testing at room temperature and at 550 °C resulted in fracture of the TA15 alloy base metal. The fracture morphology exhibited a ductile dimple feature.

  4. Welding of Prosthetic Alloys

    Directory of Open Access Journals (Sweden)

    Wojciechowska M.

    2015-04-01

    Full Text Available This paper presents the techniques of joining metal denture elements, used in prosthetic dentistry: the traditional soldering technique with a gas burner and a new technique of welding with a laser beam; the aim of the study was to make a comparative assessment of the quality of the joints in view of the possibility of applying them in prosthetic structures. Fractographic examinations were conducted along with tensile strength and impact strength tests, and the quality of the joints was assessed compared to the solid metal. The experiments have shown that the metal elements used to make dentures, joined by the technique which employs a laser beam, have better strength properties than those achieved with a gas burner.

  5. Friction Stir Welding of Aluminum Alloys

    Institute of Scientific and Technical Information of China (English)

    FU Zhi-hong; HE Di-qiu; WANG Hong

    2004-01-01

    Friction stir welding(FSW), a new solid-state welding technology invited in the early 1990s,enables us weld aluminum alloys and titanium alloys etc. The processing of FSW, the microstructure in FSW alloysand the factors influencing weld quality are introduced. The complex factors affecting the properties are researched.

  6. Comparative evaluation of tungsten inert gas and laser beam welding of AA5083-H321

    Indian Academy of Sciences (India)

    K Subbaiah; M Geetha; B Shanmugarajan; S R Koteswara Rao

    2012-10-01

    In this study, the bead-on-plate welds were made on AA5083-H321 alloy plates using both tungsten inert gas (TIG) welding and laser beam (LB) welding processes to study the enhancement of mechanical properties such as weld yield strength and hardness. The low heat input of laser beam welding effectively reduced the size of the fusion zone and heat affected zone compared to tungsten inert gas welding process. High speed LB welding and fast heating and cooling of LB welding process hinders grain growth compared to TIG welding process. The effect of vapourization of volatile alloying elements is also considered. It seems that magnesium evaporation is relatively less in LB welding compared to TIG welding. Tensile testing of the welded joints revealed that LB welding results in superior mechanical properties. It is concluded that LB welding process is more suitable to join AA5083-H321.

  7. Effect of laser characteristics on the weld shape and properties of penetration laser weld of BT20 titanium alloy

    Institute of Scientific and Technical Information of China (English)

    陈俐; 巩水利; 姚伟; 胡伦骥

    2004-01-01

    The laser beam welding of BT20 titanium alloy was conducted to investigate the weld shape, microstructures and properties. The full penetration weld characteristics produced by CO2 laser and by YAG laser were compared. The results show that the full penetration weld of YAG laser welding closes to "X" shape, and weld of CO2 laser welding is "nail-head" shape. Those result from special heating mode of laser deep penetration welding. The tension strength of CO2 laser and YAG laser joints equal to that of the base metal, but the former has better ductility. All welds consist mainly of the acicular α phase and a few β phase in microstructure. The dendritic crystal of CO2 laser weld is a little finer than YAG laser weld. According the research CO2 laser is better than YAG laser for welding of BT20 titanium alloy.

  8. CO2 laser welding of magnesium alloys

    Science.gov (United States)

    Dhahri, Mohammed; Masse, Jean Eric; Mathieu, J. F.; Barreau, Gerard; Autric, Michel L.

    2000-02-01

    Metallic alloys with a low mass density can be considered to be basic materials in aeronautic and automotive industry. Magnesium alloys have better properties than aluminum alloys in respect of their low density and high resistance to traction. The main problems of magnesium alloy welding are the inflammability, the crack formation and the appearance of porosity during the solidification. The laser tool is efficient to overcome the difficulties of manufacturing by conventional processing. Besides, the laser processing mainly using shielding gases allows an effective protection of the metal against the action of oxygen and a small heat affected zone. In this paper, we present experimental results about 5 kW CO2 laser welding of 4 mm-thick magnesium alloy plates provided by Eurocopter France. The focused laser beam has about 0.15 mm of diameter. We have investigated the following sample: WE43, alloy recommended in aeronautic and space applications, is constituted with Mg, Y, Zr, rare earth. More ductile, it can be used at high temperatures until 250 degrees Celsius for times longer than 5000 hours without effects on its mechanical properties. A sample of RZ5 (French Norm: GZ4TR, United States Norm ZE41) is composed of Mg, Zn, Zr, La, rare earth. This alloy has excellent properties of foundry and it allows to the realization of components with complex form. Also, it has a good resistance and important properties of tightness. The parameters of the process were optimized in the following fields: laser power: 2 to 5 kW, welding speed: 1 to 4.5 m/min, focal position: -3 mm to +3 mm below or on the top of the metal surface, shielding gas: helium with a flow of 10 to 60 l/min at 4 bars. Metallurgical analyses and mechanical control are made (macroscopic structure, microscopic structure, interpretations of the structures and localization of possible defects, analyse phases, chemical composition, hardness, tensile test etc.) to understand the parameters influence of welding

  9. Effect of cooling rate on the microstructure of electron beam welded joints of two-phase TiAl-based alloy

    Institute of Scientific and Technical Information of China (English)

    Chen Guoqing; Zhang Binggang; He Jingshan; Feng Jicai

    2007-01-01

    The analysis of the microstructural characterization and phase composition of electron beam welded joint zones of Ti-43Al-9V-0.3Y alloy has been done in this study. The welded seam is mainly composed of B2 phase, the partial γ+α2 two-phase lamellar structure and granular γm phase. And the lanthanon Y existed as YAl2 phase and served as grain refined. The impact of different cooling rates on joint microstructure, fracture characteristic and tensile strength were investigated. The high cooling rate restrained the structural transformation and resulted in the ordering structure. The fracture of the joint was brittle cleavage fracture because the ordering structure went against restraining the crack propagation. With the decrease of cooling rate, the transformation amounts of lamellar structure increased, and the fracture presented the layered and cross-layered characteristic.

  10. Double-sided laser beam welded T-joints for aluminum-lithium alloy aircraft fuselage panels: Effects of filler elements on microstructure and mechanical properties

    Science.gov (United States)

    Han, Bing; Tao, Wang; Chen, Yanbin; Li, Hao

    2017-08-01

    In the current work, T-joints consisting of 2.0 mm thick 2060-T8/2099-T83 aluminum-lithium alloys for aircraft fuselage panels have been fabricated by double-sided fiber laser beam welding with different filler wires. A new type wire CW3 (Al-6.2Cu-5.4Si) was studied and compared with conventional wire AA4047 (Al-12Si) mainly on microstructure and mechanical properties. It was found that the main combined function of Al-6.2%Cu-5.4%Si in CW3 resulted in considerable improvements especially on intergranular strength, hot cracking susceptibility and hoop tensile properties. Typical non-dendritic equiaxed zone (EQZ) was observed along welds' fusion boundary. Hot cracks and fractures during the load were always located within the EQZ, however, this typical zone could be restrained by CW3, effectively. Furthermore, changing of the main intergranular precipitated phase within the EQZ from T phase by AA4047 to T2 phase by CW3 also resulted in developments on microscopic intergranular reinforcement and macroscopic hoop tensile properties. In addition, bridging caused by richer substructure dendrites within CW3 weld's columnar zone resulted in much lower hot cracking susceptibility of the whole weld than AA4047.

  11. Development of laser welding techniques for vanadium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Strain, R.V.; Leong, K.H.; Smith, D.L.

    1996-04-01

    Laser welding is potentially advantageous because of its flexibility and the reduced amount of material affected by the weld. Lasers do not require a vacuum (as do electron beam welders) and the welds they produce high depth-to-width ratios. Scoping with a small pulsed 50 J YAG laser indicated that lasers could produce successful welds in vanadium alloy (V-5%Cr-5%Ti) sheet (1 mm thick) when the fusion zone was isolated from air. The pulsed laser required an isolating chamber filled with inert gas to produce welds that did not contain cracks and showed only minor hardness increases. Following the initial scoping tests, a series of tests were preformed with a 6 kW continuous CO{sub 2} laser. Successful bead-on-plate welds were made on V-4%Cr-4%Ti and V-5%Cr-5%Ti alloys to depths of about 4 mm with this laser.

  12. Effects of Surface Alloying and Laser Beam Treatment on the Microstructure and Wear Behaviour of Surfaces Modified Using Submerged Metal Arc Welding

    Directory of Open Access Journals (Sweden)

    Regita BENDIKIENE

    2016-05-01

    Full Text Available In this study, the effects of surface alloying of cheap plain carbon steel using submerged metal arc technique and subsequent laser beam treatment on the microstructure and wear behaviour of surfaced layers were studied. This method is the cheapest one to obtain high alloyed coatings, because there is no need to apply complex technologies of powder making (metal powder is spread on the surface of base metal or inserted into the flux, it is enough to grind, granulate and blend additional materials. On the other hand, strengthening of superficial layers of alloys by thermal laser radiation is one of the applications of laser. Surface is strengthened by concentrated laser beam focused into teeny area (from section of mm till some mm. Teeny area of metal heat up rapidly and when heat is drain to the inner metal layers giving strengthening effect. Steel surface during this treatment exceeds critical temperatures, if there is a need to strengthen deeper portions of the base metal it is possible even to fuse superficial layer. The results presented in this paper are based on micro-structural and micro-chemical analyses of the surfaced and laser beam treated surfaces and are supported by analyses of the hardness, the wear resistance and resultant microstructures. Due to the usage of waste raw materials a significant improvement (~ 30 % in wear resistance was achieved. The maximum achieved hardness of surfaced layer was 62 HRC, it can be compared with high alloyed conventional steel grade. Wear properties of overlays with additional laser beam treatment showed that weight loss of these layers was ~10 % lower compared with overlays after welding; consequently it is possible to replace high alloyed conventional steel grades forming new surfaces or restoring worn machine elements and tools.DOI: http://dx.doi.org/10.5755/j01.ms.22.1.7621

  13. Effects of Surface Alloying and Laser Beam Treatment on the Microstructure and Wear Behaviour of Surfaces Modified Using Submerged Metal Arc Welding

    Directory of Open Access Journals (Sweden)

    Regita BENDIKIENE

    2016-05-01

    Full Text Available In this study, the effects of surface alloying of cheap plain carbon steel using submerged metal arc technique and subsequent laser beam treatment on the microstructure and wear behaviour of surfaced layers were studied. This method is the cheapest one to obtain high alloyed coatings, because there is no need to apply complex technologies of powder making (metal powder is spread on the surface of base metal or inserted into the flux, it is enough to grind, granulate and blend additional materials. On the other hand, strengthening of superficial layers of alloys by thermal laser radiation is one of the applications of laser. Surface is strengthened by concentrated laser beam focused into teeny area (from section of mm till some mm. Teeny area of metal heat up rapidly and when heat is drain to the inner metal layers giving strengthening effect. Steel surface during this treatment exceeds critical temperatures, if there is a need to strengthen deeper portions of the base metal it is possible even to fuse superficial layer. The results presented in this paper are based on micro-structural and micro-chemical analyses of the surfaced and laser beam treated surfaces and are supported by analyses of the hardness, the wear resistance and resultant microstructures. Due to the usage of waste raw materials a significant improvement (~ 30 % in wear resistance was achieved. The maximum achieved hardness of surfaced layer was 62 HRC, it can be compared with high alloyed conventional steel grade. Wear properties of overlays with additional laser beam treatment showed that weight loss of these layers was ~10 % lower compared with overlays after welding; consequently it is possible to replace high alloyed conventional steel grades forming new surfaces or restoring worn machine elements and tools.DOI: http://dx.doi.org/10.5755/j01.ms.22.1.7621

  14. Electron Beam Welding of Thick Copper Material

    Energy Technology Data Exchange (ETDEWEB)

    Broemssen, Bernt von [IVF Industriforskning och utveckling AB, Stockholm (Sweden)

    2002-08-01

    The purpose of this study was to review the two variants of the Electron Beam Welding (EBW) processes developed (or used) by 1- SKB, Sweden with assistance from TWI, England and 2 - POSIVA, Finland with assistance from Outokumpu, Finland. The aim was also to explain the principle properties of the EBW method: how it works, the parameters controlling the welding result but also giving rise to benefits, and differences between the EBW variants. The main conclusions are that both SKB and POSIVA will within a few years succeed to qualify their respective EBW method for welding of copper canisters. The Reduced Pressure EBW that SKB use today seems to be very promising in order to avoid root defects. If POSIVA does not succeed to avoid root defects with the high vacuum method and the beam oscillation technique it should be possible for POSIVA to incorporate the Reduced Pressure technique albeit with significant changes to the EBW equipment. POSIVA has possibly an advantage over SKB with the beam oscillation technique used, which gives an extra degree of freedom to affect the weld quality. The beam oscillation could be of importance for closing of the keyhole. Before EBW of lids, the material certification showing the alloy content (specifying min and max impurity percentages) and the mechanical properties should be checked. The welded material needs also to be tested for mechanical properties. If possible the weld should have a toughness level equal to that of the unwelded parent material. Specifically some conclusions are reported regarding the SKB equipment. Suggestions for further development are also given in the conclusion chapter.

  15. Special Technologies Related to Electron Beam Welding

    Institute of Scientific and Technical Information of China (English)

    Zhao; Haiyan; Cai; Zhipeng; Wang; Xichang

    2007-01-01

    In order to improve the manufacturing quality of electron beam welding,some technologies are developed by using the special features of electron beam.Comparing with the conventional electron beam welding,the usage of multi-beam technology and micro-beam technology are introduced.In addition.the development of beam diagnostic system is also presented.

  16. Welding of a corrosion-resistant composite material based on VT14 titanium alloy obtained using an electron beam emitted into the atmosphere

    Science.gov (United States)

    Golkovski, M. G.; Samoylenko, V. V.; Polyakov, I. A.; Lenivtseva, O. G.; Chakin, I. K.; Komarov, P. N.; Ruktuev, A. A.

    2017-01-01

    The study investigates the possibility of inert gas arc welding of a double layer composite material on a titanium base with an anti-corrosive layer obtained by fused deposition of a powder mix containing tantalum and niobium over a titanium base using an electron beam emitted into the atmosphere. Butt welding and fillet welding options were tested with two types of edge preparation. Welds were subjected to a metallographic examination including a structural study and an analysis of the chemical and phase composition of the welds. A conclusion was made regarding the possibility of using welding for manufacturing of items from the investigated composite material.

  17. Fusion Welding of AerMet 100 Alloy

    Energy Technology Data Exchange (ETDEWEB)

    ENGLEHART, DAVID A.; MICHAEL, JOSEPH R.; NOVOTNY, PAUL M.; ROBINO, CHARLES V.

    1999-08-01

    A database of mechanical properties for weldment fusion and heat-affected zones was established for AerMet{reg_sign}100 alloy, and a study of the welding metallurgy of the alloy was conducted. The properties database was developed for a matrix of weld processes (electron beam and gas-tungsten arc) welding parameters (heat inputs) and post-weld heat treatment (PWHT) conditions. In order to insure commercial utility and acceptance, the matrix was commensurate with commercial welding technology and practice. Second, the mechanical properties were correlated with fundamental understanding of microstructure and microstructural evolution in this alloy. Finally, assessments of optimal weld process/PWHT combinations for cotildent application of the alloy in probable service conditions were made. The database of weldment mechanical properties demonstrated that a wide range of properties can be obtained in welds in this alloy. In addition, it was demonstrated that acceptable welds, some with near base metal properties, could be produced from several different initial heat treatments. This capability provides a means for defining process parameters and PWHT's to achieve appropriate properties for different applications, and provides useful flexibility in design and manufacturing. The database also indicated that an important region in welds is the softened region which develops in the heat-affected zone (HAZ) and analysis within the welding metallurgy studies indicated that the development of this region is governed by a complex interaction of precipitate overaging and austenite formation. Models and experimental data were therefore developed to describe overaging and austenite formation during thermal cycling. These models and experimental data can be applied to essentially any thermal cycle, and provide a basis for predicting the evolution of microstructure and properties during thermal processing.

  18. Forming of aluminium alloy friction stir welds

    Science.gov (United States)

    Bruni, Carlo

    2016-10-01

    The present paper aims at investigating, through analytical models, numerical models and experiments, the effect of the warm deformation phase, realised with an in temperature upsetting, on the weld previously performed by friction stir lap welding on aluminium alloy blanks. The investigation allows to show the deformation zones after upsetting that determine the homogenisation of the weld section. The analytical model allows to relate the friction factor with the upsetting load. The presence on the weld of not elevated friction factor values determines the deformation and localisation levels very useful for the weld. Such methodology allows to improve the weld itself with the forming phase.

  19. New development in welding thin-shell aluminum alloy structures with high strength

    Institute of Scientific and Technical Information of China (English)

    徐文立; 范成磊; 方洪渊; 田锡唐

    2004-01-01

    From the viewpoint of welding mechanics, two new welding methods-welding with trailing peening and welding with trailing impactive rolling were introduced. For aluminum alloy thin-shell structures with high strength, welding will lead to hot cracking, poor joint and distortion. In order to solve them, trailing impactive device was used behind welding torch to impact the different positions of welded joints, thus realizing the welding with free-hot cracking, low distortion and joint strengthening. By use of impactive rolling wheels instead of peening heads, the outlook of welded specimen can be improved and stress concentration at weld toes can be reduced. Equipment of this technology is simple and portable. It can used to weld sheets, longitudinal and ring-like beams of tube-like structures, as well as the thin-shell structures with closed welds such as flanges and hatches. So the technology has the wide application foreground in the fields of aviation and aerospace.

  20. Welding development for V-Cr-Ti alloys

    Energy Technology Data Exchange (ETDEWEB)

    King, J.F.; Goodwin, G.M.; Alexander, D.J. [Oak Ridge National Lab., TN (United States)

    1995-04-01

    A vanadium structure, cooled with helium, is a favored concept for an advanced breeding blanket for fusion systems. The objective of this task is to develop the metallurgical and technological base for the welding of thick sections of V-Cr-Ti. The subsize Charpy test results for electron beam weld metal from the V-5Cr-5Ti alloy has shown significant improvement in Charpy fracture energy compared to both gas tungsten arc weld metal and the base metal itself. These results are preliminary, however, and additional confirmation testing and analysis will be required to explain this improvement in properties.

  1. Development of laser welding techniques for vanadium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Strain, R.V.; Leong, K.H.; Smith, D.L. [Argonne National Laboratory, IL (United States)

    1996-10-01

    Laser welding is potentially advantageous because of its flexibility and the reduced amount of material affected by the weld. Bead-on-plate and butt welds were previously performed to depths of about 4 mm with a 6-kW CO{sub 2} laser on V-4%Cr-4%Ti and V-5%Cr-5%Ti alloys. These welds were made at a speed of 0.042 m/s using argon purging at a flow rate of 2.8 m{sup 3}/s. The purge was distributed with a diffuser nozzle aimed just behind the laser beam during the welding operation. The fusion zones of welds made under these conditions consisted of very fine, needle-shaped grains and were also harder than the bulk metal (230-270 dph, compared to {approx}180 dph for the bulk metal). A limited number of impact tests showed that the as-welded ductile-brittle transition temperatures (DBTT) was above room temperature, but heat treatment at 1000{degrees}C for 1 h in vacuum reduced the DBTT to <{minus}25{degrees}C. Activities during this reporting period focused on improvements in the purging system and determination of the effect of welding speed on welds. A 2-kW continuous YAG laser at Lumonics Corp. in Livonia, MI, was used to make 34 test welds for this study.

  2. GH 99镍基合金薄板电子束焊接头疲劳性能研究%Study on Fatigue Property of Electron Beam Welded Joint of GH9 9 Nickel-based Alloy

    Institute of Scientific and Technical Information of China (English)

    张航; 孙通伯; 于明玄

    2014-01-01

    电子束焊作为一种先进的连接技术,具有能量集中、焊接速度快、热影响区小等特点,被广泛应用于工业工程、航空航天等国民经济的重要领域。随着航天飞行器发动机设计寿命的不断提高,主要结构部件的电子束焊接头疲劳性能越来越受到设计工作者的关注,研究电子束焊接头的疲劳性能已经成为焊接工作者一个重要的课题。本文采用电子束焊接工艺,制备了 GH99镍基高温合金薄板对接接头。针对电子束焊接头,进行了显微硬度测试、疲劳性能的研究及疲劳失效机理分析。研究表明,电子束焊接头焊缝中心及热影响区的维氏硬度与 GH99镍基高温合金母材金属基本相同,接头并未出现性能的不均匀性。对两种工艺下的电子束焊接头的疲劳 S-N 曲线分析表明,适当加大电子束焊焊接电流,有利于减少焊缝焊根部位的焊接缺陷,有利于提高电子束焊接头的疲劳性能,从而提高了焊接接头疲劳寿命。%Electron beam welding is an advanced welding technology,which has the characteristics of high energy density,fast welding speed and small heat-affected zone.The electron beam weld-ing is widely used in industrial engineering,aerospace and other areas of the national economy. With the continuous improvement of design life of the spacecraft engine,the designers pay more and more attentions to the fatigue properties of electron beam welded joints of the main structural components.Research on the fatigue properties of electron beam welded joints has become an im-portant issue for welding workers.Square butt joints of GH99 nickel-base alloy sheet are fabrica-ted using electron beam welding.The micro-hardness,fatigue properties and fatigue failure mechanism of the electron beam welded joints are tested and analyzed.It is found that the vickers hardness of weld center and heat affected zone of electron beam welded joints are

  3. Polyimide weld bonding for titanium alloy joints

    Science.gov (United States)

    Vaughan, R. W.; Kurland, R. M.

    1974-01-01

    Two weld bonding processes were developed for joining titanium alloy; one process utilizes a weld-through technique and the other a capillary-flow technique. The adhesive used for the weld-through process is similar to the P4/A5F system. A new polyimide laminating resin, BFBI/BMPM, was used in the capillary-flow process. Static property information was generated for weld-bonded joints over the temperature range of 219 K (-65 F) to 561 K (+550 F) and fatigue strength information was generated at room temperature. Significant improvement in fatigue strength was demonstrated for weld-bonded joints over spot-welded joints. A demonstration was made of the applicability of the weld-through weld-bonding process for fabricating stringer stiffened skin panels.

  4. A study of laser-beam welding conducted at the Centre for Laser Technologies of Metals

    Science.gov (United States)

    Antoszewski, Bogdan; Gradoń, Ryszard; Trela, Paweł; Cendrowicz, Edward

    2013-01-01

    The study reported here is part of a larger research project on laser-beam welding conducted at the Centre for Laser Technologies of Metals. The primary objectives were to compare laser-beam welding with a conventional process when used for longitudinal seams in street lamp posts, to select the process parameters for girth welds in cylindrical high-strength steel machine elements, and to assess whether laser-beam welding can be used for magnesium alloys. The paper includes recommendations for the selection of welding parameters.

  5. Experimental study on activating welding for aluminum alloys

    Institute of Scientific and Technical Information of China (English)

    Huang Yong; Fan Ding

    2005-01-01

    TIG welding and EB welding for aluminum alloy 3003 were carried out to study the effects of activating flux on weld penetration of activating welding for aluminum alloys. SiO2 was used as the activating flux. It is found that, SiO2 can increase the weld penetration and decrease the weld width of FBTIG when the flux gap is small. For A-TIG welding and EB welding with focused mode, the weld penetrations and the weld widths increase simultaneously. SiO2 has little effect on the weld penetration and weld width of EB welding with defocused mode. It is believed that, change of surface tension temperature gradient is not the main mechanism of SiO2 improving weld penetration of activating welding for aluminum alloys.

  6. Self-Reacting Friction Stir Welding for Aluminum Alloy Circumferential Weld Applications

    Science.gov (United States)

    Bjorkman, Gerry; Cantrell, Mark; Carter, Robert

    2003-01-01

    Friction stir welding is an innovative weld process that continues to grow in use, in the commercial, defense, and space sectors. It produces high quality and high strength welds in aluminum alloys. The process consists of a rotating weld pin tool that plasticizes material through friction. The plasticized material is welded by applying a high weld forge force through the weld pin tool against the material during pin tool rotation. The high weld forge force is reacted against an anvil and a stout tool structure. A variation of friction stir welding currently being evaluated is self-reacting friction stir welding. Self-reacting friction stir welding incorporates two opposing shoulders on the crown and root sides of the weld joint. In self-reacting friction stir welding, the weld forge force is reacted against the crown shoulder portion of the weld pin tool by the root shoulder. This eliminates the need for a stout tooling structure to react the high weld forge force required in the typical friction stir weld process. Therefore, the self-reacting feature reduces tooling requirements and, therefore, process implementation costs. This makes the process attractive for aluminum alloy circumferential weld applications. To evaluate the application of self-reacting friction stir welding for aluminum alloy circumferential welding, a feasibility study was performed. The study consisted of performing a fourteen-foot diameter aluminum alloy circumferential demonstration weld using typical fusion weld tooling. To accomplish the demonstration weld, weld and tack weld development were performed and fourteen-foot diameter rings were fabricated. Weld development consisted of weld pin tool selection and the generation of a process map and envelope. Tack weld development evaluated gas tungsten arc welding and friction stir welding for tack welding rings together for circumferential welding. As a result of the study, a successful circumferential demonstration weld was produced leading

  7. 镁/镀锌钢异种合金单、双光束激光熔钎焊特性%Single and dual beam laser welding-brazing characteristics of magnesium/zinc-coated steel dissimilar alloys

    Institute of Scientific and Technical Information of China (English)

    檀财旺; 梅长兴; 李俐群; 戴景民; 郭伟

    2012-01-01

    以镁焊丝为填充材料,对镁/镀锌钢异种合金进行单、双光束激光熔钎焊试验研究,分析不同工艺参数对焊缝成形的影响规律,获得不同热源作用方式下的界面形态规律及其对界面强度的影响.结果表明:采用单、双光束进行填丝熔钎焊均可获得较满意的外观成形:单光束容易存在未钎合现象,焊接过程不够稳定,而双光束具有更好的温度分布,容易提高润湿铺展能力.剪切强度测试结果表明,单、双光束最大的接头效率分别达到30.9%和42.4%,焊趾处裂纹的存在是导致接头失效的主要原因.%The single and dual laser welding-brazing of AZ31 Mg alloy to DP980 galvanized steel was conducted with Mg filler wire. The effect of different parameters on the weld appearance was analyzed. Moreover, the interfacial pattern under different heat sources and its influence on the interfacial strength were obtained. The results indicate that good weld appearance can be achieved using both single and dual laser beam welding-brazing as filler wire. It tends to produce the lack of fusion defect by single-beam welding and the welding process is unstable. The dual-beam welding has much more uniform temperature distribution, so, the spreading-wetting ability is better than the former. The shear test results show that the highest joint efficiency of single-beam and dual-beam welding are 30.9% and 42.4%, respectively. The crack produced at the toe of weld after laser welding-brazing is the main reason for joint failure.

  8. High Power Laser Welding. [of stainless steel and titanium alloy structures

    Science.gov (United States)

    Banas, C. M.

    1972-01-01

    A review of recent developments in high power, carbon dixoide laser welding is presented. Deep penetration welding in stainless steel to 0.5-in. thick, high speed welding in thin gage rimmed steel and gas shielded welding in Ti-6Al-4V alloy are described. The effects of laser power, power density, focusing optics, gas-shielding techniques, material properties and weld speed on weld quality and penetration are discussed. It is shown that laser welding performance in thin materials is comparable to that of electron beams. It is further shown that high quality welds, as evidenced by NDT, mechanical and metal-lographic tests, can be achieved. The potential of the laser for industrial welding applications is indicated.

  9. Cobalt alloy ion sources for focused ion beam implantation

    Energy Technology Data Exchange (ETDEWEB)

    Muehle, R.; Doebeli, M. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Zimmermann, P. [Eidgenoessische Technische Hochschule, Zurich (Switzerland)

    1997-09-01

    Cobalt alloy ion sources have been developed for silicide formation by focused ion beam implantation. Four eutectic alloys AuCo, CoGe, CoY and AuCoGe were produced by electron beam welding. The AuCo liquid alloy ion source was investigated in detail. We have measured the emission current stability, the current-voltage characteristics, and the mass spectrum as a function of the mission current. (author) 1 fig., 2 refs.

  10. Effect of weld microstructure on weld properties in A-TIG welding of titanium alloy

    Institute of Scientific and Technical Information of China (English)

    刘凤尧; 杨春利; 林三宝; 吴林; 苏生

    2003-01-01

    Conventional TIG welding is known as its low productivity and limited weld depth in a single pass. Activating TIG welding (A-TIG) can greatly improve the penetration when compared with the conventional TIG welding. The effects of five kinds of activating fluxes with single component (NaF, CaF2, AlF3, NaCl or CaCl2) on penetration, microstructure and weld mechanical properties during the TIG welding of titanium alloy Ti-6Al-4V were studied. Compared with the conventional TIG welding, the experimental results show that the fluxes can greatly improve the penetration at the same welding specifications. This is because of the constriction of anode spots and the change of surface tension grads. Among them the effect of flux NaF is the best in the weld tensile strength, and the effect of flux CaF2 on the weld bend intension is the best. The appearance of inferior crystal grains and the structure of trident crystal grains are the main reasons that the performance of weld with fluoride is improved. These experimental results can be used as an aid for selecting suitable activating flux for titanium alloy.

  11. Laser Welding of TC-1 Titanium Alloy

    Institute of Scientific and Technical Information of China (English)

    Hanbin DU; Lunji HU; Xiyuan HU; Jianhua LIU

    2003-01-01

    The technology of CO2 laser welding and joint properties of titanium alloy were investigated. The problem of moltenpool protection was resolved by designing a shielding trailer and a special clamp. Joints with silvery appearance wereobtained, which have no pore and crack. In addition, the welding speed could reach 3 m/min for the plate of 1.5 mmthickness being penetrated. The reason of the porosity formation in partial penetration joints is that the keyholescan be easily cut apart in the radial direction, which makes the gas enclosed in the molten pool. The surface oxideof specimens can not affect the porosity formation in welds directly.

  12. Local zone wise elastic and plastic properties of electron beam welded Ti-6Al-4V alloy using digital image correlation technique: A comparative study between uniform stress and virtual fields method

    Science.gov (United States)

    Saranath, K. M.; Ramji, M.

    2015-05-01

    Joining of materials using welding results in the formation of material zones with varying microstructure across the weld. Extraction of the mechanical properties of those individual heterogeneous zones are important in designing components and structures comprised of welds. In this study, the zone wise local extraction of the elastic and plastic properties of an electron beam welded Ti-6Al-4V titanium alloy has been carried out using both the uniform stress method (USM) and the virtual fields method (VFM) involving digital image correlation (DIC) technique. The surface strain field obtained using DIC technique from a transverse weld specimen tensile testing is used for extracting the zone wise strain evolution. Initially, using uniform stress assumption, zone wise full range stress-strain curves are extracted. In USM methodology, the elastic and plastic material models are fitted to the zone wise stress-strain curves and required parameters are extracted from it. But inherent disadvantage is lot of images need to be processed for the parameter extraction. Recently, VFM is gaining lot of popularity in characterization domain as it is robust, accurate and faster. VFM is based on the principle of virtual work where, the weak form of local equilibrium equations and kinematically admissible virtual displacement fields are utilized for parameter extraction. Hollomon's power law is used here as the hardening rule. Young's modulus, Poisson's ratio, yield stress, strength coefficient and strain hardening exponent are the parameters extracted zone wise using both USM and VFM. A Vicker's microhardness measurement is also conducted across the weld zone towards mapping the strength behavior. Fusion zone has reported higher yield strength, strength coefficient and Poisson's ratio. Young's modulus value is found decreasing from base metal towards the fusion zone. The trend observed in parameter variation across the weld zone obtained by both USM and VFM compares very well. Due

  13. Prediction of weld appearance of electron beam deep pene- tration welding based on visual sensing

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Basing on visual sensing method, the electron beam welding molten pool image of titanium alloy was obtained. The binary morphological image processing algorithm was used to process the molten pool image for getting the molten pool edge, moreover, the molten pool width was obtained by using a suite of processing programs for molten pool extraction. The correspon- dence relationship between the fluctuation of molten pool width and weld appearance is found, i.e. the weld appearance is poor when the fluctuation of molten pool width is relatively large, but the weld appearance is good when the fluctuation of molten pool width is relatively small. Based on analysis, the coefficient of variation CV was proposed as characterization to describe the weld appearance. The results show that the developed image pro- cessing algorithms are reliable, and the detected errors are less than 0.1 mm, at the same time the whole extraction process of molten pool width only needs approximately 30 milliseconds, which could meet the needs of real time detection. The coeffi- cient of variation can reflect the quality of weld appearance and it can be used as a parameter to control the weld appearance.

  14. FLUXES FOR MECHANIZED ELECTRIC WELDING,

    Science.gov (United States)

    WELDING FLUXES, WELDING ), (* WELDING , WELDING FLUXES), ARC WELDING , WELDS, STABILITY, POROSITY, WELDING RODS, STEEL, CERAMIC MATERIALS, FLUXES(FUSION), TITANIUM ALLOYS, ALUMINUM ALLOYS, COPPER ALLOYS, ELECTRODEPOSITION

  15. Intermetallic alloy welding wires and method for fabricating the same

    Science.gov (United States)

    Santella, M.L.; Sikka, V.K.

    1996-06-11

    Welding wires for welding together intermetallic alloys of nickel aluminides, nickel-iron aluminides, iron aluminides, or titanium aluminides, and preferably including additional alloying constituents are fabricated as two-component, clad structures in which one component contains the primary alloying constituent(s) except for aluminum and the other component contains the aluminum constituent. This two-component approach for fabricating the welding wire overcomes the difficulties associated with mechanically forming welding wires from intermetallic alloys which possess high strength and limited ductilities at elevated temperatures normally employed in conventional metal working processes. The composition of the clad welding wires is readily tailored so that the welding wire composition when melted will form an alloy defined by the weld deposit which substantially corresponds to the composition of the intermetallic alloy being joined. 4 figs.

  16. Study on DC welding parameters of Al-alloy shaping based on arc-welding robot

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The Al-alloy arc-welding shaping system based on arc-welding robot is established, and the Al-alloy shaping manufacture is realized with the DC (direct current) gas metal arc welding (GMAW). The research indicates that the metal transfer type of DC GMAW, heat input and the initial temperature of the workpiece greatly affect the Al-alloy shaping based on arc welding robot. On the penetration, the weld width and the reinforcement, the influence of welding parameters is analyzed by generalized regression neural network (GRNN) fitting.

  17. Effect of Multi-repair Welding on Fatigue Performance of Aluminum Alloy Profile Welded Joint

    Science.gov (United States)

    Diao, You-De; Shi, Chun-Yuan; Tian, Hong-Lei

    2016-05-01

    Aluminum alloy profile has been widely used in the manufacture of the rail vehicles. But it's necessary for the repair welding of the welded joints to be conducted because some defects exist in the weld such as porosity, inclusions and incomplete penetrations in the welding processes. In this paper, the influence of the multi-repair welding of 6005A aluminum alloy profile butt welded joints on the fatigue performance are investigated based on the results of fatigue tests. The parameters of curves and the fatigue strength of the welded joints are calculated, and Goodman fatigue limit diagram is also obtained. The results show that fatigue strength of aluminum alloy profile butt welded joints, in condition of 107 cycle life, meet the standard requirement for the as-welded, repair welded state one time or two times respectively.

  18. Filler metal alloy for welding cast nickel aluminide alloys

    Science.gov (United States)

    Santella, M.L.; Sikka, V.K.

    1998-03-10

    A filler metal alloy used as a filler for welding cast nickel aluminide alloys contains from about 15 to about 17 wt. % chromium, from about 4 to about 5 wt. % aluminum, equal to or less than about 1.5 wt. % molybdenum, from about 1 to about 4.5 wt. % zirconium, equal to or less than about 0.01 wt. % yttrium, equal to or less than about 0.01 wt. % boron and the balance nickel. The filler metal alloy is made by melting and casting techniques such as are melting the components of the filler metal alloy and cast in copper chill molds. 3 figs.

  19. Filler metal alloy for welding cast nickel aluminide alloys

    Energy Technology Data Exchange (ETDEWEB)

    Santella, Michael L. (Knoxville, TN); Sikka, Vinod K. (Oak Ridge, TN)

    1998-01-01

    A filler metal alloy used as a filler for welding east nickel aluminide alloys contains from about 15 to about 17 wt. % chromium, from about 4 to about 5 wt. % aluminum, equal to or less than about 1.5 wt. % molybdenum, from about 1 to about 4.5 wt. % zirconium, equal to or less than about 0.01 wt. % yttrium, equal to or less than about 0.01 wt. % boron and the balance nickel. The filler metal alloy is made by melting and casting techniques such as are melting the components of the filler metal alloy and east in copper chill molds.

  20. Change of Hot Cracking Susceptibility in Welding of High Strength Aluminum Alloy AA 7075

    Science.gov (United States)

    Holzer, M.; Hofmann, K.; Mann, V.; Hugger, F.; Roth, S.; Schmidt, M.

    High strength aluminum alloys are known as hard to weld alloys due to their high hot crack susceptibility. However, they have high potential for applications in light weight constructions of automotive industry and therefore it is needed to increase weldability. One major issue is the high hot cracking susceptibility. Vaporization during laser beam welding leads to a change of concentration of the volatile elements magnesium and zinc. Hence, solidification range of the weld and therefore hot cracking susceptibility changes. Additionally, different welding velocities lead to changed solidification conditions with certain influence on hot cracking. This paper discusses the influence of energy per unit length during laser beam welding of AA 7075 on the change of element concentration in the weld seam and the resulting influence on hot cracking susceptibility. Therefore EDS-measurements of weld seams generated with different velocities are performed to determine the change of element concentration. These quantitative data is used to numerically calculate the solidification range in order to evaluate its influence on the hot cracking susceptibility. Besides that, relative hot crack length and mechanical properties are measured. The results increase knowledge about welding of high strength aluminum alloy AA 7075 and hence support further developing of the welding process.

  1. AZ31B镁合金/不锈钢异种合金双光束激光熔钎焊接特性%Welding Characteristics of AZ31B Magnesium Alloy/Stainless Steel Dissimilar Alloys by Dual Beam Laser Welding-Brazing Process

    Institute of Scientific and Technical Information of China (English)

    李俐群; 郭伟; 檀财旺

    2012-01-01

    以镁基焊丝为填充材料,采用双光束激光熔钎焊的方法对AZ31B镁合金/不锈钢的焊接特性进行了研究.分析了不同工艺参数对焊缝成形、接头力学性能和断裂行为的影响.结果表明,采用双光束进行填丝熔钎焊能够获得较满意的外观成形,无明显缺陷,焊接工艺范围较宽.接头拉伸均断裂于熔化焊的镁侧焊缝及热影响区(HAZ),最大剪切强度为193 MPa,达到镁合金母材强度的71%.组织分析发现焊缝和HAZ的晶粒粗大,成为接头的薄弱部位,是接头失效的主要原因.钎焊侧界面发生了冶金反应,界面处生成1~2 μm的反应层.%AZ31B magnesium alloys and 201 stainless steel are joined by laser welding-brazing process with Mg based filler. The welding characteristics including influence of processing parameters on weld appearance, mechanical properties and fracture behavior are studied- Results indicate that satisfactory appearance of welds without evident defects can be achieved by dual beam laser-brazing process with filler. A wide processing window is obtained. The tensile-shear test shows that fracture occurred at two places, weld seam and heat affect zone (HAZ) at the welding side of Mg alloys. The maximum shear strength can reach 193 Mpa, which is 71% of that of Mg base metal. The microstructure observed indicates that seam and HAZ are weak parts, which results in failure of joint due to presence of coarse grains. Metallurgical reaction occurs at the brazing side, where reaction layer with thickness of 1~2 μm forms.

  2. Electron Beam Welding to Join Gamma Titanium Aluminide Articles

    Science.gov (United States)

    Kelly, Thomas Joseph (Inventor)

    2008-01-01

    A method is provided for welding two gamma titanium aluminide articles together. The method includes preheating the two articles to a welding temperature of from about 1700 F to about 2100 F, thereafter electron beam welding the two articles together at the welding temperature and in a welding vacuum to form a welded structure, and thereafter annealing the welded structure at an annealing temperature of from about 1800 F to about 2200 F, to form a joined structure.

  3. Comparison between hybrid laser-MIG welding and MIG welding for the invar36 alloy

    Science.gov (United States)

    Zhan, Xiaohong; Li, Yubo; Ou, Wenmin; Yu, Fengyi; Chen, Jie; Wei, Yanhong

    2016-11-01

    The invar36 alloy is suitable to produce mold of composite materials structure because it has similar thermal expansion coefficient with composite materials. In the present paper, the MIG welding and laser-MIG hybrid welding methods are compared to get the more appropriate method to overcome the poor weldability of invar36 alloy. According to the analysis of the experimental and simulated results, it has been proved that the Gauss and cone combined heat source model can characterize the laser-MIG hybrid welding heat source well. The total welding time of MIG welding is 8 times that of hybrid laser-MIG welding. The welding material consumption of MIG welding is about 4 times that of hybrid laser-MIG welding. The stress and deformation simulation indicate that the peak value of deformation during MIG welding is 3 times larger than that of hybrid laser-MIG welding.

  4. Particulate and gaseous emissions when welding aluminum alloys.

    Science.gov (United States)

    Cole, Homer; Epstein, Seymour; Peace, Jon

    2007-09-01

    Fabrication and repair of aluminum components and structures commonly involves the use of electric arc welding. The interaction of the arc and the metal being welded generates ultraviolet radiation, metallic oxides, fumes, and gases. Aluminum is seldom used as the pure metal but is often alloyed with other metals to improve strength and other physical properties. Therefore, the exact composition of any emissions will depend on the welding process and the particular aluminum alloy being welded. To quantify such emissions, The Aluminum Association sponsored several studies to characterize arc welding emissions by the gas metal arc welding (GMAW) and gas tungsten arc welding (GTAW) processes for various combinations of base and filler alloys. In all cases, the tests were conducted under conditions that could be found in a production weld shop without forced ventilation. The concentrations of each analyte that a welder could be exposed to were greatly affected by the welding process, the composition of the base and filler alloys, the position of the welder, and the welding helmet. The results obtained can be used by employers to identify and control potential hazards associated with the welding of aluminum alloys and can provide the basis for hazard communication to employees involved in the welding of these alloys.

  5. Autogeneous Laser and Hybrid Laser Arc Welding of T-joint Low Alloy Steel with Fiber Laser Systems

    Science.gov (United States)

    Unt, A.; Lappalainen, E.; Salminen, A.

    This paper is focused on the welding of low alloy steels S355 and AH36 in thicknesses 6, 8 and 10 mm in T-joint configuration using either autogeneous laser welding or laser-arc hybrid welding (HLAW) with high power fiber lasers. The aim was to obtain understanding of the factors influencing the size of the fillet and weld geometry through methodologically studying effects of laser power, welding speed, beam alignment relative to surface, air gap, focal point position and order of processes (in case of HLAW) and to get a B quality class welds in all thicknesses after parameter optimization.

  6. Study on local vacuum electron beam welding of flange rim

    CERN Document Server

    He Cheng Dan; Ying Lei; Xu Qi Jin

    2002-01-01

    Local vacuum electron beam welding and its application prospect in military and civil industry are introduced. A home made local vacuum electron beam welding is completed. Its main technical parameters and key techniques are also presented

  7. Microstructure and fracture behaviour of Ti3Al/TC4 dissimilar materials joints welded by electron beam

    Indian Academy of Sciences (India)

    H T Zhang; H Y Zhao; W X He

    2010-12-01

    Electron beam was used to join TC4 alloy to Ti3Al-based alloy. The composition of the weld was analysed by XRD and TEM and the results showed that the weld mainly composed of ' martensites. The change of heat input had little influence on the composition of the weld but can make the grain size increasing. The fracture path of the joints was mainly decided by the microstructure of the weld and started from coarse grain zone to HAZ and base metal of Ti3Al alloy.

  8. Effect of Laser Welding Parameters on Formation of NiTi Shape Memory Alloy Welds

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2014-01-01

    Full Text Available In this work experimental trials of welding of NiTi flat plates with 2.0 mm thickness were conducted using a 4.5 kW continuous wave (CW Nd:YAG laser. The influences of laser output power, welding speed, defocus amount and side-blow shielding gas flow rate on the morphology, welding depth and width, and quality of the welded seam were investigated. Meanwhile, the effects of heat input on the mechanical and functional properties of welded joints were studied. The results show that laser welding can take better formation in NiTi alloys. The matching curves with laser power and welding speed affecting different formation of welds were experimentally acquired, which can provide references for laser welding and engineering application of NiTi alloy. The heat input has obvious effects on the ultimate tensile strength (UTS and shape memory behavior of the welded joints.

  9. Subtask 12B2: Development of laser welding techniques for vanadium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Strain, R.V.; Leong, K.H.; Keppler, E.E.; Smith, D.L. [Argonne National Laboratory, IL (United States)

    1995-03-01

    The development of techniques for joining vanadium alloys will be required for the construction of fusion devices utilizing the desirable properties of these alloys. The primary objective of this program is to develop of laser welding techniques for vanadium alloys, particularly for the manufacture of welded materials testing specimens. Laser welding is potentially advantageous because of its flexibility and the reduced amount of material effected by the weld. Lasers do not require a vacuum (as does electron beam welders) and the welds they produce have large depth-to-width ratios. Results of scoping tests using a small, pulsed laser (50 joule, YAG laser) indicated that lasers could produce successful welds in vanadium alloy (V-5%Cr-5%Ti) sheet (1-mm thick) when the fusion zone was isolated from air. The pulsed laser required an isolating chamber filled with inert gas to produce welds that did not contain cracks and showed only minor hardness increases. Successful bead-on-plate welds have been made to depths of about 4-mm using a 6 kW continuous CO{sub 2} laser with argon purging. 2 figs.

  10. Modification of Structure and Strength Properties of Permanent Joints Under Laser Beam Welding with Application of Nanopowder Modifiers

    Science.gov (United States)

    Cherepanov, A. N.; Orishich, A. M.; Malikov, A. G.; Ovcharenko, V. E.

    2016-08-01

    In the paper we present the results of experimental study of specially prepared nanosize metal-ceramic compositions impact upon structure, microhardness and mechanical properties of permanent joints produced by laser-beam welding of steel and titanium alloy plates.

  11. Hot tearing susceptibility of a CuCrZr alloy during electron beam welding; Etude de la sensibilite a la fissuration a chaud d'un alliage CuCrZr au cours du soudage par faisceau d'electrons

    Energy Technology Data Exchange (ETDEWEB)

    Drezet, J.M. [Laboratoire de Simulation des Materiaux (LSMX), Ecole Polytechnique Federale de Lausanne (Switzerland); Ayrault, D.; Wisniewski, J.; Barras, M. [CEA Saclay, DEN, DM2S, SEMT, LTA, 91 - Gif sur Yvette (France); Pilvin, P.; Carron, D. [Laboratoire d' Ingenierie des Materiaux de Bretagne (LIMatB), Universite de Bretagne-Sud/UEB, Centre de Recherche, 56 - Lorient (France); Primaux, F. [Le Bronze Industriel, 51 - Suippes (France)

    2010-07-01

    The precipitation hardened CuCrZr alloy is used in fusion machines for the heat sink of intensely cooled plasma facing components due to its good thermal and mechanical properties. Albeit, the feedback from its application in Tore Supra (French Tokamak) showed that this alloy is very sensitive to hot tearing during electron beam welding. The solidification cracks occur in solidifying parts undergoing tensile stresses transmitted to the mushy zone by the coherent solid underneath. In order to characterize the hot tearing susceptibility of the CuCrZr alloy, welding tests based on the investigations of the Joining and Welding Research Institute (JWRI) have been performed. Electron beam fusion lines are realized on a thin parallelepipedic plate equipped with thermocouples and clamped at its extremity. As the width of the plate decreases, conditions leading to the formation of hot tears appear in the run-in, thus defining a critical width hot tearing wise. The JWRI welding tests are then analysed by means of numerical modelling and available hot tearing criteria. Missing thermophysical and thermomechanical properties of the CuCrZr alloy are determined by associating laboratory tests and numerical analysis. The viscoplastic strain and viscoplastic strain rate undergone by the solidifying alloy are considered as hot tearing indicators. The indicators values at the onset of the hot tearing are determined for this alloy. In addition, HT initiation conditions are compared with propagation conditions using a simple numerical approach. (authors)

  12. Recent progress on gas tungsten arc welding of vanadium alloys

    Energy Technology Data Exchange (ETDEWEB)

    King, J.F.; Grossbeck, M.L.; Goodwin, G.M.; Alexander, D.J. [Oak Ridge National Lab., TN (United States)

    1997-04-01

    This is a progress report on a continuing research project to acquire a fundamental understanding of the metallurgical processes in the welding of vanadium alloys. It also has the goal of developing techniques for welding structural vanadium alloys. The alloy V-4Cr-4Ti is used as a representative alloy of the group; it is also the prime candidate vanadium alloy for the U.S. Fusion Program at the present time. However, other alloys of this class were used in the research as necessary. The present work focuses on recent findings of hydrogen embrittlement found in vanadium alloy welds. It was concluded that the atmosphere in the inert gas glove box was insufficient for welding 6mm thick vanadium alloy plates.

  13. Temporal pulse shaping: a key parameter for the laser welding of dental alloys.

    Science.gov (United States)

    Bertrand, Caroline; Poulon-Quintin, Angeline

    2015-07-01

    This study aims to describe the effect of pulse shaping on the prevention of internal defects during laser welding for two dental alloys mainly used in prosthetic dentistry. Single spot, weld beads, and welds with 80 % overlapping were performed on Co-Cr-Mo and Pd-Ag-Sn cast plates with a pulsed neodymium-doped yttrium aluminum garnet (Nd:YAG) laser. A specific welding procedure using adapted parameters to each alloy was completed. All the possibilities for pulse shaping were tested: (1) the square pulse shape as a default setting, (2) a rising edge slope for gradual heating, (3) a falling edge slope to slow the cooling process, and (4) a combination of rising and falling edges. The optimization of the pulse shape is supposed to produce defect-free welds (crack, pores, voids). Cross-section SEM observations and Vickers microhardness measurements were made. Pd-Ag-Sn was highly sensitive to hot cracking, and Co-Cr-Mo was more sensitive to voids and small porosities (sometimes combined with cracks). Using a slow cooling ramp allowed a better control on the solidification process for those two alloys always preventing internal defects. A rapid slope should be preferred for Co-Cr-Mo alloys due to its low-laser beam reflectivity. On the opposite, for Pd-Ag-Sn alloy, a slow rising slope should be preferred because this alloy has a high-laser beam reflectivity.

  14. Influence of Surface Coatings of Filler Wires on Weld Seam Properties of Laser Beam Welded Copper Connections

    Science.gov (United States)

    Mann, Vincent; Holzer, Matthias; Hofmann, Konstantin; Özkaya, Esra; Hugger, Florian; Roth, Stephan; Schmidt, Michael

    In laser beam welding of copper its material properties require high intensities of the laser beam for a stable process, which are often realized by small focal diameters. Thus conventional laser beam welding of copper is accompanied by small bridgeable gap widths. A way to increase tolerable gap widths is the use of filler wires, which leads to higher energy consumption per unit length of the process, as extra energy is necessary to melt the filler wire. As some surface coatings are known to reduce energy consumption in laser beam welding of copper, this paper investigates the influence of surface coated filler wires on weld seam properties of laser beam welded of copper alloys with the aim of improved usage of the energy provided for the process. For this reason different coating materials and thicknesses of the filler wires are used within the experiments. The resulting weld seams are evaluated by means of geometrical, electrical and mechanical properties of the joints, e.g. seam width, cross-sectional area, electrical resistance, tensile strength and strain.

  15. New technique of skin embedded wire double-sided laser beam welding

    Science.gov (United States)

    Han, Bing; Tao, Wang; Chen, Yanbin

    2017-06-01

    In the aircraft industry, double-sided laser beam welding is an approved method for producing skin-stringer T-joints on aircraft fuselage panels. As for the welding of new generation aluminum-lithium alloys, however, this technique is limited because of high hot cracking susceptibility and strengthening elements' uneven distributions within weld. In the present study, a new technique of skin embedded wire double-sided laser beam welding (LBW) has been developed to fabricate T-joints consisting of 2.0 mm thick 2060-T8/2099-T83 aluminum-lithium alloys using eutectic alloy AA4047 filler wire. Necessary dimension parameters of the novel groove were reasonably designed for achieving crack-free welds. Comparisons were made between the new technique welded T-joint and conventional T-joint mainly on microstructure, hot crack, elements distribution features and mechanical properties within weld. Excellent crack-free microstructure, uniform distribution of silicon and superior tensile properties within weld were found in the new skin embedded wire double-sided LBW T-joints.

  16. E-beam welding characteristic of the ARAA steel for the KO HCCR TBM

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Jae Sung; Kim, Suk-Kwon; Lee, Eo Hwak; Jin, Hyung Gon; Lee, Dong Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Cho, Seungyon [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    To develop the next generation technologies, the one of the important objects of ITER project is to investigate the heat extraction from the blanket module in a fusion reactor and tritium extraction experiments. Korea has decided to test a helium cooled ceramic reflector (HCCR) test blanket module (TBM) in the ITER. The HCCR TBM is composed of four sub-modules and a back manipulator (BM). And each sub-module is composed of a first wall (FW), a breeding box with s even-layer breeding zone (BZ), and side walls (SW) with the cooling path. In addition, Korea is being developed and evaluated advanced reduced activation alloy (ARAA) material as the HCCR TBM structure. In this study, two thickness of ARAA plates, 8 and 13 mm, were carried out by electron beam (E-beam) weld to optimize the welding procedure considering weld speed and current, and investigated the variations in the weld bead width, an amount of dross, and the weld depth in both ARAA plates to optimize the fabrication procedure. Moreover, post weld heat treatment (PWHT) conditions were also carried out considering a different temperature and a cooling time. The micro-hardness measurements and Charpy Impact test in Base, heat affected zone (HAZ), and weld metal (WM) were carried out on E-beam welded joints after PWHT. The microstructural observation in the E-beam weld joints was also analyzed before and after PWHT condition. The purpose of this study is to find the optimized Ebeam weld condition, and analyze the mechanical properties and the influence of microstructure by Ebeam weld of ARAA materials. To optimize the E-beam welding procedure from ARAA material, two kinds of ARAA plates, 8 and 13 mm, were prepared and carried out E-beam weld considering the weld speed and the current, and investigated the variations in the weld bead width, an amount of dross, and the weld depth. Based on the results 1200 mm/min of welding speed and 65 mA current in 8 mm thickness and 110 mA weld current in 13 mm thickness in

  17. Variable-Polarity Plasma Arc Welding Of Alloy 2219

    Science.gov (United States)

    Walsh, Daniel W.; Nunes, Arthur C., Jr.

    1989-01-01

    Report presents results of study of variable-polarity plasma arc (VPPA) welding of aluminum alloy 2219. Consists of two parts: Examination of effects of microsegregation and transient weld stress on macrosegregation in weld pool and, electrical characterization of straight- and reverse-polarity portions of arc cycle.

  18. Friction stir welding characteristics of two aluminum alloys

    Institute of Scientific and Technical Information of China (English)

    刘会杰; 藤井英俊; 前田将克; 野城清

    2003-01-01

    The friction stir welding characteristics of the strain-hardened AA1050-H24 and precipitate-hardened AA2017-T351 aluminum alloys were examined in order to reveal the effects of the alloy properties on the friction stir welding behavior of the base materials. The results show that (1) for AA1050-H24, the weld possesses a smooth surface and clear ripples, there is no elliptical weld nugget in the weld, there is not discernible interface between the stir zone and the thermo-mechanically affected zone(TMAZ), and the internal defect of the weld looks like a long crack and is located in the lower part of the weld; (2) for AA2017-T351, the weld usually possesses a rough surface and visible ripples, the elliptical weld nugget clearly exists in the weld and there is obvious plastic flow and a discernible interface between the nugget and the TMAZ, and the internal defect of the weld is composed of many voids and distributed in the middle part of the weld; (3) the effective ranges of the welding parameters for AA1050-H24 and AA2017-T351 are both narrow, especially for the latter; and (4) the tensile strength efficiencies of the joints for the two typical alloys are similar, i e 79% for AA1050-H24 and 82% for AA2017-T351.

  19. Process Parameter Optimization for Wobbling Laser Spot Welding of Ti6Al4V Alloy

    Science.gov (United States)

    Vakili-Farahani, F.; Lungershausen, J.; Wasmer, K.

    Laser beam welding (LBW) coupled with "wobble effect" (fast oscillation of the laser beam) is very promising for high precision micro-joining industry. For this process, similarly to the conventional LBW, the laser welding process parameters play a very significant role in determining the quality of a weld joint. Consequently, four process parameters (laser power, wobble frequency, number of rotations within a single laser pulse and focused position) and 5 responses (penetration, width, heat affected zone (HAZ), area of the fusion zone, area of HAZ and hardness) were investigated for spot welding of Ti6Al4V alloy (grade 5) using a design of experiments (DoE) approach. This paper presents experimental results showing the effects of variating the considered most important process parameters on the spot weld quality of Ti6Al4V alloy. Semi-empirical mathematical models were developed to correlate laser welding parameters to each of the measured weld responses. Adequacies of the models were then examined by various methods such as ANOVA. These models not only allows a better understanding of the wobble laser welding process and predict the process performance but also determines optimal process parameters. Therefore, optimal combination of process parameters was determined considering certain quality criteria set.

  20. Effects of welding parameters on the mechanical properties of inert gas welded 6063 Aluminium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ertan, Taner [MAKO Corporation (Turkey); Uguz, Agah [Uludag Univ. (Turkey). Mechnical Engineering Dept.; Ertan, Rukiye

    2012-07-01

    The influence of welding parameters, namely welding current and gas flow rate, on the mechanical properties of Gas Tungsten Arc Welding (GTAW) and Shielded Metal Arc Welding (SMAW) welded 6063 Aluminum alloy (AA 6063) has been investigated. In order to study the effect of the welding current and gas flow rate, microstructural examination, hardness measurements and room temperature tensile tests have been carried out. The experimental results show that the mechanical properties of GTAW welded joints have better mechanical properties than those of SMAW welded joints. Increasing the welding current appeared to have a beneficial effect on the mechanical properties. However, either increasing or decreasing the gas flow rate resulted in a decrease of hardness and tensile strength. It was also found that, the highest strength was obtained in GTAW welded samples at 220 A and 15 l/min gas flow rate.

  1. Laser Welding Dissimilar Reflective Alloys

    Science.gov (United States)

    Mccay, M. H.; Gopinathan, S.; Kahlen, F.; Speigel, L.

