WorldWideScience

Sample records for alloy-mp35n

  1. Characterization of air-formed surface oxide film on a Co-Ni-Cr-Mo alloy (MP35N) and its change in Hanks' solution

    Energy Technology Data Exchange (ETDEWEB)

    Nagai, Akiko, E-mail: nag-bcr@tmd.ac.jp [Department of Inorganic Materials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-surugadai, Chiyoda-ku, Tokyo 101-0062 (Japan); Tsutsumi, Yusuke [Department of Metals, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-surugadai, Chiyoda-ku, Tokyo 101-0062 (Japan); Suzuki, Yuta [Department of Inorganic Materials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-surugadai, Chiyoda-ku, Tokyo 101-0062 (Japan); Faculty of Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292 (Japan); Katayama, Keiichi [Faculty of Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292 (Japan); Hanawa, Takao [Department of Metals, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-surugadai, Chiyoda-ku, Tokyo 101-0062 (Japan); Yamashita, Kimihiro [Department of Inorganic Materials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-surugadai, Chiyoda-ku, Tokyo 101-0062 (Japan)

    2012-05-01

    The air-formed surface oxide films used for stents were characterized to determine their composition and chemical state on a Co-Ni-Cr-Mo alloy. The change of the films in Hanks' solution was used to estimate the reconstruction of the film in the human body. Angle-resolved X-ray photoelectron spectroscopy was used to characterize the composition of the film and substrate, as well as the film's thickness. The surface oxide film on the Co-Ni-Cr-Mo alloy (when mechanically polished) consists of oxide species of cobalt, nickel, chromium, and molybdenum, contains a large amount of OH{sup -}, and has a thickness of approximately 2.5 nm. Cations exist in the oxide as Co{sup 2+}, Ni{sup 2+}, Cr{sup 3+}, Mo{sup 4+}, Mo{sup 5+}, and Mo{sup 6+}. Chromium is enriched and cobalt and nickel are depleted in the oxide; however, nickel is enriched and cobalt is depleted in the substrate alloy just under the surface oxide film. Concentration of chromium was low and that of nickel was high at small take-off angles. This indicates that distribution of chromium is greater in the inner layer, but nickel is distributed more in the outer layer of the surface oxide film. During immersion in Hanks' solution, cobalt and nickel dissolved, and the film composition changed to mostly chromium oxide (Cr{sup 3+}), along with small amounts of cobalt, nickel, and molybdenum oxides, and calcium phosphate containing magnesium, potassium, and carbonate. After immersion in Hanks' solution, the thickness of the surface layer containing calcium phosphate increased to more than 4 nm, while the amount of OH{sup -} increased. The amount of cobalt and nickel in the surface oxide film and in the substrate alloy just below the oxide decreased during immersion.

  2. Characterization of air-formed surface oxide film on a Co-Ni-Cr-Mo alloy (MP35N) and its change in Hanks’ solution

    International Nuclear Information System (INIS)

    The air-formed surface oxide films used for stents were characterized to determine their composition and chemical state on a Co-Ni-Cr-Mo alloy. The change of the films in Hanks’ solution was used to estimate the reconstruction of the film in the human body. Angle-resolved X-ray photoelectron spectroscopy was used to characterize the composition of the film and substrate, as well as the film's thickness. The surface oxide film on the Co-Ni-Cr-Mo alloy (when mechanically polished) consists of oxide species of cobalt, nickel, chromium, and molybdenum, contains a large amount of OH-, and has a thickness of approximately 2.5 nm. Cations exist in the oxide as Co2+, Ni2+, Cr3+, Mo4+, Mo5+, and Mo6+. Chromium is enriched and cobalt and nickel are depleted in the oxide; however, nickel is enriched and cobalt is depleted in the substrate alloy just under the surface oxide film. Concentration of chromium was low and that of nickel was high at small take-off angles. This indicates that distribution of chromium is greater in the inner layer, but nickel is distributed more in the outer layer of the surface oxide film. During immersion in Hanks’ solution, cobalt and nickel dissolved, and the film composition changed to mostly chromium oxide (Cr3+), along with small amounts of cobalt, nickel, and molybdenum oxides, and calcium phosphate containing magnesium, potassium, and carbonate. After immersion in Hanks’ solution, the thickness of the surface layer containing calcium phosphate increased to more than 4 nm, while the amount of OH- increased. The amount of cobalt and nickel in the surface oxide film and in the substrate alloy just below the oxide decreased during immersion.

  3. Corrosion fatigue of high strength fastener materials in seawater

    Science.gov (United States)

    Tipton, D. G.

    1983-01-01

    Environmental effects which significantly reduce the fatigue life of metals are discussed. Corrosion fatigue is a major concern in the engineering application of high strength fasteners in marine environments. The corrosion fatigue failure of an AISI 41L4O high strength steel blade to hub attachment bolt at the MOD-OA 200 kW wind turbine generator was investigated. The reduction of fatigue strength of AISI 41L4O in marine environments and to obtain similar corrosion fatigue data for candidate replacement materials was studied. The AISI 4140, PH 13-8Mo stainless steel, alloy 718 and alloy MP-35N were tested in axial fatigue at a frequency of 20 Hz in dry air and natural seawater. The fatigue data are fitted by regression equations to allow determination of fatigue strength for a given number of cycles to failure.

  4. Radially arrayed nanopillar formation on metallic stent wire surface via radio-frequency plasma.

    Science.gov (United States)

    Loya, Mariana C; Park, Eunsung; Chen, Li Han; Brammer, Karla S; Jin, Sungho

    2010-04-01

    MP35N (Co-Ni-Cr-Mo alloy) is an important stent implant material for which many aspects, that include nanostructured surfaces, are yet to be understood. The present study provides the first creation of radially emanating metallic nanopillar structures on the surface of MP35N stent alloy wires; a novel textured surface structuring derived via controlled RF processing technique. The goal of this study was to characterize the newly found structures, identify evolution stages of nanopillar formations, as well as optimize RF process parameters for controlled surface texturing technique for stent wire materials. The exposure of a stent alloy wire, 250 microm diameter Co-Ni-Cr-Mo alloy (MP35N), to parameter-controlled RF environment resulted in dense surface nanostructures consisting of high-aspect-ratio dendritic nanopillars/nanowires. Extensive surface characterization and local compositional analyses by Transmission Electron Microscopy (TEM), Energy Dispersive X-ray analysis (EDX) and X-ray photoelectron spectroscopy (XPS) show increased values of Mo contents on the outer edges of protruding nanopillars, indicating a possibility of the higher Mo content phase contributing to the differential plasma sputter etching on the MP35N surface and resultant nanowire formation. A comparative investigation on single phase alloy versus multi-phase alloy seems to point to the importance of phase segregation for successful nanowire formation by RF plasma treatment. In addition to MP35N, some specific single phased materials, such as Fe-Ni and Fe-Cr alloys or Pt metal wire, were exposed in same RF plasma conditions and results did not form the complex structures found on MP35N samples. For the purpose of this study, metallic stent wires that have nanostructured surfaces can be considered a "polymer-less" approach to surface modification, The creation and characterization of radially arrayed nanostructured surfaces has been demonstrated on MP35N stent alloy wires using this RF plasma