WorldWideScience

Sample records for alloy-l-605

  1. Embrittlement of nickel-, cobalt-, and iron-base superalloys by exposure to hydrogen

    Science.gov (United States)

    Gray, H. R.

    1975-01-01

    Five nickel-base alloys (Inconel 718, Udimet 700, Rene 41, Hastelloy X, and TD-NiCr), one cobalt-base alloy (L-605), and an iron-base alloy (A-286) were exposed in hydrogen at 0.1 MN/sq m (15 psi) at several temperatures in the range from 430 to 980 C for as long as 1000 hours. These alloys were embrittled to varying degrees by such exposures in hydrogen. Embrittlement was found to be: (1) sensitive to strain rate, (2) reversible, (3) caused by large concentrations of absorbed hydrogen, and (4) not associated with any detectable microstructural changes in the alloys. These observations are consistent with a mechanism of internal reversible hydrogen embrittlement.

  2. Prediction and verification of creep behavior in metallic materials and components for the space shuttle thermal protection system

    Science.gov (United States)

    Davis, J. W.; Cramer, B. A.

    1976-01-01

    A method of analysis was developed for predicting permanent cyclic creep deflections in stiffened panel structures. This method uses creep equations based on cyclic tensile creep tests and a computer program to predict panel deflections as a function of mission cycle. Four materials were investigated - a titanium alloy (Ti-6Al-4V), a cobalt alloy (L605), and two nickel alloys (Rene'41 and TDNiCr). Steady-state and cyclic creep response data were obtained by testing tensile specimens fabricated from thin gage sheet (0.025 and 0.63 cm nominal). Steady-state and cyclic creep equations were developed which describe creep as a function of time, temperature and load. Tests were also performed on subsize (6.35 x 30.5 cm) rib and corrugation stiffened panels. These tests were used to correlate creep responses between elemental specimens and panels. The panel response was analyzed by use of a specially written computer program.

  3. Cyclic creep-rupture behavior of three high-temperature alloys.

    Science.gov (United States)

    Halford, G. R.

    1972-01-01

    Study of some important characteristics of the cyclic creep-rupture curves for the titanium alloy 6Al-2Sn-4Zr-2Mo at 900 and 1100 F (755 and 865 K), the cobalt-base alloy L-605 at 1180 F (910 K), and for two hardness levels of 316 stainless steel at 1300 F (980 K). The cyclic creep-rupture curve relates tensile stress and tensile time-to-rupture for strain-limited cyclic loading and has been found to be independent of the total strain range and the level of compressive stress employed in the cyclic creep-rupture tests. The cyclic creep-rupture curve was always found to be above and to the right of the conventional (constant load) monotonic creep-rupture curve by factors ranging from 2 to 10 in time-to-rupture. This factor tends to be greatest when the creep ductility is large. Cyclic creep acceleration was observed in every cyclic creep-rupture test conducted. The phenomenon was most pronounced at the highest stress levels and when the tensile and compressive stresses were completely reversed. In general, creep rates were found to be lower in compression than in tension for equal true stresses. The differences, however, were strongly material-dependent.

  4. Design and characterization of a novel nickel-free cobalt-base alloy for intravascular stents.

    Science.gov (United States)

    Wang, Qiang; Ren, Yibin; Babar Shahzad, M; Zhang, Wei; Pan, Xumeng; Zhang, Song; Zhang, Dan

    2017-08-01

    Co-Cr-W-Ni alloy (L605) with high tensile strength is used in coronary stents. The thickness of individual strut of the stent is reduced which can decrease the stent restenosis rate. However, about 10% Ni element content in L605 is found to cause allergic reactions and pulmonary embolism, similar to the traditional 316L stainless steel. In this study, a novel nickel-free cobalt-base alloy Co-20Cr-12Fe-18Mn-2Mo-4W-N (wt%) was designed and fabricated in order to efficiently avoid the potential hazards of Ni element. Fe and Mn, essential elements of human body, were added in the alloy to substitute part of Co element. In comparison to L605 alloy, the tensile strength of the new alloy was higher than 1000MPa while elongation was above 55%. The pitting potential of the new alloy was measured close to 1000mV, also higher than that of L605 alloy. CCK-8 test indicated that the cytotoxicity of the new alloy is grade 1, reflecting that Co-20Cr-12Fe-18Mn-2Mo-4W-N alloy has no cytotoxic effects. There was no significant difference in the apoptosis rates between Co-20Cr-12Fe-18Mn-2Mo-4W-N and L605 alloy. The newly developed cobalt-base alloy showed excellent mechanical, corrosion resistance and biological properties, which could make it a desirable material for future clinical investigations. Copyright © 2017 Elsevier B.V. All rights reserved.