    1993-01-01

    This project, jointly sponsored by Rocketdyne and CSTAR, involves the development of laser joining of materials which have heretofore been impractical to bond. Of particular interest are joints between stainless steel and copper and also aluminum 6061 to aluminum 2219. CSTAR has a unique opportunity in this area since both the process and development and diagnostics are of interest to industry. Initial results using the pulse tailored laser welding technique developed in CLA for joining crack sensitive materials have proven promising for the aluminum joints based upon metallurgical and electronic microprobe analysis. A declaration of success requires additional mechanical testing. A CW technique has been applied to the stainless-copper joining with some preliminary success. These joints are of significant interest for aeronautics and rocket propulsion applications and the project is expected to continue.

  2. Properties of welded joints in laser welding of aeronautic aluminum-lithium alloys

    Science.gov (United States)

    Malikov, A. G.; Orishich, A. M.

    2017-01-01

    The work presents the experimental investigation of the laser welding of the aluminum-lithium alloys (system Al-Mg-Li) and aluminum alloy (system Al-Cu-Li) doped with Sc. The influence of the nano-structuring of the surface layer welded joint by the cold plastic deformation method on the strength properties of the welded joint is determined. It is founded that, regarding the deformation degree over the thickness, the varying value of the welded joint strength is different for these aluminum alloys.

  3. Three dimensional atom probe study of Ni-base alloy/low alloy steel dissimilar metal weld interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Kyoung Joon; Shin, Sang Hun; Kim, Jong Jin; Jung, Ju Ang; Kim, Ji Hyun [Interdisciplinary School of Green Energy, Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2012-08-15

    Three dimensional atom probe tomography (3D APT) is applied to characterize the dissimilar metal joint which was welded between the Ni-based alloy, Alloy 690 and the low alloy steel, A533 Gr. B, with Alloy 152 filler metal. While there is some difficulty in preparing the specimen for the analysis, the 3D APT has a truly quantitative analytical capability to characterize nanometer scale particles in metallic materials, thus its application to the microstructural analysis in multicomponent metallic materials provides critical information on the mechanism of nanoscale microstructural evolution. In this study, the procedure for 3D APT specimen preparation was established, and those for dissimilar metal weld interface were prepared near the fusion boundary by a focused ion beam. The result of the analysis in this study showed the precipitation of chromium carbides near the fusion boundary between A533 Gr. B and Alloy 152.

  4. Laser welding of AZ61 magnesium-based alloys

    Institute of Scientific and Technical Information of China (English)

    Wang Hongying; Li Zhijun; Zhang Yihui

    2006-01-01

    Laser welding of AZ61 magnesium alloys was carried out asing a CO2 laser weldingexperimental system.The welding properties of AZ61 sheets with different thickness were investigated.The effect of processing parameters including laser power, welding speed and protection gas flow was researched.The results show that laser power and welding speed have large effect on the weld width and joint dimensions.Protection gas flow has relatively slight effect on the weld width.The property test of three typical joints indicates that microhardness and tensile strength in weld zone are higher than that of AZ61 base metal.Joints with good appearance and excellent mechanical properties can be produced using CO2 laser welding method.The microstructure with small grains in weld zone is believed to be responsible for the excellent mechanical properties of AZ61 joints.

  5. Laser vision sensing based on adaptive welding for aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    CHEN Zhixiang; SONG Yonglun; ZHANG Jun; ZHANG Wanchun; JIANG Li; XIA Xuxin

    2007-01-01

    A laser vision sensing based on the adaptive tungsten inert gas(TIG)welding system for large-scale aluminum alloy components was established to fit various weld groove conditions.A new type of laser vision sensor was used to precisely measure the weld groove.The joint geometry data,such as the bevel angle,the gap,the area,and the mismatch,etc.,aided in assembling large-scale aerospace components before welding.They were also applied for automatic seam tracking,such as automatic torch transverse alignment and torch height adjustment in welding.An adaptive welding process was realized by automatically adjusting the wire feeding speed and the welding current according to the groove conditions.The process results in a good weld formation and high welding quality,which meet the requirements of related standards.

  6. Tool For Friction Stir Tack Welding of Aluminum Alloys

    Science.gov (United States)

    Bjorkman, Gerald W.; Dingler, Johnny W.; Loftus, Zachary

    2003-01-01

    A small friction-stir-welding tool has been developed for use in tack welding of aluminum-alloy workpieces. It is necessary to tack-weld the workpieces in order to hold them together during friction stir welding because (1) in operation, a full-size friction-stir-welding tool exerts a large force that tends to separate the workpieces and (2) clamping the workpieces is not sufficient to resist this force. It is possible to tack the pieces together by gas tungsten arc welding, but the process can be awkward and time-consuming and can cause sufficient damage to necessitate rework. Friction stir tack welding does not entail these disadvantages. In addition, friction stir tack welding can be accomplished by use of the same automated equipment (except for the welding tool) used in subsequent full friction stir welding. The tool for friction stir tack welding resembles the tool for full friction stir welding, but has a narrower shoulder and a shorter pin. The shorter pin generates a smaller workpiece-separating force so that clamping suffices to keep the workpieces together. This tool produces a continuous or intermittent partial-penetration tack weld. The tack weld is subsequently consumed by action of the larger tool used in full friction stir welding tool.

  7. MICROSTRUCTURAL STUDIES OF FRICTION STIR WELDED AZ31 MAGNESIUM ALLOY

    Institute of Scientific and Technical Information of China (English)

    H.Zhang; S.B.Lin; L.Wu; J.C.Feng

    2004-01-01

    Friction stir welding achieves the weld in solid phase by locally introducing frictional heating and plastic flow arising from rotation of the welding tool, which results in changes in the local microstructure of magnesium alloy. The purpose in the paper is to study the microstructures of friction stir welded AZ3I magnesium alloy. Residual microstructures,including dynamic re-crystallization zone and nugget structures have been systematically investigated utilizing optical microscopy (OM), scanning electric microscopy (SEM),transmission electron microscopy (TEM) with energy dispersive spectroscopy (EDS), X-ray diffraction (XRD) and micro-hardness. AZ31 magnesium alloy has been successfully friction stir welded and exhibits the variations of microstructure including dynamically recrystallized,equaxied grains in the weld nugget. Residual hardness in the nugget was found slightly lower than the parent but not too obvious.

  8. SRμCT study of crack propagation within laser-welded aluminum-alloy T-joints

    Science.gov (United States)

    Herzen, J.; Beckmann, F.; Riekehr, S.; Bayraktar, F. S.; Haibel, A.; Staron, P.; Donath, T.; Utcke, S.; Kocak, M.; Schreyer, A.

    2008-08-01

    Using laser welding in fabrication of metallic airframes reduces the weight and hence fuel consumption. Currently only limited parts of the airframes are welded. To increase laser beam welded parts, there is the need for a better understanding of crack propagation and crack-pore interaction within the welds. Laser beam welded Al-alloys may contain isolated small process pores and their role and interaction with growing crack need to be investigated. The present paper presents the first results of a crack propagation study in laser beam welded (LBW) Al-alloy T-joints using synchrotron radiation based micro computed tomography (SRμCT). A region-of-interest technique was used, since the specimens exceeded the field of view of the X-ray detector. As imaging with high density resolution at high photon energies is very challenging, a feasibility measurement on a small laser weld, cut cylindrically from the welded region of a T-joint, was done before starting the crack-propagation study. This measurement was performed at the beamline HARWI-II at DESY to demonstrate the potential of the SRμCT as non-destructive testing method. The result has shown a high density resolution, hence, the different Al alloys used in the T-joint and the weld itself were clearly separated. The quantitative image analysis of the 3D data sets allows visualizing non-destructively and calculating the pore size distribution.

  9. Experimental Investigations on Pulsed Nd:YAG Laser Welding of C17300 Copper-Beryllium and 49Ni-Fe Soft Magnetic Alloys

    Science.gov (United States)

    Mousavi, S. A. A. Akbari; Ebrahimzadeh, H.

    2011-01-01

    Copper-beryllium and soft magnetic alloys must be joined in electrical and electro-mechanical applications. There is a high difference in melting temperatures of these alloys which cause to make the joining process very difficult. In addition, copper-beryllium alloys are of age hardenable alloys and precipitations can brittle the weld. 49Ni-Fe alloy is very hot crack sensitive. Moreover, these alloys have different heat transfer coefficients and reflection of laser beam in laser welding process. Therefore, the control of welding parameters on the formation of adequate weld puddle composition is very difficult. Laser welding is an advanced technique for joining of dissimilar materials since it can precisely control and adjust the welding parameters. In this study, a 100W Nd:YAG pulsed laser machine was used for joining 49Ni-Fe soft magnetic to C17300 copper-beryllium alloys. Welding of samples was carried out autogenously by changing the pulse duration, diameter of beam, welding speed, voltage and frequency. The spacing between samples was set to almost zero. The ample were butt welded. It was required to apply high voltage in this study due to high reflection coefficient of copper alloys. Metallography, SEM analysis, XRD and microhardness measurement was used for survey of results. The results show that the weld strength depends upon the chemical composition of the joints. To change the wells composition and heat input of the welds, it was attempted to deviate the laser focus away from the weld centerline. The best strength was achieved by deviation of the laser beam away about 0.1mm from the weld centerline. The result shows no intermetallic compounds if the laser beam is deviated away from the joint.

  10. Friction stir welding of AZ31 magnesium alloy

    Institute of Scientific and Technical Information of China (English)

    林三宝; 张华; 吴林; 冯吉才; 戴鸿滨

    2003-01-01

    Friction stir welding (FSW) is an new solid-phase joining technology which has more advantages over fusion welding methods in welding of aluminum and other non-ferrous metals. The effects of welding parameters on mechanical properties and microstructure during friction stir welding of AZ31 magnesium alloy were studied in this paper. Microstructures and mechanical properties of the joints were investigated by means of optical microscopy, scanning electric microscopy (SEM), micro-hardness analysis, and tensile test. Experimental results show that the magnesium alloy can be successfully welded by FSW method, and the ultimate tensile strength (UTS) of FSW joint reaches up to 90 percent of base metal. The microstructures of welded joints exhibit the variation from dynamically recrystallized fine grains to greatly deformed grains. Hardness in nugget zone was found lower than the base metal but not too obvious.

  11. Adaptive Control for Partial- and Full-Penetration Spot Welding of Aluminum Alloy Sheets

    Science.gov (United States)

    Kawahito, Yousuke; Katayama, Seiji

    A new procedure of in-process monitoring and adaptive control for stable formation of laser spot lap welds has been developed with the objectives of producing sound partial- and full-penetration welds without through-holes and swell in A3003 aluminum alloy sheets, respectively. In the case of the formation of partial-penetration welds, the reflected laser beam and the radiated heat from the welding area were effectively utilized as in-process monitoring signals in detecting melting and though-hole formation in the upper sheet during laser irradiation. Laser pulse duration and peak power were controlled at every 0.15 ms interval during spot welding on the basis of the heat radiation signal detecting the though-hole. In the full-penetration welds, spot welding was performed at low laser power density to reduce the swell of joint part. Then the concavity level of a weld fusion zone increased remarkably with an increase in the pulse duration. Therefore, the laser pulse duration was controlled at 0.15 ms intervals on the basis of the total intensity of heat radiation so as to produce a satisfactory spot weld fusion zone. As a result, fully penetrated welds of desirable sizes with the reduced swells were consistently produced in all 20 samples. These results proved the effectiveness of in-process monitoring and the availability of adaptive control.

  12. Phase transformations and microstructure development in low alloy steel welds

    Energy Technology Data Exchange (ETDEWEB)

    Babu, S.S.; David, S.A.; Vitek, J.M. [and others

    1995-07-01

    Microstructure development in low alloy steel welds depends on various phase transformations that are a function of weld heating and cooling. The phase changes include non-metallic oxide inclusion formation in the liquid state, weld pool solidification, and solid state transformations. In this paper the mechanism of inclusion formation during low alloy steel welding is considered and the model predictions are compared with published results. The effect of inclusions on the austenite to ferrite transformation kinetics is measured and the mechanisms of transformation are discussed. The austenite gain development is related to the driving force for transformation of {delta} ferrite to austenite.

  13. Hybrid manufacturing processes for fusion welding and friction stir welding of aerospace grade aluminum alloys

    Science.gov (United States)

    Gegesky, Megan Alexandra

    Friction stir welding and processing can provide for joints in aerospace grade aluminum alloys that have preferable material properties as compared to fusion welding techniques. Aerospace grade aluminum alloys such as AA2024-T3 and AA7075-T6 are considered non-weldable by traditional fusion welding techniques. Improved mechanical properties over previously used techniques are usually preferable for aerospace applications. Therefore, by combining traditional fusion welding and friction stir processing techniques, it could be plausible to create more difficult geometries in manufactured parts instead of using traditional techniques. While this combination of fusion welding and friction stir processing is not a new technology, its introduction to aerospace grade aluminum alloys as well as non-weldable alloys, is new. This is brought about by a lowered required clamping force required by adding a fusion weld before a friction stir processing technique. The changes in properties associated with joining techniques include: microstructural changes, changes in hardness, tensile strength, and corrosion resistance. This thesis illustrates these changes for the non-weldable AA2024-T351 and AA7075-T651 as well as the weldable alloy AA5052-H32. The microhardness, tensile strength and corrosion resistance of the four processing states: base material, fusion welded material, friction stir welded material, and friction stir processed fusion welded material is studied. The plausibility of this hybrid process for the three different materials is characterized, as well as plausible applications for this joining technique.

  14. Improved diffusion welding and roll welding of titanium alloys

    Science.gov (United States)

    Holko, K. H.

    1973-01-01

    Auto-vacuum cleaning technique was applied to titanium parts prior to welding. This provides oxide-free welding surfaces. Diffusion welding can be accomplished in as little as five minutes of hot pressing. Roll welding can be accomplished with only ten percent deformation.

  15. Twinning in weld HAZ of ZK21 commercial magnesium alloy

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The microstructure and properties of Mg ZK21 laser beam weld without filler were researched using optical microscopy (OM), electron microscopy and mechanical test. The results show that the fracture strain of the joints after laser beam welding reduces by about 10.7% at room temperature. By means of laser beam welding, the fusion zones contain tensile RS, while the base material far away from the fusion line is under balancing compressive RS. The microstructm-es of the weld were characterized by a narrow heat affected zone and twins. Significant { 10-12 } tension twins occur in the weld HAZ during laser welding processing. Due to the influence of temperature field and stress on morphologies, most of twins form twinning bands, which are nearly parallel to the welding direction.

  16. Study on arc-ultrasonic TIG welding of titanium alloy

    Institute of Scientific and Technical Information of China (English)

    周荣林; 郭德伦; 李从卿; 张银根

    2004-01-01

    TC4 alloy was welded by conventional TIG welding and arc-ultrasonic TIG welding respectively. The microstructure of joint was analyzed by means of optical-microscope, scanning electron microscope in order to study the relationship between the macro-properties of joint and the microstructure. The results show that the joints were all welded successfully by conventional TIG welding and arc-ultrasonic TIG welding. With the increment of ultrasonic frequency and activated voltage, the width of joint became narrow step by step. The microstructure became more and more fine and was inclined to equiaxed crystal. Moreover, the dendrite depredation was not observed obviously. The properties of welded joint were improved markedly compared with that of conventional TIG welding.

  17. Recent progress on gas tungsten arc welding of vanadium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Grossbeck, M.L.; King, J.F.; Alexander, D.J. [Oak Ridge National Lab., TN (United States)] [and others

    1997-08-01

    Emphasis has been placed on welding 6.4 mm plate, primarily by gas tungsten arc (GTA) welding. The weld properties were tested using blunt notch Charpy testing to determine the ductile to brittle transition temperature (DBTT). Erratic results were attributed to hydrogen and oxygen contamination of the welds. An improved gas clean-up system was installed on the welding glove box and the resulting high purity welds had Charpy impact properties similar to those of electron beam welds with similar grain size. A post-weld heat treatment (PWHT) of 950{degrees}C for two hours did not improve the properties of the weld in cases where low concentrations of impurities were attained. Further improvements in the gas clean-up system are needed to control hydrogen contamination.

  18. Effects of Post Weld Heat Treatment on Microstructure and Mechanical Properties of 2A14 High Strength Aluminum Alloy by Electron Beam Welding%焊后热处理对2A14高强铝合金电子束焊接头组织及力学性能的影响

    Institute of Scientific and Technical Information of China (English)

    王亚荣; 黄文荣; 雷华东

    2011-01-01

    The challenges of significant weight reduction have promoted a focus on selection of light-weight materials. That is the reason that high strength aluminum alloy is becoming widely recognized as the candidates to replace steel. In order to develop proper post weld heat treatment process of 2A14 high strength aluminum alloy welded by electron beam, the effects of post weld heat treatment on microstructure and mechanical properties of 2A14 aluminum alloy welded joint are studied by using optical microscope (OM), scanning electron microscope (SEM), hardness test and tensile test. The results showed that the eutectic structure of the grain-boundary dissolved into the matrix gradually, dispersion-strengthening phase precipitated in weld zone and the hardness of weld seam increased obviously after post weld heat treatment. The tensile strength of the weld seam increased from 3SS Mpa to 465 Mpa, even larger than the base metal. The fracture analysis show the dimples became deeper and the fracture location is all in weld seam, which proposes that the toughness of the weld increased.%轻质化的需求使得人们把关注的焦点集中于轻质材料,高强铝合金作为钢结构材料的最佳替代品,受到越来越广泛的关注,利用电子束焊接高强铝合金,为获得性能优良的2A14高强铝合金电子束焊接接头,采用焊后热处理,通过组织观察(光学显微镜和扫描电镜)、维氏硬度测试、接头拉伸性能测试等方法研究焊后热处理对2A14电子束焊接接头显微组织和性能的影响.结果表明,通过焊后热处理,焊缝中心原晶界分布的网状共晶组织回溶于基体组织中消失,焊缝内部析出大量弥散强化项,基体强化效果增强,显微硬度显著升高,由焊态下低子母材硬度直接升高至超过母材硬度.接头抗拉强度由原来的355MPa提高到465 MPa,超过了母材强度.接头断裂均发生在焊缝,由断口分析发现热处理后接头韧性增强,韧窝深度

  19. 选区激光熔化TC4钛合金电子束焊接试验研究%Electron Beam Welding of Selective Laser Meltded TC4 Titanium Alloy

    Institute of Scientific and Technical Information of China (English)

    董鹏; 梁晓康; 陈济轮; 黑艳颖; 田彩兰

    2014-01-01

    初步研究了选区激光熔化成形TC4钛合金的电子束焊接性。试验采用中压电子束对4mm厚试片进行焊接。焊后采用光学显微镜、显微硬度计、拉伸试验机评价了接头的显微组织和力学性能。选区激光熔化TC4焊缝与板材焊缝类似,接头的抗拉强度为1278MPa,达到母材90%以上。%In this paper, the elctron beam weldability of selective laser meltded TC4 titanium alloys was investigated preliminarily. The optical microscope, microhardness and tensile test were used in analysted the characteristic of the elctron beam welded joint. The well electron beam weldability was shown from the analysis results. The tensile strengh of selective laser melted TC4 joints was 1278MPa.

  20. Improvement of Weld Quality Using a Weaving Beam in Laser Welding

    Institute of Scientific and Technical Information of China (English)

    Xudong ZHANG; Wuzhu CHEN; Gang BAO; Lin ZHAO

    2004-01-01

    This paper describes a way to improve the weld quality through suppressing the porosity formation and restraining the growth of columnar grains by using a weaving beam in laser welding. The experimental results show that the N2 porosity of beamweaving laser welding low carbon steel can be remarkably reduced with increasing weaving frequency, and porosity can be eliminated when the weaving amplitude is only 0.5 mm; and the Ar porosity in the weld metal is decreased with increasing weaving frequency and amplitude when the welding speed is higher than 0.5 m/min. The beam-weaving laser welding of ultrafine grained steel has been investigated. The experimental results show that beam-weaving laser welding with appropriate amplitude and frequency can partly restrain the growth of the columnar grain and improve the tensile strength of the weld metal.

  1. Effects of Flux Precoating and Process Parameter on Welding Performance of Inconel 718 Alloy TIG Welds

    Science.gov (United States)

    Lin, Hsuan-Liang; Wu, Tong-Min; Cheng, Ching-Min

    2014-01-01

    The purpose of this study is to investigate the effect of activating flux on the depth-to-width ratio (DWR) and hot cracking susceptibility of Inconel 718 alloy tungsten inert gas (TIG) welds. The Taguchi method is employed to investigate the welding parameters that affect the DWR of weld bead and to achieve optimal conditions in the TIG welds that are coated with activating flux in TIG (A-TIG) process. There are eight single-component fluxes used in the initial experiment to evaluate the penetration capability of A-TIG welds. The experimental results show that the Inconel 718 alloy welds precoated with 50% SiO2 and 50% MoO3 flux were provided with better welding performance such as DWR and hot cracking susceptibility. The experimental procedure of TIG welding process using mixed-component flux and optimal conditions not only produces a significant increase in DWR of weld bead, but also decreases the hot cracking susceptibility of Inconel 718 alloy welds.

  2. Microstructure and mechanical properties of wrought magnesium alloy AZ31B welded by laser-TIG hybrid

    Institute of Scientific and Technical Information of China (English)

    刘黎明; 宋刚; 王继锋; 梁国俐

    2004-01-01

    The laser-TIG hybrid welding was mainly used to weld the wrought magnesium alloy AZ31B. The technical characteristics of laser-TIG hybrid welding process was investigated and the interactional mechanism between laser and arc was discussed, at the same time the microstructure and mechanical properties of the wrought magnesium alloy AZ31B using laser-TIG hybrid welding were analyzed by optical microscope, EPMA, SEM, tensile machine, hardness machine. The experimental results show that the presence of laser beam boosts up the stability of the arc during high speed welding and augments the penetration of weld; the crystal grains of magnesium alloy weld are fine without porosity and cracks in the best welding criterion and the microstructure of HAZ does not become coarse obviously. The elements profile analysis reveals that Mg content in the weld is lower than that of the base metal, but Al content is higher slightly. Under this experimental condition, the wrought magnesium alloy AZ31B joint can be achieved using laser-TIG hybrid process and the tensile strength of the joint is equivalent to that of the base metal.

  3. Infrared measurement and simulation of magnesium alloy welding temperature field

    Institute of Scientific and Technical Information of China (English)

    LIU Liming; CHI Mingsheng; HUANG Ruisheng; SONG Gang; ZHOU Yang

    2005-01-01

    The welding temperature field of magnesium alloy AZ31 welded by TIG was measured with the uncooled infrared (IR) thermal imaging technology. The variables in the mathematic mode of welding temperature fields were revised by IR temperature data. Based on the results of simulation, the loss of temperature fields caused by arc interfered was compensated, and a whole temperature field was achieved, which provided a precise and powerful foundation for the investigation of microstructure of the joints.

  4. Development and application of high-precision laser welding technology for manufacturing Ti alloy frames of glasses

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S. S.; Yang, M. S.; Kim, W. K.; Lee, D. Y.; Kim, J. M.; Leem, B. C.; Shin, J. S.; Lee, D. H

    1999-12-01

    The research and development efforts of the high precision laser welding technology for manufacturing titanium alloy frames of glasses. For this purpose, laser welding device with the high beam quality is designed and fabricated, which consists of a optical fiber transmission part, a welding monitoring part and a welding controller. The welding nozzle and holding fixtures for manufacturing titanium and shape memory alloy frames of glasses. Titanium and shape memory alloy frames of glasses to be developed were experimentally manufactured by utilizing the laser welding using the optical fiber of GI 400 {mu}m. As a result, the seam welding with the bead width of 0.3 mm or less and the weld penetration of 0.3-0.4mm could be accomplished. The fundamental technology was established through design of welding jigs with a variety of configurations and adequate welding conditions. Also, for the purpose to enable the companies participating in this project to commercialize the developed technology acceleratedly, a training program for the engineers belonging to such companies was conducted along with the technology transfer through joint experiments with the engineers. (author)

  5. Nanoindentation of Electropolished FeCrAl Alloy Welds

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, Jordan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Aydogan, Eda [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mara, Nathan Allan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Maloy, Stuart Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-13

    The present report summarizes Berkovich nanoindentation modulus and hardness measurements on two candidate FeCrAl alloys (C35M and C37M) on as-received (AR) and welded samples. In addition, spherical nanoindentation stress-strain measurements were performed on individual grains to provide further information and demonstrate the applicability of these protocols to mechanically characterizing welds in FeCrAl alloys. The indentation results are compared against the reported tensile properties for these alloys to provide relationships between nanoindentation and tensile tests and insight into weldsoftening for these FeCrAl alloys. Hardness measurements revealed weld-softening for both alloys in good agreement with tensile test results. C35M showed a larger reduction in hardness at the weld center from the AR material compared to C37M; this is also consistent with tensile tests. In general, nanohardness was shown to be a good predictor of tensile yield strength and ultimate tensile stress for FeCrAl alloys. Spherical nanoindentation measurements revealed that the fusion zone (FZ) + heat affected zone (HAZ) has a very low defect density typical of well-annealed metals as indicated by the frequent pop-in events. Spherical nanoindentation yield strength, Berkovich hardness, and tensile yield strength measurements on the welded material all show that the C37M welded material has a higher strength than C35M welded material. From the comparison of nanoindentation and tensile tests, EBSD microstructure analysis, and information on the processing history, it can be deduced that the primary driver for weld-softening is a change in the defect structure at the grain-scale between the AR and welded material. These measurements serve as baseline data for utilizing nanoindentation for studying the effects of radiation damage on these alloys.

  6. Numerical modeling of electron-beam welding of dissimilar metals

    Science.gov (United States)

    Krektuleva, R. A.; Cherepanov, O. I.; Cherepanov, R. O.

    2016-11-01

    This paper is devoted to numerical modeling of heat transfer processes and estimation of thermal stresses in weld seams created by electron beam welding of heterogeneous metals. The mathematical model is based on a system of equations that includes the Lagrange's variational equation of theory of plasticity and variational equation of M. Biot's principle to simulate the heat transfer processes. The two-dimensional problems (plane strain and plane stress) are considered for estimation of thermal stresses in welds considering differences of mechanical properties of welded materials. The model is developed for simulation of temperature fields and stresses during electron beam welding.

  7. Determination through the distortions analysis of the best welding sequence in longitudinal welds VATS electron beam welding FE simulation

    Energy Technology Data Exchange (ETDEWEB)

    Guirao, J., E-mail: julio@natec-ingenieros.co [Numerical Technologies, S.L., Marques de San Esteban No. 52, 33206 Gijon (Spain); Rodriguez, E. [Department of Mechanical Engineering, University of Oviedo, Campus de Viesques, 33203 Gijon (Spain); Bayon, A. [Vacuum Vessel Group, Fusion for Energy, Josep Pla 2, 08019 Barcelona (Spain); Bouyer, F. [DCNS, Indret 44620 LA MONTAGNE (France); Pistono, J. [Department of Thermal Machines and Motors, University of Oviedo, Campus de Viesques, 33203 Gijon (Spain); Jones, L. [Vacuum Vessel Group, Fusion for Energy, Josep Pla 2, 08019 Barcelona (Spain)

    2010-08-15

    This paper presents a detailed finite element simulation of the longitudinal rib welds of Vessel Advanced Technology Segment (VATS) by e-beam welding. Nine different simulation sequences were carried out to explain the different mechanisms that drive the distortions process during welding and to lead to an optimum sequence which minimizes the final distortions. The simulations were used to guide the manufacture of the final sequence of the VATS. Distortion measurements taken after welding compared very well with the simulated results.

  8. Metallurgical and Mechanical Research on Dissimilar Electron Beam Welding of AISI 316L and AISI 4340

    Directory of Open Access Journals (Sweden)

    A. R. Sufizadeh

    2016-01-01

    Full Text Available Dissimilar electron beam welding of 316L austenitic stainless steel and AISI 4340 low alloy high strength steel has been studied. Studies are focused on effect of beam current on weld geometry, optical and scanning electron microscopy, X-ray diffraction of the weld microstructures, and heat affected zone. The results showed that the increase of beam current led to increasing depths and widths of the welds. The optimum beam current was 2.8 mA which shows full penetration with minimum width. The cooling rates were calculated for optimum sample by measuring secondary dendrite arm space and the results show that high cooling rates lead to austenitic microstructure. Moreover, the metallography result shows the columnar and equiaxed austenitic microstructures in weld zone. A comparison of HAZ widths depicts the wider HAZ in the 316L side. The tensile tests results showed that the optimum sample fractured from base metal in AISI 316L side with the UTS values is much greater than the other samples. Moreover, the fractography study presents the weld cross sections with dimples resembling ductile fracture. The hardness results showed that the increase of the beam current led to the formation of a wide softening zone as HAZ in AISI 4340 side.

  9. Welding Metallurgy of Alloy HR-160

    Energy Technology Data Exchange (ETDEWEB)

    DuPont, J.N.; Michael, J.R.; Newbury, B.D.

    1999-05-28

    The solidification behavior and resultant solidification cracking susceptibility of autogenous gas tungsten arc fusion welds in alloy HR-160 was investigated by Varestraint testing, differential thermal analysis, and various microstructural characterization techniques. The alloy exhibited a liquidus temperature of 1387 {deg}C and initiated solidification by a primary L - {gamma} reaction in which Ni, Si, and Ti segregated to the interdendritic liquid and Co segregated to the {gamma} dendrite cores. Chromium exhibited no preference for segregation to the solid or liquid phase during solidification. Solidification terminated at {approx} 1162 {deg}C by a eutectic-type L - [{gamma}+ (Ni,Co){sub 16}(Ti,Cr){sub 6}Si{sub 7}] reaction. The (Ni,Co){sub 16}(Ti,Cr){sub 6}Si{sub 7} phase is found to be analogous to the G phase which forms in the Ni-Ti-Si and Co-Ti-Si ternary systems, and similarities are found to exist between the solidification behavior of this commercial multicomponent alloy and the simple Ni-Si and Ni-Ti binary systems. Reasonable agreement is obtained between the calculated and measured volume percent of the [{gamma} +(Ni,Co){sub l6}(Ti,Cr){sub 6}Si{sub 7}] eutectic-typr constituent with the Scheil equation using experimentally determined k values for Si and Ti from electron microprobe data. The alloy exhibited a very high susceptibility to solidification cracking in the Varestraint test. This is attributed to a large solidification temperature range of 225 {deg}C and the presence of 2 to 5 vol% solute rich interdendritic liquid which preferentially wets the grain boundaries and interdendritic regions.

  10. 3D Finite Element Numerical Simulation of Residual Stresses on Electron Beam Welded BT20 Plates

    Institute of Scientific and Technical Information of China (English)

    Lixing HUO; Furong CHEN; Yufeng ZHANG; Li ZHANG; Fangjun LIU; Gang CHEN

    2004-01-01

    A three-dimensional finite-element model (FEM) used for calculating electron beam (EB) welding temperature and stresses fields of thin plates of BT20 titanium has been developed in which the nonlinear thermophysical and thermo-mechanical properties of the material has been considered. The welding temperature field, the distributions of residual stresses in aswelded (AW) and electron beam local post-weld heat treatment (EBLPWHT) conditions have been successfully simulated.The results show that: (1) In the weld center, the maximum magnitude of residual tensile stresses of BT20 thin plates of Ti alloy is equal to 60%~ 70% of its yield strength σs. (2) The residual tensile stresses in weld center can be even decreased after EBLPWHT and the longitudinal tensile stresses are decreased about 50% compared to joints in AW conditions. (3)The numerical calculating results of residual stresses by using FEM are basically in agreement with the experimental results.Combined with numerical calculating results, the effects of electron beam welding and EBLPWHT on the distribution of welding residual stresses in thin plates of BT20 have been analyzed in detail.

  11. Cracking susceptibility of aluminum alloys during laser welding

    Directory of Open Access Journals (Sweden)

    Lara Abbaschian

    2003-06-01

    Full Text Available The influence of laser parameters in welding aluminum alloys was studied in order to reduce hot cracking. The extension of cracks at the welding surface was used as a cracking susceptibility (CS index. It has been shown that the CS changes with changing welding velocity for binary Al-Cu alloys. In general, the CS index increased until a maximum velocity and then dropped to zero, generating a typical lambda-curve. This curve is due to two different mechanisms: 1 the refinement of porosities with increasing velocity and 2 the changes in the liquid fraction due to decreasing microsegregation with increasing velocities.

  12. Microstructure and property of the Ti-24Al-15Nb-1.5Mo/TC11 joint welded by electron beam welding

    Institute of Scientific and Technical Information of China (English)

    Ying-ying Liu; Ze-kun Yao; Hong-zhen Guo; Hang-hang Yang

    2009-01-01

    The Ti-24Al-15Nb-1.5Mo alloy, in the as-forged and heat-treated states, was joined to the as-forged TC11 titanium alloy by electron beam welding with the heat inputs of 135 and 150 kJ/m. Then the microstructure and property of the Ti-24Al-15Nb-1.5Mo/TC11 welding interface were investigated. The results show that the phase constitution of the weld is not related to the heat input, and is mainly composed of α' phase. Moreover, the intermetallic phases of Ti_2AlNb, MoNb, Nb_3Al, and TiAl_3 are formed in the weld zone. Therefore, the microhardness value of the weld zone is higher than that of the other portions in the same sample. The profile of the weld is asymmetrically funnel-like. The grain sizes of the weld and its heat-affected zones are increased with increasing heat input. There is an obvious difference in the element content of the welding interface; only the alloying elements in the fusion zone reach a new balance during solidification.

  13. Friction stir welding of copper alloys

    Institute of Scientific and Technical Information of China (English)

    Liu Shuhua; Liu Meng; Wang Deqing; Xu Zhenyue

    2007-01-01

    Copper plates,brass plates and copper/brass plates were friction stir welded with various parameters. Experimental results show that the microstructure of the weld is characterized by its much finer grains as contrasted with the coarse grains of parent materials and the heat-affected zones are very narrow. The microhardness of the copper weld is a little higher than that of parent plate. The microhardness of brass weld is about 25% higher than that of parent material. The tensile strength of copper joints increases with increasing welding speed in the test range. The range of parameters to obtain good welds for copper is much wider than that for brass. When different materials were welded, the position of copper plate before welding affected the quality of FSW joints. If the copper plate was put on the advancing side of weld, the good quality of weld could be got under proper parameters.

  14. Mechanical Characteristics of Welded Joints of Aluminum Alloy 6061 T6 Formed by Arc and Friction Stir Welding

    Science.gov (United States)

    Astarita, A.; Squillace, A.; Nele, L.

    2016-01-01

    Butt welds formed by arc welding in inert gas with nonconsumable electrode (tungsten inert gas (TIG) welding) and by friction stir welding (FSW) from aluminum alloy AA6061 T6 are studied. Comparative analysis of the structures and mechanical properties of the welded joints is performed using the results of optical and electron microscopy, tensile tests, tests for residual bending ductility, and measurements of microhardness. The changes in the microstructure in different zones and the degrees of degradation of the mechanical properties after the welding are determined. It is shown that the size of the tool for the friction stir welding affects the properties of the welds. Quantitative results showing the relation between the microscopic behavior of the alloy and the welding-induced changes in the microstructure are obtained. Friction stir welding is shown to provide higher properties of the welds.

  15. NUMERICAL SIMULATION OF CONTROLLING IN TITANIUM ALLOY SHEETS WELDING RESIDUAL STRESS BY TRAILING PEENING

    Institute of Scientific and Technical Information of China (English)

    X.S. Liu; H. Y. Fang; W.L. Xu; Z.B. Dong; D.Y. Yu

    2004-01-01

    It is a promising and new technology to apply welding with trailing peening to control welding stress and distortion of titanium alloy. Numerical simulation of conventional welding and welding with trailing peening of the titanium alloy sheet is carried out,using nonlinear finite element theory and the engineering analysis software MARC.The result shows that welding with trailing peening technology reduces longitudinal residual stress in welding joint effectively, and it is more effective to reduce residual stress to peen the weld than to peen the weld toe. It is a effective result that other technology and method used in welding can never achieved.

  16. Gas-tungsten arc welding of aluminum alloys

    Science.gov (United States)

    Frye, Lowell D.

    1984-01-01

    A gas-tungsten arc welding method for joining together structures formed of aluminum alloy with these structures disposed contiguously to a heat-damagable substrate of a metal dissimilar to the aluminum alloy. The method of the present invention is practiced by diamond machining the fay surfaces of the aluminum alloy structures to provide a mirror finish thereon having a surface roughness in the order of about one microinch. The fay surfaces are aligned and heated sufficiently by the tungsten electrode to fuse the aluminum alloy contiguous to the fay surfaces to effect the weld joint. The heat input used to provide an oxide-free weld is significantly less than that required if the fay surfaces were prepared by using conventional chemical and mechanical practices.

  17. Analysis and Comparison of Friction Stir Welding and Laser Assisted Friction Stir Welding of Aluminum Alloy.

    Science.gov (United States)

    Campanelli, Sabina Luisa; Casalino, Giuseppe; Casavola, Caterina; Moramarco, Vincenzo

    2013-12-18

    Friction Stir Welding (FSW) is a solid-state joining process; i.e., no melting occurs. The welding process is promoted by the rotation and translation of an axis-symmetric non-consumable tool along the weld centerline. Thus, the FSW process is performed at much lower temperatures than conventional fusion welding, nevertheless it has some disadvantages. Laser Assisted Friction Stir Welding (LAFSW) is a combination in which the FSW is the dominant welding process and the laser pre-heats the weld. In this work FSW and LAFSW tests were conducted on 6 mm thick 5754H111 aluminum alloy plates in butt joint configuration. LAFSW is studied firstly to demonstrate the weldability of aluminum alloy using that technique. Secondly, process parameters, such as laser power and temperature gradient are investigated in order to evaluate changes in microstructure, micro-hardness, residual stress, and tensile properties. Once the possibility to achieve sound weld using LAFSW is demonstrated, it will be possible to explore the benefits for tool wear, higher welding speeds, and lower clamping force.

  18. Analysis and Comparison of Friction Stir Welding and Laser Assisted Friction Stir Welding of Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    Sabina Luisa Campanelli

    2013-12-01

    Full Text Available Friction Stir Welding (FSW is a solid-state joining process; i.e., no melting occurs. The welding process is promoted by the rotation and translation of an axis-symmetric non-consumable tool along the weld centerline. Thus, the FSW process is performed at much lower temperatures than conventional fusion welding, nevertheless it has some disadvantages. Laser Assisted Friction Stir Welding (LAFSW is a combination in which the FSW is the dominant welding process and the laser pre-heats the weld. In this work FSW and LAFSW tests were conducted on 6 mm thick 5754H111 aluminum alloy plates in butt joint configuration. LAFSW is studied firstly to demonstrate the weldability of aluminum alloy using that technique. Secondly, process parameters, such as laser power and temperature gradient are investigated in order to evaluate changes in microstructure, micro-hardness, residual stress, and tensile properties. Once the possibility to achieve sound weld using LAFSW is demonstrated, it will be possible to explore the benefits for tool wear, higher welding speeds, and lower clamping force.

  19. Strength Evaluation of Heat Affected Zone in Electron Beam Welded ARAA for HCCR TBM in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, J. S.; Kim, S. K.; Jin, H. G.; Lee, E. H.; Lee, D. W. [KAERI, Daejeon (Korea, Republic of); Cho, S. [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    The Korean helium cooled ceramic reflector (HCCR) test blanket module (TBM) has been developed for ITER, and Korean reduced activation ferritic martensitic (RAFM) steel, called advanced reduced activation alloy (ARAA), has also been developed for a structural material of the HCCR TBM. One case of limited optimized electron beam (EB) welding conditions was selected based on previous work, and the weldability of an EB weld was evaluated for TBM fabrication. The micro-hardness was measured from the base to the weld region, and the microstructures were also observed. A small punch (SP) test considering the HAZ was carried out at room and high (550 .deg. C) temperatures. The empirical mechanical properties of HAZ in the EB weld were evaluated, and the fracture behavior was investigated after the SP test. The SP results show that the estimated yield and tensile strength of the HAZ were higher than the base metal at both temperatures. Korean RAFM steel, ARAA, was developed as a TBM structural material. Using one of the program alloys in ARAA (F206), one case of a limited optimized EB welding condition was selected based on previous works, and the weldability of an EB weld using the SP test was evaluated for TBM fabrication at room and high (550 .deg. C) temperatures. From a micro-Vickers hardness evaluation, the HAZ gave the highest values compared with the other regions. The irregular grain boundaries in the HAZ were observed, but its width was narrower than the TIG weld from the previous results. The optimized welding methods such as the TIG, EB, and laser weld, and the welding procedure considering the PWHT are being established, and the weldability evaluation is also progressing according to the development of the ARAA for the fusion material application in Korea.

  20. Influence of welding speed on corrosion behaviour of friction stir welded AA5086 aluminium alloy

    Institute of Scientific and Technical Information of China (English)

    Kamran Amini; Farhad Gharavi

    2016-01-01

    The plates of AA5086 aluminium alloy were joined together by friction stir welding at a fixed rotation speed of 1000 r/min various welding speeds ranging from 63 to 100 mm/min. Corrosion behavior of the parent alloy (PA), the heat affected zone (HAZ), and the weld nugget zone (WNZ) of the joints were studied in 3.5% (mass fraction) aerated aqueous NaCl solution by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The corrosion susceptibility of the weldments increases when the welding speed increases to 63 and 100 mm/min. However, the value of corrosion rate in the weldments is lower than that in the PA. Additionally, the corrosion current density increases with increasing the welding speed in the HAZ and the WNZ. On the contrary, the corrosion potential in the WNZ appears more positive than in the HAZ with decreasing the welding speed. The WNZ exhibits higher resistance compared to the HAZ and the PA as the welding speed decreases. The results obtained from the EIS measurements suggest that the weld regions have higher corrosion resistance than the parent alloy. With increasing the welding speed, the distribution and extent of the corroded areas in the WNZ region are lower than those of the HAZ region. In the HAZ region, in addition to the pits in the corroded area, some cracks can be seen around the corroded areas, which confirms that intergranular corrosion is formed in this area. The alkaline localized corrosion and the pitting corrosion are the main corrosion mechanisms in the corroded areas within the weld regions. Crystallographic pits are observed within the weld regions.

  1. Welding And Cutting A Nickel Alloy By Laser

    Science.gov (United States)

    Banas, C. M.

    1990-01-01

    Technique effective and energy-efficient. Report describes evaluation of laser welding and cutting of Inconel(R) 718. Notes that electron-beam welding processes developed for In-718, but difficult to use on large or complex structures. Cutting of In-718 by laser fast and produces only narrow kerf. Cut edge requires dressing, to endure fatigue.

  2. Recent Developments in Friction Stir Welding of Al-alloys

    Science.gov (United States)

    Çam, Gürel; Mistikoglu, Selcuk

    2014-06-01

    The diversity and never-ending desire for a better life standard result in a continuous development of the existing manufacturing technologies. In line with these developments in the existing production technologies the demand for more complex products increases, which also stimulates new approaches in production routes of such products, e.g., novel welding procedures. For instance, the friction stir welding (FSW) technology, developed for joining difficult-to-weld Al-alloys, has been implemented by industry in manufacturing of several products. There are also numerous attempts to apply this method to other materials beyond Al-alloys. However, the process has not yet been implemented by industry for joining these materials with the exception of some limited applications. The microstructures and mechanical properties of friction stir welded Al-alloys existing in the open literature will be discussed in detail in this review. The correlations between weld parameters used during FSW and the microstructures evolved in the weld region and thus mechanical properties of the joints produced will be highlighted. However, the modeling studies, material flow, texture formation and developments in tool design are out of the scope of this work as well as the other variants of this technology, such as friction stir spot welding (FSSW).

  3. Effect of welding techniques on microstructure and mechanical properties of aluminium-lithium alloy welds

    Energy Technology Data Exchange (ETDEWEB)

    Madhusudhan Reddy, G.; Gokhale, A.A.; Saxena, V.K. [Defence Metallurgical Research Lab., Hyderabad (India); Prasad Rao, K.

    2000-07-01

    The tensile properties and fatigue crack growth behaviour of sheets of an Al-1.9Li-1.8Cu-1.0 Mg-0.1Zr alloy welded under different conditions were evaluated. The basic welding technique was constant current (CC) gas tungsten arc (GTA) welding. Two modifications viz. pulsed current (PC) and magnetic arc oscillation (AO) were introduced to study effects on microstructure and properties. Both PC and AO resulted in microstructural refinement in the fusion zone. The tensile residual stresses present in CC welds reduced when either PC or AO welding was used. The tensile strength and ductility increased, and fatigue crack growth rates lowered when PC or AO conditions replaced CC welding. (orig.)

  4. Prediction of optimum weld pool geometry of PCTIG welded titanium alloy using statistical design

    Directory of Open Access Journals (Sweden)

    M. Balasubramanian

    2016-03-01

    Full Text Available Mechanical strength of the weldments is not only influenced by the composition of the metals but selection of process parameters and weld bead profile also play a vital role in determining the strength. The relationships between the process parameters and the bead parameters controlling the bead shape are to be established. This is achieved by the development of mathematical expressions, relating the weld bead dimensions to the important process control variables affecting these dimensions. Also, optimization of the process parameters to control and obtain the required shape and quality of weld beads is also made possible with these expressions. The pulsing current parameters on weld pool geometry namely front height, back height, front width and back width of pulsed current tungsten inert gas welding (PCTIG of titanium alloy was analyzed. Box–Behnken design was used to develop empirical relationships, incorporating pulsed current parameters and weld pool geometry.

  5. Modeling corrosion behavior of gas tungsten arc welded titanium alloy

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The pitting corrosion characteristics of pulse TIG welded Ti-6Al-4V titanium alloy in marine environment were explained.Besides the rapid advance of titanium metallurgy, this is also due to the successful solution of problems associated with the development of titanium alloy welding. The preferred welding process of titanium alloy is frequently gas tungsten arc(GTA) welding due to its comparatively easier applicability and better economy. In the case of single pass GTA welding of thinner section of this alloy, the pulsed current has been found beneficial due to its advantages over the conventional continuous current process. The benefit of the process is utilized to obtain better quality titanium weldments. Four factors, five levels, central composite, rotatable design matrix are used to optimize the required number of experiments. The mathematical models have been developed by response surface method(RSM). The results reveal that the titanium alloy can form a protective scale in marine environment and is resistant to pitting corrosion. Experimental results are provided to illustrate the proposed approach.

  6. A Review of Dissimilar Welding Techniques for Magnesium Alloys to Aluminum Alloys

    Directory of Open Access Journals (Sweden)

    Liming Liu

    2014-05-01

    Full Text Available Welding of dissimilar magnesium alloys and aluminum alloys is an important issue because of their increasing applications in industries. In this document, the research and progress of a variety of welding techniques for joining dissimilar Mg alloys and Al alloys are reviewed from different perspectives. Welding of dissimilar Mg and Al is challenging due to the formation of brittle intermetallic compound (IMC such as Mg17Al12 and Mg2Al3. In order to increase the joint strength, three main research approaches were used to eliminate or reduce the Mg-Al intermetallic reaction layer. First, solid state welding techniques which have a low welding temperature were used to reduce the IMCs. Second, IMC variety and distribution were controlled to avoid the degradation of the joining strength in fusion welding. Third, techniques which have relatively controllable reaction time and energy were used to eliminate the IMCs. Some important processing parameters and their effects on weld quality are discussed, and the microstructure and metallurgical reaction are described. Mechanical properties of welds such as hardness, tensile, shear and fatigue strength are discussed. The aim of the report is to review the recent progress in the welding of dissimilar Mg and Al to provide a basis for follow-up research.

  7. ARc Welding (Industrial Processing Series).

    Science.gov (United States)

    ARC WELDING , *BIBLIOGRAPHIES), (*ARC WELDS, BIBLIOGRAPHIES), ALUMINUM ALLOYS, TITANIUM ALLOYS, CHROMIUM ALLOYS, METAL PLATES, SPOT WELDING , STEEL...INERT GAS WELDING , MARAGING STEELS, MICROSTRUCTURE, HEAT RESISTANT ALLOYS, HEAT RESISTANT METALS, WELDABILITY, MECHANICAL PROPERTIES, MOLYBDENUM ALLOYS, NICKEL ALLOYS, RESISTANCE WELDING

  8. Microstructural refinement of weld fusion zones in {alpha}-{beta} titanium alloys using pulsed current welding

    Energy Technology Data Exchange (ETDEWEB)

    Sundaresan, S.; Janaki Ram, G.D. [Indian Inst. of Technol., Chennai (India). Dept. of Metallurgical Engineering; Madhusudhan Reddy, G. [Defence Metallurgical Research Lab., Hyderabad (India)

    1999-04-01

    Pulsing of the welding current is one approach for refining the fusion zone grain structure in {alpha}-{beta} titanium alloy welds. This paper reports work in which gas tungsten-arc welds were produced in two {alpha}-{beta} titanium alloys under a variety of conditions including direct current (d.c.) pulsing and alternating current (a.c.) pulsing. The results show that, while d.c. pulsing did also refine the weld metal {beta} grain structure, the effect of a.c. pulsing was much greater. Current pulsing enhances fluid flow, reduces temperature gradients and causes a continual change in the weld pool size and shape. These effects, which are believed to be responsible for refining the solidification structure, are much stronger in a.c. pulsing than in d.c. pulsing. The observed grain refinement was shown to result in an appreciable increase in fusion zone tensile ductility. Post-weld heat treatment improved ductility both in pulsed and unpulsed welds, but pulsed welds showed greater tensile elongation even in the heat treated condition. (orig.) 27 refs.

  9. Elements loss analysis based on spectral diagnosis in laser-arc hybrid welding of aluminum alloy

    Science.gov (United States)

    Chen, Yong; Chen, Hui; Zhu, Minhao; Yang, Tao; Shen, Lin

    2017-07-01

    Aluminum alloy has been widely used in automobiles, high-speed trains, aerospace and many other fields. The loss of elements during welding process causes welding defects and affects the microstructure and properties of the joints. This paper discusses the correlation between welding process, spectral intensity and loss of elements in laser-arc hybrid welding of Al alloys. The results show that laser power and arc current have a significant impact on the spectral intensity and loss of elements. Compared with the base metal, the contents of alloying elements in the weld area are lower. The burning losses of alloy elements increase with the welding heat input.

  10. Moiré method analysis for tensile strain field of 2024 aluminum alloy welded joint

    Institute of Scientific and Technical Information of China (English)

    徐文立; 魏艳红; 刘雪松; 方洪渊; 赵敏; 田锡唐

    2003-01-01

    Using experimental mechanics method of moiré analysis, strain field distributions of 2024 aluminum alloy welded joints under different conditions were investigated. The results show that moiré stripes of welded joint without trailing peening just before fracture are not only few and scattered but also uneven, and the stress mainly concentrates on the poor position-welded toes during the tensioning process with the relatively poor mechanical properties of welded joints; When the method of welding with trailing peening is adopted, moiré stripes of welded joint just before fracture are relatively thick and even due to the strengthening welded toes during the welding process, and fracture position transfers from the welded toes to weld, at the same time the mechanical properties of welded joints are improved greatly than conventional welding which can show that the technology of trailing peening is effective to strengthen welded joints of aluminum alloy with high strength.

  11. Corrosion of friction stir welded magnesium alloy AM50

    Energy Technology Data Exchange (ETDEWEB)

    Zeng Rongchang [School of Material Science and Engineering, Chongqing University of Technology, Xingshenglu Rd. 4, Chongqing 400050 (China)], E-mail: rczeng2001@yahoo.com.cn; Chen Jun [School of Material Science and Engineering, Chongqing University of Technology, Xingshenglu Rd. 4, Chongqing 400050 (China); Dietzel, Wolfgang; Zettler, Rudolf; Santos, Jorge F. dos [GKSS-Forschungszentrum Geesthacht GmbH, Max Planck Strasse 1, 21502 Geesthacht (Germany); Lucia Nascimento, M. [Technische Universitaet Berlin, Fachgebiet Werkstofftechnik, Strasse des 17. Juni 135, 10623 Berlin (Germany); Kainer, Karl Ulrich [GKSS-Forschungszentrum Geesthacht GmbH, Max Planck Strasse 1, 21502 Geesthacht (Germany)

    2009-08-15

    The microstructure of a friction stir welded magnesium alloy AM50 was examined by means of optical light microscopy. The chemical composition, particularly the iron content, and morphology of the oxide film were analyzed and discerned via auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS). Corrosion behaviour of the welds and base materials were investigated by virtue of neutral salt spray tests and potentiodynamic polarization measurements in conventional cells and in a mini cell. The results demonstrate that minor increases in iron concentration as might be speculated to occur as a consequence of tool/work piece interaction during the welding process on the corrosion resistance of the weld can be ignored. The corrosion morphology was predominantly influenced by the distribution of the Mg{sub 17}Al{sub 12} phase. Here, it was also found that the corrosion resistance of the friction stir weld varied in response to changes in the joint microstructure.

  12. Weld Decay Recovery by Laser Beam Surfacing of Austenitic Stainless Steel Welded Joints

    OpenAIRE

    Isao, MASUMOTO; Takeshi, SHINODA; Toshimasa, HIRATE; Nagoya University, currently at Gifu Vocational Training College; Faculty of Engineering, Nagoya University; Nagoya University, currently at Toshiba Co. Ltd.

    1990-01-01

    This study is an attempt to improve corrosion resistance by laser beam surface treatment. AISI 304 type stainless steel welds were surface treated by laser and the effectivenesses of various treatment conditions were evaluated by acidic corrosion tests and metallurgical observation. It was found that laser treatment changed the morphology of carbide precipitates in the heat affected zone of AISI 304 austenitic steel MIG welded joints, and that it is possible to effect revovery from weld decay...

  13. Focused Acoustic Beam Evaluation of Aluminum — Lithium Friction Stir Weld

    Science.gov (United States)

    Sathish, Shamachary; Jata, Kumar V.; Martin, Richard W.; Reibel, Richard

    2007-03-01

    Local elastic variations were measured across a friction stir welded zone in Al-Li alloy with the use of a focused acoustic beam. The near surface microstructure was investigated by measuring both the amplitude and the local velocity of the Rayleigh Surface Waves (RSW). Both the amplitude and velocity of the focused longitudinal acoustic waves propagating through the thickness of the sample has been used for examination of the variations in the localized bulk elastic properties. The variations observed across the weld zone are explained based on microstructure and residual stress variations.

  14. An Assessment of Molten Metal Detachment Hazards During Electron Beam Welding in the Space Shuttle Bay at LEO for the International Space Welding Experiment

    Science.gov (United States)

    Fragomeni, James M.

    1996-01-01

    In 1997, the United States [NASA] and the Paton Electric Welding Institute are scheduled to cooperate in a flight demonstration on the U.S. Space Shuttle to demonstrate the feasibility of welding in space for a possible repair option for the International Space Station Alpha. This endeavor, known as the International Space Welding Experiment (ISWE), will involve astronauts performing various welding exercises such as brazing, cutting, welding, and coating using an electron beam space welding system that was developed by the E.O. Paton Electric Welding Institute (PWI), Kiev Ukraine. This electron beam welding system known as the "Universal Weld System" consists of hand tools capable of brazing, cutting, autogeneous welding, and coating using an 8 kV (8000 volts) electron beam. The electron beam hand tools have also been developed by the Paton Welding Institute with greater capabilities than the original hand tool, including filler wire feeding, to be used with the Universal Weld System on the U.S. Space Shuttle Bay as part of ISWE. The hand tool(s) known as the Ukrainian Universal Hand [Electron Beam Welding] Tool (UHT) will be utilized for the ISWE Space Shuttle flight welding exercises to perform welding on various metal alloy samples. A total of 61 metal alloy samples, which include 304 stainless steel, Ti-6AI-4V, 2219 aluminum, and 5456 aluminum alloys, have been provided by NASA for the ISWE electron beam welding exercises using the UHT. These samples were chosen to replicate both the U.S. and Russian module materials. The ISWE requires extravehicular activity (EVA) of two astronauts to perform the space shuttle electron beam welding operations of the 61 alloy samples. This study was undertaken to determine if a hazard could exist with ISWE during the electron beam welding exercises in the Space Shuttle Bay using the Ukrainian Universal Weld System with the UHT. The safety issue has been raised with regard to molten metal detachments as a result of several

  15. Visual sensing of weld pool in variable polarity TIG welding of aluminium alloy

    Institute of Scientific and Technical Information of China (English)

    ZHANG Guang-jun; YAN Zhi-hong; WU Lin

    2006-01-01

    The passive visual sensing method was successfully applied to monitor the weld pool in TIG welding of aluminium alloy.In order to reduce the disturbance from the arc and acquire clear image, two techniques were used: one was the own-developed computer-controlled variable polarity power(VPP), the other was the composite filter technology. The VPP source did not have high-frequency electromagnetic interference from arc stabilizer in traditional AC welding power, and its output current wave was controlled by computer, so the imaging current and the imaging time could be adjusted easily. Filter spectral window was identified at 650 nm by analyzing the measured arc light spectral distribution. At the end, the high quality and clear images of welding pool of aluminium alloy were successfully acquired at low imaging current.

  16. Effect of pulsed current and post weld aging treatment on tensile properties of argon arc welded high strength aluminium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Balasubramanian, V. [Department of Manufacturing Engineering, Annamalai University, Annamalai Nagar, Tamil Nadu 608002 (India)], E-mail: visvabalu@yahoo.com; Ravisankar, V. [Department of Manufacturing Engineering, Annamalai University, Annamalai Nagar, Tamil Nadu 608002 (India); Reddy, G. Madhusudhan [Metal Joining Section, Defence Metallurgical Research Laboratory, Kanchanbag (P.O.), Hyderabad 560058 (India)

    2007-06-25

    This paper reveals the effect of pulsed current and post weld aging treatment on tensile properties of argon arc welded AA7075 aluminium alloy. This alloy has gathered wide acceptance in the fabrication of light weight structures requiring high strength-to-weight ratio, such as transportable bridge girders, military vehicles, road tankers and railway transport systems. The preferred welding processes of high strength aluminium alloy are frequently gas tungsten arc welding (GTAW) process and gas metal arc welding (GMAW) process due to their comparatively easier applicability and better economy. Weld fusion zones typically exhibit coarse columnar grains because of the prevailing thermal conditions during weld metal solidification. This often results inferior weld mechanical properties and poor resistance to hot cracking. In this investigation, an attempt has been made to refine the fusion zone grains by applying pulsed current welding technique. Four different welding techniques have been used to fabricate the joints and they are: (i) continuous current GTAW (CCGTAW), (ii) pulsed current GTAW (PCGTAW), (iii) continuous current GMAW (CCGMAW) and (iv) pulsed current GMAW (PCGMAW) processes. As welded joint strength is much lower than the base metal strength and hence, a simple aging treatment has been given to improve the tensile strength of the joints. Current pulsing leads to relatively finer and more equi-axed grain structure in GTA and GMA welds. In contrast, conventional continuous current welding resulted in predominantly columnar grain structures. Post weld aging treatment is accompanied by an increase in tensile strength and tensile ductility.

