Sample records for alloy-hs-31

  1. Effect of autoclave heat treatments on the mechanical properties of the prealloyed powder cobalt-base alloy HS-31 (United States)

    Freche, J. C.; Ashbrook, R. L.


    The cobalt-base alloy HS-31 was atomized into powder and then consolidated by extrusion or by hot isostatic pressing (HIP) in an autoclave over a range of temperatures spanning the solidus, approximately 2340 F. Extrusions were subsequently autoclaved at the same conditions. Extrusions autoclaved at 2420 F had a life of 300 hours at 1200 F and 30 hours at 1800 F at stresses that result in a 10-hour life with cast HS-31. Superior stress rupture lives of autoclaved material are probably related to the solidification structure at the grain boundaries as well as to the increased grain size.

  2. Creep rupture behavior of Stirling engine materials (United States)

    Titran, R. H.; Scheuerman, C. M.; Stephens, J. R.


    The automotive Stirling engine, being investigated jointly by the Department of Energy and NASA Lewis as an alternate to the internal combustion engine, uses high-pressure hydrogen as the working fluid. The long-term effects of hydrogen on the high temperature strength properties of materials is relatively unknown. This is especially true for the newly developed low-cost iron base alloy NASAUT 4G-A1. This iron-base alloy when tested in air has creep-rupture strengths in the directionally solidified condition comparable to the cobalt base alloy HS-31. The equiaxed (investment cast) NASAUT 4G-A1 has superior creep-rupture to the equiaxed iron-base alloy XF-818 both in air and 15 MPa hydrogen.