WorldWideScience

Sample records for alloy-tzm

  1. Molybdenum and molybdenum alloys as materials for high temperature furnaces and hot isostatic presses

    Energy Technology Data Exchange (ETDEWEB)

    Aschenbrenner, W.; Palme, R.

    1983-04-01

    Owing to their excellent high-temperature properties molybdenum and the molybdenum alloy TZM are used as materials for high-temperature furnaces and hot isostatic presses. The setup and the function of the high-temperature furnaces and hot isostatic presses and their applications are described.

  2. Thermal and mechanical analysis of the Faraday shield for the Compact Ignition Tokamak

    International Nuclear Information System (INIS)

    The antenna for the ion cyclotron resonance heating (ICRH) system of the Compact Ignition Tokamak (CIT) is protected from the plasma environment by a Faraday shield, an array of gas-cooled metallic tubes. The plasma side of the tubes is armored with graphite tiles, which can be either brazed or mechanically attached to the tube. The Faraday shield has been analyzed using finite element codes to model thermal and mechanical responses to typical CIT heating and disruption loads. Four representative materials (Inconel 718, tantalum-10 tungsten, copper alloy C17510, and molybdenum alloy TZM) and several combinations of tube and armor thicknesses were used in the thermal analysis, which revealed that maximum allowable temperatures were not exceeded for any of the four materials considered. The two-dimensional thermal stress analysis indicated Von Mises stresses greater than twice the yield stress for a tube constructed of Inconel 718 (the original design material) for the brazed-graphite design. Analysis of stresses caused by plasma disruption (/rvec J/ /times/ /rvec B/) loads eliminated the copper and molybdenum alloys as candidate tube materials. Of the four materials considered, tantalum-10 tungsten performed the best for a brazed graphite design, showing acceptable thermal stresses (69% of yield) and disruption stresses (42% of yield). A preliminary thermal analysis of the mechanically attached graphite scheme predicts minimal thermal stresses in the tube. The survivability of the graphite tubes in this scheme is yet to be analyzed. 8 refs., 19 figs., 2 tabs

  3. Chapter 9: The FTU Machine - Design Construction and Assembly

    International Nuclear Information System (INIS)

    The main design features and guidelines for the construction of the 8-T cryogenically cooled Frascati Tokamak Upgrade (FTU) are presented. The main features include the very compact toroidal magnets based on the concept of the 'Bitter' type of coil with wedge-shaped turns, utilized for the first time for the Alcator A and C magnets, and the original configuration of the vacuum vessel (VV) structure, which is fully welded in order to achieve the required high strength and electric resistivity. The present toroidal limiter has been installed following several years of operation, and this installation has required the development of specific remote-handling tools. The toroidal limiter consists of 12 independent sectors made of stainless steel carriers and molybdenum alloy (TZM) tiles. The main fabrication processes developed for the toroidal and poloidal coils as well as for the VV are described. It is to be noted that the assembly procedure has required very accurate machining of all the structures requiring several trials and steps. The machine has shown no problem in operating routinely at its maximum design values (8 T, 1.6 MA)