  17. Development of Weld Overlay System for Dissimilar Metal Alloy 82/182 Butt Welds

    Energy Technology Data Exchange (ETDEWEB)

    Park, K. S.; Byeon, J. G.; Kim, Y. J. [Doosan Heavy Industries and Construction Co., Ltd., Changwon (Korea, Republic of)

    2008-10-15

    As a result of the alloy 600 PWSCC(Primary Water Stress Corrosion Cracking), leak in the dissimilar welds in pressurizer nozzle was discovered recently in several US plants and the advanced companies had developed repair techniques. 2 or 3 years from now, more than half of the nuclear power plants in the country will be operated more than 20 years. Therefore, we need to develop repair techniques of dissimilar welds in pressurizer nozzle. With above backgrounds, we have developed a Prototype of Repair System for dissimilar welds in pressurizer nozzle.

  18. Laser Welding Characterization of Kovar and Stainless Steel Alloys as Suitable Materials for Components of Photonic Devices Packaging

    Science.gov (United States)

    Fadhali, M. M. A.; Zainal, Saktioto J.; Munajat, Y.; Jalil, A.; Rahman, R.

    2010-03-01

    The weldability of Kovar and stainless steel alloys by Nd:YAG laser beam is studied through changing of some laser beam parameters. It has been found that there is a suitable interaction of the pulsed laser beam of low power laser pulse with both the two alloys. The change of thermophysical properties with absorbed energy from the laser pulse is discussed in this paper which reports the suitability of both Kovar and stainless steel 304 as the base materials for photonic devices packaging. We used laser weld system (LW4000S from Newport) which employs Nd:YAG laser system with two simultaneous beams output for packaging 980 nm high power laser module. Results of changing both laser spot weld width and penetration depth with changing both the pulse peak power density, pulse energy and pulse duration show that there are good linear relationships between laser pulse energy or peak power density and pulse duration with laser spot weld dimensions( both laser spot weld width and penetration depth). Therefore we concluded that there should be an optimization for both the pulse peak power and pulse duration to give a suitable aspect ratio (laser spot width to penetration depth) for achieving the desired welds with suitable penetration depth and small spot width. This is to reduce the heat affected zone (HAZ) which affects the sensitive optical components. An optimum value of the power density in the order of 105 w/cm2 found to be suitable to induce melting in the welded joints without vaporization. The desired ratio can also be optimized by changing the focus position on the target material as illustrated from our measurements. A theoretical model is developed to simulate the temperature distribution during the laser pulse heating and predict the penetration depth inside the material. Samples have been investigated using SEM with EDS. The metallographic measurements on the weld spot show a suitable weld yield with reasonable weld width to depth ratio.

  19. Effect of welding parameters and tool shape on properties of friction stir welding of Aluminum alloy AA- 6061

    Directory of Open Access Journals (Sweden)

    Ahmad Hussain Albloushi

    2016-12-01

    Full Text Available Friction stir welding (FSW is a widely used solid state joining process for soft materials such as aluminium alloys because it avoids many of the common problems of fusion welding. It has many benefits when applied to welding of aluminum alloys. FSW process parameters such as welding speed, rotational speed and tool geometry play vital roles in the weld quality. The aim of this research is to investigate the effects of different welding speeds, rotational speeds and tool pin profile on the weld quality of a AA6061 aluminum alloy. A friction stir welding tool consists of rotating shoulder and pin that heats the working piece by friction and moves a softened alloy around it to form a joint. In this research work the effect of the tool shape and welding parameters (rotating speed and welding speed on the mechanical properties of an aluminium plates will be investigated experimentally. The induced heat during the welding process played the main role in the mechanical and appearance of the joints, which is related to the welding parameters.

  20. Determination of blowout pressures during electron beam welding

    Energy Technology Data Exchange (ETDEWEB)

    Sunwoo, A

    1999-04-01

    During electron beam (EB) welding of developmental units, weld blowouts occurred. It is well documented that the presence of moisture causes the weld blowout. The detrimental effects of water vapor on the weld are experimentally proven [l]. The availability of water vapor in the melt increases the onset and severity of blowout and porosity. Because water vapor is insoluble in the molten metal, it will consequently form either bubbles or boil. On the other hand, hydrogen will react with other impurities present in the melt to form insoluble gas bubbles, which most likely will be entrapped in the fusion zone as porosity. This study attempts to answer the question of what is the critical weld blowout pressure, and to compare the experimental results to the estimated pressure values, so that validated calculations could be extended to other weld configurations.

  1. The electron beam welding of dissimilar materials - case study

    Science.gov (United States)

    Munteanu, A.

    2016-11-01

    The modalities to realize the welding workpieces are multiple. The electron beam welding is one of them. One can weld two different types of materials that give the possibility to reduce the cost of workpiece, if the active part is realised of rich materials welded on components with inferior phisico-mecanical characteristics. The procedure provides great flexibility to the product designs through efficient use of each type of material. So this aspects lead to the necessity to join dissimilar metals. Different tables are given in the specific literature regarding the possible combination. Conflicts may arise by the compromises required for to the optimum heat control of the two dissimilar materials used. But nowadays, more and more frequently are meet the welding of dissimilar metals, thus, the objective of this article is to provide information regarding the particular case of welding between stainless steel and copper without the filler material use.

  2. Laser Beam Oscillation Strategies for Fillet Welds in Lap Joints

    Science.gov (United States)

    Müller, Alexander; Goecke, Sven-F.; Sievi, Pravin; Albert, Florian; Rethmeier, Michael

    Laser beam oscillation opens up new possibilities of influencing the welding process in terms of compensation of tolerances and reduction of process emissions that occur in industrial applications, such as in body-in-white manufacturing. The approaches are to adapt the melt pool width in order to generate sufficient melt volume or to influence melt pool dynamics, e.g. for a better degassing. Welding results are highly dependent on the natural frequency of the melt pool, the used spot diameter and the oscillation speed of the laser beam. The conducted investigations with an oscillated 300 μm laser spot show that oscillation strategies, which are adjusted to the joining situation improve welding result for zero-gap welding as well as for bridging gaps to approximately 0.8 mm. However, a complex set of parameters has to be considered in order to generate proper welding results. This work puts emphasize on introducing them.

  3. Study of mechanism of activating flux increasing weld penetration of AC A-TIG welding for aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    HUANG Yong; FAN Ding; FAN Qinghua

    2007-01-01

    When multi-component flux AF305 is used as surface activating flux for an aluminum alloy, the weld penetration of activating flux-tungsten inert-gas (A-TIG)welding is over two times more than that of conventional TIG welding. Using A-TIG welding with the modes of alternating current (AC), direct current electrode negative (DCEN) and direct current electrode positive (DCEP), respectively, the flux differently affects weld penetration when the polarity is different. After studied the effect of compelled arc constriction on weld penetration of AC welding, it is believed that the constriction of the whole arc root is not the main mechanism that flux AF305 dramatically improves weld penetration. The penetration has a relationship with the separate distribution of slag on the weld surface. Then, an observation of scanning electron microscopy (SEM) and an electronic data systems (EDS) analysis of slag were performed respectively. The separate distribution of slag on the weld pool during welding and the great constriction of arc spots were confirmed by TIG welding with helium shielding gas. The relationship between slag distribution and weld penetration was studied by adding aluminum powder into flux AF305 to change the distribution of slag. During welding, the separate distribution of slag on the weld pool results in the great constriction of arc spots, an increase in arc spot force, and an increase in Lorentz force within the arc and weld pool. Finally, the weld penetration is increased.

  4. Effects of conventional welding and laser welding on the tensile strength, ultimate tensile strength and surface characteristics of two cobalt-chromium alloys: a comparative study.

    Science.gov (United States)

    Madhan Kumar, Seenivasan; Sethumadhava, Jayesh Raghavendra; Anand Kumar, Vaidyanathan; Manita, Grover

    2012-06-01

    The purpose of this study was to evaluate the efficacy of laser welding and conventional welding on the tensile strength and ultimate tensile strength of the cobalt-chromium alloy. Samples were prepared with two commercially available cobalt-chromium alloys (Wironium plus and Diadur alloy). The samples were sectioned and the broken fragments were joined using Conventional and Laser welding techniques. The welded joints were subjected to tensile and ultimate tensile strength testing; and scanning electron microscope to evaluate the surface characteristics at the welded site. Both on laser welding as well as on conventional welding technique, Diadur alloy samples showed lesser values when tested for tensile and ultimate tensile strength when compared to Wironium alloy samples. Under the scanning electron microscope, the laser welded joints show uniform welding and continuous molt pool all over the surface with less porosity than the conventionally welded joints. Laser welding is an advantageous method of connecting or repairing cast metal prosthetic frameworks.

  5. Temporarily alloying titanium to facilitate friction stir welding

    Energy Technology Data Exchange (ETDEWEB)

    Hovanski, Yuri [Washington State Univ., Pullman, WA (United States)

    2009-05-01

    While historically hydrogen has been considered an impurity in titanium, when used as a temporary alloying agent it promotes beneficial changes to material properties that increase the hot-workability of the metal. This technique known as thermohydrogen processing was used to temporarily alloy hydrogen with commercially pure titanium sheet as a means of facilitating the friction stir welding process. Specific alloying parameters were developed to increase the overall hydrogen content of the titanium sheet ranging from commercially pure to 30 atomic percent. Each sheet was evaluated to determine the effect of the hydrogen content on process loads and tool deformation during the plunge phase of the friction stir welding process. Two materials, H-13 tool steel and pure tungsten, were used to fabricate friction stir welding tools that were plunged into each of the thermohydrogen processed titanium sheets. Tool wear was characterized and variations in machine loads were quantified for each tool material and weld metal combination. Thermohydrogen processing was shown to beneficially lower plunge forces and stabilize machine torques at specific hydrogen concentrations. The resulting effects of hydrogen addition to titanium metal undergoing the friction stir welding process are compared with modifications in titanium properties documented in modern literature. Such comparative analysis is used to explain the variance in resulting process loads as a function of the initial hydrogen concentration of the titanium.

  6. Temporarily alloying titanium to facilitate friction stir welding

    Energy Technology Data Exchange (ETDEWEB)

    Hovanski, Yuri [Washington State Univ., Pullman, WA (United States)

    2009-05-01

    While historically hydrogen has been considered an impurity in titanium, when used as a temporary alloying agent it promotes beneficial changes to material properties that increase the hot-workability of the metal. This technique known as thermohydrogen processing was used to temporarily alloy hydrogen with commercially pure titanium sheet as a means of facilitating the friction stir welding process. Specific alloying parameters were developed to increase the overall hydrogen content of the titanium sheet ranging from commercially pure to 30 atomic percent. Each sheet was evaluated to determine the effect of the hydrogen content on process loads and tool deformation during the plunge phase of the friction stir welding process. Two materials, H-13 tool steel and pure tungsten, were used to fabricate friction stir welding tools that were plunged into each of the thermohydrogen processed titanium sheets. Tool wear was characterized and variations in machine loads were quantified for each tool material and weld metal combination. Thermohydrogen processing was shown to beneficially lower plunge forces and stabilize machine torques at specific hydrogen concentrations. The resulting effects of hydrogen addition to titanium metal undergoing the friction stir welding process are compared with modifications in titanium properties documented in modern literature. Such comparative analysis is used to explain the variance in resulting process loads as a function of the initial hydrogen concentration of the titanium.

  7. Effects of Friction Stir Welding Speed on AA2195 alloy

    Directory of Open Access Journals (Sweden)

    Lee Ho-Sung

    2016-01-01

    Full Text Available The application of friction stir welding (FSW to aerospace has grown rapidly due to the high efficiency and environmental friendly nature of the process. FSW is achieved by plastic flow of frictionally heated material in solid state and offers many advantages of avoiding hot cracking and limiting component distortion. Recently low density, high modulus and high strength AA2195 are used as substitute for conventional aluminum alloys since the weight saving is critical in aerospace applications. One of the problems for this alloy is weld metal porosity formation leading to hot cracking. Combination of FSW and AA2195 provides synergy effect to improve mechanical properties and weight saving of aerospace structure such as cryogenic fuel tanks for launch systems. The objective of this paper is to investigate the effect of friction stir welding speed on mechanical and microstructural properties of AA2195. The friction stir welded materials were joined with four different tool rotation speeds (350~800 rpm and five welding speeds (120~360 mm/min, which are the two prime welding parameters in this process.

  8. Lap Fillet Welding of Thin Sheet AZ31 Magnesium Alloy with Pulsed Nd:YAG Laser

    Science.gov (United States)

    Ishak, Mahadzir; Yamasaki, Kazuhiko; Maekawa, Katsuhiro

    In recent years, reducing the size and weight of consumer products requires the joining of thin sheets of magnesium alloys with both thickness and joining area of less than 1mm, especially for packaging purposes. Conventional welding processes are difficult to joint a thin sheet magnesium alloy because of high heat input, which in turns leads to various problems such as burn through and cracks. In this study, lap fillet welding of thin sheet magnesium alloy AZ31B with a thickness of 0.3 mm has been carried out using a pulsed Nd:YAG laser beam. The influences of gap, laser beam center location and scan speed on joint appearances have been investigated. It was found that defects were significantly reduced when the gap width was less than 35 µm when the laser beam center was located just on the edge of the upper specimen (x=0), and scan speed was varied from 400 to 450 m/min. Wider bond width at average value of 300 µm was achieved when the beam center was at x=0 with a wide range of scan speeds from 250 to 450 mm/min compared with the cases at x=-0.1 and -0.2 mm from edge. Increases in bond width and minimal defects at x=0 improve fracture load by 68% compared with those at x=-0.1 mm.

  9. Microhardness Testing of Aluminum Alloy Welds

    Science.gov (United States)

    Bohanon, Catherine

    2009-01-01

    A weld is made when two pieces of metal are united or fused together using heat or pressure, and sometimes both. There are several different types of welds, each having their own unique properties and microstructure. Strength is a property normally used in deciding which kind of weld is suitable for a certain metal or joint. Depending on the weld process used and the heat required for that process, the weld and the heat-affected zone undergo microstructural changes resulting in stronger or weaker areas. The heat-affected zone (HAZ) is the region that has experienced enough heat to cause solid-state microstructural changes, but not enough to melt the material. This area is located between the parent material and the weld, with the grain structure growing as it progresses respectively. The optimal weld would have a short HAZ and a small fluctuation in strength from parent metal to weld. To determine the strength of the weld and decide whether it is suitable for the specific joint certain properties are looked at, among these are ultimate tensile strength, 0.2% offset yield strength and hardness. Ultimate tensile strength gives the maximum load the metal can stand while the offset yield strength gives the amount of stress the metal can take before it is 0.2% longer than it was originally. Both of these are good tests, but they both require breaking or deforming the sample in some way. Hardness testing, however, provides an objective evaluation of weld strengths, and also the difference or variation in strength across the weld and HAZ which is difficult to do with tensile testing. Hardness is the resistance to permanent or plastic deformation and can be taken at any desired point on the specimen. With hardness testing, it is possible to test from parent metal to weld and see the difference in strength as you progress from parent material to weld. Hardness around grain boundaries and flaws in the material will show how these affect the strength of the metal while still

  10. Initial Development in Joining of ODS Alloys Using Friction Stir Welding

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Weiju [ORNL; Feng, Zhili [ORNL

    2007-08-01

    Solid-state welding of oxide-dispersion-strengthened (ODS) alloy MA956 sheets using friction stir welding (FSW) was investigated. Butt weld was successfully produced. The weld and base metals were characterized using optical microscopy, scanning electronic microscopy, transmission electronic microscopy, and energy dispersion x-ray spectrum. Microhardness mapping was also conducted over the weld region. Analyses indicate that the distribution of the strengthening oxides was preserved in the weld. Decrease in microhardness of the weld was observed but was insignificant. The preliminary results seem to confirm the envisioned feasibility of FSW application to ODS alloy joining. For application to Gen IV nuclear reactor heat exchanger, further investigation is suggested.

  11. Comparison on welding mode characteristics of arc heat source for heat input control in hybrid welding of aluminum alloy

    Science.gov (United States)

    Song, Moo-Keun; Kim, Jong-Do; Oh, Jae-Hwan

    2015-03-01

    Presently in shipbuilding, transportation and aerospace industries, the potential to apply welding using laser and laser-arc hybrid heat sources is widely under research. This study has the purpose of comparing the weldability depending on the arc mode by varying the welding modes of arc heat sources in applying laser-arc hybrid welding to aluminum alloy and of implementing efficient hybrid welding while controlling heat input. In the experimental study, we found that hybrid welding using CMT mode produced deeper penetration and sounder bead surface than those characteristics produced during only laser welding, with less heat input compared to that required in pulsed arc mode.

  12. Effect of external applied steady magnetic field on the morphology of laser welding joint of 4-mm 2024 aluminum alloy

    Science.gov (United States)

    Zhan, Xiaohong; Zhou, Junjie; Sun, Weihua; Chen, Jicheng; Wei, Yanhong

    2017-01-01

    Additional external steady magnetic fields were applied to investigate the influence of a steady magnetic field aligned perpendicular to the welding direction during laser beam welding of 2024 aluminum alloy. The flow pattern in the molten pool and the weld seam geometry were significantly changed by the induced Lorentz force distribution in the liquid metal. It revealed that the application of a steady magnetic field to laser beam welding was helpful to the suppression of the characteristic wineglass-shape and the depth-to-width ratio because of the Marangoni convection. The microstructures and component distributions at various laser power and magnetic field intensity were analyzed too. It was indicated that the suppression of the Marangoni convection by Lorentz force was beneficial to accumulation of component and grain coarsening near the fusion line.

  13. CHARACTERIZATION OF DEFECTS IN ALLOY 152, 52 AND 52M WELDS

    Energy Technology Data Exchange (ETDEWEB)

    Bruemmer, Stephen M.; Toloczko, Mychailo B.; Olszta, Matthew J.; Seffens, Rob J.; Efsing, Pal G.

    2009-08-27

    Defect distributions have been documented by optical metallography, scanning electron microscopy and electron backscatter diffraction in alloy 152 and 52 mockups welds, alloy 52 and 52M overlay mockups and an alloy 52M inlay. Primary defects were small cracks at grain boundaries except for more extensive cracking in the dilution zone of an alloy 52 overlay on 304SS. Detailed characterizations of the dilution zone cracks were performed by analytical transmission electron microscopy identifying grain boundary titanium-nitride precipitation associated with the intergranular separations. I. INTRODUCTION Weldments continue to be a primary location of stress-corrosion cracking (SCC) in light-water reactor systems. While problems related to heat-affected-zone (HAZ) sensitization and intergranular (IG) SCC of austenitic stainless alloys in boiling-water reactors (BWRs) have been significantly reduced, SCC has now been observed in HAZs of non-sensitized materials and in dissimilar metal welds where Ni-base alloy weld metals are used. IGSCC in weld metals has been observed in both BWRs and pressurized water reactors (PWRs) with recent examples for PWR pressure vessel penetrations producing the most concern. This has led to the replacement of alloy 600/182/82 welds with higher Cr, more corrosion-resistant replacement materials (alloy 690/152/52/52M). Complicating this issue has been a known susceptibility to cracking during welding [1-7] of these weld metals. There is a critical need for an improved understanding of the weld metal metallurgy and defect formation in Ni-base alloy welds to effectively assess long-term performance. A series of macroscopic to microscopic examinations were performed on available mockup welds made with alloy 52 or alloy 152 plus selected overlay and inlay mockups. The intent was to expand our understanding of weld metal structures in simulated LWR service components with a focus on as-welded defects. Microstructural features, defect distributions

  14. Research on CMT welding of nickel-based alloy with stainless steel

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Cold Metal Transfer (CMT) welding technique is a new welding technique introduced by Fronius company. CMT welding of nickel-based alloy with stainless steel was carried out using CuSi3 filler wire in this paper. Effects of welding parameters, including welding current, welding speed, etc, on weld surface appearance were tested. Microstructure and mechanical properties of CMT weld were studied. The results show that the thickness of interface reaction layer of the nickel-based alloy is 14.3μm, which is only 4.33% of base material. The weld is made up of two phases,α-copper and iron-based solid solution. Rupture occurs initially at the welded seam near the edge of stainless steel in shear test. The maximum shear strength of the CuSi3 welded joint is 184.9MPa.

  15. Studies on the effect of vibration on hot cracking and Grain size in AA7075 Aluminum alloy Welding

    OpenAIRE

    2011-01-01

    The aim of this present study is to investigate the vibration effect which is applied during Gas tungsten Arc welding (GTAW) welding in order to improve the quality of high strength Aluminum alloy weldment. An important metallurgical difficulty in arc welding of high strength aluminum alloys is formation of hot cracking. When Aluminum alloy is welded by GTAW process, weld fusion zone shows coarse columnar grains during weld metal solidification. This often leads to poor resistance to hot crac...

  16. Weld Bead Size, Microstructure and Corrosion Behavior of Zirconium Alloys Joints Welded by Pulsed Laser Spot Welding

    Science.gov (United States)

    Cai, Chuang; Li, Liqun; Tao, Wang; Peng, Genchen; Wang, Xian

    2016-09-01

    Pulsed laser spot welding of intersection points of zirconium alloys straps was performed. Weld bead size, microstructure and the corrosion behavior of weld bead were investigated. With the increasing laser peak power or number of shots, the weld width of the beads increased, the protrusion decreased and the dimple increased with further increase in heat input. The fusion zone consisted of a mixture of αZr and residual βZr phases. After annealing treatment, βNb and Zr(Fe, Nb)2 second phase particles were precipitated inter- and intragranular of αZr grains adequately. The oxide thickness of annealed weld bead was about 3.90 μm, decreased by about 18.1% relative to the 4.76 μm of as-welded specimen corroded at 400 °C and 10.3 MPa for 20 days. The corrosion resistance of annealed specimen was better than that of as-welded specimen, since the second phase particles exerted better corrosion resistance, and the content of Nb in βZr and the fraction of βZr decreased after the annealing treatment.

  17. Numerical and experimental evaluation of Nd:YAG laser welding efficiency in AZ31 magnesium alloy butt joints

    Science.gov (United States)

    Scintilla, Leonardo Daniele; Tricarico, Luigi

    2013-02-01

    In this paper, energy aspects related to the efficiency of laser welding process using a 2 kW Nd:YAG laser were investigated and reported. AZ31B magnesium alloy sheets 3.3 mm thick were butt-welded without filler using Helium and Argon as shielding gases. A three-dimensional and semi-stationary finite element model was developed to evaluate the effect of laser power and welding speed on the absorption coefficient, the melting and welding efficiencies. The modeled volumetric heat source took into account a scale factor, and the shape factors given by the attenuation of the beam within the workpiece and the beam intensity distribution. The numerical model was calibrated using experimental data on the basis of morphological parameters of the weld bead. Results revealed a good correspondence between experiment and simulation analysis of the energy aspects of welding. Considering results of mechanical characterization of butt joints previously obtained, the optimization of welding condition in terms of mechanical properties and energy parameters was performed. The best condition is represented by the lower laser power and higher welding speed that corresponds to the lower heat input given to the joint.

  18. Process modeling for electron beam welding of Ti-6Al-4V

    Institute of Scientific and Technical Information of China (English)

    Hu Meijuan; Liu Jinhe

    2009-01-01

    Using ANSYS software, a finite element model for electron beam welding of 14.5 mm thick Ti-6Al-4V alloy plate is developed by a sequentially coupled thermal-mechanical analysis method. For the purpose of model validation, welding trial is carried out. Meanwhile, fusion zone dimensions and residual stresses are measured. The fusion-boundary profile is reproduced accurately by using a conical volume heat source model. The predicted residual stresses are in reasonable agreement with the results determined by the hole-drilling method. Through the analysis of predicted residual stresses, it is found that the normal residual stress in the interior of plate can not be negligible and the maximum value of three dimensional residual tensile stresses arises at 10.15 mm depth in the weld zone.

  19. Plasma Charge Current for Controlling and Monitoring Electron Beam Welding with Beam Oscillation

    Directory of Open Access Journals (Sweden)

    Valeriy Shchavlev

    2012-12-01

    Full Text Available Electron beam welding (EBW shows certain problems with the control of focus regime. The electron beam focus can be controlled in electron-beam welding based on the parameters of a secondary signal. In this case, the parameters like secondary emissions and focus coil current have extreme relationships. There are two values of focus coil current which provide equal value signal parameters. Therefore, adaptive systems of electron beam focus control use low-frequency scanning of focus, which substantially limits the operation speed of these systems and has a negative effect on weld joint quality. The purpose of this study is to develop a method for operational control of the electron beam focus during welding in the deep penetration mode. The method uses the plasma charge current signal as an additional informational parameter. This parameter allows identification of the electron beam focus regime in electron-beam welding without application of additional low-frequency scanning of focus. It can be used for working out operational electron beam control methods focusing exactly on the welding. In addition, use of this parameter allows one to observe the shape of the keyhole during the welding process.

  20. Plasma charge current for controlling and monitoring electron beam welding with beam oscillation.

    Science.gov (United States)

    Trushnikov, Dmitriy; Belenkiy, Vladimir; Shchavlev, Valeriy; Piskunov, Anatoliy; Abdullin, Aleksandr; Mladenov, Georgy

    2012-12-14

    Electron beam welding (EBW) shows certain problems with the control of focus regime. The electron beam focus can be controlled in electron-beam welding based on the parameters of a secondary signal. In this case, the parameters like secondary emissions and focus coil current have extreme relationships. There are two values of focus coil current which provide equal value signal parameters. Therefore, adaptive systems of electron beam focus control use low-frequency scanning of focus, which substantially limits the operation speed of these systems and has a negative effect on weld joint quality. The purpose of this study is to develop a method for operational control of the electron beam focus during welding in the deep penetration mode. The method uses the plasma charge current signal as an additional informational parameter. This parameter allows identification of the electron beam focus regime in electron-beam welding without application of additional low-frequency scanning of focus. It can be used for working out operational electron beam control methods focusing exactly on the welding. In addition, use of this parameter allows one to observe the shape of the keyhole during the welding process.

  1. Friction Stir Welding of a Thick Al-Zn-Mg Alloy Plate

    Science.gov (United States)

    Buchibabu, V.; Reddy, G. M.; Kulkarni, D.; De, A.

    2016-03-01

    Al-Zn-Mg alloys are widely used as structural materials due to high strength-to-weight ratio and impact toughness. As fusion welds in these alloys commonly face hot cracking and macro porosity, friction stir welding is increasingly becoming the preferred recourse. We report here a detailed experimental study on friction stir welding of a specific Al-Zn-Mg alloy with its chemical compositions close to AA7039. The effect of tool rotational speed and welding speed on the weld profile, joint microstructure, and mechanical properties is studied extensively. The results show sound weld profiles and joint properties within the selected range of process conditions. Within the selected range of welding conditions, the welds made at a tool rotational speed of 350 rpm and welding speed of 3 mm/s have showed joint structure, tensile, and impact toughness properties fairly close to that of the base material.

  2. Friction Stir Welding of Al 5052 with Al 6061 Alloys

    Directory of Open Access Journals (Sweden)

    N. T. Kumbhar

    2012-01-01

    Full Text Available Friction stir welding (FSW, a solid-state joining technique, is being extensively used in similar as well as dissimilar joining of Al, Mg, Cu, Ti, and their alloys. In the present study, friction stir welding of two aluminium alloys—AA6061 and AA5052—was carried out at various combinations of tool rotation speeds and tool traverse speeds. The transverse cross-section of the weld was used for optical as well as electron microscopy observations. The microstructural studies were used to get an indication of the extent of material mixing both at the macro- and microscales. It was observed that, at the interface region, both materials exhibited similar texture despite the nonrigorous mixing of the materials in the nugget. The extent of interdiffusion of alloying elements at the interface was studied using electron probe microanalysis. The tensile testing evaluation of these specimens showed good mechanical properties. The interdiffusion of alloying elements and development of similar orientations in the nugget could have contributed to the better tensile properties of the friction-stir-welded AA5052-AA6061 specimens.

  3. Butt-welding Residual Stress of Heat Treatable Aluminum Alloys

    Institute of Scientific and Technical Information of China (English)

    C.M. Cheng

    2007-01-01

    This study, taking three types of aluminum alloys 2024-T351, 6061-T6 and 7075-T6 as experimental materials, conducted single V-groove GTAW (gas tungsten arc welding) butt-welding to analyze and compare the magnitude and differences of residual stress in the three aluminum alloys at different single V-groove angles and in restrained or unrestrained conditions. The results show that the larger the grooving angle of butt joint, the higher the residual tensile stress. Too small grooving angle will lead to dramatic differences due to the amount of welding bead filler metal and pre-set joint geometry. Therefore, only an appropriate grooving angle can reduce residual stress. While welding, weldment in restrained condition will lead to a larger residual stress. Also, a residual stress will arise from the restraint position. The ultimate residual stress of weldment is determined by material yield strength at equilibrium temperature. The higher the yield strength at equilibrium temperature, the higher the material residual stress. Because of its larger thermal conductivity, aluminum alloy test specimens have small temperature differential. Therefore, the residual tensile stress of all materials is lower than their yield strength.

  4. Effect of process parameters on porosity formation ratio in dual-beam laser welding of aluminum alloys with filler wire%双光束激光填丝焊工艺对铝合金焊接气孔率的影响

    Institute of Scientific and Technical Information of China (English)

    雷正龙; 李颖; 陈彦宾; 孙忠绍; 张益坤

    2013-01-01

    以LF6铝合金为材料,CO2激光为热源,开展了双光束激光填丝焊气孔特性分析.与单光束激光填丝焊及双光束自熔焊相比,双光束激光填丝焊能够抑制气孔的产生,尤其是并行双光束激光焊抑制气孔效果更明显.在此基础上进一步分析了保护气体成分和激光能量对焊接气孔率的影响.结果表明,采用氦气保护时,等离子体对激光的屏蔽作用小,能够稳定焊接过程;激光功率过大或者过小都会导致匙孔的不稳定,造成焊缝气孔率增加.%The characterizations of porosity in dual-beam laser welding with filler wire of LF6 aluminum alloys were studied. Compared with the single beam laser welding with filler wire and the dual-beam laser self-fusible welding, the dual-beam laser welding with filler wire can restrain the porosity formation. Especially , the dual-beam laser welding with parallel arrangement has a better effect on inhibition of porosity. Furthermore, the effects of shielding gas component and laser energy on porosity formation ratio were analyzed. The results show that, when the helium is used as the shielding gas, the area of plasma decreases as well as the shielding effect of the plasma on laser deceases, and the welding process become more stable. At the same time, the laser power must be proper, and both too high and too low laser power make the porosity formation ratio enlarged.

  5. High Power Laser Beam Welding of Thick-walled Ferromagnetic Steels with Electromagnetic Weld Pool Support

    Science.gov (United States)

    Fritzsche, André; Avilov, Vjaceslav; Gumenyuk, Andrey; Hilgenberg, Kai; Rethmeier, Michael

    The development of modern high power laser systems allows single pass welding of thick-walled components with minimal distortion. Besides the high demands on the joint preparation, the hydrostatic pressure in the melt pool increases with higher plate thicknesses. Reaching or exceeding the Laplace pressure, drop-out or melt sagging are caused. A contactless electromagnetic weld support system was used for laser beam welding of thick ferromagnetic steel plates compensating these effects. An oscillating magnetic field induces eddy currents in the weld pool which generate Lorentz forces counteracting the gravity forces. Hysteresis effects of ferromagnetic steels are considered as well as the loss of magnetization in zones exceeding the Curie temperature. These phenomena reduce the effective Lorentz forces within the weld pool. The successful compensation of the hydrostatic pressure was demonstrated on up to 20 mm thick plates of duplex and mild steel by a variation of the electromagnetic power level and the oscillation frequency.

  6. A study of weldability and fracture modes in electron beam weldments of AZ series magnesium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Chi, C.-T. [Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 300, Taiwan (China) and System Manufacturing Center, Chung-Shan Institute of Science and Technology, PO Box 90008-14, Sanxia 237, Taipei, Taiwan (China)]. E-mail: joseph.mse92g@nctu.edu.tw; Chao, C.-G. [Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 300, Taiwan (China)]. E-mail: c_g_chao@hotmail.com; Liu, T.-F. [Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 300, Taiwan (China)]. E-mail: coe@cc.nctu.edu.tw; Wang, C.-C. [Graduate School of Industrial Design and Architecture, Shih-Chien University, Taipei 104, Taiwan (China)]. E-mail: zcwang@mail.usc.edu.tw

    2006-11-05

    Given the growing need for environmental protection and lightweight construction, electron beam welding (EBW) is becoming the most important welding technology because it can compensate for the poor formability of magnesium alloys. This paper examines interactions between the properties of three AZ series magnesium alloys and welding conditions. The EBW process can yield four kinds of defect in a weld: cavities, the heat-affected zone (HAZ), undercuts, and root concavities. These defects obviously induce stress concentrations in the weld, and may seriously damage its strength. Additionally, the distribution of precipitates ({gamma} phase, Mg{sub 17}Al{sub 12}) in the fusion zone (FZ) changes from a relatively small number of scattered particles to a dense population of dendrites as the Al content of the magnesium alloy increases. Under excessive tensile stress, alloy weldments break in one of two fracture modes: an irregular FZ fracture, or a regular HAZ fracture. AZ31B usually exhibits the former mode and AZ91D the latter, while AZ61A exhibits each mode half the time. The overall weldability, which depends on the random distribution of these precipitates and defects, is found to be greatest for the AZ61A alloy. The best process window, on the other hand, is found for the AZ91D alloy. Finally, we obtain optimum parameters for the EBW process and empirical formulae for the weldment strength as a function of these parameters. These results are closely related to each other.

  7. Friction stir welding of 5052 aluminum alloy plates

    Institute of Scientific and Technical Information of China (English)

    Yong-Jai KWON; Seong-Beom SHIM; Dong-Hwan PARK

    2009-01-01

    Friction stir welding between 5052 aluminum alloy plates with a thickness of 2 mm was performed. The tool for welding was rotated at speeds ranging from 500 to 3 000 r/min under a constant traverse speed of 100 mm/min. The results show that at all tool rotation speeds, defect-free welds are successfully obtained. Especially at 1 000, 2 000 and 3 000 r/min, the welds exhibit very smooth surface morphologies. At 500, 1 000, and 2 000 r/min, onion ring structure is clearly observed in the friction-stir-welded zone (SZ). In addition, the onion ring structure region becomes wider as the tool rotation speed is increased. The gain size in the SZ is smaller than that in the base metal, and is decreased with a decrease of the tool rotation speed. In all tool rotation speeds, the SZ exhibits higher average hardness than the base metal. Especially at 500 r/min, the average hardness of the SZ reaches a level about 33% greater than that of the base metal. At 500, 1 000 and 2 000 r/min, the tensile strength of the friction stir welded (FSWed) plates is similar to that of the base metal (about 204 Mpa). The elongation of the FSWed plates is lower than that of the base metal (about 22%). However, it is noticeable that the maximum elongation of about 21% is obtained at 1 000 r/min.

  8. Influence of Friction Stir Welding on Corrosion Properties of Aw-7020M Alloy in Sea Water

    Directory of Open Access Journals (Sweden)

    Dudzik K.

    2015-03-01

    Full Text Available Friction Stir Welding (FSW, provides an alternative to MIG and TIG welding methods for joining aluminium alloys. The article presents the results of electrochemical corrosion resistance test of alloy AW- 7020M and its joints welded by FSW. The study was performed using the method of electrochemical impedance spectroscopy (EIS. Impedance spectroscopy studies showed that both, the FSW welded joint and base material AW-7020M has a good resistance to electrochemical corrosion in sea water environment, wherein the welded joint has a higher susceptibility to this type of corrosion. Research has indicated the desirability of applying the FSW method for joining AW-7020M alloy in shipbuilding industry.

  9. [The application of laser beam welding of biological tissues for the purpose of ossiculoplasty].

    Science.gov (United States)

    Semenov, V F

    2013-01-01

    The objective of the present work was to estimate the functional outcome of ossiculoplasty in the patients presenting with chronic suppurative otitis media and treated by means of laser beam welding of biological tissues. In order to obtain a good functional result of tympanoplasty including ossiculoplasty, it is necessary to conserve the elements of the sound-conducting system in the positions to which they were set during surgery. We reached this goal by fixing individual elements of the chain of the auditory ossicles by means of the laser beam welding of biological tissues with the use of platelet-rich plasma as a solder alloy. The audiometric examination of the patients within 1, 3, and 12 months after surgery showed that this technique improves the functional outcome of the treatment of the patients with chronic suppurative otitis media using prostheses for the substitution of the auditory ossicles.

  10. Effect of welding speed on the material flow patterns in friction stir welding of AZ31 magnesium alloy

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hua; Wu Huiqiang; Huang Jihua; LIN Sanbao; WU Lin

    2007-01-01

    The clear zigzag-line pattern on transverse cross sections can be used to explain the formation mechanism of the weld nugget when friction stir welded AZ31 magnesium alloy without any other insert material is used as mark. It provides a simple and useful method to research the joining mechanism of friction stir welding. The rotation speed is kept at 1000 r/min and the welding speed changes from 120 mm/min to 600 mm/min. The macrostructure on the transverse cross section was divided into several parts by faying surface. The results show that the shape and formation procedure of the weld nugget change with the welding speed. There are two main material flows in the weld nugget: one is from the advancing side and the other is from the retreating side. A simple model on the weld nugget formation of FSW is presented in this article.

  11. Research status and development tendency of welding technology of AZ31B magnesium alloy%AZ31B镁合金焊接技术研究现状及发展方向

    Institute of Scientific and Technical Information of China (English)

    刘奋军; 王憨鹰

    2013-01-01

    Welding characteristics of magnesium alloy are analyzed,and welding processes of AZ31B magnesium alloy are introduced,including laser welding,brazing,diffusion welding,friction stir welding,TIG,electron beam welding and so on. The future directions of welding technology of AZ31B magnesium alloy are pointed out.%分析镁合金的焊接特点,综述了近年来AZ31B镁合金的焊接方法,包括激光焊、钎焊、扩散焊、搅拌摩擦焊、TIG焊、电子束焊等,展望了AZ31B镁合金的焊接研究方向。

  12. Effect of Post-Weld Heat Treatment on the Mechanical Properties of Friction Stir Welds of Dissimilar Aluminum Alloys

    Directory of Open Access Journals (Sweden)

    P. Murali Krishna

    2011-07-01

    Full Text Available This paper focuses on the effect of post weld heat treatment (PWHT on microstructure and mechanical properties of dissimilar friction stir welding (FSW of AA2024-T6 to AA6351-T6. FSW is getting widened to be used to join the aluminum alloys. PWHT of AA2024 and AA6351 aluminum alloys are not reported so far even though these alloys are widely used in aerospace and automobile industries. A post weld solution treatment and subsequent ageing resulted in improvement in mechanical properties (hardness and tensile strength.

  13. Investigation on the Explosive Welding of 1100 Aluminum Alloy and AZ31 Magnesium Alloy

    Science.gov (United States)

    Chen, Pengwan; Feng, Jianrui; Zhou, Qiang; An, Erfeng; Li, Jingbo; Yuan, Yuan; Ou, Sanli

    2016-07-01

    The undesirable properties of magnesium alloys include easy embrittlement, low oxidation resistance, and difficulty in welding with other materials. Their application in industry is, therefore, restricted. In this paper, plates of 1100 aluminum alloy and AZ31 magnesium alloy were successfully welded together using the explosive welding technique. The influences of the welding parameters on the weld quality were investigated. The surface morphology and microstructure near the weld interface were examined by optical microscopy, scanning electron microscopy (equipped with energy-dispersive x-ray spectroscopy), and transmission electron microscopy. The experimental results demonstrated the typical wavy bonding interface. In addition, elemental diffusion with a thickness of approximately 3 μm occurred near the bonding interface. The two plates were joined together well at the atomic scale. Nanograins with a size of approximately 5 nm were observed in the diffusion layer. The microhardness and shear strength were measured to evaluate the mechanical properties, which confirmed that a high quality of bonding was acquired.

  14. Friction Welding of Aluminium and Aluminium Alloys with Steel

    Directory of Open Access Journals (Sweden)

    Andrzej Ambroziak

    2014-01-01

    Full Text Available The paper presents our actual knowledge and experience in joining dissimilar materials with the use of friction welding method. The joints of aluminium and aluminium alloys with the different types of steel were studied. The structural effects occurring during the welding process were described. The mechanical properties using, for example, (i microhardness measurements, (ii tensile tests, (iii bending tests, and (iv shearing tests were determined. In order to obtain high-quality joints the influence of different configurations of the process such as (i changing the geometry of bonding surface, (ii using the interlayer, or (iii heat treatment was analyzed. Finally, the issues related to the selection of optimal parameters of friction welding process were also investigated.

  15. An Assessment of Molten Metal Detachment Hazards During Electron Beam Welding in Space

    Science.gov (United States)

    Fragomeni, James M.; Nunes, Arthur C., Jr.

    1998-01-01

    the detached metal drops. It was not particularly easy to generate the detachments for this experiment. This document presents the details of the theoretical modeling effort and a summary of the experimental effort to measure molten metal drop detachments from terrestrial electron beam welding in the enclosed vacuum chamber. The results of the experimental effort have shown that molten metal detachments can occur from the sample/weld plate only if a sufficiently large impact force is applied to the weld plate. A "weld pool detachment parameter" was determined to indicate whether detachment would occur. Detachment can be either full or partial (dripping), Partial detachment means that the weld pool detached from one side of the liquid-solid boundary so as to leave a hole at the puddle site but remained attached over part of the liquid-solid boundary and dripped down the plate with no fully detached material detected. Full detachment, however, does not necessarily mean that the whole pool fully detached; in some cases only a smaller portion of the pool detached, the remainder dripping down the plate. The weld pool detachment parameter according to theory and according to the empirical data allows a determination of whether full detachments might occur. Theoretical calculations indicated titanium alloy would be the most difficult from which to detach molten metal droplets followed by stainless steel and then by aluminum. The experimental results were for the most part consistent with the theoretical analysis and predictions. The above theory is applicable to other situations as desired for assessing the potential for molten metal detachments.

  16. Effect of welding current and voltage on the mechanical properties of wrought (6063 aluminium alloy

    Directory of Open Access Journals (Sweden)

    Oladele Isiaka Oluwole

    2010-06-01

    Full Text Available This work was carried out to investigate the effect of welded joints on the mechanical properties of wrought (6063 aluminium alloy. The study revealed the influence of current and voltage on the welded joint as well as the mechanical properties of the alloy. The alloy samples were welded together by metal inert gas welding process at varying values of current and voltage after which mechanical tests were performed on the welded samples. The microstructural examination of the various fusion zones obtained was carried out. Appreciable variations in the properties of the welded samples were observed due to changes in the microstructural features of the alloys. It was concluded that variation of current and voltage remarkably affect the mechanical properties of the wrought 6063 Aluminium alloy. As the voltage increases from 25 to 30 V, the ultimate tensile strengths and hardness values increases while the impact strengths decreases but the current did not show such trend.

  17. Inertia Friction Welding Dissimilar Nickel-Based Superalloys Alloy 720Li to IN718

    Science.gov (United States)

    Huang, Z. W.; Li, H. Y.; Preuss, M.; Karadge, M.; Bowen, P.; Bray, S.; Baxter, G.

    2007-07-01

    This article describes a comprehensive microstructural characterization of an inertia friction welded joint between nickel-based superalloys 720Li and IN718. The investigation has been carried out on both as-welded and postweld heat-treated conditions. The detailed metallographic analysis has enabled the relation of hardness profiles across inertia-welded alloy 720Li to IN718 and morphological changes of the precipitates present. The work demonstrates that inertia friction welding (IFW) 720Li to IN718 results in a weld free of micropores and microcracks and no significant chemical migration across the weld line. However, substantial differences in terms of grain structure and precipitation phase distribution variations are observed on each side of the dissimilar weld. The high γ‧ volume fraction alloy 720Li exhibits a wider heat-affected zone than the mainly γ‧‧ strengthened IN718. Alloy 720Li displays only a small hardness trough near the weld line in the as-welded condition due to the depletion of γ‧, while γ″-strengthened IN718 shows a soft precipitation-free weld region. Postweld heat treatment (PWHT) of the dissimilar weld at 760 °C, a typical annealing temperature for alloy 720Li, results in an overmatch of the heat-affected zone in both sides of the weld. The comparison of the as-welded and postweld heat-treated condition also reveals that IN718 is in an overaged condition after the stress relief treatment.

  18. B218 Weld Filler Wire Characterization for Al-Li Alloy 2195

    Science.gov (United States)

    Bjorkman, Gerry; Russell, Carolyn

    2000-01-01

    NASA Marshall Space Flight Center, Lockheed Martin Space Systems- Michoud Operations, and McCook Metals have developed an aluminum-copper weld filler wire for fusion welding aluminum lithium alloy 2195. The aluminum-copper based weld filler wire has been identified as B218, a McCook Metals designation. B218 is the result of six years of weld filler wire development funded by NASA, Lockheed Martin, and McCook Metals. The filler wire chemistry was developed to produce enhanced 2195 weld and repair weld mechanical properties over the 4043 aluminum-silicon weld filler wire, which is currently used to weld 2195 on the Super Lightweight External Tank for the NASA Space Shuttle Program. An initial characterization was performed consisting of a repair weld evaluation using B218 and 4043 weld filler wires. The testing involved room temperature and cryogenic repair weld tensile testing along with fracture toughness testing. From the testing, B218 weld filler wire produce enhanced repair weld tensile strength, ductility, and fracture properties over 4043. B218 weld filler wire has proved to be a superior weld filler wire for welding aluminum lithium alloy 2195 over 4043.

  19. Influences of post weld heat treatment on tensile properties of friction stir welded AA2519-T87 aluminium alloy joints

    Science.gov (United States)

    Sabari, S. Sree; Balasubramanian, V.; Malarvizhi, S.; Reddy, G. Madusudhan

    2015-12-01

    AA 2519-T87 is an aluminium alloy that principally contains Cu as an alloying element and is a new grade of Al-Cu alloy system. This material is a potential candidate for light combat military vehicles. Fusion welding of this alloy leads to hot cracking, porosity and alloy segregation in the weld metal region. Friction stir welding (FSW) is a solid state joining process which can overcome the above mentioned problems. However, the FSW of age hardenable aluminium alloys results in poor tensile properties in the as-welded condition (AW). Hence, post weld heat treatment (PWHT) is used to enhance deteriorated tensile properties of FSW joints. In this work, the effect of PWHT, namely artificial ageing (AA) and solution treatment (ST) followed by ageing (STA) on the microstructure, tensile properties and microhardness were systematically investigated. The microstructural features of the weld joints were characterised using an optical microscope (OM), scanning electron microscope (SEM) and transmission electron microscope (TEM). The tensile strength and microhardness of the joints were correlated with the grain size, precipitate size, shape and its distribution. From the investigation, it was found that STA treatment is beneficial in enhancing the tensile strength of the FSW joints of AA2519-T87 alloy and this is mainly due to the presence of fine and densely distributed precipitates in the stir zone.

  20. Assessment of Electron Beam Welding in Shipyard Construction,

    Science.gov (United States)

    1985-12-01

    Grade A710: --- Experience on several grades of Carbon Steel , Grade E633: Stainless, Aluminum and Titanium Alloys. HY80 , HY 100: -- Al, Ti, Other...34 -A710 GRADE A MATERIAL -AS-WELDED 1’ 6-17 p mU 5-J HY80 - 130 HIGH STRENGTH CARBON STEELS U HY--80 Various development programs have evaluated the...the EB weld metal for HY80 steel are shown in Figure 61 through Figure 65. DTNSRDC sta ted that the narrow range of fabrication parameters found to be

  1. Mechanical properties of friction stir welded aluminum alloys 5083 and 5383

    Directory of Open Access Journals (Sweden)

    Jeom Kee Paik

    2009-09-01

    Full Text Available The use of high-strength aluminum alloys is increasing in shipbuilding industry, particularly for the design and construction of war ships, littoral surface craft and combat ships, and fast passenger ships. While various welding methods are used today to fabricate aluminum ship structures, namely gas metallic arc welding (GMAW, laser welding and friction stir welding (FSW, FSW technology has been recognized to have many advantages for the construction of aluminum structures, as it is a low-cost welding process. In the present study, mechanical properties of friction stir welded aluminum alloys are examined experimentally. Tensile testing is undertaken on dog-bone type test specimen for aluminum alloys 5083 and 5383. The test specimen includes friction stir welded material between identical alloys and also dissimilar alloys, as well as unwelded (base alloys. Mechanical properties of fusion welded aluminum alloys are also tested and compared with those of friction stir welded alloys. The insights developed from the present study are documented together with details of the test database. Part of the present study was obtained from the Ship Structure Committee project SR-1454 (Paik, 2009, jointly funded by its member agencies.

  2. Welding of titanium and nickel alloy by combination of explosive welding and spark plasma sintering technologies

    Energy Technology Data Exchange (ETDEWEB)

    Malyutina, Yu. N., E-mail: iuliiamaliutina@gmail.com; Bataev, A. A., E-mail: bataev@adm.nstu.ru; Shevtsova, L. I., E-mail: edeliya2010@mail.ru [Novosibirsk State Technical University, Novosibirsk, 630073 (Russian Federation); Mali, V. I., E-mail: vmali@mail.ru; Anisimov, A. G., E-mail: anis@hydro.nsc.ru [Lavrentyev Institute of Hydrodynamics SB RAS, Novosibirsk, 630090 (Russian Federation)

    2015-10-27

    A possibility of titanium and nickel-based alloys composite materials formation using combination of explosive welding and spark plasma sintering technologies was demonstrated in the current research. An employment of interlayer consisting of copper and tantalum thin plates makes possible to eliminate a contact between metallurgical incompatible titanium and nickel that are susceptible to intermetallic compounds formation during their interaction. By the following spark plasma sintering process the bonding has been received between titanium and titanium alloy VT20 through the thin powder layer of pure titanium that is distinguished by low defectiveness and fine dispersive structure.

  3. Welding of titanium and nickel alloy by combination of explosive welding and spark plasma sintering technologies

    Science.gov (United States)

    Malyutina, Yu. N.; Bataev, A. A.; Mali, V. I.; Anisimov, A. G.; Shevtsova, L. I.

    2015-10-01

    A possibility of titanium and nickel-based alloys composite materials formation using combination of explosive welding and spark plasma sintering technologies was demonstrated in the current research. An employment of interlayer consisting of copper and tantalum thin plates makes possible to eliminate a contact between metallurgical incompatible titanium and nickel that are susceptible to intermetallic compounds formation during their interaction. By the following spark plasma sintering process the bonding has been received between titanium and titanium alloy VT20 through the thin powder layer of pure titanium that is distinguished by low defectiveness and fine dispersive structure.

  4. Heat input effect of friction stir welding on aluminium alloy AA 6061-T6 welded joint

    Directory of Open Access Journals (Sweden)

    Sedmak Aleksandar

    2016-01-01

    Full Text Available This paper deals with the heat input and maximum temperature developed during friction stir welding with different parameters. Aluminium alloy (AA 6061-T6 has been used for experimental and numerical analysis. Experimental analysis is based on temperature measurements by using infrared camera, whereas numerical analysis was based on empirical expressions and finite element method. Different types of defects have been observed in respect to different levels of heat input.

  5. A new method for welding aluminum alloy LY12CZ sheet with high strength

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    From the viewpoint of welding mechanics, a new welding technology-trailing peening was applied firstly to weld aluminum alloy LY12CZ sheet with high susceptibility to hot cracking. Trailing peening can exert a transverse extrusion strain on the metal in brittle temperature region (BTR) which can compensate for the tensioning strain during the cooling procedure post welding. So, welding hot cracking of LY12CZ sheet can be controlled effectively on the special jig for hot cracking experiment, and the phenomenon of hot cracking can't be found in specimens with large dimensions finally. At the same time, welding with trailing peening can decrease welding distortion caused by longitudinal and transverse shrinkage of weld obviously. Due to strengthening the poor position-weld toe during the process of welding, the residual stress distribution of welded joint is more reasonable. Contrast with conventional welding, mechanical properties such as tensile strength, prolongation ratio and cold-bending angle of welded joint with trailing peening can be improved obviously, and rupture position of welded joint transits from weld toe at conventional welding to weld metal at trailing peening. So, welding with trailing peening can be regarded as a dynamic welding method with low stress, little distortion and hot cracking-free really. As far as theoretical analysis is concerned, the technology of trailing peening can be used to weld the materials with high susceptibility to hot cracking such as LY12CZ and LD10, and solve the welding distortion of thin plate-shell welded structures which contain closed welds such as flange. In addition, the technology of trailing peening has many advantages: simple device, high efficiency, low cost and flexible application which make the welding method have widely applied foreground in the field of aeronautics and aerospace.

  6. Effect of friction stir welding and post-weld heat treatment on a nanostructured ferritic alloy

    Science.gov (United States)

    Mazumder, B.; Yu, X.; Edmondson, P. D.; Parish, C. M.; Miller, M. K.; Meyer, H. M.; Feng, Z.

    2016-02-01

    Nanostructured ferritic alloys (NFAs) are new generation materials for use in high temperature energy systems, such as nuclear fission or fusion reactors. However, joining these materials is a concern, as their unique microstructure is destroyed by traditional liquid-state welding methods. The microstructural evolution of a friction stir welded 14YWT NFA was investigated by atom probe tomography, before and after a post-weld heat treatment (PWHT) at 1123K. The particle size, number density, elemental composition, and morphology of the titanium-yttrium-oxygen-enriched nanoclusters (NCs) in the stir and thermally-affected zones were studied and compared with the base metal. No statistical difference in the size of the NCs was observed in any of these conditions. After the PWHT, increases in the number density and the oxygen enrichment in the NCs were observed. Therefore, these new results provide additional supporting evidence that friction stir welding appears to be a viable joining technique for NFAs, as the microstructural parameters of the NCs are not strongly affected, in contrast to traditional welding techniques.

  7. Effect of tool shape and welding parameters on mechanical properties and microstructure of dissimilar friction stir welded aluminium alloys

    Directory of Open Access Journals (Sweden)

    Chetan Aneja

    2016-07-01

    Full Text Available In the present experimental study, dissimilar aluminum alloy AA5083 and AA6082 were friction stir welded by varying tool shape, welding speed and rotary speed of the tool in order to investigate the effect of varying tool shape and welding parameters on the mechanical properties as well as microstructure. The friction stir welding (FSW process parameters have great influence on heat input per unit length of weld. The outcomes of experimental study prove that mechanical properties increases with decreasing welding speed. Furthermore mechanical properties were also found to improve as the rotary speed increases and the same phenomenon was found to happen while using straight cylindrical threaded pin profile tool. The microstructure of the dissimilar joints revealed that at low welding speeds, the improved material mixing was observed. The similar phenomenon was found to happen at higher rotational speeds using straight cylindrical threaded tool.

  8. Impact properties and hardening behavior of laser and electron-beam welds of V-4Cr-4Ti

    Energy Technology Data Exchange (ETDEWEB)

    Chung, H.M.; Strain, R.V.; Tsai, H.C.; Park, J.H.; Smith, D.L. [Argonne National Lab., IL (United States)

    1996-10-01

    The authors are conducting a program to develop an optimal laser welding procedure that can be applied to large-scale fusion-reactor structural components to be fabricated from vanadium-base alloys. Results of initial investigation of mechanical properties and hardening behavior of laser and electron-beam (EB) welds of the production-scale heat of V-4Cr-4Ti (500-kg Heat 832665) in as-welded and postwelding heat-treated (PWHT) conditions are presented in this paper. The laser weld was produced in air using a 6-kW continuous CO{sub 2} laser at a welding speed of {approx}45 mm/s. Microhardness of the laser welds was somewhat higher than that of the base metal, which was annealed at a nominal temperature of {approx}1050{degrees}C for 2 h in the factory. In spite of the moderate hardening, ductile-brittle transition temperatures (DBTTs) of the initial laser ({approx}80{degrees}C) and EB ({approx}30{degrees}C) welds were significantly higher than that of the base metal ({approx}{minus}170{degrees}C). However, excellent impact properties, with DBTT < {minus}80{degrees}C and similar to those of the base metal, could be restored in both the laser and EB welds by postwelding annealing at 1000{degrees}C for 1 h in vacuum.

  9. Potential for Fabric Damage by Welding Electron Beam

    Science.gov (United States)

    Fragomeni, James M.; Nunes, Arthur C., Jr.

    1998-01-01

    Welding electron beam effects on Nextel AF-62 ceramic fabric enable a preliminary, tentative interpretation of electron beam fabric damage. Static surface charging does not protect fabric from beam penetration, but penetration occurs only after a delay time. The delay time is thought to be that required for the buildup of outgassing products at the fabric surface to a point where arcing occurs. Extra long delays are noted when the gun is close enough to the surface to be shut off by outgassing emissions. Penetration at long distances is limited by beam attenuation from electronic collisions with the chamber atmosphere.

  10. 76 FR 31940 - Circular Welded Non-Alloy Steel Pipe From Taiwan: Notice of Rescission of Antidumping Duty...

    Science.gov (United States)

    2011-06-02

    ... International Trade Administration Circular Welded Non-Alloy Steel Pipe From Taiwan: Notice of Rescission of... welded non-alloy steel pipe from Taiwan. The period of review is November 1, 2009, through October 31... circular welded non-alloy steel pipe from Taiwan. See Antidumping or Countervailing Duty Order, Finding,...

  11. 76 FR 49437 - Certain Circular Welded Non-Alloy Steel Pipe From Mexico: Preliminary Results of Antidumping Duty...

    Science.gov (United States)

    2011-08-10

    ... International Trade Administration Certain Circular Welded Non-Alloy Steel Pipe From Mexico: Preliminary Results... circular welded non-alloy steel pipe from Mexico. This administrative review covers mandatory respondents... Circumstances Review: Certain Circular Welded Non-Alloy Steel Pipe From Mexico, 75 FR 82374 (December 30,...

  12. 75 FR 77838 - Circular Welded Non-Alloy Steel Pipe From the Republic of Korea: Preliminary Results of the...

    Science.gov (United States)

    2010-12-14

    ... International Trade Administration Circular Welded Non-Alloy Steel Pipe From the Republic of Korea: Preliminary... on circular welded non-alloy steel pipe (``CWP'') from the Republic of Korea (``Korea''). The period... Antidumping Duty Orders: Certain Circular Welded Non-Alloy Steel Pipe from Brazil, the Republic of...

  13. 77 FR 8808 - Circular Welded Non-Alloy Steel Pipe From the Republic of Korea: Extension of the Final Results...

    Science.gov (United States)

    2012-02-15

    ... International Trade Administration Circular Welded Non-Alloy Steel Pipe From the Republic of Korea: Extension of... antidumping duty administrative review of circular welded non-alloy steel pipe from the Republic of Korea, covering the period November 1, 2009, through October 31, 2010. See Circular Welded Non-Alloy Steel...

  14. 75 FR 78216 - Certain Circular Welded Non-Alloy Steel Pipe From Mexico: Preliminary Results of Antidumping Duty...

    Science.gov (United States)

    2010-12-15

    ... International Trade Administration Certain Circular Welded Non-Alloy Steel Pipe From Mexico: Preliminary Results... circular welded non-alloy steel pipe from Mexico. This administrative review covers mandatory respondents... Antidumping Duty Changed Circumstances Review: Certain Circular Welded Non-Alloy Steel Pipe and Tube...

  15. 76 FR 36089 - Circular Welded Non-Alloy Steel Pipe From the Republic of Korea: Final Results of the Antidumping...

    Science.gov (United States)

    2011-06-21

    ... International Trade Administration Circular Welded Non-Alloy Steel Pipe From the Republic of Korea: Final... circular welded non-alloy steel pipe (``CWP'') from the Republic of Korea (``Korea''), covering the period.... SUPPLEMENTARY INFORMATION: Background Following publication of Circular Welded Non-Alloy Steel Pipe From...

  16. 77 FR 73015 - Circular Welded Non-Alloy Steel Pipe From the Republic of Korea: Preliminary Results of...

    Science.gov (United States)

    2012-12-07

    ... International Trade Administration Circular Welded Non-Alloy Steel Pipe From the Republic of Korea: Preliminary... conducting an administrative review of the antidumping duty order on circular welded non-alloy steel pipe... merchandise subject to the order is circular welded non-alloy steel pipe and tube. The product is...

  17. 77 FR 34344 - Circular Welded Non-Alloy Steel Pipe From the Republic of Korea: Final Results of the Antidumping...

    Science.gov (United States)

    2012-06-11

    ... International Trade Administration Circular Welded Non-Alloy Steel Pipe From the Republic of Korea: Final... circular welded non-alloy steel pipe (``CWP'') from the Republic of Korea (``Korea''). The review covers...: Background Following Circular Welded Non-Alloy Steel Pipe From the Republic of Korea: Preliminary Results...

  18. 78 FR 35248 - Circular Welded Non-Alloy Steel Pipe From the Republic of Korea: Final Results of Antidumping...

    Science.gov (United States)

    2013-06-12

    ... International Trade Administration Circular Welded Non-Alloy Steel Pipe From the Republic of Korea: Final... order on circular welded non-alloy steel pipe (CWP) from the Republic of Korea (Korea) for the period... has been sold at less than normal value. \\1\\ See Circular Welded Non-Alloy Steel Pipe From...

  19. 76 FR 15941 - Circular Welded Non-Alloy Steel Pipe From the Republic of Korea: Extension of the Final Results...

    Science.gov (United States)

    2011-03-22

    ... International Trade Administration Circular Welded Non-Alloy Steel Pipe From the Republic of Korea: Extension of... antidumping duty administrative review of circular welded non-alloy steel pipe from the Republic of Korea, covering the period November 1, 2008, through October 31, 2009. See Circular Welded Non-Alloy Steel...

  20. 78 FR 34342 - Certain Circular Welded Non-Alloy Steel Pipe From Mexico: Final Results and Partial Rescission of...

    Science.gov (United States)

    2013-06-07

    ... International Trade Administration Certain Circular Welded Non-Alloy Steel Pipe From Mexico: Final Results and... duty order on certain circular welded non- alloy steel pipe from Mexico.\\1\\ This administrative review.... \\1\\ See Certain Circular Welded Non-Alloy Steel Pipe From Mexico: Preliminary Results and...

  1. Optimization of pulsed TIG welding process parameters on mechanical properties of AA 5456 Aluminum alloy weldments

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, A. [Department of Mechanical Engineering, National Institute of Technology, Warangal 506 004 (India)], E-mail: adepu_kumar7@yahoo.co.in; Sundarrajan, S. [Scientist ' G' , Defence Research and Development Laboratory, Hyderabad 500 028 (India)

    2009-04-15

    The present work pertains to the improvement of mechanical properties of AA 5456 Aluminum alloy welds through pulsed tungsten inert gas (TIG) welding process. Taguchi method was employed to optimize the pulsed TIG welding process parameters of AA 5456 Aluminum alloy welds for increasing the mechanical properties. Regression models were developed. Analysis of variance was employed to check the adequacy of the developed models. The effect of planishing on mechanical properties was also studied and observed that there was improvement in mechanical properties. Microstructures of all the welds were studied and correlated with the mechanical properties.

  2. A study on the porosity of CO2 laser welding of titanium alloy

    Institute of Scientific and Technical Information of China (English)

    Chen Li; Hu Lunji; Gong Shuili

    2006-01-01

    The CO2 laser welding of BT20 titanium alloy and Ti-23Al-17Nb titanium aluminide was conducted to investigate into the porosity in titanium alloy weld. The results show that there are two sorts of porosities observed in welds of titanium alloy laser welding based on the microscopic characteristics of the porosities. One is the metallurgical porosity with round and smooth inner wall, which results from the surface contamination. The other is the processing porosity with irregular and rough inner wall that displays the trace of the pool flowing, which results from the ruffle on the keyhole wall gathering together locally and closing down the gas in the keyhole into bubbles because of the keyhole fluctuating. The CO2 laser welding could break down easily the surface oxide film and produce little metallurgical porosity, but produces easily processing porosity when partial penetration or unstable-full penetration laser welding is conducted, which always occurs in the center of weld.

  3. A Study on Friction Stir Welding of 12mm Thick Aluminum Alloy Plates

    Institute of Scientific and Technical Information of China (English)

    Deepati Anil Kumar; Pankaj Biswas; Sujoy Tikader; M. M. Mahapatra; N. R. Mandal

    2013-01-01

    Most of the investigations regarding friction stir welding (FSW) of aluminum alloy plates have been limited to about 5 to 6 mm thick plates. In prior work conducted the various aspects concerning the process parameters and the FSW tool geometry were studied utilizing friction stir welding of 12 mm thick commercial grade aluminum alloy. Two different simple-to-manufacture tool geometries were used. The effect of varying welding parameters and dwell time of FSW tool on mechanical properties and weld quality was examined. It was observed that in order to achieve a defect free welding on such thick aluminum alloy plates, tool having trapezoidal pin geometry was suitable. Adequate tensile strength and ductility can be achieved utilizing a combination of high tool rotational speed of about 2000 r/min and low speed of welding around 28 mm/min. At very low and high dwell time the ductility of welded joints are reduced significantly.

  4. The Mechanical Behavior of Friction-Stir Spot Welded Aluminum Alloys

    Science.gov (United States)

    Güler, Hande

    2014-10-01

    Aluminum and alloys are widely used in the automotive industry due to the light weight, good formability, and malleability. Spot welding is the most commonly used joining method of these materials, but the high current requirements and the inconsistent quality of the final welds make this process unsuitable. An alternative welding technique, the friction-stir spot welding process, can also be successfully used in joining of aluminum and alloys. In this study, 1-mm-thick AA5754 Al-alloy plates in the H-111 temper conditions were joined by friction-stir spot welding using two different weld parameters such as tool rotational speed and dwell time. Mechanical properties of the joints were obtained with extensive hardness measurements and tensile shear tests. The effect of these parameters on the failure modes of welded joints was also determined.

  5. Thermo-mechanical modelling of high temperature crack growth in electron beam welding of a CuCrZr alloy; Modelisation thermomecanique de la fissuration a chaud en soudage par faisceau d'electrons d'un alliage CuCrZr

    Energy Technology Data Exchange (ETDEWEB)

    Wisniewski, J

    2009-03-15

    The aim of this research thesis is to find out which crack initiation criteria can be applied in the case of electron beam welding of CuCrZr alloy components. After a literature survey on the high temperature cracking phenomenon, the author describes its microscopic origins and presents the main high temperature crack growth criteria. He reports metallurgical, thermal and mechanical characterizations of the studied alloy performed by optical, scanning electronic and transmission electronic microscopy, crystallographic analysis, residual stress determination using the hole method, mechanical testing at room and high temperature (from room temperature to 1000 C), determination of solidification route and of thermal conductivity, and thermal expansion measurements. He describes electron beam weldability tests performed on the alloy. As these tests are performed on simple geometry samples, they allow the high temperature crack growth to be observed. These experiments are then modelled using two finite element codes, Castem and Calcosoft. Then, after a presentation of the main hypotheses used in these numerical models, the author applies the high temperature crack growth criteria. Results obtained for theses criteria are then analysed and discussed.

  6. Detection of transient reflections during laser beam welding of copper

    Science.gov (United States)

    Ganser, Andreas; Liebl, Stefan; Schmitz, Patrick; Zaeh, Michael F.

    2016-03-01

    The advantages of laser beam welding, such as its high flexibility, its high local energy input, and its fast processing speed, led to a substantial increase of industrial applications using this technology. However, only a portion of the laser energy is absorbed during welding due to reflections. These reflections can damage the system components and lead to a reduced process efficiency. Especially when welding copper materials with infrared laser beam sources, the reflections play a significant role, since the reflection coefficient of copper is very high at infrared wavelengths. Therefore, a formation of a keyhole is necessary for a stable and efficient welding process. A theoretical model for the calculation of the reflections on an arbitrary position above the process zone, as well as a radiation analyzer based on a modular set-up are presented. This device enables a time- and space-resolved measurement of the reflected radiation. Using the experimental results, characteristic positions on the hemisphere could be identified to calibrate the theoretical model. The calibrated model allows to analyze the reflected radiation during the welding process to determine the energy which is absorbed by the work piece.

  7. Effect of Nd:YAG laser beam welding on weld morphology and mechanical properties of Ti-6Al-4V butt joints and T-joints

    Science.gov (United States)

    Kashaev, Nikolai; Ventzke, Volker; Fomichev, Vadim; Fomin, Fedor; Riekehr, Stefan

    2016-11-01

    A Nd:YAG single-sided laser beam welding process study for Ti-6Al-4V butt joints and T-joints was performed to investigate joining techniques with regard to the process-weld morphology relationship. An alloy compatible filler wire was used to avoid underfills and undercuts. The quality of the butt joints and T-joints was characterized in terms of weld morphology, microstructure and mechanical properties. Joints with regular shapes, without visible cracks, pores, and geometrical defects were achieved. Tensile tests revealed high joint integrity in terms of strength and ductility for both the butt joint and T-joint geometries. Both the butt joints and T-joints showed base material levels of strength. The mechanical performance of T-joints was also investigated using pull-out tests. The performance of the T-joints in such tests was sensitive to the shape and morphology of the welds. Fracture always occurred in the weld without any plastic deformation in the base material outside the weld.

  8. Microstructure and mechanical properties of newly developed aluminum–lithium alloy 2A97 welded by fiber laser

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Banglong [Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan 250061 (China); Qin, Guoliang, E-mail: glqin@sdu.edu.cn [Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan 250061 (China); Meng, Xiangmeng; Ji, Yang; Zou, Yong [Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan 250061 (China); Lei, Zhen [Harbin Welding Institute, Harbin 150028 (China)

    2014-11-03

    The newly developed aluminum–lithium alloy 2A97 was for the first time joined by laser beam welding in order to meet the ever-increased long-term requirements of aerospace, aviation and armament industries. The weld appearance, microstructure, solute segregation, precipitate behavior, and their relationships with mechanical properties of welded joints were investigated. Sound joints with no crack and a few small porosities are obtained under appropriate heat inputs. As a result of heterogeneous nucleation involving the effect of Zr and Li, a non-dendritic equiaxed zone forms between partially melted zone and fusion zone. The crystal morphologies in fusion zone vary from columnar dendrite to equiaxed dendrite, with the increase of constitutional supercooling. Solute segregation leads to the variations of Cu content in grain interior and boundary, as well as the weak ability of re-precipitation of fusion zone. Most precipitates in the base metal dissolve during welding, and fusion zone contains a decreased quantity of δ′, β′, θ′, and T{sub 1}. The ultimate tensile strength of laser welded joints is 83.4% of that of the base metal, and can meet the application requirements from related industries, but the ductility still needs to be improved. Welding defects and loss of solid solution/precipitation hardened structure lead to the degradation of mechanical properties. Tensile fracture occurs in weld with the brittle intergranular dominated mode and premature failure occurs and extends in the equiaxed zone.

  9. Numerical Simulation on Temperature Field of TIG Welding for Iridium-tungsten Alloy

    Institute of Scientific and Technical Information of China (English)

    LUO; Hong-yi; TANG; Xian; QIN; Shao-peng; LIU; Guo-hui; MA; Hui-min

    2013-01-01

    Ir-W alloy had the advantages of high temperature resistance,corrosion resistance,high hardness The clads produced with Ir-W alloy were sealed with TIG welding.According to energy conservation principle and characteristics of TIG welding,the numerical model of non-steady TIG welding pool shape under moving arc was established.By introducing the heat enthalpy and Gauss heat model of surface

  10. Fracture assessment for a dissimilar metal weld of low alloy steel and Ni-base alloy

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Takuya, E-mail: takuya4.ogawa@toshiba.co.jp [Toshiba Corporation Power Systems Company, Power and Industrial Systems Research and Development Center, 8, Shinsugita-cho, Isogo-ku, Yokohama 235-8523 (Japan); Itatani, Masao; Saito, Toshiyuki; Hayashi, Takahiro; Narazaki, Chihiro; Tsuchihashi, Kentaro [Toshiba Corporation Power Systems Company, Power and Industrial Systems Research and Development Center, 8, Shinsugita-cho, Isogo-ku, Yokohama 235-8523 (Japan)

    2012-02-15

    Recently, instances of SCC in Ni-base alloy weld metal of light water reactor components have been reported. Despite the possibility of propagation of SCC crack to the fusion line between low alloy steel (LAS) of pressure vessel and Ni-base alloy of internal structure, a fracture assessment method of dissimilar metal welded joint has not been established. The objective of this study is to investigate a fracture mode of dissimilar metal weld of LAS and Ni-base alloy for development of a fracture assessment method for dissimilar metal weld. Fracture tests were conducted using two types of dissimilar metal weld test plates with semi-elliptical surface crack. In one of the test plates, the fusion line lies around the surface points of the surface crack and the crack tips at the surface points have intruded into LAS. Material ahead of the crack tip at the deepest point is Ni-base alloy. In the other, the fusion line lies around the deepest point of the surface crack and the crack tip at the deepest point has intruded into LAS. Material ahead of the crack tip at the deepest point is LAS. The results of fracture tests using the former type of test plate reveal that the collapse load considering the proportion of ligament area of each material gives a good estimation for fracture load. That is, fracture assessment based on plastic collapse mode is applicable to the former type of test plate. It is also understood that a fracture assessment method based on the elastic-plastic fracture mode is suitable for the latter type of test plate.

  11. Radiographic detection of defects in friction stir welding on aluminum alloy AMg5M

    Energy Technology Data Exchange (ETDEWEB)

    Tarasov, Sergei Yu., E-mail: tsy@ispms.ru; Kolubaev, Evgeny A., E-mail: eak@ispms.ru [National Research Tomsk Polytechnic University, Tomsk, 634050, Russia and Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); Rubtsov, Valery E., E-mail: rvy@ispms.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation)

    2014-11-14

    In order to reveal weld defects specific to friction stir welding we undertook radiographic inspection of AMg5M aluminum alloy welded joints. Weld defects in the form of voids have been revealed in the weld obtained under the non-optimal rotation and feed rate. Both shape and size of these defects have been confirmed by examining metallographically successive sections prepared in the weld plane as well as in the plane transversal to the tool feed direction. Linear defects have been also found in the sections that are not seen in the radiographic images. Both the preferable localization and origination of the defects have been analyzed.

  12. Investigation of the Microstructure of Joints of Aluminum Alloys Produced by Friction Stir Welding

    Science.gov (United States)

    Kolubaev, E. A.

    2015-02-01

    Special features of the microstructure of joints of aluminum-magnesium and aluminum-copper alloys produced by friction stir welding are analyzed. It is demonstrated that a layered structure with ultradisperse grains is produced by friction stir welding at the center of the weld joint. An analogy is drawn between the microstructures of joints produced by friction stir welding and surface layer produced by sliding friction.

  13. Mechanical Properties, Microstructure and Crystallographic Texture of Magnesium AZ91-D Alloy Welded by Friction Stir Welding (FSW)

    Science.gov (United States)

    Kouadri-Henni, A.; Barrallier, L.

    2014-10-01

    The objective of the study was to characterize the properties of a magnesium alloy welded by friction stir welding. The results led to a better understanding of the relationship between this process and the microstructure and anisotropic properties of alloy materials. Welding principally leads to a large reduction in grain size in welded zones due to the phenomenon of dynamic recrystallization. The most remarkable observation was that crystallographic textures appeared from a base metal without texture in two zones: the thermo-mechanically affected and stir-welded zones. The latter zone has the peculiarity of possessing a marked texture with two components on the basal plane and the pyramidal plane. These characteristics disappeared in the thermo-mechanically affected zone (TMAZ), which had only one component following the basal plane. These modifications have been explained by the nature of the plastic deformation in these zones, which occurs at a moderate temperature in the TMAZ and high temperature in the SWZ.

  14. Diffusion Welding of Alloys for Molten Salt Service - Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Denis Clark; Ronald Mizia; Piyush Sabharwall

    2012-09-01

    The present work is concerned with heat exchanger development for molten salt service, including the proposed molten salt reactor (MSR), a homogeneous reactor in which the fuel is dissolved in a circulating fluid of molten salt. It is an outgrowth of recent work done under the Next Generation Nuclear Plant (NGNP) program; what the two reactor systems have in common is an inherently safe nuclear plant with a high outlet temperature that is useful for process heat as well as more conventional generation The NGNP program was tasked with investigating the application of a new generation of nuclear power plants to a variety of energy needs. One baseline reactor design for this program is a high temperature, gas-cooled reactor (HTGR), which provides many options for energy use. These might include the conventional Rankine cycle (steam turbine) generation of electricity, but also other methods: for example, Brayton cycle (gas turbine) electrical generation, and the direct use of the high temperatures characteristic of HTGR output for process heat in the chemical industry. Such process heat is currently generated by burning fossil fuels, and is a major contributor to the carbon footprint of the chemical and petrochemical industries. The HTGR, based on graphite fuel elements, can produce very high output temperatures; ideally, temperatures of 900 °C or even greater, which has significant energy advantages. Such temperatures are, of course, at the frontiers of materials limitations, at the upper end of the performance envelope of the metallic materials for which robust construction codes exist, and within the realm of ceramic materials, the fabrication and joining of which, on the scale of large energy systems, are at an earlier stage of development. A considerable amount of work was done in the diffusion welding of materials of interest for HTGR service with alloys such as 617 and 800H. The MSR output temperature is also materials limited, and is projected at about 700

  15. Diffusion Welding of Alloys for Molten Salt Service - Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Denis Clark; Ronald Mizia

    2012-05-01

    The present work is concerned with heat exchanger development for molten salt service, including the proposed molten salt reactor (MSR), a homogeneous reactor in which the fuel is dissolved in a circulating fluid of molten salt. It is an outgrowth of recent work done under the Next Generation Nuclear Plant (NGNP) program; what the two reactor systems have in common is an inherently safe nuclear plant with a high outlet temperature that is useful for process heat as well as more conventional generation The NGNP program was tasked with investigating the application of a new generation of nuclear power plants to a variety of energy needs. One baseline reactor design for this program is a high temperature, gas-cooled reactor (HTGR), which provides many options for energy use. These might include the conventional Rankine cycle (steam turbine) generation of electricity, but also other methods: for example, Brayton cycle (gas turbine) electrical generation, and the direct use of the high temperatures characteristic of HTGR output for process heat in the chemical industry. Such process heat is currently generated by burning fossil fuels, and is a major contributor to the carbon footprint of the chemical and petrochemical industries. The HTGR, based on graphite fuel elements, can produce very high output temperatures; ideally, temperatures of 900 C or even greater, which has significant energy advantages. Such temperatures are, of course, at the frontiers of materials limitations, at the upper end of the performance envelope of the metallic materials for which robust construction codes exist, and within the realm of ceramic materials, the fabrication and joining of which, on the scale of large energy systems, are at an earlier stage of development. A considerable amount of work was done in the diffusion welding of materials of interest for HTGR service with alloys such as 617 and 800H. The MSR output temperature is also materials limited, and is projected at about 700 C

  16. Welding metallurgy of nickel alloys in gas turbine components

    Energy Technology Data Exchange (ETDEWEB)

    Lingenfelter, A. C., LLNL

    1997-05-21

    Materials for gas turbine engines are required to meet a wide range of temperature and stress application requirements. These alloys exhibit a combination of creep resistance, creep rupture strength, yield and tensile strength over a wide temperature range, resistance to environmental attack (including oxidation, nitridation, sulphidation and carburization), fatigue and thermal fatigue resistance, metallurgical stability and useful thermal expansion characteristics. These properties are exhibited by a series of solid-solution-strengthened and precipitation-hardened nickel, iron and cobalt alloys. The properties needed to meet the turbine engine requirements have been achieved by specific alloy additions, by heat treatment and by thermal mechanical processing. A thorough understanding of the metallurgy and metallurgical processing of these materials is imperative in order to successfully fusion weld them. This same basic understanding is required for repair of a component with the added dimension of the potential effects of thermal cycling and environmental exposure the component will have endured in service. This article will explore the potential problems in joining and repair welding these materials.

  17. Investigation of welding crack in micro laser welded NiTiNb shape memory alloy and Ti6Al4V alloy dissimilar metals joints

    Science.gov (United States)

    Yuhua, Chen; Yuqing, Mao; Weiwei, Lu; Peng, He

    2017-06-01

    Dissimilar metals of NiTiNb shape memory alloy and Ti6Al4V alloy with a same thickness of 0.2 mm were joined by micro laser welding. The effect of laser power on crack sensitivity of the weld was investigated. The results show that full penetrated welds are obtained when the laser power of 7.2 W is used, many cracks are observed in the weld. With increasing the laser power to 12 W, the number of all cracks and cracking width first increase and then decrease. By XRD analysis, three different kinds of Ti2Ni, NbNi3 and AlNbTi2 intermetallic compounds are found in the weld. According to the formation enthalpy and binary phase diagram, brittle Ti2Ni phase with more contents is existed in the weld due to final solidification, and which is the main reason of crack formation along with large stress concentration. Moreover, the welding cracks like the weld center longitudinal solidification cracks, weld metal toe transversal liquid cracks, heat-affected-zone hot cracks and crater cracks are classified in the laser welded joints. A brittle cleavage fracture with cleavage planes and river patterns in the joints is presented from the fracture surface.

  18. Effect of Welding Speeds on Mechanical Properties of Level Compensation Friction Stir Welded 6061-T6 Aluminum Alloy

    Science.gov (United States)

    Wen, Quan; Yue, Yumei; Ji, Shude; Li, Zhengwei; Gao, Shuangsheng

    2016-04-01

    In order to eliminate the flash, arc corrugation and concave in weld zone, level compensation friction stir welding (LCFSW) was put forward and successfully applied to weld 6061-T6 aluminum alloy with varied welding speed at a constant tool rotational speed of 1,800 rpm in the present study. The glossy joint with equal thickness of base material can be attained, and the shoulder affected zone (SAZ) was obviously reduced. The results of transverse tensile test indicate that the tensile strength and elongation reach the maximum values of 248 MPa and 7.1% when the welding speed is 600 mm/min. The microhardness of weld nugget (WN) is lower than that of base material. The tensile fracture position locates at the heat affected zone (HAZ) of the advancing side (AS), where the microhardness is the minimum. The fracture surface morphology represents the typical ductile fracture.

  19. Sensors Array Technique for Monitoring Aluminum Alloy Spot Welding

    Institute of Scientific and Technical Information of China (English)

    王蕤; 罗震; 单平; 步贤政; 袁书现; 敖三三

    2010-01-01

    In this paper,the sensors array technique is applied to the quality detection of aluminum alloy spot welding.The sensors array has three forms,i.e.,linear magnetic sensors array,annular magnetic sensors array and cross magnetic sensors array.An algorithm based on principal component analysis is proposed to extract the signal eigenvalues.The three types of magnetic sensors array are used in the experiment of monitoring the signal.After the eigenvalues are extracted,they are used to build a relationship with ...

  20. Electron beam welding of 8-inch thick 2-1/4 Cr-1 Mo. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Charles M.

    1980-08-01

    Electron beam welding procedures were developed and used to make sound welds in 8-inch thick 2-1/4 Cr-1 Mo in the horizontal position. A two-pass technique, one pass from each side, was developed for welding the 8-inch thickness. Techniques for eliminating various weld defects were developed. It was learned that the beam oscillation conditions strongly influenced welding performance. Procedures were developed for hard and soft vacuum operation, but hard vacuum was preferred. Procedures for starting and stopping the welding sequence were developed, along with a repair technique involving re-welding over a plug filled hole. The joint fit-up requirements were determined: a joint mismatch of 3/4 in. was welded, and a joint gap opening of 0.100 in. was welded without alteration of the welding procedure. It was shown that it is not necessary to demagnetize the material for successful welding, but that a special magnetic shield may be needed to protect the electron beam from stray magnetic fields. A demonstration weld failed to meet the NDE requirements of the ASME Boiler and Pressure Vessel Code due to poor base metal quality which adversely affected weld performance. The mechanical properties (hardness, strength, ductility, and impact), and the microstructure of electron beam welded 8-inch thick SA387 Grade 22 Class 2 were determined and appeared to be adequate.

  1. Elucidation of laser welding phenomena and factors affecting weld penetration and welding defects

    Science.gov (United States)

    Katayama, Seiji; Kawahito, Yousuke; Mizutani, Masami

    The behavior and effect of a plasma plume on the weld penetration are greatly different between CO2 laser welding and YAG, disk or fiber laser welding. The effects of the power and the power density on the weld penetration are elucidated. Spattering leading to the formation of underfilled weld beads is controlled by inclining the laser beam. Porosity is formed from bubbles generated from the tip of the keyhole at low welding speed or from the middle part of the keyhole at high laser power density. Cracking easily occurs in pulsed spot welding of aluminum alloys.

  2. Effects of thermal aging on microstructures of low alloy steel–Ni base alloy dissimilar metal weld interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Kyoung Joon; Kim, Jong Jin [Interdisciplinary School of Green Energy, Ulsan National Institute of Science and Technology (UNIST), 100 Banyeon-ri, Eonyang-eup, Ulju-gun, Ulsan 689-798 (Korea, Republic of); Lee, Bong Ho [National Center for Nanomaterials Technology (NCNT), Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 790-784 (Korea, Republic of); Bahn, Chi Bum [Argonne National Laboratory, 9700 S. Cass Ave, Lemont, IL 60439 (United States); Kim, Ji Hyun, E-mail: kimjh@unist.ac.kr [Interdisciplinary School of Green Energy, Ulsan National Institute of Science and Technology (UNIST), 100 Banyeon-ri, Eonyang-eup, Ulju-gun, Ulsan 689-798 (Korea, Republic of)

    2013-10-15

    In this study, the advanced instrumental analysis has been performed to investigate the effect of long-term thermal aging on the microstructural evolution in the fusion boundary region between weld metal and low alloy steel in dissimilar metal welds. A representative dissimilar weld mock-up made of Alloy 690-Alloy 152-A533 Gr. B was fabricated and aged at 450 °C for 2750 h. The micro- and nano-scale characterization were conducted mainly near in a weld root region by using optical microscopy, scanning electron microscopy, transmission electron microscopy, and three dimensional atom probe tomography. It was observed that the weld root was generally divided into several regions including dilution zone in the Ni-base alloy weld metal, fusion boundary, and heat-affected zone in the low alloy steel. A steep gradient was shown in the chemical composition profile across the interface between A533 Gr. B and Alloy 152. The precipitation of carbides was also observed along and near the fusion boundary of as-welded and aged dissimilar metal joints. It was also found that the precipitation of Cr carbides was enhanced by the thermal aging near the fusion boundary.

  3. Effects of thermal aging on microstructures of low alloy steel-Ni base alloy dissimilar metal weld interfaces

    Science.gov (United States)

    Choi, Kyoung Joon; Kim, Jong Jin; Lee, Bong Ho; Bahn, Chi Bum; Kim, Ji Hyun

    2013-10-01

    In this study, the advanced instrumental analysis has been performed to investigate the effect of long-term thermal aging on the microstructural evolution in the fusion boundary region between weld metal and low alloy steel in dissimilar metal welds. A representative dissimilar weld mock-up made of Alloy 690-Alloy 152-A533 Gr. B was fabricated and aged at 450 °C for 2750 h. The micro- and nano-scale characterization were conducted mainly near in a weld root region by using optical microscopy, scanning electron microscopy, transmission electron microscopy, and three dimensional atom probe tomography. It was observed that the weld root was generally divided into several regions including dilution zone in the Ni-base alloy weld metal, fusion boundary, and heat-affected zone in the low alloy steel. A steep gradient was shown in the chemical composition profile across the interface between A533 Gr. B and Alloy 152. The precipitation of carbides was also observed along and near the fusion boundary of as-welded and aged dissimilar metal joints. It was also found that the precipitation of Cr carbides was enhanced by the thermal aging near the fusion boundary.

  4. Effect of welding process on the microstructure and properties of dissimilar weld joints between low alloy steel and duplex stainless steel

    Science.gov (United States)

    Wang, Jing; Lu, Min-xu; Zhang, Lei; Chang, Wei; Xu, Li-ning; Hu, Li-hua

    2012-06-01

    To obtain high-quality dissimilar weld joints, the processes of metal inert gas (MIG) welding and tungsten inert gas (TIG) welding for duplex stainless steel (DSS) and low alloy steel were compared in this paper. The microstructure and corrosion morphology of dissimilar weld joints were observed by scanning electron microscopy (SEM); the chemical compositions in different zones were detected by energy-dispersive spectroscopy (EDS); the mechanical properties were measured by microhardness test, tensile test, and impact test; the corrosion behavior was evaluated by polarization curves. Obvious concentration gradients of Ni and Cr exist between the fusion boundary and the type II boundary, where the hardness is much higher. The impact toughness of weld metal by MIG welding is higher than that by TIG welding. The corrosion current density of TIG weld metal is higher than that of MIG weld metal in a 3.5wt% NaCl solution. Galvanic corrosion happens between low alloy steel and weld metal, revealing the weakness of low alloy steel in industrial service. The quality of joints produced by MIG welding is better than that by TIG welding in mechanical performance and corrosion resistance. MIG welding with the filler metal ER2009 is the suitable welding process for dissimilar metals jointing between UNS S31803 duplex stainless steel and low alloy steel in practical application.

  5. Optimization of friction stir welding parameters for improved corrosion resistance of AA2219 aluminum alloy joints

    Directory of Open Access Journals (Sweden)

    G. Rambabu

    2015-12-01

    Full Text Available The aluminium alloy AA2219 (Al–Cu–Mg alloy is widely used in the fabrication of lightweight structures with high strength-to-weight ratio and good corrosion resistance. Welding is main fabrication method of AA2219 alloy for manufacturing various engineering components. Friction stir welding (FSW is a recently developed solid state welding process to overcome the problems encountered in fusion welding. This process uses a non-consumable tool to generate frictional heat on the abutting surfaces. The welding parameters, such as tool pin profile, rotational speed, welding speed and axial force, play major role in determining the microstructure and corrosion resistance of welded joint. The main objective of this work is to develop a mathematical model to predict the corrosion resistance of friction stir welded AA2219 aluminium alloy by incorporating FSW process parameters. In this work a central composite design with four factors and five levels has been used to minimize the experimental conditions. Dynamic polarization testing was carried out to determine critical pitting potential in millivolt, which is a criteria for measuring corrosion resistance and the data was used in model. Further the response surface method (RSM was used to develop the model. The developed mathematical model was optimized using the simulated annealing algorithm optimizing technique to maximize the corrosion resistance of the friction stir welded AA2219 aluminium alloy joints.

  6. Laser Beam Welding with High-Frequency Beam Oscillation: Welding of Dissimilar Materials with Brilliant Fiber Lasers

    Science.gov (United States)

    Kraetzsch, Mathias; Standfuss, Jens; Klotzbach, Annett; Kaspar, Joerg; Brenner, Berndt; Beyer, Eckhard

    Brilliant laser beam sources in connection with a high frequent beam oscillation make it now possible to join metallic material combinations, which have been conventionally non-laser weldable up to now. It concerns especially such combinations like Al- Cu, where brittle intermetallic phases occur. Extreme small weld seam with high aspect ratio leads to very short meld pool life time. These allow an extensive reduction of the heat input. On the other side the melting behavior at metallic mixed joint, seam geometry, meld pool turbulence and solidification behavior can be influenced by a high frequent time-, position- and powercontrolled laser beam oscillation.

  7. Factors affecting the strength of multipass low-alloy steel weld metal

    Science.gov (United States)

    Krantz, B. M.

    1972-01-01

    The mechanical properties of multipass high-strength steel weld metals depend upon several factors, among the most important being: (1) The interaction between the alloy composition and weld metal cooling rate which determines the as-deposited microstructure; and (2) the thermal effects of subsequent passes on each underlying pass which alter the original microstructure. The bulk properties of a multipass weld are therefore governed by both the initial microstructure of each weld pass and its subsequent thermal history. Data obtained for a high strength low alloy steel weld metal confirmed that a simple correlation exists between mechanical properties and welding conditions if the latter are in turn correlated as weld cooling rate.

  8. The softening effect of heat-treated strengthened Al-Zn-Mg alloy in welding process

    Science.gov (United States)

    Zhang, Xiaohong; Chen, Jingqing; Zhang, Kang; Chen, Hui

    2017-07-01

    Weld joint softening occurs during the welding process of heat-treatable aluminum alloys and strongly influences the mechanical properties. In this work, the softening of heat-treated Al-Zn-Mg alloy was studied in the multipass welding process. By Gleeble-3500 thermal-mechanical simulator, the heat treatment and tensile test with welding thermal cycles were carried out to simulate the microstructure evolution and mechanical softening during multipass welding. After that, the softening mechanism of the HAZ was analyzed by microstructure analysis. The results indicate that the heat-treated Al-Zn-Mg alloy exhibited obvious softening after several thermal cycles with peak temperature higher than 200∘C, and this phenomenon is worse with increasing peak temperature. Based on the microstructure analysis, it was found that the reinforcement phase changes according to the applied thermal cycles, which strongly affects the strength of Al-Zn-Mg alloys.

  9. Electrochemical behavior of YAG laser-welded NiTi shape memory alloy

    Institute of Scientific and Technical Information of China (English)

    YAN Xiao-jun; YANG Da-zhi; LIU Xiao-peng

    2006-01-01

    Electrochemical behaviors of laser-welded Ti-50.6%Ni(mole fraction) shape memory alloy and the base metal in 0.9% NaCl solution were investigated by electrochemical techniques as corrosion potential measurement, linear and potentiodynamic polarization. The results indicate that the laser-welded NiTi alloy is less susceptible to pitting and crevice corrosion than the base metal, which is demonstrated by the increase in polarization resistance(Rp) and pitting potential(ψpit) and decrease in corrosion current density(Jcorr) and mean difference between ψpit and ψprot values. It is confirmed by scanning electron microscope micrographs that pits could be observed on the surface of base metal but not on the surface of laser-welded alloy after potentiodynamic tests. An improvement of corrosion resistance of laser-welded NiTi alloy could be attributed to almost complete dissolution of inclusions upon laser welding.

  10. Evaluation of the AISI 904L Alloy Weld Overlays Obtained by GMAW and Electro-Slag Welding Processes

    Science.gov (United States)

    Jorge, Jorge C. F.; Meira, O. G.; Madalena, F. C. A.; de Souza, L. F. G.; Araujo, L. S.; Mendes, M. C.

    2017-03-01

    The use of superaustenitic stainless steels (SASS) as an overlay replacement for nickel-based alloys can be an interesting alternative for the oil and gas industries, due to its lower cost, when compared to superalloys. Usually, the deposition is made with several welding passes by using conventional arc welding processes, such as gas tungsten arc welding (GTAW) or gas metal arc welding (GMAW) processes. In this respect, electro-slag welding (ESW), which promotes high heat inputs and low dilution of the welds, can also be attractive for this application, as it provides a higher productivity, once only one layer is needed for the deposition of the minimum thickness required. The present work evaluates the behavior of an AISI 904L SASS weld overlay deposited on a carbon steel ASTM A516 Grade 70 by ESW and GMAW processes. Both as-welded and heat-treated conditions were evaluated and compared. A multipass welding by GMAW process with three layers and 48 passes was performed on 12.5 × 200 × 250 mm steel plates with average welding energy of 1.0 kJ/mm. For ESW process, only one layer was deposited on 50 × 400 × 400 mm steel plates with average welding energy of 11.7 kJ/mm. After welding, a post-weld heat treatment (PWHT) at 620 °C for 10 h was performed in half of the steel plate, in order to allow the comparison between this condition and the as-welded one. For both processes, the austenitic microstructure of the weld deposits was characterized by optical microscopy and scanning electron microscopy with electron backscatter diffraction. A low proportion of secondary phases were observed in all conditions, and the PWHT did not promote significant changes on the hardness profile. Martensite for GMAW process and bainite for ESW process were the microstructural constituents observed at the coarse grain heat-affected zone, due to the different cooling rates. For ESW process, no evidences of partially diluted zones were found. As a consequence of the microstructural

  11. Evaluation of the AISI 904L Alloy Weld Overlays Obtained by GMAW and Electro-Slag Welding Processes

    Science.gov (United States)

    Jorge, Jorge C. F.; Meira, O. G.; Madalena, F. C. A.; de Souza, L. F. G.; Araujo, L. S.; Mendes, M. C.

    2017-05-01

    The use of superaustenitic stainless steels (SASS) as an overlay replacement for nickel-based alloys can be an interesting alternative for the oil and gas industries, due to its lower cost, when compared to superalloys. Usually, the deposition is made with several welding passes by using conventional arc welding processes, such as gas tungsten arc welding (GTAW) or gas metal arc welding (GMAW) processes. In this respect, electro-slag welding (ESW), which promotes high heat inputs and low dilution of the welds, can also be attractive for this application, as it provides a higher productivity, once only one layer is needed for the deposition of the minimum thickness required. The present work evaluates the behavior of an AISI 904L SASS weld overlay deposited on a carbon steel ASTM A516 Grade 70 by ESW and GMAW processes. Both as-welded and heat-treated conditions were evaluated and compared. A multipass welding by GMAW process with three layers and 48 passes was performed on 12.5 × 200 × 250 mm steel plates with average welding energy of 1.0 kJ/mm. For ESW process, only one layer was deposited on 50 × 400 × 400 mm steel plates with average welding energy of 11.7 kJ/mm. After welding, a post-weld heat treatment (PWHT) at 620 °C for 10 h was performed in half of the steel plate, in order to allow the comparison between this condition and the as-welded one. For both processes, the austenitic microstructure of the weld deposits was characterized by optical microscopy and scanning electron microscopy with electron backscatter diffraction. A low proportion of secondary phases were observed in all conditions, and the PWHT did not promote significant changes on the hardness profile. Martensite for GMAW process and bainite for ESW process were the microstructural constituents observed at the coarse grain heat-affected zone, due to the different cooling rates. For ESW process, no evidences of partially diluted zones were found. As a consequence of the microstructural

  12. Experimental and simulation studies on laser conduction welding of AA5083 aluminium alloys

    Science.gov (United States)

    Tobar, M. J.; Lamas, M. I.; Yáñez, A.; Sánchez-Amaya, J. M.; Boukha, Z.; Botana, F. J.

    In this paper, a three-dimensional numerical model was developed to study laser welding in an aluminium alloy (AA5083). The CFD model was used to solve the governing equations of conservation of mass, momentum and energy, so as to obtain the morphology, velocity field and temperature field of the melted zone in steady state. The predicted dimensions of the weld pool agreed well with experimental results obtained on laser conduction welding with a (CW) high power diode laser. The study allowed to determine the effect of different surface treatment (sandblasting, black painting) on the laser absorptivity of the alloy and analyze the heat transfer mechanism within the weld pool.

  13. Mechanisms of the porosity formation during the fiber laser lap welding of aluminium alloy

    Directory of Open Access Journals (Sweden)

    J. Wang

    2015-10-01

    Full Text Available When joining the aluminum alloys, one of the biggest challenges is the formation of porosity, which deteriorates mechanical properties of welds. In this study, the lap welding was conducted on an aluminum alloy 5754 metal sheets with a thickness of 2 mm. The effects of various laser welding parameters on the weld quality were investigated. The porosity content was measured by X-ray inspections. The key is to control the solidification duration of molten pool. When the solidification duration of molten pool is large enough, more bubbles can escape from the molten pool and less remain as porosity.

  14. Study on quality of resistance spot welded aluminum alloys under various electrode pressures

    Institute of Scientific and Technical Information of China (English)

    San-san AO; Zhen LUO; Xin-xin TANG; Lin-shu ZHOU; Shu-xian YUAN; Rui WANG; Kai-lei SONG; Xing-zheng BU; Xiao-yi LI; Zhi-qing XUE

    2009-01-01

    The electrode force is One of the main parameters in resistance spot welding (RSW). It is very important to guarantee the quality of aluminum alloys and determine whether the electrode pressure is stable or adjustable in the welding process. With the drive set of a servo-motor, we conduct the RSW tests and tensile shear tests on the 5052 aluminum alloy sheets. Results of these tests show that all variable pressure curves are suitable for spot welding, and all have their own rules in affecting the tensile strength of the spot welded joints.

  15. Multi-Response Optimization of Friction-Stir-Welded AA1100 Aluminum Alloy Joints

    Science.gov (United States)

    Rajakumar, S.; Balasubramanian, V.

    2012-06-01

    AA1100 aluminum alloy has gathered wide acceptance in the fabrication of light weight structures. Friction stir welding process (FSW) is an emerging solid state joining process in which the material that is being welded does not melt and recast. The process and tool parameters of FSW play a major role in deciding the joint characteristics. In this research, the relationships between the FSW parameters (rotational speed, welding speed, axial force, shoulder diameter, pin diameter, and tool hardness) and the responses (tensile strength, hardness, and corrosion rate) were established. The optimal welding conditions to maximize the tensile strength and minimize the corrosion rate were identified for AA1100 aluminum alloy and reported here.

  16. Alloying Elements Transition Into the Weld Metal When Using an Inventor Power Source

    Science.gov (United States)

    Mamadaliev, R. A.; Kuskov, V. N.; Popova, A. A.; Valuev, D. V.

    2016-04-01

    The temperature distribution over the surface of the welded 12Kh18N10T steel plates using the inventor power source ARC-200 has been calculated. In order to imitate multipass welding when conducting the thermal analysis the initial temperature was changed from 298K up to 798K in 100K increments. It has been determined that alloying elements transition into the weld metal depends on temperature. Using an inventor power source facilitates a uniform distribution of alloying elements along the length and height of the weld seam.

  17. Damage Tolerance Assessment of Friction Pull Plug Welds in an Aluminum Alloy

    Science.gov (United States)

    McGill, Preston; Burkholder, Jonathan

    2012-01-01

    Friction stir welding is a solid state welding process used in the fabrication of cryogenic propellant tanks. Self-reacting friction stir welding is one variation of the friction stir weld process being developed for manufacturing tanks. Friction pull plug welding is used to seal the exit hole that remains in a circumferential self-reacting friction stir weld. A friction plug weld placed in a self-reacting friction stir weld results in a non-homogenous weld joint where the initial weld, plug weld, their respective heat affected zones and the base metal all interact. The welded joint is a composite plastically deformed material system with a complex residual stress field. In order to address damage tolerance concerns associated with friction plug welds in safety critical structures, such as propellant tanks, nondestructive inspection and proof testing may be required to screen hardware for mission critical defects. The efficacy of the nondestructive evaluation or the proof test is based on an assessment of the critical flaw size. Test data relating residual strength capability to flaw size in an aluminum alloy friction plug weld will be presented.

  18. Effects of Sealing Run Welding with Defocused Laser Beam on the Quality of T-joint Fillet Weld

    Science.gov (United States)

    Unt, Anna; Poutiainen, Ilkka; Salminen, Antti

    Fillet weld is the predominant weld type used for connecting different elements e.g. in shipbuilding, offshore and bridge structures. One of prevalent research questions is the structural integrity of the welded joint. Post weld improvement techniques are being actively researched, as high stress areas like an incomplete penetration on the root side or fluctuations in penetration depth cannot be avoided. Development of laser and laser-arc hybrid welding processes have greatly contributed to increase of production capacity and reduction of heat-induced distortions by producing single pass full penetration welds in thin- and medium thickness structural steel parts. Present study addresses the issue of how to improve the quality of the fillet welds by welding the sealing run on the root side with defocused laser beam. Welds having incomplete or excessive penetration were produced with several beam angles and laser beam spot sizes on surface. As a conclusion, significant decrease or even complete elimination of the seam irregularities, which act as the failure starting points during service, is achieved.

  19. Corrosion behavior of friction stir welded AZ31B Mg alloy - Al6063 alloy joint

    Directory of Open Access Journals (Sweden)

    B. Ratna Sunil

    2016-12-01

    Full Text Available In the present work, AZ31B Mg alloy and Al6063 alloy-rolled sheets were successfully joined by friction stir welding. Microstructural studies revealed a sound joint with good mechanical mixing of both the alloys at the nugget zone. Corrosion performance of the joint was assessed by immersing in 3.5% NaCl solution for different intervals of time and the corrosion rate was calculated. The joint has undergone severe corrosion attack compared with both the base materials (AZ31B and Al6063 alloys. The predominant corrosion mechanism behind the high corrosion rate of the joint was found to be high galvanic corrosion. From the results, it can be suggested that the severe corrosion of dissimilar Mg–Al joints must be considered as a valid input while designing structures intended to work in corroding environment.

  20. Double-sided gas tungsten arc welding process on TC4 titanium alloy

    Institute of Scientific and Technical Information of China (English)

    GAO Hong-ming; BAI Yan; YANG Tian-dong

    2005-01-01

    TC4 titanium alloy was welded by double-sided gas tungsten arc welding(GTAW) process in comparison with conventional GTAW process, the microstructure and mechanical performance of weld were also studied. The results indicate that double-sided GTAW is superior over regular single-sided GTAW on the aspects of increasing penetration, reducing welding deformation and improving welding efficiency. Good weld joint was obtained, which can reach 96.14% tensile strength and 70.85 % elongation percentage of the base metal. The grains in heat-affected zone(HAZ) are thin and equiaxed and the degree of grain coarsening increases as one moves to the weld center line,and the interior of grains are α and α' structures. The coarse columned and equiaxed grains, which interlace martensitic structures α' and acicular α structures, are observed in weld zone. The fracture mode is ductile fracture.

  1. Upgrade of laser and electron beam welding database

    CERN Document Server

    Furman, Magdalena

    2014-01-01

    The main purpose of this project was to fix existing issues and update the existing database holding parameters of laser-beam and electron-beam welding machines. Moreover, the database had to be extended to hold the data for the new machines that arrived recently at the workshop. As a solution - the database had to be migrated to Oracle framework, the new user interface (using APEX) had to be designed and implemented with the integration with the CERN web services (EDMS, Phonebook, JMT, CDD and EDH).

  2. 76 FR 52636 - Circular Welded Non-Alloy Steel Pipe From the Republic of Korea: Partial Rescission of...

    Science.gov (United States)

    2011-08-23

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE International Trade Administration Circular Welded Non-Alloy Steel Pipe From the Republic of Korea: Partial... the antidumping duty order on certain circular welded non-alloy steel pipe (``circular welded...

  3. Influence of Post Weld Heat Treatment on Strength of Three Aluminum Alloys Used in Light Poles

    OpenAIRE

    Craig C. Menzemer; Eric Hilty; Shane Morrison; Ray Minor; Tirumalai S. Srivatsan

    2016-01-01

    The conjoint influence of welding and artificial aging on mechanical properties were investigated for extrusions of aluminum alloy 6063, 6061, and 6005A. Uniaxial tensile tests were conducted on the aluminum alloys 6063-T4, 6061-T4, and 6005A-T1 in both the as-received (AR) and as-welded (AW) conditions. Tensile tests were also conducted on the AR and AW alloys, subsequent to artificial aging. The welding process used was gas metal arc (GMAW) with spray transfer using 120–220 A of current at ...

  4. Structure of Ti-6Al-4V nanostructured titanium alloy joint obtained by resistance spot welding

    Energy Technology Data Exchange (ETDEWEB)

    Klimenov, V. A., E-mail: klimenov@tpu.ru [Tomsk State University of Architecture and Building, 2 Solyanaya Sq, Tomsk, 634003 (Russian Federation); National Research Tomsk Polytechnic University, 30 Lenin Av., Tomsk, 634050 (Russian Federation); Kurgan, K. A., E-mail: kirill-k2.777@mail.ru [Tomsk State University of Architecture and Building, 2 Solyanaya Sq, Tomsk, 634003 (Russian Federation); Chumaevskii, A. V., E-mail: tch7av@gmail.com [Institute of Strength Physics and Materials Science, Siberian Branch of the Russian Academy of Sciences, 2/4 Akademicheskii pr., Tomsk, 634021 (Russian Federation); Klopotov, A. A., E-mail: klopotovaa@tsuab.ru [Tomsk State University of Architecture and Building, 2 Solyanaya Sq, Tomsk, 634003 (Russian Federation); National Research Tomsk State University, 36 Lenin Ave., Tomsk, 634050 (Russian Federation); Gnyusov, S. F., E-mail: gnusov@rambler.ru [National Research Tomsk Polytechnic University, 30 Lenin Av., Tomsk, 634050 (Russian Federation)

    2016-01-15

    The structure of weld joints of the titanium alloy Ti-6Al-4V in the initial ultrafine-grained state, obtained by resistance spot welding, is studied using the optical and scanning electron microscopy method and the X-ray structure analysis. The carried out studies show the relationship of the metal structure in the weld zone with main joint zones. The structure in the core zone and the heat affected zone is represented by finely dispersed grains of needle-shaped martensite, differently oriented in these zones. The change in the microhardness in the longitudinal section of the weld joint clearly correlates with structural changes during welding.

  5. Laser-welded V-Cr-Ti alloys: Microstructural and mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K.; Smith, D.L.; Sanders, P.G.; Leong, K.H. [Argonne National Lab., IL (United States)

    1998-03-01

    A systematic study has been initiated to examine the use of lasers to weld sheet materials of V-Cr-Ti alloys and to characterize the microstructural and mechanical properties of the laser-welded materials. In addition, several post-welding heat treatments are being applied to the welded samples to evaluate their benefits, if any, to the structure and properties of the weldments. Hardness measurements are made across the welded regions of different samples to evaluate differences in the characteristics of various weldments.

  6. Improving Hygienic Characteristics of Coated Electrodes for Welding High-Alloy Steels

    Science.gov (United States)

    Il'yaschenko, D. P.; Chinakhov, D. A.; Ivanov, K. V.; Sadikov, I. D.

    2017-01-01

    The article presents the results of experimental studies showing that the use of an inverter power supply instead of a diode rectifier provides:: fine-droplet electrode metal transfer which reduces generation time by 46% and transfer time by 28%; transfer of alloying elements from welding materials into the weld metal which reduces its loss from the welding line by 6% and the heat affected area by 3%; reducing the emission rate of welding fumes and their components by 23%; reducing specific emission of welding fumes and their components by 23%.

  7. Microstructural Aspects in FSW and TIG Welding of Cast ZE41A Magnesium Alloy

    Science.gov (United States)

    Carlone, Pierpaolo; Astarita, Antonello; Rubino, Felice; Pasquino, Nicola

    2016-04-01

    In this paper, magnesium ZE41A alloy plates were butt joined through friction stir welding (FSW) and Tungsten Inert Gas welding processes. Process-induced microstructures were investigated by optical and SEM observations, EDX microanalysis and microhardness measurements. The effect of a post-welded T5 heat treatment on FSW joints was also assessed. Sound joints were produced by means of both techniques. Different elemental distributions and grain sizes were found, whereas microhardness profiles reflect microstructural changes. Post-welding heat treatment did not induce significant alterations in elemental distribution. The FSW-treated joint showed a more homogeneous hardness profile than the as-welded FSW joint.

  8. Experimental and numerical studies on the issues in laser welding of light-weight alloys in a zero-gap lap joint configuration

    Science.gov (United States)

    Harooni, Masoud

    current study a non-destructive evaluation method based on spectroscopy is proposed to detect the presence of pores in the lap joint of laser welded AZ31B magnesium alloy. The electron temperature that is calculated by the Boltzmann plot method is correlated to the presence of pores in the weld bead. A separate series of experiments was performed to evaluate the effect of an oxide coating layer on the dynamic behavior of the molten pool in the laser welding of an AZ31B magnesium alloy in a zero-gap lap joint configuration. A high speed CCD camera assisted with a green laser as an illumination source was selected to record the weld pool dynamics. Another technique used in this study was two-pass laser welding process to join AZ31B magnesium sheet in a zero-gap, lap-shear configuration. Two groups of samples including one pass laser welding (OPLW) and two pass laser welding (TPLW) were studied. In the two pass laser welding procedure, the first pass is performed by a defocused laser beam on the top of the two overlapped sheets in order to preheat the faying surface prior to laser welding, while the second pass is applied to melt and eventually weld the samples. Tensile and microhardness tests were used to measure the mechanical properties of the laser welded samples. A spectrometer was also used in real-time to correlate pore formation with calculated electron temperature using the Boltzmann plot method. The results of calculated electron temperature confirmed the previous results in earlier chapter. Magnesium and aluminum are two alloys which are used in different industries mainly due to their light weight. The main use of these two alloys is in automotive industry. Since different parts of the automobiles can be manufactured with each of these two alloys, it is essential to evaluate the joining feasibility of dissimilar metals such as aluminum to magnesium. A 4 kW fiber laser is used to join AZ31B magnesium alloy to AA 6014 using an overlap joint configuration. Two

  9. Mechanical properties of a dissimilar aluminum alloy joint welded by hybrid laser-MIG welding

    Science.gov (United States)

    Wang, Qiuying; Chen, Hui; Zhu, Zongtao; Cui, Yunlong

    2017-07-01

    Two dissimilar Al alloys, 5083-H111 and 6005A-T6, were joined by hybrid laser-MIG welding method. Mechanical properties of the welded joint were investigated and compared. The results show that the tensile strength of the dissimilar joint is 219.8 MPa, 11.7% higher than that of 6005A-T5 joint. After statistical analysis of the fatigue data, the P-S-N curves of the dissimilar joint were obtained. The mean fatigue strength at Nf = 107 of the dissimilar joint is 112.5 MPa. The fatigue strength at Nf = 107 of the dissimilar joint for a given 10% probability of failure, at a confidence level of 95%, is 101.4 MPa. The fatigue strength at Nf = 107 of the dissimilar joint is almost same as that of the 6005A-T6 joint. In welded structure designing, different P-S-N curves should be chosen according to the different service conditions and reliability requirements.

  10. Analysis of Friction Stir Welding of Aluminum Alloys and Optimization of Welding Parameters for Maximum Tensile Strength

    Directory of Open Access Journals (Sweden)

    Prof. S. K. Aditya

    2015-05-01

    Full Text Available The Friction Stir Welding (FSW process is an innovative technique to join metals in the plastic state thus not reaching the liquid state as it happen in traditional welding processes. This feature of the FSW proved that a modification can be done on the fatigue behavior and strength of the welding joints so, some of the leading companies to adopted the process for the manufacturing of Automotive, Locomotive, Shipping & Aerospace. The FSW is a variant of the linear friction welding process in which the material is being welded without bulk melting. The FSW parameters such as tool Rotational speed, Welding speed, Axial Force, Tool tilt angle, Welding Tool Shoulder Diameter, and Welded Plate thickness play a major role in determining the properties like Tensile strength, hardness, residual stress, HAZ etc. of the joints. Our objective is to optimize the welding parameters to achieve Max. Tensile Strength of Aluminium Alloys (especially on AA-2xxx, AA-5xxx under FSW. We only wish to optimize (by Taguchi and ANOVA method with three variable input parameters (Rotational speed in rpm, Translation speed in mm/min & Axial force in KN considering a cylindrical pin.

  11. Subtask 12B1: Welding development for V-Cr-Ti alloys

    Energy Technology Data Exchange (ETDEWEB)

    King, J.F.; Goodwin, G.M.; Grossbeck, M.L.; Alexander, D.J. [Oak Ridge National Lab., TN (United States)

    1995-03-01

    Development of the metallurgical and technological basis for the welding of thick sections of V-Cr-Ti alloys. The weldability and weldment properties of the V-5Cr-5Ti alloy have been evaluated. Results for the Sigmajig test of the vanadium alloy were similar to the cracking resistance of stainless steels, and indicates hot-cracking is unlikely to be a problem. Subsize Charpy test results for GTA weld metal in the as-welded condition have shown a significant reduction in toughness compared to the base metal. The weld metal toughness properties were restored to approximately that of the base metal after exposure to a PWHT 950{degrees}C. The subsize Charpy toughness results for the EB weld metal from this same heat of vanadium alloy has shown significant improvement in properties compared to the GTA weld metal and the base metal. Further testing and analysis will be conducted to more fully characterize the properties of weld metal for each welding process and develop a basic understanding of the cause of the toughness decrease in the GTA welds. 5 figs., 1 tab.

  12. Corrosion behavior of Al6061 alloy weldment produced by friction stir welding process

    Directory of Open Access Journals (Sweden)

    Farhad Gharavi

    2015-07-01

    Full Text Available In this work, the corrosion behavior of welded lap joints of AA6061-T6 aluminum alloy produced by friction stir welding process has been investigated. Corrosion properties of welded lap joints were studied by cyclic polarization and electrochemical impedance spectroscopy tests. All tests were performed in an aerated 0.6 mol L−1 NaCl aqueous solution with pH = 6.5 at a temperature of 30 °C to characterize corrosion morphology and realize corrosion features of weld regions as opposed to the parent alloy. The microstructure of weld nugget (WN, heated affected zone (HAZ, and parent alloy were analyzed using scanning electron microscopy and energy dispersive spectroscopy. The experimental results indicated that the welding process has a major effect on the corrosion resistance, which possibly associated to the break-down and dissolution of intermetallic particles. It is supposed that an increasing in intermetallic distributed throughout the matrix of weld regions increases the galvanic corrosion couples. Furthermore, by decreasing the grain size in the weld regions, the susceptibility to corrosion is enhanced. The pitting corrosion and intergranular attack are the dominant corrosion types in the weld regions and the parent alloy.

  13. Microstructure and mechanical properties of friction stir welded thin sheets of 2024-T4 aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    LI Lian; TONG Jian-hua; WAN Fa-rong; LONG Yi

    2006-01-01

    Friction stir welding (FSW) is a new and promising welding processing that can produce low-cost and high-quality joints of aluminum alloys. 1 mm thick sheets of 2024-T4 aluminum alloys which are always used as building and decorating materials were welded by FSW. The microstrueture and mechanical properties of friction stir welded 1 mm thick sheets of 2024-T4 aluminum alloy were studied. It was found that the thinner the 2024 aluminum alloy, the larger the FSW technological parameters field. The grains size of weld nugget zone (WNZ) is approximately 10 times smaller than that of the parent material, but the second phase in the material is not refined apparently in the welding. The FS welded joints have about 40% higher yield strength than the parent material,but the elongation of FS welded joints is under about 50% of the parent material. The electron backscattered diffraction (EBSD)results show that there are much more low angle boundaries (LAB) in WNZ than that in parent material, which indicates that FSW causes a number of sub-grain structures in WNZ, and this is also the reason of the increase of yield strength and Vickers hardness of the welded joint.

  14. Evaluation of weld porosity in laser beam seam welds: optimizing continuous wave and square wave modulated processes.

    Energy Technology Data Exchange (ETDEWEB)

    Ellison, Chad M. (Honeywell FM& T, Kansas City, MO); Perricone, Matthew; Faraone, Kevin M. (Honeywell FM& T, Kansas City, MO); Roach, Robert Allen; Norris, Jerome T.

    2007-02-01

    Nd:YAG laser joining is a high energy density (HED) process that can produce high-speed, low-heat input welds with a high depth-to-width aspect ratio. This is optimized by formation of a ''keyhole'' in the weld pool resulting from high vapor pressures associated with laser interaction with the metallic substrate. It is generally accepted that pores form in HED welds due to the instability and frequent collapse of the keyhole. In order to maintain an open keyhole, weld pool forces must be balanced such that vapor pressure and weld pool inertia forces are in equilibrium. Travel speed and laser beam power largely control the way these forces are balanced, as well as welding mode (Continuous Wave or Square Wave) and shielding gas type. A study into the phenomenon of weld pool porosity in 304L stainless steel was conducted to better understand and predict how welding parameters impact the weld pool dynamics that lead to pore formation. This work is intended to aid in development and verification of a finite element computer model of weld pool fluid flow dynamics being developed in parallel efforts and assist in weld development activities for the W76 and future RRW programs.

  15. New trends for the NDT of aeronautic welds

    Science.gov (United States)

    Ithurralde, G.; Simonet, D.; Choffy, J.-P.; Bernard, L.

    2001-04-01

    Recent advances in laser beam welding, electron beam welding and friction stir welding enable to join aeronautic and space alloys (mainly aluminum based) and think about new welded design for structural parts at a lower cost. This paper deals with both the non destructive testing approach implemented for welding process optimization, and the NDT multi-sensors tools selected because of their ability for on-line defect tracking automation.

  16. Microstructural development in PWA-1480 electron beam welds: An atom probe field ion microscopy study

    Energy Technology Data Exchange (ETDEWEB)

    David, S.A.; Miller, M.K. [Oak Ridge National Lab., TN (United States); Babu, S.S. [The Pennsylvania State Univ., State College, PA (United States)

    1995-12-31

    The microstructure development in PWA-1480 superalloy electron beam weld (Ni-11.0 at. % Al-11.5% Cr-1.9% Ti-5.1% Co-4.0% Ta-1.3% W) was characterized. Optical microscopy revealed a branched dendritic structure in the weld metal. Transmission electron microscopy of these welds, in the as-welded condition, showed fine cuboidal (0.05--0.5 {mu}m) L1{sub 2}-ordered {gamma}{prime} precipitates within the y grains. The average volume percentage of {gamma}{prime} precipitates was found to be {approx}5%. Atom probe analyses revealed that the composition of {gamma} matrix was Ni-4.6 at. % Al-25.5% Cr-0.4% Ti-9.4% Co-0.8% Ta-2.9% W and that of {gamma}{prime} precipitates was Ni-17.3 at. % Al-2.6% Cr-2.4% Ti-3.0% Co-7.4% Ta-1.3% W. These compositions were compared with the previous APFIM analyses of commercial PWA-1480 single crystals that had received conventional heat treatments. Small differences were found in the chromium and aluminum levels and these may be due to the nonequilibrium nature of phase transformations that occur during weld cooling. No solute segregation was detected at the {gamma}-{gamma}{prime}interface. The APFIM results were also compared with the thermodynamic calculations of alloying element partitioning between {gamma} and {gamma}{prime} using the ThermoCalc{trademark} software.

  17. Electron beam welding of SiCp/LD2 composite

    Institute of Scientific and Technical Information of China (English)

    CHEN Mao-ai; WU Chuan-song; ZOU Zeng-da

    2006-01-01

    The 2 mm-thick SiCp/LD2 composite plates were electron beam welded at different heat inputs. The microstructures of welds were investigated by OM, TEM, SEM, and XRD, and the properties of welds were measured with MTS-810 testing system.The results show that the quantity and size of acicular Al4C3 precipitates (interfacial reaction product) decrease with the heat input decreasing. When the heat input lowers to 30 J/mm, the formation of needle-like Al4C3 can be prevented. The distributions of SiC in the fusion zones are more uniform than that in as-received composite. TEM analysis reveals that there are Al4C3 crystals on the surface of every survived particle, the needle-like Al4C3 observed under the optical microscope consists of many tabular Al4C3 crystals which have different orientations. With the increase of heat input, the fracture mechanism changes from ductile one to brittle one, the quantity of fractured particles on the fracture face decreases and the strength and ductility of the weld decrease.

  18. Effect of tool rotational speed and penetration depth on dissimilar aluminum alloys friction stir spot welds

    Directory of Open Access Journals (Sweden)

    Joaquín M. Piccini

    2017-03-01

    Full Text Available In the last years, the automotive industry is looking for the use of aluminum parts in replace of steel parts in order to reduce the vehicles weight. These parts have to be joined, for instance, by welding processes. The more common welding process in the automotive industry is the Resistance Spot Welding (RSW technique. However, RSW of aluminum alloys has many disadvantages. Regarding this situation, a variant of the Friction Stir Welding process called Friction Stir Spot Welding (FSSW has been developed, showing a strong impact in welding of aluminum alloys and dissimilar materials in thin sheets. Process parameters affect the characteristics of the welded joints. However, the information available on this topic is scarce, particularly for dissimilar joints and thin sheets. The aim of this work was to study the effect of the rotational speed and the tool penetration depth on the characteristics of dissimilar FSS welded joints. Defects free joints have been achieved with higher mechanical properties than the ones reported. The maximum fracture load was 5800 N. It was observed that the effective joint length of the welded spots increased with the tool penetration depth, meanwhile the fracture load increased and then decreased. Finally, welding at 1200 RPM produced welded joints with lower mechanical properties than the ones achieved at 680 and 903 RPM.

  19. Fatigue Properties of Welded Butt Joint and Base Metal of MB8 Magnesium Alloy

    Directory of Open Access Journals (Sweden)

    Ying-xia YU

    2016-09-01

    Full Text Available The fatigue properties of welded butt joint and base metal of MB8 magnesium alloy were investigated. The comparative fatigue tests were carried out using EHF-EM200K2-070-1A fatigue testing machine for both welded butt joint and base metal specimens with the same size and shape. The fatigue fractures were observed and analyzed by a scanning electron microscope of 6360 LA type. The experimental results show that the fatigue performance of the welded butt joint of MB8 magnesium alloy is sharply decreased. The conditional fatigue limit (1×107 of base metal and welded butt joint is about 69.41 and 32.76 MPa, respectively. The conditional fatigue limit (1×107 of the welded butt joint is 47.2 % of that of base metal. The main reasons are that the welding can lead to stress concentration in the weld toe area, tensile welding residual stress in the welded joint, as well as grain coarsening in the welding seam. The cleavage steps or quasi-cleavage patterns present on the fatigue fracture surface, indicating the fracture type of the welded butt joint belongs to a brittle fracture.DOI: http://dx.doi.org/10.5755/j01.ms.22.3.9132

  20. Welding Distortion Prediction in 5A06 Aluminum Alloy Complex Structure via Inherent Strain Method

    Directory of Open Access Journals (Sweden)

    Zhi Zeng

    2016-09-01

    Full Text Available Finite element (FE simulation with inherent deformation is an ideal and practical computational approach for predicting welding stress and distortion in the production of complex aluminum alloy structures. In this study, based on the thermal elasto-plastic analysis, FE models of multi-pass butt welds and T-type fillet welds were investigated to obtain the inherent strain distribution in a 5A06 aluminum alloy cylindrical structure. The angular distortion of the T-type joint was used to investigate the corresponding inherent strain mechanism. Moreover, a custom-designed experimental system was applied to clarify the magnitude of inherent deformation. With the mechanism investigation of welding-induced buckling by FE analysis using inherent deformation, an application for predicting and mitigating the welding buckling in fabrication of complex aluminum alloy structure was developed.

  1. Natural Aging Behavior Of Friction Stir Welded Al-Zn-Mg-Cu Aluminum Alloys

    Directory of Open Access Journals (Sweden)

    Kalemba I.

    2015-06-01

    Full Text Available The long term natural aging behavior of friction stir welded aluminum 7136-T76 and 7042 T6 extrusions was investigated. The microstructural characteristics and mechanical properties in the as-welded and six years naturally aged conditions were studied and correlated to a coupled thermal/material flow model of the joining process. Hardness profiles for the 7136 alloy taken along the mid-plane thickness of the workpiece displayed the characteristic W-shape. With natural aging, hardness recovery occurred on both sides of the weld, but the position of the hardness minima, particularly on the advancing side, shifted away from the weld centerline. The hardness profile for the 7042 alloy displayed U-shape in the as-welded condition and W-shape after natural aging. The hardness behavior upon natural aging correlated to the temperature profile developed during welding and the degree to which phase dissolution occurred in the regions adjacent to the stir zone.

  2. The Influence of Post Weld Heat Treatment in Alloy 82/182 Dissimilar Metal Weld between Low Alloy Steel and 316L Stainless Steel

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sunghoon; Hong, Jong-Dae; Jang, Changheui [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Lee, Kyoung Soo [KHNP-CRI, Daejeon (Korea, Republic of)

    2014-10-15

    Dissimilar metal welds (DMWs) using an Alloy 82/182 are widely used to join low alloy steel components and stainless steel pipes in pressurized water reactors (PWRs). It has been reported that tensile residual stress would be generated within DMWs during the welding processes. It is thought as main reason for primary water stress corrosion cracking (PWSCC) resulting in deterioration of long-term integrity. The application of post weld heat treatment (PWHT) has been considered to reduce the tensile residual stress after welding process. Meanwhile, the PWHT could affect the changes in microstructure, mechanical properties, and corrosion resistance. Therefore, in this study, the effects of PWHT on the microstructure, mechanical properties and corrosion behaviors of base metals of low alloy steel and stainless steel and welding materials of Alloy 82/182 are evaluated. The influence of PWHT in DMW has been investigated. SA 508 and 316L SS exhibited tempered bainite and austenitic grains with a few residual stringer type ferrite. Grain boundary carbides are not precipitated owing to low carbon and insufficient exposure time in 316L SS. The change of mechanicals properties in base metals is not observed. In case of Alloy 182, after PWHT, grain boundaries are covered with film-like continuous Cr-rich carbides.

  3. Distortion and residual stresses in laser beam weld shaft-hub joints

    Science.gov (United States)

    Buschenhenke, F.; Hofmann, M.; Seefeld, T.; Vollertsen, F.

    In laser beam welding, a serious challenge is to control the distortion during the process. Understanding the whole process chain in view of different distortion potentials applied in each processing step provides the ability to control the distortion of the welded components. Every manufacturing step induces residual stresses in the component which can be released by the heat of the welding process, while further residual stresses are introduced into the welded parts upon cooling. The laser beam sources of the new generation permit a high power welding process and high beam quality at the same time. These laser beams are capable of producing deep and narrow seams. Thus the thermal strains of the joined parts are expected to be minimized. Especially axial welded shaft-hub joints show an irregular distribution of bending deformation, which is caused by the self-influencing welding gap. This work deals with the investigation of different laser beam sources and their effect on the welding distortion in axial welded shafthub joints made of steel (20MnCr5). The aim of the work done was to achieve minimal distortion after the welding process. To characterize the influences on the distortion behaviour of the welded parts, residual stresses have been determined by neutron diffraction.

  4. Effect of Beam Oscillation on Microstructure and Mechanical Properties of AISI 316L Electron Beam Welds

    Science.gov (United States)

    Kar, Jyotirmaya; Roy, Sanat Kumar; Roy, Gour Gopal

    2017-02-01

    The properties of electron beam-welded AISI 316L stainless steel butt joints prepared with and without beam oscillation were evaluated by microstructural analysis, mechanical testing like microhardness measurements, tensile tests at room and elevated temperature 973 K (700 °C), three-point bend, and Charpy impact tests. All joints, irrespective of being prepared with or without beam oscillation, were found to be defect free. Welds produced by beam oscillation exhibited narrower fusion zone (FZ) with lathy ferrite morphology, while the weld without beam oscillation was characterized by wider FZ and skeletal ferrite morphology. During tensile tests at room and elevated temperature 973 K (700 °C), all samples fractured in the base metal (BM) and showed almost the same tensile properties as that of the BM. However, the notch tensile tests at room temperature demonstrated higher strength for joints prepared with the oscillating beam. Besides, face and root bend tests, as well as Charpy impact tests, showed higher bending strength and notch toughness, respectively, for joints prepared with beam oscillation.

  5. Effect of Beam Oscillation on Microstructure and Mechanical Properties of AISI 316L Electron Beam Welds

    Science.gov (United States)

    Kar, Jyotirmaya; Roy, Sanat Kumar; Roy, Gour Gopal

    2017-04-01

    The properties of electron beam-welded AISI 316L stainless steel butt joints prepared with and without beam oscillation were evaluated by microstructural analysis, mechanical testing like microhardness measurements, tensile tests at room and elevated temperature 973 K (700 °C), three-point bend, and Charpy impact tests. All joints, irrespective of being prepared with or without beam oscillation, were found to be defect free. Welds produced by beam oscillation exhibited narrower fusion zone (FZ) with lathy ferrite morphology, while the weld without beam oscillation was characterized by wider FZ and skeletal ferrite morphology. During tensile tests at room and elevated temperature 973 K (700 °C), all samples fractured in the base metal (BM) and showed almost the same tensile properties as that of the BM. However, the notch tensile tests at room temperature demonstrated higher strength for joints prepared with the oscillating beam. Besides, face and root bend tests, as well as Charpy impact tests, showed higher bending strength and notch toughness, respectively, for joints prepared with beam oscillation.

  6. Effect of pulsed current welding on fatigue behaviour of high strength aluminium alloy joints

    Energy Technology Data Exchange (ETDEWEB)

    Balasubramanian, V. [Department of Manufacturing Engineering, Annamalai University, Annamalai Nagar 608 002, Tamil Nadu (India)], E-mail: visvabalu@yahoo.com; Ravisankar, V. [Department of Manufacturing Engineering, Annamalai University, Annamalai Nagar 608 002, Tamil Nadu (India); Madhusudhan Reddy, G. [Metal Joining Section, Defence Metallurgical Research Laboratory (DMRL), Kanchanbag (P.O), Hyderabad 560 058 (India)

    2008-07-01

    High strength aluminium alloys (Al-Zn-Mg-Cu alloys) have gathered wide acceptance in the fabrication of light weight structures requiring high strength-to weight ratio, such as transportable bridge girders, military vehicles, road tankers and railway transport systems. The preferred welding processes of high strength aluminium alloy are frequently gas tungsten arc welding (GTAW) process and gas metal arc welding (GMAW) process due to their comparatively easier applicability and better economy. Weld fusion zones typically exhibit coarse columnar grains because of the prevailing thermal conditions during weld metal solidification. This often results inferior weld mechanical properties and poor resistance to hot cracking. In this investigation, an attempt has been made to refine the fusion zone grains by applying pulsed current welding technique. Rolled plates of 6 mm thickness have been used as the base material for preparing single pass welded joints. Single V butt joint configuration has been prepared for joining the plates. The filler metal used for joining the plates is AA 5356 (Al-5Mg (wt%)) grade aluminium alloy. Four different welding techniques have been used to fabricate the joints and they are: (i) continuous current GTAW (CCGTAW), (ii) pulsed current GTAW (PCGTAW), (iii) continuous current GMAW (CCGMAW) and (iv) pulsed current GMAW (PCGMAW) processes. Argon (99.99% pure) has been used as the shielding gas. Fatigue properties of the welded joints have been evaluated by conducting fatigue test using rotary bending fatigue testing machine. Current pulsing leads to relatively finer and more equi-axed grain structure in gas tungsten arc (GTA) and gas metal arc (GMA) welds. In contrast, conventional continuous current welding resulted in predominantly columnar grain structures. Grain refinement is accompanied by an increase in fatigue life and endurance limit.

  7. A Study of Friction Stir Welded 2195 Al-Li Alloy by the Scanning Reference Electrode Technique

    Science.gov (United States)

    Donford, M. D.; Ding, R. J.

    1998-01-01

    A study of the corrosion of friction stir welded 2195 Al-Li alloy has been carried out using the scanning reference electrode technique (SRET). The results are compared to those obtained from a study of heterogeneously welded samples.

  8. Thermal Stir Welding of High Strength and High Temperature Alloys for Aerospace Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Keystone and MSU team propose to demonstrate the feasibility of solid-state joining high strength and temperature alloys utilizing the Thermal Stir Welding...

  9. Microstructure and Mechanical Properties of Friction Stir Lap Welded Aluminum Alloy AA2014

    Institute of Scientific and Technical Information of China (English)

    S. Babu; G.D. Janaki Ram; P.V. Venkitakrishnan; G. Madhusudhan Reddy; K. Prasad Rao

    2012-01-01

    Friction stir lap welds were produced in 3 mm thick Alclad sheets of Al alloy 2014-T4 using two different tools (with triangular and threaded taper cylindrical pins). The effects of tool geometry on weld microstructure, lap-shear performance and failure mode were investigated. The pin profile was found to significantly influence the hook geometry, which in turn strongly influenced the joint strength and the failure mode. Welds produced in alloy 2014-T4 Alclad sheets by using triangular and threaded taper cylindrical tools exhibited an average lap-shear failure load of 16.5 and 19.5 kN, respectively, while the average failure load for standard riveted joints was only 3.4 kN. Welds produced in alloy 2014-T6 Alclad sheets and in alloy 2014-T4 bare sheets (i.e., no Alclad) were comparatively evaluated with those produced in alloy 2014-T4 Alclad sheets. While the welds made (with threaded taper cylindrical tool) in T6 and T4 conditions showed very similar lap-shear failure loads, the joint efficiency of the welds made in T6 condition (43%) was considerably lower (because of the higher base material strength) than those made in T4 condition (51%). The Alclad layers were found to present no special problems in friction stir lap welding. Welds made with triangular tool in alloy 2014-T4 Alclad and bare sheets showed very similar lap-shear failure loads. The present work provides some useful insights into the use of friction stir welding for joining Al alloys in lap configuration.

  10. Stress corrosion crack initiation of alloy 182 weld metal in primary coolant - Influence of chemical composition

    Energy Technology Data Exchange (ETDEWEB)

    Calonne, O.; Foucault, M.; Steltzlen, F. [AREVA (France); Amzallag, C. [EDF SEPTEN (France)

    2011-07-01

    Nickel-base alloys 182 and 82 have been used extensively for dissimilar metal welds. Typical applications are the J-groove welds of alloy 600 vessel head penetrations, pressurizer penetrations, heater sleeves and bottom mounted instrumented nozzles as well as some safe end butt welds. While the overall performance of these weld metals has been good, during the last decade, an increasing number of cases of stress corrosion cracking of Alloy 182 weld metal have been reported in PWRs. In this context, the role of weld defects has to be examined. Their contribution in the crack initiation mechanism requires laboratory investigations with small scale characterizations. In this study, the influence of both alloy composition and weld defects on PWSCC (Stress Corrosion Cracking in Primary Water) initiation was investigated using U-bend specimens in simulated primary water at 320 C. The main results are the following: -) the chemical compositions of the weld deposits leading to a large propensity to hot cracking are not the most susceptible to PWSCC initiation, -) macroscopically, superficial defects did not evolve during successive exposures. They can be included in large corrosion cracks but their role as 'precursors' is not yet established. (authors)

  11. Strain hardening and damage in 6xxx series aluminum alloy friction stir welds

    DEFF Research Database (Denmark)

    Simar, Aude; Nielsen, Kim Lau; de Meester, Bruno

    2010-01-01

    A friction stir weld in 6005A-T6 aluminum alloy has been prepared and analyzed by micro-hardness measurements, tensile testing and scanning electron microscopy (SEM). The locations of the various weld zones were determined by micro-hardness indentation measurements. The flow behavior of the various...

  12. Laser welding of SSM Cast A356 aluminium alloy processed with CSIR-Rheo technology

    CSIR Research Space (South Africa)

    Akhter, R

    2006-01-01

    Full Text Available Samples of aluminium alloy A356 were manufactured by Semi Solid Metals HPDC technology, developed recently in CSIR, Pretoria. They were butt welded in as cast conditions using as Nd: YAG laser. The best metal and weld microstructure were presented...

  13. Effects of heat treatment and welding process on superelastic behaviour and microstructure of micro electron beam welded NiTi

    Directory of Open Access Journals (Sweden)

    Balz Isabel

    2016-09-01

    Full Text Available Medical devices with small dimensions made of superelastic NiTi become more popular, but joining these parts remains challenging. Since laser welding was found to be an option, electron beam welding seems to be an interesting alternative as it provides additional advantages due to the precise beam positioning and the high vacuum. Superelasticity is influenced by microstructure and surface layer composition that are mainly affected by welding process and by heat treatment and therefore will be investigated in the present paper.

  14. Numerical simulation of weld tab length influence on welding residual stress and distortion of aero-engine disk

    Institute of Scientific and Technical Information of China (English)

    Xue-qiu ZHANG; Jian-guo YANG; Xue-song LIU; Xu-hui CHEN; Hong-yuan FANG; Shen QU

    2009-01-01

    In order to control the welding residual stress and distortion to the greatest extent, based on the MSC. MARC software platform and adopting the impending critical value methods gradually, the welding residual stress and distortion are calculated through varying the weld tab length values. The results show that different weld tab lengths only have a slight effect on welding residual stress but a significant effect on welding distortion. According to the calculation results with different weld tab lengths, the critical length value for the 100 mm-length TC4 alloy weld for electron beam welding of an integral disk should be 50 mm or so.

  15. Optimizing friction stir welding parameters to maximize tensile strength of AA2219 aluminum alloy joints

    Science.gov (United States)

    Babu, S.; Elangovan, K.; Balasubramanian, V.; Balasubramanian, M.

    2009-04-01

    AA2219 aluminium alloy (Al-Cu-Mn alloy) has gathered wide acceptance in the fabrication of lightweight structures requiring a high strength-to-weight ratio and good corrosion resistance. In contrast to the fusion welding processes that are routinely used for joining structural aluminium alloys, the friction stir welding (FSW) process is an emerging solid state joining process in which the material that is being welded does not melt and recast. This process uses a non-consumable tool to generate frictional heat in the abutting surfaces. The welding parameters such as tool rotational speed, welding speed, axial force etc., and the tool pin profile play a major role in determining the joint strength. An attempt has been made here to develop a mathematical model to predict the tensile strength of friction stir welded AA2219 aluminium alloy by incorporating FSW process parameters. A central composite design with four factors and five levels has been used to minimize the number of experimental conditions. The response surface method (RSM) has been used to develop the model. The developed mathematical model has been optimized using the Hooke and Jeeves search technique to maximize the tensile strength of the friction stir welded AA2219 aluminium alloy joints.

  16. Robotic Nd:YAG Fiber Laser Welding of Ti-6Al-4V Alloy

    Directory of Open Access Journals (Sweden)

    Ceyhun Köse

    2017-06-01

    Full Text Available In the present study, Ti6Al4V titanium alloy plates were joined using a robotic fiber laser welding method. The laser welding process was carried out at two different welding speeds. Effects of different heat input conditions on the microstructure and mechanical properties of robotic fiber laser welded joints were investigated. Some grain coarsening was observed in the microstructure of weld metal in samples joined using high heat input, compared to those using low heat input, and volume rates of primary α structures increased in the weld metal. The microstructure of weld metal in samples joined using low heat input was made of basket-weave or acicular α' grains and primary β grains in grain boundaries. Tensile and yield strength of samples joined using low heat input were higher than for those joined using high heat input, but their ductility was lower.

  17. Strength and microstructure of 2091 Al-Li alloy TIG welded joint

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The microstructure and tensile properties of TIG welding joints of 2091 Al-Li alloy were investigated both in as-welded and different postweld heat treatment condition. The results show that solution strengthening played an important role in the as-welded condition, though the precipitation strengthening δ' phase formed already in the as-welded weld metal, but its effect was not apparent due to the lower volume fraction of δ' phase. So the strength coefficient (φ) of the welded joint/base metal was 64%. After artificially aging heat treatment, the precipitation strengthening effect increased much due to the formation of more δ' phase and s' phase. Its φ value was increased up to 89%. The highest strength of the welded joints was obtained after solid solution and then artificially aged heat treatment. Due to the proper size of precipitation strengthening phases and their well distribution, the φ value was increased up to 98%.

  18. Effect of Welding Parameters on Microstructure and Mechanical Properties of Cast Fe-40Al Alloy

    Directory of Open Access Journals (Sweden)

    Osman Torun

    2016-09-01

    Full Text Available Friction welding of cast Fe-40Al alloy was carried out at 1000 rmp for various friction times, friction pressures, and forging pressures. The microstructures of the interface of welded samples were analyzed by optical and scanning electron microscopy (SEM. Micrographs demonstrated that excellent welding formed continuously along the interface, except for samples welded for 3 s. Chemical compositions of the interface of the friction welded samples and of the fractured surface of all the specimens were determined using energy dispersive spectroscopy (EDS. After the welding process, shear tests were applied to the welded samples to determine the shear strength of joints. Test results indicated that the maximum shear strength was 469.5 MPa.

  19. Optimization of parameters and study of joint microstructure of resistance spot welding of magnesium alloy

    Institute of Scientific and Technical Information of China (English)

    Wang Yarong; Zhang Zhongdian; Li Dongqing

    2006-01-01

    Experimental investigations on the DC spot welding of Mg alloy AZ31B are presented. Experiments are carried out to study the influence of spot welding parameters (electrode force, welding heat input and welding time) on the tensile shear load and the diameter of nugget, based on an orthogonal test and analysis method. The optimum parameters are as follows:electrode force is 2 000 N, welding heat input is 80% and welding time is 6 cycles. The microstructure of spot weld is single fine equiaxed crystals in the nugget, of which the structure is β-Mg17Al12 precipitated on α-Mg boundaries induced by nonequilibrium freezing. And the surface condition of the workpiece has great influence on the joint quality.

  20. Joint performance of laser-TIG double-side welded 5A06 aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    CHEN Yan-bin; MIAO Yu-gang; LI Li-qun; WU Lin

    2009-01-01

    The influence of welding parameters on mechanical properties and microstructure of the welds of laser-TIG double-side welded 5A06 aluminum alloy was investigated. The results show that the weld cross-sectional shape has an intimate relation with the mechanical properties and microstructure of the welds. The symmetrical "X" cross-section possesses a relatively higher tensile strength and elongation than the others, about 91% and 58% of those of base metal, respectively. The good weld profiles and free defects are responsible for the improvement of tensile properties. Due to low hardness of the fusion zone, this region is the weakest area in the tensile test and much easier to fracture. The loss of Mg element is responsible for the decrease of mechanical properties of the joints. The microstructure of "X" cross-section has an obvious difference along the direction of weld depth, and that of the "H" cross-section is consistent and coarse.

  1. Sensors Array Technique for Monitoring Aluminum Alloy Spot Welding

    Institute of Scientific and Technical Information of China (English)

    WANG Rui; LUO Zhen; SHAN Ping; BU Xianzheng; YUAN Shuxian; AO Sansan

    2010-01-01

    In this paper, the sensors array technique is applied to the quality detection of aluminum alloy spot weld-ing. The sensors array has three forms, i.e., linear magnetic sensors array, annular magnetic sensors array and cross magnetic sensors array. An algorithm based on principal component analysis is proposed to extract the signal eigen-values. The three types of magnetic sensors array are used in the experiment of monitoring the signal. After the eigen-values are extracted, they are used to build a relationship with the nugget information. The result shows that when the distance between the core of the array and the pole is 60 mm, the arrays work best. In this case, when the eigenvalues' range of the linear array is 0.006 5-0.015 1, the quality of the spots is eligible. To the annular and cross array, when the ranges are 0.082 9—0.131 6 and 0.085 1—0.098 2 respectively, the nugget quality is eligible.

  2. Effect of Pulsed Current TIG Welding Parameters on Pitting Corrosion Behaviour of AA6061 Aluminium Alloy

    Institute of Scientific and Technical Information of China (English)

    T. Senthil Kumar; V. Balasubramanian; M. Y. Sanavullah; S. Babu

    2007-01-01

    Medium strength aluminium alloy (Al-Mg-Si alloy) has gathered wide acceptance in the fabrication of light weight structures requiring a high strength-to weight ratio, such as transportable bridge girders, military vehicles, road tankers and railway transport systems. The preferred welding process for aluminium alloy is frequently TIG (tungsten inert gas) welding due to its comparatively easier applicability and better economy.In the case of single pass TIG welding of thinner section of this alloy, the pulsed current has been found beneficial due to its advantages over the conventional continuous current process. The use of pulsed current parameters has been found to improve the mechanical properties of the welds compared to those of continuous current welds of this alloy due to grain refinement occurring in the fusion zone. A mathematical model has been developed to predict pitting corrosion potential of pulsed current TIG welded AA6061 aluminium alloy.Factorial experimental design has been used to optimize the experimental conditions. Analysis of variance technique has been used to find out the significant pulsed current parameters. Regression analysis has been used to develop the model. Using the developed model pitting corrosion potential values have been estimated for different combinations of pulsed current parameters and the results are analyzed in detail.

  3. Research for the method of image acquisition of the molten pool in the TIG welding of aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    王建军; 林涛; 陈善本; 王伟

    2004-01-01

    Obtaining the image of molten pool aluminum alloy's tungsten inert gas(TIG)welding becomes a challenging problem in the welding field. In this paper, a bran-new optical sensor based analyzing the light spectrum was designed, and the clear image of the molten pool during the aluminum alloy's welding using the common industrial CCD camera was obtained. And with the new algorithm provided by myself, the desirable characteristic parameters of the molten pool of aluminum alloy's welding were obtained, and it provides a good base for advanced monitor welding quality.

  4. Effect of post weld heat treatment on the mechanical and corrosion behaviour of welded Al-Fe-Si alloy joints

    Directory of Open Access Journals (Sweden)

    Isiaka Oluwole OLADELE

    2017-06-01

    Full Text Available Al-Fe-Si alloy was joined by shielded metal arc welding (SMAW process and the effects of post weld heat treatment (PWHT on the mechanical (tensile and hardness properties, corrosion behaviour and microstructure of the welded joints were investigated. The welded samples were divided into as-weld (AW, PWHT, base metal (BM and heat treated base metal (HT BM samples. Artificial aging was carried out on part of the welded sample at 177 °C with holding time of 8 hours to obtain the PWHT samples. The various samples were subjected to tensile, hardness and corrosion tests while microstructures of the fractured surfaces were viewed under optical microscope. From the results, it was observed that corrosion susceptibility of the alloy in 3.5 wt% NaCl solution was highly reduced after PWHT. The hardness was reduced after PWHT while the yield strength and joint efficiency was improved compared to the AW sample. The improvement in corrosion resistance, yield strength and joint efficiency are 78, 8.4 and 8.7 %, respectively.

  5. New explosive welding technique to weld aluminum alloy and stainless steel plates using a stainless steel intermediate plate

    Energy Technology Data Exchange (ETDEWEB)

    Hokamoto, K.; Fujita, M. (Kumamoto Univ. (Japan). Dept. of Mechanical Engineering); Izuma, T. (Asahi Chemical Industry Co., Ltd., Siga (Japan))

    1993-10-01

    Various aluminum alloys and stainless steel were explosively welded using a thin stainless steel intermediate plate inserted between the aluminum alloy driver and stainless steel base plates. At first. the velocity change of the driver plate with flying distance is calculated using finite-difference analysis. Since the kinetic energy lost by collision affects the amount of the fused layer generated at the interface between the aluminum alloy and stainless steel, the use of a thin stainless steel intermediate plate is effective for decreasing the energy dissipated by the collision. The interfacial zone at the welded interface is composed of a fine eutectic structure of aluminum and Fe[sub 4]Al[sub 13], and the explosive welding, process of this metal combination proceeds mainly by intensive deformation of the aluminum alloy. The weldable region for various aluminum alloys is decided by the change in collision velocity and kinetic energy lost by collision, and the weldable region is decreased with the increase in the strength of the aluminum alloy.

  6. Experimental study of timber-to-timber composite beam using welded-through wood dowels

    OpenAIRE

    O'Loinsigh, Cian; Oudjene, M.; Ait-Aider, H.; Fanning, Paul; Pizzi, A.; Shotton, Elizabeth; Meghlat, E.-M.

    2012-01-01

    This paper presents exploratory research related to novel full-scale multi-layered timber beams with composite action achieved with welded-through wood dowels. Different multi-layer beam designs, where the timber layers were interconnected with welded wood dowels providing interlayer shear resistance, were tested in bending with different dowel densities. The main originality of this study is the achievement of dowel welds through greater depths of sections than has previously proved possible...

  7. Towards the problem of forming full strength welded joints on aluminum alloy sheets. Part II: AA7475

    Science.gov (United States)

    Kalashnikova, Tatiana; Tarasov, Sergey; Eliseev, Alexander; Fortuna, Anastasiya

    2016-11-01

    The microstructural evolution in welded joint zones obtained both by friction stir welding and ultrasonic- assisted friction stir welding on dispersion hardened 7475 aluminum alloy has been examined together with the analysis of mechanical strength and microhardness. It was established that ultrasonic-assisted friction stir provided leveled microhardness profiles across the weld zones as well as higher joint strength as compared to those of standard friction stir welding.

  8. An application of ultrasonic phased array imaging in electron beam welding inspection

    Institute of Scientific and Technical Information of China (English)

    周琦; 刘方军; 李志军; 李旭东; 齐铂金

    2002-01-01

    The basic principle and features of ultrasonic phased array imaging are discussed in this paper. Through the ultrasonic phased array technology, the electron beam welding defects and frozen keyholes characterization and imaging were realized. The ultrasonic phased array technology can detect kinds of defects in electron beam welding (EBW) quickly and easily.

  9. Cutting and Welding of Nanomaterials with an Electron Beam

    Institute of Scientific and Technical Information of China (English)

    S.Y.Xu; M.L.Tian

    2007-01-01

    1 Results Scanning tunneling microscope and atomic force microscope have been applied to manipulate individual atoms or clusters on a clean surface.Focused ion beam technique is routinely used to cut materials down to sub-100 nm dimension.However,in between the atomic and the sub-100 nm scales,i.e.,at the nanometer scale,to date there is no well-established physical modification technique.Here we demonstrate that localized,impurity-free nano-welding and nano-cutting techniques with a high-intensity elec...

  10. The interfacial structure of plated copper alloy resistance spot welded joint

    Science.gov (United States)

    Wu, Jingwei; Zhai, Guofu; Chen, Qing; Wang, Jianqi; Ren, Gang

    2008-09-01

    Plated copper alloys are widely used in electron industry. The plating lay caused the farther decreasing of the welding property of copper alloys, whose intrinsic weldability was poor. In this paper, the bronze and brass specimens with nickel-tin double plating layer were joined by resistance spot welding method. The microstructure and peel strength of the joints were investigated. The experiment results show that a sandwich-like structure was obtained in the faying surface after welding, and the nickel plating layer thickness had severe effect on the reliability of the joints.

  11. The interfacial structure of plated copper alloy resistance spot welded joint

    Energy Technology Data Exchange (ETDEWEB)

    Wu Jingwei [Xiamen Hongfa Electroacoustic Co., Ltd, 361021 Xiamen (China); Harbin Institute of Technology, 150001 Harbin (China)], E-mail: jingweiwu.hit@gmail.com; Zhai Guofu [Harbin Institute of Technology, 150001 Harbin (China); Chen Qing; Wang Jianqi; Ren Gang [Xiamen Hongfa Electroacoustic Co., Ltd, 361021 Xiamen (China)

    2008-09-15

    Plated copper alloys are widely used in electron industry. The plating lay caused the farther decreasing of the welding property of copper alloys, whose intrinsic weldability was poor. In this paper, the bronze and brass specimens with nickel-tin double plating layer were joined by resistance spot welding method. The microstructure and peel strength of the joints were investigated. The experiment results show that a sandwich-like structure was obtained in the faying surface after welding, and the nickel plating layer thickness had severe effect on the reliability of the joints.

  12. Microstructure evaluation in low alloy steel weld metal from convective heat transfer calculations in three dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Mundra, K.; DebRoy, T.; Babu, S.S. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Materials Science and Engineering; David, S.A. [Oak Ridge National Lab., TN (United States)

    1995-12-31

    Heat transfer and fluid flow during manual metal arc welding of low alloy steels were investigated by solving the equations of conservation of mass, momentum, and energy in three dimensions. Cooling rates were calculated at various locations in the weldment. Calculated cooling rates were coupled with an existing phase transformation model to predict percentages of acicular, allotriomorphic, and Widmanstaetten ferrites in various low alloy steel welds containing different concentration of V and Mn. Computed microstructures were in good agreement with experiment, indicating promise for predicting weld metal microstructure from the fundamentals of transport phenomena.

  13. X-ray online detection for laser welding T-joint of Al-Li alloy

    Science.gov (United States)

    Zhan, Xiaohong; Bu, Xing; Qin, Tao; Yu, Haisong; Chen, Jie; Wei, Yanhong

    2017-05-01

    In order to detect weld defects in laser welding T-joint of Al-Li alloy, a real-time X-ray image system is set up for quality inspection. Experiments on real-time radiography procedure of the weldment are conducted by using this system. Twin fillet welding seam radiographic arrangement is designed according to the structural characteristics of the weldment. The critical parameters including magnification times, focal length, tube current and tube voltage are studied to acquire high quality weld images. Through the theoretical and data analysis, optimum parameters are settled and expected digital images are captured, which is conductive to automatic defect detection.

  14. The fatigue life of a cobalt-chromium alloy after laser welding.

    Science.gov (United States)

    Al-Bayaa, Nabil Jalal Ahmad; Clark, Robert K F; Juszczyk, Andrzej S; Radford, David R

    2011-03-01

    The aim of this study was to investigate the fatigue life of laser welded joints in a commercially available cast cobalt-chromium alloy. Twenty rod shaped specimens (40 mm x 1.5 mm) were cast and sand blasted. Ten specimens were used as controls and the remaining ten were sectioned and repaired using a pulsed Nd: YAG laser welder. All specimens were subjected to fatigue testing (30N - 2Hz) in a controlled environment. A statistically significant difference in median fatigue life was found between as-cast and laser welded specimens (p welded specimens despite 70% penetration of the weld.

  15. Ultrasonic-assisted friction stir welding on V95AT1 (7075) aluminum alloy

    Science.gov (United States)

    Tarasov, S. Yu.; Rubtsov, V. Ye.; Kolubaev, E. A.; Ivanov, A. N.; Fortuna, S. V.; Eliseev, A. A.

    2015-10-01

    Ultrasonic-assisted friction stir butt welding on aluminum alloy V95AT1 (7075) has been carried out. Samples have been characterized using metallography, microhardness and XRD. As shown, ultrasonic treatment during welding provides extra plasticizing of metal and better stirring efficiency. The latter serves for elimination of defects, such as root flaw and grain refining in the stir zone. The stress state in the welded joint is characterized by tensile stress in the direction of the weld seam centerline and compression in the transversal direction. The ultrasonic treatment was shown to increase the compression stress and relieve the tensile one.

  16. Microstructural evolution during friction stir welding of AlSi1MgMn alloy

    Directory of Open Access Journals (Sweden)

    M. Janjić

    2012-01-01

    Full Text Available This paper provides the research of the infl uence of geometric and kinematic parameters on the microstructure and mechanical properties of welded joint of aluminum alloy AlSi1MgMn (6082-T6 obtained through the Friction Stir Welding (FSW process. The experiment parameters were welding speed, rotation speed, angle of pin slope, pin diameter and shoulder diameter. On the obtained welded workpieces the dynamic testing on the impact toughness, and determination of microstructural zones were carried out.

  17. Evaluation of Microstructure and Mechanical Property of FSW Welded MB3 Magnesium Alloy

    Institute of Scientific and Technical Information of China (English)

    WANG Kuai-she; SHEN Yang; YANG Xi-rong; WANG Xun-hong; XU Ke-wei

    2006-01-01

    An experiment was carried out on the friction stir welding of MB3 magnesium alloy to determine welding parameters for obtaining an excellent weld appearance without void, cracking, or distortion. Frictional heat and plastic flow created fine and equiaxed grains in the weld nugget, and the elongated and recovered grains in the thermomechanically affected zone (TMAZ). The grains in the heat affected zone (HAZ) grow slightly. The mechanical property results show that maximum joint tensile strength can reach 97.2% of the parent material, which is stronger than that of fusion joints; and the failure almost occurs in the heat affected zone.

  18. Corrosion behavior of Al6061 alloy weldment produced by friction stir welding process

    OpenAIRE

    Farhad Gharavi; Khamirul Amin Matori; Robiah Yunus; Norinsan Kamil Othman; Firouz Fadaeifard

    2015-01-01

    In this work, the corrosion behavior of welded lap joints of AA6061-T6 aluminum alloy produced by friction stir welding process has been investigated. Corrosion properties of welded lap joints were studied by cyclic polarization and electrochemical impedance spectroscopy tests. All tests were performed in an aerated 0.6 mol L−1 NaCl aqueous solution with pH = 6.5 at a temperature of 30 °C to characterize corrosion morphology and realize corrosion features of weld regions as opposed to the par...

  19. Impact resistance and hardness modelling of Aluminium alloy welds using square-headed friction-stir welding tool

    Science.gov (United States)

    Sudhakar, U.; Srinivas, J., Dr.

    2016-02-01

    This paper proposes modelling and optimization issues relating to friction-stir welding process of aluminium alloys. A specially prepared SS tool of square headed pin profile with cylindrical shoulder is used with a vertical milling machine. Effects of process variables including tool rotation and tool velocity on the weld performance are studied in terms of impact strength and hardness. Three different rotational motions and three welding speeds (feeds) of tool are considered at constant axial load (depth of cut) condition and altogether nine experiments are conducted on a vertical milling machine with specially prepared fixture. Each weld sample is then tested for its impact strength (IS) and hardness independently. A model is developed to correlate the relations between the hardness/impact strength with tool rotation and weld speed using neural networks. The optimized process conditions are predicted to improvise the impact strength and hardness of the weld. Further, the morphology of the weld is studied using SEM to know the material flow characteristics.

  20. A Comparative Study on the Laser Welding of Ti6Al4V Alloy Sheets in Flat and Horizontal Positions

    Directory of Open Access Journals (Sweden)

    Baohua Chang

    2017-04-01

    Full Text Available Laser welding has been increasingly utilized to manufacture a variety of components thanks to its high quality and speed. For components with complex shapes, the welding position needs be continuously adjusted during laser welding, which makes it necessary to know the effects of the welding position on the quality of the laser welds. In this paper, the weld quality under two (flat and horizontal welding positions were studied comparatively in the laser welding of Ti6Al4V titanium alloy, in terms of weld profiles, process porosity, and static tensile strengths. Results show that the flat welding position led to better weld profiles, less process porosity than that of the horizontal welding position, which resulted from the different actions of gravity on the molten weld metals and the different escape routes for pores under different welding positions. Although undercuts showed no association with the fracture positions and tensile strengths of the welds, too much porosity in horizontal laser welds led to significant decreases in the strengths and specific elongations of welds. Higher laser powers and travel speeds were recommended, for both flat and horizontal welding positions, to reduce weld porosity and improve mechanical properties.

  1. Microstructure and Mechanical Properties of TIG Weld Joint of ZM5 Magnesium Alloy

    Directory of Open Access Journals (Sweden)

    QIN Ren-yao

    2016-06-01

    Full Text Available The ZM5 magnesium alloy plates were welded by TIG welding method. The microstructural characteristics and mechanical properties of ZM5 magnesium alloy joint were studied by optical microscopy, microhardness and tensile testers. The results show that the TIG weld joint of ZM5 magnesium alloy is composed of heat affected zone, partially melted zone and weld metal. The heat affected zone is consisted of primary α-Mg phase and eutectic phase that is composed of eutectic α-Mg and eutectic β-Mg17Al12 phase and mainly precipitated at grain boundaries. In the partially melted zone, the eutectic phase is not only increasingly precipitated at grain boundaries, but also dispersed in grains, and the growth of the β-Mg17Al12 phase is obviously observed. The microstructure in the weld is the typical dendritic morphology. The dendrites are considered as primary α-Mg phase, and the interdendritic regions are α+β eutectic phase. The difference in the microstructure of the heat affected zone, partially melted zone and weld results in their various microhardness values, and leads to the smaller tensile strength and ductility in the ZM5 alloy weld joint than parent metal.

  2. Influence of Post Weld Heat Treatment on Strength of Three Aluminum Alloys Used in Light Poles

    Directory of Open Access Journals (Sweden)

    Craig C. Menzemer

    2016-03-01

    Full Text Available The conjoint influence of welding and artificial aging on mechanical properties were investigated for extrusions of aluminum alloy 6063, 6061, and 6005A. Uniaxial tensile tests were conducted on the aluminum alloys 6063-T4, 6061-T4, and 6005A-T1 in both the as-received (AR and as-welded (AW conditions. Tensile tests were also conducted on the AR and AW alloys, subsequent to artificial aging. The welding process used was gas metal arc (GMAW with spray transfer using 120–220 A of current at 22 V. The artificial aging used was a precipitation heat treatment for 6 h at 182 °C (360 °F. Tensile tests revealed the welded aluminum alloys to have lower strength, both for yield and ultimate tensile strength, when compared to the as-received un-welded counterpart. The beneficial influence of post weld heat treatment (PWHT on strength and ductility is presented and discussed in terms of current design provisions for welded aluminum light pole structures.

  3. Gas Metal Arc Welding Using Novel CaO-Added Mg Alloy Filler Wire

    Directory of Open Access Journals (Sweden)

    Minjung Kang

    2016-07-01

    Full Text Available Novel “ECO Mg” alloys, i.e., CaO-added Mg alloys, which exhibit oxidation resistance during melting and casting processes, even without the use of beryllium or toxic protection gases such as SF6, have recently been introduced. Research on ECO Mg alloys is still continuing, and their application as welding filler metals was investigated in this study. Mechanical and metallurgical aspects of the weldments were analysed after welding, and welding behaviours such as fume generation and droplet transfer were observed during welding. The tensile strength of welds was slightly increased by adding CaO to the filler metal, which resulted from the decreased grain size in the weld metal. When welding Mg alloys, fumes have been unavoidable so far because of the low boiling temperature of Mg. Fume reduction was successfully demonstrated with a wire composed of the novel ECO Mg filler. In addition, stable droplet transfer was observed and spatter suppression could be expected by using CaO-added Mg filler wire.

  4. Nanomechanical properties of friction stir welded AA6082-T6 aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Koumoulos, E.P. [National Technical University of Athens, Department of Chemical Engineering 9 Heroon, Polytechneiou st., Zografos, Athens, GR-157 80 (Greece); Charitidis, C.A., E-mail: charitidis@chemeng.ntua.gr [National Technical University of Athens, Department of Chemical Engineering 9 Heroon, Polytechneiou st., Zografos, Athens, GR-157 80 (Greece); Daniolos, N.M.; Pantelis, D.I. [National Technical University of Athens, Department of Naval Architecture and Marine Engineering 9 Heroon, Polytechneiou st., Zografos, Athens, GR-157 80 (Greece)

    2011-11-25

    Lightweight alloys are of major concern, due to their functionality and applications in transport and industry applications. Friction stir welding (FSW) is a solid-state welding process for joining aluminum and other metallic alloys and has been employed in aerospace, rail, automotive and marine industries. Compared to the conventional welding techniques, FSW produces joints which do not exhibit defects caused by melting. The objective of the present study is to investigate the surface hardness (H) and elastic modulus (E) in friction stir welded aluminum alloy AA6082-T6. The findings of the present study reveal that the welding process softens the material, since the weld nugget is the region where the most deformations are recorded (dynamic recrystallization, production of an extremely fine, equiaxial structure), confirmed by optical microscopy and reduced nanomechanical properties in the welding zone. A yield-type pop-in occurs upon low loading and represents the start of phase transformation, which is monitored through a gradual slope change of the load-displacement curve. Significant pile-up is recorded during nanoindentation of the alloy through SPM imaging.

  5. Investigation of copper and copper alloy's welding and discussion on manual SHS welding of copper and copper alloy%铜及铜合金焊接研究现状和手工自蔓延焊接铜问题探讨

    Institute of Scientific and Technical Information of China (English)

    曲利峰; 辛文彤; 吴永胜; 李志尊

    2011-01-01

    Meaning of research on Copper and Copper Alloy's welding is of great importance because of the good property and abroad application. Technical characteristics of Copper and Copper AIloy's normal welding,like gas welding,brazing and soldering,activing welding, MIG welding,friction stir welding, thermit friction stir welding,laser welding,laser welding electron beam welding and Self-propagating High-temperature Synthesis (SHS) welding was studied and classified in the paper as well as the analysis about domestic and foreign present situation of research. It is also analyzed that how normal welding can provide direction and guidance for the Manual SHS Welding Technology of Copper and Copper Alloy. Moreover,the present problem of manual SHS welding of copper and copper alloy is diseussed,especially the wettability between welding seam and base metal,the separation between slag and welding seam on emphasis,and the further research orientation was indicated.%概述了铜及铜合金的气焊、钎焊、活性焊、MIG焊、搅拌摩擦焊及热摩擦搅拌焊、激光焊、电子束焊等常规焊法和自蔓延焊法的技术特点及国内外的研究现状.论述了在当前铜及铜合金手工自蔓延焊接技术的研究过程中如何借鉴融合其他焊接技术的工艺及机理,并讨论了铜及铜合金手工自蔓延焊接所存在的问题并对其产生原因作了初步分析.着重分析了焊接时熳缝金属与母材的润湿性,熔渣与焊缝金属的分离等当亟需解决的问题,指出了需要深入研究的方向和解决问题的思路.

  6. Braze Welding TIG of Titanium and Aluminium Alloy Type Al – Mg

    Directory of Open Access Journals (Sweden)

    Winiowski A.

    2016-03-01

    Full Text Available The article presents the course and the results of technological tests related to TIG-based arc braze welding of titanium and AW-5754 (AlMg3 aluminium alloy. The tests involved the use of an aluminium filler metal (Al99.5 and two filler metals based on Al-Si alloys (AlSi5 and AlSi12. Braze welded joints underwent tensile tests, metallographic examinations using a light microscope as well as structural examinations involving the use of a scanning electron microscope and an X-ray energy dispersive spectrometer (EDS. The highest strength and quality of welds was obtained when the Al99.5 filler metal was used in a braze welding process. The tests enabled the development of the most convenient braze welding conditions and parameters.

  7. Susceptibility testing for welding of AlMg alloys intended for extrusion

    Directory of Open Access Journals (Sweden)

    J. Borowski

    2016-07-01

    Full Text Available The objective of research was to determine the weldability, using Tungsten Inert Gas (TIG of extruded sections made of hard-deformable 5xxx series aluminum alloys with differing magnesium content, i.e. AlMg3, AlMg4,5, AlMg5, AlMg7. Welded joints were obtained as a result of a welding process consisting of several steps. Only welds characterized by very good appearance and quality were selected for tests. As a result of conducted research, TIG welding parameters were determined for sections with a thickness of 8 mm. It was observed that alloys of differing Mg content are characterized by high weldability and do not exhibit a significant reduction of the yield point. Moreover, joints exhibit uniform hardness distribution in the welded joint and heat-affected zone. Tensile strength is reduced.

  8. Metallurgical and mechanical properties of laser welded high strength low alloy steel.

    Science.gov (United States)

    Oyyaravelu, Ramachandran; Kuppan, Palaniyandi; Arivazhagan, Natarajan

    2016-05-01

    The study aimed at investigating the microstructure and mechanical properties of Neodymium-Doped Yttrium Aluminum Garnet (Nd:YAG) laser welded high strength low alloy (HSLA) SA516 grade 70 boiler steel. The weld joint for a 4 mm thick plate was successfully produced using minimum laser power of 2 kW by employing a single pass without any weld preheat treatment. The micrographs revealed the presence of martensite phase in the weld fusion zone which could be due to faster cooling rate of the laser weldment. A good correlation was found between the microstructural features of the weld joints and their mechanical properties. The highest hardness was found to be in the fusion zone of cap region due to formation of martensite and also enrichment of carbon. The hardness results also showed a narrow soft zone at the heat affected zone (HAZ) adjacent to the weld interface, which has no effect on the weld tensile strength. The yield strength and ultimate tensile strength of the welded joints were 338 MPa and 549 MPa, respectively, which were higher than the candidate metal. These tensile results suggested that the laser welding process had improved the weld strength even without any weld preheat treatment and also the fractography of the tensile fractured samples showed the ductile mode of failure.

  9. Explosive welding of a near-equiatomic nickel-titanium alloy to low-carbon steel

    Energy Technology Data Exchange (ETDEWEB)

    Zimmerly, C.A. (Materials and Metallurgical Engineering Department, New Mexico Institute of Mining and Technology, Socorro, NM 87801 (United States)); Inal, O.T. (Materials and Metallurgical Engineering Department, New Mexico Institute of Mining and Technology, Socorro, NM 87801 (United States)); Richman, R.H. (Daedalus Associates, Inc., Mountain View, CA 94043 (United States))

    1994-11-30

    Equiatomic and near-equiatomic NiTi alloys are very resistant to cavitation erosion compared with the alloys commonly used to construct pumps and hydroturbines. Thin layers (0.4-1.0 mm) of a near-equiatomic NiTi alloy were explosively welded to low-carbon steel substrates to fabricate high-strength, bimetallic tandems in which the NiTi provided resistance to cavitation damage and the low-carbon steel provided structural strength. Tensile lap-shear tests on the welded material revealed bond strength of up to 387 MPa. As-welded NiTi/steel tandems were less resistant to cavitation erosion than annealed, unwelded samples; however, a post-weld heat treatment at 500 C recovered most of the lost resistance. ((orig.))

  10. Numerical and experimental study of phase transformation in resistance spot welding of 6082 aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    TANG Xinxin; SHA Ping; LUO Zhen; LUO Baofa

    2009-01-01

    Resistance spot welding(RSW) is an efficient and convenient joining process for aluminum alloy sheet assembly. Because the RSW has the character of energy concentration and quick cooling rate, the microstructure transformation of the base metal can be confined in the least limit. The material properties and the welding parameters have significant effects on thequality of the nugget. To predict the microstructure evolution in the melted zone and the heat-affected zone, an electrical, thermal, metallurgical and mechanical coupled finite element model is described and applied to simulate the welding process of the 6082 aluminum alloy. Experimental tests are also carried out. The comparison between experimental and numerical results shows that the adopted model is effective enough to well interpret and predict some important phenomena in terms of the phase transformation in spot welding of 6082 aluminum alloy.

  11. Process parameters optimization for friction stir welding of RDE-40 aluminium alloy using Taguchi technique

    Institute of Scientific and Technical Information of China (English)

    A.K.LAKSHMINARAYANAN; V.BALASUBRAMANIAN

    2008-01-01

    Taguchi approach was applied to determine the most influential control factors which will yield better tensile strength of the joints of friction stir welded RDE-40 aluminium alloy. In order to evaluate the effect of process parameters such as tool rotational speed, traverse speed and axial force on tensile strength of friction stir welded RDE-40 aluminium alloy, Taguchi parametric design and optimization approach was used. Through the Taguchi parametric design approach, the optimum levels of process parameters were determined. The results indicate that the rotational speed, welding speed and axial force are the significant parameters in deciding the tensile strength of the joint. The predicted optimal value of tensile strength of friction stir welded RDE-40 aluminium alloy is 303 MPa. The results were confirmed by further experiments.

  12. Numerical simulation of deep cryogenic treatment electrode tip temperature for spot welding aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    Wu Zhisheng; Hu Minying; Liu Cuirong

    2006-01-01

    Deep cryogenic treatment technology of electrodes is put forward to improve electrode life of resistance spot welding of aluminum alloy LF2. Deep cryogenic treatment makes electrode life for spot welding aluminum alloy improve. The specific resistivity of the deep cryogenic treatment electrodes is tested and experimental results show that specific resistivity is decreased sharply. The temperature field and the influence of deep cryogenic treatment on the electrode tip temperature during spot welding aluminium alloy is studied by numerical simulation method with the software ANSYS. The axisymmetric finite element model of mechanical, thermal and electrical coupled analysis of spot welding process is developed. The numerical simulation results show that the influence of deep cryogenic treatment on electrode tip temperature is very large.

  13. Liquation Cracking in Arc and Friction-Stir Welding of Mg-Zn Alloys

    Science.gov (United States)

    Wagner, Dustin C.; Chai, Xiao; Tang, Xin; Kou, Sindo

    2015-01-01

    As compared to Al alloys, which are known to be susceptible to liquation ( i.e., liquid formation) and liquation-induced cracking, most Mg alloys have a lower eutectic temperature and thus are likely to be even more susceptible. The present study was conducted to study liquation and liquation cracking in Mg alloys during arc welding and friction-stir welding (FSW). Binary Mg-Zn alloys were selected as a model material in view of their very low eutectic temperature of 613 K (340 °C). Mg-Zn alloys with 2, 4, and 6 wt pct of Zn were cast and welded in the as-cast condition by both gas-tungsten arc welding (GTAW) and FSW. A simple test for liquation cracking was developed, which avoided interference by solidification cracking in the nearby fusion zone. Liquation and liquation cracking in GTAW were found to be in the decreasing order of Mg-6Zn, Mg-4Zn, and Mg-2Zn. Liquation cracking occurred in FSW of Mg-6Zn but not Mg-4Zn or Mg-2Zn. Instead of a continuous ribbon-like flash connected to the weld edge, small chips, and powder covered the weld surface of Mg-6Zn. The results from GTAW and FSW were discussed in light of the binary Mg-Zn phase diagram and the curves of temperature vs fraction solid during solidification.

  14. Grey relational and neural network approach for multi-objective optimization in small scale resistance spot welding of titanium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Xiaodong; Wang, Yuanxun; Zhao, Dawei [Huazhong University of Science and Technology, Wuhan (China)

    2016-06-15

    The prediction and optimization of weld quality characteristics in small scale resistance spot welding of TC2 titanium alloy were investigated. Grey relational analysis, neural network and genetic algorithm were applied separately. Quality characteristics were selected as nugget diameter, failure load, failure displacement and failure energy. Welding parameters to be optimized were set as electrode force, welding current and welding time. Grey relational analysis was conducted for a rough estimation of the optimum welding parameters. Results showed that welding current played a key role in weld quality improvement. Different back propagation neural network architectures were then arranged to predict multiple quality characteristics. Interaction effects of welding parameters were analyzed with the proposed neural network. Failure load was found more sensitive to the change of welding parameters than nugget diameter. Optimum welding parameters were determined by genetic algorithm. The predicted responses showed good agreement with confirmation experiments.

  15. NIR-camera-based online diagnostics of laser beam welding processes

    Science.gov (United States)

    Dorsch, Friedhelm; Braun, Holger; Keßler, Steffen; Pfitzner, Dieter; Rominger, Volker

    2012-03-01

    We have developed an on-axis camera-based online sensor system for laser beam welding diagnostics that detects the thermal radiation in the near-infrared (NIR) spectral range between 1200 and 1700 nm. In addition to a sensor in the visible (VIS) range, our camera detects the thermal radiation of the weld pool more clearly, and it is also sensible to the radiation of the solidified weld seam. The NIR images are analyzed by real-time image processing. Features are extracted from the images and evaluated to characterize the welding process. Keyhole and weld pool analysis complement VIS diagnostics, whereas the observation of the weld seam and heat affected zone with an NIR camera allows online heat flux thermography. By this means we are able to detect bad joints in overlap weldings ("false friends") online during the welding process.

  16. Effect of welding parameters of the Nd:YAG laser on the penetration depth of cobalt chromium alloys.

    Science.gov (United States)

    Vlachogianni, V; Clark, R K F; Juszczyk, A S; Radford, D R

    2012-03-01

    The aim of the investigation was to study the effect of the laser welding parameters of energy and spot diameter on the penetration depth of the weld of cast Co-Cr alloy when a single weld was performed. Within the limitations of the study as voltage increased and the spot diameter decreased, penetration depth increased. However, SEM investigation showed more defects in the welded area under these circumstances. The clinical significance is that during selection of the welding parameters the thickness of the components to be welded should be considered to achieve an extended welded area without the induction of micro-structural defects.

  17. Friction stir welding of AZ31 magnesium alloys processed by equal channel angular pressing

    Institute of Scientific and Technical Information of China (English)

    ZHANG Bing; YUAN Shouqian; WANG Xunhong

    2008-01-01

    Equal channel angular pressing (ECAP) is an effective thermo-mechanical process to make ultrafine grains.An investigation was carried out on the friction stir welding (FSW) of ECAPed AZ31 magnesium alloys with a thickness of 15 mm.For different process parameters,the optimum FSW conditions of ECAPed AZ31 magnesium alloys were examined.The basic characterization of weld formation and the mechanical properties of the joints were discussed.The results show that the effect of welding parameters on welding quality was evident and welding quality was sensitive to welding speed.Sound joints could be obtained when the welding speed was 37.5 mm/min and the rotation speed of the stir tool was 750 r/min.The maximum tensile strength (270 MPa) of FSW was 91% that of the base materials.The value of microhardness varied between advancing side and retreating side because of the speed field near the pin of the stir tool,which weakened the deformed stress field.The value of microhardness of the welding zone was lower than that of the base materials.The maximum value was located near the heat-affected zone (HAZ).Remarkable ductile character was observed from the fracture morphologies of welded joints.

  18. Effect Of Process Parameters On Mechanical Properties Of Friction Stir.Welded Joint Of Two Similar &Dissimilar Al-Alloys

    Directory of Open Access Journals (Sweden)

    Umasankar Das,

    2015-09-01

    Full Text Available Friction Stir Welding (FSW is an advance joining process for different similar and dissimilar materials. It is commonly used for joining of Aluminum alloys. However it is necessary to overcome some challenges for its wide-spread uses. Tool design and the selection of process parameters are critical issues in the usage of this process. This study focuses on the process parameters that is required for producing effective friction stir welding of two similar aluminum alloys (AA6101T6 to AA6101T6 and dissimilar Aluminum alloys (AA6101T6 alloy to AA6351T6 . Three different tool diameters such as 20 mm, 25 mm and 30 mm with three different tool rotational speeds such as 600 rpm, 800 rpm and 1200 rpm have been used to weld the joints. The welded samples were tested for mechanical properties as well as microstructure. It was observed that 30 mm tool gives better weld quality for friction stir welding of similar aluminum alloy but 25 mm tool with 1200 rpm rotational speed gave satisfactory weld quality for friction stir welding of dissimilar aluminum alloys. It is one of the important welding process that can adopted for welding of aluminum alloys with excellent mechanical properties. The results were confirmed by further experiments.

  19. Mechanical property variation within Inconel 82/182 dissimilar metal weld between low alloy steel and 316 stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Changheui [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 373-1, Guseong-dong, Yuseong-gu, Daejeon 305-701 (Korea, Republic of)], E-mail: chjang@kaist.ac.kr; Lee, Jounghoon [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 373-1, Guseong-dong, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Sung Kim, Jong; Eun Jin, Tae [Korea Power Engineering Company, 360-9 Mabuk-ri, Guseong-eup, Yongin-si, Gyeonggi-do 449-713 (Korea, Republic of)

    2008-09-15

    In several locations of pressurized water reactors, dissimilar metal welds using Inconel welding wires are used to join the low alloy steel components to stainless-steel pipes. Because of the existence of different materials and chemistry variation within welds, mechanical properties, such as tensile and fracture properties, are expected to show spatial variation. For design and integrity assessment of the dissimilar welds, these variations should be evaluated. In this study, dissimilar metal welds composed of low alloy steel, Inconel 82/182 weld, and stainless steel were prepared by gas tungsten arc welding and shielded metal arc welding techniques. Microstructures were observed using optical and electron microscopes. Typical dendrite structures were observed in Inconel 82/182 welds. Tensile tests using standard and mini-sized specimens and micro-hardness tests were conducted to measure the variation in strength along the thickness of the weld as well as across the weld. In addition, fracture toughness specimens were taken at the bottom, middle, and top of the welds and tested to evaluate the spatial variation along the thickness. It was found that while the strength is about 50-70 MPa greater at the bottom of the weld than at the top of the weld, fracture toughness values at the top of the weld are about 70% greater than those at the bottom of the weld.

  20. Control of Titanium Alloy Thin Plate Welding Distortion by Trailing Peening

    Institute of Scientific and Technical Information of China (English)

    Xuesong LIU; Hongyuan FANG; Shude JI; Zhibo DONG

    2003-01-01

    The technology of trailing peening is a kind of promisingly bran-new technology which can be used to control weldingstress and distortion of Ti alloy thin plate. Control of TC4 Ti alloy thn plate welding stress and distortion underthe condition of convent

  1. An investigation of the microstructures and properties of metal inert gas and friction stir welds in aluminum alloy 5083

    Indian Academy of Sciences (India)

    A R Yazdipour; A Shafiei M; H Jamshidi Aval

    2011-08-01

    Two different types of welds, Metal Inert Gas (MIG) and Friction Stir Welding (FSW), have been used to weld aluminum alloy 5083. The microstructure of the welds, including the nugget zone and heat affected zone, has been compared in these two methods using optical microscopy. The mechanical properties of the weld have been also investigated using the hardness and tensile tests. The results show that both the methods could successfully be used to weld such alloy. The strength of the joints is comparable to the strength of the base metal in both cases. However, FSWed samples have shown higher strength in comparison to the MIG samples. The results also show that the extension of the heat affected zone is higher in the MIG method in comparison to the FSW method. The weld metal microstructure of MIG welded specimen contains equiaxed dendrites as a result of solidification process during MIG welding while FSWed samples have wrought microstructures.

  2. The Effect of Tool Press Force to Weldability of AA5754 and AA6061 Alloys with Friction Stir Welding Method

    Directory of Open Access Journals (Sweden)

    Tevfik Küçükömeroğlu

    2013-07-01

    Full Text Available In this study AA5754 and A6061 alloys have been butt welded to each other by using friction stir welding (FSW. At constant tool geometry and tool angle experiments were carried out, joints were performed using different welding speed, rotation speed and especially tool press force. The mechanical properties of the welded samples were determined by using tensile test, bending test and micro hardness. Generated microstructure and hardness profile was obtained in the welding zone. In this friction stir welding study the parameters which affect the joint structure are the tool press force, welding speed and tool rotation speed which were determined. At the end of study it is determined that AA5754 and AA6061 alloys can be successfully welded by using Friction Stir Welding method under different tool press forces at least 6kN.

  3. Bobbin-Tool Friction-Stir Welding of Thick-Walled Aluminum Alloy Pressure Vessels

    Energy Technology Data Exchange (ETDEWEB)

    Dalder, E C; Pastrnak, J W; Engel, J; Forrest, R S; Kokko, E; Ternan, K M; Waldron, D

    2007-06-06

    It was desired to assemble thick-walled Al alloy 2219 pressure vessels by bobbin-tool friction-stir welding. To develop the welding-process, mechanical-property, and fitness-for-service information to support this effort, extensive friction-stir welding-parameter studies were conducted on 2.5 cm. and 3.8 cm. thick 2219 Al alloy plate. Starting conditions of the plate were the fully-heat-treated (-T62) and in the annealed (-O) conditions. The former condition was chosen with the intent of using the welds in either the 'as welded' condition or after a simple low-temperature aging treatment. Since preliminary stress-analyses showed that stresses in and near the welds would probably exceed the yield-strength of both 'as welded' and welded and aged weld-joints, a post-weld solution-treatment, quenching, and aging treatment was also examined. Once a suitable set of welding and post-weld heat-treatment parameters was established, the project divided into two parts. The first part concentrated on developing the necessary process information to be able to make defect-free friction-stir welds in 3.8 cm. thick Al alloy 2219 in the form of circumferential welds that would join two hemispherical forgings with a 102 cm. inside diameter. This necessitated going to a bobbin-tool welding-technique to simplify the tooling needed to react the large forces generated in friction-stir welding. The bobbin-tool technique was demonstrated on both flat-plates and plates that were bent to the curvature of the actual vessel. An additional issue was termination of the weld, i.e. closing out the hole left at the end of the weld by withdrawal of the friction-stir welding tool. This was accomplished by friction-plug welding a slightly-oversized Al alloy 2219 plug into the termination-hole, followed by machining the plug flush with both the inside and outside surfaces of the vessel. The second part of the project involved demonstrating that the welds were fit for the intended

  4. Solid state welding processes for an oxide dispersion strengthened nickel-chromium-aluminum alloy

    Science.gov (United States)

    Moore, T. J.

    1975-01-01

    Solid-state welding processes were evaluated for joining TD-NiCrAl (Ni-16Cr-4Al-2ThO2) alloy sheet. Both hot-press and resistance spot welding techniques were successfully applied in terms of achieving grain growth across the bond line. Less success was achieved with a resistance seam welding process. In stress-rupture shear and tensile shear tests of lap joints at 1100 C, most failures occurred in the parent material, which indicates that the weld quality was good and that the welds were not a plane of weakness. The overall weld quality was not as good as previously attained with TD-NiCr, probably because the presence of alumina at the faying surfaces and the developmental TD-NiCrAl sheet, which was not of the quality of the TD-NiCr sheet in terms of surface flatness and dimensional control.

  5. Tensile properties and mechanical heterogeneity of friction stir welded joints of 2014 aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    ZHAO Yan-hua; LIN San-bao; WU Lin; QU Fu-xing

    2005-01-01

    2014 Al alloy of 8mm in thickness was successfully welded by friction stir welding method. The experimental results show that the tensile properties of the joints are significantly affected by the welding parameters. When the weld pitch is 0.25mm/r corresponding to the rotation speed of 400r/min and the welding speed of 100mm/min, the maximum ultimate strength of the joints is 78% that of the base material. For a certain weld joint, different parts possess different mechanical properties. In the three parts of the joint, the upper part is strongest and the middle part is poorest in mechanical properties. The mechanical properties and fracture locations of the joints are dependent on the microstructure variation and micro-hardness distributions of the joints, which attributes to the different thermo-mechanical actions on the different parts of the joints.

  6. Friction Stir Welding in Wrought and Cast Aluminum Alloys: Heat Transfer Modeling and Thermal History Analysis

    Science.gov (United States)

    Pan, Yi; Lados, Diana A.

    2017-02-01

    Friction stir welding (FSW) is a technique that can be used for materials joining and local microstructural refinement. Owing to the solid-state character of the process, FSW has significant advantages over traditional fusion welding, including reduced part distortion and overheating. In this study, a novel heat transfer model was developed to predict weld temperature distributions and quantify peak temperatures under various combinations of processing parameters for different wrought and cast Al alloys. Specifically, an analytical analysis was first developed to characterize and predict heat generation rate within the weld nugget, and then a two-dimensional (2D) numerical simulation was performed to evaluate the temperature distribution in the weld cross-section and top-view planes. A further three-dimensional (3D) simulation was developed based on the heat generation analysis. The model was validated by measuring actual temperatures near the weld nugget using thermocouples, and good agreement was obtained for all studied materials and conditions.

  7. Mechanism of laser welding on dissimilar metals between stainless steel and W-Cu alloy

    Institute of Scientific and Technical Information of China (English)

    Kai Chen; Zhiyong Wang; Rongshi Xiao; Tiechuan Zuo

    2006-01-01

    @@ CO2 laser is employed to join a piece of powder metallurgical material (PMM) to a stainless steel in butt joint welding mode. The powder Ni35, as a filler powder, is used. The weld metal comes from three parts of stainless steel, powder Ni35, and Cu in W-Cu PMM. It is indicated that some parts of the W-Cu base metal are heated by laser and the metal Cu at the width of 0.06-0.12 mm from the edge is melted into the melting pool in the laser welding process. The formation of firm weld joint is just because that the melting liquid metal could fill the position occupied by metal Cu and surround the metal W granules fully. The analysis results indicate that the mechanism of the laser welding for stainless steel and W-Cu alloy is a special mode of fusion-brazing welding.

  8. Laser-welded V-Cr-Ti alloys: Microstructure and mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K.; Smith, D.L.; Xu, Z.; Leong, K.H. [Argonne National Lab., IL (United States)

    1998-09-01

    A systematic study has been in progress at Argonne National Laboratory to examine the use of YaG or CO{sub 2} lasers to weld sheet materials of V-Cr-Ti alloys and to characterize the microstructural and mechanical properties of the laser-welded materials. In addition, several postwelding heat treatments are being applied to the welded samples to evaluate their benefits, if any, to the structure and properties of the weldments. Hardness measurements are made across the welded regions of different samples to evaluate differences in the characteristics of various weldments. Several weldments were used to fabricate specimens for four-point bend tests. Several additional weldments were made with a YaG laser; here, the emphasis was on determining the optimal weld parameters to achieve deep penetration in the welds. A preliminary assessment was then made of the weldments on the basis of microstructure, hardness profiles, and defects.

  9. Optimization design of resistance spot welding parameters of magnesium alloy

    Institute of Scientific and Technical Information of China (English)

    Lang Bo; Sun Daqian; Wu Qiong; Xuan Zhaozhi

    2008-01-01

    By means of the quadratic regression combination design process, the regression equations of nugget diameter and tensile shear load of spot welded joint were established. Effects of welding parameters on the nugget diameter and the tensile shear load were investigated. The results show that effect of welding current on nugget diameter is the most evident. And higher welding current will result in bigger nugget diameter. Besides, interaction effect of electrode force and welding current on tensile shear load is the most evident compared with others. The optimum welding parameters corresponding to the maximum of tensile shear load have been obtained by programming using Matlab software, which is 4.7kN electrode force, 28kA welding current and 4 cycle welding time. Under the condition of the optimum welding parameters, the joint having no visible defects can be obtained, nugget diameter and tensile shear load being 6.8mm and 3 256N, respectively.

  10. EVALUATION OF PARAMETERS OF FRICTION STIR WELDING FOR ALUMINIUM AA6351 ALLOY

    Directory of Open Access Journals (Sweden)

    AHMED KHALID HUSSAIN

    2010-10-01

    Full Text Available Friction Stir Welding (FSW is a solid state welding process in which the relative motion between the tool and the work piece produces heat which makes the material of two edges being joined by plastic atomicdiffusion. This method relies on the direct conversion of mechanical energy to thermal energy to form the weld without the application of heat from conventional source. The rotational speed of the tools, the axial pressure and welding speed and the (weld time are the principal variables that are controlled in order to provide the necessary combination of heat and pressure to form the weld. These parameters are adjusted so that the interface is heated into the plastic temperature range (plastic state where welding can take place. During the last stage of welding process, atomic diffusion occurs while the interfaces are in contact, allowing metallurgical bond to form between the two materials. The functional behaviour of the weldments is substantially determined by the nature of the weld strength characterized by the tensile strength, metallurgical behavior, surface roughness, weld hardness and micro hardness. In this project an attempt is made to determine and evaluate the influence of the process parameters of FSW on the weldments. The Vickers hardness, tensile strength and radiography are considered for investigation by varying tool speed, tool feed and maintaining onstant depth of penetration of weld. Experiments were conducted on AA6351 Aluminium alloy in a CNC Vertical Machining Centre. Theoutput factors are measured in UTM, Vickers hardness tester and Radiography equipment. Results show strong relation and robust comparison between the weldment strength and process parameters. Hence FSW process variable data base is to be developed for wide variety of metals and alloys for selection of optimum process parameters for efficient weld.

  11. High Rotation Speed Friction Stir Welding for 2014 Aluminum Alloy Thin Sheets

    Science.gov (United States)

    Chen, Shujin; Zhou, Yang; Xue, Junrong; Ni, Ruiyang; Guo, Yue; Dong, Jianghui

    2017-03-01

    In this study, 2014 aluminum alloy sheets with 1 mm thickness are welded successfully by friction stir welding (FSW) robot under the condition of high rotation speed. When the high rotation speed of 10,000-16,500 rpm is applied, the lower axial pressure (less than 200 N) is obtained, which reduces stiffness requirements for equipment. Welding deformation is inevitable because high rotation speed can easily result in rapid heating rate and uneven heat input. The welding distortion caused by two cooling methods is measured, respectively, by laser range finder. The experimental results show that the welding distortion is smaller under the condition of water cooling. When the rotation speed is up to 15,000 rpm and welding speed 50-170 mm/min, the whole welding process is controllable. Under the higher rotation speed condition, the welding defects disappear gradually and more stable mechanical properties can be obtained up to 75% of base metal (ω = 16,000 rpm, ν = 110 mm/min). The results of different welding parameters demonstrate that the high rotation speed can increase material mixing and reduce the axial force (z force), and it can benefit lightweight sheet welding by using FSW robot.

  12. High Rotation Speed Friction Stir Welding for 2014 Aluminum Alloy Thin Sheets

    Science.gov (United States)

    Chen, Shujin; Zhou, Yang; Xue, Junrong; Ni, Ruiyang; Guo, Yue; Dong, Jianghui

    2017-02-01

    In this study, 2014 aluminum alloy sheets with 1 mm thickness are welded successfully by friction stir welding (FSW) robot under the condition of high rotation speed. When the high rotation speed of 10,000-16,500 rpm is applied, the lower axial pressure (less than 200 N) is obtained, which reduces stiffness requirements for equipment. Welding deformation is inevitable because high rotation speed can easily result in rapid heating rate and uneven heat input. The welding distortion caused by two cooling methods is measured, respectively, by laser range finder. The experimental results show that the welding distortion is smaller under the condition of water cooling. When the rotation speed is up to 15,000 rpm and welding speed 50-170 mm/min, the whole welding process is controllable. Under the higher rotation speed condition, the welding defects disappear gradually and more stable mechanical properties can be obtained up to 75% of base metal (ω = 16,000 rpm, ν = 110 mm/min). The results of different welding parameters demonstrate that the high rotation speed can increase material mixing and reduce the axial force (z force), and it can benefit lightweight sheet welding by using FSW robot.

  13. Emission of nanoparticles during friction stir welding (FSW) of aluminium alloys.

    Science.gov (United States)

    Gomes, J F; Miranda, R M; Santos, T J; Carvalho, P A

    2014-01-01

    Friction stir welding (FSW) is now well established as a welding process capable of joining some different types of metallic materials, as it was (1) found to be a reliable and economical way of producing high quality welds, and (2) considered a "clean" welding process that does not involve fusion of metal, as is the case with other traditional welding processes. The aim of this study was to determine whether the emission of particles during FSW in the nanorange of the most commonly used aluminum (Al) alloys, AA 5083 and AA 6082, originated from the Al alloy itself due to friction of the welding tool against the item that was being welded. Another goal was to measure Al alloys in the alveolar deposited surface area during FSW. Nanoparticles dimensions were predominantly in the 40- and 70-nm range. This study demonstrated that microparticles were also emitted during FSW but due to tool wear. However, the biological relevance and toxic manifestations of these microparticles remain to be determined.

  14. CHARACTERIZATION OF Pro-Beam LOW VOLTAGE ELECTRON BEAM WELDING MACHINE

    Energy Technology Data Exchange (ETDEWEB)

    Burgardt, Paul [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pierce, Stanley W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-02-18

    The purpose of this paper is to present and discuss data related to the performance of a newly acquired low voltage electron beam welding machine. The machine was made by Pro-Beam AG &Co. KGaA of Germany. This machine was recently installed at LANL in building SM -39; a companion machine was installed in the production facility. The PB machine is substantially different than the EBW machines typically used at LANL and therefore, it is important to understand its characteristics as well as possible. Our basic purpose in this paper is to present basic machine performance data and to compare those with similar results from the existing EBW machines. It is hoped that this data will provide a historical record of this machine’s characteristics as well as possibly being helpful for transferring welding processes from the old EBW machines to the PB machine or comparable machines that may be purchased in the future.

  15. Processing and Optimization of Dissimilar Friction Stir Welding of AA 2219 and AA 7039 Alloys

    Science.gov (United States)

    Venkateswarlu, D.; Nageswara rao, P.; Mahapatra, M. M.; Harsha, S. P.; Mandal, N. R.

    2015-12-01

    The present paper discusses the optimization of dissimilar friction stir welding of AA 2219 and AA 7039 alloys with respect to tool design issues including microstructural study of weld. The optimized ultimate tensile strength was ~280 MPa, and % elongation was ~11.5. It was observed that the extent of tool shoulder flat surface and tool rotational speed influenced the weld quality significantly. A mathematical model was also developed using response surface regression analysis to predict the effects of tool geometry and process variables on dissimilar AA 2219 and AA 7039 alloys welds. The microstructure evolution and mechanical properties were investigated by employing electron backscatter diffraction technique, Vickers microhardness, and tensile testing, respectively. The microstructural observations indicated that the grain size obtained at advancing side (AA 2219 alloy side) was much finer compared to the retreating side (AA 7039 alloy side). Hardness distribution in the stir zone was inhomogeneous, which might be due to inadequate mixing of weld zone material. The hardness values observed at the weld zone were lower than that in the base materials.

  16. Analysis on the joint tensile strength and fractography of TiNi shape memory alloy precise pulse resistance butt welding

    Institute of Scientific and Technical Information of China (English)

    赵熹华; 韩立军; 赵蕾

    2002-01-01

    This paper studies mechanical property and fractography of the welded joints obtained in different welding parameters such as welding heat and welding press with/without gas shield in TiNi shape memory alloy precise pulse resistance butt welding using tensile strength test, XRD, SEM and TEM measures. The optimum welding parameters obtaining high tensile strength welded joint are got. On the condition of welding press magneting current 2 A and welding heat 75%, the joint strength is the highest. This is important for to study other properties of TiNi shape memory alloy further. The experimental results state that argon gas shield have different effects on different welding parameters, less on welding press, but great on welding heat. But excessive welding press and welding heat have great effects on joint tensile strength. Too high welding heat can produce the new intermetallic compound, this intermetallic compound lead to dislocation density to increase and form the potential crack initiation, which can easily make the joint fracture under stress effect and decrease the shape memory ratio of joint for high density dislocation groups existing in the twinned martensite.

  17. 76 FR 66899 - Certain Circular Welded Non-Alloy Steel Pipe From Brazil, Mexico, the Republic of Korea, and...

    Science.gov (United States)

    2011-10-28

    ... pipe from Brazil, Mexico, the Republic of Korea, and Taiwan; and certain circular welded carbon steel... Steel Pipe from Brazil, Mexico, the Republic of Korea, and Taiwan; and Certain Circular Welded Carbon... International Trade Administration Certain Circular Welded Non-Alloy Steel Pipe From Brazil, Mexico,...

  18. 75 FR 13729 - Circular Welded Non-Alloy Steel Pipe from the Republic of Korea: Extension of Time Limit for the...

    Science.gov (United States)

    2010-03-23

    ... International Trade Administration Circular Welded Non-Alloy Steel Pipe from the Republic of Korea: Extension of... circular welded non-alloy steel pipe from the Republic of Korea, covering the period November 1, 2007 through October 31, 2008. See Circular Welded Non-Alloy Steel Pipe from the Republic of Korea:...

  19. Microstructure and mechanical properties of GTAW welded joints of AA6105 aluminum alloy

    Directory of Open Access Journals (Sweden)

    Minerva Dorta-Almenara

    2016-09-01

    Full Text Available Gas Tungsten Arc Welding (GTAW is one of the most used methods to weld aluminum. This work investigates the influence of welding parameters on the microstructure and mechanical properties of GTAW welded AA6105 aluminum alloy joints. AA6105 alloy plates with different percent values of cold work were joined by GTAW, using various combinations of welding current and speed. The fusion zone, in which the effects of cold work have disappeared, and the heat affected zone of the welded samples were examined under optical and scanning electron microscopes, additionally, mechanical tests and measures of Vickers microhardness were performed. Results showed dendritic morphology with solute micro- and macrosegregation in the fusion zone, which is favored by the constitutional supercooling when heat input increases. When heat input increased and welding speed increased or remained constant, greater segregation was obtained, whereas welding speed decrease produced a coarser microstructure. In the heat affected zone recrystallization, dissolution, and coarsening of precipitates occurred, which led to variations in hardness and strength.

  20. Analysis and Comparison of Friction Stir Welding and Laser Assisted Friction Stir Welding of Aluminum Alloy

    OpenAIRE

    Sabina Luisa Campanelli; Giuseppe Casalino; Caterina Casavola; Vincenzo Moramarco

    2013-01-01

    Friction Stir Welding (FSW) is a solid-state joining process; i.e., no melting occurs. The welding process is promoted by the rotation and translation of an axis-symmetric non-consumable tool along the weld centerline. Thus, the FSW process is performed at much lower temperatures than conventional fusion welding, nevertheless it has some disadvantages. Laser Assisted Friction Stir Welding (LAFSW) is a combination in which the FSW is the dominant welding process and the laser pre-heats the we...

  1. Influence of Friction Stir Welding (FSW) on Mechanical and Corrosion Properties of AW-7020M and Aw-7020 Alloys

    OpenAIRE

    Dudzik Krzysztof; Jurczak Wojciech

    2016-01-01

    Friction welding associated with mixing the weld material (FSW - Friction Stir Welding ) is an alternative to MIG and TIG welding techniques for Al-alloys. This paper presents experimental results obtained from static tension tests on specimens made of AW-7020M and AW-7020 alloys and their joints welded by using FSW method carried out on flat specimens, according to Polish standards : PN-EN ISO 4136:2011 and PN-EN ISO 6892-1:2010. Results of corrosion resistance tests are also presented. The ...

  2. Microstructure and mechanical properties of friction stir welding of AZ31B magnesium alloy added with cerium

    Institute of Scientific and Technical Information of China (English)

    于思荣; 陈显君; 黄志求; 刘耀辉

    2010-01-01

    The AZ31B magnesium alloy sheet added with 0.5 wt.% Ce was welded with friction stir welding(FSW).The microstructures and mechanical properties of the welded joint were investigated.The results showed that the microstructures in the weld nugget zone were uniform and with small equiaxed grains.The grains in the heat-affected zone and the thermo-mechanical affected zone were coarser than those in the base metal zone and the weld nugget zone.The ultimate tensile strength of AZ31B magnesium alloy added with 0.5...

  3. Microstructure and pitting corrosion of armor grade AA7075 aluminum alloy friction stir weld nugget zone – Effect of post weld heat treatment and addition of boron carbide

    Directory of Open Access Journals (Sweden)

    P. Vijaya Kumar

    2015-06-01

    Full Text Available Friction stir welding (FSW of high strength aluminum alloys has been emerged as an alternative joining technique to avoid the problems during fusion welding. In recent times FSW is being used for armor grade AA7075 aluminum alloy in defense, aerospace and marine applications where it has to serve in non uniform loading and corrosive environments. Even though friction stir welds of AA7075 alloy possess better mechanical properties but suffer from poor corrosion resistance. The present work involves use of retrogression and reaging (RRA post weld heat treatment to improve the corrosion resistance of welded joints of aluminum alloys. An attempt also has been made to change the chemical composition of the weld nugget by adding B4C nano particles with the aid of the FSW on a specially prepared base metal plate in butt position. The effects of peak aged condition (T6, RRA and addition of B4C nano particles on microstructure, hardness and pitting corrosion of nugget zone of the friction stir welds of AA7075 alloy have been studied. Even though RRA improved the pitting corrosion resistance, its hardness was slightly lost. Significant improvement in pitting corrosion resistance was achieved with addition of boron carbide powder and post weld heat treatment of RRA.

  4. Keyhole depth instability in case of CW CO2 laser beam welding of mild steel

    Indian Academy of Sciences (India)

    N Kumar; S Dash; A K Tyagi; Baldev Raj

    2010-10-01

    The study of keyhole (KH) instability in deep penetration laser beam welding (LBW) is essential to understand welding process and appearance of weld seam defects. The main cause of keyhole collapse is the instability in KH dynamics during the LBW process. This is mainly due to the surface tension forces associated with the KH collapse and the stabilizing action of vapour pressure. A deep penetration high power CW CO2 laser was used to generate KH in mild steel (MS) in two different welding conditions i.e. ambient atmospheric welding (AAW) and under water welding (UWW). KH, formed in case of under water welding, was deeper and narrower than keyhole formed in ambient and atmospheric condition. The number and dimensions of irregular humps increased in case of ambient and under water condition due to larger and rapid keyhole collapse also studied. The thermocapillary convection is considered to explain KH instability, which in turn gives rise to irregular humps.

  5. 75 FR 44763 - Certain Circular Welded Non-Alloy Steel Pipe From Mexico; Extension of Time Limit for Preliminary...

    Science.gov (United States)

    2010-07-29

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE International Trade Administration Certain Circular Welded Non-Alloy Steel Pipe From Mexico; Extension of Time... welded non- alloy steel pipe from Mexico. We also received review requests on November 30, 2009,...

  6. 77 FR 73617 - Certain Circular Welded Non-Alloy Steel Pipe From Mexico: Preliminary Results and Partial...

    Science.gov (United States)

    2012-12-11

    ... Value: Circular Welded Non-Alloy Steel Pipe From Mexico, 57 FR 42953 (September 17, 1992). Notification... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE International Trade Administration Certain Circular Welded Non-Alloy Steel Pipe From Mexico: Preliminary...

  7. Welding in space and the construction of space vehicles by welding; Proceedings of the Conference, New Carrollton, MD, Sept. 24-26, 1991

    Science.gov (United States)

    The present conference discusses such topics in spacecraft welding as the NASA Long Duration Exposure Facility's evidence on material properties degradation, EVA/telerobotic construction techniques, welding of the superfluid helium on-orbit transfer flight demonstration tanks and hardware, electron-beam welding of aerospace vehicles, variable-polarity plasma arc keyhole welding of Al, aircraft experiments of low-gravity fusion welding, flash-butt welding of Al alloys, and a computer-aided handbook for space welding fabrication. Also discussed are the welded nozzle extension for Ariane launch vehicles, the existence of on-orbit cold-welding, structural materials performance in long-term space service, high-strength lightweight alloys, steels, and heat-resistant alloys for aerospace welded structures, the NASA-Goddard satellite repair program, and the uses of explosion welding and cutting in aerospace engineering.

  8. Effect of Stress Relief Annealing on Microstructure & Mechanical Properties of Welded Joints Between Low Alloy Carbon Steel and Stainless Steel

    Science.gov (United States)

    Nivas, R.; Das, G.; Das, S. K.; Mahato, B.; Kumar, S.; Sivaprasad, K.; Singh, P. K.; Ghosh, M.

    2017-01-01

    Two types of welded joints were prepared using low alloy carbon steel and austenitic stainless steel as base materials. In one variety, buttering material and weld metal were Inconel 82. In another type, buttering material and weld metal were Inconel 182. In case of Inconel 82, method of welding was GTAW. For Inconel 182, welding was done by SMAW technique. For one set of each joints after buttering, stress relief annealing was done at 923 K (650 °C) for 90 minutes before further joining with weld metal. Microstructural investigation and sub-size in situ tensile testing in scanning electron microscope were carried out for buttered-welded and buttered-stress relieved-welded specimens. Adjacent to fusion boundary, heat-affected zone of low alloy steel consisted of ferrite-pearlite phase combination. Immediately after fusion boundary in low alloy steel side, there was increase in matrix grain size. Same trend was observed in the region of austenitic stainless steel that was close to fusion boundary between weld metal-stainless steel. Close to interface between low alloy steel-buttering material, the region contained martensite, Type-I boundary and Type-II boundary. Peak hardness was obtained close to fusion boundary between low alloy steel and buttering material. In this respect, a minimum hardness was observed within buttering material. The peak hardness was shifted toward buttering material after stress relief annealing. During tensile testing no deformation occurred within low alloy steel and failure was completely through buttering material. Crack initiated near fusion boundary between low alloy steel-buttering material for welded specimens and the same shifted away from fusion boundary for stress relieved annealed specimens. This observation was at par with the characteristics of microhardness profile. In as welded condition, joints fabricated with Inconel 82 exhibited superior bond strength than the weld produced with Inconel 182. Stress relief annealing

  9. Control of surface defects on plasma-MIG hybrid welds in cryogenic aluminum alloys

    Directory of Open Access Journals (Sweden)

    Lee Hee-Keun

    2015-07-01

    Full Text Available Lately, high production rate welding processes for Al alloys, which are used as LNG FPSO cargo containment system material, have been developed to overcome the limit of installation and high rework rates. In particular, plasma-metal inert gas (MIG hybrid (PMH welding can be used to obtain a higher deposition rate and lower porosity, while facilitating a cleaning effect by preheating and post heating the wire and the base metal. However, an asymmetric undercut and a black-colored deposit are created on the surface of PMH weld in Al alloys. For controlling the surface defect formation, the wire feeding speed and nozzle diameter in the PMH weld was investigated through arc phenomena with high-speed imaging and metallurgical analysis.

  10. Structure and Hardness of 01570 Aluminum Alloy Friction Stir Welds Processed Under Different Conditions

    Science.gov (United States)

    Il'yasov, R. R.; Avtokratova, E. V.; Markushev, M. V.; Predko, P. Yu.; Konkevich, V. Yu.

    2015-10-01

    Structure and hardness of the 01570 aluminum alloy joints processed by friction stir welding at various speeds are investigated. It is shown that increasing the traverse tool speed lowers the probability of macrodefect formation in the nugget zone; however, this can lead to anomalous grain growth in the zone of contact with the tool shoulder. Typical "onion-like" structure of the weld consisting of rings that differ by optical contrast is formed for all examined welding regimes. It is demonstrated that this contrast is caused by the difference in the grain sizes in the rings rather than by their chemical or phase composition. Mechanisms of transformation of the alloy structure during friction stir welding are discussed.

  11. Structural State of a Weld Formed in Aluminum Alloy by Friction Stir Welding and Treated by Ultrasound

    Science.gov (United States)

    Klimenov, V. A.; Abzaev, Yu. A.; Potekaev, A. I.; Vlasov, V. A.; Klopotov, A. A.; Zaitsev, K. V.; Chumaevskii, A. V.; Porobova, S. A.; Grinkevich, L. S.; Tazin, I. D.; Tazin, D. I.

    2016-11-01

    The experimental data on structural state of an aluminum alloy, AlMg6, in the weld zone formed by friction stir welding are analyzed in order to evaluate the effect of its subsequent ultrasonic treatment. It is found that the crystal lattice transits into a low-stability state as a result of combined heat-induced and severe shear deformation. This transition is accompanied by considerable structural-phase changes that are manifested as an increased lattice parameter of the solid solution. This increase is caused by both high values of internal stresses and increased concentration of Mg atoms in the solid solution due to essential dissolution of the β-Al2Mg3 particles with the content of manganese higher than that in the matrix. This is accompanied by high-intensity diffusion and relaxation processes due to the low-stability state of crystal lattice (inhomogeneous stresses) in the weld zone.

  12. Numerical Analysis of Welding Residual Stress and Distortion in Laser+GMAW Hybrid Welding of Aluminum Alloy T-Joint

    Institute of Scientific and Technical Information of China (English)

    Guoxiang XU; Chuansong WU; Xuezhou MA; Xuyou WANG

    2013-01-01

    A 3-D finite element model is developed to predict the temperature field and thermally induced residual stress and distortion in laser+GMAW hybrid welding of 6061-T6 aluminum alloy T-joint.And the characteristics of residual stress distribution and deformation are numerically investigated.In the simulation,the heat source model takes into account the effect of joint geometric shape and welding torch slant on the heat flux distribution and a sequentially coupled thermo-mechanical method is used.The calculated results show that higher residual stress is distributed in and surround the weld zone.Its peak value is very close to the yield strength of base metal.Besides,a large deformation appears in the middle and rear part of the weldment.

  13. Friction Stir Welding of Stainless Steel to Al Alloy: Effect of Thermal Condition on Weld Nugget Microstructure

    Science.gov (United States)

    Ghosh, M.; Gupta, R. K.; Husain, M. M.

    2014-02-01

    Joining of dissimilar materials is always a global challenge. Sometimes it is unavoidable to execute multifarious activities by a single component. In the present investigation, 6061 aluminum alloy and 304 stainless steel were joined by friction stir welding (FSW) at different tool rotational rates. Welded joints were characterized in optical and scanning electron microscopes. Reaction products in the stirring zone (SZ) were confirmed through X-ray diffraction. Joint strength was evaluated by tensile testing. It was found that the increment in average heat input and temperature at the weld nugget (WN) facilitated iron enrichment near the interface. Enhancement in the concentration of iron shifted the nature of intermetallics from the Fe2Al5 to Fe-rich end of the Fe-Al binary phase diagram. The peak microhardness and ultimate tensile strength were found to be maxima at the intermediate tool rotational rate, where Fe3Al and FeAl2 appeared along with Fe2Al5.

  14. Optimization of process parameters of aluminum alloy AA 2014-T6 friction stir welds by response surface methodology

    OpenAIRE

    Ramanjaneyulu Kadaganchi; Madhusudhan Reddy Gankidi; Hina Gokhale

    2015-01-01

    The heat treatable aluminum–copper alloy AA2014 finds wide application in the aerospace and defence industry due to its high strength-to-weight ratio and good ductility. Friction stir welding (FSW) process, an emerging solid state joining process, is suitable for joining this alloy compared to fusion welding processes. This work presents the formulation of a mathematical model with process parameters and tool geometry to predict the responses of friction stir welds of AA 2014-T6 aluminum allo...

  15. Pulse shaping effects on weld porosity in laser beam spot welds : contrast of long- & short- pulse welds.

    Energy Technology Data Exchange (ETDEWEB)

    Ellison, Chad M. (Honeywell FM& T, Kansas City, MO); Perricone, Matthew J. (R.J. Lee Group, Inc., Monroeville, PA); Faraone, Kevin M. (BWX Technologies, Inc., Lynchburg, VA); Norris, Jerome T.

    2007-10-01

    Weld porosity is being investigated for long-pulse spot welds produced by high power continuous output lasers. Short-pulse spot welds (made with a pulsed laser system) are also being studied but to a much small extent. Given that weld area of a spot weld is commensurate with weld strength, the loss of weld area due to an undefined or unexpected pore results in undefined or unexpected loss in strength. For this reason, a better understanding of spot weld porosity is sought. Long-pulse spot welds are defined and limited by the slow shutter speed of most high output power continuous lasers. Continuous lasers typically ramp up to a simmer power before reaching the high power needed to produce the desired weld. A post-pulse ramp down time is usually present as well. The result is a pulse length tenths of a second long as oppose to the typical millisecond regime of the short-pulse pulsed laser. This study will employ a Lumonics JK802 Nd:YAG laser with Super Modulation pulse shaping capability and a Lasag SLS C16 40 W pulsed Nd:YAG laser. Pulse shaping will include square wave modulation of various peak powers for long-pulse welds and square (or top hat) and constant ramp down pulses for short-pulse welds. Characterization of weld porosity will be performed for both pulse welding methods.

  16. Damage Tolerance Behavior of Friction Stir Welds in Aluminum Alloys

    Science.gov (United States)

    McGill, Preston; Burkholder, Jonathan

    2012-01-01

    Friction stir welding is a solid state welding process used in the fabrication of various aerospace structures. Self-reacting and conventional friction stir welding are variations of the friction stir weld process employed in the fabrication of cryogenic propellant tanks which are classified as pressurized structure in many spaceflight vehicle architectures. In order to address damage tolerance behavior associated with friction stir welds in these safety critical structures, nondestructive inspection and proof testing may be required to screen hardware for mission critical defects. The efficacy of the nondestructive evaluation or the proof test is based on an assessment of the critical flaw size. Test data describing fracture behavior, residual strength capability, and cyclic mission life capability of friction stir welds at ambient and cryogenic temperatures have been generated and will be presented in this paper. Fracture behavior will include fracture toughness and tearing (R-curve) response of the friction stir welds. Residual strength behavior will include an evaluation of the effects of lack of penetration on conventional friction stir welds, the effects of internal defects (wormholes) on self-reacting friction stir welds, and an evaluation of the effects of fatigue cycled surface cracks on both conventional and selfreacting welds. Cyclic mission life capability will demonstrate the effects of surface crack defects on service load cycle capability. The fracture data will be used to evaluate nondestructive inspection and proof test requirements for the welds.

  17. The effect of welding parameters on surface quality of AA6351 aluminium alloy

    Science.gov (United States)

    Yacob, S.; MAli, M. A.; Ahsan, Q.; Ariffin, N.; Ali, R.; Arshad, A.; Wahab, M. I. A.; Ismail, S. A.; Roji, NS M.; Din, W. B. W.; Zakaria, M. H.; Abdullah, A.; Yusof, M. I.; Kamarulzaman, K. Z.; Mahyuddin, A.; Hamzah, M. N.; Roslan, R.

    2015-12-01

    In the present work, the effects of gas metal arc welding-cold metal transfer (GMAW-CMT) parameters on surface roughness are experimentally assessed. The purpose of this study is to develop a better understanding of the effects of welding speed, material thickness and contact tip to work distance on the surface roughness. Experiments are conducted using single pass gas metal arc welding-cold metal transfer (GMAW-CMT) welding technique to join the material. The material used in this experiment was AA6351 aluminum alloy with the thickness of 5mm and 6mm. A Mahr Marsuft XR 20 machine was used to measure the average roughness (Ra) of AA6351 joints. The main and interaction effect analysis was carried out to identify process parameters that affect the surface roughness. The results show that all the input process parameters affect the surface roughness of AA6351 joints. Additionally, the average roughness (Ra) results also show a decreasing trend with increased of welding speed. It is proven that gas metal arc welding-cold metal transfer (GMAW-CMT)welding process has been successful in term of providing weld joint of good surface quality for AA6351 based on the low value surface roughness condition obtained in this setup. The outcome of this experimental shall be valuable for future fabrication process in order to obtained high good quality weld.

  18. Friction Stir Welds (FSW of aluminium alloy AW6082-T6

    Directory of Open Access Journals (Sweden)

    J. Adamowski

    2007-01-01

    Full Text Available Purpose: Purpose of this paper is the investigation on the properties and microstructural changes in Friction StirWelds in the aluminum alloy 6082-T6 in function of varying process parameters.Design/methodology/approach: Tensile strength of the produced joints was tested and the correlation withprocess parameter was assessed. Microstructures of various zones of FSW welds are presented and analyzed bymeans of optical microscopy and microhardness measurements.Findings: Mechanical resistance of test welds increased with the increase of travel (welding speed withconstant rotational speed. Softening of the material in weld nugget and heat affected zone was observed, ofentity inferior that that of fusion welds. Origin of tunnel (worm hole defects were found and analyzed.Research limitations/implications: The test welds were produced with various combinations of processparameters without the possibility of controlling the downward force. Further extension of applicable parameterscombinations could be examined.Practical implications: The increase of mechanical resistance with increasing welding speed offers animmediate economic return, as the process efficiency is increased.Originality/value: Information contained herein can be useful to further investigate on the possibility ofimproving the properties of FSW welds, as well as the efficiency of the process.

  19. Friction Stir-Welded Titanium Alloy Ti-6Al-4V: Microstructure, Mechanical and Fracture Properties

    Science.gov (United States)

    Sanders, D. G.; Edwards, P.; Cantrell, A. M.; Gangwar, K.; Ramulu, M.

    2015-05-01

    Friction stir welding (FSW) has been refined to create butt welds from two sheets of Ti-6Al-4V alloy to have an ultra-fine grain size. Weld specimen testing was completed for three different FSW process conditions: As welded, stress relieved, stress relieved and machined, and for the un-welded base material. The investigation includes macrostructure, microstructure, microhardness, tensile property testing, notched bar impact testing, and fracture toughness evaluations. All experiments were conducted in accordance with industry standard testing specifications. The microstructure in the weld nugget was found to consist of refined and distorted grains of alpha in a matrix of transformed beta containing acicular alpha. The enhanced fracture toughness of the welds is a result of increased hardness, which is attributed to an increase in alpha phase, increase in transformed beta in acicular alpha, and grain refinement during the weld process. The noted general trend in mechanical properties from as welded, to stress relieved, to stress relieved and machined conditions exhibited a decrease in ultimate tensile strength, and yield strength with a small increase in ductility and a significant increase in fracture toughness.

  20. Thermo-mechanical Modeling for Residual Stresses of Friction Stir Welding of Dissimilar Alloys

    OpenAIRE

    ABDUL ARIF; ABHISHEK; K. N. Pandey

    2013-01-01

    Friction stir welding is an advanced joining process that has been used for high production since 1996. FSW produces a weld that is strong than the base material because melting does not occur and joining takes place below the melting temperature of the material. FSW produces no fumes and can join aluminum alloys, magnesium, steels, copper and titanium. In this study, a thermo-mechanical model with improved potential is developed to study the formation of residual stress field in dissimilar ...

  1. Simulation of Temperature Distribution in TIG Spot Welds of(Al-Mg Alloy Using Finite Element Method

    Directory of Open Access Journals (Sweden)

    Ahlam Abid Ameer Alkhafajy

    2008-01-01

    Full Text Available This research concern to analyse and simulate the temperature distribution in the spot welding joints using tungsten arc welding shielded with inert gas (TIG Spot for the aluminum-magnesium alloy type (5052-O. The effect of and the quantity of the heat input that enter the weld zone has been investigated welding current, welding time and arc length on temperature distribution. The finite element method (by utilizing programme ANSYS 5.4 is presented the temperature distribution in a circular weld pool and the weld pool penetration (depth of welding through the top sheet ,across the interface into the lower sheet forming a weld spot. A three dimensional (3-D model has been constructed to study the temperature distribution and the depth or penetration of the weld spot. The results showed that the weld zone and heat affected zone (HAZ suffer from high temperature variation caused by severe thermal cycle. The temperature reaches the highest value of the melt metal at the weld spot 698°C at weld current 130 Amp, weld time 6 sec and arc length 1.6 mm, then drops further away from the weld spot in the direction the base metal. Figuers were plotted to explain the results and to show the temperature distribution and its value in the weld spot and heat effected zone.

  2. Effects of Post-Weld Heat Treatment on the Mechanical Properties of Similar- and Dissimilar-Alloy Friction Stir Welded Blanks

    Science.gov (United States)

    Zadpoor, Amir Abbas; Sinke, Jos

    2011-01-01

    Friction stir welding is a solid state joining process with relatively low welding temperatures. Nevertheless, the mechanical properties of friction stir welded blanks are degraded after welding. Indeed, both strength and ductility of the welds are decreased after welding. Often, the resulting friction stir welded blanks need to be formed to their final structural shape. Therefore, the formability of friction stir welded blanks is of primary importance in the manufacturing of structural parts. This paper studies how the mechanical properties and particularly formability of friction stir welded blanks can be improved by applying a post weld heat treatment. Two aluminum alloys from 2000 and 7000 series, namely 2024-T3 and 7075-T6, are selected for the study. The sheet thickness of both materials is 2,0 mm. The selected alloys are welded in three configurations: 2024-T3 and 2024-T3, 7075-T6 and 7075-T6, and 2024-T3 and 7075-T6. The resulting welds are naturally aged for a few months. Three sets of standard dog bone shape tensile test specimens are then machined from the welds. The first set of the specimens is tested without any heat treatment. The second set of the specimens is solution heat treated and quenched before testing. The third set of the specimens is solution heat treated, quenched, and naturally aged for a week before testing. The mechanical properties of the three different sets of specimens are compared with each other. It is shown that careful selection of post weld heat-treatment can greatly improve the formability of friction stir welded blanks.

  3. Effects of beam configurations on wire melting and transfer behaviors in dual beam laser welding with filler wire

    Science.gov (United States)

    Ma, Guolong; Li, Liqun; Chen, Yanbin

    2017-06-01

    Butt joints of 2 mm thick stainless steel with 0.5 mm gap were fabricated by dual beam laser welding with filler wire technique. The wire melting and transfer behaviors with different beam configurations were investigated detailedly in a stable liquid bridge mode and an unstable droplet mode. A high speed video system assisted by a high pulse diode laser as an illumination source was utilized to record the process in real time. The difference of welding stability between single and dual beam laser welding with filler wire was also compartively studied. In liquid bridge transfer mode, the results indicated that the transfer process and welding stability were disturbed in the form of "broken-reformed" liquid bridge in tandem configuration, while improved by stabilizing the molten pool dynamics with a proper fluid pattern in side-by-side configuration, compared to sigle beam laser welding with filler wire. The droplet transfer period and critical radius were studied in droplet transfer mode. The transfer stability of side-by-side configuration with the minium transfer period and critical droplet size was better than the other two configurations. This was attributed to that the action direction and good stability of the resultant force which were beneficial to transfer process in this case. The side-by-side configuration showed obvious superiority on improving welding stability in both transfer modes. An acceptable weld bead was successfully generated even in undesirable droplet transfer mode under the present conditions.

  4. Industrial X-ray tomography using an electron beam welding box

    CERN Document Server

    Hoppe, D; Koch, D; Zippe, C

    2002-01-01

    An existing electron beam welding box should be used with the least additional effort for X-ray tomography. Only a suitable anode, a simple device to turn the investigated object and one detector for X-rays are placed into the vacuum of the welding box. The information necessary to reconstruct tomograms should be derived only from the measurand of the detector.

  5. Diffusion Bonding and Post-Weld Heat Treatment of Extruded AZ91 Magnesium Alloys

    Directory of Open Access Journals (Sweden)

    Fei LIN

    2015-11-01

    Full Text Available The grain size of as-extruded AZ91 magnesium alloys was refined to 12.31 μm from 21.41 μm by recrystallization annealing. The vacuum diffusion welding of as-annealed AZ91 magnesium alloys was researched. The results showed that the maximum shear strength of joints reached 64.70 MPa in the situation of 10 MPa bonding pressure, 18 Pa vacuum degree, 470 °C bonding temperature and 90 min bonding time; both bonding temperature and time are the main influence factors on as-extruded AZ91 magnesium alloys diffusion welding. Then the diffusion welded specimens were annealed, and the shear strength of joints was further improved to 76.93 MPa.DOI: http://dx.doi.org/10.5755/j01.ms.21.4.9699

  6. Effects of Aging Treatment on Laser-Welded Mg-Rare Earth Alloy NZ30K

    Directory of Open Access Journals (Sweden)

    Jun Dai

    2013-01-01

    Full Text Available Magnesium-rare earth alloys have received extensive attention due to their attractive mechanical properties resulting from high density of precipitation. The precipitation sequence in laser-welded Mg-3Nd-0.2Zn-0.4Zr (NZ30K alloy during aging treatment at 200°C and 225°C has been investigated using transmission electron microscopy (TEM. The results indicate that the tensile strength of laser-welded NZ30K can be improved significantly after aging treatment at 200°C for 8 h. It is found that the precipitation in laser-welded NZ30K alloy follows the sequence of supersaturated solid solution → β′′(DO19 → β′(fcc.

  7. Analysis of Acoustic Emission Signal by Fractal Theory in Aluminum Alloy Spot Welding

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The relation between acoustic emission signal and nugget during aluminum alloy spot welding was investigated in order to evaluate spot welding quality. Due to the nonlinearity of the signals, fractal theory was utilized to quantitatively describe the characteristics of the signals instead of classical Euclidean geometry which cannot describe the acoustic emission signal accurately. Through experiments and computing, the box counting dimension is found distinct from other acoustic emission signals and is a better approach to discriminating weld nugget stages. Results show that fractal dimensions increase from 1.51 to 1.78,and they are related to nugget areas added from non-fusion to over-heated nugget.And the box counting dimension can effectively evaluate the quality of the nugget in the spot welding and can be applied with current, displace, and other spot welding parameters.

  8. Identification of acoustic emission signal in aluminum alloys spot welding based on fractal theory

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The acoustic emission signal of aluminum alloys spot welding includes the information of forming nugget and is one of the important parameters in the quality control. Due to the nonlinearity of the signals, classic Euclidean geometry can not be applied to depict exactly. The fractal theory is implemented to quantitatively describe the characteristics of the acoustic emission signals. The experiment and calculation results show that the box counting dimension of acoustic emission signal, between 1 and 2, are distinctive from different nugget areas in AC spot welding. It is proved that box counting dimension is an effective characteristic parameter to evaluate spot welding quality. In addition, fractal theory can also be applied in other spot welding parameters, such as voltage, current, electrode force and so on, for the purpose of recognizing the spot welding quality.

  9. Laser Deep Penetration Welding of an Aluminum Alloy with Simultaneously Applied Vibrations

    Science.gov (United States)

    Woizeschke, Peer; Radel, Tim; Nicolay, Paul; Vollertsen, Frank

    2016-12-01

    In aluminum welding, the grain structure of produced seams is an essential factor with respect to the seam properties. In the casting technology the effect of mechanical vibrations on the grain growth during the solidification of liquid metals is known as a refinement method. In this paper, the transferability of this approach from comparatively long-time processes in the field of casting to the short-time process of laser deep penetration welding is investigated. Therefore, specimens were sinusoidal vibrated with frequencies up to 4 kHz during bead-on-plate full-penetration welding experiments. The resulting grain size was determined by applying the circular intercept procedure on the center of a cross-section micrograph of each weld. The results show that grain refinement is in general achievable by mechanical vibrations in the audible frequency range during laser full penetration keyhole welding of the aluminum alloy EN AW-5083.

  10. Process of friction-stir welding high-strength aluminum alloy and mechanical properties of joint

    Institute of Scientific and Technical Information of China (English)

    王大勇; 冯吉才; 郭德伦; 孙成彬; 栾国红; 郭和平

    2004-01-01

    The process of friction-stir welding 2A12CZ alloy has been studied. And strength and elongation tests have been performed, which demonstrated that the opportunity existed to manipulate friction-stir welding parameters in order to improve a range of material properties. The results showed that the joint strength and elongation arrived at their parameters changing, joint tensile strength and elongation had similar development. Hardness measurement indicated that the weld was softened. However, there was considerable difference in softening degree for different joint zone. The weld top had lower hardness and wider softening zone than other zone of the weld. And softening zone at advancing side was wider than that at retreating side.

  11. Vertical Compensation Friction Stir Welding of 6061-T6 Aluminum Alloy

    Science.gov (United States)

    Ji, Shude; Meng, Xiangchen; Xing, Jingwei; Ma, Lin; Gao, Shuangsheng

    2016-09-01

    Vertical compensation friction stir welding (VCFSW) was proposed in order to solve the adverse effect caused by a big gap at the interface between two welded workpieces. VCFSW was successfully applied to weld 6061-T6 aluminum alloy with the thickness of 4 mm, while 2024-T4 aluminum alloy was selected as a rational compensation material. The results show that VCFSW is difficult to get a sound joint when the width of strip is no less than 1.5 mm. Decreasing the welding speed is beneficial to break compensation strip into pieces and then get higher quality joint. When the width of strip is 1 mm, the tensile strength and elongation of joint at the welding speed of 50 mm/min and rotational velocity of 1,800 rpm reach the maximum values of 203 MPa and 5.2%, respectively. Moreover, the addition of 2024-T4 alloy plays a strengthening effect on weld zone (WZ) of VCFSW joint. The fracture surface morphology of joint consisting of amounts of dimples exhibits ductile fracture.

  12. Microstructure and Mechanical Properties of Friction Stir Welded 5083 and 7075 Aluminum Alloys

    Science.gov (United States)

    Kalemba-Rec, I.; Hamilton, C.; Kopyściański, M.; Miara, D.; Krasnowski, K.

    2017-02-01

    Through microscopy, mechanical testing, and numerical modeling, the microstructure and mechanical performance of friction stir welded aluminum alloys 7075-T651 and 5083-H111 were characterized. In particular, the influence of the weld configuration, i.e., the locations of the 7075 and 5083 alloys alternately on the advancing and retreating sides, on material flow, microstructure, and mechanical properties was considered. Thermographic data in conjunction with a process simulation demonstrated that the weld configuration significantly impacts heat generation during friction stir welding. The microstructure in the stir zone was a clear visualization of the material flow and was characterized by a vortex-like structure with alternating bands of the alloys being joined. These bands differed in elemental content and grain size. The microstructure became more complex when greater heat generation (higher temperatures) occurred. The weld configuration strongly influenced the material flow, but did not impact the tensile properties (such as yield strength, tensile strength, and elongation). The configuration of 5083 on the advancing side and 7075 on the retreating side produced the most uniform material flow. The joint efficiencies of all tested welds were above 100%.

  13. Corrosion and optimum corrosion protection potential offriction stir welded 5083-O Al alloy for leisure ship

    Institute of Scientific and Technical Information of China (English)

    Sung-Hyeon PARK; Jong-Shin KIM; Min-Su HAN; Seong-Jong KIM

    2009-01-01

    Electrochemical tests were undertaken to determine the optimum conditions in seawater for corrosion protection of friction stir-welded 5083-O Al alloy. Polarization trend observations show that the limiting potential that avoids the effects of hydrogen embrittlement is -1.6 V, corresponding to the crossover point between concentration polarization and activation polarization. However, the optimum protection potential is between -1.5 and -0.7 V since the current density at these values is low in the potentiostatic tests. When a galvanic cell is formed in the seawater, the welds exhibit electrochemically stable trends. Welded parts in galvanic tests with various area ratios are stable and have excellent anticorrosion characteristics.

  14. The effects of dynamic load on behaviour of welded joint A-387 Gr. 11 alloyed steel

    Directory of Open Access Journals (Sweden)

    O. Popović

    2013-01-01

    Full Text Available The in-service behaviour of alloyed steel A-387 Gr. 11 Class 1, for pressure vessels, used for high temperature applications, depends on the properties of its welded joint, with parent metal (BM, heat-affected-zone (HAZ and weld metal (WM, as constituents. Charpy testing of BM, WM and HAZ, together with, determination of the parameters of fatigue-crack growth and fatigue threshold ΔKth was used, in order to understand, how heterogeneity of structure and different mechanical properties of welded joint constituents affect on crack initiation and propagation.

  15. Parametric study of friction stir spot welding of aluminium alloy 5754

    Directory of Open Access Journals (Sweden)

    D. Klobčar

    2014-01-01

    Full Text Available The paper presents a parametric analysis of friction stir spot welding (FSSW of aluminium alloy 5754 in a lap joint. Experimental plan was done according to the response surface methodology (RSM, where tool rotation speed varied between 988 and 3511 rpm, plunge rate between 24,4 and 150 mm/min and dwell time between 1 and 3,5s. The plunge depth was held constant at 0,4 mm. The welds were tensile-shear tested and the microstructure was analysed. Mathematical models describing the relationship between welding parameters and spot strength, axial force and rotational moment were developed and the optimal FSSW parameters were found.

  16. Effect of cooling rate on microstructure of friction-stir welded AA1100 aluminum alloy

    Science.gov (United States)

    Yi, D.; Mironov, S.; Sato, Y. S.; Kokawa, H.

    2016-06-01

    In this work, the microstructural changes occurring during cooling of friction-stir welded aluminum alloy AA1100 were evaluated. To this end, friction-stir welding (FSW) was performed in a wide range of cooling rates of 20-62 K/s and the evolved microstructures were studied by using electron backscatter diffraction. Below 0.6 Tm (Tm being the melting point), the stir zone material was found to experience no significant changes during cooling. At higher FSW temperatures, however, notable changes occurred in the welded material, including grain growth, sharpening of texture, reduction of the fraction of high-angle boundaries and material softening.

  17. Characteristics of the kissing-bond in friction stir welded Al alloy 1050

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Yutaka S. [Department of Materials Processing, Graduate School of Engineering, Tohoku University, 6-6-02 Aramaki-aza-Aoba, Sendai 980-8579 (Japan)]. E-mail: ytksato@material.tohoku.ac.jp; Takauchi, Hideaki [Department of Materials Processing, Graduate School of Engineering, Tohoku University, 6-6-02 Aramaki-aza-Aoba, Sendai 980-8579 (Japan); Park, Seung Hwan C. [Department of Materials Processing, Graduate School of Engineering, Tohoku University, 6-6-02 Aramaki-aza-Aoba, Sendai 980-8579 (Japan); Kokawa, Hiroyuki [Department of Materials Processing, Graduate School of Engineering, Tohoku University, 6-6-02 Aramaki-aza-Aoba, Sendai 980-8579 (Japan)

    2005-09-25

    Initial oxide layer on the butt surface fragments during friction stir welding (FSW) often remaining as a faint zigzag-line pattern on the cross section. When remnants of the oxide layer often adversely affects the mechanical properties in the weld, it is called as 'kissing-bond'. The present study systematically examines the effect of oxide array on the bend property in the root region of friction stir (FS) welded Al alloy 1050 by transmission electron microscopy (TEM) to clarify the identity of 'kissing-bond'.

  18. Physical Simulation Method for the Investigation of Weld Seam Formation During the Extrusion of Aluminum Alloys

    Science.gov (United States)

    Fang, Gang; Nguyen, Duc-Thien; Zhou, Jie

    2016-12-01

    Extrusion through the porthole die is a predominant forming process used in the production of hollow aluminum alloy profiles across the aluminum extrusion industry. Longitudinal weld seams formed during the process may negatively influence the quality of extruded profiles. It is therefore of great importance to understand the formation of weld seams inside the welding chamber during extrusion, as affected by extrusion process variables and die design. Previously developed physical simulation methods could not fully reproduce the thermomechanical conditions inside the welding chamber of porthole die. In this research, a novel physical simulation method for the investigation of weld seam formation during extrusion was developed. With a tailor-designed tooling set mounted on a universal testing machine, the effects of temperature, speed, and strain on the weld seam quality of the 6063 alloy were investigated. The strains inside the welding chamber were found to be of paramount importance for the bonding of metal streams, accompanied by microstructural changes, i.e., recovery or recrystallization, depending on the local deformation condition. The method was shown to be able to provide guidelines for the design of porthole dies and choice of extrusion process variables, thereby reducing the scrap rate of aluminum extrusion operation.

  19. Fatigue crack initiation for Al-Zn-Mg alloy welded joint

    Institute of Scientific and Technical Information of China (English)

    Liang ZHANG; Xuesong LIU; Linsen WANG; Ping WANG; Hongyuan FANG

    2012-01-01

    To investigate fatigue crack initiation characteristics of A1-Zn-Mg alloy welded joint,notched specimens were used in fatigue test for the base metal,welding bead and heat affected zone (HAZ).The fatigue fracture surface near the fatigue crack initiation site was observed by scanning electron microscope (SEM).The results show that the differences of fatigue crack initiation life among base metal,welding bead and HAZ are not obvious.Inhomogeneity in microstructure and mechanical performance of HAZ influences the fatigue crack initiation life.The ratio of fatigue crack initiation life (Ni) to fatigue failure life (Nf) for the base metal,welding bead and HAZ of A7N01 aluminium alloy welded joint are 26.32%,40.21% and 60.67%,respectively.Fatigue crack initiation life can be predicted using a uniform model.Observation of fatigue fracture surfaces shows that for the welding bead a fatigue crack initiates from the smooth surface due to the welding process,the blowhole in HAZ causes fatigue crack and the crushed second phase particles play an important role in fatigue crack initiation for the base metal.

  20. Hazard of ultraviolet radiation emitted in gas tungsten arc welding of aluminum alloys.

    Science.gov (United States)

    Nakashima, Hitoshi; Utsunomiya, Akihiro; Fujii, Nobuyuki; Okuno, Tsutomu

    2016-01-01

    Ultraviolet radiation (UVR) emitted during arc welding frequently causes keratoconjunctivitis and erythema. The extent of the hazard of UVR varies depending on the welding method and conditions. Therefore, it is important to identify the levels of UVR that are present under various conditions. In this study, we experimentally evaluated the hazard of UVR emitted in gas tungsten arc welding (GTAW) of aluminum alloys. The degree of hazard of UVR is measured by the effective irradiance defined in the American Conference of Governmental Industrial Hygienists guidelines. The effective irradiances measured in this study are in the range 0.10-0.91 mW/cm(2) at a distance of 500 mm from the welding arc. The maximum allowable exposure times corresponding to these levels are only 3.3-33 s/day. This demonstrates that unprotected exposure to UVR emitted by GTAW of aluminum alloys is quite hazardous in practice. In addition, we found the following properties of the hazard of UVR. (1) It is more hazardous at higher welding currents than at lower welding currents. (2) It is more hazardous when magnesium is included in the welding materials than when it is not. (3) The hazard depends on the direction of emission from the arc.

  1. Experimental Study of Stationary Shoulder Friction Stir Welded 7N01-T4 Aluminum Alloy

    Science.gov (United States)

    Ji, S. D.; Meng, X. C.; Li, Z. W.; Ma, L.; Gao, S. S.

    2016-03-01

    Stationary shoulder friction stir welding (SSFSW) was successfully used to weld 7N01-T4 aluminum alloy with the thickness of 4 mm. Effects of welding speed on formations, microstructures, and mechanical properties of SSFSW joint were investigated in detail. Under a constant rotational velocity of 2000 rpm, defect-free joints with smooth surface and small flashes are attained using welding speeds of 20 and 30 mm/min. Macrostructure of nugget zone in cross section presents kettle shape. For 7N01-T4 aluminum alloy with low thermal conductivity, decreasing welding speed is beneficial to surface formation of joint. With the increase of welding speed, mechanical properties of joints firstly increase and then decrease. When the welding speed is 30 mm/min, the tensile strength and elongation of joint reach the maximum values of 379 MPa and 7.9%, equivalent to 84.2 and 52% of base material, respectively. Fracture surface morphology exhibits typical ductile fracture. In addition, the minimum hardness value of joint appears in the heat affected zone.

  2. Analysis of Microstructural Evolution and Fracture Mechanisms in Ti-5Al-5V-5Mo-3Cr-0.4Fe in Response to Electron Beam Welding and Post Weld Heat Treatments

    Science.gov (United States)

    Sabol, Joseph C.

    Within the last half-century, advances in Ti and Ti alloys have increased their popularity in the aerospace industry as well as in commercial products. Some Ti alloys have even replaced steels and Ni-base alloys due to their high strength and superior corrosion resistance. Of the various Ti alloys, near-beta and metastable beta alloys have become more common since their first large-scale use in the SR-71 Blackbird. In particular, TIMET's Ti-5Al-5V-5Mo-3Cr (Timetal Ti555, Ti-5553) gained high attainable strengths, excellent forging characteristics, and increased sensitivity to heat treatments compared to other beta-Ti alloys. Ti-5553 has become widely known for its desirable attributes and has since become the baseline for the next generation of metastable beta and near-beta Ti alloys. However, as well known as Ti-5553 is in the aerospace and Ti industry, its responses to welding have, for the most part, gone uncharacterized. The work presented in this dissertation investigates the influence of electron beam welding and post weld heat treatments on the microstructural, mechanical, and fracture responses of Ti-5553. In this study, Ti-5553 was electron beam welded and heat-treated in accordance to three predetermined heat treatments: 700°C for 4 hours followed by air cooling to room temperature, 804°C for 1 hour followed by air cooling to room temperature, and 804°C for 1 hour followed by air cooling to room temperature then aging at 600°C for 4 hours followed by air cooling to room temperature. Subsequently, the mechanical properties, microstructure, solute partitioning, precipitate identities, and fracture characteristics were evaluated. With the use of traditional techniques and new technology it was shown that electron beam welded Ti-5553 in the as-welded condition and three post weld heat treatment conditions exhibited varying properties, distinctive to each of the corresponding microstructures. It was also found that the o-phase played a large role in the

  3. Experimental investigation and finite element simulation of laser beam welding induced residual stresses and distortions in thin sheets of AA 6056-T4

    Energy Technology Data Exchange (ETDEWEB)

    Zain-ul-abdein, Muhammad [Universite de Lyon, CNRS, INSA-Lyon, LaMCoS UMR5259, F69621 (France); Nelias, Daniel, E-mail: daniel.nelias@insa-lyon.fr [Universite de Lyon, CNRS, INSA-Lyon, LaMCoS UMR5259, F69621 (France); Jullien, Jean-Francois [Universite de Lyon, CNRS, INSA-Lyon, LaMCoS UMR5259, F69621 (France); Deloison, Dominique [EADS, 12 Rue Pasteur, BP 76, 92152 Suresnes Cedex (France)

    2010-05-15

    Laser beam welding has recently found its application in the fabrication of aircraft structures where fuselage panels, made of thin sheets of AA 6056-T4 (an aluminium alloy), are welded with stiffeners of the same material in a T-joint configuration. The present work simulates laser beam welding induced residual stresses and distortions using industrially employed thermal and mechanical boundary conditions. Various measurements performed on small-scale welded test specimens provide a database of experimental results that serves as a benchmark for qualification of the simulation results. The welding simulation is performed with the commercial finite element software Abaqus and a Fortran programme encoding a conical heat source with Gaussian volumetric distribution of flux. A sequentially coupled temperature-displacement analysis is undertaken to simulate the weld pool geometry, transient temperature and displacement fields. The material is assumed to follow an elasto-plastic law with isotropic hardening behaviour (von Mises plasticity model). A comparison between the experimental and simulation results shows a good agreement. Finally, the residual stress and strain states in a T-joint are predicted.

  4. Development of precision numerical controlled high vacuum electron beam welding machine

    CERN Document Server

    Li Shao Lin

    2002-01-01

    The structure, main technical parameters and characteristics of the precision numerical controlled high vacuum electron beam welding machine are introduced. The design principle, some features and solutions to some key technique problems of this new type machine are described

  5. The structure and properties of filler metal-free laser beam welded joints in steel S700MC subjected to TMCP

    Science.gov (United States)

    Górka, Jacek; Stano, Sebastian

    2016-12-01

    The research-related tests aimed to determine the effect of filer-metal free laser beam welding on the structure and properties of 10 mm thick steel S700MC subjected to the Thermo-Mechanical Control Process (TMCP). The nondestructive tests revealed that the welded joints represented quality level B according to the requirements of standard 13919-1. The destructive tests revealed that the joints were characterised by tensile strength being by approximately 5% lower than that of the base material. The tests of thin foils performed using a high-resolution scanning transmission electron microscope revealed that filler metal-free welding led to the increased amount of alloying microagents (Ti and Nb) in the weld (particularly near fusion line) in comparison with welding performed using a filler metal. The significant content of hardening phases in the welds during cooling resulted in considerable precipitation hardening through finedispersive (Ti,Nb)(C,N) type precipitates (several nm in size) leading to the deterioration of plastic properties. The destructive tests revealed that the joints were characterised by tensile strength being by approximately 5% lower than that of the base material. The increase in the concentration of microagents responsible for steel hardening (Ti and Nb) also contributed to the decrease in weld toughness being below the allowed value of 25 J/cm2.

  6. Friction stir welding (FSW process of copper alloys

    Directory of Open Access Journals (Sweden)

    M. Miličić

    2016-01-01

    Full Text Available The present paper analyzes the structure of the weld joint of technically pure copper, which is realized using friction stir welding (FSW. The mechanism of thermo-mechanical processes of the FSW method has been identified and a correlation between the weld zone and its microstructure established. Parameters of the FSW welding technology influencing the zone of the seam material and the mechanical properties of the resulting joint were analyzed. The physical joining consists of intense mixing the base material along the joint line in the “doughy” phase. Substantial plastic deformations immediately beneath the frontal surface of tool provide fine-grained structure and a good quality joint. The optimum shape of the tool and the optimum welding regime (pressure force, rotation speed and the traverse speed of the tool in the heat affected zone enable the achievement of the same mechanical properties as those of the basic material, which justifies its use in welding reliable structures.

  7. Effect of Welding Parameters and Aging Process on the Mechanical Properties of Friction Stir-Welded 6063-T4 Al Alloy

    Science.gov (United States)

    Toktaş, Alaaddin; Toktaş, Gülcan

    2012-06-01

    6063-T4 Al alloy was friction stir welded at various tool rotations (800, 1120, and 1600 rpm) and welding speeds (200 and 315 mm/min) using a specially manufactured tool with a height-adjustable and right-hand-threaded pin. The postweld aging process (at 185 °C for 7 h) was applied to a group of the welded plates. In this study, the effects of the welding parameters and the postweld aging treatment on the microstructural and mechanical properties of 6063-T4 Al alloy were studied. The maximum weld temperatures during the welding process were recorded, and the fracture surfaces of tensile specimens were examined using a scanning electron microscope. The homogeneous hardness profiles were obtained for all the weldings with no trace of softening regions. It was observed that the ultimate tensile strengths (UTS) increased slightly (on average by approx. 8%) and the percent elongations decreased (on average by approx. 33%) by the postweld aging treatment. The maximum bending forces ( F max) of all the welds were less than that of the base metal. It was observed that the F max values increased after the postweld aging process at the welding speed of 315 mm/min and decreased at the welding speed of 200 mm/min.

  8. Comparative study on fatigue properties of friction stir and MIG-pulse welded joints in 5083 Al-Mg alloy

    Institute of Scientific and Technical Information of China (English)

    ZHOU Cai-zhi; YANG Xin-qi; LUAN Guo-hong

    2005-01-01

    The objective of this investigation was to compare the fatigue properties of friction stir welds with those of MIG-pulse welds. The 5083 Al-Mg alloy was welded by single pass friction stir welding(FSW) and double-sided MIG-pulse welding. The results show that friction stir(FS) welds have a better appearance than MIG-pulse welds for the lack of voids, cracks and distortions. Compared with the parent plate, FSW welds exhibit similar fine grains, while MIG-pulse welds display a different cast microstructure due to the high heat input and the addition of welding wire. The S-N curves of FSW and MIG-pulse joints show that the fatigue life of FS welds is 18 - 26 times longer than that of MIG-pulse welds under the stress ratio of 0.1 and the calculated fatigue characteristic values of each weld increase from 38.67 MPa for MIG-pulse welds to 53.59 MPa for FSW welds.

  9. Microstructure and Mechanical Properties of Laser-Welded Joints of Ti-22Al-25Nb/TA15 Dissimilar Titanium Alloys

    Science.gov (United States)

    Li, Dalong; Hu, Shengsun; Shen, Junqi; Zhang, Hao; Bu, Xianzheng

    2016-05-01

    Laser beam welding (LBW) was applied to join 1-mm-thick dissimilar titanium alloys, Ti-22Al-25Nb (at.%) and TA15, and the microstructure and mechanical properties of the welded joints were systematically analyzed. Defect-free joints were obtained, and the fusion zone mainly consisted of B2 and martensitic α' phases because of the uneven distribution of the β phase stabilizer and rapid cooling rate of LBW. The phase compositions of the heat-affected zone varied with the different thermal cycles during the welding process. The different microstructures of the dissimilar titanium alloys led to an unsymmetrical hardness profile, with the welded seam exhibiting the lowest value of 271 HV. In room-temperature tensile tests, the fractures all occurred preferentially in the fusion zone. The strengths of the joints were close to those of the base metal but with prominently decreasing ductility. In tensile tests performed at 550 °C, all the joints fractured in the TA15 base metal, and the strength and plasticity of the welds were equivalent to those of the TA15 base metal.

  10. Online characterization of laser beam welds by NIR-camera observation

    Science.gov (United States)

    Dorsch, Friedhelm; Braun, Holger; Keßler, Steffen; Pfitzner, Dieter; Rominger, Volker

    2013-02-01

    We have investigated process monitoring of laser beam welding with a TruDisk disk laser to detect process faults. Additionally to monitoring laser beam welding processes by a conventional VIS camera an NIR (near-infrared) camera reveals new information. Our sensor detects thermal radiation between 1100 and 1700 nm from the weld zone, which represents surface temperatures above 1000 K. Using the thermal radiation from the process we can observe all major weld defects without auxiliary illumination. The camera is integrated in a standard TRUMPF welding optics for on-axis observation. A real-time image processing system analyzes the camera images regarding welding irregularities and delivers information to characterize the weld process and its result. Actually, we perform an online passive heat-flow thermography that uses the process itself as the heat source and that probes the thermal attributes of the seam. By this means we can detect regions of bad fusion ("false friends") virtually during the welding process. In addition to conventional thermography we have investigated the use of ratio pyrometry by using to NIR-cameras that observe the process in two different spectral bands. By considering the pixel-per-pixel ratio the influence of surface effects it greatly reduces and we obtain images of the weld zone with an absolute temperature scale. We have compared ratio pyrometry measurements with conventional thermography.

  11. Studies on the effect of vibration on hot cracking and Grain size in AA7075 Aluminum alloy Welding

    Directory of Open Access Journals (Sweden)

    BALASUBRAMANIAN.K

    2011-01-01

    Full Text Available The aim of this present study is to investigate the vibration effect which is applied during Gas tungsten Arc welding (GTAW welding in order to improve the quality of high strength Aluminum alloy weldment. An important metallurgical difficulty in arc welding of high strength aluminum alloys is formation of hot cracking. When Aluminum alloy is welded by GTAW process, weld fusion zone shows coarse columnar grains during weld metal solidification. This often leads to poor resistance to hot cracking. In this work, an attempt is made to reduce the hot cracking and to refine the fusion zone grains in welding of aluminum alloys through vibratory treatment. The material used for the investigation is AA7075 aluminum alloy, which is highly prone for hot cracking. Vibratory treatment was carried out in the frequency range of 100Hz to 2050Hz. Weldments made with and without vibratory treatment were compared using weld cracking tests and other characterization tests like micro structural analysis, hardness measurements. Test results show that by applying vibratory treatment, hot cracking can be largely controlled in arc welding.

  12. Low Cycle Fatigue behavior of SMAW welded Alloy28 superaustenitic stainless steel at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Kchaou, Y., E-mail: yacinekchaou@yahoo.fr [Institut Pprime, Département Physique et Mécanique des Matériaux, UPR 3346 CNRS ISAE-ENSMA Université de Poitiers, Téléport 2, 1, avenue Clément Ader, BP 40109, F – 86961 Futuroscope Chasseneuil Cedex (France); Laboratoire de Génie des Matériaux et Environnement (LGME), ENIS, BPW 1173, Sfax (Tunisia); Pelosin, V.; Hénaff, G. [Institut Pprime, Département Physique et Mécanique des Matériaux, UPR 3346 CNRS ISAE-ENSMA Université de Poitiers, Téléport 2, 1, avenue Clément Ader, BP 40109, F – 86961 Futuroscope Chasseneuil Cedex (France); Haddar, N.; Elleuch, K. [Laboratoire de Génie des Matériaux et Environnement (LGME), ENIS, BPW 1173, Sfax (Tunisia)

    2016-01-10

    This paper focused on the study of Low Cycle Fatigue of welded joints of superaustenitic (Alloy28) stainless steels. Chemical composition and microstructure investigation of Base Metal (BM) and Weld Metal (WM) were identified. The results showed that both of composition is fully austenitic with a dendritic microstructure in the WM. Low cycle fatigue tests at different strain levels were performed on Base Metal (BM) and Welded Joint (WJ) specimens with a strain ratio R{sub ε}=−1. The results indicated that the fatigue life of welded joints is lower than the base metal. This is mainly due to the low ductility of the Welded Metal (WM) and the presence of welding defects. Simultaneously, Scanning Electron Microscope (SEM) observations of fractured specimens show that WJ have brittle behavior compared to BM with the presence of several welding defects especially in the crack initiation site. An estimation of the crack growth rate during LCF tests of BM and WJ was performed using distance between striations. The results showed that the crack initiation stage is shorter in the case of WJ compared to BM because of the presence of welding defects in WJ specimens.

  13. Microstructural Characteristics and Mechanical Properties of 7050-T7451 Aluminum Alloy Friction Stir-Welded Joints

    Science.gov (United States)

    Zhou, L.; Wang, T.; Zhou, W. L.; Li, Z. Y.; Huang, Y. X.; Feng, J. C.

    2016-06-01

    The ultra-high-strength Al-Zn-Mg-Cu alloy, 7050-T7451, was friction stir welded at a constant tool rotation speed of 600 rpm. Defect-free welds were successfully obtained at a welding speed of 100 mm/min, but lack-of-penetration defect was formed at a welding speed of 400 mm/min. The as-received material was mainly composed of coarse-deformed grains with some fine recrystallized grains. Fine equiaxed, dynamic, recrystallized grains were developed in the stir zone, and elongated grains were formed in the thermomechanically affected zone with dynamic recovered subgrains. Grain sizes in different regions of friction stir-welded joints varied depending on the welding speed. The sizes and distributions of precipitates changed in different regions of the joint, and wider precipitation free zone was developed in the heat-affected zone compared to that in the base material. Hardness of the heat-affected zone was obviously lower than that of the base material, and the softening region width was related to the welding speed. The tensile strength of the defect-free joints increased with the increasing welding speed, while the lack-of-penetration defect greatly reduced the tensile strength. The tensile fracture path was significantly influenced by the position and orientation of lack-of-penetration defect.

  14. Effect of Preheating in Hybrid Friction Stir Welding of Aluminum Alloy

    Science.gov (United States)

    Yaduwanshi, D. K.; Bag, S.; Pal, S.

    2014-10-01

    The controlled energy input into the system by introducing an extra heat source to enhance the material flow along with reduction of the plunging force remains a potential area of considerate for the development of hybrid friction stir welding (FSW) process. Hence, the effect of preheating on the weld joint properties is evaluated using plasma-assisted friction stir welding (P-FSW) process for joining aluminum alloy. A comparative study of mechanical and macro-microstructural characterizations of weld joint by FSW and P-FSW has been performed. Transverse tensile strength of weld joint is approximately 95% of base metal produced by P-FSW and is 8% more than conventional FSW welds. The effect of preheating enhances material flow and dissolution of fine oxide particles by plasma arc results in increase of strength and marginal modification of deformation behavior. The preheating brings uniformly distributed hardness in weld zone and the magnitude is higher in the advancing side with overall increase in average hardness value. Grain sizes are much finer due to the pinning effect of Al2O3 particles that retarded grain growth following recrystallization during P-FSW and thus led to more pronounced reduction in grain size and relatively brittle fracture during tensile loading of welded joint. Overall, the influence of preheating acts quite homogeneously throughout the structure as compared to conventional FSW. However, the results reveal that the development of P-FSW is still in initial stage and needs to improve in various aspects.

  15. Thermal Aging Effects on Heat Affected Zone of Alloy 600 in Dissimilar Metal Weld

    Energy Technology Data Exchange (ETDEWEB)

    Ham, Jun Hyuk; Choi, Kyoung Joon; Yoo, Seung Chang; Kim, Ji Hyun [UNIST, Ulsan (Korea, Republic of)

    2016-05-15

    Dissimilar metal weld (DMW), consists of Alloy 600, Alloy 182, and A508 Gr.3, is now being widely used as the reactor pressure vessel penetration nozzle and the steam generator tubing material for pressurized water reactors (PWR) because of its mechanical property, thermal expansion coefficient, and corrosion resistance. The heat affected zone (HAZ) on Alloy 600 which is formed by welding process is critical to crack. According to G.A. Young et al. crack growth rates (CGR) in the Alloy 600 HAZ were about 30 times faster than those in the Alloy 600 base metal tested under the same conditions [3]. And according to Z.P. Lu et al. CGR in the Alloy 600 HAZ can be more than 20 times higher than that in its base metal. To predict the life time of components, there is a model which can calculate the effective degradation years (EDYs) of the material as a function of operating temperature. This study was conducted to investigate how thermal aging affects the hardness of dissimilar metal weld from the fusion boundary to Alloy 600 base metal and the residual strain at Alloy 600 heat affected zone. Following conclusions can be drawn from this study. The hardness, measured by Vickers hardness tester, peaked near the fusion boundary between Alloy 182 and Alloy 600, and it decreases as the picked point goes to Alloy 600 base metal. Even though the formation of precipitate such as Cr carbide, thermal aging doesn't affect the value and the tendency of hardness because of reduced residual stress. According to kernel average misorientation mapping, residual strain decreases when the material thermally aged. And finally, in 30 years simulated specimen, the high residual strain almost disappears. Therefore, the influence of residual strain on primary water stress corrosion cracking can be diminished when the material undergoes thermal aging.

  16. Research on modeling of heat source for electron beam welding fusion-solidification zone

    Institute of Scientific and Technical Information of China (English)

    Wang Yajun; Fu Pengfei; Guan Yongjun; Lu Zhijun; Wei Yintao

    2013-01-01

    In this paper,the common heat source model of point and linear heat source in the numerical simulation of electron beam welding (EBW) were summarized and introduced.The combined point-linear heat source model was brought forward and to simulate the welding temperature fields of EBW and predicting the weld shape.The model parameters were put forward and regulated in the combined model,which included the ratio of point heat source to linear heat source Qpr and the distribution of linear heat source Lr.Based on the combined model,the welding temperature fields of EBW were investigated.The results show that the predicted weld shapes are conformable to those of the actual,the temperature fields are reasonable and correct by simulating with combined point-linear heat source model and the typical weld shapes are gained.

  17. Feedback Control of Laser Welding Based on Frequency Analysis of Light Emissions and Adaptive Beam Shaping

    Science.gov (United States)

    Mrňa, L.; Šarbort, M.; Řeřucha, Š.; Jedlička, P.

    This paper presents a novel method for optimization and feedback control of laser welding process. It is based on frequency analysis of the light emitted during the process and adaptive shaping of the laser beam achieved by an active optical element. Experimentally observed correlations between the focal properties of the laser beam, the weld depth and the frequency characteristics of the light emissions, which form the basis of the method, are discussed in detail. The functionality and the high efficiency of the method are demonstrated for a variety of welding parameters settings usually used in industrial practice.

  18. Investigation of Microstructure in Solid State Welded Al-Cu-Li alloy

    Directory of Open Access Journals (Sweden)

    No Kookil

    2016-01-01

    Full Text Available Al-Li alloys have been extensively used in aerospace vehicle structure since the presence of lithium increases the modulus and reduce the density of the alloy. Especially the third generation Al-Cu-Li alloy shows enhanced fracture toughness at cryogenic temperatures so that the alloy has been used on the fuel tank of space launchers, like Super Lightweight External Tank of the Space Shuttle. Since the commercial size of the plate cannot accommodate the large tank size of the launcher, joining several pieces is required. However, lithium is highly reactive and its compounds can decompose with heat from conventional fusion welding and form different types of gases which result in formation of defects. In this study, the microstructure change is investigated after solid state welding process to join the Al-Cu-Li sheets with optical and transmission electron microscopic analysis of precipitates.

  19. Effect of post weld heat treatment on tensile properties and microstructure characteristics of friction stir welded armour grade AA7075-T651 aluminium alloy

    Institute of Scientific and Technical Information of China (English)

    P. SIVARAJ; D. KANAGARAJAN; V. BALASUBRAMANIAN

    2014-01-01

    This paper reports the effects of post weld heat treatments, namely artificial ageing and solution treatment followed by artificial ageing, on microstructure and mechanical properties of 12 mm thick friction stir welded joints of precipitation hardenable high strength armour grade AA7075-T651 aluminium alloy. The tensile properties, such as yield strength, tensile strength, elongation and notch tensile strength, are evaluated and correlated with the microhardness and microstructural features. The scanning electron microscope is used to characterie the fracture surfaces. The solution treatment followed by ageing heat treatment cycle is found to be marginally beneficial in improving the tensile properties of friction stir welds of AA7075-T651 aluminium alloy.

  20. Non vacuum electron beam welding of zinc coated high-strength steels

    Energy Technology Data Exchange (ETDEWEB)

    Bach, F.W.; Beniyash, A.; Lau, K.; Versemann, R. [Hannover Univ. (Germany). Inst. of Materials Science

    2005-07-01

    Due to the requirement of conservation of nature and natural resources, today more and more high-strength steels are applied for modern concepts of lightweight construction in auto body manufacturing. For a better corrosion protection mainly hot-dip galvanized sheets or electrolytically coated sheets are used. Non Vacuum Electron Beam Welding (NVEBW) offers several technological and economical advantages for joining zinc coated sheets, which are presented in this paper. The results are based on extensive welding investigations that were performed with the 175 kV-NVEBW machine at Institute of Materials Science, University of Hanover. Different zinc coated steels (microalloyed steel, dualphase steel, residualaustenite steel, complexphase steel, martensitic steel) with sheet thicknesses between 0.8-2.0 mm were welded. A main focus of the work is to investigate the influence of the zinc coating on the welding behaviour at different seam geometries (butt joint, edge-raised seam, lap joint, fillet weld, tailored blank). Up to welding speeds of 10 m/min welds with good properties were obtained. In some cases (lap joints, edge raised seams) it is necessary to weld with a weld gap for zinc evaporation. But it turned out that NVEBW has a wide tolerance concerning the gap width. Furthermore, the presentation shows the results of extensive mechanical tests to NVEBW-welded high-strength steels, especially to hardness tests, tensile tests and forming investigations. (orig.)

  1. Numerical stress analysis of crack at welded beam-to-column connection

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In the past, brittle fracture of steel structure was reported rarely under earthquake. However, recent earthquakes, especially Northridge Earthquake (USA) and Hyogoken-Nanbu earthquake (Japan), astonished engineers in the field of construction. The experience from recent earthquakes of USA and Japan shows that brittle fracture of welded steel structure always starts from high stress zone with welded crack[1~5]. As backing bar for grooved weld on beam flange exists, artificial crack is formed because of lack-of-fusion at the root of flange weld. In this paper stress distribution of connection is computed with FEM, and stress concentration at the root of flange weld is also analyzed. Stress intensity factors (SIFs), KI, at the root of flange weld are computed in the method of fracture mechanics. The computation shows that stress intensity factor on bottom flange weld is obviously higher than that on top flange weld. It is proved by the fact that brittle fracture is liable to start at the root of bottom flange weld on actual earthquake[1,4]. Finally measures are brought forward to avoid fracture of weld structure against earthquake.

  2. Characterization of the Microstructures and the Cryogenic Mechanical Properties of Electron Beam Welded Inconel 718

    Science.gov (United States)

    Kwon, Soon Il; Bae, Sang Hyun; Do, Jeong Hyeon; Jo, Chang Yong; Hong, Hyun Uk

    2016-02-01

    The microstructures and the cryogenic mechanical properties of electron beam (EB) welds between cast and forged Inconel 718 superalloys with a thickness of 10 mm were investigated in comparison with gas tungsten arc (GTA) welds. EB welding with a heat input lower than 250 J/mm caused the formation of liquation microfissuring in the cast-side heat-affected-zone (HAZ) of the EB welds. HAZ liquation microfissuring appeared to be associated with the constitutional liquation of primary NbC carbides at the grain boundaries. Compared with the GTA welding process, the EB welding produced welds with superior microstructure, exhibiting fine dendritic structure associated with the reduction in size and fraction of the Laves phase due to the rapid cooling rate. This result was responsible for the superior mechanical properties of the EB welds at 77 K (-196 °C). Laves particles in both welds were found to provide the preferential site for the crack initiation and propagation, leading to a significant decrease in the Charpy impact toughness at 77 K (-196 °C). Crack initiation and propagation induced by Charpy impact testing were discussed in terms of the dendrite arm spacing, the Laves size and the dislocation structure ahead of the crack arisen from the fractured Laves phase in the two welds.

  3. Nano-structureal and nano-chemical analysis of Ni-based alloy/low alloy steel dissimilar metal weld interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Kyoung Joon; Shin, Sang Hun; Kim, Jong Jin; Jung, Ju Ang; Kim, Ji Hyun [Interdisciplinary School of Green Energy, Ulsan National Institute of Science and Technology (UNIST), Ulsan (Korea, Republic of)

    2012-06-15

    The dissimilar metal joints welded between Ni-based alloy, Alloy 690 and low alloy steel, A533 Gr. B with Alloy 152 filler metal were characterized by using optical microscope, scanning electron microscope, transmission electron microscope, secondary ion mass spectrometry and 3-dimensional atom probe tomography. It was found that in the weld root region, the weld was divided into several regions including unmixed zone in Ni-base alloy, fusion boundary, and heat-affected zone in the low alloy steel. The result of nanostructural and nanochemical analyses in this study showed the non-homogeneous distribution of elements with higher Fe but lower Mn, Ni and Cr in A533 Gr. B compared with Alloy 152, and the precipitation of carbides near the fusion boundary.

  4. Effect of annealing on martensitic transformations in "steel - TiNi alloy" explosion welded bimetallic composite

    Science.gov (United States)

    Belyaev, S. P.; Rubanik, V. V.; Resnina, N. N.; Rubanik, V. V.; Rubanik, O. E.

    2011-01-01

    The effect of explosion welding on the kinetics of martensitic transformations in a "steel - TiNi alloy" bimetallic composite and the effect of the temperature and duration of annealing on recovery of the characteristics of the martensitic transformations are studied. It is shown that annealing in the range of 450 - 600°C accompanied by retrogression of structure causes full recovery of the transformation kinetics in the alloy.

  5. Morphology, microstructure, and mechanical properties of laser-welded joints in GH909 alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chunming; Cai, Yuanzheng; Hu, Chongjing; Zhang, Xiong; Yan, Fei; Hu, Xiyuan [Huazhong University of Science and Technology, Wuhan (China)

    2017-05-15

    The experimental laser welding of GH909 alloy was conducted in this study. The morphology, microstructure, and mechanical properties of laser-welded joints were analyzed by scanning electron microscopy, energy diffraction spectroscopy, and other techniques. Results revealed that the microstructure of the welded joints mainly consisted of tiny cellular structures, dendritic structures, and equiaxed crystals. Pores appeared in the interdendritic regions because of the insufficient local feeding of molten metal during solidification. Nb segregation in the heat-affected zone caused liquation cracking, whereas C segregation further induced the formation of carbide precipitates along the grain boundaries during the welding thermal cycle. The instability of the keyhole significantly promoted the escape of the metal vapor/plasma from the hole; as a result, porosity defects formed in the weld. The average tensile strength of the test joints was 756 MPa, which is 93.1 % of that of the base metal. The average microhardness of the weld zone (250 HV) was higher than that of the GH909 alloy substrate (208 HV), peaking at 267 HV. Microcracks appeared along the grain boundaries, proving that the grain boundaries were the weakest areas in the joint.

  6. Effect of Welding Speed and Tool Pin Geometry on Impact Strength in Friction Stir Welding of Aluminium 6101 T6 Alloy

    Directory of Open Access Journals (Sweden)

    Singh Rajbir

    2016-01-01

    Full Text Available Friction stir welding (FSW process is a solid state joining method in which the material that is being welded does not melt and recast. This process uses a non-consumable tool to generate frictional heat in the abutting surfaces. The welding parameters play a major role in deciding the joint characteristics. In this investigation the effect of welding speed and tool pin geometry in friction stir welds of Aluminium alloy was studied. The welded joints were made of Aluminium alloy AA 6101 T6 strips of 6mm thickness with different tool pin profile (Cylindrical, Taper cylindrical, Square and Taper Square. All the welding operations were done at the room temperature. Charpy tests were carried out to find the impact strength. From this investigation it is found that strength is superior with taper square tool pin profile than cylindrical, taper cylindrical and square tool pin profile. The pieces weld at rotational speed of 1200 r.p.m and welding speed of 70mm/min using taper square tool have higher strength.

  7. Thermo-mechanical Modeling for Residual Stresses of Friction Stir Welding of Dissimilar Alloys

    Directory of Open Access Journals (Sweden)

    ABDUL ARIF

    2013-06-01

    Full Text Available Friction stir welding is an advanced joining process that has been used for high production since 1996. FSW produces a weld that is strong than the base material because melting does not occur and joining takes place below the melting temperature of the material. FSW produces no fumes and can join aluminum alloys, magnesium, steels, copper and titanium. In this study, a thermo-mechanical model with improved potential is developed to study the formation of residual stress field in dissimilar materials. The model predictions were confirmed with experimental data obtained by Jamshidi et al. on dissimilar aluminum alloys AA6061 to AA5086. A commercial finite element software ANSYS® is used for simulation of friction stir welding. Longitudinal and transverse residual stresses are obtained when AA5086-O on the advancing side and AA6061- T6 on the retreating side after 15sec.

  8. Effect of Process Parameters of Friction Stir Welded Joint for Similar Aluminium Alloys H30

    Directory of Open Access Journals (Sweden)

    Vanita S. Thete

    2015-05-01

    Full Text Available In this paper the effect of process parameters of friction stir welded joint for similar aluminium alloys H30 was studied. Taper cylindrical with three flutes all made of High speed steel was used for the friction stir welding (FSW aluminium alloy H30 and the tensile test of the welded joint were tested by universal testing method. The optimization done using detailed mathematical model is simulated by Minitab17. In this investigation, an effective approach based on Taguchi method, has been developed to determine the optimum conditions leading to higher tensile strength. Experiments were conducted on varying rotational speed, transverse speed, and axial force using L9 orthogonal array of Taguchi method. The present study aims at optimizing process parameters to achieve high tensile strength.

  9. Al-Si-Mn Alloy Coating on Aluminum Substrate Using Cold Metal Transfer (CMT) Welding Technique

    Science.gov (United States)

    Rajeev, G. P.; Kamaraj, M.; Bakshi, S. R.

    2014-06-01

    The cold metal transfer (CMT) process was explored as a weld overlay technique for synthesizing Al-Si-Mn alloy coating on a commercially pure Al plate. The effect of welding speed on the bead geometry, deposition rate, and the dilution were studied and the best parameter was used to synthesize the coatings. The CMT process can be used to produce thick coatings (>2.5 mm) without porosity and with low dilution levels. The Vickers hardness number of the Al substrate increased from 28 in the bulk to 57 in the coating. It is suggested that the CMT process can be an effective and energy-efficient technique for depositing thick coatings and is useful in weld repair of aluminum alloy components.

  10. Tensile strength and corrosion resistance of brazed and laser-welded cobalt-chromium alloy joints.

    Science.gov (United States)

    Zupancic, Rok; Legat, Andraz; Funduk, Nenad

    2006-10-01

    The longevity of prosthodontic restorations is often limited due to the mechanical or corrosive failure occurring at the sites where segments of a metal framework are joined together. The purpose of this study was to determine which joining method offers the best properties to cobalt-chromium alloy frameworks. Brazed and 2 types of laser-welded joints were compared for their mechanical and corrosion characteristics. Sixty-eight cylindrical cobalt-chromium dental alloy specimens, 35 mm long and 2 mm in diameter, were cast. Sixteen specimens were selected for electrochemical measurements in an artificial saliva solution and divided into 4 groups (n=4). In the intact group, the specimens were left as cast. The specimens of the remaining 3 groups were sectioned at the center, perpendicular to the long-axis, and were subsequently rejoined by brazing (brazing group) or laser welding using an X- or I-shaped joint design (X laser and I laser groups, respectively). Another 16 specimens were selected for electrochemical measurements in a more acidic artificial saliva solution. These specimens were also divided into 4 groups (n=4) as described above. Electrochemical impedance spectroscopy and potentiodynamic polarization were used to assess corrosion potentials, breakdown potentials, corrosion current densities, total impedances at lowest frequency, and polarization charge-transfer resistances. The remaining 36 specimens were used for tensile testing. They were divided into 3 groups in which specimen pairs (n=6) were joined by brazing or laser welding to form 70-mm-long cylindrical rods. The tensile strength (MPa) was measured using a universal testing machine. Differences between groups were analyzed using 1-way analysis of variance (alpha=.05). The fracture surfaces and corrosion defects were examined with a scanning electron microscope. The average tensile strength of brazed joints was 792 MPa and was significantly greater (P<.05) than the tensile strength of both types of

  11. Microstructure and Residual Stress Distributions Under the Influence of Welding Speed in Friction Stir Welded 2024 Aluminum Alloy

    Science.gov (United States)

    Moghadam, Danial Ghahremani; Farhangdoost, Khalil; Nejad, Reza Masoudi

    2016-06-01

    Friction stir welding was conducted on 8-mm-thick plates made of AA2024-T351 aluminum alloy at tool traverse speeds between 8 and 31.5 mm/minutes and tool rotational speed between 400 and 800 rpm. Metallographic analyses and mechanical tests including hardness, tensile, residual stress, and fracture toughness tests were carried out to evaluate the microstructural and mechanical properties of the joints as a function of the process parameters. The finite element simulation of the FSW process was also performed using a thermal model. The hardness test results show that the increase in rotational speed or decrease in traverse speed of the tool would cause a decrease in weld zone hardness. The best tensile properties are obtained at rotational/traverse speed ratio between 20 and 32. Also, the longitudinal residual stress profiles were evaluated by employing X-ray diffraction method. The numerical and experimental results showed that the increase in a traverse or rotational speed would increase the residual stress of the weld zone. From the fracture toughness results, it was found that the welding process decreases the joints fracture toughness 18 to 49 pct with respect to the base metal.

  12. Friction Stir-Welded Dissimilar Aluminum Alloys: Microstructure, Mechanical Properties, and Physical State

    Science.gov (United States)

    Ghosh, M.; Husain, Md. M.; Kumar, K.; Kailas, S. V.

    2013-12-01

    A356 and 6061 aluminum alloys were joined by friction stir welding at constant tool rotational rate with different tool-traversing speeds. Thermomechanical data of welding showed that increment in tool speed reduced the pseudo heat index and temperature at weld nugget (WN). On the other hand, volume of material within extrusion zone, strain rate, and Zenner Hollomon parameter were reduced with decrease in tool speed. Optical microstructure of WN exhibited nearly uniform dispersion of Si-rich particles, fine grain size of 6061 Al alloy, and disappearance of second phase within 6061 Al alloy. With enhancement in welding speed, matrix grain size became finer, yet size of Si-rich particles did not reduce incessantly. Size of Si-rich particles was governed by interaction time between tool and substrate. Mechanical property of WN was evaluated. It has been found that the maximum joint efficiency of 116% with respect to that of 6061 alloy was obtained at an intermediate tool-traversing speed, where matrix grain size was significantly fine and those of Si-rich particles were substantially small.

  13. Effect of welding processes on mechanical and microstructural characteristics of high strength low alloy naval grade steel joints

    Directory of Open Access Journals (Sweden)

    S. Ragu Nathan

    2015-09-01

    Full Text Available Naval grade high strength low alloy (HSLA steels can be easily welded by all types of fusion welding processes. However, fusion welding of these steels leads to the problems such as cold cracking, residual stress, distortion and fatigue damage. These problems can be eliminated by solid state welding process such as friction stir welding (FSW. In this investigation, a comparative evaluation of mechanical (tensile, impact, hardness properties and microstructural features of shielded metal arc (SMA, gas metal arc (GMA and friction stir welded (FSW naval grade HSLA steel joints was carried out. It was found that the use of FSW process eliminated the problems related to fusion welding processes and also resulted in the superior mechanical properties compared to GMA and SMA welded joints.

  14. On the effect of β phase on the microstructure and mechanical properties of friction stir welded commercial brass alloys.

    Science.gov (United States)

    Heidarzadeh, Akbar; Saeid, Tohid

    2015-12-01

    Conventional fusion welding of brass (Cu-Zn) alloys has some difficulties such as evaporation of Zn, toxic behavior of Zn vapor, solidification cracking, distortion, and oxidation [1], [2], [3]. Fortunately, friction stir welding (FSW) has been proved to be a good candidate for joining the brass alloys, which can overcome the fusion welding short comes [4], [5], [6], [7]. The data presented here relates to FSW of the single and double phase brass alloys. The data is the microstructure and mechanical properties of the base metals and joints.

  15. 铝及铝合金TIG焊接特性%Character of TIG Welding for Aluminum and Aluminum Alloy

    Institute of Scientific and Technical Information of China (English)

    殷春喜; 黄军庆; 熊震东; 贾翠催

    2011-01-01

    The characters of TIG welding for aluminum and aluminum alloys were described, it includes the shielding gas and groove of TIG welding and the effect of welding process on the weld shape and welding quality.%概述了铝及铝合金TIG焊接技术特性,包括铝及铝合金TIG焊接保护气体、坡口的选择和焊接工艺对焊缝成形和焊接质量的影响.

  16. Welding and mechanical properties of cast FAPY (Fe-16 at. % Al-based) alloy slabs

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, V.K.; Goodwin, G.M.; Alexander, D.J.; Howell, C.R.

    1995-08-01

    The low-aluminum-content iron-aluminum program deals with the development of a Fe-Al alloy with aluminum content such as a produce the minimum environmental effect at room temperature. The FAPY is an Fe-16 at. % Al-based alloy developed at the Oak Ridge National Laboratory as the highest aluminum-containing alloy with essentially no environmental effect. The chemical composition for FAPY in weight percent is: aluminum = 8.46, chromium = 5.50, zirconium = 0.20, carbon = 0.03, molybdenum = 2.00, yttrium = 0.10, and iron = 83.71. The cast ingots of the alloy can be hot worked by extrusion, forging, and rolling processes. The hot- worked cast structure can be cold worked with intermediate anneals at 800{degrees}C. Typical room-temperature ductility of the fine-grained wrought structure is 20 to 25% for this alloy. In contrast to the wrought structure, the cast ductility at room temperature is approximately 1% with a transition temperature of approximately 100 to 150{degrees}C, above which ductility values exceed 20%. The alloy has been melted and processed into bar, sheet, and foil. The alloy has also been cast into slabs, step-blocks of varying thicknesses, and shapes. The purpose of this section is to describe the welding response of cast slabs of three different thicknesses of FAPY alloy. Tensile, creep, and Charpy-impact data of the welded plates are also presented.

  17. Influence of heat input on HAZ liquation cracking in laser welded GH909 alloy

    Science.gov (United States)

    Yan, Fei; Hu, Chongjing; Zhang, Xiong; Cai, Yuanzheng; Wang, Chunming; Wang, Jun; Hu, Xiyuan

    2017-07-01

    In this paper, we describe influence of heat input on HAZ liquation cracking in laser welded GH909 alloy. The results demonstrated that more cracks were produced using high laser power and welding speed. The presence of cracks greatly weakened the hot ductility of this material and the binding force between the adjacent grains, resulting in reducing the tensile strength of welded joints. The occurrence of HAZ cracking was mainly attributable to the coarseness of microstructures and large tensile stresses. A new method was proposed to prevent HAZ liquation cracking using low laser power and welding speed at a constant heat input. The simulated results were consistent with the experimental results, verifying the correctness and feasibility of the method.

  18. Hot-crack test for aluminium alloys welds using TIG process

    Directory of Open Access Journals (Sweden)

    Deschaux-beaume F.

    2010-06-01

    Full Text Available Hot cracking is a critical defect frequently observed during welding of aluminium alloys. In order to better understand the interaction between cracking phenomenon, process parameters, mechanical factors and microstructures resulting from solidification after welding, an original hot-cracking test during welding is developed. According to in-situ observations and post mortem analyses, hot cracking mechanisms are investigated, taking into account the interaction between microstructural parameters, depending on the thermal cycles, and mechanical parameters, depending on geometry and clamping conditions of the samples and on the thermal field on the sample. Finally, a process map indicating the limit between cracking and non-cracking zones according to welding parameters is presented.

  19. METAL INERT GAS WELDING OF 2519-T87 HIGH STRENGTH ALUMINUM ALLOY

    Institute of Scientific and Technical Information of China (English)

    XU Lianghong; TIAN Zhiling; ZHANG Xiaomu; PENG Yun

    2007-01-01

    20 mm thick plates of 2519-T87 high strength aluminum alloy have been welded. The effects of the compositions of filier wires, the heat input and the compositions of shielding gas on the mechanical properties and microstructure of the welded joint have been investigated. The results indicate that finer microstructure, better mechanical properties and higher value of hardness of HAZ can be obtained by using lower heat input. The use of Ar/He mixed shielding gas has several advantages over pure Ar shielding gas. With the increase of the proportion of He in the mixed shielding gas, the grain size of the weld metal as well as porosity susceptibility decreases. When the volume ratio of He to Ar reaches 7:3, the porosity and the grain size of weld metal reach the minimum, and the porosity can be further reduced by filling some CO2.

  20. Microstructure of friction stir welded joints of 2017A aluminium alloy sheets.

    Science.gov (United States)

    Mroczka, K; Dutkiewicz, J; Pietras, A

    2010-03-01

    The present study examines a friction stir welded 2017A aluminium alloy. Transmission electron microscope investigations of the weld nugget revealed the average grain size of 5 microm, moderate density of dislocations as well as the presence of nanometric precipitates located mostly in grains interiors. Scanning electron microscope observations of fractures showed the presence of ductile fracture in the region of the weld nugget with brittle precipitates in the lower part. The microhardness analysis performed on the cross-section of the joints showed fairly small changes; however, after the artificial ageing process an increase in hardness was observed. The change of the joint hardness subject to the ageing process indicates partial supersaturation in the material during friction stir welding and higher precipitation hardening of the joint.

  1. Grain Refinement of Freeform Fabricated Ti-6Al-4V Alloy Using Beam/Arc Modulation

    Science.gov (United States)

    Mitzner, Scott; Liu, Stephen; Domack, Marcia S.; Hafley, Robert A.

    2012-01-01

    Grain refinement can significantly improve the mechanical properties of freeform-fabricated Ti-6Al-4V alloy, promoting increased strength and enhanced isotropy compared with coarser grained material. Large beta-grains can lead to a segregated microstructure, in regard to both alpha-phase morphology and alpha-lath orientation. Beam modulation, which has been used in conventional fusion welding to promote grain refinement, is explored in this study for use in additive manufacturing processes including electron beam freeform fabrication (EBF(sup 3)) and gas-tungsten arc (GTA) deposition to alter solidification behavior and produce a refined microstructure. The dynamic molten pool size induced by beam modulation causes rapid heat flow variance and results in a more competitive grain growth environment, reducing grain size. Consequently, improved isotropy and strength can be achieved with relatively small adjustments to deposition parameters.

  2. SRF test facility for the superconducting LINAC ``RAON'' — RRR property and e-beam welding

    Science.gov (United States)

    Jung, Yoochul; Hyun, Myungook; Joo, Jongdae; Joung, Mijoung

    2015-02-01

    Equipment, such as a vacuum furnace, high pressure rinse (HPR), eddy current test (ECT) and buffered chemical polishing (BCP), are installed in the superconducting radio frequency (SRF) test facility. Three different sizes of cryostats (diameters of 600 mm for a quarter wave resonator (QWR), 900 mm for a half wave resonator (HWR), and 1200 mm for single spoke resonator 1&2 (SSR 1&2)) for vertical RF tests are installed for testing cavities. We confirmed that as-received niobium sheets (ASTM B393, RRR300) good electrical properties because they showed average residual resistance ratio (RRR) values higher than 300. However, serious RRR degradation occurred after joining two pieces of Nb by e-beam welding because the average RRR values of the samples were ˜179, which was only ˜60% of as-received RRR value. From various e-beam welding experiments in which the welding current and a speed at a fixed welding voltage were changed, we confirmed that good welding results were obtained at a 53 mA welding current and a 20-mm/s welding speed at a fixed welding voltage of 150 kV.

  3. Investigation into the Influence of Post-Weld Heat Treatment on the Friction Stir Welded AA6061 Al-Alloy Plates with Different Temper Conditions

    Science.gov (United States)

    İpekoğlu, Güven; Erim, Seçil; Çam, Gürel

    2014-02-01

    In this study, the effect of post-weld heat treatment (PWHT) on the microstructure and mechanical properties of friction stir butt-joined AA6061 Al-alloy plates both in O and T6-temper conditions was investigated by detailed microstructural investigations and microhardness measurements, in combination with transverse tensile testing. It was determined that the PWHT might result in abnormal grain growth (AGG) in the weld zone particularly in the joints produced in O-temper condition depending on the weld parameters used during friction stir welding. The PWHT generally led to an improvement in the mechanical properties even if AGG took place. Thus, the post-weld heat-treated joints exhibited mechanical properties much higher than those of respective as-welded plates and comparable to those of the respective base plates.

  4. Identifying Combination of Friction Stir Welding Parameters to Maximize Strength of Lap Joints of AA2014-T6 Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    Rajendrana C.

    2017-01-01

    Full Text Available AA2014 aluminum alloy (Al-Cu alloy has been widely utilized in fabrication of lightweight structures like aircraft structures, demanding high strength to weight ratio and good corrosion resistance. The fusion welding of these alloys will lead to solidification problems such as hot cracking. Friction stir welding is a new solid state welding process, in which the material being welded does not melt and recast. Lot of research works have been carried out by many researchers to optimize process parameters and establish empirical relationships to predict tensile strength of friction stir welded butt joints of aluminum alloys. However, very few investigations have been carried out on friction stir welded lap joints of aluminum alloys. Hence, in this investigation, an attempt has been made to optimize friction stir lap welding (FSLW parameters to attain maximum tensile strength using statistical tools such as design of experiment (DoE, analysis of variance (ANOVA, response graph and contour plots. By this method, it is found that maximum tensile shear fracture load of 12.76 kN can be achieved if a joint is made using tool rotational speed of 900 rpm, welding speed of 110 mm/min, tool shoulder diameter of 12 mm and tool tilt angle of 1.5°.

  5. Study on laser welding of austenitic stainless steel by varying incident angle of pulsed laser beam

    Science.gov (United States)

    Kumar, Nikhil; Mukherjee, Manidipto; Bandyopadhyay, Asish

    2017-09-01

    In the present work, AISI 304 stainless steel sheets are laser welded in butt joint configuration using a robotic control 600 W pulsed Nd:YAG laser system. The objective of the work is of twofold. Firstly, the study aims to find out the effect of incident angle on the weld pool geometry, microstructure and tensile property of the welded joints. Secondly, a set of experiments are conducted, according to response surface design, to investigate the effects of process parameters, namely, incident angle of laser beam, laser power and welding speed, on ultimate tensile strength by developing a second order polynomial equation. Study with three different incident angle of laser beam 89.7 deg, 85.5 deg and 83 deg has been presented in this work. It is observed that the weld pool geometry has been significantly altered with the deviation in incident angle. The weld pool shape at the top surface has been altered from semispherical or nearly spherical shape to tear drop shape with decrease in incident angle. Simultaneously, planer, fine columnar dendritic and coarse columnar dendritic structures have been observed at 89.7 deg, 85.5 deg and 83 deg incident angle respectively. Weld metals with 85.5 deg incident angle has higher fraction of carbide and δ-ferrite precipitation in the austenitic matrix compared to other weld conditions. Hence, weld metal of 85.5 deg incident angle achieved higher micro-hardness of ∼280 HV and tensile strength of 579.26 MPa followed by 89.7 deg and 83 deg incident angle welds. Furthermore, the predicted maximum value of ultimate tensile strength of 580.50 MPa has been achieved for 85.95 deg incident angle using the developed equation where other two optimum parameter settings have been obtained as laser power of 455.52 W and welding speed of 4.95 mm/s. This observation has been satisfactorily validated by three confirmatory tests.

  6. Microstructural Characteristics and Mechanical Properties of Friction Stir Welded Thick 5083 Aluminum Alloy

    Science.gov (United States)

    Imam, Murshid; Sun, Yufeng; Fujii, Hidetoshi; Ma, Ninshu; Tsutsumi, Seiichiro; Murakawa, Hidekazu

    2016-10-01

    Joining thick sections of aluminum alloys by friction stir welding (FSW) in a single pass needs to overcome many challenges before it comes to full-scale industrial use. Important parameters controlling the structure-properties relationships both across weld cross-section and through thickness direction were investigated through mechanical testing, electron backscatter diffraction technique, transmission electron microscopy, and occurrence of serrated plastic flow. The evolution of the properties in the weld cross-section shows that the presence of undissolved and fragmented Al_6 MnFe particles cause discrepancies in establishing the Hall-Petch relationship, and derive the strengthening from the Orowan strengthening mechanism. A `stop action' friction stir weld has been prepared to understand the role of geometrical features of the tool probe in the development of the final microstructure after complete weld. Sectioning through the `stop action' weld with the probe in situ displays the individual effect of thread and flat on the grain structure formation. The material at the thread surface experiences more severe deformation than the material at flat surface. Both the high-angle boundaries and mean grain size are found to be higher at the thread surface. The strain hardening capacity, stress serration amplitude, and frequency are observed to be higher in the stir zone than other weld regions.

  7. Thermal Analysis on Butt Welded Aluminium Alloy AA7075 Plate Using FEM

    Directory of Open Access Journals (Sweden)

    M. Pal Pandi

    2014-03-01

    Full Text Available Thermo-mechanical finite element analysis has been performed to assess the residual stress in the butt weld joints of aluminium Alloy AA7075 plates by utilizing the commercial software package ABAQUS. This paper presents an efficient FE technique using equivalent load to precisely predict welding deformations and residual stresses in butt joints. The radial heat flux distribution is considered on the top surface of the weldment. Convective and radiative heat losses are taken into account through boundary conditions for the outward heat flux. Linear FE transient thermal analysis is performed using surface heat source model with Gaussian distribution to compute highest temperature in AA7075 plates. The objective of this project is to simulate the welding process by using the finite element method. After the model is built and verified, the main objective of this project is to study the effects of varying the welding process parameters on the thermo-mechanical responses. In addition to that, the aim of this research is also to find a relationship between welding parameters and the responses of single pass butt welding are evaluated through the finite element analysis. The study of this paper covers the effects of varying heat input, welding speed on the thermo-mechanical responses of the weldment after cooling down to room temperature.

  8. Temperature distribution study during the friction stir welding process of Al2024-T3 aluminum alloy

    Science.gov (United States)

    Yau, Y. H.; Hussain, A.; Lalwani, R. K.; Chan, H. K.; Hakimi, N.

    2013-08-01

    Heat flux characteristics are critical to good quality welding obtained in the important engineering alloy Al2024-T3 by the friction stir welding (FSW) process. In the present study, thermocouples in three different configurations were affixed on the welding samples to measure the temperatures: in the first configuration, four thermocouples were placed at equivalent positions along one side of the welding direction; the second configuration involved two equivalent thermocouple locations on either side of the welding path; while the third configuration had all the thermocouples on one side of the layout but with unequal gaps from the welding line. A three-dimensional, non-linear ANSYS computational model, based on an approach applied to Al2024-T3 for the first time, was used to simulate the welding temperature profiles obtained experimentally. The experimental thermal profiles on the whole were found to be in agreement with those calculated by the ANSYS model. The broad agreement between the two kinds of profiles validates the basis for derivation of the simulation model and provides an approach for the FSW simulation in Al2024-T3 and is potentially more useful than models derived previously.

  9. Microstructural Characteristics and Mechanical Properties of Friction Stir Welded Thick 5083 Aluminum Alloy

    Science.gov (United States)

    Imam, Murshid; Sun, Yufeng; Fujii, Hidetoshi; Ma, Ninshu; Tsutsumi, Seiichiro; Murakawa, Hidekazu

    2017-01-01

    Joining thick sections of aluminum alloys by friction stir welding (FSW) in a single pass needs to overcome many challenges before it comes to full-scale industrial use. Important parameters controlling the structure-properties relationships both across weld cross-section and through thickness direction were investigated through mechanical testing, electron backscatter diffraction technique, transmission electron microscopy, and occurrence of serrated plastic flow. The evolution of the properties in the weld cross-section shows that the presence of undissolved and fragmented Al_6MnFe particles cause discrepancies in establishing the Hall-Petch relationship, and derive the strengthening from the Orowan strengthening mechanism. A `stop action' friction stir weld has been prepared to understand the role of geometrical features of the tool probe in the development of the final microstructure after complete weld. Sectioning through the `stop action' weld with the probe in situ displays the individual effect of thread and flat on the grain structure formation. The material at the thread surface experiences more severe deformation than the material at flat surface. Both the high-angle boundaries and mean grain size are found to be higher at the thread surface. The strain hardening capacity, stress serration amplitude, and frequency are observed to be higher in the stir zone than other weld regions.

  10. Microstructure and Mechanical Properties of Laser Beam Welds of 15CDV6 Steel

    Directory of Open Access Journals (Sweden)

    M.V.L Ramesh

    2015-07-01

    Full Text Available The present study is concerned with laser beam welding of 15CDV6 steel, that is in the hardened (quenched and tempered condition before welding. Autogenously butt-welded joints are made using carbon dioxide laser with a maximum output of 3.5 kw in the continuous wave mode. Weld microstructure, microhardness measurement across the weldment, transverse tensile properties, and room temperature impact properties of the weldment have been evaluated. The fusion zone exhibits a epitaxial grain growth. The microstrutural features of heat-affected zone and fusion zone vary, due to different thermal cycles for which these were subjected during welding. The average weld metal hardness was 480 Hv. The observed hardness distribution across the welds were correlated with the microstructures. The welds exhibited lower toughness of 50 joules as compared to parent metal of 55 joules and the tensile strength values of the welded specimens are close to that obtained for sheet specimens.Defence Science Journal, Vol. 65, No. 4, July 2015, pp. 339-342, DOI: http://dx.doi.org/10.14429/dsj.65.8749

  11. Helium-tight Laser Beam Welding of Aluminum with Brillant Laser Beam Radiation

    Science.gov (United States)

    Heinen, Paul; Wu, Hao; Olowinsky, Alexander; Gillner, Arnold

    The substitution of steel as base metal for casings and packaging applications has increased during the last years. Especially aluminum with advantages in weight and machining effort has become a versatile solution for applications in fine mechanics (e.g. sensor housings) and automotive applications. Joining of aluminum components is more critical due to possible crack formation in the joining seam and uneven seam geometry. With the high intensity of brillant laser beam sources the specific challenges of aluminum welding can be overcome. Due to its hydrogen affinity and high degree of reflection for laser radiation at a wavelength of 1 μm (95%) aluminum needs to be welded with proper shielding gas support and high beam quality in order to avoid seam defects. Cracks and pores can lead to non-sufficient tightness for sensor applications and early failure. Housing components have been joined to form a functioning unit in order to seal electrical or measuring components, which are helium-tight for these applications.

  12. Microstructural characteristics and mechanism of toughness improvement of laser and electron-beam welds of V-4Cr-4Ti following postwelding heat-treatment

    Energy Technology Data Exchange (ETDEWEB)

    Chung, H.M.; Park, J.H.; Gazda, J.; Smith, D.L. [Argonne National Laboratory, IL (United States)

    1996-10-01

    The authors are conducting a program to develop an optimal laser welding procedure for large-scale fusion-reactor structural components to be fabricated from vanadium-base alloys. Microstructural characteristics were investigated by optical microscopy, X-ray diffraction, transmission electron microscopy, and chemical analysis to provide an understanding of the mechanism of the drastic improvement of impact toughness of laser and electron-beam (EB) welds of V-4Cr-4Ti following postwelding annealing at 1000{degrees}C. Transmission electron microscopy (TEM) revealed that annealed weld zones were characterized by extensive networks of fine V(C,O,N) precipitates, which appear to clean away O, C, and N from grain matrices. This process is accompanied by simultaneous annealing-out of the dense dislocations present in the weld fusion zone. It seems possible to produce high-quality welds under practical conditions by controlling and adjusting the cooling rate of the weld zone by some innovative method to maximize the precipitation of V(C,O,N).

  13. Effect of fiber laser parameters on laser welded AZ31B Magnesium alloys

    Directory of Open Access Journals (Sweden)

    Mat Salleh Naqiuddin

    2017-01-01

    Full Text Available Recently, the usage of Magnesium (Mg alloys has been hugely applied in the industrial application such as in automotive, marine, and electronic due to its advantages of recyclability and lightweight. This alloys required low heat input to be weld since it is easily evaporated due to the Magnesium Oxide (MgO at the surface and it also possesses lower melting point compared to steel. Laser welding is more convenient to weld Mg alloys due to its high power and lower heat input. AZ31B was selected since it has strong mechanical properties among others Mg alloys due to the major alloying elements; Aluminium (Al and Zinc (Zn. Low power fiber laser machine with wavelength of 900 nm was used in this experiment. The intention of this work was to investigate the effect of low power fiber laser parameters and effect of shielding gas on weld penetration and microstructure. Another aim in this work was to produce the joint for this thin sheets metal. Penetration depth and microstructure evaluation were emphasized in the analysis section. Bead-on-Plate (BOP and laser lap welding was conducted on AZ31B with thicknesses of 1.0 mm and 0.6 mm for feasibility study using pulsed wave (PW mode. Defocusing features was used in order to find better focal position, which has less occurrence of evaporation (underfill. The effect of different angle of irradiation was also investigated. Two types of shielding gases, Argon (Ar and Nitrogen (N2 were used in order to study the effect of shielding gas. Lastly, the effect of pulsed energy on penetration types and depth of BOP welded samples was investigated. Focus point was found at focal length of 156 mm with 393.75 μm. For BOP experiment, higher pulsed energy used contributes to melt through defect. Meanwhile, Ns shielding gas proved to be better shielding gas in laser welding the AZ31B. Higher angle of irradiation could reduce the underfill defect. Fillet Lap joint of similar metal was successfully done where 2.0 J of

  14. Analysis of porosity characteristics in weld metal of high strength aluminum alloy and the effect of mixed shielding gas

    Energy Technology Data Exchange (ETDEWEB)

    Xiaomu Zhang; Zhiyong Zhang; Yun Peng; Zhiling Tian; Changhong He; Hongjun Xiao; Chengyong Ma [Central Iron and Steel Research Inst., Beijing, BJ (China)

    2005-07-01

    Aluminum alloy has being widely used in modern automobile and aeronautic industry. However, the welding of aluminum alloy, especially high strength aluminum alloy is difficult. Porosities are usually brought in the weld metal. In this paper, MIG welding using mixed gas shielding is carried out. The characteristic shapes of porosity in weld metal are described, the mechanism of porosity formation is analyzed, and the factors that influence the tendency of porosity formation are studied. Experiment results indicate that by the use of mixed shielding gas of 38%He+62%Ar, the number of porosity is reduced, the width of HAZ and softened zone is decreased, and the mechanical properties of welded joint is increased. (orig.)

  15. PFM Analysis for Pre-Existing Cracks on Alloy 182 Weld in PWR Primary Water Environment using Monte Carlo Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jae Phil; Bahn, Chi Bum [Pusan National University, Busan (Korea, Republic of)

    2015-10-15

    Probabilistic Fracture Mechanics (PFM) analysis was generally used to consider the scatter and uncertainty of parameters in complex phenomenon. Weld defects could be present in weld regions of Pressurized Water Reactors (PWRs), which cannot be considered by the typical fracture mechanics analysis. It is necessary to evaluate the effects of the pre-existing cracks in welds for the integrity of the welds. In this paper, PFM analysis for pre-existing cracks on Alloy 182 weld in PWR primary water environment was carried out using a Monte Carlo simulation. PFM analysis for pre-existing cracks on Alloy 182 weld in PWR primary water environment was carried out. It was shown that inspection decreases the gradient of the failure probability. And failure probability caused by the pre-existing cracks was stabilized after 15 years of operation time in this input condition.

  16. Evaluation of residual stresses in electron-beam welded Zr2.5Nb0.9Hf Zircadyne flange mock-up of a reflector vessel beam tube flange

    Energy Technology Data Exchange (ETDEWEB)

    Muránsky, O., E-mail: ondrej.muransky@ansto.gov.au [Institute of Material Engineering, ANSTO, Locked Bag 2001, Kirrawee DC, 2234 NSW (Australia); Holden, T.M. [Northern Stress Technologies, Deep River, Ontario, Canada K0J 1P0 (Canada); Kirstein, O. [European Spallation Source, EES AB, Tunavagen 24, SE-211 00 Lund (Sweden); James, J.A. [Open University, Materials Engineering, Milton Keynes MK7 6BJ (United Kingdom); Paradowska, A.M. [Bragg Institute, ANSTO, Locked Bag 2001, Kirrawee DC, 2234 NSW (Australia); Edwards, L. [Institute of Material Engineering, ANSTO, Locked Bag 2001, Kirrawee DC, 2234 NSW (Australia)

    2013-07-15

    The dual-phase alloy Zr2.5Nb alloy is an important nuclear material, because of its use in current and possible use in future nuclear reactors. It is, however, well-known that Zr2.5Nb weldments can fail through a time-dependent mechanism called delayed hydride cracking which is typically driven by the presence of tensile residual stresses. With a view to understanding the development of residual stresses associated with Zr2.5Nb welds the current study focuses on the evaluation of the residual stresses in a mock-up of a reactor beam tube flange made from Zr2.5Nb0.9Hf. The present results suggests that, like ferritic welds which undergo a solid-state phase transformation upon welding, Zr2.5Nb0.9Hf welds also develop high tensile residual stresses in the heat-affected zone whereas the stresses closer to the weld tip are reduced by the effects of the β → α solid-state phase transformation.

  17. Laboratory galling tests of several commercial cobalt-free weld hardfacing alloys

    Energy Technology Data Exchange (ETDEWEB)

    Cockeram, B.V.; Buck, R.F.; Wilson, W.L.

    1997-04-01

    Since the mechanical properties of most wear materials are generally insufficient for structural applications, hardfacing alloys have been traditionally weld deposited to provide a wear resistance surface for a base material. An important attribute of a hardfacing alloy that is subjected to high load sliding contact is the resistance to adhesive (galling) damage. Although Co-base hardfacing alloys generally possess excellent galling wear resistance, there is interest in developing cobalt-free replacement hardfacings to reduce radiation exposure costs. A laboratory galling test has been developed for weld hardfacing deposits that is a modification of the standardized ASTM G98-91 galling test procedure. The procedure for testing a weld hardfacing deposit on a softer base metal using a button-on-block configuration is described. The contact stresses for the initiation of adhesive galling damage were measured to rank the galling resistance of several commercial Fe-base, Ni-base and Co-base hardfacing alloys. Although the galling resistance of the Fe-base alloys was generally superior to the Ni-base alloys, neither system approached the excellent galling resistance of the Co-base alloys. Microstructure examinations were used to understand the micro-mechanisms for the initiation and propagation of galling damage. A physical model for the initiation and propagation of adhesive wear is used to explain the lower galling resistance for the Ni-base hardfacings and to understand the influence of composition on the galling resistance of Ni-base alloys. The composition of some Ni base hardfacings was modified in a controlled manner to quantify the influence of specific elements on the galling resistance.

  18. The relationship between the super plasticity of laser welding joint of titanium alloy and hydrogen treatment

    Science.gov (United States)

    Cao, Zean; Cheng, Donghai; Jiang, Xunyan; Hu, Dean; Chen, Yiping

    2017-06-01

    The superplastic deformation uniformity of laser welded joint of TC4 titanium alloy is improved by hydrogen treatment. The non-uniform deformation coefficient K was introduced to quantification ally characterize the non-uniform deformation. The results show when the content of hydrogen exceeds 0.29%, the super plasticity of the titanium alloy welded plate decreases with the increase of the hydrogen content. The decrease of the shrinkage of the base material is larger than that of the weld section with the increase of hydrogen content. The K can be used to describe the non-uniform deformation of the weld and the base material during the superplastic deformation of laser welded joint of the TC4. The K value increases with increaseing hydrogen content, increaseing deformation temperature and decreaseing strain rate. The K value reaches the maximum of 0.84 with hydrogen content of 1.299%, deformation temperature of 920 °C, strain rate of 10-4S-1.

  19. Comparative analysis of the friction stir welded aluminum-magnesium alloy joint grain structure

    Science.gov (United States)

    Zaikina, A. A.; Sizova, O. V.; Novitskaya, O. S.

    2015-10-01

    A comparative test of the friction stir welded aluminum-magnesium alloy joint microstructure for plates of a different thickness was carried out. Finding out the structuring regularities in the weld nugget zone, that is the strongest zone of the weld, the effects of temperature-deformational conditions on the promotion of a metal structure refinement mechanism under friction stir welding can be determined. In this research friction stir welded rolled plates of an AMg5M alloy; 5 and 8 mm thick were investigated. Material fine structure pictures of the nugget zone were used to identify and measure subgrain and to define a second phase location. By means of optical microscopy it was shown that the fine-grained structure developed in the nugget zone. The grain size was 5 flm despite the thickness of the plates. In the sample 5.0 mm thick grains were coaxial, while in the sample 8.0 mm thick grains were elongate at a certain angle to the tool travel direction.

  20. Cavitation Erosion Behavior of as-Welded Cu12Mn8Al3Fe2Ni Alloy

    Institute of Scientific and Technical Information of China (English)

    Xiaoya LI; Yonggui YAN; Zhenming XU; Jianguo LI

    2004-01-01

    Cavitation erosion behavior of as-welded Cu12Mn8Al3Fe2Ni alloy in 3.5% NaCl aqueous solution was studied by magnetostrictive vibratory device for cavitation erosion. The results show that the cavitation erosion resistance of the as-welded Cu12Mn8Al3Fe2Ni alloy is much more superior to that of the as-cast one. The cumulative mass loss and the mass loss rate of the as-welded Cu12Mn8Al3Fe2Ni alloy are almost 1/4 that of the as-cast one. SEM analysis of eroded specimens reveals that the as-cast Cu12Mn8Al3Fe2Ni alloy is attacked more severely than the as-welded one. Microcracks causing cavitation damage initiate at the phase boundaries.

  1. Structure and Properties of Thick-Walled Joints of Alloy 1570s Prepared by Friction Stir Welding

    Science.gov (United States)

    Velichko, O. V.; Ivanov, S. Yu.; Karkhin, V. A.; Lopota, V. A.; Makhin, I. D.

    2016-09-01

    The microstructure and mechanical properties of thick-walled joints of Al - Mg - Sc alloy 1570S, prepared by friction stir welding are studied. Joint microstructural and mechanical inhomogeneity are revealed.

  2. Passive fit of frameworks in titanium and palladium-silver alloy submitted the laser welding.

    Science.gov (United States)

    de Sousa, S A; de Arruda Nobilo, M A; Henriques, G E P; Mesquita, M F

    2008-02-01

    This study evaluated the precision of fit of implant frameworks cast in titanium (cp Ti) and palladium-silver alloy (Pd-Ag), made by the one-piece cast and laser welding techniques. From a metal matrix with five implants, 20 master casts were obtained, to which replicas of implants were incorporated. On these masters 10 frameworks were made for each type of material (cp Ti and Pd-Ag alloy). Half of these were made by the one-piece cast technique and the other half by the laser welding technique. The implant/prosthesis interface was analysed and measured in the vestibular and lingual regions of the central and distal implants with the help of a measuring microscope. The results indicated that in the central cylinders, the Tukey test (Plaser-welded frameworks (34.73 microm) and those one-piece cast frameworks (151.39 microm), and as regards materials, the palladium-silver alloy (66.30 microm) showed better results than the titanium (119.83 microm). In the distal cylinders there was no significant difference between the frameworks cast in titanium and palladium-silver by the one-piece technique. However, after laser welding, there was a significant difference for the frameworks cast in titanium (31.37 microm) and palladium-silver (106.59 microm).

  3. An Evaluation of Creep Behaviour in Friction Stir Welded MA754 Alloy

    Science.gov (United States)

    Wang, Jiye; Yuan, Wei; Mishra, Rajiv S.; Charit, Indrajit

    2014-09-01

    Effect of friction stir welding (FSW) on microstructure and creep properties of oxide dispersion strengthened (ODS) alloy MA754 were investigated. Fine-grained microstructure developed in the weld zone. TEM results showed some degree of particle agglomeration as a result of intense material flow. Creep tests of the FSW material were carried out at 973 and 1073 K. Power law creep behaviour was observed with stress exponent values of 6.9 and 6.3 at 973 and 1073 K, respectively. The results were compared to those of the as-received material. Creep resistance of FSW material was lower than that of as-received material associated with significantly reduced threshold stress. Post-weld annealing was carried out at 1598 K for 1 h. The heat treatment resulted in a coarse-grained microstructure and enhanced the creep resistance of the welded material. The creep data were compared with those of ODS Ni-Cr alloys in literature. The analysis shows the threshold stress of ODS alloys to be grain size- and temperature-dependent.

  4. Laser beam welding of Waspaloy: Characterization and corrosion behavior evaluation

    Science.gov (United States)

    Shoja Razavi, Reza

    2016-08-01

    In this work, a study on Nd:YAG laser welding of Waspaloy sheets has been made. Microstructures, phase changes and hardness of the laser joint were investigated using optical microscopy, scanning electron microscopy (SEM), field emission scanning electron microscopy (FESEM), energy dispersive spectroscopy (EDS), X-ray diffraction analysis (XRD) and vickers microhardness (HV0.3). Corrosion behavior of the weldment at low temperature in 3.5%wt NaCl solution at room temperature was also investigated using open circuit potential and cyclic potentiodynamic polarization tests. Hot corrosion studies were conducted on samples in the molten salt environment (Na2SO4-60%V2O5) at 900 °C for 50 h. Results indicated that the microstructure of weld zone was mainly dendritic grown epitaxially in the direction perpendicular to the weld boundary and heat transfer. Moreover, the Ti-Mo carbide particles were observed in the structure of the weld zone and base metal. The average size of carbides formed in the base metal (2.97±0.5 μm) was larger than that of the weld zone (0.95±0.2 μm). XRD patterns of the weld zone and base metal showed that the laser welding did not alter the phase structure of the weld zone, being in γ-Ni(Cr) single phase. Microhardness profile showed that the hardness values of the weld zone (210-261 HV) were lower than that of the base metal (323-330 HV). Electrochemical and hot corrosion tests indicated that the corrosion resistance of the weld metal was greater than the base metal in both room and high temperatures.

  5. Structure-property relationships of dissimilar friction stir welded aluminum alloys

    Science.gov (United States)

    Quinones, Rogie Irwin Rodriguez

    In this work, the relationship between microstructure and mechanical properties of dissimilar friction stir welded AA6061-to-AA7050 aluminum alloys were evaluated. Experimental results from this study revealed that static strength increased with the tool rotational speed and was correlated with the material intermixing. Fully-reversed low cycle fatigue experimental results showed an increase in the strain hardening properties as well as the number of cycles-to-failure as the tool rotational speed was increased. Furthermore, under both static and cyclic loading, fracture of the joint was dominated by the AA6061 alloy side of the weld. In addition, inspection of the fatigue surfaces revealed that cracks initiated from intermetallic particles located near the surface. In order to determine the corrosion resistance of the dissimilar joint, corrosion defects were produced on the crown surface of the weld by static immersion in 3.5% NaCl for various exposure times. Results revealed localized corrosion damage in the thermo-mechanically affected and heat affected zones. Results demonstrated a decrease in the fatigue life, with evidence of crack initiation at the corrosion defects; however, the fatigue life was nearly independent of the exposure time. This can be attributed to total fatigue life dominated by incubation time. Furthermore, two types of failure were observed: fatigue crack initiation in the AA6061 side at high strain amplitudes (>0.3%); and fatigue crack initiation in the AA7050 side at low strain amplitudes (friction stir welded joints in order to capture the crack initiation and propagation in as-welded and pre-corroded conditions. Good correlation between experimental fatigue results and the model was achieved based on the variation in the initial defect size, microstructure, and mechanical properties of the dissimilar friction stir welded AA6061-to-AA7050 aluminum alloys.

  6. Role of the micro/macro structure of welds in crack nucleation and propagation in aerospace aluminum-lithium alloy

    Science.gov (United States)

    Talia, George E.

    1996-01-01

    Al-Li alloys offer the benefits of increased strength, elastic modulus and lower densities as compared to conventional aluminum alloys. Martin Marietta Laboratories has developed an Al-Li alloy designated 2195 which is designated for use in the cryogenic tanks of the space shuttle. The Variable Polarity Plasma Arc (VPPA) welding process is currently being used to produce these welds [1]. VPPA welding utilizes high temperature ionized gas (plasma) to transfer heat to the workpiece. An inert gas, such as Helium, is used to shield the active welding zone to prevent contamination of the molten base metal with surrounding reactive atmospheric gases. [1] In the Space Shuttle application, two passes of the arc are used to complete a butt-type weld. The pressure of the plasma stream is increased during the first pass to force the arc entirely through the material, a practice commonly referred to as keyholing. Molten metal forms on either side of the arc and surface tension draws this liquid together as the arc passes. 2319 Al alloy filler material may also be fed into the weld zone during this pass. During the second pass, the plasma stream pressure is reduced such that only partial penetration of the base material is obtained. Al 2319 filler material is added during this pass to yield a uniform, fully filled welded joint. This additional pass also acts to alter the grain structure of the weld zone to yield a higher strength joint.

  7. Fine-tuned Remote Laser Welding of Aluminum to Copper with Local Beam Oscillation

    Science.gov (United States)

    Fetzer, Florian; Jarwitz, Michael; Stritt, Peter; Weber, Rudolf; Graf, Thomas

    Local beam oscillation in remote laser welding of aluminum to copper was investigated. Sheets of 1 mm thickness were welded in overlap configuration with aluminum as top material. The laser beam was scanned in a sinusoidal mode perpendicular to the direction of feed and the influence of the oscillation parameters frequency and amplitude on the weld geometry was investigated. Scanning frequencies up to 1 kHz and oscillation amplitudes in the range from 0.25 mm to 1 mm were examined. Throughout the experiments the laser power and the feed rate were kept constant. A decrease of welding depth with amplitude and frequency is found. The scanning amplitude had a strong influence and allowed coarse setting of the welding depth into the lower material, while the frequency allowed fine tuning in the order of 10% of the obtained depth. The oscillation parameters were found to act differently on the aluminum sheet compared to copper sheet regarding the amount of fused material. It is possible to influence the geometry of the fused zones separately for both sheets. Therefore the average composition in the weld can be set with high precision via the oscillation parameters. A setting of the generated intermetallics in the weld zone is possible without adjustment of laser power and feed rate.

  8. Comparison of laboratory and field experience of PWSCC in Alloy 182 weld metal

    Energy Technology Data Exchange (ETDEWEB)

    Scott, P.; Meunier, M.-C.; Steltzlen, F. [AREVA NP, Tour AREVA, Paris La Defense (France); Calonne, O.; Foucault, M. [AREVA NP, Centre Technique, Le Creusot Cedex (France); Combrade, P. [ACXCOR, Saint Etienne (France); Amzallag, C. [EDF, SEPTEN, Villeurbanne (France)

    2007-07-01

    Laboratory studies of stress corrosion cracking of the nickel base weld metal, Alloy 182, in simulated PWR primary water suggest similar resistance to crack initiation and somewhat enhanced propagation rates relative to wrought Alloy 600. By contrast, field experience of cracking in the primary circuits of PWRs shows in general much better performance for Alloy 182 relative to Alloy 600 than would be anticipated from laboratory studies. This paper endeavours to resolve this apparent conundrum. It draws on the conclusions of recent research that has focussed on the role of surface finish, particularly cold work and residual stresses resulting from different fabrication processes, on the risk of initiating IGSCC in nickel base alloys in PWR primary water. It also draws on field experience of stress corrosion cracking that highlights the important role of surface finish for crack initiation. (author)

  9. Effect of Rotational Speed on Microstructure and Mechanical Properties of Refill Friction Stir Spot Welded 2024 Al Alloy

    Science.gov (United States)

    Li, Zhengwei; Gao, Shuangsheng; Ji, Shude; Yue, Yumei; Chai, Peng

    2016-04-01

    Refill friction stir spot welding (RFSSW) was successfully used to weld alclad 2024 aluminum alloy with different thicknesses. Effects of tool rotational speed on the weld formation, microstructure, and mechanical properties of the RFSSW welds were mainly discussed. Results show that keyhole is successfully refilled and welding defects such as flash, annular groove, and material adhesion can be observed. A bright contrast bonding ligament is found embedded in the weld and it is thicker in the center. Defects of hook, void, lack of mixing, and incomplete refilling can be found at the thermo-mechanically affected zone/stir zone (TMAZ/SZ) interface, which can be attributed to weak metallurgical bonding effect. With increasing the tool rotational speed, thickness of the bonding ligament decreases, grains in the SZ coarsen, hardness of the SZ decreases, and lap shear load of the welds decreases. When changing the rotating speed, impact strength shows rather complicated variation trend.

  10. Tungsten inert gas (TIG welding of aluminum alloy EN AW-AlZn5.5MgCu

    Directory of Open Access Journals (Sweden)

    J. Tušek

    2016-10-01

    Full Text Available The paper presents the results of tungsten inert gas (TIG welding of aluminium alloy 7075-T6 in the butt joint, with single-V edge preparation. The sample dimensions were 100 × 75 × 20 mm3. The TIG welding was done with 2 mm diameter filler wire made of 5183 (AlMg4,5Mn at four preheating temperatures. During the welding a temperature was measured at six locations with thermocouples. For successfully welded samples tensile test were done and microstructure of base metal, heat affected zone and weld was analysed. The welds brake at heat affected zone between base metal and the weld. The optimal preheating temperature was at 200 °C.

  11. Failure Analysis of Electron Beam Weld Joints for 18Ni Co-free Maraging Steels

    Institute of Scientific and Technical Information of China (English)

    莫德锋; HU; Zheng-fei; WANG; Chun-xu; HE; Guo-qiu

    2007-01-01

    Microstructure of two different 18Ni Co-free maraging specimens and their electron beam weld joints were investigated comparatively by optical microscopy and SEM. It is showing that both of the steels are typical lath martensite, however, one grain size is about three times as another one, and XRD reveals that the amount of the retained austenitic phase in the former is less then the latter. The austenite distributes in plate form along granular and lath boundaries while some in fine particle within the matrix. The microstructural difference between two specimens led to diverse behaviors in electron beam welding. The first specimen is weldable well but the second shows obvious welding defects of pits and burn-through holes in weld face. The welding microstructure exhibits a typical dendritic morphology, and the grains in the heat-affected zone recrystallized and grew up obviously for high temperature heated by welding electron beam. The weldablity is relative to the thermal conduction performance of the base materials,which is contributed greatly for grain size and austenite content.

  12. Spatial Randomness of Fatigue Crack Growth Rate in Friction Stir Welded 7075-T111 Aluminum Alloy Welded Joints (Case of L T Orientation Specimen)

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Yeui Han; Kim, Seon Jin [Pukyong Nat' l Univ., Busan (Korea, Republic of)

    2013-09-15

    This study aims to investigate the spatial randomness of fatigue crack growth rate for the friction stir welded (FSWed) 7075-T111 aluminum alloy joints. Our previous fatigue crack growth test data are adopted in this investigation. To clearly understand the spatial randomness of fatigue crack growth rate, fatigue crack growth tests were conducted under constant stress intensity factor range (SEFOR) control testing. The experimental data were analyzed for two different materials-base metal (BM) and weld metal (WM)-to investigate the effects of spatial randomness of fatigue crack growth rate and material properties, the friction stir welded (FSWed) 7075-T111 aluminum alloy joints, namely weld metal (WM) and base metal (BM). The results showed that the variability, as evaluated by Wobble statistical analysis, of the WM is higher than that of the BM.

  13. Effect of friction stir welding on microstructure and corrosion behavior of LF6 aluminum alloy

    Science.gov (United States)

    Ghauri, Faizan Ali; Farooq, A.; Ahmad, A.; Deen, K. M.

    2017-03-01

    The LF6 aluminum alloy plates were joined by friction stir welding method. The tool rotational (1180 rpm) and transverse speed (0.56 mm s‑1) were kept constant during welding of 4 mm thick plates. The microstructural features, hardness and tensile properties of the welded samples were determined to evaluate the structural integrity in comparison with the base metal. The electrochemical behavior of base metal (BM), thermo-mechanically affected zone (TMAZ) and weld nugget zone (WNZ) was also investigated by potentiodynamic polarization and electrochemical impedance spectroscopy in 3.5% NaCl solution. The microstructural study revealed significant grain refinement and agglomeration of β (Mg2Al3) intermetallic precipitates in the WNZ. The relatively higher hardness and a decrease in the ductility (3%) also assured the formation of precipitates β precipitates in the WNZ welded samples. The fracture surface of welded sample also revealed the existence of β precipitates within the elongated dimples which may be considered as the crack initiation sites. The relatively lower corrosion rate (23.68 mpy) and higher charge transfer resistance (403 Ω cm2) of BM compared to WNZ could be associated with the galvanic dissolution of Al-matrix through competitive charge transfer and relaxation (adsorption/desorption of intermediate species) processes specifically at the vicinity of the β precipitates.

  14. Microstructure evolution and tensile properties of friction-stir-welded AM50 magnesium alloy

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Friction stir welding (FSW) technique was utilized to weld cast AM50 magnesium alloy plates. The mierostructures in the base metal (BM) and the weld joint were observed by optical microscopy. The mechanical properties were investigated by using hardness measurement and tensile test, and the fractographs were observed by scanning electron microscopy. The results show that the microstructure of the base material was characterized by bulk primary α phase, α-matrix and intermetallic compound β (orMg17Al12), and the weld nugget exhibiting recrystallized microstructure consists of α-matrix and β phase. The grain size in the weld is smaller than that in the base metal. The hardness of the weld joint is improved but the tensile strength and yield strength, as well as the elongation to failure of the base material decline. The fracture of BM has a rougher surface with more dimples, which is a characteristic of the ductile fracture, whereas the fracture on the nugget reveals a quasi-cleavage feature. The ultimate tensile strength and yield strength of the FSWed AM50 are 86.2% and 94.0% of those of the base metal, respectively.

  15. Optimum condition by mechanical characteristic evaluation in friction stir welding for 5083-O Al alloy

    Institute of Scientific and Technical Information of China (English)

    Min-Su HAN; Seung-Jun LEE; Jae-Cheul PARK; Seok-Cheol KO; Yong-Bin WOO; Seong-Jong KIM

    2009-01-01

    The mechanical characteristics for friction stir welding (FSW) of 5083-O Al alloy were evaluated. The results show that in FSW at 800 r/min and 124 mm/min, a weld defect is observed at the start point. However, the button shape at the end point is good and the stir zone has a soft appearance. At 267 mm/min, a void occurs at the button. A slight weld defect and rough stir zone are seen both at the start and end points at 342 mm/min. Moreover, at the bottom, a tunnel-type void is observed from an early stage to the end point, and at 1 800 r/min, a weld defect can be found from an early stage to the end point. These defects are rough with imperfect joining due to excessive rotation speed and high physical force. Weld fractures relative to rotational and travel speeds are observed at the stir zone. The optimum FSW conditions are a welding speed of 124 mm/min and a rotational speed of 800 r/min.

  16. Laser-assisted friction stir welding of aluminum alloy lap joints: microstructural and microhardness characterizations

    Science.gov (United States)

    Casalino, Giuseppe; Campanelli, Sabina L.; Contuzzi, Nicola; Angelastro, Andrea; Ludovico, Antonio D.

    2014-02-01

    Friction Stir Welding (FSW) is a solid-state joining process; i.e., no melting occurs. The welding process is promoted by the rotation and translation of an axis-symmetric non-consumable tool along the weld centerline. Thus, the FSW process is performed at much lower temperatures than conventional fusion welding, nevertheless it has some disadvantages. The laser Assisted Friction Stir Welding (LAFSW) combines a Friction Stir Welding machine and a laser system. Laser power is used to preheat and to plasticize the volume of the workpiece ahead of the rotating tool; the workpiece is then joined in the same way as in the conventional FSW process. In this work an Ytterbium fiber laser with maximum power of 4 kW and a commercial FSW machine were coupled. Both FSW and LAFSW tests were conducted on 3 mm thick 5754H111 aluminum alloy plates in lap joint configuration with a constant tool rotation rate and with different feed rates. The two processes were compared and evaluated in terms of differences in the microstructure and in the micro-hardness profile.

  17. Standard Specification for Electric Fusion-Welded Ni-Cr-Co-Mo Alloy (UNS N06617), Ni-Fe-Cr-Si Alloys (UNS N08330 and UNS N08332), Ni-Cr-Fe-Al Alloy (UNS N06603), Ni-Cr-Fe Alloy (UNS N06025), and Ni-Cr-Fe-Si Alloy (UNS N06045) Pipe

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2014-01-01

    Standard Specification for Electric Fusion-Welded Ni-Cr-Co-Mo Alloy (UNS N06617), Ni-Fe-Cr-Si Alloys (UNS N08330 and UNS N08332), Ni-Cr-Fe-Al Alloy (UNS N06603), Ni-Cr-Fe Alloy (UNS N06025), and Ni-Cr-Fe-Si Alloy (UNS N06045) Pipe

  18. Study of Gravity Effects on Titanium Laser Welding in the Vertical Position.

    Science.gov (United States)

    Chang, Baohua; Yuan, Zhang; Pu, Haitao; Li, Haigang; Cheng, Hao; Du, Dong; Shan, Jiguo

    2017-09-08

    To obtain satisfactory welds in positional laser beam welding, it is necessary to know how process parameters will influence the quality of welds in different welding positions. In this study, the titanium alloy Ti6Al4V sheets were laser welded in two vertical welding positions (vertical up and vertical down), and the appearance, porosity, strength, and ductility of the laser joints were evaluated. Results show that undercuts of the vertical up welds were greater than that of vertical down welds, while the porosity contents were much higher in vertical down welds than that in vertical up welds. When welding with a higher heat input, the vertical up welding position resulted in poor weld profiles (undercuts and burn-through holes), whereas the vertical down welding position led to excessive porosity contents in welds. Both severe undercut and excessive porosity were detrimental to the tensile properties of the welds. Weld appearance was improved and porosity contents were reduced by using a lower heat input, achieving better weld quality. Therefore, it is suggested that process parameter settings with relatively high laser powers and welding speeds, which can result in lower heat inputs, are used when laser welding the Ti6Al4V titanium alloys vertically.

  19. Mitigation of stress corrosion cracking in pressurized water reactor (PWR) piping systems using the mechanical stress improvement process (MSIP{sup R)} or underwater laser beam welding

    Energy Technology Data Exchange (ETDEWEB)

    Rick, Grendys; Marc, Piccolino; Cunthia, Pezze [Westinghouse Electric Company, LLC, New York (United States); Badlani, Manu [Nu Vision Engineering, New York (United States)

    2009-04-15

    A current issue facing pressurized water reactors (PWRs) is primary water stress corrosion cracking (PWSCC) of bi metallic welds. PWSCC in a PWR requires the presence of a susceptible material, an aggressive environment and a tensile stress of significant magnitude. Reducing the potential for SCC can be accomplished by eliminating any of these three elements. In the U.S., mitigation of susceptible material in the pressurizer nozzle locations has largely been completed via the structural weld overlay (SWOL) process or NuVision Engineering's Mechanical Stress Improvement Process (MSIP{sup R)}, depending on inspectability. The next most susceptible locations in Westinghouse designed power plants are the Reactor Vessel (RV) hot leg nozzle welds. However, a full SWOL Process for RV nozzles is time consuming and has a high likelihood of in process weld repairs. Therefore, Westinghouse provides two distinctive methods to mitigate susceptible material for the RV nozzle locations depending on nozzle access and utility preference. These methods are the MSIP and the Underwater Laser Beam Welding (ULBW) process. MSIP applies a load to the outside diameter of the pipe adjacent to the weld, imposing plastic strains during compression that are not reversed after unloading, thus eliminating the tensile stress component of SCC. Recently, Westinghouse and NuVision successfully applied MSIP on all eight RV nozzles at the Salem Unit 1 power plant. Another option to mitigate SCC in RV nozzles is to place a barrier between the susceptible material and the aggressive environment. The ULBW process applies a weld inlay onto the inside pipe diameter. The deposited weld metal (Alloy 52M) is resistant to PWSCC and acts as a barrier to prevent primary water from contacting the susceptible material. This paper provides information on the approval and acceptance bases for MSIP, its recent application on RV nozzles and an update on ULBW development.

  20. Microstructure and Mechanical Properties of Hybrid Laser-Friction Stir Welding between AA6061-T6 Al Alloy and AZ31 Mg Alloy

    Institute of Scientific and Technical Information of China (English)

    Woong-Seong Chang; S.R.Rajesh; Chang-Keun Chun; Heung-Ju Kim

    2011-01-01

    For the purpose of improving the strength of this dissimilar joint, the present study was carried out to investigate the improvement in intermetallic layer by using a third material foil between the faying edges of the friction stir welded and hybrid welded Al6061-T6/AZ31 alloy plates. The difference in microstructural and mechanical characteristics of friction stir welded and hybrid welded Al6061-T6/AZ31 joint was compared. Hybrid buttwelding of aluminum alloy plate to a magnesium alloy plate was successfully achieved with Ni foil as filler material, while defect-free laser-friction stir welding (FSW) hybrid welding was achieved by using a laser power of 2 kW. Transverse tensile strength of the joint reached about 66% of the Mg base metal tensile strength in the case of hybrid welding with Ni foil and showed higher value than that of the friction stir welded joint with and without the third material foil. This may be due to the presence of less brittle Ni-based intermetallic phases instead of Al12Mg17.

  1. Cladding of Advanced Al Alloys Employing Friction Stir Welding

    NARCIS (Netherlands)

    Stelt, van der A.A.; Bor, T.C.; Geijselaers, H.J.M.; Akkerman, R.; Boogaard, van den A.H.

    2013-01-01

    In this paper an advanced solid state cladding process, based on Friction Stir Welding, is presented. The Friction Surface Cladding (FSC) technology enables the deposition of a solid-state coating using filler material on a substrate with good metallurgical bonding. A relatively soft AA1050 filler m

  2. Alloying of metal nanoparticles by ion-beam induced sputtering

    Science.gov (United States)

    Magudapathy, P.; Srivastava, S. K.; Gangopadhyay, P.; Amirthapandian, S.; Saravanan, K.; Das, A.; Panigrahi, B. K.

    2017-01-01

    Ion-beam sputtering technique has been utilized for controlled synthesis of metal alloy nanoparticles of compositions that can be tuned. Analysis of various experimental results reveals the formation of Ag-Cu alloy nanoparticles on a silica substrate. Surface-plasmon optical resonance positions and observed shifts of Ag Bragg angles in X-ray diffraction pattern particularly confirm formation of alloy nanoparticles on glass samples. Sputtering induced nano-alloying mechanism has been discussed and compared with thermal mixing of Ag and Cu thin films on glass substrates. Compositions and sizes of alloy nanoparticles formed during ion-beam induced sputtering are found to exceed far from the values of thermal mixing.

  3. Effect of Tool Geometry and Welding Speed on Mechanical Properties and Microstructure of Friction Stir Welded Joints of Aluminium Alloys AA6082-T6

    Directory of Open Access Journals (Sweden)

    Patil Hiralal Subhash

    2014-12-01

    Full Text Available Friction stir welding is a solid state innovative joining technique, widely being used for joining aluminium alloys in aerospace, marine automotive and many other applications of commercial importance. The welding parameters and tool pin profile play a major role in deciding the weld quality. In this paper, an attempt has been made to understand the influences of welding speed and pin profile of the tool on friction stir welded joints of AA6082-T6 alloy. Three different tool pin profiles (tapered cylindrical four flutes, triangular and hexagonal have been used to fabricate the joints at different welding speeds in the range of 30 to 74 mm/min. Microhardness (HV and tensile tests performed at room temperature were used to evaluate the mechanical properties of the joints. In order to analyse the microstructural evolution of the material, the weld’s cross-sections were observed optically and SEM observations were made of the fracture surfaces. From this investigation it is found that the hexagonal tool pin profile produces mechanically sound and metallurgically defect free welds compared to other tool pin profiles.

  4. Elucidation of phenomena in high-power fiber laser welding and development of prevention procedures of welding defects

    Science.gov (United States)

    Katayama, Seiji; Kawahito, Yousuke

    2009-02-01

    Fiber lasers have been receiving considerable attention because of their advantages of high power, high beam quality and high efficiency, and are expected as one of the desirable heat sources for high-speed and deep-penetration welding. In our researches, therefore, the effects of laser powers and their densities on the weld penetration and the formation of sound welds were investigated in welding of Type 304 austenitic stainless steel, A5052 aluminum alloy or high strength steel plates with four laser beams of about 0.12 to 1 mm in focused spot diameter, and their welding phenomena were observed with high-speed video cameras and X-ray transmission real-time imaging system. It was found that the laser power density exerted a remarkable effect on the increase in weld penetration at higher welding speeds, but on the other hand at low welding speeds deeper-penetration welds could be produced at higher power. Laser-induced plume behavior and its effect on weld penetration, and the mechanisms of spattering, underfilling, porosity and humping were elucidated, sound welds without welding defects could be produced under the improved welding conditions. In addition, importance of the development of focusing optics and the removal of a plume during remote welding will be emphasized in terms of the stable production of constant deep-penetration welds and the reduction in welding defects in high power laser welding.

  5. Welding Stress and Welding Distortion of 6061 Aluminium Alloy Thin Plate%6061铝合金薄板焊接应力与焊接变形

    Institute of Scientific and Technical Information of China (English)

    陈丽华; 封艳

    2013-01-01

    the relationship between the plate size, welding current, welding voltage and welding stress, the welding distortion for 6061 aluminum alloy sheet TIG welding is studied. With the increase of welding current, welding voltage,aluminium alloy of the longitudinal and lateral contraction deformation increase; With the increase of the length of the plate, due to the much more constraint, the plate of the longitudinal residual deformation decrease,for the bending stress in thickness direction increases,the transverse deformation increases. Residual stress of welding is tensile, and the parent metal close to weld is compressive stress, and the rest of the parent metal is tensile stress, the more the welding energy is, the greater the residual stress.%研究了6061铝合金薄板TIG焊焊接应力、焊接变形与焊接电流、焊接电压和板材尺寸的关系.随着焊接线能量的增加,铝合金的纵向和横向收缩变形增加;随着板的长度的增加,由于约束增加,板的纵向残余变形减少,厚度方向的抗弯增大,横向变形增大.板焊后,焊缝处受拉应力,而紧靠焊缝的母材处却受压应力,其余部分受拉应力且焊接线能量越大,残余应力越大.

  6. Electron beam induced oxidation of Al–Mg alloy surfaces

    NARCIS (Netherlands)

    Palasantzas, G.; Agterveld, D.T.L. van; Hosson, J.Th.M. De

    2002-01-01

    Electron beam currents of a few nanoamperes, currently used in nanometer scale scanning Auger/electron microscopy, induces severe oxidation of Al–Mg alloy surfaces at room temperature. Auger peak-to-peak oxygen curves for Al–Mg surfaces support the hypothesis that the electron beam creates

  7. Electron beam induced oxidation of Al–Mg alloy surfaces

    NARCIS (Netherlands)

    Palasantzas, G.; Agterveld, D.T.L. van; Hosson, J.Th.M. De

    2002-01-01

    Electron beam currents of a few nanoamperes, currently used in nanometer scale scanning Auger/electron microscopy, induces severe oxidation of Al–Mg alloy surfaces at room temperature. Auger peak-to-peak oxygen curves for Al–Mg surfaces support the hypothesis that the electron beam creates additiona

  8. The Effect of Temperature on the Breakdown and Repassivation Potentials of Welded Alloy 22 In 5 M CACI2

    Energy Technology Data Exchange (ETDEWEB)

    G.O. IIevbare

    2006-07-05

    The study of the electrochemical behavior of wrought and welded Alloy 22 was carried out in 5 M CaCl{sub 2} as a function of temperatures between 45 and 120 C with Multiple Crevice Assembly (MCA) specimens. The susceptibility to corrosion was found to increase with increase in electrolyte temperature in both the wrought (in the mill annealed condition) and the welded forms of the alloy. The weld metal was found to be less susceptible to localized corrosion under the conditions tested.

  9. Characterization And Study of Friction Stir Welding of AA6101 Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    S. K. Aditya

    2016-05-01

    Full Text Available Friction stir welding (FSW combines two plates by frictional heating at the interface with the localized plastic deformation within the material. In friction stir welding heat is generated by the friction between rotating tool shoulder and the plates to be welded. The heat thus generated results in thermal softening of the material. The softened material is then forced to flow by the translation of the tool from the front to the back of the pin. There it cools, consolidates and results in joint formation. In the process, strength of the joint and percentage elongation varies from the parent material. AA6101 is equivalent to AA 6061 and AA6063. At present AA6101 is used by the electrical industries only. A detailed experimental study has been done on AA 6101 to its utility as an Aluminum alloy for structural fabrication

  10. Microstructure and anisotropic mechanical behavior of friction stir welded AA2024 alloy sheets

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhihan [State Key Laboratory of Solidification Processing, Shaanxi Key Laboratory of Friction Welding Technologies, Northwestern Polytechnical University, Xi' an 710072, Shaanxi (China); Li, Wenya, E-mail: liwy@nwpu.edu.cn [State Key Laboratory of Solidification Processing, Shaanxi Key Laboratory of Friction Welding Technologies, Northwestern Polytechnical University, Xi' an 710072, Shaanxi (China); Li, Jinglong [State Key Laboratory of Solidification Processing, Shaanxi Key Laboratory of Friction Welding Technologies, Northwestern Polytechnical University, Xi' an 710072, Shaanxi (China); Chao, Y.J. [Department of Mechanical Engineering, University of South Carolina, Columbia, SC 29208 (United States); Vairis, A. [Mechanical Engineering Department, TEI of Crete, Heraklion, Crete 71004 (Greece)

    2015-09-15

    The anisotropic mechanical properties of friction stir welded (FSW) AA2024-T3 alloy joints were investigated based on the uniaxial tensile tests. The joint microstructure was examined by using electron back-scattered diffraction and transmission electron microscope. Results show that the evident anisotropic failure and yielding are present in the FSW joints. With the increase of loading angle from 0° to 90° the ultimate tensile strength and elongation of the specimens consistently decrease, or at first decrease and then increase, depending on the FSW process parameters. The specimen cut from the weld direction, i.e. a loading angle of 0°, exhibits the highest strength and elongation. - Highlights: • Microstructure and anisotropy of friction stir welded joints were studied. • The evident anisotropic failure and yielding are present in joints. • The lowest yield stress and UTS are at 45° and 60° loadings, respectively. • Rotation speed heavily impact on the anisotropy of joints.

  11. The microstructural evolution of friction stir welded AA6082-T6 aluminum alloy during cyclic deformation

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, A.S., E-mail: atef.hamada@oulu.fi [Centre for Advanced Steels Research, University of Oulu, P.O. Box 4200, FI-90014 Oulu (Finland); Department of Metallurgical and Materials Engineering, Faculty of Petroleum and Mining Engineering, Suez University, Suez 43721 (Egypt); Järvenpää, A. [Oulu Southern Institute, University of Oulu, Pajatie 5, FI-85500 Nivala (Finland); Ahmed, M.M.Z. [Department of Metallurgical and Materials Engineering, Faculty of Petroleum and Mining Engineering, Suez University, Suez 43721 (Egypt); Jaskari, M. [Oulu Southern Institute, University of Oulu, Pajatie 5, FI-85500 Nivala (Finland); Wynne, B.P. [Department of Materials Science and Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD (United Kingdom); Porter, D.A.; Karjalainen, L.P. [Centre for Advanced Steels Research, University of Oulu, P.O. Box 4200, FI-90014 Oulu (Finland)

    2015-08-26

    The fatigue behavior of a thick section friction stir welded AA6082-T6 aluminum alloy was studied to compare damage mechanisms in the weld zone and the base metal. Fully reversed tension–compression strain-controlled fatigue tests were conducted to determine the cyclic stress response and stored energy to failure. Microstructure evolution during cyclic straining was followed using secondary electron imaging and electron backscatter diffraction in a scanning electron microscope. Fatigue cracking along grain boundaries and the formation of slip bands were observed to be the fatigue-induced microstructural features in the friction-stir-welded structure. In the base metal, micron-sized particles led to particle-induced cracking.

  12. Fatigue Performance of Friction-Stir-Welded Al-Mg-Sc Alloy

    Science.gov (United States)

    Zhemchuzhnikova, Daria; Mironov, Sergey; Kaibyshev, Rustam

    2017-01-01

    Fatigue behavior of a friction-stir-welded Al-Mg-Sc alloy was examined in cast and hot-rolled conditions. In both cases, the joints failed in the base material region and therefore the joint efficiency was 100 pct. The specimens machined entirely from the stir zone demonstrated fatigue strength superior to that of the base material in both preprocessed tempers. It was shown that the excellent fatigue performance of friction-stir joints was attributable to the ultra-fine-grained microstructure, the low dislocation density evolved in the stir zone, and the preservation of Al3Sc coherent dispersoids during welding. The formation of such structure hinders the initiation and growth of fatigue microcracks that provides superior fatigue performance of friction-stir welds.

  13. Thermal Management in Friction-Stir Welding of Precipitation-Hardening Aluminum Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Upadhyay, Piyush; Reynolds, Anthony

    2015-05-25

    Process design and implementation in FSW is mostly dependent on empirical information gathered through experience. Basic science of friction stir welding and processing can only be complete when fundamental interrelationships between process control parameters and response variables and resulting weld microstructure and properties are established to a reasonable extent. It is known that primary process control parameters like tool rotation and translation rate and forge axis force have complicated and interactive relationships to the process response variables such as peak temperature, time at temperature etc. Of primary influence to the other process response parameters are temperature and its gradient at the deformation and heat affected zones. Through review of pertinent works in the literature and some experimental results from boundary condition work performed in precipitation hardening aluminum alloys this paper will partially elucidate the nature and effects of temperature transients caused by variation of thermal boundaries in Friction Stir Welding.

  14. Parametric optimization of friction stir welding process of age hardenable aluminum alloys-ANFIS modeling

    Institute of Scientific and Technical Information of China (English)

    D Vijayan; V Seshagiri Rao

    2016-01-01

    A comparative approach was performed between the response surface method (RSM) and the adaptive neuro-fuzzy inference system (ANFIS) to enhance the tensile properties, including the ultimate tensile strength and the tensile elongation, of friction stir welded age hardenable AA6061 and AA2024 aluminum alloys. The effects of the welding parameters, namely the tool rotational speed, welding speed, axial load and pin profile, on the ultimate tensile strength and the tensile elongation were analyzed using a three-level, four-factor Box-Behnken experimental design. The developed design was utilized to train the ANFIS models. The predictive capabilities of RSM and ANFIS were compared based on the root mean square error, the mean absolute error, and the correlation coefficient based on the obtained data set. The results demonstrate that the developed ANFIS models are more effective than the RSM model.

  15. Alloying element losses in pulsed Nd : YAG laser welding of stainless steel 316

    Science.gov (United States)

    Jandaghi, M.; Parvin, P.; Torkamany, M. J.; Sabbaghzadeh, J.

    2008-12-01

    Experimental studies of pulsed laser welding of stainless steel 316 in keyhole mode were done to examine a vaporization model based on the kinetic theory of gases and the thermodynamic laws. Undesirable loss of volatile elements affects the weld metal composition and properties. The profile of the keyhole was simulated as a function of time from a 'hydrodynamic' physical model. The power density and pulse duration were the main investigated variables. The model predicts that loss of alloying elements increases at higher peak powers and longer pulse durations. Accordingly, the concentrations of iron, chromium, nickel and manganese were determined in the weld pool by means of the proton-induced x-ray emission and energy dispersive x-ray/wavelength dispersive x-ray analysis. It was shown that the composition alteration, predicted by the model due to varying laser parameters, accords well with the corresponding experimental data.

  16. Themo-mechanical and microstructural modeling of friction stir welding of 6111-T4 aluminum alloys

    Science.gov (United States)

    Kim, Ji Hoon; Barlat, Frédéric; Kim, Chongmin; Chung, Kwansoo

    2009-02-01

    Plastic deformation and thermal history as well as microstructure evolution of friction stir welded 6111-T4 aluminum alloys were numerically simulated. Material and heat flow during friction stir welding were calculated considering the momentum balance equation and energy balance equation under the steady state condition. Based on the calculated temperature history, the coupled nucleation, growth, and coarsening of precipitates were simulated using microstructural modeling, as proposed by Myhr et al. [7,8]. Finally, the distribution of precipitates was used to calculate the mechanical properties of the weld zone, particularly the yield stress, based on the dislocation theory. The results compared well with the measurements, suggesting that the method can be applicable to predict yield stress.

  17. Microstructural and Mechanical Characteristics of Aluminum Alloy AA5754 Friction Stir Spot Welds

    Science.gov (United States)

    Mahmoud, T. S.; Khalifa, T. A.

    2014-03-01

    In the present investigation, friction stir spot welding on annealed aluminum alloy AA5754 sheets was performed. The influences of the tool rotational speed and tool stirring (dwell) time on the weld structure and static strength of welds were evaluated. The results revealed that the width of the completely metallurgical-bonded region increases with the increasing tool rotational speed and/or the dwell time up to certain levels. Increasing such parameters beyond these levels slightly reduces the width of the bonding region. The stirred zone exhibited higher microhardness than that of the base material. The tensile-shear force was found to increase with the increasing tool rotational speed and/or dwell time up to a certain level (9s). Higher tool rotational speeds and/or prolonged dwell times slightly reduce(s) the tensile-shear force.

  18. Effect of heat treatment on the properties of laser-beam welded rheo-cast F357 aluminum

    CSIR Research Space (South Africa)

    Theron, M

    2012-02-01

    Full Text Available Semi-solid metal rheo-cast F357 aluminum plates were joined by autogenous Nd:YAG laser welding and were welded in either the as-cast (F) condition, T4 temper or T6 temper condition. The weldability of this age-hardenable Al–7%Si–0.6%Mg casting alloy...

  19. T-joints of Ti alloys with hybrid laser-MIG welding: macro-graphic and micro-hardness analyses

    Science.gov (United States)

    Spina, R.; Sorgente, D.; Palumbo, G.; Scintilla, L. D.; Brandizzi, M.; Satriano, A. A.; Tricarico, L.

    2012-03-01

    Titanium alloys are characterized by high mechanical properties and elevated corrosion resistance. The combination of laser welding with MIG/GMAW has proven to improve beneficial effects of both processes (keyhole, gap-bridging ability) while limiting their drawbacks (high thermal gradient, low mechanical resistance) In this paper, the hybrid Laser-GMAW welding of Ti-6Al-4V 3-mm thick sheets is investigated using a specific designed trailing shield. The joint geometry was the double fillet welded T-joint. Bead morphologies, microstructures and mechanical properties (micro-hardness) of welds were evaluated and compared to those achieved for the base metals.

  20. Identification of mechanical properties of weld joints of AlMgSi07.F25 aluminium alloy

    Directory of Open Access Journals (Sweden)

    P. Kopas

    2017-01-01

    Full Text Available The aim of this paper is to present the analysis of selected mechanical properties of weld joints of AlMgSi07.F25 aluminium alloy. We will focus on the influence of the test bar neck shape on the tensile strength characteristics and the course of hardness in the weld joint cross-section. For the welding process using TIG (Tungsten Inert Gas technology we considered AlSi5 as the additive material. This paper also includes a short study of numerical modelling of the test bar welding.